

Oracle® Insurance Policy
Administration

Activity Processing

Version 9.6.0.0

Documentation Part Number: E35883_01

January, 2013

Release 9.6.0.0 OIPA Activity Processing 2 of 19
 Revised: 06/03/12

Copyright © 2009, 2013, Oracle and/or its affiliates. All rights reserved.

Trademark Notice
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

License Restrictions

 Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of
this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

Restricted Rights Notice
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, the following notice is applicable:
 U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer
software” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license
restrictions applicable to the programs. No other rights are granted to the U.S. Government.

 Hazardous Applications Notice
This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate failsafe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

 Third Party Content, Products, and Services Disclaimer
This software or hardware and documentation may provide access to or information on content, products and services from
third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Release 9.6.0.0 OIPA Activity Processing 3 of 19
 Revised: 06/03/12

Table of Contents

Introduction ... 4

Customer Support ... 4

Overview ... 5

Shared Rules Engine .. 6

Interface Between the Shared Rules Engine and OIPA ... 7

Understanding Activities ... 8

Transaction Types .. 8

Activity Types .. 9

Activity Status ... 10

Subcomponents of the Shared Rules Engine .. 12

List of Processes as Part of Activity Processing .. 13

Generators .. 14

PasTransactionGenerator .. 16

SegmentCalculatorGenerator ... 17

MathEngineFactory... 17

FunctionDefinationGenerator ... 17

ScreenEventGenerator ... 17

Math .. 18

Translators .. 19

Release 9.6.0.0 OIPA Activity Processing 4 of 19
 Revised: 06/03/12

INTRODUCTION

Activity processing is a core component of the Oracle Insurance Policy Administration (OIPA) system. Every

administrative event that occurs in an insurance policy, plan, client or company is described as an activity in the

system. The purpose of this guide is to provide a comprehensive explanation of activity processing in OIPA.

CUSTOMER SUPPORT

If you have any questions about the installation or use of our products, please visit the My Oracle Support

website: https://support.oracle.com, or call (800) 223-1711.

Oracle customers have access to electronic support through My Oracle Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

https://support.oracle.com/
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Release 9.6.0.0 OIPA Activity Processing 5 of 19
 Revised: 06/03/12

OVERVIEW

An activity is an event that may or may not change relative data based on a business’s requirements.

An activity is an instance of a transaction. A transaction can be considered as synonymous to a class and an

activity is synonymous to the object that is an instance of that class. Transactions are XML rules that are

configured according to business requirements. They are configured using the Oracle Insurance Rules Palette.

Transactions define input variables, processing logic and lists of changes made to data such as policy

information. Transactions can be defined in the system at the policy, plan, client and company level depending

on the type of data they need to execute. Some typical OIPA transactions at the policy level are premium,

billing and anniversary processing.

Front-end OIPA User Interface Listing Activities that Occurred at the Policy Level

Rules Palette Interface for Configuration of Transactions that Become Activities

Release 9.6.0.0 OIPA Activity Processing 6 of 19
 Revised: 06/03/12

SHARED RULES ENGINE

The Shared Rules Engine (SRE) component performs activity processing for the OIPA application. Activity

processing manages insurance events. SRE loads a transaction and processes the data according to the

business rules and math associated with the transaction. When processing completes, the results are sent back

to the calling application. The database stores both the configured transaction rules and the actual insurance

data.

High Level Interaction Diagram

The above diagram shows a high level interaction between the calling application and SRE. The calling

application calls SRE and provides input data and an interface to callback the calling application for extra data

needed. SRE does not directly make calls to the database, except for loading rules attached to the current

activity. SRE loads the transaction and retrieves any other rules associated with the transaction. When

processing is complete, the results are packaged and returned to the calling application and then the results are

committed to the database.

There are six components of SRE that come together in processing an activity. They are as follows:

1. Processor

2. Generators

3. Math

4. Application Process Execution (Part of the calling application, but SRE calls into the application process

execution during activity processing.)

5. Extensibility

6. Profiling

NOTE: Currently all applications such as OIPA and the shared rules engine remain in the same process space.

They are not designed to function and will not function if deployed across process space.

Release 9.6.0.0 OIPA Activity Processing 7 of 19
 Revised: 06/03/12

INTERFACE BETWEEN THE SHARED RULES ENGINE AND OIPA

This section describes how SRE and the calling application communicate. Currently SRE and the calling

application are not completely separated with interfaces. The calling application directly calls SRE to start

processing and SRE libraries are required for the calling application to be compiled. The goal of clear

separation has been identified.

To begin activity processing, the calling application calls a process method in SRE’s class; ActivityProcessorBll.

The process method has three input parameters and returns an ActivityProcessResultsDcl.

Input Parameters

1. VariableHashMap – A collection of key-value pairs. The key is a string and the value is an instance of

VariableDcl. Activity, policy, plan, transaction and withholding data are flattened into a key-value pair

for lookup.

 Activity:FieldsXX would be used for activity data.

 Policy:FieldXX would be used for policy data.

2. IApplicationCallback – An “umbrella” interface for all callback interfaces. The callback interfaces are

as follows:

 DataRetriever – Executes SQL statements and named queries related to activity processing.

Results from the database are returned to SRE as DataDcls, which contain row and column

details from the result set.

 RateRetriever – Retrieves rates depending on the rate description and the criteria for the rates.

The calling application can store the rates for insurance in any manner and implement this

interface for processing needs specified in the rules.

 IActivityTaskExecutor – Processes other activities as part of this parent activity. This is used

especially when running backdated activities. To process backdated activities, all active activities

that appear in the activity timeline after the backdated activity must be undone and then the

backdated activity must be processed. This interface is used to run other activities and commit

them as part of the outer processing activity.

 IPolicyValuationBll – Values a policy and returns the cash value. It also is used to locate details

about the funds and their cash value, as well as deposits and removal history.

 ICurrencyBll – This interface is used to load currency and round currency information.

3. ActivityProcessType – An enumerated type (enum) that specifies the type of activity processing

logic.

Output Result

ActivityProcessResultDcl – A complex Dcl that contains the inputs passed, math calculation variables,

errors if applicable and a list of updates, inserts and deletes to the data as part of the rule processing. This data

is then iterated to be updated to the database.

Release 9.6.0.0 OIPA Activity Processing 8 of 19
 Revised: 06/03/12

UNDERSTANDING ACTIVITIES

Activity processing is controlled by various attributes associated with the activity. Activities are instances of

XML transaction rules being applied on data at a specific level in the application. The AsActivity table stores

records for activity processing that house applicable business event data. The AsTransaction table stores the

XML transaction logic that processes activity data. There are three important areas to focus on when

discussing activities: transaction type, activity type and activity status. Each of these areas is tracked using

code values. These codes may be found in the AsCodes table or from Admin Explorer | Codes in the Rules

Palette. The code values used in activity processing are used by the system and should not be changed.

Note: Locate more documentation on this topic on Oracle’s Technology Network at

http://download.oracle.com/docs/cd/E14444_01/oipa_v8_1_activity_processing.pdf. The

documentation at this location may provide your project team with the information needed to audit

activity processing. Version 8 and Version 9 activity processing remain the same for auditing purposes.

TRANSACTION TYPES

The transaction type code, which is stored in AsTransaction in the XML transaction rule associated with the

activity, plays an important role in activity processing. The transaction type code specifies the type of data or

the level where the activity will process. This then drives the type of processing, such as math or valuation, that

should be executed by the system. The type code definition can be located in the AsCode table under

AsCodeTransactionType.

OIPA Transaction Types

Transaction Type Description

Policy Financial This transaction executes at the policy level and may or may not have financial impact.

Policy Financial Non Reversible This transaction executes at the policy level and cannot be reversed via the user interface.

Policy Document This transaction executes at the policy level and generates documents or reports.

Policy Document Non Reversible This transaction executes at the policy level and generates documents or reports. It cannot be reversed via
the user interface.

Plan Financial This transaction executes at the plan level and may or may not have financial impact.

Plan Financial Non Reversible This transaction executes at the plan level and cannot be reversed via the user interface.

Plan Document This transaction executes at the plan level and generates documents or reports.

Plan Document Non Reversible This transaction executes at the plan level and generates documents or reports. It cannot be reversed via the
user interface.

Client Financial This transaction executes at the client level and may or may not have financial impact.

Client Financial Non Reversible This transaction executes at the client level and cannot be reversed via the user interface.

Client Document This transaction executes at the client level and generates documents or reports.

Client Document Non Reversible This transaction executes at the client level and generates documents or reports. It cannot be reversed via the
user interface.

http://download.oracle.com/docs/cd/E14444_01/oipa_v8_1_activity_processing.pdf

Release 9.6.0.0 OIPA Activity Processing 9 of 19
 Revised: 06/03/12

ACTIVITY TYPES

Each activity record has an activity type code that is stored in the AsActivity table. The type code definition can

be found in the AsCode table under AsCodeActivityType. These types should not be confused with the

transaction type code or the status of an activity, but instead, used in conjunction with them to understand how

an activity was generated and what status the activity is currently in. Activities can be generated by an end user

or the system may automatically generate activities because a dependent activity’s data was changed.

OIPA Activity Types

Activity Type Type Code Description

Natural 01 Activity entered manually by a user.

Activity that was spawned for the first time from a natural activity. A spawned activity even though
system generated can be considered a natural activity because the user manually processed the activity
that spawned it.

Activity created by a web service.

Reversal 02 Reversal activity that was created by an end user when either manually deleting or recycling an activity.

Spawned activity that was reversed because the originating activity was manually reversed.

Undo 03 Activity that is created to reverse an active activity that is created by the system as part of running
another reversal or as part of processing a pre-dated activity.

This behaves exactly as the Reversal but just differentiates itself as system generated.

Redo 04 System generated activity that was automatically created due to the generation of an Undo activity.

Release 9.6.0.0 OIPA Activity Processing 10 of 19
 Revised: 06/03/12

ACTIVITY STATUS

The activity statuses are fundamental for activity processing and historical recording. They indicate at the

activity level the status of that activity record. In comparison, the activity types section records the type of

activity that was processed. The activity status, with the date stamp in current and history records, identifies the

significant point of process and provides internal control for activities.

Activity Statuses

Activity Status Type Type Code Description

Pending 02 The activity is not yet processed.

Pending data requires action before applying to current processing and math calculation. All
required data must be entered and the lighting bolt selected to change the status from
pending to active.

Active 01 Indicates the activity is active.

Refers to current data that has completed activity processing and math calculation. This
includes processing, any changes to table and inserting XML to write to the table.

No more processing can be done on this activity.

Pending Ready 09 An attempt was made to run the activity but was unsuccessful.

NUV Pending 13 The activity is active but it does not have NUVs for some or all of the funds associated with
activity processing. This will process later when NUVs become available.

This status does not invoke undo/ redo processing for future active activities.

Gain Loss Pending 14 This activity is active but gain loss calculation is pending and is not complete. This will be
processed later when NUVs are available.

This status does not invoke undo/ redo processing for future active activities.

Shadow 12 This activity is effectively deleted from the system from an end user perspective as it is a
result of an activity being reversed.

It is available in the database and system for auditing purposes.

Pending Shadow 34 An activity whose data was entered, but never processed and then deleted.

Requirement Pending 57 An activity that has pending activity level requirements has this status.

Processing Wait 97 This status implies that the activity is executing a long running task and is waiting for that
task to complete.

Processing Stopped 98 This status implies that the activity has stopped processing a long running task and has
ended in an error.

Release 9.6.0.0 OIPA Activity Processing 11 of 19
 Revised: 06/03/12

Start

If Complete

Run Undos

Generate Undo

Redo

Run Undos

Load Processor

Process

Return Result

No

Activity Processing Flow

The activity processing flowchart reveals the system steps.

Start – The shared rules engine receives a request from OIPA.

The processing proceeds only if the activity is not active.

If Complete – This is the third parameter,

ActivityProcessType, that is sent by OIPA. It has three values:

COMPLETE, SKIP_UNDOREDO_GENERATION or QUOTE.

Strip down processing is done for options other than

COMPLETE. QUOTE is for quoting an activity and

SKIP_UNDOREDO_GENERATION is called in undo processing

and for a specific instance called during cycle processing after

processing one activity in a policy. COMPLETE is the default

option.

Run Undos – This step looks for all pending undo activites that

need to be run with an effective date after the current activity

effective date and executes them. This logic calls back into

OIPA and it calls the shared rules engine in recursion to execute

the undo activity. If there are no activities in future relative to the

current then this step is skipped.

Generate Undo/Redo – This step looks for all activities that are

active with an effective date after the current activity effective

date. It creates an Undo/Redo for those activities.

Run Undos – If in the previous steps there are any activities

generated then this step runs the undos of the activities

generated.

Load Processor – This loads the corresponding processor

depending on the activity type code, activity status code and

transaction type code.

Process - Call the processor process method. This is explained

in detail in the next section of this document.

Release 9.6.0.0 OIPA Activity Processing 12 of 19
 Revised: 06/03/12

Start

If Undo/

Reversal

Return

UndoProcessorBll

If NuvPending/

GainLossPending

Return

NuvPendingPolicyFinanci

alProcessorBll

If Policy/Plan/

Client Financial
Return

XXFinancialProcessorBll

If Policy/Plan/

Client

Document

Return

XXDocumentProcessorBll

Yes

Yes

Yes

Yes

SUBCOMPONENTS OF THE SHARED RULES ENGINE

Depending on the activity type that is sent for processing, an appropriate processor is initiated that handles the

processing steps. The different processing types and diagram are as follows:

Undo/Reversal Activity – Activity is already

processed and it needs to be undone. Handled by

UndoProcessorBll.java.

Nuv Pending/Gain Loss Pending Activity –

Activity is processed and is in active status, but

some NUV’s are missing or Gain Loss calculation

is missing due to missing data. Handled by

NuvPendingPolicyFinancialProcessorBll.java.

Policy Level Activity – Activity at the policy

holder that impacts the policy alone. Handled by

PolicyFinancialProcessorBll.java.

Client Level Activity – Activity at the client level

that impacts client data and might impact all

policies the client holds. Handled By

ClientFinancialProcessorBll.java.

Plan Level Activity – Activity at the plan level that

aggregates all policies in the plan like reports or

other changes to the plan. Handled by

PlanFinancialProcessorBll.java.

Document Generation – Activities that generate

only reports are handled by

DocumentProcessorBll classes. Separate classes

exist for Policy Level Documents

(PolicyDocumentProcessorBll), Plan level

documents (PlanDocumentProcessorBll) and

Client level Documents

(ClientDocumentProcessorBll).

Release 9.6.0.0 OIPA Activity Processing 13 of 19
 Revised: 06/03/12

LIST OF PROCESSES AS PART OF ACTIVITY PROCESSING

Depending on the processors, different sections of activity processing are executed. The processes are as

follows:

 doPreliminaryForForward – Checks the transaction’s eligibility for processing and loads NUVs for

funds and prepares the activity for processing.

 doSuspense – Processes suspense for funds received.

 doValuation – Values the policy of all funds and calculates the cash value and other variables. This is

called only when the transaction calls for the valuation in its rules. SRE calls the calling application to

do the valuation using the interface. The calculated values are later used in other sections of activity

processing.

 doMath – Calculates the math section of rules.

 doBusinessLogic – Runs the application process execution associated with the activity.

 doAssignment – Runs assignment processing.

 doDisbursement – Runs disbursement processing.

 doAccounting – Runs accounting for bookkeeping purposes.

 doSpawn – Runs spawn logic to spawn new activities based on the transaction’s specific rules.

There are various sub processes that run during activity processing. Processors like Undo and NuvPending run

a few of these and also run other processes, such as loading the changes that happened during activity

processing and reversing those changes.

Release 9.6.0.0 OIPA Activity Processing 14 of 19
 Revised: 06/03/12

GENERATORS

Generators are classes that produce other classes for execution. All XML rules are configurable with

expressions and conditions, and generators are used to execute these rules. Generators are responsible for

loading the rules, performing error checking, translating the rules and creating java source code at run time for

the rules then compiling them into classes using JANINO. They also create an instance of the run time

generated class and return them to the caller for execution.

Generators have the following functions:

 Load rules.

 Parse rules and check for errors. Report Errors if needed.

 Translate rules to java code and compile the class.

 Cache the translation for next time lookup.

Generators run in the modes described below. The mode can be set in the application property file, such as

PAS.properties. Information regarding the PAS.properties file can be located on Oracle’s Technology Network

in the OIPA 9.3.1 Documentation Library E21044_01.

The PAS.properties file section where you set the application mode:

#---
application mode (DEVELOPMENT or PRODUCTION)
Development mode is where configuration changes are allowed.
Production mode is where configuration change is a new release and JVM is restarted when they are
changed.
#---

application.mode= DEVELOPMENT

In DEVELOPMENT mode the system allows rules to be changed in the database during application runtime.

This mode should be used during active development. Generators load the rules every time, generate a hash

key and cache the generated classes associated with the hash key. If the rules are changed using Oracle

Insurance Rules Palette, then the hash key generated will be different, which will force the generator to

translate and compile again. If the rules are not changed then it reaches out to its cache and returns the

cached instance.

application.mode= PRODUCTION

In PRODUCTION mode the system does not allow the changing of rules. If rules are modified, it requires that

all JVMs be stopped and restarted so that caches are cleared. In production mode, rules are cached as well as

the translated classes. Hence no check is made to ensure changes.

Generators support debugging mode and non-debugging mode. The Rules Palette can debug into transactions

and do a line by line execution of the math section using a web service. In order to debug via the Rules Palette,

the application should be started in debugging mode. Debugging mode adds a lot of extra information to enable

remote debugging, and therefore, generators create extra lines of code.

Release 9.6.0.0 OIPA Activity Processing 15 of 19
 Revised: 06/03/12

The PAS.properties file section for settings debugging:

#---

This property allows remote level debugging or not. Yes or No.

#---

debug.remoteDebugging=No

If set to No, then the application will not support remote debugging at runtime. If set to Yes, then remote

debugging is supported.

To support developer debugging of activity processing, Generators can save the generated classes to a local

file system if configured in the property file. If debug.IdentiyTranslator is set to Yes, then in the java files

generated, at the end of each file, it will add a comment identifying the translator class and the line number that

generated that line of code. This is extremely useful in debugging the generated source code and changing it

for future needs.

There are different types of generators for different purposes. They are described in the next section of this

document.

The PAS.properties file section of settings for debugging properties:

#---

Directory to save generated source code.

This property will be used to debug issues with sre processing.

Generated source code while processing will be saved in the

directory specified. Only to be used in Non Production environment.

debug.identifyTranslator will write comments for every line identifying

the translator(line number) that generated that part of code.

#---

debug.SaveGeneratedClass=Yes

debug.identifyTranslator=Yes

debug.SaveGeneratedClassDirectory=c:\\temp

Release 9.6.0.0 OIPA Activity Processing 16 of 19
 Revised: 06/03/12

Start

Get Generator

Instance

Production

Cache

Load Rules.

Copute HashKey

Check In

Cache

Generate

Update Cache

Return Class

PASTRANSACTIONGENERATOR

PasTransactionGenerator is a Generator specific to OIPA transactions. It

understands the rules of the OIPA transaction and generates the classes

suited to its processing needs. All generated classes by this Generator

extend from PasTransactionBll, which implements the basics of OIPA activity

processing.

Logic Flow of the Transaction Generator

Start – Shared rules engine calls the static method in the Generator for

activity processing. PasTransactionGenerator.

getTransactionBllForProcessing

Get Generator Instance - Creates an instance of a generator class per

transactionGUID. There is only one instance of the Generator per transaction,

but many instances of the Generator for different transactions. This prevents

multiple threads calling to process activities of the same transaction type and

simultaneously translating the same rules. Only one thread translates the

rules for a transaction and other threads, it there are any, wait for the first

thread to complete. It then uses the class for processing.

Production Cache – The Generator then looks at the cache to see if a class

exists for this transactionGUID. In Development mode, the cache will not

contain the key. In Production mode, if the transaction is already translated, it

will pick it up and return.

Load Rules, Compute HashKey – If false in the above decision, the

Generator loads the rules from the database. It computes the unique hash

key for the rules XML.

Check Cache – It then checks in the cache to see if it has a class file for the

hash key generated. In Development mode, if the transaction is updated then

the hash key will be different and it will force the Generator to translate again.

Generate – It will parse the rules, translate the rules using translators and

then compile the generated java classes. It also saves to the file system if

specified in the property file.

Update Cache – It updates the cache depending on development or

production mode for future use. Future calls with the same transaction GUID

and same hash key are not translated.

Return Class – Returns the instance of the generated class to the caller.

Release 9.6.0.0 OIPA Activity Processing 17 of 19
 Revised: 06/03/12

SEGMENTCALCULATORGENERATOR

SegmentCalculatorGenerator is used to create classes at runtime for segment calculation based on the rules.

This creates classes specific to the OIPA system. SegmentCalculator follows the same algorithm as the

PasTransactionGenerator except that it has only one instance of the generator class for all segment rules

where PasTransactionGenerator has one instance per transaction GUID. At any given point of time in a JVM,

only one segment calculation can be translated.

Note: If there are multiple requests to retrieve a segment calculator class, one gets through and others are

blocked until the class is returned from the cache or translated and compiled. The code should change

similar to TransactionGenerator. Currently there are no issues identified because segment calculation

is much less compared to activity processing.

MATHENGINEFACTORY

This is the stand alone math Generator. This class is not named like other classes, which end in the word

Generator. It is good to note this, to avoid confusion regarding it being a Generator. The MathEngineFactory

loads the rules with only math sections and creates a class that executes the math rules and returns the results.

This is an independent math generator that is used by valuation, exposed computation and any module that has

math sections that need to execute.

FUNCTIONDEFINATIONGENERATOR

FunctionDefinitionGenerator is used to create function code. The generated function rule classes are

embedded within the transaction, segment or math classes. Generated function classes do not exist as a

separate entity but are available as inner classes. These Generators are not thread synchronized because

currently they are called from one of the above generators and they are throttled above.

SCREENEVENTGENERATOR

There are three types of ScreenEventGenerators: OnLoadGenerator, OnSubmitGenerator and

OnChangeGenerators. These are used to process the rules at three different events of the application. They

are not related to activity processing but part of the shared rules engine as they involve processing math

calculation.

Release 9.6.0.0 OIPA Activity Processing 18 of 19
 Revised: 06/03/12

MATH

The Math module is a sub-component of the shared rules engine, which is responsible for executing any math

sections in the rules. In a rule, all tags between the <MathVariables> element are handled by this sub-

component.

Conceptual Math Functionality

Math Dal JavaMathTranslatorBllList<MathStatementDcl>MathVariables Element ProcessContext

Conceptual Math Functionality

1. The Generator that generates java source for the <MathVariables> section calls the MathDal with the

location to the MathVariables element in the rules XML file.

2. The MathDal classes parse the element and its sub-elements and create a list <MathStatementDcl>

and returns it as an output. MathStatementDcl represents the entire tree hierarchy of the math section

with loops and MathIF’s.

3. The above List <MathStatementDcl> is sent to JavaMathTranslatorBll for translation. Each math

statement Dcl is translated and the corresponding java code for that statement is set in the

MathStatementDcl itself.

4. JavaMathTranslatorBll returns an instance of ProcessContext that contain lots of information. It

contains:

 List of MathVariables declared

 List of functions called

 Other structures for dependency and debugging purposes

5. Generators get the ProcessContext and generate the final class with variable declaration, statements

and function calls for compilation and execution.

Release 9.6.0.0 OIPA Activity Processing 19 of 19
 Revised: 06/03/12

TRANSLATORS

Translator classes are the most important piece of the Math sub-component. Translators are responsible for

translating every MathStatementDcl to its corresponding java source code. Translators perform the error

checking and also code generation for the single XML line.

Each <MathVariable> type that is defined by the TYPE attribute has one or more translators associated with it

depending on the operations allowed on the math type and its complexity. MathVariableType.java, an enum,

defines the list of all MathVariable TYPE and the corresponding translator classes. JavaMathTranslatorBll

iterates through the MathStatementDcl and invokes the corresponding translator with the MathStatementDcl to

perform the translation.

Note: Please see the XML Configuration Guide in the OIPA Documentation Library on Oracle’s Technology

Network for more details regarding XML schemas and definitions used by various OIPA rules.

