
Endeca® Platform Services
Control System Guide

Version 6.0.3 • June 2012

Contents

Preface...9
About this guide..9
Who should use this guide..9
Conventions used in this guide...10
Contacting Oracle Support...10

Chapter 1: Endeca Control System Overview..11
About the Endeca Control System..11
About the Endeca JCD...12
About the Control Interpreter..12
Control System architecture...13
Endeca Control System directory structure..14
Running a pipeline via the Endeca Control System..16

Pipeline paths in a control script environment...16

Chapter 2: Working With the Endeca JCD..17
About controlling the Endeca JCD..17

Endeca JCD command syntax reference..17
Setting the ENDECA_MDEX_ROOT environment variable...18
About starting the Endeca JCD...18

Endeca JCD behavior...19
Enabling authentication and security...19
About logging and monitoring..20
State management..21
About recovering from job start-up failure..21

About configuring the Endeca JCD...21
Configuration file options...22
Configuration file example...25

About sending requests directly to the Endeca JCD..26
The Endeca JCD home page reference..27
About issuing commands directly to the Endeca JCD...27
About starting jobs with the JCD...33
About importing SSL certificates into Internet Explorer...33

Chapter 3: The Control Interpreter..35
Control scripts and bricks...35

Brick names...36
Defining jobs and running the Control Interpreter...36

The DefineJobs utility..36
DefineJobs syntax...37
DefineJobs command line options...37
About running the Control Interpreter..38
RunCommand utility command line options..39
Communication between the Control Interpreter and JCD..40

About writing control scripts..40
Control script syntax..40
Global default settings reference...41
Internal brick settings...44
Implicit and explicit brick commands...45
Control Interpreter interaction with environment variables..45

About setting overrides...46
About specifying settings in an override file...46
About setting priority..46

About handling repetition in control scripts...47
Variable references in repetition syntax...47

Control interpreter logging..48

iii

Control Interpreter-specific logs...48
Job-specific logs..48

Chapter 4: Running Implementations with a Control Script.................49
Overview of running Endeca components..49
Running Endeca components with a single control script..49
Generating a log report...51

Chapter 5:Configuring and Viewing Reports in a Control System Environment.53
Overview of logging and reporting..53
About configuring and running the Log Server...53

About running the Log Server..54
About running the Log Server from control scripts..54
About running the Log Server from the command line..54
About monitoring the Log Server...55
About rolling the Log Server..55

Configuring report contents and format..55
About generating reports..55

Automating report generation..56
Generating reports from control scripts...56
Report Generator command line options...57

About displaying reports...58
About generating reports for Endeca Workbench...58

About generating reports in XML...59
About viewing reports in Endeca Workbench..59

Chapter 6:Common System Architectures in an Endeca Implementation.61
Overview of system architectures...61
Development environment..61
Staging and testing environment..62
Sample production environments...62

Descriptions of implementation size..62
Small implementation with lower throughput...62
Small implementation using a crawler...63
Medium implementation with higher throughput..64
Large implementation using an Agraph...64

Appendix A: Control Script Brick Reference..67
Machine brick..67
Fetch brick..69
Shell brick...71
Forge brick..72
Dgidx brick..73
AgraphIndex brick...74
Agidx brick..75
Dgraph brick..77
Agraph brick..79
Script brick..80

Implicit and explicit commands..81
Line execution..82
Line-specific settings...82
if and else statements..82
try, onfail, and finally statements..83

Constants Brick...84
Archive brick...84
Perl brick...85
LogServer brick...86
ReportGenerator brick..88
Example control script..89

Appendix B: Control System-based Examples......................................93
Control scripts and term extraction pipelines..93
Control scripts in differential crawling...93

Endeca® Platform Servicesiv

About the differential crawling script..94
About the full crawling script..94
Sample control script for differential crawling..95

About using control scripts for baseline and partial updates..96
Sample control script for partial updates...96
Directory structure for updates..98
About the baseline updates script...99
About the partial updates script...100
About adding other bricks..102
The Dgraph update command...103
The Dgraph update command in control scripts..103

About using a control script for Agraph updates...103
Forge partial updates brick..104
About distributing the Forge output to Dgraphs...104
Using control scripts with the Agraph..104

Appendix C: SSL Configuration for the Control Interpreter...............107
Control Interpreter system communications...107
Enabling SSL for the MDEX Engine and Forge..108

Control Interpreter script configuration..109

v

Contents

Copyright and disclaimer

Copyright © 2003, 2012, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by
any means. Reverse engineering, disassembly, or decompilation of this software, unless required by
law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government
end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for
any damages caused by use of this software or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content,
products and services from third parties. Oracle Corporation and its affiliates are not responsible for
and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third-party content, products, or services.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

vii

Preface

Oracle Endeca's Web commerce solution enables your company to deliver a personalized, consistent
customer buying experience across all channels — online, in-store, mobile, or social. Whenever and
wherever customers engage with your business, the Oracle Endeca Web commerce solution delivers,
analyzes, and targets just the right content to just the right customer to encourage clicks and drive
business results.

Oracle Endeca Commerce is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided
Navigation solution, Oracle Endeca Commerce enables businesses to help guide and influence
customers in each step of their search experience. At the core of Oracle Endeca Commerce is the
MDEX Engine,™ a hybrid search-analytical database specifically designed for high-performance
exploration and discovery. The Endeca Content Acquisition System provides a set of extensible
mechanisms to bring both structured data and unstructured content into the MDEX Engine from a
variety of source systems. Endeca Assembler dynamically assembles content from any resource and
seamlessly combines it with results from the MDEX Engine.

Oracle Endeca Experience Manager is a single, flexible solution that enables you to create, deliver,
and manage content-rich, cross-channel customer experiences. It also enables non-technical business
users to deliver targeted, user-centric online experiences in a scalable way — creating always-relevant
customer interactions that increase conversion rates and accelerate cross-channel sales. Non-technical
users can control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Oracle Endeca Experience Manager, a customer experience management platform
focused on delivering the most relevant, targeted, and optimized experience for every customer, at
every step, across all customer touch points.

About this guide
This guide describes the tasks involved in the configuration and administration of an Endeca
implementation running in an Endeca Control System environment.

Although the Control System is deprecated, many existing applications still use it. However, if you are
developing a new application, Endeca strongly recommends that you do so using the Endeca Application
Controller and not the Control System.The Endeca Application Controller is documented in the Endeca
Application Controller Guide.

Who should use this guide
This guide is intended for system administrators and others who are managing the day-to-day operations
of the Endeca Information Access Platform using the Endeca Control System (Control Interpreter and
JCD). It may also be of interest to developers while they are deploying an Endeca implementation.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Oracle Support
Oracle Support provides registered users with important information regarding Oracle Endeca software,
implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Endeca ConfidentialEndeca® Platform Services Control System Guide

| Preface10

https://support.oracle.com

Chapter 1

Endeca Control System Overview

The Endeca Control System provides a way to control and administer your Endeca implementation.
This section provides an overview of the Endeca Control System.

About the Endeca Control System
The Endeca Control System includes the Control Interpreter and the Endeca Job Control Daemon (on
UNIX) and the Endeca JCD Service (on Windows). These components control and administer the
Endeca Information Access Platform (IAP) software running on one or more host machines.

This guide uses the term "Endeca JCD" to refer to the component on either a UNIX or Windows
platform. When necessary, platform-specific differences between the components are called out in
context.

The Endeca Control System should be installed on all machines that host the Endeca software.

The Endeca JCD provides the Endeca Information Access Platform with reliable process execution
and lightweight job management. The Endeca JCD runs on every machine in an implementation, and
is responsible for:

• Executing various Endeca jobs across all hosts in an implementation Examples include fetching
data and running the Forge, Dgidx, Dgraph, and Agraph programs.

• Monitoring Endeca jobs and restarting them in case of failure (if the job’s settings indicate that it
should do so).

An important secondary function of the JCD is to make your Endeca system more resilient to
interruptions in service, particularly in a production environment.

The Control Interpreter connects to all of the Endeca JCDs in your deployment so you can coordinate
their activities from a single interface. It processes simple scripts contained in a control script file. The
scripts tell the Control Interpreter how to use each machine’s Endeca JCD to run jobs on that machine.
In contrast to the JCD, which runs on every machine, the Control Interpreter runs on only one machine
in a deployment.

The following diagram shows the architecture of a typical Endeca Control System:

About the Endeca JCD
Endeca jobs are created as children under the Endeca JCD, so that the JCD can monitor them.

When a child job terminates, the Endeca JCD restarts it immediately if the job has been set to run as
a server process. On UNIX, inittab is responsible for keeping the Endeca JCD itself running, and
restarting it in case of failure. On Windows, the Windows Service Control Manager performs the same
task.

In a typical Windows usage, the Endeca JCD is set to start automatically when you start its host
computer. In a typical UNIX usage, the Endeca JCD is started from inittab on system start. In either
environment, the JCD reads in a configuration file (jcd.conf) that defines various connection and
security parameters. After reading in the configuration file, the Endeca JCD enters server mode. It
executes any jobs that were set to execute at start-up and listens for incoming HTTP requests on a
port that is specified in the jcd.conf file.

The Endeca JCD may receive two types of HTTP requests:

• Automated requests that are sent directly to the JCD from the Control Interpreter.
• Manual requests that an administrator sends to the JCD via a browser-based interface, using

commands issued as URL parameters.

Most of the time, the requests the Endeca JCD receives come from the Control Interpreter. This is the
preferable method for controlling your Endeca deployment. Administrators, however, can use the
Endeca JCD browser interface to get status information on running jobs, and to perform basic tasks
like starting and stopping processes.

If required, JCD authentication for both types of requests is provided by SSL certificates. Remote
connections to the Endeca JCD can be made from any machine authorized to do so.

Related Links
Enabling authentication and security on page 19

If your implementation requires it, the Endeca JCD can authenticate the identity of all client
requests through the use of SSL certificates.You need to generate a set of certificate files
to enable SSL.

About the Control Interpreter
The Control Interpreter calls on the Endeca JCDs to start, stop, and check the status of Endeca server
processes (such as the Dgraph and the Agraph), and to run and check the status of arbitrary commands
(such as Forge, Dgidx, and other data processing programs).

Endeca ConfidentialEndeca® Platform Services Control System Guide

Endeca Control System Overview | About the Endeca JCD12

Note: The remainder of this document refers to both server processes and arbitrary commands
as “jobs.”

You can write control scripts for the Control Interpreter that describe an entire data update sequence
that runs in parallel on multiple machines. Using control script syntax, you indicate to the Control
Interpreter what jobs should be run in sequential order and what jobs should be run in parallel.

The Control Interpreter is not installed by default with the Endeca Platform Services installation. This
means that you have to specifically choose to have it installed during the installation process. See the
Endeca Platform Services Installation Guide for installation instructions.

Even if you install the Control Interpreter on multiple Endeca servers, the control script for your
deployment is a custom-made file that is located on only one of those Endeca servers.You cannot
run the Control Interpreter without a control script; therefore, it is the server that has the control script
file that runs the Control Interpreter software for the entire deployment, as shown below:

Note: One or more backup control scripts can be placed on other servers in case the first one
fails. However, failover is not automatic.

Control Interpreter scripts are executed with detailed logging and monitoring. Error detection and
notification are built in, so no fatal error goes unreported.

Control System architecture
The following diagram shows the architecture of a typical implementation that uses the Endeca Control
System:

In this architecture diagram, the following happens:

1. The developer creates an instance configuration, using Developer Studio, that determines what
data and features will be incorporated into the index.

Endeca® Platform Services Control System GuideEndeca Confidential

13Endeca Control System Overview | Control System architecture

2. The developer creates a control script that manages all of the resources in the Endeca environment
and determines which tasks each machine will perform during a data run.

3. The developer starts the Endeca Control System, either manually or through a task scheduler.
4. The Control System manages the entire data update process, according to the instructions in the

control script.This includes running Forge and Dgidx to create indexed data, and starting a Dgraph
based on that indexed data.

More detailed information on configuring and using the Endeca Control System is found in later sections
of this guide.

Endeca Control System directory structure
Before you start building your instance configuration, you must create a directory structure to support
your data processing back end. The structure of the directory is dictated by the mechanism (i.e.,
Endeca Control System or the Endeca Application Controller) you have chosen to control your Endeca
environment.

If you are using the Endeca Control System to control your environment, you will have to create a
directory structure to contain source data, control scripts, system-generated files, log files, and so
forth. The example below shows the directory structure used for the sample_wine_data reference
implementation:

instance_root
 data
 forge_input
 incoming
 partition0
 dgidx_output
 dgraph_input
 forge_output
 state
 etc
 logs
 reports

The table below describes the contents of each directory:

DescriptionDirectory

Contains all required subdirectories for this
instance of your Endeca implementation.

instance_root

Contains subdirectories for your instance
configuration, source data extracts, and
system-generated files.

data

Contains the baseline pipeline file (typically named
pipeline.epx), the partial updates pipeline file

forge_input

(if you are running partial updates; the file is
typically named partial_pipeline.epx), and
the index configuration files (*.xml).

Endeca ConfidentialEndeca® Platform Services Control System Guide

Endeca Control System Overview | Endeca Control System directory structure14

DescriptionDirectory

Contains data ready for processing by Forge. On
a production site, the files in this directory may

incoming

have been created by a data extraction process
on the customer’s database or may be picked up
from another FTP server.

Contains subdirectories for system-generated files,
such as Forge output, Dgidx output, and Dgraph
input.

partition

Contains any state information that must be saved
between runs of the Data Foundry, for example,
auto-generated dimension IDs.

state

Contains data that has been processed by Forge
and is ready for indexing.

forge_output

Contains indices that have been processed by
Dgidx and output in MDEX Engine format.

dgidx_output

Contains a copy of the MDEX Engine indices
stored in dgidx_output. When you start the MDEX

dgraph_input

Engine (Dgraph) process, you should point at this
copy of the indices. Having a separate copy of the
indices allows you to isolate your working MDEX
Engine indices from those that are being updated.

Contains system-level configuration for your
Endeca implementation, such as control scripts.

etc

Contains log files generated by the various Endeca
components.

logs

Contains any reports you choose to generate for
your implementation.

reports

While you can structure your directories in any way you want, Endeca recommends you mimic the
directory structure of the sample_wine_data reference implementation in order to maximize reuse
of code, configuration settings, and control scripts.

After creating your directory structure, you should:

• Copy your source data extracts to instance_root/data/incoming.
• Copy any control scripts you want to use or modify to the etc directory.You can find reference

control scripts in the etc directory of the sample_wine_data reference implementation.

Endeca® Platform Services Control System GuideEndeca Confidential

15Endeca Control System Overview | Endeca Control System directory structure

Running a pipeline via the Endeca Control System
After you have created your basic pipeline, you should run it and view the results.Your initial goal is
to make sure that your source data is running through the entire pipeline and being incorporated into
the MDEX Engine indices.

The Basic Pipeline template does not contain a source data file. Therefore, before you run the Basic
Pipeline, make sure you have created an incoming directory that contains source data. Alternatively,
you can use the incoming directory in the sample_wine_data reference, which contains a source
data file named wine_data.txt.gz.

For information about the pipeline and its components, see the Platform Services Forge Guide.

To run your pipeline via the Endeca Control System:

1. Write a control script.

Endeca recommends that, at first, you modify one of the control scripts that comes with the reference
implementations, such as the remote_index.script located in:

• %ENDECA_REFERENCE_DIR%\sample_wine_data\etc on Windows.
• $ENDECA_REFERENCE_DIR/sample_wine_data/etc on UNIX.

2. Run DefineJobs on your control script to define the jobs that need to be executed by each machine’s
Endeca JCD.

3. Run RunCommand on your control script to execute the jobs and start the MDEX Engine.

Related Links
The Control Interpreter on page 35

The Control Interpreter manages the activities of multiple Endeca JCD instances, in a
distributed Endeca deployment, from a single interface. This section describes how you
configure and run the Control Interpreter.

About using control scripts for baseline and partial updates on page 96
This section describes control script development and execution for baseline updates and
partial updates.

Pipeline paths in a control script environment
You can use the --inputDir flag to specify a base path for your pipeline.

When using a Pipeline.epx file in a control scripts environment, pipeline paths for incoming data
are treated as follows:

• If you are using the --inputDir flag, the path specified with this flag will be used as a base path
for the pipeline. This means that if the pipeline specifies a relative path (which can be just a
filename), that path will be relative to the base path in the --inputDir flag. Note, however, that
if the pipeline uses an absolute path, then the path in the --inputDir flag is ignored.

• If you are not using the --inputDir flag, relative paths are resolved in relation to the location of
the control script, while absolute paths are used exactly as specified.

Make sure that any paths are valid and that referenced directories contain the correct data.

Endeca ConfidentialEndeca® Platform Services Control System Guide

Endeca Control System Overview | Running a pipeline via the Endeca Control System16

Chapter 2

Working With the Endeca JCD

In a UNIX environment, the Endeca Job Control Daemon (JCD) monitors and manages the Endeca
Information Access Platform software to provide a robust process execution environment. In a Windows
environment, the analogous component is implemented as the Endeca JCD Service. This section
discusses the administrator’s interaction with the Endeca JCD.

About controlling the Endeca JCD
You can control the Endeca JCD with the jcd command.

The executable is located in the following directory:

• $ENDECA_ROOT/bin on UNIX
• %ENDECA_ROOT%\bin on Windows

Endeca JCD command syntax reference
This reference provides the syntax for using the Endeca JCD command on Windows and UNIX
platforms.

On Windows, the Endeca JCD command has the following syntax:

jcd [--help] [--version] [--register <config-file>]

On UNIX, the Endeca JCD command has the following syntax:

jcd [--help] [--version] [<config-file>]

Descriptions of the options are as follows:

PurposeCommand

Displays command-line usage and configuration
file settings for the Endeca JCD.

--help

Displays the Endeca JCD version information and
exits.

--version

PurposeCommand

Registers the JCD as a Windows service, using
the specified Endeca JCD configuration file (for

--register <config-file>

example, %ENDECA_CONF%\etc\jcd.conf).
You can start the JCD from the Windows Services
utility.

Starts the JCD on UNIX, using the specified
Endeca JCD configuration file (for example,
$ENDECA_CONF/etc/jcd.conf).

<config-file>

Setting the ENDECA_MDEX_ROOT environment variable
If you have installed the Endeca Control System on a Windows machine, it is recommended that you
set ENDECA_MDEX_ROOT as a system environment variable, so that the JCD Service uses it when
you start the service.

On UNIX, the Endeca Control System (including the Endeca JCD) is installed by default. However,
on Windows, the Endeca Platform Services installer does not install the Endeca Control System unless
you specifically choose to do so on the Custom Setup screen. For details, refer to the Endeca Platform
Services Installation Guide.

Note: On UNIX systems, after you install the MDEX Engine, you run a script (named ende¬
ca_setup_csh.ini or endeca_setup_sh.ini) to set the ENDECA_MDEX_ROOT
environment variable.

To set ENDECA_MDEX_ROOT as a system environment variable in Windows:

1. Right-click on My Computer and then click Properties.

2. Click the Advanced tab.

3. Click Environment Variables.

4. In the System variables pane, click New.

5. In the New System Variable dialog, enter ENDECA_MDEX_ROOT as the variable name and the
absolute path of the MDEX Engine root directory as the variable value.
For example, C:\Endeca\MDEX\6.1.2.

6. Click OK.

7. Click OK to exit the Environment Variables pane and click OK again to exit the System Properties
dialog.

8. Reboot the system to ensure that the new environment variable is correctly set.

9. Restart the JCD Service from the Services pane of the Computer Management utility.

The service uses the new ENDECA_MDEX_ROOT variable as one of its environment variables.

About starting the Endeca JCD
On Windows, the Endeca JCD starts automatically. On UNIX platforms, it can be started from the
command-line.

Endeca ConfidentialEndeca® Platform Services Control System Guide

Working With the Endeca JCD | About controlling the Endeca JCD18

If you install the Endeca Control System on Windows, the Endeca JCD is registered under the Windows
Service Manager and starts up automatically when the operating system boots up. Upon startup, it
reads its configuration file (jcd.conf), which can include both connection details and security
parameters. If the Endeca JCD crashes or is terminated, the Windows Service Manager automatically
restarts it.

In a UNIX development environment, the Endeca JCD can be started from the command-line. In a
UNIX production environment, however, we recommend that it be started by init from inittab. If
the Endeca JCD crashes or is terminated, init automatically restarts it. Upon startup, the Endeca
JCD reads its configuration file (jcd.conf), which can include both connection details and security
parameters.

Note: On UNIX, the Endeca JCD is not designed to be run from inetd, the Internet services
daemon.

Endeca JCD behavior
The following sections describe how the Endeca JCD behaves while it is running and managing jobs.

Important: No job name can contain a dash (-) character.

Enabling authentication and security
If your implementation requires it, the Endeca JCD can authenticate the identity of all client requests
through the use of SSL certificates.You need to generate a set of certificate files to enable SSL.

The Endeca JCD can authenticate requests made by the Control Interpreter and requests made
through the browser-based JCD interface.

Keep in mind that by default, the JCD is not configured to use SSL. Therefore, you must perform all
these steps to enable SSL. The procedure is documented in the Endeca Security Guide.

In order to use SSL certificates, you must:

1. Run a utility, enecerts, that generates the following set of certificate files. See the Endeca Security
Guide for more information about using the SSL enecerts utility.

• eneCert.pem — certificate file used by all clients and servers to specify their identity when
using SSL. This certificate file should be thought of as the identity of the Endeca system, or as
the identity of all components of the Endeca system.

• eneCA.pem — certificate authority file used by all clients and servers to authenticate the other
endpoint of a communication channel.

• eneCA.key — private key file that is used by the certificate authority (that is, the enecerts
utility) to sign the eneCert.pem certificate.

• eneCA.cer — used by Microsoft Internet Explorer
• eneCert.p12 — used by Microsoft Internet Explorer

2. If you have multiple machines in your deployment, copy the certificate files to the same location
on all machines.

3. Configure the jcd.conf file on all machines:

a) Configure the JCD to use SSL when communicating with other Endeca components.

Endeca® Platform Services Control System GuideEndeca Confidential

19Working With the Endeca JCD | Endeca JCD behavior

b) Specify eneCert.pem as the location of the certificate that the JCD should present when
communicating with other components.

c) Specify eneCA.pem as the location of the certificate authority file the JCD will use to authenticate
communication from other components.

4. Configure the Control Interpreter’s control script:

a) Configure the Control Interpreter to use SSL when communicating with the JCD.
b) Specify eneCert.pem as the location of the certificate that the Control Interpreter should present

when communicating with the JCD.

5. Import the certificate files into Internet Explorer on each machine from which you want to manually
issue Endeca JCD commands.

Note: While this last step is not required to run the Control Interpreter, it is required if you
want to connect to the Endeca JCD directly and send it commands via a browser.

Related Links
SSL Configuration for the Control Interpreter on page 107

This appendix describes how to use SSL with the Control Interpreter.

About issuing commands directly to the Endeca JCD on page 27
You can communicate with the JCD using commands issued as URL parameters.The syntax
and values are explained below.

About logging and monitoring
The Endeca JCD records informational, warning, and error messages about its operations in a JCD
log. Each instance of the Endeca JCD records its logs on its local machine.

The location of the log information is determined by the log_file setting in jcd.conf. By default,
the jcd.conf is configured to direct log information to a file in workspace\logs\JcdLog.txt (on
Windows). If you removed the log_file setting from jcd.conf, then the Endeca JCD directs log
information to the Windows Event Log (for Windows) and the syslog (on UNIX).

Examples of the types of information you will find in an Endeca JCD log include:

• When the Endeca JCD process started.
• What port the Endeca JCD is listening to.
• When the Endeca JCD starts and stops a job.
• When the Endeca JCD auto-restarts a server process job.

The log information that the Endeca JCD produces is JCD-specific, not job-specific. In other words,
the JCD log indicates when a job is started, stopped and restarted, but it does not provide detailed
information about the job.You configure detailed job logging in the Control Interpreter’s control script.

Note: Instead of rolling these logs, the JCD simply checks the output file before starting up the
Dgraph (or any other process), and refuses to start that process if the file is already over 1
gigabyte. If the output filename specified is actually a directory, or is read-only, the JCD produces
an appropriate error message.

Related Links
Control Interpreter-specific logs on page 48

By default, the Control Interpreter prints out each line of script as it runs. If you need more
details, you can specify the --debug switch.

Endeca ConfidentialEndeca® Platform Services Control System Guide

Working With the Endeca JCD | Endeca JCD behavior20

Viewing errors in the Windows Event Log

You can check the Windows Event Log for information on errors in the Endeca JCD.

To view errors and other messages in the Windows Event Log:

1. On the machine that has the Endeca JCD log that you want to view, select Administrative Tools
from the Windows Control Panel.

2. Select Event Viewer.

3. In the Event Viewer Tree pane, select Application Log.

4. In the right pane of the Event Viewer window, scroll and search the Source column to find the
event you want to research further.

5. Double-click the event to display the Event Properties dialog box, which provides details about
the error, warning, or information message.

State management
The Endeca JCD maintains a correct and up-to-date representation of the state of all jobs in its state
file. The primary purpose of the state file is to restore a system to its previous state after a crash.

If the Endeca JCD crashes, is stopped, or is terminated, it correctly updates its status information
about all jobs under management when subsequently restarted.This means you can stop the Endeca
JCD for software maintenance without interrupting managed software processes. For example, if the
Endeca JCD is stopped and restarted, any server process that died during the Endeca JCD’s downtime
will be restarted automatically when the Endeca JCD resumes.

About recovering from job start-up failure
The Endeca JCD will automatically stop trying to start a job if it cannot succeed after a set amount of
attempts.

If a job parses properly, but the Endeca JCD cannot start the job after multiple attempts, it records this
fact and then stops trying to start the job within one minute. The number of attempts that the Endeca
JCD will make is specified in the jcd.conf file in the max_restarts_per minute setting.

Related Links
Configuration file options on page 22

This table describes the options that can be used in the JCD configuration file.

About configuring the Endeca JCD
The jcd.conf settings control how the Endeca JCD itself behaves; for example, what port it listens
to and what method it uses to log errors.

The Endeca JCD configuration file, jcd.conf, contains two types of information:

• General system settings for the JCD
• Security settings that control access to the JCD

These settings are JCD-specific, not job-specific. By contrast, the definitions for the jobs that an Endeca
JCD runs are defined in the Control Interpreter’s control script.

Endeca® Platform Services Control System GuideEndeca Confidential

21Working With the Endeca JCD | About configuring the Endeca JCD

Important: JCD settings are defined in the JCD configuration file (jcd.conf). Individual job
parameters are defined in the Control Interpreter’s control script.

Related Links
Defining jobs and running the Control Interpreter on page 36

The Control Interpreter is run based on control scripts, and may require job definitions from
the Endeca JCD.

Configuration file options
This table describes the options that can be used in the JCD configuration file.

port

HTTP port on which the Endeca JCD listens.Description

Any numeric value.Allowed Values

8088Default

YesRequired

state

Pathname for the JCD state file, which is used for automatic back up of information
about running Endeca jobs.

Description

Any string value.Allowed Values

No default value.Default

YesRequired

log

Log output mode.Description

stderr, syslog, or fileAllowed Values

stderrDefault

NoRequired

Endeca ConfidentialEndeca® Platform Services Control System Guide

Working With the Endeca JCD | About configuring the Endeca JCD22

log_file

Location of the log file, for log=file mode.Description

Any string value.Allowed Values

No default value.Default

Yes, if log=file. No, if log=stderr or log=syslog.Required

ssl

Set to true if you want the JCD to use secure, encrypted communication (HTTPS)
when communicating with other Endeca components. Set to false to disable
encrypted JCD communication.

Description

Endeca recommends that you set to true for production environments. However,
in a development environment, you may opt to set it to false to avoid the need for
certificate files during development.

Note: If you set ssl=false then sslcertfile and sslcafile are ignored.

true or falseAllowed Values

falseDefault

NoRequired

sslcertfile

Specifies the path of the certificate file that the JCD should present when
communicating with other Endeca components via SSL.

Description

Pathname to eneCert.pem. (This is the name of the certificate file. Note that this
file is not provided by default.You must run the enecerts utility to create it, as
described in the Endeca Security Guide.

Allowed Values

eneCert.pemDefault

Required (and only used) when ssl=true.Required

Endeca® Platform Services Control System GuideEndeca Confidential

23Working With the Endeca JCD | About configuring the Endeca JCD

sslcafile

Specifies the path of the certificate authority file, eneCA.pem, that the JCD should
use to authenticate communication with other Endeca components.

Description

Pathname to eneCA.pem. (This is the name of the certificate authority file. Note that
this file is not provided by default.You must run the enecerts utility to create it, as
described in the Endeca Security Guide.

Allowed Values

eneCA.pemDefault

Used only when ssl=true.Required

sslcipher

Sets the cipher string (such as RC4-SHA) that specifies the cryptographic algorithm
the JCD will use during the SSL negotiation. Used only when ssl=true.

Description

Any string value.Allowed Values

No default value.Default

NoRequired

shutdown_timeout_seconds

Maximum time the Endeca JCD will wait, in seconds, for a job to respond to a stop
request before killing it.

Description

Any numeric value.Allowed Values

30Default

NoRequired

max_restarts_per_minute

Maximum number of times, per minute, that the Endeca JCD will attempt to restart
a server process. JCD stops trying to start the job after this many attempts if the job
fails to run.

Description

Any numeric value.Allowed Values

Endeca ConfidentialEndeca® Platform Services Control System Guide

Working With the Endeca JCD | About configuring the Endeca JCD24

10Default

NoRequired

max_read_tries

Maximum number of times that the Endeca JCD will attempt to read data from an
incoming client request.

Description

Any numeric value.Allowed Values

32Default

NoRequired

max_read_time_seconds

For an incoming client request, the maximum number of seconds that are allowed
without data having being read.

Description

Any numeric value.Allowed Values

30Default

NoRequired

max_write_time_seconds

The maximum number of seconds that are allowed per reply without data having
being read by the client.

Description

Any numeric value.Allowed Values

30Default

NoRequired

Configuration file example
The following is an example of a Windows Endeca JCD configuration file:

Endeca® Platform Services Control System GuideEndeca Confidential

25Working With the Endeca JCD | About configuring the Endeca JCD

Reference implementation of configuration file for
the Endeca JCD.
Copyright (c) 2009 Endeca Technologies, Inc.

Communication port for Endeca JCD. This must match
the "jcd_port" value used in the Control Interpreter's
control script (specified # globally as is here or in
a Machine brick).
port 8088

State file path, used for automatic backup of
information about running Endeca jobs (e.g., data
processing commands, MDEX Engine, etc.):
state C:\Endeca\PlatformServices\workspace\state\JcdState.dat

Log configuration. Can be file, stderr, or syslog.
Syslog directs logs to Windows Event Viewer. File is
recommended.
log file
log_file C:\Endeca\PlatformServices\workspace\logs\JcdLog.txt

Security configuration:
ssl--Set to true if you want the JCD to use encrypted
communication when communicating with other Endeca
components. If set to false, sslcertfile and sslcafile
are ignored.
sslcertfile--Specifies the path of the certificate
file that the JCD should present when communicating
with other Endeca components via SSL.
sslcafile--Specifies the path to a certificate
authority file, if you want the JCD to authenticate
communications from other Endeca components.
ssl false
sslcertfile C:\Endeca\PlatformServices\workspace\etc\eneCert.pem
sslcafile C:\Endeca\PlatformServices\workspace\etc\eneCA.pem

About sending requests directly to the Endeca JCD
You can connect to the Endeca JCD to check the status of running server processes, and to occasionally
control these processes at a low level (for example, to stop a running server process).You communicate
with the JCD via a browser-based interface, either by accessing the JCD home page or issuing
commands as URL parameters.

If you have set the Endeca JCD to use HTTPS mode with authentication (in the jcd.conf file,
ssl=true and sslcertfile and sslcafile are specified), you must import the SSL certificates
into Internet Explorer in order to communicate with the JCD. Importing certificates is an optional step.

Related Links
About issuing commands directly to the Endeca JCD on page 27

You can communicate with the JCD using commands issued as URL parameters.The syntax
and values are explained below.

The Endeca JCD home page reference on page 27
For some Endeca JCD parameters, rather than typing in parameter/value pairs, you can enter
the hostname and port number (that is, http://[host]:[port]) in order to access the
Endeca JCD home page, and then click on one of its options, explained below.

Endeca ConfidentialEndeca® Platform Services Control System Guide

Working With the Endeca JCD | About sending requests directly to the Endeca JCD26

About importing SSL certificates into Internet Explorer on page 33
If you use HTTPS mode with authentication, you will need to import the SSL certificates into
Internet Explorer to communicate with the JCD.

The Endeca JCD home page reference
For some Endeca JCD parameters, rather than typing in parameter/value pairs, you can enter the
hostname and port number (that is, http://[host]:[port]) in order to access the Endeca JCD
home page, and then click on one of its options, explained below.

The home page offers the following options:

DetailsOption

Lists the URL options for the Endeca JCD.Help

Shows the status of any running jobs. The job name and status
command are both hyperlinked. Clicking on the job name gives you

Display running jobs

additional information about that job; clicking the command (for example,
Stop for a running job) executes that command.

Shows detailed information about all defined jobs in the system,
regardless of status. The job name and status command are

Display all defined jobs

hyperlinked, as described in “Display running jobs,” above. The paths
to stdout, stderr, and the start directory are also linked. Clicking
the link to stdout or stderr opens the associated file, while clicking
StartDir takes you to that directory and allows you to drill down to its
component files.

Displays a list of all settings in the current environment.Display environment
variables

Displays files and directories in the system in hyperlinked format so
that you can drill down on them.

Browse the file system

About issuing commands directly to the Endeca JCD
You can communicate with the JCD using commands issued as URL parameters. The syntax and
values are explained below.

The general URL syntax for commands sent manually to the Endeca JCD is as follows:

http://[host]:[port]/[op]?[param]=[val]&[param]=[val]...

Note: If you are using HTTPS mode, use https instead of http in the URL.

Alternatively, you can access some of the parameters through the Endeca JCD home page.

Endeca® Platform Services Control System GuideEndeca Confidential

27Working With the Endeca JCD | About sending requests directly to the Endeca JCD

Valid [op] values are listed below, along with associated [param] keys. Note that some of the operations
require a job name. Job names are defined in the Control Interpreter’s control script.

Note: Due to the length of the URLs some of the examples in this section break onto additional
lines, but you would type them on a single line in your Web browser’s Address bar.

active

Gets a brief status for a job. Returns the status for all running jobs if no job parameter
is specified.

Description

Note: Active returns status for running jobs only, in contrast to status, which
returns status for all jobs, running or not.

Parameter Keys • job: Name of the job for which status should be returned (optional).
• format:(Optional) HTML.

Yes. Go to the JCD home page and click “Display running jobs”.Accessible from
JCD Home
Page

http://JCDServerNameorIP:JCDPort Number/active?job=wine_dgidxExample

delete

Deletes the job definition for a stopped job. After the definition is deleted, the job can
no longer be restarted.

Description

Parameter Keys • job: Name of the job to delete.
• format:(Optional) HTML.

No.Accessible from
JCD Home
Page

http://JCDServerNameorIP:JCDPort Number/delete?job=wine_dgraphExample

dir

Lists the contents of a directory path.Description

Parameter Keys • path: Path of the directory to list.
• format:(Optional) HTML.

Endeca ConfidentialEndeca® Platform Services Control System Guide

Working With the Endeca JCD | About sending requests directly to the Endeca JCD28

Yes. Go to the JCD home page and click “Browse the file system”.Accessible from
JCD Home
Page

On Windows:Example

http://JCDServerNameorIP:JCDPort
Number/get?path=c:\endeca\platformservices\6.0.1\reference\sample_wine_
data\logs\

On UNIX:

http://JCDServerNameorIP:JCDPort
Number/get?path=c:\endeca\platformservices\6.0.1\reference\sample_wine_
data\logs\

exit

Shuts down all jobs and terminates the JCD.Description

None.Parameter Keys

No.Accessible from
JCD Home
Page

http://JCDServerNameorIP:JCDPort Number/exitExample

get

Retrieves the complete contents of a file.Description

Parameter Keys • path: Path of the file to return.
• offset: (Optional) Specifies a start location different than the beginning of the file.

If not specified, defaults to 0.
• numbytes: (Optional) Specifies the number of bytes you want to retrieve, starting

at offset. Defaults to the entire file size.

Yes. Go to the JCD home page and click “Browse the file system".Accessible from
JCD Home
Page

On Windows:Example

http://JCDServerNameorIP:JCDPort
Number/get?path=c:\endeca\platformservices\6.0.1\reference\sample_wine_
data\logs\wine_forge.out

Endeca® Platform Services Control System GuideEndeca Confidential

29Working With the Endeca JCD | About sending requests directly to the Endeca JCD

On UNIX:

http://JCDServerNameorIP:JCDPort
Number/get?path=/usr/local/endeca/
current/reference/sample_wine_data/ logs/wine_forge.out

halt

Terminates the JCD, leaving active jobs running.Description

Note: On UNIX, If the Endeca JCD is running under init, then init will
immediately restart the JCD after a halt command.

None.Parameter Keys

No.Accessible from
JCD Home
Page

http://JCDServerNameorIP:JCDPort Number/haltExample

help

Displays the help page.Description

None.Parameter Keys

Yes. Go to the JCD home page and click “Help”.Accessible from
JCD Home
Page

http://JCDServerNameorIP:JCDPort Number/helpExample

printenv

Prints the environment variables that the Endeca JCD is using.Description

None.Parameter Keys

Yes. Go to the JCD home page and click “Display environment variables”.Accessible from
JCD Home
Page

http://JCDServerNameorIP:JCDPort Number/printenvExample

Endeca ConfidentialEndeca® Platform Services Control System Guide

Working With the Endeca JCD | About sending requests directly to the Endeca JCD30

roll

Roll (close and re-open) the Endeca JCD log file.Description

If you roll the log to a new file, you will also have to update your jcd.conf file to
point to the new log location. If you don’t update the jcd.conf, the Endeca JCD
goes back to using the old log location when it is restarted.

Parameter Keys • path:(Optional) New log file path (default = existing log path).
• format:(Optional) HTML.
•

Note: If you use the existing log path, your current log file will not be
overwritten.

No.Accessible from
JCD Home
Page

On Windows:Example

http://JCDServerNameorIP:JCDPort
Number/roll?path=c:\endeca\platformservices\workspace\logs\jcdlog.txt

On UNIX:

On UNIX: http://JCDServerNameorIP:JCDPort
Number/roll?path=/usr/local/endeca/logs/jcdlog.txt

start

Starts a stopped job and returns the success or failure of the operation.Description

Parameter Keys • job: Name of the job to start.
• format:(Optional) HTML.

Yes. Go to the JCD home page and click “Display all defined jobs”. Find the job
you want to start and click “Run again”.

Accessible from
JCD Home
Page

http://JCDServerNameorIP:JCDPort Number/start?job=wine_dgraphExample

status

Gets the status for a job. Returns the status for all jobs if no job parameter is specified.Description

Note: Status returns status for all jobs, running or not, in contrast to active,
which returns status for running jobs only.

Endeca® Platform Services Control System GuideEndeca Confidential

31Working With the Endeca JCD | About sending requests directly to the Endeca JCD

Parameter Keys • job:(Optional) Name of the job for which status should be returned.
• format:(Optional) HTML.

Yes. Go to the JCD home page and click “Display all defined jobs”.Accessible from
JCD Home
Page

http://JCDServerNameorIP:JCDPort Number/status?job=wine_dgraphExample

stop

Stops a running job.Description

Parameter Keys • job: Name of the job to stop.
• format:(Optional) HTML.

Yes. Go to the JCD home page and click either “Display all running jobs” or
“Display all defined jobs”. In the Status line of the job in question, click Stop.

Accessible from
JCD Home
Page

http://JCDServerNameorIP:JCDPort Number/stop?job=wine_dgraphExample

tail

Returns the tail (that is, the last 1 KB) of a file.Description

path: Path of the file to tail.Parameter Keys

No.Accessible from
JCD Home
Page

On Windows:Example

http://JCDServerNameorIP:JCDPort
Number/tail?path=c:\endeca\platformservices\6.0.1\reference\sample_wine_data\
logs\wine_forge.err

On UNIX:

http://JCDServerNameorIP:JCDPort
Number/tail?path=/usr/local/endeca/
current/reference/sample_wine_data/ logs/wine_forge.err

Related Links
Defining jobs and running the Control Interpreter on page 36

Endeca ConfidentialEndeca® Platform Services Control System Guide

Working With the Endeca JCD | About sending requests directly to the Endeca JCD32

The Control Interpreter is run based on control scripts, and may require job definitions from
the Endeca JCD.

The Endeca JCD home page reference on page 27
For some Endeca JCD parameters, rather than typing in parameter/value pairs, you can enter
the hostname and port number (that is, http://[host]:[port]) in order to access the
Endeca JCD home page, and then click on one of its options, explained below.

About starting jobs with the JCD
The start command is reported successful if a job starts, even if the job terminates due to an error.

If you use the Endeca JCD’s start command to start a job, the JCD will start the job and report that
the job has been started successfully (assuming the job was successfully started). If the job then exits,
either due to normal completion or an error, that doesn’t change the fact that it was started successfully
by the JCD. The JCD’s “successful start” report indicates only that the job started successfully. It does
not indicate that the job continued to run successfully. Errors that occur after the job has been started
are logged in the Endeca JCD log file.

For example, if you use the Endeca JCD start command to start a Dgraph job, and then the Dgraph
fails while loading the index, the JCD will still report the Dgraph as successfully started, despite the
fact that the Dgraph subsequently failed. The error that the Dgraph failed is logged in the Endeca JCD
log file.

Related Links
Control interpreter logging on page 48

The Control Interpreter produces two types of logs to complement the Endeca JCD log (which
provides information that is specific to running the Endeca JCD).

About importing SSL certificates into Internet Explorer
If you use HTTPS mode with authentication, you will need to import the SSL certificates into Internet
Explorer to communicate with the JCD.

If ssl=true and an sslcertfile and sslcafile are specified in the jcd.conf file, you must
import the SSL certificates into Internet Explorer in order to communicate directly with the JCD. This
procedure must be followed on each Windows machine from which the Endeca JCD will be accessed.

Refer the Endeca Security Guide for detailed instructions on importing SSL certificates into Internet
Explorer.

Note: If you are not using HTTPS mode to communicate with the Endeca JCD, you do not need
to perform this procedure.

Related Links
SSL Configuration for the Control Interpreter on page 107

This appendix describes how to use SSL with the Control Interpreter.

Endeca® Platform Services Control System GuideEndeca Confidential

33Working With the Endeca JCD | About sending requests directly to the Endeca JCD

Chapter 3

The Control Interpreter

The Control Interpreter manages the activities of multiple Endeca JCD instances, in a distributed
Endeca deployment, from a single interface. This section describes how you configure and run the
Control Interpreter.

Control scripts and bricks
The Control Interpreter uses each machine’s instance of the Endeca JCD to run jobs on that machine.
Instructions for controlling all of the Endeca JCDs in a deployment reside in a control script that a
developer writes for your custom environment.

A control script is made up of a collection of bricks. A brick describes a single well-defined task, such
as downloading a file, indexing data, or restarting a Dgraph. Bricks translate into jobs that the Control
Interpreter sends to the Endeca JCDs.

There are different bricks for different tasks: the Forge brick runs Forge, the Dgraph brick runs a
Dgraph, the Shell brick runs operating system commands, and so on. Each brick has a set of attributes
associated with it, most of which have default values.You can customize a brick by overriding its
default attributes.

A control script always contains one or more Script bricks. Script bricks tell the Control Interpreter how
to execute the other bricks in the control script file. The lines in a Script brick are executed in order.
By default, bricks named on different lines are run sequentially, while bricks named on the same line
are run in parallel.

In addition to bricks, a control script also contains some global default settings that are shared across
bricks.

Related Links
Control Script Brick Reference on page 67

This appendix provides details about specific brick types. Some long brick settings break
onto the following line in these examples; however, you should type each brick setting on a
single line. If you need to wrap a line, put a space and a backslash (“ \”) at the break; this
tells the Control Interpreter to ignore the line break.

Example control script on page 89
This simple but complete control script demonstrates how all of the Control Interpreter elements
work together.

Brick names
Every brick in a control script has a name that identifies it.You use brick names to cross-reference
from one brick to another, building more complex bricks out of simpler bricks.

The syntax for brick naming is:

<brick_name> : <brick_type>

For example, a Dgraph brick called dgraph01 would appear as dgraph01 : Dgraph in the control
script.

Brick names are case sensitive, and they must be unique within the control script. Names follow the
same format as C identifiers (including no spaces, hyphens, or dots).

Important: If you are using multiple control scripts, brick names must be unique across your
entire deployment.

Defining jobs and running the Control Interpreter
The Control Interpreter is run based on control scripts, and may require job definitions from the Endeca
JCD.

Running the Control Interpreter is a one or two step process:

1. Provide the Endeca JCDs with job definitions.

This step is not always required.

2. Run the Control Interpreter to execute jobs according to the control script logic.

Related Links
The DefineJobs utility on page 36

You must run the DefineJobs script before you run your control script for the first time, or
whenever your control script changes. DefineJobs provides each instance of the Endeca
JCD with the job definitions it will need in order to execute its job(s).

The DefineJobs utility
You must run the DefineJobs script before you run your control script for the first time, or whenever
your control script changes. DefineJobs provides each instance of the Endeca JCD with the job
definitions it will need in order to execute its job(s).

Endeca ConfidentialEndeca® Platform Services Control System Guide

The Control Interpreter | Defining jobs and running the Control Interpreter36

Job definitions are derived from the bricks in the control script itself.

After you have defined your jobs, you can run the control script as often as you want, without re-running
DefineJobs, as long as the control script doesn’t change. If you change your control script, your job
definitions also change, and you must re-run DefineJobs to send the new definitions to the Endeca
JCDs.

The DefineJobs utility is located in $ENDECA_ROOT/bin on UNIX and %ENDECA_ROOT%\bin on
Windows.

DefineJobs syntax
The syntax for running the DefineJobs utility is:

DefineJobs [options] <control_script> [command]

where options represents command line options, control_script is the pathname to the Control
Interpreter’s control script, and command represents a specific command in the control script.

The command argument is optional, and may be either the name of a Script brick or a specific line
within a Script brick. For example:

DefineJobs index.script myBrick

DefineJobs index.script dgraph.stop

If you do not specify a command, DefineJobs defines all of the jobs listed in the control script. If you
do specify a command, then only jobs associated with that command are defined.

Related Links
DefineJobs command line options on page 37

You can change the behavior of the DefineJobs utility using the command flags described
below.

DefineJobs command line options
You can change the behavior of the DefineJobs utility using the command flags described below.

By default, DefineJobs prompts you before redefining, stopping, or restarting any jobs.You use the
command line options --delete-prefix, --force-delete, --force-redefine,
--force-restart, and --force-stop to alter this behavior. In addition, you can specify control
script setting overrides using the last two DefineJobs options.

DescriptionOption

Specifies a unique prefix for all JCD job names.
This is useful if using the same JCD with more than
one configuration file.

--job-prefix <prefix>

If you want to use the --delete-prefix setting,
you must specify prefixes with this option, rather
than adding them manually.

Endeca® Platform Services Control System GuideEndeca Confidential

37The Control Interpreter | Defining jobs and running the Control Interpreter

DescriptionOption

Delete all jobs with the given prefix. This option
only works if jobs were prefixed using
--job-prefix.

--delete-prefix <prefix>

Using this option means that no new jobs will be
defined. Do not use this option with --no-prompt.

Delete unrecognized jobs without prompting.--force-delete

Do not prompt when redefining jobs.--force-redefine

Do not prompt when stopping and restarting jobs
that are currently running but need to be redefined.
This option implies --force-stop.

--force-restart

Do not prompt when stopping jobs that are
currently running but need to be deleted or
redefined.

--force-stop

Do not delete unrecognized jobs.--never-delete

Equivalent to using all three of the following:--no-prompt

• --force-redefine

• --force-restart

• --never-delete

Overrides a particular setting in a control script
with the value specified.

--override <setting>=<value>

Overrides settings in a control script with settings
specified in an override file.

--override-file <file>

Related Links
About setting overrides on page 46

The Control Interpreter allows you to override brick settings on the command line.This feature
is useful when you have a single control script file that you want to use in multiple
environments.

About running the Control Interpreter
After the Endeca JCDs have been prepared with job definitions, you run the Control Interpreter, using
the control script as an argument.The Control Interpreter instructs the individual JCDs to execute their
jobs according to the control script’s logic.

Endeca ConfidentialEndeca® Platform Services Control System Guide

The Control Interpreter | Defining jobs and running the Control Interpreter38

In Windows environments, you can run the Control Interpreter automatically from the Scheduled Tasks
control panel, or manually from the command prompt. Endeca recommends that you run the Control
Interpreter via the Scheduled Tasks control panel in production environments.

In UNIX environments, you run the Control Interpreter automatically from the crontab task scheduler,
or manually from a shell prompt. Endeca recommends that you run the Control Interpreter via the
crontab task scheduler for production environments.

The syntax for the Control Interpreter command looks like this:

RunCommand [options] <control_script> [command]

where options represents the command line options, control_script is the pathname of the Control
Interpreter’s control script file, and command represents the specific command in the control script to
be executed.

The RunCommand utility is located in $ENDECA_ROOT/bin on UNIX and %ENDECA_ROOT%\bin on
Windows.

The command argument is optional, and may be either the name of a Script brick or a specific line
within a Script brick. For example:

RunCommand index.script myBrick

RunCommand index.script dgraph.stop

If you do not specify a command, RunCommand will look for a Script brick to run. If there are multiple
Script bricks, RunCommand will list them, and require you to choose one. If you do specify a command,
then only that command is executed.

Endeca suggests that you save the Control Interpreter output to a log file if you are running via
Scheduled Tasks on Windows or via crontab on UNIX.

Note: In production, it is a good idea to set up your system to check the return code from
RunCommand and send an email notification in case of failure.

Related Links
RunCommand utility command line options on page 39

The following table describes the command line options you can use with RunCommand:

Control interpreter logging on page 48
The Control Interpreter produces two types of logs to complement the Endeca JCD log (which
provides information that is specific to running the Endeca JCD).

RunCommand utility command line options
The following table describes the command line options you can use with RunCommand:

DescriptionOption

Overrides settings in a control script with settings
specified in an override file.

--override-file <file>

Overrides a particular setting in a control script
with the value specified.

--override <setting>=<value>

Endeca® Platform Services Control System GuideEndeca Confidential

39The Control Interpreter | Defining jobs and running the Control Interpreter

DescriptionOption

A RunCommand logging option.--debug

Prints the line number of every command as it is
run, for debugging purposes.

--trace-line-numbers

Related Links
About setting overrides on page 46

The Control Interpreter allows you to override brick settings on the command line.This feature
is useful when you have a single control script file that you want to use in multiple
environments.

Control Interpreter-specific logs on page 48
By default, the Control Interpreter prints out each line of script as it runs. If you need more
details, you can specify the --debug switch.

Communication between the Control Interpreter and JCD
The Control Interpreter initiates all communication between itself and the Endeca JCD instances. The
Endeca JCD does not initiate any communication between the two.

After the Control Interpreter has sent a job to an Endeca JCD, it follows up with periodic queries to
determine whether or not the job has been completed. When the JCD indicates that the job has been
completed, the Control Interpreter continues with the next job in the control script.

About writing control scripts
You write control scripts using a set of standard bricks.

Developing scripts is part of the Endeca deployment process, and typically happens before the system
is put into production. This section discusses common brick elements.

Related Links
Control Script Brick Reference on page 67

This appendix provides details about specific brick types. Some long brick settings break
onto the following line in these examples; however, you should type each brick setting on a
single line. If you need to wrap a line, put a space and a backslash (“ \”) at the break; this
tells the Control Interpreter to ignore the line break.

Control script syntax
Control scripts are sensitive to whitespace, such as indents and carriage returns.

Indentation is significant in a control script. Lines that are more indented are considered children of
lines that are less indented.

Note: To avoid issues that can occur when using certain text editors, always use tabs, not
spaces, to create indentation at the beginning of lines.

Endeca ConfidentialEndeca® Platform Services Control System Guide

The Control Interpreter | About writing control scripts40

Ends of lines are also significant. If you need to type a long line that will break onto the following line,
put a space followed by a backslash (“ \”) at the point where the line breaks. This tells the Control
Interpreter to ignore the line break.

Global default settings reference
The tables below describe the most common control script settings that are set globally.

You specify global default settings in the control script for settings that are shared across multiple
bricks—for example, a working directory, a JCD port number, or a logging location.You can use any
brick setting as a global default, as long as the setting makes sense in a global context. As necessary,
you over ride a global default setting for a specific brick by specifying a different value for the setting
in the brick’s definition. Unless you decide to over ride a global default, the global setting applies to
all bricks in a control script.

Important: You can also override global default settings and brick-specific settings from the
command line.

Basic global defaults

DescriptionSetting

The machine on which to execute the bricks. This must match the name of
a Machine brick, which contains all the information necessary to connect to
that machine.

working_machine

This setting is required for remote execution. Otherwise, if it is not specified,
the bricks will run on the same machine as the Control Interpreter itself. In
a distributed implementation, over ride this setting in each Machine brick.
For example, in an implementation with multiple Dgraphs, you would override
this setting in each Dgraph brick.

The directory to use as the current directory when executing the bricks. All
relative paths in the brick definitions are relative to this directory.

working_dir

File prefix to indicate where stdout will be written. stdout_base may be
either a full pathname and prefix, or a prefix that is relative to the working_dir.

stdout_base

Each brick writes its stdout to a file whose name begins with this prefix,
and ends with the brick name.

Note: You can send stdout and stderr to the same file.

File prefix to indicate where stderr will be written. stderr_base may be
either a full pathname and prefix, or a prefix that is relative to the working_dir.

stderr_base

Each brick writes its stderr to a file whose name begins with this prefix,
and ends with the brick name.

Endeca® Platform Services Control System GuideEndeca Confidential

41The Control Interpreter | About writing control scripts

DescriptionSetting

Note: You can send stdout and stderr to the same file.

Specifies whether to append stdout or overwrite it (the default). Values
are yes or no.

append_stdout

If a brick is executing on a remote machine, this setting is ignored and
stdout is always appended.

Specifies whether to append stderr or overwrite it (the default). Values
are yes or no.

append_stderr

If a brick is executing on a remote machine, this setting is ignored and
stderr is always appended.

Path to the bin subdirectory of the Endeca Platform Services distribution
you are using. Setting this path is equivalent to setting the path to the forge
binary.

endeca_bin

Note: This setting is required if you want to download files from remote
machines via the Endeca JCD.

Note: There may be other files, such as Perl scripts, that reside in
the bin subdirectory along with the forge binary. In order to reference
other files in the bin directory, you must provide a complete pathname.

Path to the bin subdirectory of the Endeca MDEX Engine distribution you
are using. Setting this path is equivalent to setting the paths to the dgidx,
agidx, dgraph, and agraph binaries all at once.

endeca_mdex_bin

You can override the endeca_mdex_bin setting in individual bricks with
the dgidx_binary, agidx_binary, dgraph_binary, and
agraph_binary settings.

Note: There may be other files that reside in the bin subdirectory
along with the dgidx, agidx, dgraph, and agraph binaries—for
example, dgwordlist.The endeca_mdex_bin setting applies only
to the four core Endeca MDEX Engine binaries. In order to reference
other files in the bin directory, you must provide a complete pathname.

Specifies the name of a Constants brick that contains the environment
variables that should be used while running the system.

environment_vars

Note: The environment variables are completely replaced, and not
simply added to. Therefore, if you use this setting, you must specify
all of the environment variables that you will need, including PATH.

Endeca ConfidentialEndeca® Platform Services Control System Guide

The Control Interpreter | About writing control scripts42

DescriptionSetting

Path to the Perl interpreter to use on each machine in the deployment. This
setting is required if you want to download files from remote machines via
the Endeca JCD.

perl_binary

Note: You must use version 5.8.3 of Perl as installed with the Endeca
software. This path is used for remote file retrieval only. It is not used
when running the Control Interpreter itself.

Path to the wget file-retrieval program file (installed as part of the standard
Endeca installation).

wget_binary

This setting is optional; if it is not specified in the control script, the system
looks for it in the %ENDECA_ROOT%\bin directory on Windows and in
$ENDECA_ROOT/bin on UNIX.

The port used to connect to the Endeca JCD.This must match the port listed
in the jcd.conf file. The standard port for the Endeca JCD is 8088.

jcd_port

Specifies whether or not the Control Interpreter must use SSL when
communicating with the JCD on each machine.Values are true and false.

jcd_use_ssl

If you have configured the JCD to use SSL (by setting ssl=true and
specifying an sslcertfile in the jcd.conf file), then you must do the
following in the control script:

1. Set jcd_use_ssl to true.
2. Specify an sslcertfile, as described below.

Specifies the path of the certificate file, eneCert.pem, that Endeca
components (Control Interpreter, Forge, Dgraph, and Agraph) should present

sslcertfile

when communicating with other Endeca components via SSL.You must set
sslcertfile as a global default, although you can still override the default
by setting a different sslcertfile within specific bricks.

Note: In order to simplify installation and configuration, all Endeca
components use the same certificate file, eneCert.pem, for secure
communication. The sslcertfile you specify in jcd.conf,
however, configures only the JCD, while the sslcertfile you specify
in a control script dictates behavior for all other Endeca components,
excluding the JCD.

Note: This path is also used in conjunction with the advanced
forge_use_ssl and ene_use_ssl settings described below.

Advanced security global defaults

The following settings are used in advanced security situations only.

Endeca® Platform Services Control System GuideEndeca Confidential

43The Control Interpreter | About writing control scripts

DescriptionSetting

Specifies whether Forge clients and servers should communicate with each
other via SSL when running in parallel Forge mode. Values are true and
false.

forge_use_ssl

If forge_use_ssl is set to true, you must also specify an sslcertfile,
as described above, to indicate the location of the certificate file that Forge
clients should present to Forge servers.

When set to true, the ene_use_ssl setting specifies that:ene_use_ssl

• The Control Interpreter should start all MDEX Engines (Dgraphs or
Agraphs) with SSL flags enabled.

• Clients must use SSL to communicate with MDEX Engine servers
(Dgraph and Agraph).

If ene_use_ssl is set to true, you must also specify an sslcertfile,
as described above, to indicate the location of the certificate file that clients
should present to MDEX Engine servers.

Specifies the path of the certificate authority file, eneCA.pem, that Endeca
components should use to authenticate communication initiated by their
clients.

sslcafile

Specifies the cipher the Endeca components should use when
communicating with each other via SSL.

sslcipher

Related Links
Example control script on page 89

This simple but complete control script demonstrates how all of the Control Interpreter elements
work together.

SSL Configuration for the Control Interpreter on page 107
This appendix describes how to use SSL with the Control Interpreter.

Machine brick on page 67
Machine bricks specify the name and connection details of each machine in a distributed
environment.

About setting overrides on page 46
The Control Interpreter allows you to override brick settings on the command line.This feature
is useful when you have a single control script file that you want to use in multiple
environments.

Internal brick settings
The Control Interpreter contains internal logic that tells the Endeca JCDs how to run certain bricks.

For example, the Control Interpreter knows that the Dgraph is a continually running process, so it tells
the Endeca JCDs to run a dgraph brick as a server process. This additional logic is internal to the
Control Interpreter and does not require any special settings in the control script.

Endeca ConfidentialEndeca® Platform Services Control System Guide

The Control Interpreter | About writing control scripts44

Implicit and explicit brick commands
Most bricks that are listed within a Script brick have an implicit run command. In order to execute this
type of brick, the Script brick only has to list it in its definition.

For example:

fetch_and_copy_data : Script
 fetch_data_1 fetch_data_2
 copy_data_1 copy_data_2

Five brick types, however, have explicit commands that you use to perform operations on them:
Machine, Dgraph, Archive, Agraph, and LogServer. Operations include things like starting, stopping,
and testing the state of processes. In the sample Script brick below, a Dgraph brick called dg01 is
stopped and restarted.

restart_dg01 : Script
 dg01.stop
 dg01.start

Related Links
Machine brick on page 67

Machine bricks specify the name and connection details of each machine in a distributed
environment.

Dgraph brick on page 77
A Dgraph brick runs the Dgraph (the MDEX Engine software).

Archive brick on page 84
The Archive brick can create, archive, and roll back directories.

Agraph brick on page 79
An Agraph brick runs the Agraph program, which defines and coordinates the activities of
multiple, distributed Dgraphs.

LogServer brick on page 86
The LogServer brick controls the use of the Endeca Log Server.

Control Interpreter interaction with environment variables
The Control Interpreter automatically declares global default settings based on environment variables.

If the ENDECA_ROOT environment variable is set, the Control Interpreter automatically declares three
global default settings: endeca_root, endeca_bin, and dtd_dir. Their values are as follows:

• endeca_root is the same as $ENDECA_ROOT
• endeca_bin is the bin subdirectory of $ENDECA_ROOT. This setting is used by the Forge and

Fetch bricks.
• dtd_dir is the conf/dtd subdirectory of $ENDECA_ROOT. This setting is used by Forge bricks.

If the ENDECA_MDEX_ROOT environment variable is set, the Control Interpreter automatically
declares the endeca_mdex_root and endeca_mdex_bin global default settings. Their values are
as follows:

• endeca_mdex_root is the same as $ENDECA_ROOT
• endeca_mdex_bin is the bin subdirectory of $ENDECA_MDEX_ROOT. This setting is used by

the following bricks: Dgidx, Dgraph, Agidx, Agraph, and AgraphIndex.

If a script specifies its own value for any of the above settings, that value takes precedence over the
$ENDECA_ROOT or $ENDECA_MDEX_ROOT setting.

Endeca® Platform Services Control System GuideEndeca Confidential

45The Control Interpreter | About writing control scripts

About setting overrides
The Control Interpreter allows you to override brick settings on the command line.This feature is useful
when you have a single control script file that you want to use in multiple environments.

In general, override settings are specified only for items that vary among multiple environments. Endeca
recommends that, if a setting has different values in different environments, you omit a value for the
setting in the control script. Instead, the value is be provided by the override settings.

When you specify overrides, you can provide either the new value for a specific setting on the command
line itself, or the name of a file that contains setting overrides.

Note: In most circumstances, overrides are provided using an override file.

The syntax for specifying a file containing overrides is:

--override-file <pathname>

where <pathname> is the full pathname to the override file.

The syntax for overriding a specific setting is:

--override <setting>=<value>

where <setting> is the setting you want to override and <value> is the new value you want the Control
Interpreter to use.

You can use --override and --override-file with both the DefineJobs utility and the
RunCommand utility.

About specifying settings in an override file
You can specify both brick-specific and global default setting overrides within an override file.

The syntax for a brick-specific override is:

<brickName>.<setting>=<value>

where <brickName> is the name of the brick whose setting will be overridden, <setting> is the specific
setting to override, and <value> is the value you want the Control Interpreter to use.

The syntax for a global default setting in an override file is:

<setting>=<value>

where <setting> is the global default setting to be overridden, and <value> is the value you want the
Control Interpreter to use instead.

Note: Setting overrides can be empty.

About setting priority
The Control Interpreter checks several locations for a brick's settings.

The Control Interpreter logic for determining the value of a brick setting follows this path:

1. Get the value from a brick-specific override.
2. If no brick-specific override exists, get the value from the brick definition in the control script.

Endeca ConfidentialEndeca® Platform Services Control System Guide

The Control Interpreter | About setting overrides46

3. If the setting does not exist in the brick’s control script definition, get the value from the global
default specified in the override file.

4. If no global default is specified in the override file, get the value from the global default settings
specified in the control script.

About handling repetition in control scripts
At times it is necessary to include repetition in your control scripts. By using specific syntax, you can
employ text substitution to avoid typing out nearly-identical lines in your scripts.

For example, you might want to do the same thing on ten machines. Rather than type out ten separate
brick definitions, you can automatically repeat certain lines of the control script, with text substitution
for each repetition.

The syntax used to handle repetition in control scripts is as follows:

$(replace PATTERN with foo bar quux)
<lines to expand>

PATTERN is a text string that will be replaced wherever it occurs within the lines to be expanded. Any
pattern can be chosen, as long as it is a valid identifier using only letters and numbers. with is a
keyword that separates the pattern from the list of replacements. “foo bar quux” is a list of
replacements.

For example, the following lines:

$(replace PATTERN with hello world)
print “PATTERN”;

would expand into this:

print “hello”;
print “world”;

In this example, the control script archives the “logs” directory on several Windows machines.

 archive_logs : Script
 parallel
 $(replace MACHINE with idx01 idx02 idx03)
 archive_logs_MACHINE

 $(replace MACHINE with idx01 idx02 idx03)
 archive_logs_MACHINE : Shell
 working_machine = MACHINE
 move logs logs.old
 mkdir logs

Variable references in repetition syntax
Instead of typing out an explicit list of replacement terms, you can use a variable reference.

For example:

machines = idx01 idx02 idx03 $(replace MACHINE with $(machines)) ...

Important: If you put the machines setting in a Constants brick, then the Constants brick must
be declared before the replace statement or it will not work. Only the replace syntax requires

Endeca® Platform Services Control System GuideEndeca Confidential

47The Control Interpreter | About handling repetition in control scripts

variables to be declared before they are used—for all other control script features, order is not
important.

Control interpreter logging
The Control Interpreter produces two types of logs to complement the Endeca JCD log (which provides
information that is specific to running the Endeca JCD).

The Control Interpreter produces two types of logs:

• Logs that are specific to the Control Interpreter software itself.
• Logs that provide detailed information about each job that is run.

Related Links
About logging and monitoring on page 20

The Endeca JCD records informational, warning, and error messages about its operations
in a JCD log. Each instance of the Endeca JCD records its logs on its local machine.

Control Interpreter-specific logs
By default, the Control Interpreter prints out each line of script as it runs. If you need more details, you
can specify the --debug switch.

The switch directs the Control Interpreter to print explicit information about its actions, including start
and stop times and the success or failure of processes.

RunCommand --debug <control_script> [command]

The default Control Interpreter logging information is printed to stdout.The information from --debug
is printed to stderr.

The Control Interpreter log information prints to the screen, by default. However, you can redirect
stdout or stderr to a file by using >stdout.log and 2>stderr.log on the command line. Endeca
recommends that you redirect stderr if you use --debug because the information that --debug
yields can be very long.

Job-specific logs
Job-specific logs provide detailed information about each job that is run via the Control Interpreter.

For example, the log for a Dgidx job contains detailed information about the dimensions and properties
that were incorporated into the MDEX Engine indices during indexing.

You specify where a job’s log will be stored in either the default settings, using stdout_base and
stderr_base, or in the individual brick definitions, using stdout and stderr. A log file is written
out for each job on the local machine that executed the job.

Endeca ConfidentialEndeca® Platform Services Control System Guide

The Control Interpreter | Control interpreter logging48

Chapter 4

Running Implementations with a Control
Script

This section documents how to run an Endeca application using a Control Interpreter script. Note that
in these instructions, UNIX commands that are longer than a single line are broken with a backslash
character (\) with no surrounding whitespace.You do not need to type the backslash character;
however, if you do, it will not affect the command.

Overview of running Endeca components
Running the Endeca components is a three-step process. In the reference implementation, the three
programs are launched by a single Control Interpreter script, using the Endeca JCD service.

For the sake of simplicity, this procedure assumes that you have installed the Endeca MDEX Engine
and Endeca Platform Services on the same machine.

To run the Endeca components:

1. Run the Forge program to standardize and model the raw data.

2. Run the Dgidx program to index the data.

3. Run the Dgraph program to start the Endeca MDEX Engine.

Running Endeca components with a single control script
You can run Forge, Dgidx, and Dgraph by using a single control script.

For the sake of simplicity, this procedure assumes that you have installed the Endeca MDEX Engine
and Endeca Platform Services on the same machine.

On UNIX, the Endeca reference implementations are installed in the $ENDECA_REFERENCE_DIR
directory (%ENDECA_REFERENCE_DIR% on Windows). This section uses the sample_wine_data
reference implementation. It assumes that the full path of the Control Interpreter script is as follows:

Windows:

%ENDECA_REFERENCE_DIR%\sample_wine_data\etc\remote_index.script

UNIX:

$ENDECA_REFERENCE_DIR/sample_wine_data/etc/remote_index.script

To run an Endeca implementation with a control script:

1. Set the ENDECA_MDEX_ROOT environment variable.

• On Windows, make sure you created an ENDECA_MDEX_ROOT system environment variable
and restarted the JCD Service.

• On UNIX, make sure that you have run the MDEX Engine script that sets the
ENDECA_MDEX_ROOT environment variable.

2. Edit the remote_index.script control script:

a) Make sure that jcd_use_ssl is set to false.
b) If the Endeca JCD’s default port of 8088 (which appears in the jcd_port=8088 line of the

Global Variables section) is already in use, change it to an unused port number.

Make sure it matches the port setting in the corresponding jcd.conf file (located in the
ENDECA_ROOT/workspace/etc directory).

c) If the Dgraph’s default port of 8000 (which appears in the dgraph_port=8000 line of the Global
Variables section) is already in use, change it to an unused port number.

d) If the Log Server default port of 8002 (which appears in the logserver_port=8002 line of
the Global Variables section) is already in use, change it to an unused port number.

The Log Server’s port must be two greater than the Dgraph’s port. For example, if you modify
the Dgraph’s port to 9090, then the Log Server’s port must be 9092.

e) Save your changes and close the script.

3. In a command prompt, run the mdex_setup script to export the MDEX Engine environment
variables.

The script is located in the MDEX Engine’s root directory. This ensures that the command prompt
has the correct MDEX Engine environment settings.

4. Run the DefineJobs script with the path of the remote_index.script control script as its
parameter:

DescriptionOption

DefineJobs
%ENDECA_REFERENCE_DIR%\sample_wine_data\etc\remote_index.script

Windows:

DefineJobs
$ENDECA_REFERENCE_DIR/sample_wine_data/etc/remote_index.script

UNIX:

The DefineJobs script provides each instance of the Endeca JCD with the job definitions it will need
in order to execute its job(s). Job definitions are derived from the bricks in the control script itself.

After a successful run, you should see something similar to the following output:

Getting job definitions from JCD on host localhost...
Created job wine_dgidx on host localhost
Created job wine_dgidx.aspell on host localhost
Created job wine_dgidx.copy_aspell_data_files on host localhost
Created job wine_dgraph on host localhost
Created job wine_fetch on host localhost
Created job wine_forge on host localhost
Created job wine_genreport on host localhost
Created job wine_logserver on host localhost
Created job wine_toolsreport on host localhost
All job definitions are correct.

Endeca ConfidentialEndeca® Platform Services Control System Guide

Running Implementations with a Control Script | Running Endeca components with a single control
script

50

5. Run the RunCommand script on the remote_index.script control script to start the runme
script brick:

DescriptionOption

RunCommand
%ENDECA_REFERENCE_DIR%\sample_wine_data\etc\remote_index.script
runme

Windows:

RunCommand
$ENDECA_REFERENCE_DIR/sample_wine_data/etcremote_index.script
runme

UNIX:

This command launches the Control Interpreter and instructs it to execute the jobs defined in the
previous step. This runs Forge, Dgidx, Dgraph, and Log Server programs to process the sample
data and starts an Endeca MDEX Engine.

After a successful run, you should see something similar to the following output:

Checking that required jcd jobs are defined correctly...
[Sep 16 10:36:42] runme
[Sep 16 10:36:42] wine_forge
[Sep 16 10:37:06] wine_dgidx
[Sep 16 10:38:53] if wine_dgraph.running
[Sep 16 10:38:55] wine_fetch
[Sep 16 10:38:58] wine_dgraph.start
[Sep 16 10:39:02] if wine_logserver.running
[Sep 16 10:39:04] wine_logserver.start
Script completed successfully.

You can verify that your installation is running correctly by using the JSP reference implementation
shipped with Platform Services.To use this reference, make sure that Endeca HTTP Service is running
and then use a browser with a URL similar to this example:

localhost:8888/endeca_jspref

Related Links
Setting the ENDECA_MDEX_ROOT environment variable on page 18

If you have installed the Endeca Control System on a Windows machine, it is recommended
that you set ENDECA_MDEX_ROOT as a system environment variable, so that the JCD
Service uses it when you start the service.

Generating a log report
This section describes how to run the Log Server and Report Generator using the Endeca reference
implementation.

To run the Log Server and Report Generator:

1. Launch an Endeca reference implementation in a Web browser.

2. Generate logging information by browsing the sample wine data. Perform several queries against
the sample wine data by clicking dimensions, properties, merchandising features, or other
options.

3. From a command prompt, type the following command to run the Control Interpreter on the re¬
mote_index.script control script and start the wine_genreport brick:

Endeca® Platform Services Control System GuideEndeca Confidential

51Running Implementations with a Control Script | Generating a log report

DescriptionOption

RunCommand
%ENDECA_REFERENCE_DIR%\sample_wine_data\etc\remote_index.script
wine_genreport

Windows:

RunCommand
$ENDECA_REFERENCE_DIR/sample_wine_data/etc/remote_index.script
wine_genreport

UNIX:

This launches the Report Generator program to process the sample data log files.

After a successful run, you should see something similar to the following output:

Checking that required jcd jobs are defined correctly...
[Sep 16 10:50:36] wine_genreport
Script completed successfully.

4. Open the sample_report.html file to view the log report.

• In Windows, the file is located in the
%ENDECA_REFERENCE_DIR%\sample_wine_data\reports directory.

• In UNIX, the file is located in the $ENDECA_REFERENCE_DIR/sample_wine_data/reports
directory.

Endeca ConfidentialEndeca® Platform Services Control System Guide

Running Implementations with a Control Script | Generating a log report52

Chapter 5

Configuring and Viewing Reports in a
Control System Environment

This chapter describes how to configure and run the Report Generator in an Endeca Control System
environment.

Overview of logging and reporting
The architectural concepts, API usage, and report configuration of the Endeca Logging and Reporting
system are largely the same in both an Endeca Application Controller environment and a Control
System environment.

This section describes the specific differences of logging and reporting in a Control System environment.

For general information about implementing logging and reporting, see the Endeca Log Server and
Report Generation Guide.

About configuring and running the Log Server
The Log Server can be configured through the LogServer brick.

The Log Server can be run from the JCD, if the LogServer brick has working_machine set. If you
set the Log Server up in this way, the JCD will restart the Log Server automatically if it crashes.

As soon as the Log Server starts, it attempts to open a log file and write a header and timestamp. If
this fails, it exits immediately, without accepting any requests. The Log Server begins a new file when
you issue the roll command, or automatically if the current file becomes larger than 1 GB.

The log file name is a combination of the current date and time and the log file prefix that you specify,
in the format prefix.timestamp. The timestamp indicates when the particular file was started and
makes it possible to distinguish among multiple log files.

The Log Server requires no configuration file.To start the Log Server, you give it a port and a file prefix
through the LogServer brick or on the command line.

There is no default logging directory, although typically you would create one as part of your application
development.

Related Links

Working With the Endeca JCD on page 17
In a UNIX environment, the Endeca Job Control Daemon (JCD) monitors and manages the
Endeca Information Access Platform software to provide a robust process execution
environment. In a Windows environment, the analogous component is implemented as the
Endeca JCD Service. This section discusses the administrator’s interaction with the Endeca
JCD.

About running the Log Server from the command line on page 54
At times you might want to communicate directly with the Log Server through the command
line. If you choose to do this, keep in mind that the JCD cannot automatically restart the Log
Server if it is started at the command line.

About running the Log Server from control scripts on page 54
The Log Server is can be started and managed by the Control Interpreter’s LogServer brick.

About running the Log Server
You can run the Log Server in two ways: through Control Interpreter scripts, using the LogServer brick,
or through the command line. The former is recommended.

About running the Log Server from control scripts
The Log Server is can be started and managed by the Control Interpreter’s LogServer brick.

Using the LogServer brick, you can specify:

• The port to which the Log Server should listen for log requests.
• The file path prefix for any log files output by the Log Server.
• Whether you want the log files compressed by the gzip utility.

The LogServer brick also has a set of commands that allow you to:

• Start and stop the Log Server.
• Determine if the Log Server is running.
• Roll the logs created by the Log Server.

Related Links
LogServer brick on page 86

The LogServer brick controls the use of the Endeca Log Server.

About running the Log Server from the command line
At times you might want to communicate directly with the Log Server through the command line. If
you choose to do this, keep in mind that the JCD cannot automatically restart the Log Server if it is
started at the command line.

The Log Server executable is $ENDECA_ROOT/bin/logserver on UNIX and
%ENDECA_ROOT%\bin\logserver.exe on Windows.

The command for running the Log Server is:

logserver --port <port> --log-file-prefix <fileprefix>

The two arguments, which are required, are:

Endeca ConfidentialEndeca® Platform Services Control System Guide

Configuring and Viewing Reports in a Control System Environment | About configuring and running the
Log Server

54

• --port <port> is the port to which the Log Server listens for requests. It must be a port number
less than or equal to 32767.

• --log-file-prefix <fileprefix> is the file path prefix to use for log files.

In addition to the two required arguments, there is an optional command line argument. The --gzip
argument compresses the generated log files using gzip compression and adds a .gz suffix to the
log file name.

Important: If you use the --gzip option, logs will not be written to disk as soon as they are
received. Therefore, if the Log Server crashes unexpectedly, you may lose some log entries.

About monitoring the Log Server
You can check if the Log Server is running from the address bar.

To check that the Log Server is running, issue the following URL:

http://LogServerNameorIP:LogServerPortNumber/stats

If the Log Server is running, this URL returns a confirmation message containing the file name, number
of log entries, and number of errors. If it is not running, you will see your browser’s default error
message.

About rolling the Log Server
You can roll the Log Server from the address bar by appending the /roll command.

To roll the Log Server, issue the following URL:

http://LogServerNameorIP:LogServerPortNumber/roll

Configuring report contents and format
You can customize the content of a report in either an Endeca Application Controller environment or
in a Control System environment.

For information on the EAC, see the Endeca Application Controller Guide.

About generating reports
There are two ways to generate reports in a Control System environment.

You can run the Report Generator using these methods:

• Using the ReportGenerator brick in a Control Interpreter script.
• Manually from a command prompt on Windows or a shell prompt on UNIX.

Related Links
ReportGenerator brick on page 88

Endeca® Platform Services Control System GuideEndeca Confidential

55Configuring and Viewing Reports in a Control System Environment | Configuring report contents and
format

The ReportGenerator brick runs the Report Generator, which processes Log Server files into
HTML-based reports that you can view in your Web browser and XML reports that you can
view in Endeca Workbench.

Automating report generation
You can automate report generation just as you would automate any other task on your operating
system.

If you use either the Control Interpreter or the command line to generate reports, you may want to
automate the process using the Scheduled Tasks control panel on Windows or crontab task
scheduler on UNIX. See your operating system documentation for details about automated scheduling.

Generating reports from control scripts
You can run the Report Generator in a Control Interpreter control script using the ReportGenerator
brick. This section describes how to run an existing ReportGenerator brick.

The sample_wine_data control script, remote_index.script, includes a wine_genreport
brick, which generates an HTML report using the report_stylesheet.xsl stylesheet.

To generate records from the ReportGenerator brick:

1. Use the following command to run DefineJobs on the wine reference implementation:

DescriptionOption

DefineJobs /
%ENDECA_REFERENCE_DIR%\sample_wine_data\etc\remote_index.script

Windows:

DefineJobs ENDECA_REFERENCE_DIR/reference/sample_wine_data/etc
remote_index.script

UNIX:

Job definitions, including running the Report Generator, are derived from the control script.

A successful run produces output similar to the following:

Getting job definitions from JCD on host localhost...
Created job wine_dgidx on host localhost
Created job wine_dgidx.aspell on host localhost
Created job wine_dgidx.copy_aspell_data_files on host localhost
Created job wine_dgraph on host localhost
Created job wine_fetch on host localhost
Created job wine_forge on host localhost
Created job wine_genreport on host localhost
Created job wine_logserver on host localhost
All job definitions are correct.

2. Use the following command to run the wine_genreport brick on the wine reference implementation
and generate an HTML report:

DescriptionOption

RunCommand %ENDECA_REFERENCE_DIR%\sample_wine_data\etc\remote_index.script
wine_genreport

Windows:

RunCommand
ENDECA_REFERENCE_DIR/sample_wine_data/etc/remote_index.script/wine_genreport

UNIX:

Endeca ConfidentialEndeca® Platform Services Control System Guide

Configuring and Viewing Reports in a Control System Environment | About generating reports56

After running the command, a file named sample_report.html exists in the
%ENDECA_REFERENCE_DIR%\sample_wine_data\reports on Windows or
$ENDECA_REFERENCE_DIR/sample_wine_data/reports on UNIX.You can open this file in
any Web browser.

Related Links
ReportGenerator brick on page 88

The ReportGenerator brick runs the Report Generator, which processes Log Server files into
HTML-based reports that you can view in your Web browser and XML reports that you can
view in Endeca Workbench.

Report Generator command line options
You can run the Report Generator manually from the command prompt on Windows or a shell prompt
on UNIX.

There is a .bat file for Windows or a .sh file on UNIX installed in %ENDECA_ROOT%\bin that you
use to run the Report Generator. The syntax for the Report Generator utility is as follows:

ReportGenerator [options]

[options] represents additional command-line options you use to control report generation.The following
tables describe these options, some of which are required and some of which are optional.

Required settings

DescriptionOption

Path to the input log file. If this is a directory, then all log files in that directory
are read.

--logs <logpath>

Complete path, including the filename of where to store the generated
report.

--output
<filepath>

Complete path, including the filename to the file that specifies how to format
the generated report.

--stylesheet
<filepath>

Optional settings

DescriptionOption

Complete path to report_settings.xml, including the filename. This
file specifies which report sections and items to exclude, if any. See the
Endeca Log Server and Report Generation Guide for more information.

--settings
<settings file>

If unspecified, the Report Generator creates a report with the following
defaults:

• It includes all report sections and items.
• Top N values are 10, 20, 50, and 100.

Endeca® Platform Services Control System GuideEndeca Confidential

57Configuring and Viewing Reports in a Control System Environment | About generating reports

DescriptionOption

• The default session queue size is set to 5000.

Set the time span of interest (or report window). Allowed keywords:--timerange
<keyword> • yesterday

• last-week

• last-month

• day-so-far

• week-so-far

• month-so-far

These keywords assume that days end at midnight, and weeks end on the
midnight between Saturday and Sunday.

These set the report window to the given date and time. The date format
should be either yyyy_mm_dd or yyyy_mm_dd.hh_mm_ss. For example,
2007_04_23.19_30_57 expresses April 23, 2007 at 7:30:57 in the evening.

--start-date <date>

--stop-date <date>

The --stop-date parameter is exclusive.This means that that if you only
want to report a single date (e.g., 2/17/2009), you have to specify the
--start-date as 2/17 and the --stop-date as 2/18.

Generates time series data at a specified frequency. The value can be
either hourly or daily.

--time-series
<frequency>

Generates charts in reports. The value is either enable or disable. If
unspecified, the default is set to disable.

--charts <status>

About displaying reports
To display an HTML report, open it in any Web browser.

Related Links
About generating reports for Endeca Workbench on page 58

Although it is not recommended, you can generate XML-based reports in a Control System
environment.

About generating reports for Endeca Workbench
Although it is not recommended, you can generate XML-based reports in a Control System environment.

Endeca recommends that if you want to display XML reports in Endeca Workbench, you use the
Endeca Workbench to run the Log Server and Report Generator, as described in the Endeca Log
Server and Report Generation Guide.

Endeca ConfidentialEndeca® Platform Services Control System Guide

Configuring and Viewing Reports in a Control System Environment | About displaying reports58

Note: You must run both the Log Server and the Report Generator from the same environment.
In other words, you cannot run the Log Server from a control script and then run the Report
Generator from Endeca Workbench, or vice-versa.

About generating reports in XML
The process for generating XML reports is similar to generating other report types, with two differences.

In order to generate XML reports, you must:

• Specify tools_report_stylesheet.xsl as your stylesheet.
• Follow specific filename and location requirements.

If you are running reports from the command line, point to tools_report_stylesheet.xsl when
you enter the command. If you are running reports from a control script, you will have to edit the
ReportGenerator brick to use tools_report_stylesheet.xsl.

The filename and location requirements are:

• Daily and weekly report files must be output to \workspace\reports\daily and
\workspace\reports\weekly subdirectories, respectively.

• The file name of the reports in those directories must have a timestamp format of yyyymmdd.xml.

This Windows example shows the directory structure and file naming of a reports directory that contains
both daily and weekly reports intended for view in Endeca Workbench:

workspace\reports\daily\20040701.xml
.......................\20040702.xml
.......................\20040703.xml

workspace\reports\weekly\20040704.xml
....................... \20040711.xml
....................... \20040718.xml

About viewing reports in Endeca Workbench
As long as you follow the filename and location requirements, you will be able to see your reports in
Endeca Workbench.

For information on viewing reports in Endeca Workbench, see the Endeca Workbench Help.

Endeca® Platform Services Control System GuideEndeca Confidential

59Configuring and Viewing Reports in a Control System Environment | About generating reports for
Endeca Workbench

Chapter 6

Common System Architectures in an
Endeca Implementation

This chapter describes typical system architectures for each stage of an Endeca implementation.

Overview of system architectures
This section provides a general description of typical system architectures for each stage of an Endeca
implementation.

Endeca implementations typically have three stages:

1. Development
2. Staging and testing
3. Production

This section does not provide specific system sizing requirements for a particular implementation.
There are too many variables in each unique implementation to give general guidance. Some of these
variables include hardware cost restrictions, data processing demands, application throughput demands,
query load demands, scale requirements, failover availability, and so on. Endeca Professional Services
can perform a hardware sizing analysis for your implementation.

Development environment
A development environment is one in which developers create or substantially modify an Endeca
implementation.

This implementation does not serve end-user queries. Because data processing and query processing
demands are not very important at this stage, development typically occurs on a single machine. The
single machine runs the JCD (deprecated), Forge, Dgidx, the Endeca Application Controller, a Web
server, and the MDEX Engine.

Staging and testing environment
A staging environment is one that validates the correctness of the implementation including data
processing and all necessary search and navigation features.

Features such as merchandising, thesaurus entries, and others may require business users to modify
the implementation during this implementation phase. This environment is also typically used to test
performance of the system. Once the implementation works as required, it is migrated to the production
environment.

In terms of hardware architecture, most staging environments closely resemble or exactly match the
intended production environment. This means the production environment typically determines the
architecture of the staging environment.

Sample production environments
A production environment is a live Endeca implementation that serves end-user search and navigation
queries.

There are a variety of system architectures in a production environment. All of them typically use at
least two servers and one load balancer. As system demand increases, the number of servers necessary
in the implementation increases. Demand may take the form of time to crawl source data, frequent
source data updates, faster query throughput, faster response time under increasing load, and so on.
Several of the most common implementation architectures are described in the following sections.

Descriptions of implementation size
We can roughly divide implementations into small, medium, and large.

A full definition of these terms includes an accounting of record size (number and size of properties
and dimension values per record), total data set size, the number of indexing and MDEX Engine
servers, and other measurements of scale.

Although that level of detail is necessary for sizing a specific implementation, it is not necessary for
the more general discussion of hardware architecture here. For simplicity's sake, this chapter uses
the terms small, medium, and large as follows:

• A small implementation means the Dgraph runs an application's data set on a single processor.
• A medium implementation means a single Dgraph is mirrored several times for throughput (rather

than solely for redundancy), and it means a dedicated server may be necessary for crawling or
indexing.

• A large implementation means a data set must be partitioned into multiple Dgraphs (that is, an
Agraph implementation) and a dedicated machine is required for crawling or indexing.

Small implementation with lower throughput
A simple architecture for smaller implementations is made up of two servers and a single load balancer.

Server 1 runs only the MDEX Engine. Server 2 runs a mirror of the MDEX Engine (for redundancy)
and Forge and Dgidx. A single load balancer distributes queries between the MDEX Engines on servers
1 and 2.

Endeca ConfidentialEndeca® Platform Services Control System Guide

Common System Architectures in an Endeca Implementation | Staging and testing environment62

The advantage of this scenario is low cost and MDEX Engine redundancy. If one MDEX Engine is
offline for any reason, the load balancer distributes user queries to the other MDEX Engine.

The disadvantage of this scenario is that the system operates at reduced throughput capacity during
Forge and Dgidx processing, and during a server failure of either machine. Also, if the single load
balancer fails, the system goes offline.

Small implementation using a crawler
In this example system architecture, a small implementation is made up of three servers and two load
balancers.

Servers 1 and 2 run mirror copies of the MDEX Engine. Two load balancers distribute incoming user
queries to the MDEX Engines. If either load balancer or MDEX Engine should fail, then the redundant
load balancer or MDEX Engine handles all queries. Server 3 runs all the offline processes including
the crawler, Forge, and Dgidx.

There are several advantages of this scenario. First, the MDEX Engine is mirrored, and each MDEX
Engine runs on a dedicated server, so the servers do not need to share resources for Forge processing

Endeca® Platform Services Control System GuideEndeca Confidential

63Common System Architectures in an Endeca Implementation | Sample production environments

and indexing. Second, this scenario employs two load balancers to reduce potential offline time if one
balancer fails. Lastly the processes to crawl source data, run Forge, and run Dgidx occurs on a single
server that is not shared by a MDEX Engine.

The disadvantage of this scenario is that the implementation operates at reduced throughput if either
MDEX Engine server fails.

Medium implementation with higher throughput
In this example system architecture, a medium implementation that requires higher query throughput
is made up of four servers and two load balancers.

To achieve higher throughput, servers 1, 2, and 3 all run mirror copies of the MDEX Engine. This level
of redundancy provides faster throughput by load balancing the incoming queries over a greater number
of MDEX Engines. If either load balancer or any MDEX Engine should fail, then the redundant load
balancer and remaining MDEX Engines handle all queries. Server 4 runs all the offline processes
including Forge and Dgidix.

The advantage of this scenario is that overall throughput and redundancy is high. Each MDEX Engine
runs on a dedicated server, so the servers do not need to share resources for Forge processing and
indexing. Also, this scenario employs two load balancers to reduce potential offline time if one balancer
fails.

The disadvantage of this scenario is that the implementation operates at reduced throughput if any
MDEX Engine server fails. However, a single server failure has less effect on the implementation than
the previous examples because the MDEX Engine has been replicated more times than in previous
examples.

Large implementation using an Agraph
In this example system architecture, a large implementation requires a data set that is partitioned over
several MDEX Engine servers and controlled by an Aggregated MDEX Engine (Agraph). The
implementation is made up of eight servers and two load balancers.

The eight servers are grouped into two clusters of four servers per cluster. Each cluster has three
servers running a partition of the total data set. The remaining server in each cluster runs an Agraph

Endeca ConfidentialEndeca® Platform Services Control System Guide

Common System Architectures in an Endeca Implementation | Sample production environments64

to coordinate their respective cluster partitions. Each cluster mirrors the other’s MDEX Engines;
however, one of the clusters also runs the Forge and Dgidx processes.

Two load balancers distribute queries to both clusters. If either load balancer fails, then the redundant
load balancer distributes all queries.

There are several advantages of this scenario. First, the cluster of MDEX Engines is redundant and
one cluster of MDEX Engines runs on dedicated servers, so those servers do not need to share
resources for Forge processing and indexing. Second, this scenario employs two load balancers to
reduce potential offline time if one balancer fails.

The disadvantage of this scenario is that the system operates at reduced throughput during Forge
and Dgidx processing. Also, if one MDEX Engine in a cluster fails, that entire cluster goes offline, and
the system operates at reduced capacity while the remaining cluster services all queries.

Endeca® Platform Services Control System GuideEndeca Confidential

65Common System Architectures in an Endeca Implementation | Sample production environments

Appendix A

Control Script Brick Reference

This appendix provides details about specific brick types. Some long brick settings break onto the
following line in these examples; however, you should type each brick setting on a single line. If you
need to wrap a line, put a space and a backslash (“ \”) at the break; this tells the Control Interpreter
to ignore the line break.

Machine brick
Machine bricks specify the name and connection details of each machine in a distributed environment.

If you are connecting to multiple machines, you usually set the jcd_port, jcd_use_ssl, and
sslcertfiles settings globally, because they tend to be the same across machines. However, if
machines with different JCD configurations need to communicate, these settings may be specified in
individual Machine bricks. An example of such a configuration would be one machine running on port
8088 with certificate files located on its C: drive, a second running on port 9099 with certificate files
located on its D: drive, and a third running on port 7077 without SSL.

Machine brick settings

DescriptionSetting

IP address or DNS name of the machine. This setting is optional, and defaults to the
brick name. If you choose to omit this setting, the brick name must be the same as
the machine’s DNS name.

name

The port used to connect to the Endeca JCD. This must match the port listed in the
jcd.conf file. The standard port for the Endeca JCD is 8088.

jcd_port

Note: Although jcd_port is usually set globally, you may set it individually
for a specific Machine brick.

Specifies whether or not the Control Interpreter must use SSL when communicating
with the JCD on this machine. Values are true and false.

jcd_use_ssl

DescriptionSetting

If you have configured the JCD to use SSL (by setting ssl=true and specifying an
sslcertfile in the jcd.conf file), then you must do the following in the control
script:

1. Set jcd_use_ssl to true.
2. Specify an sslcertfile, as described below.

Note: Although jcd_use_ssl is usually set globally, you may set it individually
for a specific Machine brick.

Specifies the path of the certificate file, eneCert.pem, that Endeca components
(Control Interpreter, Forge, Dgraph, and Agraph) should present when communicating

sslcertfile

with other Endeca components via SSL. There must be a global default set for
sslcertfile, but you can override the default by setting a different sslcertfile
within specific bricks.

Note: In order to simplify installation and configuration, all Endeca components
use the same certificate file, eneCert.pem, for secure communication. The
sslcertfile you specify in jcd.conf, however, configures only the JCD,
while the sslcertfile you specify in a control script dictates behavior for all
other Endeca components, excluding the JCD.

Note: This path is also used in conjunction with the advanced forge_use_ssl
and ene_use_ssl settings.

Where to redirect stdout for the brick. By default, stdout is sent to the screen.
Specifying a value for stdout overrides the stdout_base setting.

stdout

Where to redirect stderr for the brick. By default, stderr is sent to the screen.
Specifying a value for stderr overrides the stderr_base setting.

stderr

Machine brick commands

Machine bricks have three commands that can be used within Script bricks:

DescriptionCommand

The is_win32 operation succeeds if the machine that the Machine brick is defined
for is running the Windows operating system.

is_win32

Note: This operation allows you to write control scripts that are compatible
with both the Windows and UNIX platforms. See the examples below.

Endeca ConfidentialEndeca® Platform Services Control System Guide

Control Script Brick Reference | Machine brick68

DescriptionCommand

The is_unix operation succeeds if the machine that the Machine brick is defined
for is running a UNIX operating system.

is_unix

Note: This operation allows you to write control scripts that are compatible
with both the Windows and UNIX platforms. Seethe examples below.

The halt_jcd operation stops the Endeca JCD on the machine for which the Machine
brick is defined.

halt_jcd

On Windows, the Endeca JCD will be restarted automatically by the Windows Service
Manager after the halt_jcd command is executed. On UNIX, the Endeca JCD is
automatically restarted via the inittab.

Note: The halt_jcd command is an advanced feature that is generally used
for automated software updating only.

The following is an example of a Machine brick called indexer:

indexer : Machine
 name = idx01 #DNS name of machine
 jcd_port = 8088

The following example shows what a Machine brick might look like if the jcd_port setting was specified
globally:

idx01 : Machine
 name = idx01 #DNS name of machine

The following excerpt from a Script brick illustrates how Machine operations work. This example
shows how to test for a specific platform, and control what the Control Interpreter does depending
on the results of the test.

myScript : Script
 if idx01.is_win32
 do_win32_version
 else
 do_unix_version

Related Links
Global default settings reference on page 41

The tables below describe the most common control script settings that are set globally.

Fetch brick
A Fetch brick is used to retrieve raw data for processing.You must use a separate Fetch brick for
each raw data source.

Endeca® Platform Services Control System GuideEndeca Confidential

69Control Script Brick Reference | Fetch brick

Fetch brick settings

DescriptionSetting

A URL specifying where and how to retrieve the data. Protocols understood
are file, HTTP, and FTP. Secure protocols understood are files and HTTPS.

source

The file and files protocols either move or copy files, depending on the
value of remove_source.

File protocol paths can be relative (for example, file:///foo) or absolute
(for example, file:////foo).

The file and files protocols support file retrieval from remote machines via
the Endeca JCD (see “Fetching files from remote machines” below).

For the file, files, and FTP protocols, if the source contains wildcards like
“*” or “?”, then all files matching that pattern are retrieved. In this case, the dest
setting must name a directory.

Note: Due to the nature of their content, HTTP and HTTPS URLs cannot
use wildcards.

Required for FTP URLs. Optional for HTTP and HTTPS URLs. Not used for
file and files URLs.

username

Required for FTP URLs. Optional for HTTP and HTTPS URLs. Not used for
file and files URLs.

password

The file or directory in which the fetched files should be stored. If dest names
a directory, the directory must already exist.

dest

The dest setting for file, files, and FTP URLs that use wildcards must be
a directory. For any URL that does not use wildcards, the dest setting must
be equivalent to the source; in other words, if the source specifies a directory,
the dest must also be a directory. If the source specifies a file, the dest
must also be a file.

Specifying this Boolean setting deletes the source after it has been fully and
successfully downloaded. remove_source is only supported for removing
files from the local machine. It is not supported for HTTP, HTTPS, or FTP URLs.

remove_source

If this Boolean setting is specified, directories are downloaded recursively.This
setting is only supported for file and files URLs, both local and remote.

recursive

Where to redirect stdout for the brick. By default, stdout is sent to the screen.
Specifying a value for stdout overrides the stdout_base setting.

stdout

Where to redirect stderr for the brick. By default, stderr is sent to the screen.
Specifying a value for stderr overrides the stderr_base setting.

stderr

Endeca ConfidentialEndeca® Platform Services Control System Guide

Control Script Brick Reference | Fetch brick70

Fetching files from remote machines

Fetch bricks support file retrieval from remote machines via the Endeca JCD. In order to use this
functionality, however, you must set certain brick settings correctly:

Fetch brick settings:

• source must specify a remote file URL. If the Endeca JCD on the remote machine is configured
to use SSL, you must use the files protocol.

• dest must specify either a filename (for retrieving a single file) or a directory name (if you are
using wildcards in your source setting).

Default settings:

• endeca_bin must be set to the pathname of the bin directory in the Endeca Platform Services
installation you are using.

• jcd_port must be set to the Endeca JCD port on the remote machine.
• perl_binary specifies which Perl interpreter to use on the destination machine. (The Endeca

software includes and requires version 5.8.3 of Perl.)
• sslcertfile specifies the path to the eneCert.pem certificate file on the destination machine.

The source, dest, endeca_bin, and jcd_port settings are required. The sslcertfile setting
is required if the Endeca JCD is configured to use SSL. The perl_binary setting is optional but
highly recommended.

Note: While it is not required, Endeca highly recommends that you specify endeca_bin,
jcd_port, perl_binary and sslcertfile as global default settings.

The following is a UNIX example of a Fetch brick that uses the FTP protocol:

fetch_data : Fetch
 source = ftp://ftp.example.com/ourdata.zip
 username = endeca
 password = endeca
 dest = /raw_data/ourdata.zip

The following is a UNIX example of a Fetch brick that fetches data from a remote machine, using the
Endeca JCD in a secure environment:

Note: This brick example assumes that endeca_bin, jcd_port, perl_binary, and
sslcertfile have been set globally.

fetch_remote_data : Fetch
 source = \
 files://idx01/raw_data/ourdata.zip
 dest = /endeca/current/raw_data/ourdata.zip

Related Links
Global default settings reference on page 41

The tables below describe the most common control script settings that are set globally.

Shell brick
A Shell brick runs the operating system commands (DOS or shell) that you specify.

Endeca® Platform Services Control System GuideEndeca Confidential

71Control Script Brick Reference | Shell brick

Shell bricks are frequently used to do pre- or post-processing, or for tasks for which no standard brick
exists. Each line in a Shell brick is executed individually in sequence.

It is possible to write Shell bricks that run scripts that are external to the control script. If you write such
a Shell brick, the external script it references must be stored locally on the machine on which it will be
executed.

Shell brick settings

DescriptionSetting

Where to redirect stdout for the brick. By default, stdout is sent to the screen.
Specifying a value for stdout overrides the stdout_base setting.

stdout

Where to redirect stderr for the brick. By default, stderr is sent to the screen.
Specifying a value for stderr overrides the stderr_base setting.

stderr

The following is a UNIX example of a Shell brick called arch01. It removes the oldest archive file
and rolls other versions back to make room for a new version.

arch01 : Shell
 rm /archive/4/*
 mv /archive/3/example1* /archive/4/
 mv /archive/2/example1* /archive/3/
 mv /archive/1/example1* /archive/2/
 ln /run/example1* /archive/1/

Forge brick
A Forge brick launches the Forge (Data Foundry) software, which transforms source data into tagged
Endeca records.

Forge brick settings

DescriptionSetting

Pathname of the Pipeline.epx file to pass to Forge, relative to the work¬
ing_dir.

pipeline

Location where the DTD for the Pipeline.epx file resides. The default
directory on Windows is %ENDECA_ROOT%\conf\dtd. The UNIX default is
/$ENDECA_ROOT/conf/dtd.

dtd_dir

Path to the Forge (Data Foundry) program.forge_binary

Note: You can use this setting to override the endeca_bin default
setting.

Endeca ConfidentialEndeca® Platform Services Control System Guide

Control Script Brick Reference | Forge brick72

DescriptionSetting

Command-line flags to pass to Forge.forge_options

Where to redirect stdout for the brick. By default, stdout is sent to the screen.
Specifying a value for stdout overrides the stdout_base setting.

stdout

Where to redirect stderr for the brick. By default, stderr is sent to the screen.
Specifying a value for stderr overrides the stderr_base setting.

stderr

The following is a Windows example of a Forge brick called wine_forge:

wine_forge : Forge
 forge_binary = $(endeca_root)\bin\forge.exe
 pipeline = Pipeline.epx
 forge_options = -n10000 -vw

Dgidx brick
A Dgidx brick sends the finished data prepared by Forge to the Dgidx program, which generates the
proprietary indices for each MDEX Engine (Dgraph).

Dgidx brick settings

DescriptionSetting

The path to the Forge output.input

The file prefix to use for generated files.output

Path to the Dgidx indexing program.dgidx_binary

Note: You can use this setting to override the endeca_mdex_bin
default setting.

Command-line flags to pass to Dgidx.dgidx_options

Where to redirect stdout for the brick. By default, stdout is sent to the
screen. Specifying a value for stdout overrides the stdout_base setting.

stdout

Where to redirect stderr for the brick. By default, stderr is sent to the
screen. Specifying a value for stderr overrides the stderr_base setting.

stderr

Endeca® Platform Services Control System GuideEndeca Confidential

73Control Script Brick Reference | Dgidx brick

DescriptionSetting

Set to true (the default), runs the internal mechanism (called aspell). Set
to false, aspell is not run.

run_aspell

Note: If you want to run the dgwordlist (UNIX) or dgwordlist.exe
(Windows) script for spelling configuration (rather than aspell), you
must do so separately in a Shell brick or elsewhere.

The following is a Windows example of a Dgidx brick called dgidx01:

dgidx01 : Dgidx
 dgidx_binary = C:\endeca\bin\dgidx.exe
 # path relative to working_dir
 input = .\forge_output\test.records.legacy
 output = .\indexed\test

AgraphIndex brick
The AgraphIndex brick runs Agidx on several Dgidx outputs, each of which can be stored on a different
machine.

AgraphIndex brick settings

DescriptionSetting

Required. Specifies how many partitions will be combined. There must
be one Dgidx output for each partition.

num_partitions

Required. Specifies where to put the Agidx output. This path must exist
on each of the partitionN_machines. The final output of the

output_path

AgraphIndex brick will be placed on the last partitionN_machine, in
the location specified by this setting.

Required for all partitions from 0 to num_partitions - 1. Specifies the
name of the Machine brick where the Dgidx output for a given partition
is stored.

partition0_machine,
partition1_machine,
...

Required for all partitions from 0 to num_partitions - 1. Specifies the path
to the Dgidx output.

partition0_path,
partition1_path, ...

Required. Set to the pathname of the bin directory in the Endeca MDEX
Engine distribution you are using.

endeca_mdex_bin

Endeca ConfidentialEndeca® Platform Services Control System Guide

Control Script Brick Reference | AgraphIndex brick74

DescriptionSetting

Optional command-line flags to pass to Agidx.agidx_options

Optional path to the Agidx (aggregated indexing) program.agidx_binary

Note: You can use this setting to override the endeca_mdex_bin
default setting.

Path to the wget file-retrieval program file (installed as part of the standard
Endeca installation).

wget_binary

This setting is optional; if it is not specified in the control script, the system
looks for it in the %ENDECA_ROOT%\utilities directory on Windows
and in $ENDECA_ROOT/utilities on UNIX.

Optional. Specifies which Perl interpreter to use on the destination
machine. (The Endeca software includes and requires version 5.8.3 of
Perl.)

perl_binary

In the following Windows example, AgraphIndex runs Agidx using the output of three Dgidx partitions:

agidx : AgraphIndex
 num_partitions = 3
 partition0_machine = idx00
 partition0_path = \
 C:\endeca\data\dgidx_output\partition0\dgidxout
 partition1_machine = idx01
 partition1_path = \
 C:\endeca\data\dgidx_output\partition1\dgidxout
 partition2_machine = idx02
 partition2_path = \
 C:\endeca\data\dgidx_output\partition2\dgidxout
 output_path = C:\endeca\data\agidx_output

Agidx brick
An Agidx brick runs Agidx on a machine, creating a set of Agidx indices that support the Agraph
program in a distributed environment.

The Agidx brick is used only in distributed environments and is run sequentially on multiple machines.
On the first machine, the Agidx brick takes the Dgidx output from that machine as its input. On the
next machine, the output from the first Agidx run is copied over, using a Fetch brick. It, along with the
Dgidx output from that machine, is used as Agidx brick input.

Note: In many cases, a single AgraphIndex brick can take the place of several Agidx bricks,
thus reducing overall script length.

Endeca® Platform Services Control System GuideEndeca Confidential

75Control Script Brick Reference | Agidx brick

Agidx brick settings

DescriptionSetting

The file prefix to the output of Dgidx on this machine.input

The file prefix of the Agidx data from the previous run, which has been copied to
this machine by a Fetch brick. The prev_output setting is optional, and should
not be used when running the Agidx brick on the first data subset.

prev_output

The file prefix to the output of the Agidx run on this machine.output

Path to the Agidx (aggregated indexing) program.agidx_binary

Note: You can use this setting to override the endeca_mdex_bin default
setting.

Command-line flags to pass to Agidx.agidx_options

Where to redirect stdout for the brick. By default, stdout is sent to the screen.
Specifying a value for stdout overrides the stdout_base setting.

stdout

Where to redirect stderr for the brick. By default, stderr is sent to the screen.
Specifying a value for stderr overrides the stderr_base setting.

stderr

In the following Windows example, the results of an Agidx brick called agidx01 are passed to
agidx02 and aggregated to that machine’s Dgidx results:

agidx_all : Script
 agidx01
 copy_agidx01
 agidx02
 copy_agidx02

agidx01 : Agidx
 working_machine = idx01
 input = C:\endeca\data\idx\exmpl_dgidx01
 output = C:\endeca\data\idx\exmpl_agidx01

copy_agidx01 : Fetch
 working_machine = idx02
 source = \
 ftp://idx01//endeca/data/idx/exmpl_agidx01.*
 dest = C:\endeca\data\idx\

agidx02 : Agidx
 working_machine = idx02
 input = C:\endeca\data\idx\exmpl_dgidx02
 prev_output = C:\endeca\data\idx\exmpl_agidx01
 output = C:\endeca\data\idx\exmpl_agidx02

Endeca ConfidentialEndeca® Platform Services Control System Guide

Control Script Brick Reference | Agidx brick76

copy_agidx02 : Fetch
 working_machine = ag01
 source = \
 ftp://idx02//endeca/data/idx/exmpl_agidx02.*
 dest = C:\endeca\data\idx\

Note: In many cases, scenarios similar to the one shown in this example can be handled more
concisely by using an AgraphIndex brick.

Related Links
AgraphIndex brick on page 74

The AgraphIndex brick runs Agidx on several Dgidx outputs, each of which can be stored on
a different machine.

AgraphIndex brick on page 74
The AgraphIndex brick runs Agidx on several Dgidx outputs, each of which can be stored on
a different machine.

Dgraph brick
A Dgraph brick runs the Dgraph (the MDEX Engine software).

Dgraph brick settings

DescriptionSetting

The file prefix for the output from Dgidx.input

The port at which the Dgraph should listen. The default is 8000.port

Specifies the amount of time in seconds that the Control Interpreter will wait
while starting the Dgraph. If it cannot determine that the Dgraph is running in
this timeframe, it times out. The default is 60.

startup_timeout

Path to the Dgraph (MDEX Engine) program.dgraph_binary

Note: You use this setting to override the endeca_mdex_bin default
setting.

Command-line flags to pass to Dgraph.dgraph_options

Note: --spellpath is now automatically included unless you add it
yourself and will be set to the directory containing the Dgidx output.

Directory where the Dgraph writes its request log files.log_dir

Endeca® Platform Services Control System GuideEndeca Confidential

77Control Script Brick Reference | Dgraph brick

DescriptionSetting

Where to redirect stdout for the brick. By default, stdout is sent to the
screen. Specifying a value for stdout overrides the stdout_base setting.

stdout

Where to redirect stderr for the brick. By default, stderr is sent to the
screen. Specifying a value for stderr overrides the stderr_base setting.

stderr

Dgraph commands

The commands listed below can be used within Script bricks to control the Dgraph program:

DescriptionCommand

Starts the Dgraph.start

Note: This command succeeds even if the Dgraph is already started.

Succeeds if the Dgraph is running.This operation can be used to conditionalize
a script (for example, “if dgraph.running …”) or to check assumptions
(like an assertion that the Dgraph is running at a certain time).

running

Stops the Dgraph.stop

Note: This command succeeds even if the Dgraph is already stopped.

Checks for the presence of partial updates. If any partial update files are
present, they are uploaded to the Dgraph.

update

This an example of a Dgraph brick called dg01:

dg01 : Dgraph
 working_machine = indexer
 port = 5555
 input = input.\indexed

The following excerpt from a Script brick illustrates how Dgraph commands work.This example shows
how to stop and restart a running Dgraph:

restart_dg01 : Script
 dg01.stop
 dg01.start

Endeca ConfidentialEndeca® Platform Services Control System Guide

Control Script Brick Reference | Dgraph brick78

Agraph brick
An Agraph brick runs the Agraph program, which defines and coordinates the activities of multiple,
distributed Dgraphs.

Note: You can create child Dgraph bricks under an Agraph brick.

Agraph brick settings

DescriptionSetting

The Agidx outputs to aggregate, separated by spaces.input

The port at which the Agraph should listen.port

A list of the child Dgraphs for this Agraph, in the format machine_name:port.children

Specifies the amount of time in seconds that the Control Interpreter will wait while
starting the Agraph. If it cannot determine that the Agraph is running in this
timeframe, it times out. The default is 60.

startup_timeout

Path to the Agraph program.agraph_binary

Note: You can use this setting to override the endeca_mdex_bin default
setting.

Command-line flags to pass to Agraph.agraph_options

Directory where the Agraph writes its request log files.log_dir

Where to redirect stdout for the brick. By default, stdout is sent to the screen.
Specifying a value for stdout overrides the stdout_base setting.

stdout

Where to redirect stderr for the brick. By default, stderr is sent to the screen.
Specifying a value for stderr overrides the stderr_base setting.

stderr

Agraph commands

The commands listed below can be used within Script bricks to control the Agraph program:

DescriptionCommand

Starts the Agraph but none of the Dgraphs.start

Endeca® Platform Services Control System GuideEndeca Confidential

79Control Script Brick Reference | Agraph brick

DescriptionCommand

Starts the Agraph and all its Dgraphs. This command only works if the Dgraphs are
all child bricks (that is to say, indented) under the Agraph.

start_all

Succeeds if the Agraph is running. This command can be used to conditionalize a
script (for example “if agraph.running”) or to check assumptions, such as an
assertion that the Agraph is running at a certain time.

running

Succeeds if the Agraph and all its Dgraphs are running. This command only works
if the Dgraphs are all child bricks (that is, indented) under the Agraph.

running_all

Stops the Agraph, but none of the Dgraphs.stop

Stops the Agraph and all its Dgraphs. This command only works if the Dgraphs are
all child bricks (that is, indented) under the Agraph.

stop_all

The following is an example of an Agraph brick called agraph01:

agraph01 : Agraph
 working_machine = indexer
 port = 8888
 input = input.\indexed
 children = idx01:7777 idx02:7777 idx03:7777

The following excerpt from a Script brick stops agraph01 and its three component Dgraphs.:

...
 agraph01.stop
 dgraph01.stop dgraph02.stop dgraph03.stop

Note: It is good practice (though not essential) to first stop an Agraph, and then stop its child
Dgraphs. This is especially true in cases where the Agraph is actually serving requests from
an end user.

Script brick
A Script brick tells the Control Interpreter how to execute the other bricks in the control script.

A Script brick consists of a list of other bricks to run. Script bricks may list other Script bricks, allowing
you to build more complex Script bricks from simpler ones.

Most control scripts contain more than one Script brick. For example, a control script could have one
Script brick that runs an entire data update sequence, and another that simply stops and restarts the
Dgraph.

Endeca ConfidentialEndeca® Platform Services Control System Guide

Control Script Brick Reference | Script brick80

Script brick settings

DescriptionSetting

Where to redirect stdout for the brick. By default, stdout is sent to the screen.
Specifying a value for stdout overrides the stdout_base setting.

stdout

Where to redirect stderr for the brick. By default, stderr is sent to the screen.
Specifying a value for stderr overrides the stderr_base setting.

stderr

The following is an example of a Script brick called run:

run : Script
 archive01 archive02
 fetch01 fetch02
 dgidx01 dgidx02
 collect02 #copies dgidx output to a single machine
 agidx
 dgraph01.start dgraph02.start
 agraph.start

Implicit and explicit commands
Although most bricks within a Script brick have an implicit run command, some require explicit
commands to use.

To execute bricks with the implicit command, the Script brick only has to list the brick in its definition.
For example:

fetch_and_copy_data : Script
 fetch_data_1 fetch_data_2
 copy_data_1 copy_data_2

Three brick types, however, have explicit commands that you use to perform operations on them:
Machine, Dgraph, and Agraph. Operations include things like starting, stopping, and testing the state
of processes. In the sample Script brick below, a Dgraph brick called dg01 is stopped and restarted.

restart_dg01 : Script
 dg01.stop
 dg01.start

Related Links
Machine brick on page 67

Machine bricks specify the name and connection details of each machine in a distributed
environment.

Agraph brick on page 79
An Agraph brick runs the Agraph program, which defines and coordinates the activities of
multiple, distributed Dgraphs.

Dgraph brick on page 77
A Dgraph brick runs the Dgraph (the MDEX Engine software).

Endeca® Platform Services Control System GuideEndeca Confidential

81Control Script Brick Reference | Script brick

Line execution
In a Script brick, by default, bricks named on different lines are run sequentially, while bricks named
on the same line are run in parallel.You can also use explicit parallel and sequential lines to
exercise additional control over line execution.

Lines that are indented beneath a parallel line run in parallel (note that this includes the first line
of any nested sequential lines). Lines indented beneath a sequential line run sequentially. To
illustrate these concepts, consider the Script brick below. Lines first1 through first5 will all start
immediately, second1 and second2 will start as soon as first4 is done, and third will start as
soon as all the firsts and seconds are done. Note that first2 and first3, and second1 and
second2, use the default syntax for parallel execution.

myscript : Script
 parallel
 first1
 first2 first3
 sequential
 first4
 second1 second2
 first5
 third

Note: If you have an if statement inside a parallel statement, the body of the if statement
will execute sequentially, as if it were not inside the parallel statement.

Line-specific settings
Each line in a Script brick can have the following optional settings:

:

• max_retry_count — tells the Script brick how many times to retry a command if the first attempt
fails. This setting does not include the Script brick’s first attempt at running the command; in other
words, a max_retry_count setting of “2” will result in a total of three attempts, the initial attempt
plus two more.

• retry_interval — determines how long the Script brick waits, in seconds, before attempting
to rerun a command that has failed.This setting is not useful unless the max_retry_count setting
is also used.

If specified, the settings above should appear indented on the line following the command to which
they apply. For example:

myscript : Script
 wait_for_something
 # Wait for one minute between attempts
 retry interval = 60
 # Try at most 3 times (including the first try)
 max_retry_count = 2
 do_something_else

if and else statements
Script bricks support if statements that allow you to conditionalize the execution of code.

Endeca ConfidentialEndeca® Platform Services Control System Guide

Control Script Brick Reference | Script brick82

An if statement runs a command. If that command succeeds, the code contained in the if statement
is executed. If the command fails, the code inside the if statement is ignored:

myScript : Script
 if idx01.is_win32
 do_win32_version

else statements allow you to provide an alternative to the code contained in the if statement, in the
event that the if command fails:

myScript : Script
 if idx01.is_win32
 do_win32_version
 else
 do_unix_version

try, onfail, and finally statements
Script bricks support three statements that allow you to exercise further control over the Control
Interpreter in the event of an error:

• try — Defines a task that the Script brick attempts to accomplish.
• onfail — Defines what the Script brick should do if an error occurs during the try statement.
• finally — Defines what the Script brick should do after both the try and onfail statements

have been executed.

Both onfail and finally statements are optional. However, you must include at least one of the
two after a try statement. If an onfail statement exists, it is always executed before a finally.

If an error occurs during a try statement’s execution, the Control Interpreter will proceed to an onfail
statement, if one exists. The onfail allows you to do important tasks that should be finished despite
the error. For example, if the try statement defines a data update sequence, you can use the onfail
statement to restore the original data and restart your Dgraphs if the update fails.

Note: With onfail, the try statement’s error is not hidden as it would be in an if statement.

The Control Interpreter always executes a finally statement, but not until after it executes the
associated try and onfail (if there is one) statements.

It is important to understand how errors behave in a try/onfail/finally construct. If a try statement
fails, the Control Interpreter considers it a fatal error, regardless of whether the onfail or finally
statements succeed.

If a try statement succeeds, but a subsequent finally statement does not, the Control Interpreter
reports the finally error as a non-fatal warning. finally errors do not cause the parent Script
brick to fail.

Note: If a try statement succeeds, its associated onfail statement will not be executed.

If a try statement fails, and there are subsequent errors in the onfail or finally statements, the
Control Interpreter reports the try statement’s error as fatal, and the onfail and finally errors
as non-fatal warnings. Again, onfail and finally errors do not cause the parent Script brick to fail.

Endeca® Platform Services Control System GuideEndeca Confidential

83Control Script Brick Reference | Script brick

Constants Brick
A Constants brick allows you to create named constants that are available for use by any of the other
bricks in your control script.

The syntax for referencing constants looks like this:

$(<constantsBrickName>.<constant>)

The following is a Windows example of a Constants brick called consts:

consts : Constants
 data_dir = C:\Endeca\Data

To reference the data_dir constant defined above, you would use the following:

$(consts.data_dir)

For example:

dg01 : Dgraph
 input = $(consts.data_dir)\indexed

Archive brick
The Archive brick can create, archive, and roll back directories.

Archive brick settings

DescriptionSetting

Required. Specifies the path to the directory that will be archived. For directories
on different machines, specify a working_machine.

directory

Required. Specifies the maximum number of archives to store. This number
does not include the original directory itself, so if max_archives was set to 3,

max_archives

you would have the original directory plus up to three archive directories, for a
total of as many as four directories.

Optional. Must be either move (the default) or copy.archive_method

Optional. Specifies the path to the Perl interpreter. Defaults to whatever Perl
executable is in the path.

perl_binary

Archive brick commands

The commands listed below can be used within Script bricks to control the archiving process:

Endeca ConfidentialEndeca® Platform Services Control System Guide

Control Script Brick Reference | Constants Brick84

DescriptionCommand

The create operation will first create the directory if it does not exist. In addition,
it creates the timestamp.txt file if it doesn't exist. This file is used by the

create

rollback operation to record when the directory was created. If the times¬
tamp.txt file already exists, then it is left alone.

Creates an archive directory from an existing directory. The archive directory
will have the same name as the original directory, but with a timestamp appended

archive

to the end. The timestamp will reflect the time when the original directory was
either created or last archived, not the time when the archive operation is
performed.

For example, if the original directory is called logs and was created on October
11, 2006 at 8:00 AM, the archive operation creates a directory called
logs.2006_10_11.08_00_00.

Rolls back the directory to the most recent archived version. For example, say
you have a directory called logs, one called logs.2006_10_11.08_00_00,
and other, older versions. When you roll back, two things happen:

rollback

• logs is renamed logs.unwanted
• logs.2006_10_11.08_00_00 is renamed logs

The older versions are left alone.

Note: There can only be a single .unwanted directory at a time. If you
roll back twice, the .unwanted directory from the first rollback is deleted.

In the following UNIX example, an Archive brick is used to create a logs archive. It would be called
from a Script brick or a RunCommand session using the command logs.create.

logs : Archive
 directory = /endeca/logs
 max_archives = 3
 archive_method = move

In this UNIX example, an Archive brick is used to make backup copies of state directories. It would
be called using the archive_state_MACHINE.archive command:

archive_state_MACHINE : Archive
 working_machine = MACHINE
 directory = $(project_root)/state
 max_archives = 5
 archive_method = copy

Perl brick
The Perl brick allows you to incorporate custom Perl code into your control script.

Endeca® Platform Services Control System GuideEndeca Confidential

85Control Script Brick Reference | Perl brick

Perl bricks have several settings, described below.The Control Interpreter considers any content other
than these settings to be custom Perl code.

Note: Control Interpreter variables use a different syntax than Perl variables, so the two do not
collide.

Perl brick settings

DescriptionSetting

The location of the Perl binary to be used.perl_binary

Any command line options you want to use when running the Perl binary.perl_options

A read-only setting that contains the body of the Perl brick.The Control Interpreter
uses this setting to embed code from one Perl brick into another.

code

Where to redirect stdout for the brick. By default, stdout is sent to the screen.
Specifying a value for stdout overrides the stdout_base setting.

stdout

Where to redirect stderr for the brick. By default, stderr is sent to the screen.
Specifying a value for stderr overrides the stderr_base setting.

stderr

Pathnames in Perl bricks

Because of the way Perl treats escape characters, control script variables that contain Windows
pathnames require special handling.To use a pathname in a Perl brick, put the path in single quotation
marks (‘<path> ’) with a space at the end, then write an additional Perl statement that removes the
space:

my $data_dir = ‘$(consts.data_dir) ‘;
$data_dir =~ s/ $//;

Reusing Perl bricks

You can embed the code from one Perl brick inside another Perl brick.To do this, you use the following
statement:

perl_brick_2 : Perl
 ...other perl code...
 $(perl_brick_1.code)
 ...other perl code

where perl_brick_1 is the name of the Perl brick that has the code to be embedded.

LogServer brick
The LogServer brick controls the use of the Endeca Log Server.

Endeca ConfidentialEndeca® Platform Services Control System Guide

Control Script Brick Reference | LogServer brick86

LogServer brick settings

DescriptionSetting

The port to listen on. The default value is 8002 (that is, the default Dgraph port plus
two).

port

The file path prefix to use for log files.log_file_prefix

If true, compresses the generated log files using gzip compression and appends
a .gz suffix to the log file name.

gzip

Important: If you use this option, logs will not be written to disk as soon as
they are received. That means that if the Log Server crashes unexpectedly,
you may lose some log entries.

LogServer commands

The commands listed below can be used within Script bricks to control the Log Server:

DescriptionCommand

Starts the Log Server.start

Note: This command succeeds even if the Log Server is already started.

Succeeds if the Log Server is running.This operation can be used to conditionalize
a script (for example, “if logserver.running …”), or to check assumptions,
like an assertion that the Log Server is running at a certain time.

running

Stops the Log Server.stop

Note: This command succeeds even if the Log Server is already stopped.

Causes the Log Server to close its log and open a new one with a new timestamp.roll

In the following Windows example, the Log Server is launched:

log_server : LogServer
 port = 8002
 log_file_prefix = C:\endeca\logs\log

Endeca® Platform Services Control System GuideEndeca Confidential

87Control Script Brick Reference | LogServer brick

ReportGenerator brick
The ReportGenerator brick runs the Report Generator, which processes Log Server files into
HTML-based reports that you can view in your Web browser and XML reports that you can view in
Endeca Workbench.

ReportGenerator brick settings

DescriptionSetting

Required. Path to the file or directory containing the logs to report on. If it
is a directory, then all log files in that directory are read. If it is a file, then
just that file is read.

logs

Required. What to name the generated report file. For example:output

output = C:\Endeca\reports\myreport.html on Windows

output = /endeca/reports/myreport.html on UNIX

Path to the report_settings.xml file. For example:settings

$(sample_wine_data_dir)\etc\report_settings.xml

Required. Path to the report_stylesheet.xsl file. For example:stylesheet

$(sample_wine_data_dir)\etc\report_stylesheet.xsl

Optional. Set the time span of interest (or report window). Allowed
keywords:

timerange <keyword>

• yesterday

• last-week

• last-month

• day-so-far

• week-so-far

• month-so-far

These keywords assume that days end at midnight, and weeks end on the
midnight between Saturday and Sunday.

Optional.These set the report window to the given date and time.The date
format should be either yyyy_mm_dd or yyyy_mm_dd.hh_mm_ss. For

start_date <date>

stop_date <date>
example, 2007_03_25.19_30_57 expresses March 25, 2007 at 7:30:57
in the evening.

Generates time series data at a specified frequency. The value can be
either hourly or daily.

time-series
<frequency>

Endeca ConfidentialEndeca® Platform Services Control System Guide

Control Script Brick Reference | ReportGenerator brick88

DescriptionSetting

Generates charts in reports. The value is either enable or disable. If
unspecified, the default is set to disable.

charts <status>

Optional. Should indicate a JDK 1.5.x or later. Defaults to the JDK that
Endeca installs.

java_binary

Optional. Command-line options for the java_binary setting. This
command is primarily used to adjust the report generator memory, which
defaults to 1GB.To set the memory, use the following (ignore the linebreak):

java_options = -Xmx[MemoryInMb]m
-Xms[MemoryInMb]m

java_options

This Windows example of a ReportGenerator brick generates a report for all logs in a directory:

 wine_genreport : ReportGenerator
 logs = $(sample_wine_data_dir)\logs\logserver_output\
 settings = $(sample_wine_data_dir)\etc\report_settings.xml
 stylesheet = $(sample_wine_data_dir)\etc\report_stylesheet.xsl
 output = $(sample_wine_data_dir)\reports\sample_report.html

Example control script
This simple but complete control script demonstrates how all of the Control Interpreter elements work
together.

The control script is based on the reference implementation that is part of the Endeca installation, and
is designed to run on a single machine. This example is for a Windows environment.

############################ Global Variables ###############################
Global variables can be reused anywhere in the control script, and
certain global variables (such as jcd_port and working_dir) are used
as defaults for the control interpreter.

JCD connection
jcd_port = 8088
jcd_use_ssl = false

Dgraph and LogServer ports
#
IMPORTANT NOTE: Although not required, Reference UI expects logserver to
 be
running on dgraph port +2
#
dgraph_port = 8000
logserver_port = 8002

Reusable path variables
sample_wine_data_dir = $(endeca_root)..\reference\sample_wine_data

Endeca® Platform Services Control System GuideEndeca Confidential

89Control Script Brick Reference | Example control script

Common operational variables for all bricks
working_machine = wine_indexer
working_dir = $(sample_wine_data_dir)\data
stdout_base = ..\logs\out.
stderr_base = ..\logs\err.

Location of Perl 5.8.3 binary (required for Fetch brick)
perl_binary = $(endeca_root)\perl\5.8.3\bin\perl.exe

############################ Bricks ##
Bricks define interfaces to various programs.
####
Endeca components such as forge, dgidx and dgraph have special bricks
that know about the process they are running.
####
For other user-defined actions, a Shell brick can be used to run any
system command.

This brick defines the machine to be used for the data update process.
wine_indexer : Machine
 name = localhost

This brick runs forge to process the raw data.
wine_forge : Forge
 pipeline = ..\data\forge_input\pipeline.epx
 forge_options = -vw

This brick runs dgidx to index the processed data.
wine_dgidx : Dgidx
 input = ..\data\partition0\forge_output\wine
 output = ..\data\partition0\dgidx_output\wine

This brick moves index files from dgidx_output to dgraph_input.
wine_fetch : Fetch
 source = file:///$(sample_wine_data_dir)\data\partition0\dgidx_output*

 dest = .\partition0\dgraph_input
 remove_source = true

This brick runs the dgraph, using the indices created by the
wine_dgidx brick. Note that the global setting for working_dir
has been overridden in this brick.
wine_dgraph : Dgraph
 working_dir = $(sample_wine_data_dir)\logs
 input = ..\data\partition0\dgraph_input\wine
 port = $(dgraph_port)

This brick runs logserver to handle application logging requests.
wine_logserver : LogServer
 port = $(logserver_port)
 log_file_prefix = $(sample_wine_data_dir)\logs\logserver_output\wine

This brick generates an html report for all logs in a directory.
wine_genreport : ReportGenerator
 logs = $(sample_wine_data_dir)\logs\logserver_output\
 settings = $(sample_wine_data_dir)\etc\report_settings.xml
 stylesheet = $(sample_wine_data_dir)\etc\report_stylesheet.xsl

Endeca ConfidentialEndeca® Platform Services Control System Guide

Control Script Brick Reference | Example control script90

 output = $(sample_wine_data_dir)\reports\sample_report.html

This brick generates an xml report for use by the business studio
wine_toolsreport : ReportGenerator
 logs = $(sample_wine_data_dir)\logs\logserver_output\
 settings = $(sample_wine_data_dir)\etc\report_settings.xml
 stylesheet = $(sample_wine_data_dir)\etc\tools_report_stylesheet.xsl
 output = $(sample_wine_data_dir)\reports\tools_report.xml
 timerange = "day-so-far"

############################ Scripts #######################################
Scripts are called to run each brick in the correct order to accomplish
tasks.

This Script brick runs the entire data update sequence: process
the data using forge, index the data using dgidx, stop the
currently running dgraph and restart it using the new indices.
runme : Script
 wine_forge
 wine_dgidx
 if wine_dgraph.running
 wine_dgraph.stop
 wine_fetch
 wine_dgraph.start
 if wine_logserver.running
 wine_logserver.stop
 wine_logserver.start

This Script brick stops and restarts the dgraph. This brick
is useful in cases where the administrator wants to restart
the dgraph but does not need to rerun forge or dgidx.
dgraph_start : Script
 if wine_dgraph.running
 wine_dgraph.stop
 wine_dgraph.start

This Script brick stops the dgraph if it is running. This
is useful when re-defining bricks on a running JCD
dgraph_stop : Script
 if wine_dgraph.running
 wine_dgraph.stop
This Script brick stops and restarts the logserver. This brick
is useful in cases where the administrator wants to restart
the logserver but does not need to rerun forge or dgidx or restart
the dgraph.
logserver_start : Script
 if wine_logserver.running
 wine_logserver.stop
 wine_logserver.start

This Script brick rolls the log file generated by the LogServer.
logserver_roll : Script
 wine_logserver.roll

Endeca® Platform Services Control System GuideEndeca Confidential

91Control Script Brick Reference | Example control script

Appendix B

Control System-based Examples

This appendix contains examples of control scripts that are based on using the Control System.

Control scripts and term extraction pipelines
You can run the pipeline for term discovery with either the Endeca Application Controller (EAC) or
control scripts.

For more information on the term discovery pipeline, see the Endeca Relationship Discovery Guide.

The only recommended practice when running the pipeline with control scripts is to use the Forge
--stateDir flag to specify the location of the state directory. For example, you can set a global
variable to the location of the state directory:

state_dir = $(sample_te_data_dir)\data\partition0\state

You then use that variable as the argument to the --stateDir flag in the Forge brick:

baseline_forge : Forge
 pipeline = ..\data\forge_input\pipeline.epx
 forge_options = -vw --stateDir $(state_dir)

Otherwise, there is nothing different about a control script that is used to support term discovery.

Control scripts in differential crawling
Differential crawling cannot be run from Developer Studio nor from Oracle Endeca Workbench. It can
be run only via a control script.

A sample control script is listed in this chapter. For information on the pipeline used for this script, see
the Platform Services Forge Guide.

The control script uses two high-level Script bricks (full_crawl and diff_crawl) to implement
the two crawling processes.

Note: In order to illustrate the basics of a differential crawling control script, the sample control
script does not have a full range of Endeca features, such as a brick for the logging server.

Related Links
Sample control script for differential crawling on page 95

A sample differential crawling control script is presented below:

About the differential crawling script
You can run a differential crawl using a high-level Script brick.

In the control script, the Script brick, diff_crawl, implements the differential crawling procedure as
follows:

diff_crawl : Script
 differential_forge
 differential_dgidx
 differential_fetch
 if differential_dgraph.running
 differential_dgraph.stop
 differential_dgraph.start

You run a differential crawl with a command line similar to this Windows example (assuming you are
in the etc directory):

runcommand control.script diff_crawl

The four called bricks are very straightforward. For example, the differential_forge brick runs
Forge on the source data that is incoming from the spider component, using these settings:

pipeline = ..\data\forge_input\pipeline.epx
forge_options = -vw

You may want to modify the forge_options setting so that it is better suited for your application.
Note, however, that no special Forge flags are needed to process the Endeca Crawler’s output.

About the full crawling script
The full_crawl Script brick removes previous crawler output, then runs a full crawl.

In the control script, the high-level Script brick, full_crawl, implements the full crawling procedure
as follows:

full_crawl : Script
 differential_clearcrawlstate
 diff_crawl

You run this script with a command line similar to this Windows example (assuming you are in the
etc directory):

runcommand control.script full_crawl

The two steps of the full_crawl script are as follows:

1. Delete the previous crawler output

Before a full crawling procedure is run, the differential_clearcrawlstate Shell brick first
removes the previous crawler output by deleting two files in the state directory:

• previouscrawl.records.binary — contains the records of the previous crawl.
• differential_state.gz — contains the record metadata of the previous pipeline run.

Endeca ConfidentialEndeca® Platform Services Control System Guide

Control System-based Examples | Control scripts in differential crawling94

2. Run the diff_crawl script

The full_crawl brick then calls the diff_crawl brick to run a full crawl, run Forge on the resulting
data, run Dgidx, and start the MDEX Engine.

Sample control script for differential crawling
A sample differential crawling control script is presented below:

Reference control script to demonstrate differential crawling using
the Endeca Crawler.
Copyright (c) 2006, Endeca Technologies, Inc.

######################## Global Variables #############################
JCD connection
jcd_port = 8088
jcd_use_ssl = true
sslcertfile = $(endeca_root)\..\workspace\etc\eneCert.pem

Reusable path variables
sample_differential_data_dir = C:\Projects\sample_differential_data

Common operational variables for all bricks
working_machine = differential_indexer
working_dir = $(sample_differential_data_dir)\data
stdout_base = ..\logs\out.
stderr_base = ..\logs\err.

perl_binary = $(endeca_root)\perl\5.8.3\bin\perl

######################## Bricks #######################################
Defines the machine used for the data update process.
differential_indexer : Machine
 name = localhost

Runs Forge to process the raw data, including crawling.
differential_forge : Forge
 pipeline = ..\data\forge_input\Pipeline.epx
 forge_options = -vv

Runs Dgidx to index the processed data.
differential_dgidx : Dgidx
 input = ..\data\partition0\forge_output\differential
 output = ..\data\partition0\dgidx_output\differential
 dgidx_options = -v

Moves index files from dgidx_output to dgraph_input
differential_fetch : Fetch
 source = file:///$(sample_differential_data_dir)\data\partition0\dgidx_out¬
put*
 dest = \partition0\dgraph_input
 remove_source = true

Runs the Dgraph, using the indices created by the
differential_dgidx brick. Note that the global setting for working_dir
has been overridden in this brick.
differential_dgraph : Dgraph
 working_dir = $(sample_differential_data_dir)\logs
 input = ..\data\partition0\dgraph_input\differential

Endeca® Platform Services Control System GuideEndeca Confidential

95Control System-based Examples | Control scripts in differential crawling

 port = 8000

Removes previous crawler output in order to run a new full crawl
differential_clearcrawlstate : Shell
 $(perl_binary) $(endeca_root)/bin/utility_cmds.pl rmFile $(sample_differ¬
ential_data_dir)/data/partition0/state/previouscrawl.records.binary
 $(perl_binary) $(endeca_root)/bin/utility_cmds.pl rmFile $(sample_differ¬
ential_data_dir)/data/partition0/state/differential_state.gz

######################### Scripts ##################################

This Script brick runs the entire data update sequence: process
the data using forge, index the data using dgidx, stop the
currently running dgraph and restart it using the new indices.
diff_crawl : Script
 differential_forge
 differential_dgidx
 differential_fetch
 if differential_dgraph.running
 differential_dgraph.stop
 differential_dgraph.start

This Script performs a full crawl by deleting previous data
and running the diff_crawl script.
full_crawl : Script
 differential_clearcrawlstate
 diff_crawl

About using control scripts for baseline and partial updates
This section describes control script development and execution for baseline updates and partial
updates.

For more information on baseline updates, see the Endeca Forge Guide. For information on partial
updates, see the Endeca Partial Updates Guide.

Sample control script for partial updates
A sample partial update control script is presented below:

Reference control script to run baseline updates and partial updates.
Copyright (c) 2007, Endeca Technologies, Inc.
#
########################## Global Variables ###############################

jcd_port = 8088
jcd_use_ssl = true
sslcertfile = $(endeca_root)\..\workspace\etc\eneCert.pem
dgraph_port = 8000

sample_updates_data_dir =
$(endeca_root)\..\reference\sample_updates_data
update_dir = ..\data\partition0\dgraph_input\updates\
working_machine = indexer
working_dir = $(sample_updates_data_dir)\data
stdout_base = ..\logs\out.
stderr_base = ..\logs\err.

Endeca ConfidentialEndeca® Platform Services Control System Guide

Control System-based Examples | About using control scripts for baseline and partial updates96

perl_binary = $(endeca_root)\perl\5.8.3\bin\perl.exe
wget_binary = $(endeca_root)\utilities\wget

########################## Bricks ###

indexer : Machine
 name = localhost

dgraph : Dgraph
 working_dir = $(sample_updates_data_dir)\logs
 input = ..\data\partition0\dgraph_input\wine
 port = $(dgraph_port)
 dgraph_options = --updatedir $(update_dir) --updateverbose

clear_updates: Shell
 del /f /q $(sample_updates_data_dir)\data\partition0\dgraph_input\updates*

########################## Baseline Update Bricks #########################

baseline_forge : Forge
 pipeline = ..\data\forge_input\pipeline.epx
 forge_options = -vw

baseline_dgidx : Dgidx
 input = ..\data\partition0\forge_output\wine
 output = ..\data\partition0\dgidx_output\wine
baseline_fetch : Fetch
 source = file:///$(sample_updates_data_dir)\data\partition0\dgidx_output*

 dest = .\partition0\dgraph_input
 remove_source = true

########################## Partial Update Bricks ##########################

update_forge : Forge
 pipeline = ..\data\forge_input\partial_pipeline.epx
 forge_options = -vw

apply_timestamp : Shell
 $(perl_binary) ..\etc\applytimestamp.pl ..\data\partition0\dgraph_input\up¬
dates\wine-sgmt0.records.xml

########################## Scripts ##

This script runs a baseline update, runs Dgidx, and starts the Dgraph.
baseline_update : Script
 clear_updates
 baseline_forge
 baseline_dgidx
 if dgraph.running
 dgraph.stop
 baseline_fetch
 dgraph.start

This script runs a partial update and restarts the Dgraph with the
modified data.
partial_update : Script
 update_forge
 apply_timestamp
 if dgraph.running

Endeca® Platform Services Control System GuideEndeca Confidential

97Control System-based Examples | About using control scripts for baseline and partial updates

 dgraph.update

This script restarts the Dgraph.
restart : Script
 if dgraph.running
 dgraph.stop
 dgraph.start

Directory structure for updates
The directory structure for updates is outlined below, with an overview of each directory's purpose.

The control script uses the following directory structure for handling data flow through the system:

data
 forge_input
 incoming
 updates
 partition0
 dgidx_output
 dgraph_input
 updates
 forge_output
 state

PurposeDirectory

Base directory for all other subdirectories. All files and processes
related to the data exist and work in or under this directory.

data

Contains the Developer Studio project file (sample_up¬
dates.esp), the baseline update pipeline file (pipeline.epx),

data\forge_input

the partial update pipeline file (partial_pipeline.epx), and
the index configuration files (*.xml).

Contains source data (in the wine_data.txt.gz file) for a
baseline update. On a production site, the files in this directory

data\incoming

may have been created by a data extraction process on the
customer’s database or may be picked up from another FTP
server.

Contains source data for a partial update. The control script
assumes that the directory has three gzipped files:adds.txt.gz

data\incoming\updates

(records to be added), deletes.txt.gz (records to be deleted),
and updates.txt.gz (records to be updated).

Contains files generated by the Forge, Dgidx, and Dgraph
programs.

data\partition0

Contains indices that have been processed by Dgidx and output
in a format that can be read by the MDEX Engine.

data\partition0\dgidx_output

Endeca ConfidentialEndeca® Platform Services Control System Guide

Control System-based Examples | About using control scripts for baseline and partial updates98

PurposeDirectory

Contains data that is read by the MDEX Engine on startup. The
data includes the Dgidx output indices, spelling correction
dictionaries, thesaurus files, and language-encoding files.

data\partition0\dgraph_input

Contains partial updates that have been processed by Forge.The
MDEX Engine reads these updates when it is restarted with the
Dgraph --updatedir flag pointing to this directory.

data\partition0\
dgraph_input\updates

Contains data that has been processed by Forge and is ready for
indexing.

data\partition0\forge_output

Contains any state information (such as auto-generated dimension
IDs) that must be saved between Forge runs.

data\partition0\state

Note: All references to directory names in the following text are relative to the data directory.
All references to directory names in example or default brick definitions are relative to the parent
of the data directory.

About the baseline updates script
The baseline_update Script brick calls other Script bricks to delete old updates, run Forge and
Dgidx, and restart the MDEX Engine with updated index files.

In the control script, the high-level Script brick, baseline_update, implements the baseline update
procedure by making calls to other Script bricks:

baseline_update : Script
 clear_updates
 baseline_forge
 baseline_dgidx
 if dgraph.running
 dgraph.stop
 baseline_fetch
 dgraph.start

You run a baseline update with a command line similar to this Windows example (assuming you are
in the control script’s directory):

runcommand update_index.script baseline_update

The baseline update process is as follows:

1. Delete old updates

All files in the data\partition0\draph_input\updates directory are deleted by the
clear_updates brick.

Endeca® Platform Services Control System GuideEndeca Confidential

99Control System-based Examples | About using control scripts for baseline and partial updates

2. Run Forge

The baseline_forge brick runs Forge on the source data, using these default settings:

The baseline_forge brick runs Forge on the source data, using these default
 settings:
pipeline = ..\data\forge_input\pipeline.epx
forge_options = -vw
You will want to modify the forge_options setting so that it is better
suited for your application.

You will want to modify the forge_options setting so that it is better suited for your application.

3. Run Dgidx

The baseline_dgidx brick runs Dgidx with these settings:

input = ..\data\partition0\forge_output\wine
output = ..\data\partition0\dgidx_output\wine

You will probably want to modify the options passed to Dgidx.You will also want to change:

• The input setting so that it points to the location where your pipeline writes out the Forge output
data.

• The output setting so that it points to the location where Dgidx should write out data for the MDEX
Engine (make sure that the location ends with the prefix that you want to use for the Dgidx output).

4. Stop the MDEX Engine

The dgraph.stop command stops the MDEX Engine.

5. Move the index files to the Dgraph directory

The baseline_fetch brick moves index files from the data\partition0\dgidx_output directory
to the data\partition0\dgraph_input directory, where they are used by the MDEX Engine on
startup.

Be sure to change the paths in the source and dest settings for your implementation.

6. Start the MDEX Engine

The MDEX Engine is started with the dgraph brick, using these settings:

working_dir = $(sample_updates_data_dir)\logs
input = ..\data\partition0\dgraph_input\wine
port = $(dgraph_port)
dgraph_options = --updatedir
 ..\data\partition0\dgraph_input\updates

You may want to use the --updateverbose flag during development, but make sure you remove it
for production.You may want to add other options relevant for your application. See the Endeca IAP
Administrator’s Guide for information about the available Dgraph options.

At this point, the MDEX Engine should be running correctly with the latest baseline and partial update
data.

About the partial updates script
The partial_update Script brick processes records with Forge, then applies a timestamp and
restarts the MDEX Engine with the updated indexes.

Endeca ConfidentialEndeca® Platform Services Control System Guide

Control System-based Examples | About using control scripts for baseline and partial updates100

In the control script, the high-level Script brick, partial_update, implements the partial update
procedure as follows:

partial_update : Script
 update_forge
 apply_timestamp
 if dgraph.running
 dgraph.update

You run a partial update with a command line similar to this Windows example (assuming you are in
directory where the control script resides):

runcommand update_index.script partial_update

The three major steps of the partial_update Script brick are described below:

1. Run Forge on the new source data

The update_forge brick runs Forge with the partial update pipeline and new source data, using
these default settings:

pipeline = ..\data\forge_input\partial_pipeline.epx
forge_options = -vw

Because the record adapter uses the Multi Files setting, Forge can read data from multiple input files.
(This implementation uses three input files.)

You will want to modify the forge_options setting so that it is better suited for your application.
Modify the relative paths above as appropriate for your implementation.

When Forge finishes, it produces one or more update record files and stores them in the location
specified by the pipeline's update adapter.This file contains XML definitions of how the updated records
should be treated by the MDEX Engine (for example, which records to delete or add).

The record files use this naming format:

db_prefix-sgmtn.records.xml

For example, the update_forge brick outputs the wine-sgmt0.records.xml file in the
data\partition0\dgraph_input\updates directory.

The -sgmt0 portion of the filename is generated when you roll over by size (i.e., the update indexer
contains the ROLLOVER element, as in the partial updates pipeline). Forge splits the output into segment
files, each of which is no larger than 2GB.

Note: It is important that you know the names of the record files, because they will have to be
timestamped, as described in the next section.

2. Apply a timestamp to the record file

It is possible to generate multiple partial updates before the next baseline update, at which time all
the partial update files are deleted. Therefore, each record file must be timestamped to ensure that
the MDEX Engine does not upload a partial update more than once.

The apply_timestamp brick renames the db_prefix-sgmtn.records.xml files by appending
a timestamp string to the filename. The resulting filename will use this format:

originalfilename_YYYY.MM.DD.HH.NN.SS

where YYYY is the four-digit year, MM is the two-digit month, DD is the two-digit day, HH is the two-digit
hour, NN is the two-digit minute, and SS is the two-digit second. For example:

Endeca® Platform Services Control System GuideEndeca Confidential

101Control System-based Examples | About using control scripts for baseline and partial updates

wine-sgmt0.records.xml_2005.06.07.16.14.08

A running MDEX Engine keeps track of the last timestamped file it uploaded. When it next checks the
updates directory, it will only upload partial update files that carry a timestamp later than the last
uploaded file.

Note: The apply_timestamp brick in the control script assumes that only one record file will
be renamed. If your implementation generates multiple record files, you will need to change this
brick for the additional renaming statements.

3. Update the MDEX Engine

The dgraph.update command causes the running MDEX Engine to perform the following actions:

1. Go offline while it processes the updates (that is, it stops accepting user queries and temporarily
closes its listening port).

2. Check the updates directory (whose path is specified with the --updatedir flag).
3. Upload any partial update with a timestamp later than the last currently-loaded partial update.
4. Go back online after it has processed all updates.

At this point, the MDEX Engine should be running correctly with the latest baseline and partial update
data.

About adding other bricks
You can modify the update_index.script and add other bricks that are necessary for your
implementation.

For example, you can add a brick that fetches partial updates from an FTP server. In other installations,
the partial updates may be dropped onto the indexing server, directly into the incoming\updates
directory.

The following is an example of a Fetch brick:

fetch_updates : Shell
 perl bin/fetch.pl \
 --ftp_ip ftp.somecompany.com \
 --ftp_user anonymous \
 --ftp_pass somecompany.com \
 --fetch_dir incoming/ \
 --fetch_file_regexp
 "endeca_update_200407(\d+)\.txt" \
 --exclude_file etc/exclude_files \
 --dest_dir data/incoming/updates

The flags in the example are:

• --ftp_ip — the IP address of the FTP server.
• --ftp_user — the username for logging into the FTP server.
• --ftp_pass — the password for the username.
• --fetch_dir — the directory on the FTP server that contains the update files to retrieve.
• --fetch_file_regexp — the regular expression that should be matched for a file to be

considered a partial update file.
• --exclude_file — points to a file that will be maintained automatically by fetch.pl. It is a

list of all the files that have already been retrieved from the FTP server and should not be retrieved
again.

Endeca ConfidentialEndeca® Platform Services Control System Guide

Control System-based Examples | About using control scripts for baseline and partial updates102

• --dest_dir — the directory into which the fetched files will be dropped.

Related Links
Control Script Brick Reference on page 67

This appendix provides details about specific brick types. Some long brick settings break
onto the following line in these examples; however, you should type each brick setting on a
single line. If you need to wrap a line, put a space and a backslash (“ \”) at the break; this
tells the Control Interpreter to ignore the line break.

The Dgraph update command
An update command can be issued to the MDEX Engine in one of two ways:

• With a URL command in your browser.This method allows you to specify options to the command.
For information, see the Platform Services Forge Guide.

• From a control script. With this method, you cannot specify options.

Related Links
The Dgraph update command in control scripts on page 103

The dgraph.update command cannot specify options when used from a control script.

The Dgraph update command in control scripts
The dgraph.update command cannot specify options when used from a control script.

The dgraph.update command can be issued from a control script, as in this example:

run_partial_update : Script
 update_forge
 apply_timestamp
 if dgraph.running
 dgraph.update

When the run_partial_update script is executed, the dgraph.update command is issued to
the MDEX Engine to begin processing the partial update files.

The behavior of this version of the command is identical to the default behavior of the URL version.
The only difference between the two versions is that the dgraph.update control script version cannot
take the offline and warmupseconds options.

About using a control script for Agraph updates
This section contains information about using control scripts for running partial updates for configurations
that contain an Agraph.

For information on building an Agraph pipeline to run the partial update, see the MDEX Engine Partial
Updates Guide.

The sample control script implements partial updates for a single-machine, single-Dgraph deployment
only. For an Agraph deployment, you can modify the control script to run Forge on a single machine
and distribute the Forge output to all the other machines. Then, you notify each Dgraph in your
deployment to check for new updates.

Endeca® Platform Services Control System GuideEndeca Confidential

103Control System-based Examples | About using a control script for Agraph updates

Forge partial updates brick
The partial updates Forge brick is similar to the update_forge brick, but with a recommended
additional flag.

For a Forge brick that processes partial update source data, Endeca recommends the use of the Forge
--numPartitions flag to specify the number of Agraph partitions:

Runs Forge on the update source data.
update_forge : Forge
 working_machine = indexer
 pipeline = ..\data\forge_input\partial_pipeline.epx
 forge_options = -vw --numPartitions $(numPartitions)

Using the --numPartitions flag (which overrides the NUM_IDX setting in the update adapter) lets
you easily add or subtract Agraph partitions from within the control script.You will have to set up a
global variable (named numPartitions in the example above) that stores the number of partitions.

Related Links
About the partial updates script on page 100

The partial_update Script brick processes records with Forge, then applies a timestamp
and restarts the MDEX Engine with the updated indexes.

About distributing the Forge output to Dgraphs
For a deterministic distribution strategy, the distribution of the record files depends on the use of
auto-generated dimensions.

For a random distribution strategy, partial updates in Agraph implementations do not require any
special update distribution requirements. Both dimension modifications (i.e., dimension value additions)
and record modifications (updates, deletes, replaces, and adds) should be sent to all Dgraphs in the
deployment. Each Dgraph should then be notified to check for new updates. If a Dgraph cannot handle
data that is associated with another Dgraph, it will simply log a warning but will otherwise continue
working. Note that the Agraph process itself does not process updates.

A deterministic distribution needs to be configured differently:

• If you are using auto-generated dimensions, distribute all the record files to all the Dgraphs.
• If you are not using auto-generated dimensions, you can distribute each record file to its specific

Dgraph.

To make sure that there is no interruption in servicing navigation requests, you may configure your
Dgraphs to check for new updates at different times. Or you can also have smaller subgroups read in
updates simultaneously (for example, three machines at a time in a six-machine implementation).

Using control scripts with the Agraph
The following planning considerations apply if you are using control scripts with the Agraph.

For information about Agraph, see the MDEX Engine Advanced Developer’s Guide.

Note: This section does not apply to Analytics implementations.

Take the following actions when using control scripts with the Agraph:

1. Arrange your partitions and data files so that they are available to the various Dgidx processes.

Endeca ConfidentialEndeca® Platform Services Control System Guide

Control System-based Examples | About using a control script for Agraph updates104

When running your implementation with a control script, you have to arrange data files so that they
are available to the various Dgidx processes. In particular, each Dgidx process needs to access
its corresponding partition of the records, as well as the configuration files that are common to all
of the processes. If the Dgidx processes are to be executed on the different machines, then the
control script must distribute files across machines.

2. Shut down the Agraph during dynamic business rules updates.

In a control script environment, Endeca recommends that you shut down the Agraph during dynamic
business rule updates. (In an environment that uses EAC and tools, the Agraph automatically shuts
down during any type of update process and then restarts after the update completes).

If you do not shut down the Agraph during the update, end-users will not receive a response to
requests made during this short update time and the Agraph issues a fatal error similar to the
following:

[Thu Mar 23 16:26:29 2006] [Fatal] (merchbinsorter.cpp::276) -
Dgraph 1 has fewer rules fired.

Endeca® Platform Services Control System GuideEndeca Confidential

105Control System-based Examples | About using a control script for Agraph updates

Appendix C

SSL Configuration for the Control
Interpreter

This appendix describes how to use SSL with the Control Interpreter.

Control Interpreter system communications
Endeca components use different methods of communication, and not all of them can use SSL.

The illustration below shows communication methods between components of an Endeca secure
implementation when using the Control Interpreter:

As the illustration shows, not all components can use SSL. For example, the Endeca Log Server
currently cannot be configured to use SSL.

Note: For general information about configuring your Endeca implementation to use SSL, see
the Endeca Security Guide.

Enabling SSL for the MDEX Engine and Forge
This section describes configuring the MDEX Engine to use SSL and, optionally, mutual authentication
when communicating with the Presentation API and other Endeca system components.

Note: This section assumes that you configured the Endeca JCD service to use SSL when
communicating with the Control Interpreter.

You can configure Forge to use SSL between the Forge server and Forge client in a parallel Forge
implementation. The configuration process depends on whether you are using a Control Interpreter
script or the Endeca Application Controller. Both processes are described in the following sections.

Keep in mind that you will be using the following two certificate files to configure SSL:

Endeca ConfidentialEndeca® Platform Services Control System Guide

SSL Configuration for the Control Interpreter | Enabling SSL for the MDEX Engine and Forge108

• eneCert.pem — The certificate used by all clients and servers to specify their identity when using
SSL.This certificate file should be thought of as the identity of the Endeca system, or as the identity
of all components of the Endeca system.

• eneCA.pem — The Certificate Authority (CA) file used by all clients and servers that wish to
authenticate the other endpoint of a communication channel.

These certificate files are not shipped with the product. Therefore, you must use the enecerts utility
to generate them, as described in the Endeca Security Guide.

Related Links
Enabling authentication and security on page 19

If your implementation requires it, the Endeca JCD can authenticate the identity of all client
requests through the use of SSL certificates.You need to generate a set of certificate files
to enable SSL.

Control Interpreter script configuration
If you are using a Control Interpreter script to run the Forge and Dgraph/Agraph programs, you can
specify their SSL settings either as global default settings or in their bricks.

Endeca recommends specifying SSL settings as global defaults, and only specifying SSL settings
within individual bricks when you want to override a global default for a particular brick.

In the following sections, it is assumed that the JCD has been configured to use SSL by using the
jcd_use_ssl setting.

Related Links
Global default settings reference on page 41

The tables below describe the most common control script settings that are set globally.

Dgraph/Agraph SSL settings

The following table lists the SSL-specific settings for the Dgraph and Agraph bricks:

DescriptionDgraph/Agraph
brick setting

If set to true, specifies that all MDEX Engines (Dgraphs or Agraphs) will use SSL
when communicating with other Endeca system components. If set to true, you
must also use the sslcertfile setting.

ene_use_ssl

Specifies the path of the eneCert.pem certificate file that will be used by the MDEX
Engine (Dgraph/Agraph) processes to present to any client.This is also the certificate

sslcertfile

that the Control Interpreter should present to the MDEX Engine when trying to talk
to the MDEX Engine as a client.

Specifies the path of the eneCA.pem Certificate Authority file that the MDEX Engine
(Dgraph/Agraph) processes will use to authenticate communications with other

sslcafile

Endeca components. If ene_use_ssl is set to true, using sslcafile will turn
on authentication.

Endeca® Platform Services Control System GuideEndeca Confidential

109SSL Configuration for the Control Interpreter | Enabling SSL for the MDEX Engine and Forge

DescriptionDgraph/Agraph
brick setting

A cipher string (such as RC4-SHA) that specifies the minimum cryptographic algorithm
that the Dgraph/Agraph processes will use during the SSL negotiation. If you omit

sslcipher

this setting, the SSL software will try an internal list of ciphers, beginning with
AES256-SHA. See the Endeca Security Guide for a list of cipher strings.

Forge SSL settings

The following table lists the SSL-specific settings for the Forge brick:

DescriptionForge brick
setting

If set to true, specifies that Forge clients and servers will use SSL to communicate
with each other when running in parallel Forge mode. If set to true, you must
also use the sslcertfile setting.

forge_use_ssl

Specifies the path of the eneCert.pem certificate file that will be used by the
Forge server and Forge clients.

sslcertfile

Specifies the path of the eneCA.pem CA file that the Forge server and Forge
clients will use to authenticate each other. If forge_use_ssl is set to true,
using sslcafile will turn on authentication.

sslcafile

A cipher string (such as RC4-SHA) that specifies the minimum cryptographic
algorithm the Forge server/client will use during the SSL negotiation. If you omit

sslcipher

this setting, the SSL software will try an internal list of ciphers, beginning with
AES256-SHA. See the Endeca Security Guide for a list of cipher strings.

SSL-enabled script example

The following Control Interpreter script example enables SSL for the JCD, Dgraph (the MDEX Engine),
and Forge.

In the example, global default settings are used to:

• Turn on SSL (with mutual authentication) for the JCD (via the jcd_use_ssl setting), Dgraph
(ene_use_ssl setting), and Forge components (forge_use_ssl setting).

• Set the location of the certificate file for all the SSL-enabled components (sslcertfile setting).
• Set the location of the Certificate Authority file that all the SSL-enabled components will use to

authenticate communications (sslcafile setting).
• Set the SSL cipher for all the SSL-enabled components (sslcipher setting).

#################### Global Variables ####################
Global variables can be reused anywhere in the control script, and
certain global variables (such as jcd_port and working_dir) are used

Endeca ConfidentialEndeca® Platform Services Control System Guide

SSL Configuration for the Control Interpreter | Enabling SSL for the MDEX Engine and Forge110

as defaults for the control interpreter.

JCD connection
jcd_port = 8088
jcd_use_ssl = true

SSL settings
forge_use_ssl = true
ene_use_ssl = true
sslcertfile = $(endeca_root)\..\workspace\etc\eneCert.pem
sslcafile = $(endeca_root)\..\workspace\etc\eneCA.pem
sslcipher = DES-CBC3-SHA

Other variables would go here, but are not shown in this example.

#################### Bricks####################
Bricks define interfaces to various programs.
Endeca components such as forge, dgidx and dgraph have special bricks
that know about the process they are running.

This brick defines the machine that will be used for the data update
process.
wine_indexer : Machine
 name = localhost

This brick runs Forge to process the raw data. Note that SSL is
used via the forge_use_ssl global setting.
wine_forge : Forge
 pipeline = ../data/forge_input/Pipeline.epx
 forge_options = -vw

This brick runs the Dgraph. Note that SSL is turned on via the ene_use_ssl
global setting.
wine_dgraph : Dgraph
 input = $(wine_dgidx.output)
 port = $(dgraph_port)

Other bricks and scripts would go here, but are left out of this example.

Endeca® Platform Services Control System GuideEndeca Confidential

111SSL Configuration for the Control Interpreter | Enabling SSL for the MDEX Engine and Forge

Index

A

Agidx brick 75
Agraph

control scripts 104
system architecture 64

Agraph brick 79
commands for 79

AgraphIndex brick 74
architecture

development environment 61
production environment 62
sizing 62
staging environment 62
testing environment 62

Archive brick 84
commands for 84

authentication
for Endeca JCD 19
using SSL certificates 12, 19

B

basic pipeline, running 16
brick types

Agidx 75
agraph 45
Agraph 79, 81
AgraphIndex 74
Archive 84
Constants 84
Dgidx 73
dgraph 45
Dgraph 77, 81
Fetch 70
Forge 72
LogServer 87
machine 45
Machine 67, 81
Perl 86
ReportGenerator 88
Script 80
Shell 72

bricks
brick types

Script 35
default settings for 35
naming 36
reference

browser-based interface for Endeca JCD 12, 26

C

Certificate Authority file
eneCA.pem 108
specifying for Forge 110
specifying for MDEX Engine 109

certificates
eneCert.pem 108
specifying for Forge 110
specifying for MDEX Engine 109

command line for Control Interpreter 48
Constants brick 84
Control Interpreter

brick commands 45, 81
bricks 35
command line for 39
communication with Endeca JCD 40
communications methods 107
component overview 107
control scripts for 13, 35
described 13
example control scripts

short 89
interaction with environment variables 45
internal settings 44
introduced 11, 35
logging 48
LogServer brick 54
order of job execution 13, 35
override settings 46
overrides 46
running 36, 39
setting priority 46

control scripts 16
Agraph 104
Agraph updates 103
baseline update 99
configuring SSL 109
default settings 41
dgraph.update command 103
full crawl 94
introduced 13
partial updates 101
repetition syntax 47
running via the Control Interpreter 39
syntax 40
updates 96
using backup scripts 13
using for differential crawling 93
using for term discovery 93
using variable references for repetition 47
writing 40

D

default port
dgraph 49
log server 49

default settings in control scripts 41
DefineJobs utility 16, 37
Dgidx brick 73
Dgraphbrick 77
differential crawling

running the control script 94
sample control script 95
with control scripts 93

directory structure
for partial updates 98
for the Endeca control system 14

Draph brick commands 77

E

Endeca Control System
architecture 13
directory structure for 14
using to run pipelines 16

Endeca JCD
authentication 12, 19
browser-based interface 12
child jobs 12
command syntax 17
communication with Control Interpreter 40
configuring 12, 19, 21
Control Interpreter requests 12, 26
controlling 17
defining jobs in 37
described 12
environment variables for 27
home page 27
installing 18
introduced 11
job start-up 21
logging 20, 22
manual requests 12, 26
maximum time for replies 22
maximum time without data read 22
read attempts on client requests 22
restarting jobs 12, 22
restarting the JCD 12, 21
starting 19
state files 21
URL syntax for 26
using SSL with 19
viewing errors in the Windows Event Log 21

Endeca JCD commands
active 27
delete 27
dir 27
exit 27
get 27
halt 27

Endeca JCD commands (continued)
help 27
printenv 27
roll 27
start 27, 33
status 27
stop 27
tail 27

Endeca report generation from control scripts 56
Endeca Workbench, viewing reports in 59
ENDECA_MDEX_ROOT environment variable

setting 18
ene_use_ssl configuration setting 109
environment variables

setting ENDECA_MDEX_ROOT 18
used by the JCD 27

F

Fetch brick 70
Forge

enabling SSL 110
specifying CA file for SSL 110
specifying certificate file for SSL 110
specifying cipher for SSL 110

Forge brick 72
forge_use_ssl configuration setting 110

G

generating reports in XML 59

H

HTTP, Log Server interface 54

I

instance configuration tasks before building 14

J

jcd.conf
described 21
example 26
introduced 12
log setting 22
log_file setting 22
max_read_time_seconds setting 22
max_read_tries setting 22
max_restarts_per_minute setting 21, 22
max_write_time_seconds setting 22
port setting 22
settings 22
shutdown_timeout_seconds setting 22
ssl setting 22
sslcafile setting 22
sslcertfile setting 22

Endeca® Platform Services114

Index

jcd.conf (continued)
sslcipher setting 22
state setting 22

jobs
child jobs 12
defining in Endeca JCD 37
in the Control Interpreter 13
logging for 48
order of execution 13

deriving from bricks 35
restarting 12, 22
starting 21

L

Log Server
about configuring and running 53
communicating with 54
configuring reports 55
monitoring 55
roll 55
running with control script 51
using the Log Server command line 54
using the LogServer brick 54

logging
for Endeca JCD 22
for individual jobs 48
for the Endeca JCD 20
in the Control Interpreter 48
Log Server 54

logging and reporting 51
LogServer brick 87

commands for 87

M

Machine brick 67
commands for 67

MDEX Engine
enabling SSL 109
specifying CA file for SSL 109
specifying certificate file for SSL 109
specifying cipher for SSL 109

P

partial updates
adding other control script bricks 102
control script development for Agraph 103
directory structure 98
sample control script 96

Perl brick 86
pipeline

paths 16
running via the Endeca Control System 16

R

remote_index.script, location of 49
repetition syntax in control scripts 47
Report Generator

command line options 57
running with control script 51

ReportGenerator brick 88
reports

generating 55
scheduling 56

RunCommand utility 16

S

sample implementation
large, using an Agraph 64
medium, high throughput 64
small, low throughput 62
small, using a crawler 63

Script brick 80
conditional statements 83
line execution 82
line settings 82
statements for error handlingu 83

scripts
DefineJobs.pl 37
RunCommand.pl 39, 48

Shell brick 72
and external scripts 72

SSL
CA file for Forge 110
CA file for MDEX Engine 109
certificate file for Forge 110
certificate file for MDEX Engine 109
Control Interpreter script example 110
cryptographic algorithms for Forge 110
cryptographic algorithms for MDEX Engine 109
enabling for Forge 110
enabling for MDEX Engine 109
overview of enabling for MDEX Engine and Forge
108

SSL certificates 12, 33
enecerts utility 19

sslcafile configuration setting
for Forge 110
for MDEX Engine 109

sslcertfile configuration setting
for Forge 110
for MDEX Engine 109

sslcipher configuration setting
for Forge 110
for MDEX Engine 109

state files for the Endeca JCD 21
system architecture

overview 61

115

Index

T

term discovery using control scripts 93

U

URL parameters in Endeca JCD requests 27
URL syntax for the Endeca JCD 27

Endeca® Platform Services116

Index

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Endeca Control System Overview
	About the Endeca Control System
	About the Endeca JCD
	About the Control Interpreter
	Control System architecture
	Endeca Control System directory structure
	Running a pipeline via the Endeca Control System
	Pipeline paths in a control script environment

	Working With the Endeca JCD
	About controlling the Endeca JCD
	Endeca JCD command syntax reference
	Setting the ENDECA_MDEX_ROOT environment variable
	About starting the Endeca JCD

	Endeca JCD behavior
	Enabling authentication and security
	About logging and monitoring
	Viewing errors in the Windows Event Log

	State management
	About recovering from job start-up failure

	About configuring the Endeca JCD
	Configuration file options
	Configuration file example

	About sending requests directly to the Endeca JCD
	The Endeca JCD home page reference
	About issuing commands directly to the Endeca JCD
	About starting jobs with the JCD
	About importing SSL certificates into Internet Explorer

	The Control Interpreter
	Control scripts and bricks
	Brick names

	Defining jobs and running the Control Interpreter
	The DefineJobs utility
	DefineJobs syntax
	DefineJobs command line options
	About running the Control Interpreter
	RunCommand utility command line options
	Communication between the Control Interpreter and JCD

	About writing control scripts
	Control script syntax
	Global default settings reference
	Internal brick settings
	Implicit and explicit brick commands
	Control Interpreter interaction with environment variables

	About setting overrides
	About specifying settings in an override file
	About setting priority

	About handling repetition in control scripts
	Variable references in repetition syntax

	Control interpreter logging
	Control Interpreter-specific logs
	Job-specific logs

	Running Implementations with a Control Script
	Overview of running Endeca components
	Running Endeca components with a single control script
	Generating a log report

	Configuring and Viewing Reports in a Control System Environment
	Overview of logging and reporting
	About configuring and running the Log Server
	About running the Log Server
	About running the Log Server from control scripts
	About running the Log Server from the command line
	About monitoring the Log Server
	About rolling the Log Server

	Configuring report contents and format
	About generating reports
	Automating report generation
	Generating reports from control scripts
	Report Generator command line options

	About displaying reports
	About generating reports for Endeca Workbench
	About generating reports in XML
	About viewing reports in Endeca Workbench

	Common System Architectures in an Endeca Implementation
	Overview of system architectures
	Development environment
	Staging and testing environment
	Sample production environments
	Descriptions of implementation size
	Small implementation with lower throughput
	Small implementation using a crawler
	Medium implementation with higher throughput
	Large implementation using an Agraph

	Control Script Brick Reference
	Machine brick
	Fetch brick
	Shell brick
	Forge brick
	Dgidx brick
	AgraphIndex brick
	Agidx brick
	Dgraph brick
	Agraph brick
	Script brick
	Implicit and explicit commands
	Line execution
	Line-specific settings
	if and else statements
	try, onfail, and finally statements

	Constants Brick
	Archive brick
	Perl brick
	LogServer brick
	ReportGenerator brick
	Example control script

	Control System-based Examples
	Control scripts and term extraction pipelines
	Control scripts in differential crawling
	About the differential crawling script
	About the full crawling script
	Sample control script for differential crawling

	About using control scripts for baseline and partial updates
	Sample control script for partial updates
	Directory structure for updates
	About the baseline updates script
	About the partial updates script
	About adding other bricks
	The Dgraph update command
	The Dgraph update command in control scripts

	About using a control script for Agraph updates
	Forge partial updates brick
	About distributing the Forge output to Dgraphs
	Using control scripts with the Agraph

	SSL Configuration for the Control Interpreter
	Control Interpreter system communications
	Enabling SSL for the MDEX Engine and Forge
	Control Interpreter script configuration
	Dgraph/Agraph SSL settings
	Forge SSL settings
	SSL-enabled script example

	Index

