
Oracle Tuxedo Application Runtime for Batch
User Guide
12c Release 1 (12.1.1)

September 2013

Oracle Tuxedo Application Runtime for Batch User Guide, 12c Release 1 (12.1.1)

Copyright © 2010, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents
Introduction
Purpose . 1-1

Organization . 1-1

See Also . 1-2

Overview of the Batch Runtime Environment
Oracle Tuxedo Application Runtime for Batch Presentation and Structure 2-1

Technical Functions . 2-1

High-Level Functions . 2-1

Interface-Level Functions . 2-2

Script Execution Phases . 2-2

Using Batch Runtime
Configuration files . 3-1

BatchRT.conf . 3-2

Messages.conf . 3-2

FunctionReturnCode.conf . 3-2

ReturnCode.conf . 3-2

Setting Environment Variables . 3-2

Configuring Batch Runtime in MP Mode. 3-4

Creating a Script . 3-5

General Structure of a Script . 3-5

Script Example. 3-7
Oracle Tuxedo Application Runtime for Batch User Guide i

Defining and Using Symbols. 3-9

Creating a Step That Executes a Program . 3-10

Creating a Procedure . 3-11

Using a Procedure . 3-13

Modifying a Procedure at Execution Time . 3-13

Controlling a Script's Behavior. 3-16

Conditioning the Execution of a Step . 3-16

Controlling the Execution Flow . 3-18

Changing Default Error Messages. 3-19

Using Files . 3-19

Creating a File Definition . 3-19

Assigning and Using Files. 3-20

Using a Generation File (GDG). 3-21

Using an In-Stream File. 3-23

Using a Set of Concatenated Files. 3-23

Using an External “sysin” . 3-24

Deleting a File . 3-24

RDB Files . 3-24

Using an RDBMS Connection . 3-25

Submitting a Job using INTRDR facility . 3-27

Submitting a Job With EJR. 3-27

LOG File Structure . 3-27

Using Batch Runtime With a Job Scheduler . 3-29

Executing an SQL request . 3-30

Simple Application on COBOL-IT / BDB . 3-30

Best Practices
Adapting z/OS Capabilities on a UNIX/Linux Environment . 4-1
Oracle Tuxedo Application Runtime for Batch User Guide ii

Defining Paths for Procedures, Includes and Programs . 4-1

Prohibiting the Use of UNIX Commands . 4-2

Avoiding the Use of File Overriding . 4-2

Using Tuxedo Job Enqueueing Service (TuxJES)
Overview. 5-1

Requirements . 5-1

TuxJES Components . 5-2

Configuring a TuxJES System . 5-2

Setting up TuxJES as an Oracle Tuxedo Application . 5-2

Setting up TuxJES in MP mode. 5-7

Using TuxJES . 5-7

Submitting a Job . 5-7

Displaying Job Information . 5-8

Holding a Job. 5-9

Releasing a Job . 5-9

Canceling a Job . 5-9

Purging a Job . 5-10

Displaying/Changing ARTJESINITIATOR Configuration. 5-10

Event Subscribing/Unsubscribing . 5-10

See Also . 5-11
Oracle Tuxedo Application Runtime for Batch User Guide iii

iv Oracle Tuxedo Application Runtime for Batch User Guide

C H A P T E R 1
Introduction
Purpose
The aim of the following guide is to help users understand and write Korn-Shell scripts to be used
with the Batch Runtime, and how to user Tuxedo Job Enqueueing Service (TuxJES).

The guide covers the usual tasks that are performed within Korn-Shell scripts, whether they are
the result of a conversion from z/OS JCL or newly written for the target platform. The guide also
covers the usage of TuxJES.

Organization
This guide is divided into four main chapters:

Overview of the Batch Runtime: This chapter introduces the general principles of the
Batch Runtime.

Using the Batch Runtime: This chapter describes, through various examples, how to
perform the usual tasks required to implement the Batch Runtime. This section describes
how the different Oracle Tuxedo Application Runtime for Batch high-level functions can
be assembled in order to create a single "step", and then how the different steps are
assembled in order to create a complete Korn shell script.

Best Practices: This chapter provides guidance for preserving z/OS capabilities on the
target platform.

Using TuxJES: This chapter provides guidance for configuring and executing TuxJES.
Oracle Tuxedo Application Runtime for Batch User Guide 1-1

In t roduct ion
See Also
For more information about Batch Runtime, specifically on how to code the different functions,
see Oracle Tuxedo Application Runtime Reference Guide.
1-2 Oracle Tuxedo Application Runtime for Batch User Guide

../cicsref/index.html

C H A P T E R 2
Overview of the Batch Runtime
Environment
Oracle Tuxedo Application Runtime for Batch
Presentation and Structure

The purpose of the Batch Runtime is to provide functions enabling a robust production
environment on a UNIX/Linux platform.

Oracle Tuxedo Application Runtime for Batch is composed of:

Technical functions

High-level functions

Interface-level functions

Technical Functions
The technical level contains simple one-action functions: easy to write, easy to maintain and easy
to debug. For example, GDG (Generation Data Group) management belongs to this level. This
technical level is the robust base of the Batch Runtime.

High-Level Functions
The high-level functions provide entry points to the Batch Runtime. This level homogenizes the
behavior of functions, in order for them to be called in a production script. A high-level function
follows a skeleton which provide robust logical workflow (execution on/off, options check,
predefined return codes …).
Oracle Tuxedo Application Runtime for Batch User Guide 2-1

Overv iew o f the Batch Runt ime Env i ronment
In this level, we find functions to:

Manage files (creation, copy, assignation…)

Launch programs (COBOL, executable …)

Access Databases (connection/disconnection/commit/rollback for program, SQL execution)

Produce reports

Run utilities

Interface-Level Functions
The interface level allow users to interact with the Batch Runtime job management: submission,
holding and releasing, class management, reporting, monitoring …

Oracle Tuxedo Application Runtime for Batch offers robust and useful production functions.
With these functions, you can easily emulate JCL and JES2 features, and have extra features like
"no exec mode", return code predefinition (customizable), internationalization.

Oracle Tuxedo Application Runtime for Batch uses a native shell interpreter for high level
functions. This approach enables you to add new runtime functions for specific production needs

Script Execution Phases
When submitted for execution within the Batch Runtime, a Korn shell script is processed through
three separate phases:

Input Phase
In this phase, the JOB card parameters are analyzed.

Conversion Phase
During this phase, the Batch Runtime performs the following actions:

• Expand all the external Korn shell scripts (procedures and/or includes) that are used
within the script so as to produce a single complete script.

• Resolve all the symbols that are used in the script replacing them by their current
values.

Execution Phase
The script is executed by the Batch Runtime.
2-2 Oracle Tuxedo Application Runtime for Batch User Guide

C H A P T E R 3
Using Batch Runtime
This chapter contains the following topics:

Configuration Files

Setting Environment Variables

Configuring Batch Runtime in MP Mode

Creating a Script

Controlling a Script's Behavior

Different Behaviors from z/OS

Using Files

Submitting a Job Using INTRDR Facility

Submitting a Job With EJR

User-Defined Entry/Exit

Batch Runtime Logging

Using Batch Runtime With a Job Scheduler

Executing an SQL Request

Simple Application on COBOL-IT / BDB

Dynamic JCL Job Execution
Oracle Tuxedo Application Runtime for Batch User Guide 3-1

Using Batch Runt ime
Network Job Entry (NJE) Support

File Catalog Support

Configuration Files
The Configuration files are implemented in the directory CONF of the RunTime Batch.

BatchRT.conf
This file contains variables definition.

These variables must be set before using the RunTime Batch.

Messages.conf
This file contains messages used by RTBatch.

The messages may be translated in a local language.

FunctionReturnCode.conf
This file contains internal codes associated with a message.

ReturnCode.conf
This file contains return codes associated with a message and returned to the KSH script.

Setting Environment Variables
Some variables (such as ORACLE_SID, COBDIR, LIBPATH, COBPATH …) are shared variables
between different components and are not described in this current document.

For more information, see Rehosting Workbench Installation Guide.
3-2 Oracle Tuxedo Application Runtime for Batch User Guide

../../../artwb/docs12c/wbinst/index.html

Table 3-1 lists the environment variables that are used in the KSH scripts and must be defined
before using the software.

Table 3-2 lists the environment variables that are used by Batch Runtime and must be defined
before using the software.

Table 3-1 KSH Script Environment Variables

Variable Usage

DATA Directory for permanent files.

TMP Directory for temporary application files.

SYSIN Directory where the sysin are stored.

MT_JOB_NAME Name of the job, managed by the Batch Runtime.

MT_JOB_PID PID (process id) of the job, managed by the Batch Runtime.

Table 3-2 Oracle Tuxedo Application Runtime for Batch Environment Variables

Variable Usage

PROCLIB Directory for PROC and INCLUDE files, used during the conversion
phase.

MT_ACC_FILEPATH File concurrency access, directory that contains the files AccLock and
AccWait. These files must be created empty before running the Batch
Runtime (see the BatchRT.conf configuration file).

MT_COBOL Depending on the used COBOL, must contain:

- “COBOL_MF” for MicroFocus

- “COBOL_IT” for CobolIT

- “COBOL_NONE” if users neither have any COBOL programs to run
nor use any COBOL product; besides, with this setting, only GDG,
LSEQ, Fixed length SEQ, and PDS files are supported.

(See the BatchRT.conf configuration file)

MT_CTL_FILES Directory where the control file (CTL) used by the function
m_DBTableLoad (sqlldr with ORACLE, load and export with UDB).
Oracle Tuxedo Application Runtime for Batch User Guide 3-3

Using Batch Runt ime
MT_DB Depending on the target data base, must contain :

- “DB_ORACLE” for ORACLE

- “DB_DB2LUW” for UDB

(See the BatchRT.conf configuration file)

MT_DB_LOGIN Database connection user.

MT_FROM_ADDRESS_
MAIL

From-Address used by the function m_SendMail when the option “-f” is
omitted.

MT_FTP_TEST Variable used by the function m_Ftp to do the tranfer or not (test mode).

MT_GENERATION A mandatory environment variable which indicates the directory to GDG
technical functions.

The default is directory GENERATION_FILE. To manage GDG files in
database, you need to set the value to GENERATION_FILE_DB and
configure MT_GDG_DB_ACCESS appropriately. If the value is specified
as NULL or with an incorrect directory name, error occurs when using
this environment variable.

MT_KSH Path of the used “ksh” (pdksh or ksh88 only)

Note: For more information about pdksh, please refer to
http://www.cs.mun.ca/~michael/pdksh/.

MT_LOG Logs directory (without TuxJes).

MT_ROOT Directory where the Batch Runtime application has been installed.

(See the BatchRT.conf configuration file)

MT_SMTP_PORT Port used by the functions m_Smtp and m_SendMail (localhost by
default).

MT_SMTP_SERVER Server used by the functions m_Smtp and m_SendMail (25 by default).

Table 3-2 Oracle Tuxedo Application Runtime for Batch Environment Variables

Variable Usage
3-4 Oracle Tuxedo Application Runtime for Batch User Guide

http://www.cs.mun.ca/~michael/pdksh/

Table 3-3 lists optional environment variables used by Batch Runtime.

MT_SORT Depending on the used SORT, must contain:

- “SORT_MicroFocus” for MicroFocus Sort Utility

- “SORT_SyncSort” for SyncSort Sort Utility

- “SORT_CIT” for citsort utility

(See the BatchRT.conf configuration file)

MT_SYSOUT Sysout directory (without TuxJes).

MT_TMP Directory for temporary internal files

(See the BatchRT.conf configuration file).

MT_EXCI EXCI Interface (Default is Oracle Tuxedo).

(See the BatchRT.conf configuration file)

MT_JESDECRYPT MT_JESDECRYPT must be set to jesdecrypt object file.

(See the BatchRT.conf configuration file)

MT_EXCI_XA Name of the resource manager for XA.

(See the BatchRT.conf configuration file)

MT_EXCIGRPNAME TUXEDO SRVGRP value of the ARTDPL server.

(See the BatchRT.confconfiguration file)

Table 3-2 Oracle Tuxedo Application Runtime for Batch Environment Variables

Variable Usage

Table 3-3 Oracle Tuxedo Application Runtime for Batch Environment Variables (Optional)

Variable Usage

MT_ACC_WAIT Retry interval (seconds) to acquire file lock when a job tries to access a file that
locked by other jobs.

MT_ACC_MAXWAIT Maximum wait time (seconds) to acquire file lock. If the lock is not acquired
within such time, relevant file operation will fail.
Oracle Tuxedo Application Runtime for Batch User Guide 3-5

Using Batch Runt ime
MT_UTILITY_LIST_UNSU
PPORT

A list of executable programs, programs that don't exist but users don't want to
fail any jobs because of them. When m_ProgramExec invokes nonexistent
programs, JOB will continue if those programs are specified in this list. For
example:
MT_UTILITY_LIST_UNSUPPORT=IEHINITT,IEHLIST,IEHMOVE,IEH
STATR,IEHPROGM,IEBCOMPR,IEBEDIT,IEBIMAGE,IEBUPDTE,IEBD
G,IEBPTPCH

MT_EXCI_PGM_LIST A list of executable programs. The programs are invoked by runbexci instead
of runb. For each program in this list, whether or not -n is specified by
m_ProgramExec, the program is invoked only by runbexci.

The default value is empty; programs are separated by commas. For example:
• MT_EXCI_PGM_LIST=PGM1,PGM2

MT_GDG_DB_ACCESS A variable used with valid database login information to access Oracle Database
for GDG management. For example, user/password@sid.

Note: It's mandatory if MT_GENERATION is set to GENERATION_FILE_DB.

MT_GDG_USEDCB A variable used to enable DCB support function for GDG.
• MT_GDG_USEDCB=Y: Create .dcb file for GDG (default behavior). In this

mode, LSEQ or SEQ can be specified as file type of GDG members in
m_FileAssign statement.

• MT_GDG_USEDCB=N: Don't create .dcb file for GDG. In this mode,
file type of GDG members can only be LSEQ; whatever file type that you
specify in m_FileAssign statement is ignored.

MT_WB_HOSTNAME The host name (or IP address), where Workbench is installed to be invoked to
convert JCL job to KSH job. The value of MT_WB_HOSTNAME is null if
Workbench is in localhost. User name is optional to be added. For example:
• MT_WB_HOSTNAME=host1: Set the value of MT_WB_HOSTNAME to

host1

• MT_WB_HOSTNAME=user1@host1: Set the value of MT_WB_HOSTNAME
to user1@host1

Note: It is required to be set if Workbench is deployed on the remote machine
while ARTJESCONV server is deployed on another machine.

Table 3-3 Oracle Tuxedo Application Runtime for Batch Environment Variables (Optional)

Variable Usage
3-6 Oracle Tuxedo Application Runtime for Batch User Guide

Configuring Batch Runtime in MP Mode
Batch Runtime (EJR) will need to be specially configured so as to work well in MP mode if users
want to either use EJR to run jobs, which may share resources (normally files), from different
machines or configure a MP mode TuxJES domain and submit jobs from any node through the
utility provided by TuxJES.

In the latter case, the job submitted from node A may be run by node B and the execution
sequence is totally random. Similarly, these jobs submitted from different nodes may share
resources.

MT_REFINEDIR The full install path of Workbench refine, which will be invoked to convert
a JCL job to a KSH job. For example:
• MT_REFINEDIR=/newspace/public/WB_Test/wb12110/refine

MT_REFINEDISTRIB The value of environment variable REFINEDISTRIB, which is used when
Workbench converts a JCL job. For example:
• MT_REFINEDISTRIB = Linux64: Set REFINEDISTRIB to Linux64
• MT_REFINEDISTRIB = Linux32: Set REFINEDISTRIB to Linux32

MT_CPU_MON_STEP A variable used to enable CPU time usage monitor of step for all job. Set
MT_CPU_MON_STEP=yes to enable CPU time usage monitor of step for all
job. If MT_CPU_MON_STEP is not configured or its value is not equal "yes", this
feature is disabled.

MT_SYS_IO_REDIRECT In BatchRT.conf this item is used to make runb redirect SYSIN and SYSOUT
for cobol program run by m_ProgramExec.

If "SYSIN" is set, the stdin for utilitiy will be redirect to file ${DD_SYSIN}, if
DD_SYSIN doesn't exist, don't redirect. example:
MT_SYS_IO_REDIRECT=SYSIN

If "SYSOUT" is set, the stdout and stderr for utilitiy will be redirect to file
${DD_SYSOUT}, if DD_SYSOUT doesn't exist, don't redirect.

Example: MT_SYS_IO_REDIRECT=SYSOUT

"SYSIN" and "SYSOUT" can be set at the same time, separated by comma, such
as "SYSIN,SYSOUT"

Example: MT_SYS_IO_REDIRECT=SYSIN,SYSOUT

By default, MT_SYS_IO_REDIRECT=SYSIN,SYSOUT

Table 3-3 Oracle Tuxedo Application Runtime for Batch Environment Variables (Optional)

Variable Usage
Oracle Tuxedo Application Runtime for Batch User Guide 3-7

Using Batch Runt ime
This section clarifies the details of configuring Batch Runtime (EJR) to support MP mode.

1. All the resources should be put on a shared storage (NFS), which should have the same mount
point on all machines in the domain, to ensure any file has the same path from the view of
each node, because any job submitted from one machine may be run by another machine. For
example, if users prefer to store all files under environment variable DATA described in
above section, ${DATA} should point to the shared root directory where files are located and
have the same value on all machines.

2. MT_ACC_FILE_PATH should be located on shared storage (NFS), which should have same
mount point on all machines in the domain, since the control files for file locking are put in
this directory; in addition, users need to make sure AccLock and AccWait files under this
directory can be read / written by the effective user of the process running the jobs.

3. NLM (Network Lock Manager) needs to be enabled on the NFS server and all machines in
the domain since some shared resources, which are located on NFS, need to be locked to
prevent jobs from corrupting them. The configuration is not directly related to Batch Runtime
but has close relationship in MP mode.

4. ARTJESADM server should be configured and started on each node in the MP domain to
check, by other nodes, whether a job on this node is running or not. This is a part of the file
lock mechanism in Batch Runtime. If either ARTJESADM server on one node dies
abnormally or the node itself dies abnormally, the file lock owned by the job running on this
node won't be released automatically; in this case, the utility artjescleanlock can be used to
release the inactive file lock. For details of artjescleanlock, see Using Tuxedo Job Enqueueing
Service (TuxJES).

Creating a Script

General Structure of a Script
Oracle Tuxedo Application Runtime for Batch normalizes Korn shell script formats by proposing
a script model where the different execution phases of a job are clearly identified.

Oracle Tuxedo Application Runtime for Batch scripts respect a specific format that allows the
definition and the chaining of the different phases of the KSH (JOB).

Within Batch Runtime, a phase corresponds to an activity or a step on the source system.

A phase is identified by a label and delimited by the next phase.

At the end of each phase, the JUMP_LABEL variable is updated to give the label of the next phase
to be executed.
3-8 Oracle Tuxedo Application Runtime for Batch User Guide

In the following example, the last functional phase sets JUMP_LABEL to JOBEND: this label allows
a normal termination of the job (exits from the phase loop).

The mandatory parts of the script (the beginning and end parts) are shown in bold and the
functional part of the script (the middle part) in normal style as shown in Table 3-4. The optional
part of the script must contain the labels, branching and end of steps as described below. The
items of the script to be modified are shown in italics.

Table 3-4 Script Structure

Script Description

#!/bin/ksh#

m_JobBegin -j
JOBNAME -s START -v
2.00

m_JobBegin is mandatory and must contain at least the following options:
• -j: internal job name
• -s: name of the first label to begin execution (usually should be START)
• -v: Minimum version number of Batch Runtime required for this script

(upward compatible).

while true ;do The "while true; do" loop provides a mechanism to simulate the movement from
one step to the next.

m_PhaseBegin m_PhaseBegin enables parameters to be initialized at the beginning of a step.

case
${CURRENT_LABEL} in

The case statement enables a branching to the current step.

(START) The start label (used in the -s option of m_JobBegin)

JUMP_LABEL=STEP1 JUMP_LABEL is mandatory in all steps and gives the name of the next step.

;; ;; ends a step and are mandatory.

(STEP1) A functional step begins with (LABEL); where LABEL is the name of the step.

m_*

m_*

A typical step continues with a series of calls to Batch Runtime functions.

JUMP_LABEL=STEP2 There is always a branching to the next step (JUMP_LABEL=)

;; And always the ;; at the end of each step.

(PENULTIMATESTEP)
Oracle Tuxedo Application Runtime for Batch User Guide 3-9

Using Batch Runt ime
Script Example
Listing 3-1 shows a Korn shell script example.

Listing 3-1 Korn shell Script Example

#!/bin/ksh

#@(#)--

#@(#)-

m_JobBegin -j METAW01D -s START -v 1.00 -c A

m_*

m_*

The last functional step has the same format as the others, except…

JUMP_LABEL=END_JOB

;;

(END_JOB)

For the label, which must point to END_JOB. The _ is necessary, because the
character is forbidden on z/OS.

break

;;

(*)

This step enables the processing loop to be broken.

m_RcSet
${MT_RC_ABORT:-S999}
"Unknown label :
${CURRENT_LABEL}"

break

;;

esac

This is a catch-all step that picks-up branching to unknown steps.

m_PhaseEnddone m_PhaseEnd manages the end of a step including file management depending
on disposition and return codes.

 m_JobEnd m_JobEnd manages the end of a job including clearing-up temporary files and
returning completion code to job caller.

Table 3-4 Script Structure

Script Description
3-10 Oracle Tuxedo Application Runtime for Batch User Guide

while true ;

do

 m_PhaseBegin

 case ${CURRENT_LABEL} in

(START)

1) 1st Step: DELVCUST

Delete the existing file.

2) 2nd Step: DEFVCUST

Allocates the Simple Sample Application VSAM customers file

#

-Step 1: Delete...

 JUMP_LABEL=DELVCUST

 ;;

(DELVCUST)

 m_FileAssign -d OLD FDEL ${DATA}/METAW00.VSAM.CUSTOMER

m_FileDelete ${DD_FDEL}

 m_RcSet 0

#

-Step 2: Define...

 JUMP_LABEL=DEFVCUST

 ;;

(DEFVCUST)

IDCAMS DEFINE CLUSTER IDX

 m_FileBuild -t IDX -r 266 -k 1+6 ${DATA}/METAW00.VSAM.CUSTOMER

 JUMP_LABEL=END_JOB
Oracle Tuxedo Application Runtime for Batch User Guide 3-11

Using Batch Runt ime
 ;;

(ABORT)

 break

 ;;

(END_JOB)

 break

 ;;

(*)

 m_RcSet ${MT_RC_ABORT} "Unknown label : ${JUMP_LABEL}"

 break

 ;;

esac

m_PhaseEnd

done

m_JobEnd

#@(#)--

Defining and Using Symbols
Symbols are internal script variables that allow script statements to be easily modifiable. A value
is assigned to a symbol through the m_SymbolSet function as shown in Listing 3-2. To use a
symbol, use the following syntax: $[symbol]

Note: The use of brackets ([]) instead of braces ({}) is to clearly distinguish symbols from
standard Korn shell variables.

Listing 3-2 Symbol Use Examples

(STEP00)

 m_SymbolSet VAR=40
3-12 Oracle Tuxedo Application Runtime for Batch User Guide

 JUMP_LABEL=STEP01

 ;;

(STEP01)

 m_FileAssign -d SHR FILE01 ${DATA}/PJ01DDD.BT.QSAM.KBSTO0$[VAR]

 m_ProgramExec BAI001

Creating a Step That Executes a Program
A step (also called a phase) is generally a coherent set of calls to Batch Runtime functions that
enables the execution of a functional (or technical) activity.

The most frequent steps are those that execute an application or utility program. These kind of
steps are generally composed of one or several file assignment operations followed by the
execution of the desired program. All the file assignments operations must precede the program
execution operation shown in Listing 3-3

Listing 3-3 Application Program Execution Step Example

(STEPPR15)

m_FileAssign -d SHR INFIL ${DATA}/PJ01DDD.BT.QSAM.KBPRO099

 m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBPRO001

 m_OutputAssign -c “*” SYSOUT

m_FileAssign -i LOGIN

IN-STREAM DATA

_end

 m_FileAssign -d MOD LOGOUT ${DATA}/PJ01DDD.BT.QSAM.KBPRO091

m_ProgramExec BPRAB001 "20071120"

JUMP_LABEL=END_JOB

 ;;
Oracle Tuxedo Application Runtime for Batch User Guide 3-13

Using Batch Runt ime
Application Program Abend Execution
ILBOABN0, an abend routine, can be called from a running program to force it to abort and return
the abend code to KSH script. ILBOABN0 is supplied as both source and binary gnt file. It can be
called directly by any user-defined cobol program.

Listing 3-4 Application Program Abend Execution Example (KSH)

(STEPPR15)

m_ProgramExec USER

JUMP_LABEL=END_JOB

;;

Listing 3-5 USER.cbl Example

PROCEDURE DIVISION.

PROGRAM-BEGIN.

DISPLAY "USER: HELLO USER".

MOVE 2 TO RT-PARAM.

CALL "ILBOABN0" USING RT-PARAM.

DISPLAY "USER: CAN'T REACH HERE WHEN ILBOABN0 IS CALLED".

PROGRAM-DONE.

...
3-14 Oracle Tuxedo Application Runtime for Batch User Guide

Creating a Procedure
Oracle Tuxedo Application Runtime for Batch offers a set of functions to define and use
"procedures". These procedures follow generally the same principles as z/OS JCL procedures.

The advantages of procedures are:

Write a set of tasks once and use it several times.

Make this set of tasks dynamically modifiable.

Procedures can be of two types:

In-stream Procedures: Included in the calling script, this kind of procedure can be used
only in the current script.

External Procedures: Coded in a separate source file, this kind of procedure can be used in
multiple scripts.

Creating an In-Stream Procedure
Unlike the z/OS JCL convention, an in-stream procedure must be written after the end of the main
JOB, that is: all the in-stream procedures belonging to a job must appear after the call to the
function m_JobEnd.

An in-stream procedure in a Korn shell script always starts with a call to the m_ProcBegin
function, followed by all the tasks composing the procedure and terminating with a call to the
m_ProcEnd function. Listing 3-6 is an example.

Listing 3-6 In-stream Procedure Example

m_ProcBegin PROCA

 JUMP_LABEL=STEPA

 ;;

(STEPA)

 m_FileAssign -c “*” SYSPRINT

m_FileAssign -d SHR SYSUT1

${DATA}/PJ01DDD.BT.DATA.PDSA/BIEAM00$[SEQ]

 m_FileAssign -d MOD SYSUT2 ${DATA}/PJ01DDD.BT.QSAM.KBIEO005
Oracle Tuxedo Application Runtime for Batch User Guide 3-15

Using Batch Runt ime
 m_FileLoad ${DD_SYSUT1} ${DD_SYSUT2}

 JUMP_LABEL=ENDPROC

 ;;

(ENDPROC)

m_ProcEnd

Creating an External Procedure
External procedures do not require the use of the m_ProcBegin and m_ProcEnd functions;
simply code the tasks that are part of the procedure shown in Listing 3-7.

In order to simplify the integration of a procedure’s code with the calling job, always begin a
procedure with:

 JUMP_LABEL=FIRSTSTEP

 ;;

(FIRSTSTEP)

and end it with:

 JUMP_LABEL=ENDPROC

 ;;

(ENDPROC)

Listing 3-7 External Procedure Example

JUMP_LABEL=PR2STEP1

 ;;

(PR2STEP1)

 m_FileAssign -d SHR INFIL ${DATA}/PJ01DDD.BT.QSAM.KBPRI001

 m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBPRO001

 m_OutputAssign -c “*” SYSOUT

 m_FileAssign -d SHR LOGIN ${DATA}/PJ01DDD.BT.SYSIN.SRC/BPRAS002
3-16 Oracle Tuxedo Application Runtime for Batch User Guide

 m_FileAssign -d MOD LOGOUT ${DATA}/PJ01DDD.BT.QSAM.KBPRO091

 m_ProgramExec BPRAB002

 JUMP_LABEL=ENDPROC

 ;;

(ENDPROC)

Using a Procedure
The use of a procedure inside a Korn shell script is made through a call to the m_ProcInclude
function.

As described in Script Execution Phases, during the Conversion Phase, a Korn shell script is
expanded by including the procedure's code each time a call to the m_ProcInclude function is
encountered. It is necessary that after this operation, the resulting expanded Korn shell script still
respects the rules of the general structure of a script as defined in the General Structure of a Script.

A procedure, either in-stream or external, can be used in any place inside a calling job provided
that the above principals are respected shown in Listing 3-8.

Listing 3-8 Call to the m_ProcInclude Function Example

…

(STEPPR14)

 m_ProcInclude BPRAP009

 JUMP_LABEL=STEPPR15

…

Modifying a Procedure at Execution Time
The execution of the tasks defined in a procedure can be modified in two different ways:

Modifying symbols and/or parameters
Oracle Tuxedo Application Runtime for Batch User Guide 3-17

Using Batch Runt ime
Symbols can be used inside a procedure and the values of these symbols can be specified
when calling the procedure.

Listing 3-9 and Listing 3-10 are examples.

Listing 3-9 Defining Procedure Example

m_ProcBegin PROCE

 JUMP_LABEL=STEPE

 ;;

(STEPE)

m_FileAssign -d SHR SYSUT1 ${DATA}/DATA.IN.PDS/DTS$[SEQ]

 m_FileAssign -d MOD SYSUT2 ${DATA}/DATA.OUT.PDS/DTS$[SEQ]

 m_FileLoad ${DD_SYSUT1} ${DD_SYSUT2}

JUMP_LABEL=ENDPROC

 ;;

(ENDPROC)

m_ProcEnd

Listing 3-10 Calling Procedure Example

(COPIERE)

 m_ProcInclude PROCE SEQ="1"

 JUMP_LABEL=COPIERF

 ;;
3-18 Oracle Tuxedo Application Runtime for Batch User Guide

Using Overrides for File Assignments
As specified in Best Practices, this way of coding procedures is provided mainly for supporting
Korn shell scripts resulting from z/OS JCL translation and it is not recommended for Korn shell
scripts newly written for the target platform.

The overriding of a file assignment is made using the m_FileOverride function that specifies a
replacement for the assignment present in the procedure. The call to the m_FileOverride
function must follow the call to the procedure in the calling script.

Listing 3-11 shows how to replace the assignment of the logical file SYSUT1 using the
m_FileOverride function.

Listing 3-11 m_FileOverride Function Example

m_ProcBegin PROCE

 JUMP_LABEL=STEPE

 ;;

(STEPE)

m_FileAssign -d SHR SYSUT1 ${DATA}/DATA.IN.PDS/DTS$[SEQ]

 m_FileAssign -d MOD SYSUT2 ${DATA}/DATA.OUT.PDS/DTS$[SEQ]

m_FileLoad ${DD_SYSUT1} ${DD_SYSUT2}

 JUMP_LABEL=ENDPROC

 ;;

(ENDPROC)

m_ProcEnd

Listing 3-12 m_FileOverride Procedure Call:

(COPIERE)

 m_ProcInclude PROCE SEQ="1"

m_FileOverride -i -s STEPE SYSUT1
Oracle Tuxedo Application Runtime for Batch User Guide 3-19

Using Batch Runt ime
Overriding test data

_end

JUMP_LABEL=COPIERF

 ;;

Controlling a Script's Behavior

Conditioning the Execution of a Step

Using m_CondIf, m_CondElse, and m_CondEndif
The m_CondIf, m_CondElse and m_CondEndif functions can be used to condition the execution
of one or several steps in a script. The behavior is similar to the z/OS JCL statement constructs
IF, THEN, ELSE and ENDIF.

The m_CondIf function must always have a relational expression as a parameter as shown in
Listing 3-13. These functions can be nested up to 15 times.

Listing 3-13 m_CondIf, m_CondElse, and m_CondEndif Example

…

(STEPIF01)

 m_FileAssign -d SHR INFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF000

 m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF001

 m_ProgramExec BAX001

 m_CondIf "STEPIF01.RC,LT,5"

 JUMP_LABEL=STEPIF02

 ;;

(STEPIF02)

 m_FileAssign -d SHR INFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF001

 m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF002
3-20 Oracle Tuxedo Application Runtime for Batch User Guide

 m_ProgramExec BAX002

 m_CondElse

 JUMP_LABEL=STEPIF03

 ;;

(STEPIF03)

 m_FileAssign -d SHR INFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF000

 m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF003

 m_ProgramExec BAX003

 m_CondEndif

Using m_CondExec
The m_CondExec function is used to condition the execution of a step. The m_CondExec must
have at least one condition as a parameter and can have several conditions at the same time. In
case of multiple conditions, the step is executed only if all the conditions are satisfied.

A condition can be of three forms:

Relational expression testing previous return codes:

m_CondExec 4,LT,STEPEC01

EVEN: Indicates that the step is to be executed even if a previous step terminated
abnormally:

m_CondExec EVEN

ONLY: Indicates that the step is to be executed only if a previous step terminated
ab-normally:

m_CondExec ONLY

The m_CondExec function must be the first function to be called inside the concerned step as
shown in Listing 3-14.

Listing 3-14 m_CondExec Example with Multiple Conditions

…

Oracle Tuxedo Application Runtime for Batch User Guide 3-21

Using Batch Runt ime
(STEPEC01)

 m_FileAssign -d SHR INFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF000

 m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF001

 m_ProgramExec BACC01

 JUMP_LABEL=STEPEC02

 ;;

(STEPEC02)

 m_FileAssign -d SHR INFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF001

 m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF002

 m_ProgramExec BACC02

 JUMP_LABEL=STEPEC03

 ;;

(STEPEC03)

 m_CondExec 4,LT,STEPEC01 8,GT,STEPEC02 EVEN

 m_FileAssign -d SHR INFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF000

 m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF003

Controlling the Execution Flow
The script's execution flow is determined, and can be controlled, in the following ways:

The start label specified by the m_JobBegin function: this label is usually the first label in
the script, but can be changed to any label present in the script if the user wants to start the
script execution from a specific step.

The value assigned to the JUMP_LABEL variable in each step: this assignment is mandatory
in each step, but its value is not necessarily the label of the following step.

The usage of the m_CondExec, m_CondIf, m_CondElse and m_CondEndif functions: see
Conditioning the Execution of a Step.

The return codes and abnormal ends of steps.
3-22 Oracle Tuxedo Application Runtime for Batch User Guide

Changing Default Error Messages
If Batch Runtime administrator wishes to change the default messages (to change the language
for example), this can be done through a configuration file whose path is specified by the
environment variable: MT_DISPLAY_MESSAGE_FILE.

This file is a CSV (comma separated values) file with a semicolon as a separator. Each record in
this file describes a certain message and is composed of 6 fields:

1. Message identifier.

2. Functions that can display the message (can be a generic name using '*').

3. Level of display.

4. Destination of display.

5. Reserved for future use.

6. Message to be displayed.

Different Behaviors from z/OS
On z/OS, before one job is executed, JES checks its syntax. If any error is found, JES reports it
and runs nothing of the job. For example, if there is a JCL statement applying “NEW” on
generation(0) of a GDG, because NEW is not allowed to be applied to existing files, JES reports
this error and does not run the job.

However, in ART for Batch, JCL job is converted to ksh job by Oracle Tuxedo ART Workbench
at first, and ART for Batch only checks ksh script syntax in the converted ksh job. Grammar
errors, if any, are detected when this statement runs, resulting in the fact that statements after the
wrong statement are executed but statements before it are executed without being affected.

Using Files

Creating a File Definition
Files are created using the m_FileBuild or the m_FileAssign function.

Four file organizations are supported:

Sequential file
Oracle Tuxedo Application Runtime for Batch User Guide 3-23

Using Batch Runt ime
Line sequential file

Relative file

Indexed file

You must specify the file organization for the file being created. For indexed files, the length and
the primary key specifications must also be mentioned.

m_FileBuild Examples
Definition of a line sequential file

m_FileBuild -t LSEQ ${DATA}/PJ01DDD.BT.VSAM.ESDS.KBIDO004

Definition of an indexed file with a record length of 266 bytes and a key starting at the first
bytes and having a size of 6 bytes.

m_FileBuild -t IDX -r 266 -k 1+6 ${DATA}/METAW00.VSAM.CUSTOMER

m_FileAssign examples
Definition of a new sequential file with a record length of 80 bytes.

m_FileAssign -d NEW -t SEQ -r 80 ${DATA}/PJ01DDD.BT.VSAM.ESDS.KBIDO005

Assigning and Using Files
When using Batch Runtime, a file can be used either by a Batch Runtime function (for example:
m_FileSort, m_FileRename etc.) or by a program, such as a COBOL program.

In both cases, before being used, a file must first be assigned. Files are assigned using the
m_FileAssign function that:

Specifies the DISP mode (Read or Write)

Specifies if the file is a generation file

Defines an environment variable linking the logical name of the file (IFN) with the real
path to the file (EFN).

The environment variable defined via the m_FileAssign function is named: DD_IFN. This
naming convention is due to the fact that it is the one used by Micro Focus Cobol to map internal
file names to external file names.

Once a file is assigned, it can be passed as an argument to any of Batch Runtime functions
handling files by using the ${DD_IFN} variable.
3-24 Oracle Tuxedo Application Runtime for Batch User Guide

For COBOL programs, the link is made implicitly by Micro Focus Cobol.

Listing 3-15 Example of File Assignment

(STEPCP01)

 m_FileAssign -d SHR INFIL ${DATA}/PJ01DDD.BT.QSAM.KBIDI001

 m_FileAssign -d SHR OUTFIL ${DATA}/PJ01DDD.BT.VSAM.KBIDU001

 m_FileLoad ${DD_INFIL} ${DD_OUTFIL}

…

Listing 3-16 Example of Using a File by a COBOL Program

(STEPCBL1)

 m_FileAssign -d OLD INFIL ${DATA}/PJ01DDD.BT.QSAM.KBIFI091

 m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBIFO091

 m_ProgramExec BIFAB090

…

About DD DISP=MOD
Enhance ART/BatchRT to keep consistency with main frame for DISP=MOD. That is, make the
behavior of DISP=MOD on the target operation system of ART/BatchRT to be same with main
frame. Currently, BatchRT is depending on below 2 kinds of COBOL compile/runtime
environment:

MicroFocus

COBOL-IT

Note: For VSAM date set, DISP=MOD is always treated as DISP=OLD (file exist) and
DISP=NEW(file doesn't exist), has been same with z/OS.
Oracle Tuxedo Application Runtime for Batch User Guide 3-25

Using Batch Runt ime
MicroFocus
For MicroFocus, one new file handler (ARTEXTFH.gnt) is added into BatchRT, in order to make
the behavior of DISP=MOD is correct, user need to make their cobol program to be compiled
with this file handler. That is to say, need to add below compile option:

CALLFH("ARTEXTFH")

If don't specify this compile option, the write operation with open mode "open output" in the
COBOL program will erase the existing file contents. This is unexpected.

It is suggested that you always add this compile option while compile cobol program. Table 3-5
lists the behavior of API which support DDN.

INPUT means INPUT file, only read operation will occur for INPUT file. Specify DISP=MOD
is not reasonable for INPUT file, because no data will be written to INPUT file, but it's allowed,
For INPUT file, DISP=MOD always act as DISP=OLD.

Table 3-5 MicroFocus DISP=MOD Behaior

API DISP=MOD is allowed? Read output file
is allowed?

Result of write
output file

INPUT OUTPUT

m_FIleRepro YES YES NO such
requirement

Appended

m_FilePrint YES YES NO such
requirement

Appended

m_FileSort YES YES NO such
requirement

Appended

m_ProgramExec: COBOL
Program

YES YES YES Appended

m_ProgramExec: Other Program YES YES YES Written but erase
existing contents

All other API which support DDN YES YES NO such
requirement

NO such
requirement
3-26 Oracle Tuxedo Application Runtime for Batch User Guide

OUTPUT means OUTPUT file, read and write operation occur for OUTPUT file. All the data
written to OUTPUT file will be appended to the original file regardless of open mode in COBOL
progrom: "open output" or "open extend."

COBOL-IT
For COBOL-IT, there is no new File Handle is added (like MicroFocus). So there is no special
requirement for compiling COBOL program. Table 3-6 lists the behavior of API which support
DDN.

INPUT means INPUT file, only read operation will occur for INPUT file. Specify DISP=MOD
to INPUT file is not reasonable, and it's not allowed in COBOL-IT. if one INPUT file is assigned
as DISP=MOD, its contents can't be read.

OUTPUT means OUTPUT file, read and write operation occur for OUTPUT file. All the data
written to OUTPUT file will be appended to the original file regardless of open mode in COBOL
progrom: "open output" or "open extend."

Table 3-6 COBOL-IT DISP=MOD Behaior

API DISP=MOD is allowed? Read output file
is allowed?

Result of write
output file

INPUT OUTPUT

m_FIleRepro NO YES NO such
requirement

Appended

m_FilePrint NO YES NO such
requirement

Appended

m_FileSort NO YES NO such
requirement

Appended

m_ProgramExec: COBOL
Program

NO YES YES Appended

m_ProgramExec: Other Program NO YES YES Written but erase
existing contents

All other API which support DDN NO YES NO such
requirement

NO such
requirement
Oracle Tuxedo Application Runtime for Batch User Guide 3-27

Using Batch Runt ime
Concurrent File Accessing Control
Batch Runtime provides a lock mechanism to prevent one file from being written simultaneously
in two jobs.

To enable the concurrent file access control, do the following:

1. Use environment variable MT_ACC_FILEPATH to specify a directory for the lock files required
by concurrent access control mechanism.

2. Create two empty files, AccLock and AccWait, under the directory specified in step 1.

Make sure the effective user executing jobs has read/write permission to these two files.

Notes:

The file names of AccLock and AccWait are case sensitive.

When accessing generation files, a GDG rather than a generation file is locked.
That is, a GDG is locked as a whole.

Following two lines in ejr/CONF/BatchRT.conf should be commented out:
${MT_ACC_FILEPATH}/AccLock

${MT_ACC_FILEPATH}/AccWait

Using Generation Data Group (GDG)
Oracle Tuxedo Application Runtime for Batch allows you to manage Generation Data Group
(GDG)files either based on file or based on database (DB). In file-based management way, Batch
Runtime manages GDG files in separate "*.gens" files, and one "*.gens" corresponds to one GDG
file. In DB-based management way, ART for Batch allows users to manage GDG information in
Oracle database or DB2 database.

GDG Management Functionalities
In order to emulate the notion of generation files and present on the z/OS mainframe which is not
a UNIX standard, Batch Runtime provides a set of functions to manage this type of file. These
functions are available to both file-based management and DB-based management.

Note: Copying or Renaming GDG is not supported.

Defining and/or Redefining a GDG
It is required to define a GDG before using it.
3-28 Oracle Tuxedo Application Runtime for Batch User Guide

A GDG file is defined and/or redefined through m_GenDefine. The operation of defining or
redefining a GDG is committed immediately and cannot be rolled back.

As shown in Listing 3-17, the first line defines a GDG and sets its maximum generations to 15,
the second line redefines the same GDG maximum generations to 30, the third line defines a
GDG without specifying "-s" option (its maximum generations is set to 9999), the fourth line
defines a GDG implicitly and sets its maximum generations to 9999, the fifth line defines a GDG
use model file $DATA/FILE, which can be either a GDG file or a normal file.

Listing 3-17 Example of Defining and Redefining GDG Files

m_GenDefine -s 15 ${DATA}/PJ01DDD.BT.FILE1

m_GenDefine -s 30 -r ${DATA}/PJ01DDD.BT.FILE1

m_GenDefine ${DATA}/PJ01DDD.BT.FILE2

m_FileAssign -d NEW,CATLG -g +1 SYSUT2 ${DATA}/PJ01DDD.BT.FILE3

m_FileAssign -d NEW,CATLG -g +1 -S $DATA/FILE FILE1 $DATA/GDG

Adding Generation Files in a GDG
To add a new generation file (GDS) into a GDG, call m_FileAssign with "-d NEW/MOD,…" and
"-g +n" parameters. GDS file types can be only LSEQ or SEQ.

There are four key points to add generation files in a GDG.

Multiple generation files (GDS) can be added in one job or step discontinuously and
disorderedly. See Listing 3-18 for an example.

One generation number (GenNum) can be added only one time in a job. Listing 3-19
shows an incorrect usage.

The filename of a newly created GDS is generated by the generation number specified in
m_FileAssign in the format of <current GDS number> + <GenNum>. See Listing 3-20
for an example.

In a job, if multiple generation files (GDS) are newly created, the GDS with the maximum
RGN becomes the current GDS after the job finishes. See Listing 3-21 for an example.

Four examples as below elaborate those key points individually.
Oracle Tuxedo Application Runtime for Batch User Guide 3-29

Using Batch Runt ime
Listing 3-18 Example of Adding Multiple Generation Files Discontinuously and Disorderedly

(STEP1)

m_FileAssign -d NEW,KEEP,KEEP -g +1 SYSUT1 "$DATA/GDG1"

m_FileAssign -d MOD,KEEP,KEEP -g +5 SYSUT2 "$DATA/GDG1"

(STEP2)

m_FileAssign -d NEW,KEEP,KEEP -g +9 SYSUT1 "$DATA/GDG1"

m_FileAssign -d NEW,KEEP,KEEP -g +2 SYSUT2 "$DATA/GDG1"

The above example adds the following GDS files to GDG.
$DATA/GDG1.Gen.0001

$DATA/GDG1.Gen.0002

$DATA/GDG1.Gen.0005

$DATA/GDG1.Gen.0009

Listing 3-19 Example of Adding One Generation Number Multiple Times in a Job (Incorrect Usage)

(STEP1)

m_FileAssign -d NEW,KEEP,KEEP -g +1 SYSUT1 "$DATA/GDG1"

m_FileAssign -d NEW,KEEP,KEEP -g +5 SYSUT2 "$DATA/GDG1"

(STEP2)

m_FileAssign -d NEW,KEEP,KEEP -g +4 SYSUT1 "$DATA/GDG1"

m_FileAssign -d NEW,KEEP,KEEP -g +5 SYSUT2 "$DATA/GDG1"

The above example shows an incorrect usage, where generation number (+5) is added two times.

Listing 3-20 Example of Listing GDS Filenames

m_FileAssign -d NEW,KEEP,KEEP -g +1 SYSUT1 "$DATA/GDG1"
3-30 Oracle Tuxedo Application Runtime for Batch User Guide

m_FileAssign -d MOD,KEEP,KEEP -g +5 SYSUT2 "$DATA/GDG1"

In the above example, suppose $DATA/GDG1 has three GDS numbered as 1, 2, and 4, respectively.
The corresponding GDS files are listed as below.
$DATA/GDG1.Gen.0001

$DATA/GDG1.Gen.0002

$DATA/GDG1.Gen.0004

After the above job runs, $DATA/GDG1 has five GDS numbered as 1, 2, 4, 5, and 9, respectively.
The corresponding GDS files are listed as below.
$DATA/GDG1.Gen.0001

$DATA/GDG1.Gen.0002

$DATA/GDG1.Gen.0004

$DATA/GDG1.Gen.0005

$DATA/GDG1.Gen.0009

Listing 3-21 Example of Defining the Current GDS

(STEP1)

m_FileAssign -d NEW,KEEP,KEEP -g +1 SYSUT1 "$DATA/GDG1"

m_FileAssign -d MOD,KEEP,KEEP -g +5 SYSUT2 "$DATA/GDG1"

(STEP2)

m_FileAssign -d NEW,KEEP,KEEP -g +2 SYSUT3 "$DATA/GDG1"

In the above example, the GDS whose RGN equals +5 becomes the current GDS, meaning its
RGN becomes 0 after job finishes successfully.

Referring an Existing Generation Files in a GDG
To refer to an existing generation file (GDS) in a GDG, call m_FileAssign with "-d
OLD/SHR/MOD,…" and "-g 0", "-g all", or "-g -n" parameters. "-g 0" refers to the current
generation, "-g all" refers to all generation files, "-g -n" refers to the generation file which is
the nth generation counting backward from the current generation (as 0 generation).
Oracle Tuxedo Application Runtime for Batch User Guide 3-31

Using Batch Runt ime
When using relative generation number (RGN) to reference a GDS, note that the "relative
generation number" means "relative position with the newest GDS whose generation number is
0".

For example, if GDG1 contains six GDS numbered as 1, 4, 6, 7, 9, and 10, respectively, the
mapping of GN and RGN is listed as below.

In the following job, use RGN=-1 to reference GDS whose GN equals 9 and use RGN=-4 to
reference GDS whose GN equals 4.

Listing 3-22 Example of Referencing Existing Generation Files

(STEP1)

m_FileAssign -d SHR,KEEP,KEEP -g -1 SYSUT1 "$DATA/GDG1"

m_FileAssign -d SHR,KEEP,KEEP -g -4 SYSUT2 "$DATA/GDG1"

If "DELETE" is specified in the DISPOSITION filed of m_FileAssign, the corresponding GDS
will be deleted after the current step finishes, resulting in a change of mapping between GN and
RGN. The changed mapping will be visible in the next step.

For example, if GDG1 contains six GDS numbered as 1, 4, 6, 7, 9, and 10, respectively, the
mapping of GN and RGN is listed as below.

In the following job, use RGN=-1 to reference GDS whose GN equals 9 and use RGN=-4 to
reference GDS whose GN equals 4.

You can run a job as below.

GN 1 4 6 7 9 10

RGN -5 -4 -3 -2 -1 0

GN 1 4 6 7 9 10

RGN -5 -4 -3 -2 -1 0
3-32 Oracle Tuxedo Application Runtime for Batch User Guide

Listing 3-23 Example of Referencing Existing Generation Files with DELETE Specified

(STEP1)

m_FileAssign -d OLD,DELETE,DELETE -g -1 SYSUT1 "$DATA/GDG1"

m_FileAssign -d OLD,DELETE,DELETE -g -4 SYSUT2 "$DATA/GDG1"

(STEP2)

m_FileAssign -d OLD,DELETE,DELETE -g -1 SYSUT1 "$DATA/GDG1"

m_FileAssign -d OLD,DELETE,DELETE -g -2 SYSUT2 "$DATA/GDG1"

In the above example, after STEP1 finishes, the mapping of GN and RGN becomes the one as
below.

In STEP2, the GDS pointed by SYSUT1 (the GDS whose GN is 7) and the GDS pointed by
SYSUT2 (the GDS whose GN is 6) are deleted.

After STEP2 finishes, the mapping of GN and RGN becomes the one as below.

Deleting Generation Files in a GDG
ART for Batch supports you to delete generation files, newly added or current existing, through
the disposition of DD specified for m_FileAssign.

Deleting Newly Added GDS (See Listing 3-24 for an example)

Deleting Existing GDS (See Listing 3-25 for an example)

GN 1 6 7 10

RGN -3 -2 -1 0

GN 1 10

RGN -1 0
Oracle Tuxedo Application Runtime for Batch User Guide 3-33

Using Batch Runt ime
Listing 3-24 Deleting Newly Added GDS

(STEP1)

m_FileAssign -d NEW,DELETE,DELETE -g +1 SYSUT1 "$DATA/GDG1"

m_FileAssign -d NEW,DELETE,DELETE -g +5 SYSUT2 "$DATA/GDG1"

(STEP2)

m_FileAssign -d NEW,DELETE,DELETE -g +1 SYSUT1 "$DATA/GDG1"

m_FileAssign -d NEW,DELETE,DELETE -g +5 SYSUT2 "$DATA/GDG1"

In the above example, eventually, no GDS is added to GDG1.

Listing 3-25 Deleting Existing GDS

(STEP1)

m_FileAssign -d NEW,DELETE,DELETE -g -1 SYSUT1 "$DATA/GDG1"

m_FileAssign -d NEW,DELETE,DELETE -g -3 SYSUT2 "$DATA/GDG1"

(STEP2)

m_FileAssign -d NEW,DELETE,DELETE -g -1 SYSUT3 "$DATA/GDG1"

m_FileAssign -d NEW,DELETE,DELETE -g -3 SYSUT4 "$DATA/GDG1"

In the above example, GDG1 has six GDS numbered as 1, 4, 6, 7, 9, and 10, respectively. The
GDS pointed by SYSUT1 (the GDS whose GN is 9), by SYSUT2 (the GDS whose GN is 6), by
SYSUT3 (the GDS file whose GN is 7), and by SYSUT4 (the GDS file whose GN is 1) are
deleted.

Note: Removing a GDG's all GDS does not remove the GDG itself, but just result in the fact
that the GDG contains 0 GDS.
3-34 Oracle Tuxedo Application Runtime for Batch User Guide

Deleting a GDG
You can delete a GDG as a whole by calling m_FileDelete with the GDG base name, as shown
in Listing 3-26. In this way, all the GDG's GDS will be deleted accordingly. The operation of
deleting GDG is committed immediately and cannot be rolled back.

Listing 3-26 Deleting a GDG

m_FileDelete ${DATA}/PJ01DDD.BT.GDG

Cataloging a GDG
Only GDG base can be cataloged; its GDS cannot be cataloged individually.

It is required to enable "file catalog" function in ART for Batch catalog a GDG. Additionally, in
catalog mode, the parameter [-v volume] specified in m_FileAssign is ignored.

Note: A GDG will be cataloged once it is defined.

Committing a GDG
All GDG having changes in the current step will be committed no matter if the current step
successfully finishes.

Committing a GDG updates the information in GDG management system, such as Oracle
DataBase or file (*.gens), and commits the temporary generation files; however, committing a
GDG does not change the mapping relationship between GN and RGN, meaning, in one step of
a job, a RGN always references to the same GDS.

For example, GDG1 has six GDS numbered as 1, 4, 6, 7, 9, and 10, respectively.

Listing 3-27 Example of Committing a GDG

(STEP1)

m_FileAssign -d NEW,KEEP,KEEP -g +1 SYSUT1 "$DATA/GDG1"

m_FileAssign -d NEW,KEEP,KEEP -g +2 SYSUT2 "$DATA/GDG1"

m_FileAssign -d NEW,KEEP,KEEP -g -1 SYSUT3 "$DATA/GDG1"

(STEP2)
Oracle Tuxedo Application Runtime for Batch User Guide 3-35

Using Batch Runt ime
m_FileAssign -d NEW,KEEP,KEEP -g -1 SYSUT4 "$DATA/GDG1"

In STEP1, the mapping of GN and RGN (both in job and in GDG management system) becomes
the one as below. SYSUT3 references to the GDS whose GN is 9.

In STEP2, the mapping of GN and RGN in GDG management system becomes the one as below.

However, the mapping of GN and RGN in the current running job is not changed; in the below
example, SYSUT4 stills references to the GDS whose GN is 9 rather than the GDS whose GN is
11.

File-Based Management

Configuration
MT_GENERATION variable specifies the way of managing GDG files. To manage GDG in *.gens
files, you need to set the value to GENERATION_FILE.

Concurrency Control and Authorization
In file-based GDG management mechanism, one GDG file can only be accessed by one job at
any time, that is, a single GDG cannot be accessed by multiple jobs simultaneously. To access a
GDG file, the file lock must be acquired by the existing internal function
mi_FileConcurrentAccessReservation. File-based GDG management mechanism uses a

GN 1 4 6 7 9 10 11 12

RGN -5 -4 -3 -2 -1 0 1 2

GN 1 4 6 7 9 10 11 12

RGN -7 -6 -5 -4 -3 -2 -1 0

GN 1 4 6 7 9 10 11 12

RGN -5 -4 -3 -2 -1 0 1 2
3-36 Oracle Tuxedo Application Runtime for Batch User Guide

file *.gens (* represents the GDG base name) to control concurrency and authorization. User
access checking depends on whether the *.gens file can be accessed or not.

DB-Based Management
For DB-based management, Oracle Database and DB2 database are supported.

Note: To enable this function, MT_GENERATION must be set to GENERATION_FILE_DB, MT_DB
must be set to DB_ORACLE or DB_DB2LUW, and MT_GDG_DB_ACCESS must be set to valid
database connection string for accessing Oracle Database or DB2 database.

Database Tables
Table 3-5 shows the general management for each GDG managed by Batch Runtime. In this
table, each row represents a GDG. All GDG files share a single GDG_DETAIL table.

Table 3-6 shows the detailed information of all the GDG generation files. In this table, each row
represents a generation file of a GDG.

Table 3-7 GDG_DEFINE

Name Type Description

GDG_BASE_NAME VARCHAR(1024) Full path name of GDG.

It cannot contain only a relative path
relative to a single repository. The length of
GDG_BASE_NAME is limited to 1024, i.e.
the minimum of PATH_MAX on different
UNIX platforms.

GDG_MAX_GEN INT Maximum number of generation files.

It contains the upper limit of generations
specified by -s option. -s option can be
set in the range of 1-9999.

GDG_CUR_GEN INT GDG current generation number

Primary Key: GDG_BASE_NAME
Oracle Tuxedo Application Runtime for Batch User Guide 3-37

Using Batch Runt ime
GDG_FILE_NAME (the physical generation file name) is not stored in table GDG_DETAIL since it
can be constructed from GDG_BASE_NAME in GDG_DEFINE and GDG_ABS_NUM in GDG_DETAIL.

Note: To back up GDG information, you need to back up two database tables: GDG_DEFINE and
GDG_DETAILE.

Generation File Naming Rule
Table 3-7 shows the rule of generation file name:

Table 3-8 GDG_DETAIL

Name Type Description

GDG_BASE_NAME VARCHAR(1024) Full path of the GDG principal name.

GDG_REL_NUM INT Relative generation number of a generation
file.

GDG_ABS_NUM INT Absolute generation number of a
generation file.

GDG_JOB_ID VARCHAR(8) The ID of the job that creates the file.

GDG_JOB_NAME VARCHAR(32) The name of the job that creates the file.

GDG_STEP_NAME VARCHAR(32) The name of the step that creates the file.

GDG_CRE_TIME TIMESTAMP The timestamp when the file is created.

Primary Key: GDG_BASE_NAME+ GDG_ABS_NUM

Table 3-9 Generation File Naming Rule

Condition File Name Description

GDG_REL_NUM > 0 ${GDG_BASE_NAME}.Gen.${GDG_ABS_NUM}
.tmp

Uncommitted

GDG_REL_NUM <= 0 ${GDG_BASE_NAME}.Gen.${GDG_ABS_NUM} Committed
3-38 Oracle Tuxedo Application Runtime for Batch User Guide

Configuration Variables
MT_GENERATION

This variable specifies the way of managing GDG files. To manage GDG files in database,
you need to set the value to GENERATION_FILE_DB and configure MT_GDG_DB_ACCESS
appropriately.

MT_GDG_DB_ACCESS

This variable is used along with MT_GENERATION when it is set to GENERATION_FILE_DB,
and must be set with the valid database login account. For accessing Oracle DB, it should
be specified in the format of userid/password@sid, for example, scott/tiger@orcl.

External Shell Scripts
You can use the two external shell scripts to create and drop the new database table automatically.

CreateTableGDG.sh

Description
Creates table GDG_DEFINE and GDG_DETAIL in database

Usage
CreateTableGDG.sh <DB_LOGIN_PARAMETER>

Sample
CreateTableGDG.sh scott/tiger@orcl

DropTableGDG.sh

Description
Drops table GDG_DEFINE and GDG_DETAIL from database.

Usage
DropTableGDG.sh <DB_LOGIN_ PARAMETER>

Sample
DropTableGDG.sh scott/tiger@orcl

Concurrency Control and Authorization
DB-based GDG management mechanism maintains the same concurrency control behavior as
File-based GDG management mechanism, but has a different *.ACS (* represents the GDG base
Oracle Tuxedo Application Runtime for Batch User Guide 3-39

Using Batch Runt ime
name) file format. In DB-based GDG management mechanism, you don’t need to lock the tables
mentioned in Database Tables as any job that accesses the rows corresponding to a GDG must
firstly acquire the file lock of the GDG. That is to say, there is no need to perform concurrency
control in the database access level. You cannot access database if you don’t have access
permission (read or write) to the corresponding *.ACS file. If you need to modify a GDG file, you
must have write permissions to the generation files and the directory holding the generation files,
and MT_GDG_DB_ACCESS must be configured correctly to have appropriate permissions to the
tables mentioned in Database Tables.

You can only copy DB-based GDG management description entirely and replace the file name.

Exception Handling
There are four kinds of information in DB-based GDG management mechanism:

GDG_DEFINE

*.ACS file

GDG_DETAIL

Physical file on disk

These information should be kept consistently for a GDG file. Batch Runtime checks the
consistency from GDG_DEFINE to Physical files when a GDG file is accessed the first time in a
job. If exceptions happen and result in inconsistency among these information, Batch Runtime
terminates the current job and reports error.

This behavior is different from the existing file-based mechanism, which does not check the
consistency but only reports exceptions encountered in the process.

Support for Data Control Block (DCB)
Both file-based GDG and DB-based GDG support Data Control Block (DCB).

Defining .dcb File
.dcb file can have two values: "-t <file type>" and "-r <record length>".

-t <file type>
-t <file type> must be LSEQ or SEQ in m_FileAssign to create the first generation
file. If you don't specify any file type in job ksh file, LSEQ will be used by default.

-r <record length>
For SEQ file, the value is mandatory and must be a number or "number1-number2".
3-40 Oracle Tuxedo Application Runtime for Batch User Guide

For LSEQ file, the value is optional. Once set, this value must be a number.

Creating .dcb file
Create .dcb file for GDG data set when the first generation file is created by m_FileAssign -g
+1.

Notes: If a GDG is created by m_GenDefine rather than m_FileAssign, .dcb file will not exist
until the first generation file is created by m_FileAssign -g +1.

Once .dcb file is created, its contents will not be changed by any other m_FileAssign
statement afterwards, unless such m_FileAssign creates the first generation file again.

Deleting .dcb file
If a GDG is deleted by m_FileDelete, the corresponding .dcb file will be deleted automatically.

However, if all generation files in one GDG are deleted while the GDG itself exists, the
corresponding .dcb file will not be deleted.

Using an In-Stream File
To define and use a file whose data is written directly inside the Korn shell script, use the
m_FileAssign function with the -i parameter. By default the string _end is the “end” delimiter
of the in-stream flow as shown in Listing 3-28.

Listing 3-28 In-stream Data Example

(STEP1)

m_FileAssign -i INFIL

data record 1

data record 2

…

_end
Oracle Tuxedo Application Runtime for Batch User Guide 3-41

Using Batch Runt ime
Using a Set of Concatenated Files
To use a set of files as a concatenated input (which in z/Os JCL was coded as a DD card, where
only the first one contains a label), use the m_FileAssign function with the -C parameter as
shown in Listing 3-29.

Listing 3-29 Using a Concatenated Set of Files Example

(STEPDD02)

m_FileAssign -d SHR INF ${DATA}/PJ01DDD.BT.QSAM.KBDDI002

m_FileAssign -d SHR -C ${DATA}/PJ01DDD.BT.QSAM.KBDDI001

m_ProgramExec BDDAB001

Using an External “sysin”
To use an “external sysin” file which contains commands to be executed, use the
m_UtilityExec function.

m_FileAssign -d OLD SYSIN ${SYSIN}/SYSIN/MUEX07

m_UtilityExec

Deleting a File
Files (including generation files) can be deleted using the m_FileDelete function:

m_FileDelete ${DATA}/PJ01DDD.BT.QSAM.KBSTO045

RDB Files
In a migration project from z/Os to UNIX/Linux, some permanent data files may be converted to
relational tables. See the File-to-Oracle chapter of the Oracle Tuxedo Application Runtime
Workbench.

When a file is converted to a relational table, this change has an impact on the components that
use it. Specifically, when such a file is used in a z/Os JCL, the converted Korn shell script
corresponding to that JCL should be able to handle operations that involve this file.
3-42 Oracle Tuxedo Application Runtime for Batch User Guide

In order to keep the translated Korn shell script as standard as possible, this change is not handled
in the translation process. Instead, all the management of this type of file is performed at
execution time within Batch Runtime.

In other words, if in the z/OS JCL there was a file copy operation involving the converted file,
this is translated to a standard copy operation for files in Batch Runtime, in other words an
m_FileLoad operation).

The management of a file converted to a table is made possible through an RDB file. An RDB
file is a file that has the same name as the file that is converted to a table but with an additional
suffix:.rdb.

Each time a file-related function is executed by Batch Runtime, it checks whether the files were
converted to table (through testing the presence of a corresponding .rdb file). If one of the files
concerned have been converted to a table, then the function operates the required intermediate
operations (such as: unloading and reloading the table to a file) before performing the final action.

All of this management is transparent to the end-user.

Using an RDBMS Connection
When executing an application program that needs to connect to the RDBMS, the -b option must
be used when calling the m_ProgramExec function.

Connection and disconnection (as well as the commit and rollback operations) are handled
implicitly by Batch Runtime and can be defined using the following two methods:

Set the environment variable MT_DB_LOGIN before booting the TuxJES system.

Note: In this case, all executing jobs use this variable.

Set its value in the TuxJES Security Configuration file for different users.

The MT_DB_LOGIN value must use the following form: dbuser/dbpasswd[@ssid]or “/”.

Note: "/" should be used when the RDBMS is configured to allow the use of UNIX
authentication and not RDBMS authentication, for the database connexion user.

Please check with the database administrator whether "/" should be used or not.

The -b option must also be used if the main program executed does not directly use the RDBMS
but one of its subsequent sub-programs does as shown in Listing 3-30.
Oracle Tuxedo Application Runtime for Batch User Guide 3-43

Using Batch Runt ime
Listing 3-30 RDBMS Connection Example

(STEPDD02)

 m_FileAssign -d MOD OUTF ${DATA}/PJ01DDD.BT.QSAM.REPO001

 m_ProgramExec -b DBREP001

The m_ProgramExec function may submit three types of executable files (Cobol executable,
command language script, or C executable). It launchs the runb program. We have provided the
runb for $ARTDIR/Batch_RT/ejr_mf_ora (on Linux) and ejr_ora (other platforms). If you
use neither Microfocus COBOL compiler nor Oracle Database, go to $ARTDIR/Batch_RT/ejr
and run "make.sh" to generate your required runb.

The runb program, runtime compiled with database librairies, runs the runbatch program.

The runbatch program, is in charge to :

- do the connection to the database (if necessary)

- run the user program

- do the commit or rollback (if necessary)

- do the disconnection from the database (if necessary)
3-44 Oracle Tuxedo Application Runtime for Batch User Guide

Submitting a Job Using INTRDR Facility
The INTRDR facility allows you to submit the contents of a sysout to TuxJES (see the TuxJES
documentation). If TuxJES is not present, a command “nohup EJR” is used.

Example:

m_FileAssign -d SHR SYSUT1 ${DATA}/MTWART.JCL.INFO

m_OutputAssign -w INTRDR SYSUT2

m_FileRepro -i SYSUT1 -o SYSUT2

The contents of the file ${DATA}/MTWART.JCL.INFO (ddname SYSUT1) is copied into the
file which ddname is SYSUT2 and using the option “-w INTRDR” is submitted.

Note that the ouput file must contain valid ksh syntax.

Note: If the batch job script generated at runtime is in JCL language, it can't be submitted by
INTRDR.

Submitting a Job With EJR
When using Batch Runtime, TuxJES can be used to launch jobs (see the TuxJES documentation),
but a job can also be executed directly using the EJR spawner.

Before performing this type of execution, ensure that the entire context is correctly set. This
includes environment variables and directories required by Batch Runtime.

Example of launching a job with EJR:

EJR DEFVCUST.ksh

For a complete description of the EJR spawner, please refer to the Oracle Tuxedo Application
Runtime for Batch Reference Guide.

User-Defined Entry/Exit
Batch Runtime allows you to add custom pre- or post- actions for public APIs. For each m_* (*
represents any function name) function, you can provide m_*_Begin and m_*_End function and
put them in ejr/USER_EXIT directory. They are invoked automatically when a job execution
entering or leaving an m_* API.

Whether an m_* API calls its user-defined entry/exit function depends on the existence of
m_*_Begin and m_*_End under ejr/USER_EXIT.
Oracle Tuxedo Application Runtime for Batch User Guide 3-45

Using Batch Runt ime
A pair of general user entry/exit APIs, mi_UserEntry and mi_UserExit, are called at the entry
and exit point of each external API. The argument to these APIs consists of the function name in
which they are called, and the original argument list of that function. You don’t need to modify
these two APIs, but just need to provide your custom entry/exit for m_* external APIs.
mi_UserEntry and mi_UserExit are placed under ejr/COMMON.

Note: In user entry/exit function, users are not allowed to use any function provided by ART
for Batch; however, in user's script, a return statement returns value to the caller and ART
for Batch checks if calling user entry/exit function works successfully through the return
code. Return code 0 continues the job; non-zero value terminates the job.

You are suggested not to call exit in user entry/exit function. Because In the framework,
exit is aliased an internal function, mif_ExitTrap, which is invoked ultimately if exit
in user entry/exit function is called. If exit 0 is called, the framework does nothing and
job is continue, if exit not_0 is called, a global variable is set and may terminate the
current job.

Configuration
You should include only one function, e.g. m_*_Begin or m_*_End, in a single file with the same
name as the function, and then put all such files under ejr/USER_EXIT.

You are not allowed to provide custom entry/exit functions for any mi_ prefix function provided
by Batch Runtime.

Batch Runtime Logging
This section contains the following topics:

General Introduction

Log Header

File Information Logging

General Introduction

Log Message Format
Each log message defined in CONF/Messages.conf is composed of six fields, as listed in
Table 3-8:
3-46 Oracle Tuxedo Application Runtime for Batch User Guide

The levels of these messages are set to 4 by default.

You can specify the message level of Batch Runtime to control whether to print these three
messages in job log.

Log Message Level
Table 3-9 lists the Log message levels provided by Batch Runtime:

Table 3-10 Log Message Format

Field Content

1 Message identifier

2 Functions that can display the message (generic name using *)

3 Level of display. Default value: 4

4 Destination of display (u,e,o).
• U: User output
• E: Error Output (stderr)
• O: Standard output (stdout)

5 Header flag (0,1,b). Default value: 0
• 0: No header will be displayed
• 1: A hard-coded header format will be displayed
• b: Specific for exceptions messages Fatal/Error/Warning

6 The message to be displayed with possible dynamic values

Table 3-11 Log Message Level

Level Message

1 FATAL only

2 Previous level and errors

3 Previous level and information

4 Previous level and file information log
Oracle Tuxedo Application Runtime for Batch User Guide 3-47

Using Batch Runt ime
Log Level Control
The default level of displaying messages in job log is 3. You can also choose one of the following
ways to change the level:

Use -V option of EJR

Use the environment variable MT_DISPLAY_LEVEL

The display level set by EJR can override the level set by MT_DISPLAY_LEVEL.

Log File Structure
For each launched job, Batch Runtime produces a log file containing information for each step
that was executed. This log file has the following structure as shown in Listing 3-31.

Listing 3-31 Log File Example

JOB Jobname BEGIN AT 20091212/22/09 120445

BEGIN PHASE Phase1

Log produced for Phase1

.......

.......

.......

5 Previous level and high level functions

6 Previous level and technical functions

7 Same as level 3 and high level functions which correspond to the -d
regexp option

8 Same as 7 and technical level functions which correspond to the -d
regexp option

9 Reserved

Table 3-11 Log Message Level

Level Message
3-48 Oracle Tuxedo Application Runtime for Batch User Guide

END PHASE Phase1 (RC=Xnnnn, JOBRC=Xnnnn)

BEGIN PHASE Phase2

Log produced for Phase2

.......

.......

.......

END PHASE Phase2 (RC=Xnnnn, JOBRC=Xnnnn)

..........

..........

BEGIN PHASE END_JOB

..........

END PHASE END_JOB (RC=Xnnnn, JOBRC=Xnnnn)

JOB ENDED WITH CODE (C0000})

Or

JOB ENDED ABNORMALLY WITH CODE (S990})

When not using TuxJes, the log file is created under the ${MT_LOG} directory with the following
name: <Job name>_<TimeStamp>_<Job id>.log

For more information, see Using Tuxedo Job Enqueueing Service (TuxJES).

Log Header
Batch Runtime logging functionality provides an informative log header in front of each log line,
in the following format:
YYYYmmdd:HH:MM:SS:TuxSiteID:JobID:JobName:JobStepName

You can configure the format of log header, but should not impact any configuration and behavior
of existing specific message header: type 0, 1 and b.

Table 3-10 shows the variables you can use for specifying the general log header:
Oracle Tuxedo Application Runtime for Batch User Guide 3-49

Using Batch Runt ime
Configuration
MT_LOG_HEADER is a new configuration variable added in CONF/BatchRT.conf, for example:

MT_LOG_HEADER='$(date'+%Y%m%d:%H%M%S'):${MTI_SITE_ID}:${MTI_JOB_NAME}:${MT

I_JOB_ID}:${MTI_JOB_STEP}: '

If the value of MT_LOG_HEADER is not a null string, its contents are evaluated as a shell statement
to get its real value to be printed as the log header, otherwise this feature is disabled.

Note: The string that configured to MT_LOG_HEADER is treated as a shell statement in the source
code, and is interpreted by "eval" command to generate the corresponding string used
as log header:

Syntax inside: eval mt_MessageHeader=\"${MT_LOG_HEADER}\"

To configure this variable, you need to comply with the following rules:

MT_LOG_HEADER must be a valid shell statement for "eval", and must be quoted by single
quotation marks.

All the variables used in MT_LOG_HEADER must be quoted by "${}". For example: ${
MTI_JOB_STEP }

All the command line used in MT_LOG_HEADER must be quoted by "$()". For example:
$(date '+%Y%m%d:%H%M%S')

Table 3-12 variables for Specifying General Log Header

Variable Description

MTI_SITE_ID If the job is submitted from TuxJES, it is the logical machine ID
configured for the machine by TuxJES, otherwise it's empty.

MTI_JOB_ID If the job is submitted from TuxJES, it is the job ID assigned by JES.

MTI_JOB_NAME Name of the job assigned by m_JobBegin in the job script.

MTI_STEP_NAME Name of the current executing job step.

MTI_SCRIPT_NAME Name of the job script.

MTI_PROC_NAME Name of the proc when the code included from a PROC by
m_ProcInclude is executing; empty otherwise.
3-50 Oracle Tuxedo Application Runtime for Batch User Guide

You can modify the above examples according to your format needs using only the variables
listed in Table 3-10.

This configuration variable is commented by default, you need to uncomment it to enable this
feature.

File Information Logging
Logging system can logs the detailed file information in job log, as well as the information when
a file is assigned to a DD and when it is released.

File assignment information is logged in the following functions:

m_FileAssign

File release information is logged in the following functions:
m_PhaseEnd

File information is logged in the following functions:

m_FileBuild

m_FileClrData

m_FileConcatenate

m_FileCopy

m_FileDelete

m_FileEmpty

m_FileExist

m_FileLoad

m_FileRename

m_FilePrint

m_FileRepro

Configuration

Messages.conf
The following message identifiers are defined in CONF/Messages.conf to support using of
mi_DisplayFormat to write file assignment and file information log.

FileAssign;m_FileAssign;4;ueo;0;%s
Oracle Tuxedo Application Runtime for Batch User Guide 3-51

Using Batch Runt ime
FileRelease;m_PhaseEnd;4;ueo;0;%s

FileInfo;m_File*;4;ueo;0;%s

Notes:

CONF/Messages.conf is not configurable. Do not edit this file.

The string "%s" at the end of each identifier represents it will be written to log file. You
can configure its value using the following variables defined in CONF/Batch.conf. For
more information, see Table 3-12.

• MT_LOG_FILE_ASSIGN (for FileAssign)

• MT_LOG_FILE_RELEASE (for FileRelease)

• MT_LOG_FILE_INFO (for FileInfo)

BatchRT.conf
Three configuration variables should be defined in CONF/BatchRT.conf to determine the
detailed file information format. With the placeholders listed in Table 3-11, you can configure
file log information more flexibly.

Table 3-13 Placeholders

Placeholder Description Value and Sample

<%DDNAME%> DD Name for the file being operated SYSOUT1

<%FULLPATH%> Full path for the file being operated /local/simpjob/work/TEST0
01.Gen.000000001

<%FILEDISP%> DISP for the file being operated SHR or NEW
3-52 Oracle Tuxedo Application Runtime for Batch User Guide

To configure strings to these MT_LOG_FILE_* variables, replace the placeholders with
corresponding values (just string replacement). The result is treated as a shell statement, and is
interpreted by "eval" command to generate the corresponding string writing to log:

Syntax inside: eval mt_FileInfo=\"${MT_LOG_FILE_INFO}\"

To configure these variables, you need to comply with the following rules:

After placeholders are replaced, MT_LOG_FILE_* must be a valid shell statement for
"eval", and must be quoted by single quotation marks.

Only the placeholders listed in Table 3-11 can be used in MT_LOG_FILE_*.

All the command line used in MT_LOG_HEADER must be quoted by "$()". For example:
$(ls -l --time-style=+'%Y/%m/%d %H:%M:%S' --no-group <%FULLPATH%>)

If the level of FileInfo message is equal to or less than the message level specified for Batch
Runtime and MT_LOG_FILE_* is set to a null string, FileInfo message will not be displayed in
job log. If MT_LOG_FILE_* is set to an incorrect command to make file information invisible,

Table 3-14 Configuration Variables in CONF/BatchRT.conf

Name Value and Sample Available Placeholder

MT_LOG_FILE_ASSI
GN

FileAssign: DDNAME=(<%DDNAME%>);
FILEINFO=($(ls -l
--time-style=+'%Y/%m/%d %H:%M:%S'
--no-group
<%FULLPATH%>)';FILEDISP=(<%FILEDISP
%>)

<%DDNAME%>

<%FULLPATH%>

<%FILEDISP%>

MT_LOG_FILE_RELE
ASE

FileRelease: DDNAME=(<%DDNAME%>);
FILEINFO=($(ls -l
--time-style=+'%Y/%m/%d %H:%M:%S'
--no-group
<%FULLPATH%>)';FILEDISP=(<%FILEDISP
%>)

<%DDNAME%>

<%FULLPATH%>

<%FILEDISP%>

MT_LOG_FILE_RELE
ASE

FILEINFO=($(ls -l
--time-style=+'%Y/%m/%d %H:%M:%S'
--no-group <%FULLPATH%>))

Note: "operation" is hard-coded into source code,
such as FileCopy source, FileCopy
Destination, and FileDelete etc.

<%FULLPATH%>
Oracle Tuxedo Application Runtime for Batch User Guide 3-53

Using Batch Runt ime
FileInfo message will not be displayed in job log as well, but the job execution will not be
impacted.

Note: You can customize these variables according to your format needs, but make sure the
command is valid, otherwise the file information will not be logged.

Using Batch Runtime With a Job Scheduler
Entry points are provided in some functions (m_JobBegin, m_JobEnd, m_PhaseBegin,
m_PhaseEnd) in order to insert specific actions to be made in relation with the selected Job
Scheduler.

Executing an SQL Request
A SQL request may be executed using the function m_ExecSQL.

Depending on the target database, the function executes a “sqlplus” command with ORACLE
database, or a “db2 -tsx” command with UDB.

Note that the environment variable MT_DB_LOGIN must be set (database connection user login).

The SYSIN file must contain the SQL requests and the user has to verify the contents regarding
the database target.

Simple Application on COBOL-IT / BDB
Batch COBOL programs compiled by COBOL-IT can access the indexed ISAM files which are
converted from Mainframe VSAM files through the ART Workbench. VSAM files can be stored
in BDB through COBOL-IT.

To enable this function in Batch runtime, do the followings during runtime:

Compile COBOL programs by COBOL-IT complier with specifying bdb:yes.

Set DB_HOME correctly because it is required by BDB; DB_HOME points to a place where
temporary files are put by BDB.

Set the following environment variables before ART for Batch launches a job.
– export COB_EXTFH_INDEXED=BDBEXTFH

– export COB_EXTFH_LIB=/path_to_Cobol-IT/lib/libbdbextfh.so #For
example, export COB_EXTFH_LIB=/opt/cobol-it-64/lib/libbdbextfh.so

Unset COB_ENABLE_XA environment variable before booting the TuxJES system.
3-54 Oracle Tuxedo Application Runtime for Batch User Guide

unset COB_ENABLE_XA

Note: It is required to set COB_ENABLE_XA when you use COBOL-IT with ART CICS
Runtime.

Dynamic JCL Job Execution
This section contains the following topics:

General Introduction

Requirements

Configurations

Using JES Client to Manage JCL Jobs

General Introduction
Oracle Tuxedo ART Batch Runtime supports users to manage native JCL jobs with real-time
workbench conversion without any pre-conversion. For more information, please refer to JCL
Conversion.

Requirements
It's required to install Oracle Tuxedo ART Workbench and make it executable.

Two additional requirements should be fulfilled as below if Oracle Tuxedo ART Workbench is
deployed on the remote machine (host1) while ARTJESCONV server is deployed on another
machine (host2).

NFS must be configured to cover all the folders and files shared by both ART Workbench
and JES, and $JESROOT must be configured on NFS.

A trusted SSH connection must be configured between host1 and host2, that is, the user
(user2) who boots up ARTJESCONV is allowed to log into host1 without passwords. By
doing this, ARTJESCONV can invoke ART Workbench installed on host1 directly without
interaction.

Note: If multiple ARTJESCONV servers on more than one machine are configured in JES
domain, the trusted SSH connection should be configured on each machine equipped
with ARTJESCONV.

If Workbench is deployed on local machine, it is optional to set the host.
Oracle Tuxedo Application Runtime for Batch User Guide 3-55

../../../artwb/docs12c/wbuser/wbuser.html#wp1140310
../../../artwb/docs12c/wbuser/wbuser.html#wp1140310

Using Batch Runt ime
For example, you must do the followings to add user2@host2 to user1@host1 if Oracle Tuxedo
ART Workbench and ARTJESCONV are deployed in different machines.

1. Login host2 with user name user2.

2. Run "cd $HOME/.ssh" on host2.

3. Run "ssh-keygen -t rsa" to generate id_rsa and id_rsa.pub.

4. Login host1 with user name user1.

5. Run "cd $HOME/.ssh" on host1.

6. Add the content of host2:$HOME/.ssh/id_rsa.pub file to authorized_keys.

Configurations

Working Folder Configurations for JCL Conversion
The template working folder for JCL conversion is $JESROOT/jcl_conv_dir, which will be
created automatically if it does not exist at startup. $JESDIR/Batch_RT/jcl_conv_dir
contents are automatically copied to such working folder when Batch Runtime starts. When a
JCL job is submitted, JES copies this template folder to folder $JESROOT/<JOBID>/JCL, and
puts the JCL job file to folder $JESROOT/<JOBID>/JCL/source/JCL/, where Workbench
works.

Users need to copy all the INCL, PROC, and SYSIN to the template working folder for each JCL
job. When converting and executing a JCL job,
$JESROOT/<JOBID>/JCL/target/PROC:$JESROOT/<JOBID>/JCL/target /INCL is added
to the head of the environment variable PROCLIB, and
$JESROOT/<JOBID>/JCL/target/Master-SYSIN is set to the environment variable SYSIN.

The Workbench configuration file in the working folder for JCL conversion is
param/config-trad-JCL.desc. Users should customize it; otherwise, default values will be
used. For more information, please refer to The JCL-Translation Configuration File.

EJR Configurations
MT_REFINEDIR and MT_REFINEDISTRIB are required to be configured. For more information,
please refer to Table 3-3.
3-56 Oracle Tuxedo Application Runtime for Batch User Guide

../../../artwb/docs12c/wbref/JCLTranslator.html#wp1128019

The Queue for JCL Conversion
The queue, CONV_JCL, is added to the queue space JES2QSPACE to support JCL conversion. For
more information, please refer to Table 8 TuxJES Queues.

Using JES Client to Manage JCL Jobs

Submitting a JCL Job
Option -l is used to submit a JCL job with the following usage.

artjesadmin -I JCLScriptName (in the shell command line)

submitjob -I JCLScriptName (in the artjesadmin console)

Printing Jobs
[-t JCL|KSH]is used as a filter with the following usage.

Print all jobs: printjob

Print JCL jobs: printjob -t JCL

Print KSH jobs: printjob -t KSH

The column, job type, is added to the results with one of the following values.

JCL for JCL jobs

KSH for KSH jobs

Before the conversion phase completes, the JCL job name and class are null, and the priority is
displayed as 0.

Holding/Releasing/Canceling/Purging a JCL job
The usage is the same as KSH jobs.

JCL Conversion Log
The JCL conversion log is $JESROOT/<JOBID>/LOG/<JOBID>.jcllog.

Network Job Entry (NJE) Support
This section contains the following topics.
Oracle Tuxedo Application Runtime for Batch User Guide 3-57

../batchref/tuxjesref.html#wp1175795

Using Batch Runt ime
General Introduction

Configurations

NJE Job Sample

General Introduction
With NJE support, users can implement the following functionalities in Batch Runtime exactly
as they do in JCL jobs.

/* ROUTE XEQ

/* XEQ

/* XMIT

By m_SetJobExecLocation API of Batch Runtime, users can develop KSH jobs with NJE
support. For example,

Specify the server group, on which the job will be executed.

In a job, transmit an in-stream job to another server group and make it run on that server
group.

Configurations

Job Execution Server Group
When specifying the server group name, which is specified as job execution group in API
m_JobSetExecLocation, please ensure the followings.

The specified server group must exist in ubbconfig file of JES domain.

At least one ARTJESINITIATOR server must be deployed in that server group.

ON/OFF Setting of NJE Support
There is a corresponding setting item in JES configuration file.
3-58 Oracle Tuxedo Application Runtime for Batch User Guide

If NJE support is disabled in jesconfig, the statement m_SetJobExecLocation
<SvrGrpName> is ignored by TuxJES and then the job may executed by any ARTJESINITIATOR
in any server group.

Environment Variable MT_TMP in MP Mode
In MP mode, MT_TMP needs to be configured on NFS, and all the nodes in tuxedo domain should
have the same value of MT_TMP and share it.

MT_TMP can be configured in file $MT_ROOT/CONF/BatchRT.conf, or to export it as
environment value before tlisten is started in each node.

Queue EXECGRP
If NJESUPPORT is enabled in jesconfig, a new queue named EXECGRP must be created in the
existing queue space JES2QSPACE. If EXECGRP is not created, no jobs can be processed by JES.

NJE Job Sample

Listing 3-32 Sample of Specifying Job Execution Server Group (XEQ)

m_JobBegin -j SAMPLEJCL -s START -v 2.0 -c R

m_JobSetExecLocation "ATLANTA"

 while true ;

 do

 m_PhaseBegin

 case ${CURRENT_LABEL} in

 (START)

Table 3-15 Configurations in <APPDIR>/jesconfig

Name Value Default Value

NJESUPPORT ON: Enable NJE support

OFF: Disable NJE support

OFF
Oracle Tuxedo Application Runtime for Batch User Guide 3-59

Using Batch Runt ime
 # XEQ ATLANTA

 JUMP_LABEL=STEP01

 ;;

 (STEP01)

 m_OutputAssign -c "*" SYSPRINT

 m_FileAssign -i SYSIN

 m_FileDelete ${DATA}/GBOM.J.PRD.ABOMJAW1.ABEND02

 m_RcSet 0

 _end

 m_UtilityExec

 JUMP_LABEL=END_JOB

 ;;

 (END_JOB)

 break

 ;;

 (*)

 m_RcSet ${MT_RC_ABORT:-S999} "Unknown label : ${CURRENT_LABEL}"

 break

 ;;

 esac

 m_PhaseEnd

 done

m_JobEnd

In the above sample, the job can be submitted on any JES node, but only be executed by the
ARTJESINITIATOR which belongs to JES's tuxedo server group ATLANTA.
3-60 Oracle Tuxedo Application Runtime for Batch User Guide

Listing 3-33 Sample of Transmitting and Submitting a Job to Another Server Group (XMIT)

m_JobBegin -j JOBA -s START -v 2.0

 while true;

 do

 m_PhaseBegin

 case ${CURRENT_LABEL} in

 (START)

 m_FileAssign -i -D _DML_XMIT_TEST1 SYSIN

m_JobBegin -j TEST1 -s START -v 2.0 -c B

m_JobSetExecLocation "ATLANTA"

while true ;

do

 m_PhaseBegin

 case ${CURRENT_LABEL} in

(START)

 JUMP_LABEL=STEP01

 ;;

(STEP01)

 m_OutputAssign -c "*" SYSPRINT

 m_FileAssign -i SYSIN

 m_FileDelete ${DATA}/GBOM.J.PRD.ABOMJAW1.ABEND02

 m_RcSet 0

_end

 m_UtilityExec

 JUMP_LABEL=END_JOB

 ;;
Oracle Tuxedo Application Runtime for Batch User Guide 3-61

Using Batch Runt ime
(END_JOB)

 break

 ;;

(*)

 m_RcSet ${MT_RC_ABORT:-S999} "Unknown label : ${CURRENT_LABEL}"

 break

 ;;

esac

m_PhaseEnd

done

m_JobEnd

_DML_XMIT_TEST1

 m_ProgramExec artjesadmin -i ${DD_SYSIN}

 JUMP_LABEL=END_JOB

 ;;

 (END_JOB)

 break

 ;;

 (*)

 m_RcSet ${MT_RC_ABORT:-S999} "Unknown label : {CURRENT_LABEL}"

 break

 ;;

 esac

 m_PhaseEnd

 done

 m_JobEnd
3-62 Oracle Tuxedo Application Runtime for Batch User Guide

In the above sample, job TEST1 will be submitted by the current job and executed by the
ARTJESINITIATOR which belongs to JES's Tuxedo server group ATLANTA.

File Catalog Support
This section contains the following topics.

General Introduction

Database Table

Configuration Variables

External Shell Scripts

External Dependency

General Introduction
With file catalog support in Batch Runtime, users can access dataset under volumes. A volume is
a dataset carrier and exists as a folder; each dataset should belong to a volume.

File catalog contains the mapping from each dataset to each volume. When referencing an
existing and cataloged file on Mainframe, file catalog will be requested to find out the volume in
which the file is located, and then the file will be accessed.

If file catalog functionality is disabled, the behavior in Batch Runtime remains the same as it is
without such functionality.

Database Table
This table shows the general management for file catalog functionality by Batch Runtime. In this
table, each row represents one file-to-volume mapping.

Table 3-16 Batch Runtime Catalog

Name Type Description

FILENAME VARCHAR(256) The file name. It cannot contain any slash.

VOLUME VARCHAR(256) The volume name. It cannot contain any slash.

VOLUME_ATTR CHAR(1) Reserved.
Oracle Tuxedo Application Runtime for Batch User Guide 3-63

Using Batch Runt ime
Configuration Variables
Three configuration variables are required to be added in BatchRT.conf or be set as environment
variables.

MT_USE_FILE_CATALOG
If it is set to yes (MT_USE_FILE_CATALOG=yes), the file catalog functionality is enabled;
otherwise, the functionality is disabled.

MT_VOLUME_DEFAULT
If no volumes are specified when a new dataset is created, Batch Runtime uses the volume
defined by MT_VOLUME_DEFAULT. MT_VOLUME_DEFAULT contains only one volume. For
example, MT_VOLUME_DEFAULT=volume1.

MT_DB_LOGIN

This variable contains database access information. Since the file catalog is stored in
database, Batch Runtime accesses it through MT_DB_LOGIN. For Oracle, its value is
username/password@sid, such as scott/tiger@gdg001. For Db2, its value is
your-database USER your-username USING your-password, such as db2linux
USER db2svr USING db2svr.

External Shell Scripts
You can use CreateTableCatalog[Oracle|Db2].sh or
DropTableCatalog[Oracle|Db2].sh to create or drop the new database table.

EXPDT_DATE CHAR(7) Expiration date of the file

CREATE_DATE CHAR(7) The date when the file is created.

FILE_TYPE VARCHAR(8) File organization.

JOB_ID VARCHAR(8) The ID of the job that creates the entry.

JOB_NAME VARCHAR(32) The name of the job that creates the entry.

STEP_NAME VARCHAR(32) The name of the step that creates the entry.

Primary Key: PK_ART_BATCH_CATALOG

Table 3-16 Batch Runtime Catalog

Name Type Description
3-64 Oracle Tuxedo Application Runtime for Batch User Guide

CreateTableCatalog[Oracle|Db2].sh

Description
Creates table ART_BATCH_CATALOG in database.

Usage
CreateTableCatalog[Oracle|Db2].sh <DB_LOGIN_PARAMETER>

Sample
CreateTableCatalogOracle.sh scott/tiger@orcl

DropTableCatalog[Oracle|Db2].sh

Description
Drops table ART_BATCH_CATALOG from database.

Usage
DropTableCatalog[Oracle|Db2].sh <DB_LOGIN_PARAMETER>

Sample
DropTableCatalogOracle.sh scott/tiger@orcl

External Dependency
To use file catalog functionality in Batch Runtime, File Converter and JCL Converter in ART
Workbench should enable catalog functionality. For more information, please refer to Oracle
Tuxedo Application Rehosting Workbench User Guide.
Oracle Tuxedo Application Runtime for Batch User Guide 3-65

../../../artwb/docs12c/wbuser/index.html
../../../artwb/docs12c/wbuser/index.html

Using Batch Runt ime
3-66 Oracle Tuxedo Application Runtime for Batch User Guide

C H A P T E R 4
Best Practices
Adapting z/OS Capabilities on a UNIX/Linux Environment
Due to the fact that the Batch Runtime is generally used to execute Korn shell scripts issued from
the migration of a z/OS JCL asset, several specific features are provided in order to reproduce
some capabilities of z/OS.

The usage of some of these functions may not have a lot of sense in the target platform when
modifying migrated jobs or writing new ones.

In this chapter, we present some of these features along with other best practices that we
recommend.

Defining Paths for Procedures, Includes and Programs
In z/OS JCLs, the following cards are used to define the libraries where procedures, includes and
programs are stored:

JOBLIB, STEPLIB for programs.

JCLLIB for procedures and steps.

Oracle Tuxedo Application Runtime for Batch offers the functions m_JobLibSet,
m_StepLibSet and m_JclLibSet as a replacement to these statements.

Even if these functions provide the same functionality, for modified and new jobswe encourage
you to adopt the UNIX common rule which is to directly set the environment variables where the
programs, procedures and includes are searched for.
Oracle Tuxedo Application Runtime for Batch User Guide 4-1

Best P ract ices
The main variables to set are:

PATH : environment variable that specifies where to find executable programs.

COBPATH : environment variable that specifies where to find object Cobol programs.

PROCLIB : environment variable that specifies where to find procedures and includes.

Prohibiting the Use of UNIX Commands
In order to trap every possible error or abnormal end, it is better to avoid using basic UNIX
commands (for example: cp / ls / …).

We recommend that you use only the functions provided by the Batch Runtime.

Avoiding the Use of File Overriding
In order to keep jobs simple and understandable, we recommend you avoid the using of file
overriding mechanism in new or modified jobs.
4-2 Oracle Tuxedo Application Runtime for Batch User Guide

C H A P T E R 5
Using Tuxedo Job Enqueueing Service
(TuxJES)
This chapter contains the following topics:

Overview

Configuring a TuxJES System

Using TuxJES

Overview
The batch job system is an important mainframe business application model. The Tuxedo Job
Enqueueing Service (TuxJES) emulation application provides smooth mainframe application
migration to open systems. TuxJES implements a subset of the mainframe JES2 functions (for
example, submit a job, display a job, hold a job, release a job, and cancel a job).

TuxJES addresses the following batch job phases:

Input

Conversion

Processing

Purge

Requirements
TuxJES is an Oracle Tuxedo application; Oracle Tuxedo is required in order to run TuxJES.
Oracle Tuxedo Application Runtime for Batch User Guide 5-1

Us ing Tuxedo Job Enqueue ing Serv i ce (Tux JES)
A shared file system (for example, NFS) is required in order to deploy TuxJES in distributed
environment.

TuxJES Components
TuxJES includes the following key components:

genjesprofile

Generates the security profile for Oracle Tuxedo applications

artjesadmin

TuxJES command interface. It is an Oracle Tuxedo client

ARTJESADM

TuxJES administration server. It is an Oracle Tuxedo server.

ARTJESCONV

TuxJES conversion server. It is an Oracle Tuxedo server.

ARTJESINITIATOR

TuxJES Job Initiator. It is an Oracle Tuxedo server.

ARTJESPURGE

TuxJES purge server. It is an Oracle Tuxedo server.

For more information, see the Oracle Tuxedo Application Runtime for Batch Reference
Guide.

Configuring a TuxJES System

Setting up TuxJES as an Oracle Tuxedo Application
TuxJES is an Oracle Tuxedo application. Most of the TuxJES components are Oracle Tuxedo
client or Oracle Tuxedo servers. You must first configure TuxJES as an Oracle Tuxedo
application. The environment variable JESDIR must be configured correctly which points to the
directory where TuxJES installed.

Oracle Tuxedo Configuration File
Listing 1 shows is an Oracle Tuxedo configuration file (UBBCONFIG) example segment for a
TuxJES system.
5-2 Oracle Tuxedo Application Runtime for Batch User Guide

Se t t ing up Tux JES as an Orac le Tuxedo Appl i cat ion
Listing 1 Oracle Tuxedo UBBCONFIG File Example for the TuxJES System

*GROUPS

QG

 LMID=L1 GRPNO=2 TMSNAME=TMS_QM TMSCOUNT=2

 OPENINFO="TUXEDO/QM:/jes2queue/QUE:JES2QSPACE"

ARTG

 LMID=L1 GRPNO=4

EVTG

 LMID=L1 GRPNO=8

*SERVERS

DEFAULT:

 CLOPT="-A"

TMUSREVT SRVGRP=EVTG SRVID=1 CLOPT="-A"

TMQUEUE

 SRVGRP = QG SRVID = 1

 RESTART = Y CONV = N MAXGEN=10

 CLOPT = "-s JES2QSPACE:TMQUEUE -- -t 5 "

ARTJESADM SRVGRP =ARTG SRVID = 1 MIN=1 MAX=1

 CLOPT = "-A -- -i jesconfig"

ARTJESCONV SRVGRP =ARTG SRVID = 20 MIN=1 MAX=1

 CLOPT = "-A --"

ARTJESINITIATOR SRVGRP =ARTG SRVID = 30

 CLOPT = "-A -- -c ABCDEFG

ARTJESPURGE SRVGRP =ARTG SRVID = 100

 CLOPT = "-A --"
Oracle Tuxedo Application Runtime for Batch User Guide 5-3

Us ing Tuxedo Job Enqueue ing Serv i ce (Tux JES)
The following TuxJES servers should be included in the Oracle Tuxedo configuration file
(UBBCONFIG):

ARTJESADM

ARTJESCONV

ARTJESINITIATOR

ARTJESPURGE

Note: Multiple instances of ARTJESADM, ARTJESCNOV, ARTJESINITIATOR and ARTJESPURGE
can be configured.

For the TuxJES administration server ARTJESADM, a TuxJES configuration file should be
specified using the -i option. In the Oracle Tuxedo configuration file (UBBCONFIG),
ARTJESADM should be configured in front of ARTJESCONV, ARTJESINITIATOR, or ARTJESPURGE
servers.

For more information, see the Oracle Tuxedo Application Runtime for Batch Reference Guide.

TuxJES uses the Oracle Tuxedo /Q component, therefore an Oracle Tuxedo group with an Oracle
Tuxedo messaging server TMQUEUE with TMS_QM configured is required in the
UBBCONFIG file. The name of the /Q queue space should be configured as JES2QSPACE.

TuxJES uses the Oracle Tuxedo Event component, therefore an Oracle Tuxedo user event server,
TMUSREVT is required in the UBBCONFIG file.

A TuxJES system can be either an Oracle Tuxedo SHM application which runs on a single
machine, or an Oracle Tuxedo MP application which runs on multiple machines.

For more information on how to set up Oracle Tuxedo application, see Oracle Tuxedo related
documentation.

Block Time in UBBCONFIG for TuxJES
You can specify the number of timeout periods for blocking messages, transactions, and other
system activities by setting the SCANUNIT and BLOCKTIME parameter. The value you assign must
be a positive multiple of 5.
5-4 Oracle Tuxedo Application Runtime for Batch User Guide

Se t t ing up Tux JES as an Orac le Tuxedo Appl i cat ion
Listing 2 Example Settings

*RESOURCES

IPCKEY 113333

DOMAINID jesdomain

MASTER SITE1

MODEL SHM

MAXACCESSERS 200

MAXSERVERS 50

NOTIFY SIGNAL

SCANUNIT 20

BLOCKTIME 50

In this example, sanity scans are performed in every 20 seconds and request block for no more
than 20 * 50 = 1000 seconds.

Oracle Tuxedo /Q Queue Space and Queue Creation
A /Q queue space with name JES2QSPACE must be created for a TuxJES system. And some /Q
queues should be created within this queue space. TuxJES provides a sample shell script

Table 1 Characteristics of the SCANUNIT and BLOCKTIME Parameters

Parameter Characteristics

SCANUNIT Controls the granularity of checking intervals and timeouts. SCANUNIT must be a
multiple of 5 and between 0 and 60 seconds.

Example: SCANUNIT 20

The default is 10.

BLOCKTIME BLOCKTIME controls how much time can a message block before it times out.

SCANUNIT * BLOCKTIME must not exceed 32767.

The default time of SCANUNIT * BLOCKTIME is approximately 60 seconds.
Oracle Tuxedo Application Runtime for Batch User Guide 5-5

Us ing Tuxedo Job Enqueue ing Serv i ce (Tux JES)
(jesqinit) to create the queue space (JES2QSPACE) and the queues. For more information, see
the Oracle Tuxedo Application Runtime Batch Reference Guide.

File System Configuration
TuxJES uses a file system to communicate with Batch Execution Engine. A directory is created
on the file system for the communication between TuxJES and Batch Execution Engine. The
name of the directory should be specified in the TuxJES configuration file. This directory should
reside at a shared file system (for example, NFS) if you want to deploy the TuxJES system on
multiple machines.

TuxJES Configuration File
A configuration file can be specified for the TuxJES administration server ARTJESADM. The
following parameters can be configured in the configuration file:

JESROOT

The root directory to store job information. It is a mandatory attribute. If this
directory does not exist, ARTJESADM creates it automatically.

DEFAULTJOBCLASS

The default job class if the job class is not set in JCL. It is an optional attribute. The
default job class is A if this attribute is not set.

DEFAULTJOBPRIORITY

The default job priority if the job priority is not set in JCL. It is an optional
attribute. The default job priority is 0 if this attribute is not set.

DUPL_JOB=NODELAY

If it is not set, only one job can be in execution status for a job name. NODELAY will
remove the dependency check. The default value is delay execution.

NJESUPPORT=ON

If it is not set, NJE support will be disabled and thus jobs cannot be run on the
specified server group by Batch Runtime API m_JobSetExecLocation. The
default value is OFF.

EVENTPOST=S,C,E,P,L,A

Specifies whether events are posted for a job at particular stages.
S: Job submission event.
C: Job conversion complete event.
E: Job execution complete event.
P: Job purge event.
5-6 Oracle Tuxedo Application Runtime for Batch User Guide

Se t t ing up Tux JES as an Orac le Tuxedo Appl i cat ion
L: Job cancel completed event.
A: all supported events
If EVENTPOST is not specified, no events are posted. The data buffer with event
post is FML32 type and the fields are defined in tuxjes/include/jesflds.h.

JOBREPOSITORY

The path of the job repository where jobs are stored. The script file path inputted
in job submitting may be a relative path in JOBREPOSITORY if it is set.

PRIVILEGE_MODE

Specifies whether and how to enable the user substitution (See TuxJES User
Substitution). The values are:
NONE: Default value. Indicates jobs are executed by the OS user who starts JES
system. This is compatible with all previous implementations on JES system.
USER_IDENTICAL: Indicates jobs are executed by the Oracle Tuxedo user with
which JES client joins JES system. Make sure that each Oracle Tuxedo user
corresponds to an existing OS user before you choose this value.
USER_MAPPING: When this value is specified, the JES system looks up the TuxJES
user mapping file and finds out the OS user corresponding to the Oracle Tuxedo
user with which JES client joins JES system, and then appoints this OS user as the
job executor.

USER_MAPPING_FILE

The full path where TuxJES user mapping file is stored. It is used along with
PRIVILEGE_MODE when its value is USER_MAPPING.

SYSLOG=ON,OFF

Specifies writing to SYSLOG. The default is ON.
SYSLOG: <JESROOT>/jessys.log

TuxJES Security Configuration
TuxJES leverages the Oracle Tuxedo security mechanism to implement authentication. If
authentication is enabled, a security profile should be generated using the genapprofile utility
and it should be used as a artjesadmin parameter to access the TuxJES system. The user used
in the profile will be the job owner. A job only can be administrated by its owner, such as cancel,
purge, hold and release. A job can be viewed by everybody. If a job is without owner, it can be
manipulated by everyone.
Oracle Tuxedo Application Runtime for Batch User Guide 5-7

../../../artrt/docs12c/batchref/index.html
../../../artrt/docs12c/batchref/index.html

Us ing Tuxedo Job Enqueue ing Serv i ce (Tux JES)
Even if an Oracle Tuxedo application does not have security configured, the genjesprofile
utility still can be used to enforce job owner permission checking and store the database
connection MT_DB_LOGIN.

TuxJES User Mapping File
User mapping file is loaded and takes effect when PRIVILEGE_MODE value is specified to
MAPPING_CREDENTIAL. It defines the mapping relationship between Oracle Tuxedo users and OS
users. Every line in the mapping file is in the format as below:

tuxedousername OSusername

It is recommended that the owner of user mapping file is root and the file permission is
"-rw-------".

Listing 3 shows a segment example of user mapping file for the TuxJES system.

Listing 3 User Mapping File Example For the TuxJES System

tuxedouser1 OSuser1

tuxedouser2 OSuser2

Setting Up TuxJES in MP Mode
TuxJES now can be easily configured within MP mode. For the purpose of running job, however,
the configuration in both EJR and TuxJES need to be adjusted so that jobs can be run in parallel
on different machines. This section clarifies the configuration mandatory for configuring Batch
Runtime in MP mode.

Being shared by all the servers on different machines in a TuxJES domain, the data of jobs should
be located on a shared storage (NFS) and can be accessible by all machines in the domain. In
addition, the NFS should be mounted with the same mount point on all machines. Finally,
JESROOT should be configured correctly on each node to point to the shared JES Root Directory.
During runtime, all the TuxJES servers on any machine would write data to or get data from such
shared JESROOT.

For the details of configuring EJR in MP mode, see “Configuring Batch Runtime in MP Mode”
under “Using Batch Runtime”.
5-8 Oracle Tuxedo Application Runtime for Batch User Guide

Using TuxJES
Using TuxJES
After the TuxJES system starts, you can use the artjesadmin utility to submit a job, hold a job,
release a job, cancel a job, purge a job, display the job information, or subscribe event for job
status change.

Submitting a Job
You can submit a job using the artjesadmin subcommand submitjob:

submitjob(smj) -i scriptfile
The scriptfile parameter is the job script to be submitted. The job script is generated
by Oracle Tuxedo ART Workbench from a JCL.It can be an absolute path format, a
relative path in the current working directory, or a relative path in JOBREPOSITORY if it is
set. Its length is limited to 1023.
artjesadmin also supports direct job submission using the following format:
artjesadmin -i scriptfile

submitjob(smj) -I JCLFile
The JCLFile parameter is the JCL job to be submitted. It can be an absolute path format,
a relative path in the current working directory, or a relative path in JOBREPOSITORY if it
is set. Its length is limited to 1023.
artjesadmin also supports direct job submission using the following format:
artjesadmin -I JCLFile

Submitting a Job in Synchronous Way
You can submit a job in synchronous way by using artjesadmin with the following format:
artjesadmin [-f [security_profile]] [-o ejr_option] [-s shell_option] [-y
[-t timeout(s)]] -i/-I scriptfile

Note: To submit a job in synchronous way, in TuxJES Configuration File, it's required to set
EVENTPOST=A; in UBBCONFIG file, it’s required to set NOTIFY to DIPIN and set server
TMUSREVT.

-y and -t

Descriptions
Option -y and -t are added to submit a job in the synchronous way. Table 2 shows
some details.
Oracle Tuxedo Application Runtime for Batch User Guide 5-9

Us ing Tuxedo Job Enqueue ing Serv i ce (Tux JES)
Exit Code
Table 3 lists the exit codes for artjesadmin if -y is specified.

Standard Output
Information shown on Table 4 will be printed to stdout in the following format.
<JOBID>,<JOBNAME>,<JOBSTATUS>,<JOB RETURN CODE>

Table 2 Option -y and -t Descriptions

Option Value Range Descriptions Notes

-y N/A Enables synchronous mode to wait
for job end.

N/A

-t 1 ~ (2^31 -1) Specifies the timeout value. Optional. If -t is omitted,
artjesadmin will wait infinitely.

While timeout occurs,
artjesadmin command line will
exit but the job will run by JES contin-
uously without impact.

Table 3 Exit Code

Exit Code Descriptions Notes

0 Job is finished successfully. N/A

1 Command execution fails. The code will be returned by either invalid timeout
value or a command line syntax error.

2 Job conversion fails. Job is submitted successfully, but job conversion
fails.

3 Job execution fails. Job is submitted successfully, but job execution fails.

4 Job is canceled. Job is submitted successfully, but is canceled before
reaching final status.

20 Timeout occurs. Job has not been finished within the time specified by
-t option.
5-10 Oracle Tuxedo Application Runtime for Batch User Guide

Disp lay ing Job In fo rmat ion
Listing 4 Sample: Job is Executed Successfully

00000002,JOBA,DONE,C0000

Listing 5 Sample: Job Fails

00000002,JOBA,FAILED,U0568

Listing 6 Sample: Timeout Occurs

00000002,JOBA,Already Timeout!

Displaying Job Information
You can display the information of a job or a series of jobs using the artjesadmin subcommand
printjob:

printjob(ptj) -n jobname | -j jobid | -c job_class |-a [-v] [-m]

-n jobname: Display jobs with given job name
-j jobid: Display a particular job information

Table 4 Standard Output

Output Content Descriptions Sample

<JOBID> Job ID 00005097

<JOBNAME> Job name JOBA

<JOBSTATUS> Job final status (only available if job is finished before the
timeout occurs)

DONE

<JOB RETURN CODE> Job return code from EJR (only available if a job is finished
before the timeout occurs)

C000
Oracle Tuxedo Application Runtime for Batch User Guide 5-11

Us ing Tuxedo Job Enqueue ing Serv i ce (Tux JES)
-c job_class: Display a particular class jobs information
-a: Display all jobs
-v: Verbose mode
-m: Print the CPU time usage of each step in one JOB

The output of the printjob subcommand includes:

JOBNAME: The job Name

JobID: The Job ID generated by TuxJES system

Owner: The submission user of the job

Prty: Priority of the job

C: Job Class

Status: Job Status
EXECUTING: a job is running
CONVING: a job waiting for conversion
WAITING: a job waiting for execution
DONE: a job finished successfully
FAIL: a job finished but failed
HOLD_WAITING: a job is in hold state after conversion
HOLD_CONVING: a job is in hold state without conversion
INDOUBT: a job is in doubt state due to its initiator restarted
CANCELED: a job is canceled

Submit time: The submit time of the job

Step: The current running job step. It is only applicable to running jobs.

Type Run: The TYPRUN definition of the job.

Machine: Only for running/done/failed jobs. It is the machine name that the job is/was
running on.

CPU usage: The user CPU usage and system CPU usage for the job execution.

Execution status: Job execution status.

Result: Job operation result, “OK” or error message.
5-12 Oracle Tuxedo Application Runtime for Batch User Guide

Disp lay ing Job In fo rmat ion
Note: If there are too many jobs in JES2 system, printing all jobs' status in console may lead to
time out; to avoid this situation, users need to configure long enough block time in
ubbconfig of JES.

For more information about how to set block time, please refer to Block Time in
UBBCONFIG for TuxJES.

Getting Job Status in Synchronous Way
You can get job status in synchronous way by using artjesadmin with the following format:

artjesadmin [-f [security_profile]] -p -j jobid

-p and -j

Descriptions
Option -p and -j are added to get job status without interaction in artjesadmin
console.

Exit Code
Table 5 lists the exit codes for artjesadmin if -p is specified.

Table 5 Exit Code

Exit Code Descriptions Notes

0 Job is finished normally.

Job status = DONE

A job is finished successfully.

1 Command execution fails. The failure is caused by an internal error, a network
error, or a syntax error.

3 Job status = FAIL JOB execution fails.

4 Job status = CANCEL A job is canceled.

5 Job status = CONVING A job is waiting for conversion.

6 Job status = EXECUTING A job is running.

7 Job status = HOLD_CONVING A job is in hold state without conversion.

8 Job status = HOLD_WAITING A job is in hold state after conversion.

9 Job status = WAITING A job is waiting for execution.
Oracle Tuxedo Application Runtime for Batch User Guide 5-13

Us ing Tuxedo Job Enqueue ing Serv i ce (Tux JES)
Standard Output
Information shown on Table 6 will be printed to stdout in the following format.
<JOBID>,<JOBNAME>,<JOBSTATUS>,<JOB RETURN CODE>

Listing 7 Sample: Job has been Finished Normally

00000002,JOBA,DONE,C0000

Listing 8 Sample: Job is Finished but Fails

00000002,JOBA,FAILED,U0568

10 Job status = DISCARD This status will occur if tpenqueue() fails.

11 Job status = INDOUBT When a job is running, if JES server
ARTJESINITIATOR is shutdown and then restart-
ed, the job status will be INDOUBT.

22 Job doesn’t exist. N/A

Table 6 Standard Output

Output Content Descriptions Sample

<JOBID> Job ID 00005097

<JOBNAME> Job name JOBA

<JOBSTATUS> Job current status DONE

<JOB RETURN CODE> Job return code from EJR (only available if a job has fin-
ished)

C000

Table 5 Exit Code

Exit Code Descriptions Notes
5-14 Oracle Tuxedo Application Runtime for Batch User Guide

Holding a Job
Listing 9 Sample: Job is Running

00000002,JOBA,EXECUTING

Holding a Job
You can hold a job or a series of jobs which are in CONVING or WAITING status using the
artjesadmin subcommand holdjob:

holdjob(hj) -n job name | -j jobid | -c job_class | -a

-n jobname: hold jobs with given job name
-j jobid: hold a particular job
-c job_class: hold a particular class jobs
-a: hold all jobs

Releasing a Job
You can release a job or a series of jobs which are in HOLD_WAITING or HOLD_CONVING status
using the artjesadmin subcommand releasejob:

releasejob(rlj) -n job name | -j jobid | -c job_class | -a

-n jobname: release jobs with given job name
-j jobid: release a particular job
-c job_class: release a particular class jobs
-a: release all jobs

Canceling a Job
You can cancel a job or a series of jobs using the artjesadmin subcommand canceljob:

canceljob(cj) -n job name | -j jobid | -c job_class | -a

-n jobname: cancel jobs with given job name
-j jobid: cancel a particular job
-c job_class: cancel a particular class jobs
-a: cancel all jobs
Oracle Tuxedo Application Runtime for Batch User Guide 5-15

Us ing Tuxedo Job Enqueue ing Serv i ce (Tux JES)
Purging a Job
You can purge a job or a series of jobs using the artjesadmin subcommand purgejob:

purgejob(pgj) -n job name | -j jobid | -a

-n jobname: purge jobs with given job name
-j jobid: purge a particular job
-a: purge all jobs

Completed jobs in the DONE or FAIL status are moved to the purge queue. For other jobs,
purgejob has same effect as canceljob. The purgejob command does not purge the job
directly. The ARTJESPURGE server deletes the job from the TuxJES system.

Displaying/Changing ARTJESINITIATOR Configuration
You can display the number of maximum concurrent executing jobs of an ARTJESINITIATOR
server using the artjesadmin subcommand printconcurrent:

printconcurrent(pco) -g groupname -i serverid

-g groupname: the Tuxedo group name of the ARTJESINITIATOR server
-i serverid: the Tuxedo server id of the ARTJESINITIATOR server

You can change the number of maximum concurrent executing jobs of an ARTJESINITIATOR
server using the artjesadmin subcommand changeconcurrent:

changeconcurrent(chco) -g groupname -i serverid -n concurrent_num

-g groupname: the Tuxedo group name of the ARTJESINITIATOR server
-i serverid: the Tuxedo server id of the ARTJESINITIATOR server
-n concurrent_num: the number of maximum concurrent executing jobs

Event Subscribing/Unsubscribing
You can subscribe or unsubscribe job status change event using the artjesadmin subcommand
event:

event (et) [-t C,E,P,L,A] on|off

C: job conversion complete event
E: job execution finish event
P: job purge event
L: job cancel completed event
5-16 Oracle Tuxedo Application Runtime for Batch User Guide

See A l so
A: all supported events. If the event is set to "on", A is the default.
on |off: The submission is on or off. the "on" setting can be used with the -t
option.

After subscribing to an event, you are notified on the artjesadmin console when the
corresponding event is generated.

See Also
Oracle Tuxedo Application Runtime for Batch Reference Guide
Oracle Tuxedo Application Runtime for Batch User Guide 5-17

../batchref/index.html

Us ing Tuxedo Job Enqueue ing Serv i ce (Tux JES)
5-18 Oracle Tuxedo Application Runtime for Batch User Guide

	Oracle Tuxedo Application Runtime for Batch
	12c Release 1 (12.1.1)

	Oracle Tuxedo Application Runtime for Batch User Guide, 12c Release 1 (12.1.1)
	Introduction
	Purpose
	Organization
	See Also

	Overview of the Batch Runtime Environment
	Oracle Tuxedo Application Runtime for Batch Presentation and Structure
	Technical Functions
	High-Level Functions
	Interface-Level Functions

	Script Execution Phases

	Using Batch Runtime
	Configuration Files
	BatchRT.conf
	Messages.conf
	FunctionReturnCode.conf
	ReturnCode.conf

	Setting Environment Variables
	Configuring Batch Runtime in MP Mode
	Creating a Script
	General Structure of a Script
	Script Example
	Defining and Using Symbols
	Creating a Step That Executes a Program
	Application Program Abend Execution
	Creating a Procedure
	Creating an In-Stream Procedure
	Creating an External Procedure

	Using a Procedure
	Modifying a Procedure at Execution Time
	Using Overrides for File Assignments

	Controlling a Script's Behavior
	Conditioning the Execution of a Step
	Using m_CondIf, m_CondElse, and m_CondEndif
	Using m_CondExec

	Controlling the Execution Flow
	Changing Default Error Messages

	Different Behaviors from z/OS
	Using Files
	Creating a File Definition
	m_FileBuild Examples
	m_FileAssign examples

	Assigning and Using Files
	About DD DISP=MOD

	Concurrent File Accessing Control
	Using Generation Data Group (GDG)
	GDG Management Functionalities
	File-Based Management
	DB-Based Management
	Support for Data Control Block (DCB)

	Using an In-Stream File
	Using a Set of Concatenated Files
	Using an External “sysin”
	Deleting a File
	RDB Files
	Using an RDBMS Connection

	Submitting a Job Using INTRDR Facility
	Submitting a Job With EJR
	User-Defined Entry/Exit
	Configuration

	Batch Runtime Logging
	General Introduction
	Log Message Format
	Log Message Level
	Log Level Control
	Log File Structure

	Log Header
	Configuration

	File Information Logging
	Configuration

	Using Batch Runtime With a Job Scheduler
	Executing an SQL Request
	Simple Application on COBOL-IT / BDB
	Dynamic JCL Job Execution
	General Introduction
	Requirements
	Configurations
	Working Folder Configurations for JCL Conversion
	EJR Configurations
	The Queue for JCL Conversion

	Using JES Client to Manage JCL Jobs
	Submitting a JCL Job
	Printing Jobs
	Holding/Releasing/Canceling/Purging a JCL job
	JCL Conversion Log

	Network Job Entry (NJE) Support
	General Introduction
	Configurations
	Job Execution Server Group
	ON/OFF Setting of NJE Support
	Environment Variable MT_TMP in MP Mode
	Queue EXECGRP

	NJE Job Sample

	File Catalog Support
	General Introduction
	Database Table
	Configuration Variables
	External Shell Scripts
	CreateTableCatalog[Oracle|Db2].sh
	DropTableCatalog[Oracle|Db2].sh

	External Dependency

	Best Practices
	Adapting z/OS Capabilities on a UNIX/Linux Environment
	Defining Paths for Procedures, Includes and Programs
	Prohibiting the Use of UNIX Commands
	Avoiding the Use of File Overriding

	Using Tuxedo Job Enqueueing Service (TuxJES)
	Overview
	Requirements
	TuxJES Components

	Configuring a TuxJES System
	Setting up TuxJES as an Oracle Tuxedo Application
	Oracle Tuxedo Configuration File
	Oracle Tuxedo /Q Queue Space and Queue Creation
	File System Configuration
	TuxJES Configuration File
	TuxJES Security Configuration
	TuxJES User Mapping File

	Setting Up TuxJES in MP Mode

	Using TuxJES
	Submitting a Job
	Submitting a Job in Synchronous Way

	Displaying Job Information
	Getting Job Status in Synchronous Way

	Holding a Job
	Releasing a Job
	Canceling a Job
	Purging a Job
	Displaying/Changing ARTJESINITIATOR Configuration
	Event Subscribing/Unsubscribing

	See Also

