

Oracle® Health Sciences Omics Data Bank
Programmer’s Guide

Release 3.0.2.1

E35680-12

March 2016

Oracle Health Sciences Omics Data Bank Programmer’s Guide Release 3.0.2.1

E35680-12

Copyright © 2013, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

v

Contents

Preface ... xi

Audience... xi
Disclaimer Regarding Third Party Data .. xi
Documentation Accessibility ... xi
Finding Information and Patches on My Oracle Support ... xi
Finding Documentation on Oracle Technology Network... xiii
Related Documents ... xiii
Conventions ... xiv

1 Omics Data Model

1.1 Introduction ... 1-1
1.1.1 Reference Data.. 1-2
1.1.2 Result Data.. 1-3
1.2 Logical Data Model... 1-3
1.3 Reference Data Tables .. 1-5
1.4 Result Data Tables ... 1-12
1.4.1 Result Tables for Qualifier Metadata ... 1-16
1.4.2 Result Tables for Differential Expression.. 1-17
1.5 Table for Logging... 1-18
1.6 Aggregate Tables for Gene Expression... 1-18
1.7 File and File Load Tables .. 1-18

2 Prerequisites for Loading Data

2.1 Setting Up a Directory Object ... 2-1
2.2 Setting Up an Oracle Wallet .. 2-2
2.3 Setting Up User Privileges for Querying or Loading Data... 2-3
2.4 Integration with Oracle Health Sciences Cohort Explorer Data Model or Another External

Data Model 2-4
2.4.1 Specimen and Vendor Number Requirement .. 2-6
2.5 Migrating W_EHA_RSLT_STUDY, W_EHA_SPEC_PATIENT and W_EHA_SPEC_

SUBJECT Tables 2-6
2.6 Reference Version Compatibility.. 2-7
2.7 Handling Newline Characters in Input Files.. 2-8
2.8 Periodically Purge the Recycle Bin... 2-8

vi

3 Loaders for Reference Data

3.1 Ensembl and SwissProt Loaders... 3-1
3.1.1 Installing the Loaders.. 3-1
3.1.2 Files to Load.. 3-2
3.1.3 Loading the Data.. 3-3
3.1.4 Running the Embl/Swissprot Loader with Named Command-Line Arguments 3-6
3.1.5 Index-Organized Tables Loader .. 3-8
3.1.6 Gathering Optimizer Statistics... 3-9
3.2 HUGO Loader ... 3-9
3.2.1 Description and Files to Load .. 3-9
3.2.2 Running the Loader... 3-9
3.2.3 Command-Line Argument List .. 3-10
3.3 GVF Ensembl Loader .. 3-11
3.3.1 Description and Files to Load ... 3-12
3.3.2 Running the Loader.. 3-12
3.3.3 Command-Line Argument List .. 3-12
3.3.4 Gathering Optimizer Statistics.. 3-14
3.4 Pathway Loader ... 3-14
3.4.1 Description and Files to Load ... 3-14
3.4.2 Running the Loader.. 3-14
3.4.3 Command-Line Argument List .. 3-15
3.5 Prediction Score (PolyPhen, SIFT) Loader ... 3-16
3.5.1 Description and Files to Load ... 3-16
3.5.2 Running the Loader.. 3-18
3.5.3 Command-Line Argument List .. 3-19
3.6 Probe Loader... 3-21
3.6.1 Description and Files to Load ... 3-22
3.6.2 Running the Loader.. 3-22
3.6.3 Command-Line Argument List .. 3-23
3.7 ADF Data Loader ... 3-24
3.7.1 Description and Files to Load ... 3-24
3.7.2 Running the Loader.. 3-24
3.7.3 Command-Line Argument List .. 3-25
3.8 HGMD (BioBase) Loader .. 3-27
3.8.1 Description and Files to Load ... 3-27
3.8.2 Running the Loader.. 3-28
3.8.3 Command-Line Argument List .. 3-28
3.9 COSMIC Loader... 3-30
3.9.1 Description and Files to Load ... 3-30
3.9.2 Running the Loader.. 3-30
3.9.3 Command-Line Argument List .. 3-31
3.10 Variant Effect Job ... 3-32
3.11 Typical Errors Associated with Reference Loaders .. 3-33
3.11.1 Loader Runtime Error: ORA-01460 Unimplemented or Unreasonable Conversion

Requested 3-33

vii

4 Loaders for Result Data

4.1 Prerequisites .. 4-1
4.1.1 Setting Default Cache Sizes for Result Loading ... 4-2
4.2 Overview of Result Loaders .. 4-4
4.3 Version Information Utility ... 4-5
4.3.1 Functional Description.. 4-5
4.3.2 Running the Version Check Utility ... 4-5
4.4 CGI masterVar Data Loader.. 4-6
4.4.1 Functional Description of CGI Loader ... 4-6
4.4.2 Files to Load.. 4-7
4.4.3 Data Load.. 4-7
4.4.4 Running the CGI Loader with Named Command-Line Arguments 4-11
4.4.5 Examples .. 4-13
4.5 VCF Sequence Data Loader .. 4-13
4.5.1 Functional Description... 4-13
4.5.1.1 1000 genomes VCF4.1 Version... 4-14
4.5.1.2 Genome Variant Call Format (gVCF) ... 4-15
4.5.1.3 FILE_TYPE_CODE and LOAD_MODE of VCF Loader 4-15
4.5.2 Custom Format Specification in VCF .. 4-16
4.5.2.1 Debugging Inconsistent Datatypes for FORMAT Field in VCF File.................. 4-17
4.5.3 Data Load... 4-17
4.5.3.1 Data Files .. 4-18
4.5.4 Command-Line Argument List .. 4-24
4.5.5 Examples .. 4-26
4.6 MAF Sequence Data Loader.. 4-27
4.6.1 Functional Description... 4-27
4.6.2 Data Load... 4-27
4.6.2.1 Data files ... 4-28
4.6.3 Command-Line Argument List .. 4-30
4.6.4 Examples .. 4-32
4.7 RNA-Seq Loader .. 4-32
4.7.1 Functional Description... 4-32
4.7.2 Data Load... 4-33
4.7.2.1 Data File .. 4-34
4.7.3 Command-Line Argument List .. 4-35
4.7.4 Examples .. 4-37
4.8 File Specimen Loader and File Lineage Linker ... 4-37
4.8.1 File-Specimen Loader... 4-37
4.8.2 File Lineage Linker ... 4-40
4.9 Copy Number Variation Loader.. 4-41
4.9.1 Functional Description... 4-41
4.9.2 Data Load... 4-42
4.9.3 Command-Line Argument List .. 4-43
4.9.4 Examples .. 4-44
4.10 Single Channel Gene Expression Loader ... 4-45
4.10.1 Functional Description... 4-45
4.10.2 Data Load... 4-45

viii

4.10.2.1 Assumptions for Data File.. 4-46
4.10.2.2 Mappings for Gene Expression Loader.. 4-46
4.10.2.3 Aggregate Tables ... 4-46
4.10.3 Command-Line Argument List .. 4-46
4.10.4 Examples .. 4-48
4.11 Dual Channel Loader .. 4-49
4.11.1 Functional Description... 4-49
4.11.2 Data Load... 4-49
4.11.3 Command Line Argument List... 4-50
4.11.4 Examples .. 4-52
4.12 Quality Control Metadata Loader ... 4-52
4.12.1 Functional Description... 4-52
4.12.2 Data Load... 4-53
4.12.2.1 Data File .. 4-53
4.12.3 Command-Line Argument.. 4-55
4.12.4 Examples .. 4-56
4.13 Typical Errors Associated with Result Loaders .. 4-57
4.13.1 Errors Relevant to Sequencing Loads .. 4-57
4.13.2 VCF Loader Errors.. 4-58
4.13.3 CGI Loader Errors .. 4-59
4.13.4 MAF Loader Errors... 4-59
4.13.5 Single Channel Gene Expression Loader Errors .. 4-59
4.13.5.1 Missing Probe Link Issue ... 4-59
4.13.6 Dual Channel Gene Expression Loader Errors .. 4-60
4.13.7 RNA-seq Loader Errors ... 4-60
4.13.8 Copy Number Variation Loader Errors .. 4-61
4.13.9 File Lineage Linker Errors ... 4-61
4.13.10 Loader Runtime Error: ORA-01460 Unimplemented or Unreasonable Conversion

Requested 4-61
4.14 Collecting Oracle Optimizer Statistics .. 4-61

5 Model Dictionary

6 Use Case Examples

6.1 Overview of Use Cases... 6-1
6.2 Use Cases Accompanied by Query Examples .. 6-2
6.2.1 Scenario 1 .. 6-2
6.2.2 Scenario 2 .. 6-3
6.2.3 Scenario 3 .. 6-3
6.2.4 Scenario 4 .. 6-4
6.2.5 Scenario 5 .. 6-4
6.2.6 Scenario 6 .. 6-5
6.2.7 Scenario 7 .. 6-6
6.2.8 Scenario 8 .. 6-7
6.2.9 Scenario 9 .. 6-7
6.2.10 Scenario 10 .. 6-8
6.2.11 Scenario 11 .. 6-9

ix

7 Miscellaneous Topics

7.1 Product Version and Product Profile Including Flanking Offsets....................................... 7-1
7.2 Querying Database Cross-References for Variations .. 7-2
7.2.1 Ensembl db_xref Qualifier Issue ... 7-2
7.2.2 Swissprot db_xref Qualifier Issue ... 7-3
7.2.3 W_EHA_VARIANT_X.. 7-3
7.3 Mitochondrial Chromosome Mappings .. 7-4
7.4 Promoter Offset ... 7-4
7.5 Loader Activity Logging.. 7-4
7.6 User Feedback for Loader Runs.. 7-5
7.7 VCF Loader Log .. 7-7
7.8 Creating Custom Gene Components ... 7-7
7.8.1 Creating Custom Gene Region Views ... 7-11
7.8.2 Comparing Genomic Coordinates to Reference... 7-13
7.9 Additional Step on Exadata versus Non-Exadata... 7-13
7.10 UNDO Tablespace Auto-extendable Issue... 7-14
7.11 Chromosome Partitioned Tables ... 7-14

A Additional Result Tables

A.1 Pre-Seeded Tables .. A-1
A.2 Populated by User or Loader ... A-8
A.3 Tables or Columns Not Populated Through Loader Scripts .. A-10

x

xi

Preface

This guide provides information on the Oracle Health Sciences Omics Data Bank
(ODB) architecture.

Audience
This document is intended for users of Oracle Sciences Omics Data Bank. They could
include Bioinformaticians, Database Administrators, Computational Biologists,
Clinicians, Scientists, Developers, and Data Modelers.

Disclaimer Regarding Third Party Data

Public Domain Data
Oracle makes no express or implied warranty, including but not limited to warranties
regarding the accuracy, completeness, merchantability, or fitness for a particular
purpose, with respect to third party data loaded into this application or the results of
any functions of the application using such data. It may be used for information
purposes only, and no medical, clinical or other health related decisions may be based
upon such results. You are solely responsible for your use of the third party data,
including your right to use the data for your purposes.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=accid=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=accid=trs if you are hearing
impaired.

Finding Information and Patches on My Oracle Support
Your source for the latest information about Oracle Health Sciences Cohort Explorer is
Oracle Support's self-service Web site, My Oracle Support (formerly MetaLink).

xii

Before you install and use an Oracle software release, always visit the My Oracle
Support Web site for the latest information, including alerts, release notes,
documentation, and patches.

Creating a My Oracle Support Account
You must register at My Oracle Support to obtain a user name and password account
before you can enter the Web site.

To register for My Oracle Support:

1. Open a Web browser to http://support.oracle.com.

2. Click the Register here link to create a My Oracle Support account. The
registration page opens.

3. Follow the instructions on the registration page.

Signing In to My Oracle Support
To sign in to My Oracle Support:

1. Open a Web browser to http://support.oracle.com.

2. Click Sign In.

3. Enter your user name and password.

4. Click Go to open the My Oracle Support home page.

Searching for Knowledge Articles by ID Number or Text String
The fastest way to search for product documentation, release notes, and white papers
is by the article ID number.

To search by the article ID number:

1. Sign in to My Oracle Support at http://support.oracle.com.

2. Locate the Search box in the upper right corner of the My Oracle Support page.

3. Click the sources icon to the left of the search box, and then select Article ID from
the list.

4. Enter the article ID number in the text box.

5. Click the magnifying glass icon to the right of the search box (or press the Enter
key) to execute your search.

The Knowledge page displays the results of your search. If the article is found,
click the link to view the abstract, text, attachments, and related products.

In addition to searching by article ID, you can use the following My Oracle Support
tools to browse and search the knowledge base:

■ Product Focus — On the Knowledge page, you can drill into a product area
through the Browse Knowledge menu on the left side of the page. In the Browse
any Product, By Name field, type in part of the product name, and then select the
product from the list. Alternatively, you can click the arrow icon to view the
complete list of Oracle products and then select your product. This option lets you
focus your browsing and searching on a specific product or set of products.

■ Refine Search — Once you have results from a search, use the Refine Search
options on the right side of the Knowledge page to narrow your search and make
the results more relevant.

xiii

■ Advanced Search — You can specify one or more search criteria, such as source,
exact phrase, and related product, to find knowledge articles and documentation.

Finding Patches on My Oracle Support
Be sure to check My Oracle Support for the latest patches, if any, for your product. You
can search for patches by patch ID or number, or by product or family.

To locate and download a patch:

1. Sign in to My Oracle Support at http://support.oracle.com.

2. Click the Patches & Updates tab.

The Patches & Updates page opens and displays the Patch Search region. You have
the following options:

■ In the Patch ID or Number is field, enter the primary bug number of the patch
you want. This option is useful if you already know the patch number.

■ To find a patch by product name, release, and platform, click the Product or
Family link to enter one or more search criteria.

3. Click Search to execute your query. The Patch Search Results page opens.

4. Click the patch ID number. The system displays details about the patch. In
addition, you can view the Read Me file before downloading the patch.

5. Click Download. Follow the instructions on the screen to download, save, and
install the patch files.

Finding Documentation on Oracle Technology Network
The Oracle Technology Network Web site contains links to all Oracle user and
reference documentation. To find user documentation for Oracle products:

1. Go to the Oracle Technology Network at

http://www.oracle.com/technetwork/index.html and log in.

2. Mouse over the Support tab, then click the Documentation hyperlink.

Alternatively, go to Oracle Documentation page at

http://www.oracle.com/technology/documentation/index.html

3. Navigate to the product you need and click the link.

For example, scroll down to the Applications section and click Oracle Health
Sciences Applications.

4. Click the link for the documentation you need.

Related Documents
The Oracle Health Sciences Translational Research Center Online Documentation Library
documentation set includes:

■ Oracle® Health Sciences Translational Research Center User's Guide

■ Oracle® Health Sciences Translational Research Center Administrator's Guide

■ Oracle® Health Sciences Translational Research Center Release Notes

■ Oracle® Health Sciences Translational Research Center Installation Guide

xiv

■ Oracle® Health Sciences Translational Research Center Release Content Document

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Omics Data Model 1-1

1Omics Data Model

This chapter contains the following topics:

■ Introduction on page 1-1

■ Logical Data Model on page 1-3

■ Reference Data Tables on page 1-5

■ Result Data Tables on page 1-12

■ Table for Logging on page 1-18

■ Aggregate Tables for Gene Expression on page 1-18

■ File and File Load Tables on page 1-18

1.1 Introduction
Oracle Health Sciences Omics Data Bank (ODB) consists of two groups of tables. One
set of tables, called the reference set, provides the genomic feature metadata required
to link specimen sample results to specific regions of the genome, gene definitions,
pathway or protein definitions. The second set of tables, called the result set, captures
the specimen sample genomic results, and links each result to an object in the reference
model. Each specimen sample is linked back to the patient and (or) subject. The patient
or subject link is accomplished by linking ODB with Cohort Data Model (part of
Oracle Health Sciences Cohort Explorer).

Omics Data Bank (ODB) consists of the data model and loaders. It does not include
any front-end user interfaces and contains only command line APIs. A set of scripts,
included with the model, can be used to load reference genomic data from specific
sources and several types of result data from a limited set of formats.

The model is intended to handle very large amounts of data (of the order of terabytes
and more). To gauge the scale of the data, one should consider that the human genome
has around 3 billion bases in each strand and the number of genes that produce
proteins is around 23,000. Each gene has many different variants and attributes that
are described in detail. This holds true for each protein, gene component, pathway and
so on, thus a lot of supporting reference data is loaded for each gene, protein or
pathway. The data cannot merely be reloaded to maintain an organized table, as is the
case with other tables that use ETL processes to load data. One approach is to use
Index Organized tables since data can be added to the reference model as more
reference data is discovered for each gene.

ODB 3.0 can handle multiple versions of reference data in the same instance, for
example GRCh36, GRCh37. You can load multiple versions of each reference data,
even the same version multiple times, and link the results to all copies of a specific

Introduction

1-2 Oracle Health Sciences Omics Data Bank Programmer’s Guide

reference version based on the requirement. For example, user with sequencing data
mapped to GRCh36.p7 links the results to GRCh36.p7 reference data loaded from
ENSEMBL. The multiple reference version support is extended to ENSEMBL,
SwissProt, HUGO, Pathway, SIFT or PolyPhen, COSMIC, HGMD, ADF, and probe
loader.

The ODB model can also handle multiple species concurrently, both on the reference
and result side of the data model.

1.1.1 Reference Data
Reference data is loaded from the following distinct sources:

1. The genomic information with corresponding gene data is loaded from EMBL files
which are stored online in the Ensembl database (http://www.ensembl.org/).
Ensembl is a joint project of the European Bioinformatics Institute and the
Wellcome Trust Sanger Institute. This online database maintains references to
other online database projects (dbSNP, NCBI, Cosmic, and so on) and provides
references to each of these databases. The model loads this cross reference
information, including known variation data, to let queries use specific database
references, if needed. Files in the genuine EMBL format from other sources can be
usually loaded in the same way (However, their successful loading cannot be
guaranteed). Each release of Ensembl data is treated as a separate 'DNA' reference
version. Current and alternate releases are available at their FTP publication
repository. Each newly loaded 'DNA' reference version should be given a new
label. When loading variants or proteins, each given variant or protein record is
linked to a specific version of the DNA reference.

2. The second source is the online SwissProt database
(http://www.ebi.ac.uk/uniprot/) from which the model obtains protein
information. This database project is also a consortium of various groups
including the European Bioinformatics Institute. An FTP link to the current release
of the SwissProt file is provided on their download page. Older SwissProt releases
are stored as large compressed files in their FTP repository.

3. The third source is the HUGO Gene Nomenclature Committee
(http://www.genenames.org/). This source provides reference seed information
required to identify human gene locations annotation only. The HUGO gene
names are required to find various cross references and the correct chromosome
number for each gene. The HUGO Gene Nomenclature Committee is the
authoritative group for all gene names. Since the HGNC HUGO dataset is
continuously updated, it does not have an archive of older versions or releases.
Any dataset taken, is as current as the date it was retrieved.

4. The fourth reference source is PathwayCommons
(http://www.pathwaycommons.org/pc/), which is used as the source for published
pathways and proteins or genes participating in each pathway. The coverage of
pathway as a reference is minimal. Pathway provides a list of current and previous
releases of the dataset to be retrieved from its download page.

5. The fifth reference source is Human Genome Mutation Database (HGMD)
(http://www.hgmd.cf.ac.uk/ac/index.php) This reference source currently
provides information on inherited genomic variants, as well as information
connecting inherited mutations and genes with human diseases and
pharmacological effects. The latter is obtained from HGMD's commercial partner,
BioBase International.

6. The sixth reference source is Catalogue of Somatic Mutations in Cancer (COSMIC)
(http://cancer.sanger.ac.uk/cancergenome/projects/cosmic), which is a

http://www.ensembl.org/
http://www.genenames.org/
http://www.pathwaycommons.org/pc/
http://www.hgmd.cf.ac.uk/ac/index.php
http://cancer.sanger.ac.uk/cancergenome/projects/cosmic

Logical Data Model

Omics Data Model 1-3

source of information related to human cancers including somatic mutation,
sample annotation, and publication ID links. This provides datasets on coding and
non-coding variants, and corresponding annotative information for each,
consisting of sample origin, histology, publication, and genomic data.

In general, the above files use similar features to represent data. The EMBL format is a
flat file representation, which provides an easy mechanism to parse and store data in a
separate database structure. Both Ensembl and SwissProt have native schemas that can
be downloaded. However, these schemas have 3NF structures, which are cumbersome
to coerce into a star schema model. The ODB model does not copy the source schema
structures in any way. In addition, there are a lot of extra objects in the native schemas
that are not necessary for the type of queries needed for the ODB requirements and
these objects are omitted in the ODB schema.

Most of these online databases let you download complete references, or specific
references for sections of the genome. Since some customers may only need some
genes or proteins, and some may not need any protein information at all, the model
permits any combination of specific data to be loaded and updated. Ensembl and
SwissProt databases are maintained in an additive manner, so that new data is added
on top of the existing data. This lets the ODB reference data be expanded as required
by the customer. The HUGO, PathwayCommons, and HGMD databases do not keep
older versions but provide only the latest versions for download.

1.1.2 Result Data
In ODB, the data model handles two main types of genetic results—gene expression
and sequencing. Gene Expression experiments capture information on how effectively
certain genes respond to various conditions, or how they differentially express under
different conditions. For sequencing results, while there are many different types of
sequencing techniques, the net effect is to record all of the variants which include
SNPs, small indels, large structural variations, structural re-arrangements, and also
non-variant information detected for each sample being tested, copy number variation
and other related features.

The model is designed to facilitate easy querying of all the above result types in a
single SQL statement across multiple versions of references or within the specific
reference version.

1.2 Logical Data Model
ODB contains two sets of tables:

1. Reference data tables

2. Result data tables

Each set of tables comes with a set of loading scripts to load data into these tables. The
reference loaders write to the reference tables, while the result loaders write to result
tables, and link results to reference. However, there is one exception, the W_EHA_
VARIANT reference table, where the sequencing result loaders enable you to report on
any novel variants by writing to this table with any new variants found. A dedicated
procedure, invoked by the result loader, reports on any novel variants.

Figure 1–1 shows how the reference tables link to create the ODB reference. Only table
names are shown in the figure.

Logical Data Model

1-4 Oracle Health Sciences Omics Data Bank Programmer’s Guide

Figure 1–1 Reference Data Logical Model (Core Tables Only)

Figure 1–2 shows how the result tables link to create the ODB result tables section.
Only table names are shown in the figure.

Figure 1–2 Result Data Logical Model (Core Tables Only)

Reference Data Tables

Omics Data Model 1-5

1.3 Reference Data Tables
The reference data starts with the W_EHA_SPECIES and W_EHA_DNA_SOURCE
tables.

W_EHA_SPECIES
The species table stores information about each genome in the database. The current
model permits any number of species genomes to be loaded. You must specify species
in queries if there are similar genes between the organisms being tested.

The table also stores the promoter offset value that is used to define the promoter
region of each gene, linked to the species record, if no PROMOTER component is
defined. If set, this value overrides the global promoter offset defined in W_EHA_
PRODUCT_PROFILE table.

W_EHA_DNA_SOURCE
The W_EHA_DNA_SOURCE table stores multiple records for different reference DNA
sequences for each species. Each cell in the species has a copy of this reference DNA.
There are buffers of DNA considered to be the reference for each organism. These
reference sequences are then used to map detected variations for each organism tested.
The W_EHA_DNA_SOURCE table has a foreign key to W_EHA_SPECIES and a
CLOB column to store the reference nucleotide sequence information. The DNA table
uses a specific notation to keep track of each DNA base in addition to the four
standard characters: A, T, C, G. There are additional characters used for sections that
have not been sequenced (N) and other characters are used to represent other possible
DNA bases. The records in this table are used as the parent records to map genes and
gene components. If Ensembl releases patches that illustrate how some genes are
re-defined, new W_EHA_DNA_SOURCE records are created and linked to the other
records, as required. This table also stores the chromosome location, which is
described later. The position of features such as variants, segments, and so on in ODB
is 1-based, following the standard from Ensembl. With the introduction of multiple
reference support, W_EHA_DNA_SOURCE table links each reference DNA Source
record to its DNA version, which is stored in the W_EHA_VERSION table under
version type 'DNA'.

Reference Data Tables

1-6 Oracle Health Sciences Omics Data Bank Programmer’s Guide

Figure 1–3 Genome Division by the Data Model

W_EHA_GENE
Each chromosome encodes for many different genes, each of which has a start and end
position. The entire start-to-end region of the gene typically does not create the protein
directly. Instead, there are recognized sections with the start-to-end region that
scientists agree should be considered as part of the gene. The W_EHA_GENE table
models how the Ensembl database refers to the gene, and the recognized gene name.
The recognized gene name is maintained by HUGO Gene Nomenclature Committee
(http://www.genenames.org/). This reference information is loaded into the model to
provide accurate chromosome information for each gene as the patch DNA sequences
loaded do not list chromosomes.

W_EHA_GENE_SEGMENT
This table is required to map the different segments of a gene to DNA Source buffers.
Some genes are sequenced in multiple buffers and require this joining table to track
each segment. This table provides the location in the buffer and a sequence number to
keep track of the order of each segment that composes the gene. There is also a
COMPLEMENT field that is used to indicate if the coding strand of a gene is on the
reverse strand (COMPLEMENT=1) or forward strand (COMPLEMENT=0) of a
chromosome.

_XREF, _QLFR (QUALIFIER)
The _XREF suffixed tables associated with many of the different tables are used to list
all the cross reference information stored in the Ensembl, SwissProt, and other
databases. There is a finite list of databases used, and each database has a specific
format for the reference ID. You can use these reference ID values for queries. The _
QLFR suffixed tables associated with other tables are used to list other attributes. Each
object can have an unlimited number of attributes such as /note that provides
information to annotate the object. The database model stores this annotation data for
reference.

http://www.genenames.org/

Reference Data Tables

Omics Data Model 1-7

W_EHA_GENE_STRUCTURE
The process of gene transcription is accomplished by many different interim molecules
that originate from sections of the gene. For each protein created, there is a distinct set
of sections which are used. Each of these groups is identified in the EMBL file by
having the same TRANSCRIPT_ID qualifier. A GENE_STRUCTURE record is created
to link to the protein and be used as a parent record for all of the gene components. A
given gene can have multiple proteins that are created (sometimes using the same
sections) and each has a different structure. Also, earlier research may have incorrect
gene structures and the information is kept for historical reasons.

W_EHA_GENE_COMPONENT
This table is used to store the various gene components. The EMBL file has many
different objects listed (mRNA, CDS, STS, tRNA, misc RNA) and each has a specific
meaning. Views are used to group the various types of objects in case there are queries
to find genetic results that intersect with various gene regions. More user-friendly
names are given (such as mRNA = MESSENGER_RNA, CDS = CODING_REGION,
STS = STRUCTURAL_SEGMENTS, and so on). Various queries can be run searching
for mutations that occur in any of these regions, including the entire gene region.

W_EHA_GENE_COMP_SEGMENT
This table is used to link each component to W_EHA_DNA_SOURCE records. Many
gene components have joined sections. Sometimes the joined sections are detected in
different source buffers as well and the foreign key to DNA_SOURCE is required for
each part of the gene components. There is a sequence number to keep track of the
order of each section used in the gene component.

W_EHA_PROTEIN
Most of the known genes produce different types of protein molecules. The EMBL files
list the amino acids that comprise each protein molecule, and use an identifier for each
protein molecule. The SwissProt files contain both amino acid (AA) sequences and
additional information about the protein molecule. There are more descriptive names
for each protein that are not stored in the EMBL files (such as, insulin). The W_EHA_
PROTEIN table only stores AA sequences, and facilitates merging data from EMBL
and SwissProt files for the proteins having the same sequences. This table is
unversioned, and the additional data for proteins is stored in a separate table, W_
EHA_PROT_INFO.

W_EHA_PROT_INFO
This table stores information about proteins, loaded from SwissProt files. It is linked to
the W_EHA_PROTEIN table containing the AA sequences. Multiple W_EHA_PROT_
COMPONENT records can be linked to a single W_EHA_PROT_INFO record. This
table is versioned, that is, each record in it is associated with one or more versions of
type ’PROTEIN’ (through the W_EHA_PROT_INFO_VERSION table). This
multi-version link is unique to the W_EHA_PROT_INFO table. It is used to prevent
duplicates of the Protein information records (and dependent records in other tables)
that have not changed from version to version.

W_EHA_PROT_COMPONENT
This table stores all the protein components that are loaded from SwissProt files. This
data may also be important for queries or reference. It can be important to show
changes that may be occurring when variants are detected in the gene regions used to
generate the amino acids of the protein.

Reference Data Tables

1-8 Oracle Health Sciences Omics Data Bank Programmer’s Guide

W_EHA_VARIANT
The VARIANT table is used to record the known reference sequence, REFERENCE_
SEQ, corresponding to one or more variants that differ from the reference DNA_
SOURCE. Most of these variants are well documented and compiled from other
research. When results are uploaded, sometimes novel variants are detected and there
are no known references for this variant.

These results generate new VARIANT records, which may be of interest to researchers.
There is a STATUS field which is used to indicate NOVEL or KNOWN variants. Since
this table is queried frequently, it is quite large and requires partitioning. The
VARIANT table has a foreign key to the DNA_SOURCE record, not the GENE record.
This is because some genes may overlap, and there may also be several structures that
are affected by a variant. This table is used to create result foreign keys as described
later.

The Variant table contains a column PRECEDING_BASE, which stores the nucleotide
base value preceding an insertion or deletion. The column, SVTYPE, stores the type of
the structural variation, including insertions (ins), deletions (del), duplications (dup),
copy number variations (cnv). The preceding base value is given, if and only if,
SVTYPE value is not null for a variant record.

W_EHA_VARIANT_X
This table has a foreign key to W_EHA_VARIANT table and only stores the allele
value for the large structural variant coming from the VCF file. This value comes from
the ALT column present in the VCF file.

W_EHA_HUGO_INFO
This table is very important to store reference seed information needed for identifying
gene locations. The EMBL files report each gene with a LOCUS_TAG, which uses the
registered name with the HUGO Gene Nomenclature Committee
(http://www.genenames.org/). The entire reference data from this group is loaded as
seed data in this table. The patch sequences (which are corrections to the human
genome project) list the chromosome using the accession number of the DNA used for
detection. The W_EHA_HUGO_INFO table is required to look up the HUGO gene
names to find various cross references and the correct chromosome number for each
gene. Each gene in the HUGO_INFO table is linked to a specific version of HUGO
reference data.

W_EHA_PATHWAY
Pathway is used to describe a series of interactions in a cell. Numerous biological
pathways exist, including genetic, metabolic, signaling, and so on. This table is used to
store publicly available pathways. Each pathway's participants are defined in the
PATHWAY_PROTEIN table which has a foreign key to the PATHWAY table. Each
pathway in this table is linked to the W_EHA_VERSION table with specific version of
Pathway Commons build release.

W_EHA_PATHWAY_PROTEIN
This table is used to track which gene or protein belongs to a particular pathway. It has
a foreign key to the PATHWAY table which associates a gene or protein with one or
more pathways.

W_EHA_VARIANT_PREDICTION
This table stores information relevant to SIFT (Sorting Intolerant From Tolerant) or
Polymorphism Phenotyping (Polyphen) algorithms scores. SIFT or Polyphen are

http://www.genenames.org/

Reference Data Tables

Omics Data Model 1-9

publicly available algorithms describing the impact of each variant on the resulting
gene structure. The impact is evaluated both as a numeric score and a formal
annotation, such as deleterious, probably damaging and so on.

 Polyphen is an automated tool for predicting the possible impact of an amino acid
substitution on the structure and function of a human protein. This prediction is based
on straightforward empirical rules which are applied to the sequence, phylogenetic,
and structural information characterizing the substitution. Possible annotation values
are probably damaging, possibly damaging, benign, and unknown.

Sorting Intolerant From Tolerant (SIFT) predicts whether an amino acid substitution
affects protein function. This prediction is based on the degree of conservation of
amino acid residues in sequence alignments derived from closely related sequences,
collected through PSI-BLAST. Possible annotations are tolerated, and, deleterious.

W_EHA_PREDICTION_CODE
This table stores the possible annotations for SIFT or Polyphen algorithms that are
mentioned above, such as probably damaging, possibly damaging, deleterious, tolerated, and
so on.

W_EHA_VARIANT_EFFECT
This table stores variant impact or effect as computed by an Oracle proprietary script
(stored procedure) based on variant effect on the resulting protein. The possible values
of net effects are as follows:

■ Unknown — used when a variant is not in a coding region, or intronic, or crosses
splice boundaries that would affect translation in unknown ways.

■ Frame-shift — used for insertion, deletion, indel variants that add or remove a
number of nucleotides not divisible by 3 (the size of a codon).

■ Nonsynonymous - missense — signifies that a single nucleotide change results in a
codon that codes for a different amino acid.

■ Nonsynonymous - nonsense — signifies that the stop codon occurs abnormally
from the variant data in the coding region.

■ Synonymous — signifies that the variant in the coding region does not cause an
amino acid change.

W_EHA_PRODUCT_PROFILE
This table stores default global Promoter and Flanking offsets which are the inputs
provided during installation. It also stores various log level flags and DBMS output for
data load ETLs and other procedure calls. Another column in this table 'VCF_
FORMAT' stores a list of data types for the FORMAT column in the VCF file. Promoter
offset is used during querying (through Promoter view: W_EHA_PROMOTER_V) and
can be changed at any point. If PROMOTER_OFFSET in W_EHA_SPECIES is set, this
promoter offset takes precedence over the one in W_EHA_PRODUCT_PROFILE.

Important
1. Flanking offset should always be set to a value greater than Promoter offset.

Promoters are assumed to fit within the Flanking offset region.

Note: The variant impact script has been temporarily removed from
ODB 3.0.

Reference Data Tables

1-10 Oracle Health Sciences Omics Data Bank Programmer’s Guide

2. Changing the Flanking offset requires reloading all results tables which use
genomic coordinates, such as sequencing and copy number variation result data. It
is imperative to keep Flanking offset unchanged.

The logging level flags that can be set by the user include: Warning, and Info (which
are set by default to 'Y'); Debug, TRACE, and DBMS output which are set by default to
'N').

W_EHA_PRODUCT_VERSION
This table lists the current version of the Omics Data Model and is used primarily by
the Cohort Explorer application user interface (not included in this release). For
example, currently it is set to 3.0.

W_EHA_DISEASE
This table stores names of diseases with possible genetic linkage.

W_EHA_DISEASE_GENE
This table stores literature-derived associations between diseases and genes that might
contain disease causing mutations. It aggregates the mutation-disease linkage reported
in the W_EHA_DISEASE_G_VARIANT table and associates the whole gene sequence
with diseases caused by mutations in the gene. It also contains disease linkage for
genes with disease causing variants for which no exact genomic coordinates were
provided.

W_EHA_DISEASE_G_VARIANT
This table stores disease linkage for variants with known genomic coordinates. It
includes linkage confidence provided by HGMD curators.

W_EHA_DRUG
This table stores DrugBank-derived drug names.

W_EHA_DRUG_TARGET
This stores drug and gene associations linking DrugBank-derived drug names to their
therapeutic targets.

Figure 1–4 ODB Disease and Drug Linkage

Reference Data Tables

Omics Data Model 1-11

W_EHA_ADF
This table stores the configuration information for the Array Data Format (ADF) files,
which contain the annotation data required by Two-Channel gene expression result
datasets. An ADF dataset loads into the W_EHA_ADF_* reference tables described
below. Each file load creates an ADF record and the records inserted into W_EHA_
ADF_COMPOSITE and W_EHA_ADF_REPORTER will have an 'ADF_WID' foreign
key column to this table.

W_EHA_ADF_COMPOSITE
This table stores the gene composite elements associated with the 2-channel result data
present in W_EHA_RSLT_2CHANNEL_GXP table. The composite element
coordinates are input from the array design file (ADF) for the AgilentG4502A_07
platform. An additional table W_EHA_ADF_COMPOSITE_XREF is kept to store any
external cross reference data for composite elements.

W_EHA_ADF_REPORTER
This table stores the probe (reporter) elements associated to the composite gene
element present in W_EHA_ADF_COMPOSITE table. The reporter identifiers are
input from the array design file (ADF) for the AgilentG4502A_07 platform. An
additional table W_EHA_ADF_REPORTER_XREF is kept to store any external cross
reference data for Reporters.

W_EHA_ADF_REPORTER_COORD
This table stores the probe (reporter) elements genomic coordinates associated with the
reporter indentifiers present in the W_EHA_ADF_REPORTER table. The reporter
genomic coordinates are input from the array design file (adf) for the AgilentG4502A_
07 platform.

W_EHA_PROBE
This table holds probe information for gene expression results, and each probe is
designed to represent a particular gene. Since probe design varies by vendors, there
may be multiple probes that correspond to the same gene. In the rare instance where
more than one gene matches a probe, the model has a W_EHA_PROBE_ALT_LINK
that should be manually populated. W_EHA_PROBE must be populated by the
expression loader prior to loading any results corresponding to gene expression. In
addition, any reference information pertaining to probes can be recorded in the W_
EHA_PROBE_XREF table.

W_EHA_CANCER_S_VARIANT
This table stores the link between gene names, somatic variants reported to COSMIC,
both non-coding and coding, its sample annotation, the sample's reference keys to
Histology and Anatomical site data, and mutation related annotations. The table has a
reference key to W_EHA_VARIANT table as a main link to other reference source
tables.

W_EHA_CANCER_S_VARIANT_XREF
This table contains cross reference data to CANCER S(SUBJECT) VARIANT bridge
table. The primary cross reference data stored in this table are PubMed publication IDs
of associated somatic mutations.

Result Data Tables

1-12 Oracle Health Sciences Omics Data Bank Programmer’s Guide

W_EHA_CANCER_S_GENE_XREF
This table contains cross Reference data to CANCER S(SUBJECT)_GENE bridge table.
The primary cross reference data stored in this table are PubMed publication IDs of
associated somatic mutations.

W_EHA_CANCER_S_GENE
This table links gene annotation including Refseq and/or Genbank, and Ensembl gene
IDs to somatic mutation cancer sample data submitted to Cosmic. The table stores a
count of variants and linked gene mutations that is found for every gene symbol (hugo
name) reported for each reference sample ID given by COSMIC. Each sample links to
its histology and anatomical site references.

W_EHA_REFERENCE_SAMPLE
The table contains information on Reference samples studied for observed somatic
mutations, which were submitted to COSMIC. The table provides sample annotation
including cosmic tumor and sample IDs, sample source, tumor origin along with
sample name. The table also references Histology and Anatomical sites associated to
Samples.

W_EHA_ANAT_PRIMARY_SITE
This table stores the primary descriptive name of an anatomical site of a linked
reference sample.

W_EHA_ANAT_SUBTYPE_SITE
This table stores the descriptive name of an anatomical site subtype of a linked
reference sample.

W_EHA_HISTOLOGY_PRIMARY
This table stores the primary Histology description of a linked reference sample.

W_EHA_HISTOLOGY_SUBTYPE
This table stores the descriptive Histology subtype name of a linked reference sample.

W_EHA_GEN_CODE
This table stores the parent record to name a set of genetic codon translations to amino
acids.

W_EHA_GEN_CODE_TABLE
This table stores the link that each codon has with its corresponding Amino Acid.

W_EHA_GEN_CODE_USAGE
This table maps how GEN_CODE tables are used with each species and chromosome.

1.4 Result Data Tables
The model currently supports the following two major categories of results:

■ Sequencing

■ Gene Expression

Result Data Tables

Omics Data Model 1-13

Types of sequencing results include simple variants, copy number variation, and
no-call. Gene expression results comprise of regular microarray gene expression or
RNA-seq results. Overall, results are populated into the following major tables:

■ W_EHA_RSLT_SEQUENCING

■ W_EHA_RSLT_GENE_EXP

■ W_EHA_RSLT_NOCALL

■ W_EHA_RSLT_RNA_SEQ

■ W_EHA_RSLT_2CHANNEL_GXP

■ W_EHA_RSLT_COPY_NBR_VAR

■ W_EHA_RSLT_NON_VARIANT

■ W_EHA_RSLT_CONFLICT

■ W_EHA_RSLT_SV_BREAKEND

All the major result tables listed above contain foreign keys to the following tables:

■ W_EHA_FILE_LOAD

■ W_EHA_RSLT_STUDY

■ W_EHA_RSLT_SPECIMEN

■ W_EHA_RSLT_TYPE

■ W_EHA_GENE

■ W_EHA_VERSION

Each record in these tables is linked to a specific reference 'DNA' source Version Label
in W_EHA_VERSION table by the VERSION_WID foreign key. Additionally, where
possible, each record is linked to a specific W_EHA_GENE record to allow for a gene
based partitioning of these result tables. Those records that cannot be linked to a gene
record have a GENE_WID value of '0'.

Chromosome Partitioned Tables
For Exadata, some of the result tables listed above have counterpart tables created
dynamically during install, having the same columns as existing result tables. The new
tables added are named using the same name as the parent result table with a _CHR
suffix. These tables include:

■ W_EHA_RSLT_CONFLICT_CHR

■ W_EHA_RSLT_COPY_NBR_VAR_CHR

■ W_EHA_RSLT_NOCALL_CHR

■ W_EHA_RSLT_NON_VARIANT_CHR

■ W_EHA_RSLT_RNA_SEQ_CHR

■ W_EHA_RSLT_SEQUENCING_CHR

■ W_EHA_RSLT_SV_BREAKEND_CHR

For details on chromosome partitioned tables, see Section 7.11, "Chromosome
Partitioned Tables" on page 1-18.

Result Data Tables

1-14 Oracle Health Sciences Omics Data Bank Programmer’s Guide

W_EHA_RSLT_SEQUENCING
This table contains sequencing results, more specifically variant information. It has a
foreign key to the W_EHA_VARIANT table. The records in this table are linked to the
record in the variant reference table. Information such as insertion, deletion, or
substitution is recorded in this table along with any quality metrics on this
information. The result sequencing table also stores large structural variants.

W_EHA_RSLT_NOCALL
This table contains results coming from VCF, gVCF and Complete Genomics
sequencing files. Only CGI masterVar format records no-call results, that is, instances
when there is incomplete information to make a call regarding variant information on
an allele.

W_EHA_RSLT_NON_VARIANT
This table contains the non-variant information belonging to a specimen coming from
VCF and gVCF files. The VCF loader populates this table when used in either 'GVCF'
mode or 'NON-VAR' mode, provided the file contains non-variant information.

W_EHA_RSLT_CONFLICT
This table contains the low quality score variants which conflict with an existing high
quality score variant reported in W_EHA_RSLT_SEQUENCING table for the same
specimen. This table is populated through the VCF loader with data coming from
gVCF files.

W_EHA_RSLT_SV_BREAKEND
This table contains the structural rearrangement data coming from VCF files.

W_EHA_RSLT_COPY_NBR_VAR
This table contains copy number variation results coming from the Complete
Genomics platform and data from Affymetrix Genome-Wide Human SNP Array 6.0
along with any relevant quality or count metrics. This table is populated through the
newly provided CNV loader, which can load the .SEG format file, and has been
verified to load data from TCGA belonging to Affymetrix Genome-Wide Human SNP
Array 6.0. No loader exists to load data from CGI format, however, the tables are
designed to accommodate any attributes specific to CGI CNV data.

W_EHA_RSLT_CNV_X
This is an additional table to store less frequently used sequencing metadata from the
input file. It is always used as a helper table along with the main RSLT_COPY_NBR_
VAR table.

W_EHA_RSLT_GENE_EXP
This table is loaded from gene expression results and permits storing gene intensity
measurements and quality metrics such as p-value and call information. A record can
be inserted into this table only if the specified probe already exists in the W_EHA_
PROBE table to establish a foreign key relationship.

Note: A record in the W_EHA_RSLT_SEQUENCING table may
come from any of the four result file types, namely gVCF, VCF, MAF,
or Complete Genomics masterVar file.

Result Data Tables

Omics Data Model 1-15

W_EHA_RSLT_RNA_SEQ
This table is loaded from TCGA RNA SEQ file format for RPKM expression
information of exons. The supplied loader only supports the loading of the exon
version of the data files. TCGA has 3 different types of files: exon, gene, and splice
junctions. Only the exon files are measured by exact chromosome locations. The other
two file types are calculated estimations based upon gene locations using the exon
data file.

W_EHA_RSLT_2CHANNEL_GXP
This table is loaded from TCGA – Level 3, AgilentG4502A_07 platform specific,
microarray dual channel gene expression files. For each gene record, the loader
resolves two values it loads to the result table:

■ ADF_COMPOSITE_WID - by looking up the gene composite name in w_eha_adf_
composite table.

■ GENE_WID - by looking up gene segment table for all complete and partial
overlaps of gene segments in reference to gene composites genomic coordinates.

The Array Design file information associated with this data is loaded in the ADF
Composite and Reporter tables in ODB, described in the Reference tables section of
this chapter.

W_EHA_RSLT_TYPE
This table is a pre-seeded table with the types of results currently supported by the
model. The result types are listed in Section A, "Additional Result Tables". Each record
in the W_EHA_RSLT table supports a single specific result type.

W_EHA_STUDY
This table permits each result to be linked to a study if specified by the end-user
during loading. The study table is intended to be a shadow copy of a table in the
clinical data model, called the Cohort Explorer Data Model study table, and only holds
the study name and description. This table should be populated by the end-user before
loading any results pertaining to a given study. The presence of this table enables
partitioning the results into groups based on a study for which the results have been
collected. Depending on the customer data and query requirements, by-study
partitioning can be used as an alternative partitioning scheme to by-gene partitioning.
Currently, partitioning by gene is the default.

W_EHA_CHROMOSOME
This table holds all the chromosome names and is pre-seeded with names for all
Human chromosomes. Refer to Section A, "Additional Result Tables" for pre-seeded
data information. A result record in W_EHA_RSLT_SEQUENCING, W_EHA_RSLT_
NOCALL, W_EHA_RSLT_COPY_NBR_VAR may be linked to a particular
chromosome. As with the W_EHA_STUDY table, this table is used to partition results
for improved query performance.

W_EHA_CHROM_MAPPING
This table stores a list of aliases to chromosomes present in the W_EHA_
CHROMOSOME table. Initially this table is seeded with a common chromosome alias
list.

W_EHA_RSLT_SPECIMEN
The W_EHA_RSLT_SPECIMEN table is linked to all result data tables. Every record in
any of the result tables must have a foreign key that links to a particular specimen in

Result Data Tables

1-16 Oracle Health Sciences Omics Data Bank Programmer’s Guide

this table. The W_EHA_RSLT_SPECIMEN table in turn, links to the W_EHA_
DATASOURCE table which holds information about the database a given specimen
comes from. This information, along with additional fields in SPECIMEN table such as
SPECIMEN_NUMBER and SPECIMEN_VENDOR_NUMBER, can be used to uniquely
identify and pull more metadata about a given specimen from other source systems.
This information is not stored in the ODB. If the specimen database is CDM, two more
tables are used: W_EHA_SPEC_PATIENT and W_EHA_SPEC_SUBJECT, linking a W_
EHA_RSLT_SPECIMEN record with a CDM pationet/subject.

W_EHA_DATASOURCE
This table stores information regarding specimen sources. Each genomic result must
have a specimen record connected to it coming from another schema with patient
results. Specimen identifier is the link between the clinical results and genomic results.
This table needs to be populated by the user prior to running any result loaders. If
ODB is to be used with Cohort Explorer data model, this table should be seeded with
one source of specimen samples, which is the Cohort Data Model.

W_EHA_FILE_TYPE
This table is pre-seeded with file types supported by then loaders into the model. The
list of valid pre-seeded values is specified in the appendix. W_EHA_FILE has a foreign
key into this table.

W_EHA_FILE_LOAD_QLFR
These tables contain the header information from VCF and gVCF files. Any line
starting with '##' in the VCF and gVCF file is stored in the File Load Qlfr table. This is
also where the alternative file location is stored, if the user optionally chooses to
specify -alt_file_loc in the argument list when loading results.

W_EHA_RSLT_FILE_SPEC
This table stores the foreign key to W_EHA_FILE and W_EHA_RSLT_SPECIMEN and
basically links a specific file which is loaded to ODB by a loader to one or more
specimen.

1.4.1 Result Tables for Qualifier Metadata
The ODB data model has new tables for Qualifier Metadata attributes. These tables
include:

W_EHA_QUALIFIER
This table describes qualifiers - flexible attributes used in _QLFR tables. Qualifiers
extend the concept of name/value pair attributes: they could be assigned to one of
three data types - CHARACTER, NUMERIC and DATE and are grouped into
functional categories. Units of measure can be specified for numeric qualifiers.

W_EHA_QLFR_CATEGORY
Qualifiers can be grouped based on functional categories. For example, a user might
want to create qualifier categories such as DNA Sequencing, Gene Expression, RNA
Sequencing, and CNV.

W_EHA_QLFR_TABLE
This table lists all qualifier tags applicable to a specific table.

Result Data Tables

Omics Data Model 1-17

W_EHA_UNIT_OF_MEASURE
This table holds names of a unit of measure.

W_EHA_QLFR_TRANSLATION
This table stores translation rules to convert values from one unit of measure into
another.

W_EHA_RSLT_FILE_SPEC_QLFR
This is the fact table that stores key or value pairs for flexible attributes associated with
a particular result file or specimen combination.

Each _QLFR table has a QLFR_WID attribute that points to a QUALIFIER_TAG record
in the W_EHA_QUALIFIER table. It also has a foreign key attribute that references a
record from a base table. For W_EHA_RSLT_FILE_SPEC_QLFR table the base table is
W_EHA_RSLT_FILE_SPEC.

Three separate attributes are used to store character, numeric and date values. If a
qualifier data type is NUMBER the QLFR_NUMB_VALUE attribute is populated, else
it is empty. Similarly QLFR_DATE_VALUE field is populated for the DATE data type
qualifiers. The QLFR_CHAR_VALUE attribute holds a reported value and is
populated for any qualifier data type.

Figure 1–5 Qualifier Metadata Tables

1.4.2 Result Tables for Differential Expression
Newly enhanced, the ODB data model hosts tables for differential gene expression
analysis results. However, there is no loader provided to populate result set to these
tables. These tables include:

W_EHA_RSLT_DIFF_EXP
The main table used to store results from differential expression files.

W_EHA_RSLT_DXP_ANLYS
Stores a listing of differential analysis result-sets loaded.

Table for Logging

1-18 Oracle Health Sciences Omics Data Bank Programmer’s Guide

W_EHA_RSLT_DXP_ANLYS_MD
Stores metadata for differential expression analysis result-sets.

W_EHA_RSLT_DXP_GRP
Stores and describes a list of differential expression groups of specimens.

W_EHA_RSLT_DXP_GRP_SPEC
Links specimens to differential expression groups.

1.5 Table for Logging
All loaders and procedures created in the ODB output will log records to a single table.

W_EHA_RSLT_LOG
This table stores logging information from all loaders and jobs. The column RESULT_
TYPE_NAME specifies the loader populating a given logging record. Each record
stores species, specimen, datasource, OS user, host, and etl_proc_wid details taken
from a loader run. The LOG_LEVEL column stores the logging level pertaining to a
specific record. The log record includes details of record that caused a log entry, error
info or trace fields, and a log summary field.

1.6 Aggregate Tables for Gene Expression
In queries for Gene Expression (single-channel) intensities are often compared not to a
set value, but to the minimum (maximum, average, and so on) of all intensities for a
hybridization or a probe. The queries, performing aggregation, are rather inefficient.
To make them more efficient, the following two aggregate tables have been added for
Gene Expression:

■ W_EHA_RSLT_GXP_HYBRID_AGG

■ W_EHA_RSLT_GXP_PROBE_AGG

The first table aggregates over a hybridization, while the second aggregates over a
probe. They have almost the same set of aggregated columns, such as MEDIAN_
INTENSITY, AVG_INTENSITY, MIN_INTENSITY, MAX_INTENSITY, and so on. Each
of them also has columns, by which aggregation is done on the W_EHA_RSLT_GENE_
EXP table (FILE_LOAD_WID and PROBE_WID in W_EHA_RSLT_GXP_PROBE_
AGG, and FILE_LOAD_WID and HYBRIDIZATION_NAME for W_EHA_RSLT_GXP_
HYBRID_AGG).

These tables are updated automatically by the Single Channel Results Loader every
time a new Single-Channel Gene Expression file load is performed, and are
automatically used by the TRC UI 3.0, when building Gene Expression queries.

1.7 File and File Load Tables
All file and file load tables are populated by the result loaders, the gvf and adf
reference loaders where there is a requirement to store file metadata references for
records inserted.

W_EHA_FILE
This table stores the name of the input file used to load a result dataset. The file
contains, along with the file name used, a unique global identifier (URI) for the file.
This identifier is generated, if not provided by the user, on result load.

File and File Load Tables

Omics Data Model 1-19

W_EHA_FILE_LOAD
This table stores a record for each file load for a file. The table contains the field file_
load_seg_numb that counts the number of times the file with the same URI is loaded
into ODB. The table is referenced by all main result data tables and the view W_EHA_
FILE_LAST_LOAD_V that displays the last file load record for a file with the same
FILE_URI value.

W_EHA_FILE_LOAD_QLFR
The table is used to store metadata information for each file load.

File and File Load Tables

1-20 Oracle Health Sciences Omics Data Bank Programmer’s Guide

2

Prerequisites for Loading Data 2-1

2Prerequisites for Loading Data

This chapter contains the following topics:

■ Setting Up a Directory Object on page 2-1

■ Setting Up an Oracle Wallet on page 2-2

■ Setting Up User Privileges for Querying or Loading Data on page 2-3

■ Integration with Oracle Health Sciences Cohort Explorer Data Model or Another
External Data Model on page 2-4

■ Migrating W_EHA_RSLT_STUDY, W_EHA_SPEC_PATIENT and W_EHA_SPEC_
SUBJECT Tables on page 2-6

■ Reference Version Compatibility on page 2-7

■ Handling Newline Characters in Input Files on page 2-8

■ Periodically Purge the Recycle Bin on page 2-8

2.1 Setting Up a Directory Object
All loaders (except for EMBL and SwissProt) use external tables to access data in files.
This requires an Oracle directory object to be created. Oracle directory objects require
the database Operating System (OS) user account to have access to this directory.
Therefore, the directory must be mounted and all permissions granted before the
database server is started. For more information about creating directory objects, see
Oracle Database SQL Language Reference 11g Release 2.

The directory object name is used as a parameter to all the loaders. The ODB schema
user must have the CREATE ANY DIRECTORY and CREATE ANY TABLE privilege.
The Oracle database OS account must have permissions to access the directory
specified in the Oracle directory object.

An example of a command to create oracle directory objects is:

>create directory TRC_ODB as /home/oracle/perm_loc;

After a directory is created, grant READ and WRITE privileges on the directory to
other users as follows:

Note: The directory used must reflect the path requirements of the
operating system that the database server is installed on. Windows
database servers have different naming conventions than Linux
servers. Also, the directory used must be mounted on the host OS of
the database server before the database server is started.

Setting Up an Oracle Wallet

2-2 Oracle Health Sciences Omics Data Bank Programmer’s Guide

GRANT READ on DIRECTORY <<DIR_NAME>> TO <<ODB USER NAME>>

GRANT WRITE on DIRECTORY <<DIR_NAME>> TO <<ODB USER NAME>>

Here DIR_NAME is the name of an Oracle directory where all the result files are kept
and ODB USER NAME is the database user executing the loaders. The database user
should have both READ and WRITE grants on Oracle directory to process loaders.

2.2 Setting Up an Oracle Wallet
An Oracle Wallet must be set up with the credentials used to connect to the schema
where ODB is installed.

Perform the following steps to set up the Oracle Wallet:

1. Add the following code to tnsnames.ora under $ORACLE_
HOME\NETWORK\ADMIN

DB001_Wallet =

 (DESCRIPTION =

 (ADDRESS_LIST =

 (ADDRESS = (PROTOCOL = TCP)(HOST = 10.178.187.186)(PORT = 1521))

)

(CONNECT_DATA =

(SERVICE_NAME = db001)

)

)

2. The Oracle wallet can be created on the client or middle tier system. Open a
command prompt terminal and execute the following:

>cd d:

>d:

>mkdir wallets

>cd wallets

>mkstore -wrl D:\wallets -create -nologo

Enter password: <type a 8 alphanumeric-character password>

Enter password again: <retype above password>

>dir

Volume in drive D is Data

Volume Serial Number is C###

Directory of D:\wallets

11/24/2011 09:24 PM <DIR> .

11/24/2011 09:24 PM <DIR> ..

Note: Set the SERVICE_NAME and HOST values to point to your
database installation.

Setting Up User Privileges for Querying or Loading Data

Prerequisites for Loading Data 2-3

11/24/2011 09:13 PM 3,965 cwallet.sso

11/24/2011 09:13 PM 3,888 ewallet.p12

3. Add your database credentials to your wallet.

>mkstore -wrl D:\wallets -createCredential DB001_Wallet odb

Your secret/Password is missing in the command line

Enter your secret/Password: <enter password for odb user>

Re-enter your secret/Password:<re-enter password>

Enter wallet password:<enter the 8 digit password given while creating
wallet>

4. Configure SQLNET to look for the wallet. Add the following lines of code to
sqlnet.ora under $ORACLE_HOME\NETWORK\ADMIN:

WALLET_LOCATION = (SOURCE=(METHOD=FILE)(METHOD_
DATA=(DIRECTORY=D:\wallets)))

SQLNET.WALLET_OVERRIDE = TRUE

5. Test connectivity using sqlplus. Enter the following on any command prompt
terminal:

>sqlplus /@DB001_Wallet

You will get the following result:

SQL*Plus: Release 11.2.0.1.0 Production on Fri June 7 15:54:35 2013

Copyright (c) 1982, 2010, Oracle. All rights reserved.

Connected to:

Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit
Production

With the Partitioning, OLAP, Data Mining and Real Application Testing
options

2.3 Setting Up User Privileges for Querying or Loading Data
Perform the following steps to set up user privileges for querying or loading data:

1. Create a database user having the following privileges:

■ CREATE SYNONYM

■ CREATE SESSION

2. Assign the user an appropriate role from the following three roles:

Note: The last command should show two files created by running
mkstore -create: cwallet.sso and ewallet.p12.

Note: For every user credential added to the wallet, you must create
a new dataset name in tnsnames.ora. The system assumes username
as odb.

Integration with Oracle Health Sciences Cohort Explorer Data Model or Another External Data Model

2-4 Oracle Health Sciences Omics Data Bank Programmer’s Guide

■ OmicsDatamartUser

Queries ODB schema. Can only perform queries on the model, cannot write to
the model. This role will be typically given to named UI users whose
credentials are to be passed to the database layer for querying only.

■ OmicsDatamartAdmin

Loads data into the reference side of ODB, refreshes all reference data into the
reference side of the schema including W_EHA_VARIANT table. This user
cannot create new data definitions for objects such as tables and views.

■ OmicsDatamartContributor

Can load result data into the Omics Data Bank through provided result
loaders. This role enables a named user to write to the ODB result side of the
model.

3. Create a local synonym for the database user. The create_synonym_for_user.sql
script is available in the master_install folder in the TRC Software package.

a. Connect to the database instance with the above created database user.

b. Execute the following command by replacing cdm_Schema_name with the
name of cohort explorer schema name, odb_schema_name with the actual
name of your Omics Data Bank schema, apps_schema_name with the
application schema name, and job_schema_name with job engine schema
name:

@create_synonym_for_user.sql <<cdm_schema_name>> <<odb_schema_
name>> <<apps_schema_name>> <<job_schema_name>>

2.4 Integration with Oracle Health Sciences Cohort Explorer Data Model
or Another External Data Model

Integration with other data models is done through the specimen record. Each
genomic data result file must be accompanied by SPECIMEN_NUMBER and
SPECIMEN_VENDOR_NUMBER information, and SPECIMEN_DATASOURCE.
These entities should match a record in the specimen datasource schema. OHSCE Data
Model is the default datasource for specimen in the current release. ODB contains
three tables, W_EHA_SPEC_PATIENT, W_EHA_SPEC_SUBJECT, and W_EHA_SPEC_
EXTERNAL, each having a foreign key, RSLT_SPECIMEN_WID, to the W_EHA_
RSLT_SPECIMEN table. All three tables have a column to store the external table ID
value to register a specific result specimen. For W_EHA_SPEC_PATIENT in ODB, this
value is SPEC_PATIENT_WID, which should match ROW_WID in the W_EHA_
SPECIMEN PATIENT_H table in the OHSCE Data Model. Similarly, OHSCE's subject
specific content can be linked through W_EHA_SPEC_SUBJECT.SPEC_SUBJECT_WID
matched to SUBJECT specific table W_EHA_SPECIMEN_SUBJECT_H. The table W_
EHA_SPEC_EXTERNAL is used to register external non-OHSCE specimen sources,
where the external specimen ID is matched to EXT_SPECIMEN_WID.

Every result record imported into the ODB schema is linked to a SPECIMEN record.
The SPECIMEN data can come from any external schema either on the same instance
(co-located) or on an external instance. The loaders call a specific stored procedure to
validate that the SPECIMEN exists.

It is assumed that any database used to provide the SPECIMEN information has a
single numeric field to identify the correct SPECIMEN. This numeric value is stored in
each result record (without direct FK definition). Three stored function calls are
provided as options to the user through a stored procedure in a package ODB_UTIL.

Integration with Oracle Health Sciences Cohort Explorer Data Model or Another External Data Model

Prerequisites for Loading Data 2-5

The procedure is not wrapped so that additional external databases can be supported.
Currently, the function calls are implemented to support validating SPECIMEN
records stored in the Cohort Data Model. The three function calls are:

■ ODB_UTIL.validate_cdm_patient_spec: Used to validate against specimens in
CDM's W_EHA_SPECIMEN_PATIENT_H table.

■ ODB_UTIL.validate_cdm_subject_spec: Used to validate against specimens in
CDM's W_EHA_SPECIMEN_SUBJECT_H table.

■ ODB_UTIL.validate_cdm_both_spec: Used to validate against specimens to both
CDM tables.

This stored procedure can be expanded to support other schemas that are intended to
provide specimen data.

Following is the structure of ODB_UTIL.GET_SPECIMEN_WID stored procedure that
contains the above functions:

function get_specimen_wid
(
i_datasource_id in number
, i_specimen_number in varchar2
, i_specimen_vendor in varchar2
, i_study_id in number
, i_etl_proc_id in number
, i_enterprise_id in number
, i_file_wid in number
, i_logger in result_logger default null
, i_lock_table in number default 1
) return number;

This stored procedure has seven mandatory and two optional parameters:

■ DATASOURCE_ID: W_EHA_DATASOURCE table is used to configure each
external database to provide SPECIMEN data. The VALIDATION_PROC column
of this table should be populated with the ODB_UTIL.VALIDATE_CDM_
SPECIMEN value. This procedure validates the specimen in CDM (or external
data source) schema.

■ SPECIMEN_NUMBER and SPECIMEN_VENDOR_NUMBER: These two
VARCHAR2 fields are used to identify a unique specimen.

■ ETL PROC WID and ENTERPRISE WID are sent by the loader as an input
parameter to procedure.

■ FILE WID is sent by loader. It is the ROW_WID of W_EHA_FILE table that creates
the records for the result file used for processing the loader. This is used by the
stored procedure to create a record in W_EHA_RSLT_FILE_SPEC table.

The stored procedure looks up the W_EHA_DATASOURCE record and compares the
name field. Currently, there is a check for a CDM name and code for searching
specimen data in CDM. If additional database schemas should be used to provide
specimen information, you must first add a record to W_EHA_DATASOURCE with a
unique name.

The stored procedure has to specifically handle that data source name and validate the
specimen number and specimen vendor number passed. Most data files support a
specimen number and the loaders currently have a specimen vendor number passed
as a parameter.

If the specimen exists in the CDM schema (W_EHA_SPECIMEN_H table) and I_FILE_
WID parameter value is not null, then the stored procedure calls the local procedure

Migrating W_EHA_RSLT_STUDY, W_EHA_SPEC_PATIENT and W_EHA_SPEC_SUBJECT Tables

2-6 Oracle Health Sciences Omics Data Bank Programmer’s Guide

add_file_spec(), which inserts a record into W_EHA_RSLT_FILE_SPEC table. This
establishes the link between result file and the specimen used for loading result data.

If the get_specimen_wid stored procedure raises the NO_DATA_FOUND exception (if
specimen does not exist in W_EHA_RSLT_SPECIMEN_H table), then the code
retrieves the validation procedure name from W_EHA_DATASOURCE table (ODB_
UTIL.VALIDATE_CDM_SPECIMEN). This stored procedure retrieves the SPECIMEN_
WID from the W_EHA_SPECIMEN_H table against the specimen number and
specimen vendor number which might be used as an external data source.

For an external data source, mention the DB link (W_EHA_DATASOURCE). If the
procedure does not exist in the CDM schema, then the function logs the error 'Could
not find specimen number' in W_EHA_RSLT_LOG table, else it creates a record in
both W_EHA_RSLT_SPECIMEN_H and in W_EHA_RSLT_FILE_SPEC table, and
returns SPECIMEN_WID to the loader.

This procedure also logs relevant warning, error, and other information.

2.4.1 Specimen and Vendor Number Requirement
To load results into any of the result tables, each specimen referred to in the input
result files: VCF, MAF, CGI masterVar, and gene expression must be present in the
OHSCE data model. If a file with multiple specimens is loaded, such as a VCF or MAF
file, and one of the specimens is not found in the Cohort Explorer datamart schema,
then the loader skips that row and loads the rest of the data into the target tables.

2.5 Migrating W_EHA_RSLT_STUDY, W_EHA_SPEC_PATIENT and W_
EHA_SPEC_SUBJECT Tables

If the CDM schema data is refreshed using a full ETL load and result files are loaded in
ODB, then the ODB CDM reference is broken and the implicit foreign keys in the ODB
schema should be updated to point to new CDM record values.

Prior to ODB specimen records being updated, the function indexes that link ODB
schema to Patient and Subject records should be rebuilt. Log in as ODB schema and
use the following SQL to rebuild these indexes:

SQL> alter index W_EHA_SPEC_PATIENT_M1 rebuild;
SQL> alter index W_EHA_SPEC_SUBJECT_M1 rebuild;

Following are the SQL statements to update CDM-related tables:

W_EHA_RSLT_STUDY:

update w_eha_rslt_study rs set external_study_wid = (
select row_wid from cdm.w_eha_study_d sd
where rs.result_study_name = sd. study_name
);

W_EHA_SPEC_PATIENT:

update w_eha_spec_patient sp
set
spec_patient_wid = (select sph.row_wid
from
CDM.w_eha_specimen_patient_h_v sph,
w_eha_rslt_specimen rs
where
rs.row_wid = sp.rslt_specimen_wid
and rs.specimen_number = sph.specimen_number

Reference Version Compatibility

Prerequisites for Loading Data 2-7

and nvl(rs.specimen_vendor_number, 'n0Ne') = nvl(sph.specimen_vendor_number,
'n0Ne'));

W_EHA_SPEC_SUBJECT:

update w_eha_spec_subject ss
set
spec_subject_wid = (select sph.row_wid
from
CDM.w_eha_specimen_subject_h_v sph,
w_eha_rslt_specimen rs
where
rs.row_wid = ss.rslt_specimen_wid
and rs.specimen_number = sph.specimen_number
and nvl(rs.specimen_vendor_number, 'n0Ne') = nvl(sph.specimen_vendor_number,
'n0Ne'));

Also, if the CDM schema is refreshed, ODB aggregates must be rebuilt using the
following procedure:

BEGIN
 DBMS_SCHEDULER.create_job (
 job_name => 'RebuildAggregates',
 job_type => 'PLSQL_BLOCK',
 job_action => 'BEGIN ODB_VARIANT_AGG_UTIL.rebuild_aggregates ; END;',
 enabled => true,
 comments => 'To rebuild aggregates from scratch');
END;
/

2.6 Reference Version Compatibility
Before loading the ENSEMBL version to ODB, ensure its compatibility with other
reference and results data.

Following are the data files to be considered for version compatibility:

1. GVF data files should belong to versions of Ensembl existing in ODB. For
example, if ODB is loaded with Ensembl 66 version, then Oracle recommends that
the GVF file to be loaded with the same Version Label should also belong to
Ensembl 66. However, a GVF data file belonging to the same genomic alignment
can be loaded for any DNA version with the same genomic alignment without
losing validity.

2. Variation data files, which include VCF, gVCF, MAF, and CGI masterVar should be
based on the same reference genome that was used by the Ensembl version loaded
with the same Version Label. For example, if the loaded Ensembl 66 version is
using GRCh 37 reference genome, then the results to be loaded should also be
mapped based on GRCh 37 version.

Note: Since this procedure may take some time to execute, Oracle
recommends that you run it as a scheduled job.

Note: If the same reference DNA version source file is loaded more
than once, then for each variant, one record is created in the variant
table for every source record matched.

Handling Newline Characters in Input Files

2-8 Oracle Health Sciences Omics Data Bank Programmer’s Guide

3. Copy Number Variation result data should also be checked for reference genome
version compatibility with Ensembl version as specified in point 2.

4. TCGA RNASeq exon data should similarly be matched to the correct reference
version. TCGA provides a description.txt file along with other mage-tab analysis
files for every RNAseq dataset. Mapping reference version details are available in
this file.

2.7 Handling Newline Characters in Input Files
All reference and result input text files have an End-Of-Line character convention that
should be followed by the operating system on which the database server is loaded.
For a windows database server, text files in a Linux or UNIX environment must be
processed by the tool unix2dos to convert the file to the DOS format.

2.8 Periodically Purge the Recycle Bin
All loaders that use dynamic tables to load data also contain code to drop any
temporary tables as well as external tables. These dropped tables are accumulated in
Oracle database’s recycle bin. Periodically execute the following command to remove
these unused objects and free up space:

SQL>purge recyclebin;

3

Loaders for Reference Data 3-1

3Loaders for Reference Data

This chapter contains the following topics:

■ Ensembl and SwissProt Loaders on page 3-1

■ HUGO Loader on page 3-9

■ GVF Ensembl Loader on page 3-11

■ Pathway Loader on page 3-14

■ Prediction Score (PolyPhen, SIFT) Loader on page 3-16

■ Probe Loader on page 3-21

■ ADF Data Loader on page 3-24

■ HGMD (BioBase) Loader on page 3-27

■ COSMIC Loader on page 3-30

■ Variant Effect Job on page 3-32

■ Typical Errors Associated with Reference Loaders on page 3-33

3.1 Ensembl and SwissProt Loaders

3.1.1 Installing the Loaders
Following are the prerequisites for installing the Ensembl and SwissProt reference
loaders:

1. You must have an Oracle database instance with ODB installed in a schema, where
the name and password are known. Running the loaders can be simplified by
creating an Oracle Wallet with these credentials. Take into consideration that using
an Oracle Wallet in Java programs is different from when starting SQL scripts: you
require 2 arguments for it—both being OS paths—one to the Oracle Home (the
directory where the tnsnames.ora file resides) and the other to the directory where
the wallet is created.

Note: As the Reference part of the ODB model changes, the
Reference Data Loaders have to adapt to these changes. Therefore,
both should be updated together.

Note: Ensembl and SwissProt loaders are written in Java.

Ensembl and SwissProt Loaders

3-2 Oracle Health Sciences Omics Data Bank Programmer’s Guide

2. Java Runtime 1.7 or higher must be installed and should be the default on the
machine (this can be verified using the java-version command from the
command prompt).

3. Copy the Reference Loader folder into a directory of your choice. The program
should be run from the directory it is installed in. If you are using shell scripts on
Unix/Linux, they must be made executable (for example, chmod +x
SwissProt.sh).

3.1.2 Files to Load
Following is a list of files to be loaded:

1. The Ensembl multi-gene EMBL files can be downloaded from
ftp://ftp.ensembl.org/pub/release-74/embl/homo_sapiens.

The link above may not reflect the most recent version of the multi-gene files
available. Oracle recommends that you use the latest release available from
Ensembl. It can be navigated to from the following web page:
http://www.ensembl.org/info/data/ftp/index.html (select the EMBL format)

The files are organized by chromosome. There are also some configuration and
patch files. At the very least, you must load all chromosome files to cover the
entire Human genome. The files are gzipped and can be loaded without being
extracting.

Prior to version 68, Ensembl EMBL files were organized differently. The data was
divided into segments, each approximately 100,000 base pairs in length. Starting
with version 68, the sequence of an entire chromosome comes in one section. This
has presented memory problems for the EMBL loader, which were largely
overcome in ODB 3.0, facilitating loading the Human EMBL files using the
standard Java Virtual Machine maximum heap allocation of 1 GB. However, this is
not guaranteed for other species. So if an out-of-memory error occurs when
loading an EMBL file, the load should be repeated with a higher JVM maximum
heap allocation, as described below, and may require a computer with Linux or a
64-bit Windows operating system and at least 4 GB of RAM (Oracle recommends
8GB).

2. The SwissProt file (a single file) can be downloaded from
http://www.ebi.ac.uk/uniprot/database/download.html.

3. Get the (UniProtKB/SwissProt) Flat File.

4. Both EMBL and SwissProt files can be loaded in the compressed form, without
extracting the contents, just as they are downloaded. The EMBL and SwissProt
Loader can handle GZIP archives (identified by the .gzip extension) as well as
some ZIP archives (a ZIP archive must contain only one file to be handled
correctly, and is identified by the .zip extension).

Note: Since version 10.2, the JDBC Thin driver has the ability to read
a tnsnames.ora file using the oracle.net.tns_admin property. The JDBC
Thin driver, however, cannot access additional TNS content pointed to
by an IFILE clause residing inside tnsnames.ora. This is a JDBC Thin
driver-specific issue and can occur on any platform.

This limitation applies to JDBC 10.2.0.4 and later (Release 10.2 and
later).

ftp://ftp.ensembl.org/pub/release-74/embl/homo_sapiens
http://www.ensembl.org/info/data/ftp/index.html
http://www.ebi.ac.uk/uniprot/database/download.html

Ensembl and SwissProt Loaders

Loaders for Reference Data 3-3

3.1.3 Loading the Data

Before you begin:
1. As the Loader runs, it logs some information in the gdm.log file. The file is always

appended to and keeps growing. You may occasionally want to delete it and start
from scratch the next time you run the Loader. Some of the information logged can
be very useful for investigative purposes. Oracle recommends that you check the
log when you have a problem. The EMBL/SwissProt loader also logs into the W_
EHA_RSLT_LOG table, like the ODB SQL loaders. However, it logs into the
database only while connected to it, that is, a connection failure is not logged in
the database.

2. The order of loading EMBL and SwissProt files is not important. The scenario
outlined below is just an example. Both DNA and Protein reference data are now
versioned. Versions stored in the W_EHA_VERSION table are used. For DNA
sources and all reference data that are linked to them (genes and so on) the version
must be of type DNA. For Protein Info records and all the reference data linked to
them the version must be of type PROTEIN. Starting from version 3.0, a Protein
record is loaded only if there is no identical record already loaded with another
version. Each part of a SwissProt file is date-stamped with a release date, and this
is used to determine if a record in a new file has changed from an already loaded
version or not.

The EMBL Loader accepts a version argument, which must match an existing
version of type DNA. If the version is not found, there is a prompt that lets you
use the provided version label. On confirmation, the version is created. If no
version argument is provided, the loader enters the full interactive mode, letting
you select an existing version from a list or creating a new one. The same is true
for the SwissProt loader, except that the version is of type PROTEIN.

Version labels are not case-sensitive and stored in uppercase.

Perform the following steps to load files using Linux or Windows shell scripts. There is
also a native JAVA command-line interface available described in Section 3.1.4,
"Running the Embl/Swissprot Loader with Named Command-Line Arguments".

1. Since the SwissProt file is a single file, it can be loaded in under an hour (Human
proteins only) or in a day (all species). To load the SwissProt file, run SwissProt.bat
(or SwissProt.sh on Linux). When SwissProt.bat is executed, you can optionally
specify the Species List file. The purpose of the Species List file is to permit only
loading protein information for the organism(s) you want.

The format of the file is simple - type in the species primary (Latin) name(s), one
species per line. A file for just the human genome is included in the distribution —
Species.dat and contained in the main loader directory. If there is no -protFile

Note: If the version label is not provided or the provided version
does not exist, the EMBL or SwissProt loader prompts for input and
does not continue until you respond. Therefore, to run the loader in
the non-interactive mode, it is necessary to create the version of the
correct type beforehand and ensure it is passed to the loader correctly.
It is also possible to prevent the loader from waiting for the user input
in the case of an incorrect version being passed to it, by appending
>outlog <empty.txt to the command line and creating an empty text
file empty.txt. In this case the loader fails if the version does not exist.

Ensembl and SwissProt Loaders

3-4 Oracle Health Sciences Omics Data Bank Programmer’s Guide

option with the name of a species list file, ALL proteins for ALL species are loaded
(which takes much longer).

If an Oracle Wallet is set up, SwissProt.bat/.sh can use the credentials stored in the
Wallet to connect to the schema else it prompts for a password. If an Oracle Wallet
is set up, pass the following parameters to run SwissProt.bat/.sh:

a. Username - when an Oracle Wallet is set up enter ""

b. Url — instance alias for which the Wallet credential was created—if you start
SqlPlus as 'sqlplus /@DB001_Wallet, then this value here must be
DB001Wallet.

c. Schema name

d. Directory location of the tnsnames.ora file

e. Path to Wallet

f. Path and name of the species list file. This is an optional parameter. If you do
not have this list, enter "

g. Complete path and name of the data file

h. Reference version of type 'PROTEIN' to use (omit to enter the interactive
mode):

Following is an example of how the SwissProt.bat is to be run if an Oracle
Wallet is set up and a Species list file is not present or not used:

C:\>swissProt.bat "" DB001Wallet trc_gdm
C:\ora11g\product\11.2.0\dbhome_2\NETWORK\ADMIN D:\wallets ""
SwissProt.dat "VERSIONP1"

Example using SwissProt.sh

> sh SwissProt.sh "" DB001Wallet trc_gdm
"/app/oracle/product/11.2.0.2.0/network/admin" "/app/wallet/" ""
SwissProt.dat "VERSIONP1"

Following is an example of how the swissProt.bat is to be run if Oracle Wallet
is set up and Species list is present:

C:\>swissProt.bat "" DB001Wallet trc_gdm
C:\ora11g\product\11.2.0\dbhome_2\NETWORK\ADMIN D:\wallets
Species.dat SwissProt.dat "VERSIONP1"

Example using SwissProt.sh

> sh SwissProt.sh "" DB001Wallet trc_gdm
"/app/oracle/product/11.2.0.2.0/network/admin" "/app/wallet/"
Species.dat SwissProt.dat "VERSIONP1"

If no Oracle Wallet is set up, you have to pass the following parameters when
swissProt.bat is run:

a. Username to connect to schema

b. Url — Full DB URL (host:port:instance, or scan-server-name:port:SID for a
multiple node DB). For example, Localhost:1613:devdb1

c. Schema name

d. Directory location of the tnsnames.ora file. When Oracle Wallet is not set up
enter ""

e. Path to Wallet — when Oracle Wallet is not set up enter ""

Ensembl and SwissProt Loaders

Loaders for Reference Data 3-5

f. Path and name of the species list file. This is an optional parameter. If you do
not have this list, enter ""

g. Complete path and name of the data file

h. Optional version of type 'PROTEIN' to use (omit to enter the interactive mode)

Following is an example of how the swissProt.bat is to be run if Oracle Wallet is
not set up and Species list is not present:

C:\>swissProt.bat trc_gdm localhost:1613:devdb1 trc_gdm "" "" ""
SwissProt.dat "VERSIONP1"

Example using SwissProt.sh

>sh SwissProt.sh trc_gdm localhost:1613:devdb1 trc_gdm "" "" ""
SwissProt.dat "VERSIONP1"

This is an example of how the swissProt.bat is to be run if an Oracle Wallet is not
set up and a Species list file is used:

C:\>swissProt.bat trc_gdm localhost:1613:devdb1 trc_gdm "" ""
Species.dat SwissProt.dat

Example using SwissProt.sh

>sh SwissProt.sh trc_gdm localhost:1613:devdb1 trc_gdm "" ""
Species.dat SwissProt.dat "VERSIONP1"

The SwissProt Loader can also be run with named command-line arguments.

2. The Ensembl EMBL files can be loaded next. Multiple EMBL files can be loaded
one at a time, in any order, but without duplication (each file can only run once -
otherwise, at present, some information is duplicated). Multiple EMBL files can be
loaded concurrently (for example, in separate terminal windows). However, to
create a new DNA reference version using the interactive mode, one file should be
loaded first (creating the new version in the process) and only then can multiple
files be loaded concurrently.

If an Oracle Wallet is set up, embl.bat/.sh can use the credentials stored in the
Wallet to connect to the schema else it prompts for a password. If Oracle Wallet is
set up, pass the following parameters when Embl.bat is run:

a. Username — when an Oracle Wallet is set up, enter ""

b. Url — instance alias for which the Wallet credential was created - if you start
SqlPlus as ’sqlplus /@DB001_Wallet, then this value here must be
DB001Wallet.

c. Schema name

d. Directory location of the tnsnames.ora file

e. Path to Wallet

f. Complete path and name of the data file

g. Depending on the file being loaded and on the operating system, a seventh,
optional, argument may need to be used: the Java Virtual Machine heap size,
in MB.

By default, embl.bat (and the corresponding UNIX shell script, embl.sh)
specifies 1 GB of Java Virtual Machine (JVM) maximum heap space (using the
–Xmx1024M option). This is known to be sufficient for loading all Human
Ensembl files, version 68, and works on most Linux or Windows systems

Ensembl and SwissProt Loaders

3-6 Oracle Health Sciences Omics Data Bank Programmer’s Guide

(Oracle recommends 8 GB of RAM or more). Hence, you do not need to
provide the heap size argument.

However, some Ensembl EMBL files for other species, version 68 or higher,
may require more heap space. The seventh argument should then be provided
as 2048 (that is 2048 MB). These files can then be loaded successfully on Linux
or 64-bit Windows with enough RAM. If there is an Out-of-memory error while
loading a file, use a larger maximum heap size and use the same option for all
subsequent Ensembl files for the same organism.

If the specific computer or operating system cannot handle the specified JVM
heap size, a Java Virtual Machine creation failed error occurs. You will then have
to use another machine.

h. The version of type DNA can be passed as the eighth argument (omit to enter
the interactive mode).

Following is an example of how embl.bat is to be run if Oracle Wallet is set up:

C:\>embl.bat "" DB001Wallet trc_gdm
C:\ora11g\product\11.2.0\dbhome_2\NETWORK\ADMIN D:\wallets embl.dat
2560

Example for the embl.sh shell script for Linux:

>sh embl.sh "" DB001Wallet trc_gdm
/app/ora11g/product/11.2.0/dbhome_2/NETWORK/ADMIN /app/wallets
embl.dat 2048 "GRCH37.P8"

If no Oracle Wallet is set up, pass the following parameters when Embl.bat is run:

a. Username to connect to schema

b. Url — Full DB URL (host:port:instance). For example, Localhost:1613:devdb1

c. Schema name

d. Directory location of the tnsnames.ora file. When Oracle Wallet is not set up
enter ""

e. Path to Wallet — when Oracle Wallet is not set up enter ""

f. Complete path and name of the data file

g. Optional maximum heap size (in MB), or ""

h. Optional version of type 'DNA' (omit to enter the interactive mode to select or
create a version)

This is an example of how the embl.bat is to be run if Oracle Wallet is not set
up:

C:\>embl.bat trc_gdm localhost:1613:devdb1 trc_gdm "" "" embl.dat
2048 "GRCH37.P8"

Example for embl.sh:

>sh embl.sh trc_gdm localhost:1613:devdb1 trc_gdm "" "" embl.dat
2048 "GRCH37.P8"

The EMBL Loader can also be run with named command-line arguments.

3.1.4 Running the Embl/Swissprot Loader with Named Command-Line Arguments
The EMBL/SwissProt Loader is a single Java application, packaged into a JAR archive
GDM.jar. It can be used without any shell or Windows script, using the arguments

Ensembl and SwissProt Loaders

Loaders for Reference Data 3-7

described in this section. Running the application using these arguments provides
some additional capabilities, not supported by the shell or Windows scripts installed
with it.

Java Runtime 1.7 is required to run the EMBL/SwissProt Loader. It has to be either in
the PATH environment variable, or the full path to the Java executable with version 1.7
should be specified.

If the Java 1.7 executable is in the PATH environment variable, the EMBL/SwissProt
loader is run as follows:

java -Xmx2048m -jar gdm.jar <argument 1>…<argument N>

The -XmxNNNNm Java option is optional. In the 3.0 (or later) version of the
EMBL/SwissProt Loader, it is usually not required because the memory usage has
been optimized to handle chromosome-wide Ensembl files. Use it if you encounter an
Out-of-memory error for any Ensembl EMBL file (provided that the machine has
enough memory and the operating system is Linux or 64-bit Windows).

The arguments (except for the path or name of the data file to load, which must always
be the last argument) are not positional, and can be used in any order. The key or
option arguments begin with the "-" character. Some of them require a value as the
following argument, others are stand-alone. For the up-to-date list of all available
arguments, execute the following command:

java -jar gdm.jar -help

Following is more detailed information about the arguments and their usage:

-url <url> - specifies the URL of the database to be connected. <url> must be in the
form - host:port:instance. This argument is mandatory.

-schema <schema name> - specifies the ODB schema name. This argument is
mandatory.

-user <user> - specifies the user name used to log into the database (needed only
when not using an Oracle Wallet).

-wallet <wallet> - specifies the directory where the Oracle Wallet is set up.

-orahome <oracle home directory> - specifies the Oracle home directory, when a
Wallet is used (this is the directory where the tnsnames.ora file resides).

-sprot - this key is used to load a SwissProt file. If it is absent, the data file will be
loaded as an EMBL file.

-protFile <species file> - specifies the file path (optional) and name of a Species
List file, used to optionally filter the contents of a SwissProt file by species (used when
loading SwissProt only).

-version <version label> - specifies the version label of the DNA or Protein
reference version. If this argument is present, it must match an existing version of
appropriate type (DNA for EMBL, PROTEIN for SwissProt). If it is omitted, the Loader
will start in the interactive mode, prompting you to select an existing version, or create
a new one.

-verbose - if this argument is present, additional information will be printed on the
screen and logged.

-updateDB - this argument is necessary if you want to actually load the contents of the
file into the database. If it is omitted, the contents of the data file are parsed, but
nothing is inserted into the database tables (except the version, if the Loader is started
in the interactive mode and you choose to create a new version). Omitting this option
is useful for verifying that the file parses without errors.

Ensembl and SwissProt Loaders

3-8 Oracle Health Sciences Omics Data Bank Programmer’s Guide

-print_summary - if this key is present, summary info will be printed on the console at
the end of the run.

Examples:

Loading an EMBL file without a Wallet, Windows:

java -jar GDM.jar -url localhost:1521:b41804x1 -schema odb -user odb
-version V1 -updateDB EMBLFile.dat

Verifying (without loading) the same file:

java -jar GDM.jar -url localhost:1521:b41804x1 -schema odb -user odb
-version V1 EMBLFile.dat

Loading a SwissProt file with a Wallet, Windows:

java -jar GDM.jar -url localhost:1521:b41804x1 -schema odb -orahome
C:\ora11g\product\11.2.0\dbhome\NETWORK\ADMIN -wallet C:\Wallets -version
P1 -updateDB -sprot -protFile species.dat SPFile.dat

Loading an EBML file with a Wallet, Linux, interactive mode for version:

java -jar GDM.jar -url localhost:1521:b41804x1 -schema odb -orahome
/home/apps/ora11g/product/11.2.0/dbhome/NETWORK/ADMIN -wallet
/home/Wallets -updateDB EMBLFile.dat

3.1.5 Index-Organized Tables Loader
The Java (EMBL/SwissProt) loader uses staging tables to prevent blocking when
multiple sessions are loading concurrently. EMBL and Swissprot linked XREF and
QLFR data tables are index referenced. A stored procedure, ODB_REFERENCE_
UTIL.create_referecne_iot is called after all Ensembl and SwissProt data has been
loaded (this builds the XREF and QLFR tables more efficiently).

After loading the EMBL and SwissProt reference files, call the shell script IOT_
loader.sh, which in-turn executes load_from_stage_to_iot.sql, which calls the stored
procedure.

Following is the command line options for the loader script:

Sh IOT_loader.sh <options>

Options
(*) required

-db_wallet* <VARCHAR2> (required, unless the -db_conn/-db_user combination is
used to log into the database)

Oracle wallet name, see Section 2.2, "Setting Up an Oracle Wallet"

-db_conn* <VARCHAR2> (required if -db_wallet is not provided)

SID, or the Oracle connection string that is,

"(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=127.0.0.1)(PORT=1521))(CONNECT_
DATA=(SID=XE)))"

-db_user* <VARCHAR2> (required if -db_conn is provided)

ODB user name for the Database connection.

-check_version <NUMBER>

Run check version (1=yes|0=no) [default: 0]

HUGO Loader

Loaders for Reference Data 3-9

-check_version_non_i <NUMBER>

Run check version in non-interactive mode (1=yes|0=no) [default: 1]

-log_level <VARCHAR2>

Set log level TRACE, DEBUG, INFO, WARNING, ERROR [default: INFO]

-print_summary <NUMBER>

Print summary (1=yes|0=no) [default: 0]

Example
sh ./IOT_loader.sh -db_wallet TRCQC

3.1.6 Gathering Optimizer Statistics
Oracle recommends gathering table and index statistics after completing an Ensembl
and (or) SwissProt data load. Missing or stale statistics can profoundly deteriorate
query performance. Oracle statistics is a collection of data about database objects such
as tables and indexes. Oracle optimizer requires you to estimate the most efficient
query execution plan.

To collect statistics, connect to a database as ODB_SCHEMA owner using SqlPlus and
execute the following command:

exec dbms_stats.gather_schema_stats ('ODB_', cascade=>true,estimate_
percent=>dbms_stats.auto_sample_size);

3.2 HUGO Loader

3.2.1 Description and Files to Load
The Hugo Loader is responsible for populating curated gene nomenclature records,
taken from an online resource maintained by HUGO Gene Nomenclature Committee
(HGNC), into ODB's reference database. The input data for the loader comprises of the
complete HGNC dataset, which can be retrieved from their Statistics and Downloads
Webpage here http://www.genenames.org/cgi-bin/hgnc_stats. You must
specifically download the complete HGNC dataset by clicking the hyperlink in the
sentence Click here for the complete HGNC dataset provided in the above webpage. The
data downloaded is a large file with tabular text and tab-delimited values, given with
column headers.

A batch file for Windows and an alternative shell script for Linux-bash, have been
provided for loading the data.

3.2.2 Running the Loader
The loader is found bundled in the latest ODB build in the /ODB_Loaders/Reference_
Loader/Hugo_loader directory. This folder contains 8 files:

Important: The format of the complete HGNC files has changed as of
May 2013. The ODB HUGO Loader 3.0 only supports the new file
format, while the previous versions of the loader (ODB 2.0.2.1 and
prior) only support the old format.

http://www.genenames.org/cgi-bin/hgnc_stats

HUGO Loader

3-10 Oracle Health Sciences Omics Data Bank Programmer’s Guide

■ hugo_loader.bat

■ hugo_loader.sh

■ hugo_script.sql

■ several common sh, bat, and SQL scripts for reference version checking

To run the loader, perform the following:

1. Copy the above files into a folder on your system along with the downloaded
input file from HUGO.

2. Open a command prompt terminal and change the directory to where the hugo_
loader.bat and (or) hugo_loader.sh file resides.

3. If working on Linux, ensure the scripts are executable (you may need to run chmod
u+x *.sh)

4. The hugo_loader.sh/.bat scripts use the credentials stored in an Oracle Wallet to
connect to the schema that has the ODB. Pass the following parameters when the
hugo_loader.bat is run:

a. The Hugo data file.

b. Oracle Directory Object

c. Wallet name

d. Operation without an Oracle Wallet (with user name and database connection
arguments) is only supported on Linux.

5. Execute hugo_loader.sh/.bat, with appropriate arguments, to load the data.

3.2.3 Command-Line Argument List

Synopsis
hugo_loader.sh -help

hugo_loader.sh <...options>

Description
Description:

Validates input options and calls the loader script hugo_script.sql#hugo_loader.load_
hugo

Options
(*) required

-db_wallet* <VARCHAR2> (required, unless the -db_conn/-db_user combination is
used to log into the database)

Oracle wallet name, see Section 2.2, "Setting Up an Oracle Wallet"

-db_conn* <VARCHAR2> (required if -db_wallet is not provided)

SID, or the Oracle connection string that is,

 "(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=127.0.0.1)(PORT=1521))(CONNECT_
DATA=(SID=XE)))"

-db_user* <VARCHAR2> (required if -db_conn is provided)

GVF Ensembl Loader

Loaders for Reference Data 3-11

ODB user name for the Database connection.

-check_version* <NUMBER>

Run check version (1=yes|0=no)

-check_version_non_i* <NUMBER>

Run check version in non-interactive mode (1=yes|0=no)

-log_level <VARCHAR2>

Set log level TRACE, DEBUG, INFO, WARNING, ERROR [default: INFO]

-print_summary <NUMBER>

Print summary (1=yes|0=no) [default: 0]

-data_file* <VARCHAR2>

Data file name - Oracle external table location. Refer to the programmer's guide on
how to retrieve this file from HGNC's web portal.

-data_directory* <VARCHAR2>

Oracle directory object - Oracle external table directory. For details, see Section 2.1,
"Setting Up a Directory Object"

-reference_version <VARCHAR2>

The reference version label of the Hugo file being loaded. A "HUGO" reference version
label is defined in W_EHA_VERSION.VERSION_LABEL. If the version label is not
present in the W_EHA_VERSION table, the loader prompts the user to confirm
whether to continue with the version label provided. If yes, the loader inserts the new
record in the version table with the given Version_label and proceeds with the load.

-read_size <NUMBER>

Read size in bytes - Oracle external table READSIZE

Examples
UNIX

$ sh hugo_loader.sh -db_wallet odb_user -check_version 1 -check_version_
non_i 0 -data_file "genefam_list.pl" -data_directory "ODB_LOAD"
-reference_version "DLD_DT_01062013" -read_size ""

Windows

C:\> hugo_loader.bat -db_wallet odb_user -check_version 1 -check_version_
non_i 0 -data_file "genefam_list.pl" -data_directory "ODB_LOAD"
-reference_version "DLD_DT_01062013" -read_size ""

Once loading is complete, log into SQL developer, or SQL*Plus, with ODB Schema and
verify that 35000 or more records are populated in W_EHA_HUGO_INFO table. The
execution information is logged in the W_EHA_RSLT_LOG table. If run with the
-print_summary 1 option, the loader will also print information about the execution
on the console, including the count of inserted records and errors, if any.

3.3 GVF Ensembl Loader

GVF Ensembl Loader

3-12 Oracle Health Sciences Omics Data Bank Programmer’s Guide

3.3.1 Description and Files to Load
The GVF Ensembl loader is responsible for the input of known variants for any given
species for which DNA source records are present. It loads only those variant records
from the input file, for which matching DNA source records exist in the DB. (That is,
those variants that fall into the absolute position ranges of a DNA source record with
the same chromosome and species ID). Therefore, you must ensure that the EMBL
loader is run first with the relevant species' EMBL input files.

Since GVF files do not contain information about the species, it is necessary to pass a
species_ID value as parameter to run the loader. Therefore, the W_EHA_SPECIES
table should have the relevant species record with a primary key ID, which is then
passed as said parameter.

Any GVF file can be loaded multiple times. For Homo sapiens, GVF input files can be
downloaded from the Ensembl FTP website
ftp://ftp.ensembl.org/pub/release-65/variation/gvf/homo_sapiens/.

The preceding link may not necessarily reflect the most recent version of GVF files
available. Oracle recommends that you use the latest GVF files.

3.3.2 Running the Loader
The .bat and .sh files for GVF loaders require the same set of named command line
arguments, except that the .bat script only supports using an Oracle Wallet connection
(like for all other SQL loaders).

3.3.3 Command-Line Argument List

Name
GVF_loader.sh - load records

Synopsis
GVF_loader.sh -help

GVF_loader.sh <...options>

Description
Validates input options and calls the loader script load_gvf.sql#odb_ref_gvf_
util.process_gvf

Options
(*) required

-db_wallet* <VARCHAR2> (required, unless the -db_conn/-db_user combination is
used to log into the database)

Oracle wallet name, see Section 2.2, "Setting Up an Oracle Wallet"

-db_conn* <VARCHAR2> (required if -db_wallet is not provided)

Oracle SID, or the Oracle connection string that is,

Note: Ensembl now keeps Germ-line mutations and Somatic
mutations in separate gvf files. To have both datasets, Oracle
recommends loading both the Homo_sapiens.gvf.gz and the Homo_
sapiens_somatic.gvf.gz files present in the link.

ftp://ftp.ensembl.org/pub/release-65/variation/gvf/homo_sapiens/

GVF Ensembl Loader

Loaders for Reference Data 3-13

 "(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=127.0.0.1)(PORT=1521))(CONNECT_
DATA=(SID=XE)))"

-db_user* <VARCHAR2> (required if -db_conn is provided)

ODB user name for the Database connection.

-check_version <NUMBER>

Run check version (1=yes|0=no) [default: 0]

-check_version_non_i <NUMBER>

Run check version in non-interactive mode (1=yes|0=no) [default: 1]

-log_level <VARCHAR2>

Set log level TRACE, DEBUG, INFO, WARNING, ERROR [default: INFO]

-print_summary <NUMBER>

Print summary (1=yes|0=no) [default: 0]

-data_file* <VARCHAR2>

Data file name - Oracle external table LOCATION

-data_directory* <VARCHAR2>

Oracle directory object - Oracle external table DIRECTORY, see Section 2.1, "Setting Up
a Directory Object"

-species_name* <VARCHAR2>

Species name defined in W_EHA_SPECIES that is, for humans "Homo sapiens"

-reference_version <VARCHAR2>

"DNA" reference version label defined in W_EHA_VERSION.VERSION_LABEL

-preprocess_dir <VARCHAR2>

Preprocess directory - Oracle external table PREPROCESSOR

-preprocess_file <VARCHAR2>

Preprocess file - Oracle external table PREPROCESSOR

-read_size <NUMBER>

Read size in bytes - Oracle external table READSIZE

Examples
UNIX

$ sh GVF_loader.sh -db_wallet odb_user -data_file "som_variants.gvf"
-data_directory "ODB_LOAD" -species_name "Homo sapiens" -reference_version
"GRCh37.p8" -preprocess_dir "" -preprocess_file "" -read_size ""

Windows

C:\> GVF_loader.bat -db_wallet odb_user -data_file "som_variants.gvf"
-data_directory "ODB_LOAD" -species_name "Homo sapiens" -reference_version
"GRCh37.p8" -preprocess_dir "" -preprocess_file "" -read_size ""

Pathway Loader

3-14 Oracle Health Sciences Omics Data Bank Programmer’s Guide

3.3.4 Gathering Optimizer Statistics
Oracle recommends gathering table and index statistics after running the GVF loader.
Oracle statistics is a collection of data about database objects such as tables and
indexes. It is required by Oracle optimizer to estimate the most efficient query
execution plan. Missing or stale statistics can profoundly deteriorate query
performance.

To collect statistics, connect to a database as ODB_SCHEMA owner using sqlplus and
execute the following command:

exec dbms_stats.gather_schema_stats ('ODB_', cascade=>true,estimate_
percent=>dbms_stats.auto_sample_size);

3.4 Pathway Loader

3.4.1 Description and Files to Load
Pathway_loader is a script for extracting, transforming, and loading GSEA standard
file formats.

The data used can be downloaded from
http://www.pathwaycommons.org/archives/PC1/last_release-2011/gsea/by_
species/homo-sapiens-9606-gene-symbol.gmt.zip.

Currently, this is the last supported pathway file format. More recent versions exist but
should be reformatted to the above supported version.

The first column and the second column in this file are normal tab delimited but the
third column is a string containing delimited values.

The pathway_loader utility is compatible with Oracle RDBMS 10.2 and above. It is not
operating system dependent and works entirely within the Oracle database. This
section describes the setup procedure and also illustrates how to use the utility to load
data from the GSEA file located on your system.

3.4.2 Running the Loader
The loader is made up of 10 files:

■ pathway_loader.bat

■ pathway_loader.sh

■ pathway_script.sql

■ several common sh, bat, and SQL scripts for reference version checking

The execution call of the stored procedure load_pathway() is designed in one of the
script files (pathway_script.sql). This stored procedure accepts FILE NAME, ORACLE
DIRECTORY OBJECT, SPECIES_NAME, PATHWAY REFERENCE VERSION and
READ_SIZE as input parameters.

It creates an external table dynamically and uploads data from the source file into it.
External tables let Oracle query data that is stored outside the database in flat files. The
ORACLE_LOADER driver accesses data stored in any format that can be loaded by
the SQL*Loader.

http://www.pathwaycommons.org/archives/PC1/last_release-2011/gsea/by_species/homo-sapiens-9606-gene-symbol.gmt.zip
http://www.pathwaycommons.org/archives/PC1/last_release-2011/gsea/by_species/homo-sapiens-9606-gene-symbol.gmt.zip

Pathway Loader

Loaders for Reference Data 3-15

The stored procedure dynamically creates PATH_DATA_!!SEQ!! as an external table.
This external table stores the complete pathway data. This table maps all the fields
existing in the pathway file.

There are two bulk insert statements executed dynamically. One SQL inserts the record
into the W_EHA_PATHWAY table and the other inserts the record into the W_EHA_
PATHWAY_PROTEIN table.

Multiple versions of pathway data can be loaded into the table. The VERSION_WID
column saves the version ID of the particular version loaded, which is retrieved from
the W_EHA_VERSION table.

The pathway_loader.bat file requires the logon credentials to be stored in an Oracle
Wallet, while the pathway_loader.sh script can be run with or without an Oracle
Wallet.

The load_pathway procedure supports error logging associated with Pathway
Reference, species_name, sql_err and Species lookup failure. These errors are logged
into the W_EHA_RSLT_LOG table.

3.4.3 Command-Line Argument List

Name
pathway_loader.sh - load records

Synopsis
pathway_loader.sh -help

pathway_loader.sh <...options>

Description
Validates input options and calls the loader script pathway_script.sql#pathway_
loader.load_pathway

Options
(*) required

-db_wallet* <VARCHAR2>

Oracle wallet name, see Section 2.2, "Setting Up an Oracle Wallet"

-db_conn* <VARCHAR2> (required if -db_wallet is not provided)

SID or Oracle connection string that is,

 "(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=127.0.0.1)(PORT=1521))(CONNECT_
DATA=(SID=XE)))"

-db_user* <VARCHAR2> (required if -db_conn is provided)

ODB user name for the Database connection. -check_version <NUMBER>

Run check version (1=yes|0=no) [default: 0]

-check_version_non_i <NUMBER>

Note: In the above external table, the "!!SEQ!!" string is replaced by
ETL_PROC_ID at run time.

Prediction Score (PolyPhen, SIFT) Loader

3-16 Oracle Health Sciences Omics Data Bank Programmer’s Guide

Run check version in non-interactive mode (1=yes|0=no) [default: 1]

-log_level <VARCHAR2>

Set log level TRACE, DEBUG, INFO, WARNING, ERROR [default: INFO]

-print_summary <NUMBER>

Print summary (1=yes|0=no) [default: 0]

-data_file* <VARCHAR2>

Data file name - Oracle external table LOCATION

-data_directory* <VARCHAR2>

Oracle directory object - Oracle external table DIRECTORY, see Section 2.1, "Setting Up
a Directory Object"

-species_name* <VARCHAR2>

Species name defined in W_EHA_SPECIES that is, For humans "Homo sapiens"

-reference_version <VARCHAR2>

"PATHWAY" reference version label defined in W_EHA_VERSION.VERSION_LABEL.
If the version label is not present in the W_EHA_VERSION table, the loader
interactively prompts for confirmation to continue with the version label provided. If
yes, the loader inserts the new record in the version table with the given Version_label
and proceeds with the load.

-read_size <NUMBER>

Read size in bytes. Oracle external table READSIZE

Examples
UNIX

$ sh pathway_loader.sh -db_wallet odb_user -data_file
"homo-sapiens-9606-gene-symbol.gmt" -data_directory "ODB_LOAD" -species_
name "Homo sapiens" -reference_version "feb-2011" -read_size ""

Windows

C:\> pathway_loader.bat -db_wallet odb_user -data_file
"homo-sapiens-9606-gene-symbol.gmt" -data_directory "ODB_LOAD" -species_
name "Homo sapiens" -reference_version "feb-2011" -read_size ""

3.5 Prediction Score (PolyPhen, SIFT) Loader

3.5.1 Description and Files to Load
In Ensembl, human mutations affecting the amino acid substitutions are further
analyzed for the effect of this substitution on protein function. This is done using SIFT
and PolyPhen predictive algorithms. The source files from running either SIFT or
PolyPhen contain prediction and score which is stored in the target tables. The model
supports multiple versions of SIFT and PolyPhen data. The versions are recorded in
the W_EHA_VERSION and W_EHA_FILE_TYPE tables.

Prediction Score (PolyPhen, SIFT) Loader

Loaders for Reference Data 3-17

Downloading Data from Ensembl BioMart
The source data is downloaded from the Ensembl BioMart tool. Download SIFT and
POLYPHEN data separately and load them in separate loader runs.

The data can be downloaded from one of the following links:

http://uswest.ensembl.org/biomart/martview/

http://asia.ensembl.org/biomart/martview/

1. Select Database as Ensembl Variation <ver>.

2. Select Dataset as either Homo sapiens Somatic Short Variants (COSMIC sourced)
or Homo Sapiens Short Variants (dbSNP sourced).

3. From Filters: If you want to download data for a specific region of the
chromosome, then use this option. Otherwise you can retain the default filter
options.

4. From Attributes: Select following options in the specific order defined below:

– From SEQUENCE VARIATION:

* Variation Name

* Chromosome Name

* Position on Chromosome (bp)

* Strand

* Variant Allele

– From GENE ASSOCIATED INFORMATION:

* Consequence specific allele

* Ensembl Transcript ID

* Polyphen prediction or SIFT prediction

* Polyphen score or SIFT score.

5. Click Result at the top of the screen.

6. Export all results to select following:

1. Select File

2. Select TSV

3. Select Unique results only.

7. Click Go to download the file.

Select the attributes in the specified order. Also, ensure that you select PolyPhen
prediction and PolyPhen score when downloading PolyPhen data, and SIFT prediction
and SIFT score when downloading SIFT data.

For downloading large SIFT and PolyPhen datasets, you can alternatively use the
Ensembl Perl APIs. For details, refer the following links:

http://www.ensembl.org/info/docs/index.html

http://www.ensembl.org/info/docs/api/variation/index.html#api

The execution call of the stored procedure odb_result_util.process_variant_
prediction () is designed in one of the script files (load_prediction_score.sql). This
stored procedure accepts FILE NAME, ORACLE DIRECTORY OBJECT, FILE TYPE

http://www.ensembl.org/info/docs/index.html
http://www.ensembl.org/info/docs/api/variation/index.html#api

Prediction Score (PolyPhen, SIFT) Loader

3-18 Oracle Health Sciences Omics Data Bank Programmer’s Guide

(being either SIFT or Polyphen), FILE VERSION and DNA REFERENCE VERSION as
an input parameters.

It creates an external table dynamically and uploads data from the source file into it.
External tables let Oracle query data that is stored outside the database in flat files. The
ORACLE_LOADER driver accesses data stored in any format that can be loaded by
the SQL*Loader. No DML can be performed on external tables but they can be used for
query, join, and sort operations.

The stored procedure dynamically creates PREDICTION_DATA_!!SEQ!! as an external
table. This external table stores the complete result data. This table maps all the fields
existing in the input file.

There are two multi-table insert statements executed dynamically. One inserts records
into the w_eha_variant_prediction table and another inserts records into the w_eha_
rslt_log table.

A select statement that parses the data from the external table uses an inline query,
which gets the dataset of variant and transcript records. An inline query uses a
partition (analytical function) function to avoid duplicate records for different
variation names with the same variant record (VARIANT_WID). The dataset of this
inline query will then be joined with the W_EHA_VARIANT_PREDICTION table to
look up VARIANT_WID and STRUCTURE_WID, and will insert a record into either
the W_EHA_VARIANT_PREDICTION table or the W_EHA_RSLT_LOG table.

If you upload the same file (that is, a file with the same name as the one previously
loaded) with a different version, the loader considers this file as a new file and uploads
the record into the target (W_EHA_VARIANT_PREDICTION) table with a different
file version.

3.5.2 Running the Loader
A record is inserted in the W_EHA_VARIANT_PREDICTION table for a variant
belonging to a specific transcript; hence reference_id and transcript_id is looked up
before inserting a record in this table.

Before inserting a record in this table, the loader also checks if a record already exists
in the W_EHA_VARIANT_PREDICTION table for a specific reference_id and
transcript_id and for the version of SIFT or PolyPhen data.

The following operation is performed based on the above condition:

■ If reference_id (variant_wid) and transcript_id (structure_wid) exist in the target
table but SIFT or polyphen version is different, a new record is inserted in this
table.

■ If reference_id (variant_wid) and transcript_id (structure_wid) exist in the target
table and SIFT or polyphen version are also the same, the score is compared.

■ If the score is same, the variant record is not updated.

■ If the score is not same, the existing record is not updated but the reference_id
along with transcript_id is reported to the W_EHA_RSLT_LOG table stating that
the score was different.

Note: In the above external table, the "!!SEQ!!" string is replaced by
ETL_PROC_ID at run time.

Prediction Score (PolyPhen, SIFT) Loader

Loaders for Reference Data 3-19

■ If reference_id (variant_wid) and transcript_id (structure_wid) do not exist in the
table, a new record is inserted.

SIFT or PolyPhen Reference Version
The Program Version refers to the SIFT or PolyPhen program version used to generate
the data. You can check the version from
http://asia.ensembl.org/info/genome/variation/predicted_data.html

3.5.3 Command-Line Argument List

Note: The batch file requires an Oracle Wallet to be set up to run
correctly. However, the shell script can be run with or without an
Oracle Wallet.

Table 3–1 Mapping of Polyphen or SIFT File

Column Name in
Result File Table and Column Name in ODB Description

Variation Name REFERENCE_ID in W_EHA_VARIANT_XREF table This is a FK to W_EHA_
VARIANT table. It is
extracted by the loader
using a lookup of Variation
Name from the source file
against the REFERENCE_
ID in the W_EHA_
VARIANT_XREF table.

Chromosome Name W_EHA_CHROMOSOME .CHROMOSOME Chromosome Name

Position on
Chromosome (bp)

W_EHA_RSLT_SEQUENCING.START_POSITION Stores the start position on
chromosome.

Strand N/A N/A

Variant Alleles N/A N/A

Ensembl Transcript
ID

W_EHA_GENE_STRUCTURE. TRANSCRIPT_ID This is a FK to W_EHA_
GENE_STRUCTURE table.
It is extracted by the loader
using a lookup of Ensembl
Transcript ID from the
source file against the
'TRANSCRIPT_ID' in W_
EHA_GENE_STRUCTURE
table.

PolyPhen /SIFT
prediction

W_EHA_PREDICTION_CODE .CODE This is a FK to W_EHA_
CODE table, which stores
all possible predictions for
SIFT and PolyPhen data.
The FK corresponding to
the prediction of this
record is available in the
source file.

PolyPhen or SIFT
score

W_EHA_VARIANT_PREDICTION. PREDICTION_SCORE Stores the prediction score
value from the source file
for a particular variant.

http://asia.ensembl.org/info/genome/variation/predicted_data.html

Prediction Score (PolyPhen, SIFT) Loader

3-20 Oracle Health Sciences Omics Data Bank Programmer’s Guide

Name
prediction_score_loader.sh - load records

Synopsis
prediction_score_loader.sh -help

prediction_score_loader.sh <...options>

Description
Validates input options and calls the loader script load_prediction_score.sql#odb_ref_
prediction_util.process_variant_prediction

Options
(*) required

-db_wallet* <VARCHAR2>

Oracle wallet name, see Section 2.2, "Setting Up an Oracle Wallet"

-db_conn* <VARCHAR2> (required if -db_wallet is not provided)

Oracle connection string that is,

 "(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=127.0.0.1)(PORT=1521))(CONNECT_
DATA=(SID=XE)))"

-db_user* <VARCHAR2> (required if -db_conn is provided)

ODB user name for the Database connection.

-check_version <NUMBER>

Run check version (1=yes|0=no) [default: 0]

-check_version_non_i <NUMBER>

Run check version in non-interactive mode (1=yes|0=no) [default: 1]

-log_level <VARCHAR2>

Set log level TRACE, DEBUG, INFO, WARNING, ERROR [default: INFO]

-print_summary <NUMBER>

Print summary (1=yes|0=no) [default: 0]

-data_file* <VARCHAR2>

Data file name - Oracle external table LOCATION

-data_directory* <VARCHAR2>

Oracle directory object - Oracle external table DIRECTORY, see Section 2.1, "Setting Up
a Directory Object"

-species_name* <VARCHAR2>

Species name defined in W_EHA_SPECIES that is, For humans "Homo sapiens"

-prediction_version_type* <VARCHAR2>

Prediction reference version type (SIFT|POLYPHEN)

-prediction_version_label* <VARCHAR2>

"SIFT"|"Polyphen" reference version label defined in W_EHA_VERSION.VERSION_
LABEL. If the version label is not present in the W_EHA_VERSION table, the loader

Probe Loader

Loaders for Reference Data 3-21

prompts for confirmation to continue with the version label provided. If yes, the
loader inserts the new record in the version table with the given Version_label and
proceeds with the load.

-reference_version <VARCHAR2>

"DNA" reference version label defined in W_EHA_VERSION.VERSION_LABEL

-preprocess_dir <VARCHAR2>

Preprocess directory - Oracle external table PREPROCESSOR

-preprocess_file <VARCHAR2>

Preprocess file - Oracle external table PREPROCESSOR

-read_size <NUMBER>

Read size in bytes - Oracle external table READSIZE

Examples
UNIX

$ sh prediction_score_loader.sh -db_wallet odb_user -data_file "ut_
variant_pred1.txt" -data_directory "ODB_LOAD" -species_name "Homo sapiens"
-prediction_version_type "Polyphen" -prediction_version_label "5.0"
-reference_version "GRCh37.p8" -preprocess_dir "" -preprocess_file ""
-read_size ""

Windows

C:\> prediction_score_loader.bat -db_wallet odb_user -data_file "ut_
variant_pred1.txt" -data_directory "ODB_LOAD" -species_name "Homo sapiens"
-prediction_version_type "Polyphen" -prediction_version_label "5.0"
-reference_version "GRCh37.p8" -preprocess_dir "" -preprocess_file ""
-read_size ""

Typical Errors Associated with prediction_score Loader

■ Record not inserted is logged if the same version and same file type is loaded but
the input record inserted has a score different than the existing record.

■ Other possible errors are:

– Generating etl process id

– Generating enterprise id

– Verifying species name

– Verifying reference version

– Verifying prediction version

– Inserting file type

– Verifying file type

– Processing result records

3.6 Probe Loader

Probe Loader

3-22 Oracle Health Sciences Omics Data Bank Programmer’s Guide

3.6.1 Description and Files to Load
The probe loader populates the W_EHA_PROBE table. You can use probe_loader.bat
to run in Windows or probe_loader.sh to run in Linux. Probe loader is mostly a
reference loader, but it varies with vendors, for example, Affymetrix, Illumina.

Following are the assumptions for the data file for the Probe Loader:

■ The file is tab-delimited.

■ The first row is always the header.

Mappings for Probe Loader
Table Mappings for Probe Loader

3.6.2 Running the Loader
The execution call of the stored procedure PROBE_LOADER() is in the script file
probe_script.sql. This stored procedure accepts FILE NAME, ORACLE DIRECTYORY
OBJECT, SPECIES NAME, DNA VERSION LABEL, PROBE VERSION LABEL and
READ_SIZE as input parameters.

It creates an external table dynamically and uploads data from the source file into it.
External tables let Oracle query data that is stored outside the database in flat files. The
ORACLE_LOADER driver accesses data stored in any format that can be loaded by
the SQL*Loader.

The stored procedure dynamically creates PROBE_DATA_!!SEQ!! as an external table.
This external table stores the complete probe data and maps all the fields existing in
the probe file.

There is a merge statement that dynamically either inserts or updates the existing
probe record in w_eha_probe table. While updating a record, it updates all the
columns including the row_wid with a new row_wid for a particular probe name.

Old records can be referenced using the Flashback Data Archive (FDA) approach,
which is used for securely tracking the contextual history of all data. FDA makes it
possible to automatically and transparently track all changes to tables in the database
and easily query data in those tables as of any point in time or over any interval within
the specified retention period, with minimal performance impact.

To load gene expression result files for a particular older reference version, run the
result loader BEFORE re-running the probe loader, updating the probes in the table to
a new reference version. Then load the next set of gene expression result files pointing
to the new version. The gene expression records will lose their probe reference keys as
probe row_wids are updated.

The .bat file requires an Oracle Wallet to be set up before it can run successfully.

Data File W_EHA_PROBE table

PROBESET W_EHA_PROBE.PROBE_NAME

ACC W_EHA_PROBE.ACCESSION

DESCP W_EHA_PROBE.PROBE_DESC

GENEID W_EHA_PROBE.PRIMARY_
HUGO_NAME

Probe Loader

Loaders for Reference Data 3-23

For Shell scripts, if an Oracle Wallet is set up, the shell script uses those credentials to
run the Sqlplus. If an Oracle Wallet is not set up, the script prompts for a password
and connects to Sqlplus.

3.6.3 Command-Line Argument List

Name
probe_loader.sh - load records

Synopsis
probe_loader.sh -help

probe_loader.sh <...options>

Description
Validates input options and calls the loader script probe_script.sql#probe_loader.load_
probe

Options
(*) required

-db_wallet* <VARCHAR2> (required, unless the -db_conn/-db_user combination is
used to log into the database)

Oracle wallet name, see Section 2.2, "Setting Up an Oracle Wallet"

-db_conn* <VARCHAR2> (required if -db_wallet is not provided)

Oracle connection string, that is,

 "(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=127.0.0.1)(PORT=1521))(CONNECT_
DATA=(SID=XE)))"

-db_user* <VARCHAR2> (required if -db_conn is provided)

ODB user name for the Database connection.

-check_version <NUMBER>

Run check version (1=yes|0=no) [default: 0]

-check_version_non_i <NUMBER>

Run check version in non-interactive mode (1=yes|0=no) [default: 1]

-log_level <VARCHAR2>

Set log level TRACE, DEBUG, INFO, WARNING, ERROR [default: INFO]

-print_summary <NUMBER>

Print summary (1=yes|0=no) [default: 0]

-data_file* <VARCHAR2>

Data file name - Oracle external table LOCATION

-data_directory* <VARCHAR2>

Oracle directory object - Oracle external table DIRECTORY, see Section 2.1, "Setting Up
a Directory Object"

-species_name* <VARCHAR2>

ADF Data Loader

3-24 Oracle Health Sciences Omics Data Bank Programmer’s Guide

Species name defined in W_EHA_SPECIES that is, For humans "Homo sapiens"

-dna_version_label* <VARCHAR2>

"DNA" reference version label defined in W_EHA_VERSION.VERSION_LABEL

-probe_version_label* <VARCHAR2>

"PROBE" reference version label defined in W_EHA_VERSION.VERSION_LABEL

-read_size <NUMBER>

Read size in bytes - Oracle external table READSIZE

Examples
UNIX

$ sh probe_loader.sh -db_wallet odb_user -data_file "dummy_probeset_
annotation_summary.txt" -data_directory "ODB_LOAD" -species_name "Homo
sapiens" -dna_version_label "GRCh37.p8" -probe_version_label "PROBE_VER_1"
-read_size ""

Windows

C:\> probe_loader.bat -db_wallet odb_user -data_file "dummy_probeset_
annotation_summary.txt" -data_directory "ODB_LOAD" -species_name "Homo
sapiens" -dna_version_label "GRCh37.p8" -probe_version_label "PROBE_VER_1"
-read_size ""

3.7 ADF Data Loader

3.7.1 Description and Files to Load
An Array Description Format (ADF) file, or an array design file, is a microarray
platform-specific, tab-delimited file that describes the design of an array. For a
particular array platform, this file lists out the features (spots) found on an array, along
with its location and associated annotation information including the Reporters (oligo
probes) found at that feature and the Composite Elements (genomic features such as
genes) represented by it.

The ADF Data Loader loads the ADF file for AgilentG402A_07_1 (Agilent 244K
Custom Gene Expression G4502A-07-1) platform, which contains annotation data for
all Gene Composite elements found in AgilentG402A_07 Level-3 data files present in
TCGA and are loaded using the Dual Channel Loader into ODB.

TCGA provides all available ADF files on its Platform Design page:
https://tcga-data.nci.nih.gov/tcga/tcgaPlatformDesign.jsp

The TCGA ADF file for AgilentG4502A_07_1 can be retrieved from the following link:
http://tcga-data.nci.nih.gov/docs/integration/adfs/tcga/AgilentG4502A_07_
01.tcga.adf.zip.

3.7.2 Running the Loader
The execution call of the stored procedure odb_result_util.process_adf() is designed in
the script file load_adf.sql. This stored procedure accepts FILE NAME, ORACLE
DIRECTYORY OBJECT, SPECIES, USER LABEL, Reference Version, File Flag,
Preprocess directory, Preprocess File, Data File Path, DBFS Store, Alternate file location
(ftp location or http location), Read Size as input parameters.

http://tcga-data.nci.nih.gov/docs/integration/adfs/tcga/AgilentG4502A_07_01.tcga.adf.zip
http://tcga-data.nci.nih.gov/docs/integration/adfs/tcga/AgilentG4502A_07_01.tcga.adf.zip
https://tcga-data.nci.nih.gov/tcga/tcgaPlatformDesign.jsp

ADF Data Loader

Loaders for Reference Data 3-25

It creates an external table dynamically and uploads data from the source file into it.
External tables let Oracle query data that is stored outside the database in flat files. The
ORACLE_LOADER driver accesses data stored in any format that can be loaded by
the SQL*Loader. No DML can be performed on external tables but they can be used for
query, join, and sort operations.

The stored procedure dynamically creates ADF_DATA_!!SEQ!! as an external table.
This external table stores the complete result data. This table maps all the fields
existing in the result file.

The procedure first loads a row into the w_eha_adf table. A simple merge command is
written to lookup against user label, file WID, version WID, etl proc WID and
enterprise WID dataset. All the values are passed as input parameters. If the dataset
matches any of the w_eha_adf records, then the loader updates all the columns (except
w_update_dt) of w_eha_adf table for corresponding user_label of the table.

The three multi-table insert statements executed dynamically insert records into the
w_eha_adf_composite table, the w_eha_adf_reporter, and the w_eha_adf_reporter_
coord tables.

The deleted records can be referenced using the Flashback Data Archive (FDA)
approach, which is used for securely tracking the contextual history of all data. FDA
makes it possible to automatically and transparently track all of the changes to the
tables in the database, and to easily query data in those tables as of any point in time
or over any interval within the specified retention period, with minimal performance
impact

3.7.3 Command-Line Argument List

Name
ADF_loader.sh - load records

Synopsis
ADF_loader.sh -help

ADF_loader.sh <...options>

Description
Validates input options and calls the loader script load_adf.sql, which calls odb_ref_
adf_util.process_adf

Options
(*) required

-db_wallet* <VARCHAR2> (required, unless the -db_conn/-db_user combination is
used to log into the database)

Oracle wallet name, see Section 2.2, "Setting Up an Oracle Wallet"

-db_conn* <VARCHAR2> (required if -db_wallet is not provided)

Oracle connection string, that is,

Note: The batch file requires an Oracle Wallet to be set up to run
correctly. The shell script can be run with or without an Oracle Wallet.

ADF Data Loader

3-26 Oracle Health Sciences Omics Data Bank Programmer’s Guide

 "(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=127.0.0.1)(PORT=1521))(CONNECT_
DATA=(SID=XE)))"

-db_user* <VARCHAR2> (required if -db_conn is provided)

ODB username for the database connection.

-check_version <NUMBER>

Run check version (1=yes|0=no) [default: 0]

-check_version_non_i <NUMBER>

Run check version in non-interactive mode (1=yes|0=no) [default: 1]

-log_level <VARCHAR2>

Set log level TRACE, DEBUG, INFO, WARNING, ERROR [default: INFO]

-print_summary <NUMBER>

Print summary (1=yes|0=no) [default: 0]

-data_file* <VARCHAR2>

Data file name - Oracle external table LOCATION

-data_directory* <VARCHAR2>

Oracle directory object - Oracle external table DIRECTORY, see Section 2.1, "Setting Up
a Directory Object"

-species_name* <VARCHAR2>

Species name defined in W_EHA_SPECIES that is, For humans "Homo sapiens"

-user_label* <VARCHAR2>

User label used to identify a composite record's source ADF dataset that is,
AgilentG4502A_07_1

-reference_version <VARCHAR2>

"DNA" reference version label defined in W_EHA_VERSION.VERSION_LABEL

-file_flg* <CHAR>

File flag (E=external|S=copy to secure data file directory) [default: E]

-preprocess_dir <VARCHAR2>

Preprocess directory - Oracle external table PREPROCESSOR

-preprocess_file <VARCHAR2>

Preprocess file - Oracle external table PREPROCESSOR

-data_file_path <VARCHAR2> (required, if -file_flg is "S")

File system path to secure data file directory

-dbfs_store <VARCHAR2> (required, if -file_flg is "S")

Database file system store

-alt_file_loc <VARCHAR2>

Alternate file location link that is, ftp:location, http:location

-read_size <NUMBER>

Read size in bytes - Oracle external table READSIZE

HGMD (BioBase) Loader

Loaders for Reference Data 3-27

-data_file_dir <VARCHAR2>

File system path to Oracle directory object

Examples
UNIX

$ sh ADF_loader.sh -db_wallet odb_user -data_file "adf_summary.adf" -data_
directory "ODB_LOAD" -species_name "Homo sapiens" -user_label
"AgilentG4502A_07_01" -reference_version "GRCh37.p8" -file_flg "E"
-preprocess_dir "" -preprocess_file "" -data_file_path "" -dbfs_store ""
-alt_file_loc "" -read_size ""

Windows

C:\> ADF_loader.bat -db_wallet odb_user -data_file "adf_summary.adf"
-data_directory "ODB_LOAD" -species_name "Homo sapiens" -user_label
"AgilentG4502A_07_01" -reference_version "GRCh37.p8" -file_flg "E"
-preprocess_dir "" -preprocess_file "" -data_file_path "" -dbfs_store ""
-alt_file_loc "" -read_size ""

3.8 HGMD (BioBase) Loader

3.8.1 Description and Files to Load
The HGMD loader is used to load mutations and associated disease, drug and other
annotations from GFF formatted source files that can be obtained from BioBase
Biological Databases as a part of the Genome Trax™ data set. Files can be loaded from
the BioBase site at the following location:

https://portal.biobase-international.com/download/genometrax/

A valid Genome Trax license is required for the download. Download only the gff
archive for the desired reference genome assembly. The loader currently loads 3 data
source file types:

■ hgmd_hg*.gff

■ hgmd_disease_hg*.gff

■ drug_hg*.gff

The BioBase release version of these data sets is not available in data files and has to be
provided as a command-line argument (see -hgmd_version_label below). Currently
the HGMD datasets are built against Human Genome 18 (HG18) and Human Genome
19 (HG19) in UCSC notation (or Build 36 and Build 37 in NCBI notation).

You can load both HG18 and HG19 curated data, but they have to be linked to the
correct reference genome versions that exist in ODB. Loading a new HGMD release
version will overwrite all the linkage data previously loaded for the same reference
genome version. The overwritten records can be referenced using the Flashback Data
Archive (FDA) approach.

Note: BioBase provides scheduled updates as a full set of curated
data assembled against two most recent reference genome builds.

HGMD (BioBase) Loader

3-28 Oracle Health Sciences Omics Data Bank Programmer’s Guide

The file processing starts with the hgmd_hg*.gff file representing the inherited
mutations track. All variants listed in the source file are identified and the novel ones
are added to the W_EHA_VARIANT table. A reference to the HGMD accession for all
variants from the source file is inserted into the W_EHA_VARIANT_XREF table. New
disease names are added to the W_EHA_DISEASE table. Finally, all curated
associations are loaded into W_EHA_DISEASE_G_VARIANT table and literature links
are added to the W_EHA_DISEASE_G_VAR_XREF table.

The second source file hgmd_disease_hg*.gff that represents gene or disease linkage is
loaded into w_eha_disease_gene and w_eha_disease_gene_xref tables. The latter table
stores literature links.

Lastly, the drug_hg*.gff file is processed to populate W_EHA_DRUG, W_EHA_DRUG
_XREF, W_EHA_DRUG_TARGET and W_EHA_DRUG_TARGET_XREF tables. The
first two tables store drug records and drug references respectively. Currently drugs
are referenced by the DruBank IDs (http://www.drugbank.ca/). Two other tables store
gene or drug linkage and references to supporting research findings.

3.8.2 Running the Loader
The loader is implemented as a PL/SQL stored procedure that can be invoked from a
provided shell or batch file. The procedure accepts an Oracle Directory Object, file
suffix, species name, reference genome version, BioBase release version and read size
as input parameters.

The file suffix—the hg* portion of the input file name—reflects the version of the
reference genome assembly (HG18 or HG19) that is used to prepare the source
reference files. The loader parameter called reference genome version specifies which
reference genome release loaded into ODB schema should be used to link HGMD
annotations. Therefore the file suffix and the target reference genome version should
be within the same major release.

For example, HG19 files can be linked with GRCH37.P8 or GRCH37.P9 reference
genome but not Build 36.

The loader does not require specific filenames to process. Given the file suffix, it loads
all currently supported files.

3.8.3 Command-Line Argument List

Name
HGMD_loader.sh - load records

Synopsis
HGMD_loader.sh -help

HGMD_loader.sh <...options>

Description
Validates input options and calls the loader script load_hgmd.sql#odb_ref_hgmd_
util.process_hgmd

Note: The batch file requires an Oracle Wallet to be set up to run
correctly. The shell script can be run with or without an Oracle Wallet.

http://www.drugbank.ca/

HGMD (BioBase) Loader

Loaders for Reference Data 3-29

Options
(*) required

-db_wallet* <VARCHAR2>

Oracle wallet name, see Section 2.2, "Setting Up an Oracle Wallet"

-db_conn* <VARCHAR2> (required if -db_wallet is not provided)

Oracle connection string that is,

"(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=127.0.0.1)(PORT=1521))(CONNECT_
DATA=(SID=XE)))"

-db_user* <VARCHAR2> (required if -db_conn is provided)

ODB user name for the Database connection.

-check_version <NUMBER>

Run check version (1=yes|0=no) [default: 0]

-check_version_non_i <NUMBER>

Run check version in non-interactive mode (1=yes|0=no) [default: 1]

-log_level <VARCHAR2>

Set log level TRACE, DEBUG, INFO, WARNING, ERROR [default: INFO]

-print_summary <NUMBER>

Print summary (1=yes|0=no) [default: 0]

-data_directory* <VARCHAR2>

Data file suffix name - Oracle external table LOCATION

-data_file_suffix* <VARCHAR2>

Oracle directory object - Oracle external table DIRECTORY, see Section 2.1, "Setting Up
a Directory Object"

-species_name* <VARCHAR2>

Species name defined in W_EHA_SPECIES that is, For humans "Homo sapiens"

-dna_version_label* <VARCHAR2>

"DNA" reference version label defined in W_EHA_VERSION.VERSION_LABEL

-hgmd_version_label* <VARCHAR2>

"HGMD" reference version label defined in W_EHA_VERSION.VERSION_LABEL

-read_size <NUMBER>

Read size in bytes - Oracle external table READSIZE

Examples
UNIX

$ sh HGMD_loader.sh -db_wallet odb_user -data_file_suffix "hg19_12" -data_
directory "ODB_LOAD" -species_name "Homo sapiens" -dna_version_label
"GRCh37.p8" -hgmd_version_label "2012.4" -read_size ""

Windows

COSMIC Loader

3-30 Oracle Health Sciences Omics Data Bank Programmer’s Guide

C:\> HGMD_loader.bat -db_wallet odb_user -data_file_suffix "hg19_12"
-data_directory "ODB_LOAD" -species_name "Homo sapiens" -dna_version_label
"GRCh37.p8" -hgmd_version_label "2012.4" -read_size ""

3.9 COSMIC Loader

3.9.1 Description and Files to Load
The COSMIC loader is used to load information on cancer causing somatic mutations
such as sample data, histology, anatomical site observed, the genomic location and the
publication IDs from where the data is curated. The dataset is available at the
following official Sanger website:

 http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/.

Cosmic has changed its license model and the versions after v71 are not free to
download. Oracle supports loading COSMIC data for v71 versions or before.

For details on downloading the COSMIC dataset, visit the following location

http://cancer.sanger.ac.uk/cosmic/download

The loader takes 4 files of two types as input, that must be retrieved from the Sanger's
ftp file download repository from separate file paths.

■ Two coding and non-coding annotation data files with the following file name
patterns:

– CosmicCompleteExport_vxx_xxxxxx.tsv.gz: contains annotations on somatic
variants the affect coding regions of the genome.

– CosmicNCV_vxx_xxxxxx.csv.gz: contains available annotations on variants
found in non-coding regions of the genome.

■ Two VCF format variant genomic feature files with the following file name
patterns:

– CosmicCodingMuts_vxx_xxxxxx_noLimit.vcf.gz: contains genomic feature
information for coding variants.

– CosmicNonCodingVariants_vxx_xxxxxx_noLimit.vcf.gz: contains genomic
feature information for non coding variants.

You must decompress all files before running the loader.

3.9.2 Running the Loader
The loader is implemented as a PL/SQL stored procedure that could be invoked from
a provided shell or batch file. The procedure accepts all four of the input file Oracle
Directory Object, species name, reference genome version, COSMIC release version
and read size as input parameters.

The VCF files from COSMIC that map Mutation identifiers with the genomic position
or sequence variation list the reference genome version in the header portion. For
example, ##reference=GRCh37.

When you load VCF files from COSMIC—(the COSMIC loader invokes the VCF
loader but you must provide a reference genome version). You can link them to any
reference genome patch for this reference genome version.

http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/

COSMIC Loader

Loaders for Reference Data 3-31

All Comic versions should be linked to GRCH37 based DNA versions such as
GRCH37.P8 or GRCH37.P7. If your analysis involves both p8 and p7, run the loader
twice and link the same files to both patches.

The cosmic loader first calls process_gvcf to process and load reference variants found
in the 2 vcf format files into the variant tables. Thus, any new variants are added to
ODB. After the variant load, the data files are processed by the loader procedure
which loads sample, histology, anatomical site to ODB and bridges the data to variant
and gene information.

3.9.3 Command-Line Argument List

Name
COSMIC_loader.sh - load records from COSMIC files

Synopsis
COSMIC_loader.sh -help

COSMIC_loader.sh <...options>

Description
Validates input options and calls the loader script load_cosmic.sql#odb_ref_cosmic_
util.process_cosmic

Options
(*) required

-db_wallet* <VARCHAR2>

Oracle wallet name, see Section 2.2, "Setting Up an Oracle Wallet"

-db_conn* <VARCHAR2> (required if -db_wallet is not provided)

Oracle connection string that is,

"(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=127.0.0.1)(PORT=1521))(CONNECT_
DATA=(SID=XE)))"

-db_user* <VARCHAR2> (required if -db_conn is provided)

ODB user name for the Database connection.

-check_version <NUMBER>

Run check version (1=yes|0=no) [default: 0]

-check_version_non_i <NUMBER>

Run check version in non-interactive mode (1=yes|0=no) [default: 1]

-log_level <VARCHAR2>

Set log level TRACE, DEBUG, INFO, WARNING, ERROR [default: INFO]

-print_summary <NUMBER>

Print summary (1=yes|0=no) [default: 0]

Note: The batch file requires an Oracle Wallet to be set up to run
correctly. The shell script can be run with or without an Oracle Wallet.

Variant Effect Job

3-32 Oracle Health Sciences Omics Data Bank Programmer’s Guide

-data_directory* <VARCHAR2>

Data file suffix name - Oracle external table LOCATION

-data_file_coding* <VARCHAR2>

Coding Mutations Data file name - Oracle external table LOCATION

-data_file_noncoding* <VARCHAR2>

Non Coding Mutations Data file name - Oracle external table LOCATION

-vcf_file_coding* <VARCHAR2>

Coding region Varaint's VCF file name - Oracle external table LOCATION

-vcf_file_noncoding* <VARCHAR2>

Non Coding region Variant's VCF file name - Oracle external table LOCATION

-species_name* <VARCHAR2>

Species name defined in W_EHA_SPECIES that is, for humans "Homo sapiens"

-dna_version_label* <VARCHAR2>

"DNA" reference version label defined in W_EHA_VERSION.VERSION_LABEL

-cosmic_version_label* <VARCHAR2>

"COSMIC" reference version label defined in W_EHA_VERSION.VERSION_LABEL

-read_size <NUMBER>

Read size in bytes - Oracle external table READSIZE

Examples
UNIX

sh COSMIC_loader.sh -db_wallet slc04lx3 -data_file_coding "CosmicCompleteExport_
v67_241013.tsv" -data_file_noncoding "CosmicNCV_v67_241013.tsv" -vcf_file_coding
"CosmicCodingMuts_v67_20131024.vcf" -vcf_file_noncoding "CosmicNonCodingVariants_
v67_20131024.vcf" -data_directory "ODB_LOAD" -species_name "Homo sapiens" -dna_
version_label "GRCH37.P8" -cosmic_version_label "COSMIC.V67"

Windows

C:\> COSMIC_loader.bat -db_wallet slc04lx3 -data_file_coding
"CosmicCompleteExport_v67_241013.tsv" -data_file_noncoding "CosmicNCV_v67_
241013.tsv" -vcf_file_coding "CosmicCodingMuts_v67_20131024.vcf" -vcf_file_
noncoding "CosmicNonCodingVariants_v67_20131024.vcf" -data_directory "ODB_LOAD"
-species_name "Homo sapiens" -dna_version_label "GRCH37.P8" -cosmic_version_label
"COSMIC.V67"

3.10 Variant Effect Job
The variant effect job is responsible for loading the impact of the presence of a
genomic variant on any feature transcript it falls on or is close to. The variant effect
links a variant to a gene transcript component, such as a coding exon segment, the
protein coded and the genomic source sequence and then calculates the following:

■ NET EFFECT caused by the presence of the mutation on the target transcript.

■ The gene level GENE EFFECT on the base nucleotides.

■ The CODING Region EFFECT, which stores the specific region and the nucleotide
change occurrence, as calculated from the start site of the transcript.

Typical Errors Associated with Reference Loaders

Loaders for Reference Data 3-33

■ PROTEIN_EFFECT that notes the location on and change to the Amino Acid
translation sequence of the coding transcript.

By default, the variant effect job is disabled, and when enabled, is set to run once every
24 hours by the DBMS Scheduler. When the job completes a run, the procedure called
by the job, odb_var_effect_util.process_var_effect, will load impact data for any new
variants added to W_EHA_VARIANT.

The procedure can also be run once and immediately, by adding a new job to the
scheduler without a time specification.

Execute the following command creates a single run job:

BEGIN
 -- Job defined entirely by the CREATE JOB procedure.
 DBMS_SCHEDULER.create_job (
 job_name => 'VARIANT_EFFECT_JOB3',
 job_type => 'PLSQL_BLOCK',
 job_action => 'BEGIN odb_var_effect_util.process_var_effect; END;',
 enabled => true,
 comments => 'Test Job.');
END;
/

3.11 Typical Errors Associated with Reference Loaders

3.11.1 Loader Runtime Error: ORA-01460 Unimplemented or Unreasonable Conversion
Requested

Errors have been observed while running various ODB loaders. The loader run aborts
prematurely with the following error message: ORA-01460 unimplemented or
unreasonable conversion requested.

Oracle recommends applying an RDBMS patch to the TRC database that fixes this bug.
See Oracle Support Bug 13099577 (ORA-1460 WHEN PARALLEL QUERY SERVERS
ARE USED) available here
https://mosemp.us.oracle.com/epmos/faces/BugDisplay?id=13099577 for details.

https://mosemp.us.oracle.com/epmos/faces/BugDisplay?id=13099577

Typical Errors Associated with Reference Loaders

3-34 Oracle Health Sciences Omics Data Bank Programmer’s Guide

4

Loaders for Result Data 4-1

4Loaders for Result Data

This chapter includes the following topics:

■ Prerequisites on page 4-4

■ Overview of Result Loaders on page 4-1

■ Version Information Utility on page 4-5

■ VCF Sequence Data Loader on page 4-13

■ MAF Sequence Data Loader on page 4-27

■ RNA-Seq Loader on page 4-32

■ File Specimen Loader and File Lineage Linker on page 4-37

■ Copy Number Variation Loader on page 4-41

■ Single Channel Gene Expression Loader on page 4-45

■ Dual Channel Loader on page 4-49

■ Quality Control Metadata Loader on page 4-52

■ Typical Errors Associated with Result Loaders on page 4-57

■ Collecting Oracle Optimizer Statistics on page 4-61

4.1 Prerequisites
Before using the result loaders, ensure that at least one version of reference Ensembl
files has been loaded using the Java loader.

Also, ensure that Oracle optimizer statistics were gathered after the reference data was
loaded.

After the reference is loaded, perform the following steps to initialize your database:

1. Create a record in the W_EHA_RSLT_STUDY table. There is a sequence (W_EHA_
RSLT_STUDY_S) associated with this table that lets you create as many study
records as required. The result data can be partitioned by study or by gene,
depending on how the ODB schema was created. Add the required number of
studies to this table. The result loaders use the value for RESULT_STUDY_NAME
to look up the corresponding study primary key.

Note: The reference loaded has to match the reference used for
alignment of result files.

Prerequisites

4-2 Oracle Health Sciences Omics Data Bank Programmer’s Guide

2. Verify that the W_EHA_DATASOURCE record, which identifies the CDM schema
to validate specimen numbers, is correct. Each result record that is to be loaded
must reference a specimen that exists in the CDM schema. Patient related
specimens should be in the W_EHA_SPECIMEN_PATIENT_H bridge table and
subject related ones in the W_EHA_SPECIMEN_SUBJECT_H table. These CDM
schema bridge tables have a SPECIMEN_VENDOR_NUMBER field to be used for
vendor specific information and a SPECIMEN_NUMBER field to a universal
specimen identifier. The W_EHA_DATASOURCE table has a DB_LINK_NAME
field that ensures that a database link can be used if the CDM schema is in another
instance. The table stores the CDM-lookup procedure function call in the field
VALIDATION_PROC. Four seed data entries are provided in this table, each with
the following DATASOURCE_CD that the result loaders can choose from as an
input parameter:

■ ’CDM’: which is the default datasource with the VALIDATION_PROC value
as 'ODB_UTIL.VALIDATE_CDM_PATIENT_SPEC', that does a patient specific
CDM specimen look up.

■ ’CDM_PATIENT’: has the VALIDATION_PROC value as 'ODB_
UTIL.VALIDATE_CDM_PATIENT_SPEC', that does a patient specific CDM
specimen look up.

■ ’CDM_SUBJECT’: has the VALIDATION_PROC value as 'ODB_
UTIL.VALIDATE_CDM_SUBJECT_SPEC', that does a subject specific CDM
specimen look up.

■ ’CDM_BOTH’: has the VALIDATION_PROC value as 'ODB_
UTIL.VALIDATE_CDM_BOTH_SPEC', that internally calls both ODB_
UTIL.VALIDATE_CDM_PATIENT_SPEC and ODB_UTIL.VALIDATE_CDM_
SUBJECT_SPEC functions, to lookup and link to both subject and patient
specimens.

3. Ensure that the ODB schema has SELECT privileges on the W_EHA_SPECIMEN_
PATIENT_H_V and W_EHA_SPECIMEN_SUBJECT_H_V views in the CDM
schema.

4. All the specimens required for the example files should be added into the W_
EHA_SPECIMEN_PATIENT_H table for patient related specimens and in W_
EHA_SPECIMEN_SUBJECT_H for subject related specimens in the CDM schema.

To install the loaders, copy the Result_Loader folder into a directory. Run a loader
from the directory it is installed in (on Linux this requires an execute permission for all
SH scripts, which should be granted after the files are copied (for example, using the
Linux chmod command).

4.1.1 Setting Default Cache Sizes for Result Loading
Each of the result tables have a corresponding sequence, named similar to the table
with a suffix _S. Each of these result table sequences has a default cache size that
reflects an average number of records that might be inserted for any load of result files.

Most of the sequences have a default cache size of 6000, whereas all of the sequencing
related result table sequences have a cache size of 15000. There may be a need to load
much larger files (that is, TCGA VCF data can have 4.5 million rows). For larger files,
Oracle recommends that a DBA adjusts all the corresponding sequence cache sizes to
at least 100,000 or larger.

Lower sequence cache sizes can result in delays for each parallel process trying to get
the next cache of sequences. The actual decision to increase sequence cache size should
be based on the number of rows estimated to be inserted during any load.

Prerequisites

Loaders for Result Data 4-3

An example of the SQL to alter a sequence is:

alter sequence w_eha_rslt_gene_exp_s cache 100000;

The current list of sequences used by relevant result loaders are as follows:

1. CGI loader

■ ODB_RSLT_CGI_UTIL (default cache 15000)

– W_EHA_RSLT_SEQUENCING1_S

– W_EHA_RSLT_NOCALL1_S

– W_EHA_RSLT_NON_VARIANT_S

2. VCF loader

■ ODB_RSLT_GVCF_UTIL (default cache 15000)

– W_EHA_RSLT_CONFLICT_S

– W_EHA_RSLT_NOCALL1_S

– W_EHA_RSLT_NON_VARIANT_S

– W_EHA_RSLT_NOCALL1_S

– W_EHA_RSLT_SEQUENCING1_S

– W_EHA_RSLT_STRUCT_VAR_S

– W_EHA_RSLT_SV_BREAKEND_S

3. MAF Loader

■ ODB_RSLT_MAF_UTIL (default cache 15000)

– W_EHA_RSLT_SEQUENCING1_S

4. RNA-seq loader

■ ODB_RSLT_RNA_SEQ_UTIL (default cache 6000)

– W_EHA_RSLT_RNA_SEQ_S

5. CNV loader

■ ODB_RSLT_CNV_UTIL (default cache 6000)

– W_EHA_RSLT_COPY_NBR_VAR_S

6. Single channel loader

■ ODB_RSLT_SINGLE_CHANNEL_UTIL (default cache 6000)

– W_EHA_RSLT_GENE_EXP_S

7. Dual channel loader

■ ODB_RSLT_DUAL_CHANNEL_UTIL (default cache 6000)

– W_EHA_RSLT_2CHANNEL_GXP_S

8. QC metadata loader

■ ODB_RSLT_METADATA_UTIL (default cache 6000)

– W_EHA_RSLT_SPEC_QLFR_S

Overview of Result Loaders

4-4 Oracle Health Sciences Omics Data Bank Programmer’s Guide

4.2 Overview of Result Loaders
Following are the result loaders provided, one for each file type:

■ Gene Expression - Single channel

■ Gene Expression - Dual channel

■ Copy Number Variation - SEG format

■ MAF - MAF format

■ VCF - VCF and gVCF formats

■ CGI - CGI MasterVar format

■ RNA-seq - TCGA RNA-seq exon files

Additionally, there are:

■ Probe loader - a prerequisite to load probes before single channel gene expression
loader runs.

■ ADF loader - a prerequisite to load gene composite and reporter annotation before
dual channel gene expression loader runs.

■ QC metadata - loads Quality Control metadata files for specimens in ODB.

■ File Specimen Loader - links specimen in ODB to files, including existing input
files, derived files or any other file related to result data. Also, enables loading file
details into ODB if they are not already present.

■ File Lineage Linker- Lets the user link any 2 files in ODB to each other, thus
enabling building a file lineage between source files and their derivatives.

All loaders can be run using .bat files in Windows or shell scripts in Linux.

The .bat files to be run in Windows are as follows:

■ single_channel_gene_expr_loader.bat

■ dual_channel_gene_expr_loader.bat

■ MAF_loader.bat

■ VCF_loader.bat

■ CGI_masterVar_loader.bat

■ CNV_loader.bat

■ TCGA_RNA_SEQ_loader.bat

■ METADATA_loader.bat

■ File_specimen_linker.bat

■ File_lineage_linker.bat

Note: An Oracle Wallet must be set up before the batch files can be
run successfully.

If an Oracle Wallet is set up, a shell script can use the wallet
credentials to run Sqlplus.

If Oracle Wallet is not set up, the shell script prompts for a password
and connects to Sqlplus.

Version Information Utility

Loaders for Result Data 4-5

The shell scripts to be run in Linux are as follows:

■ single_channel_gene_expr_loader.sh

■ dual_channel_gene_expr_loader.sh

■ MAF_loader.sh

■ VCF_loader.sh

■ CGI_masterVar_loader.sh

■ TCGA_RNA_SEQ_loader.sh

■ CNV_loader.sh

■ METADATA_loader.sh

■ File_specimen_linker.sh

■ File_lineage_linker.sh

4.3 Version Information Utility
The version information utility checks for all available versions in the database
instance for any of version types allowed in W_EHA_VERSION table. It is a command
line API which:

■ lists specific versions loaded for a single version type when a version type is
specified through -list_ver, OR

■ lists all versions present, grouped by version type, when version type is not
specified.

4.3.1 Functional Description
The version info utility is a standalone script version_info.sh (version_info.bat for
Windows) with an optional named argument '-list_ver', to which a reference version
type argument is passed. The loader calls the odb_reference_util.list_version_info
function, accepting the version type argument as a parameter. The function queries W_
EHA_VERSION table for the VERSION_LABEL values where column VERSION_
TYPE is the value of input parameter accepted by the function. These version labels
are listed to the user on the command line. As mentioned in the previous section, if the
user does not pass the parameter, the function displays the list of all versions for each
version type.

4.3.2 Running the Version Check Utility

Name
version_info.sh - Lists Version Labels

Synopsis
version_info.sh -help

version_info.sh <...options>

Description
Validates input options and calls the loader script list_version.sql# odb_reference_
util.list_version_info

CGI masterVar Data Loader

4-6 Oracle Health Sciences Omics Data Bank Programmer’s Guide

Options
(*) required

-db_wallet* <VARCHAR2>

Oracle wallet name, see Section 2.2, "Setting Up an Oracle Wallet"

-db_conn* <VARCHAR2> (required if -db_wallet is not provided)

Oracle connection string that is,

 "(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=127.0.0.1)(PORT=1521))(CONNECT_
DATA=(SID=XE)))"

-db_user* <VARCHAR2> (required if -db_conn is provided)

ODB user name for the Database connection.

-list_ver <VARCHAR2>

A Reference Version type allowed for W_EHA_VERSION.VERSION_TYPE column.
Known Version types are:
'DNA','PROTEIN','HUGO','PATHWAY','SIFT','POLYPHEN','PROBE', 'GENETIC_
CODE', 'COSMIC', and 'BIOBASE'

4.4 CGI masterVar Data Loader
The CGI masterVar file is an integrated report of variant calls and annotations with
each file representing variants per sample. The current CGI masterVar loader supports
4 versions of CGI Format which includes 2.0, 2.2, 2.4 and 2.5.

Since there is a large difference of number of columns between the CGI format
versions, the loader is built to handle this change and load the data accordingly.

The CGI 2.0 file format is described here:

ftp://ftp2.completegenomics.com/

Each section in a CGI file is self-contained and separate. The following three types of
sections are present:

■ Comment lines - beginning with #

■ Header - beginning with >

■ Actual result data with information about the Zygocity, Variant Type, Reference,
Alleles, Scores and Count

The main challenge while loading a CGI file is to parse the #SAMPLE information
from the comments section and then map it with the rest of the data. This sample
information is important to retrieve the Specimen_Id from the data source mentioned
while executing the batch file. The loader also parses the #FORMAT information,
which contains the CGI format version details, and maps it to CGI file type in W_
EHA_FILE_TYPE table.

4.4.1 Functional Description of CGI Loader
The CGI loader currently loads variant records as well as the wild type (WT)
information. For example,

■ If one of the alleles is WT while the other is variant, then the loader only records
the variant allele.

ftp://ftp2.completegenomics.com/

CGI masterVar Data Loader

Loaders for Result Data 4-7

■ If both the alleles are WT then the loader creates a single record in W_EHA_RSLT_
NON_VARIANT table.

■ If both alleles are variants and homozygous, then it stores only one record. In such
cases it stores the least score value in SCORE_VAF and SCORE_EAF columns.

■ If both alleles are variant and heterozygous, then it stores data as two separate
records.

■ If a record is nocall and both alleles have the same value then a single record is
created in W_EHA_RSLT_NOCALL table.

■ If a record has one allele as variant and another as a nocall, then the loader report
creates one record in variant and one record in nocall table.

■ A haploid record contains only one allele information and if it is a variant then it is
reported as a variant record.

■ If a haploid record is wildtype, then it is reported in W_EHA_RSLT_NON_
VARIANT table.

The loader takes the chromosome and position details of a record from CGI masterVar
file and checks if the corresponding region exists in W_EHA_DNA_SOURCE table. If
it is present, the loader maps this record of W_EHA_DNA_SOURCE table as W_EHA_
VARIANT.SOURCE_WID. If the region does not exist, the loader ignores that record
and logs information in the W_EHA_RSLT_LOG table indicating that some records
were not loaded. The loader does not validate for invalid chromosome number or
positions details. If it encounters such invalid data, the loader ignores that record and
does not log it to W_EHA_RSLT_ERR_LOG table.

The loader does not validate the accuracy of the reference nucleotides in the database.
It assumes that the same version of reference mapped CGI masterVar data is loaded in
to ODB. Ensure that the reference version matches the results file being loaded and the
reference data available in the ODB.

4.4.2 Files to Load
The execution call of the stored procedure odb_result_util.process_cgi() is designed in
the script file load_cgi.sql. This stored procedure accepts FILE NAME, ORACLE
DIRECTYORY OBJECT, SPECIES NAME, STUDY NAME, DATA SOURCE, and
SPECIMEN VENDOR as an input parameter.

4.4.3 Data Load
The loader creates 2 external tables. One table stores the metadata and the other stores
the actual result data.

The loader first creates an external table to store the metadata of the result file. This
metadata resides in the header part of the result file, which starts with ## string. This
external table then populates the W_EHA_RSLT_FILE_QLF table. The W_EHA_
RSLT_FILE_QLF table is simply a name value pair table.

Most of the file metadata is in XML format where an identifier or tag is followed by an
attribute value or XML definition. The metadata load will set the QUALIFIER_TAG to
the identifier before the = character (that is, FORMAT, INFO, FILTER) and everything
after the = is copied to the QUALIFIER_VALUE column of W_EHA_RSLT_FILE_QLF
table.

The SQL to create the data external table can exceed 32K, so a cursor is used to create
the external table. The constant string used is broken up into 5 separate strings. This

CGI masterVar Data Loader

4-8 Oracle Health Sciences Omics Data Bank Programmer’s Guide

allows for more than 32K statement to create the external table. The structure of the
external table depends on the version of file type.

The loader first processes the reference data. A select statement which inserts data
into W_EHA_VARIANT_STG, computes the overlap value comparing reference with
the allele sequence. Using this overlap value, the reference sequence and the allele
sequence is shortened and the start position and end position are incremented. Also,
this overlap value creates a replace tag with shortened reference and allele sequence.

After inserting the record into the W_EHA_VARIANT_STG table, a PROCESS_
VARIANT() procedure is called that populates the W_EHA_VARIANT table. This
procedure also populates the W_EHA_VARIANT_LINK_STG table if it exists, else it
creates and populates a new _link table. Another new feature is added to this
procedure to populate the new table W_EHA_VARIANT_GENE_MAP. This table
stores the link between variant and gene_wid. To populates this table, a select query
is written which maps the gene_wid of W_EHA_GENE_SEGMENT with variant
record using the BEGIN and END position of the result file data.

The loader then process to parse the first set of result data which does not use W_
EHA_ VARIANT foreign key. This includes W_EHA_RSLT_NOCALL, W_EHA_RSLT_
NON_ VARIANT tables.

The loader then process to parse to link all records to W_EHA_VARIANT table. This
includes W_EHA_RSLT_SEQUENCING.

Specimen identifiers are stored in the CGI data file header. There are several values
used to obtain the correct Primary Key value of the corresponding SPECIMEN record
which is external to the ODB schema. The SPECIMEN identifier is the first field used
to look up the external database. The loader will verify the tag #SAMPLE in the header
part of the result file. This is usually a barcode or some other natural key. This value is
not necessarily unique in the other database (especially coming from HDM) where
different vendors can have different barcode systems that may overlap. There is also a
specimen vendor number used to look up the correct SPECIMEN record. The last
value required is used to specify if multiple sources are used to provide SPECIMEN
records. Each result table stores a FK to the correct datasource for the SPECIMEN and
the Primary Key value for the SPECIMEN record. The loading code must use all three
fields to find the correct values for the result records.

The alleles identified as no-call create a W_EHA_RSLT_NOCALL record. All other
non-ref alleles create a W_EHA_RSLT_SEQUENCING. The query used to create
sequencing records maps with w_eha_variant_gene_map table to compute the gene_
wid for sequencing record against variant wid of both w_eha_rslt_sequencing and w_
eha_variant_gene_m ap table. All wildtype records with zygosity of hom or hap and
varitype of ref are loaded in the W_EHA_RSLT_NON_VARIANT table.

To compute the gene_wid for nocall and non-variant records, a temporary
intermediate table is created, which calculates the relative position of the records. This
table is then used to map against start and end position of w_eha_nocall or w_eha_
non_variant table for nocall and non-variant records.

Note:

■ The batch file requires Oracle Wallet to be set up to run correctly.

■ In Linux, you do not need to use Homo sapiens in "". This
requirement is only for Windows.

CGI masterVar Data Loader

Loaders for Result Data 4-9

Table 4–1 Mapping of CGI Result File

Column Name Table and Column Name in ODB Description

Chromosome W_EHA_RSLT_
NOCALL.CHROMOSOME_WID

W_EHA_RSLT_
SEQUENCING.CHROMOSOME_WID

W_EHA_VARIANT.CHROMOSOME

W_EHA_RSLT_NON_
VARIANT.CHROMOSOME_WID

For no-call results, this is stored directly in
the CHROMOSOME field. For non-reference
alleles, this field is used with the begin
position to find the correct DNA_SOURCE
record, a VARIANT record, or create a
VARIANT record.

Three values are needed to find existing
VARIANT records. The chromosome, the
begin position, and the replace tag which is
the notation combining reference and allele
sequences.

For NOVEL variants, a new record is created
in the W_EHA_VARIANT table with
chromosome value.

Begin W_EHA_RSLT_NOCALL.START_
POSITION

W_EHA_RSLT_
SEQUENCING.START_POSITION

W_EHA_VARIANT_STG.START_
POSITION

W_EHA_VARIANT.ABSOLUTE_
POSITION

W_EHA_RSLT_NON_
VARIANT.START_POSITION

The value of this field must add 1 since CGI
uses zero based offsets and all other
references use one based offsets. This field is
used as described above.

For no-call results, this is stored in the
START_POSITION field (after adding 1).

For NOVEL variants, begin is stored in the
ABSOLUTE_POSITION column in the W_
EHA_VARIANT table.

For W_EHA_VARIANT.START_POSITION,
Start_Position is relative to the value in the
W_EHA_DNA_SOURCE.START_POSITION
table using the begin value.

End W_EHA_RSLT_NOCALL.END_
POSITION

W_EHA_VARIANT_STG.END_
POSITION

W_EHA_RSLT_NON_VARIANT.
END_POSITION

This value is used for no-call results and
stored in the END_POSITION field. This
value calculates the relative end position
based on W_EHA_DNA_SOURCE.START_
POSITION for END_POSITION in W_EHA_
VARIANT.END_POSITION for novel
variants.

Zygosity W_EHA_RSLT_
SEQUENCING.ZYGOSITY

W_EHA_RSLT_NON_VARIANT.
ZYGOSITY

Stored for sequencing alleles in ZYGOSITY
field.

Vartype W_EHA_RSLT_SEQUENCING.
VARIANT_TYPE

W_EHA_RSLT_NOCALL. NOCALL_
TYPE

Stored either in NOCALL_TYPE or
VARIANT_TYPE.

CGI masterVar Data Loader

4-10 Oracle Health Sciences Omics Data Bank Programmer’s Guide

reference W_EHA_VARIANT. REPLACE_TAG This value is used in conjunction with
allele1Seq and allele2Seq to construct a
replace tag value to find existing VARIANT
records in W_EHA_VARIANT table.

For CGI, there are two overlap value
computed for two alleles of each row of the
result file. Using that overlap value, the
reference sequence and the allele sequence is
shortened and the start position and end
position are incremented. This overlap value
creates a replace tag with shortened reference
and allele sequence. For insertions, the
reference sequence uses a - and for deletions
the allele sequence uses -. This is standard
notation used in most references.

At some in-dels the representation can be as
follows:

ins can be AT/ATCTA and del can be
ATCTA/AT.

The logic for checking and inserting variants
into the file is in the called procedure. The
procedure should handle varying
representations for variants coming from any
of the sequencing file types.

In some cases, this field is empty for
insertions.

allele1Seq W_EHA_VARIANT.REPLACE_TAG

W_EHA_VARIANT_X.ALLELE

For sequencing results, this value constructs
the replace tag. In some cases, this field is
empty for deletions.

allele2Seq W_EHA_VARIANT.REPLACE_TAG

W_EHA_VARIANT_X.ALLELE

For sequencing results, this value constructs
the replace tag. In some cases, this field is
empty for deletions.

allele1VarScoreVAF W_EHA_RSLT_
SEQUENCING.SCORE_VAF

W_EHA_RSLT_NON_VARIANT.
SCORE_VAF

Used for sequencing results and stored in the
SCORE_VAF field. If the variant is
homozygous, as only single allele record is
stored, the least value out of two scores is
stored.

Allele2VarScoreVAF W_EHA_RSLT_
SEQUENCING.SCORE_VAF

W_EHA_RSLT_NON_VARIANT.
SCORE_VAF

Used for sequencing results and stored in the
SCORE_VAF field. If the variant is
homozygous, as only single allele record is
stored, the least value out of two scores is
stored.

allele1VarScoreEAF W_EHA_RSLT_
SEQUENCING.SCORE_EAF

Used for sequencing results and stored in the
SCORE_EAF field. If the variant is
homozygous, as only single allele record is
stored, the least value out of two scores is
stored.

Allele2VarScoreEAF W_EHA_RSLT_
SEQUENCING.SCORE_EAF

Used for sequencing results and stored in the
SCORE_EAF field. If the variant is
homozygous, as only single allele record is
stored, the least score value out of two scores
is stored.

allele1HapLink W_EHA_RSLT_SEQUENCING_
X.HAPLINK

W_EHA_RSLT_NOCALL_
X.HAPLINK

Used for both no-call and sequencing results
and stored in the HAPLINK field.

allele2HapLink W_EHA_RSLT_SEQUENCING_
X.HAPLINK

W_EHA_RSLT_NOCALL_
X.HAPLINK

Used for both no-call and sequencing results
and stored in the HAPLINK field.

Table 4–1 (Cont.) Mapping of CGI Result File

Column Name Table and Column Name in ODB Description

CGI masterVar Data Loader

Loaders for Result Data 4-11

4.4.4 Running the CGI Loader with Named Command-Line Arguments

Name
CGI_masterVar_loader.sh - load records

Synopsis
CGI_masterVar_loader.sh -help

CGI_masterVar_loader.sh <...options>

Description
Validates input options and calls the loader script load_cgi.sql#odb_rslt_cgi_
util.process_cgi

Options
(*) required

-db_wallet* <VARCHAR2>

Oracle wallet name, see Section 2.2, "Setting Up an Oracle Wallet"

-db_conn* <VARCHAR2> (required if -db_wallet is not provided)

Oracle connection string that is,

 "(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=127.0.0.1)(PORT=1521))(CONNECT_
DATA=(SID=XE)))"

-db_user* <VARCHAR2> (required if -db_conn is provided)

ODB user name for the Database connection.

-check_version <NUMBER>

Run check version (1=yes|0=no) [default: 0]

-check_version_non_i <NUMBER>

Run check version in non-interactive mode (1=yes|0=no) [default: 1]

-log_level <VARCHAR2>

Set log level TRACE, DEBUG, INFO, WARNING, ERROR [default: INFO]

-print_summary <NUMBER>

allele1ReadCount W_EHA_RSLT_SEQUENCING.
ALLELE_READ_COUNT

Used for sequencing results and stored in the
ALLELE_READ_COUNT field.

Allele2ReadCount W_EHA_RSLT_SEQUENCING.
ALLELE_READ_COUNT

Used for sequencing results and stored in the
ALLELE_READ_COUNT field.

referenceAlleleReadCount W_EHA_RSLT_SEQUENCING.
REFERENCE_READ_COUNT

W_EHA_RSLT_NON_VARIANT.
REFERENCE_READ_COUNT

Used for sequencing results and stored in the
REFERENCE_READ_COUNT field.

totalReadCount W_EHA_RSLT_SEQUENCING.
TOTAL_READ_COUNT

W_EHA_RSLT_NON_VARIANT.
TOTAL_READ_COUNT

Used for sequencing and non-variant results
and stored in the TOTAL_READ_COUNT
field.

Table 4–1 (Cont.) Mapping of CGI Result File

Column Name Table and Column Name in ODB Description

CGI masterVar Data Loader

4-12 Oracle Health Sciences Omics Data Bank Programmer’s Guide

Print summary (1=yes|0=no) [default: 0]

-data_file* <VARCHAR2>

Data file name - Oracle external table LOCATION

-data_directory* <VARCHAR2>

Oracle directory object - Oracle external table DIRECTORY, see Section 2.1, "Setting Up
a Directory Object"

-species_name* <VARCHAR2>

Species name defined in W_EHA_SPECIES that is, for humans "Homo sapiens"

-study_name* <VARCHAR2>

Study name defined in W_EHA_RSLT_STUDY.RESULT_STUDY_NAME

-datasource_name* <VARCHAR2>

Datasource name defined in W_EHA_DATASOURCE.DATASOURCE_NM [default:
CDM]

-specimen_vendor* <VARCHAR2>

Specimen vendor - Sample vendor number of specimen with genomic result data. If
CDM is referenced, this value should be defined in the W_EHA_SPECIMEN_
PATIENT_H.SPECIMEN_VENDOR_NUMBER

-reference_version <VARCHAR2>

"DNA" reference version label defined in W_EHA_VERSION.VERSION_LABEL

-file_flg* <CHAR>

File flag (E=external|S=copy to secure data file directory) [default: E]

-preprocess_dir <VARCHAR2>

Preprocess directory - Oracle external table PREPROCESSOR

-preprocess_file <VARCHAR2>

Preprocess file - Oracle external table PREPROCESSOR

-data_file_path <VARCHAR2>

File system path to secure data file directory

-dbfs_store <VARCHAR2>

Database file system store

-alt_file_loc <VARCHAR2>

Alternate file location link that is, ftp:location, http:location

-read_size <NUMBER>

Read size in bytes - Oracle external table READSIZE

-data_file_dir <VARCHAR2>

File system path to Oracle directory object

-parallel_degree <NUMBER>

The degree of parallelism, or number of parallel execution servers associated with the
load operation.

VCF Sequence Data Loader

Loaders for Result Data 4-13

4.4.5 Examples
UNIX:

$ CGI_masterVar_loader.sh -db_wallet odb_user s04jsnx1 -check_version 0
-check_version_non_i 1 -data_file 'summary_masterVarBeta_2.4_format.tsv'
-data_directory "ODB_LOAD" -species_name "Homo sapiens" -study_name
"STUDY1" -datasource_name "CDM_PATIENT" -specimen_vendor "vendor2"
-reference_version "GRCh37.p8" -file_flg "E" -parallel_degree 8

Windows:

C:\> CGI_masterVar_loader.bat -db_wallet odb_user s04jsnx1 -check_version
0 -check_version_non_i 1 -data_file 'summary_masterVarBeta_2.4_format.tsv'
-data_directory "ODB_LOAD" -species_name "Homo sapiens" -study_name
"STUDY1" -datasource_name "CDM_PATIENT" -specimen_vendor "vendor2"
-reference_version "GRCh37.p8" -file_flg "E" -parallel_degree 8

4.5 VCF Sequence Data Loader

4.5.1 Functional Description
The VCF loader procures the chromosome, position and reference version details of a
record from a VCF file and checks if the corresponding region of that chromosome
exists in W_EHA_DNA_SOURCE table for the specific reference version given as
input to the loader. If present, it maps this record of W_EHA_DNA_SOURCE table as
W_EHA_VARIANT.SOURCE_WID. If the region is not found (for example, if the
chromosome name and (or) the position details are invalid), the loader ignores the
record and does not log into W_EHA_RSLT_LOG table.

The loader supports two types of chromosome representation in the VCF file, like
chr10 and also 10 would be loaded without any error. For mitochrondrial chromosome
the loader can read chrM, chrMT, M and MT from the file.

A typical VCF file contains data for multiple specimens. If one or more specimen
values does not exist in the CDM schema, then the data for these particular specimens
is not loaded but is logged in W_EHA_RSLT_LOG.

The loader does not validate the accuracy of the reference nucleotides in the database.
It assumes that the same version of reference mapped VCF data is loaded to ODB.
Therefore, ensure that the reference version of the results file being loaded matches
that of the reference data available in the ODB. ODB now supports multiple reference
versions, so the VCF loader must be instructed as to which reference data it has to map
the results. You must provide the version information, present in the VERSION_
LABEL column of the W_EHA_VERSION table, to the VCF loader as a parameter.
Refer the loader parameter list for more details.

The VCF loader has been extended from the existing support of the 1000 Genomes
VCF 4.1 format which includes mutations such as SNV, small indel to large structural
variants and structural re-arrangements from the 1000 genomes VCF 4.1. The updated
VCF loader also supports the gVCF (genome VCF) data from Illumina, version
20120906a.

Details of the 1000 Genomes VCF 4.1 specification can be found at the following link:

http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-varia
nt-call-format-version-41

http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41
http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41

VCF Sequence Data Loader

4-14 Oracle Health Sciences Omics Data Bank Programmer’s Guide

Details of the gVCF specification can be found at the following link:

https://sites.google.com/site/gvcftools/home/about-gvcf

Following is a brief description of each format supported by the VCF loader.

4.5.1.1 1000 genomes VCF4.1 Version
The 1000 genomes VCF 4.1 format can be broadly classified into 3 categories based on
the type of variants given below:

1. SNV and small indel: These mutations are loaded in W_EHA_RSLT_
SEQUENCING, W_EHA_RSLT_NOCALL and W_EHA_VARIANT table. The W_
EHA_VARIANT table is only populated for novel variants not already present in
that table.

The loader populates W_EHA_RSLT_NOCALL table based on the GT values
having './.'. Consecutive records with this type of nocall genotype will be
collapsed while loading to this table. For example, if there are three records with
POS as 1001, 1002 and 1003 with nocall genotype, then only one record is created
in W_EHA_RSLT_NOCALL table with the START_POSITION 1001 and the END_
POSITION 1003.

2. Large Structural Variation: These large structural changes in the genome are
recorded in the W_EHA_RSLT_SEQUENCING, W_EHA_VARIANT and W_EHA_
VARIANT_X tables. The W_EHA_VARIANT and W_EHA_VARIANT_X tables are
only populated for novel variants, not present in that table. W_EHA_VARIANT_X
table is used to populate only the ALT column value from the VCF file in ALLELE
clob column of this table.

3. Structural rearrangement: Currently, 1000 genomes data for structural
rearrangements is not yet released. There is neither detailed documentation nor
proper examples in the 1000 genomes manual, which would cover all scenarios for
this data set. In view of this, the loader is built on the following assumptions,
considered from the small amount of information available in the 1000 genomes
VCF 4.1 manual.

a. The loader assumes that there is GT information in the form of either '0' or '1'.

b. The loader identifies structural rearrangements from the tag 'SVTYPE=BND'
present in the INFO column.

c. Allele depth (AD) and total depth (DP) are expected to be a single value by the
loader.

These genomic re-arrangements are stored in W_EHA_RSLT_SV_BREAKEND
table.

Since a VCF 4.1 file can contain all the above three types of mutations in the same
file, the VCF loader automatically distinguishes these three types of data using the
INFO column and records are created in their respective result tables as described
above.

■ If the INFO column of the VCF file does not have an 'SVTYPE' tag or has
'SVTYPE' other than 'BND' (for example, 'SVTYPE=DEL'), then this mutation
is considered as either SNV, small indel or large SV and data is loaded to the
W_EHA_RSLT_SEQUENCING table.

■ If the INFO column has 'SVTYPE=BND', then this mutation is considered as a
structural rearrangement and records are loaded to the W_EHA_RSLT_SV_
BREAKEND table.

https://sites.google.com/site/gvcftools/home/about-gvcf

VCF Sequence Data Loader

Loaders for Result Data 4-15

4.5.1.2 Genome Variant Call Format (gVCF)
gVCF is designed to store both variant and non-variant information related to single
sample only. gVCF follows the 1000 genomes VCF 4.1 conventions, with additional
features such as siteConflicts. The VCF loader processes gVCF data into W_EHA_
RSLT_SEQUENCING, W_EHA_RSLT_NON_VARIANT, W_EHA_RSLT_CONFLICT,
W_EHA_RSLT_NOCALL and W_EHA_VARIANT. The W_EHA_VARIANT table is
only populated for novel variants not present in that table. The mutations are stored in
W_EHA_RSLT_SEQUENCNG, the non-variant information is stored in W_EHA_
RSLT_NON_VARIANT table, the conflict variants are stored in W_EHA_RSLT_
CONFLICT, and nocall information is stored in the W_EHA_RSLT_NOCALL table.
Nocall data for the consecutive positions is not collapsed in gVCF load because it is
already compressed in the gVCF file based on similar quality scores and other
parameters defined while creating the gVCF file.

The following logic is used while populating gVCF records in target tables:

■ Any gVCF file records with GT values 0/1 or 1/0 or 1/2 or n/n, where n is not
zero are stored in the W_EHA_RSLT_SEQUENCING table.

■ Any records with GT values 0/0 or just 0 are stored in the W_EHA_RSLT_NON_
VARIANT table.

■ Any records with GT values '.' or './.' and ALT value '.' are stored in the W_EHA_
RSLT_NOCALL table.

■ Any records with GT values '.' and ALT value not '.' are stored in the W_EHA_
RSLT_ CONFLICT table.

4.5.1.3 FILE_TYPE_CODE and LOAD_MODE of VCF Loader
As mentioned earlier, the VCF loader can be used to load all types of VCF data, that is,
SNP and small indel, large structural variation, structural rearrangement, and gVCF
data. Since there is just one loader for loading all the data types, it has to be provided
with some information to identify the file type. There is one additional parameter
which can be used to load data in a specific mode as described below.

There are mainly two parameters required by the VCF loader which determine the
input file type and the mode in which to load this data.

These parameters are:

■ FILE_TYPE_CODE: The 'FILE_TYPE_CODE' parameter is used to provide the file
type information. While loading a VCF file containing either SNP and small indel
or large SV or SV-rearrangements, give FILE_TYPE_CODE as 'VCF'. While loading
a gVCF file, FILE_TYPE_CODE should be given as 'GVCF'.

■ LOAD_MODE: The VCF loader has options to load VCF and gVCF data in three
different modes using the parameter 'load_mode'. Following are the three types of
modes identified by the loader:

– 'VCF' mode: This mode can be used for both VCF and gVCF file types. This
mode loads mutations and nocall data and only populates the W_EHA_RSLT_
SEQUENCING and W_EHA_RSLT_NOCALL tables. If FILE_TYPE_CODE is
GVCF and LOAD_MODE is VCF, then all non-variant and conflict records
from the gVCF file are skipped and only variants and nocalls are loaded.

– 'GVCF' mode: This mode loads data to all tables made for gVCF, that is, W_
EHA_RSLT_SEQUENCING, W_EHA_RSLT_NON_VARIANT, W_EHA_
RSLT_NOCALL and W_EHA_RSLT_CONFLICT tables. Since the gVCF file
has all the information about a genome such as variants, non-variants, nocalls
and conflicts, this mode is best suited for the gVCF file type. However, this

VCF Sequence Data Loader

4-16 Oracle Health Sciences Omics Data Bank Programmer’s Guide

mode can also be used to load data from a VCF file with all non-variant
information for a specific genome. Usually, a VCF file doesn't contain all the
non-variant information of a genome and only shows few records as
non-variant for a specimen when there is a mutation at that position for a
different specimen. It is advisable not to load such files using GVCF mode
because incomplete non-variant information will be loaded for that specimen.

– 'NON-VAR' mode: This mode loads data only into the W_EHA_RSLT_NON_
VARIANT and W_EHA_RSLT_NOCALL tables. It is designed for scenarios
where mutations have already been loaded from a VCF file and only
non-variant information is to be loaded. Like the GVCF mode, this mode is
also mostly suited for the gVCF file type as the gVCF file contains all
non-variant information. It is not advisable to load a VCF file which does not
contain all the non-variant information for a specimen in NON-VAR mode, as
incomplete non-variant information will be stored in the database.

4.5.2 Custom Format Specification in VCF
The VCF loader also supports loading custom data types from the FORMAT column of
a VCF file. Following are the details on loading custom formats to ODB.

The custom format option helps load certain VCF FORMAT column fields which are
currently not mapped in ODB. Before executing the loader, you must manually create
a column in W_EHA_RSLT_SEQUENCING and W_EHA_RSLT_SV_BREAKEND
tables. For Exadata, the staging tables like W_EHA_STG_SEQUENCING and W_
EHA_STG_SV_BREAKEND should also be appended with the additional column in
the same order as defined in the main result tables.

The column names should follow a specific naming convention. To map a 'PL' data
type from the FORMAT column in the input file, create a column with the field name
'CUST_PL'. Then provide the mapping details to the loader under 'custom_format'
parameter for the loader as "PL=CUST_PL". To load multiple custom format columns,
provide the values as a comma separated string, for example, "PL=CUST_
PL,GL=CUST_GL".

Although there is now no limitation on the number of custom formats supported by
the loader, it can read only 32 format data types at a time. So if a custom format data
type is beyond the 32 data type then it will not be loaded. The order of the custom
columns created should be same in the main tables and in the corresponding staging
tables, otherwise there could be a mismatch in the data loaded. It is recommended to
add a custom column with a VARCHAR2(%n) data type as there could be comma
separated values and other alphanumeric characters in the field. The %n should be
defined based on the string requirement of the FORMAT data type for which the
column is created.

Alternatively, set these custom format field mappings as a global variable in VCF_
FORMAT column of the W_EHA_PRODUCT_PROFILE table. This has to be set
manually by the user in this table. The -custom_format input parameter of the VCF_
Loader, which is a temporary variable has precedence over the globally defined
variable in W_EHA_PRODUCT_PROFILE.VCF_FORMAT column while loading VCF
data. The format specification in VCF_FORMAT column is the same as used for
-custom_format input parameter.

The VCF export functionality of the Cohort Explorer UI also requires that the custom
format details be defined in the global variable, that is, W_EHA_PRODUCT_
PROFILE.VCF_FORMAT column. The exported VCF file contains the custom format
field mapping data only if the VCF_FORMAT global variable is set. Otherwise only the

VCF Sequence Data Loader

Loaders for Result Data 4-17

default format mapping data is exported. While updating VCF_FORMAT column
ensure that only new custom format fields are appended and not existing ones.

4.5.2.1 Debugging Inconsistent Datatypes for FORMAT Field in VCF File
The VCF files can be generated by various in-house and open source tools, so there is a
possibility of using non-standard datatypes for some of the VCF mapped columns in
ODB. In such cases, an Invalid number error is generated by the loader without
providing information about the line having a mismatch in datatype. To know the
exact location of datatype mismatch, there is an additional parameter called '-validate_
numbs Y' used by the VCF loader. The default value of this parameter is 'N'. Pass 'Y' as
the parameter value to validate the numeric values in the VCF file. This parameter
determines if there is a character value instead of the expected numeric value and
displays the line number and sample order number which has the issue. For example,
the error appears as follows:

■ Detail: Error in number conversion of row number 16 and specimen column
S1

■ Description: ORA-06502: PL/SQL: numeric or value error: character to
number conversion error

The error indicates that there is a data format issue for the first sample in line number
16 of the VCF file.

4.5.3 Data Load
The loader code uses an external table through a cursor to parse the header rows to
store metadata records and validate specimens. Most of the file metadata is in XML
format where there is an identifier or tag followed by an attribute value or XML
definition. The metadata load sets the QUALIFIER_TAG to the identifier before the "="
character (that is, FORMAT, INFO, FILTER), and everything after the "=" character is
copied to the QUALIFIER_VALUE column of the W_EHA_FILE_LOAD_QLFR table.

A separate external table is then used to read it in a single sequential (non-parallel)
pass. This promotes accurate line number values and efficient loading from various
storage locations such as DBFS. All other DML statements employ the temporary table
used to load this data.

The loader then utilizes an insert statement to create all W_EHA_VARIANT records
as long as the "i_load_mode" parameter is not set to "NON-VAR". This process creates
the W_EHA_VARIANT_X records, when there is a large structural variant or the
replace tag for non-deletion variants is larger than 1000 characters. The variant record
is created by eliminating any overlapping DNA sequences and then adjusting the start
position. Checksums and length checks are performed to avoid duplicate records in
the W_EHA_VARIANT_X table. If the "i_xref_db" parameter is specified, all rows that
have XREF information also create the W_EHA_VARIANT_XREF records.

If the "i_validate_numbs" parameter is set to 'Y", then all fields that are expected to be
numeric, are evaluated and any rows that have invalid numbers are stored in the log
file. No further processing is performed. This is useful for debugging files that do not
create any result records.

Note: The current loader can be used to load VCF files that do not
have any specimens. This is convenient for loading information from
dbSNP and Cosmic.

VCF Sequence Data Loader

4-18 Oracle Health Sciences Omics Data Bank Programmer’s Guide

The loader then uses separate insert statements to create the following records:

■ W_EHA_RSLT_SEQUENCING

■ W_EHA_RSLT_NOCALL

■ W_EHA_RSLT_NON_VARIANT

■ W_EHA_RSLT_SV_BREAKEND

■ W_EHA_RSLT_CONFLICT

The following table indicates the tables inserted based on LOAD_MODE:

4.5.3.1 Data Files
Two kinds of VCF files are available at 1000 Genomes - sites and genotypes. A sites file
does not contain genotypic data and sample details whereas a genotype VCF file
contains individual genotypic data along with sample information. The current loader
supports only VCF files with sample and genotype data. The sample information is
present in the header row of the VCF data following the FORMAT column. Each row
represents one sample.

The data type representation format and its order for each sample are specified in the
FORMAT column. All alleles for all samples are stored in the ALT column. To obtain
the allele information for each sample, the GT identifier from the FORMAT column for
each sample is used. The allele value is represented in numerals (for example, 0/1,
1/2), where 0 represents reference allele and 1 and 2 represent alleles specified order in
ALT.

Following is the list of passes that are used to process each VCF file:

1. The file is parsed for header columns that are indicated by "##" and the results are
stored in the W_EHA_FILE_LOAD_QLFR table.

2. The file is parsed to create all referenced W_EHA_VARIANT records.

3. The file is parsed to add records that do not use W_EHA_VARIANT foreign keys.
This includes W_EHA_RSLT_NOCALL, W_EHA_RSLT_NON_VARIANT, W_
EHA_RSLT_SV_BREAKEND.

4. The file is parsed to link all records to W_EHA_VARIANT. This includes W_EHA_
RSLT_SEQUENCING.

5. In GVCF mode, the file is parsed to add W_EHA_RSLT_CONFLICT records.

Table 4–2 Tables inserted based on LOAD_MODE:

Name of the Record VCF GVCF NON-VAR

W_EHA_RSLT_SEQUENCING X X -

W_EHA_RSLT_NOCALL X X X

W_EHA_RSLT_NON_VARIANT - X X

W_EHA_RSLT_SV_BREAKEND X X

W_EHA_RSLT_CONFLICT - X -

Note: This pass does not require "GT" format field to facilitate
loading reference VCF files.

VCF Sequence Data Loader

Loaders for Result Data 4-19

6. The loader can read only 32 data types from the FORMAT column in the VCF file.
Any data type, either supported or custom, not present in the first 32 data types of
FORMAT column will not be loaded.

Following is the table mapping of VCF Result File (snps, indels, large SVs, and
rearrangements) and gVCF:

Note: The batch file requires Oracle Wallet to be set up to run
correctly.

Column Name in
Result File Table and Column Name in ODB Description

CHROM W_EHA_
VARIANT.CHROMOSOME_WID

W_EHA_RSLT_
SEQUENCING.CHROMOSOME_
WID

W_EHA_RSLT_NON_
VARIANT.CHROMOSOME_WID

W_EHA_RSLT_
NOCALL.CHROMOSOME_WID

W_EHA_RSLT_
CONFLICT.CHROMOSOME_
WID

W_EHA_RSLT_SV_
BREAKEND.REF_
CHROMOSOME_WID

This field is used with the POS to
find the correct DNA_SOURCE
record, to find a VARIANT record,
or create a VARIANT record.

Three values are required to find
existing VARIANT records. The
chromosome, the POS, and the
replace tag, which is notation
combining reference and allele
sequences. For NOVEL variants, a
new record is created in the W_
EHA_VARIANT table with
chromosome value.

POS W_EHA_VARIANT_STG.START_
POSITION

W_EHA_VARIANT_STG.END_
POSITION

W_EHA_VARIANT.ABSOLUTE_
POSITION

W_EHA_RSLT_
SEQUENCING.START_
POSITION

W_EHA_RSLT_NON_
VARIANT.START_POSITION

W_EHA_RSLT_NOCALL.START_
POSITION

W_EHA_RSLT_
CONFLICT.START_POSITION

W_EHA_RSLT_SV_
BREAKEND.REF_START_
POSITION

This field is used as described
above in the Chromosome
column.

For novel variants, POS is stored
in the ABSOLUTE_POSITION
column in the W_EHA_VARIANT
table.

For W_EHA_VARIANT.START_
POSITION, Start_Position is
relative to the value in the W_
EHA_DNA_SOURCE.START_
POSITION table using the pos
value. Since, VCF does not have
the end position information,
while inserting novel variants in
the VARIANT table, END_
POSITION need to be calculated
based on POS information and
number of bases in REF.

ID W_EHA_RSLT_SV_
BREAKEND.BREAKEND_ID

This value is only stored for
structural re-arrangement data
where 'SVTYPE=BND' present in
INFO column. This value in ID
column is stored in BREAKEND_
ID column.

VCF Sequence Data Loader

4-20 Oracle Health Sciences Omics Data Bank Programmer’s Guide

REF W_EHA_VARIANT.REPLACE_
TAG

This value is used in conjunction
with ALT sequence to construct a
replace tag value used to find
existing VARIANT records. The
replace tag is constructed with
reference first followed by "/" and
then the allele sequence.

For insertions, the reference
sequence uses a "-" and for
deletions the allele sequence uses
"-". This is standard notation used
in most references. At some
in-dels, the representation can be
as follows:

ins can be AT/ATCTA and del can
be ATCTA/AT.

The logic is implemented in the
procedure which can be called
with any of the above formats.

ALT W_EHA_RSLT_
SEQUENCING.ALLELE

W_EHA_RSLT_
CONFLICT.ALLELE

W_EHA_RSLT_
CONFLICT.ALLELE_CLOB

W_EHA_RSLT_
CONFLICT.ALLELE_CLOB

W_EHA_VARIANT_X.ALLELE

W_EHA_RSLT_SV_
BREAKEND.ALLELE

W_EHA_RSLT_SV_
BREAKEND.ALLELE_CLOB

For sequencing results, this value
constructs the replace tag and
stores the value in the results table
as per rules.

INFO.SVTYPE If the INFO column of the VCF
file does not have 'SVTYPE' tag,
then this mutation is considered
as either SNV or small indel. If the
INFO column has
'SVTYPE=BND', then this
mutation is considered as
structural re-arrangement. If the
INFO column has 'SVTYPE' other
than 'BND', for example,
'SVTYPE=DEL', then these
mutations are considered as large
structural variants.

-

INFO.END W_EHA_RSLT_NON_
VARIANT.END_POSITION

W_EHA_RSLT_NOCALL.END_
POSITION

W_EHA_RSLT_CONFLICT.END_
POSITION

For gVCF and large SV data,
END_POSITION value using
'END=' tag present in this INFO
column.

Column Name in
Result File Table and Column Name in ODB Description

VCF Sequence Data Loader

Loaders for Result Data 4-21

INFO.CIPOS W_EHA_RSLT_
SEQUENCING.CIPOS_START

W_EHA_RSLT_
SEQUENCING.CIPOS_END

For large SV, the INFO column
contains tag 'CIPOS' which
contains two values. The first
value is stored in CIPOS_START
and second in CIPOS_END.

INFO.CIEND W_EHA_RSLT_
SEQUENCING.CIEND_START

W_EHA_RSLT_
SEQUENCING.CIEND_END

For large SV, the INFO column
contains tag 'CIEND' which
contains two values. The first
value is stored in CIEND_START
and the second n CIEND_END.

INFO.HOMLEN W_EHA_RSLT_
SEQUENCING.HOMLEN

For large SV, the value for the tag
'HOMLEN' present in INFO
column is stored here.

INFO.HOMSEQ W_EHA_RSLT_
SEQUENCING.HOMSEQ

For large SV, the value for the tag
'HOMSEQ' present in INFO
column is stored here.

INFO.MEINFO W_EHA_RSLT_
SEQUENCING.MEINFO

For large SV, the value for the tag
'MEINFO' present in INFO
column is stored here.

INFO.MATE_ID W_EHA_RSLT_SV_
BREAKEND.MATE_ID

For structural rearrangement data,
MATE_ID tag value present in
INFO column is stored here.

INFO.EVENT_ID For structural re-arrangement
data, EVENT_ID tag value present
in INFO column is stored here.

-

INFO.PRECISION W_EHA_VARIANT.PERCISION

W_EHA_RSLT_SV_
BREAKEND.PRECISION

For either Large SV or SV
rearrangement data, if the
'IMPRECISE' tag is present in the
INFO column, then 'IMPRECISE'
value is populated in these
columns, otherwise 'PRECISE' is
populated.

FORMAT.GT Gets the allele information for
each sample. It is represented as
'<allele1_num>/<allele2_num>'.
In some cases instead of "/" there
could be "|".

■ For diploid: 0|0 represents
both the alleles from REF.

■ 0|1 represents one allele from
REF and other from ALT
allele.

■ 0/2 represents one allele from
REF and other from ALT
allele 2.

■ 1/3 represents one allele from
first ALT value and 2nd allele
from 3rd ALT value.

■ For haploid: only one allele
number is represented.

■ '.' or './.'is specified if a call
cannot be made for a sample
at that locus.

-

Column Name in
Result File Table and Column Name in ODB Description

VCF Sequence Data Loader

4-22 Oracle Health Sciences Omics Data Bank Programmer’s Guide

FORMAT.FT W_EHA_RSLT_SEQUENCING.
GENOTYPE_FILTER

W_EHA_RSLT_NON_VARIANT.
GENOTYPE_FILTER

W_EHA_RSLT_NOCALL.
GENOTYPE_FILTER

W_EHA_RSLT_CONFLICT.
GENOTYPE_FILTER

W_EHA_RSLT_SV_BREAKEND.
GENOTYPE_FILTER

Sample genotype filter indicating
if this genotype is called (the
concept is similar to the FILTER
field). PASS indicates that all
filters have been passed. A
semi-colon separated list of codes
for filters that fail, or "." indicates
that filters have not been applied.
These values should be described
in the meta-information in the
same way as FILTERs (For string,
white-space or semi-colons are
not permitted).

FORMAT.GQ W_EHA_RSLT_
SEQUENCING.SCORE_VAF

W_EHA_RSLT_NON_
VARIANT.SCORE_VAF

W_EHA_RSLT_
NOCALL.SCORE_VAF

W_EHA_RSLT_
CONFLICT.SCORE_VAF

W_EHA_RSLT_SV_
BREAKEND.SCORE_VAF

This is mapped to W_EHA_RSLT_
SEQUENCING.SCORE_VAF

QUAL W_EHA_RSLT_
SEQUENCING.QUAL

W_EHA_RSLT_NON_
VARIANT.QUAL

W_EHA_RSLT_
CONFLICT.QUAL

W_EHA_RSLT_SV_
BREAKEND.QUAL

Quality of the allele sequence.
Mapped to QUAL column of VCF
file.

FILTER W_EHA_RSLT_
SEQUENCING.FILTER

W_EHA_RSLT_NON_
VARIANT.FILTER

W_EHA_RSLT_NOCALL.FILTER

W_EHA_RSLT_
CONFLICT.FILTER

W_EHA_RSLT_SV_
BREAKEND.FILTER

Filter applied to the particular
record. Mapped to FILTER
column in the VCF file.

Column Name in
Result File Table and Column Name in ODB Description

VCF Sequence Data Loader

Loaders for Result Data 4-23

FORMAT.DP W_EHA_RSLT_
SEQUENCING.TOTAL_READ_
COUNT

W_EHA_RSLT_NON_
VARIANT.TOTAL_READ_
COUNT

W_EHA_RSLT_
NOCALL.TOTAL_READ_
COUNT

W_EHA_RSLT_
CONFLICT.TOTAL_READ_
COUNT

W_EHA_RSLT_SV_
BREAKEND.TOTAL_READ_
COUNT

Total number of reads that
mapped to the defined allele
sequence

FORMAT.AD W_EHA_RSLT_
SEQUENCING.ALLELE_READ_
COUNT W_EHA_RSLT_
SEQUENCING.REFERENCE_
READ_COUNT

W_EHA_RSLT_NON_
VARIANT.REFERENCE_READ_
COUNT

W_EHA_RSLT_
NOCALL.ALLELE_READ_
COUNT

W_EHA_RSLT_
NOCALL.REFERENCE_READ_
COUNT

W_EHA_RSLT_
CONFLICT.ALLELE_READ_
COUNT

W_EHA_RSLT_
CONFLICT.REFERENCE_READ_
COUNT

W_EHA_RSLT_SV_
BREAKEND.ALLELE_READ_
COUNT

The first value is mapped to
REFERENCE_READ_COUNT
and consecutive values are
mapped to ALLELE_READ_
COUNT

FORMAT.BQ W_EHA_RSLT_
SEQUENCING.RMS_BASE_
QUAL

W_EHA_RSLT_NON_
VARIANT.RMS_BASE_QUAL

W_EHA_RSLT_NOCALL.RMS_
BASE_QUAL

W_EHA_RSLT_CONFLICT.RMS_
BASE_QUAL

W_EHA_RSLT_SV_
BREAKEND.RMS_BASE_QUAL

RMS base quality at this position.

Column Name in
Result File Table and Column Name in ODB Description

VCF Sequence Data Loader

4-24 Oracle Health Sciences Omics Data Bank Programmer’s Guide

4.5.4 Command-Line Argument List

Name
VCF_loader.sh - load records

Synopsis
VCF_loader.sh -help

VCF_loader.sh <...options>

FORMAT.MQ W_EHA_RSLT_
SEQUENCING.RMS_MAPPING_
QUAL

W_EHA_RSLT_NON_
VARIANT.RMS_MAPPING_
QUAL

W_EHA_RSLT_NOCALL.RMS_
MAPPING_QUAL

W_EHA_RSLT_CONFLICT.RMS_
MAPPING_QUAL

W_EHA_RSLT_SV_
BREAKEND.RMS_MAPPING_
QUAL

RMS mapping quality at this
position.

FORMAT.GQX W_EHA_RSLT_
SEQUENCING.GENOTYPE_
QUAL_X

W_EHA_RSLT_NON_
VARIANT.GENOTYPE_QUAL_X

W_EHA_RSLT_
NOCALL.GENOTYPE_QUAL_X

W_EHA_RSLT_
CONFLICT.GENOTYPE_QUAL_
X

W_EHA_RSLT_SV_
BREAKEND.GENOTYPE_
QUAL_X

GQX - Minimum of {Genotype
quality assuming variant position,
Genotype quality assuming
non-variant position}

FORMAT.SS W_EHA_RSLT_
SEQUENCING.SOMATIC_
STATUS_WID

W_EHA_SOMATIC_STATUS
table pre-seeded with all values
while installation. For more
information, see Table A–4.

The loader maps the SS value
from the VCF file to the
SOMATIC_STATUS_CODE
column of the W_EHA_
SOMATIC_STATUS table and a
foreign key is created in W_EHA_
RSLT_SEQUENCING with
SOMATIC_STATUS_WID column.

FORMAT.SSC W_EHA_RSLT_
SEQUENCING.SOMATIC_
SCORE

Somatic score of the variant

Column Name in
Result File Table and Column Name in ODB Description

VCF Sequence Data Loader

Loaders for Result Data 4-25

Description
Validates input options and calls the loader script for VCF and GVCF mode load_
vcf.sql#odb_rslt_gvcf_util.process_gvcf and for NON-VAR mode odb_nonvar_gvcf_
util.process_nonvar_gvcf

Options
(*) required

-db_wallet* <VARCHAR2>

Oracle wallet name, see Section 2.2, "Setting Up an Oracle Wallet"

-db_conn* <VARCHAR2> (required if -db_wallet is not provided)

Oracle connection string that is,

 "(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=127.0.0.1)(PORT=1521))(CONNECT_
DATA=(SID=XE)))"

-db_user* <VARCHAR2> (required if -db_conn is provided)

ODB user name for the Database connection.

-check_version <NUMBER>

Run check version (1=yes|0=no) [default: 0]

-check_version_non_i <NUMBER>

Run check version in non-interactive mode (1=yes|0=no) [default: 1]

-log_level <VARCHAR2>

Set log level TRACE, DEBUG, INFO, WARNING, ERROR [default: INFO]

-print_summary <NUMBER>

Print summary (1=yes|0=no) [default: 0]

-data_file* <VARCHAR2>

Data file name - Oracle external table LOCATION

-data_directory* <VARCHAR2>

Oracle directory object - Oracle external table DIRECTORY, see Section 2.1, "Setting Up
a Directory Object"

-species_name* <VARCHAR2>

Species name defined in W_EHA_SPECIES that is, For humans "Homo sapiens"

-study_name* <VARCHAR2>

Study name defined in W_EHA_RSLT_STUDY.RESULT_STUDY_NAME

-datasource_name* <VARCHAR2>

Datasource name defined in W_EHA_DATASOURCE.DATASOURCE_NM [default:
CDM]

-specimen_vendor* <VARCHAR2>

Specimen vendor - Sample vendor number of specimen with genomic result data. If
CDM is referenced, this value should be defined in the W_EHA_SPECIMEN_
PATIENT_H.SPECIMEN_VENDOR_NUMBER

-reference_version <VARCHAR2>

VCF Sequence Data Loader

4-26 Oracle Health Sciences Omics Data Bank Programmer’s Guide

"DNA" reference version label defined in W_EHA_VERSION.VERSION_LABEL

-file_flg* <CHAR>

File flag (E=external|S=copy to secure data file directory) [default: E]

-custom_format <VARCHAR2>

Custom format comma delimited (format_name=column(,format_name=column)*)

-preprocess_dir <VARCHAR2>

Preprocess directory - Oracle external table PREPROCESSOR

-preprocess_file <VARCHAR2>

Preprocess file - Oracle external table PREPROCESSOR

-data_file_path <VARCHAR2>

File system path to secure data file directory

-dbfs_store <VARCHAR2>

Database file system store

-file_type_code* <VARCHAR2>

File type code (GVCF|VCF) [default: VCF]

-load_mode <VARCHAR2>

Load mode (VCF|GVCF|NON-VAR)[default: VCF]

i_validate_numbs <CHAR>

Validate all number fields before insert (Y|N)[default: N)

-alt_file_loc <VARCHAR2>

Alternate file location link that is, ftp:location, http:location

-read_size <NUMBER>

Read size in bytes - Oracle external table READSIZE

-data_file_dir <VARCHAR2>

File system path to Oracle directory object

4.5.5 Examples
UNIX: with 'GVCF' file_type_code and 'GVCF' load_mode

$ sh VCF_loader.sh -db_wallet odb_user -data_file "YRI.trio.2010_
03.snps.genotypes_NEW.vcf" -data_directory "ODB_LOAD" -species_name "Homo
sapiens" -study_name "STUDY1" -datasource_name "CDM" -specimen_vendor
"vendor1" -reference_version "GRCh37.p8" -file_flg "E" -custom_format ""
-preprocess_dir "" -preprocess_file "" -data_file_path "" -dbfs_store ""
-file_type_code "GVCF" -load_mode "GVCF" -alt_file_loc "" -read_size ""

Windows: with 'GVCF' file_type_code and 'GVCF' load_mode

C:\> VCF_loader.bat -db_wallet odb_user -data_file "YRI.trio.2010_
03.snps.genotypes_NEW.vcf" -data_directory "ODB_LOAD" -species_name "Homo
sapiens" -study_name "STUDY1" -datasource_name "CDM" -specimen_vendor
"vendor1" -reference_version "GRCh37.p8" -file_flg "E" -custom_format ""
-preprocess_dir "" -preprocess_file "" -data_file_path "" -dbfs_store ""
-file_type_code "GVCF" -load_mode "GVCF" -alt_file_loc "" -read_size ""

MAF Sequence Data Loader

Loaders for Result Data 4-27

When the file type is VCF and load mode is VCF, the same command will be used.
Pass the -file_type_code as VCF an d -load_mode as VCF as a parameter with SH and
BAT command.

4.6 MAF Sequence Data Loader
The Mutation Annotation Format (MAF) is created by TCGA. MAF files store variation
data for multiple samples. The MAF file format is described here:

http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm

The format of a MAF file is tab-delimited columns. This file is the simplest among all
result files. ODB supports importing MAF versions 2.0 - 2.2.

4.6.1 Functional Description
The MAF loader currently loads only the variant records and not wild type (WT)
information. For example:

■ If one of the alleles is WT while the other is variant, then the loader only records
the variant allele.

■ If both the alleles are WT, then the loader does not load any of these alleles.

■ If both alleles are variants and homozygous, then it stores only one record.

■ If both alleles are MT and heterozygous, then it stores them as two separate
records.

The loader obtains the chromosome and position details of a record from the MAF file
and checks if the corresponding region of that chromosome exists in W_EHA_DNA_
SOURCE table for the reference version specified as input. If it is present, it maps this
record to the W_EHA_DNA_SOURCE table as W_EHA_ VARIANT.SOURCE_WID. If
the region is not found (for example, the chromosome and (or) position information is
invalid), the loader ignores that record and does not log in to W_EHA_RSLT_LOG
table.

The loader does not validate the accuracy of the reference nucleotides in the database.
It assumes that the same version of reference mapped MAF data is loaded in to ODB.
Ensure that the reference version of the results file being loaded matches that of the
reference data available in ODB.

A single record in a MAF file contains data for both normal and tumor samples. The
loader loads data for both these samples.

A typical MAF file contains information about multiple specimens. If one or more of
the specimens do not exist in the CDM schema, then the loaders skips that row and
logs an error with details in W_EHA_RSLT_LOG.

4.6.2 Data Load
The execution call of the stored procedure ODB_RSLT_MAF_UTIL.process_maf() is
designed in one of the script files (load_maf.sql). This stored procedure accepts FILE
NAME, ORACLE DIRECTYORY OBJECT, SPECIES NAME, STUDY NAME, DATA
SOURCE, SPECIMEN VENDOR, Reference Version, File Flag, Preprocess directory,
Preprocess File, Data File Path, DBFS Store, Alternate file location (ftp location/http
location), Read Size as input parameters.

It creates an external table dynamically and uploads data from the source file into it.
External tables let Oracle query data that is stored outside the database in flat files. The

http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm

MAF Sequence Data Loader

4-28 Oracle Health Sciences Omics Data Bank Programmer’s Guide

ORACLE_LOADER driver can be used to access data stored in any format that can be
loaded by the SQL*Loader. No DML can be performed on external tables but they can
be used for query, join, and sort operations.

Only one external table is created dynamically and will hold the complete result data.
A global temporary table, W_EHA_MAF_SPECIMEN, is created explicitly to store the
Normal and Tumor sample barcodes. There are two passes through the MAF file. One
creates a W_EHA_VARIANT_STG record and collects each unique specimen number
into the global temporary table. A bulk collect then calls Odb_util.GET_SPECIMEN_
WID for all the specimen numbers in one statement.

Another bulk insert statement inserts the data into W_EHA_RSLT_SEQUENCING.

A select statement parses data from the external table and employs a join with w_
eha_variant and w_eha_dna_source table to get the dataset. This is then used to
compute the gene_wid from w_eha_gene_segment table. The dataset returned with
variant and DNA source table examines whether the start position of variant record is
less than or equal to the end position of a gene segment. It also checks if the End
position variant record is greater than or equal to the start position of the gene
segment and populates the GENE_WID in W_EHA_STG_SEQUENCING table.

After inserting the record into the W_EHA_VARIANT_STG table, the PROCESS_
VARIANT() procedure is called, which populates the W_EHA_VARIANT table.

4.6.2.1 Data files
Each row of a MAF file has two allele information for two sample types – a tumor
sample and a normal one. These two sample IDs are specified in each row of the file.
Sample ID of the tumor sample is specified in Tumor_Sample_Barcode and that of the
normal one is specified in Matched_Norm_Sample_Barcode column. For a single file
row, a maximum of eight records can be created in ODB depending on the
heterozygosity and resemblance to the reference sequence - four for the tumor sample
and four for the normal one.

Allele sequences for a deletion represent a variant and for an insertion represent a
wild-type allele. If an allele sequence is the same as the Reference_Allele sequence, its
information is not stored in the data bank. There is no information on NOCALL in
MAF data, hence all the data is populated in the W_EHA_VARIANT and W_EHA_
RSLT_SEQUENCING tables.

The loader validates the reference version, which is passed as an input parameter,
against the W_EHA_VERSION table and populates the VERSION_WID in the
corresponding result table.

Following is the table mapping of the MAF Result File:

Note: The batch file requires an Oracle Wallet to be set up to run
correctly.

MAF Sequence Data Loader

Loaders for Result Data 4-29

Column Name in
Result File Table and Column Name in ODB Description

Chromosome W_EHA_RSLT_
SEQUENCING.CHROMOSOME_
WID

W_EHA_
VARIANT.CHROMOSOME

This field is used with the begin
position to find the correct DNA_
SOURCE record and VARIANT
record, or create a VARIANT
record.

Three values are needed to find
existing VARIANT records. The
chromosome, the begin position,
and the replace tag, which is
notation combining reference and
allele sequences.

For novel variants, a new record is
created in the W_EHA_VARIANT
table with the chromosome value.

Start_Position W_EHA_RSLT_
SEQUENCING.START_
POSITION

W_EHA_VARIANT_STG.START_
POSITION

W_EHA_VARIANT.ABSOLUTE_
POSITION

This field is used as described
above. For no-call results, this is
stored in the START_POSITION
field (after adding 1).

For novel variants, Start_Position
is stored in the ABSOLUTE_
POSITION column in the W_
EHA_VARIANT table.

For W_EHA_VARIANT.START_
POSITION, Start_Position is
relative to the value in the W_
EHA_DNA_SOURCE.START_
POSITION table.

End_Position W_EHA_VARIANT_STG.END_
POSITION

This value is used for no-call
results and stored in the END_
POSITION field. This value also
calculates the relative end position
based on W_EHA_DNA_
SOURCE.START_POSITION for
END_POSITION in W_EHA_
VARIANT.END_POSITION for
novel variants.

Strand W_EHA_VARIANT.STRAND

W_EHA_VARIANT_
STG.STRAND

This value indicates forward or
reverse strand.

Variant_Type W_EHA_RSLT_
SEQUENCING.VARIANT_TYPE

Type of variant including snp,
insertion, or deletion. Stored in
VARIANT_TYPE in the W_EHA_
RSLT_SEQUENCING table.

MAF Sequence Data Loader

4-30 Oracle Health Sciences Omics Data Bank Programmer’s Guide

4.6.3 Command-Line Argument List

Name
MAF_loader.sh - load records

Reference_Allele W_EHA_VARIANT.REPLACE_
TAG

This value is used for REPLACE_
TAG, REPLACE_TAG and is used
twice, one for the tumor and the
other for normal sample. It is used
in conjunction with Tumor_Seq_
Allele1 and Tumor_Seq_Allele2 to
find existing VARIANT records
for tumor sample. Similarly for
normal sample, the Reference
allele is used for REPLACE_TAG.

For insertions, the reference
sequence uses a "-" and for
deletions the allele sequence uses
"-". This is standard notation used
in most references. Logic for
loader will be implemented in
called procedure to variant table.

For deletion, this value has
deleted sequence and for insertion
it has "-".

Tumor_Seq_Allele1 W_EHA_VARIANT.REPLACE_
TAG

For sequencing results this value
constructs the replace tag.

'-' value represents a deletion.

Tumor_Seq_Allele2 W_EHA_VARIANT.REPLACE_
TAG

For sequencing results, this value
constructs the replace tag.

'-' value represents a deletion.

Tumor_Sample_
Barcode

W_EHA_RSLT_
SPECIMEN.SPECIMEN_
NUMBER

This value represents tumor
sample ID. This barcode ID
involves
TCGA-SiteID-PatientID-SampleID
-PortionID-PlateID-CenterID.

Matched_Norm_
Sample_Barcode

W_EHA_RSLT_
SEQUENCING.RESULT_SPEC_
WID

W_EHA_RSLT_
SEQUENCING.SPECIMEN_WID

This value represents normal
sample ID. This barcode ID
involves
TCGA-SiteID-PatientID-SampleID
-PortionID-PlateID-CenterID. The
complete barcode ID as is foreign
key to RSLT_ SPECIMEN record.

Match_Norm_Seq_
Allele1

W_EHA_VARIANT.REPLACE_
TAG

For sequencing results this value
constructs the replace tag.

'-' value represents a deletion.

Match_Norm_Seq_
Allele2

W_EHA_RSLT_
SEQUENCING.ALLELE

W_EHA_VARIANT.REPLACE_
TAG

For sequencing results this value
constructs the replace tag.

'-' value represents a deletion.

Score - This column is not functional in
the MAF files and is currently not
mapped.

Column Name in
Result File Table and Column Name in ODB Description

MAF Sequence Data Loader

Loaders for Result Data 4-31

Synopsis
MAF_loader.sh -help

MAF_loader.sh <...options>

Description
Validates input options and calls the loader script load_maf.sql#odb_rslt_maf_
util.process_maf

Options
(*) required

-db_wallet* <VARCHAR2>

Oracle wallet name, see Section 2.2, "Setting Up an Oracle Wallet"

-db_conn* <VARCHAR2> (required if -db_wallet is not provided)

Oracle connection string that is,

 "(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=127.0.0.1)(PORT=1521))(CONNECT_
DATA=(SID=XE)))"

-db_user* <VARCHAR2> (required if -db_conn is provided)

ODB user name for the Database connection.

-check_version <NUMBER>

Run check version (1=yes|0=no) [default: 0]

-check_version_non_i <NUMBER>

Run check version in non-interactive mode (1=yes|0=no) [default: 1]

-log_level <VARCHAR2>

Set log level TRACE, DEBUG, INFO, WARNING, ERROR [default: INFO]

-print_summary <NUMBER>

Print summary (1=yes|0=no) [default: 0]

-data_file* <VARCHAR2>

Data file name - Oracle external table LOCATION

-data_directory* <VARCHAR2>

Oracle directory object - Oracle external table DIRECTORY, see Section 2.1, "Setting Up
a Directory Object"

-species_name* <VARCHAR2>

Species name defined in W_EHA_SPECIES that is, For humans "Homo sapiens"

-study_name* <VARCHAR2>

Study name defined in W_EHA_RSLT_STUDY.RESULT_STUDY_NAME

-datasource_name* <VARCHAR2>

Datasource name defined in W_EHA_DATASOURCE.DATASOURCE_NM [default:
CDM]

-specimen_vendor* <VARCHAR2>

RNA-Seq Loader

4-32 Oracle Health Sciences Omics Data Bank Programmer’s Guide

Specimen vendor - Sample vendor number of specimen with genomic result data. If
CDM is referenced, this value should be defined in the W_EHA_SPECIMEN_
PATIENT_H.SPECIMEN_VENDOR_NUMBER

-reference_version <VARCHAR2>

"DNA" reference version label defined in W_EHA_VERSION.VERSION_LABEL

-file_flg* <CHAR>

File flag (E=external|S=copy to secure data file directory) [default: E]

-preprocess_dir <VARCHAR2>

Preprocess directory - Oracle external table PREPROCESSOR

-preprocess_file <VARCHAR2>

Preprocess file - Oracle external table PREPROCESSOR

-data_file_path <VARCHAR2>

File system path to secure data file directory

-dbfs_store <VARCHAR2>

Database file system store

-alt_file_loc <VARCHAR2>

Alternate file location, link that is, ftp:location, http:location

-read_size <NUMBER>

Read size in bytes - Oracle external table READSIZE]

-data_file_dir <VARCHAR2>

File system path to Oracle directory object

4.6.4 Examples
UNIX

$ sh MAF_loader.sh -db_wallet odb_user -data_file "ut_maf.txt" -data_
directory "ODB_LOAD" -species_name "Homo sapiens" -study_name "STUDY1"
-datasource_name "CDM" -specimen_vendor "vendor3" -reference_version
"GRCh37.p8" -file_flg "E" -preprocess_dir "" -preprocess_file "" -data_
file_path "" -dbfs_store "" -alt_file_loc "" -read_size ""

Windows

C:\> MAF_loader.bat -db_wallet odb_user -data_file "ut_maf.txt" -data_
directory "ODB_LOAD" -species_name "Homo sapiens" -study_name "STUDY1"
-datasource_name "CDM" -specimen_vendor "vendor3" -reference_version
"GRCh37.p8" -file_flg "E" -preprocess_dir "" -preprocess_file "" -data_
file_path "" -dbfs_store "" -alt_file_loc "" -read_size ""

4.7 RNA-Seq Loader

4.7.1 Functional Description
The TCGA RNA SEQ data file format specifications are described here:

RNA-Seq Loader

Loaders for Result Data 4-33

https://wiki.nci.nih.gov/display/TCGA/RNASeq+Data+Format+Specification#RNA
SeqDataFormatSpecification-Datafiles

TCGA has three different types of files: exon, gene, and splice junctions. Only the exon
files are measured by exact chromosome locations. The other two files are calculated
estimations based upon gene locations using this exon data file. Currently, support is
provided for loading the exon version data files.

Once an exon data file is loaded you can select genes, which can map to specific
chromosome regions. RNA sequencing based data has a data type alias of
Quantification-Exon.

A RNASeq exon quantification file is a tabular, text-based, tab-separated dataset, with
a single header row stating the column names. The file consists of the following
columns:

■ barcode: Identifies the sample. This column may or may not be used by the loader.
For ODB v3.0, only files with this column can be loaded.

■ exon: Provides standard chromosome token: chr1-chr22, chrX, chrY, chrM,
followed by a coordinate pair, strand indicated with +/-, for example,
chr1:12227:-,chr1:12595:+

■ raw_counts: Stores raw read counts in positive floating point values or a zero, if
unavailable.

■ median_length_normalized: A normalized region length calculation in positive
float or zero.

■ RPKM: (Reads Per Kilobaseq exon Model per million mapped reads) Calculated
expression intensity values in positive float or zero.

4.7.2 Data Load
The RNASeq Loader inserts data from an exon quantification file into the W_EHA_
RSLT_RNA_SEQ table.

The last four columns of a TCGA exon file are populated into the table mentioned
above. The EXON type file specifies a chromosome and range. This field will be parsed
to find the corresponding chromosome record, strand, and separate the start and end
positions. The actual value is stored in RESULT_EXON_NAME in W_EHA_RSLT_
RNA_SEQ for reference.

The table stores an additional FK value for SPECIES, DNA reference version to which
the results are mapped, and W_EHA_GENE table for each gene the reference mapping
associates to a record. If no such gene is found in the current reference, a '0' value is
added into the column. If the RPKM value for an input row is a null value (a blank, or
has the text 'null'), then it is skipped by the loader.

The execution call of the stored procedure ODB_RSLT_RNA_SEQ_UTIL.process_tcga_
rna_seq()is designed in one of the script files (load_tcga_rna_seq.sql). This stored
procedure accepts FILE NAME, ORACLE DIRECTYORY OBJECT, SPECIES NAME,
STUDY NAME, Reference Version as mandatory input parameters, and DATA
SOURCE, SPECIMEN VENDOR, File Flag, Preprocess directory, Preprocess File, Data
File Path, DBFS Store, Alternate file location (ftp location or http location), Read Size as
optional input parameters.

This stored procedure creates an external table dynamically and uploads data from the
source file into it. External tables let Oracle query data that is stored outside the
database in flat files.

https://wiki.nci.nih.gov/display/TCGA/RNASeq+Data+Format+Specification#RNASeqDataFormatSpecification-Datafiles

RNA-Seq Loader

4-34 Oracle Health Sciences Omics Data Bank Programmer’s Guide

Only one external table is created dynamically and holds the complete result data.
There is one bulk insert statement which inserts data into the W_EHA_RSLT_RNA_
SEQ table. The query uses the two inline views, one of which computes the gene WID
and the other computes the start position, end position, chromosome WID, strand,
row_count, median_length columns. These two inline views are then joined to
populate the W_EHA_RSLT_RNA_SEQ table.

4.7.2.1 Data File
The Windows batch file of the RNA-seq loader requires an Oracle Wallet to be set up
to run correctly.

Specimen number -

A valid specimen number that is either provided by the user or retrieved from the data
file (the "barcode" column). It links the result records by using the specimen to the
associated external datasource given in the previous parameter. If the Datasource is
CDM or CDM_PATIENT, then this value should be present for a record in W_EHA_
SPECIMEN_PATIENT_H table under SPECIMEN_NUMBER. If the datasource is
CDM_SUBJECT, then this value should be present for a record in W_EHA_
SPECIMEN_SUBJECT_H table.

Following is the table mapping of RNASeq exon result file:

Note: The result types, and mainly the identifiers used in the first
column are different for TCGA-Exon and TCGA-Gene. Additional
columns specified to hold gene result record identifiers have been
created, which remain empty as these are not filled by the exon loader.
This is because gene record identifiers have a different querying
requirement and are therefore separated in the table from the columns
that are populated with exon result-identifiers. The remaining column
fields (RPKM, median length, raw count) are common for both
formats.

Note: In Linux, it is not required to use Homo sapiens within "". That
requirement is only for Windows.

Column Name in
Result File Table and Column Name in ODB Description

exon W_EHA_RSLT_RNA_
SEQ.CHROMOSOME_WID

W_EHA_RSLT_RNA_
SEQ.START_POSITION

W_EHA_RSLT_RNA_SEQ.END_
POSITION

W_EHA_RSLT_RNA_
SEQ.STRAND

W_EHA_RSLT_RNA_
SEQ.RESULT_EXON_NAME

The column contains values in the
following format:

'<chromosome>:<absolute start
position>-<absolute end
position>:<strand>'

The loader parses each value and
populates data in the respective
fields. The chromosome value is
looked up in W_EHA_
CHROMOSOME for its ROW_
WID value to populate
CHROMOSOME_WID. The entire
value is place in RESULT_EXON_
NAME.

raw_counts W_EHA_RSLT_RNA_SEQ. RAW_
COUNTS

Raw Read counts gives a positive
floating point or zero.

RNA-Seq Loader

Loaders for Result Data 4-35

The barcode column in the file is optionally used to identify the sample when the
sample number is not passed to the loader as an argument. The value from the second
row (first after the header) is then taken as the specimen number.

4.7.3 Command-Line Argument List

Name
TCGA_RNA_SEQ_loader.sh - load records

Synopsis
TCGA_RNA_SEQ_loader.sh -help

TCGA_RNA_SEQ_loader.sh <...options>

Description
Validates input options and calls the loader script load_tcga_rna_seq.sql#odb_rslt_
rna_seq_util.process_tcga_rna_seq

Options
(*) required

-db_wallet* <VARCHAR2> (Required unless the -db_conn/-db_user combination
is used to log into the database)

Oracle wallet name, see Section 2.2, "Setting Up an Oracle Wallet"

-db_conn* <VARCHAR2> (required if -db_wallet is not provided)

Oracle connection string that is,

 "(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=127.0.0.1)(PORT=1521))(CONNECT_
DATA=(SID=XE)))"

-db_user* <VARCHAR2> (required if -db_conn is provided)

ODB user name for the Database connection.

-check_version <NUMBER>

Run check version (1=yes|0=no) [default: 0]

-check_version_non_i <NUMBER>

Run check version in non-interactive mode (1=yes|0=no) [default: 1]

-log_level <VARCHAR2>

Set log level TRACE, DEBUG, INFO, WARNING, ERROR [default: INFO]

median_length_
normalized

W_EHA_RSLT_RNA_SEQ.
MEDIAN_LENGTH

Calculated average normalized
median length of the exon region
for which an RPKM count if
generated. Stores a positive float
or zero.

RPKM W_EHA_RSLT_RNA_SEQ.RPKM Reads Per Kilobaseq exon Model
per million mapped reads. Stores a
positive float or zero.

Column Name in
Result File Table and Column Name in ODB Description

RNA-Seq Loader

4-36 Oracle Health Sciences Omics Data Bank Programmer’s Guide

-print_summary <NUMBER>

Print summary (1=yes|0=no) [default: 1]

-data_file* <VARCHAR2>

Data file name - Oracle external table LOCATION

-data_directory* <VARCHAR2>

Oracle directory object - Oracle external table DIRECTORY, see Section 2.1, "Setting Up
a Directory Object"

-species_name* <VARCHAR2>

Species name defined in W_EHA_SPECIES, that is, for humans "Homo sapiens"

-study_name* <VARCHAR2>

Study name defined in W_EHA_RSLT_STUDY.RESULT_STUDY_NAME

-datasource_name* <VARCHAR2>

Datasource name defined in W_EHA_DATASOURCE.DATASOURCE_NM [default:
CDM]

-specimen_number <VARCHAR2>

Specimen number - Identification number of the specimen for which the genomic
result file is being loaded. If CDM is referenced, this value should be defined in W_
EHA_SPECIMEN_PATIENT_H.SPECIMEN_NUMBER. If the specimen number
argument is missing or is null (""), the value from the second row (first after the
header) in the "barcode" column of the data file is used as the specimen number.

-specimen_vendor* <VARCHAR2>

Specimen vendor - Sample vendor number of the specimen with genomic result data.
If CDM is referenced, this value should be defined in the W_EHA_SPECIMEN_
PATIENT_H.SPECIMEN_VENDOR_NUMBER

-reference_version <VARCHAR2>

"DNA" reference version label defined in W_EHA_VERSION.VERSION_LABEL

-file_flg* <CHAR>

File flag (E=external|S=copy to secure data file directory) [default: E]

-preprocess_dir <VARCHAR2>

Preprocess directory - Oracle external table PREPROCESSOR [default: NULL]

-preprocess_file <VARCHAR2>

Preprocess file - Oracle external table PREPROCESSOR [default: NULL]

-data_file_path <VARCHAR2>

File system path to secure data file directory [default: NULL]

-dbfs_store <VARCHAR2>

Database file system store [default: NULL]

-alt_file_loc <VARCHAR2>

Alternate file location, link that is, ftp:location, http:location [default: NULL]

-read_size <NUMBER>

Read size in bytes - Oracle external table READSIZE [default: NULL]

File Specimen Loader and File Lineage Linker

Loaders for Result Data 4-37

-data_file_dir <VARCHAR2>

File system path to Oracle directory object [default: NULL]

-File_version (varchar2) [default: NULL]

File Version of a result file.

4.7.4 Examples
UNIX

$ sh TCGA_RNA_SEQ_loader.sh -db_wallet odb_user -data_file "summary_
TCGA-AB-2803-03A-01T-0734-13.exon.quantification.txt" -data_directory
"ODB_LOAD" -species_name "Homo sapiens" -study_name "STUDY1" -datasource_
name "CDM" -specimen_number "RNA01" -specimen_vendor "vendor1" -reference_
version "GRCh37.p8" -file_flg "E" -read_size ''-file_version '3.1.4.0'

Windows

C:\> TCGA_RNA_SEQ_loader.bat -db_wallet odb_user -data_file "summary_
TCGA-AB-2803-03A-01T-0734-13.exon.quantification.txt" -data_directory
"ODB_LOAD" -species_name "Homo sapiens" -study_name "STUDY1" -datasource_
name "CDM" -specimen_number "RNA01" -specimen_vendor "vendor1" -reference_
version "GRCh37.p8" -file_flg "E" –file_version '3.1.4.0'

4.8 File Specimen Loader and File Lineage Linker
File Lineage Linker facilitates associating file records with each other (each association,
a File Link, is directional with one file being a parent and the other a child. The user
decides which file is the parent and which the child when running the File Lineage
Linker). Another loader, File-Specimen Loader, is used to create file records for
low-level (or other) files which have no real loader provided in ODB. These files can
then be linked to other files or to each other. This loader also permits associating files
with specimens.

4.8.1 File-Specimen Loader
The File-Specimen Loader creates records in the W_EHA_FILE table, representing files
not loaded by any of the loaders provided in ODB. This permits creating records for
files of unsupported types, such as BAM and other low level files. These records can
be then linked with other file records (such as VCF files), to provide lineage
associations. The File-Specimen Loader can also associate new or existing file records
with specimen records.

The loader can be run in two different modes. In one mode, it creates a new File record
and associates it with at least one specimen. In this case, provide a file name and data
directory. In the other mode, an existing File record is associated with one or more
specimen. In this mode, the only required arguments (besides the connection
arguments) are the File URI and the Specimen Number(s) and Vendor. The second
mode is distinguished by using the -append_specimen 1 argument.

Note: The File Specimen Loader can create a file record for any File
Type defined in the W_EHA_FILE_TYPE table, including file types
supported by "real" loaders, such as VCF, CNV, and so on. It will not,
however, load the file's contents into the database. Therefore, it should
not be used for files supported by the provided loaders.

File Specimen Loader and File Lineage Linker

4-38 Oracle Health Sciences Omics Data Bank Programmer’s Guide

In both modes, at least one specimen must be specified. Specimen numbers are
available as a delimited string (the default delimiter is comma, but there is an
argument that lets you specify a different delimiter), and there can be any number of
items in it. However, only one Specimen Vendor number can be supplied, so that all
specimen associated with a file in one run of this Loader should share the same
Specimen Vendor Number. Subsequent runs in the Append Specimen mode can be
used to associate specimen with other Specimen Vendor Number(s) with the same file.

The command-line arguments for the File-Specimen Loader are as follows:

Name
File_specimen_linker.sh

Synopsis
File_specimen_linker.sh -help

File_specimen_linker.sh <...options>

Description
Validates input options and calls the loader script

load_file_spec.sql#odb_rslt_file_spec_util.process_file_spec

Options
(*) denotes that it is required

■ Oracle wallet name, see Section 2.2, "Setting Up an Oracle Wallet"

-db_wallet* <VARCHAR2>
Required, unless the -db_conn/-db_user combination is used to log into the
database

■ Oracle connection string that is,

"(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=127.0.0.1)(PORT=1521))
(CO NNECT_DATA=(SID=XE)))"

-db_conn* <VARCHAR2>
Required if -db_wallet is not provided

■ ODB user name for the Database connection

-db_user* <VARCHAR2>
Required if -db_conn is provided

■ Set log level TRACE, DEBUG, INFO, WARNING, ERROR [default: INFO]

-log_level <VARCHAR2>
■ Print summary (1=yes|0=no) [default: 0]

-print_summary <NUMBER>
■ Data file name - Oracle external table LOCATION

-data_file* <VARCHAR2>
Required if loading a new file

■ Oracle directory object: Oracle external table DIRECTORY. For information, see
Section 2.1, "Setting Up a Directory Object".

-data_directory* <VARCHAR2>
required if loading a new file

File Specimen Loader and File Lineage Linker

Loaders for Result Data 4-39

■ Datasource name defined in W_EHA_DATASOURCE.DATASOURCE_NM
[default: CDM]

-datasource_name* <VARCHAR2>
■ Specimen vendor: Sample vendor number of specimens with genomic result data.

If CDM is referenced, this value should be defined in the W_EHA_SPECIMEN_
PATIENT_H.SPECIMEN_VENDOR_NUMBER

-specimen_vendor* <VARCHAR2>
■ Specimen numbers: A delimited list of identification numbers of specimens to be

associated with the newly or previously loaded file. The default delimiter is
comma, if this is not acceptable (for example, if one or more Specimen Numbers
contain comma(s)), an alternative single-character delimiter can be defined using
the -delimiter_char <CHAR> argument.

-specimen_numbers* <VARCHAR2>
■ File flag (E=external|S=copy to secure data file directory) [default: E]

-file_flg <CHAR>
■ File system path to secure data file directory

-data_file_path <VARCHAR2>
■ Database file system store

-dbfs_store <VARCHAR2>
■ Alternate file location link that is, ftp:location, http:location

-alt_file_loc <VARCHAR2>
■ File system path to Oracle directory object

-data_file_dir <VARCHAR2>
■ URI (unique resource identifier) for the file

-file_uri* <VARCHAR2>
Required, if appending associated specimen to an already loaded file. Optional, if
a new file is being loaded

■ The file type of the new file being loaded (the type must exist in the W_EHA_
FILE_TYPE table)

-file_type* <VARCHAR2>
Mandatory, if loading a new file

■ The file type version of the new file being loaded (the version must exist in the W_
EHA_FILE_TYPE table, and the file type of the record must match the value of the
-file_type argument)

-file_version <VARCHAR2>
■ Sets the loader mode (1=append specimen associations to an already loaded

files|0=load a new file) [default: 0]

-append_specimen <NUMBER>
■ Character to use as a delimiter when parsing the -specimen_numbers value

[default: comma]

-delimiter_char <CHAR>

Examples
■ UNIX: Loading a new file

$ sh File_specimen_linker.sh -db_wallet odb_user -data_file "File020113.bam"
-file_uri "MYFILE1" -data_directory "ODB_LOAD"
-datasource_name "CDM" -specimen_numbers "Spec 1,Spec 2,Spec 3"
-specimen_vendor "vendor1" -file_flg "E" -file_type "BAM" -file_version "1.4"

File Specimen Loader and File Lineage Linker

4-40 Oracle Health Sciences Omics Data Bank Programmer’s Guide

■ Windows: Loading a new file

C:\> File_specimen_linker.bat -db_wallet odb_user -data_file "File020113.bam"
-file_uri "MYFILE1" -data_directory "ODB_LOAD"
-datasource_name "CDM" -specimen_numbers "Spec 1,Spec 2,Spec 3"
-specimen_vendor "vendor1" -file_flg "E" -file_type "BAM" -file_version "1.4"

■ UNIX: Appending specimen to an already loaded file

$ sh File_specimen_linker.sh -db_wallet odb_user -file_uri "MYFILE1" -append_
specimen 1 -datasource_name "CDM" -specimen_numbers "Spec 4,Spec 5" -specimen_
vendor "vendor1"

■ Windows: Appending specimen to an already loaded file

C:\> File_specimen_linker.bat -db_wallet odb_user -file_uri "MYFILE1" -append_
specimen 1 -datasource_name "CDM" -specimen_numbers "Spec 4,Spec 5" -specimen_
vendor "vendor1"

4.8.2 File Lineage Linker
The File Lineage Linker creates a directional association between two files (W_EHA_
FILE records), in which one file is a parent and the other a child. The user decides
which file should be the child, and which the parent. The association record is created
(unless it already exists) in the W_EHA_FILE_LINK table.

Normally, the files have to be associated with at least one common specimen to be
linked. The File Lineage Linker verifies this before creating a link. However, this
requirement can be overridden by using the -force_link 1 argument.

The File Lineage Linker requires that the parent and child files are identified by their
file URIs. This ensures that not more than one file link is created every time the Linker
runs.

The command-line arguments for the File-Lineage Linker are as follows:

Name
File_lineage_linker.sh

Synopsis
File_lineage_linker.sh -help

File_lineage_linker.sh <...options>

Description
Validates input options and calls the loader script load_link.sql#

odb_rslt_link_util.process_link

Options
(*) denotes that it is required

■ Oracle wallet name, see Section 2.2, "Setting Up an Oracle Wallet"

-db_wallet* <VARCHAR2>
Required, unless the -db_conn/-db_user combination is used to log into the
database

■ Oracle connection string that is,

"(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=127.0.0.1)(PORT=1521))
(CO NNECT_DATA=(SID=XE)))"

Copy Number Variation Loader

Loaders for Result Data 4-41

-db_conn* <VARCHAR2>
Required if -db_wallet is not provided

■ ODB user name for the Database connection

-db_user* <VARCHAR2>
Required if -db_conn is provided

■ Set log level TRACE, DEBUG, INFO, WARNING, ERROR [default: INFO]

-log_level <VARCHAR2>
■ Print summary (1=yes|0=no) [default: 0]

-print_summary <NUMBER>
■ The File URI of the child file in the link

-child_file_uri* <VARCHAR2>
■ The File URI of the parent file in the link

-parent_file_uri* <VARCHAR2>
■ Allow the files to be linked even if they have no associated specimen in common

(1=yes|0=no) [default: 0]

-force_link <NUMBER>

Examples
■ UNIX

$ sh File_lineage_linker.sh -db_wallet odb_user -parent_file_uri "MYFILE1"
-child_file_uri "MYFILE2" -force_link 1

■ Windows

C:\> File_lineage_linker.bat -db_wallet odb_user -parent_file_uri "MYFILE1"
-child_file_uri "MYFILE2" -force_link 1

4.9 Copy Number Variation Loader

4.9.1 Functional Description
The Copy Number Variation (CNV) loader loads data from TCGA belonging to
Affymetrix Genome-Wide Human SNP Array 6.0 platform. The input file should
contain columns in the following order for the loader to perform correctly:

1. Sample

2. Chromosome

3. Start

4. End

5. Num_Probes

6. Segment_Mean

An extract of the input CNV file is shown in the table:

Copy Number Variation Loader

4-42 Oracle Health Sciences Omics Data Bank Programmer’s Guide

4.9.2 Data Load
The execution call of the stored procedure odb_rslt_cnv_util. process_cnv_nbr_
var() is designed in one of the script files (load_cnv.sql). This stored procedure accepts
FILE NAME, ORACLE DIRECTORY OBJECT, SPECIES NAME,STUDY,
DATASOUCRE NAME, SPECIMEN VENDOR, FILE FLAG (External or Secured),
DBFS_STORE, DNA_VERSION, and a few other input parameters.

It creates an external table and uploads data from the source file into it. It creates cnv_
data_!!SEQ!! as an external table, which stores the complete result data. This table
maps all the fields existing in the result file.

There is a single bulk insert statement which inserts records into the W_EHA_STG_
COPY_NBR_VAR table.

A select statement, which parses the data from the external table, utilizes an inline
query which gets the dataset of gene segment records. The query looks up the dataset
returned from the inline query and checks if the start position of the result file is less
than or equal to the end position of (a gene segment) + (start position of DNA source).
It also checks if the End position of result file is greater than or equal to the (start
position of the gene segment) + (start position of DNA source). The datasets of both
inline queries are then outer joined with the ROW_WID of external table lookup for
GENE_WID, and records are inserted into the W_EHA_STG_COPY_NBR_VAR table.

The loader associates this data with the FILE_TYPE_CODE 'Genome_Wide_SNP_6' in
W_EHA_FILE_TYPE table to distinguish it.

Sample Chromosome Start End Num_Probes Segment_Mean

JOUAL_p_TCGA_b96_
SNP_N_
GenomeWideSNP_6_
A01_748020

1 51598 219036 22 0.8546

JOUAL_p_TCGA_b96_
SNP_N_
GenomeWideSNP_6_
A01_748020

1 219482 1176387 120 0.0513

JOUAL_p_TCGA_b96_
SNP_N_
GenomeWideSNP_6_
A01_748020

1 1176449 1243413 47 0.623

JOUAL_p_TCGA_b96_
SNP_N_
GenomeWideSNP_6_
A01_748020

1 1243440 5290540 2132 0.0167

JOUAL_p_TCGA_b96_
SNP_N_
GenomeWideSNP_6_
A01_748020

1 5291209 5308749 6 0.6214

JOUAL_p_TCGA_b96_
SNP_N_
GenomeWideSNP_6_
A01_748020

1 5308775 9230624 2368 -0.0261

Note: In the above external table, the !!SEQ!! string is replaced by
ETL_PROC_ID at run time.

Copy Number Variation Loader

Loaders for Result Data 4-43

4.9.3 Command-Line Argument List

Name
CNV_loader.sh - load records

Synopsis
CNV_loader.sh -help

CNV_loader.sh <...options>

Description
Validates input options and calls the loader script load_cnv.sql#odb_rslt_cnv_
util.process_cnv_nbr_var

Options
(*) required

-db_wallet* <VARCHAR2> (Required, unless the -db_conn/-db_user combination
is used to log into the database)

Oracle wallet name, see Section 2.2, "Setting Up an Oracle Wallet"

-db_conn* <VARCHAR2> (required if -db_wallet is not provided)

Oracle connection string that is,

"(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=127.0.0.1)(PORT=1521))(CONNECT_
DATA=(SID=XE)))"

-db_user* <VARCHAR2> (required if -db_conn is provided)

ODB user name for the Database connection.

-check_version <NUMBER>

Run check version (1=yes|0=no) [default: 0]

-check_version_non_i <NUMBER>

Run check version in non-interactive mode (1=yes|0=no) [default: 1]

-log_level <VARCHAR2>

Set log level TRACE, DEBUG, INFO, WARNING, ERROR [default: INFO]

-print_summary <NUMBER>

Print summary (1=yes|0=no) [default: 0]

-data_file* <VARCHAR2>

Data file name - Oracle external table LOCATION

-data_directory* <VARCHAR2>

Oracle directory object - Oracle external table DIRECTORY, see Section 2.1, "Setting Up
a Directory Object"

-species_name* <VARCHAR2>

Note: The batch file requires an Oracle Wallet to be set up to run
correctly.

Copy Number Variation Loader

4-44 Oracle Health Sciences Omics Data Bank Programmer’s Guide

Species name defined in W_EHA_SPECIES, that is, for humans "Homo sapiens"

-study_name* <VARCHAR2>

Study name defined in W_EHA_RSLT_STUDY.RESULT_STUDY_NAME

-datasource_name* <VARCHAR2>

Datasource name defined in W_EHA_DATASOURCE.DATASOURCE_NM [default:
CDM]

-specimen_number <VARCHAR2>

Specimen number - Identification number of the specimen for which the genomic
result file is being loaded. If CDM is referenced, this value should be defined in W_
EHA_SPECIMEN_PATIENT_H.SPECIMEN_NUMBER. If the specimen number is not
passed on the command-line, or is passed as "", the value in the second (first after the
header) row in the first column ("sample") in the file will be used as the Specimen
Number.

-specimen_vendor* <VARCHAR2>

Specimen vendor - Sample vendor number of the specimen with genomic result data.
If CDM is referenced, this value should be defined in the W_EHA_SPECIMEN_
PATIENT_H.SPECIMEN_VENDOR_NUMBER

-reference_version <VARCHAR2>

"DNA" reference version label defined in W_EHA_VERSION.VERSION_LABEL

-file_flg* <CHAR>

File flag (E=external|S=copy to secure data file directory) [default: E]

-preprocess_dir <VARCHAR2>

Preprocess directory - Oracle external table PREPROCESSOR

-preprocess_file <VARCHAR2>

Preprocess file - Oracle external table PREPROCESSOR

-data_file_path <VARCHAR2>

File system path to secure data file directory

-dbfs_store <VARCHAR2>

Database file system store

-alt_file_loc <VARCHAR2>

Alternate file location link that is, ftp:location, http:location

-read_size <NUMBER>

Read size in bytes - Oracle external table READSIZE

-data_file_dir <VARCHAR2>

File system path to Oracle directory object

4.9.4 Examples
UNIX

$ sh CNV_loader.sh -db_wallet odb_user -data_file "JOUAL_p_TCGA_b96_SNP_N_
GenomeWideSNP_6_A01_748020.hg19.seg.txt" -data_directory "ODB_LOAD"
-species_name "Homo sapiens" -study_name "STUDY1" -datasource_name "CDM"

Single Channel Gene Expression Loader

Loaders for Result Data 4-45

-specimen_number "JOUAL_p_TCGA_b96_SNP_N_GenomeWideSNP_6_A01_748020"
-specimen_vendor "vendor1" -reference_version "GRCh37.p8" -file_flg "E"
-read_size ''

Windows

C:\> CNV_loader.bat -db_wallet odb_user -data_file "JOUAL_p_TCGA_b96_SNP_
N_GenomeWideSNP_6_A01_748020.hg19.seg.txt" -data_directory "ODB_LOAD"
-species_name "Homo sapiens" -study_name "STUDY1" -datasource_name "CDM"
-specimen_number "JOUAL_p_TCGA_b96_SNP_N_GenomeWideSNP_6_A01_748020"
-specimen_vendor "vendor1" -reference_version "GRCh37.p8" -file_flg "E"

4.10 Single Channel Gene Expression Loader

4.10.1 Functional Description
The single channel gene expression loader loads gene expression data into the W_
EHA_RSLT_GENE_EXP table. The loader begins with loading all the hybridization
sets (consisting of intensity, call and P-value) from the input file into an intermediary
staging table W_EHA_STG_GENE_EXP.

While reading from the file, it assumes that there are a maximum of 15 hybridization
sets, which translates to a maximum of 45 columns. If there are fewer columns, the
loader uses empty fillers in the staging table for the unavailable hybridization sets. For
each record from the staging table, it verifies if the probe name exists in the W_EHA_
PROBE table along with the matching version and species ID, which are passed as
input parameters.

If a match is found, the loader inserts all the hybridization sets available for that record
into W_EHA_RSLT_GENE_EXP table, excluding the empty fillers. If the probe name
does not exist in the W_EHA_PROBE table, the loader skips that record. If the probe
exists, but with non-matching version and (or) species ID, the loader logs a warning
into W_EHA_RSLT_LOG table, with a message that version and (or) species do not
match.

The W_EHA_RSLT_LOG table contains error records if records were not loaded
successfully into the target tables. If an input row intensity value is a null value (or
blank, or has the text null), then the loader skips this row.

4.10.2 Data Load
The gene expression loader primarily loads into the W_EHA_RSLT_GENE_EXP table.
It also updates two aggregate tables, W_EHA_RSLT_GXP_HYBRID_AGG and W_
EHA_RSLT_GXP_PROBE_AGG. To run the loader, use the gene_expression_loader.bat
file in Windows or the gene_expression_loader.sh file in Linux.

Note: An Oracle Wallet must be set up before the batch files can be
run successfully.

Note: The gene expression loader assumes that probe loader (for
details, see Section 3.6, "Probe Loader") has already populated W_
EHA_PROBE table with probe names corresponding to the genes.

Single Channel Gene Expression Loader

4-46 Oracle Health Sciences Omics Data Bank Programmer’s Guide

The input file for this loader should contain normalized intensity values, and optional
inputs of present or absent calls and P-value (such as the output of Affymetrix's MAS5
algorithm). The input file permits multiple hybridization intensity data in a tabular
format.

4.10.2.1 Assumptions for Data File
Following are the assumptions for the Gene Expression Loader data file:

■ The file is tab delimited.

■ The first row is always the header.

■ The first column is named DATA.

■ Each hybridization present in the data file should have three columns in the
following order:

■ Intensity - The header value should be the Hybridization Name

■ Call

■ P-Value

■ The header of the first column for each hybridization should contain only the
hybridization name. The values in this column are the hybridization intensity
values.

■ The total size of the header in the data file should not be greater than 32000
characters.

4.10.2.2 Mappings for Gene Expression Loader
Following are the table mappings for gene expression loader:

4.10.2.3 Aggregate Tables
There are two tables introduced in version 3.0, namely W_EHA_RSLT_GXP_HYBRID_
AGG and W_EHA_RSLT_GXP_PROBE_AGG. These tables are populated with
calculated aggregate values for the normalized intensity column of result file. The
aggregates are: median (MEDIAN), average (AVG), minimum (MIN), maximum
(MAX), Standard Deviation (STDDEV), and Variance (VARIANCE). The data in W_
EHA_RSLT_GXP_HYBRID_AGG is aggregated over hybridizations, and in W_EHA_
RSLT_GXP_PROBE_AGG over probes.

4.10.3 Command-Line Argument List

Name
single_channel_gene_expr_loader.sh - load records

Data File W_EHA_RSLT_GENE_EXP

DATA There will be a look up in W_EHA_PROBE,
corresponding ROW_WID will be populated in W_
EHA_RSLT_GENE_EXP.PROBE_WID

HYBRIDIZATION - Header W_EHA_RSLT_GENE_EXP.HYBRIDIZATION_NAME

HYBRIDIZATION - Data Values W_EHA_RSLT_GENE_EXP.INTENSITY

HYBRIDIZATION_Call W_EHA_RSLT_GENE_EXP.CALL

HYBRIDIZATION_P-VALUE W_EHA_RSLT_GENE_EXP.P_VALUE

Single Channel Gene Expression Loader

Loaders for Result Data 4-47

Synopsis
single_channel_gene_expr_loader.sh -help

single_channel_gene_expr_loader.sh <...options>

Description
Validates input options and calls the loader script load_single_channel_gene_
expr.sql#odb_rslt_single_channel_util.process_single_channel

Options
(*) required

-db_wallet* <VARCHAR2>

Oracle wallet name, see Section 2.2, "Setting Up an Oracle Wallet"

-db_conn* <VARCHAR2> (required if -db_wallet is not provided)

Oracle connection string that is,

 "(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=127.0.0.1)(PORT=1521))(CONNECT_
DATA=(SID=XE)))"

-db_user* <VARCHAR2> (required if -db_conn is provided)

ODB user name for the Database connection.

-check_version <NUMBER>

Run check version (1=yes|0=no) [default: 0]

-check_version_non_i <NUMBER>

Run check version in non-interactive mode (1=yes|0=no) [default: 1]

-log_level <VARCHAR2>

Set log level TRACE, DEBUG, INFO, WARNING, ERROR [default: INFO]

-print_summary <NUMBER>

Print summary (1=yes|0=no) [default: 0]

-data_file* <VARCHAR2>

Data file name - Oracle external table LOCATION

-data_directory* <VARCHAR2>

Oracle directory object - Oracle external table DIRECTORY, see Section 2.1, "Setting Up
a Directory Object"

-species_name* <VARCHAR2>

Species name defined in W_EHA_SPECIES that is, For humans "Homo sapiens"

-study_name* <VARCHAR2>

Study name defined in W_EHA_RSLT_STUDY.RESULT_STUDY_NAME

-datasource_name* <VARCHAR2>

Datasource name defined in W_EHA_DATASOURCE.DATASOURCE_NM [default:
CDM]

-specimen_number* <VARCHAR2>

Single Channel Gene Expression Loader

4-48 Oracle Health Sciences Omics Data Bank Programmer’s Guide

Specimen number - Identification number of specimen for which the genomic result
file is being loaded. If CDM is referenced, this value should be defined in W_EHA_
SPECIMEN_PATIENT_H.SPECIMEN_NUMBER

-specimen_vendor* <VARCHAR2>

Specimen vendor - Sample vendor number of specimen with genomic result data. If
CDM is referenced, this value should be defined in the W_EHA_SPECIMEN_
PATIENT_H.SPECIMEN_VENDOR_NUMBER

-reference_version <VARCHAR2>

"DNA" reference version label defined in W_EHA_VERSION.VERSION_LABEL

-file_flg* <CHAR>

File flag (E=external|S=copy to secure data file directory) [default: E]

-preprocess_dir <VARCHAR2>

Preprocess directory - Oracle external table PREPROCESSOR

-preprocess_file <VARCHAR2>

Preprocess file - Oracle external table PREPROCESSOR

-data_file_path <VARCHAR2>

File system path to secure data file directory

-dbfs_store <VARCHAR2>

Database file system store

-alt_file_loc <VARCHAR2>

Alternate file location link that is, ftp:location, http:location

-read_size <NUMBER>

Read size in bytes - Oracle external table READSIZE

-data_file_dir <VARCHAR2>

File system path to Oracle directory object

4.10.4 Examples
UNIX

$ sh single_channel_gene_expr_loader.sh -db_wallet odb_user -data_file
"mas5_expression_summary_part1.txt" -data_directory "ODB_LOAD" -species_
name "Homo sapiens" -study_name "STUDY1" -datasource_name "CDM" -specimen_
number "RNA01" -specimen_vendor "vendor1" -reference_version "GRCh37.p8"
-file_flg "E" -preprocess_dir "" -preprocess_file "" -data_file_path ""
-dbfs_store "" -alt_file_loc "" -read_size ""

Windows

C:\> single_channel_gene_expr_loader.bat -db_wallet odb_user -data_file
"mas5_expression_summary_part1.txt" -data_directory "ODB_LOAD" -species_
name "Homo sapiens" -study_name "STUDY1" -datasource_name "CDM" -specimen_
number "RNA01" -specimen_vendor "vendor1" -reference_version "GRCh37.p8"
-file_flg "E" -preprocess_dir "" -preprocess_file "" -data_file_path ""
-dbfs_store "" -alt_file_loc "" -read_size ""

Dual Channel Loader

Loaders for Result Data 4-49

4.11 Dual Channel Loader

4.11.1 Functional Description
The dual channel loader supports Agilent 244K Custom Gene Expression G4502A-07
platform specific Level-3 (Gene level) input files from TCGA. It inputs Level-3 result
data, which contains gene symbols and associated LOWESS log2 transformed ratio
gene expression values and loads it into the W_EHA_RSLT_2CHANNEL_GXP result
table.

ADF data with a specific user label links the Dual Channel data comprising genes with
the specific DNA Reference Version through the GENE_WID foreign key in the W_
EHA_RSLT_2CHANNEL_GXP table. Currently, for each Gene Symbol or Ratio input
from the file, the loader is set to generate a record for each GENE_WID value taken
from W_EHA_GENE_SEGMENT reference table where the genomic coordinates of the
corresponding Composite Name at least partially match the genomic coordinates of a
Gene Segment in the EMBL reference.

To correctly map the genomic coordinates of the result composite genes (using the
ADF file composite annotation loaded through the ADF Data Loader) to the EMBL
reference genome, the genomic reference version of the loaded EMBL release must
match the reference version of the ADF file. That is, the EMBL data loaded in ODB
must be the same genomic release as that given in the ADF file.

The ADF file data must be input into ODB, using the ADF data loader (and with the
same ADF User Label) before loading 2channel result data with this loader.

If the Log2 ratio value for an input row is a null value (a blank, or has the text 'null'),
then this row is skipped by the loader during the insert to the result table.

4.11.2 Data Load
The execution call of the stored procedure odb_rslt_dual_channel_util. process_
dual_channel() is designed in one of the script files (load_dual_channel.sql). This
stored procedure accepts FILE NAME, ORACLE DIRECTORY OBJECT, STUDY,
DATASOURCE NAME, SPECIMEN NAME, SPECIMEN VENDOR, SPECIES NAME,
(ADF) USER LABEL, (DNA) REFERENCE VERSION, FILE FLAG (External or Secure),
DBFS_STORE, DNA_VERSION, and a few other input parameters.

It creates an external table and uploads data from the source file into it. The stored
procedure creates dual_channel_data_!!SEQ!! as an external table. This external table
stores the complete result data. This table maps all the fields existing in the result file.

There is a single bulk insert statement written dynamically. This statement inserts the
record into the W_EHA_STG_2CHANNEL_GXP table.

A select statement which parses the data from the external table utilizes an inline
query which gets the dataset of gene segment records. The query looks up the dataset
returned from the inline query and checks whether the start position of the result file is
less than or equal to the end position of gene segment + start position of DNA source.
It will also check whether the End position of result file greater than or equal to start
position of gene segment + start position of DNA source. The dataset of both inline

Note: In the above external table, the !!SEQ!! string is replaced by
ETL_PROC_ID at the run time.

Dual Channel Loader

4-50 Oracle Health Sciences Omics Data Bank Programmer’s Guide

queries is then the outer join with the ROW_WID of external table to look up the
GENE_WID and populates the records in W_EHA_STG_2CHANNEL_GXP table.

4.11.3 Command Line Argument List

Name
dual_channel_gene_expr_loader.sh - load records

Synopsis
dual_channel_gene_expr_loader.sh -help

dual_channel_gene_expr_loader.sh <...options>

Description
Validates input options and calls the loader script load_dual_channel_gene_
expr.sql#odb_rslt_dual_channel_util.process_dual_channel

Options
(*) required

-db_wallet* <VARCHAR2>

Oracle wallet name, see Section 2.2, "Setting Up an Oracle Wallet"

-db_conn* <VARCHAR2> (required if -db_wallet is not provided)

Oracle connection string that is,

"(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=127.0.0.1)(PORT=1521))(CONNECT_
DATA=(SID=XE)))"

-db_user* <VARCHAR2> (required if -db_conn is provided)

ODB user name for the Database connection.

-check_version <NUMBER>

Run check version (1=yes|0=no) [default: 0]

-check_version_non_i <NUMBER>

Run check version in non-interactive mode (1=yes|0=no) [default: 1]

-log_level <VARCHAR2>

Set log level TRACE, DEBUG, INFO, WARNING, ERROR [default: INFO]

-print_summary <NUMBER>

Print summary (1=yes|0=no) [default: 0]

-data_file* <VARCHAR2>

Data file name - Oracle external table LOCATION

-data_directory* <VARCHAR2>

Oracle directory object - Oracle external table DIRECTORY, see Section 2.1, "Setting Up
a Directory Object"

Note: The batch file requires an Oracle Wallet to be set up to run
correctly.

Dual Channel Loader

Loaders for Result Data 4-51

-species_name* <VARCHAR2>

Species name defined in W_EHA_SPECIES that is, For humans "Homo sapiens"

-study_name* <VARCHAR2>

Study name defined in W_EHA_RSLT_STUDY.RESULT_STUDY_NAME

-datasource_name* <VARCHAR2>

Datasource name defined in W_EHA_DATASOURCE.DATASOURCE_NM [default:
CDM]

-specimen_number* <VARCHAR2>

Specimen number - Identification number of specimen for which the genomic result
file is being loaded. If CDM is referenced, this value should be defined in W_EHA_
SPECIMEN_PATIENT_H.SPECIMEN_NUMBER

-specimen_vendor* <VARCHAR2>

Specimen vendor - Sample vendor number of specimen with genomic result data. If
CDM is referenced, this value should be defined in the W_EHA_SPECIMEN_
PATIENT_H.SPECIMEN_VENDOR_NUMBER

-control_specimen* <VARCHAR2>

Control specimen

-user_label* <VARCHAR2>

User label (W_EHA_ADF.USER_LABEL) used to identify a composite record's source
ADF dataset, that is, AgilentG4502A_07_1

-reference_version <VARCHAR2>

"DNA" reference version label defined in W_EHA_VERSION.VERSION_LABEL

-file_flg* <CHAR>

File flag (E=external|S=copy to secure data file directory) [default: E]

-preprocess_dir <VARCHAR2>

Preprocess directory - Oracle external table PREPROCESSOR

-preprocess_file <VARCHAR2>

Preprocess file - Oracle external table PREPROCESSOR

-data_file_path <VARCHAR2>

File system path to secure data file directory

-dbfs_store <VARCHAR2>

Database file system store

-alt_file_loc <VARCHAR2>

Alternate file location link that is, ftp:location, http:location

-read_size <NUMBER>

Read size in bytes - Oracle external table READSIZE

-data_file_dir <VARCHAR2>

File system path to Oracle directory object

Quality Control Metadata Loader

4-52 Oracle Health Sciences Omics Data Bank Programmer’s Guide

4.11.4 Examples
UNIX

$ sh dual_channel_gene_expr_loader.sh -db_wallet odb_user -data_file
"dual_channel_summary.txt" -data_directory "ODB_LOAD" -species_name "Homo
sapiens" -study_name "STUDY1" -datasource_name "CDM" -specimen_number
"JOUAL_p_TCGA_b96_SNP_N_GenomeWideSNP_6_A01_748020" -specimen_vendor
"vendor1" -control_specimen "Stratagene Univeral Reference" -user_label
"AgilentG4502A_07_01" -reference_version "GRCh37.p8" -file_flg "E"
Windows

C:\> dual_channel_gene_expr_loader.bat -db_wallet odb_user -data_file
"dual_channel_summary.txt" -data_directory "ODB_LOAD" -species_name "Homo
sapiens" -study_name "STUDY1" -datasource_name "CDM" -specimen_number
"JOUAL_p_TCGA_b96_SNP_N_GenomeWideSNP_6_A01_748020" -specimen_vendor
"vendor1" -control_specimen "Stratagene Univeral Reference" -user_label
"AgilentG4502A_07_01" -reference_version "GRCh37.p8" -file_flg "E"

4.12 Quality Control Metadata Loader
The Quality Control Metadata Loader captures Specimen and Analysis metadata and
loads them into ODB. Although ODB provides standard %_QLFR suffixed tables that
can accommodate extensible metadata attributes as name or value pairs, it does not
support range queries. To provide such a feature, a table (W_EHA_QUALIFIER) is
created in ODB and two additional columns are appended to this and the
QLFR-suffixed tables, that store numeric and date metadata values. These columns are
populated only for tags that represent dates or numbers. The metadata input file is a
standard CSV file format, created by the user. A detailed description of this file is
provided below.

4.12.1 Functional Description
Two new tables provide context and improve qualifier search and display:

■ W_EHA_QLFR_CATEGORY: Deals with Qualifier categories group qualifiers into
distinct functional areas. Some category examples are:

– Run

– Analysis

– Analysis Component

– Loader

– Sample Preparation

– Specimen

■ W_EHA_QUALIFIER: Describes qualifiers used for all new %_QLFR tables. The
logical key is a combination of table name, qualifier tag name and qualifier
category (numeric, date, or character string). The table contains foreign keys to W_
EHA_UNIT_OF_MEASURE, thereby providing the option to name a unit of
measure for values, and W_EHA_QLFR_CATEGORY to store user defined
categories. W_EHA_QLFR_TABLE links to this table and stores the table names of
the %_QLFR suffixed table using a qualifier.

Each record loaded into the QUALIFIER table always has a QLFR_CHAR_VALUE
column populated with a reported value. Additionally, all numeric values are loaded
into QLFR_NUMB_VALUE column. All values for tag type date are loaded into QLFR_

Quality Control Metadata Loader

Loaders for Result Data 4-53

DATE_VALUE column. Both date and numeric values can be queried and sorted by
range. DISPLAY_ORDER and DISPLAY_NAME attributes provide additional means
to improve metadata reports. This QUALIFIER table also includes fields to support
units of measure. PREFERRED_UNIT is a flag that indicates whether a particular unit
is a preferred unit. The measurements that are not associated with preferred units can
be converted into preferred units using translation rules defined in the W_EHA_
QLFR_TRANSLATION table.

4.12.2 Data Load
The QC Metadata loader takes one or more CSV files as input and loads them into the
following tables:

■ w_eha_rslt_file_spec_qlfr

■ w_eha_rslt_spec_qlfr

■ w_eha_qualifier

■ w_eha_qlfr_table

■ w_eha_qlfr_category

■ w_eha_unit_of_measure

The execution call of the stored procedure ODB_RSLT_METADATA_UTIL.process_
metadata() is designed in one of the script files (load_metadata.sql). This stored
procedure accepts as input DATA FILE LIST, ORACLE DIRECTYORY OBJECT, DATA
SOURCE, SPECIMEN VENDOR, FILE FLAG, DATA FILE PATH, DBFS STORE, DATA
FORMAT, and READ SIZE as optional input parameters.

It creates an external table dynamically and uploads data from each source file in the
file list into it. This lets Oracle query data that is sourced from the flat files outside the
database. The procedure processes the external metadata and inserts it into a staging
table, W_EHA_QUALIFIER_STG. It then checks for the presence of each qualifier in
the W_EHA_QUALIFIER table before inserting new qualifiers into it. A specimen
lookup procedure is called and the process, based on the input field TABLE_NAME
value, adds records to W_EHA_RSLT_SPEC_QLFR and W_EHA_FILE_SPEC_QLFR,
linking the qualifier value to result data and file.

4.12.2.1 Data File
Each metadata file is a comma separated text file with the following fields:

Field Header Description

TABLE_NAME Target ODB qualifier table, this can be W_EHA_RSLT_
SPEC_QLFR, or W_EHA_RSLT_FILE_SPEC_QLFR

QLFR_CATEGORY_NAME Qualifier Category type

QLFR_TAG Qualifier tag type name

DISPLAY_NAME Display name to type

DISPLAY_ORDER Order of display

DATA_TYPE Value data type

UOM_NAME Unit of measure type

PREFERRED_UNIT -

SPECIMEN_NUMBER Specimen ID of qualifier

Quality Control Metadata Loader

4-54 Oracle Health Sciences Omics Data Bank Programmer’s Guide

The following table lists the sample content of a metadata file.

SPECIMEN_VENDOR_NUMBER Specimen vendor ID

SPECIMEN_DATA_SOURCE Data source for specimen lookup

FILE_URI Unique Identifier of specimen result file

QLFR_CHAR_VALUE Stores Character string based Qualifier values

QLFR_NUMB_VALUE Stores numerical qualifier values

QLFR_DATE_VALUE Store data formatted qualifier values

Table 4–3 Sample Content

TABLE_
NAME

QLFR_
CATEG
ORY_
NAME

QLFR_
TAG

DISP
LAY_
NAM
E

DI
SP
LA
Y_
O
RD
ER

DATA_
TYPE

UO
M_
NA
ME

PRE
FER
RED
_
UNI
T

SPECIME
N_
NUMBER

SPECI
MEN_
VEND
OR_
NUMB
ER

SPECIM
EN_
DATA_
SOURC
E

FIL
E_
UR
I

QLFR_
CHAR_
VALUE

QLF
R_
NU
MB
_
VAL
UE

QLF
R_
DAT
E_
VAL
UE

W_EHA_
RSLT_
SPEC_
QLFR

SAMPL
E_PREP

COLLE
CTION
_DATE

- - DATE - - TCGA-02-
0075-10A-0
1W

vendo
r3

CDM_
PATIENT

- 28-Aug
-13

- 8/28
/201
3
14:22

W_EHA_
RSLT_
SPEC_
QLFR

SAMPL
E_PREP

COLLE
CTION
_DATE

- - DATE - - TCGA-08-
0389-01A-0
1W

vendo
r3

CDM_
PATIENT

- 28-Aug
-13

- 8/28
/201
3
14:22

W_EHA_
RSLT_
SPEC_
QLFR

SAMPL
E_PREP

COLLE
CTION
_DATE

- - DATE - - TCGA-08-
0389-11A-0
1W

vendo
r3

CDM_
PATIENT

- 28-Aug
-13

- 8/28
/201
3
14:22

W_EHA_
RSLT_
SPEC_
QLFR

SAMPL
E_PREP

DNA_
CONC
(MG/
ML)

DNA
Conc
entrat
ion

1 NUMB
ER

mg/
ml

- TCGA-02-
0007-01A-0
1W

vendo
r3

CDM_
PATIENT

- .006
mg/ml

0.00
6

-

W_EHA_
RSLT_
SPEC_
QLFR

SAMPL
E_PREP

DNA_
CONC
(MG/
ML)

DNA
Conc
entrat
ion

1 NUMB
ER

mg/
ml

- TCGA-02-
0007-10A-0
1W

vendo
r3

CDM_
PATIENT

- .007
mg/ml

0.00
7

-

W_EHA_
RSLT_
SPEC_
QLFR

SAMPL
E_PREP

DNA_
CONC
(MG/
ML)

DNA
Conc
entrat
ion

1 NUMB
ER

mg/
ml

- TCGA-02-
0028-01A-0
1W

vendo
r3

CDM_
PATIENT

- .008
mg/ml

0.00
8

-

W_EHA_
RSLT_
SPEC_
QLFR

SAMPL
E_PREP

DNA_
CONC
(MG/
ML)

DNA
Conc
entrat
ion

1 NUMB
ER

mg/
ml

- TCGA-02-
0028-10A-0
1W

vendo
r3

CDM_
PATIENT

- .009
mg/ml

0.00
9

-

W_EHA_
RSLT_
FILE_
SPEC_
QLFR

RUN RUNID RunI
D

1 CHAR
ACTER

- - TCGA-08-
0390-01A-0
1W

vendo
r3

CDM_
PATIENT

AB
CD
EF
M
AF
1

120126_
SN316_
0202_19

- -

Field Header Description

Quality Control Metadata Loader

Loaders for Result Data 4-55

4.12.3 Command-Line Argument

Name
METADATA_loader.sh - load records

Synopsis
METADATA_loader.sh -help

METADATA_loader.sh <...options>

Description
Validates input options and calls the loader script load_metadata.sql# odb_rslt_
metadata_util.process_metadata

Options
(*) required

-db_wallet* <VARCHAR2> (required unless the -db_conn/-db_user combination is
used to log into the database)

Oracle wallet name, see Section 2.2, "Setting Up an Oracle Wallet"

-db_conn* <VARCHAR2> (required if -db_wallet is not provided)

Oracle connection string that is,

 "(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=127.0.0.1)(PORT=1521))(CO
NNECT_DATA=(SID=XE)))"

-db_user* <VARCHAR2> (required if -db_conn is provided)

ODB user name for the Database connection.

-check_version <NUMBER>

W_EHA_
RSLT_
FILE_
SPEC_
QLFR

RUN RUNID RunI
D

1 CHAR
ACTER

- - TCGA-08-
0390-11A-0
1W

vendo
r3

CDM_
PATIENT

AB
CD
EF
M
AF
1

120126_
SN316_
0202_20

- -

W_EHA_
RSLT_
FILE_
SPEC_
QLFR

RUN RUNID RunI
D

1 CHAR
ACTER

- - TCGA-08-
0390-01A-0
1W

vendo
r3

CDM_
PATIENT

AB
CD
EF
M
AF
1

120126_
SN316_
0202_21

- -

W_EHA_
RSLT_
FILE_
SPEC_
QLFR

RUN RUNID RunI
D

1 CHAR
ACTER

- - TCGA-08-
0390-10A-0
1W

vendo
r3

CDM_
PATIENT

AB
CD
EF
M
AF
1

120126_
SN316_
0202_22

- -

Table 4–3 (Cont.) Sample Content

TABLE_
NAME

QLFR_
CATEG
ORY_
NAME

QLFR_
TAG

DISP
LAY_
NAM
E

DI
SP
LA
Y_
O
RD
ER

DATA_
TYPE

UO
M_
NA
ME

PRE
FER
RED
_
UNI
T

SPECIME
N_
NUMBER

SPECI
MEN_
VEND
OR_
NUMB
ER

SPECIM
EN_
DATA_
SOURC
E

FIL
E_
UR
I

QLFR_
CHAR_
VALUE

QLF
R_
NU
MB
_
VAL
UE

QLF
R_
DAT
E_
VAL
UE

Quality Control Metadata Loader

4-56 Oracle Health Sciences Omics Data Bank Programmer’s Guide

Run check version (1=yes|0=no) [default: 0]

-check_version_non_i <NUMBER>

Run check version in non-interactive mode (1=yes|0=no) [default: 1]

-log_level <VARCHAR2>

Set log level TRACE, DEBUG, INFO, WARNING, ERROR [default: INFO]

-print_summary <NUMBER>

Print summary (1=yes|0=no) [default: 0]

-data_file_list* <VARCHAR2>,<VARCHAR2>…

A comma separated list of data file names - each an Oracle external table LOCATION

-data_directory* <VARCHAR2>

Oracle directory object - Oracle external table DIRECTORY, see Section 2.1, "Setting Up
a Directory Object"

-datasource_name* <VARCHAR2>

Datasource name defined in W_EHA_DATASOURCE.DATASOURCE_NM [default:
CDM]

-specimen_vendor* <VARCHAR2>

Specimen vendor - Sample vendor number of specimen with genomic result data. If
CDM is referenced, this value should be defined in the W_EHA_SPECIMEN_
PATIENT_H.SPECIMEN_VENDOR_NUMBER

-file_flg* <CHAR>

File flag (E=external|S=copy to secure data file directory) [default: E]

-data_file_path <VARCHAR2>

File system path to secure data file directory [default: NULL]

-dbfs_store <VARCHAR2>

Database file system store [default: NULL]

-date_format <VARCHAR2>

Format of the date data type file input field [default: 'YYYY-MM-DD HH24:MI:SS']

-read_size <NUMBER>

Read size in bytes - Oracle external table READSIZE [default: NULL]

-data_file_dir <VARCHAR2>

File system path to Oracle directory object [default: NULL]

4.12.4 Examples
UNIX

$ sh METADATA_loader.sh [-db_wallet odb_user -data_file_list "FILE_NOV_28_
2013_04.csv,FILE_AUG_28_2013_04.csv" -data_directory "ODB_LOAD"
-datasource_name "CDM_PATIENT" -specimen_vendor "vendor1" -file_flg "E"
-date_format "mm/dd/yyyy HH24:MI" -data_file_path "" -dbfs_store "" -read_
size ""

Windows

Typical Errors Associated with Result Loaders

Loaders for Result Data 4-57

C:\> METADATA_loader.bat -db_wallet odb_user -data_file_list "FILE_NOV_28_
2013_04.csv,FILE_AUG_28_2013_04.csv" -data_directory "ODB_LOAD"
-datasource_name "CDM" -specimen_vendor "vendor1" -file_flg "E" -date_
format "mm/dd/yyyy HH24:MI" -data_file_path "" -dbfs_store "" -read_size
""

4.13 Typical Errors Associated with Result Loaders
Errors have been observed while running various ODB loaders. The loader run aborts
prematurely with the following error message: ORA-01460 unimplemented or
unreasonable conversion requested.

Oracle recommends applying an RDBMS patch to the TRC database that fixes this bug.
See Oracle Support Bug 13099577 (ORA-1460 WHEN PARALLEL QUERY SERVERS
ARE USED) available here
https://mosemp.us.oracle.com/epmos/faces/BugDisplay?id=13099577 for details.

4.13.1 Errors Relevant to Sequencing Loads
For each loader, a new VARCHAR2 (100) variable is defined. This variable is set before
each and every SQL call to specify the context information. It is then used in standard
error logging where the RECORD_DETAIL column of the W_EHA_RSLT_LOG table is
populated with a simple context error message.

Some common error messages are

■ Generating ETL PROC ID

■ Verifying result file type and creating result file record

■ Verifying Species Name

■ Verifying Study Name

■ Processing Variant Staging records

■ Processing variant records

■ Processing result records

■ Dropping external tables

Examples of common error log records which are used in CGI, MAF, and VCF loaders
are shown in Table 4–4.

Table 4–4 Errors Generated while Loading Sequencing Files (CGI masterVar file used as example)

Column Name Description Examples

ROW_WID Record identifier -

RESULT_TYPE_NAME Result Type Name For CGI - CGI masterVar

SPECIES_NAME Species Name Homo sapiens

SPECIMEN_NUMBER Specimen Number parsed from the
comments section of file.

GS00706-DNA_C01

SPECIMEN_VENDOR_
NUMBER

Name of vendor passed as parameter with
batch file

For CGI: CGI

DATASOURCE_NM Data source Name CDM

https://mosemp.us.oracle.com/epmos/faces/BugDisplay?id=13099577

Typical Errors Associated with Result Loaders

4-58 Oracle Health Sciences Omics Data Bank Programmer’s Guide

4.13.2 VCF Loader Errors
The VCF or gVCF loader processes files in multiple passes. The loader creates 3
external tables.

■ If the process fails while processing the specimen specification table, an error
'Processing external specimen table for specimen headers' is logged in the w_eha_
rslt_log table.

■ If the process fails while creating the metadata external table, an error 'Processing
external table for metadata' is logged in the result log table.

■ If the process fails while creating qualifier records, an error 'Processing metadata
records(w_eha_file_load_qlfr)' is logged in the result log table.

■ If the process fails while retrieving specimen from the external table, an error
'Retrieving specimen numbers from external specimen table is logged in the result
log table.

■ If the loader attempts to load the file, which has more than 986 samples, then the
error 'File loaded cannot have more than 986 specimens is logged in the result log
table.

■ If the process fails while executing variant staging records, an error 'Processing
variant staging records (w_eha_variant_stg, w_eha_variant_x_stg)' is logged into
the result log table.

■ If the process fails while populating variant table from variant staging table, an
error 'Processing variant records(w_eha_variant, w_eha_variant_log)' is logged in
the result log table.

■ If the process fails while populating variant result records, an error 'Processing
result sequencing records (w_eha_stg_sequencing, w_eha_stg_sequencing_x, w_
eha_stg_struct_var) is logged in the result log table, and if it fails while processing
non variant records, an error 'Processing result sequencing records (w_eha_stg_
struct_var, w_eha_stg_sv_breakend, w_eha_stg_nocall, w_eha_stg_non_variant)'
is logged in the result log table.

■ If the process fails while populating conflict records, then an error 'Processing
result sequencing records(w_eha_stg_conflict)' is logged in the result log table.

■ If the loader processes the xref records and the process fails, then an error
'Processing variant xref records (w_eha_variant_xref)' is logged, if the process fails
while computing the nocall collapsing function then an error 'Collapsing result
nocall staging records (w_eha_rslt_nocall) is logged in the result log table.

■ If there are any non-standard datatype formats in the file, where instead of a
number a character is found for the datatype mapped by the loader, an 'Invalid
number' error is generated by the loader. To know the exact location of error in the
file, use '-validate_numbs Y' parameter in the VCF loader. This parameter will
determine if there is a character value instead of the expected numeric value and
would output the line number and Sample order number which has the issue.

ERROR_DESC Error message ORA-01403 NO DATA FOUND

RECORD_DETAIL Verifying Study Name -

ETL_PROC_WID Each load identifier. -

Table 4–4 (Cont.) Errors Generated while Loading Sequencing Files (CGI masterVar file used as example)

Column Name Description Examples

Typical Errors Associated with Result Loaders

Loaders for Result Data 4-59

■ Other possible errors are: 'Generating etl process id', 'Generating enterprise id',
Verifying result file type ({0}, {1}) and processing result file record(w_eha_file)'
'Verifying {0} reference version={1}', 'Verifying result type', 'Verifying datasource
name', 'Verifying species name', 'Verifying study name', 'Parsing global flex fields',
'Retrieving specimen ids', 'Getting flanking offset', 'Processing external data table'
and 'Dropping external tables'.

4.13.3 CGI Loader Errors
If the process fail while the loader is unable to verify the file type and version error
message 'verifying result file type ({type name}, {version}) and processing result file
record(w_eha_rslt_file)', is logged in the result log table.

4.13.4 MAF Loader Errors
Only one external table is created for MAF result data. If the process fails at this step,
an error 'Processing external data table' is logged into the w_eha_rslt_log table. A first
BULK insert statement creates a variant staging and specimen record. If the process
fails at this stage, an error 'Processing variant staging and specimen staging records
(w_eha_variant_stg, w_eha_maf_specimen, w_eha_maf_specimen_log)' is logged into
the result log table.

If the process fails while retrieving the specimen ID for a record from global temporary
table, an error 'Processing list of specimens' is logged into the result log table. If the
error occurs while processing variant staging records (which populates the w_eha_
variant table), an error 'Processing variant records (w_eha_variant, w_eha_variant_
log)' is logged into result log table.

If the process fails while executing the bulk insert statement which populates the
target result table, an error 'Processing result records (w_eha_stg_sequencing, w_eha_
stg_sequencing_x)' is logged into the result log table.

Other possible errors are: 'Generating etl process id', 'Generating enterprise id',
Verifying result file type ({0}, {1}) and processing result file record(w_eha_file)'
'Verifying {0} reference version={1}', 'Verifying result type', 'Verifying datasource
name', 'Verifying species name', 'Verifying study name', 'Getting flanking offset',
'Processing external data table' and 'Dropping external tables'.

4.13.5 Single Channel Gene Expression Loader Errors
If the process fails while retrieving DNA version ID, specimen ID, datasource name or
study ID, an error is logged into the result log table and displayed in the error
summary at the end. If the process fails while processing the hybridization header
external table, the Processing hybridization header table error is logged. If the process
fails while retrieving the hybridization name from the header table, the error
’Retrieving hybridization name from header table’ is logged.

Similar to VCF, a batch of 45 expression data is processed at a time and if the process
fails at this stage, an error 'Processing data table for the set of gene expression' is
logged. If the process fails while dropping the expression and hybridization external
tables, error messages ’Dropping expression data table’ and ’Dropping hybridization
table’ respectively are logged.

4.13.5.1 Missing Probe Link Issue
When re-running the probe loader to load probes, with the same probe names as
existing probes, the loader updates the existing probes to point to the new DNA
reference and probe versions given by the loader.

Typical Errors Associated with Result Loaders

4-60 Oracle Health Sciences Omics Data Bank Programmer’s Guide

Now, when running the Gene expression loader, a result record will only be inserted to
the result table when there is match for Probe name and the DNA reference version
and Species when looking up the probe table.

This means running the gene expression loader but passing a reference version
parameter (say 'GRCH37.P7') when the corresponding probe records point to another
reference version (say 'GRCH37.P8'); the loader logs a warning message (for example,
'Version and/or species id are not matching for the probe=1554103_at') and does not
load the record.

To load result records pointing to multiple reference versions, load gene expression
result files for a particular reference version BEFORE re-running the probe loader
updating the probes in the probe table to a new reference version. Then load the next
set of gene expression result files pointing to the new version.

While existing probes are refreshed with a new probe version, any existing gene
expression result records will no longer have a valid probe reference key. This issue
can be solved either by reloading such result files to make new result records with
reference keys to the refreshed probes.

Alternatively, if Flashback Archive is enabled for the database, any SQL query to
retrieve probe annotation for such result records can use a flashback query using the
"AS OF" clause with the creation date of the gene expression result.

4.13.6 Dual Channel Gene Expression Loader Errors
The Dual Channel loader verifies the existence of and looks up a W_EHA_ADF record
with the relevant User Label. If the record is not found, the error is 'Getting the ROW_
WID of the relevant W_EHA_ADF record, and checking its contents'. Subsequently,
the ADF record is verified to match the Species ('The Species of the W_EHA_ADF
record with user_label=… does not match the Species Name argument' error if it does
not), and the DNA Reference Version ('The DNA reference version of the W_EHA_
ADF record with user_label=… does not match the version argument', if it does not).

If the process of loading the data from the file into the external table fails, the error is
'Processing external data table'.

If processing the data from the external table and insertion into the result table fails,
the error is 'Processing result records (w_eha_stg_2channel_gxp)'.

Other possible errors are: 'Verifying DNA reference version', 'Verifying result type',
'Verifying datasource name', 'Verifying species name', 'Verifying study name', 'Getting
flanking offset', and 'Retrieving specimen id', 'Dropping external tables'.

4.13.7 RNA-seq Loader Errors
Only one external table is created for RNA Seq result data. If the process fails at this
step, an error 'Processing external table' is logged into the log table.

When the external table processing for the entire RNA seq record set fails, an error
'Processing result records (w_eha_stg_rna_seq)' is logged.

Other possible errors are: 'Verifying DNA reference version', 'Verifying result type',
'Verifying datasource name', 'Verifying species name', 'Verifying study name', 'Getting
flanking offset', 'Retrieving specimen number from external table', and 'Retrieving
specimen id'.

Collecting Oracle Optimizer Statistics

Loaders for Result Data 4-61

4.13.8 Copy Number Variation Loader Errors
Only one external table is created for CNV result data. When the process fails while
creating an external table, the error 'Processing external data table' is logged in the W_
EHA_RSLT_ LOG table. When the external table processing for the entire CNV result
record set fails, then an error 'Processing results records (w_eha_stg_copy_nbr_var)' is
logged. If the process fails while dropping CNV external table, an error 'Dropping
external table' is logged in the W_EHA_RSLT_ LOG table.

Other possible errors are: 'Verifying DNA reference version', 'Verifying result type',
'Verifying datasource name', 'Verifying species name', 'Verifying study name', 'Getting
flanking offset', 'Retrieving specimen number from external table', and 'Retrieving
specimen id'.

4.13.9 File Lineage Linker Errors
The File Lineage Linker can fail because either the parent or child file URI is not
provided, or is invalid (there is no file record in W_EHA_FILE with this FILE_URI).
The Linker will also fail if there are no common associated specimen for the two files
being linked. However, if the "-force_link 1" argument is used, this error becomes a
warning, and the files are linked.

4.13.10 Loader Runtime Error: ORA-01460 Unimplemented or Unreasonable
Conversion Requested

Errors have been observed while running various ODB loaders. The loader run aborts
prematurely with the following error message: ORA-01460 unimplemented or
unreasonable conversion requested.

Oracle recommends applying an RDBMS patch to the TRC database that fixes this bug.
See Oracle Support Bug 13099577 (ORA-1460 WHEN PARALLEL QUERY SERVERS
ARE USED) available here
https://mosemp.us.oracle.com/epmos/faces/BugDisplay?id=13099577 for details.

4.14 Collecting Oracle Optimizer Statistics
Oracle statistics is a collection of data of database objects such as tables and indexes
and is required by Oracle optimizer to estimate the most efficient query execution
plan. Missing or stale statistics can profoundly deteriorate query performance.

Oracle recommends gathering table and index statistics after a significant amount of
data is loaded into a table. The statistics should be gathered after large bulk loads,
most notably after reference tables are populated, but also after initial result runs.
Later on, when a batch size becomes relatively small compared to the size of the
already loaded data, statistics need not be gathered after each load. Instead, Oracle
recommends gathering statistics on a weekly schedule basis. Statistics should be
collected when major loading procedures are not running.

To collect statistics, connect to a database as ODB_SCHEMA owner using sqlplus and
execute the command:

exec dbms_stats.gather_schema_stats ('ODB_', cascade=>true,estimate_
percent=>dbms_stats.auto_sample_size);

Note: For the above loaders, the REC_DETAILS column of the W_
EHA_RSLT_ERR_LOG table only describes the context in which the
process failed.

https://mosemp.us.oracle.com/epmos/faces/BugDisplay?id=13099577

Collecting Oracle Optimizer Statistics

4-62 Oracle Health Sciences Omics Data Bank Programmer’s Guide

5

Model Dictionary 5-1

5Model Dictionary

Refer to the Oracle Health Sciences Omics Data Bank Electronic Technical Reference Manual
on My Oracle Support for all entities in all the tables of Oracle Health Sciences Omics
Data Bank.

5-2 Oracle Health Sciences Omics Data Bank Programmer’s Guide

6

Use Case Examples 6-1

6Use Case Examples

This chapter lists use cases for Oracle Health Sciences Omics Data Bank. It contains the
following topics:

■ Overview of Use Cases on page 6-1

■ Use Cases Accompanied by Query Examples on page 6-2

6.1 Overview of Use Cases
This section contains the following use case scenarios:

■ Scenario 1—Find patients who are poor responders for drug A and have a
mutation in the promoter region of gene A.

■ Scenario 2—Show expression level of TP53 mutant by cancer tissue.

■ Scenario 3—Ability to query subjects for established molecular tests. For example,
the presence of known myeloma mutations such as the t(4;14) translocation or
mutations in oncogenes such as RAS.

■ Scenario 4—Ability to research a gene in the sample set.

■ Scenario 5—Enable researcher to select a patient cohort based on the expression
level for a set of genes.

■ Scenario 6—Select mutation with deep functional annotation (for example, high
impact based on PolyPhen algorithm).

■ Scenario 7—I have a pathway. What mutations are present in the pathway and
which study were they identified in (for example, what tumor types)?

■ Scenario 8—What is the frequency of co-mutation of two genes in a data set?

■ Scenario 9—Display all patients whose cancer cells had a deletion in gene X.

■ Scenario 10—Find specimens with homozygous non-variants at the specified
location (for example, rs12345 or chr1:13434).

■ Scenario 11—Identify samples that have unacceptably low percentage of on-target
reads, and exons that fall below threshold read depth. Filter variants with
sufficient coverage and include only those that fall within a target region.

Note: To run some of the use case queries, you have to create global
temporary tables.

Use Cases Accompanied by Query Examples

6-2 Oracle Health Sciences Omics Data Bank Programmer’s Guide

6.2 Use Cases Accompanied by Query Examples

6.2.1 Scenario 1
Use Case - Find patients that are poor responders for drug A and have a mutation in
the promoter region of gene A.

Areas

■ Variant

■ Gene Annotation

■ Test and Results

■ Drug Info

Output queries tables from - ODB+CDM

Query

SELECT VRT.RESULT_SPEC_WID, CH.CHROMOSOME, VRT.START_POSITION, VI.REPLACE_
TAG

FROM W_EHA_RSLT_SEQUENCING vrt, w_eha_chromosome ch,

(

SELECT V.ROW_WID, SG.GENE_WID, V.REPLACE_TAG FROM

W_EHA_VARIANT v,

(

SELECT GSG.SOURCE_WID, GSG.GENE_WID, (GSG.START_POSITION - PP.PROMOTER_
OFFSET) as START_POSITION,

GSG.START_POSITION AS END_POSITION

FROM W_EHA_GENE G, W_EHA_GENE_SEGMENT GSG, W_EHA_PRODUCT_PROFILE PP

WHERE g.HUGO_NAME IN ('BRCA2') /*-- Enter the approved HUGO symbols of target
genes here.*/

AND GSG.GENE_WID = G.ROW_WID

)SG

WHERE V.SOURCE_WID = SG.SOURCE_WID

AND (V.START_POSITION BETWEEN SG.START_POSITION AND SG.END_POSITION)

)vi, w_eha_rslt_study

WHERE VRT.VARIANT_WID = VI.ROW_WID

AND VRT.GENE_WID = VI.GENE_WID

AND W_EHA_RSLT_STUDY.RESULT_STUDY_NAME = 'STUDY1'

AND VRT.RESULT_STUDY_WID = W_EHA_RSLT_STUDY.ROW_WID

AND VRT.RESULT_SPEC_WID in (250); /*-- Select a list of specimen patients who are
poor respondents of Drug A to test for mutation.*/

Use Cases Accompanied by Query Examples

Use Case Examples 6-3

6.2.2 Scenario 2
Use Case - Show expression level of TP53 mutant by cancer tissue.

Areas

■ Variant

■ Gene Annotation

■ Gene Expression

■ Biospecimen Data

Output queries tables from - ODB+CDM

Query 2 -

SELECT RSLT_EXPR.RESULT_SPEC_WID, RSLT_EXPR.INTENSITY, RSLT_SEQ.START_
POSITION, RSLT_SEQ.REPLACE_TAG

FROM (SELECT VRT.RESULT_SPEC_WID, VRT.START_POSITION, V.REPLACE_TAG

FROM W_EHA_RSLT_SEQUENCING VRT, W_EHA_GENE G, W_EHA_VARIANT V

WHERE VRT.VARIANT_WID = V.ROW_WID

AND VRT.GENE_WID = G.ROW_WID

AND

G.HUGO_NAME IN ('TP53') /*-- Enter the Approved HUGO SYMBOL of target genes
here.*/

) RSLT_SEQ,

(SELECT R_EXP.RESULT_SPEC_WID, R_EXP.INTENSITY

FROM W_EHA_RSLT_GENE_EXP R_EXP

WHERE R_EXP.GENE_WID IN

(SELECT G.ROW_WID

FROM W_EHA_GENE G

WHERE G.HUGO_NAME IN ('TP53')) /*-- Enter the Approved HUGO SYMBOL of
targeted genes.*/

) RSLT_EXPR

WHERE (RSLT_EXPR.RESULT_SPEC_WID = 1 AND RSLT_SEQ.RESULT_SPEC_WID = 2);

6.2.3 Scenario 3
Use Case - Ability to query subjects for established molecular tests, for example the
presence of known myeloma mutations such as the t(4;14) translocation or mutations
in oncogenes such as RAS.

Areas

■ Variant

■ Chromosomal Rearrangement

■ Gene Annotation

Output queries tables from ODB+CDM

Query -

Use Cases Accompanied by Query Examples

6-4 Oracle Health Sciences Omics Data Bank Programmer’s Guide

SELECT VRT.RESULT_SPEC_WID, VRT.START_POSITION, VI.REPLACE_TAG

FROM W_EHA_RSLT_SEQUENCING VRT, W_EHA_VARIANT VI, W_EHA_GENE G,

W_EHA_RSLT_SPECIMEN SP

WHERE VRT.GENE_WID = G.ROW_WID

AND g.HUGO_NAME IN ('KRAS') /*-- Enter the Approved HUGO SYMBOL of target
genes here.*/

AND VRT.VARIANT_WID = VI.ROW_WID

AND VRT.RESULT_SPEC_WID = SP.ROW_WID

AND (SP.SPECIMEN_NUMBER in ('TCGA-02-0001-XXX-XXX')); /*-- Give a target list of
specimens here.*/

6.2.4 Scenario 4
Use Case - Ability to research a gene in the sample set.

Areas

■ Gene Annotation

Output queries tables from - ODB: REFERENCE + RESULT

Query -

SELECT VRT.RESULT_SPEC_WID, G.HUGO_NAME, VRT.START_POSITION, VI.REPLACE_
TAG

FROM W_EHA_RSLT_SEQUENCING VRT, W_EHA_VARIANT VI, W_EHA_GENE G

WHERE VRT.VARIANT_WID = VI.ROW_WID

AND VRT.GENE_WID = G.ROW_WID

AND g.HUGO_NAME IN ('BRCA2');

6.2.5 Scenario 5
Use Case - Enable researcher to select a patient cohort based on the expression level
for a set of genes.

Areas

■ Cancer Diagnosis

■ Demographic

■ Biospecimen Data

■ QC Data

■ Gene Annotation

■ Expression

Output queries tables from - ODB+CDM

Query -

SELECT R_EXP2.RESULT_SPEC_WID, G.HUGO_NAME, R_EXP2.INTENSITY

from

W_EHA_RSLT_GENE_EXP r_exp2, W_EHA_GENE G,

Use Cases Accompanied by Query Examples

Use Case Examples 6-5

(SELECT AVG(R_EXP1.INTENSITY) EXP_AVG

FROM W_EHA_RSLT_GENE_EXP R_EXP1

WHERE R_EXP1.GENE_WID IN

(SELECT G1.ROW_WID

FROM W_EHA_GENE G1

WHERE G1.HUGO_NAME IN ('TP53','BRCA1','GPR4','PABPC1','SOBP'))

) INTENSITY

WHERE R_EXP2.GENE_WID = G.ROW_WID

AND G.HUGO_NAME IN ('TP53','BRCA1','GPR4','PABPC1','SOBP')

AND R_EXP2.INTENSITY > INTENSITY.EXP_AVG

ORDER BY R_EXP2.RESULT_SPEC_WID;

6.2.6 Scenario 6
Use Case - Select mutation with deep functional annotation (for example, high impact
based on PolyPhen algorithm)

Areas

■ Variant

■ Gene Annotation

Output queries tables from - ODB: REFERENCE

Query -

SELECT VG.REFERENCE_ID, VG.CODE_TYPE, VG.PREDICTION_SCORE, VG.CODE,
VG.ABSOLUTE_POSITION, VG.CHROMOSOME, VG.REPLACE_TAG, PI.ACCESSION,
P.AMINO_ACID_SEQUENCE

FROM W_EHA_GENE_COMPONENT GC, W_EHA_PROTEIN P, W_EHA_PROT_INFO PI,(

SELECT GCS.GENE_COMPONENT_WID, VX.REFERENCE_ID, V.ABSOLUTE_POSITION,
V.CHROMOSOME, V.REPLACE_TAG, VP.PREDICTION_SCORE, PC.CODE, VP.STRUCTURE_
WID, PC.CODE_TYPE

FROM W_EHA_GENE_COMP_SEGMENT GCS, W_EHA_VARIANT V, W_EHA_VARIANT_XREF VX,
W_EHA_VARIANT_PREDICTION VP, W_EHA_PREDICTION_CODE PC

WHERE VP.VARIANT_WID = V.ROW_WID

AND VP.PREDICTION_CODE_WID = PC.ROW_WID

AND VX.VARIANT_WID = V.ROW_WID

AND V.SOURCE_WID = GCS.SOURCE_WID

AND V.START_POSITION <= GCS.END_POSITION

AND GCS.START_POSITION <= V.END_POSITION

AND PC.CODE_TYPE IN ('SIFT', 'polyphen')

AND PC.CODE IN (deleterious, possibly damaging, probably damaging) /*-- Filter by
prediction code, confer W_EHA_PREDICTION_CODE table.*/

AND VP.PREDICTION_SCORE < '0.5' /*-- Filter by prediction score*/

)VG

Use Cases Accompanied by Query Examples

6-6 Oracle Health Sciences Omics Data Bank Programmer’s Guide

WHERE GC.ROW_WID = VG.GENE_COMPONENT_WID

AND GC.COMPONENT_TYPE = 'CDS'

AND GC.PROTEIN_WID = P.ROW_WID

AND PI.PROTEIN_WID = P.ROW_WID

AND VG.STRUCTURE_WID = GC.STRUCTURE_WID;

6.2.7 Scenario 7
Use Case - I have a pathway. What mutations are present in the pathway and which
study were they identified in (for example, what tumor types)?

Areas

■ Variant

■ Gene Annotation

■ Pathway Annotation

Output queries tables from - ODB: REFERENCE + RESULT

Query

SELECT S.RESULT_STUDY_NAME, VRT.RESULT_SPEC_WID, VI.PATHWAY_NAME,
VI.PATHWAY_SOURCE_ID, VI.HUGO_NAME AS GENE_SYMBOL, VI.REFERENCE_ID,
VI.ABSOLUTE_POSITION, VI.CHROMOSOME, VI.REPLACE_TAG

FROM W_EHA_RSLT_SEQUENCING VRT, W_EHA_RSLT_STUDY S, (

SELECT V.ROW_WID, GS.GENE_WID, GS.HUGO_NAME, GS.PATHWAY_NAME, GS.PATHWAY_
SOURCE_ID, VX.REFERENCE_ID, V.ABSOLUTE_POSITION, V.CHROMOSOME, V.REPLACE_
TAG

FROM W_EHA_VARIANT V, W_EHA_VARIANT_XREF VX, (

SELECT G.ROW_WID AS GENE_WID, G.HUGO_NAME, P.PATHWAY_NAME, P.PATHWAY_
SOURCE_ID, GSG.START_POSITION, GSG.END_POSITION, GSG.SOURCE_WID

FROM W_EHA_GENE_SEGMENT GSG, W_EHA_GENE G, (

SELECT DISTINCT PH.PATHWAY_NAME, PH.PATHWAY_SOURCE_ID,PP.HUGO_SYMBOL

FROM W_EHA_PATHWAY_PROTEIN PP, W_EHA_PATHWAY PH

WHERE PP.PATHWAY_WID = PH.ROW_WID

AND PATHWAY_NAME LIKE ('%thyroid hormone%')

)P /*-- Select either a specific KEGG pathway or search for pathway name keywords.
For example, All Thyroid hormone specific pathways.*/

WHERE G.HUGO_NAME = P.HUGO_SYMBOL

AND GSG.GENE_WID = G.ROW_WID

)GS

WHERE V.SOURCE_WID = GS.SOURCE_WID

AND V.START_POSITION <= GS.END_POSITION

AND GS.START_POSITION <= V.END_POSITION

AND VX.VARIANT_WID = V.ROW_WID

) VI

Use Cases Accompanied by Query Examples

Use Case Examples 6-7

WHERE VRT.VARIANT_WID = VI.ROW_WID

AND VRT.GENE_WID = VI.GENE_WID

AND VRT.RESULT_STUDY_WID = S.ROW_WID;

6.2.8 Scenario 8
Use Case - What is the frequency of co-mutation of two genes in a data set?

Areas

■ Variant

Output queries tables from - ODB: REFERENCE + RESULT

Query -

select count(a_and_b.result_spec_wid) concurrent_cnt

FROM

(SELECT DISTINCT VRT.RESULT_SPEC_WID

FROM W_EHA_RSLT_SEQUENCING vrt, W_EHA_GENE g

WHERE VRT.GENE_WID = G.ROW_WID

AND g.HUGO_NAME IN ('KRAS')

intersect

SELECT DISTINCT VRT.RESULT_SPEC_WID

FROM W_EHA_RSLT_SEQUENCING vrt, W_EHA_GENE g

WHERE VRT.GENE_WID = G.ROW_WID

AND G.HUGO_NAME IN ('PTEN')

) a_and_b;

/* count all specimen with seq result */

SELECT COUNT(DISTINCT VRT_ALL.RESULT_SPEC_WID) CNT FROM W_EHA_RSLT_
SEQUENCING VRT_ALL;

6.2.9 Scenario 9
Use Case - Display all patients whose cancer cells had a deletion in gene X.

Areas

Output queries tables from ODB+CDM

Query

SELECT COUNT(*) FROM (

SELECT DISTINCT R_CNV.RESULT_SPEC_WID

From W_EHA_GENE G,

(SELECT R_CNV1.*

FROM W_EHA_RSLT_COPY_NBR_VAR R_CNV1

WHERE R_CNV1.RESULT_SPEC_WID BETWEEN (200 +ROUND(DBMS_RANDOM.VALUE(1,3)))
AND (200 +ROUND(DBMS_RANDOM.VALUE(5,12)))/*-- Restrict to a subset of the
specimen list. A random list is taken here.*/

Use Cases Accompanied by Query Examples

6-8 Oracle Health Sciences Omics Data Bank Programmer’s Guide

AND R_CNV1.CALLED_CNV_TYPE = 'gain') R_CNV /*-- Ensure W_EHA_RSLT_COPY_
NBR_VAR column; called_cnv_type, is updated with type data.*/

WHERE R_CNV.GENE_WID = G.ROW_WID

AND G.HUGO_NAME in ('KRAS'));/*-- Enter gene symbol of gene X.*/

6.2.10 Scenario 10
Use Case - Find specimens with homozygous non-variants at the specified location
(for example, rs12345 or chr1:13434).

Areas

Output queries tables from

Query

select spec1.SPECIMEN_WID

From

(

select rnv.SPECIMEN_WID

from

(

select *

from

(

SELECT RS1.RESULT_SPEC_WID AS SPECIMEN_WID, RS1.*

FROM W_EHA_RSLT_NON_VARIANT_CHR RS1, W_EHA_VERSION V

WHERE

RS1.VERSION_WID = V.ROW_WID

AND V.VERSION_LABEL IN ('GRCH37.P8')

AND V.VERSION_TYPE = 'DNA'

AND RS1.ZYGOSITY IN ('hom-ref')

)

) rnv,

W_EHA_VARIANT_V VV1, W_EHA_VARIANT_XREF VX

WHERE

RNV.CHROMOSOME_WID = VV1.CHROMOSOME_WID

AND VX.VARIANT_WID = VV1.ROW_WID

AND VX.REFERENCE_ID = 'rs4733908'

and vv1.STATUS = 'KNOWN'

AND VV1.STRAND IN ('-','+')

AND VV1.ABSOLUTE_POSITION BETWEEN RNV.START_POSITION AND RNV.END_POSITION

) main1,

Use Cases Accompanied by Query Examples

Use Case Examples 6-9

W_EHA_RSLT_SPECIMEN spec1

WHERE SPEC1.ROW_WID = MAIN1.SPECIMEN_WID

and spec1.SPEC_DATASRC_WID = 1;

6.2.11 Scenario 11
Use Case - Identify samples that have unacceptably low percentage of on-target reads,
and exons that fall below threshold read depth. Filter variants with sufficient coverage
and include only those that fall within a target region.

Areas

Output queries tables from ODB

Query

SELECT DISTINCT ODBQ3.SPECIMEN_WID VARIANT_SPECIMEN, ODBQ4.SPECIMEN_WID
RNASEQ_SPECIMEN

FROM

(

select spec1.SPECIMEN_WID

from

(

select rsq.SPECIMEN_WID

from

(

select *

from

(

select rs1.RESULT_SPEC_WID as SPECIMEN_WID, rs1.*

from W_EHA_RSLT_SEQUENCING_CHR rs1, W_EHA_GENE g, W_EHA_VERSION V

WHERE

RS1.GENE_WID = g.ROW_WID

AND g.HUGO_NAME i ('ADAM32')

AND RS1.version_wid = V.ROW_WID

AND V.VERSION_LABEL in ('GRCH37.P8')

AND V.VERSION_TYPE = 'DNA'

)) rsq,

(

select gs1.gene_wid, gcc1.start_position, gcc1.end_position

from W_EHA_GENE_STRUCTURE gs1,

(

select v.structure_wid, (v.start_position+s.start_position-1) as start_
position, (v.end_position+s.start_position-1) as end_position

Use Cases Accompanied by Query Examples

6-10 Oracle Health Sciences Omics Data Bank Programmer’s Guide

from W_EHA_PROMOTER_REGION_V v, W_EHA_DNA_SOURCE s

where s.ROW_WID = v.SOURCE_WID

) gcc1

where gcc1.structure_wid = gs1.row_wid

union all

select gseg1.gene_wid, (gseg1.start_position + ds1.start_position-1) as
start_position, (gseg1.end_position + ds1.start_position-1) as end_
position

from W_EHA_GENE_SEGMENT gseg1, W_EHA_DNA_SOURCE ds1

where gseg1.source_wid = ds1.row_wid

) gco1,

W_EHA_VARIANT_V vv1

WHERE

rsq.VARIANT_WID = vv1.ROW_WID

and rsq.gene_wid = gco1.gene_wid

and rsq.start_position between gco1.start_position and gco1.end_position

and vv1.STATUS = 'KNOWN'

and vv1.STRAND in ('-','+')

) main1,

W_EHA_RSLT_SPECIMEN spec1

where spec1.ROW_WID = main1.SPECIMEN_WID

AND SPEC1.SPEC_DATASRC_WID = 1) ODBQ3,

(select spec2.SPECIMEN_WID

from

(

select rnaseq2.SPECIMEN_WID

from

(

select *

from

(

select rs2.RESULT_SPEC_WID as SPECIMEN_WID, rs2.*

from W_EHA_RSLT_RNA_SEQ_CHR rs2

WHERE

RS2.GENE_WID IN (71499,14775)

AND RS2.VERSION_WID IN (8,18)

)) rnaseq2,

(

Use Cases Accompanied by Query Examples

Use Case Examples 6-11

select gs2.gene_wid, gcc2.start_position, gcc2.end_position

from W_EHA_GENE_STRUCTURE gs2,

(

select gc2.structure_wid, (gcs2.start_position + ds2.start_position-1) as
start_position, (gcs2.end_position + ds2.start_position-1) as end_position

from W_EHA_GENE_COMPONENT gc2, W_EHA_GENE_COMP_SEGMENT gcs2, W_EHA_DNA_
SOURCE ds2

where gc2.component_type in ('CDS','mRNA','miscRNA','exon')

and gc2.row_wid = gcs2.gene_component_wid

and gcs2.source_wid = ds2.row_wid

) gcc2

where gcc2.structure_wid = gs2.row_wid

) gco2

WHERE

rnaseq2.gene_wid = gco2.gene_wid

and (gco2.end_position >= rnaseq2.start_position

and gco2.start_position <= rnaseq2.end_position)

and rnaseq2.RAW_COUNTS < 15.0

and rnaseq2.RPKM > 0.25

and rnaseq2.STRAND in ('-','+')

) main2,

W_EHA_RSLT_SPECIMEN spec2

WHERE SPEC2.ROW_WID = MAIN2.SPECIMEN_WID

AND SPEC2.SPEC_DATASRC_WID = 1) ODBQ4

WHERE

(ODBQ3.SPECIMEN_WID = 21284 /*-- SpecimenID for Mutation results of a
patient*/

AND ODBQ4.SPECIMEN_WID = 20384); /*-- SpecimenId with Gene Expression results of
the same patient.*/

Use Cases Accompanied by Query Examples

6-12 Oracle Health Sciences Omics Data Bank Programmer’s Guide

7

Miscellaneous Topics 7-1

7Miscellaneous Topics

This chapter contains the following topics:

■ Product Version and Product Profile Including Flanking Offsets on page 7-1

■ Querying Database Cross-References for Variations on page 7-2

■ Mitochondrial Chromosome Mappings on page 7-4

■ Promoter Offset on page 7-4

■ Loader Activity Logging on page 7-4

■ User Feedback for Loader Runs on page 7-5

■ VCF Loader Log on page 7-7

■ Creating Custom Gene Components on page 7-7

■ Additional Step on Exadata versus Non-Exadata on page 7-13

■ UNDO Tablespace Auto-extendable Issue on page 7-14

■ Chromosome Partitioned Tables on page 7-14

7.1 Product Version and Product Profile Including Flanking Offsets
Currently, there are two configuration tables in the ODB schema:

1. W_EHA_PRODUCT_VERSION table stores product version numbers and is
updated and used by upgrade and patch installations. This table records each
patch or release that is installed. It does not have ETL_PROC_WID or
ENTERPRISE_ID columns. It does not require a loader to be populated and is
global to all enterprises or tenants that use the schema. Two fields are used to
record version information:

RELEASE_VERSION VARCHAR2(200);

PATCH_VERSION VARCHAR2(200);

2. W_EHA_PRODUCT_PROFILE table stores information specific to each enterprise
or tenant - a single record for each ENTERPRISE_ID value, and a unique key to
enforce this. It also stores global settings for different logging levels allowed for
log records inserted into the log table. It stores the global setting to permit DBMS
output. Finally, there is a VCF_FORMAT field intended to store a list of data types
that are used in the Format column in the VCF data file.

The columns in this table are:

■ PROMOTER_OFFSET NUMBER;

Querying Database Cross-References for Variations

7-2 Oracle Health Sciences Omics Data Bank Programmer’s Guide

■ FLANKING_OFFSET NUMBER;

■ LOG_WARNING CHAR(1);

■ LOG_INFO CHAR(1);

■ LOG_DEBUG CHAR(1);

■ LOG_TRACE CHAR(1);

■ LOG_DBMS_OUTPUT CHAR(1);

■ VCF_FORMAT VARCHAR2(4000 CHAR);

The FLANKING_OFFSET parameter is an input (right after PROMOTER_OFFSET) on
running TRC install scripts and is used by various loader procedures. It defines the
size of the region before and after a gene definition that are to be linked with
sequencing results. These associations are important as a lot of research is focusing on
areas before and after gene definitions. The value for FLANKING_OFFSET should be
equal to or greater than the value used for PROMOTER_OFFSET, so that the queries
generated by the Query Engine can find results linked to a gene that may exist in a
promoter region that extends before or after the gene definition.

THE LOG_% fields are flags whose values are either Y or N. By default, the
WARNING and INFO log levels are turned on and DBMS output is turned off. For the
most part these settings are not needed or used, as logging is also configured in the
loader scripts.

The VCF_FORMAT column is required to specify data types used in the specification
of custom FORMAT columns. For a description of its usage, see the Section 4.5.2,
"Custom Format Specification in VCF".

7.2 Querying Database Cross-References for Variations

7.2.1 Ensembl db_xref Qualifier Issue
The Ensembl GVF file, which contains nucleotide variation references from dbSNP,
COSMIC and EMBL, is used to populate the variation tables in the Omics Data Bank.
The cross-reference information for these variants is identified by the Dbxref qualifier
and is loaded into the W_EHA_VARIANT_XREF table. The standard format for
Dbxref in a GVF file is:

Dbxref=dbSNP_132:rs79772382;

To import this data, the program splits it into DATABASE and REFERENCE_ID using
the first colon (:) as delimiter. Therefore, for the above example W_EHA_VARIANT_
XREF populates columns with the following data:

DATABASE = 'dbSNP_132'

REFERENCE_ID = 'rs79772382'

However, for some organisms, Dbxref is defined differently. Following is an example
from a Rattus norvegicus GVF file:

Dbxref=ENSEMBL:celera:ENSRNOSNP2610581;

For such cases, W_EHA_VARIANT_XREF columns are populated with the following
data:

DATABASE = 'ENSEMBL'

Querying Database Cross-References for Variations

Miscellaneous Topics 7-3

REFERENCE_ID = 'celera:ENSRNOSNP2610581'

Since REFERENCE_ID may sometimes contain suffixed or prefixed data, Oracle
recommends using the SQL LIKE operator when querying the REFERENCE_ID.

The same scenario hold good for the SwissProt database cross-reference. Oracle
recommends using the SQL LIKE operator for querying against the W_EHA_PROT_
XREF table.

7.2.2 Swissprot db_xref Qualifier Issue
The W_EHA_PROT_XREF table stores the database cross-reference information for
SwissProt. This table populates the DATABASE, REFERENCE_ID and REFERENCE_
SUFFIX information. The standard format for database cross-reference in a SwissProt
file is:

DR InterPro; IPR007031; Poxvirus_VLTF3.

To import this data, the program splits it into DATABASE, REFERENCE_ID and
REFERENCE_SUFFIX using the semi-colon (;) as delimiter. Hence, for the above
example W_EHA_PROT_XREF, populate the columns with following data:

DATABASE = 'InterPro'

REFERENCE_ID = 'IPR007031'

REFERENCE_SUFFIX = 'Poxvirus_VLTF3'

There are certain cross-references in SwissProt file that have the same REFERENCE_ID
but a different REFERENCE_SUFFIX. For indexing the REFERENCE_ID, only the
distinct first found REFERENCE_ID is stored. The other records retain the same
REFERENCE_ID.

For example:

DR EMBL; AL390732; CAH71826.2; JOINED; Genomic_DNA.

DR EMBL; AL390732; CAH73848.1; -; Genomic_DNA.

In the above example, the REFERENCE_ID for both the cross-references is AL390732.
Therefore, only the first line information is stored in the table for indexing.

There is some loss of information on the REFERENCE_SUFFIX level but not on
REFERENCE_ID. All REFERENCE_IDs are captured in the W_EHA_PROT_XREF
table. Also, the count of instances where duplicate db_xrefs are not saved is now
logged by the SwissProt loader as a warning.

7.2.3 W_EHA_VARIANT_X
 The W_EHA_VARIANT_X table stores records for the following scenarios for both
VCF and MAF format files:

■ When SVTYPE tag in the INFO column and < tag in the ALT column of the VCF file
are present (for example, in case of large SV, there is some information on the
SVTYPE in the INFO column such as SVTYPE=INS or SVTYPE=DEL, and so on); for
such records the ALT column will have tags like or <DUP>, and so on.

Note: The REFERENCE_SUFFIX column in W_EHA_VARIANT_
XREF is not populated with any data in the current model.

Mitochondrial Chromosome Mappings

7-4 Oracle Health Sciences Omics Data Bank Programmer’s Guide

■ When the combined length of REF and ALT sequence is greater than or equal to
999, post trimming of overlapped bases. The checksum is calculated and reported
in the W_EHA_VARIANT.SEQUENCE_CHECKSUM column.

The ALLELE column in the W_EHA_VARIANT_X table stores the complete value
present in the ALT column.

If there is any overlap between the REF and ALT columns and some bases are
trimmed from ALT column, then the ALLELE column still stores the untrimmed
value. The checksum (stored in W_EHA_VARIANT.SEQUENCE_CHECKSUM) is
calculated based on the trimmed ALT value.

To determine the position of the actual trimmed allele, W_EHA_VARIANT_
X.START_POSITION value is used. If none of the bases are trimmed from the ALT
column, then the START_POSITION value is 1. If first base is trimmed, then the
START_POSITION value of the sequence existing in the ALLELE column is 2.

7.3 Mitochondrial Chromosome Mappings
The references to mitochondrial chromosome are stored as MT on the reference side in
the W_EHA_VARIANT and W_EHA_HUGO_INFO tables, and on the result side in
the W_EHA_CHROMOSOME tables of the model. Any novel variants reported into
the W_EHA_VARIANT table from the result files have the chromosome value
converted from M to MT. For example, while inserting in W_EHA_RSLT_COPY_NBR_
VAR or W_EHA_RSLT_SEQUENCING, the FK to W_EHA_CHROMOSOME table for
chromosome value MT is taken if the result file has chromosome M.

7.4 Promoter Offset
Promoter region information is not available in the reference data set imported from
Ensembl EMBL files. Therefore, a column has been provided in the W_EHA_SPECIES
table to specify the promoter region upstream to the gene for a specific organism. The
column is named PROMOTER_OFFSET. This Promoter Offset is species-specific.

There is also a default Promoter Offset, stored in the PROMOTER_OFFSET column of
the PRODUCT_PROFILE table. This default value is populated during ODB
installation, from the value of the -promoter_offset argument.

If the Promoter Offset for a species is null in the W_EHA_SPECIES table, the default
value from W_EHA_PRODUCT_PROFILE is used. The EMBL and SwissProt reference
loaders, which typically create W_EHA_SPECIES records, do not populate the
PROMOTER_OFFSET column there. Therefore, the only way to define a non-default
Promoter Offset for a species, after its record has been created, is to manually edit the
value in W_EHA_SPECIES.PROMOTER_OFFSET for it.

ODB provides a special view, W_EHA_PROMOTER_REGION_V, which uses the
Promoter Offset described above to enable querying promoter regions for genes or
gene structures in ODB.

7.5 Loader Activity Logging
The W_EHA_PRODUCT_PROFILE logging settings are singular levels, where each
setting affects one level. These logging settings are generally not used by loaders as
logging is configured in the loader scripts where the log levels are inherited - for
example, if TRACE is on, DEBUG is also on. A single ETL_PROC_WID is used for each
loader run. Any log records associated with that particular load can be looked up in
the W_EHA_RSLT_LOG table, after the fact, using this ID.

User Feedback for Loader Runs

Miscellaneous Topics 7-5

The following named command-line option, present in all loaders, sets log level for
that loader. -log_level [TRACE | DEBUG | INFO | WARNING | ERROR] default:
INFO When -log_level is set to any other value, except the five listed above (for
example, INHERIT), logging levels are inherited from W_EHA_PRODUCT_
PROFILE.LOG_% settings. The following named command-line argument logs a
summary log record to the database and prints the summary to the console.

-print_summary ['1'=on, '0'=off] default: '0' if on

7.6 User Feedback for Loader Runs
User feedback for loader runs is provided in the form of summary log records that are
printed at the console before the loader run terminates. The same summary is inserted
as a log level SUMMARY record in the W_EHA_RSLT_LOG table. A summary
feedback can be created for every ETL load by using its ETL_PROC_WID value.

The following function can be called anytime after a loader run to create a SUMMARY
record in database, for instance if it was not run time of load:

odb_util.print_loader_summary(etl_proc_wid);

Following is an example of a loader summary output after a successful loader run:

Table 7–1 Log Events recorded in the W_EHA_RSLT_LOG table

Log Event Modifiable by User Log Event Description

START No, always on Displays the PLSQL package, operation and
parameter list

END No, always on Displays the status of PLSQL operation

SUMMARY Yes Displays a summary report

FATAL No, always on Displays exception messages with error code and
error trace

ERROR No, always on Displays exception messages with error code and
error trace

WARNING Yes Displays warning messages

INFO Yes Displays informational messages such as
sql%rowcounts

DEBUG Yes Displays debug messages

TRACE Yes Displays the finest grade debug messages

Table 7–2 How to enable log events using batch file parameters

Batch File
Parameter
Name

Batch File
Parameter
Value

WARNING Log
Events
Captured

INFO Log
Events
Captured

DEBUG Log
Events
Captured

TRACE Log
Events
Captured

SUMMARY Log
Events Captured

log_level

-

-

-

-

-

WARNING Yes No No No -

INFO Yes Yes No No -

DEBUG Yes Yes Yes No -

TRACE Yes Yes Yes Yes -

INHERIT Each log event can be individually turned on or off by setting the
corresponding attribute in the W_EHA_PRODUCT table

-

print_
summary

-

1 - - - - Yes

0 - - - - No

User Feedback for Loader Runs

7-6 Oracle Health Sciences Omics Data Bank Programmer’s Guide

Loader Summary

Command Used

ODB_RSLT_DUAL_CHANNEL_UTIL.process_dual_channel(i_data_file => 'unc.edu__
AgilentG4502A_07_3__TCGA-A2-A0CX-01A-21R-A00Z-07__gene_expression_analysis_
summary.txt', i_data_directory => 'ODB_LOAD', i_species_name => 'Homo sapiens', i_
study_name => 'STUDY1', i_datasource_name => 'CDM', i_specimen_number => 'rna001', i_
specimen_vendor => 'rnaseq', i_control_specimen => 'Stratagene Univeral Reference', i_user_
label => 'ADF_p7', i_reference_version => 'GRCh37.p7', i_file_flg => 'E', i_preprocess_dir =>
null, i_preprocess_file => null, i_data_file_path => null, i_dbfs_store => null, i_alt_file_loc =>
null, i_read_size => null)

Properties

Start Date: 2013-06-07 15:36:41

ETL Process ID: 4116

Exadata: False

DB User: ODB25RES

OS User: vkamath

Hostname: NORTH\MUWKS0015

File Name: unc.edu__AgilentG4502A_07_3__TCGA-A2-A0CX-01A-21R-A00Z-07__gene_
expression_analysis_summary.txt

File Type Code: 2-Channel Expression

File Type Name: Agilent TCGA 2-channel Expression analysis file

File Type Version: A

End Date: 2013-06-07 15:36:42

Status: SUCCESS

Insert Summary

w_eha_rslt_2channel_gxp: 61 rows

W_EHA_STG_2CHANNEL_GXP: 61 rows

w_eha_file: 1 row

w_eha_rslt_file_spec: 1 row

w_eha_file_qlfr: 0 rows

w_eha_rslt_specimen: 0 rows

Error Summary

Warning Summary

Info Summary

2013-06-07 15:36:41

Detail: Found specimen number=rna001

Creating Custom Gene Components

Miscellaneous Topics 7-7

7.7 VCF Loader Log

■ Some variants are skipped from loading:

If EMBL reference data load is not complete, it might result in insufficient
information for a chromosome or a chromosome region in the W_EHA_DNA_
SOURCE table. In such cases, a reference is not available for a given region, so the
variants falling in these regions are not loaded from VCF file.

These variants are shown in the summary report with the following warning
message:

Warning Summary

2013-11-26 10:30:53
Detail: Some variants were skipped, check chromosome and genomics coordinates);
[rowcount=16]

■ Some specimen numbers in the VCF file in CDM datasource are not found:

In a VCF file with multiple specimens, if some of the specimens are not available
in the CDM tables, a warning message is logged to indicate how many specimens
are found in CDM.

In the W_EHA_RSLT_LOG.RECORD_DETAIL column, a warning message stating
number of specimens found out of total number of specimens in the file is shown.
Following is an example:

returning 1664; [status=warning 2 of 3 were found, elapsed_
time=00:00:19]

In the summary report, a warning message stating which specimen is not found is
shown. Following is an example:

Detail: Could not find specimen number=HG00097

7.8 Creating Custom Gene Components
The end user can build queries by selecting the Variants or CNVs in regions, defined
by Gene Components (the W_EHA_GENE_COMPONENT and associated tables). An
example of this is selecting the Exon gene region, which is one of the gene component
types provided by Ensembl.

You can add custom gene components to these tables, use custom gene components
types and so on. These new gene component types can be made available in the TRC
v2.0.1 (or higher) UI. To do this, you must understand the structure and functional use
of these tables in the ODB schema.

The heart of the subsystem is the W_EHA_GENE_COMPONENT table, which stores
one record per gene component. It has the following important columns:

■ ROW_WID - a surrogate primary key (PK), filled from the W_EHA_GENE_
COMPONENT_S sequence.

■ STRUCTURE_WID - a foreign key (FK) to the W_EHA_GENE_STRUCTURE table.
This is a mandatory column which links the component to its gene. If a gene
component is associated with a known transcript with an Ensembl Transcript ID
(for example, ENST00000384612), this FK should point to a gene structure with

Creating Custom Gene Components

7-8 Oracle Health Sciences Omics Data Bank Programmer’s Guide

this TRANSCRIPT_ID. Otherwise, it points to a gene structure record for the same
gene with TRANSCRIPT_ID = NO STRUCTURE (a catch-all gene structure).

■ COMPONENT_TYPE - identifies the component as belonging to a type. It is of
type VARCHAR2(100) and not normalized, so you must use consistent casing for
custom component types. Ensembl currently provides components of the
following types - exon, CDS, STS, mRNA, misc_RNA, misc_feature.

■ PROTEIN_WID - an optional FK to the W_EHA_PROTEIN table. Setting this
parameter lets you query by Pathway name, and Genes and Gene Sets.

The second table in the gene component subsystem is W_EHA_GENE_COMP_
SEGMENT, which is used to map the component onto a DNA source and through it
onto a chromosome. There can be one or more records per gene component in this
table. There are the following important columns in this table:

■ ROW_WID - a surrogate PK, filled from the W_EHA_GENE_COMP_SEGMENT_S
sequence.

■ GENE_COMPONENT_WID - the FK to the W_EHA_GENE_COMPONENT table.

■ SOURCE_WID - the FK to the W_EHA_DNA_SOURCE table.

■ NUMBER_IN_SEQUENCE - if there are multiple segments per component, their
order is defined in this column.

■ START_POSITION and END_POSITION - the start and end positions of the
segment relative to the W_EHA_DNA_SOURCE record (adding the W_EHA_
DNA_SOURCE.START_POSITION value we get the absolute positions on the
chromosome).

■ COMPLEMENT- a 0 or 1 flag. If the value is 1, the segment is a complement to the
DNA Source sequence.

Finally, there are the W_EHA_GENE_COMP_XREF and W_EHA_GENE_COMP_
QLFR tables, which have the same structure as all other XRef and Qualifier tables.
These tables contain optional Database Reference and Qualifiers (such as notes) for the
gene components (0 to many per component).

Currently, these tables contain data loaded from Ensembl EMBL files (by the EMBL
Reference Loader). However, you can add your own data to the tables after loading
the reference data from the Ensembl EMBL and SwissProt files. You can also define
customer-specific component types and use them.

You can define a new component type by choosing the value. However, ensure that it
does not coincide with any existing or future values from other sources. Since there is
no way to know what component types can be added to Ensembl or other sources in
the future, Oracle recommends using a customer-specific prefix. For example, to add a
"First exon in a gene component" type, and the customer company name is XYZ, use
XYZ_first_exon as the new component type. You can use it with the same letter casing
for all first exons of genes that we add.

Next, provide the actual components. A superset of the data (exons) is already present
in the W_EHA_GENE_COMPONENT table, with their segments already defined, and
everything correctly linked to DNA Sources, Gene Structures, and Proteins. An extra
set of records is required in W_EHA_GENE_COMPONENT, copied from some of the
existing exon records, with the COMPONENT_TYPE = "XYZ_first_exon" instead of
"exon", and the new segments for them. Inserting these records requires SQL or
PL/SQL code, processing the pre-existing data, and inserting new records. The logic in
the code is as follows:

Creating Custom Gene Components

Miscellaneous Topics 7-9

■ For each W_EHA_GENE_COMPONENT record with COMPONENT_TYPE of
exon, determine (by its position relative to the other exons for the same gene, if
any) if this is the first exon in its gene.

■ If it is, insert a new record into W_EHA_GENE_COMPONENT, with the same
values, except that the COMPONENT_TYPE is changed to "XYZ_first_exon" and a
new ROW_ID obtained from the sequence.

■ Whenever a new component is inserted, insert copies of associated W_EHA_
GENE_COMP_SEGMENT records, replacing their GENE_COMPONENT_WID
values with the ROW_ID of the new W_EHA_GENE_COMPONENT record.

You must archive the script used to create these components, as it may be needed for
re-creating the data in another database, re-installing the same database, or after
loading another version of Ensembl reference files.

The previous example was that of copying the already existing components. For the
general case, perform the following steps:

After selecting an existing or new Component Type (the same way as described
above), ascertain the following for each gene component to be inserted:

1. Whether the gene (already existing in the W_EHA_GENE table) is associated with
any information that uniquely identifies it: for example, W_EHA_GENE.ROW_
WID or Ensemble Gene Id, or Species + HUGO Name.

2. Whether it is associated with any transcript for this gene (either a W_EHA_GENE_
STRUCTURE.ROW_WID or an Ensembl Transcript ID, or not associated).

3. Whether it is associated with any existing protein record (in the W_EHA_
PROTEIN table).

4. What range or ranges of chromosomal positions it maps to (chromosome name,
start and end positions on the chromosome, complement or not). If there is more
than one range, multiple segments should be created.

5. Whether you want to enter any DB Xref and (or) Qualifier entries for each
component.

Once this information is gathered, you can create a script (for example, in PLSQL) to
insert the new gene components. At the beginning of the script, get a new ETL_PROC_
WID from the W_EHA_ETL_PROC_S sequence and use it in each subsequent INSERT
statement for all tables. Then, looping over the components, perform the following
steps:

1. Find the ROW_WID of the W_EHA_GENE_STRUCTURE that the new component
will be linked to. This record must belong to the gene the component is associated
with, and its TRANSCRIPT_ID must match the Ensembl Transcript ID of the new
component, or be NO STRUCTURE if there is none. If there is no such record in
W_EHA_GENE_STRUCTURE, it should be inserted and its ROW_WID used as
the STRUCTURE_WID in step 3 (if it is found, use its ROW_WID as
STRUCTURE_WID).

2. If the new component is linked to a W_EHA_PROTEIN record, find its ROW_
WID, and use it as PROTEIN_WID in the next step. Otherwise, use NULL.

3. Insert a new record for the component into W_EHA_GENE_COMPONENT,
getting a new ROW_WID for it from the W_EHA_GENE_COMPONENT_S
sequence, and using the other values obtained above, and the chosen value for
COMPONENT_TYPE. Store the new ROW_WID.

4. If there are DB XRef and Qualifier entries for the new gene component, insert them
into the respective tables, using the appropriate sequences for the PKs and the new

Creating Custom Gene Components

7-10 Oracle Health Sciences Omics Data Bank Programmer’s Guide

W_EHA_GENE_COMPONENT.ROW_WID as the FK to the W_EHA_GENE_
COMPONENT record.

5. Create the Gene Component Segments. For each chromosomal range of the new
component, you must find the W_EHA_DNA_SOURCE record that the range is
contained in. You can do this easily as the DNA Sources are mapped to
chromosomes except when the component range spans two (or more) DNA
Sources. In this case, it has to be broken up into sub-ranges, each mapped to its
own DNA Source.

There may be more than one matching DNA Source and you are required to select
one of these. The selection is rather arbitrary; a reasonable rule is to select the
longest of the matching DNA Sources. Once the DNA Sources for all ranges are
selected, use their ROW_WIDs to recalculate the range start and stop positions
from the chromosomal to the DNA Source coordinates.

Insert a new record for each range into W_EHA_GENE_COMP_SEGMENT table,
using the ROW_WID of the component record inserted into W_EHA_GENE_
COMPONENT as GENE_COMPONENT_WID, and getting the new ROW_WID
value from the W_EHA_GENE_COMP_SEGMENT_S sequence.

This outlines the process of adding new gene components and custom gene
component types.

There is one extra step needed for each new gene component type to appear in the
Query UI. It is necessary to add one or more records to the TRC_LOOKUP_CODE
table in the Application schema (not the ODB schema). Enter the component type you
added in ODB (for example, XYZ_first_exon) as CODE, TRC_QP_GENE_REGION as
CODE_TYPE, the label you want in the UI for this Gene Region (for example, first
exon) as CODE_NAME, an optional description as CODE_DESC, and the language or
locale code (for example, en_US) as LANGUAGE_CODE. If the installation supports
several languages, insert a separate record for each.

Following is information that will be useful when creating custom gene components.
When inserting into a table, get the new ROW_WID from the appropriate sequence:

For example, select W_EHA_GENE_COMPONENT_S.NEXTVAL from DUAL;

ETL_PROC_WID NUMBER(38), is a column in all ODB tables that should be filled
using insertion scripts. For every run of a script, a new unique value should be
obtained from the sequence W_EHA_ETL_PROC_S, stored in a script variable, and

Note: The START_POSITIONs and END_POSITIONs of all segments
and the DNA Sources themselves are 1-based, so when recalculating,
use -1's where appropriate.

Table 7–3 Tables and Sequences

Table Sequence to get the ROW_WIDs from

W_EHA_GENE_COMPONENT W_EHA_GENE_COMPONENT_S

W_EHA_GENE_COMP_SEGMENT W_EHA_GENE_COMP_SEGMENT_S

W_EHA_GENE_COMP_XREF W_EHA_GENE_COMP_XREF_S

W_EHA_GENE_COMP_QLFR W_EHA_GENE_COMP_QLFR_S

W_EHA_GENE_STRUCTURE W_EHA_GENE_STRUCTURE_S

TRC_LOOKUP_CODE (column: CODE_ID) S_ROW_ID_SEQ

Creating Custom Gene Components

Miscellaneous Topics 7-11

used whenever the script inserts a record or records into any ODB table. During
insertion the current date and time should also be filled (using select SYSDATE from
DUAL) in W_INSERT_DT DATE column of each table.

DNA Sources and Chromosomes
In ODB, Gene Component Segments are not mapped directly to Chromosomes, but
rather to DNA Sources. The DNA Sources are stored in the W_EHA_DNA_SOURCE
table and contain the actual genomic DNA sequence, an entire chromosome or about
1,000,000 bases per DNA Source, depending on the Ensembl version.

When inserting a new Gene Component, its Segments must be mapped to one or more
DNA sources. For example, if we insert a new Gene Component with a single
chromosomal Segment, spanning positions from 1450000 through 1460000 on
Chromosome 1. We know that the species PK is 1. We must find the DNA source
record, or records, covering this range.

The following SQL finds the W_EHA_DNA_SOURCE record the segment should be
assigned to:

select min(ds.row_wid) from w_eha_dna_source ds

where ds.species_wid = 1

and ds.chromosome = '1'

and ds.start_position <= 1450000

and 1460000 <= ds.end_position

This works if the entire segment CHR1:1450000-1460000 fits into a single DNA source
range. Instead if it spans across 2 or more DNA Source ranges, the query will not have
a result. A more complex query must be used to get the partial DNA Sources.
However, this is very unlikely to happen for Ensembl versions 67 or higher, where a
DNA Source typically covers an entire chromosome.

Once you get the DNA source, the Segment can be mapped on it, with the following
recalculation of the start and end positions:

W_EHA_GENE_COMP_SEGMENT.START_POSITION = 1450000 - W_EHA_DNA_SOURCE.START_
POSITION + 1

and

W_EHA_GENE_COMP_SEGMENT.END_POSITION = 1460000 - W_EHA_DNA_SOURCE.START_
POSITION + 1

7.8.1 Creating Custom Gene Region Views
The end user can build queries by selecting Variants or CNVs in regions defined in
gene region views. An example of such a view is W_EHA_PROMOTER_REGION_V
(selectable in the UI as Promoters). Now, TRC also supports custom gene region views,
which can be created at customer sites and are specific to these sites.

Oracle recommends using custom gene region views only where calculated positions
are involved (and not to use them instead of custom Gene Components). Using custom
Gene Components does not significantly increase the size of the query SQL, but using
each custom view in a query increases the SQL size by up to 500 characters.

Following are the guidelines for creating custom views:

The custom gene region views must be named following the ODB view naming
conventions — the name must start with the W_EHA prefix and end with the _V suffix

Creating Custom Gene Components

7-12 Oracle Health Sciences Omics Data Bank Programmer’s Guide

(indicating that it is a view). Use the standard Promoter Region view as an example -
W_EHA_PROMOTER_REGION_V.

A gene region view must have the following columns:

■ STRUCTURE_WID (NUMBER) - an FK to the W_EHA_GENE_STRUCTURE table.
This is a mandatory column, and is very important as it ultimately links the region
to its gene. If the region is associated with a known transcript with an Ensemble
Transcript ID (for example, ENST00000384612), this FK should point to a gene
structure with this TRANSCRIPT_ID. Otherwise it points to a gene structure
record for the same gene with TRANSCRIPT_ID = NO STRUCTURE (a catch-all
gene structure).

There can be multiple W_EHA_STRUCTURE records for the same gene, if the
gene has multiple transcripts, and the catch-all structure record for the gene must
be used for all gene regions not associated with transcripts.

■ PROTEIN_WID (NUMBER) - an optional FK to the W_EHA_PROTEIN table. If
this is set, you can query by Pathway name, Genes and Gene Sets.

■ COMPLEMENT (NUMBER) - a 0 or 1 flag. If the value is 1, the region is a
complement versus the DNA Source sequence.

■ SOURCE_WID (NUMBER) - the FK to the W_EHA_DNA_SOURCE table. All
genomic positions in ODB are relative to W_EHA_DNA_SOURCE records, not
chromosomes, as DNA sequences are stored in this table.

■ START_POSITION and END_POSITION (both numbers) - the start and end
positions of the region relative to the W_EHA_DNA_SOURCE record (adding the
W_EHA_DNA_SOURCE.START_POSITION value we get the absolute positions
on the chromosome).

■ The standard view in the ODB schema, W_EHA_PROMOTER_REGION_V, can be
used as an example when creating custom gene region views. It is used in exactly
the same way as the custom views are. The view calculates the estimated promoter
position for a gene by using a standard offset from the start of the gene's first CDS.
Other standard views that can be used as examples, are W_EHA_5P_FLANKING_
REGION_V and W_EHA_3P_FLANKING_REGION_V.

To make a new custom view available in the TRC UI, perform the following steps:

■ A select privilege on the view must be granted to the TRC schema and the
appropriate user roles, for example:

GRANT SELECT ON ODB.W_EHA_MY_CUSTOM_REGION_V TO OMICSDATAMARTADMIN;

GRANT SELECT ON ODB.W_EHA_MY_CUSTOM_REGION_V TO OMICSDATAMARTCONTRIBUTOR;

GRANT SELECT ON ODB.W_EHA_MY_CUSTOM_REGION_V TO OMICSDATAMARTUSER;

GRANT SELECT ON ODB.W_EHA_MY_CUSTOM_REGION_V TO TRC;

(run these commands as SYSTEM and customize the view name and the ODB and
TRC schema names, if necessary).

■ A synonym for the view created in the Application (TRC) schema - it should have
the same name as the view itself, for example:

CREATE SYNONYM TRC.W_EHA_MY_CUSTOM_REGION_V FOR ODB.W_EHA_MY_CUSTOM_
REGION_V;

■ The view must be registered in the TRC Application's seed data, as follows:

add one or more records for it to the TRC_LOOKUP_CODE table in the Application
(TRC) schema (not the ODB schema).

Additional Step on Exadata versus Non-Exadata

Miscellaneous Topics 7-13

Enter CVIEW_ || <view name> as CODE (for example, if the view is named W_EHA_
MY_CUSTOM_REGION_V, enter CVIEW_W_EHA_MY_CUSTOM_REGION_V),
TRC_QP_GENE_REGION as CODE_TYPE, the label you want in the UI for this Gene
Region (for example, Upstream region) as CODE_NAME, an optional description as
CODE_DESC, and the language or locale code (for example, en_US) as LANGUAGE_
CODE. If the installation supports several languages, insert a separate record for each.

The CVIEW_ prefix to the Code is necessary for the Query Engine to correctly identify
the code as a custom gene region view.

7.8.2 Comparing Genomic Coordinates to Reference
For all result data loaded in the result tables, the given genomic coordinates are
chromosome position specific, while the coordinate values (stored in the columns
START_POSITION, END_POSITION) in the reference tables, with the exception of W_
EHA_DNA_SOURCE, are specific to the source sequence stored in the W_EHA_DNA_
SOURCE table. The genomic coordinates of this table are chromosome position
specific.

Reference positions are counted from the first base with the positional base inclusive.
This results in a single base increment when compared to other genomic coordinate
systems. This should be taken into account when matching coordinates from result
tables to reference table values.

Following is an example code for discovering overlapping regions of CNV against
gene segments in the reference:

SELECT CNV.ROW_WID, GS.GENE_WID FROM W_EHA_RSLT_COPY_NBR_VAR CNV, W_EHA_
GENE_SEGMENT GS, W_EHA_DNA_SOURCE DS, W_EHA_CHROMOSOME CH

WHERE CH.ROW_WID = CNV.CHROMOSOME_WID

AND DS.CHROMOSOME = CH.CHROMOSOME

AND GS.SOURCE_WID = DS.ROW_WID

AND (CNV.START_POSITION <= (GS.END_POSITION + DS.START_POSITION -1)

AND (CNV.END_POSITION >= (GS.START_POSITION + DS.START_POSITION -1))

7.9 Additional Step on Exadata versus Non-Exadata
All loaded result files are stored in staging tables on Exadata because direct path
loading is required to get the best compression. The script, load_exadata.sh, triggers
the SQL scripts required to load the data into result tables, including chromosome
partitioned tables (suffixed _CHR). This script accepts a parameter which inquires the
degree of parallelization for queries that insert data.

For each staging table, the script locks the staging table and loads into the result table
directly. This script is only required on Exadata and must be executed by the ODB
schema user. On Exadata, the loaders use a synonym which points to the staging tables
and on non-Exadata the synonym points to the actual result table. For better
compression run the script after a minimum of 50 sample result data have been loaded
into the staging tables.

The load_exadata script takes the following parameters:

■ Username - to connect to the ODB schema. If using an Oracle Wallet this value is
not used.

■ DBNAME or TNS NAME - WALLET NAME if using a wallet

UNDO Tablespace Auto-extendable Issue

7-14 Oracle Health Sciences Omics Data Bank Programmer’s Guide

■ Number for degree of parallelization - number which varies based on the Exadata
machine type - quarter rack, half rack or a full rack. Consult the system
administrator to evaluate and monitor resource capabilities to come up with the
appropriate number.

■ 1 for running script with Oracle Wallet, or 0 for running without Wallet.

7.10 UNDO Tablespace Auto-extendable Issue
Oracle DB UNDO tablespace should be auto-extendable. For Exadata systems the
following error can occur on running Variant loaders:

Description: ORA-30036: unable to extend segment by 8 in undo tablespace
'UNDOTBS8'

Ensure that the undo tablespace is increased or is created as Big File, with maxsize
around 120G (with an option to increase its size, if required).

7.11 Chromosome Partitioned Tables
Chromosome partitioned tables have identical columns as the existing result tables.
The partitioning strategy uses a primary range or interval partition based on
CHROMOSOME_WID. There is a subpartition using a range on the START_
POSITION. This range partition uses a subpartition template that declares new
partitions for every 1 million bases. This type of subpartition enables database
administrators to easily add new partitions to the range, if any subpartition gets too
large.

The Exadata version of ODB uses a secondary step to move results from staging tables
in order to maximize the hybrid columnar compression used on all result tables. This
load exadata task now has SQL statements to move staging data to each of the result
tables, the specimen based partitioned table and the chromosome based partitioned
tables as well.

On non-Exadata installations, there is no secondary task to move data from staging
tables since hybrid columnar compression does not exist on Oracle 11g non-Exadata
versions. There are indexes declared based on CHROMSOME_WID and START_
POSITION to give some better performance. There are views declared for non-Exadata
that let application code, referencing the chromosome based result tables, to work
seamlessly on any database platform.

TRC currently only queries the chromosome based partitioned tables for file export.
When users specify a genomic range to export, the SQL used to export this data
dynamically uses the chromosome based partition tables for VCF (variant) and SEG
(copy number variant) export files. For RES (gene expression) and GCT (dual channel
gene expression), there are no chromosome based partitioned result tables since all
results are always linked to specific genes. Any export that uses a genomic range for
RES or GCT is used to find all genes in that range. For non-Exadata, all types of export
always finds the list of genes to export based on genomic ranges. This is done
primarily because chromosome partitioning only exists for the Exadata platform.

A

Additional Result Tables A-1

AAdditional Result Tables

The appendix contains the following topics:

■ Pre-Seeded Tables on page A-1

■ Populated by User or Loader on page A-8

■ Tables or Columns Not Populated Through Loader Scripts on page A-10

A.1 Pre-Seeded Tables

W_EHA_RSLT_TYPE
This table stores information regarding type of result stored and is based on what data
is being inserted into ODB (one row inserted per loader per file). User may choose to
seed more types.

W_EHA_FILE_TYPE
This table is pre-seeded with file types currently handled by loaders, it should contain
six rows and the pre-seeded values are mentioned in the following table:

Table A–1 W_EHA_RSLT_TYPE

RESULT_TYPE_NAME RESULT_TYPE_DESC Which loader inserts

GENE_EXPRESSION Gene expression results Gene expression loader

NOCALL Nocall result for sequencing given allele CGI masterVar loader

SEQUENCING Sequencing results including simple variants such as SNP, insertions,
deletions

VCF, MAF, CGI
masterVar1 loaders

COPY_NUMBER_
VARIATION

Copy Number Variation results CNV loader

TCGA_RNA_SEQ_
EXON

TCGA RNA Seq results for exon information TCGA RNA seq loader1

1 CGI masterVar loader is temporarily removed from ODB 3.0 and will be available in the next release.

2-CHNL_GENE_
EXPRESSION

Gene expression results from 2-channel gene expression analysis Dual channel loader

Pre-Seeded Tables

A-2 Oracle Health Sciences Omics Data Bank Programmer's Guide

W_EHA_CHROMOSOME
This table is pre-seeded with all the possible chromosome names. The user needs to
insert any non-standard chromosome names contained in the results files.

Table A–2 W_EHA_FILE_TYPE

FILE_TYPE_
CODE FILE_TYPE_NAME FILE_TYPE_DESC FILE_TYPE_VERSION

VCF Variant Call Format File containing variant information including
SNPs, insertions, and deletions.

4.1

MAF Mutation Annotation Format Mutation Annotation Format containing snps,
inserts, and deletions.

2.2

Tab-delim
Expression

Tab delimited Expression file Gene Expression tab delimited file format
containing probe hybridization results, 3 values
per hybridization: Intensity, Call, P-value.

A

CGI masterVar Complete Genomics
MasterVar

Master Variation file from Complete Genomics
containing SNPs, insertions, deletions, and
no-call information.

2.0

SIFT Sorting Tolerant From
Intolerant

SIFT predicts whether an amino acid
substitution affects protein function.

4.0

PolyPhen Polymorphism Phenotyping PolyPhen predicts possible impact of an amino
acid substitution on the structure and function
of a human protein using straightforward
physical and comparative considerations.

5.0

BAM Binary Alignmentor Map
Format

Sequencing alignment file for sequencing runs. 1.4

SAM Sequence Alignmentor Map
Format

Sequencing alignment file for sequencing runs. 1.4

TCGA RNA SEQ
EXON

TCGA RNA SEQ EXON TCGA RNA Seq tab delimited file format for
exon information.

3.1.4.0

CNV_SEG CNV .seg file Segmented data file format is the output of the
Circular Binary Segmentation algorithm
(Olshen et al., 2004)

1.0

2-Channel

Expression

Agilent TCGA 2-channel

Expression analysis file

TCGA's Agilent platform Gene Expression
analysis file format containing gene level
results; Log2-transformed sample or control
intensity ratios.

A

CGI cnv Complete Genomics cnv Copy Number Variation file from Complete
Genomics containing cvg, ploidy and score
information.

2.0

2-Channel ADF Agilent TCGA Array

Description File

TCGA's Agilent platform G4502A_07_01 ADF
file containing the array probe information and
corresponding genomic or gene annotation.

A

gVCF genome variant call format A VCF file following VCF 4.1 specifications
combines information on variant calls (SNVs
and small-indels) with genotype and read
depth information for all non-variant positions
in the reference.

20120906a

COSMIC Coding
Mutations,
tab-delimited

COSMIC Coding Mutations,
tab-delimited

COSMIC export file CosmicCompleteExport_
vXX_<<date>>.tsv.gz

1.0

COSMIC
Non-coding
Mutations,
comma-separated

COSMIC Non-coding
Mutations, comma-separated

COSMIC export file CosmicNCV_vXX_
<<date>>.csv.gz

1.0

Pre-Seeded Tables

Additional Result Tables A-3

W_EHA_CHROM_MAPPING
This table is pre-seeded with multiple aliases for each of the chromosome record in W_
EHA_CHROMOSOME. For example, CHR1 can also be represented as 1, similarly
chrM will have alias like CHRMT, MT, and M.

W_EHA_SOMATIC_STATUS
This table is pre-seeded with all the somatic status codes currently present in the VCF
file. The W_EHA_RSLT_SEQUENCING table has the foreign key to this table through
SOMATIC_STATUS_WID.

W_EHA_PREDICTION_CODE
This table is pre-seeded with all the prediction codes for SIFT/PolyPhen annotation
loader supports.

W_EHA_VERSION
This table is used to store a version label for all reference datatypes loaded in ODB.
Version types are inserted during individual reference loads. The only data pre-seeded
here is a version label, 'VERSION 3.9', with version type as 'GENETIC_CODE' used by
the codon translation reference.

W_EHA_GENE_CODE
This table is used to store the name of the NCBI translation table for a set of genetic
codon translations to amino acids. For each translation set the table stores the

Table A–3 W_EHA_CHROMOSOME

Table Name Column Name Description Values Pre-seeded

W_EHA_
CHROMOSOME

CHROMOSOME Name of the
chromosome

1,2,3,4,5,6,7,8,9,10,11,12,1
3,14,15,16,17,18,19,20,21,2
2,X,Y,MT

Table A–4 W_EHA SOMATIC STATUS

SOMATIC STATUS_CODE SOMATIC_STATUS

0 Wildtype

1 Germline

2 Somatic

3 LOH

4 Post-transcriptional modification

5 Unknown

Table A–5 W_EHA_PREDICTION_CODE

CODE CODE_TYPE

tolerated SIFT

deleterious SIFT

unknown polyphen

benign polyphen

possibly damaging polyphen

probably damaging polyphen

Pre-Seeded Tables

A-4 Oracle Health Sciences Omics Data Bank Programmer's Guide

descriptive code name, abbreviation of the name, FK to the curation source version,
curation src version type, and the external ID for the translations.

W_EHA_GEN_CODE_TABLE
This table is pre-seeded with linkage of every triplet codon with the corresponding
Amino Acid for all listed 18 gene code translations in the W_EHA_GEN_CODE table.
Initiation codon indicators are also seeded for initiation codons.

Table A–6 W_EHA_GENE_CODE

GEN_CODE_NAME GEN_CODE_ABBR CURATION_SOURCE EXTERNAL_ID

Standard SGC0 GENETIC_CODE 1

Euplotid Nuclear SGC9 GENETIC_CODE 10

Bacterial, Archaeal and
Plant Plastid

Bacterial, Archaeal and
Plant Plastid

GENETIC_CODE 11

Alternative Yeast
Nuclear

Alternative Yeast
Nuclear

GENETIC_CODE 12

Ascidian Mitochondrial Ascidian Mitochondrial GENETIC_CODE 13

Alternative Flatworm
Mitochondrial

Alternative Flatworm
Mitochondrial

GENETIC_CODE 14

Blepharisma
Macronuclear

Blepharisma
Macronuclear

GENETIC_CODE 15

Chlorophycean
Mitochondrial

Chlorophycean
Mitochondrial

GENETIC_CODE 16

Vertebrate Mitochondrial SGC1 GENETIC_CODE 2

Trematode
Mitochondrial

Trematode
Mitochondrial

GENETIC_CODE 21

Scenedesmus obliquus
Mitochondrial

Scenedesmus obliquus
Mitochondrial

GENETIC_CODE 22

Thraustochytrium
Mitochondrial

Thraustochytrium
Mitochondrial

GENETIC_CODE 23

Pterobranchia
Mitochondrial

Pterobranchia
Mitochondrial

GENETIC_CODE 24

Yeast Mitochondrial SGC2 GENETIC_CODE 3

Mold Mitochondrial;
Protozoan
Mitochondrial;
Coelenterate
Mitochondrial;
Mycoplasma;
Spiroplasma

SGC3 GENETIC_CODE 4

Invertebrate
Mitochondrial

SGC4 GENETIC_CODE 5

Ciliate Nuclear;
Dasycladacean Nuclear;
Hexamita Nuclear

SGC5 GENETIC_CODE 6

Echinoderm
Mitochondrial; Flatworm
Mitochondrial

SGC8 GENETIC_CODE 9

Pre-Seeded Tables

Additional Result Tables A-5

Table A–7 W_EHA_GEN_CODE_TABLE (*Initiation codon is populated where given in a
separate column)

GEN_CODE_WID List of CODON value
AA1+(IS_INITIATION)* for each
CODON value

1 AAA,AAC,AAG,AAT,ACA,ACC,ACG,ACT,AGA,
AGC,AGG,AGT,ATA,ATC,ATG,ATT,CAA,CAC,C
AG,CAT,CCA,CCC,CCG,CCT,CGA,CGC,CGG,C
GT,CTA,CTC,CTG,CTT,GAA,GAC,GAG,GAT,GC
A,GCC,GCG,GCT,GGA,GGC,GGG,GGT,GTA,GT
C,GTG,GTT,TAA,TAC,TAG,TAT,TCA,TCC,TCG,T
CT,TGA,TGC,TGG,TGT,TTA,TTC,TTG,TTT

K,N,K,N,T,T,T,T,R,S,R,S,I,I,M(M),I,
Q,H,Q,H,P,P,P,P,R,R,R,R,L,L,L(M),
L,E,D,E,D,A,A,A,A,G,G,G,G,V,V,V
,V,*,Y,*,Y,S,S,S,S,*,C,W,C,L,F,L(M),
F

2 AAA,AAC,AAG,AAT,ACA,ACC,ACG,ACT,AGA,
AGC,AGG,AGT,ATA,ATC,ATG,ATT,CAA,CAC,C
AG,CAT,CCA,CCC,CCG,CCT,CGA,CGC,CGG,C
GT,CTA,CTC,CTG,CTT,GAA,GAC,GAG,GAT,GC
A,GCC,GCG,GCT,GGA,GGC,GGG,GGT,GTA,GT
C,GTG,GTT,TAA,TAC,TAG,TAT,TCA,TCC,TCG,T
CT,TGA,TGC,TGG,TGT,TTA,TTC,TTG,TTT

K,N,K,N,T,T,T,T,*,S,*,S,M(M),I(M),
M(M),I(M),Q,H,Q,H,P,P,P,P,R,R,R,
R,L,L,L,L,E,D,E,D,A,A,A,A,G,G,G,
G,V,V,V(M),V,*,Y,*,Y,S,S,S,S,W,C,W
,C,L,F,L,F

3 AAA,AAC,AAG,AAT,ACA,ACC,ACG,ACT,AGA,
AGC,AGG,AGT,ATA,ATC,ATG,ATT,CAA,CAC,C
AG,CAT,CCA,CCC,CCG,CCT,CGA,CGC,CGG,C
GT,CTA,CTC,CTG,CTT,GAA,GAC,GAG,GAT,GC
A,GCC,GCG,GCT,GGA,GGC,GGG,GGT,GTA,GT
C,GTG,GTT,TAA,TAC,TAG,TAT,TCA,TCC,TCG,T
CT,TGA,TGC,TGG,TGT,TTA,TTC,TTG,TTT

K,N,K,N,T,T,T,T,R,S,R,S,M(M),I,M
(M),I,Q,H,Q,H,P,P,P,P,R,R,R,R,T,T,
T,T,E,D,E,D,A,A,A,A,G,G,G,G,V,V,
V,V,*,Y,*,Y,S,S,S,S,W,C,W,C,L,F,L,F

4 AAA,AAC,AAG,AAT,ACA,ACC,ACG,ACT,AGA,
AGC,AGG,AGT,ATA,ATC,ATG,ATT,CAA,CAC,C
AG,CAT,CCA,CCC,CCG,CCT,CGA,CGC,CGG,C
GT,CTA,CTC,CTG,CTT,GAA,GAC,GAG,GAT,GC
A,GCC,GCG,GCT,GGA,GGC,GGG,GGT,GTA,GT
C,GTG,GTT,TAA,TAC,TAG,TAT,TCA,TCC,TCG,T
CT,TGA,TGC,TGG,TGT,TTA,TTC,TTG,TTT

K,N,K,N,T,T,T,T,R,S,R,S,I(M),I(M),
M(M),I(M),Q,H,Q,H,P,P,P,P,R,R,R,
R,L,L,L(M),L,E,D,E,D,A,A,A,A,G,
G,G,G,V,V,V(M),V,*,Y,*,Y,S,S,S,S,W,
C,W,C,L(M),F,L(M),F

5 AAA,AAC,AAG,AAT,ACA,ACC,ACG,ACT,AGA,
AGC,AGG,AGT,ATA,ATC,ATG,ATT,CAA,CAC,C
AG,CAT,CCA,CCC,CCG,CCT,CGA,CGC,CGG,C
GT,CTA,CTC,CTG,CTT,GAA,GAC,GAG,GAT,GC
A,GCC,GCG,GCT,GGA,GGC,GGG,GGT,GTA,GT
C,GTG,GTT,TAA,TAC,TAG,TAT,TCA,TCC,TCG,T
CT,TGA,TGC,TGG,TGT,TTA,TTC,TTG,TTT

K,N,K,N,T,T,T,T,S,S,S,S,M(M),I(M)
,M(M),I(M),Q,H,Q,H,P,P,P,P,R,R,R,
R,L,L,L,L,E,D,E,D,A,A,A,A,G,G,G,
G,V,V,V(M),V,*,Y,*,Y,S,S,S,S,W,C,W
,C,L,F,L(M),F

6 AAA,AAC,AAG,AAT,ACA,ACC,ACG,ACT,AGA,
AGC,AGG,AGT,ATA,ATC,ATG,ATT,CAA,CAC,C
AG,CAT,CCA,CCC,CCG,CCT,CGA,CGC,CGG,C
GT,CTA,CTC,CTG,CTT,GAA,GAC,GAG,GAT,GC
A,GCC,GCG,GCT,GGA,GGC,GGG,GGT,GTA,GT
C,GTG,GTT,TAA,TAC,TAG,TAT,TCA,TCC,TCG,T
CT,TGA,TGC,TGG,TGT,TTA,TTC,TTG,TTT

K,N,K,N,T,T,T,T,R,S,R,S,I,I,M(M),I,
Q,H,Q,H,P,P,P,P,R,R,R,R,L,L,L,L,E,
D,E,D,A,A,A,A,G,G,G,G,V,V,V,V,Q
,Y,Q,Y,S,S,S,S,*,C,W,C,L,F,L,F

9 AAA,AAC,AAG,AAT,ACA,ACC,ACG,ACT,AGA,
AGC,AGG,AGT,ATA,ATC,ATG,ATT,CAA,CAC,C
AG,CAT,CCA,CCC,CCG,CCT,CGA,CGC,CGG,C
GT,CTA,CTC,CTG,CTT,GAA,GAC,GAG,GAT,GC
A,GCC,GCG,GCT,GGA,GGC,GGG,GGT,GTA,GT
C,GTG,GTT,TAA,TAC,TAG,TAT,TCA,TCC,TCG,T
CT,TGA,TGC,TGG,TGT,TTA,TTC,TTG,TTT

N,N,K,N,T,T,T,T,S,S,S,S,I,I,M(M),I,
Q,H,Q,H,P,P,P,P,R,R,R,R,L,L,L,L,E,
D,E,D,A,A,A,A,G,G,G,G,V,V,V(M)
,V,*,Y,*,Y,S,S,S,S,W,C,W,C,L,F,L,F

10 AAA,AAC,AAG,AAT,ACA,ACC,ACG,ACT,AGA,
AGC,AGG,AGT,ATA,ATC,ATG,ATT,CAA,CAC,C
AG,CAT,CCA,CCC,CCG,CCT,CGA,CGC,CGG,C
GT,CTA,CTC,CTG,CTT,GAA,GAC,GAG,GAT,GC
A,GCC,GCG,GCT,GGA,GGC,GGG,GGT,GTA,GT
C,GTG,GTT,TAA,TAC,TAG,TAT,TCA,TCC,TCG,T
CT,TGA,TGC,TGG,TGT,TTA,TTC,TTG,TTT

K,N,K,N,T,T,T,T,R,S,R,S,I,I,M(M),I,
Q,H,Q,H,P,P,P,P,R,R,R,R,L,L,L,L,E,
D,E,D,A,A,A,A,G,G,G,G,V,V,V,V,*,
Y,*,Y,S,S,S,S,C,C,W,C,L,F,L,F

Pre-Seeded Tables

A-6 Oracle Health Sciences Omics Data Bank Programmer's Guide

11 AAA,AAC,AAG,AAT,ACA,ACC,ACG,ACT,AGA,
AGC,AGG,AGT,ATA,ATC,ATG,ATT,CAA,CAC,C
AG,CAT,CCA,CCC,CCG,CCT,CGA,CGC,CGG,C
GT,CTA,CTC,CTG,CTT,GAA,GAC,GAG,GAT,GC
A,GCC,GCG,GCT,GGA,GGC,GGG,GGT,GTA,GT
C,GTG,GTT,TAA,TAC,TAG,TAT,TCA,TCC,TCG,T
CT,TGA,TGC,TGG,TGT,TTA,TTC,TTG,TTT

K,N,K,N,T,T,T,T,R,S,R,S,I(M),I(M),
M(M),I(M),Q,H,Q,H,P,P,P,P,R,R,R,
R,L,L,L(M),L,E,D,E,D,A,A,A,A,G,
G,G,G,V,V,V(M),V,*,Y,*,Y,S,S,S,S,*,
C,W,C,L,F,L(M),F

12 AAA,AAC,AAG,AAT,ACA,ACC,ACG,ACT,AGA,
AGC,AGG,AGT,ATA,ATC,ATG,ATT,CAA,CAC,C
AG,CAT,CCA,CCC,CCG,CCT,CGA,CGC,CGG,C
GT,CTA,CTC,CTG,CTT,GAA,GAC,GAG,GAT,GC
A,GCC,GCG,GCT,GGA,GGC,GGG,GGT,GTA,GT
C,GTG,GTT,TAA,TAC,TAG,TAT,TCA,TCC,TCG,T
CT,TGA,TGC,TGG,TGT,TTA,TTC,TTG,TTT

K,N,K,N,T,T,T,T,R,S,R,S,I,I,M(M),I,
Q,H,Q,H,P,P,P,P,R,R,R,R,L,L,S(M),
L,E,D,E,D,A,A,A,A,G,G,G,G,V,V,V
,V,*,Y,*,Y,S,S,S,S,*,C,W,C,L,F,L,F

13 AAA,AAC,AAG,AAT,ACA,ACC,ACG,ACT,AGA,
AGC,AGG,AGT,ATA,ATC,ATG,ATT,CAA,CAC,C
AG,CAT,CCA,CCC,CCG,CCT,CGA,CGC,CGG,C
GT,CTA,CTC,CTG,CTT,GAA,GAC,GAG,GAT,GC
A,GCC,GCG,GCT,GGA,GGC,GGG,GGT,GTA,GT
C,GTG,GTT,TAA,TAC,TAG,TAT,TCA,TCC,TCG,T
CT,TGA,TGC,TGG,TGT,TTA,TTC,TTG,TTT

K,N,K,N,T,T,T,T,G,S,G,S,M(M),I,M
(M),I,Q,H,Q,H,P,P,P,P,R,R,R,R,L,L,
L,L,E,D,E,D,A,A,A,A,G,G,G,G,V,V
,V(M),V,*,Y,*,Y,S,S,S,S,W,C,W,C,L,F
,L(M),F

14 AAA,AAC,AAG,AAT,ACA,ACC,ACG,ACT,AGA,
AGC,AGG,AGT,ATA,ATC,ATG,ATT,CAA,CAC,C
AG,CAT,CCA,CCC,CCG,CCT,CGA,CGC,CGG,C
GT,CTA,CTC,CTG,CTT,GAA,GAC,GAG,GAT,GC
A,GCC,GCG,GCT,GGA,GGC,GGG,GGT,GTA,GT
C,GTG,GTT,TAA,TAC,TAG,TAT,TCA,TCC,TCG,T
CT,TGA,TGC,TGG,TGT,TTA,TTC,TTG,TTT

N,N,K,N,T,T,T,T,S,S,S,S,I,I,M(M),I,
Q,H,Q,H,P,P,P,P,R,R,R,R,L,L,L,L,E,
D,E,D,A,A,A,A,G,G,G,G,V,V,V,V,Y,
Y,*,Y,S,S,S,S,W,C,W,C,L,F,L,F

15 AAA,AAC,AAG,AAT,ACA,ACC,ACG,ACT,AGA,
AGC,AGG,AGT,ATA,ATC,ATG,ATT,CAA,CAC,C
AG,CAT,CCA,CCC,CCG,CCT,CGA,CGC,CGG,C
GT,CTA,CTC,CTG,CTT,GAA,GAC,GAG,GAT,GC
A,GCC,GCG,GCT,GGA,GGC,GGG,GGT,GTA,GT
C,GTG,GTT,TAA,TAC,TAG,TAT,TCA,TCC,TCG,T
CT,TGA,TGC,TGG,TGT,TTA,TTC,TTG,TTT

K,N,K,N,T,T,T,T,R,S,R,S,I,I,M(M),I,
Q,H,Q,H,P,P,P,P,R,R,R,R,L,L,L,L,E,
D,E,D,A,A,A,A,G,G,G,G,V,V,V,V,*,
Y,Q,Y,S,S,S,S,*,C,W,C,L,F,L,F

16 AAA,AAC,AAG,AAT,ACA,ACC,ACG,ACT,AGA,
AGC,AGG,AGT,ATA,ATC,ATG,ATT,CAA,CAC,C
AG,CAT,CCA,CCC,CCG,CCT,CGA,CGC,CGG,C
GT,CTA,CTC,CTG,CTT,GAA,GAC,GAG,GAT,GC
A,GCC,GCG,GCT,GGA,GGC,GGG,GGT,GTA,GT
C,GTG,GTT,TAA,TAC,TAG,TAT,TCA,TCC,TCG,T
CT,TGA,TGC,TGG,TGT,TTA,TTC,TTG,TTT

K,N,K,N,T,T,T,T,R,S,R,S,I,I,M(M),I,
Q,H,Q,H,P,P,P,P,R,R,R,R,L,L,L,L,E,
D,E,D,A,A,A,A,G,G,G,G,V,V,V,V,*,
Y,L,Y,S,S,S,S,*,C,W,C,L,F,L,F

21 AAA,AAC,AAG,AAT,ACA,ACC,ACG,ACT,AGA,
AGC,AGG,AGT,ATA,ATC,ATG,ATT,CAA,CAC,C
AG,CAT,CCA,CCC,CCG,CCT,CGA,CGC,CGG,C
GT,CTA,CTC,CTG,CTT,GAA,GAC,GAG,GAT,GC
A,GCC,GCG,GCT,GGA,GGC,GGG,GGT,GTA,GT
C,GTG,GTT,TAA,TAC,TAG,TAT,TCA,TCC,TCG,T
CT,TGA,TGC,TGG,TGT,TTA,TTC,TTG,TTT

N,N,K,N,T,T,T,T,S,S,S,S,M,I,M(M),
I,Q,H,Q,H,P,P,P,P,R,R,R,R,L,L,L,L,
E,D,E,D,A,A,A,A,G,G,G,G,V,V,V(
M),V,*,Y,*,Y,S,S,S,S,W,C,W,C,L,F,L,
F

22 AAA,AAC,AAG,AAT,ACA,ACC,ACG,ACT,AGA,
AGC,AGG,AGT,ATA,ATC,ATG,ATT,CAA,CAC,C
AG,CAT,CCA,CCC,CCG,CCT,CGA,CGC,CGG,C
GT,CTA,CTC,CTG,CTT,GAA,GAC,GAG,GAT,GC
A,GCC,GCG,GCT,GGA,GGC,GGG,GGT,GTA,GT
C,GTG,GTT,TAA,TAC,TAG,TAT,TCA,TCC,TCG,T
CT,TGA,TGC,TGG,TGT,TTA,TTC,TTG,TTT

K,N,K,N,T,T,T,T,R,S,R,S,I,I,M(M),I,
Q,H,Q,H,P,P,P,P,R,R,R,R,L,L,L,L,E,
D,E,D,A,A,A,A,G,G,G,G,V,V,V,V,*,
Y,L,Y,*,S,S,S,*,C,W,C,L,F,L,F

Table A–7 (Cont.) W_EHA_GEN_CODE_TABLE (*Initiation codon is populated where
given in a separate column)

GEN_CODE_WID List of CODON value
AA1+(IS_INITIATION)* for each
CODON value

Pre-Seeded Tables

Additional Result Tables A-7

W_EHA_GEN_CODE_USAGE
This table is used to map how GEN_CODE tables are used with each species and
chromosome in ODB.

W_EHA_PRODUCT_VERSION
This table is used to record each installation or patch upgrade of the ODB schema. The
current release_version seeded is '3.0.0.1'.

W_EHA_DATASOURCE
This table stores information about specimen source and is intended to be used
primarily with CDM (four records in W_EHA_DATASOURCE). However, if needed,
other databases with specimen information can be linked.

23 AAA,AAC,AAG,AAT,ACA,ACC,ACG,ACT,AGA,
AGC,AGG,AGT,ATA,ATC,ATG,ATT,CAA,CAC,C
AG,CAT,CCA,CCC,CCG,CCT,CGA,CGC,CGG,C
GT,CTA,CTC,CTG,CTT,GAA,GAC,GAG,GAT,GC
A,GCC,GCG,GCT,GGA,GGC,GGG,GGT,GTA,GT
C,GTG,GTT,TAA,TAC,TAG,TAT,TCA,TCC,TCG,T
CT,TGA,TGC,TGG,TGT,TTA,TTC,TTG,TTT

K,N,K,N,T,T,T,T,R,S,R,S,I,I,M(M),I(
M),Q,H,Q,H,P,P,P,P,R,R,R,R,L,L,L,
L,E,D,E,D,A,A,A,A,G,G,G,G,V,V,V
(M),V,*,Y,*,Y,S,S,S,S,*,C,W,C,*,F,L,F

24 AAA,AAC,AAG,AAT,ACA,ACC,ACG,ACT,AGA,
AGC,AGG,AGT,ATA,ATC,ATG,ATT,CAA,CAC,C
AG,CAT,CCA,CCC,CCG,CCT,CGA,CGC,CGG,C
GT,CTA,CTC,CTG,CTT,GAA,GAC,GAG,GAT,GC
A,GCC,GCG,GCT,GGA,GGC,GGG,GGT,GTA,GT
C,GTG,GTT,TAA,TAC,TAG,TAT,TCA,TCC,TCG,T
CT,TGA,TGC,TGG,TGT,TTA,TTC,TTG,TTT

K,N,K,N,T,T,T,T,S,S,K,S,I,I,M(M),I,
Q,H,Q,H,P,P,P,P,R,R,R,R,L,L,L(M),
L,E,D,E,D,A,A,A,A,G,G,G,G,V,V,V
(M),V,*,Y,*,Y,S,S,S,S,W,C,W,C,L,F,L
(M),F

Table A–8 W_EHA_GEN_CODE

CHROMOSOME_WID SPECIES_WID GEN_CODE_WID

(null) (null) 1

25 (null) 2

Table A–9 W_EHA_DATASOURCE

Table Name Description Value Pre-seeded

DATASOURCE_CD Data source for Specimen CDM, CDM_PATIENT, CDM_SUBJECT, CDM_
BOTH

DATASOURCE_NM Name of datasource for
Specimen

CDM, CDM_PATIENT, CDM_SUBJECT, CDM_
BOTH

DATASOURCE_DESC Description of datasource for
specimen

Cohort Data Model Patient Specimens (first 2
recs), Cohort Data Model Subject Specimens,
Cohort Data Model Patient and Subject
Specimens

SCHEMA_NAME Name of schema <<user input parameter at install time>> (for
example, 'CDM')

DB_LINK_NAME Link to database if needed -

VALIDATION_PROC Stored procedure used to
validate specimens

ODB_UTIL.VALIDATE_CDM_PATIENT_SPEC,
ODB_UTIL.VALIDATE_CDM_PATIENT_SPEC,
ODB_UTIL.VALIDATE_CDM_SUBJECT_SPEC,
ODB_UTIL.VALIDATE_CDM_BOTH_SPEC

Table A–7 (Cont.) W_EHA_GEN_CODE_TABLE (*Initiation codon is populated where
given in a separate column)

GEN_CODE_WID List of CODON value
AA1+(IS_INITIATION)* for each
CODON value

Populated by User or Loader

A-8 Oracle Health Sciences Omics Data Bank Programmer's Guide

A.2 Populated by User or Loader

W_EHA_FILE
This table is populated with input file identity specific annotations by loaders while
loading result data.

Table A–10 W_EHA_VERSION

Reference Loader Version_Type
Description of the File
Version

Example VERSION_
LABEL values

EMBL Loader DNA Ensemble genome
reference version specific
to the genome build
release.

GRCH37.P8 - for embl
release 68 files.

Swiss-Prot loader PROTEIN Swissprot releases do not
have labels assigned to
them. However, they
have release timestamps.
The time stamp of a
Uniprot file release is
used.

01012012

Pathway loader PATHWAY Pathway release files do
not have version labels.
File release timestamps
are used.

03032013

Prediction Loader POLYPHEN Polyphen file version
and timestamp.

POLY_VER1_22042012

Prediction Loader SIFT SIFT file version and
timestamp.

SIFT_VER1_22042012

Hugo Loader HUGO Hugo does not have a
file archive. Use the data
the file has been
downloaded.

03032013

HGMD Loader BIOBASE The timestamp of the
HGMD file release is
used.

HGMD_04282013

Probe Loader PROBE This is a user-specific
label. Use a label that
describes the target
microarray platform.

Affy_Hs_U133+_2.0_
GPL570

Cosmic Loader COSMIC Intended to store Cosmic
release upgrade version
number

COSMIC.V67

Genetic Code (seeded) GENETIC_CODE NCBI translation tables
release version

VERSION 3.9

Table A–11 W_EHA_FILE

Column Name Description If Used Together With Regular Files

FILE_URI Globally Unique identification
tag used to differentiate files
named similarly

User input; otherwise creates and updates
with unique string: 'fille://trc/' + etl_proc_
wid + '<<input file name>>'

FILE_TYPE_WID FK to W_EHA_ RSLT_FILE_
TYPE

Corresponds to WID in RSLT_ FILE_TYPE

FILE_NAME Name of file User input

Populated by User or Loader

Additional Result Tables A-9

W_EHA _FILE_LOAD
This table is populated with information on loading of files by loaders while loading
result data.

W_EHA _FILE_LOAD_QLFR
This table is populated with metadata information for each file load.

W_EHA_RSLT_FILE_SPEC
This table stores foreign keys to W_EHA_FILE and W_EHA_RSLT_ SPECIMEN and
links a specific file which is loaded to ODB via the loaders to the specimen that has
results in the file.

W_EHA_RSLT_STUDY
You must populate study details in this table before loading the results. All imported
results fall under the specified study name in the command line argument.

Additionally, you can merge Study records stored in OHCE's W_EHA_STUDY_D table
by running a function call from a package in OHCE; COHORT_PROTOCOL_
UTIL.Process_Protocols().

Table A–12 W_EHA _FILE_LOAD

Column Name Description
If Used Together With
Regular Files

If Used Together With
SecureFiles

FILE_WID Foreign key to the FILE
record

Corresponds to ROW_WID of
W_EHA_FILE

-

FILE_LOAD_
SEQ_NUM

Sequence of each file that
is loaded consecutive
times

Autonumber Autonumber

FILE_PATH Path to input file For example, C:/inputfile.txt -

SPECIMEN_
VENDOR_
NUMBER

Vendor identifier in
linked specimen
datasource database

User input parameter -

VERSION_WID Foreign key to Version Corresponds to ROW_WID of
W_EHA_VERSION

-

FILE_STORAGE_
FLG

E for External, S for
SecureFiles

E S

FILE_SIZE File size in bytes - -

LOADER_NAME Name of loader package
that generates the load

For example, 'ODB_RSLT_
CNV_UTIL' for CNV loader

-

DIRECTORY_
NAME

Oracle Directory used
for copies of file

For example, ODB_RES_DIR -

DBFS_STORE DBFS store name if file is
copied to DBFS

- USER input name of file
system

Table A–13 W_EHA _FILE_LOAD_QLFR

Column Name Description
If Used Together With
Regular Files

If Used Together With
SecureFiles

FILE_LOAD_WID Foreign key to the FILE_
LOAD record

Corresponds to ROW_WID of
W_EHA_FILE_LOAD

-

QUALIFIER_WID Foreign key to qualifier
table

Corresponds to ROW_WID of
W_EHA_QUALIFIER

-

QLFR_CHAR_
VALUE

Qualifier character
attribute value

User input qualifier or file
qualifier character values

-

Tables or Columns Not Populated Through Loader Scripts

A-10 Oracle Health Sciences Omics Data Bank Programmer's Guide

A.3 Tables or Columns Not Populated Through Loader Scripts
The following table indicates result and reference tables or columns that are currently
not being populated.

Table A–14 W_EHA_RSLT_STUDY

Table Name Column Name Description Values Pre-seeded

W_EHA_RESULT_
STUDY

RESULT_STUDY_NAME Name of the study <user-defined values>

W_EHA_RESULT_
STUDY

RESULT_STUDY_DESC Description of the study <user-defined values>

Table A–15 Unpopulated Tables

Table Name Column Name Description

W_EHA_RSLT_CNV_X - Copy Number Variation
additional data table.

W_EHA_PROBE_ALT_LINK - Table to store alternative links
between probes and genes, for
example, if a single probe is
linked to multiple genes.

W_EHA_ADF_COMPOSITE_
XREF

- Additional reference table

W_EHA_ADF_REPORTER_
XREF

- Additional reference table

W_EHA_ANATOMICAL_SITE - No loader for this table

W_EHA_HISTOLOGY - No loader for this table

W_EHA_DISEASE_G_VAR_
QLFR

- Additional qualifier table

W_EHA_GENE_XREF - Additional reference table

W_EHA_QLFR_CATEGORY - One of QC metadata tables

W_EHA_QUALIFIER - One of QC metadata tables

W_EHA_QLFR_TABLE - One of QC metadata tables

W_EHA_QLFR_TRANSLATION - One of QC metadata tables

W_EHA_RSLT_DXP_ANLYS - No loader for this table

W_EHA_RSLT_DXP_ANLYS_
MD

- No loader for this table

W_EHA_RSLT_DXP_GRP - No loader for this table

W_EHA_RSLT_DXP_GRP_SPEC - No loader for this table

W_EHA_RSLT_FILE_SPEC_
QLFR

- Additional qualifier table

W_EHA_RSLT_SPEC_QLFR - Additional qualifier table

W_EHA_FILE_QLFR - Additional qualifier table

W_EHA_REF_SAMPLE_XREF - Additional reference table

W_EHA_SPEC_EXTERNAL - Additional table to link to
non-OHSCE specimens

W_EHA_VARIANT_FILE - Used to link all reference variants
to the file used to load that
variant

W_EHA_SOMATIC_VAR_INFO - No loader for this table

Tables or Columns Not Populated Through Loader Scripts

Additional Result Tables A-11

W_EHA_SOMATIC_VAR_QLFR - Additional qualifier table

W_EHA_SOMATIC_VAR_XREF - Additional reference table

W_EHA_SOURCE_LIT_REF - No loader for this table

W_EHA_VARIANT_QLFR - Additional variant qualifier table

Table A–15 (Cont.) Unpopulated Tables

Table Name Column Name Description

Tables or Columns Not Populated Through Loader Scripts

A-12 Oracle Health Sciences Omics Data Bank Programmer's Guide

Index-1

Index

A
Aggregate Tables for Gene Expression, 1-18

C
Comparing Genomic Coordinates to Reference, 7-13
Creating Custom Gene Components, 7-7
Creating Custom Gene Region Views, 7-11
Custom Format Specification in VCF, 4-16

D
Documentation, xiii

Related Documents, 2-xiii

E
Errors

Copy Number Variation Loader, 4-61
Dual Channel Gene Expression Loader, 4-60
File Lineage Linker, 4-61
MAF Loader, 4-59
RNA-seq Loader, 4-60
Single Channel Gene Expression Loader, 4-59
VCF Loader, 4-58

Exadata versus Non-Exadata, 7-13

F
File and File Load Tables, 1-18

G
gVCF Loader, 4-15

L
Loader Activity Logging, 7-4
Logging Table, 1-18

M
Mitochondrial Chromosome Mappings, 7-4
Model Dictionary, 5-1

N
Newline Characters, 2-8

O
OHSODB

Integration with External Data Model, 2-4
Logical Data Model, 1-3

Oracle Optimizer Statistics, 4-61
Oracle Wallet, 2-2

P
Patches, xi, xiii
Product Version and Product Profile Including

Flanking Offsets, 7-1
Promoter Offset, 7-4

Q
Querying Database Cross-References for

Variations, 7-2

R
Reference Data, 1-2

Ensembl and SwissProt Loaders (Java), 3-1
Files to Load, 3-2
Installing Loader, 3-1
Loading the Data, 3-3

GVF Ensembl Loader (PLSQL), 3-11
HUGO Loader (PLSQL), 3-9
Pathway Loader, 3-14
Tables, 1-5

Reference Version Compatibility, 2-7
Result Data, 1-3

Prerequisites, 4-1
Setting Default Cache Sizes, 4-2
Tables, 1-12
Version Check Utility, 4-5
Version Information Utility, 4-5

Result Loader
Copy Number Variation Loader, 4-41
Dual Channel Loader, 4-49
File Lineage Linker, 4-40
File Specimen Loader, 4-37

Index-2

MAF Sequence Data Loader, 4-27
Quality Control Metadata Loader, 4-52
RNA-Seq Loader, 4-32
Single Channel Gene Expression Loader, 4-45
VCF Sequence Data Loader, 4-13

Result Tables for Differential Expression, 1-17
Result Tables for Qualifier Metadata, 1-16

S
Setting up a Directory Object, 2-1

U
UNDO Tablespace Auto-extendable Issue, 7-14
Use Case Examples, 6-1
Use Cases

OHSODB, 6-1
User Feedback for Loader Runs, 7-5
User Privileges for Querying or Loading Data, 2-3

V
VCF Loader Log, 7-7
VCF Sequence Data Loader

1000 genomes VCF4.1 Version, 4-14

	Contents
	Preface
	Audience
	Disclaimer Regarding Third Party Data
	Documentation Accessibility
	Finding Information and Patches on My Oracle Support
	Finding Documentation on Oracle Technology Network
	Related Documents
	Conventions

	1 Omics Data Model
	1.1 Introduction
	1.1.1 Reference Data
	1.1.2 Result Data

	1.2 Logical Data Model
	1.3 Reference Data Tables
	1.4 Result Data Tables
	1.4.1 Result Tables for Qualifier Metadata
	1.4.2 Result Tables for Differential Expression

	1.5 Table for Logging
	1.6 Aggregate Tables for Gene Expression
	1.7 File and File Load Tables

	2 Prerequisites for Loading Data
	2.1 Setting Up a Directory Object
	2.2 Setting Up an Oracle Wallet
	2.3 Setting Up User Privileges for Querying or Loading Data
	2.4 Integration with Oracle Health Sciences Cohort Explorer Data Model or Another External Data Model
	2.4.1 Specimen and Vendor Number Requirement

	2.5 Migrating W_EHA_RSLT_STUDY, W_EHA_SPEC_PATIENT and W_ EHA_SPEC_SUBJECT Tables
	2.6 Reference Version Compatibility
	2.7 Handling Newline Characters in Input Files
	2.8 Periodically Purge the Recycle Bin

	3 Loaders for Reference Data
	3.1 Ensembl and SwissProt Loaders
	3.1.1 Installing the Loaders
	3.1.2 Files to Load
	3.1.3 Loading the Data
	3.1.4 Running the Embl/Swissprot Loader with Named Command-Line Arguments
	3.1.5 Index-Organized Tables Loader
	3.1.6 Gathering Optimizer Statistics

	3.2 HUGO Loader
	3.2.1 Description and Files to Load
	3.2.2 Running the Loader
	3.2.3 Command-Line Argument List

	3.3 GVF Ensembl Loader
	3.3.1 Description and Files to Load
	3.3.2 Running the Loader
	3.3.3 Command-Line Argument List
	3.3.4 Gathering Optimizer Statistics

	3.4 Pathway Loader
	3.4.1 Description and Files to Load
	3.4.2 Running the Loader
	3.4.3 Command-Line Argument List

	3.5 Prediction Score (PolyPhen, SIFT) Loader
	3.5.1 Description and Files to Load
	3.5.2 Running the Loader
	3.5.3 Command-Line Argument List

	3.6 Probe Loader
	3.6.1 Description and Files to Load
	3.6.2 Running the Loader
	3.6.3 Command-Line Argument List

	3.7 ADF Data Loader
	3.7.1 Description and Files to Load
	3.7.2 Running the Loader
	3.7.3 Command-Line Argument List

	3.8 HGMD (BioBase) Loader
	3.8.1 Description and Files to Load
	3.8.2 Running the Loader
	3.8.3 Command-Line Argument List

	3.9 COSMIC Loader
	3.9.1 Description and Files to Load
	3.9.2 Running the Loader
	3.9.3 Command-Line Argument List

	3.10 Variant Effect Job
	3.11 Typical Errors Associated with Reference Loaders
	3.11.1 Loader Runtime Error: ORA-01460 Unimplemented or Unreasonable Conversion Requested

	4 Loaders for Result Data
	4.1 Prerequisites
	4.1.1 Setting Default Cache Sizes for Result Loading

	4.2 Overview of Result Loaders
	4.3 Version Information Utility
	4.3.1 Functional Description
	4.3.2 Running the Version Check Utility

	4.4 CGI masterVar Data Loader
	4.4.1 Functional Description of CGI Loader
	4.4.2 Files to Load
	4.4.3 Data Load
	4.4.4 Running the CGI Loader with Named Command-Line Arguments
	4.4.5 Examples

	4.5 VCF Sequence Data Loader
	4.5.1 Functional Description
	4.5.1.1 1000 genomes VCF4.1 Version
	4.5.1.2 Genome Variant Call Format (gVCF)
	4.5.1.3 FILE_TYPE_CODE and LOAD_MODE of VCF Loader

	4.5.2 Custom Format Specification in VCF
	4.5.2.1 Debugging Inconsistent Datatypes for FORMAT Field in VCF File

	4.5.3 Data Load
	4.5.3.1 Data Files

	4.5.4 Command-Line Argument List
	4.5.5 Examples

	4.6 MAF Sequence Data Loader
	4.6.1 Functional Description
	4.6.2 Data Load
	4.6.2.1 Data files

	4.6.3 Command-Line Argument List
	4.6.4 Examples

	4.7 RNA-Seq Loader
	4.7.1 Functional Description
	4.7.2 Data Load
	4.7.2.1 Data File

	4.7.3 Command-Line Argument List
	4.7.4 Examples

	4.8 File Specimen Loader and File Lineage Linker
	4.8.1 File-Specimen Loader
	4.8.2 File Lineage Linker

	4.9 Copy Number Variation Loader
	4.9.1 Functional Description
	4.9.2 Data Load
	4.9.3 Command-Line Argument List
	4.9.4 Examples

	4.10 Single Channel Gene Expression Loader
	4.10.1 Functional Description
	4.10.2 Data Load
	4.10.2.1 Assumptions for Data File
	4.10.2.2 Mappings for Gene Expression Loader
	4.10.2.3 Aggregate Tables

	4.10.3 Command-Line Argument List
	4.10.4 Examples

	4.11 Dual Channel Loader
	4.11.1 Functional Description
	4.11.2 Data Load
	4.11.3 Command Line Argument List
	4.11.4 Examples

	4.12 Quality Control Metadata Loader
	4.12.1 Functional Description
	4.12.2 Data Load
	4.12.2.1 Data File

	4.12.3 Command-Line Argument
	4.12.4 Examples

	4.13 Typical Errors Associated with Result Loaders
	4.13.1 Errors Relevant to Sequencing Loads
	4.13.2 VCF Loader Errors
	4.13.3 CGI Loader Errors
	4.13.4 MAF Loader Errors
	4.13.5 Single Channel Gene Expression Loader Errors
	4.13.5.1 Missing Probe Link Issue

	4.13.6 Dual Channel Gene Expression Loader Errors
	4.13.7 RNA-seq Loader Errors
	4.13.8 Copy Number Variation Loader Errors
	4.13.9 File Lineage Linker Errors
	4.13.10 Loader Runtime Error: ORA-01460 Unimplemented or Unreasonable Conversion Requested

	4.14 Collecting Oracle Optimizer Statistics

	5 Model Dictionary
	6 Use Case Examples
	6.1 Overview of Use Cases
	6.2 Use Cases Accompanied by Query Examples
	6.2.1 Scenario 1
	6.2.2 Scenario 2
	6.2.3 Scenario 3
	6.2.4 Scenario 4
	6.2.5 Scenario 5
	6.2.6 Scenario 6
	6.2.7 Scenario 7
	6.2.8 Scenario 8
	6.2.9 Scenario 9
	6.2.10 Scenario 10
	6.2.11 Scenario 11

	7 Miscellaneous Topics
	7.1 Product Version and Product Profile Including Flanking Offsets
	7.2 Querying Database Cross-References for Variations
	7.2.1 Ensembl db_xref Qualifier Issue
	7.2.2 Swissprot db_xref Qualifier Issue
	7.2.3 W_EHA_VARIANT_X

	7.3 Mitochondrial Chromosome Mappings
	7.4 Promoter Offset
	7.5 Loader Activity Logging
	7.6 User Feedback for Loader Runs
	7.7 VCF Loader Log
	7.8 Creating Custom Gene Components
	7.8.1 Creating Custom Gene Region Views
	7.8.2 Comparing Genomic Coordinates to Reference

	7.9 Additional Step on Exadata versus Non-Exadata
	7.10 UNDO Tablespace Auto-extendable Issue
	7.11 Chromosome Partitioned Tables
	A.1 Pre-Seeded Tables
	A.2 Populated by User or Loader
	A.3 Tables or Columns Not Populated Through Loader Scripts

	Index
	A
	C
	D
	E
	F
	G
	L
	M
	N
	O
	P
	Q
	R
	S
	U
	V

