
Oracle® Tuxedo Message Queue (OTMQ)
Reference Guide
12c Release 1 (12.1.1)

June 2012

Oracle Tuxedo Message Queue Reference Guide, 12c Release 1 (12.1.1)

Copyright © 2012 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

1. Oracle Tuxedo Message Queue
Function Reference

tpdequeue() . 1-2

tpenqueue() . 1-11

tpqattach() . 1-22

tpqdetach(). 1-27

tpqbind() . 1-30

tpqlocate() . 1-34

tpenqplus(). 1-38

tpdeqplus(). 1-47

tpqpublish() . 1-55

tpqsubscribe() . 1-58

tpqunsubscribe() . 1-63

tpqconfirmmsg() . 1-64

tpqsetselect() . 1-67

tpqcancelselect() . 1-74

tpqreadjrn() . 1-76

tpqshowpending() . 1-79

tpqgetmsga() . 1-81

tpqcancelget() . 1-84

tpqerrno(). 1-87

tpqexit() . 1-87

tpqstrerror() . 1-88

2. Oracle Tuxedo Message Queue Command Reference
buildqclient . 2-1

buildqserver . 2-4

ConvertQSPACE . 2-7
 Oracle SALT Administration Guide iii

tmqadmin. 2-8

3. Oracle Tuxedo Message Queue UBB Server Reference
TuxMsgQLD . 3-1

TuxMsgQ. 3-4

TuxMQFWD . 3-6

TMQ_NA . 3-7

TMS_TMQM . 3-8

TMQEVT . 3-8

TMQFORWARDPLUS. 3-9
 Oracle SALT Administration Guide iv

 Oracle SALT Administration Guide v

vi Oracle SALT Administration Guide

C H A P T E R 1
Oracle Tuxedo Message Queue
Function Reference
Table 1-1 Oracle Tuxedo Message Queue Functions

Name Description

tpdequeue() Routine to dequeue a message from a queue.

tpenqueue() Routine to enqueue a message.

tpqattach() Connects an application program to the OTMQ message queuing space by
attaching it to a message queue.

tpqdetach() Detaches a selected message queue or all of the application's message queues
from the message queuing qspace.

tpqbind() Dynamically associates a queue name to a queue reference at
run-time.

tpqlocate() Locates the queue name for the specified queue name or queue alias.

tpenqplus() Sends a message to a target queue in target qspace using a set of standard
OTMQ delivery modes

tpdeqplus() Retrieves the next available message from a selected queue and moves it to
the location specified in the data argument.

tpqpublish() Used to publish a topic data.

tpqsubscribe() Used to subscribe to a topic.
Oracle Tuxedo Message Queue APIs 1-1

<~runChNum>
tpdequeue()

Name
tpdequeue()—Routine to dequeue a message from a queue.

Synopsis
#include <atmi.h>
#include <tmqentry.h>
#include <tmqreturn.h>
int tpdequeue(char *qspace, char *qname, TPQCTL *ctl, char **data, long

*len, long flags)

tpqunsubscribe() Used to remove a subscription.

tpqconfirmmsg() Confirms receipt of a message that requires explicit confirmation.

tpqsetselect() Allows application developers to define complex selection criteria for
message reception.

tpqcancelselect() Releases the selection array and index handle associated with a previously
generated selection mask.

tpqreadjrn() Reads a message from an OTMQ local group journal.

tpqshowpending() Requests the number of pending messages for a list of selected
queues.

tpqgetmsga() Requests asynchronous notification of a message arrival.

tpqcancelget() Cancels all pending tpqgetmsga requests that match the value
specified in the sel_filter argument.

tpqerrno() Gets the errno of OTMQ system call.

tpqexit() Terminates all attachments between the application and the OTMQ
queue service.

tpqstrerror() Gets Oracle Tuxedo Message Queue error message string details.

Table 1-1 Oracle Tuxedo Message Queue Functions (Continued)

Name Description
1-2 Oracle Tuxedo Message Queue APIs

tpdequeue()
Description
tpdequeue() takes a message for processing from the queue named by qname in the qspace
queue space.

By default, the message at the top of the queue is dequeued. The order of messages on the queue
is defined when the queue is created. The application can request a particular message for
dequeuing by specifying its message identifier or correlation identifier using the ctl parameter.
ctl flags can also be used to indicate that the application wants to wait for a message, in the case
when a message is not currently available. It is possible to use the ctl parameter to look at a
message without removing it from the queue or changing its relative position on the queue. See
the section below describing this parameter.

data is the address of a pointer to the buffer into which a message is read, and len points to the
length of that message. *data must point to a buffer originally allocated by tpalloc(). If a
message is larger than the buffer passed to tpdequeue, the buffer is increased in size to
accommodate the message. To determine whether a message buffer changed in size, compare its
(total) size before tpdequeue() was issued with *len. If *len is larger, then the buffer has
grown; otherwise, the buffer has not changed size. Note that *data may change for reasons other
than the buffer’s size increased. If *len is 0 upon return, then the message dequeued has no data
portion and neither *data nor the buffer it points to were modified. It is an error for *data or len
to be NULL.

The message is dequeued in transaction mode if the caller is in transaction mode and the
TPNOTRAN flag is not set. This has the effect that if tpdequeue() returns successfully and the
caller’s transaction is committed successfully, then the message is removed from the queue. If the
caller’s transaction is rolled back either explicitly or as the result of a transaction timeout or some
communication error, then the message will be left on the queue (that is, the removal of the
message from the queue is also rolled back). It is not possible to enqueue and dequeue the same
message within the same transaction.

The message is not dequeued in transaction mode if either the caller is not in transaction mode,
or the TPNOTRAN flag is set. When not in transaction mode, if a communication error or a timeout
occurs, the application will not know whether or not the message was successfully dequeued and
the message may be lost.

The following is a list of valid flags:

TPNOTRAN
If the caller is in transaction mode and this flag is set, the message is not dequeued within
the caller’s transaction. A caller in transaction mode that sets this flag is still subject to the
Oracle Tuxedo Message Queue APIs 1-3

<~runChNum>
transaction timeout (and no other) when dequeuing the message. If message dequeuing
fails, the caller’s transaction is not affected.

TPNOBLOCK
The message is not dequeued if a blocking condition exists. If this flag is set and a
blocking condition exists such as the internal buffers into which the message is transferred
are full, the call fails and tperrno is set to TPEBLOCK. If this flag is set and a blocking
condition exists because the target queue is opened exclusively by another application, the
call fails, tperrno is set to TPEDIAGNOSTIC, and the diagnostic field of the TPQCTL
structure is set to QMESHARE. In the latter case, the other application, which is based on a
Oracle product other than the Oracle Tuxedo ATMI system, opened the queue for
exclusive read and/or write using the Queuing Services API (QSAPI).

When TPNOBLOCK is not set and a blocking condition exists, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking timeout). This
blocking condition does not include blocking on the queue itself if the TPQWAIT option in
flags (of the TPQCTL structure) is specified.

TPNOTIME
Setting this flag signifies that the caller is willing to block indefinitely and wants to be
immune to blocking timeouts. Transaction timeouts may still occur.

TPNOCHANGE
When this flag is set, the type of the buffer pointed to by *data is not allowed to change.
By default, if a buffer is received that differs in type from the buffer pointed to by *data,
then *data’s buffer type changes to the received buffer’s type so long as the receiver
recognizes the incoming buffer type. That is, the type and subtype of the dequeued
message must match the type and subtype of the buffer pointed to by *data.

TPSIGRSTRT
Setting this flag indicates that any underlying system calls that are interrupted by a signal
should be reissued. When this flag is not set and a signal interrupts a system call, the call
fails and sets tperrno to TPGOTSIG.

If tpdequeue() returns successfully, the application can retrieve additional information about
the message using the ctl data structure. The information may include the message identifier for
the dequeued message; a correlation identifier that should accompany any reply or failure
message so that the originator can correlate the message with the original request; the quality of
service the message was delivered with, the quality of service any replies to the message should
be delivered with; the name of a reply queue if a reply is desired; and the name of the failure queue
on which the application can queue information regarding failure to dequeue the message. These
are described below.
1-4 Oracle Tuxedo Message Queue APIs

tpdequeue()
In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpdequeue().

Control Parameter
The TPQCTL structure is used by the application program to pass and retrieve parameters
associated with dequeuing the message. The flags element of TPQCTL is used to indicate what
other elements in the structure are valid.

On input to tpdequeue(), the following elements may be set in the TPQCTL structure:

long flags; /* indicates which of the values
 * are set */
char msgid[32]; /* ID of message to dequeue */
char corrid[32]; /* correlation identifier of
 * message to dequeue */

The following is a list of valid bits for the flags parameter controlling input information for
tpdequeue():

TPNOFLAGS

No flags are set. No information is taken from the control structure.

TPQGETBYMSGID

Setting this flag requests that the message with the message identifier specified by
ctl−>msgid be dequeued. The message identifier may be acquired by a prior call to
tpenqueue(). Note that a message identifier changes if the message has moved from one
queue to another. Note also that the entire 32 bytes of the message identifier value are
significant, so the value specified by ctl−>msgid must be completely initialized (for
example, padded with NULL characters).

TPQGETBYCORRID

Setting this flag requests that the message with the correlation identifier specified by
ctl−>corrid be dequeued. The correlation identifier is specified by the application
when enqueuing the message with tpenqueue(). Note that the entire 32 bytes of the
correlation identifier value are significant, so the value specified by ctl−>corrid must
be completely initialized (for example, padded with NULL characters).

TPQWAIT
Setting this flag indicates that an error should not be returned if the queue is empty.
Instead, the process should wait until a message is available. If TPQWAIT is set in
conjunction with TPQGETBYMSGID or TPQGETBYCORRID, it indicates that an error should
not be returned if no message with the specified message identifier or correlation identifier
is present in the queue. Instead, the process should wait until a message meeting the
Oracle Tuxedo Message Queue APIs 1-5

<~runChNum>
criteria is available. The process is still subject to the caller’s transaction timeout, or, when
not in transaction mode, the process is subject to the timeout specified on the TMQUEUE
process by the -t option.

If a message matching the desired criteria is not immediately available and the configured
action resources are exhausted, tpdequeue()returns -1, tperrno is set to
TPEDIAGNOSTIC, and the diagnostic field of the TPQCTL structure is set to QMESYSTEM.

Note that each tpdequeue() request specifying the TPQWAIT control parameter requires
that a queue manager (TMQUEUE) action object be available if a message satisfying the
condition is not immediately available. If an action object is not available, the
tpdequeue() request fails. The number of available queue manager actions are specified
when a queue space is created or modified. When a waiting dequeue request completes,
the associated action object associated is made available for another request.

TPQPEEK

If this flag is set, the specified message is read but is not removed from the queue. This
flag implies the TPNOTRAN flag has been set for the tpdequeue() operation. That is,
non-destructive dequeuing is non-transactional. Note that it is not possible to read
messages enqueued or dequeued within a transaction before the transaction completes.

When a thread is non-destructively dequeuing a message using TPQPEEK, the message
may not be seen by other non-blocking dequeuers for the brief time the system is
processing the non-destructive dequeue request. This includes dequeuers using specific
selection criteria (such as message identifier and correlation identifier) that are looking for
the message currently being non-destructively dequeued.

On output from tpdequeue(), the following elements may be set in the TPQCTL structure:

long flags; /* indicates which of the values
 * should be set */

long priority; /* enqueue priority */
char msgid[32]; /* ID of message dequeued */
char corrid[32]; /* correlation identifier used to
 * identify the message */
long delivery_qos; /* delivery quality of service */
long reply_qos; /* reply message quality of service */
char replyqueue[16]; /* queue name for reply */
char failurequeue[16]; /* queue name for failure */
long diagnostic; /* reason for failure */
long appkey; /* application authentication client
1-6 Oracle Tuxedo Message Queue APIs

tpdequeue()
 * key */
long urcode; /* user-return code */
CLIENTID cltid; /* client identifier for originating
 * client */

The following is a list of valid bits for the flags parameter controlling output information from
tpdequeue(). For any of these bits, if the flag bit is turned on when tpdequeue() is called, the
associated element in the structure is populated with the value provided when the message was
queued, and the bit remains set. If a value is not available or the bit is not set when tpdequeue()
is called, tpdequeue() completes with the flag turned off.

TPQPRIORITY
If this flag is set, the call to tpdequeue() is successful, and the message was queued with
an explicit priority, then the priority is stored in ctl−>priority. The priority is in the
range 1 to 100, inclusive, and the higher the number, the higher the priority (that is, a
message with a higher number is dequeued before a message with a lower number). For
queues not ordered by priority, the value is informational.

If no priority was explicitly specified when the message was queued and the call to
tpdequeue() is successful, the priority for the message is 50.

TPQMSGID
If this flag is set and the call to tpdequeue() is successful, the message identifier is stored
in ctl−>msgid. The entire 32 bytes of the message identifier value are significant.

TPQCORRID
If this flag is set, the call to tpdequeue() is successful, and the message was queued with
a correlation identifier, then the correlation identifier is stored in ctl−>corrid. The
entire 32 bytes of the correlation identifier value are significant. Any Oracle Tuxedo
ATMI /Q provided reply to a message has the correlation identifier of the original request
message.

TPQDELIVERYQOS

If this flag is set, the call to tpdequeue() is successful, and the message was queued with
a delivery quality of service, then the flag—TPQQOSDEFAULTPERSIST,
TPQQOSPERSISTENT, or TPQQOSNONPERSISTENT—is stored in ctl->delivery_qos. If
no delivery quality of service was explicitly specified when the message was queued, the
default delivery policy of the target queue dictates the delivery quality of service for the
message.

TPQREPLYQOS

If this flag is set, the call to tpdequeue() is successful, and the message was queued with
a reply quality of service, then the flag—TPQQOSDEFAULTPERSIST, TPQQOSPERSISTENT,
Oracle Tuxedo Message Queue APIs 1-7

<~runChNum>
or TPQQOSNONPERSISTENT—is stored in ctl->reply_qos. If no reply quality of service
was explicitly specified when the message was queued, the default delivery policy of the
ctl->replyqueue queue dictates the delivery quality of service for any reply.

Note that the default delivery policy is determined when the reply to a message is
enqueued. That is, if the default delivery policy of the reply queue is modified between
the time that the original message is enqueued and the reply to the message is enqueued,
the policy used is the one in effect when the reply is finally enqueued.

TPQREPLYQ
If this flag is set, the call to tpdequeue() is successful, and the message was queued with
a reply queue, then the name of the reply queue is stored in ctl−>replyqueue. Any reply
to the message should go to the named reply queue within the same queue space as the
request message.

TPQFAILUREQ
If this flag is set, the call to tpdequeue() is successful, and the message was queued with
a failure queue, then the name of the failure queue is stored in ctl−>failurequeue. Any
failure message should go to the named failure queue within the same queue space as the
request message.

The following remaining bits for the flags parameter are cleared (set to zero) when
tpdequeue() is called: TPQTOP, TPQBEFOREMSGID, TPQTIME_ABS, TPQTIME_REL,
TPQEXPTIME_ABS, TPQEXPTIME_REL, and TPQEXPTIME_NONE. These bits are valid bits for the
flags parameter controlling input information for tpenqueue().

If the call to tpdequeue() failed and tperrno is set to TPEDIAGNOSTIC, a value indicating the
reason for failure is returned in ctl−>diagnostic. The possible values are defined below in the
Diagnostics section.

Additionally on output, if the call to tpdequeue() is successful, ctl−>appkey is set to the
application authentication key, ctl−>cltid is set to the identifier for the client originating the
request, and ctl−>urcode is set to the user-return code value that was set when the message was
enqueued.

If the ctl parameter is NULL, the input flags are considered to be TPNOFLAGS, and no output
information is made available to the application program.

Return Values
Upon failure, tpdequeue() returns -1 and sets tperrno to indicate the error condition.
1-8 Oracle Tuxedo Message Queue APIs

tpdequeue()
Errors
Upon failure, tpdequeue() sets tperrno to one of the following values. (Unless otherwise
noted, failure does not affect the caller’s transaction, if one exists.)

[TPEINVAL]
Invalid arguments were given (for example, qname is NULL, data does not point to space
allocated with tpalloc() or flags are invalid).

[TPENOENT]
Cannot access the qspace because it is not available (that is, the associated TuxMsgQ
server is not available), or cannot start a global transaction due to the lack of entries in the
Global Transaction Table (GTT).

[TPEOTYPE]
Either the type and subtype of the dequeued message are not known to the caller; or,
TPNOCHANGE was set in flags and the type and subtype of *data do not match the type
and subtype of the dequeued message. In either case, *data, its contents, and *len are not
changed. When the call is made in transaction mode and this error occurs, the transaction
is marked abort-only, and the message remains on the queue.

[TPETIME]
This error code indicates that either a timeout has occurred or tpdequeue() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout cannot
occur if TPNOBLOCK and/or TPNOTIME is specified.) In either case, no changes are made to
*data, its contents, or *len.

If a transaction timeout has occurred, then, with one exception, any attempts to perform
further conversational work, send new requests, or receive outstanding replies will fail
with TPETIME until the transaction has been aborted. The exception is a request that does
not block, expects no reply, and is not sent on behalf of the caller’s transaction (that is,
tpacall() with TPNOTRAN, TPNOBLOCK, and TPNOREPLY set).

When a service fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were
equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.
Oracle Tuxedo Message Queue APIs 1-9

../ref/ubb.html

<~runChNum>
[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpdequeue() was called improperly. There is no effect on the queue or the transaction.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file. There is no effect on the queue.

[TPEOS]
An operating system error has occurred. There is no effect on the queue.

[TPEDIAGNOSTIC]
Dequeuing a message from the specified queue failed. The reason for failure can be
determined by the diagnostic value returned via ctl structure.

Diagnostic
The following diagnostic values are returned during the dequeuing of a message:

[QMEINVAL]
An invalid flag value was specified.

[QMEBADRMID]
An invalid resource manager identifier was specified.

[QMENOTOPEN]
The resource manager is not currently open.

[QMETRAN]
The call was not in transaction mode or was made with the TPNOTRAN flag set and an error
occurred trying to start a transaction in which to dequeue the message. This diagnostic is
not returned by queue managers from Oracle Tuxedo release 7.1 or later.

[QMEBADMSGID]
An invalid message identifier was specified for dequeuing.

[QMESYSTEM]
A system error has occurred. The exact nature of the error is written to a log file.
1-10 Oracle Tuxedo Message Queue APIs

tpenqueue()
[QMEOS]
An operating system error has occurred.

[QMEABORTED]
The operation was aborted. When executed within a global transaction, the global
transaction has been marked rollback-only. Otherwise, the queue manager aborted the
operation.

[QMEPROTO]
A dequeue was done when the transaction state was not active.

[QMEBADQUEUE]
An invalid or deleted queue name was specified.

[QMENOMSG]
No message was available for dequeuing. Note that it is possible that the message exists
on the queue and another application process has read the message from the queue. In this
case, the message may be put back on the queue if that other process rolls back the
transaction.

[QMEINUSE]
When dequeuing a message by message identifier or correlation identifier, the specified
message is in use by another transaction. Otherwise, all messages currently on the queue
are in use by other transactions. This diagnostic is not returned by queue managers from
Oracle Tuxedo release 7.1 or later.

[QMESHARE]
When dequeuing a message from a specified queue, the specified queue is opened
exclusively by another application. The other application is one based on an Oracle
product other than the Oracle Tuxedo system that opened the queue for exclusive read
and/or write using the Queuing Services API (QSAPI).

See Also
qmadmin(1), tpalloc(3c), tpenqueue(), APPQ_MIB(5), TMQUEUE(5)

tpenqueue()

Name
tpenqueue()—Routine to enqueue a message.
Oracle Tuxedo Message Queue APIs 1-11

../../../tuxedo/docs12c/rfcm/rfcmd.html
../../../tuxedo/docs12c/rf5/rf5.html
../../../tuxedo/docs12c/rf5/rf5.html

<~runChNum>
Synopsis
#include <atmi.h>
#include <tmqentry.h>
#include <tmqreturn.h>
int tpenqueue(char *qspace, char *qname, TPQCTL *ctl, char *data, long len,

long flags)

Description
tpenqueue() stores a message on the queue named by qname in the qspace queue space. A
queue space is a collection of queues, one of which must be qname.

When the message is intended for an Oracle Tuxedo ATMI system server, the qname matches the
name of a service provided by the server. The system provided server, TMQFORWARDPLUS,
provides a default mechanism for dequeuing messages from the queue and forwarding them to
servers that provide a service matching the queue name. If the originator expects a reply, then the
reply to the forwarded service request is stored on the originator’s queue, unless otherwise
specified. The originator will dequeue the reply message at a subsequent time. Queues can also
be used for a reliable message transfer mechanism between any pair of Oracle Tuxedo ATMI
system processes (clients and/or servers). In this case, the queue name does not match a service
name but some agreed upon name for transferring the message.

If data is non-NULL, it must point to a buffer previously allocated by tpalloc() and len
should specify the amount of data in the buffer that should be queued. Note that if data points to
a buffer of a type that does not require a length to be specified (for example, an FML fielded
buffer), then len is ignored. If data is NULL, len is ignored and a message is queued with no
data portion.

The message is queued at the priority defined for qspace unless overridden by a previous call to
tpsprio().

If the caller is within a transaction and the TPNOTRAN flag is not set, the message is queued in
transaction mode. This has the effect that if tpenqueue() returns successfully and the caller’s
transaction is committed successfully, then the message is guaranteed to be available subsequent
to the transaction completing. If the caller’s transaction is rolled back either explicitly or as the
result of a transaction timeout or some communication error, then the message will be removed
from the queue (that is, the placing of the message on the queue is also rolled back). It is not
possible to enqueue then dequeue the same message within the same transaction.

The message is not queued in transaction mode if either the caller is not in transaction mode, or
the TPNOTRAN flag is set. Once tpenqueue() returns successfully, the submitted message is
1-12 Oracle Tuxedo Message Queue APIs

../ref/ubb.html

tpenqueue()
guaranteed to be in the queue. When not in transaction mode, if a communication error or a
timeout occurs, the application will not know whether or not the message was successfully stored
on the queue.

The order in which messages are placed on the queue is controlled by the application via ctl data
structure as described below; the default queue ordering is set when the queue is created.

The following is a list of valid flags:

TPNOTRAN
If the caller is in transaction mode and this flag is set, the message is not queued within
the caller’s transaction. A caller in transaction mode that sets this flag is still subject to the
transaction timeout (and no other) when queuing the message. If message queuing fails,
the caller’s transaction is not affected.

TPNOBLOCK
The message is not enqueued if a blocking condition exists. If this flag is set and a
blocking condition exists such as the internal buffers into which the message is transferred
are full, the call fails and tperrno is set to TPEBLOCK. If this flag is set and a blocking
condition exists because the target queue is opened exclusively by another application, the
call fails, tperrno is set to TPEDIAGNOSTIC, and the diagnostic field of the TPQCTL
structure is set to QMESHARE. In the latter case, the other application, which is based on an
Oracle product other than the Oracle Tuxedo ATMI system, opened the queue for
exclusive read and/or write using the Queuing Services API (QSAPI).

When TPNOBLOCK is not set and a blocking condition exists, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking timeout). If a
timeout occurs, the call fails and tperrno is set to TPETIME.

TPNOTIME
Setting this flag signifies that the caller is willing to block indefinitely and wants to be
immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If this flag is set and a signal interrupts any underlying system calls, the interrupted system
call is reissued. If TPSIGRSTRT is not set and a signal interrupts a system call,
tpenqueue() fails and tperrno is set to TPGOTSIG.

Additional information about queuing the message can be specified via ctl data structure. This
information includes values to override the default queue ordering placing the message at the top
of the queue or before an enqueued message; an absolute or relative time after which a queued
message is made available; an absolute or relative time when a message expires and is removed
from the queue; the quality of service for delivering the message; the quality of service that any
Oracle Tuxedo Message Queue APIs 1-13

<~runChNum>
replies to the message should use; a correlation identifier that aids in correlating a reply or failure
message with the queued message; the name of a queue to which a reply should be enqueued; and
the name of a queue to which any failure message should be enqueued.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpenqueue().

Control Parameter
The TPQCTL structure is used by the application program to pass and retrieve parameters
associated with enqueuing the message. The flags element of TPQCTL is used to indicate what
other elements in the structure are valid.

On input to tpenqueue(), the following elements may be set in the TPQCTL structure:

long flags; /* indicates which of the values
 * are set */
long deq_time; /* absolute/relative for dequeuing */
long priority; /* enqueue priority */
long exp_time /* expiration time */
long delivery_qos /* delivery quality of service */
long reply_qos /* reply quality of service */
long urcode; /* user-return code */
char msgid[32]; /* ID of message before which to queue
 * request */
char corrid[32]; /* correlation identifier used to
 * identify the msg */
char replyqueue[16]; /* queue name for reply message */
char failurequeue[16]; /* queue name for failure message */

The following is a list of valid bits for the flags parameter controlling input information for
tpenqueue():

TPNOFLAGS
No flags or values are set. No information is taken from the control structure.

TPQTOP
Setting this flag indicates that the queue ordering be overridden and the message placed
at the top of the queue. This request may not be granted depending on whether or not the
queue was configured to allow overriding the queue ordering. TPQTOP and
TPQBEFOREMSGID are mutually exclusive flags.
1-14 Oracle Tuxedo Message Queue APIs

tpenqueue()
TPQBEFOREMSGID
Setting this flag indicates that the queue ordering be overridden and the message placed
in the queue before the message identified by ctl−>msgid. This request may not be
granted depending on whether or not the queue was configured to allow overriding the
queue ordering. TPQTOP and TPQBEFOREMSGID are mutually exclusive flags. Note that the
entire 32 bytes of the message identifier value are significant, so the value identified by
ctl−>msgid must be completely initialized (for example, padded with NULL
characters).

TPQTIME_ABS

If this flag is set, the message is made available after the time specified by
ctl−>deq_time. The deq_time is an absolute time value as generated by time(2),
mktime(3), or gp_mktime(3c) (the number of seconds since 00:00:00 Universal
Coordinated Time—UTC, January 1, 1970). TPQTIME_ABS and TPQTIME_REL are
mutually exclusive flags. The absolute time is determined by the clock on the machine
where the queue manager process resides.

TPQTIME_REL

If this flag is set, the message is made available after a time relative to the completion of
the enqueuing operation. ctl−>deq_time specifies the number of seconds to delay after
the enqueuing completes before the submitted message should be available.
TPQTIME_ABS and TPQTIME_REL are mutually exclusive flags.

TPQPRIORITY

If this flag is set, the priority at which the message should be enqueued is stored in
ctl−>priority. The priority must be in the range 1 to 100, inclusive. The higher the
number, the higher the priority (that is, a message with a higher number is dequeued
before a message with a lower number). For queues not ordered by priority, this value is
informational.

If this flag is not set, the priority for the message is 50 by default.

TPQCORRID

If this flag is set, the correlation identifier value specified in ctl−>corrid is available
when a message is dequeued with tpdequeue(). This identifier accompanies any reply
or failure message that is queued so that an application can correlate a reply with a
particular request. Note that the entire 32 bytes of the correlation identifier value are
significant, so the value specified in ctl−>corrid must be completely initialized (for
example, padded with NULL characters).

TPQREPLYQ

If this flag is set, a reply queue named in ctl−>replyqueue is associated with the queued
message. Any reply to the message will be queued to the named queue within the same
Oracle Tuxedo Message Queue APIs 1-15

<~runChNum>
queue space as the request message. This string must be NULL terminated (maximum 15
characters in length).

TPQFAILUREQ

If this flag is set, a failure queue named in the ctl−>failurequeue is associated with the
queued message. If (1) the enqueued message is processed by TMQFORWARD(), (2)
TMQFORWARD was started with the -d option, and (3) the service fails and returns a
non-NULL reply, a failure message consisting of the reply and its associated tpurcode is
enqueued to the named queue within the same queue space as the original request
message. This string must be NULL-terminated (maximum 15 characters in length).

TPQDELIVERYQOS, TPQREPLYQOS
If the TPQDELIVERYQOS flag is set, the flags specified by ctl->delivery_qos control
the quality of service for delivery of the message. In this case, one of three mutually
exclusive flags— TPQQOSDEFAULTPERSIST, TPQQOSPERSISTENT, or
TPQQOSNONPERSISTENT—must be set in ctl->delivery_qos. If TPQDELIVERYQOS is
not set, the default delivery policy of the target queue dictates the delivery quality of
service for the message.

If the TPQREPLYQOS flag is set, the flags specified by ctl->reply_qos control the quality
of service for any reply to the message. In this case, one of three mutually exclusive
flags—TPQQOSDEFAULTPERSIST, TPQQOSPERSISTENT, or
TPQQOSNONPERSISTENT—must be set in ctl->reply_qos. The TPQREPLYQOS flag is
used when a reply is returned from messages processed by TMQFORWARD. Applications not
using TMQFORWARD to invoke services may use the TPQREPLYQOS flag as a hint for their
own reply mechanism.

If TPQREPLYQOS is not set, the default delivery policy of the ctl->replyqueue queue
dictates the delivery quality of service for any reply. Note that the default delivery policy
is determined when the reply to a message is enqueued. That is, if the default delivery
policy of the reply queue is modified between the time that the original message is
enqueued and the reply to the message is enqueued, the policy used is the one in effect
when the reply is finally enqueued.

The following is the list of valid flags for ctl->delivery_qos and ctl->reply_qos:

TPQQOSDEFAULTPERSIST

This flag specifies that the message is to be delivered using the default delivery
policy specified on the target queue.

TPQQOSPERSISTENT

This flag specifies that the message is to be delivered in a persistent manner using
the disk-based delivery method. Setting this flag overrides the default delivery
policy specified on the target queue.
1-16 Oracle Tuxedo Message Queue APIs

tpenqueue()
TPQQOSNONPERSISTENT

This flag specifies that the message is to be delivered in a non-persistent manner
using the memory-based delivery method. Specifically, the message is queued in
memory until it is dequeued. Setting this flag overrides the default delivery policy
specified on the target queue. If the caller is transactional, non-persistent messages
are enqueued within the caller’s transaction, however, non-persistent messages are
lost if the system is shut down, crashes, or the IPC shared memory for the queue
space is removed.

TPQEXPTIME_ABS

If this flag is set, the message has an absolute expiration time, which is the absolute time
when the message will be removed from the queue.
The absolute expiration time is determined by the clock on the machine where the queue
manager process resides.

The absolute expiration time is indicated by the value stored in ctl->exp_time. The
value of ctl->exp_time must be set to an absolute time value generated by time(2),
mktime(3C), or gp_mktime(3c) (the number of seconds since 00:00:00 Universal
Coordinated Time—UTC, January 1, 1970).

If an absolute time is specified that is earlier than the time of the enqueue operation, the
operation succeeds, but the message is not counted for the purpose of calculating
thresholds. If the expiration time is before the message availability time, the message is
not available for dequeuing unless either the availability or expiration time is changed so
that the availability time is before the expiration time. In addition, these messages are
removed from the queue at expiration time even if they were never available for
dequeuing. If a message expires while it is within a transaction, the expiration does not
cause the transaction to fail. Messages that expire while being enqueued or dequeued
within a transaction are removed from the queue when the transaction ends. There is no
notification that the message has expired.

TPQEXPTIME_ABS, TPQEXPTIME_REL, and TPQEXPTIME_NONE are mutually exclusive
flags. If none of these flags is set, the default expiration time associated with the target
queue is applied to the message.

TPQEXPTIME_REL

If this flag is set, the message has a relative expiration time, which is the number of
seconds after the message arrives at the queue that the message is removed from the
queue. The relative expiration time is indicated by the value stored in ctl->exp_time.

If the expiration time is before the message availability time, the message is not available
for dequeuing unless either the availability or expiration time is changed so that the
availability time is before the expiration time. In addition, these messages are removed
Oracle Tuxedo Message Queue APIs 1-17

<~runChNum>
from the queue at expiration time even if they were never available for dequeuing. The
expiration of a message during a transaction, does not cause the transaction to fail.
Messages that expire while being enqueued or dequeued within a transaction are removed
from the queue when the transaction ends. There is no acknowledgment that the message
has expired.

TPQEXPTIME_ABS, TPQEXPTIME_REL, and TPQEXPTIME_NONE are mutually exclusive
flags. If none of these flags is set, the default expiration time associated with the target
queue is applied to the message.

TPQEXPTIME_NONE

Setting this flag indicates that the message should not expire. This flag overrides any
default expiration policy associated with the target queue. A message can be removed by
dequeuing it or by deleting it via an administrative interface.

TPQEXPTIME_ABS, TPQEXPTIME_REL, and TPQEXPTIME_NONE are mutually exclusive
flags. If none of these flags is set, the default expiration time associated with the target
queue is applied to the message.

Additionally, the urcode element of TPQCTL can be set with a user-return code. This value will
be returned to the application that dequeues the message.

On output from tpenqueue(), the following elements may be set in the TPQCTL structure:

long flags; /* indicates which of the values
 * are set */
char msgid[32]; /* ID of enqueued message */
long diagnostic; /* indicates reason for failure */

The following is a valid bit for the flags parameter controlling output information from
tpenqueue(). If this flag is turned on when tpenqueue() is called, the /Q server TMQUEUE(5)
populates the associated element in the structure with a message identifier. If this flag is turned
off when tpenqueue() is called, TMQUEUE() does not populate the associated element in the
structure with a message identifier.

TPQMSGID
If this flag is set and the call to tpenqueue() is successful, the message identifier is stored
in ctl−>msgid. The entire 32 bytes of the message identifier value are significant, so the
value stored in ctl−>msgid is completely initialized (for example, padded with NULL
characters). The actual padding character used for initialization varies between releases of
the Oracle Tuxedo ATMI /Q component.

The remaining members of the control structure are not used on input to tpenqueue().
1-18 Oracle Tuxedo Message Queue APIs

../../../tuxedo/docs12c/rf5/rf5.html

tpenqueue()
If the call to tpenqueue() failed and tperrno is set to TPEDIAGNOSTIC, a value indicating the
reason for failure is returned in ctl−>diagnostic. The possible values are defined below in the
Diagnostics section.

If this parameter is NULL, the input flags are considered to be TPNOFLAGS and no output
information is made available to the application program.

Return Values
Upon failure, tpenqueue() returns -1 and sets tperrno to indicate the error condition.
Otherwise, the message has been successfully queued when tpenqueue() returns.

Errors
Upon failure, tpenqueue() sets tperrno to one of the following values. (Unless otherwise
noted, failure does not affect the caller’s transaction, if one exists.)

[TPEINVAL]
Invalid arguments were given (for example, qspace is NULL, data does not point to
space allocated with tpalloc(), or flags are invalid).

[TPENOENT]
Cannot access the qspace because it is not available (that is, the associated TMQUEUE(5)
server is not available), or cannot start a global transaction due to the lack of entries in the
Global Transaction Table (GTT).

[TPETIME]
This error code indicates that either a timeout has occurred or tpenqueue() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout cannot
occur if TPNOBLOCK and/or TPNOTIME is specified.)

If a transaction timeout has occurred, then, with one exception, any attempts to send new
requests or receive outstanding replies will fail with TPETIME until the transaction has
been aborted. The exception is a request that does not block, expects no reply, and is not
sent on behalf of the caller’s transaction (that is, tpacall() with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY set).

When a service fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were
equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
Oracle Tuxedo Message Queue APIs 1-19

../../../tuxedo/docs12c/rf5/rf5.html

<~runChNum>
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpenqueue() was called improperly.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file.

[TPEOS]
An operating system error has occurred.

[TPEDIAGNOSTIC]
Enqueuing a message on the specified queue failed. The reason for failure can be
determined by the diagnostic returned via ctl.

Diagnostic
The following diagnostic values are returned during the enqueuing of a message:

[QMEINVAL]
An invalid flag value was specified.

[QMEBADRMID]
An invalid resource manager identifier was specified.

[QMENOTOPEN]
The resource manager is not currently open.

[QMETRAN]
The call was not in transaction mode or was made with the TPNOTRAN flag set and an error
occurred trying to start a transaction in which to enqueue the message. This diagnostic is
not returned by queue managers from Oracle Tuxedo release 7.1 or later.

[QMEBADMSGID]
An invalid message identifier was specified.
1-20 Oracle Tuxedo Message Queue APIs

tpenqueue()
[QMESYSTEM]
A system error occurred. The exact nature of the error is written to a log file.

[QMEOS]
An operating system error occurred.

[QMEABORTED]
The operation was aborted. When executed within a global transaction, the global
transaction has been marked rollback-only. Otherwise, the queue manager aborted the
operation.

[QMEPROTO]
An enqueue was done when the transaction state was not active.

[QMEBADQUEUE]
An invalid or deleted queue name was specified.

[QMENOSPACE]
Due to an insufficient resource, such as no space on the queue, the message with its
required quality of service (persistent or non-persistent storage) was not enqueued.
QMENOSPACE is returned when any of the following configured resources is exceeded: (1)
the amount of disk (persistent) space allotted to the queue space, (2) the amount of
memory (non-persistent) space allotted to the queue space, (3) the maximum number of
simultaneously active transactions allowed for the queue space, (4) the maximum number
of messages that the queue space can contain at any one time, (5) the maximum number
of concurrent actions that the Queuing Services component can handle, or (6) the
maximum number of authenticated users that may concurrently use the Queuing Services
component.

[QMERELEASE]
An attempt was made to enqueue a message to a queue manager that is from a version of
the Oracle Tuxedo system that does not support a newer feature.

[QMESHARE]
When enqueuing a message from a specified queue, the specified queue is opened
exclusively by another application. The other application is one based on an Oracle
product other than the Oracle Tuxedo system that opened the queue for exclusive read
and/or write using the Queuing Services API (QSAPI).

See Also
qmadmin(1), gp_mktime(3c), tpacall(3c), tpalloc(3c), tpdequeue(), tpinit(3c),
tpsprio(3c), APPQ_MIB(5), TMQFORWARD(5), TMQUEUE(5)
Oracle Tuxedo Message Queue APIs 1-21

../../../tuxedo/docs12c/rfcm/rfcmd.html
../../../tuxedo/docs12c/rf5/rf5.html
../../../tuxedo/docs12c/rf5/rf5.html
../../../tuxedo/docs12c/rf5/rf5.html

<~runChNum>
tpqattach()

Name
tpqattach()—Connects an application program to the OTMQ message queuing space by
attaching it to a message queue.

Synopsis
#include <atmi.h>
#include <tmqentry.h>
#include <tmqreturn.h>
int tpqattach (qspace, queue, ctl, qattachctl, flags)

Description
A message queue qspace is a collection of message queues that reside on a system, share global
memory sections and files, and are served by the same server processes. An OTMQ message
queue is an area of memory or disk where messages are stored and retrieved. See the installation
and configuration guide for the platform you are using to learn how to configure the OTMQ
environment.

To receive OTMQ messages, an application must attach to at least one message queue. The
tpqattach function enables an application to attach in the following ways:

An application can attach to a queue by specifying a name. To attach by name, the message
queue must be created by run createqueue command of tmqadmin. Attaching by name
enables an application to attach to a specific queue, send messages to the queue, and
retrieve messages sent to that queue.

An application can attach to a queue by specifying the queue alias. To attach by name
alias, the message queue must be created by running the tmqadmin createqueue
command. Attaching by name alias enables an application to attach to a specific queue,
send messages to the queue, and retrieve messages sent to that queue. In addition, attaching
by name alias eliminates the need to change code or recompile if the queue name alias
changes. Therefore, attaching by name alias protects applications from changes in the
OTMQ environment configuration.

An application can attach to a temporary queue. To attach to a temporary queue, the
application does not have to give a specific queue name or name alias. OTMQ will assign
a queue and return the name of the queue which has been assigned. Temporary queues
allow an application to perform messaging without knowing configuration details of the
group.
1-22 Oracle Tuxedo Message Queue APIs

tpqat tach()
Applications can specify an attachment as primary or secondary. All applications must have a
primary queue. In addition, applications can attach to one or more secondary queues. Primary
queues can be configured in the queue create command as the owners of secondary queues. When
an application attaches to a primary queue that is the owner of secondary queues, the application
is automatically attached to the secondary queues at the same time it is attached to the primary
queue.

In addition, an application can attach to a multi-resource queue. A multi-resource queue can be
read by many applications and is configured as part of the group definition.

Table 1-2 lists tpqattach() supported arguments:

qspace

Supplies the queue space name for enqueue the message. The max length is 15.

queue

Supplies the name of the permanent queue to attach to the application if the attach_mode
argument specifies attachment by queue name or queue alias. Queue names are
alphanumeric strings with no embedded spaces and allow the following special
characters: underscore (_), hyphen (-), and dollar sign ($). The max length is 127.

References to queue names are case sensitive and must match the queue name entered in
the create queue command by tmqadmin. Some example queue names are: QUEUE_1,
high-priority, and My$Queue.

ctl

The TPQCTL structure is used by the application program to pass and retrieve parameters
associated with enqueuing the message. The TPQCTL flags element is used to indicate what
other elements in the structure are valid.

Table 1-2 tpqattach() Arguments

Argument Data Type Mechanism Prototype Access

qspace char reference char* passed

queue char reference char* passed/returned

ctl TPQCTL reference TPQCTL* passed/returned

Qattachctl Q_ATTACH_C
TL

Reference Q_ATTACH_C
TL *

passed

Flags long Reference Long passed
Oracle Tuxedo Message Queue APIs 1-23

<~runChNum>
On input to tpenqplus(), the elements shown in Listing 1-1may be set in the TPQCTL
structure.

Listing 1-1 tpenqplus() Elements

 long flags; /* indicates which of the values are set */
 long deq_time; /* absolute/relative time for dequeuing */
 long priority; /* enqueue priority */
 long diagnostic; /* indicates reason for failure */
 char msgid[TMMSGIDLEN]; /* id of message before which to queue */
 char corrid[TMCORRIDLEN];/* correlation id used to identify message */
 char replyqueue[TMQNAMELEN+1]; /* queue name for reply message */
 char failurequeue[TMQNAMELEN+1];/* queue name for failure message */
 CLIENTID cltid; /* client identifier for originating client */
 long urcode; /* application user-return code */
 long appkey; /* application authentication client key */
 long delivery_qos; /* delivery quality of service */
 long reply_qos; /* reply message quality of service */
 long exp_time; /* expiration time */
 /* new members for TMQPlus */
 long block; /* specify block mode: WF, AK, NN */
 long DIP; /* specify the delivery interesting point:MEM, SAF, DQF, DEQ, ACK,
 CONF */
 long uma; /* undelivered message action */
 long msg_class; /* message class */
 long msg_type; /* message type */
 PSB status_block; /* message delivery control point and UMA status block */
 long redeliver_count; /* the max count which the message can be redelivered */
 long seq_number[2]; /* message seq number, which is decided in client side to
 decrease the TMQ load */
 long timeout; /* timeout value for block enq/deq operation */
 char src_qspace[TMQSNAMELEN+1]; /* the source QSpace name. */
 char src_qname[TMQNAMELEN+1]; /* the source queue name. */
 char tgt_qspace[TMQSNAMELEN+1]; /* the source QSpace name. */
 char tgt_qname[TMQNAMELEN+1]; /* the source queue name. */
 char orig_src_qspace[TMQSNAMELEN+1];/* the original source QSpace name. */
 char orig_src_qname[TMQNAMELEN+1]; /* the original source queue name. */
1-24 Oracle Tuxedo Message Queue APIs

tpqat tach()
 char orig_tgt_qspace[TMQSNAMELEN+1];/* the original target QSpace name. */
 char orig_tgt_qname[TMQNAMELEN+1]; /* the original target queue name. */
 char hops; /* net hops */
 long opcode;
 long filter_idx;
 long user_tag;
 long geta_idx; /* index of pending pams_get_msga requests */
 long endian;
 long receipt_msg_type; /*used for uma message*/

Qattachctl

The is used by the application program to pass parameters associated with attach the queue. The
elements shown in Listing 1-2 may be set in the Q_ATTACH_CTL structure:

Listing 1-2 Q_ATTACH_CTL Elements

 TM32I attachmode; /* Supplies the mode for attaching the application

 to a message queue.*/
 TM32I qtype; /* Supplies the queue type for the attachment. */
 TM32I * namespace_list; /* Supplies a list of name tables to search

 when the attach_mode argument. */
 TM32I namespace_list_len; /* Supplies the number of entries in

 the name_space_list argument. */
 long timeout; /* The number of OTMQ time units (1 second

 intervals) to allow for the attach to complete. */

Flags

TPNOTRAN

If the caller is in transaction mode and this flag is set, the message is not queued
within the caller transaction. A caller in transaction mode that sets this flag is still
subject to the transaction timeout (and no other), when queuing the message. If
message queuing fails, the caller transaction is not affected.
Oracle Tuxedo Message Queue APIs 1-25

<~runChNum>
TPNOBLOCK

Caller attaches to the queue if a blocking condition exists. If this flag is set and a
blocking condition exists (such as the internal buffers into which the message is
transferred are full), the call fails and tperrno is set to TPEBLOCK. If this flag is
set and a blocking condition exists because the target queue is opened exclusively
by another application, the call fails, tperrno is set to TPEDIAGNOSTIC, and the
diagnostic field of the TPQCTL structure is set to QMESHARE. In the latter case, the
other application, which is based on an Oracle product other than the Oracle
Tuxedo ATMI system, opened the queue for exclusive read and/or write using the
Queuing Services API (QSAPI).
When TPNOBLOCK is not set and a blocking condition exists, the caller blocks until
the condition subsides or a timeout occurs (either transaction or blocking timeout).
If a timeout occurs, the call fails and tperrno is set to TPETIME.

TPNOTIME

Setting this flag signifies that the caller is willing to block indefinitely and wants
to be immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT

If this flag is set and a signal interrupts any underlying system calls, the interrupted
system call is reissued. If TPSIGRSTRT is not set and a signal interrupts a system
call, tpenqueue() fails and tperrno is set to TPGOTSIG.

Return Value(s)
[TPEINVAL]

Invalid arguments were given.

[TPENOENT]

Cannot access the qspace because it is not available

[TPETIME]

This error code indicates that either a timeout has occurred or tpqattach() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

[TPEBLOCK]

A blocking condition exists and TPNOBLOCK was specified.

[TPESYSTEM]

An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file.

[TPEOS]

An operating system error has occurred.
1-26 Oracle Tuxedo Message Queue APIs

tpqdetach()
[TPEDIAGNOSTIC]

Attach to the specified queue failed. The reason for failure can be determined by the
diagnostic returned via ctl.

Diagnostic:

[QMEINVAL]

An invalid flag value was specified.

[QMESYSTEM]

A system error occurred. The exact nature of the error is written to a log file.

[QMEOS]

An operating system error occurred.

[QMEABORTED]

The operation was aborted. When executed within a global transaction, the global
transaction has been marked rollback-only. Otherwise, the queue manager aborted the
operation.

[QMEBADQUEUE]

An invalid or deleted queue name was specified.

tpqdetach()

Name
tpqdetach()—Detaches a selected message queue or all of the application message queues
from the message queuing qspace.

Synopsis
#include <atmi.h>
#include <tmqentry.h>
#include <tmqreturn.h>
int tpqdetach (qspace, queue, detach_opt_list, detach_opt_len, msg_flushed

, flags)

Description
Detaches a selected message queue or all of the application's message queues from the message
queuing qspace. When an application detaches from its primary queue, this function
automatically detaches all secondary queue attachments defined for the primary queue. When the
last message queue has been detached, the application is automatically detached from the OTMQ
message queuing qspace.
Oracle Tuxedo Message Queue APIs 1-27

<~runChNum>
If you are using implicit confirmation with recoverable messaging, you must ensure that the last
message is confirmed before:

detaching from the queue which received the message by calling tpqdetach

detaching from the OTMQ qspace by calling tpqexit

exiting your application

If you do not ensure that the last message was confirmed before detaching or exiting, the message
will be re-delivered when the queue is reattached. The easiest method to ensure confirmation is
to save the PSB delivery status of the last message received, check it for the required confirmation
status, and then exit after the message has been confirmed.

Table 1-3 lists tpqdetach() supported arguments.

qspace
Supplies the queue space of the queue to be detached. This function can be used to detach
primary, secondary, and multi-resource queues.

queue
Supplies the queue name to be detached.

detach_opt_list
Supplies an array of int values used to control how the queue is detached. The predefined
constants for this argument are:

Table 1-3 tpqdetach () Arguments

Argument Data Type Mechanism Prototype Access

qspace char reference char * passed

queue char reference char * passed

detach_opt_l
ist

int reference int * passed

detach_opt_l
en

int reference int passed

msg_flushed int reference int * returned

flags long reference long passed
1-28 Oracle Tuxedo Message Queue APIs

tpqdetach()
TMQ_NOFLUSH_Q

Detaches the queue without flushing the pending messages stored in memory no
matter the input parameter queue. The default action is to flush pending messages
in the queue before it is detached. Messages are never flushed from multi-resource
queues.

TMQ_DETACH_ALL

Detaches all of the application's message queues from the message queuing
qspace. Using this constant performs the same action as calling the tpqexit
function.

TMQ_CANCEL_SEL

Cancels all selection masks that reference the queue or queues that you are
detaching. If you do not select this option and you do not cancel selection masks,
OTMQ invalidates all selection masks that reference the queue or queues that you
are detaching. You must cancel the invalidated selection masks using the
tpqcancelget function.

detach_opt_len
Supplies the number of int values in the detach_opt_list array. The maximum
number of int values is 32767.

msgs_flushed
Receives the number of messages that were flushed from the queue. Message count
statistics are enabled on all systems by default; therefore, it is not necessary to enable
statistics on UNIX and Windows NT systems in order to properly return this value.

flags
The following is a list of valid flags:

TPNOTRAN

TPNOBLOCK

TPNOTIME

TPSIGRSTRT

Return Value(s)
Upon failure, tpqdetach() returns -1 and sets tperrno to indicate the error condition.
Otherwise, the queue has been successfully detached when tpqdetach() returns.

Errors:

[TPEINVAL]
Invalid arguments were given.
Oracle Tuxedo Message Queue APIs 1-29

<~runChNum>
[TPENOENT]
Cannot access the qspace because it is not available

[TPETIME]
This error code indicates that either a timeout has occurred or tpqdetach() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpqdetach() was called improperly.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file.

[TPEOS]
An operating system error has occurred.

tpqbind()

Name
tpqbind() —Dynamically associates a queue name to a queue reference at run-time.

Synopsis
#include <atmi.h>
#include <tmqentry.h>
#include <tmqreturn.h>
int tpqbind (qspace , pNameCtl , scope, timeout);

Description
Dynamically associates a queue name to a queue reference at run-time. This enables a server
application to dynamically sign up to service a queue alias at run-time. Thus, an end user can
access a service without having to be aware that its normal host computer is down and that the
service is being provided from another host computer. To use tpqbind(), you must first invoke
tpqattach().
1-30 Oracle Tuxedo Message Queue APIs

tpqb ind()
Table 1-4 lists the tpqbind() supported arguments:

qspace

Identifies the queue space to be bound. The qspace argument must same with the qspace
argument of tpqattach().

pNameCtl

The Q_NAME_CTL structure is used by the application program to pass and retrieve
parameters associated with bind alias to queue name
typedef struct {

 char pName[TMQALIASLEN+1];

 char pGroup[TMQSNAMELEN+1];

 char pQueue[TMQNAMELEN+1];

 TM32I nFlags;

 TM32I nType; /* L/G */

 TM32I type; /* client type */

 TM32I nOwnerPid; /* client pid */

 CLIENTID cltid;

 TM32I * namespace_list; /* for using pams
interface */

 TM32I namespace_list_len; /* for using pams
interface */} Q_NAME_CTL;

pName

Alias name for bind, identifies a global queue reference or a local queue reference.

Table 1-4 tpqbind() Arguments

Argument Data Type Mechanism Prototype Access

qspace char reference char * passed

pNameCtl Q_NAME_CTL reference Q_NAME_CTL
*

passed

Scope long reference long * passed

timeout long reference long passed
Oracle Tuxedo Message Queue APIs 1-31

<~runChNum>
pGroup

Identifies the queue space to be bound.

pQueue

Queue name.
Note: pGroup and pQueue values specified to this argument controls whether the
queue name is bound or unbound:
If the queue pGroup and pQueue are specified, this function binds it to a pName.
"If 0 is specified, this function unbinds the pName from its queue name. The calling
application must be bound to pName to set it back to zero.”

name_space_list

The name_space_list argument also controls the cache access as follows:
To lookup a local queue reference or queue name, specify both OTMQ _TBL_GRP
and OTMQ _TBL_PROC. This causes the process cache to be checked before looking
into the group cache.
To lookup a global queue reference, specify OTMQ_TBL_BUS OTMQ _TBL_GRP
and OTMQ _TBL_PROC. This causes the process cache to be checked. Then, the
group cache is checked before looking into the global name space.
Note that to lookup all caches in the global name space before looking in the master
database, specify OTMQ _TBL_BUS_LOW instead of OTMQ _TBL_BUS.
To lookup only the slower but more up-to-date caches in the global name space
before looking in the master database, specify OTMQ _TBL_BUS_MEDIUM instead of
OTMQ _TBL_BUS.

name_space_list_len

Supplies the number of entries in the name_space_list argument. If the
name_space_list_len argument is zero, uses OTMQ_TBL_GRP as the default in
the name_space_list argument.

nFlags

CORE_FLAGS_BOUND: binds the alias to the queue name
CORE_FLAGS_CACHED: cache the alias to locale share memory.
CORE_FLAGS_LOCKED: lock the alias. If it is locked, it cannot be accessed.

nOwnerPid

Not used

nType

Not usedN
1-32 Oracle Tuxedo Message Queue APIs

tpqb ind()
cltid

 Not used.

scope
Specifies the scope for pName. The identifier for scope:

NAME_SCOPE_P: scope is process

NAME_SCOPE_L: scope is local

NAME_SCOPE_G: scope is global
For TP APIs, scope and namespace_list arguments, If scope is NULL,
namespace_list must not NULL too, and if scope has a data value, namespace_list
will invalidate.

timeout
The number of OTMQ time units (1 second intervals) to allow for the attach to complete.
If a null pointer is specified, the BLOCKTIME property of the group's attach service is used
(configured in the UBBCONFIG *SERVICES section). If service-wide BLOCKTIME is not
configured, system-wide BLOCKTIME specified in the UBBCONFIG *RESOURCES
section is used (default to approximately 60 seconds).

Return Value(s)
Upon failure, tpqbind() returns -1 and sets tperrno to indicate the error condition. Otherwise,
the queue alias has been successfully binded when tpqbind() returns.

Errors:

[TPEINVAL]
Invalid arguments were given.

[TPENOENT]
Cannot access the qspace because it is not available

[TPETIME]
This error code indicates that either a timeout has occurred or tpqbind() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

 [TPEPROTO]
tpqbind() was called improperly. For example, invoke tpqbind without invoke
tpqattach() first.
Oracle Tuxedo Message Queue APIs 1-33

<~runChNum>
[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file.

[TPEOS]
An operating system error has occurred.

tpqlocate()

Name
tpqlocate() —Locates the queue name for the specified queue name or queue alias.

Synopsis
#include <atmi.h>
#include <tmqentry.h>
#include <tmqreturn.h>
int tpqlocate (qspace, pNameCtl, req_id, resp_q, scope, wait_mode, timeout
)

Description
Locates the queue name for the specified queue name or queue alias. By default, this function
waits for the queue name to be returned. To use tpqlocate(), you must first invoke
tpqattach().

Table 1-5 lists tpqlocate() supported arguments:

Table 1-5 tpqlocate() Arguments

Argument Data Type Mechanism Prototype Access

qspace char reference char * passed

pNameCtl pNameCtl reference pNameCtl * passed/returned

req_id long reference long passed

resp_q char reference char * passed

scope long reference long passed

wait_mode long reference long passed

timeout long reference long * passed
1-34 Oracle Tuxedo Message Queue APIs

tpq locate ()
qspace
Supplies the queue space whose queue name is requested. Must be same with the
tpqattach() qspace argument.

pNameCtl
The Q_NAME_CTL structure is used by the application program to pass and retrieve
parameters associated with bind alias to queue name

typedef struct {

 char pName[TMQALIASLEN+1];

 char pGroup[TMQSNAMELEN+1];

 char pQueue[TMQNAMELEN+1];

 TM32I nFlags;

 TM32I nType; /* L/G */

 TM32I type; /* client type */

 TM32I nOwnerPid; /* client pid */

 CLIENTID cltid;

TM32I * namespace_list; /* for using pams interface */

 TM32I namespace_list_len; /* for using pams interface */

} Q_NAME_CTL;

pName
Alias name for bind, Identifies a global queue reference or a local queue reference.

pGroup

qspace, identifies the qspace name of the alias bind.

pQueue

queue name, identifies the queue name of the alias bind.

pGroup and pQueue values specified to this argument controls whether the queue name is
bound or unbound:

• If the queue pGroup and pQueue are specified, this function binds it to a pName.

• If 0 is specified, this function unbinds the pName from its queue name. The calling
application must be bound to pName to set it back to zero.

name_space_list

The name_space_list argument also controls the cache access as follows:
Oracle Tuxedo Message Queue APIs 1-35

<~runChNum>
To lookup a local queue reference or queue name, specify both OTMQ_TBL_GRP
and OTMQ_TBL_PROC. This causes the process cache to be checked before looking
into the qspace cache.
To lookup a global queue reference, specify OTMQ_TBL_BUS, OTMQ _TBL_GRP and
OTMQ_TBL_PROC. This causes the process cache to be checked. Then, the qspace
cache is checked before looking into the global name space.
Note: that to lookup all caches in the global name space before looking in the
master database, specify OTMQ_TBL_BUS_LOW instead of OTMQ _TBL_BUS.
To lookup only the slower but more up-to-date caches in the global name space
before looking in the master database, specify OTMQ_TBL_BUS_MEDIUM instead of
OTMQ_TBL_BUS.

name_space_list_len

Supplies the number of entries in the name_space_list argument. If the
name_space_list_len argument is zero, uses OTMQ_TBL_GRP as the default in
the name_space_list argument.

nFlags

CORE_FLAGS_BOUND: binds the alias to the queue name
CORE_FLAGS_CACHED: cache the alias to locale share memory.
CORE_FLAGS_LOCKED: lock the alias.

nOwnerPid

 Reserved for future use

nType

Reserved for future use

cltid

Reserved for future use

wait_mode
Supplies the search mode of the tpqlocate function. The mode indicates whether the
application waits for the search completion or receives the response in an
acknowledgment message. There are two predefined constants for this argument:

• "OTMQ_WF_RESP (default setting)-The application issues the tpqlocate request and
waits for the queue name to be returned.

• "OTMQ_AK_RESP-The application issues the tpqlocate name and continues
processing. When the search is completed, the queue name is returned to the
application's primary queue in a LOCATE_Q_REP message. The response message can
1-36 Oracle Tuxedo Message Queue APIs

tpq locate ()
be redirected to an alternate queue name using the resp_q argument, The details of
LOCATE_Q_REP message as next.

req_id
Supplies an application-specified transaction ID to associate with the tpqlocate
function.

resp_q
Supplies an alternate queue to use for receiving the acknowledgment message of the
queue name. If no response queue is specified, the acknowledgment message is sent to the
sender program primary queue.

Note: the sender program cannot specify a response queue outside its qspace.

The name_space_list argument also controls the cache access as follows:

To lookup a local queue reference or queue name, specify both OTMQ _TBL_GRP and
OTMQ_TBL_PROC. This causes the process cache to be checked before looking into the
group cache.

To lookup a global queue reference, specify OTMQ_TBL_BUS (or OTMQ _TBL_BUS_LOW or
OTMQ _TBL_BUS_MEDIUM), OTMQ _TBL_GRP and OTMQ _TBL_PROC. This causes the
process cache to be checked. Then, the group cache is checked before looking into the
global name space.

Note that to lookup all caches in the global name space before looking in the master
database, specify OTMQ _TBL_BUS_LOW instead of OTMQ _TBL_BUS.

To lookup only the slower but more up-to-date caches in the global name space before
looking in the master database, specify OTMQ _TBL_BUS_MEDIUM instead of OTMQ
_TBL_BUS.

name_space_list_len:

Supplies the number of entries in the name_space_list argument. If the
name_space_list_len argument is zero, uses OTMQ_TBL_GRP as the default in the
name_space_list argument.

scope
Specifies the scope for pName.

The identifies for scope:

NAME_SCOPE_P: scope is process
Oracle Tuxedo Message Queue APIs 1-37

<~runChNum>
NAME_SCOPE_L: scope is local

NAME_SCOPE_G: scope is global

For TP APIs scope and namespace_list arguments, if scope is NULL,
namespace_list must not NULL too, and if scope has a data value, namespace_list
will invalidate.

timeout
The number of OTMQ time units (1 second intervals) to allow for the attach to complete.
If a null pointer is specified, the BLOCKTIME property of the group's attach service is used
(configured in the UBBCONFIG *SERVICES section). If service-wide BLOCKTIME is not
configured, system-wide BLOCKTIME specified in the UBBCONFIG *RESOURCES section
is used (default to approximately 60 seconds).

Return Value(s)
Upon failure, tpqlocate() returns -1 and sets tperrno to indicate the error condition.
Otherwise, the queue has been successfully located when tpqlocate () returns.

Errors:

[TPEINVAL]

Invalid arguments were given.

[TPENOENT]

Cannot access the qspace because it is not available

[TPETIME]

This error code indicates that either a timeout has occurred or tpqlocate() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

[TPEPROTO]

tpqlocate() was called improperly.

[TPESYSTEM]

An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file.

[TPEOS]

An operating system error has occurred.

tpenqplus()

Name
tpenqplus() —Locates the queue name for the specified queue name or queue alias.
1-38 Oracle Tuxedo Message Queue APIs

tpenqp lus()
Synopsis
#include <atmi.h>
#include <tmqentry.h>
#include <tmqreturn.h>
int tpenqplus (qspace, qname, ctl, data, len, flags)

Description
Sends a message to a target queue in target qspace using a set of standard OTMQ delivery modes.

The block and DIP argument of the TPQCTL struct can be used to guarantee message delivery if
a system, process, or network fails. Recoverable messages are stored on disk by the message
recovery system until they can be delivered to the target queue of the receiver program. When
sending a recoverable message, you must specify the uma argument of TPQCTL structure if the
message recovery cannot store the message. You must also supply the TPQCTL structure PSB
argument to receive the operation return status.

The optional timeout argument lets you set a maximum amount of time for the send operation to
complete before the function times out. The optional replyqueue of TPQCTL struct argument
allows you to specify an alternate queue for receiving the response messages rather than directing
responses to the primary queue of the sender program. In synchronous mode, fail to receive
response message from reply queue will cause tpenqplus() return error, but the message may
be still sent to target queue successfully.

To use OTMQ features, you must invoke tpqattach before invoke tpenqplus. The tpenqplus
qspace argument must be the same same as the tpqattach qspace argument.

If the caller is within a transaction and the TPNOTRAN flag is not set, the message is queued in
transaction mode. This has the effect that if tpenqplus() returns successfully and the caller
transaction is committed successfully, then the message is guaranteed to be available subsequent
to the transaction completing. If the caller transaction is rolled back either explicitly or as the
result of a transaction timeout or some communication error, then the message will be removed
from the queue (that is, the placing of the message on the queue is also rolled back). It is not
possible to enqueue then dequeue the same message within the same transaction.

The message is not queued in transaction mode if either the caller is not in transaction mode, or
the TPNOTRAN flag is set. Once tpenqplus() returns successfully, the submitted message is
guaranteed to be in the queue. When not in transaction mode, if a communication error or a
timeout occurs, the application will not know whether or not the message was successfully stored
on the queue.

To use tpenqplus(), you must first invoke tpqattach().
Oracle Tuxedo Message Queue APIs 1-39

<~runChNum>
Table 1-6 lists tpenqplus() supported arguments:

qspace
Supplies the queue space name for enqueueing the message. The max length is 15

qname
Supplies the queue name for enqueueing the message, the max length is 127

Control Parameter

The TPQCTL structure is used by the application program to pass and retrieve parameters
associated with enqueuing the message. The flags element of TPQCTL is used to indicate
what other elements in the structure are valid.

On input to tpenqplus(), the following elements may be set in the TPQCTL structure:

The element of TPQCTL used for OTMQ:

flags

The following is a list of valid bits for the flags parameter controlling input
information for tpenqplus().
TPNOFLAGS

TPQTOPI

TPQBEFOREMSGID

TPQTIME_ABS

TPQTIME_REL

TPQPRIORITY

TPQCORRID

TPQREPLYQ

Table 1-6 tpenqplus() Arguments

Argument Data Type Mechanism Prototype Access

qspace char reference char * passed

qname char reference char * passed

ctl TPQCTL reference TPQCTL * passed/returned

data char reference char * passed

len long reference long passed

flags long reference long passed
1-40 Oracle Tuxedo Message Queue APIs

tpenqp lus()
TPQFAILUREQ

TPQDELIVERYQOS, TPQREPLYQOS

TPQEXPTIME_ABS

TPQEXPTIME_REL

TPQEXPTIME_NONE

TPQMSGID

OTMQ

TPQGETBYFILTER

TPQGETMSGA

TPQREADJRN

TPQENDIAN

TPQGETBYSEQNUM

priority

Supplies the priority level for selective message reception. Priority ranges from 0
(lowest priority) to 99 (highest priority).

msg_class
Supplies the class code of message being sent. OTMQ supports the use of symbolic
names for class argument values. Symbolic class names should begin with
MSG_CLAS_. For information on defining class symbols, see the tmqsym.h include
file. On UNIX and Windows NT systems, the tmqsym.h include file cannot be
edited. You must create an include file to define type and class symbols for use by
your application.
Class symbols reserved by OTMQ are as follows:
Reserved Class Symbol Value

MSG_CLAS_XXX 30000 through 32767 (except 31001-31003)

msg_type
Supplies the type code for the message being sent. OTMQ supports the use of
symbolic names for msg_type argument values. Symbolic type names begin with
MSG_TYPE_. For information on defining type symbols, see the tmqsym.h include
file.
OTMQ has reserved the symbol value range -1 through -5000. A zero value for this
argument indicates that no processing by message type is expected.

block

Supplies the delivery mode for the message using the following format:
OTMQ_DEL_sn-where sn is one of the following sender notification constants:
Oracle Tuxedo Message Queue APIs 1-41

<~runChNum>
WF-Wait for completion.
AK-Asynchronous acknowledgment
NN-No notification
Note: NN mode does not support transaction, TPNOTRAN flag is set
automatically for this mode.

DIP

Dip is one of the following delivery interest point constants:
"ACK-Read from target queue and explicitly acknowledged using the
tpqconfirmmsg function. ACK can also be an implicit acknowledgement sent
after the second tpdeqplus call by the receiving application.
"CONF-Delivered from the DQF and explicitly confirmed using the
tpqconfirmmsg function (recoverable)
"DEQ-Read from the target queue
"DQF-Stored in the destination queue file (recoverable)
"MEM-Stored in the target queue
"SAF-Stored in the store and forward file (recoverable)
Note: If temporary queues are used, deleted, and reused quickly, it is possible in
isolated cases for an implicit ACK response from a previous temporary queue to
be placed on the new temporary queue.
If you set OTMQ_DEL_WF and OTMQ_DIP_ACK, the ACK message will be read in
tpenqplus, client do not need to call another API to read the ACK message.

timeout
Supplies the maximum amount of time the tpenqplus function waits for a
message to arrive before returning control to the application. If the timeout occurs
before a message arrives, the status code OTMQ__TIMEOUT is returned. Specifying
0 as the timeout value sets the timeout to the default value of 30 seconds.

psb
Receives a value in the OTMQ Status Block specifying the final completion status.
The psb argument is used when sending or receiving recoverable messages. The
PSB structure stores the status information from the message recovery system and
may be checked after sending or receiving a message as shown in Listing 1-3.
1-42 Oracle Tuxedo Message Queue APIs

tpenqp lus()
Listing 1-3 PSB Structure

Listing 1-3 PSB Structure

struct psb_t {

 long type_of_psb; /* PSB type */

long del_psb_status; /* The completion status of the function.

It contains the status from TuxMsgQ. It can also contain a value of TPSUCCESS

when the message is not sent recoverably. */

long uma_psb_status; /* The completion status of the

undeliverable message action (UMA). The PSB UMA status indicates if the UMA

was not executed or applicable. */

long psb_reserved[6]; /* reserved filed */

};

typedef struct psb_t PSB;

Note: this structure is already defined at atmi.h.

uma

Supplies the action to be performed if the message cannot be stored at the specified
-delivery interest point. The format of this argument is OTMQ_UMA_XXX where XXX
is one of the following symbols:
Symbol: Description
DISC: Discard message
RTS: Return to sender
SAF: Store and Forward
DLJ: Dead letter journal
DLQ: Dead letter queue

replyqueue

Supplies a q_name to use as the alternate queue for receiving response messages
from the receiver program. The sender program must be attached to the queue
specified in the replyqueue argument to receive the response messages. To use
replyqueue, flags must address TPQREPLYQ.
Note the sender program cannot assign a response queue outside its qspace.
Oracle Tuxedo Message Queue APIs 1-43

<~runChNum>
correlation_id

Supplies the correlation id, a user-defined identifier stored as a 32-byte value

seq_number

If the value of seq_number[0] or seq_number[1] is not specified as
"(long)0", OTMQ will not generate unique number for this message.

Data

If data is non-NULL, it must point to a buffer previously allocated by tpalloc()
and len should specify the amount of data in the buffer that should be queued. Note
that if data points to a buffer of a type that does not require a length to be specified
(for example, an FML fielded buffer), then len is ignored. If data is NULL, len is
ignored and a message is queued with no data portion. Consult tpalloc() for
more details.

Len

 The length of data, if data is non-NULL.

Flags

The following is a list of valid flags:

TPNOTRAN

If the caller is in transaction mode and this flag is set, the message is not queued
within the caller transaction. A caller in transaction mode that sets this flag is still
subject to the transaction timeout (and no other) when queuing the message. If
message queuing fails, the caller's transaction is not affected.

TPNOBLOCK

The message is not enqueued if a blocking condition exists. If this flag is set and a
blocking condition exists such as the internal buffers into which the message is
transferred are full, the call fails and tperrno is set to TPEBLOCK. If this flag is set
and a blocking condition exists because the target queue is opened exclusively by
another application, the call fails, tperrno is set to TPEDIAGNOSTIC, and the
diagnostic field of the TPQCTL structure is set to QMESHARE.
When TPNOBLOCK is not set and a blocking condition exists, the caller blocks until
the condition subsides or a timeout occurs (either transaction or blocking timeout).
If a timeout occurs, the call fails and tperrno is set to TPETIME.

TPNOTIME

Setting this flag signifies that the caller is willing to block indefinitely and wants
to be immune to blocking timeouts. Transaction timeouts may still occur.
1-44 Oracle Tuxedo Message Queue APIs

tpenqp lus()
TPSIGRSTRT

If this flag is set and a signal interrupts any underlying system calls, the interrupted
system call is reissued. If TPSIGRSTRT is not set and a signal interrupts a system
call, tpenqplus() fails and tperrno is set to TPGOTSIG.

Return Value(s)
Upon failure, tpenqplus() returns -1 and sets tperrno to indicate the error condition.
Otherwise, the message has been successfully enque when tpenqplus() returns.

Errors:

[TPEINVAL]

Invalid arguments were given.

[TPENOENT]

Cannot access the qspace because it is not available

[TPETIME]

This error code indicates that either a timeout has occurred or tpenqplus() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

[TPEBLOCK]

A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]

A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]

tpenqplus() was called improperly.

[TPESYSTEM]

An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file.

[TPEOS]

An operating system error has occurred.

[TPEDIAGNOSTIC]

Enqueuing a message on the specified queue failed. The reason for failure can be
determined by the diagnostic returned via ctl.

Diagnostic:

[QMEINVAL]

An invalid flag value was specified.

[QMEBADRMID]

An invalid resource manager identifier was specified.
Oracle Tuxedo Message Queue APIs 1-45

<~runChNum>
[QMENOTOPEN]

The resource manager is not currently open.

[QMETRAN]

The call was not in transaction mode or was made with the TPNOTRAN flag set and an error
occurred trying to start a transaction in which to enqueue the message. This diagnostic is
not returned by queue managers from Oracle Tuxedo release 7.1 or later.

[QMEBADMSGID]

An invalid message identifier was specified.

[QMESYSTEM]

A system error occurred. The exact nature of the error is written to a log file.

[QMEOS]

An operating system error occurred.

[QMEABORTED]

The operation was aborted. When executed within a global transaction, the global
transaction has been marked rollback-only. Otherwise, the queue manager aborted the
operation.

[QMEPROTO]

An enqueue was done when the transaction state was not active.

[QMEBADQUEUE]

An invalid or deleted queue name was specified.

[QMENOSPACE]

Due to an insufficient resource, such as no space on the queue, the message with its
required quality of service (persistent or non-persistent storage) was not enqueued.

[QMERELEASE]

An attempt was made to enqueue a message to a queue manager that is from a version of
the Oracle Tuxedo system that does not support a newer feature.

[QMBADDELIVERY]

Invalid delivery mode.

[QMBADPRIORITY]

Invalid priority value on send operation.

[QMBADPROCNUM]

Invalid target queue name specified.

[QMBADRESPQ]

Response queue not owned by process.
1-46 Oracle Tuxedo Message Queue APIs

tpdeqp lus()
[QMBADUMA]

Undeliverable message action (UMA) is invalid.

[QMNOTSUPPORTED]

The combination of delivery mode and uma selected is not supported.

tpdeqplus()

Name
tpdeqplus()—Retrieves the next available message from a selected queue and moves it to the
location specified in the data argument.

Synopsis
#include <atmi.h>
#include <tmqentry.h>
#include <tmqreturn.h>
int tpdeqplus (qspace, qname, ctl, data, len, flags)

Description
Retrieves the next available message from a selected queue and moves it to the location specified
in the data argument. When no selection filter is specified, the function returns the next available
message in first-in/first-out (FIFO) order based on message priority to the buffer specified in the
data argument. Priority ranges from 0 (lowest priority) to 99 (highest priority). For example,
priority 1 messages are always placed before priority 0 messages. Messages are placed in
first-in/first out order by message priority. If a selection filter is specified, then only messages
that meet the selection criteria are retrieved. If no messages are available or meet the selection
criteria, then the return status is QMENOMSG.

Applications should check the PSB status field of each message to determine if the message was
sent with a recoverable delivery mode. If an application receives a recoverable message, it must
call the tpqconfirmmsg function to delete it from the message recovery journal disk storage. If
receipt of a recoverable message is not confirmed, the message continues to be stored by the
recovery system and will be re-delivered if the application detaches and then reattaches to the
queue.

To use tpdepplus(), you must first invoke tpqattach().

Table 1-7 lists tpdepplus() supported arguments:
Oracle Tuxedo Message Queue APIs 1-47

<~runChNum>
qspace
Supplies the queue space name for message dequeue. The max length is 15

qname
Supplies the queue name for message enqueue. The max length is 127

Data

Data is the address of a pointer to the buffer into which a message is read, and len points
to the length of that message. *data must point to a buffer originally allocated by
tpalloc(). If a message is larger than the buffer passed to tpdeqplus, the buffer is
increased in size to accommodate the message. To determine whether a message buffer
changed in size, compare its (total) size before tpdeqplus() was issued with *len. If
*len is larger, then the buffer has grown; otherwise, the buffer has not changed size. Note
that *data may change for reasons other than if the buffer size increased. If *len is 0
upon return, then the message dequeued has no data portion and neither *data nor the
buffer it points to were modified. It is an error for *data or len to be NULL. Consult
tpalloc() for more details.
The message is dequeued in transaction mode if the caller is in transaction mode and the
TPNOTRAN flag is not set. This has the effect that if tpdeqplus() returns successfully and
the caller transaction is committed successfully, then the message is removed from the
queue. If the caller's transaction is rolled back either explicitly or as the result of a
transaction timeout or some communication error, then the message will be left on the
queue (that is, the removal of the message from the queue is also rolled back). It is not
possible to enqueue and dequeue the same message within the same transaction.
The message is not dequeued in transaction mode if either the caller is not in transaction
mode, or the TPNOTRAN flag is set. When not in transaction mode, if a communication

Table 1-7 tpdepplus() Arguments

Argument Data Type Mechanism Prototype Access

qspace char reference char * passed

qname char reference char * passed

ctl TPQCTL reference TPQCTL * passed/returned

data char reference char * * returned

len long reference long * passed/returned

flags long reference long passed
1-48 Oracle Tuxedo Message Queue APIs

tpdeqp lus()
error or a timeout occurs, the application will not know whether or not the message was
successfully dequeued and the message may be lost.

Len

 The length of data, if data is non-NULL.

ctrl

The TPQCTL structure .

flags

The following is a list of valid bits for the flags parameter controlling input
information for tpdeqplus().
TPNOFLAGS

TPQGETBYMSGID

TPQGETBYCORRID

TPQWAIT

TPQPEEK

OTMQ

TPQGETBYFILTER

TPQGETMSGA

TPQREADJRN

TPQENDIAN

TPQGETBYSEQNUM

TPQGETBYMSGCLASS

TPQGETBYMSGTYPE

priority

Supplies the priority level for selective message reception. Priority ranges from 0
(lowest priority) to 99 (highest priority).

msg_class

Supplies the class code of message being sent. OTMQ supports the use of symbolic
names for class argument values. Symbolic class names should begin with
MSG_CLAS_. For information on defining class symbols, see the tmqsym.h include
file. On UNIX and Windows NT systems, the tmqsym.h include file cannot be
edited. You must create an include file to define type and class symbols for use by
your application.
Class symbols reserved by OTMQ are as follows:
Reserved Class Symbol Value
ACK_CLASS 28

MSG_CLAS_PAMS 29
Oracle Tuxedo Message Queue APIs 1-49

<~runChNum>
TUXEDO_MSG 31001

MSG_CLAS_TUXEDO_TPSUCCESS 31002

MSG_CLAS_TUXEDO_TPFAIL 31003

MSG_CLAS_XXX 30000 through 32767
(except 31001-31003)

msg_type

Supplies the type code for the message being sent. OTMQ supports the use of
symbolic names for msg_type argument values. Symbolic type names begin with
MSG_TYPE_. For information on defining type symbols, see the tmqsym.h include
file.
OTMQ has reserved the symbol value range -1 through -5000. A zero value for this
argument indicates that no processing by message type is expected.

block

Supplies the delivery mode for the message using the following format:
"OTMQ_DEL_sn-where sn is one of the following sender notification constants:
"WF-Wait for completion
"AK-Asynchronous acknowledgment
"NN-No notification
Note: NN mode does not support transaction, TPNOTRAN flag is set automatically
for this mode.

DIP

Dip is one of the following delivery interest point constants:
"ACK-Read from target queue and explicitly acknowledged using the
tpqconfirmmsg function. ACK can also be an implicit acknowledgement sent
after the second tpdeqplus call by the receiving application.
"CONF-Delivered from the DQF and explicitly confirmed using the
tpqconfirmmsg function (recoverable)
"DEQ-Read from the target queue
"DQF-Stored in the destination queue file (recoverable)
"MEM-Stored in the target queue
"SAF-Stored in the store and forward file (recoverable)
Note: If temporary queues are used, deleted, and reused quickly, it is possible in
isolated cases for an implicit ACK response from a previous temporary queue to
be placed on the new temporary queue.
1-50 Oracle Tuxedo Message Queue APIs

tpdeqp lus()
If set OTMQ_DIP_ACK and OTMQ_DEL_WF, the ACK message will be read in
tpenqplus,_client do not need to call another API to read the ACK message.

timeout

Supplies the maximum amount of time the tpenqplus function waits for a
message to arrive before returning control to the application. If the timeout occurs
before a message arrives, the status code OTMQ_TIMEOUT is returned. Specifying 0
as the timeout value sets the timeout to the default value of 30 seconds.

psb

Receives a value in the OTMQ Status Block specifying the final completion status.
The psb argument is used when sending or receiving recoverable messages. The
PSB structure stores the status information from the message recovery system and
may be checked after sending or receiving a message as shown in Listing 1-4.

Listing 1-4 PSB Structure

struct psb_t {

long type_of_psb; /* PSB type */

long del_psb_status; /* The completion status of the function.

It contains the status from TuxMsgQ. It can also contain a value of TPSUCCESS

when the message is not sent recoverably. */

long uma_psb_status; /* The completion status of the

undeliverable message action (UMA). The PSB UMA status indicates if the UMA

was not executed or applicable. */

long psb_reserved[6]; /* reserved filed */

};

typedef struct psb_t PSB;

Note: This structure is already defined at atmi.h.
Oracle Tuxedo Message Queue APIs 1-51

<~runChNum>
uma
Supplies the action to be performed if the message cannot be stored at the specified
-delivery interest point. The format of this argument is OTMQ_UMA_XXX where XXX
is one of the following symbols:
Symbol Description
DISC Discard message

RTS Return to sender

SAF Store and Forward

DLJ Dead letter journal

DLQ Dead letter queue

replyqueue
Supplies a q_name to use as the alternate queue for receiving response messages
from the receiver program. The sender program must be attached to the queue
specified in the replyqueue argument to receive the response messages.The
sender program cannot assign a response queue outside its qspace.

Table 1-8 PSB Delivery

PSB Delivery Status Platform Description API

OTMQ__CONFIRMREQ All Confirmation required for this
message.

Tpdeqplus()

OTMQ__DOWN All The specified OTMQ Queue Service
Group is not running.

All

OTMQ__POSSDUPL All Message is a possible duplicate. Tpdeqplus()

OTMQ__NO_DQF All When DQF is disabled, message
delivery with DQF mode will return
PSB del_psb_status as
OTMQ__NO_DQF

Tpenqplus()

OTMQ__NO_SAF All When SAF/DQF journal is disabled,
message delivery with SAF mode
will return PSB del_psb_status
as OTMQ__NO_SAF

Tpenqplus()

OTMQ __SUCCESS All Indicates successful completion. All
1-52 Oracle Tuxedo Message Queue APIs

tpdeqp lus()
correlation_id

Supplies the correlation id, a user-defined identifier stored as a 32-byte value

filter_idx

Get message by filter, filter_idx set as index_handle is created using the
tpqsetselect function.

Data

If data is non-NULL, it must point to a buffer previously allocated by tpalloc() and len
should specify the amount of data in the buffer that should be queued. Note that if data
points to a buffer of a type that does not require a length to be specified (for example, an
FML fielded buffer), then len is ignored. If data is NULL, len is ignored and a message is
queued with no data portion. Consult tpalloc() for more details.

Len

 The length of data, if data is non-NULL.

Flags

The following is

TPNOTRAN

If the caller is in transaction mode and this flag is set, the message is not queued
within the caller transaction. A caller in transaction mode that sets this flag is still
subject to the transaction timeout (and no other) when queuing the message. If
message queuing fails, the caller's transaction is not affected.

TPNOBLOCK

The message is not enqueued if a blocking condition exists. If this flag is set and a
blocking condition exists such as the internal buffers into which the message is
transferred are full, the call fails and tperrno is set to TPEBLOCK. If this flag is set
and a blocking condition exists because the target queue is opened exclusively by
another application, the call fails, tperrno is set to TPEDIAGNOSTIC, and the
diagnostic field of the TPQCTL structure is set to QMESHARE.
When TPNOBLOCK is not set and a blocking condition exists, the caller blocks until
the condition subsides or a timeout occurs (either transaction or blocking timeout).
If a timeout occurs, the call fails and tperrno is set to TPETIME.

TPNOTIME

Setting this flag signifies that the caller is willing to block indefinitely and wants
to be immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT

If this flag is set and a signal interrupts any underlying system calls, the interrupted
system call is reissued. If TPSIGRSTRT is not set and a signal interrupts a system
call, tpenqplus() fails and tperrno is set to TPGOTSIG.
Oracle Tuxedo Message Queue APIs 1-53

<~runChNum>
Return Value(s)
Upon failure, tpdeqplus() returns -1 and sets tperrno to indicate the error condition. Otherwise,
the queue has been successfully dequeued when tpdeqplus() returns.

Errors:

Upon failure, tpdeqplus() sets tperrno to one of the following values. (Unless otherwise
noted, failure does not affect the caller's transaction, if one exists.)

[TPEINVAL]

Invalid arguments were given.

[TPENOENT]

Cannot access the qspace because it is not available.

[TPEOTYPE]

Either the type and subtype of the dequeued message are not known to the caller; or,
TPNOCHANGE was set in flags and the type and subtype of *data do not match the type and
subtype of the dequeued message. In either case, *data, its contents, and *len are not
changed. When the call is made in transaction mode and this error occurs, the transaction
is marked abort-only, and the message remains on the queue.

[TPETIME]

This error code indicates that either a timeout has occurred.

[TPEBLOCK]

A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]

A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]

tpdeqplus() was called improperly. There is no effect on the queue or the transaction.

[TPESYSTEM]

An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file. There is no effect on the queue.

[TPEOS]

An operating system error has occurred. There is no effect on the queue.

[TPEDIAGNOSTIC]

Dequeuing a message from the specified queue failed. The reason for failure can be
determined by the diagnostic value returned via ctl structure.
Diagnostic:
The following diagnostic values are returned during the dequeuing of a message:
1-54 Oracle Tuxedo Message Queue APIs

tpqpubl i sh ()
[QMEINVAL]

An invalid flag value was specified.

[QMEBADRMID]

An invalid resource manager identifier was specified.

[QMENOTOPEN]

The resource manager is not currently open.

[QMEBADMSGID]

An invalid message identifier was specified for dequeuing.

[QMESYSTEM]

A system error has occurred. The exact nature of the error is written to a log file.

[QMEOS]

An operating system error has occurred.

[QMEABORTED]

The operation was aborted. When executed within a global transaction, the global
transaction has been marked rollback-only. Otherwise, the queue manager aborted the
operation.

[QMEPROTO]

A dequeue was done when the transaction state was not active.

[QMEBADQUEUE]

An invalid or deleted queue name was specified.

[QMENOMSG]

No message was available for dequeuing. Note that it is possible that the message exists
on the queue and another application process has read the message from the queue. In this
case, the message may be put back on the queue if that other process rolls back the
transaction.

[QMBADPRIORITY]

Invalid priority value used for receive.

[QMNOTDCL]

Process has not been attached to OTMQ.

tpqpublish()

Name
tpqpublish()—Used to publish a topic data.
Oracle Tuxedo Message Queue APIs 1-55

<~runChNum>
Synopsis
#include <atmi.h>
#include <tmqentry.h>
#include <tmqreturn.h>
int tpqpublish (topic_name, data, len, flags)

Description
The caller uses tpqpublish() to publish a topic data. The topic is named by topic and data, if
not NULL, points to the data. The topic and its data are dispatched by the Oracle Tuxedo ATMI
EventBroker to all subscribers whose subscriptions successfully evaluate against topic and whose
optional filter rules successfully evaluate against data.

Table 1-9 lists tpqpublish() supported arguments:

topicname

topicname is a NULL-terminated string of at most 31 characters and start with
"TMQ:<QNOT>:qspace name", such as"TMQ:QNOT:QSPACE:usertopic". The first
topicname character cannot be a dot (".") as this character is reserved as the starting
character for all events defined by the Oracle Tuxedo ATMI system itself. The topicname
"TMQ:QNOT: qspace name" is the suffix for all user topic and can not be used as user
topic name alone."QNOT" is not an necessary string. But if topicname cotain "QNOT",
means the message which will be published is an AVAIL/UNAVALI message.

Data

If data is non-NULL, it must point to a buffer previously allocated by tpalloc() and len
should specify the amount of data in the buffer that should be posted with the event. Note
that if data points to a buffer of a type that does not require a length to be specified (for
example, an FML fielded buffer), then len is ignored. If data is NULL, len is ignored and
the event is posted with no data.

Table 1-9 tpqpublish() Arguments

Argument Data Type Mechanism Prototype Access

topicname char reference char * passed

data char reference char * passed

len long reference long passed

flags long reference long passed
1-56 Oracle Tuxedo Message Queue APIs

tpqpubl i sh ()
Flags

If the publisher is within a transaction and the TPNOTRAN flag is not set, the publish topic
goes to the EventBroker in transaction mode such that it dispatches the event as part of the
publisher transaction. The broker dispatches transactional event notifications only to those
service routine and stable-storage queue subscriptions that used the TPEVTRAN bit setting
in the ctl-? flags parameter passed to tpqsubscribe(). Client notifications, and those
service routine and stable-storage queue subscriptions that did not use the TPEVTRAN bit
setting in the ctl-? flags parameter passed to tpqsubscribe(), are also dispatched by
the EventBroker but not as part of the publiser process transaction.

If the publisher is outside a transaction, tpqpublish() is a one-way publish topic with
no acknowledgement when the service associated with the event fails. This occurs even
when TPEVTRAN is set for that event (using the ctl.flags parameter passed to
tpqsubscribe(). If the publisher is in a transaction, then tpqpublish () returns
TPESVCFAIL when the associated service fails in the event.

The following is a list of valid flags:

TPNOTRAN

If the caller is in transaction mode and this flag is set, then the event publishing is
not made on behalf of the caller transaction. A caller in transaction mode that sets
this flag is still subject to the transaction timeout (and no other) when posting
events. If the event posting fails, the caller's transaction is not affected.

TPNOREPLY

Informs tpqpublish() not to wait for the EventBroker to process all
subscriptions for topic before returning. When TPNOREPLY is set, tpurcode() is
set to zero regardless of whether tpqpublish() returns successfully or not. When
the caller is in transaction mode, this setting cannot be used unless TPNOTRAN is
also set.

TPNOBLOCK

The topic is not published if a blocking condition exists. If such a condition occurs,
the call fails and tperrno is set to TPEBLOCK. When TPNOBLOCK is not specified
and a blocking condition exists, the caller blocks until the condition subsides or a
timeout occurs (either transaction or blocking timeout).

TPNOTIME

This flag signifies that the caller is willing to block indefinitely and wants to be
immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT

If a signal interrupts any underlying system calls, then the interrupted system call
is reissued. When TPSIGRSTRT is not specified and a signal interrupts a system
call, then tpqpublish() fails and tperrno is set to TPGOTSIG.
Oracle Tuxedo Message Queue APIs 1-57

<~runChNum>
In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not
allowed to issue a call to tpqpublish().

Return Value(s)
Upon failure, tpqpublish() returns -1 and sets tperrno to indicate the error condition.
Otherwise, the message has been successfully broadcasted when tpqpublish() returns.

Errors:

[TPEINVAL]

Invalid arguments were given.

[TPENOENT]

Cannot access the TMQEVT

[TPETIME]

This error code indicates that either a timeout has occurred or tpqpublish() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

[TPEBLOCK]

A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]

A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]

tpqpublish() was called improperly.

[TPESYSTEM]

An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file.

[TPEOS]

An operating system error has occurred.

tpqsubscribe()

Name
tpqsubscribe()—Used to subscribe to a topic.

Synopsis
#include <atmi.h>
#include <tmqentry.h>
#include <tmqreturn.h>
long tpqsubscirbe (topic, filter, ctl, flags)
1-58 Oracle Tuxedo Message Queue APIs

tpqsubscr ibe ()
Description
The caller uses tpqsubscribe() to subscribe to a topic. Topic is a NULL-terminated string of
at most 255 characters containing a regular expression. If present, filter is a string containing a
Boolean filter rule that must be evaluated successfully before the TMQEVT posts the topic. Upon
receiving an topic to be published, the TMQEVT applies the filter rule, if one exists, to the
publish topic string. If the data passes the filter rule, the TMQEVT invokes the notification
method; otherwise, the broker does not invoke the associated notification method. The caller can
subscribe to the same event multiple times with different filter rules.

Table 1-10 lists tpqsubscribe() supported arguments:

topic

topic is a NULL-terminated string of at most 31 characters and starts with
"TMQ:<QNOT>:qspace name" (for example"TMQ:QNOT:QSPACE:usertopic"). The first
topic character cannot be a dot (".") as this character is reserved as the starting character
for all events defined by the Oracle Tuxedo ATMI system itself. The topic "TMQ:QNOT:
qspace name" is the suffix for all user topics and cannot be used as a user topic name
alone."QNOT" is not a necessary string. But if a topic contains "QNOT", it indicates the
published message is an AVAIL/UNAVALI message.

filter

filter is a string containing a Boolean filter rule that must be evaluated successfully before
the TMQEVT posts the topic. See Regular Expressions.

ctrl
The TPEVCTL structure as shown at atmi.h

This structure contains the following elements:

/* Subscription Control structure */

struct tpevctl_t {

Table 1-10 tpqsubscribe() Arguments

Argument Data Type Mechanism Prototype Access

topic char reference char* passed

filter char reference char* passed

ctrl TPEVCTL reference TPEVCTL * passed

flags long reference long passed
Oracle Tuxedo Message Queue APIs 1-59

<~runChNum>
long flags;

char name1[XATMI_SERVICE_NAME_LENGTH];

char name2[XATMI_SERVICE_NAME_LENGTH];

TPQCTL qctl;

};

typedef struct tpevctl_t TPEVCTL;

The following is a list of valid bits for the ctl->flags element controling options for topic
subscriptions:

TPEVQUEUE

Setting this flag indicates that the subscriber wants topic notifications to be
enqueued to the queue space named in ctl->name1 and the queue named in
ctl->name2. That is, when an topic name is published that evaluates successfully
against topic, the TMQEVT tests the published data against the filter rule
associated with topic. If the data passes the filter rule or if there is no filter rule for
the topic, then the TMQEVT enqueues a message to the queue space named in
ctl->name1 and the queue named in ctl->name2 along with any data published
with the topic. The queue space and queue name can be any valid Oracle Tuxedo
ATMI system queue space and queue name, either of which may or may not exist
at the time the subscription is made.
ctl->qctl can contain options further directing the TMQEVT enqueuing of the
published topic. If no options are specified, then ctl->qctl.flags should be set to
TPNOFLAGS. Otherwise, options can be set as described in the "Control Parameter"
subsection of tpenqplus. TPEVQUEUE are mutually exclusive flags. If TPEVTRAN
is also set in ctl->flags, then if the process calling tpqpublish() is in
transaction mode, the TMQEVT enqueues the published topic and its data such
that it will be part of the publisher transaction. The TMQEVT must belong to a
server group that supports transactions (see UBBCONFIG for details). If
TPEVTRAN is not set in ctl->flags, then the TMQEVT enqueues the published
topic and its data such that it will not be part of the publisher transaction.

TPEVTRAN

Setting this flag indicates that the subscriber wants the topic notification for this
subscription to be included in the publisher transaction, if one exists. If the
publisher is not a transaction, then a transaction is started for this topic notification.
If this flag is not set, then any topics published for this subscription will not be done
on behalf of any transaction in which the publisher is participating.
For subscriptions to stable-storage queues, the queue space, queue name, and
correlation identifier are used, in addition to topic and filter, when determining
1-60 Oracle Tuxedo Message Queue APIs

tpqsubscr ibe ()
matches. The correlation identifier can be used to differentiate among several
subscriptions for the same topic expression and filter rule, destined for the same
queue. Thus, if the caller has set ctl->flags to TPEVQUEUE, and TPQCOORID is
not set in ctl->qctl.flags, then tpqsubscribe() fails if topic, filter, the queue
space name set in ctl->name1, and the queue name set in ctl->name2 match
those of a subscription (which also does not have a correlation identifier specified)
already known to the TMQEVT. Further, if TPQCOORID is set in
ctl->qctl.flags, then tpqsubscribe() fails if topic, filter, ctl->name1,
ctl->name2, and ctl->qctl.corrid match those of a subscription (which has
the same correlation identifier specified) already known to the TMQEVT.

TPEVPERSIST

By default, the OTMQ deletes subscriptions when the resource to which it is
posting is not available (for example, the OTMQ cannot access a service routine
and/or a queue space/queue name associated with an subscription). Setting this flag
indicates that the subscriber wants this subscription to persist across such errors
(usually because the resource will become available again in the future). When this
flag is not used, the OTMQ will remove this subscription if it encounters an error
accessing either the service name or queue space/queue name designated in this
subscription.
If this flag is used with TPEVTRAN and the resource is not available at the time of
event notification, then the EventBroker will return to the poster such that its
transaction must be aborted. That is, even though the subscription remains intact,
the resource's unavailability will cause the poster's transaction to fail.

flags

The following is a list of valid flags for tpqsubscribe():

OTMQ
Note: OTMQ is must be set for TPQCTL->flags.

TPNOBLOCK

The subscription is not made if a blocking condition exists. If such a condition
occurs, the call fails and tperrno is set to TPEBLOCK. When TPNOBLOCK is not
specified and a blocking condition exists, the caller blocks until the condition
subsides or a timeout occurs (either transaction or blocking timeout).

TPNOTIME

This flag signifies that the caller is willing to block indefinitely and wants to be
immune to blocking timeouts. Transaction timeouts may still occur.
Oracle Tuxedo Message Queue APIs 1-61

<~runChNum>
TPSIGRSTRT

If a signal interrupts any underlying system calls, then the interrupted system call
is reissued. When TPSIGRSTRT is not specified and a signal interrupts a system
call, then tpqsubscribe() fails and tperrno is set to TPGOTSIG.
In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not
allowed to issue a call to tpqsubscribe().

Return Value(s)
Upon failure, tpqsubscribe() returns -1 and sets tperrno to indicate the error condition.
Otherwise, the topic has been successfully subscribed when tpqsubscribe() returns and
returns a subscription handle.

Errors:

[TPEINVAL]

Invalid arguments were given.

[TPENOENT]

Cannot access TMQEVT

[TPETIME]

This error code indicates that either a timeout has occurred or tpqsubscribe() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

[TPEBLOCK]

A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]

A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]

tpqsubscribe() was called improperly.

[TPESYSTEM]

An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file.

[TPEOS]

An operating system error has occurred.

[TPELIMIT]

The subscription failed because the EventBroker maximum number of subscriptions has
been reached.
1-62 Oracle Tuxedo Message Queue APIs

tpqunsubscr ibe()
tpqunsubscribe()

Name
tpqunsubscribe()—Used to remove a subscription.

Synopsis
#include <atmi.h>
#include <tmqentry.h>
#include <tmqreturn.h>
int tpqunsubscirbe (subscription,flags)

Description
Used to remove a subscription.

Table 1-11 lists tpqunsubscribe() supported arguments:

Subscription

subscription is an subscription handle returned by tpqsubscribe().Setting subscription
to the wildcard value, -1, directs tpqunsubscribe() to unsubscribe to all non-persistent
subscriptions previously made by the calling process. Non-persistent subscriptions are
those made without the TPEVPERSIST bit setting in the ctl-?flags parameter of
tpqsubscribe(). Persistent subscriptions can be deleted only by using the handle
returned by tpqsubscribe().

flags

The following is a list of valid flags for tpqsubscribe():

TPNOBLOCK

The subscription is not made if a blocking condition exists. If such a condition
occurs, the call fails and tperrno is set to TPEBLOCK. When TPNOBLOCK is not
specified and a blocking condition exists, the caller blocks until the condition
subsides or a timeout occurs (either transaction or blocking timeout).

Table 1-11 tpqunsubscribe() Arguments

Argument Data Type Mechanism Prototype Access

subscription long reference long passed

flags long reference long passed
Oracle Tuxedo Message Queue APIs 1-63

<~runChNum>
TPNOTIME

This flag signifies that the caller is willing to block indefinitely and wants to be
immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT

If a signal interrupts any underlying system calls, then the interrupted system call
is reissued. When TPSIGRSTRT is not specified and a signal interrupts a system
call, then tpunsubscribe() fails and tperrno is set to TPGOTSIG.
In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not
allowed to issue a call to tpqunsubscribe().

Return Value(s)
Upon failure, tpqunsubscribe() sets tperrno to one of the following values. (Unless
otherwise noted, failure does not affect the caller's transaction, if one exists.)

[TPEINVAL]

Invalid arguments were given.

[TPENOENT]

Cannot access the OTMQ EventBroker.

[TPETIME]

This error code indicates that either a timeout has occurred

[TPEBLOCK]

A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]

A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]

tpqunsubscribe() was called improperly.

[TPESYSTEM]

An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file.

[TPEOS]

An operating system error has occurred.

tpqconfirmmsg()

Name
tpqconfirmmsg()—Confirms receipt of a message that requires explicit confirmation.
1-64 Oracle Tuxedo Message Queue APIs

tpqconf i rmmsg()
Synopsis
#include <atmi.h>
#include <tmqentry.h>
#include <tmqreturn.h>
int tpqconfirmmsg (seq_number, force_j)

Description
Confirms receipt of a message that requires explicit confirmation. This can be a recoverable
message sent to a queue that is configured for explicit confirmation or a message sent using the
ACK delivery mode which must be explicitly confirmed upon receipt. Applications should
examine the PSB status field of each message received to determine if the message requires
explicit confirmation.

When a recoverable message is received, the application must call the tpqconfirmmsg function
in order to delete it from the message recovery journal disk storage. If receipt of a recoverable
message is not confirmed, the message continues to be stored by the recovery system and will be
re-delivered if the application detaches and then reattaches to the queue.

OTMQ can confirm receipt of a recoverable message automatically when the next consecutive
message in the recovery journal is delivered. This feature is called implicit confirmation.

All queues must be configured for implicit or explicit confirmation. For complete information on
how to configure message queues, see tmqadmin in the Oracle Tuxedo Message Queue
Command Reference Guide.

Successfully delivered recoverable messages can be recorded in the postconfirmation journal
(PCJ). The tpqconfirmmsg function uses the force_j argument to write messages to the PCJ
file if the system is not currently configured to store them. Note that successfully delivered
recoverable messages cannot be written to the PCJ file unless they are explicitly confirmed using
the tpqconfirmmsg function.

To use tpqconfirmmsg(), you must first invoke tpqattach().

Note: tpqconfirmmsg() is an asynchronous invocation, when it returns, the recoverable
message in the recoveray jounal disk storage may not have been deleted by the recovery
system.

Table 1-12 lists tpqconfirmmsg() supported arguments:
Oracle Tuxedo Message Queue APIs 1-65

<~runChNum>
seq_number

Supplies the message sequence number of the recoverable message being confirmed. The
message sequence number is generated by the OTMQ message recovery system for each
recoverable message. This value is passed to the receiver program in the PSB of the
tpdeqplus function when it reads each recoverable message.

force_j
Supplies the journaling action for this message. Following are the predefined constants for
this argument:

Return Value(s)
Upon failure, tpqconfirmmsg() sets tperrno to one of the following values. (Unless otherwise
noted, failure does not affect the caller's transaction, if one exists.)

[TPEINVAL]

Invalid arguments were given.

[TPENOENT]

Cannot access the qspace because it is not available.

Table 1-12 pqconfirmmsg() Arguments

Argument Data Type Mechanism Prototype Access

seq_number long reference long * passed

force_j int reference int passed

Symbol Description

OTMQ_DEFAULT_JRN Enables writing the message to the PCJ
queue only if the journaling is enabled by
qspacecreate command.

OTMQ_FORCE_JRN Enables writing the message to the PCJ
queue only if the journaling is enabled by
qspacecreate command.

OTMQ_NO_JRN Disables journaling regardless of whether
journaling is configured.
1-66 Oracle Tuxedo Message Queue APIs

tpqsetse l ec t ()
[TPETIME]

This error code indicates that either a timeout has occurred.

[TPESYSTEM]

An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file.

[TPEOS]

An operating system error has occurred.

tpqsetselect()

Name
tpqsetselect()—Allows application developers to define complex selection criteria for
message reception.

Synopsis
#include <atmi.h>
#include <tmqentry.h>
#include <tmqreturn.h>
int tpqsetselect (selection_array, num_masks, index_handle)

Description
Allows application developers to define complex selection criteria for message reception. The
selection array specifies the queues to search, the priority order of message reception, two
comparison keys for range checking, and an order key to determine the order in which messages
are selected from the queue.

The tpqsetselect function creates an index handle that is used as the sel_filter argument
of OTMQ functions for reading the message. When a selection index handle is passed to
tpdeqplus, each message received is compared against comparison key_1 and then comparison
key_2. If the message matches both keys (a logical AND operation), the message is added to a
set of matched messages. The order in which selected messages are delivered is determined by
the order key.

To use tpqsetselect(), you must first invoke tpqattach().

Table 1-13 lists tpqsetselect() supported arguments:
Oracle Tuxedo Message Queue APIs 1-67

<~runChNum>
selection_array
Supplies an array of selection records that contain the selection rules for each queue. The
typedef structures define the C data structure for the selection array. The structure is
defined in tmqentry.h as follows:
typedef struct _selection_array_component_tp {
 char qspace[TMQSNAMELEN+1];
 char queue[QNAMELEN+1];
 TM32I priority;
 TM32I key_1_offset;
 TM32I key_1_size;
 TM32I key_1_value;
 TM32I key_1_oper;
 TM32I key_2_offset;
 TM32I key_2_size;
 TM32I key_2_value;
 TM32I key_2_oper;
 TM32I order_offset;
 TM32I order_size;
 TM32I order_order;
 char key_value_qspace[TMQSNAMELEN+1];
 char key_value_queue[TMQNAMELEN+1];
 union {
 otmq_correlation_id correlation_id;
 otmq_sequence_number sequence number
 } extended_key
} selection_array_component_tp;

The selection_array_component_tp data structure has the following components:

Table 1-13 tpqsetselect() Arguments

Argument Data Type Mechanism Prototype Access

selection_ar
ray

selection_array_
component_tp

reference selection_array_
component_tp *

passed

num_masks short reference short * passed

index_handle Int reference int * returned
1-68 Oracle Tuxedo Message Queue APIs

tpqsetse l ec t ()
Table 1-15 specifies the valid values that can be applied to the arguments in this part of the
Select_Queue structure:

Table 1-14 selection_array_component_tp Data Structure Components

Component Description

QSpace, Queue and Priority Allows the application to specify the queue number and priority.

Comparison Key 1 Defines the components of the first comparison key used to enable range
checking of messages.

Comparison Key 2 Defines the components of the second comparison key used to enable range
checking of messages.

Order Key Contains the information required to provide selection of messages by FIFO,
Minimum Value, or Maximum Value.

Key Value for Offset
"OTMQ_SOURCE"

Special case for setting key offset as "OTMQ_SOURCE", the source QSpace
name and queue name should be specified in these 2 fields.

Table 1-15 Queue and Priority

Field Values Description

QSpace QSpace Name Specifies the QSpace name to be searched.

Queue Queue Name Specifies the queue name to be searched. The queue name can be any
message queue for which the application has read access. The queue
name can be obtained from the q_attached argument of the
tpqattach function or qname of the tpqlocate function. A char of
0 for this argument specifies the application's primary queue. The
queue must be attached before do this except MRQ, if MRQ is not
attached, this api will attach the MRQ first

Priority Specifies the priority, using either an integer between 0 and 99
inclusive or a variable. (Using the direct interger value is the preferred
method of specifying priority.) This argument also accepts the
following predefined constants which are set by the application. When
the priority is set as 0, it will read priority 0 messages only.
Oracle Tuxedo Message Queue APIs 1-69

<~runChNum>
Table 1-16 specifies the arguments and valid values that can be applied to this part of the
selection_array_component_tp structure:

OTMQ_PRI_AN
Y

Read priority 1 before reading priority 0 messages.

OTMQ_PRI_P0 Read priority 0 messages only.

OTMQ_PRI_P1 Read priority 1 messages only.

Table 1-15 Queue and Priority

Field Values Description

Table 1-16 Comparison Keys

Field Values Description

Offset Contains a value that specifies where the information to be
compared begins inside the message. The following
predefined constants apply:

n User message byte number (0 relative).

OTMQ_CLASS Class of the message.

OTMQ_TYPE Type of the message.

OTMQ_SOURCE Source queue address of the message.

OTMQ_CORRELATION
_ID

Correlation ID of the message. May be used for
key_1_offset or key_2_offset but not both. If this symbol
is specified, the Size field must be set to
OTMQ_CORRELATION_ID_SIZE (or 32 bytes).

OTMQ_SEQUENCE_NU
MBER

Message sequence number acquired from the OTMQ
Status Buffer. If this symbol is specified, the Size field
must be set to OTMQ_SEQUENCE_NUMBER_SIZE (or
8 bytes).

Size Specifies data type of the key to be compared.

Note: For the special case of offset "OTMQ_SOURCE",
the size can be any of following values except
"0".
1-70 Oracle Tuxedo Message Queue APIs

tpqsetse l ec t ()
The Order Key part contains variables described in the following table:

0 Disable use of key.

1 Byte (8 bits).

2 Word (16 bits).

4 int32 (32 bits).

OTMQ_SEQUENCE_NU
MBER_SIZE

8 bytes

OTMQ_CORRELATION
_ID_SIZE

32 bytes

Value n Contains the value for message field comparison field that
is formatted as an integer of 32 bits.

oper Relational operator comparison.

OTMQ_OPER_EQ Message field = value.

OTMQ_OPER_NEQ Message field <> value.

OTMQ_OPER_GTR Message field > value.

OTMQ_OPER_LT Message field < value.

OTMQ_OPER_GTRE Message field > or = value.

OTMQ_OPER_LTE Message field < or = value.

Table 1-16 Comparison Keys

Field Values Description
Oracle Tuxedo Message Queue APIs 1-71

<~runChNum>
Table 1-17 Order Key

Field Values Description

Offset Byte offset of the message field. The offset variable
contains a value that specifies where the information to be
compared begins inside the message.

n User message byte number (0 relative).(only support
memory queue)

OTMQ_CLASS Class of the message.

OTMQ_TYPE Type of the message.

OTMQ_CORRELATION
_ID

Correlation ID of the message. If this symbol is specified,
the Size field must be set to
OTMQ_CORRELATION_ID_SIZE (or 32 bytes).

OTMQ_SEQUENCE_NU
MBER

Message sequence number acquired from the OTMQ
Status Buffer. If this symbol is specified, the Size field
must be set to OTMQ_SEQUENCE_NUMBER_SIZE (or
8 bytes).

Size Size of the comparison. The size variable specifies the
data type of the key to be compared.

0 Disable use of key.

1 Byte.

2 Word.

4 int32 (32 bits).

OTMQ_SEQUENCE_NU
MBER_SIZE

8 bytes

OTMQ_CORRELATION
_ID_SIZE

32 bytes

Order Order operator. The order variable specifies the sequence
in which the select process is to be performed.
1-72 Oracle Tuxedo Message Queue APIs

tpqsetse l ec t ()
Correlation ID

The correlation ID is a 32-byte user-defined identifier associated with a message. If
OTMQ_CORRELATION_ID is supplied as the value for either the key_1_offset or
key_2_offset field, the correlation ID value is used to match messages with the specified
correlation ID. Since there is a single correlation ID per message,
OTMQ_CORRELATION_ID should only be specified for one of the comparison keys;
specifying the correlation ID for both keys results in a TPEINVAL error.

If OTMQ_CORRELATION_ID is supplied as the value for the order_offset field,
messages with the specified correlation ID are returned in the order specified by the
order_order field.

Sequence Number

The message sequence number is a unique value for each message. The sequence number
is stored in the PSB. Applications should acquire the message sequence number from the
PSB and not modify it in any way.

Note: An application may specify only one of the two keys to select by correlation
identifier or by sequence number.

OTMQ_ORDER_FIFO 1,Read priority 1 before reading priority 0 messages

2,SQL SYNTAX: priority DESC

3,First pending.

OTMQ_ORDER_MIN 1,Minimum value of all pending.

2,SQL SYNTAX: (offset is OTMQ_CLASS) class ASC,
priority ASC

3,Read the last matched message

OTMQ_ORDER_MAX 1,Maximum value of all pending.

2,SQL SYNTAX: (offset is OTMQ_CLASS) class
DESC, priority ASC

3,Read the last matched message

Table 1-17 Order Key

Field Values Description
Oracle Tuxedo Message Queue APIs 1-73

<~runChNum>
num_masks
Supplies the number of records in the selection array. This argument allows a minimum
of 1 record to a maximum of 256 records in the selection array.

index_handle
Receives a variable containing the index handle for the selection mask as follows:

* The high-order word contains OTMQ_BY_MASK.

* The low-order word contains the index to the selection array.

The index_handle is passed as the sel_filter argument of TPQCTL in tpdeqplus,
tpqgetmsga , and tpqcancelselect functions. OTMQ implementations offer up to
32767 index handles.

Return Value(s)
Upon failure, tpqsetselect() sets tperrno to one of the following values.

[TPEINVAL]

Invalid arguments were given.

[TPENOENT]

Cannot access the qspace because it is not available.

[TPETIME]

This error code indicates that either a timeout has occurred.

[TPESYSTEM]

An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file.

[TPEOS]

An operating system error has occurred.

tpqcancelselect()

Name
tpqcancelselect()—Releases the selection array and index handle associated with a
previously generated selection mask.

Synopsis
#include <atmi.h>
#include <tmqentry.h>
1-74 Oracle Tuxedo Message Queue APIs

tpqcance lse l ec t ()
#include <tmqreturn.h>
int tpqcancelselect (index_handle)

Description
Releases the selection array and index handle associated with a previously generated selection
mask. An index_handle and associated selection mask are created using the tpqsetselect
function. When the selection mask is used with asynchronous read requests, this function also
cancels any pending tpqgetmsga requests that use the referenced index_handle.

To use tpqcancelselect(), you must first invoke tpqattach().

Table 1-18 lists supported tpqcancelselect() arguments:

index_handle

Returned by tpqsetselect.

Return Value(s)
Upon failure, tpqcancelselect() sets tperrno to one of the following values.

[TPEINVAL]

Invalid arguments were given.

[TPENOENT]

Cannot access the qspace because it is not available.

[TPETIME]

This error code indicates that either a timeout has occurred.

[TPESYSTEM]

An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file.

[TPEOS]

An operating system error has occurred

Table 1-18 tpqcancelselect() Arguments

Argument Data Type Mechanism Prototype Access

index_handle int Refence int* passed
Oracle Tuxedo Message Queue APIs 1-75

<~runChNum>
tpqreadjrn()

Name
tpqreadjrn()—Reads a message from an OTMQ local group journal.

Synopsis
#include <atmi.h>
#include <tmqentry.h>
#include <tmqreturn.h>
int tpqreadjrn (qspace, qname, ctl, type, odata, olen, timeout)

Description
Reads a message from an OTMQ journal. Before using tpqreadjrn, you must first invoke
tpqattach().

Table 1-19 lists supported tpqreadjrn arguments:

qspace

Supplies the queue space name as the filter to read the journal messages.
For SAF/DLQ/DLJ journal queue, queue space is the source queue space of the journal
message that the client wants to read. For PCJ/DQF journal, queue space is the target
queue space of the journal message that the client wants to read.

Table 1-19 tpqreadjrn Arguments

Argument Data Type Mechanism Prototype Access

qspace char reference char * passed

qname char reference char * passed

ctl TPQCTL Reference TPQCTL* passed/returned

type int Reference int passed

odata char reference char * returned

olen long reference long * returned

timeout long reference long passed
1-76 Oracle Tuxedo Message Queue APIs

tpqreadj rn ()
qname

Supplies the name of the permanent queue as the filter to read journal message.

For SAF/DLQ/DLJ journal queue, the queue name is the source queue of the journal
messages that the client wants to read. For PCJ/DQF journal, queue name is the target
queue name of the journal messages that the client wants to read

Control Parameter

flags

For tpqreadjrn(), ctl->flags must contain OTMQ| TPQREADJRN.

type

Supplies the type of the journal to read. The values only be validate as:

SAF_HANDLE

DQF_HANDLE

DLQ_HANDLE

DLJ_HANDLE

PCJ_HANDLE

odata

Receives the contents of the message retrieved from the selected message recovery
journal. This argument contains either the name of a memory region or a message handle
where OTMQ writes.

Olen

Supplies the size of the buffer (in bytes) for messages

timeout
Supplies the maximum amount of time the tpqreadjrn function waits for a message to
arrive before returning control to the application. If the timeout occurs before a message
arrives, the status code OTMQ_TIMEOUT is returned. Specifying 0 as the timeout value
sets the timeout to the default value of 30 seconds.

Return Value(s)
Upon failure, tpqreadjrn() sets tperrno to one of the following values. Otherwise, the
successfully read messages when tpqreadjrn() returns. you can use tpqerrno() and
tpqstrerror() to get the detail OTMQ error number and detail string error message

[TPEINVAL]

Invalid arguments were given.
Oracle Tuxedo Message Queue APIs 1-77

<~runChNum>
[TPENOENT]

Cannot access the qspace because it is not available.

[TPEOTYPE]

Either the type and subtype of the dequeued message are not known to the caller; or,
TPNOCHANGE was set in flags and the type and subtype of *data do not match the type
and subtype of the dequeued message. In either case, *data, its contents, and *len are not
changed. When the call is made in transaction mode and this error occurs, the transaction
is marked abort-only, and the message remains on the queue.

[TPETIME]

This error code indicates that either a timeout has occurred.

[TPEBLOCK]

A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]

A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]

tpdeqplus() was called improperly. There is no effect on the queue or the transaction.

[TPESYSTEM]

An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file. There is no effect on the queue.

[TPEOS]

An operating system error has occurred. There is no effect on the queue.

[TPEDIAGNOSTIC]

Dequeuing a message from the specified queue failed. The reason for failure can be
determined by the diagnostic value returned via ctl structure.

Diagnostic:
The following diagnostic values are returned during the dequeuing of a message:

[QMEINVAL]

An invalid flag value was specified.

[QMEBADRMID]

An invalid resource manager identifier was specified.

[QMESYSTEM]

A system error has occurred. The exact nature of the error is written to a log file.

[QMEOS]

An operating system error has occurred.
1-78 Oracle Tuxedo Message Queue APIs

tpqshowpend ing()
[QMEABORTED]

The operation was aborted. When executed within a global transaction, the global
transaction has been marked rollback-only. Otherwise, the queue manager aborted
the operation.

[QMEPROTO]

A dequeue was done when the transaction state was not active.

[QMEBADQUEUE]

An invalid or deleted queue name was specified.

[QMENOMSG]

No message was available for dequeuing. Note that it is possible that the message
exists on the queue and another application process has read the message from the
queue. In this case, the message may be put back on the queue if that other process
rolls back the transaction.

[QMBADPRIORITY]

Invalid priority value used for receive.

[QMNOTDCL]

Process has not been attached to OTMQ.

tpqshowpending()

Name
tpqshowpending()—Requests the number of pending messages for a list of selected queues.

Synopsis
#include <atmi.h>
#include <tmqentry.h>
#include <tmqreturn.h>
int tpqshowpending (qspace, count, in_q_list, out_pend_list)
need to follow the style of others API

Description
Requests the number of pending messages for a list of selected queues. To use the
tpqshowpending function, specify the number of message queues for which you want to obtain
a pending message count and the list of queue names for which you want to obtain a pending
message count. The value returned by this function contains the total number of messages in each
queue.
Oracle Tuxedo Message Queue APIs 1-79

<~runChNum>
To use tpqshowpending(), you must first invoke tpqattach().

Notes: You must allocate the out_pend_list array.

The number of queue that need to be listed is depend on "count", you must insure the
array of queue list is properly allocated.

Table 1-20 lists supported tpqshowpending()arguments.

qspace

Supplies the queue space name for enqueue the message. The max length is 15

count

Supplies the number of queue entries in the in_q_list argument (the number of indexes in
the array). The maximum allowed value is 32,000.

In_q_list

Supplies an array containing the queue name for which the pending message count is
requested

Out_pend_list

Receives the pending message count for each selected queue.

Return Value(s)
Upon failure, tpqshowpending() sets tperrno to one of the following values.You can use
tpqerrno() and tpqstrerror() to get the detail OTMQ error number and detail string error
message

[TPEINVAL]

Invalid arguments were given.

[TPENOENT]

Cannot access the qspace because it is not available.

Table 1-20 tpqshowpending() Arguments

Argument Data Type Mechanism Prototype Access

qspace char reference char * passed

count int reference int passed

in_q_list char reference char ** passed

out_pend_list long reference long* passed/returned
1-80 Oracle Tuxedo Message Queue APIs

tpqgetmsga()
[TPETIME]

This error code indicates that either a timeout has occurred.

[TPESYSTEM]

An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file.

[TPEOS]

An operating system error has occurred.

tpqgetmsga()

Name
tpqgetmsga()—Requests asynchronous notification of a message arrival.

Synopsis
#include <atmi.h>
#include <tmqentry.h>
#include <tmqreturn.h>
int tpqgetmsga (qspace, qname, ctl, data, len , uact, uact_param , uflag,

flags)

Description
Requests asynchronous notification of a message arrival. In OTMQ, the tpqgetmsga function is
implemented using unsolicited message of Tuxedo. When calling tpqgetmsga, it registers its
own UNSOL message handler. When a message arrives in that queue that fits the selection
condition of tpqgetmsga, the message being dequeued will be sent through an UNSOL message
to the application. Also if an UNSOL message has arrived, if the application setup its own
message handling callback function, or an flag, the user callback function will be called, or the
flag will be set to "1", to inform the application that an message has been dequeued by
tpqgetmsga.

Since UNSOL message is the infrastructure of tpqgetmsga, to call this API, user must NOT set
the NOTIFY to "IGNORE" in UBB. Also for some limitation, "SIGNAL" of notification mode
is not supported on OpenVMS.

If a queue has been sent a recoverable message, the receiver program can confirm receipt of the
message using the tpqconfirmmsg function. The tpqconfirmmsg function enables the
successfully delivered message to be deleted from the message recovery system.

To use tpqgetmsga(), you must first invoke tpqattach().
Oracle Tuxedo Message Queue APIs 1-81

<~runChNum>
Table 1-21 lists supported tpqgetmsga() arguments:

qspace
Supplies the queue space name for enqueue the message. The max length is 15

qname
Supplies the queue name for enqueue the message, the max length is 127

ctl

The TPQCTL structure

data

For static buffer-style messaging, receives the name of a memory region where OTMQ
writes the contents of the retrieved message.

len

Supplies the size of the buffer (in bytes) for static message buffers.

uact

user action

uact_param

user action parameters

Table 1-21 tpqgetmsga() Arguments

Argument Data Type Mechanism Prototype Access

qspace char reference char * passed

qname char reference char * passed

ctl TPQCTL reference TPQCTL * passed

data char reference char ** Passed/returned

len long reference long * Passed/returned

uact long reference long * Passed

uact_param long reference long * Passed

uflag long reference long * Passed

flags long reference long Passed
1-82 Oracle Tuxedo Message Queue APIs

tpqgetmsga()
uflag

Supplies the int value for the flag number to be set when the tpqgetmsga function
completes. When the tpqgetmsga function executes, it clears this flag. If this argument
value is not supplied, no flag is used.

flags

The flags supported by tpdeqplus must be set as TPNOTIME

Return Value(s)
Upon failure, tpqgetmsga() returns -1 and sets tperrno to indicate the error condition. you
can use tpqerrno() and tpqstrerror() to get the detail OTMQ error number and detail string
error message.

tpqgetmsga() sets tperrno to one of the following values upon failure. (Unless otherwise
noted, failure does not affect caller transaction, if one exists.)

[TPEINVAL]

Invalid arguments were given.

[TPENOENT]

Cannot access the qspace because it is not available.

[TPETIME]

This error code indicates that either a timeout has occurred.

[TPESYSTEM]

An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file. There is no effect on the queue.

[TPEOS]

An operating system error has occurred. There is no effect on the queue.

[TPEDIAGNOSTIC]

Dequeuing a message from the specified queue failed. The reason for failure can be
determined by the diagnostic value returned via ctl structure.

Diagnostic:

The following diagnostic values are returned during the dequeuing of a message:

[QMEINVAL]

An invalid flag value was specified.

[QMEBADRMID]

An invalid resource manager identifier was specified.

[QMENOTOPEN]

The resource manager is not currently open.
Oracle Tuxedo Message Queue APIs 1-83

<~runChNum>
[QMEBADMSGID]

An invalid message identifier was specified for dequeuing.

[QMESYSTEM]

A system error has occurred. The exact nature of the error is written to a log file.

[QMEOS]

An operating system error has occurred.

[QMEABORTED]

The operation was aborted. When executed within a global transaction, the global
transaction has been marked rollback-only. Otherwise, the queue manager aborted
the operation.

[QMEPROTO]

A dequeue was done when the transaction state was not active.

[QMEBADQUEUE]

An invalid or deleted queue name was specified.

[QMENOMSG]

No message was available for dequeuing. Note that it is possible that the message
exists on the queue and another application process has read the message from the
queue. In this case, the message may be put back on the queue if that other process
rolls back the transaction.

[QMBADPRIORITY]

Invalid priority value used for receive.

[QMNOTDCL]

Process has not been attached to OTMQ.

tpqcancelget()

Name
tpqcancelget()—Cancels all pending tpqgetmsga requests that match the value specified in
the sel_filter argument.

Synopsis
#include <atmi.h>
#include <tmqentry.h>
#include <tmqreturn.h>
int tpqcancelget (qspace, sel_filter , flags)
1-84 Oracle Tuxedo Message Queue APIs

tpqcance lget ()
Description
Cancels all pending tpqgetmsga requests that match the value specified in the sel_filter
argument. When a pending tpqgetmsga request is canceled, the OTMQ Status Block (PSB)
delivery status is set to OTMQ__CANCEL and the specified action routine is queued. The
tpqcancelget function waits until completion to allow for proper synchronization between the
tpqcancelget function and the request for tpqgetmsga functions.

Any outstanding tpqgetmsga function requests are canceled by the tpqexit function or at image
exit.

To use tpqcancelget(), must first invoke tpqattach().

Notes: tpqcancelget can cancel those tpqgetmsga which set priority >= 0 but sel_filter == NULL
by setting its parameter sel_filter to (0 | 0).

tpqcancelget with "sel_filter" being set as (OTMQ_PQ_PRI | x) CANNOT cancel those
tpqgetmsga which set "priority" to x and "sel_filter" set to NULL.

Table 1-22 lists supported tpqcancelget() arguments:

qspace

Supplies the queue space whose requests asynchronous notification of a message arrival.

sel_filter

Supplies the criteria that enables the application to selectively cancel outstanding
tpqgetmsga requests. For a description of the sel_filter argument, see the tpdeqplus
function. For a description of how to create a complex selection filter, see the tpqsetselect
function.

Flags

If tpqcancelget() is within a transaction and the TPNOTRAN flag is not set, the api goes
into transaction mode.

Table 1-22 tpqcancelget () Arguments

Argument Data Type Mechanism Prototype Access

qspace char reference char * passed

sel_filter long reference long passed

flags long reference long passed
Oracle Tuxedo Message Queue APIs 1-85

<~runChNum>
The following is a list of valid flags:

TPNOTRAN

If the caller is in transaction mode and this flag is set, then the event publishing is
not made on behalf of the caller's transaction. A caller in transaction mode that sets
this flag is still subject to the transaction timeout (and no other) when posting
events. If the event posting fails, the caller's transaction is not affected.

TPNOREPLY

Informs tpqcancelget () not to wait for the EventBroker to process all subscriptions
for topic before returning. When TPNOREPLY is set, regardless of whether
tpqpublish() returns successfully or not. When the caller is in transaction mode,
this setting cannot be used unless TPNOTRAN is also set.

TPNOBLOCK

The topic is not published if a blocking condition exists. If such a condition occurs,
the call fails and tperrno is set to TPEBLOCK. When TPNOBLOCK is not
specified and a blocking condition exists, the caller blocks until the condition
subsides or a timeout occurs (either transaction or blocking timeout).

TPNOTIME

This flag signifies that the caller is willing to block indefinitely and wants to be
immune to blocking timeouts. Transaction timeouts may still occur.

Return Value(s)
Upon failure, tpqcancelget() returns -1 and sets tperrno to indicate the error condition. You can
use tpqerrno() and tpqstrerror() to get the detail OTMQ error number and detail string error
message

tpqcancelget () sets tperrno to one of the following values upon failure.

[TPEINVAL]

Invalid arguments were given.

[TPENOENT]

Cannot access the qspace because it is not available.

[TPETIME]

This error code indicates that either a timeout has occurred.

[TPESYSTEM]

An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file.

[TPEOS]

An operating system error has occurred.
1-86 Oracle Tuxedo Message Queue APIs

tpqe r rno()
tpqerrno()

Name
tpqerrno()—Gets OTMQ system call errno.

Synopsis
#include <atmi.h>
#include <tmqentry.h>
#include <tmqreturn.h>
Int tpqerrno(void);

Description
tpqerrno() is used to retrieve the error code of OTMQ system call.

Return Value(s)
Upon success, tpqstrerror() returns a pointer to a string that contains the error message text.

If err is an invalid error code, tpqstrerror() returns a NULL.

tpqexit()

Name
tpqexit()—Terminates all attachments between the application and the OTMQ queue service.

Synopsis
#include <atmi.h>
#include <tmqentry.h>
#include <tmqreturn.h>
int tpqexit(void);

Description
Terminates all attachments between the application and the OTMQ queue service. All pending
messages in queues which are not unlimited and multi-resource queues are discarded. To retain
messages in permanently active queues, call tpdetachq with option TUXMSGQ_NOFLUSH_Q before
calling tpexitq.

Return Value(s)
Upon failure, tpqcancelget() returns -1 and sets tperrno to indicate the error condition.
Oracle Tuxedo Message Queue APIs 1-87

<~runChNum>
[TPEPROTO]

tpqexit() was called improperly.

[TPESYSTEM]

An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file. There is no effect on the queue.

[TPESVCERR]

A service routine encountered an error in tpqexit. If either SVCTIMEOUT in the
UBBCONFIG file or TA_SVCTIMEOUT in the TM_MIB is non-zero, TPESVCERR is
returned when a service timeout occurs.

tpqstrerror()

Name
tpqstrerror()—Gets Oracle Tuxedo Message Queue error message string details.

Synopsis
#include <atmi.h>
#include <tmqentry.h>
#include <tmqreturn.h>
Void tpqstrerror(int tpqerrno);

Description
tpqstrerror() is used to retrieve the text of an error message from TMQ_CAT. err is the error
code set in tperrno when an OTMQ system function call returns a -1 or other failure value.

You can use the pointer returned by tpqstrerror() as an argument to userlog() or the UNIX
function fprintf().

Table 1-23 lists tpqstrerror()supported arguments:

tpqerrno()

Gets OTMQ system call errno.

Table 1-23 tpqstrerror() Arguments

Argument Data Type Mechanism Prototype Access

tpqerrno int reference int passed
1-88 Oracle Tuxedo Message Queue APIs

tpqs t re r ro r ()
Return Value(s)
Upon success, tpqstrerror() returns a pointer to a string that contains the error message text.

If err is an invalid error code, tpqstrerror() returns a char *.
Oracle Tuxedo Message Queue APIs 1-89

<~runChNum>
1-90 Oracle Tuxedo Message Queue APIs

C H A P T E R 2
Oracle Tuxedo Message Queue
Command Reference
buildqclient

Name
buildqclient—Used to construct an OTMQ client module.

Synopsis
buildqclient [-v] [{-r rmname | -w }] [-o name] [-f firstfiles] [-l

lastfiles]

Table 1 Oracle Tuxedo Message Queue UBB Commands

Name Description

buildqclient Used to construct an OTMQ client module.

buildqserver Used to construct an OTMQ load module which can run as an Oracle
Tuxedo application server.

ConvertQSPACE Utility used to upgrade/migrate existing /Q Qspace to OTMQ Qspace.

tmqadmin Queue manager administration program
Otacle Tuxedo Message Queue Command Reference 2-1

<~runChNum>
Description
buildqclient is used to construct an OTMQ client module. The command combines the files
supplied by the -f and -l options with the standard Oracle Tuxedo ATMI libraries to form a load
module. The load module is built by buildqclient using the default C language compilation
command defined for the operating system in use. The default C language compilation command
for the UNIX system is the cc command described in UNIX system reference manuals.

It takes the following options:

-v

Specifies that buildqclient should work in verbose mode. In particular, it writes the
compilation command to its standard output.

-w

Specifies that the client is to be built using the workstation libraries. The default is to build
a native client if both native mode and workstation mode libraries are available. This
option cannot be used with the -r option.

-r rmname

Specifies the resource manager associated with this client. The value rmname must appear
in the resource manager table located in $TUXDIR/udataobj/RM. Each line in this file is
of the form:
rmname:rmstructure_name:library_names.

Using the rmname value, the entry in $TUXDIR/udataobj/RM is used to include the
associated libraries for the resource manager automatically and to set up the interface
between the transaction manager and resource manager properly. Other values can be
specified as they are added to the resource manager table. If the -r option is not specified,
the default is that the client is not associated with a resource manager.

-o name

Specifies the filename of the output load module. If not supplied, the load module is
named a.out.

-f firstfiles

Specifies one or more user files to be included in the compilation and link edit phases of
buildqclient first, before the Oracle Tuxedo ATMI libraries and OTMQ libraries. If more
than one file is specified, filenames must be separated by white space and the entire list
must be enclosed in quotation marks. This option may be specified multiple times. The
CFLAGS environment variable, described below, should be used to include any compiler
options and their arguments.
2-2 Otacle Tuxedo Message Queue Command Reference

bui ldqc l i ent
-l lastfiles

Specifies one or more user files to be included in the compilation and link edit phases of
buildqclient last, after the Oracle Tuxedo ATMI libraries and OTMQ libraries. If more
than one file is specified, filenames must be separated by white space and the entire list
must be enclosed in quotation marks. This option may be specified multiple times.

Environment Variables

TUXDIR
buildclient uses the environment variable TUXDIR to find the Oracle Tuxedo ATMI
libraries and include files to use during compilation of the client process.

CC

buildqclient normally uses the default C language compilation command to produce the
client executable. The default C language compilation command is defined for each
supported operating system platform and is defined as cc(1) for UNIX system. In order to
allow for the specification of an alternate compiler, buildqclient checks for the existence
of an environment variable named CC. If CC does not exist in the buildqclient
environment, or if it is the string "", buildqclient will use the default C language compiler.
If CC does exist in the environment, its value is taken to be the name of the compiler to
be executed.

CFLAGS
The environment variable CFLAGS is taken to contain a set of arguments to be passed as
part of the compiler command line. This is in addition to the command line option
"-I${TUXDIR}/include" passed automatically by buildqclient. If CFLAGS does not exist
in buildqclient's environment, or if it is the string "", no compiler command line arguments
are added by buildqclient.

LD_LIBRARY_PATH (UNIX systems)
The environment variable LD_LIBRARY_PATH indicates which directories contain
shared objects in addition to the Oracle Tuxedo system shared objects. Some UNIX
systems require different environment variables: for HP-UX systems, use the
SHLIB_PATH environment variable; for AIX, use LIBPATH.

LIB (Windows NT systems)
Indicates a list of directories within which to find libraries. A semicolon (;) is used to
separate the list of directories.
Otacle Tuxedo Message Queue Command Reference 2-3

<~runChNum>
buildqserver

Name
buildqserver—Used to construct an OTMQ load module which can run as a Tuxedo
application server.

Synopsis
buildqserver [-s { @filename | service[,service . . .] [:func]| :func }]

[-v] [-o outfile] [-f firstfiles] [-l lastfiles] [-r rmname] [-t]

Description
buildqserver is used to construct an OTMQ load module which can run as a Tuxedo application
server. The command combines the files supplied by the -f and -l options with the standard server
main routine and the standard OTMQ libraries to form a load module. The load module is built
by the cc command, which buildqserver invokes.

It takes the following options:

-v

Specifies that buildqserver should work in verbose mode. In particular, it writes the
compilation command to its standard output.t.

-o outfile

Specifies the name of the file the output load module is to have. If not supplied, the load
module is named SERVER.

-f firstfiles

Specifies one or more user files to be included in the compilation and link edit phases of
buildqserver first, before the Oracle Tuxedo ATMI libraries and OTMQ libraries. If more
than one file is specified, filenames must be separated by white space and the entire list
must be enclosed in quotation marks. This option may be specified multiple times. The
CFLAGS environment variable, described below, should be used to include any compiler
options and their arguments.

-l lastfiles

Specifies one or more user files to be included in the compilation and link edit phases of
buildqserver last, after the Oracle Tuxedo ATMI libraries and OTMQ libraries. If more
than one file is specified, filenames must be separated by white space and the entire list
must be enclosed in quotation marks. This option may be specified multiple times.
2-4 Otacle Tuxedo Message Queue Command Reference

bui ldqserve r
-r rmname

Specifies the resource manager associated with this server. The value rmname must
appear in the resource manager table located in $TUXDIR/udataobj/RM. Each line in this
file is of the form:

rmname:rmstructure_name:library_names.

Using the rmname value, the entry in $TUXDIR/udataobj/RM is used to include the
associated libraries for the resource manager automatically and to set up the interface
between the transaction manager and resource manager properly. Other values can be
specified as they are added to the resource manager table. If the -r option is not specified,
the default is to use the null resource manager.

-s { @filename | service[,service...][:func] | :func }

Specifies the names of services that can be advertised when the server is booted. Service
names (and implicit function names) must be less than or equal to 127 characters in length.
An explicit function name (that is, a name specified after a colon) can be up to 128
characters in length. Names longer than these limits are truncated with a warning message.
When retrieved by tmadmin or TM_MIB, only the first 15 characters of a name are
displayed. All functions that can be associated with a service must be specified with this
option. In the most common case, a service is performed by a function that carries the
same name; that is, the x service is performed by function x. For example, the following
specification builds the associated server with services x, y, and z, each to be processed
by a function of the same name: "-s x,y,z".

In other cases, a service (or several services) may be performed by a function of a different
name. The following specification builds the associated server with services x, y, and z,
each to be processed by the function abc: "-s x,y,z:abc". Spaces are not allowed between
commas. Function name is preceded by a colon. In another case, the service name may not
be known until run time. Any function that can have a service associated with it must be
specified to buildqserver. To specify a function that can have a service name mapped to
it, put a colon in front of the function name. For example, the following specification
builds the server with a function pqr, which can have a service association. tpadvertise
could be used to map a service name to the pqr function. "-s :pqr". A filename can be
specified with the -s option by prefacing the filename with the '@' character. Each line of
this file is treated as an argument to the -s option. You may put comments in this file. All
comments must start with the '#' character. This file can be used to specify all the functions
in the server that may have services mapped to them. The -s option may appear several
times. Note that services beginning with the '.' character are reserved for system use, and
buildqserver will fail if the -s option is used to include such a service in the server.
Otacle Tuxedo Message Queue Command Reference 2-5

<~runChNum>
-t

Specifies multithreading. If you want your servers to be multithreaded, this option is
mandatory. If this option is not specified and you try to boot a server with a configuration
file in which the value of MAXDISPATCHTRHREADS is greater than 1, a warning
message is printed in the user log and the server reverts to single-threaded operation.

The purpose of this option is to prevent an administrator from trying to boot, as a
multithreaded server, a server that is not programmed in a thread-safe manner.

Environment Variables

TUXDIR
buildclient uses the environment variable TUXDIR to find the Oracle Tuxedo ATMI
libraries and include files to use during compilation of the client process.

CC

buildqclient normally uses the default C language compilation command to produce the
client executable. The default C language compilation command is defined for each
supported operating system platform and is defined as cc(1) for UNIX system. In order to
allow for the specification of an alternate compiler, buildqclient checks for the existence
of an environment variable named CC. If CC does not exist in thr buildqclient
environment, or if it is the string "", buildqclient will use the default C language compiler.
If CC does exist in the environment, its value is taken to be the name of the compiler to
be executed.

CFLAGS
The environment variable CFLAGS is taken to contain a set of arguments to be passed as
part of the compiler command line. This is in addition to the command line option
"-I${TUXDIR}/include" passed automatically by buildqclient. If CFLAGS does not exist
in buildqclient's environment, or if it is the string "", no compiler command line arguments
are added by buildqclient.

LD_LIBRARY_PATH (UNIX systems)
The environment variable LD_LIBRARY_PATH indicates which directories contain
shared objects in addition to the Oracle Tuxedo system shared objects. Some UNIX
systems require different environment variables: for HP-UX systems, use the
SHLIB_PATH environment variable; for AIX, use LIBPATH.

LIB (Windows NT systems)

Indicates a list of directories within which to find libraries. A semicolon (;) is used to
separate the list of directories.
2-6 Otacle Tuxedo Message Queue Command Reference

Conver tQSPACE
ConvertQSPACE

Name
ConvertQSPACE—Queue manager administration program.

Synopsis
ConvertQSPACE -d device -s qspace -i ipckey -h

Description
Upgrade to OTMQ to have many new benefits, saying faster enque/deque speed, asynch
communication, recovery message storage, online and/or offline trade, pub/sub mode, auto failed
message handling, and so on.

This utility allows you toupgrade existed /Q Qspace to OTMQ Qspace, so that the data can be
migrated smoothly too. The existing /Q queues is mapped to unlimited queues to keep
consistency with old behavior.

Notes: Pay close attention to the following:

The QMCONFIG environment variable must be configured as /Q device.

The given /Q and OTMQ devices must not be used by other processes at the same
time

The conversion is read-only for /Q device. So if the process is interrupted
unexpectedly, the user can re-do it until success.

The transaction cannot be migrated since the TMS server is changed.

It takes the following options:

-d device
Specifies the name of new OTMQ device. If existed, we will try to reuse it unless it has
been already opened.

-s qspace
Specifies the name of the /Q Qspace to be converted to OTMQ Qspace.

-i ipckey
Specifies the ipc key for the new OTMQ Qspace, which cannot be the same as the original
/Q Qspace ipc key.

-h
Prints this usage.
Otacle Tuxedo Message Queue Command Reference 2-7

<~runChNum>
tmqadmin

Name
tmqadmin—Queue manager administration program.

Synopsis
[QMCONFIG=<device>] tmqadmin [<device>]

Description
With the commands listed in this entry, tmqadmin supports the creation, inspection, and
modification of message queues. The universal device list (UDL) maps the physical storage space
on a machine on which the Oracle Tuxedo ATMI system is run. An entry in the UDL points to
the disk space in which the queues and messages of a queue space are stored. The name of the
device (file) on which the UDL resides (or will reside) for the queue space may be specified either
as a command line argument or via the environment variable QMCONFIG. If both are specified,
the command option is used.

As a system-provided command, tmqadmin does not undergo normal initialization, so it does not
pick up the value of ULOGPFX from the UBBCONFIG file. As a result, any log entries generated
by tmqadmin commands are written to the current working directory. This is corrected by setting
and exporting the ULOGPFX environment variable to the pathname of the directory in which the
userlog is located.

tmqadmin uses the greater than sign (>) as a prompt. Arguments are entered separated by white
space (tabs and/or spaces). Arguments that contain white space may be enclosed within double
quotes; if an argument enclosed within double quotes contains a double quote, the internal double
quote must be preceded with a backslash. Commands prompt for required information if it is not
given on the command line. A warning message is displayed and the prompt shown again, if a
required argument is not entered. Commands do not prompt for information on optional
parameters.

A user can exit the program by entering q or <CTRL-d> when prompted for a command. Output
from a command may be terminated by pressing BREAK; the program then prompts for the next
command. Hitting return when prompted for a command repeats the previously executed
command, except after a break.

Note that there is no way to effectively cancel a command once you press RETURN; hitting
BREAK only terminates output from the command, if any. Therefore, be sure that you type a
command exactly as you intended before pressing RETURN.
2-8 Otacle Tuxedo Message Queue Command Reference

tmqadmin
Output from tmqadmin commands is paginated according to the pagination command in use (see
the paginate subcommand below).

When tmqadmin is initially entered, no queue space is opened. To create a queue space, run
qspacecreate; to open it, run qopen. The qaborttrans, qclear, qclose, qchangeprio, qchangequeue,
qchangetime, qchangeexptime, qcommittrans, qchange, qcreate, qdeletemsg, qinfo, qlist,
qprinttrans and qset commands can be executed only when a queue space is open.

It takes the following commands:

General Commands

Queue Space Commands

Queue Commands

Message Commands

Transaction Commands

General Commands

! shellcommand

Escapes to shell and execute shellcommand.

!!

Repeats previous shell command.

[text]

Lines beginning with # are comment lines and are ignored.

<CR>

Repeats the last command.

echo (e) [{off | on}]

Echoes input command lines when set to on. If no option is given, the current
setting is toggled, and the new setting is printed. The initial setting is off.

help (h) [{command | all}]
Prints help messages. If a command is specified, the abbreviation, arguments, and
description for that command are printed. The all argument causes a description of
all commands to be displayed.
If no arguments are specified on the command line, the syntax of all commands is
displayed.
Otacle Tuxedo Message Queue Command Reference 2-9

<~runChNum>
paginate (page) [{off|on}]
Paginates output. If no option is given, the current setting is toggled, and the new
setting is printed. The initial setting is on, unless either standard input or standard
output is a non-terminal device. Pagination may be turned on only when both
standard input and standard output are terminal devices.
The default paging command is the pager indigenous to the native operating
system environment. The command pg, for example, is the default command on
the UNIX operating system. The shell environment variable PAGER may be used
to override the default command used for paging output.

quit (q)

Terminates the session.

verbose (v) [{off | on}]

Produces output in verbose mode. If no option is given, the current setting is
toggled, and the new setting is printed. The initial setting is off.

Queue Space Commands

chdl [dlindex [newdevice]]
Changes the name for a universal device list entry. The first argument is the index
of the device on the universal device list that is to be changed (device indexes are
returned by lidl). The program prompts for it if it is not provided on the command
line.
The second argument is the new device name. If a device name is not provided on
the command line, the program prints the current device name and then prompts
for a new one. The name is limited to 64 characters in length. Use this command
cautiously; files and data are not accessible via the old name after the device name
is changed. For more information about printing the Universal Device List (UDL)
and Volume Table of Contents (VTOC), see Administering an Oracle Tuxedo
Application at Run Time.

crdl [device [offset [size]]]
Creates an entry in the universal device list. Note: The first entry in the device list
must correspond to the device that is referenced by QMCONFIG and must have an
offset of 0. If arguments are not provided on the command line, the program
prompts for them.
The arguments are the device name, the block number at which space may begin
to be allocated, and the number of physical pages (disk sectors) to be allocated.
More than one extent can be allocated to a given file. You can, for example,
allocate /app/queues/myspace 0 500, and then allocate /app/queues/myspace 1000
500, for a total of 1000 blocks allocated with blocks 500 through 999 not being
2-10 Otacle Tuxedo Message Queue Command Reference

tmqadmin
used. Several blocks from the first device entry are used by the device list and table
of contents. Up to 25 entries may be created on the device list.
For OTMQ, this command can support large size. The max value of this command
is 2147483647, the basic unit is block size.

dsdl [-y] [dlindex]
Destroys an entry found in the universal device list. The dlindex argument is the
index on the universal device list of the device that is to be removed from the
device list. If it is not provided on the command line, the program prompts for it.
Entry 0 cannot be removed until all VTOC files and other device list entries are
destroyed. (Because entry 0 contains the device that holds the device list and table
of contents, destroying it also destroys these two tables.) VTOC files can be
removed only by removing the associated entities (for example, by destroying a
queue space that resides on the device). The program prompts for confirmation
unless -y is specified.

ipcrm [-f] [-y] [queue_space_name]
Removes the IPC data structures used for the specified queue space. If a queue
space name is not provided on the command line, the program prompts for one. If
the specified queue space is open in tmqadmin, it will be closed. ipcrm knows all
IPC resources used by the queue space and is the only way that the IPC resources
should be removed.
tmqadmin ensures that no other processes are attached to the queue space before
removing the IPC resources. The -f option can be specified to force removal of IPC
resources even if other processes are attached. This command prompts for
confirmation before execution if the -f option is specified, unless the -y option is
specified. All non-persistent messages in the specified queue space are
permanently lost when this command completes successfully.

ipcs [queue_space_name]

Lists the IPC data structures used for a queue space, if any (none may be used if
the queue space is not opened by any process). If a queue space name is not
provided on the command line, the program prompts for one.

lidl [dlindex]
Prints the universal device list. For each device the following is listed: the index,
the name, the starting block, and the number of blocks on the device. In verbose
mode, a map is printed that shows free space (starting address and size of free
space). If dlindex is specified, only the information for that device list entry is
printed.
Otacle Tuxedo Message Queue Command Reference 2-11

<~runChNum>
livtoc

Prints information for all VTOC table entries. The information printed for each
entry includes the name of the VTOC table, the device on which it is found, the
offset of the VTOC table from the beginning of the device and the number of pages
allocated for that table. There are a maximum of 100 entries in the VTOC.

qaddext [queue_space_name [pages]]
Adds an extent to the queue space. The queue space must not be active (no
processes can be attached to the queue space). If a queue space name and the
number of additional physical pages to allocate for the queue space are not
specified on the command line, the program prompts for them. If the specified
queue space is open in tmqadmin, it will be closed. The number of physical pages
is rounded down to the nearest multiple of four pages (see qspacecreate for
clarification and examples). Space is allocated from extents defined in the UDL
associated with the QMCONFIG device. Each new queue space extent uses an
additional entry in the VTOC (a maximum of 100 entries are available). The queue
manager names the extents such that they can be identified quickly and associated
with the queue space. All non-persistent messages in the specified queue space are
permanently lost when this command completes successfully.

qclose
Closes the currently open queue space. All non-persistent messages in the
specified queue space are permanently lost when this command completes
successfully.

qopen [queue_space_name]

Opens and initializes the internal structures for the specified queue space. If a
queue space is not specified on the command line, the program prompts for it. If a
queue space is already open in tmqadmin, it is closed.

qsize [-A actions] [-H handles] [-C cursors] [-O owners] [-Q
tmp_queues] [-f filter_memory] [-n nonpersistent_msg_memory[b,B]] [-o
overflow_memory][pages [queues [transactions [processes
[messages]]]]]

Computes the size of shared memory needed for a queue space with the specified
size in pages, queues, (concurrent) transactions, processes, and (queued)
messages. If the values are not provided on the command line, the program
prompts for them. The number of system semaphores needed is also printed. Valid
values for the remaining options are described in the qspacecreate option.

qspacechange (qspch) [-A actions] [-C cursors] [-H handles] [-O
owners] [-Q temp_queues] [-f filter_memory] [-T first_temp_queue_No.]
[-N queue_alias_file] [-n nonpersistent_msg_memory[b,B]] [-o
2-12 Otacle Tuxedo Message Queue Command Reference

tmqadmin
overflow_memory] [queue_space_name [ipckey [trans [procs [messages
[errorq [inityn [blocking]]]]]]]

Changes the parameters for a queue space. The queue space must not be active
(that is, no processes can be attached to it). If the required information is not
provided on the command line, the program prompts for it. Valid values are
described in the qspacecreate section of this page. If the specified queue space is
open in tmqadmin, it is closed. To add new extents, qaddext must be used. The
number of queues cannot be modified.

qspacecreate (qspc) [-A actions] [-n nonpersistent_msg_memory[b,B]]
[-o overflow_memory][-C max cusor][-O max owner][-f maximum filter
memory size][-H max handle] [-Q qNum] [-T first temp queue] [-L max
linkdriver table][-R max linkdirver route table][-N alias
file][queue_space_name [ipckey [pages [queues [trans [procs [messages
[errorq [inityn [blocking [SAF_and_DQF_queue [PCJ_journaling
[Dead_Letter_Journal]]]]]]]]]]]]]

Creates a queue space for queued messages. If not provided on the command line,
the program prompts for the following information: the queue space name, the
ipckey for the shared memory segment and semaphore; number of physical pages
to allocate for the queue space; the number of queues; the number of concurrent
transactions; the number of processes concurrently attached to the queue space; the
number of messages that may be queued at one time; the name of an error queue
for the queue space; whether or not to initialize pages on new extents for the queue
space; the blocking factor for doing queue space initialization and warm start disk
input/output; SAF and DQF queue to create or not (by defaut, it is); PCJ Journaling
to enable or not (by default, it is); and Dead letter Journal to enable or not (by
default it is).
The number of physical pages requested is rounded down to the nearest multiple
of four pages. For example, a request of 50 pages results in a memory allocation
of 48 pages, and a request of 52 pages results in a memory allocation of 52 pages.
The error queue is used to hold messages that have reached the maximum number
of retries (they are moved from their original queue to the error queue). The
administrator is responsible for ensuring that this queue is drained.
The number of physical pages allocated must be large enough to hold the overhead
for the queue space (one page plus one page per queue). If the initialization option
is specified as 'y' or 'Y,' the space used to hold the queue space is initialized and
this command may run for a while. In verbose mode, a period (.) is printed to the
standard output after completing initialization of each 5% of the queue space.
If the initialization option is not turned on but the underlying device is not a
character special device, the file will be initialized if it is not already the size
specified for the extent (that is, the file will be grown to allocate the specified
Otacle Tuxedo Message Queue Command Reference 2-13

<~runChNum>
space). When reading and writing blocks during creation of the queue space and
during warm start (restart of the queue space), the size of input and output
operations will be calculated as a multiple of the disk page size as specified by the
blocking factor.
SAF (Store And Forward) and DQF (Destination Queue File) are message
recovery journals respectively on the local system and on remote system. If SAF
and DQF queues are created by default, the recoverable delivery feature using SAF
and DQF are enabled.
PCJ (Post Confirmation Journal) stores successfully confirmed recoverable
messages. PCJ is created by default as permanent active queue.
DLJ ((Dead Letter Journal) provides disk storage for messages that could not be
stored for automatic recovery. DLJ is created by default as permanent active
queue.
- A actions

Specifies the number of additional actions that the Queuing Services component
can handle concurrently.
When a blocking operation is encountered and additional actions are available, the
blocking operation is set aside until it can be satisfied. After setting aside the
blocking operation, another operation request can be handled. When the blocking
operation completes, the action associated with the operation is made available for
a subsequent operation. An operation fails if a blocking operation is requested and
cannot be immediately satisfied and there are no actions available.
The system reserves actions equivalent to the number of processes that can attach
to a queue space so that each queue manager process may have at least one
blocking action. Beyond the system-reserved number of blocking actions, the
administrator may configure the system to be able to accommodate additional
blocking actions beyond the reserve.
If the - A actions option is not specified, the default is zero. If the - A option is not
specified, the program does not prompt for it.
-n nonpersistent_msg_memory

Specifies the size of the area to reserve in shared memory for non-persistent
messages for all queues in the queue space. The size may be specified in bytes (b)
or blocks (B), where the block size is equivalent to the disk block size. The [bB]
suffix is optional and, if not specified, the default is blocks. The [bB] max value is
2147483647, If the -n option is not specified, the memory size defaults to zero (0).
Also, if the -n option is not specified, the program does not prompt for it. If the
value is specified in bytes (b) for nonpersistent_msg_memory, the system
2-14 Otacle Tuxedo Message Queue Command Reference

tmqadmin
divides the specified value by the number of bytes per page (page size is equivalent
to the disk page size), rounds down the result to the nearest integer, and allocates
that number of pages of memory. For example, assuming a page size of 1024 bytes
(1KB), a requested value of 2000b results in a memory allocation of 1 page (1024
bytes), and a requested value of 2048b results in a memory allocation of 2 pages
(2048 bytes).
Requesting a value less than the number of bytes per page results in an allocation
of 0 pages (0 bytes). If the value is specified in blocks (B) for
nonpersistent_msg_memory and assuming that one block of memory is equivalent
to one page of memory, the system allocates the same value of pages. For example,
a requested value of 50B results in a memory allocation of 50 pages. If the
nonpersistent_msg_memory for a queue space is zero (0), no space is reserved for
non-persistent messages.
In this case, attempts to enqueue a non-persistent message fail. Persistent and
non-persistent storage are not interchangeable. If a non-persistent message cannot
be enqueued due to an exhausted or fragmented memory area, the enqueuing
operation fails, even if there is sufficient persistent storage for the message. If a
persistent message cannot be enqueued due to an exhausted or fragmented disk, the
enqueuing operation fails, even if there is sufficient non-persistent storage for the
message.
- o overflow_memory

Specifies the size of the memory area to reserve in shared memory to
accommodate peek load situations where some or all of the allocated shared
memory resources are exhausted. The memory size is specified in bytes.
Additional objects will be allocated from this additional memory on a
first-come-first-served basis.
When an object created in the additional memory is closed or destroyed, the
memory is released for subsequent overflow situations. If the - o
overflow_memory option is not specified, the default is zero. If the - o option is
not specified, the program does not prompt for it. This additional memory space
may yield more objects than the configured number, but there is no guarantee that
additional memory is available for any particular object at any given point in time.
Currently, only actions, handles, cursors, owners, temporary queues, timers, and
filters use the overflow memory.
-C

Specifies the maximum cusor.
-f
Otacle Tuxedo Message Queue Command Reference 2-15

<~runChNum>
Specifies the maximum filter memory size. If not specified, the default value
32768 is used.
-H

Specifies the maximum handle.
-Q

Specifies the maximum temporary queues. If not specified, the default value 100
is used.
-T

Specifies the first temporary queue. If not specified, the default value 200 is used.
-L

Specifies themaximum linkdriver table. If not specified, the default value 200 is
used.
-R

Specifies the maximum linkdriver route table. If not specified, the default value
200 is used.

qspacedestroy (qspds) [-f] [-y] [queue_space_name]
Destroys the named queue space. If not provided on the command line, the
program will prompt for it. If the specified queue space is open in tmqadmin, it will
be closed. By default, an error is returned if processes are attached to the queue
space or if requests exist on any queues in the queue space. See the qdestroy
command for destroying queues that contain requests. The -f option can be
specified to "force" deletion of all queues, even if they may have messages or
processes are attached to the queue space. This command prompts for confirmation
before proceeding unless the -y option is specified. All non-persistent messages in
the specified queue space are lost when this command completes successfully

qspacelist [queue_space_name]
Lists the creation parameters for the queue space. If it is not specified on the
command line, the program will prompt for it. If a queue space name is not entered,
the parameters for the currently open queue space are printed. (An error occurs if
a queue space is not open and a value is not entered.) In addition to printing the
values for the queue space (as set when creating the queue space with qspacecreate
or when they were last changed with qspacechange), this command shows the sizes
for all queue space extents. It also shows the amount of system-reserved memory
as well as the total amount of configured shared memory. The amount of memory
allocated for shared memory resources may not match the amount requested when
the amount of memory is requested in bytes (b); see the -n
nonpersistent_msg_memory option in qspacecreate for clarification and examples.
2-16 Otacle Tuxedo Message Queue Command Reference

tmqadmin
Queue Commands

qchange [-d default_delivery_policy] [-n mhigh,mlow,mcmd][-e
default_relative_expiration_time][-t default_queue_property] [-o
owner] [-a PERM_ACTIVE] [-c confirm_style] [-f][queue_name [qorder
[out-of-order [retries [delay [high [low [cmd]]]]]]]]

Modifies a queue in the currently open queue space. The required arguments may
be given on the command line or the program will prompt for them. These are the
queue name, whether out-of-order enqueuing is allowed (not allowed, top of
queue, or before a specified msgid); the number of retries and delay time in
seconds between retries; and the high and low limits for execution of a threshold
command and the threshold command itself for persistent messaging.
The out-of-order values are none, top, and msgid. Both top and msgid may be
specified, separated by a comma. The threshold values are used to allow for
automatic execution of a command when a threshold is reached for persistent
messages.
The high limit specifies when the command is executed. The low limit must be
reached before the command is executed again when the high limit is reached. For
example, if the limits are 100 and 50 messages, the command is executed when 100
messages are on the queue, and it is not executed again until the queue is drained
down to 50 messages and is filled again to 100 messages. The queue capacity can
be specified in bytes or blocks used by the queue (number followed by a b or B
suffix), percentage of the queue space used by the queue (number followed by a
%), or total number of messages on the queue (number followed by an m). The
threshold type for the high and low threshold values must be the same. It is optional
whether or not the type is specified on the low value, but if specified, it must match
the high value type.
The message (m) suffix spans both persistent and non-persistent messages. The
other threshold suffixes apply only to persistent messages. Use the -n option to
specify threshold values for non-persistent messages. When specified on the
command line, the threshold command should be enclosed in double quotation
marks if it contains white space.
The retry count indicates how many times a message can be dequeued and the
transaction rolled back, causing the message to be put back on the queue. A delay
between retries can also be specified. When the retry count is reached, the message
is moved to the error queue defined for the queue space. If no error queue has been
defined, the message is dropped.
The queue ordering values for the queue cannot be changed. Low-priority
messages are dequeued after every ten messages, even if the queue still contains
high-priority messages. The -d option specifies the default delivery policy for the
Otacle Tuxedo Message Queue Command Reference 2-17

<~runChNum>
queue. The valid values for the -d option are persist and nonpersist. When the
default delivery policy is persist, enqueued messages with no explicitly specified
delivery mode are delivered using the persistent (disk-based) delivery method.
When the policy is nonpersist, enqueued messages with no explicitly specified
delivery mode are delivered using the non-persistent (in memory) delivery
method.
If the -d option is not specified, the system does not prompt for information and
the default delivery policy is unchanged. When the default delivery policy is
modified, the delivery quality of service is not changed for messages already in the
queue. If the queue being modified is the reply queue named for any messages
currently in the queue space, the reply quality of service is not changed for those
messages as a result of changing the default delivery policy of the queue. If a
non-persistent message cannot be enqueued due to an exhausted or fragmented
memory area, the enqueuing operation fails, even if there is sufficient persistent
storage for the message.
If a persistent message cannot be enqueued due to an exhausted or fragmented
disk, the enqueuing operation fails, even if there is sufficient non-persistent storage
for the message. If the amount of memory reserved for non-persistent messages in
a queue space is zero (0), no space is reserved for non-persistent messages. (For
more information, see qspacecreate and qspacechange for specifying the
non-persistent message memory area.) In this case, attempts to enqueue a
non-persistent message fail. This includes messages with no specified delivery
quality of service for which the target queue has a default delivery policy of
nonpersist.
The -n option specifies the threshold values used for automatic execution of a
command when a non-persistent storage area threshold is reached. The nhigh
limit specifies when the command ncmd is executed. The nlow limit must be
reached before the command will be executed again when the nhigh limit is
reached. If the -n option is specified, the nhigh, nlow, and ncmd values must all
be supplied, or the command fails. The ncmd value may be specified as an empty
string. If the -n option is not specified, the program does not prompt for
information.
The memory capacity (amount of non-persistent data in the queue) can be specified
as one of the following threshold types: bytes (b), blocks (B), or percentage
(number followed by %). The threshold type for the nhigh and nlow values must
be the same. For example, if nhigh is set to 100%, then nlow, if specified, must
also be specified as a percentage. The threshold type of the nlow value is optional.
If the -n option is not specified, the default threshold values for non-persistent
messaging are unchanged. If ncmd contains white space, it must be enclosed in
2-18 Otacle Tuxedo Message Queue Command Reference

tmqadmin
double quotation marks. The m suffix of the [. . . [high[low[cmd]]] . . .]
thresholds applies to all messages in a queue, including both persistent and
non-persistent messages, and therefore is not available with nhigh and nlow. The
[. . . [high[low[cmd]]] . . .] thresholds specified without the -m suffix
apply to persistent (disk-based) messages only.
The -e default_relative_expiration_time option sets an expiration time
for all messages enqueued to the queue that do not have an explicitly specified
expiration time. The expiration time may be either a relative expiration time or
none. When the expiration time is reached and the message has not been dequeued
or administratively deleted, the message is removed from the queue, all resources
associated with the message are reclaimed by the system, and statistics are
updated.
If the expiration time is before the message availability time, the message is not
available for dequeuing unless either the availability or expiration time is changed
so that the availability time is before the expiration time. In addition, these
messages are removed from the queue at expiration time even if they were never
available for dequeuing.
If a message expires during a transaction, the expiration does not cause the
transaction to fail. Messages that expire while being enqueued or dequeued within
a transaction are removed from the queue when the transaction ends. There is no
notification when a message has expired.
If the -e option is not specified, the default expiration time of the queue is not
changed. When the queue expiration time is modified using qchange, the
expiration times for messages already in the queues are not modified. If the -e
option is not specified, the program does not prompt for it. The format of a relative
default_relative_expiration_time is +seconds where seconds is the
number of seconds from the time that the queue manager successfully completes
the operation to the time that the message expires. A value of zero (0) indicates
immediate expiration.
The value of default_relative_expiration_time may also be set to the
string none. The none string indicates that messages that are enqueued with no
explicit expiration time will not expire unless an expiration time is explicitly
assigned to them.
The valid values for the -t "type" option are "PQ", "SQ" and "MRQ". The default
value is "unlimited queue".
The -o "owner" option is used for secondary queues. And defines the primary
queue with which this queue is to be associated. The valid values for it is primary
queue name.
Otacle Tuxedo Message Queue Command Reference 2-19

<~runChNum>
The valid values for the -a "active" option are "Y" or "N". The default value is
"N". This is to define if the queue is permanent active. If yes, then the queue
always can receive and store message unless the quota is exceeded. If not, the
queue cannot receive and store message before it is attached, and will report
invalid queue in the sender side. This feature doesn't make impact for MRQ and
unlimited queue(inherited from /Q).
-c [confirm style]

Set queue property of confirm style, the valid values for -c "confirm style"
option are EO (means confirm un-order) and II (implicit confirm).
-f:

Some queue name are reserved for internal use, which will be prevented by
qcreate: 74-76,90-100,150-199,4000-6000, unless the -f parameter is
specified.
When create these internal queue name by qcreate -f or MIB, warning is given in
ULOG.
-e[exptime]

The default expiration time specified by -e option does not take effect for
recoverable message (SAF/DQF/CONF). Instead, the SAF/DQF queue default
expiration time (none by default) takes effect.
-q [nhigh[m/b/a/n],nlow,ncmd]

If the -q option is specified, the nhigh, nlow, and ncmd values must all be
supplied, or the command fails. The ncmd value may be specified as an empty
string.

qclear [-y]

Clears attached client information on a queue and resets the queue to unattached
status. The queue is specified using the qset command.
This command prompts for confirmation unless the '-y' option is specified.

qcreate (qcr) [-d default_delivery_policy] [-n mhigh,mlow,mcmd][-e
default_relative_expiration_time][-t default_queue_property] [-o
owner] [-a PERM_ACTIVE] [-c confirm_style] [-f][queue_name [qorder
[out-of-order [retries [delay [high [low [cmd]]]]]]]]

Creates a queue in the currently open queue space. The required arguments may be
given on the command line or the program will prompt for them. These are the
queue name, the queue ordering (fifo or lifo, by expiration time, by priority, by
time); whether out-of-order enqueuing is allowed (not allowed, top of queue,
before a specified msgid); the number of retries and delay time in seconds between
retries; the high and low limits for execution of a threshold command; and the
threshold command itself for persistent messages.
2-20 Otacle Tuxedo Message Queue Command Reference

tmqadmin
The queue ordering values are fifo, lifo, priority, expiration, and time. When
specifying the queue ordering, the most significant sort value must be specified
first, followed by the next most significant sort value, and so on; fifo or lifo can be
specified only as the least significant (or only) sort value.
If neither fifo or lifo is specified, the default is fifo within whatever other sort
criteria are specified. If expiration is specified, messages with no expiration time
are dequeued after all messages with an expiration time. Multiple sort values may
be specified separated by commas. The out-of-order values are none, top, or msgid.
Both top and msgid may be specified, separated by a comma. The threshold values
are used to allow for automatic execution of a command when a threshold is
reached for persistent messages. The high limit specifies when the command is
executed.
The low limit must be reached before the command will be executed again when
the high limit is reached. For example, if the limits are 100 and 50 messages, the
command will be executed when 100 messages are on the queue, and will not be
executed again until the queue has been drained below 50 messages and has filled
again to 100 messages. The queue capacity can be specified in bytes or blocks used
by the queue (number followed by a b or B suffix), percentage of the queue space
used by the queue (number followed by a %), or total number of messages on the
queue (number followed by an m).
The threshold type for the high and low threshold values must be the same. The
message (m) suffix spans both persistent and non-persistent messages. The other
threshold suffixes apply only to persistent messages. Use the -n option to specify
threshold values for non-persistent messages. It is optional whether or not the type
is specified on the low value, but if specified, it must match the high value type.
When specified on the command line, the threshold command should be enclosed
in double quotation marks if it contains white space.
The retry count indicates how many times a message can be dequeued and the
transaction rolled back, causing the message to be put back on the queue. A delay
between retries can also be specified. When the retry count is reached, the message
is moved to the error queue defined for the queue space. If an error queue has not
been defined, the message is dropped. Low-priority messages are dequeued after
every ten messages, even if the queue still contains high-priority messages.
qcreate supports the following options:
-d

Specifies the default delivery policy for the queue. The valid values for the -d
option are persist and nonpersist. When the default delivery policy is persist,
enqueued messages with no explicitly specified delivery mode are delivered using
the persistent (disk-based) delivery method. When the policy is nonpersist,
Otacle Tuxedo Message Queue Command Reference 2-21

<~runChNum>
enqueued messages with no explicitly specified delivery mode are delivered using
the non-persistent (in memory) delivery method. If the -d option is not specified,
the system does not prompt for information and the default delivery policy for the
queue is persist.
When the default delivery policy is modified, the delivery quality of service is not
changed for messages already in the queue. If a non-persistent message cannot be
enqueued due to an exhausted or fragmented memory area, the enqueuing
operation fails, even if there is sufficient persistent storage for the message. If a
persistent message cannot be enqueued due to an exhausted or fragmented disk, the
enqueuing operation fails, even if there is sufficient non-persistent storage for the
message.
If the amount of memory reserved for non-persistent messages in a queue space is
zero (0), no space is reserved for non-persistent messages. (See qspacecreate and
qspacechange for information on specifying the non-persistent message memory
area.) In this case, attempts to enqueue a non-persistent message fail. This includes
messages with no specified delivery quality of service for which the target queue
has a default delivery policy of nonpersist.
-n

Specifies the threshold values used for automatic execution of a command when a
non-persistent storage area threshold is reached. The nhigh limit specifies when the
command ncmd is executed. The nlow limit must be reached before the command
will be executed again when the nhigh limit is reached. If the -n option is specified,
the nhigh, nlow, and ncmd values must all be supplied, or the command fails. The
ncmd value may be specified as an empty string. If the -n option is not specified,
the program does not prompt for information.
The memory capacity (amount of non-persistent data in the queue) can be specified
as one of the following threshold types: bytes (b), blocks (B), or percentage
(number followed by %). The threshold type for the nhigh and nlow values must
be the same. For example, if nhigh is set to 100%, then nlow, if specified, must also
be specified as a percentage. The threshold type of the nlow value is optional. If
the -n option is not specified, the default threshold values are used (100% for nhigh
and 0% for nlow) and ncmd is set to " ".
If ncmd contains white space, it must be enclosed in double quotation marks. The
m suffix of the [. . . [high[low[cmd]]] . . .] thresholds applies to all
messages in a queue, including both persistent and non-persistent messages, and
therefore is not available with nhigh and nlow. The [. . . [high[low[cmd]]]
. . .] thresholds specified without the -m suffix apply to persistent (disk-based)
messages only.
-e default_relative_expiration_time
2-22 Otacle Tuxedo Message Queue Command Reference

tmqadmin
Sets an expiration time for all messages enqueued to the queue that do not have an
explicitly specified expiration time. The expiration time may be either a relative
expiration time or none. When the expiration time is reached and the message has
not been dequeued or administratively deleted, the message is removed from the
queue, all resources associated with the message are reclaimed by the system, and
statistics are updated.
If the expiration time is before the message availability time, the message is not
available for dequeuing unless either the availability or expiration time is changed
so that the availability time is before the expiration time. In addition, these
messages are removed from the queue at expiration time even if they were never
available for dequeuing. If a message expires during a transaction, the expiration
does not cause the transaction to fail. Messages that expire while being enqueued
or dequeued within a transaction are removed from the queue when the transaction
ends. There is no notification when a message has expired.
If the -e option is not specified, the default expiration time of the queue is set to
none. When the queue's expiration time is modified using qchange, the expiration
times for messages already in the queues are not modified. If the -e option is not
specified, the program does not prompt for it. The format of a relative
default_relative_expiration_time is +seconds where seconds is the number of
seconds from the time that the queue manager successfully completes the
operation to the time that the message expires. A value of zero (0) indicates
immediate expiration.The value of default_relative_expiration_time may also be
set to the string none. The none string indicates that messages that are enqueued
with no explicit expiration time will not expire unless an expiration time is
explicitly assigned to them.
-t "type"

The valid values for the -t "type" option are PQ (primary queue), SQ (secondary
queue) and MRQ (MRQ). The default value is "unlimited queue".
-o "owner"

is used for secondary queues. And defines the primary queue with which this queue
is to be associated. The valid values for it is primary queue's name.
The valid values for the -a "active" option are "Y" or "N".
The default value is "N". This is to define if the queue is permanent active. If yes,
then the queue always can receive and store message unless the quota is exceeded.
If not, the queue cannot receive and store message before it is attached, and will
report invalid queue in the sender side. This feature doesn't make impact for MRQ
and unlimited queue(inherited from /Q).
c [confirm style]
Otacle Tuxedo Message Queue Command Reference 2-23

<~runChNum>
Set queue property of confirm style, the valid values for -c "confirm style"
option are EO (confirm un-order), II (implicit confirm).
-f:

Some queue name are reserved for internal use, which will be prevented by
qcreate: 74-76,90-100,150-199,4000-6000, unless the -f parameter is
specified.
When create these internal queue name by qcreate -f or MIB, warning is given
in ULOG.
-e[exptime]

The default expiration time specified by -e option does not take effect for
recoverable message (SAF/DQF/CONF). Instead, the default expiration time of
SAF/DQF queue (none by default) will take effect.
-q [nhigh[m/b/a/n],nlow,ncmd]

If the -q option is specified, the nhigh, nlow, and ncmd values must all be supplied,
or the command fails. The ncmd value may be specified as an empty string.

qdestroy (qds) [{ -p | -f }] [-y] [queue_name]

Destroys the named queue. By default, an error is returned if requests exist on the
queue or a process is attached to the queue space. The -p option can be specified
to "purge" any messages from the queue and destroy it, if no processes are attached
to the queue space. The -f option can be specified to "force" deletion of a queue,
even if messages or processes are attached to the queue space; if a message is
currently involved in a transaction the command fails and an error is written to the
userlog. This command prompts for confirmation before proceeding unless the -y
option is specified.

qinfo [queue_name]
Lists information for associated queue or for all queues. This command lists the
following: the number of messages on the specified queue (or all queues if no
argument is given); the amount of space used by the messages associated with the
queue (both persistent and non-persistent); the number of messages being
delivered persistently and non-persistently; the total number of messages in the
specified queues, and the amount of space used by the persistent and non-persistent
messages. In verbose mode, this command also lists the queue creation parameters
for each queue, the default expiration for the queue (if any), the sort criteria, and
the default delivery policy for the queue.
2-24 Otacle Tuxedo Message Queue Command Reference

tmqadmin
Message Commands

qchangeexp (qce) -y [newtime]
Changes the expiration time for messages on a queue. When a message expires, it
is removed from the queue, all resources used by the message are reclaimed by the
system, and the relevant statistics are updated. If the expiration time is before the
message availability time, the message is not available for dequeuing unless either
the availability or expiration time is changed so that the availability time is before
the expiration time. In addition, these messages are removed from the queue at
expiration time even if they were never available for dequeuing. If a message
expires during a transaction, the expiration does not cause the transaction to fail.
Messages that expire while being enqueued or dequeued within a transaction are
removed from the queue when the transaction ends. There is no notification when
a message has expired.
The queue for which an expiration time is set is selected using the qset command.
Selection criteria for limiting the messages to be updated are set with the qscan
command. If no selection criterion is set, all messages on the queue are changed.
By default, a confirmation is requested before the expiration time is set. The -y
option specifies no prompt for confirmation. The newtime value can be relative to
either the current time, an absolute value, or none. If the newtime value is not
provided on the command line, the program prompts for it. Messages enqueued by
versions of the Oracle Tuxedo ATMI system that do not support message
expiration cannot be modified to have an expiration time even when the queue
manager responsible for changing the value supports message expiration. If
messages affected by qchangeexp have been enqueued by one of these versions of
the Oracle Tuxedo ATMI system, an error message indicates that some of the
selected messages were not modified due to this limitation. A relative expiration
time is relative to when the request arrives at the queue manager process. The
format of a relative newtime is +seconds where seconds is the number of seconds
from the time that the queue manager successfully completes the operation to the
time that the message expires. If seconds is set to zero (0), messages expire
immediately. An absolute expiration time is determined by the clock on the
machine where the queue manager process resides. The format of an absolute
newtime is YY[MM[DD[HH[MM[SS]]]]] as described in qscan. The value of
newtime may also be set to the string none, which indicates that affected messages
never expire.

qchangeprio (qcp) [-y] [newpriority]
Changes the priority for messages on a queue. The queue that is affected is set
using the qset command and the selection criteria for limiting the messages to be
updated are set using the qscan command.
Otacle Tuxedo Message Queue Command Reference 2-25

<~runChNum>
If no selection criteria are set, all messages on the queue are changed: confirmation
is requested before this is done unless the -y option is specified. It is recommended
that the qlist command be executed to see what messages will be modified (this
reduces typographical errors). The newpriority value specifies the new priority
which will be used when the message(s) are forwarded for processing. It must be
in the range 1 to 100, inclusive. If not provided on the command line, the program
will prompt for it.

qchangequeue (qcq) [-y] [newqueue]
Moves messages to a different queue within the same queue space. The queue from
which messages are moved is set using the qset command and the selection criteria
for limiting the messages to be moved are set using the qscan command. If no
selection criteria are set, all messages on the queue are moved: confirmation is
requested before this is done unless the -y option is specified. It is recommended
that the qlist command be executed to see what messages will be moved (this
reduces typographical errors). The newqueue value specifies the name of the queue
to which messages will be moved. If newqueue is not specified on the command
line, the program prompts for it. The delivery quality of service of a message is not
changed to match the default delivery policy of newqueue.
When messages with an expiration time are moved, the expiration time is
considered an absolute expiration time in the new queue, even if it was previously
specified as a relative expiration time.

qchangetime (qct) [-y] [newtime]
Changes the message availability time for messages on a queue. The queue is
specified using the qset command. The selection criteria for limiting the messages
to be updated are set using the qscan command.
If no selection criteria are set, all messages on the queue are changed: confirmation
is requested before this is done unless the -y option is specified. It is recommended
that the qlist command be executed to see what messages will be modified (this
reduces typographical errors). The newtime value can be either relative to the
current time or an absolute value. If not provided on the command line, the
program will prompt for it. The format of a relative onetime is +seconds where
seconds is the number of seconds from now that the message is to be executed (0
implies immediately). The format of an absolute newtime is
YY[MM[DD[HH[MM[SS]]]]], as described in qscan.

qdeletemsg (qdltm) [-y]
selection criteria for limiting the messages to be deleted are set using the qscan
command. If no selection criteria are set, all messages on the queue are deleted:
confirmation is requested before this is done. It is recommended that the qlist
2-26 Otacle Tuxedo Message Queue Command Reference

tmqadmin
command be executed to see what messages will be deleted (this reduces
typographical errors). This command prompts for confirmation unless the -y
option is specified.

qlist (ql)
Lists messages on a queue. The queue is specified using the qset command. The
selection criteria for limiting the messages to be listed are set using the qscan
command. If no selection criteria are set, all messages on the queue will be listed.
For each message selected, the message identifier is printed along with the
message priority, the number of retries already attempted, message length,
delivery quality of service, the quality of service for any replies, and the expiration
time (if any). The message availability time is printed if one is associated with the
message, or for messages that have a scheduled retry time (due to rollback of a
transaction). The correlation identifier is printed if present and verbose mode is on.

qscan [{ [-t time1[-time2]] [-p priority1[-priority2]] [-m msgid] [-i

corrid][-d delivery_mode] [-e time1[-time2]] | none }]
Sets the selection criteria used for the qchangeprio, qchangequeue, qchangetime,
qdeletemsg, and qlist commands. An argument of none indicates no selection
criteria; all messages on the queue will be affected. Executing this command with
no argument prints the current selection criteria values.
When command line options give a value range (for example, -t, -e, or -p) the value
range may not contain white space. The -t option can be used to indicate a time
value or a time range. The format of time1 and time2 is:
YY[MM[DD[HH[MM[SS]]]]] specifying the year, month, day, hour, minute, and
second. Units omitted from the date-time value default to their minimum possible
values. For example, "7502" is equivalent to "750201000000." The years 00-37 are
treated as 2000-2037, years 70-99 are treated as 1970-1999, and 38-69 are invalid.
The -p option can be used to indicate a priority value or a priority range. Priority
values are in the range 1 to 100, inclusive.
The -m option can be used to indicate a message identifier value, assigned to a
message by the system when it is enqueued. The message identifier is unique
within a queue and its value may be up to 32 characters in length. Values that are
shorter than 32 characters are padded on the right with nulls (0x0). Backslash and
non-printable characters (including white space characters such as space, newline,
and tab) must be entered with a backslash followed by a two-character
hexadecimal value for the character (for example, space is \20, as in
"hello\20world").
The -i option can be used to indicate an correlation identifier value associated with
a message. The identifier value is assigned by the application, stored with the
Otacle Tuxedo Message Queue Command Reference 2-27

<~runChNum>
enqueued message, and passed on to be stored with any reply or error message
response such that the application can identify responses to particular requests. The
value may be up to 32 characters in length. Values that are shorter than 32
characters are padded on the right with nulls (0x0). Backslash and non-printable
characters (including white space characters such as space, newline, and tab) must
be entered with a backslash followed by a two-character hexadecimal value for the
character (for example, space is \20, as in my\20ID\20value).
The valid values for the -d delivery_mode option are persist and nonpersist. This
option specifies the delivery mode of messages selected by qscan so that an
operator can take action based on the delivery method. The -e option can be used
to indicate an expiration time or an expiration time range. The format of time1 and
time2 is the same as time1 and time2 for the -t option.

qset [queue_name]

Sets the queue name that is used for the qchangeprio, qchangequeue, qchangetime,
qdeletemsg, and qlist commands. Executing this command with no argument
prints the current queue name.

Transaction Commands

qaborttrans (qabort) [-y] [tranindex]
Heuristically aborts the precommitted transaction associated with the specified
transaction index, tranindex. If the transaction index is not specified on the
command line, the program prompts for it. If the transaction is known to be
decided and the decision was to commit, qaborttrans fails.
The index is taken from the previous execution of the qprinttrans command.
Confirmation is requested unless the -y option is specified. This command should
be used with care.

qcommittrans (qcommit) [-y] [tranindex]

Heuristically commits the precommitted transaction associated with the specified
transaction index tranindex. The program will prompt for the transaction index if
not specified on the command line. If the transaction is known to be decided and
the decision was to abort, qcommittrans will fail. The index is taken from the
previous execution of the qprinttrans command. Confirmation is requested unless
the -y option is specified. This command should be used with care.

qprinttrans (qpt)
Prints transaction table information for currently outstanding transactions. The
information includes the transaction identifier, an index used for aborting or
committing transactions with qaborttrans or qcommittrans, and the transaction
status.
2-28 Otacle Tuxedo Message Queue Command Reference

C H A P T E R 3
Oracle Tuxedo Message Queue UBB
Server Reference
TuxMsgQLD
TuxMsgQLD—OTMQ Link Driver Server

Synopsis
TuxMsgQLD SRVGRP="identifier" SRVID="number"
[CLOPT="[-A] [servopts options]
[-g grp_id][-l //hostname:port][-f config_filename]"]

Table 1 Oracle Tuxedo Message Queue UBB Servers

Name Description

TuxMsgQLD OTMQ Link Driver Server.

TuxMsgQ Message Queue Manager.

TuxMQFWD Message Queue Off-line trade driver.

TMQ_NA Message Queue Naming Server.

TMS_TMQM TMS server for OTMQ resource manager.

TMQEVT TMQ event reporting process.

TMQFORWARDPLUS Message Forwarding server.
Otacle Tuxedo Message Queue UBB Server Reference 3-1

<~runChNum>
Description
The TuxMsgQLD (Link Driver Server) of OTMQ is ported from traditional OMQ Link Driver
to achieve message level compatibilities between OTMQ and OMQ applications.

Also the OTMQ Link Driver Server provides the routing functionality like traditional OMQ but
with limitations.

Configuration File

To configure this Link Driver Server, a new configuration file should be created. This
configuration file should be under APPDIR. The configuration file is ported from %XGROUP
and %ROUTE section of traditional OMQ configuration file. .

Listing 3-1 an example of the Link Driver Server configuration file:

Listing 3-1 Link Driver Server Configuration File:

Define cross-group connections with remote OMQ,

only the remove OMQ group info should be listed here

%XGROUP

Group Group Node/ Init- Thresh Buffer Recon- Window Trans- End-

Name Number Host iate old Pool nect Delay Size (Kb) port point

GRP_11 11 host1.abc.com Y - - 30 10 250 TCPIP 10001

GRP_12 12 host2.abc.com Y - - 30 10 250 TCPIP 10002

%EOS

%ROUTE

#----------------------------------

Target Route-through

Group Group

#----------------------------------

 2 11

 3 12

%EOS

%END

%XGROUP Section
Following configuration attributes are mandatory for OTMQ to setup XGROUP
connection to the remote OMQ group:
3-2 Otacle Tuxedo Message Queue UBB Server Reference

TuxMsgQLD
"Group Name -- Remote OMQ group name by which the remote OMQ group is
known to the local OTMQ group

"Group Number -- Remote OMQ group number

"Node/Host -- Network address of remote OMQ group

"Endpoint -- The internet port number of the remote OMQ link listener process

Following attributes are optional. If not set, default values will be used:

"Initiate -- "Y", "N" or "D". indicating whether connections to this node should be
initiated (connect when local group startup) or whether connections to this node is
enabled. Default is "N".

"Reconnect -- Interval, in seconds, between reconnect attempts when this
cross-group link is not connected. Default is 60.

"Window Delay -- Delay, in seconds, that a sender must wait before using a new
window when the receiver is congested. Default is 10.

"Windows Size -- Maximum number of messages a group can send to another
group before requesting permission to send more. Default is 250.

"Transport: Network protocol stack used. Only "TCPIP" is supported.

Following attributes are not supported by OTMQ Link Driver Server, but to keep align
with traditional OMQ XGROUP settings, just keep them here:

"Buffer Pool -- Not supported by OTMQ for now.

"Threshold -- Not supported by OTMQ for now.

%ROUTE
Following configuration attributes are mandatory for OTMQ to setup ROUTE info for the
remote OMQ/OTMQ groups that can't be connected directly:

"Target Group -- OMQ/OTMQ group for which traffic is being routed to.

"Route-through Group -- OMQ group to which traffic for the target group will be
routed through.

Note: Route-through Groups should be the OMQ groups that this OTMQ group has
direct connection to (i.e. defined in the %XGROUP section).

Cannot define multiple routing entry for the same Target Group.
Otacle Tuxedo Message Queue UBB Server Reference 3-3

<~runChNum>
Limitations

Direct Connection

Only support DISC and RTS UMA.

Routing

Only support AK and NN modes.

Only support DISC UMA.

Only support MEM, DEQ and ACK DIPs when protocol exchange is involved more than
once, such as sending message from OMQ to OMQ through OTMQ or from OTMQ to
OTMQ through OMQ.

TuxMsgQ
TuxMsgQ—Message Queue Manager.

Synopsis
TuxMsgQ

SRVGRP="identifier"

SRVID="number" CLOPT=" [-A][servopts options] -- [-t timeout][-i interval]"

Description
The message queue manager is an Oracle Tuxedo system-supplied server that enqueues and
dequeues messages on behalf of programs calling tpenqplus() and tpdeqplus(), respectively.
The application administrator enables message enqueuing and dequeuing for the application by
specifying this server as an application server in the *SERVERS section.

To configure default attach timeout for a Qspace, set BLOCKTIME property in the *SERVICES
section for the service named TuxMQATH[qspace], where [qspace] is the service name that
TuxMsgQ advertised with routine TuxMsgQ.

The location, server group, server identifier and other generic server related parameters are
associated with the server using the already defined configuration file mechanisms for servers.
The following additional command-line option is available for customization.

It takes the following options:
3-4 Otacle Tuxedo Message Queue UBB Server Reference

TuxMsgQ
-t timeout

Used to indicate the timeout to be used for queuing operations when not in transaction
mode (for example, tpenqueue() /tpenqplus() or tpdequeue()/tpdeqplus() are called when
the caller is not in transaction mode or with the TPNOTRAN flag). This value also has an
impact on dequeue requests with the TPQWAIT option since the operation will timeout
and an error will be sent back to the requester based on this value. If not specified, the
default is 30 seconds.

A TuxMsgQ server is booted as part of an application to facilitate application access to its
associated queue space; a queue space is a collection of queues.

Any configuration condition that prevents the TuxMsgQ from enqueuing or dequeuing
messages will cause the TuxMsgQ to fail at boot time. The SRVGRP must have
TMSNAME set to TMS_QM, and must have OPENINFO set to indicate the associated
device and queue space name.

-i interval

To configure the sanity check interval in TuxMsgQ server, set "-i [interval]" in CLOPT.
The "interval" number means the TuxMsgQ server will do sanity check per receiving this
number of messages.

Example(s)

Listing 3-2 TuxMsgQ Example

*SERVERS

TuxMsgQ SRVGRP="TUXMSGQGRP" SRVID=1000 RESTART=Y GRACE=0

 CLOPT="-s myqueue:TuxMsgQ"

See Also
tpdeqplus(), tpenqplus(), servopts(5), TMQFORWARDPLUS, UBBCONFIG(5)

Setting Up an Oracle Tuxedo Application

Administering an Oracle Tuxedo Application at Run Time

Programming an Oracle Tuxedo ATMI Application Using C
Otacle Tuxedo Message Queue UBB Server Reference 3-5

../../../tuxedo/docs12c/rf5/rf5.html
../../../tuxedo/docs12c/rf5/rf5.html

<~runChNum>
TuxMQFWD

Name
TuxMQFWD—Message Queue Off-line trade driver.

Synopsis
TuxMQFWD
SRVGRP="identifier"
SRVID="number" CLOPT=" [-A][servopts options] -- [-f delay time][-t

timeout][-i idle time]"

Description
The message queue off-line trade driver is an Oracle Tuxedo system-supplied server.

The location, server group, server identifier and other generic server related parameters are
associated with the server using the already defined configuration file mechanisms for servers. It
takes the following options:

-f delay time

Parameter used to indicate the amount of time (in seconds) when off-line trade driver try
again after the last time failure

-i idletime

Parameter used to indicate the amount of time (in seconds) that the server remains idle
after draining the queue(s) that it is reading. A negative value indicates an amount of time
in milliseconds. For example if you specify -i -10, the idle time will be 10 milliseconds.

If a value of zero is specified,a 1 second value is used, the server reads the queue(s)
continually, which can be inefficient if the queues do not continually have messages.If a
value of zero is specified, a 1 second value is used.

-t timeout

Parameter used to indicate the transaction timeout value (in seconds) used on tpbegin() for
transactions that dequeue messages and forward them to application servers. If not
specified, the default is 60 seconds.

Any configuration condition that prevents TuxMQFWD from dequeuing or forwarding messages
will cause the server to fail to boot. These conditions include the following:

The SRVGRP must have TMSNAME set to TMS_TMQM.

OPENINFO must be set to indicate the associated device and queue name.
3-6 Otacle Tuxedo Message Queue UBB Server Reference

TMQ_NA
The SERVER entry must not be part of an MSSQ set.

REPLYQ must be set to N.

The server must not advertise any services (TuxMQFWD is built out without any service,
so -s option will be ignored).You cannot configure more than one TuxMQFWD process in
a group.

Example(s)
TuxMQFWD
SRVGRP=QGRP1 SRVID=51 GRACE=0 RESTART=Y CONV=N MAXGEN=10
CLOPT="-- -i 1"

TMQ_NA

Name
TMQ_NA—Message Queue Naming Server

Synopsis
TMQ_NA
SRVGRP="identifier"
SRVID="number" CLOPT=" [-A][servopts options] -- [-g OTMQ group] [-r OMQ

group]"

Description
TMQ_NA is an OTMQ system server. It can provide naming and runtime binding of queue aliases
to queue names. It supports the following options:

-g xxx

Parameter used to indicate this naming service is provided by OTMQ group xxx.

-r yyy

Parameter used to indicate this naming service is provided by OMQ group yyy

Note: the sequence of parameters determines which Naming server is primary and which one
is backup,

Example(s)
TMQ_NA
SRVGRP=QGRP1 SRVID=51 GRACE=0 RESTART=Y CONV=N MAXGEN=10
CLOPT=" -- -g 1 "
Otacle Tuxedo Message Queue UBB Server Reference 3-7

<~runChNum>
TMS_TMQM

Name
TMS_TMQM—TMS server for OTMQ resource manager.

Synopsis

Description
OTMQ also provides a separate Tuxedo Transaction Management Server (TMS). TMS_TMQM
should be configured in the TuxMsgQ and/or TuxMQFWD group.

Example(s)
*GROUPS
QGRP1
 LMID=L1 GRPNO=1 TMSNAME=TMS_TMQM TMSCOUNT=2
 OPENINFO="TUXEDO/TMQM:/dev/device2:myqueue"

TMQEVT

Name
TMQEVT—OTMQ event reporting process.

Synopsis
TMQEVT SRVGRP="identifier" SRVID="number"
 [CLOPT="[-A] [servopts options]
 [-- [-S] [-p poll-seconds] [-f control-file]]"]

Description
TMQEVT is an Oracle Tuxedo system provided server that processes event report message buffers
from tpqpublish, and acts as an EventBroker to filter and distribute them.

Filtering and notification rules are stored in control-file, which defaults to
${APPDIR}/tmqevt.dat. Control file syntax is defined in EVENT_MIB(5); specifically, the
attributes of the classes in EVENT_MIB can be set to activate subscriptions under the full range
of notification rules.
3-8 Otacle Tuxedo Message Queue UBB Server Reference

TMQFORWARDPLUS
It is possible to boot one or more secondary TMQEVT processes for increased availability.
Additional servers must be booted with the -S command-line option, which indicates a
"secondary" server.

When the EVENT_MIB(5) configuration is updated, the primary TMQEVT server writes to its
control file. Secondary servers poll the primary server for changes and update their local control
file if necessary. The polling interval is controlled by the -p option, and is 30 seconds by default.

Notes: If you are setting up an MP configuration that includes more than one release of the
Oracle Tuxedo system and you want to run the TMQEVT server, you must run these servers
on the node with the highest available release of the system.

TMQEVT must not delopoy with the same group of TMS_TMQM.

TMQEVT must run on an Oracle Tuxedo release 6.0 or later machine.

To migrate the primary TMQEVT server to another machine, the system administrator must provide
a current copy of control-file. Each secondary TMQEVT server automatically maintains a recent
copy.

If tpqupublis() is called in transaction mode, all TMQEVT server groups must have transactional
capability (a TMS process).

The TMQEVT server environment variables must be set so that FML field tables and viewfiles
needed for message filtering and formatting are available. They could be set in the machine's or
server's environment file.

Example(s)
*SERVERS
TMQEVT SRVGRP=ADMIN1 SRVID=100 RESTART=Y MAXGEN=5 GRACE=3600
CLOPT="-A --"
TMQEVT SRVGRP=ADMIN2 SRVID=100 RESTART=Y MAXGEN=5 GRACE=3600
CLOPT="-A -- -S -p 120"

See Also
tpqpublish(), tpqsubscribe(), EVENTS(5), EVENT_MIB(5),

TMQFORWARDPLUS

Name
TMQFORWARDPLUS—Message Forwarding server.
Otacle Tuxedo Message Queue UBB Server Reference 3-9

<~runChNum>
Synopsis
TMQFORWARDPLUS SRVGRP="identifier" SRVID="number" REPLYQ=N CLOPT="
[-A] [servopts options] -- -q queuename[,queuename...]
[-t trantime] [-i idletime] [-b timeout] [-e] [-d] [-n] [-f delay] "

Description
The message forwarding server is an Oracle Tuxedo system-supplied server that forwards
messages that have been stored using tpenqplus() for later processing. The application
administrator enables automated message processing for the application servers by specifying
this server as an application server in the *SERVERS section.

The location, server group, server identifier and other generic server related parameters are
associated with the server using the already defined configuration file mechanisms for servers. It
supports the following options:

-q queuename[,queuename...]

Used to specify the names of one or more queues/services for which this server forwards
messages. Queue and service names are strings limited to 15 characters. This option is
required.

-t trantime
Used to indicate the transaction timeout value used on tpbegin() for transactions that
dequeue messages and forward them to application servers. If not specified, the default is
60 seconds.

-i idletime

Used to indicate the amount of time (in seconds) that the server remains idle after draining
the queue(s) that it is reading. A negative value indicates an amount of time in
milliseconds. For example if you specify -i -10, the idle time will be 10 milliseconds.

If a value of zero is specified, the server will read the queue(s) continually, which can be
inefficient if the queues do not continually have messages. If no value is specified, the
default is 30 seconds.

-b timeout

Used to limit nontransaction block waiting time, in seconds, for a forwarded service to
complete. The -b option can only be used with the -f option.

-e

Used to cause the server to exit if it finds no messages on the queue(s). This, combined
with the threshold command associated with the queue(s), can be used to start and stop the
TMQFORWARDPLUS server in response to fluctuations of messages that are enqueued.
3-10 Otacle Tuxedo Message Queue UBB Server Reference

TMQFORWARDPLUS
-d

Used to cause messages that result in service failure and have a reply message (non-zero
in length) to be deleted from the queue after the transaction is rolled back. That is, the
original request message is deleted from the queue-not put back on the queue-if the service
fails and a reply message (non-zero in length) is received from the server.

The reply message is enqueued to the failure queue, if one is associated with the message
and the queue exists. If the message is to be deleted at the same time as the retry limit
configured for the queue is reached, the original request message is put into the error
queue.

-n

Used to cause messages to be sent using the TPNOTRAN flag. This flag allows for
forwarding to server groups that are not associated with a resource manager.

-f delay

Used to cause the server to forward the message to the service instead of using tpcall. The
message is sent such that a reply is not expected from the service. The TMQFORWARDPLUS
server does not block waiting for the reply from the service and can continue processing
the next message from the queue. To throttle the system such that TMQFORWARDPLUS does
not flood the system with requests, the delay numeric value can be used to indicate a delay,
in seconds, between processing requests; use zero for no delay.

Messages are sent to a server providing a service whose name matches the queue name from
which the message is read. The message priority is the priority specified when the message is
enqueued, if set. Otherwise, the priority is the priority for the service, as defined in the
configuration file, or the default (50).

Messages are dequeued and sent to the server within a transaction. If the service succeeds, the
transaction is committed and the message is deleted from the queue. If the message is associated
with a reply queue, any reply from the service is enqueued to the reply queue, along with the
returned tpurcode. If the reply queue does not exist, the reply is dropped.

An application may be able to specify the quality of service for a reply to a message when the
original message is enqueued. If a reply quality of service is not specified, the default delivery
policy specified for the reply queue is used. Note that the default delivery policy is determined
when the reply to a message is enqueued. That is, if the default delivery policy of the reply queue
is modified between the time that the original message is enqueued and the reply to the message
is enqueued, the policy used is the one in effect when the reply is finally enqueued.

If the service fails, the transaction is rolled back and the message is put back on the queue, up to
the number of times specified by the retry limit configured for the queue. When a message is put
back on the queue, the rules for ordering and dequeuing that applied when it was first put on the
Otacle Tuxedo Message Queue UBB Server Reference 3-11

<~runChNum>
queue are (in effect) suspended for delay seconds; this opens up the possibility, for example, that
a message of a lower priority may be dequeued ahead of the restored message on a queue ordered
by priority.

If the -d option is specified, the message is deleted from the queue if the service fails and a reply
message is received from the server, and the reply message (and associated tpurcode) are
enqueued to the failure queue, if one is associated with the message and the queue exists. If the
message is to be deleted at the same time as the retry limit for the queue is reached, the original
request message is put into the error queue.

Any configuration condition that prevents TMQFORWARDPLUS from dequeuing or
forwarding messages will cause the server to fail to boot. These conditions include the following:

The SRVGRP must have TMSNAME set to TMS_TMQM.

OPENINFO must be set to indicate the associated device and queue name.

The SERVER entry must not be part of an MSSQ set.

REPLYQ must be set to N.

The -q option must be specified in the command-line options.

The server must not advertise any services (that is, the -s option must not be specified).

Example(s)

Listing 3-3 TMQFORWARDPLUS Example

*GROUPS # For Windows, :myqueue becomes ;myqueue
TUXMSGQGRP LMID=lmid GRPNO=1 TMSNAME=TMS_TMQM
OPENINFO="TUXEDO/TMQM:/dev/device:myqueue"
no CLOSEINFO is required

*SERVERS # recommended values RESTART=Y GRACE=0
TMQFORWARDPLUS SRVGRP="TUXMSGQGRP" SRVID=1001 RESTART=Y GRACE=0
CLOPT=" -- -qservice1,service2" REPLYQ=N
3-12 Otacle Tuxedo Message Queue UBB Server Reference

TMQFORWARDPLUS
See Also
tpenqplus(), servopts(5), UBBCONFIG(5)
Otacle Tuxedo Message Queue UBB Server Reference 3-13

../../../tuxedo/docs12c/rf5/rf5.html
../../../tuxedo/docs12c/rf5/rf5.html

<~runChNum>
3-14 Otacle Tuxedo Message Queue UBB Server Reference

TMQFORWARDPLUS
Otacle Tuxedo Message Queue UBB Server Reference 3-15

<~runChNum>
3-16 Otacle Tuxedo Message Queue UBB Server Reference

TMQFORWARDPLUS
Otacle Tuxedo Message Queue UBB Server Reference 3-17

	Oracle® Tuxedo Message Queue (OTMQ)
	12c Release 1 (12.1.1)

	Oracle Tuxedo Message Queue Reference Guide, 12c Release 1 (12.1.1)
	Oracle Tuxedo Message Queue Function Reference
	tpdequeue()
	tpenqueue()
	tpqattach()
	tpqdetach()
	tpqbind()
	tpqlocate()
	tpenqplus()
	tpdeqplus()
	tpqpublish()
	tpqsubscribe()
	tpqunsubscribe()
	tpqconfirmmsg()
	tpqsetselect()
	tpqcancelselect()
	tpqreadjrn()
	tpqshowpending()
	tpqgetmsga()
	tpqcancelget()
	tpqerrno()
	tpqexit()
	tpqstrerror()

	Oracle Tuxedo Message Queue Command Reference
	buildqclient
	buildqserver
	ConvertQSPACE
	tmqadmin

	Oracle Tuxedo Message Queue UBB Server Reference
	TuxMsgQLD
	TuxMsgQ
	TuxMQFWD
	TMQ_NA
	TMS_TMQM
	TMQEVT
	TMQFORWARDPLUS

