Oracle Tuxedo Application Rehosting Workbench
Reference Guide

11g Release 1 (11.1.1.3.0)

December 2011

ORACLE

Oracle Tuxedo Application Rehosting Workbench Reference Guide, 11g Release 1 (11.1.1.3.0)
Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or “commercial technical data” pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents

1. Introduction
CONCE S . .ttt 1-1

2. Codeset Conversion

Overview of Codeset CONVEISIONttt e 2-1
PUIPOSE. . o 2-1
AUTIENCE o 2-2

z/OS - Displaying Graphical Charactersoiiiiiiiiiin.. 2-2
Reference MONItOr. 2-2
REFCODBOFile. . .\ttt e e 2-2
Viewing Characters Under z/OS 2-3

UNIX/Linux: Displaying Graphical Characters 2-6
Reference MONItOr.o 2-6
COBOL CONVERTMW.CPY. . . . et evet et e e e 2-6

Validating and Adapting the Transcoding Copy File 2-18
Validationo 2-18
Adapting the COBOL CONVERTMW.cpy Copy File 2-19

Finding the Z/OS Character.t e 2-19
Finding the UNIX Charactersto Replace., 2-20
Replacing the UNIX Character. 2-21
Remarks Concerningthe Example o i i 2-21
Special CharaCters 2-21

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Using the COBOL CONVERTMW.cpy File. oo 2-21
Error MESSagES.ot 2-22
S AlSD . . 2-22

3. Cataloger

Overview of the Cataloger. e 3-1
Inputs to the Cataloger Process. 3-1
Outputs from the Cataloger Process 3-2
The Cataloger ProCESS. . . . oo vt e 3-2

Description of the Input Components i, 3-3
COBOL . . vttt 3-3

RefereNCeS . . . oo 3-3
ReSHICIONSo 3-3
Embedded CICS 3-4
RefereNCeS . . . oo 3-4
SO e 3-4
RefereNCeS . .. oo 3-4
JC L 34
RefereNCeS . .. oo 3-4
General Information. 3-4
Sub-Files. ..o 3-4

JCOL SYNtaX . .ot 3-5
ReSTICIONSo 3-5
BMS screen definition. 3-6
CICS Configuration i e 3-7

Description of the Configuration Files. i i 3-7
System Description File 3-7

General STrUCTUrEo 3-7

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Global Options 3-8

Special Options.ot 3-11
DIrECIONIES .ttt 3-12
files Clauseo o 3-14
logical-name clause 3-14
OPLIONS-ClAUSE. . . . ot et 3-15
libraries-clause 3-15
sgl-libraries-clause 3-16
Example of System Description File. i i 3-16
JCL-Launcher Specification Files. i i, 3-19
PUIPOSE . . . 3-19
SYMAX. o o et 3-19
OptioN List . ..o 3-20
Usage and Default Value 3-20
Description of the Output Files. 3-21
Catalog RePOItS . . . oot 3-21
Format and Location 3-21
Field Definitions.o 3-21
report-${SYSNAME}-COBOL-Programs.ovvvuineunnnennn. 3-22
report-3{SYSNAME}-COBOL-COPYot ooe e e ee e 3-23
report-${SYSNAME}-JCL-Files.co i 3-24
report-${SYSNAME}-JCL-Sub-Files 3-24
report-3{SYSNAME}-JCL-Jobs i 3-25
report-3{SYSNAME}-SCIreensoiii it 3-26
report-${SYSNAME}-SQL-Tables, 3-27
report-3{SYSNAME}-SQL-VIieWst 3-27
report-${SYSNAME}-Transactions.oviiiinennnnannn, 3-28
report-3{SYSNAME}-Anomalies........ ..., 3-29

Oracle Tuxedo Application Rehosting Workbench Reference Guide iii

EXECULION LOGS .+« vt vttt e 3-30

Description of Other Output Files. i, 3-30
POB Files for ASTS . .o i et 3-30

CDM Files for COBOL Programs and Copy Files 3-31

The Cataloger Symtab and Other Miscellaneous Files 3-31
Detailed Processingovu it 3-31
Processing Phasesot 3-31
Command-1ine SYNtaX.ttt 3-33
The Oracle Tuxedo Application Rehosting Workbench Launcher 3-33
System-Wide Commandst 3-34
The preparse-filesCommand i 3-35
Component Search Operationc.uiiii i 3-36
Compile-Time References. o e 3-36
Normal Sub-File Search. i 3-37

Strict JCL-SysinSearch o 3-38

Run-Time Reference. 3-38
Unrestricted Search 3-39
Directed Search 3-39
Repetitive and Incremental Operationc.o i, 3-40
Initial Processing: Repetitive Operation. oo, 3-40
Changes in the Asset: Incremental Operation. 3-41

DB2-to-Oracle Convertor

Overview of the DB2-to-Oracle Convertor, 4-1
PUIPOSE . 4-1
SHTUCKUNE . e e 4-2
SEE AlSD . 4-2
Oracle Tuxedo Application Rehosting Workbench Schema. 4-2

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Environment Variables 4-3

Description of the Input Components. 4-3
File LOCAtIONSo 4-3
Locationof rdbms.sh 4-3
Location of db-param.cfgFile 4-3
DB2 DDL CoNnVerted.ottt e 4-3
Conversion of DB2 Data TYPES oo v et e 4-5
DB2 Column Property CONVEISIONovui i 4-6
Description of the Configuration Files o ... 4-6
POB FileS . .o 4-6
DB2DDLPOBFIle. ... 4-6
Symtab File o 4-7
sgl-system File ... o 4-7
SYSIEMLABSC. « . vttt 4-7
db-param.cfg. 4-7
Parameters and SYNtaxes.ot 4-9

Date, Time Parametersttt e 4-10

Index, SOrt Parametersot 4-11

MVS Utility Parameters 4-12

LOBS Parametersot 4-12

File Modifying Generated Components.oiiiinnn... 4-14
Renaming File 4-14
rdbms-template.txt 4-15
rdbms_move_assignation.txt 4-16
Description of the Output Files. 4-18
File LOCALIONSot 4-18
Location of Temporary Files o i 4-18
Locationsof Log Files 4-18

Oracle Tuxedo Application Rehosting Workbench Reference Guide

vi

Locationsof Warning Files i i 4-19

Location of Generated Files. i 4-22
Generated ODJeCtS. . . . oo 4-24
Temporary Files. o 4-24
Datamap File 4-24
File Name . ..o 4-24
Syntax and Parameters 4-24
Mapper File 4-25
File Name . ..o 4-25
Generation Sample 4-26
Syntax and Parameters 4-27
Linksto COBOL COPY. . ..ot vv ittt 4-29
COBOL DesCriptionottt 4-30
Copy File Name 4-30
Copy File Syntax and Parameters.o, 4-32
Unloading JCLo 4-33
Unloading JCL: DSNTIAUL.t e 4-34
Unloading JCL: DSNUPROC oot 4-36
Unloading JCL: DSNUTILB. 4-40
COBOL Transcoding Programs.t aeens 4-44
COBOL Programs MOD_<table_name>.cbl..................... 4-45
COBOL Programs CLOB_<table_name>_<column_name>.chl. 4-46
Reloading Korn Shell Scripts. 4-48
Transcoding Phase: FirstStep ... 4-50
Transcoding Phase: Next Step for BLOB Columns................ 4-51
Transcoding Phase: Next Step for CLOB Columns................ 4-51
Loading Phase. 4-51
Check Phase 4-52

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Target DDL. .. .o 4-52

TABLE and COLUMNS. e 4-52

INDEX .. 4-53
CONSTRAINT . e 4-54
COMMENT ... 4-55

VIEW 4-55
SEQUENCE 4-55
SYNONYM. . 4-56

Identity ENGINEEringo oo 4-56

Ordered Listof TablesFile. i 4-57
COBOL Conversion Guide File.ot 4-58
File Name 4-58
Generated Sample 4-58
SQL*LOADER Control Filest 4-59
File Name 4-59
Generated Example. 4-60

DDL Translator Log File 4-63
EXECUtION REPOIS . . .ot 4-69
Detailed ProCessing.ot 4-77
Command-line SYNtaX.ot e 4-77
FADMS. SN, L 4-77
Unitary Usage SEQUENCE i ittt 4-79
PrOCESS SEEPS . o . ottt 4-79
Configuring the Environments and Installing the Components. 4-79
Installing the Unloading Components Under z/OS. 4-79
Installing the Reloading Components on the Target Platform 4-80

Installing the MWDB20ORA Package Component on the Target Platform . .
4-81

Oracle Tuxedo Application Rehosting Workbench Reference Guide vii

Unloading Data 4-82

Transferringthe Data.t 4-83
Transferringthe SBCSData.ccooviiniii it 4-83
Transferringthe MBCS Data, 4-83

Reloadingthe Data.t 4-84
Transcoding and Reloading Command 4-84

Checking the Transfers e 4-85

5. File Convertor: Introduction

viii

Overview of the File Convertor e 5-2
PUIPOSE . 5-2
SHUCTUNE . e 5-2
SEE AlSD . 5-2
File Organizations Processedt 5-2

Z/OS File Organizationst e 5-3

File Conversion to Fileorto RDBMS Table 5-3
Oracle Tuxedo Application Rehosting Workbench Configuration Name. 5-3
File Descriptions and Managing Files With the Same Structure 5-4
COBOL DeSCriptiont e 5-4
COBOL Description Format 5-4
COBOL Description and Related Discrimination Rules. 5-5
List of the Input Components. i 5-6
Datamap Fileo 5-6
Datamap Syntax and Parameters, 5-7

Mapper File 5-9
Mapping File Clause. e 5-9
COBOL DeSCriptiont e 5-12
POB FIleS. . .ot 5-12

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Symtab File 5-12

6. File-to-File Converter

Overview of the File-to-File Converter i 6-1
PUIPOSE . 6-1
SHTUCTUNE. .« o 6-2
SR AlSD. . o 6-2
File Organizations Processed.t 6-2

Keeping z/OS File Organization on the Target Platform................. 6-2
PDS File Organizationt 6-3
GDG File Organization 6-3
Oracle Tuxedo Application Rehosting Workbench Configuration Name. 6-3
Environment Variables 6-3

Description of the Input Components. 6-4

File LOCAtIONSo 6-4
Locationof file.sh. 6-4
Location of db-param.cfgFile 6-4

Description of the Configuration Files i ., 6-4
db-param.cfg. 6-4

Parameters and Syntaxes.t 6-5

File Modifying Generated Components., 6-6
file-template.txto 6-6
file-move-assignation.pgm. 6-8
Datamap File 6-10

Mapper File 6-10
Discrimination Rules 6-12
COBOL DeSCHpLioN.ottt 6-14
Description of the Output Files.o e 6-14

Oracle Tuxedo Application Rehosting Workbench Reference Guide iX

File LOCAtiONSo o e e 6-14

Location of Temporary Files i 6-14
Locationof Log Files. ... 6-14
Location of Generated Files. i 6-15
Generated ODJeCtS. . . . oo 6-15
Unloading JCLo 6-16
Unloading JCL for QSAM and VSAMfiles 6-16
Unloading JCL for Generation Data Group. 6-18
COBOL Transcoding Programs.« aeens 6-22
Migration of z/OS Files to UNIX/Linux Files 6-22
Reloading Korn Shell Scripts. 6-23
Reloading Korn Shell Scripts for Migrating z/0OS QSAM/VSAM Files to
UNIX/LInUX Files 6-23
Reloading Korn Shell Scripts for Migrating z/OS Generation Data Set to
UNIX/LinuX Fileso 6-24
Transcoding and Loading Phases. ..., 6-25
Check Phase 6-26
Access Functions and Utility Programs. 6-26
ACCESS FUNCLIONS oo 6-26
Access Function Call Arguments i 6-27
Call Arguments Used. 6-29
OPEN . . 6-29
CLOSE . . 6-30
CLOSE-LOCK . . 6-30
DELETE . .. 6-30
READ .. 6-30
REWRITE. . .. 6-31
START L 6-32

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Copy Filesto Be Implemented. 6-34
EXECULION REPOIS . . o oot e 6-34
Detailed ProCessing.ot 6-40
Command-Line Syntaxt 6-41
fillesh . 6-41
Unitary Usage SEQUENCEo vttt e et 6-42
PrOCESS SEEPS . . ottt 6-42
Configuring the Environments and Installing the Components. 6-42
Installing the Unloading Components Under z/OS. 6-42
Installing the Reloading Components on the Target Platform 6-42
Compiling COBOL Transcoding Programs 6-43
Unloading Data. 6-43
Transferringthe Data 6-44
Reloadingthe Data.t 6-44
Transcoding and Reloading Command for Files 6-44

Transcoding and reloading command for Generation Data Group files. 6-45

SYNOPSIS ot 6-45
OPLIONS . 6-45
Checkingthe Transfers. 6-45

/. File-to-Oracle Converter

Overview of the File-to-Oracle Convertero i 7-1
PUIPOSE .. 7-1
SHTUCKUNE. .« o 7-2
SR AlSD. . o 7-2
File Organizations Processed.t 7-2

Migrating to Oracle Table on the Target Platform 7-2

Oracle Tuxedo Application Rehosting Workbench Reference Guide Xi

Oracle Tuxedo Application Rehosting Workbench Configuration Name. 7-3

VSAM Files BecomingOracle Table 7-3
Specific Migration Rules Applied oo i 7-3
Rules Applied to Picture Clauses. 7-3

Environment Variables 7-4

Description of the Input Components i, 7-5

File LOCALIONS . . o .ot 7-5
Locationof file.sh o 7-5
Location of db-param.cfgFile........... 7-5

Description of the Configuration Files i ... 7-5
db-param.cfg 7-5

Parameters and SYNtaxest 7-6

File Modifying Generated Components.covvviniinennen... 7-7
file-templatetxto 7-7
file-move-assignation.pgm. 7-10
Datamap File 7-12
Mapper File o 7-12
Mapping Strategy Clausest 7-14
Mapping Strategy Clause Syntax and Parameters..................... 7-15
Mapping Strategy Examples 7-16
Discard Subfield Example i 7-16
Redefines With Default Option Example. 7-16
REDEFINES With OPAQUE FIELD Option Example............. 7-19
REDEFINES With DETAIL TABLE Option Example............. 7-21
Discrimination RUleSo o 7-24
COBOL DesCriptionottt e 7-27
Description of the Output Files 7-27
File LOCAIONSt 7-27

Xii Oracle Tuxedo Application Rehosting Workbench Reference Guide

Location of Temporary Files i 7-27

Locationof Log Files. 7-27
Location of Generated Files. i 7-27
Generated ODJECES oot 7-28
Unloading JCLo oo 7-28
COBOL Transcoding Programscouune i 7-31
Migration of z/OS Filesto Oracle Tables. 7-31
Reloading Korn Shell Scripts. i 7-32
Reloading Korn Shell Scripts for Migrating z/OS Files to Oracle Tables7-32
Creating Oracle DDL Phaset 7-33
Transcoding and Loading Phasest 7-33

Check Phase oo 7-33

Target DDL. . . .o 7-34
Access Functions and Utility Programs., 7-35
ACCESS FUNCLIONS. . ..ot 7-35

Access Function Call Arguments 7-36
Call Arguments USed o 7-39
OPEN . 7-39

CLOSE . 7-39
CLOSE-LOCK . i e 7-39
DELETE .. 7-39

READ . 7-40
REWRITE. .. 7-40

START 7-41

WRITE . 7-42

Copy Filesto Be Implemented., 7-43
Korn Shell Utilitieso 7-43
Oracle Tuxedo Application Runtime for CICS Configuration Files........... 7-44

Oracle Tuxedo Application Rehosting Workbench Reference Guide Xiii

T FIles .o 7-45
Parameters and Syntax.t 7-45
Exampleof rdb File 7-47

EXECULiON REPOItS. . ..ot 7-47

Detailed Processingovu it 7-55

Command-Ling SYNtaXxo vt 7-55

filesh. o 7-55
Unitary Usage SEqUENCEo ottt 7-57

PrOCESS SEEPS . . ottt 7-57
Configuring the Environments and Installing the Components. 7-57

Installing the Unloading Components Underz/OS 7-57

Installing the Reloading Components on the Target Platform 7-57

Compiling COBOL Transcoding Programs.. 7-58

Unloading Data 7-58

Transferringthe Data.t 7-59

Reloadingthe Data.t 7-59

Transcoding and Reloading Command for Tables................. 7-59

Checking the Transfers e 7-59

8. File-to-Db2/luw (udb) Converter

Overview of the File-to-Db2/luw (udb) Converter 8-1

PUIPOSE . 8-1

SHTUCKUNE . e e 8-2

SEE AlSD . 8-2

File Organizations ProCcessvu it e 8-2
Migrating to Db2/luw (udb) Table on the Target Platform 8-2

Oracle Tuxedo Application Rehosting Workbench Configuration Name. 8-3

Xiv Oracle Tuxedo Application Rehosting Workbench Reference Guide

VSAM Files Becoming Db2/luw (udb) Table. 8-3

Specific Migration Rules Applied i i 8-3
Rules Applied to Picture Clauses.t 8-3
Environment Variables 8-4
Description of the Input Components. 8-5
File LOCAtIONSo 8-5
Location of file.sh. 8-5
Location of db-param.cfgFile 8-5
Description of the Configuration Files o ... 8-5
db-param.cfg. 8-5
Parameters and SYNtaxes.t 8-6

File Modifying Generated Components.c.cooviiriiennnnann. 8-7
file-template-db2luw.txt. 8-7
file-move-assignation-db2luw.pgm oo 8-10
Datamap Fileo 8-12
Mapper File 8-12
Mapping Strategy Clausest 8-15
Mapping Strategy Clause Syntax and Parameters 8-15
Mapping Strategy Examples. o 8-16
Discard Subfield Example. i 8-16
Redefines With Default Option Example 8-16
REDEFINES With OPAQUE FIELD Option Example............. 8-19
REDEFINES With DETAIL TABLE Option Example 8-21
Discrimination Rules 8-24
COBOL DeSCription. . . .ot 8-27
Description of the Output Files. 8-27
File LOCALIONSot 8-27
Location of Temporary Files o i 8-27

Oracle Tuxedo Application Rehosting Workbench Reference Guide XV

Locationof Log Files. ... 8-27

Location of Generated Files. i 8-27

Generated ODJeCtS. . . . oo 8-28

Unloading JCL.o 8-28

COBOL Transcoding Programs.veti e aeens 8-31

Migration of z/OS Files to Db2/luw (udb) Tables 8-31

Reloading Korn Shell Scripts. 8-32
Reloading Korn Shell Scripts for Migrating z/OS Files to Db2/luw (udb)

Tables ... 8-32

Creating Oracle DDLPhase. ...t 8-33

Transcoding and Loading Phases. ..., 8-33

Check Phaseo 8-33

Target DDL . ..o 8-34

Access Functions and Utility Programs. 8-35

ACCESS FUNCLIONS oo 8-35

Access Function Call Arguments e 8-36

Call Arguments Used.o 8-39

OPEN . oo 8-39

CLOSE . .o 8-39

CLOSE-LOCK . .ottt e 8-39

DELETE . .. i 8-39

READ 8-40

REWRITE. . ..o 8-40

START L 8-41

WRITE .o 8-42

Copy Filesto Be Implemented 8-43

Korn Shell Utilities 8-43

Oracle Tuxedo Application Runtime for CICS Configuration Files. 8-44

Xvi Oracle Tuxedo Application Rehosting Workbench Reference Guide

TAD Files o 8-45
Parameters and SYNtaxo oot 8-45
Exampleof rdb File. 8-47

EXECULION REPOIS . . o oot e 8-47

Detailed ProCessing.ot 8-54

Command-Line Syntaxt 8-55

fillesh . 8-55
Unitary Usage SEQUENCEttt 8-56

PrOCESS SEEPS . . ottt 8-56
Configuring the Environments and Installing the Components. 8-56

Installing the Unloading Components Under z/OS. 8-57
Installing the Reloading Components on the Target Platform 8-57
Compiling COBOL Transcoding Programs 8-58
Unloading Data. 8-58
Transferringthe Data 8-58
Reloadingthe Data.t 8-58
Transcoding and Reloading Command for Tables 8-58
Checkingthe Transfers. e 8-59

9. JCL Translator
OV BIVIBW. .« ot ettt e e 9-1
JCL Translator Definitions e 9-1
General Description and Operation i 9-2
General Information 9-2
Behavior COVEIageot 9-4
Description of Input Components.o 9-4
Description of the Configuration Files o i .. 9-4

Oracle Tuxedo Application Rehosting Workbench Reference Guide Xvii

The System Description File o i 9-4

The JCL-Translation ConfigurationFile 9-6
Description of OQutput Files 9-8
Translated KSH Scriptsand Sub-Files oo i 9-8
KSH VEISION ..o 9-8

File Structure, Naming Scheme and Sub-File Handling 9-8
Handling of JCL and KSH Variables. 9-9

SCRPE SLIUCTUNE . . oo 9-9

SCRPt LAYOULo 9-9
EXECULION LOGS .+« v ettt e e 9-10
Detailed Operationou 9-12
General Information 9-12
Command-1ine SYNtaX.t 9-13
The Refine Launcher Interface 9-13

The jelz-unix Command 9-13
Repetitive and Incremental Operation 9-14
Initial Processing: Repetitive Operation 9-14
Changes in the Asset: Incremental Operation 9-15
Concurrent OPEration. v e 9-15
Frequently Asked QUESLIONSttt 9-15
When do | translate anew some JCL?. 9-15
How do | force the (re)translationof aJCL? 9-16

| deleted a JCL. Why is the corresponding KSH still present?. 9-16

I run the translator but it produces no translation. 9-16

The procedures are not included in the JCLs, and hence inthe KSH. 9-16
Where do | find the translated procedures?. 9-16
Why are some FSNs lost during translation? 9-17

XViii Oracle Tuxedo Application Rehosting Workbench Reference Guide

10. COBOL Converter

Overview of the COBOL CONVerter.ttt 10-1
1000 10-1
IPUES . o 10-2
OULPULS. . ot 10-2
CoNVersion Phases.ot 10-2

Restrictions and Limitations. 10-3
Use of COMP-5 Type on Linux Platforms, 10-3
Use of COMP-5 Type and the TRUNC Compiler Option. 10-4
EBCDIC-t0-ASCII Conversion ISSUESo oot 10-5
Literal Constants: Characters or Numbers?. 10-6
Use of Floating-Point Variables. i 10-6
REWRITE Operations on LINE SEQUENTIAL Files..................... 10-8
Pointer Manipulation. 10-8

Pointer Size Changes: Beware of Redefinitions. 10-8
Linkage-Section Arguments with NULL Address. 10-9
Representation of the NULL Pointer Value 10-10

Description of the Input Components, Prerequisites 10-10

Description of the Configuration Files. i, 10-11
System Description File. 10-11
Main Conversion Configuration File. 10-11

General SYNtax. 10-11
target-dir Clause 10-12
Sl-rules Clauseot 10-12
keep-same-file-names, target-program-extension and target-copy-extension
ClauSeS . . .o 10-12
Verbosity-Level Clause i 10-13

Oracle Tuxedo Application Rehosting Workbench Reference Guide Xix

XX

deferred-copy-reconcil Clause. 10-13

force-translation Clause. 10-14
rename-copy-map-fileClause i i 10-14
rename-call-map-file Clause i 10-14
post-translation-file Clause 10-14
on-size-error-call Clause i 10-15
hexa-map-file Clause. 10-15
conv-ctrl-file Clause and alt-key-fileClause. 10-15
RDBMS-conversion-file Clause oo, 10-16
keywords-file Clause 10-16
accept-date and accept-day Clauses., 10-16
sql-stored-procedures-file Clause oo i, 10-17
remove-sgl-qualifier Clause. i 10-17
activate-cics-rules Clause. 10-17
pure-seg-map-fileClause. i 10-18
dont-print-what-string Clauseo 10-18
remove-empty-copies Clause. 10-19
sgl-return-codes-file Clause. i 10-19
copy-renaming Configuration File 10-19
Call-Renaming Configuration File 10-20
Post-Translation Configuration File o ... 10-21
Hexadecimal Conversion ConfigurationFile 10-22
How to Generate the hexa-map File 10-22
Error Messagesot 10-23
File-to-RDBMS Configuration Files. 10-23
RDBMS-conversion Configuration Files 10-23
keywords Fileo 10-24
stored-procedure File 10-24

Oracle Tuxedo Application Rehosting Workbench Reference Guide

purely-sequential Configuration File. 10-24

sgl-return-codes Configuration File. o i 10-25
Description of OQutput Files. 10-26
Converted Programsand Copy Files. i, 10-26
Naming Scheme 10-26
Transformation Comments. 10-26
Modified Code 10-27

Added Code. . .. o 10-27

Deleted Code.t 10-28

MoVed COOE . ..ot 10-28

Other Comment Rules. ot 10-28

LaYoUL. . .o 10-28
Miscellaneous ISSUESottt 10-29
Compiler Options 10-29
MICIOFOCUS. . . o ottt 10-29
Mandatory Optionsot 10-29
Installation-dependent Options. 10-34
1.1.1.3 Options Depending on Customer Choice..................... 10-34
1.1.1.4 Options Influencing Compile-Time Operation 10-36
Mandatory Optionst 10-37
Installation-dependent options 10-40

Options depending on customer choice 10-41

Options influencing compile-time operation 10-43
COBOL-IT . 10-45
Detailed Processing.o o v it 10-45
OVBIVIBW . oot 10-45
Command-Line Syntaxt 10-47
Refine Launcher Interface i 10-47

Oracle Tuxedo Application Rehosting Workbench Reference Guide XXi

cobol-convert Commandt 10-47

Repetitive and Incremental Operation 10-49
Initial Processing: Repetitive Operation., 10-49
Changes in the Asset: Incremental Operation. 10-49
Oracle Tuxedo Application Rehosting Workbench Messages. A-1
DB2-t0-Oracle Converter MESSAgeSt v vt A-1
OVBIVIBW . . . o ettt e e e e e A-1
DB2-to-Oracle Convertor Error Messages and Translation Issues. A-2
OVEIVIBW . . ot e e A-2
DB2-to-Oracle Convertor Set-up Error Messages.oovvinn. A-2

Setup Translation-I1ssue MeSSages.o v A-7
Translation Error Messageso vt A-8
Translation ISSue MESSAgeSo vt A-8

OUtPUL Error MESSAQES . . . oo ottt et e A-11

Output Translation-1ssue Messages. A-11
Miscellaneous Error Messagesovv et A-11
Miscellaneous Translation-Issue Messages:ccovveinn... A-13
RDBMS Script Error MESSages.o v et et A-14
RDBMS and File Internally Called Script Messages............... A-19

Reloading Error Messages vt A-28

File Convertor MESSAgESot e ettt e e e A-33
File SCript Error MESSAgES oottt e e et A-33

File Internally Called Script Messages A-37
Reloading Error MeSSagesovv it e A-45
JCL Translator MeSSAgES . . .« v vttt et e A-50
JCL Translator Error MeSSages.o v et A-50
JCL Translator LOQ Errors A-51

XXii Oracle Tuxedo Application Rehosting Workbench Reference Guide

Common Information i e B-1
COBOL Reloading Programs Reserved Words List B-1

Oracle Tuxedo Application Rehosting Workbench Reference Guide XXiii

XXiv Oracle Tuxedo Application Rehosting Workbench Reference Guide

Introduction

Oracle Tuxedo Application Rehosting Workbench is part of a packaged and comprehensive
solution that enables its users:

e To perform a replatforming project with minimum risk and cost;

e To run the replatformed applications in a standardized UNIX/Linux, Oracle Tuxedo, Oracle
Database environment.

Oracle Tuxedo Application Rehosting Workbench is used only during the replatforming project
itself, whereas Oracle Tuxedo Application Runtime for Batch is used throughout the whole life
of the migrated system. Oracle Tuxedo Application Rehosting Workbench is composed of
several tools, among which the cataloger, the data-migration tools, the COBOL converter, the
JCL translator.

Concepts

The following terms are used to describe the Rehosting Workbench tools, it is important to
understand these concepts before using the rest of the documentation. The Oracle Tuxedo
Application Rehosting Workbench is used for migrating components and their source files, and
also the data files or databases from one platform to another. The migration process and the
different platforms are described in more detail in the Oracle Tuxedo Application Runtime
Process Guide. The main concepts are clarified below.

Platform
Execution platform or simply platform: a combination of hardware and software
components used to execute an application.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 1-1

Source platform
The platform on which the original software application executes. The hardware

platform is an IBM mainframe and the software components include z/OS, IBM
COBOL, JCL, DB2 and CICS.

Target platform
The platform on which the final, migrated software application executes. Oracle
Tuxedo Application Runtime provides for several different target platforms but
they are all based on Unix/Linux and include Tuxedo, the Oracle DBMS and, of
course, the Oracle Tuxedo Application Runtime. Depending on the project
methodology and organization, the target platform may be subdivided into the test
platform and the production platform.

Migration platform
The platform on which the migration tools (the Rehosting Workbench) execute,
including the cataloger. This platform is based on Linux running on an
Intel-compatible hardware platform.

Source file

A file containing all or part of the source text of a component. There are two kinds of
source files:

Main source file
The source file containing all of the source text of a component, or the "top-level”
file submitted to the compiler or launcher, possibly containing directives to include
sub-files. Examples include COBOL program files, JCL job files, etc.

Included source file or sub-file
A source file containing part of the source text for one or more components, to be
included in a main source file. Examples are COBOL copybooks (copy files), JCL
PROC files, JCL SYSIN files, etc.

Component
An element of the software system to be migrated or its definition. The Oracle Tuxedo
Application Rehosting Workbench cataloger, and the Rehosting Workbench in general,
only deals with components defined by source files, such as COBOL programs, SQL

tables or JCL jobs. By extension, source files are also considered as components, and
hence we distinguish:

Parsable components
Components which can be analyzed in isolation, which have a "meaning" and a
role by themselves. These generally correspond to the main source files.

1-2 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Non-parsable components
Components which have a meaning only when manipulated by other components
(e.g. data files) or when included in other components (included source files or
sub-files, as defined above).

Abstract Syntax Tree (AST)
The result of parsing (syntactic analysis) and linking (semantic analysis) the source file(s)
for a parsable component. This structure captures all the information in the source file and
exposes the syntactic and semantic relationships (structure) between the various
constructs in this file. This structured form is much more suitable for sophisticated
analysis and transformations tools than the initial textual form; this is why it is at the heart
of the Rehosting Workbench.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 1-3

1-4

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Codeset Conversion

This chapter contains the following topics:

e Overview of Codeset Conversion

z/0OS - Displaying Graphical Characters
e UNIX/Linux: Displaying Graphical Characters

Validating and Adapting the Transcoding Copy File

Using the COBOL CONVERTMW.cpy File

Error Messages

Overview of Codeset Conversion
Purpose

The purpose of this chapter is to describe the configurations required to convert the z/OS
EBCDIC CodeSet/CodePage to the UNIX/Linux ASCII CodeSet.

The COBOL copy file CONVERTMW. cpy stores the correspondence between source z/OS
hexadecimal values and target UNIX/Linux hexadecimal values. The copy file is used by all of
the COBOL reloading files generated by the Rehosting Workbench data conversion tools when
transcoding z/OS characters to UNIX characters.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 2-1

Audience

This chapter is intended to be used by people migrating z/OS files and DB2 tables to UNIX/Linux
files and Oracle tables or Db2/luw (udb). A good understanding of the z/OS platform, z/OS
CodeSet, and Codepage as well as the Oracle CharacterSet and UNIX CodePage is required.

z/0S — Displaying Graphical Characters

2-2

In order to transcode data assets, you need to determine the character mapping grid in the source
z/OS environment.

Reference Monitor

You need to use a monitor that is configured with all of the graphical characteristics linked to the
application in order to display all of the characters included in the data used by the z/OS
application to be migrated.

The monitor will be used to display the contents of the following file. This step is important
because it is the characters displayed by this monitor that enables the completion of the EBCDIC
to ASCII conversion phase.

REFCOD8O File

Retrieve the REFCODS8O0 file from <refinedir>/<release>/convert-data/codeset-tool
and transfer it in BINARY format to a z/OS PDS with a RecordLength = 80 parameter. This type
of PDS is commonly used to stock JCL and COBOL components.

The REFCODS8O file contains a list of all the characters in the EBCDIC alphabet. Each line in the
file has the following format:

DEC MVS:<dec>, HEXA MVS:<hex>, CAR=/<car>/
Where:

<dec>

Is an EBCDIC decimal value between 000 and 255.

<hex>
Is an EBCDIC hexadecimal value between 00 and FF.

<car>
Is a graphical character as displayed on the reference monitor.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Listing 2-1 REFCOD80 File Example

DEC MVS:000, HEXA MVS:00, CAR=/ /

L]

DEC MVS:192,
DEC MVS:6193,
DEC MVS:194,
DEC MVS:6195,
DEC MVS:196,

L]

HEXA MVS:CO,
HEXA MVS:C1,
HEXA MVS:C2,
HEXA MVS:C3,
HEXA MVS:C4,

CAR=/{/
CAR=/A/
CAR=/B/
CAR=/C/
CAR=/D/

Notes: Depending on your monitor, the graphical characters displayed may be different than

those shown in the example;

The transfer in binary mode is mandatory because the file is stored in z/OS format on
the UNIX/Linux platform, and the contents should not be altered;

Viewing Characters Under z/0S

A VIEW under TSO is sufficient to look at the file.

The following pictures are screen captures of the complete REFCOD80 file using a test monitor.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

2-3

Part 1

Figure 2-1 REFCOD80 File From Test Monitor

e e A A A S R R R R
l////!///l!//l//!//lllllfw

rd

A

Hagsseiedsiddannspdurasydditidicacine

R EEfPfrErrE r e rEs PELEE L EESEELEEE
ittt siingsioolofafnioonisodof oot

S

-
H

R S UGG O
e

ammwmmmwmmwmwmmwmwmmwmwmmwmmwmmmmmmwmmw

.mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
.mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

igggddgengddddasddndacanddnenddaandings

1R000000EEERaRRR0LLRELEIRERDR000LELEEE

lcCCGCmEDCECCDCECCEDEMCDGCECDEMDCEECEDE

ERotetototototodototorobotototototodototototoototototadotototopdototot ot

APEisY SHERNERE

000001
000002
000003
000004
000005
000006
000007
000008
000002
000010
000011
000012
000013
000014
000015
000016
000917
000018
000012
000020
000021
000022
000023
000024
000025
000026
000027
000028
000029
000030
000031
000032
000033
000034
000035
000036
000037
000038

Part 2

Figure 2-2 REFCOD8O file from test monitor

RN NN

SRR IR

dSERERARRASRARES

R L L L L DR L L R P DOLL L bl

e
HRE R R RRENE R RR R LR R REREERRRRRARY

EEELETES

[RTITSTRPEOEPETEY

EEEEEEEE

COO00000000000000)

EEEREEEEREEREREREE

DEC HVS:
DEC HVS:

Oracle Tuxedo Application Rehosting Workbench Reference Guide

2-4

Figure 2-3 REFCOD8O file from test monitor: Part 3

000156 DEC MVS:155, HEWA MVS:0B, ChR=/1] 000195 DEC MVS:194, HEXA MVS:C2, ORR=/B/
000! DEC MVS:156, HEMA MVS:8C, CAR=/s/ 000 DEC MVS:195, HEXA MVS:C3, CAR=/C/
000158 DEC MVS:157, DEC MVS:196, HEXA MVS:C4, CAR=/D/
000159 DEC MvS:158, R=, DEC MVS:197, HDXA MVS:CS, OfR=/E/
000160 DEC MvS:159, DEC MVS:198, HEXA MVS:Ch, CRR=/F/
000161 DEC MVS:180, DEC MVS:199, HEXA MVS:C7, CAR=/G/
000162 DEC MVS:161, DEC MVS:200, HEXA MVS:CB, CAR=/H/
000163 DEC MvS:162, DEC MVS:201, HEXA MVS:C9, OR=/1/
000164 DEC MVS:163, DEC MVS:202, HEXA MVS:CR, CRR=/-/
00018 DEC MVS:164, DEC MVS:203, HEXA MVS:CB, ORR=/0/
000! DEC MVS:165, DEC MVS:204, HEXA MVS:CC, CAR=/6/
000167 DEC MvS:166, DEC MVS:205, HEXA MVS:CD, CRR=/8/
000168 DEC MVS:167, DEC MVS:206, HEXA MVS:CE, CAR=/6/
000168 DEC MVS:168, DEC MVS:207, HEXA MVS:CF, CAR=/8/
000170 DEC MVS:169, DEC MVS:208, HEXA MVS:D0, CAR=/)/
000171 DEC MVS:170, DEC MVS:208, HEXA MVS:D1, CAR=/J/
000172 DEC MVS:171, DEC MVS:Z10, HEXA MVS:0Z, CAR=/K/
000173 DEC MVS:172, DEC MVS:Z11, HEXA MVS:03, CAR=/L/
000174 DEC MvS:173, DEC MVS:Z12, HEXA MVS:Dd, CFR=/M/
000175 DEC MVS:174, DEC MVS:213, HDXA MVS:08, OR=/N/
000176 DEC MVS:175, DEC MVS:Z14, HEXA MVS:06, CRR=/0/
000177 DEC MVS:176, DEC MVS:21S, HEXA MVS:07, CiR=/P/
000178 DEC MVS:177, DEC MVS:216, HEXA MVS:DE, CAR=/Q/
000179 DEC MVS:178, DEC MVS:217, HEXA MVS:DB, CAR=/R/
000180 DEC MVS:179, DEC MV3:218, HEXA MYS:DA, CAR=/1/
000181 DEC MVS:180, DEC MVS:219, HEXA MVS:DB, CRR=/0/
000182 DEC MvS:181, DEC MVS:220, HEXA MVS:0C, CAR=/u/
000183 DEC MvS:182, DEC MVS:221, HEXA MVS:0D, CRR=/u/
000184 DEC MvS:183, DEC MVS:222, HEXA MVS:DE, ORR=/0/
000185 DEC MvS:184, DEC MVS:223, HEXA MVS:DF, CAR=/4/
000186 DEC MVS:185, DEC MVS:224, HEXA MVS:EQ, ORR=/\/
000187 DEC MVS:186, DEC HVS:225, HEXA MVSIEL, CHR=/+)
ol DEc meam 0L Me2as. 16 MaEs, St
000180 DEC MvS:189, DEC MVS:228, HEXA MVS:E4, CHR=/U/
000191 DEC MVS:190, DEC MVS:229, HEXA MVS:ES, CRR=/V/
000182 DEC MvS:181, DEC MVS:230, HEXA MVS:E6, CAR=/U/
000183 DEC MvS:192, DEC MVS:231, HEXA MVS:E7, OFR=/X/
000184 DEC MvS:1893, DEC MVS:232, HEXA MVS:EB, ORR=/Y/
Figure 2-4 REFCOD8O file from test monitor: Part 4
] DEC MVS:233, HEWA MYS:ED, CAR=/Z/
o035 DEC MWS:234, HEXA MYS:EA, CAR=/%/
DEC MVS:235, HEMA MVS:EE, CAR=/0/
COOUET DEC MVS:236, HEXA MYS:EC, CAR=/0/
000233 DEC MVS:237, HEXA MVS:ED, CAR=/0/
CO0Z3S5 DEC MVS:233, HEXA MYS:EE, CAR=/0/
GOOZ40 DEC MVS:239, HEMA MVS:EF, CAR=/0/
000241 DEC MVS:240, HEXA MYS:FO, CAR=/0/
GO02A2 DEC MyS:241, HEWA MYS:F1, CAR=/1/
CO0243 DEC MVS:242, HEXA MUS:F2, CAR=/2/
G044 DEC MVS:243, HEXA MVS:F3, Y
000245 DEC MVS:244, HEMA MUS:F4, CAR=/4/
CO0246 DEC MVS:245, HEXA MVS:FS, CAR=/5/
Q00247 DEC MVS:246, HEXA MYS:F6, CAR=/6/
CO0Z43 DEC MVS:247, HEXA MWS:F7, CAR=/7/
000249 DEC MVS:243, HEXA MVS:FS, CAR=/3/
DEC MVS:249, HEXA MYS:FO, CAR=/9/
0001 DEC MVS:250, HEWA MYS:FA, CAR=/3%/
DEC MVS:251, HEXA MVS:FB, CAR=/0/
000U53 DEC MVS:252, HEXA MVS:FC, CRR=/0/
5 DEC MVS:253, HEXA MYS:FD, CAR=/1/
000255 DEC MVS:254, HEXA MYS:FE, CAR=/0/
000756 DEC MVS:255, HEXA MVS:FF, CAR=

Farei FRIEIEEEERRRERREirsszzsresss Bottom of Dats

Notes: The first screen captures do not show any graphic characters under CAR:/ /, because
these characters do not have a graphical representation under z/OS.

The test monitor used displays 38 lines per page, other monitors may differ.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 2-5

UNIX/Linux: Displaying Graphical Characters

2-6

Reference Monitor

As under z/OS it is important that the monitor on the target platform as well as all of the graphical
environment parameters are equivalent to those configured for the data migration:

e CodePage and Character Set of the database
e Configuration of the LC_* viewed using the “local” command under UNIX.

e efc.

The characters displayed on this screen must be in line with the character set that has been chosen.

COBOL CONVERTMW.cpy

The COBOL CONVERTMW. cpy file is located in <refinedir>/<release>/convert-data/codeset-tool.
The copy file is used by reloading scripts of the Rehosting Workbench data tools to convert
character strings from EBCDIC to ASCII along with the DB2 table data and the VSAM/SAM
files.

Listing 2-2 COBOL CONVERTMW.cpy Copy File Supplied Code

*

* TEMPLATE:
*

* Version: <project_name>
* Date: <date_input>

* Source: <source_name>
* Source Information:

* <insert_here_any_information>

*

*

01 TRANSCODE-INFO PIC X(70) VALUES "<project_name> <date_input>".
01 TRANSCODE-LENGTH PIC 9(4) VALUE 256.
01 TRANSCODE-SOURCE.

*

02 FILLER PIC X(32) VALUE X'000102030405060708090a0b0c0d0e0f101112131415161718191alblcldlelf".
02 FILLER PIC X(32) VALUE X"202122232425262728292a2b2c2d2e2¥303132333435363738393a3b3c3d3e3f"".
02 FILLER PIC X(32) VALUE X"404142434445464748494a4b4c4d4e4¥505152535455565758595a5b5c5d5e5F"" .

Oracle Tuxedo Application Rehosting Workbench Reference Guide

FILLER PIC X(32)
FILLER PIC X(32)
FILLER PIC X(32)
FILLER PIC X(32)
FILLER PIC X(32)

01 TRANSCODE-CIBLE.

*

02
02
02
02
02
02
02
02

FILLER PIC X(32)
FILLER PIC X(32)
FILLER PIC X(32)
FILLER PIC X(32)
FILLER PIC X(32)
FILLER PIC X(32)
FILLER PIC X(32)
FILLER PIC X(32)

VALUE
VALUE
VALUE
VALUE
VALUE

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

'606162636465666768696a6b6c6d6e6T707172737475767778797a7b7c7d7e7f".
'808182838485868788898a8b8c8d8e81909192939495969798999a9b9c9d9e9f"" .
‘a0ala2a3a4a5a6a7a8a9aaabacadaeafbOblb2b3b4b5b6b7b8b9babbbcbdbeb .
*c0clc2c3c4c5c6e7c8c9cacbeccdecectd0d1d2d3d4d5d6d7d8d9dadbdeddded .
‘eOele2e3edebe6e7e8e9eaebecedeeeffOF1F2F3FAFSF6F7F8Ffofafbfcfdfeff .

*000102039c09867F978d8e0b0c0d0e0f101112139d0a08871819928F1cldlelf" .
'808182838485171b88898a8b8c050607909116939495960498999a9b14159%¢el1a™ .
‘20a0e2edelele3e5e7f15b2e3c282b2126e9eaebe8edeeefecdf5d242a293b5e™ .
*2d2fc2c4c0clc3c5¢c7d1a62c255F3e3fFF8c9cacbc8cdcecfcc603a2340273d22" .
*'d8616263646566676869abbbf0fdfeblb06a6b6c6d6e6F707172aabae6b8c6ad™ .
'b57e737475767778797aalbfd0dddeaea2al3a5b7a9a7b6bcbdbeac7cafa8b4d7™ .
'7b414243444546474849adf4T6F2F3F57d4adbacdad4e4f505152b9FbFcfofadf .
*5¢cf7535455565758595ab2d4d6d2d3d530313233343536373839b3dbdcd9daff .

The transcoding copy file is composed of three parts:

e A description and COBOL comment part and the definition of two COBOL variables:
TRANSCODE- INFO containing information about the project and TRANSCODE-LENGTH

containing a constant that must not be modified.

e The TRANSCODE-SOURCE variable represents the 256 hexadecimal values of the source

platform.

e The TRANSCODE-CIBLE COBOL variable contains 256 hexadecimal values corresponding
to the ASCII equivalents of the EBCDIC hexadecimal values stored in
TRANSCODE-SOURCE.

Note:

To view the result of the configuration of the COBOL CONVERTMW. cpy copy file, execute the

Each FILLER variable contains 16 hexadecimal character pairs; that is 32 characters

coded from 0 to 9 and from A to F.

Viewing characters under UNIX

show_convertmw.sh script stored in
<refinedir>/<release>/convert-data/codeset-tool using the location and name of the
copy file as a parameter:

<refinedir>/<release>/convert-data/codeset-tool/show_convertmw.sh

<refinedir>/<release>/convert-data/codeset-tool/CONVERTMW.cpy

Oracle Tuxedo Application Rehosting Workbench Reference Guide

2-1

Note: This script requires the initialization of the TMPPROJECT UNIX variable. For example:
export TMPROJECT=$HOME/tmp

The script produces a list of all of the characters in the ASCII alphabet sorted in exactly the same
manner as the REFCODSO0 file viewed under z/OS. Each line displayed has the following format:

DEC MVS:<dec>, HEXA MVS:<hex>, DEC UNIX:<decU>, HEXA UNIX:<hexU>,
CAR=/<carU>/

Where:

<dec>
Is an EBCDIC decimal value between 000 and 255.

<hex>
Is an EBCDIC hexadecimal value between 00 and FF.
Is a graphical character as displayed on the reference monitor.

<decU>
Is an ASCII equivalent decimal value between 000 and 255.

<hexU>
Is an ASCII equivalent hexadecimal value between 00 and FF.

<caruU>
Is an ASCII graphical character of the UNIX/Linux platform.

Listing 2-3 UNIX Character Example

DEC MVS:000, HEXA MVS:00, DEC UNIX:000, HEXA UNIX:00, CAR=//
L-1

DEC MVS:192, HEXA MVS:CO, DEC UNIX:123, HEXA UNIX:7b, CAR=/{/
DEC MVS:193, HEXA MVS:Cl, DEC UNIX:065, HEXA UNIX:41, CAR=/A/
DEC MVS:194, HEXA MVS:C2, DEC UNIX:066, HEXA UNIX:42, CAR=/B/
DEC MVS:195, HEXA MVS:C3, DEC UNIX:067, HEXA UNIX:43, CAR=/C/
DEC MVS:196, HEXA MVS:C4, DEC UNIX:068, HEXA UNIX:44, CAR=/D/

L-1

2-8 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Notes: Some characters displayed under UNIX/Linux can provoke display problems. On a z/OS
platform, these characters are probably not represented graphically by the TSO
VIEWER.

If you view the results on an XTERM configured in 7-bit mode, you will only see some
of the graphical characters.

Listing 2-4 Complete UNIX Character List

DEC MVS:000, HEXA MVS:00, DEC UNIX:000, HEXA UNIX:00, CAR=/ /
DEC MVS:001, HEXA MVS:01, DEC UNIX:001, HEXA UNIX:01, CAR=/ /
DEC MVS:002, HEXA MVS:02, DEC UNIX:002, HEXA UNIX:02, CAR=/ /
DEC MVS:003, HEXA MVS:03, DEC UNIX:003, HEXA UNIX:03, CAR=/ /
DEC MVS:004, HEXA MVS:04, DEC UNIX:156, HEXA UNIX:9c, CAR=/e/
DEC MVS:005, HEXA MVS:05, DEC UNIX:009, HEXA UNIX:09, CAR=//
DEC MVS:006, HEXA MVS:06, DEC UNIX:134, HEXA UNIX:86, CAR=/1/

DEC MVS:007, HEXA MVS:07, DEC UNIX:127, HEXA UNIX:7F, CAR=/?/
DEC MVS:008, HEXA MVS:08, DEC UNIX:151, HEXA UNIX:97, CAR=/-/
DEC MVS:009, HEXA MVS:09, DEC UNIX:141, HEXA UNIX:8d, CAR=/?/
DEC MVS:010, HEXA MVS:0A, DEC UNIX:142, HEXA UNIX:8e, CAR=/Z/
DEC MVS:011, HEXA MVS:0B, DEC UNIX:011, HEXA UNIX:0b, CAR=//
DEC MVS:012, HEXA MVS:0C, DEC UNIX:012, HEXA UNIX:0c, CAR=//
DEC MVS:013, HEXA MVS:0D, DEC UNIX:013, HEXA UNIX:0d, CAR=/ /
DEC MVS:014, HEXA MVS:OE, DEC UNIX:014, HEXA UNIX:Oe, CAR=//
DEC MVS:015, HEXA MVS:OF, DEC UNIX:015, HEXA UNIX:0Ff, CAR=/ /
DEC MVS:016, HEXA MVS:10, DEC UNIX:016, HEXA UNIX:10, CAR=/ /
DEC MVS:017, HEXA MVS:11, DEC UNIX:017, HEXA UNIX:11, CAR=/ /
DEC MVS:018, HEXA MVS:12, DEC UNIX:018, HEXA UNIX:12, CAR=/ /
DEC MVS:019, HEXA MVS:13, DEC UNIX:019, HEXA UNIX:13, CAR=/ /
DEC MVS:020, HEXA MVS:14, DEC UNIX:157, HEXA UNIX:9d, CAR=/?/
DEC MVS:021, HEXA MVS:15, DEC UNIX:010, HEXA UNIX:0Oa, CAR=//
DEC MVS:022, HEXA MVS:16, DEC UNIX:008, HEXA UNIX:08, CAR=/ /

Oracle Tuxedo Application Rehosting Workbench Reference Guide 2-9

2-10

DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC

MVS:023, HEXA
MVS:024, HEXA
MVS:025, HEXA
MVS:026, HEXA
MVS:027, HEXA
MVS:028, HEXA
MVS:029, HEXA
MVS:030, HEXA
MVS:031, HEXA
MVS:032, HEXA
MVS:033, HEXA
MVS:034, HEXA
MVS:035, HEXA
MVS:036, HEXA
MVS:037, HEXA
MVS:038, HEXA
MVS:039, HEXA
MVS:040, HEXA
MVS:041, HEXA
MVS:042, HEXA
MVS:043, HEXA
MVS:044, HEXA
MVS:045, HEXA
MVS:046, HEXA
MVS:047, HEXA
MVS:048, HEXA

MVS:049, HEXA

MVS:17,
MVS:18,
MVS:19,
MVS:1A,
MVS:1B,
MVS:1C,
MVS:1D,
MVS:1E,
MVS:1F,
MVS:20,
MvVS:21,
MVS:22,
MVS:23,
MVS:24,
MVS:25,
MVS:26,
MVS:27,
MVS:28,
MVS:29,
MVS:2A,
MVS:2B,
MVS:2C,
MVS:2D,
MVS:2E,
MVS:2F,
MVS:30,

MVS:31,

DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC

UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:

UNIX:

135,
024,
025,
146,
143,
028,
029,
030,
031,
128,
129,
130,
131,
132,
133,
023,
027,
136,
137,
138,
139,
140,
005,
006,
007,
144,

145,

HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA

Oracle Tuxedo Application Rehosting Workbench Reference Guide

UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:

87,
18,
19,
92,
8f,
1c,
1d,
le,
1f,
80,
81,
82,
83,
84,
85,
17,
1b,
88,
89,
8a,
8b,
8c,
05,
06,
07,
90,

91,

CAR=/%/
CAR=/ /
CAR=/ /
CAR=/"/
CAR=/2/
CAR=/ /
CAR=/ /
CAR=/ /
CAR=//
CAR=/€/
CAR=/2/
CAR=/,/
CAR=/f/
CAR=/"/
CAR=/../
CAR=/ /
CAR=/ /
CAR=/"/
CAR=/%/
CAR=/S/
CAR=/</
CAR=/E/
CAR=/ /
CAR=/ /
CAR=//
CAR=/2/
CAR=/"/

DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC

MVS:050,
MVS:051,
MVS:052,
MVS:053,
MVS:054,
MVS:055,
MVS:056,
MVS:057,
MVS:058,
MVS:059,
MVS:060,
MVS:061,
MVS:062,
MVS:063,
MVS:064,
MVS:065,
MVS:066,
MVS:067,
MVS:068,
MVS:069,
MVS:070,
MvVS:071,
MVS:072,
MVS:073,
MVS:074,
MVS:075,

MVS:076,

HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA

MVS:32,
MVS:33,
MVS:34,
MVS:35,
MVS:36,
MVS:37,
MVS:38,
MVS:=39,
MVS:=3A,
MVS:3B,
MVS:3C,
MVS:3D,
MVS:3E,
MVS:3F,
MVS:40,
MVS:41,
MVS:=42,
MVS:43,
MVS:44,
MVS:=45,
MVS:46,
MVS:=47,
MVS:48,
MVS:49,
MVS:=4A,
MVS:4B,

MVS:=4C,

DEC UNIX:022,
DEC UNIX:147,
DEC UNIX:148,
DEC UNIX:149,
DEC UNIX:150,
DEC UNIX:004,
DEC UNIX:152,
DEC UNIX:153,
DEC UNIX:154,
DEC UNIX:155,
DEC UNIX:020,
DEC UNIX:021,
DEC UNIX:158,
DEC UNIX:026,
DEC UNIX:032,
DEC UNIX:160,
DEC UNIX:226,
DEC UNIX:228,
DEC UNIX:224,
DEC UNIX:225,
DEC UNIX:227,
DEC UNIX:229,
DEC UNIX:231,
DEC UNIX:241,
DEC UNIX:091,
DEC UNIX:046,

DEC UNIX:060,

Oracle Tuxedo Application Rehosting Workbench Reference Guide

HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA

UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:

16,
93,
94,
95,
96,
04,
98,
99,
9a,
9b,
14,
15,
9e,
la,
20,
a0,
e2,
e4,
e0,
el,
e3,
e5,
e7,
f1,
5b,
2e,

3c,

CAR=/ /
CAR=/"/
CAR=/"/
CAR=/0/
CAR=/-/
CAR=/ /
CAR=/"/
CAR=/"/
CAR=/%/
CAR=/>/
CAR=/ /
CAR=/ /
CAR=/%2/
CAR=/ /
CAR=/ /
CAR=/ /
CAR=/3/
CAR=/5/
CAR=/3/
CAR=/4/
CAR=/3/
CAR=/8/
CAR=/c/
CAR=/7i/
CAR=/[/
CAR=/./
CAR=/</

2-1

2-12

DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC

MVS:077, HEXA
MVS:078, HEXA
MVS:079, HEXA
MVS:080, HEXA
MVS:081, HEXA
MVS:082, HEXA
MVS:083, HEXA
MVS:084, HEXA
MVS:085, HEXA
MVS:086, HEXA
MVS:087, HEXA
MVS:088, HEXA
MVS:089, HEXA
MVS:090, HEXA
MVS:091, HEXA
MVS:092, HEXA
MVS:093, HEXA
MVS:094, HEXA
MVS:095, HEXA
MVS:096, HEXA
MVS:097, HEXA
MVS:098, HEXA
MVS:099, HEXA
MVS:100, HEXA
MVS:101, HEXA
MVS:102, HEXA

MVS:103, HEXA

MVS:4D,
MVS:-4E,
MVS:-4F,
MVS:50,
MVS:51,
MVS:52,
MVS:53,
MVS:54,
MVS:55,
MVS:56,
MVS:57,
MVS:58,
MVS:59,
MVS:=5A,
MVS:5B,
MVS:5C,
MVS:5D,
MVS:5E,
MVS:5F,
MVS:60,
MVS:61,
MVS:62,
MVS:63,
MVS:64,
MVS:65,
MVS:66,

MVS:67,

DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC

UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:

UNIX:

040,
043,
033,
038,
233,
234,
235,
232,
237,
238,
239,
236,
223,
093,
036,
042,
041,
059,
094,
045,
047,
194,
196,
192,
193,
195,

197,

HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA

Oracle Tuxedo Application Rehosting Workbench Reference Guide

UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:

28,
2b,
21,
26,
e9,
ea,
eb,
es,
ed,
ee,
ef,
ec,
df,
5d,
24,
2a,
29,
3b,
5e,
2d,
2f,
c2,
c4,
cO,
cl,
c3,

c5,

CAR=/(/
CAR=/+/
CAR=/1/
CAR=/8&/
CAR=/¢&/
CAR=/&/
CAR=/&/
CAR=/&/
CAR=/i/
CAR=/T/
CAR=/7/
CAR=/1/
CAR=/R/
CAR=/1/
CAR=/$/
CAR=/*/
CAR=/)/
CAR=/;/
CAR=/"/
CAR=/-/
CAR=///
CAR=/A/
CAR=/A/
CAR=/A/
CAR=/A/
CAR=/A/
CAR=/A/

DEC MVS:104, HEXA MVS:68, DEC UNIX:199, HEXA UNIX:c7, CAR=/C/
DEC MVS:105, HEXA MVS:69, DEC UNIX:209, HEXA UNIX:d1, CAR=/N/
DEC MVS:106, HEXA MVS:6A, DEC UNIX:166, HEXA UNIX:a6, CAR=/}/
DEC MVS:107, HEXA MVS:6B, DEC UNIX:044, HEXA UNIX:2c, CAR=/,/
DEC MVS:108, HEXA MVS:6C, DEC UNIX:037, HEXA UNIX:25, CAR=/%/
DEC MVS:109, HEXA MVS:6D, DEC UNIX:095, HEXA UNIX:5F, CAR=/_/
DEC MVS:110, HEXA MVS:6E, DEC UNIX:062, HEXA UNIX:3e, CAR=/>/
DEC MVS:111, HEXA MVS:6F, DEC UNIX:063, HEXA UNIX:3F, CAR=/?/
DEC MVS:112, HEXA MVS:70, DEC UNIX:248, HEXA UNIX:f8, CAR=/g/
DEC MVS:113, HEXA MVS:71, DEC UNIX:201, HEXA UNIX:c9, CAR=/E/
DEC MVS:114, HEXA MVS:72, DEC UNIX:202, HEXA UNIX:ca, CAR=/E/
DEC MVS:115, HEXA MVS:73, DEC UNIX:203, HEXA UNIX:cb, CAR=/E/
DEC MVS:116, HEXA MVS:74, DEC UNIX:200, HEXA UNIX:c8, CAR=/E/
DEC MVS:117, HEXA MVS:75, DEC UNIX:205, HEXA UNIX:cd, CAR=/1/
DEC MVS:118, HEXA MVS:76, DEC UNIX:206, HEXA UNIX:ce, CAR=/T1/
DEC MVS:119, HEXA MVS:77, DEC UNIX:207, HEXA UNIX:cf, CAR=/1/
DEC MVS:120, HEXA MVS:78, DEC UNIX:204, HEXA UNIX:cc, CAR=/1/
DEC MVS:121, HEXA MVS:79, DEC UNIX:096, HEXA UNIX:60, CAR=/"/
DEC MVS:122, HEXA MVS:7A, DEC UNIX:058, HEXA UNIX:3a, CAR=/:/
DEC MVS:123, HEXA MVS:7B, DEC UNIX:035, HEXA UNIX:23, CAR=/#/
DEC MVS:124, HEXA MVS:7C, DEC UNIX:064, HEXA UNIX:40, CAR=/0/
DEC MVS:125, HEXA MVS:7D, DEC UNIX:039, HEXA UNIX:27, CAR=/"/
DEC MVS:126, HEXA MVS:7E, DEC UNIX:061, HEXA UNIX:3d, CAR=/=/
DEC MVS:127, HEXA MVS:7F, DEC UNIX:034, HEXA UNIX:22, CAR=/"/
DEC MVS:128, HEXA MVS:80, DEC UNIX:216, HEXA UNIX:d8, CAR=/0/
DEC MVS:129, HEXA MVS:81, DEC UNIX:097, HEXA UNIX:61, CAR=/a/
DEC MVS:130, HEXA MVS:82, DEC UNIX:098, HEXA UNIX:62, CAR=/b/

Oracle Tuxedo Application Rehosting Workbench Reference Guide 2-13

2-14

DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC

MVS:131, HEXA
MVS:132, HEXA
MVS:133, HEXA
MVS:134, HEXA
MVS:135, HEXA
MVS:136, HEXA
MVS:137, HEXA
MVS:138, HEXA
MVS:139, HEXA
MVS:140, HEXA
MVS:141, HEXA
MVS:142, HEXA
MVS:143, HEXA
MVS:144, HEXA
MVS:145, HEXA
MVS:146, HEXA
MVS:147, HEXA
MVS:148, HEXA
MVS:149, HEXA
MVS:150, HEXA
MVS:151, HEXA
MVS:152, HEXA
MVS:153, HEXA
MVS:154, HEXA
MVS:155, HEXA
MVS:156, HEXA

MVS:157, HEXA

MVS:83,
MVS:84,
MVS:85,
MVS:86,
MvS:87,
MvVS:88,
MVS:89,
MVS:=8A,
MVS:8B,
MVS:8C,
MvS:8D,
MVS:8E,
MVS:8F,
MVS:90,
MVS:91,
MVS:92,
MVS:93,
MVS:94,
MVS:=95,
MVS:96,
MVS:-97,
MVS:98,
MVS:99,
MVS:-9A,
MVS:9B,
MVS:-9C,

MVS:-9D,

DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC

UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:

UNIX:

099,
100,
101,
102,
103,
104,
105,
171,
187,
240,
253,
254,
177,
176,
106,
107,
108,
109,
110,
111,
112,
113,
114,
170,
186,
230,

184,

HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA

Oracle Tuxedo Application Rehosting Workbench Reference Guide

UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:

63,
64,
65,
66,
67,
68,
69,
ab,
bb,
f0,
fd,
fe,
b1,
bo,
6a,
6b,
6¢C,
6d,
6e,
6F,
70,
71,
72,
aa,
ba,
e6,
b8,

CAR=/c/
CAR=/d/
CAR=/e/
CAR=/F/
CAR=/g/
CAR=/h/
CAR=/i/
CAR=/"/
CAR=/"/
CAR=/8/
CAR=/Y/
CAR=/p/
CAR=/+/
CAR=/°/
CAR=/j/
CAR=/K/
CAR=/1/
CAR=/m/
CAR=/n/
CAR=/0/
CAR=/p/
CAR=/q/
CAR=/r/
CAR=/2/
CAR=/°/
CAR=/&/
CAR=/_./

DEC MVS:158, HEXA MVS:9E, DEC UNIX:198, HEXA UNIX:c6, CAR=/&/
DEC MVS:159, HEXA MVS:9F, DEC UNIX:164, HEXA UNIX:a4, CAR=/n/
DEC MVS:160, HEXA MVS:AO, DEC UNIX:181, HEXA UNIX:b5, CAR=/u/
DEC MVS:161, HEXA MVS:Al, DEC UNIX:126, HEXA UNIX:7e, CAR=/~/
DEC MVS:162, HEXA MVS:A2, DEC UNIX:115, HEXA UNIX:73, CAR=/s/
DEC MVS:163, HEXA MVS:A3, DEC UNIX:116, HEXA UNIX:74, CAR=/t/
DEC MVS:164, HEXA MVS:A4, DEC UNIX:117, HEXA UNIX:75, CAR=/u/
DEC MVS:165, HEXA MVS:A5, DEC UNIX:118, HEXA UNIX:76, CAR=/v/
DEC MVS:166, HEXA MVS:A6, DEC UNIX:119, HEXA UNIX:77, CAR=/w/
DEC MVS:167, HEXA MVS:A7, DEC UNIX:120, HEXA UNIX:78, CAR=/x/
DEC MVS:168, HEXA MVS:A8, DEC UNIX:121, HEXA UNIX:79, CAR=/y/
DEC MVS:169, HEXA MVS:A9, DEC UNIX:122, HEXA UNIX:7a, CAR=/z/
DEC MVS:170, HEXA MVS:AA, DEC UNIX:161, HEXA UNIX:al, CAR=/i/
DEC MVS:171, HEXA MVS:AB, DEC UNIX:191, HEXA UNIX:bFf, CAR=/¢/
DEC MVS:172, HEXA MVS:AC, DEC UNIX:208, HEXA UNIX:dO, CAR=/b/
DEC MVS:173, HEXA MVS:AD, DEC UNIX:221, HEXA UNIX:dd, CAR=/Y/
DEC MVS:174, HEXA MVS:AE, DEC UNIX:222, HEXA UNIX:de, CAR=/b/
DEC MVS:175, HEXA MVS:AF, DEC UNIX:174, HEXA UNIX:ae, CAR=/®/
DEC MVS:176, HEXA MVS:BO, DEC UNIX:162, HEXA UNIX:a2, CAR=/¢/
DEC MVS:177, HEXA MVS:B1l, DEC UNIX:163, HEXA UNIX:a3, CAR=/£/
DEC MVS:178, HEXA MVS:B2, DEC UNIX:165, HEXA UNIX:a5, CAR=/¥%/
DEC MVS:179, HEXA MVS:B3, DEC UNIX:183, HEXA UNIX:b7, CAR=/-/
DEC MVS:180, HEXA MVS:B4, DEC UNIX:169, HEXA UNIX:a9, CAR=/0/
DEC MvS:181, HEXA MVS:B5, DEC UNIX:167, HEXA UNIX:a7, CAR=/8/
DEC MvS:182, HEXA MVS:B6, DEC UNIX:182, HEXA UNIX:b6, CAR=//
DEC MvVS:183, HEXA MVS:B7, DEC UNIX:188, HEXA UNIX:bc, CAR=/Y%/
DEC MVS:184, HEXA MVS:B8, DEC UNIX:189, HEXA UNIX:bd, CAR=/%/

Oracle Tuxedo Application Rehosting Workbench Reference Guide 2-15

2-16

DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC

MVS:185, HEXA
MVS:186, HEXA
MVS:187, HEXA
MVS:188, HEXA
MVS:189, HEXA
MVS:190, HEXA
MVS:191, HEXA
MVS:192, HEXA
MVS:193, HEXA
MVS:194, HEXA
MVS:195, HEXA
MVS:196, HEXA
MVS:197, HEXA
MVS:198, HEXA
MVS:199, HEXA
MVS:200, HEXA
MVS:201, HEXA
MVS:202, HEXA
MVS:203, HEXA
MVS:204, HEXA
MVS:205, HEXA
MVS:206, HEXA
MVS:207, HEXA
MVS:208, HEXA
MVS:209, HEXA
MVS:210, HEXA

MVS:211, HEXA

MVS:B9,
MVS:BA,
MVS:BB,
MVS:BC,
MVS:BD,
MVS:BE,
MVS:BF,
MvS:CO,
MVS:C1,
MvSs:C2,
MVS:C3,
MVS:C4,
MVS:C5,
MVS:C6,
MVS:C7,
MVS:C8,
MVS:C9,
MVS:CA,
MVS:CB,
MVS:CC,
MVS:CD,
MVS:CE,
MVS:CF,
MVS:DO,
MvVS:D1,
MvS:D2,

MVS:D3,

DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC

UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:

UNIX:

190,
172,
124,
175,
168,
180,
215,
123,
065,
066,
067,
068,
069,
070,
071,
072,
073,
173,
244,
246,
242,
243,
245,
125,
074,
075,

076,

HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA
HEXA

Oracle Tuxedo Application Rehosting Workbench Reference Guide

UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:
UNIX:

be,
ac,
7c,
af,
as,
b4,
d7,
7b,
41,
42,
43,
44,
45,
46,
47,
48,
49,
ad,
4,
f6,
f2,
f3,
f5,
7d,
4a,
4b,

4c,

CAR=/%/
CAR=//

CAR=/1/
CAR=/"/
CAR=/""/
CAR=/"/
CAR=/x/
CAR=/{/
CAR=/A/
CAR=/B/
CAR=/C/
CAR=/D/
CAR=/E/
CAR=/F/
CAR=/G/
CAR=/H/
CAR=/1/
CAR=/-/
CAR=/0/
CAR=/6/
CAR=/0/
CAR=/6/
CAR=/8/
CAR=/}/
CAR=/3/
CAR=/K/
CAR=/L/

DEC MVS:212, HEXA MVS:D4, DEC UNIX:077, HEXA UNIX:4d, CAR=/M/
DEC MVS:213, HEXA MVS:D5, DEC UNIX:078, HEXA UNIX:4e, CAR=/N/
DEC MVS:214, HEXA MVS:D6, DEC UNIX:079, HEXA UNIX:4Ff, CAR=/0/
DEC MVS:215, HEXA MVS:D7, DEC UNIX:080, HEXA UNIX:50, CAR=/P/
DEC MVS:216, HEXA MVS:D8, DEC UNIX:081, HEXA UNIX:51, CAR=/Q/
DEC MVS:217, HEXA MVS:D9, DEC UNIX:082, HEXA UNIX:52, CAR=/R/
DEC MVS:218, HEXA MVS:DA, DEC UNIX:185, HEXA UNIX:b9, CAR=/1/
DEC MVS:219, HEXA MVS:DB, DEC UNIX:251, HEXA UNIX:fb, CAR=/0/
DEC MVS:220, HEXA MVS:DC, DEC UNIX:252, HEXA UNIX:fc, CAR=/uU/
DEC MVS:221, HEXA MVS:DD, DEC UNIX:249, HEXA UNIX:f9, CAR=/u/
DEC MVS:222, HEXA MVS:DE, DEC UNIX:250, HEXA UNIX:fa, CAR=/U/
DEC MVS:223, HEXA MVS:DF, DEC UNIX:159, HEXA UNIX:9F, CAR=/Y/
DEC MVS:224, HEXA MVS:EO, DEC UNIX:092, HEXA UNIX:5c, CAR=/\/
DEC MVS:225, HEXA MVS:E1l, DEC UNIX:247, HEXA UNIX:f7, CAR=/+/
DEC MVS:226, HEXA MVS:E2, DEC UNIX:083, HEXA UNIX:53, CAR=/S/
DEC MVS:227, HEXA MVS:E3, DEC UNIX:084, HEXA UNIX:54, CAR=/T/
DEC MVS:228, HEXA MVS:E4, DEC UNIX:085, HEXA UNIX:55, CAR=/U/
DEC MVS:229, HEXA MVS:E5, DEC UNIX:086, HEXA UNIX:56, CAR=/V/
DEC MVS:230, HEXA MVS:E6, DEC UNIX:087, HEXA UNIX:57, CAR=/W/
DEC MVS:231, HEXA MVS:E7, DEC UNIX:088, HEXA UNIX:58, CAR=/X/
DEC MVS:232, HEXA MVS:E8, DEC UNIX:089, HEXA UNIX:59, CAR=/Y/
DEC MVS:233, HEXA MVS:E9, DEC UNIX:090, HEXA UNIX:5a, CAR=/Z/
DEC MVS:234, HEXA MVS:EA, DEC UNIX:178, HEXA UNIX:b2, CAR=/2/
DEC MVS:235, HEXA MVS:EB, DEC UNIX:212, HEXA UNIX:d4, CAR=/0/
DEC MVS:236, HEXA MVS:EC, DEC UNIX:214, HEXA UNIX:d6, CAR=/0/
DEC MVS:237, HEXA MVS:ED, DEC UNIX:210, HEXA UNIX:d2, CAR=/0/
DEC MVS:238, HEXA MVS:EE, DEC UNIX:211, HEXA UNIX:d3, CAR=/0/

Oracle Tuxedo Application Rehosting Workbench Reference Guide 2-11

DEC MVS:239, HEXA MVS:EF, DEC UNIX:213, HEXA UNIX:d5, CAR=/0/
DEC MVS:240, HEXA MVS:FO, DEC UNIX:048, HEXA UNIX:30, CAR=/0/
DEC MVS:241, HEXA MVS:F1, DEC UNIX:049, HEXA UNIX:31, CAR=/1/
DEC MVS:242, HEXA MVS:F2, DEC UNIX:050, HEXA UNIX:32, CAR=/2/
DEC MVS:243, HEXA MVS:F3, DEC UNIX:051, HEXA UNIX:33, CAR=/3/
DEC MVS:244, HEXA MVS:F4, DEC UNIX:052, HEXA UNIX:34, CAR=/4/
DEC MVS:245, HEXA MVS:F5, DEC UNIX:053, HEXA UNIX:35, CAR=/5/
DEC MVS:246, HEXA MVS:F6, DEC UNIX:054, HEXA UNIX:36, CAR=/6/
DEC MVS:247, HEXA MVS:F7, DEC UNIX:055, HEXA UNIX:37, CAR=/7/
DEC MVS:248, HEXA MVS:F8, DEC UNIX:056, HEXA UNIX:38, CAR=/8/
DEC MVS:249, HEXA MVS:F9, DEC UNIX:057, HEXA UNIX:39, CAR=/9/
DEC MVS:250, HEXA MVS:FA, DEC UNIX:179, HEXA UNIX:b3, CAR=/3/
DEC MVS:251, HEXA MVS:FB, DEC UNIX:219, HEXA UNIX:db, CAR=/0/
DEC MVS:252, HEXA MVS:FC, DEC UNIX:220, HEXA UNIX:dc, CAR=/0/
DEC MVS:253, HEXA MVS:FD, DEC UNIX:217, HEXA UNIX:d9, CAR=/U/
DEC MVS:254, HEXA MVS:FE, DEC UNIX:218, HEXA UNIX:da, CAR=/U/
DEC MVS:255, HEXA MVS:FF, DEC UNIX:255, HEXA UNIX:ff, CAR=/y/

Validating and Adapting the Transcoding Copy File
Validation

To validate the transcodage of EBCDIC characters to ASCII, compare the lines displayed on the
z/OS monitor with the lines displayed on the UNIX/Linux monitor.

Listing 2-5 Examples of Different Displays Under Z0S and UNIX:

ZOSDEC MVS:192, HEXA MVS:CO, CAR=/{/
UNIXDEC MVS:192, HEXA MVS:CO, DEC UNIX:123, HEXA UNIX:7b, CAR=/{/

2-18 Oracle Tuxedo Application Rehosting Workbench Reference Guide

ZOSDEC MVS:193, HEXA MVS:Cl, CAR=/A/
UNIXDEC MVS:193, HEXA MVS:Cl1l, DEC UNIX:065, HEXA UNIX:41, CAR=/A/
ZOSDEC MVS:090, HEXA MVS:5A, CAR=/]1/
UNIXDEC MVS:090, HEXA MVS:5A, DEC UNIX:093, HEXA UNIX:5d, CAR=/]/

Adapting the COBOL CONVERTMW.cpy Copy File

Adaptations are required when the graphical characters displayed on the UNIX reference monitor
are different from the characters displayed on the z/OS reference monitor.

An adaptation consists in modifying the hexadecimal value stored in the TRANSCODE-CIBLE
variable of the COBOL CONVERTMW. cpy copy file.

Finding the z/0S Character

Look for the original hexadecimal value in the TRANSCODE-SOURCE section by reading the
characters in pairs.

The same value may appear to be present several times it is important to read the hexadecimal
values in pairs.

Using a hypothetical example, where under z/OS the source hexadecimal character EA is not "2 "
but "#".

The two monitors indicate

Z0S DEC MVS:234, HEXA MVS:EA, CAR=/#/
UNIX DEC MVS:234, HEXA MVS:EA, DEC UNIX:178, HEXA UNIX:b2, CAR=/2/

Oracle Tuxedo Application Rehosting Workbench Reference Guide 2-19

2-20

Figure 2-5 Looking for z/0S Character Part 1

01 ANSE

5%

F\F
EQEB

The string "ea" can be found on the sixth and eighth lines. Which string should be chosen?

The "ea " string on the sixth line corresponds to the intersection of two strings "ae " and "af ",
whereas the "ea " string found on the eight line is the one we are looking for. It starts in the 21st
position of the eighth line, so is the 11th hexadecimal value on the line (a hexadecimal value
being composed of two characters).

Figure 2-6 Looking for z/0S Character Part 2

01 TRANS

Finding the UNIX Characters to Replace

Once the hexadecimal value has been found in the z/OS file, it is easy to retrieve the value of the
variable TRANSCODE-CIBLE that is situated in the same location (8th line, 21st character) of
TRANSCODE-SOURCE. Using the show_convertmw.sh script we can see that the hexadecimal
value in the TRANSCODE-CIBLE is "b2".

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Replacing the UNIX Character

The value “b2” should be modified to the hexadecimal equivalent of “ #”. The hexadecimal value
is “23”, as indicated by the file produced by running show_convertmw.sh:

DEC MVS:123, HEXA MVS:7B, DEC UNIX:035, HEXA UNIX:23, CAR=/#/

Remarks Concerning the Example
e The replacing of " 2" by " # "is arbitrary and for illustration purposes only.

o After this replacement, the “ #” character is twice present in the TRANSCODE-CIBLE
variable, the relation is no longer bijective (there is no longer a one-to-one correspondence
between the two sets of characters. This asymmetry does not cause problems for the
migration of z/OS data to UNIX, but it destroys the relation:

— One z/0S character = one UNIX character

e The EURO (£) character is displayed graphically as =" because the terminal used in the
UNIX example did not contain the " € " character, but only the "Monetary" graphical
character.

Special Characters
Special characters such as:

o LOW-VALUE

e SPACE

e HIGH-VALUE

should keep the same decimal value between the source and target platforms to preserve the
iso-functional behavior of COBOL between the different platforms.

Using the COBOL CONVERTMW.cpy File

This copy file is used by the COBOL reloading programs generated by the Rehosting Workbench
file and database migration tools. The copy file is installed during the installation of the Rehosting
Workbench.

Check the directories indicated in the UNIX variable:

COBCPY
used by the COBOL compiler.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 2-21

Error Messages

DATART-1001:
Example: COPY file $convertmwCopyFile not found. Check argument 1.

Explanation: Argument 1 must contain the COBOL copy file name.

DATART-1002:
Example: can not access to directory $TMPPROJECT: $TMPPROJECT.

Explanation: UNIX Variable TMPPROJECT must be set.

DATART-1003:
Example: bad status returned by awk.

Explanation: Check previous messages.

See Also

e DB2-to-Oracle Convertor especially Reloading the Data.
e File Convertor: Introduction, especially Reloading the Data.

e Oracle Tuxedo Application Rehosting Workbench User Guide.

2-22 Oracle Tuxedo Application Rehosting Workbench Reference Guide

../wbuser/index.html

Cataloger

The Oracle Tuxedo Application Rehosting Workbench Cataloger analyzes all the components
extracted from the source environment separately and together in order to determine whether the
asset is consistent and can be migrated. The Cataloger also produces an internal form to be used
by other tools.

Overview of the Cataloger

The Cataloger is one of the migration tools composing the Rehosting Workbench. Its purpose is
twofold:

1. Analyze separately and together all the components in the source software system to
determine whether this system is consistent and can be migrated. The anomalies detected

during this analysis are reported in the cataloging reports, along with other inventory
information.

2. Produce an internal form of these components and of their mutual relationships, to be used by
the other tools in the Rehosting Workbench.

Inputs to the Cataloger Process

e The source files for the components in the source asset, after they have been transferred
from the source platform to the migration platform and converted to be better viewed and
processed;

e One or more configuration files:

Oracle Tuxedo Application Rehosting Workbench Reference Guide 3-1

3-2

— The System Description File (mandatory), which describes how the input source files are
organized on the migration platform file system, and also gives additional parameters necessary
for their parsing;

— The Cataloger option file (optional), which gives parameters for the analysis phase of the
Cataloger (see Detailed Processing).

— The JCL-Launcher Specification Files are used to describe the launchers used in a given asset, so
that the cataloguer and the JCL translator can extract relevant information such as the name of
the real program to launch.

— Hint files (optional), which give information that the Cataloger cannot find out by itself, for
instance on dynamic program calls.

Outputs from the Cataloger Process

e A set of cataloging reports, in CSV form, describing the components and their status in the
asset (correct, unused, missing);

e For each (parsable) component, a binary pob-file containing the internal form of the
component, suitable for further processing such as conversion or translation;

e Other system-wide pob files, such as the Symtab (see The Cataloger Symtab and Other
Miscellaneous Files), for use by the Cataloger and other Oracle Tuxedo Application
Rehosting Workbench tools;

e When necessary, some other non-binary files for use by other Oracle Tuxedo Application
Rehosting Workbench tools.

The Cataloger Process

The Cataloger process is divided into four logical phases:

1.

Parsing: each component in turn is read, parsed (syntactic analysis) and linked (semantic
analysis), and the corresponding pob-file is generated.

Analysis: for each component, the pob-file is re-read and the most significant constructs in
the component are translated into a smaller summary information stored in the Cataloger
symbol table (symtab).

Post-analysis: working with just the symtab and the summary information, the Cataloger
computes some cross-reference links allowing to label each component as correct, unused or
missing.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

4. Report generation: the symtab decorated with cross-reference links is traversed and
information is printed out for each component.

Depending on the needs of the project and the migration-platform configuration, these phases can
be executed sequentially or concurrently, in a single run or incrementally. See Repetitive and
Incremental Operation and the Oracle Tuxedo Application Runtime Process Guide for further
information.

Description of the Input Components

The Cataloger accepts as input the source files of a complete, working software application
running on a z/OS platform. It should be composed entirely of the following types of files which
are described in greater detail in the following sections:

e COBOL programs, (possibly containing EXEC SQL and/or EXEC CICS statements),
e JCL scripts,

e SQL DDL scripts defining the database schema,

e CICS RDO files defining the CICS transactions,

e Sub-files of the above types, when relevant.

coBoL

References

The Oracle Tuxedo Application Rehosting Workbench COBOL parser accepts the COBOL
language as specified in the IBM Enterprise COBOL for z/OS Language Reference Version 3
Release 4 (document number SC27-1408-04).

Restrictions
The following constructs or features are not accepted:

e Multiple programs per compilation unit, especially nested programs.
o All object-oriented features.
e DBCS (USAGE DISPLAY-1) and Unicode (USAGE NATIONAL) constructs.

e MBCS does not support variable names.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 3-3

3-4

e Millennium Language Extensions (date fields).

Embedded CICS

References

The COBOL parser uses a sub-parser to parse embedded EXEC CICS statements (commands).
The parser accepts the language defined in IBM CICS Application Programming Reference
Version 3 Release 1 (document number SC34-6434-05).

saL

References

The same parser is used in standalone mode to parse SQL DDL files and as a sub-parser to parse
EXEC SQL code embedded in COBOL programs. It is based on the language specifications in
IBM DB2 Version 9.1 for z/OS Application Programming and SQL Guide (document number
SC18-9841-00) and IBM DB2 Version 9.1 for z/OS SQL Reference (document number
SC18-9854-00).

JCL

References

The JCL parser is based on the language specification in IBM z/OS MVS JCL Reference
(document number SA22-7597-09).

General Information

Sub-Files

The parser processes various forms of sub-files and file inclusion directives (EXEC [PROC],
INCLUDE, SYSIN, ...) and searches the asset for sub-files as directed in the System Description
File. Since the cataloger and other tools such as the JCL translator need to have a complete
understanding of all of the steps in all of the JCL scripts that they handle, it is very important that
all the referenced sub-files be present in the asset and that file types and search paths be set so
that the correct sub-file is found for every reference. The cataloger will report missing sub-files
as severe anomalies, since they prevent the correct analysis and translation of the whole affected
JCL(s). Translation should not be attempted until all such anomalies have disappeared.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

There are two types of SYSIN files:

e SYSINSs (or SYSTSINS, or other "command files") for utility programs: in many cases,
these files contain information which is of interest for the cataloger (e.g. the name of the
program launched by the DB2 launcher IEKJFTOL) or for the translator (e.g. operations
performed by IDCAMS, or the sort script for DFSORT). In consequence, they must be
present in the asset before cataloging (with type JCL-Sysin, see Type clause).

e SYSINs for applicative (COBOL) programs: these files will be handled like standard data
files and do not need to be present in the asset processed by the Rehosting Workbench.
All referenced PROC and INCLUDE sub-files need to be present in the asset.

Note that the parser also handles in-stream PROCs (delimited by PROC and PEND cards) and
SYSINs (DD *), but of course these are never missing.

JCL Syntax

A JCL job is a sequence of steps, with or without execution conditions. It must begin with a JOB
card, except if the job-card-optional option is given in the cataloger option file, see XXXXX.

All JCL, JES2 and JES3 statements are parsed. The JCL must be directly executable by JES2.
The parser performs JES variable substitution. Variables which are not defined locally in the JCL
may be set using the JCL-globals option of the system description file, see Special Options.

Comment cards (starting with "//*") are recognized as such and retained for translation.

The parser recognizes all kinds of JCL cards. It handles overrides and refbacks in PROCs, but
only for DD cards. It also handles continuation cards.

Restrictions

Using a Sub-file as Both a PROC and an INCLUDE File

In certain conditions, the same sub-file can be used both as a PROC file and as an INCLUDE file.
However, the translation to target files is different in each case, so it is necessary to duplicate the
file(s) in question, so that one copy is used and translated as a PROC and the other as an INCLUDE
file. To achieve this, the two copies must, of course, be placed in separate directories, and the
search paths must be set up so that the JCL which use these files as PROCs find the PROC version
first and those which use them as INCLUDEs find the INCLUDE version first (it is not possible
that the same JCL uses the same file as both a PROC and an INCLUDE).

Oracle Tuxedo Application Rehosting Workbench Reference Guide 3-5

Using One JOB Card Per JCL

Only one JOB card per JCL is allowed. If you have files with more than one JOB card, you must
split them before running the cataloger. Make sure that the job name in the JOB card and the
(simple) file name match.

Standard Utility Commands Parsed

The JCL parser fetches (when not in-stream) and parses the contents of command files (SYSIN,
SYSTSIN, etc.) for various standard utilities. The current list of such utilities is:

e IEBUPDTE
e IEBGENER
e IEBCOMPR
e |EBCOPY
e IEHPROGM
e 1EBDG

e IEHLIST
e IEBMOVE
e 1EBPTPCH
e IDCAMS

o DFHSORT
e ICETOOL
e IEH-MOVE
e 1EKJFTO1
e DSNUTILB
e DSNTIAUL.

Note: The support for some of these utilities, i.e., the ability of the parser to handle their
command language, may be partial.

BMS screen definition

The BMS parser handles the BMS language as defined in the following documents:

3-6 Oracle Tuxedo Application Rehosting Workbench Reference Guide

e Chapter BMS macros in appendix Detailed reference information for the CICS API
commands of the IBM book CICS Application Programming Reference (document number
SC34-6434-05 for CICS V3R1);

e Chapter Creating the map in Part 6, Basic Mapping Support (BMS) of the IBM book CICS
Application Programming Guide (document number SC34-6433-04 for CICS V3R1).

The parser will accept all correct BMS definitions. It will also report the most obvious syntax
errors, but it is not meant to recognize all such errors.

CICS Configuration

The CICS configuration parser handles the CICS resource definition language as read by batch
utility DFHCSDUP (see IBM CICS Transaction Server for z/OS Resource Definition Guide
Version 3 Release 2, document number SC34-6815-00). The following commands are
recognized: DELETE ALL, ADD, REMOVE and DEFINE. All resource types and attributes are
recognized but only a few are really exploited in the parser and extractor.

Description of the Configuration Files
System Description File

The system description file describes the location, type and possible dependencies of all the
source files in the asset to process. As such, it is the key by which not only the Cataloger, but also
all of the Rehosting Workbench tools, can access the source files and the corresponding
components. The system description file also specifies a number of parameters which influence
parsing.

General Structure

Listing 3-1 System Description File Structure

Sys-desc-file ::= “system” system-name “root” system-root-path
global-options special-options

directories

Oracle Tuxedo Application Rehosting Workbench Reference Guide 3-7

3-8

Notes: The format of the file is basically free, lines can be as long as desired. Comments start
with the percent character and end at the end of the line.

Notes: The format of symbols (names) can include the following characters
[A-Z][a-z][0-9][*-_]. Symbols may start with digits but at least one letter is required.
Keywords and symbols (names) are case-insensitive; strings are of course case-sensitive.

system-name
The first element in the system description file is a symbol giving the name of the asset.
This name can be freely chosen, since it is used only by the Rehosting Workbench tools
for reference. The names of some files and directories produced bythe Rehosting
Workbench tools also contain this name.

system-root-path
The second element is a string giving the path of the directory which contains all
component source files on the Linux migration platform. This directory can be located
anywhere convenient on the file system. The path can be given either in absolute form
(starting with the slash character) or in relative form. In the latter case, the path is relative
to the directory containing the system description file itself (usually located in some
“param” directory besides the “source” directory containing the source files, but the
Rehosting Workbench tools accept any configuration described here).

Global Options

The elements in this clause specify various settings influencing the parsing, cataloging and,
generally speaking, handling of component source files. The generic syntax for this clause is:

Listing 3-2 System Description File Global Options

(“options” | “global-options”) opt-name-1 “=" opt-value-1 °
opt-name-2 “=" opt-value-2 *“,”

The value of each option can be an integer number, a symbol, a string or a Boolean indicator. (The
following are accepted as Boolean indicators:

e nothing (meaning true).
o the string “true” or “TRUE”.

e The symbol true (case-insensitive).

Oracle Tuxedo Application Rehosting Workbench Reference Guide

e the string “false” or “FALSE”.

e The symbol false).

Option names and option values are case-insensitive, except for strings. In general, these settings
can apply globally on the whole asset and/or be overridden locally for a specific directory (see

below).

The various possible options accepted here are listed in the following table

Tahle 3-1 Global Options

Option Name Type Local Description

Catalog, String No Path of the Cataloger options file (see below).

catalog-option This path can be given in absolute form or in
relative form; in the latter case, the path is relative
to the directory containing the system description
file itself. Note that this clause is optional: if it is
not given, then the Cataloger will not attempt to
read an option file and will use default values for all
options.

Cobol-Right-Ma integer (>60) Yes Column for start of Area C in COBOL programs.

rgin The default value is 66, suitable for fixed-format
programs with columns 1-6 and 72-80 removed.

Cobol-Left-Mar integer (<12) Yes Comment column in COBOL programs. The

gin default value is 1, suitable for fixed-format
programs with columns 1-6 and 72-80 removed.

Remove-Cobol-R String Yes This option is used to tell the COBOL parser that

eserved-Word

some keyword it considers as reserved (in the IBM
COBOL LE dialect) is in fact not reserved in the
actual dialect used for this asset or directory. This
option may be given several times for the same
system or directory. For each program, the list of
such keywords to consider as non-reserved is
formed by accumulating all values given in all local
(directory) or global (system) options of this name.
Default value is of course the empty list.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

3-9

Tahle 3-1 Global Options

Option Name Type Local Description
No-END-Xxx-War Boolean Yes If true, don't complain loudly when some
nings, statement-containing construct is not closed
No-END-Xxx otherwise than with the appropriate END-xxx
keyword. Default value is false, i.e. complain. Note
that you can associate a “false” value with this
option, which would reverse its meaning.
Yes-End-Xxx-Wa Boolean Yes The reverse of previous option,
rnings, No-END-Xxx-Warnings. You may not use both
Yes-End-Xxx, options on the same directory or on the global level,
END-Xxx-Warnin but you may have an option at the global level and
gs a different option on some directory(ies). Note that
you can associate a “false” value with this option,
which would reverse its meaning.
SQL-Schema, string or Yes Name of the schema to use in SQL code when not
Default-SQL-Sc symbol explicitly given. This applies to standalone SQL
hema code (DDL, files of type SQL-Script) and to SQL
code embedded in COBOL programs.
SQL-Use-Revers Boolean Yes if true, SQL code in this directory or system uses
ed-Delimiters, double quotes for strings and single quotes for
SQL-Reversed-D delimited identifiers. Default behavior (for value
elimiters false) is the reverse, single quotes for strings and
double quotes for delimited identifiers.
SQL-No-Keyword Boolean Yes If true, no keyword in the SQL code in this

-Is-Reserved,
SQL-Keywords-N
ot-Reserved

directory or system will be considered as reserved
(use for DB2 version 8 or earlier). Default behavior
(for value false) is to consider all keywords as
reserved, and hence complain if they are used for
other purposes (like DB2 version 9).

3-10 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Tahle 3-1 Global Options

Description

The “end-of-line” column for SQL-Script files
(only—this does not apply to SQL code embedded
in COBOL programs). Set it to 66 for fixed-format
files with columns 1-6 and 72-80 removed (a la
COBOL). Default value is “infinite”, which is
suitable for free-format files. Note that left margin
is always 1, so you must physically remove
columns 1-6 of fixed format files if they are to be
ignored.

Option Name Type Local
SQL-Right-Marg Integer (>0) Yes
in

jclz-launcher- string Yes

spec-file,
jclz-launcher-
specs-file

Path of the JCL-launcher specification file to use
for this system or directory; see JCL-Launcher
Specification Files for more information on the
contents and use of such files. This path can be
given in absolute form or in relative form; in the
latter case, the path is relative to the directory
containing the system description file itself.

Special Options

Special options are clauses which cannot be integrated in the previous global options mechanism,
mostly for syntactic reasons (values are lists). They can appear before or after global options, but
not in-between. They are all of the following syntactic form:

Listing 3-3 System Description File Special Options

opt-name “=" opt-value *“

The equal sign and trailing period are mandatory. When a value is a list, the items in the list must
be separated by commas. The special options are described in the following table:

Oracle Tuxedo Application Rehosting Workbench Reference Guide

31

Tahle 3-2 Special Options

Option Name

Type

Description

minimum-free-ram
-percent

Integer (> 0
and < 100)

The fraction of physical memory which should remain free
and available to other processes during execution of the
Cataloger and all of the various Oracle Tuxedo Application
Rehosting Workbench tools. In general, these tools consume
more and more memory, depending on the number of
components they process. When this limit is reached, the tool
stops and restarts execution; incremental execution ensures
that the components already processed are not re-processed,
so that eventually, all the required work is achieved.

JCL-globals

List of pairs
var-name

var-value

Var-name is a symbol (or string interpreted as a symbol) and
var-value is a string. When parsing a JCL script, the parser
simulates the JCL-variable substitution process performed
by JES2. The name-value pairs given here are used to

,separated by substitute global variables (as opposed to parameters, etc.).
commas The parser reports an error when it cannot find a suitable
value for some variable.

strict-jcl-libra None The presence of this option influences how SYSIN files

ries (Boolean referenced by a JCL are searched in the whole system. See
flag) chapter Sub-file search operation below.

Dbms-version String or Version of the DB2 relational DBMS used on the source
symbol platform. This is used by the RDBMS tool (q.v.).

Directories

The main component of the system description file is the list of directory clauses, which specifies
the location of the various source files for the given asset, their type and their relation with each
other. Each such clause has the following syntax:

Listing 3-4 System Description File Directories

“directory” directory-path

type-clause file-clause logical-name-clause options-clause

libraries-clause sqgl-libraries-clause

3-12

Oracle Tuxedo Application Rehosting Workbench Reference Guide

subdirectories “.”

The (mandatory) directory path must come first. The optional subdirectories, if any, must come
last. The other clauses may come in any order. Of these clauses, only the type clause and the file
clause are mandatory, the others are optional.

Directory-path

This is a string giving the path (location) of the directory relative to the root directory of the
system (see system-root-path). Although it is not an absolute requirement, it is strongly advised
that all the directories of the same system are physical descendants of the system root directory.
(A simple and readable way to achieve this is that no directory path contains the “../”
upward-going name). Different directories must have different paths.

Type clause
“type” directory-type

The type clause specifies the type of the directory, that is the type of the source files (components)
it contains. The type is given as a case-insensitive symbol. Only the following types are accepted

Table 3-3 Valid Directory Type Clauses

Type Description

Cobol-Batch Main COBOL programs used in batch operation (referenced by JCLS),
possibly containing EXEC SQL code (DML, data manipulation
language).

Cobol-TPR Main COBOL programs used in TP operation (referenced by

transactions and CICS XCTL commands), possibly containing EXEC
SQL and EXEC CICS code.

Cobol-Sub COBOL subprograms, either batch or TP, possibly containing EXEC
SQL and EXEC CICS code.

COBOL-Library, COBOL copy files (copy books), to be included in main program files.

COBOL-Copy

SQL-Script Standalone SQL code containing essentially DDL (data definition

language) statements. The set of SQL-Script files collectively defines
the database schema(s) used in the system.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 3-13

3-14

Tahle 3-3 Valid Directory Type Clauses

Type Description
JCL Main JCL files, defining one or more JCL jobs.
JCL-Lib JCL sub-files, either defining procedures invoked by EXEC or

containing statements invoked by INCLUDE

JCL-Sysin SYSIN files used by utility programs or program launchers in JCL
scripts. Not all SYSIN files are required by the parser/Cataloger, see
more details in the Rehosting Workbench JCL Translator Reference
Manual (section Description of Input Components).

BMS BMS screen definitions (in source form)

RDO CICS system definition files (CSD) as used by RDO to configure CICS,
see IBM’s CICS Resource Definition Guide.

files Clause

“files” File-specs

The file-specs are strings designating one or more files in a directory. The string identifies the
inclusive members of the asset and excludes the others. The simplest form of file-spec is a
complete file name such as toto.cbl. No indication of directory should be given, the designated
files must be located directly in the directory in question. To avoid the task of explicitly listing
all components in the directory, you can also use shell-like regular expressions such as *.cbl or
[A-F1[D-Z]*-jcl.

Note: It is important that all files designated by the system description file, that is all source
files in the asset, have a file extension rather than just a bare file name. The extension can
be chosen freely — although we advise the use of “standard” extensions such as cbl for
COBOL programs, cpy for COBOL copy files and jcl for main JCL files—but must be
present.

logical-name clause

logical-name Iname
This clause is to be used on directories of type JCL-Sysin, together with the special option
strict-jcl-libraries, see above. Together, they enable the Strict JCL-Sysin Search mode.

Iname is a string of the form ““A.B.C”, naming a library (PDS) of JCL SYSIN files on the source
platfom. It is assumed that all the files in the directory bearing this clause belong to this library.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

If the special option strict-jcl-libraries is not set, the logical-name clause is ignored.

options-clause

Listing 3-5 options-clause

“options” opt-name-1 “=” opt-value-1 “,”
opt-name-2 “=" opt-value-2 “,” ...

Syntactically, the directory-specific options clause is similar to the system-wide Global Options
clause, except for the trailing period. Semantically, the listed options and values have the same
effect as the global options, but only locally on the files contained in the directory (they override
global options with the same name). The same options as the ones marked yes in the local?
column of the global-option table apply to directories, provided that they are relevant for the type
of source files in the directory. For instance, the option cobol-right-margin is relevant for
directories of type COBOL-Batch, COBOL-TPR or COBOL-Sub, but not for type JCL or
SQL-Script.

In addition, there exists one directory-specific option: “Right-margin” for directories of type JCL.
The value is an integer number which specifies the “end-of-line” column for JCL files. The
default value is 72, which is appropriate for most cases of IBM JCL source files.

libraries-clause

“libraries” directory-path “,” _..

The libraries clause specifies an ordered search path of (other) directories in the asset. Whenever
the Cataloger finds in a source file a reference to another component it searches, from first to last,
the list of directories given in this clause, until it finds a component (source file) whose name and
type matches those of the reference (see more details in section Sub-file search operation below).
It is used both for compile and parse-time references, such as a COBOL program referencing a
copy file or a JCL file referencing a PROC, and for run-time references, such as a COBOL
program calling a COBOL subprogram or a JCL job invoking a COBOL program. This way, it
is possible to simulate the effects of various source-platform library-search operations, such as
SYSLIB or COPYLIB for COBOL compilation, JOBLIB and STEPLIB for JCL preparation and
execution, etc.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 3-15

3-16

Note: The directory paths are strings which must match those given in the definition of the
referenced directories. However, the definition of a directory may be placed before or
after any of its references.

sql-libraries-clause

“sql-libraries” directory-path “,

The SQL-libraries clause plays the same role as the libraries clause for resolving EXEC SQL
INCLUDE directives in COBOL programs. When it is omitted, the resolution of such references
uses the same search path as the normal libraries clause, but sometimes it is necessary to use a
different order for normal COPY directives and SQL INCLUDE directives.

Example of System Description File

Listing 3-6 Example System Description File

system BNL root "'../source"

options catalog = "./options-catalog.desc",
no-end-xxx-warnings,
cobol-left-margin = 7,
cobol-right-margin = 72,

SQL-Schema = DB2A1,

SQL-Server BNL.

minimum-free-ram-percent 20.

%

% Copies

%

directory "COPY" type Cobol-Library files "*_.cpy".

directory "INCL" type Cobol-Library files "*_cpy".

Oracle Tuxedo Application Rehosting Workbench Reference Guide

directory "IBMCPY" type Cobol-Library files "*_cpy".

% Sysin

directory "SYSIN" type JCL-SYSIN files "*_sysin".

directory "SYSINCDB" type JCL-SYSIN files "*_sysin".

% DDL

directory "DDL"™ type SQL-SCRIPT

files "*_sqgl”

options SQL-Schema = "DB2A0".

% Batch

directory "Batch' type COBOL-Batch files "*.batch"

libraries "COPY™, ™INCL"™, "IBMCPY"

options cobol-right-margin=73.

directory "TPR" type COBOL-TPR files "*_tpr"

libraries "COPY™, ™INCL"™, "IBMCPY".

Oracle Tuxedo Application Rehosting Workbench Reference Guide

3-17

%

% JCL

%

directory "JCL"™ type JCL files "*_jcI"

libraries "SYSINCDB", "SYSIN™".

%

% CICS

%

directory "MAPS"™ type BMS files "*_bms".

directory "CICS" type RDO files "*._rdo".

This system-description file is for an asset named BNL, for example the name of a customer or a
standalone application in a larger system. The location and name of this file are not constrained,
but conventionally, the complete path should be something like:

/. . ./BNL/param/system.desc. Given this assumption, and since the path for the system root
directory given in this file is relative (. ./source), the absolute path for the root directory is

/. ../BNL/source. Similarly, the path for the Cataloger options file is given as
./options-catalog, S0 its absolute path is /. . . /BNL/param/options-catalog. The global
options call for the following comments:

e The no-end-xxx-warnings option enables the lenient mode of parsing implicitly-closed
COBOL constructs.

e The cobol-left-margin and cobol-right-margin values are set for untransformed,
IBM-like fixed-format programs with left-side numbering column and right-side comment
column (area C). Note that, while this format causes no trouble for the COBOL parser, the
correct operation of the COBOL converter cannot be guaranteed.

The naming and organization of the various directories is quite standard, with source files in the
asset being identified only with their file extensions. The only unusual feature here is the special
cobol-right-margin value for directory “Batch”.

3-18 Oracle Tuxedo Application Rehosting Workbench Reference Guide

JCL-Launcher Specification Files

Purpose

Most IBM source assets contain JCL steps invoking program launchers, i.e. utility programs that
launch applicative programs. Many of these launchers, such as the DB2 launcher IEKJFTO01, are
recognized directly by the JCL parser and analyzer in the Rehosting Workbench cataloger.
However, in many cases, some of these launchers are installation-specific and require specific
handling. Fortunately, most of them use the generic JCL-invocation mechanism and syntax
(EXEC PGM card) and the relevant launch information is contained in the PARM value.

The purpose of the JCL-launcher specification file are to describe the launchers used in a given
asset, so that the cataloger and the JCL translator can extract relevant information such as the
name of the real program to launch. The specification is based on the fact that, in most cases, the
PARM value is split into individual parameters by some separator character (not always the
standard JCL separator, the comma), and that the parameters which give the program name, the
PSB name, the PLAN name, etc., have a well-defined position in the sequence.

Syntax

A JCL-launcher specification file is a free-format text file with the following syntax, where all
the keywords and symbols are case-insensitive:

Listing 3-7 JCL-launcher Syntax

LAUNCHER <Launcher name>
[<option-name> = <option-value> [,

-1

END

Oracle Tuxedo Application Rehosting Workbench Reference Guide 3-19

Option List

For the last three options, there is no default value: if the option is absent, then the corresponding
information is simply not available.

e Separator: Character used as a field separator, must be a one-character string. Default is the
comma character ",".

e IndexProg: index of program name, must be an integer. This is the only mandatory option
for a given launcher.

e IndexPSB: index of PSB name, must be an integer.
e IndexPlan: index of plan name, must be an integer.

e IndexParm: index of parameter name, must be an integer.

Usage and Default Value

The local jclz-launcher-spec-file option attached to a directory, when present, overrides
the global one, as usual. When no launcher specification file is specified either for a given
directory or the whole system, then the default value is as if we used the following file:

Listing 3-8 Default Launcher Value

LAUNCHER DFSRRCOO
IndexProg : 2,
IndexPSB : 3

END

LAUNCHER DB2BATCH
IndexProg : 2,
IndexPSB : 3

END

3-20 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Description of the Output Files
Catalog Reports

Format and Location
All these reports are produced in CSV format, with fields delimited by a single semi-colon.

They are generated in the $SYSROOT/Reports-${SYSNAME} directory, where $SYSROOT is
the root directory for the current asset and $SYSNAME is the asset name, both as defined in the
System Description File.

The name of each report also contains $SYSNAME, to avoid any confusion.

Field Definitions
The following field definitions are used in several reports:

Path (string)
The identification of the (main) source file defining the entity in question, as a path
relative to the root of the "system" given in the system description file.

Status (enumeration: CORRECT, UNUSED or MISSING)

CORRECT
The component is present in the asset and at least one reference to it has been found
in one or more other components, i.e. the component is used.

UNUSED
The component is present in the asset but no reference to it could be found in any
other component;

MISSING
The component is not present in the asset and at least one reference to it has been
found.

Note: UNUSED and MISSING are to be considered as (inter-component) anomalies.

Anomaly level (enumeration: FATAL, ERROR, WARNING, NOTICE, OK)
This is the maximum level of anomalies detected on the component in question during
internal analysis.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 3-21

FATAL
Irrecoverable errors such as syntax errors found. The results of the analysis are
incomplete and the component or asset is unsuitable for conversion.

ERROR
Recoverable errors such as undeclared variables found. The results of the analysis
may be inaccurate and the component or asset is unsuitable for conversion.

WARNING
Situations which can cause problems (inaccuracies) during analysis or after
conversion have been found, but the component is suitable for conversion.

NOTICE
A remarkable situation was detected, but it causes no harm.

OK
No anomaly found.

Note: When the component is MISSING, this field is replaced by indications describing the
cause for the component to be absent from the asset (SYSTEM, CORRECT or
PROBLEM), depending on information supplied entirely by the user.

MISSING
When a component is MISSING, this field is replaced by indicators describing the cause
for the component to be absent from the asset (SYSTEM, CORRECT or PROBLEM),
depending on information supplied entirely by the user.

report-${SYSNAME}-COBOL-Programs

This report lists all the (COBOL) programs defined or referenced in the asset. It accounts for the
-Cobol-Batch, -Cobol-TPR and -Cobol-Sub reports.

The following fields are contained in the report:

Table 3-4 COBOL Report Fields

Field Type Description
Name symbol Name of the program as defined by the (envelope) file name.
Path string See Field Definitions. This is the path of the (main) source file defining
the program.
Note: Oracle Tuxedo Application Rehosting Workbench does not
currently handle multiple programs in the same file.
3-22 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Tahle 3-4 COBOL Report Fields

Field Type Description

Type enum: Type of program as defined by its classification in the system description
BATCH, TP file (Cobol-Batch, Cobol-TPR or Cobol-Sub).
or SUB

Loc integer Total number of lines in the program after copy expansion.

NPar integer Number of paragraphs in the Procedure Division.

Status enum See Field Definitions.

Anomaly enum See Field Definitions.

level

The following fields are empty (undefined) when the component is MISSING:

e Path
e LOC
e Npar.

In addition, for components of type SUB, the name may be that of an entry point in a subprogram,
rather than the name of the subprogram itself It is the name as referenced in a CALL and the
cataloger can’t determine whether it designates an entry point or a complete subprogram.

report-${SYSNAME}-COBOL-Copy

This report lists all the COBOL copy files (copybooks) contained or referenced in the asset. The
following fields are contained in the report:

Table 3-5 COBOL Copy Report Fields

Field Type Description

Name string Logical name of the copy file, as defined by the (envelope) file
name and possibly by the logical-name clause of the containing
directory in the system description file.

Path string See Field Definitions.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 3-23

Tahle 3-5 COBOL Copy Report Fields

Field Type Description
Loc integer Number of lines in the copy file.
Status enum See Field Definitions.

The following fields are empty (undefined) when the component is MISSING:
e Path,
e LOC.

report-${SYSNAME}-JCL-Files

For JCLs, we separate between reports on (main) source files and reports on jobs, because we
handle multiple jobs per file. For (main) source files, the following fields are contained in the
report:

Tahle 3-6 JCL source File Report Fields

Field Type Description

Path string See Field Definitions.

Loc integer Total number of lines in the JCL file after expansion of PROCs,
INCLUDES and SYSINSs.

NJob enum Number of jobs defined in this file.

Anomaly enum See Field Definitions. It is at least as high as the maximum anomaly

level level in all the contained jobs, and may be higher in case of syntax

errors.

3-24

A JCL source file is never MISSING, only JCL jobs can be missing.

report-${SYSNAME}-JCL-Sub-Files

This report describes JCL sub-files required for the analysis of main files: PROCs, INCLUDES
and some SYSIN files. The following fields are contained in the report:

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Table 3-7 JCL sub-file Report Fields

Field Type Description

Name string Name of the sub-file, as referenced from main files.

Path string See Field Definitions.

Type enum: Type of sub-file, as defined by its classification in the system
PROC, description file and the construct by which it is referenced in the
INCLUDE or main files.
SYSIN

Loc integer Number of lines in the sub-file.

Status enum See Field Definitions.

The following fields are empty (undefined) when the component is MISSING:
e Path
e LOC.

report-${SYSNAME}-JCL-Jobs

This report lists all JCL jobs defined or referenced in the asset. The following fields are contained
in the report:

Tahle 3-8 JCL Jobs Report Fields

Field Type Description

Name string Name of the job, as defined in the JOB card.

Path string See Field Definitions. This is the path of the (main) file defining the
job.

Loc integer Number of lines in the job itself (from the JOB card to the

ENDJOB card) after expansion of sub-files.

NStep integer Number of steps defined in this job

Oracle Tuxedo Application Rehosting Workbench Reference Guide 3-25

Tahle 3-8 JCL Jobs Report Fields

Field Type Description

Status enum See Field Definitions.

Anomaly enum See Field Definitions. This is the anomaly level of the job itself, and
level

generally does not take into account syntax errors (because the
latter prevent the analysis of the job).

report-${SYSNAME}-Screens

This report lists all BMS screens defined or referenced in the asset. The following fields are

contained in the report:

Table 3-9 Screens Report Fields

Field Type Description

Name string Name of the screen, in the form mapset-name.map-name.

Path string See Field Definitions. This is the path of the file defining the screen.

Line integer The number of the line in the source file at which the screen
definition begins (the line containing the DFHMDI macro).

NField integer Number of fields defined in this screen

Status enum See Field Definitions.

?nomily enum See Field Definitions. In fact, this is the anomaly level of the

eve

complete source file; see the anomaly report to see whether the
anomalies really apply to this screen definition.

When the screen is MISSING, the following fields are empty:

e Path
e Line
o NField

e Anomaly level.

3-26 Oracle Tuxedo Application Rehosting Workbench Reference Guide

report-${SYSNAME}-SQL-Tables

This report lists all SQL tables defined or referenced in the asset. The following fields are
contained in the report:

Table 3-10 SQL Table Report Fields

Field Type Description

Name symbol Name of the SQL table, as defined in the CREATE TABLE
statement.

Schema symbol Name of the schema containing the table definition, or of its
owner.

Path string See Field Definitions. This is the path of the SQL-script file defining
the table.

Line integer Number of the line in this source file at which the definition of the
table begins.

NCol integer Number of columns defined in the table.

Status enum See Field Definitions.

Comment string Comment, if any, associated with the table.

When the table is MISSING, the following fields are empty:
e Path
e Line
e Ncol

e Comment.

report-${SYSNAME]}-SQL-Views

This report lists all SQL views defined in the asset. The following fields are contained in the
report:

Oracle Tuxedo Application Rehosting Workbench Reference Guide 3-27

Table 3-11 SQL Views Report Fields

Field Type Description
Name symbol Name of the SQL view, as defined in the CREATE VIEW
statement.

Schema symbol Name of the schema containing the view definition, or of its
owner.

Path string See Field Definitions. This is the path of the file defining the view.

Line integer Number of the line in this source file at which the definition of the
view begins.

NCol integer Number of columns defined in the view.

Status enum See Field Definitions.

Note: A view is never MISSING, because references to views are
indistinguishable from references to tables. So, when a reference
to a table-or-view links to no definition of any kind, the
Cataloger creates a missing table, not a missing view.

Comment string Comment, if any, associated with the table.

report-${SYSNAME}-Transactions

This report lists all CICS transactions defined in RDO files in the asset. The following fields are
contained in the report

Table 3-12 CICS Transaction Report Fields

Field Type Description

Name symbol Name of the transaction, as defined in the DEFINE
TRANSACTION statement.

Group symbol Name of the group containing the transaction definition.

3-28 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Tahle 3-12 CICS Transaction Report Fields

Field Type Description

Path string See Field Definitions. This is the path of the file defining the
transaction.

Line integer Number of the line in this source file at which the definition of the

transaction begins.

When a transaction is referenced in the asset (e.g. in a RETURN TRANSID statement) and it is
not defined in an RDO file, it is listed in this report with empty Path and Line fields.

report-${SYSNAME}-Anomalies

This report lists all anomalies found in all components of the asset. The following fields are
contained in the report:

Table 3-13 Anomaly Report Fields

Field Type Description

Path string See Field Definitions. This is the path of the main file defining the
component in which the anomaly occurs.

Sub-Path string See Field Definitions. If the real location of the error (statement or
other construct) is inside some sub-file (COBOL copy file, JCL
PROC file, etc.), this is the path of this sub-file, otherwise this field
is empty.

Line integer Number of the line in the real source file at which the anomaly
occurs: the sub-file if previous field is not empty, otherwise the
main file.

Sub-Line integer If the anomaly occurs in some sub-file, this field contains the
number of the line in the main source file at which the sub-file is
included, otherwise it is empty.

Severity enum:- The severity of the anomaly, from FATAL as the highest severity

FATAL, to NOTICE with the lowest severity.
ERROR,

WARNING,

NOTICE

Oracle Tuxedo Application Rehosting Workbench Reference Guide 3-29

Table 3-13 Anomaly Report Fields

Field Type Description

Category enum: Defines the category to which the anomaly belongs:

EmlﬁéE e SYNTAX is for parse errors and all errors related to syntax;

ANALYS Ié « LINKAGE is for errors related to links between a reference to some

MISC ’ construct and the corresponding definition, such as undeclared
variables;

e ANALYSIS is for anomalies related to constructs which do not allow
the Cataloger to perform an accurate analysis of the component, such
as dynamic calls;

e MISC is for all others.

Tag Symbol A synthetic but significant name identifying the precise kind of
anomaly. In fact, the possible values are a finite enumeration, but
too numerous to be all listed here.

Description string A precise and specific description of the anomaly, possibly

including references to the offending source construct, for
instance: "SQL-TABLE variable is not defined: LVDSYS00".

3-30

Execution Logs
Description of Other Output Files

The visible result of the Cataloger is the set of cataloging reports described above. These reports
are far from the only or even the most important output. This section briefly describes the other
result files; these are binary files in a proprietary format, called Persistent Object Base (POB).
These files are not suitable for human processing or processing by traditional text-based tools;
they are intended for use by the Cataloger itself or with other tools in the Rehosting Workbench.

POB Files for ASTs

During the parsing phase (see The Cataloger Process), for each parsable-component source file
A/B/C/fFile.ext in the system, the Cataloger produces a POB file named
A/B/C/pob/file.ext.pob (the pob directory is created on demand by the Cataloger). This file
contains the result of the parsing, namely the Abstract Syntax Tree (AST) of the component. It is
re-read by the analysis phase of the Cataloger and by other Oracle Tuxedo Application Rehosting
Workbench tools such as the COBOL converter or JCL translator.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

CDM Files for COBOL Programs and Copy Files

CDM (Common Data Model) files contain additional information about COBOL variables
(so-called data description entries). For each COBOL program A/B/C/prog.cbl in the system,
the Cataloger produces a CDM file named A/B/C/pob/prog.cbl .cdm to store information
about variables defined in the main source file. In addition, for each COBOL copy file
D/E/Tile.cpy which defines variables (as opposed to copy files containing Procedure Division
code, for instance), the Cataloger produces a CDM file named D/E/pob/Ffile.cpy.cdm to store
information about those variables; this CDM file is shared by all programs which include this
copy file.

In some circumstances, the information about a variable apparently defined in a copy file cannot
actually be shared by all programs which include this copy file; for instance, this is the case for
copy files included with REPLACING directives, or files defining only parts of a complete
structure (01-level record). In these cases, the CDM information is stored in the programs CDM
files rather than that of the copy file itself. When no shared CDM information at all can be
associated with the copy file, the CDM file is not produced.

The Cataloger Symtab and Other Miscellaneous Files

e $SYSROOT/symtab-$SYSNAME . pob: this file houses the symbol table created by the
Cataloger (during the analysis phase) and contains summary information for all the various
components in the asset. This information is used to compute cross-reference information
between these components.

e $SYSROOT/Cobol-dump-map . pob: contains information (so-called dump descriptors)
necessary to read and write Abstract Syntax Tree (AST) pobs for COBOL programs. Do
not delete this file or you will not be able to re-read your existing COBOL pobs.

® $SYSROOT/sql-system-$SYSNAME . pob,
$SYSROOT/sqgl-system-$SYSNAME-State-ments. pob: contains various internal forms of
the complete SQL schema of the asset, derived from the union of all DDL files
(SQL-Script files). These files are required for parsing (and linking) COBOL programs.

Detailed Processing
Processing Phases

As described in The Cataloger Process, the operation is logically divided into four phases:
parsing, analysis, post-analysis and report generation (see below for more details). Depending on

Oracle Tuxedo Application Rehosting Workbench Reference Guide 3-31

the needs of the project and the migration-platform configuration, these phases can be executed
sequentially or concurrently (parsing phase only), in a single run or incrementally.

Depending on the needs of the project and the migration-platform configuration, these phases can
be executed sequentially or concurrently (parsing phase only), in a single run or incrementally.
There are three basic Oracle Tuxedo Application Rehosting Workbench commands invoking the
Cataloger:

e preparse and its variant preparse-files: runs the parsing phase only.

This is the only phase which can be run concurrently, at least after the SQL-System files
have been generated. This is also the only phase for which you can request the processing
of one or more specific components; otherwise, the Cataloger determines itself which
components it must process (see Changes in the Asset: Incremental Operation). In this
phase, the Cataloger reads the component source files, any included sub-files and the
SQL-System files, and produces (only) the POB-files for the processed components.

e analyze: runs the analysis phase: for each component, the pob-file is re-read and the most
significant constructs in the component are translated into a smaller summary information
stored in the cataloger symbol table (symtab).

This phase cannot run in concurrent mode because the Symtab does not support concurrent
accesses. In this phase, the Cataloger reads the component POB files (parsing them on
demand if necessary) and updates (reads and writes) the Symtab file.

e fast-Final: runs both the post-analysis and report generation phases.

— Post-analysis: working with just the symtab and the summary information, the cataloger
computes some cross-reference links allowing to label each component as correct, unused or
missing.

— Report generation: the symtab decorated with cross-reference links is traversed and information
is printed out for each component.

There is no need to run this phase concurrently, especially since it performs a system-wide
operation. In this phase, the Cataloger reads the Symtab file (without trying to update it)
and writes the cataloging reports.

There is also a combined command:

e catalog: runs in sequence the analysis phase (and hence the parsing phase, on demand),
the post-analysis phase and the report generation phase.

Note: For all these commands, the whole configuration information comes from the system
description file and the Cataloger option file. Except for preparse-Fi les, the only

3-32 Oracle Tuxedo Application Rehosting Workbench Reference Guide

command-line arguments are the path to the system description file and standard Oracle
Tuxedo Application Rehosting Workbench tool arguments.

Command-line Syntax

The Oracle Tuxedo Application Rehosting Workbench Launcher

The Cataloger is designed to be run through the refine command. The refine command is the
generic Oracle Tuxedo Application Rehosting Workbench launcher that is used to launch the
major Oracle Tuxedo Application Rehosting Workbench tools. The launcher handles various
aspects of the operation of these tools, such as execution log management and the incremental
and repetitive operations described below (Repetitive and Incremental Operation). The Oracle
Tuxedo Application Rehosting Workbench launcher also handles a couple of generic
command-line options.

Synopsis
The general form used to invoke an Oracle Tuxedo Application Rehosting Workbench tool using
the command line is:

$REFINEDIR/refine command [launcher-options..] \
(-s | -system-desc-file) system-desc-path \

[command-specific-options-and-arguments..]

Options
The following options relate to the Rehosting Workbench command.

-h, -help, --help
Print out a short description (usage) of the command, and then exits.

—whoami
Prints out the version number and build history of the command, and then exits.

-archi64 / -archi32
Use the executable tool built for the specified architecture. The default is to use the tool
for the native architecture of the host machine.

-quiet
Do not print anything in the log except errors (this is currently not obeyed by all tools).

Oracle Tuxedo Application Rehosting Workbench Reference Guide 3-33

3-34

-time
Display timing information at the end of the command execution.

-nolog
Disable log redirection so that the log appears on the terminal and is not captured into a
permanent file.

-n, -N, -verbose, -VERBOSE
Prints out a description of which work (phase) needs to be performed on which
components but do not actually undertake the work see Changes in the Asset: Incremental

Operation.
The following option is technically not a launcher option, but it is accepted (and in fact
mandatory) in all of the Rehosting Workbench tools:

(-s | -system-desc-file) system-desc-path
Specifies the location of the System Description File. As usual for Unix/Linux commands,
the given path can be absolute or relative to the current working directory.

Note: Many other paths used by many of the Rehosting Workbench tools are then derived
from the location of this file; this makes it easy to run the same command from
different working directories.

In addition, the following option is reserved for future use (presently, it is accepted but otherwise
ignored):

(-v | -V | -version) version-string

Generic launcher options
Lastly, the launcher can be invoked without a command, using generic options:

SREFINEDIR/refine (-h | -help)
Prints out a short generic description (usage) of the launcher itself.

$REFINEDIR/refine -print-info-version
Prints out version information about the launcher itself, and more generally about the
whole of the Rehosting Workbench.

System-Wide Commands

As explained in Processing Phases, system-wide commands are preparse, analyze, fast-final and
catalog. They operate globally on the whole asset. The generic command-line syntax for all these
commands is:

Oracle Tuxedo Application Rehosting Workbench Reference Guide

$REFINEDIR/refine command [launcher-options..] \
-s | -system-desc-file) system-desc-path

There is no specific option for these commands: all configuration information is located in the
system description file, the Cataloger option file and possibly the hint files.

The preparse-files Command

Description

Unlike the system-wide cataloging commands described above, which operate globally on the
whole asset and decide by themselves which components to process, the preparse-files command
allows you to specify yourself which component or components to parse.

The fact that you can specify which components to process makes the preparse-files command
suitable for use in a makefile. In addition, it is amenable to concurrent execution, especially if
you partition the set of source files into several lists and give each list to a separate process.

Note: Before parsing any COBOL programs, the Cataloger ensures that the SQL-system POB
file is present and up-to-date with respect to all of the SQL DDL files. This may entail
building or rebuilding the POB file, which may take some time.

Synopsis

The command line for preparse-files is as follows:

$REFINEDIR/refine preparse-files [launcher-options..] \
(-s | -system-desc-file) system-desc-path \

(source-file-path | (-F | -File | -File-list-file) file-of-files
).

Options
The extra options indicate which component source files to process:
source-file-path
Adds to the work-list the component source file designated by this path. The path must be

given as relative to the root directory of the system, $SYSROOT, even if the current working
directory is different.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 3-35

(-f | file | file-list-file) file-of-files
Adds to the work-list the component source files listed in the file designated by this path.
The file-of-files itself may be located anywhere, and its path is either absolute or relative
to the current working directory. The component source files listed in this file, must
however be given relative to the root directory of the system.

You can provide as many individual components and or files-of-files as you wish. The
work-list is built when the command line is analyzed by the Cataloger, and each of its
elements is examined in turn:

« If the given path does not match any actual component source file in the system, an
error message is printed out and the Cataloger skips to the next element.

« If the component identified by the given path is already parsed and its POB file is
up-to-date with the source file, no action takes place, and the Cataloger silently skips
to the next element.

» Otherwise, the component is parsed normally (and verbosely, unless the -quiet
option is given in the launcher-options) and its POB file is produced.

Component Search Operation

3-36

This section describes how the Cataloger uses the libraries and sqgl-libraries clauses in the system
description file to locate the components referenced in a specific construct of the currently
processed component. The operation is slightly different depending on whether the reference is:

e As seen from the source platform
e A compile-time reference

e A run-time reference.

Compile-Time References

The compile-time case applies to references to sub-files which are an integral part of the current
component, so that, if the sub-file is not found, the component cannot be analyzed and
"understood" correctly. For example a COBOL copybook referenced from a COBOL main
(program) source file.

JCL sub-files referenced from a JCL job, such as PROC files, INCLUDE files and some SYSIN files
are also included because whereas on the MVS platform these sub-files are searched when the
JCL job is run, hence it is a run-time reference; on the migration platform, the Cataloger has to
resolve these references at parse-time, to make them available to the JCL translator, and hence

Oracle Tuxedo Application Rehosting Workbench Reference Guide

they qualify as compile-time references. Even SYSIN files are in this case, since they contain
information which is needed at parse time, such as the program invoked by some DB2 launcher.
In the Cataloger, "compile-time" is equivalent to parsing, and "run-time" is equivalent to
post-analysis.

The search starts with a component identified as SRCFIL of a certain type SRCTYP, that is located
in some directory SRCDIR and which references a component named TGTFIL of a certain type
TGTTYP. The following table describes the various possible combinations:

Table 3-14 Compile-Time References

Source type (SRCTYP) | Construct Target type (TGTTYP) Search path
COBOL program COPY TGTFIL COBOL copybook libraries
(CObOI-BatCh, COPY TGTFIL (COBOL-Copy,
Cobol-TPR, REPLACING ... COBOL-Library)
Cobol-Sub)
COBOL program EXEC SQL INCLUDE | COBOL copybook sgl-libraries,or
TGTFIL END-EXEC. libraries ifnot
specified
JCL job EXEC TGTFIL, ... JCL PROC libraries
(JCL-Select)
JCL job INCLUDE TGTFIL... JCL INCLUDE libraries
(JCL-Select)
JCL job SYSIN DD JCL SYSIN libraries
AB.TGTFIL... (JCL-Sysin)
SYSIN DD

AB.C(TGTFIL)...

Normal Sub-File Search
The search algorithm process is as follows:

1. For each directory SUBDIR listed in the libraries (or sqgl-libraries, if applicable)
clause associated with the definition of SRCDIR in the system description file, in order, locate
the definition of SUBDIR in the same file, then:

— If there is no such definition, complain (this is done once and for all when the Cataloger starts
and reads the system description file) and skip to the next element of the list.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 3-37

3-38

— If the type of SUBDIR is not the TGTTYP appropriate to the reference at hand, skip to the next
element of the list.

— Otherwise (type matches), search the list of component files in the directory (those which match
the files clause):

 If a component file with the base name TGTFIL (and some appropriate extension)
exists, return it.

» Otherwise, skip to the next element of the list.

2. When all library directories have been examined without finding an appropriate TGTFIL,
return “not found".

Strict JCL-Sysin Search

This algorithm is modified for searching JCL-Sysin files in presence of the
strict-jcl-libraries special option. When this option is set, the search for SYSIN file
A_B.TGTFIL or A_.B(TGTFIL) proceeds as follows:

o if there exists a directory of type JCL-Sysin with logical name “A.B”, then TGTFIL is
searched exactly in this directory (base name search, according to the files clause and the
physical extension); note that it is an error if two or more directories have the same logical
name;

e otherwise, return “not found”, even if a file with base name TGTFIL exists in another
JCL-Sysin directory.

This behavior implies that the libraries clause is ignored on directories of type JCL, at least
when it comes to searching JCL-Sysin files (it is still valid to search JCL-Select files). On the
other hand, as described above, if the strict-jcl-libraries special option is not set, the
logical-name clauses on JCL=Sysin directories are ignored.

It is suggested to use strict search rather than path-based search when there exist many cases of
duplicate names, i.e. many files with the same name in different libraries (PDS). In this case,
indeed, it is easier to transfer the whole contents of each SYSIN library in a separate directory,
and give the name of the library as the logical name of the directory, rather than try to order the
various JCL-Sysin directory names in the libraries clauses of the JCL directories to ensure that
the appropriate file is found at each reference.

Run-Time Reference

The run-time case applies to references to external components that are not really part of the
referencing component. The referencing component can be analyzed or translated even in the

Oracle Tuxedo Application Rehosting Workbench Reference Guide

absence of the referenced component — even though this absence will cause improper execution.
For example, a COBOL program calling a subprogram or a JCL job EXECuting a program. In
the Cataloger, such references are handled during the post-analysis phase.

The search starts with a component SRCFIL of a type SRCTYP located in a directory SRCDIR
referencing a name TGTFIL of a type TGTTYP. There are two cases to consider.

Unrestricted Search

This case applies when the libraries clause associated with directory SRCDIR does not contain
any element (directory) of the type TGTTYP. This can be considered as the "default case™. The
search algorithm is then:

1. Gather the (unordered) set of components of type TGTTYP, by searching the directories of this
type and analyzing the components they contain.

2. Record their (base) name.

3. Search this set for components of name TGTFIL:
— If there exists exactly one of them, link it with the reference.

— If there exists more than one of them, link all of them with the reference, but complain about
ambiguous references.

— If there are none, complain about the missing component.

Directed Search

Directed Search is similar to Normal Sub-File Search for compile-time references. It applies
when the libraries clause associated with directory SRCDIR contains one or more elements
(directories) of the type TGTTYP. The search algorithm is then.

1. For each directory SUBDIR listed in the Iibraries clause associated with the definition of
SRCDIR in the system description file, in order, locate the definition of SUBDIR in the same
file, then:

— If there is no such definition, complain (this is done once and for all when the Cataloger starts
and reads the system description file) and skip to the next element of the list.

— If the type of SUBDIR is not the TGTTYP appropriate to the reference at hand, skip to the next
element of the list.

— Otherwise (type matches), search the list of component files in the directory (those which match
the Files clause):

Oracle Tuxedo Application Rehosting Workbench Reference Guide 3-39

« |If a component file with the base name TGTFIL (and some appropriate extension)
exists, return it.

» Otherwise, skip to the next element of the list.

2. When all library directories have been examined without finding an appropriate TGTFIL,
return "not found".

It is clear that, with this algorithm, no “ambiguous reference” anomaly can occur, since there is
at most one file with a given base name in a given directory. This algorithm is hence well suited
to analyze systems which contain more than one component with the same name in different
directories (or libraries). However, it requires additional effort to set up, since care must be taken
to define the appropriate TGTTYP elements in the libraries clause in the appropriate order, for
each directory of the SRCTYP at hand.

For agiven TGTTYP of components to search, and for each appropriate SRCTYP, it is possible to
use directed search for some SRCTYP directory, and unrestricted search for another directory of
the same type. Indeed, duplicate component names cause trouble (anomalies) only when they are
actually referenced. However, we advise against such practices, which only makes things
confusing. For a given SRCTYP/TGTTYP combination, either use unrestricted search on all
source directories, or use directed search on all of them.

Note: Directed Search is not yet available in the current version of the cataloger; if you use the
libraries clause to point to components involved in run-time references, these
elements will be simply ignored. Directed Search will be added progressively for selected
SRCTYP/TGTTYP combinations in the forthcoming versions. Check the release notes.

Repetitive and Incremental Operation

3-40

Even with the powerful computing platforms easily available nowadays, processing a complete
asset using the Rehosting Workbench remains a computing-intensive, long-running,
memory-consuming task.

Oracle Tuxedo Application Rehosting Workbench tools are therefore designed to be easily
stopped and restarted. The tools use a make-like mechanism to avoid repeating any work which
has already been done. This allows efficient operation in all phases of a migration project.

Initial Processing: Repetitive Operation

In the initial phase, when starting with a completely fresh asset and up to the end of the first
conversion-translation-generation cycle of a stable asset, the make-like mechanism is used to
allow repetitive operation, as follows:

Oracle Tuxedo Application Rehosting Workbench Reference Guide

1. When atool such as the Cataloger starts, it begins with studying the current state of the asset
(source files and target files such as the POB files or the Symtab) and determining what work
remains to do to reach a complete and consistent set of results.

2. The tool then undertakes this work, producing more and more result files (or updating the
Symtab with new results).

As the volume of processed files grows, the Refine process consumes more and more
memory.

3. Regularly, the tool checks whether the available physical memory drops below the threshold
set by the minimum-free-ram-percent option in the system description file.

— If the work to be performed is complete before running our of memory, the process definitely
stops.

— Otherwise, the process stops but restarts immediately, after memory is freed. Going back to step
1 above, there is less work to do, so that the process eventually terminates.
This mode is particularly well suited for tools or commands which operate globally on the whole
asset, such as the analyze or catalog commands of the Cataloger. This is the normal mode of
operation for the Rehosting Workbench tools and there is nothing specific to choose it.

Changes in the Asset: Incremental Operation

The Cataloger knows the dependencies between the various components and associated result
files. For instance, it records which copy files are used in which COBOL programs. Using this
information, it is able to react incrementally when some change occurs in the asset. For example,
when a component source file is added, modified or removed: the Cataloger determines which
result files are affected by this change and re-computes only those files. Again, this is the normal
mode of operation for the Rehosting Workbench tools and there is nothing specific to choose it.

Note: Important: Incremental operation is enabled only after the initial processing of the asset
is complete. If you perform changes in the asset before the end of the initial cycle, some
dependencies may not yet be recorded, in which case the evaluation of the work to re-do
will be incorrect and the final results will be inconsistent. It is therefore very important
that you let the Cataloger run to completion on the initial asset before you make any
change in the asset.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 3-41

3-42 Oracle Tuxedo Application Rehosting Workbench Reference Guide

DB2-to-0Oracle Convertor

This chapter describes the DB2 objects that are migrated from the source platform (z/OS) and the
migration tools that are generated. The conversion is performed in the context of other
components translated or generated by the other Oracle Tuxedo Application Rehosting
Workbench tools.

The Oracle Tuxedo Application Rehosting Workbench DB2-to-Oracle Convertor uses as a
starting-point a coherent set of DB2 objects called a schema, see Oracle Tuxedo Application
Rehosting Workbench Schema. Several configuration files need to be set, see Description of the
Configuration Files, before launching the conversion process.

The different objects generated are described in Description of the Output Files.

Overview of the DB2-to-0racle Convertor

Purpose

The purpose of this section is to describe precisely all the features of the Rehosting Workbench
DB2-to-Oracle Convertor tools including:

e Inventory of DB2 objects migrated.

e Detailed description of converted Oracle objects on the target platform for each DB2
object.

e Description of the different commands to be used with the DB2-to-Oracle Convertor.

e Description of the data unloading options on the source platform.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-1

42

e Description of the data loading options on the target platform.

Structure

e Description of the Input Components including Description of the Configuration Files.
e Description of the Output Files including the Generated Objects.
e Detailed Processing including the Command-line Syntax.

e For messages, see DB2-to-Oracle Converter Messages.

See Also

The conversion of data is closely linked to the conversion of COBOL programs, see:

e COBOL Converter

Oracle Tuxedo Application Rehosting Workbench Schema

For the Rehosting Workbench, a schema should consist of a coherent set of objects (for example
there should be no CREATE INDEX for a table that does not exist in the schema).

By default, if the SQL commands of the DB2 DDL are prefixed by a qualifier or an authorization
ID, the prefix is used by the Rehosting Workbench as the name of the schema, for example,
CREATE TABLE <qualifier or authorization ID>._table name.

The schema name can also be determined by the Rehosting Workbench using the global-options
clause of the System Description File.

For example:

Listing 4-1 Schema Name Example

system STDB20ORA root "
global-options
catalog=""..",

sql-schema=<schema name>.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Another possibility is to implement this option for each directory where it is necessary, an option
that is useful when several schemas are used.

Example:

directory "BATCH"™ type Cobol-Batch files "*.cbl" libraries "COPY". %,
"INCLUDE" options sqgl-schema=<"schema name"'>.

Environment Variables

Before starting the process of migrating data two environment variables should be set:

e export TMPPROJECT=/$HOME/tmp
Indicates the location to store temporary objects generated by the process.
o export PARAM=/$HOME/param

Indicates the location where the configuration files required by the process are stored.

Description of the Input Components
File Locations

Location of rdbms.sh
The rdbms.sh tool is located in the directory:

$REFINEDIR/convert-data/

Location of db-param.cfg File
The db-param.cfg configuration file is located in the directory given in the variable:

$PARAM

DB2 DDL Converted

Table 4-1 lists the DB2 objects that are migrated to Oracle.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-3

Table 4-1 DB2 Objects to Convert

Object Type File name Remark
TABLE TABLE- One file per Table. The file contains table
<target_table_name>.sql construction, with column name, data type and
attribute(s).
Constraints, except NULL/NOT NULL
attributes, are not written in this file.

INDEX INDEX- This file contains all indexes associated with

<target_table_name>.sql the table <target_table_name>. This file
will not be generated if there were no indexes
defined on the table
<target_table_name>
Indexes are: unique or not unique constraint.

CONSTRAINT CONSTRAINT- This file contains all constraints associated

<target_table_name>.sql Withthe table <target_table_name>.

N N This file will not be generated if there were no
constraints defined on the table
<target_table_name>
Constraints are: Primary Key, Unique, Check
and Foreign key.

COMMENT COMMENT - Contains all comments for table and columns.

<target_table_name>.sql One file per table.

VIEW VIEW-<shema_name>.sql This file contains all Views created in the
source database/schema. The Select statements
are automatically converted into the target
database language.

SEQUENCE SEQUENCE-<shema_name>_sq For sequence already created on the source

| database.
SYNONYM SYNONYMS-<shema_name>.sq
|
IDENTITY IDENTITY- In case of IDENTITY, when migrating from

<target_table_name>.sql

DB2 to ORACLE the Rehosting Workbench
creates a Sequence and Trigger objects.

4-4 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Conversion of DB2 Data Types

Table 4-2 shows all DB2 data types and their conversion to the Oracle database target.

Tahle 4-2 DB2 to Oracle Data Type Conversion

DB2 z/0S Datatype Oracle Format Notes

CHAR CHAR CHAR without length becomes

CHAR(length) CHAR(1)

VARCHAR(length VARCHAR2 (length)

)

DECIMAL(..) NUMBER(...) If no precision, DECIMAL becomes
NUMBER(5)

NUMERIC(...) NUMBER(...) If no precision, NUMERIC becomes
NUMBER(5)

DEC(...) NUMBER(...) If no precision, DEC becomes
NUMBER(5)

SMALLINT NUMBER(5)

INTEGER NUMBER(10)

TIMESTAMP TIMESTAMP

TIMESTMP TIMESTAMP

DATE DATE

TIME DATE

DOUBLE BINARY_DOUBLE

FLOAT(prec) BINARY_DOUBLE

REAL BINARY_DOUBLE

CLOB(prec) CLOB

BLOB(prec) BLOB

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-5

Note: ROWID data type is not converted. In most cases, ROWID column is only created for LOB
data type compliance. If the customer application uses a ROWID column implicitly, you
need to manually adapt the generated TABLE-<table_name>.sql file.

DB2 Column Property Conversion
Table 4-3 shows all DB2 column properties and their conversion to the Oracle database target.

Table 4-3 DB2 Column Property Conversion

DB2 Column Property Oracle Format Notes

WITH DEFAULT DEFAULT <value> <value> depends on DB2 z/OS data
type.

WITH DEFAULT”” CHAR:.. DEFAULT = * A zero byte length in DB2 becomes

(with nothing VARCHAR2 .. DEFAULT = = NULL flag on Oracle

between quotes)

WITH DEFAULT DEFAULT “"<value>*"

"<value>~

NOT NULL NOT NULL

IDENTITY Create a Sequence Because the IDENTITY attribute does

Create a Trigger not exist on Oracle, the Rehosting

Workbench replaces the attribute with
Sequence and Trigger objects.

FOR SBCS .. Attribute ignored

Description of the Configuration Files

This section lists the files and their parameters that can be used to control the migration of a DB2
database to an Oracle database.

POB Files

These files are created during cataloging, for further information see POB Files for ASTs.

DB2 DDL POB File
A POB file is created for each DB2 DDL source file.

4-6 Oracle Tuxedo Application Rehosting Workbench Reference Guide

For example the SQODCSFO.dd1 file contains the source of different DB2 objects. A
SQODCSFO-ddl -pob file is created in the $SOURCE/DDL/pobest directory.

Symtab File

symtab-<schema name>_pob

This file is created during cataloging, it must be up-to-date and present so that DB2-to-Oracle
Convertor can migrate DB2 objects to Oracle. See The Cataloger Symtab and Other
Miscellaneous Files.

sql-system File
sql-system-<project name>._pob

This file is created during cataloging, it must be up-to-date and present so that DB2-to-Oracle
Convertor can migrate DB2 objects to Oracle. See The Cataloger Symtab and Other
Miscellaneous Files.

sql-system-<project name>-Statements.pob

This file is created during cataloging, it must be up-to-date and present so that DB2-to-Oracle
Convertor can migrate DB2 objects to Oracle. See The Cataloger Symtab and Other
Miscellaneous Files.

system.desc

In addition to the parameters concerning schema, one other parameter should be set in the System
Description File.

DBMS-VERSION="8".
Indicates the version of the RDBMS to migrate.

db-param.cfg
This file should be created in the directory indicated by the $PARAM variable:

$PARAM/db-param.cfg

Listing 4-2 db-param.cfg Template

#

This configuration file is used by FILE & RDBMS converter

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-1

Lines beginning by "#" are ignored
write information in lower case

#

common parameters for FILE and RDBMS
#

source information is written into system descriptor file (DBMS=,
DBMS-VERSI0ON=)

target_rdbms_name:<target_rdbms_name>
target_rdbms_version:<target_rdbms_version>
target_os:<target_os>

optional parameter

target_cobol :<target_cobol>

#

specific parameters for RDBMS conversion
rdbms:date_format:<date_ format>
rdbms:timestamp_format:<timestamp_format>
rdbms:time_format:<time_format>

rdbms: indexsort:<index_sort>

rdbms: indexlang:<index_lang>

rdbms: lobs_fname_length:<lobs_fname_length>
rdbms:jcl_unload_lob_file_system:<jcl_unload_lob_file_system>
rdbms:jcl_unload_utility_name:<jcl_unload_utility_name>
rdbms:jcl_unload_format_file:<jcl_unload_format_file>

rename object files

the file param/rdbms/rename-objects-<schema>.txt is automatically loaded
by the tool if it exists.

4-8 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Parameters and Syntaxes

Table 4-4 db-param-cfg Parameters

Parameter Description Value

General Parameters

<target_rdbms_name> Name of target RDBMS oracle

<target_rdbms_version> Version of target RDBMS 11

<target_os> Name of target operating unix or linux
system

Optional Parameter

<target_cobol> Not applied to RDBMS
conversion

Parameters concerning the migration of dates, timestamps, and times

<date_format> Date (in the format expected
by Oracle)
<time_stamp_format> Timestamp (in the format

expected by Oracle)

<time_format> Time (in the format expected
by Oracle)

Optional Index and Sort parameters used in specific cases

<index_sort> Sorts values in a different EBCDIC, ...

order.
<index_lang> FRENCH, ...
—'ang Not used in most cases (Oracle CH,

uses BINARY sort by default)

Optional LOB parameters used when migrating CLOB or BLOB data types

<lobs_fname_length> Length of the file name created 40, 200, ...
by the unloading utility for
each CLOB or BLOB column

<jcl_unload_lob_file_system> Dataset type used to write pds (Default)
CLOB or BLOB data files hfs

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-9

Table 4-4 db-param-cfg Parameters

Parameter Description Value

Optional MVS utility parameters used when migrating CLOB or BLOB data types or needing to
change the utility

<jcl_unload_utility_name> DB2/MVS utility name used dsntiaul (Default)
to download the DB2 tables dsnutilb
dsnuproc
<jcl_unload_format_file> Format of the file content binary (Default)
created by the DB2 utility. osv

The value “csv” can be used
only when:
— <jcl_unload utili
ty_name> is set to
“dsnuproc”

— all data columns are

(1711

separated by “;

— all numerical values
are written in
extended format

Note: If your DB2 data is encoded by the multiple byte character set (MBCS), you should choose
“csv” as the unload file format and “dsnuproc” as the unload utility.

Date, Time Parameters

These three parameters indicate the date, timestamp and time formats used by z/OS DB2 and
stored in DSNZPARM. These parameters impact the reloading operations and the COBOL date
and time manipulations.

These parameters are optional and only necessary if the DB2 database contains the DATE, TIME
or TIMESTAMP fields. These parameters should be supplied respecting the Oracle formats.

If these parameters are supplied, the UNIX/Linux variables:

e NLS_DATE_FORMAT,
o NLS_TIMESTAMP_FORMAT,

e NLS_TIME_FORMAT,

4-10 Oracle Tuxedo Application Rehosting Workbench Reference Guide

should be set according to the instructions in the ORACLE documentation.

WARNING: A correct setting of these parameters is essential.

Index, Sort Parameters
These parameters are optional and are only necessary if the sort order in certain columns must be
kept and is maintained in applications by use of an index. They are therefore to be implemented
only to maintain the ISO functionality of applications between the source and target platforms.
For these parameters the values can be:

<index_sort> EBCDIC, FRENCH, ..

<index_lang> FR, UK, ..

When these parameters are used, the SQL CREATE INDEX scripts are generated as shown in
the example below where the value of the index parameter is French:

Listing 4-3 SQL CREATE INDEX Script Using Index Parameter

WHENEVER SQLERROR CONTINUE;

DROP INDEX MYDB.TAB1_I1DX;

WHENEVER SQLERROR EXIT 3;

CREATE INDEX MYDB.TAB1_IDX ON MYDB.TAB1

(
nlssort(MYCOL11, "nls_sort=FRENCH") ASC

The variables:
e NLS_SORT,
e NLS_COMP,
e NLS_LANG

should be harmonized with the values implemented for these two parameters. See the Oracle
documentation: Oracle Database Globalization Support Guide.

By default, the tools generated by the DB2 to Oracle migration expect NLS_SORT in binary.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 41

4-12

WARNING: A correct setting of these parameters is essential.

MVS Utility Parameters

These parameters are optional and only necessary if the DB2 schema contains CLOB or BLOB
data types or you need to change the DB2 utility.

For these parameters the values can be:

<jcl_unload_utility_name> dsntiaul (default), dsnutilb, dsnuproc
<jcl_unload_format_file> binary (default), csv
Where:

<jcl_unload_utility_name>
Defines the name of the DB2 utility to use. This parameter has the following constraints:

 If a DB2 table contains CLOB or BLOB data types, you can only use the dsnutilb
utility.

 If a DB2 table contains MBCS data type, you can only use the dsnuproc utility.

e The dsnuproc utility does not accept CLOB, BLOB, REAL, FLOAT, and DOUBLE data
types when <jcl_unload_format_file> is set to binary or not be presented.

e The dsnuproc utility does not accept CLOB and BLOB data types when
<jcl_unload_format_file> is set to csv.

<jcl_unload_format_file>
Defines the format of the file created by the DB2 utility.
The csv value can only be used with dsnuproc DB2 utility. The file format is like a CSV
file with the “;” character separator. The file created by the DB2 utility must be transferred
in text mode, that is, the transfer protocol should transcode the file in ASCII codeset.
The binary value for <jcl_unload_format_file> (or without this optional parameter)
needs the file to be transferred in image or binary mode.

WARNING: Do not use csv value if the transfer protocol does not properly convert all
COBOL characters and all characters from EBCDIC to ASCI|I.

LOBS Parameters

These parameters are optional and only necessary if the DB2 schema contains CLOB or BLOB
data types.

Note: DBZ2 unloading utility downloads each row of CLOB columns or BLOB columns in a
separate file (PDS or HFS dataset type).

Oracle Tuxedo Application Rehosting Workbench Reference Guide

DB2 unloading utility downloads the data of all columns (except for CLOB or BLOB
columns wich are replaced by the file name of the CLOB or BLOB separated file) and
NULL technical flags into an unique MVS member file.

The value of <jcl_unload_utility_name> must be “dsnutilb”.
For these parameters the values can be:
<lobs_fname_length> 40, 120
<jcl_unload_lob_file_system> pds, hfs
Where:
<lobs_fname_length>
When downloading a table with CLOB or BLOB columns, each row of this column is
written in a separate file which name is written into the current unloading file. The value

of this parameter depends on the following dataset types (see Unloading JCL.:
DSNUTILB):

PDS: filename format is:
<data>.<schema_name>.<table_name>_<column_name6digit>(<file_name>)

HFS: filename format is:

/<datahfs>/<schema_name>/<table_name>/<column_name6digit>/<file_name
>

Where:
e <data>: access paths to output files. The string <data> is hardcoded in the JCL
e <schema_name>: schema name
e <table_name>: table name

e <column_name6digit>: column name reduced to 6 characters with a digit suffix
(1 for the first LOBS column of the table, 2 for the second, and so forth)

e <File_name>: 8 length of member name or file name automatically generated by
the DB2 utility.

You need to calculate the maximal length of this string, including parenthesis and slash
characters.

<jcl_unload_lob_file_system>
Defines the dataset type for downloading CLOB or BLOB columns.
Default value is PDS. Depending on the MVS system configuration, some files may not
allowed by a PDS dataset type. In that case, you need to choose another dataset type.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-13

4-14

Note: This option is used only for CLOB and BLOB columns. Log files, SysPunch files, and
Table data files are written in PDS dataset type.

File Modifying Generated Components

The generated components may be modified using a project's own scripts. These scripts (sed,
awk, perl,...) should be placed in:

$PARAM/ rdbms/rdbms-modif-source.sh

When present, this file will be automatically executed at the end of the generation process. It will
be called using the <schema name> as an argument.

Renaming File

Oracle Tuxedo Application Rehosting Workbench permits the modification of the different
names in the DDL source file (table name, column name).

Renaming rules can be implemented for the following cases:
e When Oracle reserved words are found in the DB2 DDL source file.

e When there is a desire to perform a reengineering of the DDL source file.

Note: If, when executing the Rehosting Workbench, an Oracle reserved word is found in the
DDL source, an error is reported and the Rehosting Workbench continues the analysis of
the DDL.

Renaming rules should be placed in a file named: rename-objects-<schema name>.txt.
This file should be placed in the directory indicated by the $PARAM/ rdbms variable.

Renaming rules have the following format:

table
table;<schema name>;<DB2 table name>;<Oracle table name>

column
column;<schema name>;<DB2 table name>;<DB2 column name>;<Oracle column
name>

Note: To apply the modifications to all schema names and/or all table names, place a *
in the position of <schema name> and/or <DB2 table name>. See the second
example below.

Comments can be added in the form of: % Text.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Listing 4-4 Renaming File Example

% Modification applied to the AUALPHOT table
column; AUANPROU ; AUALPHOT ; NUM_ALPHA ; MW_NUM_ALPHA

column; AUANPROU;*;ASC;ASC-1

rdbms-template.txt

This file is placed during the installation of the Rehosting Workbench, it contains the templates

that perform the generation of the different migration tools. The file is located in:

$REFINEDIR/convert-data/defaul t/rdbms/rdbms-templates.txt

Listing 4-5 rdbms-template.txt

% Unloading all TABLE ****dddkkkkddiktddk
#VAR:TEMPLATES#/unloading/jcl-unload-DB2-choice.pgm
%

% Loading TABLE ***x*dddbddddkhddddhdtddk
#VAR:TEMPLATES#/1oading/cobol-reload-ORACLE-choice.pgm
#VAR:TEMPLATES#/1oading/ksh-reload-ORACLE-choice.pgm
#VAR:TEMPLATES#/1oading/rdbms-reload-tables-txt.pgm
%

% included file to include into modified-components
#VAR:TEMPLATES#/ include-modified-components.pgm

%

et et e e ke e ke e e e ke e ke e ke e e e ek

% MANDATORY: used when using -r argument
#VAR:TEMPLATES#/remove-schema-name-ksh.pgm

% MANDATORY: used when using -1 argument

Oracle Tuxedo Application Rehosting Workbench Reference Guide

4-15

4-16

#VAR:DEFAULT#/rdbms-move-assignation.pgm
% MANDATORY: used when checking warning

#VAR: TEMPLATES#/check-warning.pgm

%

When required, another version of the rdoms-template . txt file can be placed in the
$PARAM/rdbms directory. The use of an alternative file is signaled during the execution of
rdbms.sh by the message:

Listing 4-6 Execution Log with Alternative Template File

HHHHH AR AR R R R R R R R R R
Control of templates
OK: Use Templates list file from current project:
File name is /home2/wkb9/param/rdbms/rdbms-templates.txt

HHHH B HH R R R R R H R R R R R R

rdbms_move_assignation.txt

This file is placed during the installation of the Rehosting Workbench, it controls the transfer of
components generated in the different installation directories. This file indicates the location of
each component to copy during the installation phase of rdbms.sh, when launched using
rdbms.sh -i.

The file is located in:

$REFINEDIR/convert-data/defaul t/rdbms/rdbms-move-assignation.pgm
This file can be modified following the instructions found at the beginning of the file:

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Listing 4-7 rdbms_move_assignation.txt Modification Instructions

L-1

*@ (c) Metaware:file-move-assignation.pgm. $Revision: 1.2 $
*release_format=2.4

*

* format is:

* <typ>:<source_directory>:<file_name>:<target_directory>

* typ:

* 0: optional copy: if the <file_name> is missing, it is ignored

* M: Mandatory copy: abort if <file_name> is missing.

* E: Execution: execute the mandatory script <file_name>.

* Parameters for script to be executed are:

* basedir: directory of REFINEDIR/convert-data

* targetoutputdir: value of "-i <targetdir>"

* schema: schema name

* target_dir: value written as 4th parameter in this file.

* d: use this tag to display the word which follows

* source_directory:

* T: generated components written in <targetdir>/Templates/<schema>

* 0: components written in <targetdir>/outputs/<schema>

* S: SQL requests (DDL) generated into <targetdir>/SQL/<schema> directory

* F: fixed components present in REFINEDIR

* s: used with -s arguments: indicates the target directory for DML
utilities
* (in REFINEDIR/modified-components/) which manipulate all schemas.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-11

* file_name: (except for typ:d)

* name of the file in <source_directory>

* target_directory: (except for typ:d, given at 4th argument for typ:E)
* name of the target directory

* IT the 1st character is "'/', component is copied using static directory
and not In <td> directory

* IT the 1st character is "!', target directory contains both directory
* and target file name*
L1

Description of the Output Files
File Locations

Location of Temporary Files

The temporary objects generated by the Rehosting Workbench DB2-to-Oracle Convertor are
stored in:

$TMPPROJECT
$TMPPROJECT/Template/<schema name>
$TMPPROJECT/outputs/<schema name>

Locations of Log Files
The execution log files are stored in:

e Log generated by the option -c or -C:

$TMPPROJECT/outputs/<schema name> rdbms-converter-<schema name>.log

e Log generated by the option -g:
$TMPPROJECT/outputs mapper-log-<schema name>

4-18 Oracle Tuxedo Application Rehosting Workbench Reference Guide

The $TMPPROJECT variable is set in $HOME/tmp.

Locations of Warning Files
The warning files generated by the Rehosting Workbench DB2-to-Oracle Convertor when it
encounters unsupported features are stored in:
e \Warnings generated by the option -c or -C:
$TMPPROJECT/outputs/<schema name>/unsupported-<schema name>.log
Displayed message is:

WARNING: some unsupported db2 objects have been discarded by this
tool.

Check file <file_name> to see a detail of those objects.

The DB2-to-Oracle Convertor has discarded the object and all associated objects. For
instance, if a DB2 table has a VARBINARY column, the tool does not generate
TABLE-<table_name>.sql, INDEX-<able name>.sql, VIEW-<view_name>.sql,
etc.

e Warnings generated by the option -g:
$TMPPROJECT/Template/<schema name>/check-warning-<schema name>.log
Displayed message is:

WARNING: some generated components have to be discarded because they
use unsupported features.

Check file <file_name> to see a detail of those objects.

The DB2-to-Oracle Convertor has generated all components. You have to ignore or adapt
the generated components listed in the warning files. For instance, if a DB2 table has a
FLOAT column and you set the dsnuproc DB2 utility in the db-param.cfg, the tool
displays that some components associated to this DB2 object have to be discarded. This
behavior allows the generation of all components even if some objects cannot be correctly
generated.

The warning file contains two sections:
e List of unsupported objects or any bad options.

e List of objects discarded by the tool or list of generated components to be discarded.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-19

Listing 4-8 Warning File Unsupported-<schema name>.log

Rdbms-converter. Rev: 9.10.1. 2011/XX/XX XX:XX:xX. 2011/03/31 10:40:47.

UNSUPPORTED RDBMS Objects

TABLE BADTABL;COLUMN L_INVOER_VARBINARY ;unsupported datatype VARBINARY

DISCARDED RDBMS Objects
TABLE BADTAB1 is discarded
INDEX UCVXLINO1IGN is discarded

Listing 4-9 Check-Warning-<schema name>.log

%%@ (C) Metaware:check-warning.pgm. $Revision: 1.x $

%%12/05/2011 14:48

CHECK UNLOADING UTILITY AND PARAMETERS ====

TABLE UCVT_L_INVOER;COLUMN L_INVOER_LOT;CLOB is not supported by "dsnuproc*
utility. Used JCL_UNLOAD_ FORMAT_FILE="dsnutilb® in db-param.cfg

DISCARDED GENERATED COMPONENTS ==============

UCVTXLXI .jclunload has to be discarded

loadrdbms-UCVT-L-INVOER has to be discarded

Written lines stored in warning files are based on the following rules:

4-20 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Table 4-5 Written Lines Format

Warning Types Description

Unsupported datatype Some data types are not supported (see DB2 to Oracle
Data Type Conversion)
The written lines format is:

TABLE <table_name>;COLUMN
<column_name>;unsupported datatype
<datatype>

Unsupported object type Some objects are not supported (see DB2 Objects to
Convert)

The written lines format is:
<object_type>
<object_name>;unsupported object
Sample:

GLOBAL TEMPORARY TABLE
EMP;unsupported object

TABLESPACE STEB0163;unsupported

object
Unsupported option in a table Partition table is not supported.The target table is
object generated without this option.

The written lines format is:

TABLE <table_name>;OPTION PARTITION
BY;option ignored

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4

Table 4-5 Written Lines Format

Warning Types Description

Option set in db-param.cfg is not Components listed in the warning files don’t run

compatible with some data types correctly in MVS or/and in target platform. These
components cannot be used such as there. You can
ignore these files or adapt them.

The written lines format is:

e TABLE <table_name>;COLUMN
<column_name>;<datatype> is not
supported by
"<jcl_unload_utility_name>"
utility. Used
JCL_UNLOAD_FORMAT_FILE="dsnutilb*”
in db-param.cfg

e TABLE <table_name>;COLUMN
<column_name>;<datatype> is not
supported when
JCL_UNLOAD_UTILITY_NAME =
"dsnuproc® (see db-param.cfg)

e TABLE <table_name>;COLUMN
<column_name>;<datatype> is not
supported when
JCL_UNLOAD_UTILITY_NAME =
“dsnuproc® and
JCL_UNLOAD_FORMAT_FILE = “binary”
(see db-param.cfg)

Location of Generated Files

The unloading and loading components generated with the -i $HOME/trT option are placed in
the following locations:

4-22 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Table 4-6 Component Locations

Location

Contents

$HOME/trf/unload/rdbms/<schema
name>

The JCL used for each unloading table are generated
for each <schema name>.

These JCL are named:
<table name_8>_jclunload

$HOME/trf/SQL/rdbms/<schema name>

Location by <schema name> of the SQL scripts
used to create the Oracle objects.

The names of these scripts are described in Table 4-1.

$HOME/trf/reload/rdbms/<schema
name>/src

Location by <schema name> of the COBOL
transcoding programs.

These programs are named:

MOD_<target table name>.cbl
CLOB_<table name>_<column_name>.cbl
Note: These programs can be absent depending on

the value of
<jcl_unload_format_file>.

$HOME/trf/reload/rdbms/<schema
name>/ctl

Location by <schema name> of the CTL files used
by SQL*LOADER.

These files are named:
<target table name>.ctl

$HOME/trf/reload/rdbms/<schema
name>/ksh

Location by <schema name> of the reloading Korn
shell scripts.

These scripts are named:
loadrdbms-<target table name>_ksh

Notes: <table name_8> If the table name is shorter or longer than eight characters, the
Rehosting Workbench DB2-to-Oracle Convertor attributes an eight-character name to
the z/OS JCL as close as possible to the original. The renaming process maintains the

uniqueness of each table name.

<target table name> Is the table name in the Oracle database.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

4-23

4-24

Generated Objects

The following sections describe the objects generated during the migration from a DB2 to Oracle
database and the directories in which they are placed.

Temporary Files

These files are automatically generated during the first step of the Rehosting Workbench
DB2-to-Oracle Convertor for use in the second step.

Datamap File

This is a configuration file generated and used by the Rehosting Workbench containing the list
of tables to be migrated. If a table name is missing in the Datamap file, but present in the mapper
file, it will be ignored during the execution of the Rehosting Workbench.

This file is generated using the -c or -C options of the rdbms._sh command.

File Name
The Datamap file is created with this complete name:

<-target-directory parameter>/outputs/<schema name>/Datamap-<schema
name>.re

Parameters and syntaxes used:

Table 4-7 Datamap File Name Parameters

Parameter Value

<-target-directory Value of the parameter -target-directory: $HOME/tmp
paramete r>

<schema name> Name of the current schema.

Syntax and Parameters

Listing 4-10 Datamap File

%% Rdbms-converter. Rev: <revision>. <compilationDate>.
<BeginGeneratedDate>

Oracle Tuxedo Application Rehosting Workbench Reference Guide

%% tables generation only
data map <schema name>-map system cat::<PROJECT_NAME>
file <schema name>.<source_table_ name>

organization sequential

Table 4-8 Datamap File Parameters

Parameter Value
%% Comment ignored by the Rehosting Workbench.
<revision> Oracle Tuxedo Application Rehosting Workbench

revision number.

<compilation_date> Oracle Tuxedo Application Rehosting Workbench
compilation date.

<BeginGeneratedDate> Date and time of the execution.
<schema name> Name of the current schema
<PROJECT_NAME> Project name as described into System Description File.
<source_table_name> Table name on the source database.
Mapper File

This is a configuration file used by the Rehosting Workbench DB2-to-Oracle Convertor in the
second step.

It contains all information about tables and re-engineering processes like object renaming.

The file is generated by rdbms.sh using the -c or -C options.

File Name
The Mapper file is created with this complete name:

$TMPPROJECT/outputs/<schema>/mapper-<schema name>.re

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-25

4-26

Table 4-9 Mapper file Name Parameters

Parameter Value

<schema name> Name of the current schema.

Generation Sample
For the following DB2 DDL.:

CREATE TABLE ARTL (
REF_ART CHAR(19) NOT NULL,
REF_ART_REMPL VARCHAR(400),
REGR_PEREMT CHAR(1),
DUREE_VALID DATE NOT NULL,

LONG_ART INTEGER
) L[]

The Mapper file generated by DB2-to-Oracle Convertor is:

Listing 4-11 Mapper File Example

%% Rdbms-converter. Rev: 1.4. 20090101 13:25. 20091010 11:25

%% tables generation only

ufas mapper GM

file GM.ART1 transferred converted
table name GM-ART1
map record TAB-ART1 defined in "#VAR:RECS_SOURCE#/GM/ART1.cpy"
source record TAB-ART1 in "#VAR:RECS_SOURCE#/GM/ART1.cpy"
logical name ART1

include "#VAR:RECS_SOURCE#/GM/ART1.cpy"

Oracle Tuxedo Application Rehosting Workbench Reference Guide

strategies

field
,Field
,Field
,Field
,Field
,Field
,Field
,Field

REF-ART
REF-ART-REMP
REF-ART-REMP-LEN
REF-ART-REMP-IND
REGR-PEREMT
REGR-PEREMT-IND
DUREE-VALID

LONG-ART

attributes
attributes
attributes
attributes
attributes
attributes
attributes

attributes

NULL_DISALLOWED DATATYPE_CHAR
NULL_ALLOWED DATATYPE_VARCHAR
TECHNICAL_FIELD_VARCHAR
TECHNICAL_FIELD_NULL

NULL_ALLOWED DATATYPE_CHAR
TECHNICAL_FIELD_NULL
NULL_DISALLOWED DATATYPE_DATE
NULL_DISALLOWED DATATYPE_NUMERIC

In this example #VAR :RECS : SOURCE# indicates $TMPPROJECT/outputs/schema.

Syntax and Parameters

Listing 4-12 Mapper File

%% Rdbms-converter. Rev: <revision>. <compilationDate>.
<BeginGeneratedDate>

%% tables generation only

ufas mapper <schema name>

For each table ..

file <schema name>.<source_table_name> transferred converted

table name <target_table_name>

include "#VAR:RECS_SOURCE#/<schema>/<source_table_name>.cpy"

map record TAB-<source_table_name>

defined In "#VAR:RECS_SOURCE#/<schema>/<source_table_name>._cpy"

source record TAB-<source_table name>.

in "#VAR:RECS_SOURCE#/<schema>/<source_table_name>..cpy"

Oracle Tuxedo Application Rehosting Workbench Reference Guide

4-21

logical name <table_name_8>
For each column of the table
[I.]field <target_column_name>
attributes [NULL_ALLOWED|NULL_DISALLOWED]
[DATATYPE_VARCHAR|DATATYPE_CHAR]|
DATATYPE_DECIMAL | DATATYPE_SMALLINT | DATATYPE_INTEGER
DATATYPE_DOUBLE | DATATYPE_FLOAT | DATATYPE_REAL |
DATATYPE_NUMERIC]
DATATYPE_DATE | DATATYPE_TIME | DATATYPE_TIMESTAMP
DATATYPE_CLOB | DATATYPE_BLOB | DATATYPE_ROWID
1
optional: for each technical field written in the copy file
[,field <target _column_name>-IND attributes TECHNICAL_FIELD_NULL 1
[,field <target_column_name>-LEN attributes TECHNICAL_FIELD_VARCHAR]
[,field <target_column_name>-CLOB attributes TECHNICAL_FIELD CLOB]

[,field <target_column_name>-BLOB attributes TECHNICAL_FIELD BLOB]

Each file directive is used to describe a table, each field directive describes a column of the table
(the field directives <target_column_name>-IND and field <target_column_name>-LEN
are optionally used to modify certain options in the technical fields added to the unloaded file by
DB2 unloading utility (see MVS Utility Parameters).

Table 4-10 lists the field directives.

Tahle 4-10 Field Directive Parameters

Parameter Value
%% Comment ignored by the Rehosting Workbench.
<revision> Oracle Tuxedo Application Rehosting Workbench

revision number.

4-28 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Tahle 4-10 Field Directive Parameters

Parameter

Value

<compilation_date>

Oracle Tuxedo Application Rehosting Workbench
compilation date.

<BeginGeneratedDate>

Date and time of the execution.

<schema name>

Name of the current schema

<source_table_ name>

Table name on source database

<table_name_8>

Logical name of the table limited to 8 characters. Oracle
Tuxedo Application Rehosting Workbench creates a
unique name only within a schema.

<target_table_name>

Table name on target platform.

<source_column_name>

Column name from source database.

<target_column_name>

Column name on target database.

Links to COBOL Copy

As seen in the file clause of the example, the Mapper file is linked to a COBOL copy file. This
COBOL copy describes the unloaded data file: it contains columns descriptions and also
technical fields. This unloaded file is created by DB2 unloading utility. It contains column data

and null indicator values

For each column, a field name and two values for the attributes are generated:

e The NULL information:
— NULL_ALLOWED
— NULL_DISALLOWED

Used when the column accepts the NULL flag or has the NOT NULL attribute

respectively.

e Datatype information. It indicates the column data type

For each technical field, DB2-to-Oracle Convertor generates:

e For a NULL field (it means the column has NULL attribute), the COBOL copy contains an
additional field. The name of this field is the target column name with an -IND suffix.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-29

e For a VARCHAR field, the COBOL copy contains an additional field placed before the
data field. The name of this field is the target column name with -LEN suffix.

e Fora CLOB or BLOB field, the COBOL copy contains an additional field placed after the
data field. The name of this field is the target column name with -FNAME suffix.

COBOL Description

Oracle Tuxedo Application Rehosting Workbench DB2-to-Oracle Convertor needs a description
associated with each table, so a first step generates a COBOL copy description.

This copy contains:
e Field descriptions, one field per column.

e Technical fields:
— For a VARCHAR column, a length field is added.
— For a column without a NOT NULL attribute, an indicator field.

— For a CLOB or BLOB column, a FNAME field is added. The COBOL field length is given by
the <lobs_fname_length> parameter option (see LOBS Parameters).

Copy File Name

The copy file is created with this complete name:

<-target-directory parameter>/outputs/<schema
name>/<source_table_name>.cpy

Table 4-11 Copy File Name Parameters

Parameter Value

<-target-directory Value of the parameter -target-directory
parameter>

<schema name> Name of the current schema.
<source_table_name> Name of the source table name

Listing 4-13 Copy File: SAL Code

CREATE TABLE ART1 (

Oracle Tuxedo Application Rehosting Workbench Reference Guide

REF_ART CHAR(19) NOT NULL,

REF_ART_REMPL VARCHAR(400),

REGR_PEREMT CHAR(1),

DUREE_VALID DATE NOT NULL,

LONG_ART INTEGER

) L]
CREATE

TABLE MYCLOB (

CREATE TIMESTAMP NOT NULL,

R_ROWID ROWID GENERATED ALWAYS NOT NULL,

LOBCOL CLOB(16777280) FOR SBCS DATA NOT NULL

) L[]

For this example of DB2 DDL, the copy file generated by the Rehosting Workbench when using
the parameter rdbms: lobs_fname_length:50 (see LOBS Parameters) is:

Listing 4-14 Copy File: Generation Sample

[table

01 TAB-

03

ART1]
* Rdbms-converter.
ART1.
REF-ART
REF-ART-REMPL-LEN

03
03
03
03
03
03
03

REF-ART-REMPL
REF-ART-REMPL-IND
REGR-PEREMT
REGR-PEREMT-IND
DUREE-VALID

LONG-ART

Revision:

PIC X(19).

PIC S9(4) COMP-5.
PIC X(400).

PIC X.

PIC X(1).

PIC X(1).

PIC X(10).

PIC S9(9) COMP-5.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Rev: 1.4. 20090101 13:25. 20091010 11:25

4-31

03 LONG-ART-IND PIC X(1).

[table MYCLOB]
* Rdbms-converter. Rev: x.x. 2011/03/29 16:36:50. 2011/03/29 16:43:46.
01 TAB-UCVT-L-INVOER.

03 H-CREATE PIC X(26).

03 R-ROWID PIC X(40).

03 L-INVOER-LOT PIC X(16777280).

03 L-INVOER-LOT-FNAME PIC X(50).

Copy File Syntax and Parameters
The generated copy files have the following format:

Listing 4-15 Copy File

* Rdbms-converter. Revision: <revision> <compilationDate>
<BeginGeneratedDate>

01 TAB-<source_table_name>.
03 <target_column_name>-LEN PIC S9(4) COMP-5.
03 <target_column_name> PIC <Ffield_Cobol_format>.
Is the column has NULL attribute
03 <target_column_name>-IND PIC X.
Is the is CLOB or BLOB

03 <target_column_name>-FNAME PIC X(<lobs_fname_length>).

4-32 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Table 4-12 Copy File Parameters

Parameter Description

<revision> Oracle Tuxedo Application Rehosting Workbench revision
number.

<compi lationDate> Oracle Tuxedo Application Rehosting Workbench

compilation date and time.

<BeginGeneratedDate> Date and time at the beginning of the process.

<source_table_name> Table name on source database

<target_column_name> Column name on target database

<target_column_name> If the column has VARCHAR datatype
-LEN

<target_column_name> If the column has NULL attribute
-IND

<field_Cobol_format> Picture of the field in COBOL.

<lobs_fname_length> Length of the LOBS filename (see LOBS Parameters)

Unloading JCL

The JCL used to unload the DB2 tables are generated using the -g option of the rdbms.sh
command. They are then (using the -i option) installed in:

$HOME/trf/unload/rdbms/<schema name>

Each JCL performs two steps and unloads one DB2 table using the z/0S DSNTIAUL utility by
default. The JCL return code is equal to 0 or 4 for a normal termination.

Step 1 DEL IDCAMS DELETE files (deletion of log, data, syspunch files)

Step 2 UNLOAD DB2 unloading utility of the indicated table

The JCLs are named: <table name>.jclunload

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-33

If the table name is longer than eight characters, the Rehosting Workbench attributes an
eight-character name to the z/OS JCL as close as possible to the original. The renaming process
maintains the uniqueness of each table name within a schema.

Note: The .jclunload extension should be deleted for execution under z/OS.

The default DB2 unloading utility is DSNTIAUL. You can choose another unloading utility by
adding the parameter in the db-param.cfg file:

rdbms:jcl_unload_utility_name:<name> (see MVS Utility Parameters)
In case of CLOB or BLOB columns, you should choose dsnuti b value.
In case of MBCS encoding data, you should choose dsnuproc value with csv format.

You can change the format of the created file if you are using dsnuproc:

rdbms:jcl_unload_format_file:csv
Unloading JCL: DSNTIAUL
The generated JCL may need adapting to specific site constraints including:
e JOB cards: <cardjob_parameter_<digit>>
e library access paths: <db2_runlib_load_librairy>
e data source name: <ds_db2>
e plan name: <plan_dsntiaul>

e access paths to output files: <data>

Listing 4-16 Unload DSNTIAUL JCL Example

//<crdjob> <cardjob_parameter_1>,*DB2 ODCSFO",

// <cardjob_parameter_2>
// <cardjob_parameter_3>
// <cardjob_parameter_4>

//*@ (C) Metaware:jcl-dsntiaul-DB2-table-SQL.pgm. $Revision: 1.1.2.1 $

//
//* UNLOAD THE RDBMS TABLE:

4-34 Oracle Tuxedo Application Rehosting Workbench Reference Guide

/7* PJ0O1DB2.0DCSFO

//* INTO <data>.PJ01DB2.0DCSFO.DATA

// ialeieke
/) e *
//* DELETE LOG, DATA AND SYSPUNCH FILES
) S *
//DEL EXEC PGM=1DCAMS
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSIN DD *
DELETE <data>.PJ01DB2.0DCSFO.LOG
DELETE <data>.PJ01DB2.0DCSFO.DATA
DELETE <data>.PJO1DB2.0DCSFO.SYSPUNCH

IF MAXCC = 8 THEN SET MAXCC=0

//UNLOAD EXEC PGM=1KJEFTO1,DYNAMNBR=20

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

DSN SYS(<ds_db2>)

RUN PROGRAM(DSNTIAUL) PLAN(<plan_dsntiaul>) PARMS("SQL") -
LIBRARY ("<db2_runlib_load_librairy>")

END

//SYSPRINT DD SPACE=(CYL,(150,50),RLSE),

// DISP=(,CATLG),

// UNIT=SYSDA,

Oracle Tuxedo Application Rehosting Workbench Reference Guide

4-35

// DSN=<data>.PJ01DB2.0DCSFO.LOG
//SYSUDUMP DD SYSOUT=*

/7*

//SYSRECO0 DD SPACE=(CYL, (150,50),RLSE),

// DISP=(,CATLG),
// UNIT=SYSDA,
// DSN=<data>.PJO1DB2.0DCSFO.DATA

//SYSPUNCH DD SPACE=(TRK, (15,15),RLSE),

// DISP=(NEW,CATLG) ,DCB=(LRECL=80,RECFM=FB),
// UNIT=SYSDA,
// DSN=<data>.PJ01DB2.0DCSFOX1.SYSPUNCH

//SYSIN DD *

SELECT
CUSTIDENT
,CUSTLNAME
,CUSTFNAME
,CUSTADDRS
,CUSTCITY
,CUSTSTATE
,CUSTBDATE
,CUSTEMAIL
,CUSTPHONE

FROM PJO1DB2.0DCSFO;
/>

Unloading JCL: DSNUPROC

The generated JCL may need adjustment for specific site constraints including:

4-36 Oracle Tuxedo Application Rehosting Workbench Reference Guide

e JOB cards: <cardjob_parameter_<digit>>
e library access paths: <db2_runlib_load_librairy>
e data source name: <ds_db2>

e access paths to output files: <data>

Listing 4-17 Unload DSNUPROC JCL Example (without jcI_unload_format_file option or set to ‘binary’)

//<crdjob> <cardjob_parameter_1>,"DB2 ODCSFO",

// <cardjob_parameter_2>
// <cardjob_parameter_3>
// <cardjob_parameter_4>

//*@ (C) Metaware:jcl-dsnuproc-DB2-table-SQL.pgm. $Revision: 1.1.2.1 $
//

//* UNLOAD THE RDBMS TABLE:
//7* PJO1DB2.0DCSFO
//* INTO <data>.PJO1DB2.0DCSFO.DATA

//
Y e *
//* DELETE LOG, DATA AND SYSPUNCH FILES
Y e e e Bt bt *
//DEL EXEC PGM=1DCAMS
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSIN DD *

DELETE <data>.PJ01DB2.0DCSFO.LOG

DELETE <data>.PJ01DB2.0DCSFO.DATA

DELETE <data>.PJ01DB2.0DCSFO.SYSPUNCH

IF MAXCC = 8 THEN SET MAXCC=0

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-37

4-38

//UNLOAD EXEC DSNUPROC,UID="<db2_user>",UTPROC="",
// SYSTEM="<db2_dsn>"
//SYSPRINT DD SPACE=(CYL, (150,50),RLSE),

// DISP=(,CATLG),
// UNIT=SYSDA,
// DSN=<data>.PJ01DB2.0DCSFO.LOG

//SYSREC DD SPACE=(CYL, (150,50),RLSE),

// DISP=(,CATLG),
// UNIT=SYSDA,
// DSN=<data>.PJO1DB2.0DCSFO.DATA

//SYSPUNCH DD SPACE=(TRK, (15,15),RLSE),

// DISP=(NEW,CATLG) ,DCB=(LRECL=80,RECFM=FB),
// UNIT=SYSDA,
// DSN=<data>.PJ01DB2.0DCSFO.SYSPUNCH

//SYSIN DD *

UNLOAD

EBCDIC

FROM TABLE PJO1DB2.0ODCSFO;
/>

Listing 4-18 shows the content of a JCL when these parameters are set in the db-param.cfg:

rdbms:jcl_unload_utility_name:dsnuproc
rdbms: jcl_unload_format_file:csv

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Listing 4-18 Unload DSNUPROC JCL Example (when jcl_unload_format_file option is set to ‘csv’)

//<crdjob> <cardjob_parameter_1>,"DB2 ODCSFO",

// <cardjob_parameter_2>
// <cardjob_parameter_3>
// <cardjob_parameter_4>

//*@ (C) Metaware:jcl-dsnuproc-DB2-table-SQL.pgm. $Revision: 1.1.2.1 $

//
//* UNLOAD THE RDBMS TABLE:
//* FROM PJO1DB2.0DCSFO;

//* INTO <data>.PJ01DB2.0DCSFO.DATA

//
S *
//* DELETE LOG, DATA AND SYSPUNCH FILES
S *
//DEL EXEC PGM=1DCAMS
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSIN DD *

DELETE <data>.PJO1DB2.0DCSFO.LOG

DELETE <data>.PJ01DB2.0DCSFO.DATA

DELETE <data>.PJO1DB2.0DCSFO.SYSPUNCH

IF MAXCC = 8 THEN SET MAXCC=0

//UNLOAD EXEC DSNUPROC,UID="<db2_user>",UTPROC="",
// SYSTEM="<db2_dsn>"

Oracle Tuxedo Application Rehosting Workbench Reference Guide

//SYSPRINT DD SPACE=(CYL, (150,50),RLSE),

// DISP=(,CATLG),
// UNIT=SYSDA,
// DSN=<data>.PJ01DB2.0DCSFO.LOG

//SYSREC DD SPACE=(CYL, (150,50),RLSE),

// DISP=(,CATLG),
// UNIT=SYSDA,
// DSN=<data>.PJO1DB2.0DCSFO.DATA

//SYSPUNCH DD SPACE=(TRK, (15,15),RLSE),

// DISP=(NEW,CATLG) ,DCB=(LRECL=80,RECFM=FB),
// UNIT=SYSDA,
// DSN=<data>.PJ01DB2.0DCSFO.SYSPUNCH

//SYSIN DD *

UNLOAD

EBCDIC

DELIMITED

NOPAD

FROM TABLE PJO01DB2.0DCSFO;
/>

Unloading JCL: DSNUTILB

The generated JCL may need adapting to specific site constraints including:
e JOB cards: <cardjob_parameter_<digit>>
e library access paths: <db2_runlib_load_librairy>
e data source name: <ds_db2>

e access paths to output files for all columns except LOBS: <data>

4-40 Oracle Tuxedo Application Rehosting Workbench Reference Guide

e access paths to CLOB and BLOB columns when dataset type is HFS: <datahfs>
You can use DSNUTILB even if your table does not contain any LOBS columns.

Listing 4-19 shows the content of a JCL when these parameters are set in the db-param.cfg:
rdbms: jcl_unload_utility name:dsnutilb
rdbms: jcl_unload_lob_file_system:hfs
rdbms: lobs_fname_length:40
with the following source DDL description:
CREATE TABLE TLOB.TESTCLOB (
KEY CHAR(10) NOT NULL,
TMSINPUT TIMESTAMP,
LONGTEXT CLOB(50000));

Listing 4-19 Unload DSNUTILB JCL Example (with a CLOB column and HFS dateset type)

//<crdjob> <cardjob_parameter_1>,"DB2 TESTCLOB",

// <cardjob_parameter_2>
// <cardjob_parameter_3>
// <cardjob_parameter_4>

//*@ (C) Metaware:jcl-dsnutilb-DB2-table-SQL.pgm. $Revision: 1.1.2.2 $

//
//* UNLOAD THE RDBMS TABLE:

/7/* TLOB.TESTCLOB

//* INTO <data>.TLOB.TESTCLOB.DATA
//* AND LOB DATA INTO HFS directory
//* <datahfs>/TLOB/TESTCLOB/<field>

//

//* DELETE LOG, SYSPUNCH AND DATA(S) FILES

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-4

4-42

//DEL EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//SYSIN DD *
DELETE <data>.TLOB.TESTCLOB.LOG
DELETE <data>.TLOB.TESTCLOB.SYSPUNCH
DELETE <data>.TLOB.TESTCLOB.DATA
DELETE <data>.TLOB.TESTCLOB.LONGTEO
IF MAXCC = 8 THEN SET MAXCC=0

/7*

//CRFILES EXEC PGM=1EFBR14

//SYSREC DD DSN=<data>.TLOB.TESTCLOB.DATA,

// SPACE=(CYL, (150,50) ,RLSE),
// DISP=(MOD, DELETE, DELETE),
// UNIT=SYSDA

//SYSPUNCH DD DSN=<data>.TLOB.TESTCLOB.SYSPUNCH,

// SPACE=(CYL, (150,50) ,RLSE),
// DISP=(MOD, DELETE, DELETE),
// UNIT=SYSDA

//LONGTEO DD DSN=<data>.TLOB.TESTCLOB.LONGTEO,

// SPACE=(CYL, (500,500) ,RLSE) ,
// DISP=(MOD, DELETE, DELETE),
// UNIT=SYSDA

Oracle Tuxedo Application Rehosting Workbench Reference Guide

//SYSPRINT DD SYSOUT=*

//*

//*

Y el e e *

//* INIT HFS DIRECTORIES

Y el e *
//INITHFS EXEC PGM=BPXBATCH

//STDOUT DD PATH="<datahfs>/TLOB.TESTCLOB.log",
// PATHOPTS=(OWRONLY ,OCREAT,OTRUNC) , PATHD I SP=(KEEP ,KEEP),
// PATHMODE=(SIRWXU, SIRWXG, SIRWXO)
//STDERR DD PATH="<datahfs>/TLOB.TESTCLOB.err",
// PATHOPTS=(OWRONLY ,OCREAT,OTRUNC) , PATHD I SP=(KEEP ,KEEP),
// PATHMODE=(SIRWXU, SIRWXG, SIRWXO)
//STDPARM DD *

sh rm -rf <datahfs>/TLOB/TESTCLOB/LONGTEO

sh mkdir -p <datahfs>/TLOB/TESTCLOB/LONGTEO

//*

//*

Y el e *

//* LAUNCH UNLOAD UTILITY

Y el et *
//UNLOAD EXEC PGM=DSNUTILB,

// PARM=(<db2_dsn>,<db2_user>) ,REGION=4M

//SYSPRINT DD DSN=<data>.TLOB.TESTCLOB.LOG,

// SPACE=(CYL, (150,50) ,RLSE),
// DISP=(,CATLG),
// UNIT=SYSDA

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-43

//SYSUDUMP DD SYSOUT=*

//SYSIN DD *

TEMPLATE TSYSPUN
DSN("<data>.TLOB.TESTCLOB.SYSPUNCH")

TEMPLATE TSYSREC
DSN("<data>.TLOB.TESTCLOB.DATA®)

TEMPLATE TLONGTEO
DSN "<datahfs>/TLOB/TESTCLOB/LONGTEO/*
DSNTYPE HFS

UNLOAD DATA FROM TABLE TLOB.TESTCLOB
(
KEY
, IMSINPUT
,LONGTEXT CHAR(40) CLOBF TLONGTEO
))
UNLDDN(TSYSREC) PUNCHDDN(TSYSPUN)
/*

COBOL Transcoding Programs

The COBOL transcoding programs are generated using the -g option of the rdbms . sh command,
and installed in $SHOME/trf/reload/rdbms/<schema name>/src using the -i option.

They are generated when <jcl_unload_format_file> option is not used or set to "binary"
(see MVS Utility Parameters).

For each DB2 table, the COBOL programs are generated and nhamed: MOD_<table name>.cbl

In case of CLOB or BLOB column, the programs contain the specific code to manage the list of
LOBS files written by the DB2 unloading utility.

4-44 Oracle Tuxedo Application Rehosting Workbench Reference Guide

For each DB2 table with a CLOB column, the rdbms.sh command generates a secondary
COBOL program.

The secondary programs are named: CLOB_<table name>_<column_name>.cbl

All these programs should be compiled using the target COBOL compilation options which are
documented in Compiler Options.

The compilation of these programs requires the presence of a CONVERTMW.cpy copy file adapted
to the project.

COBOL Programs MOD_<tahle_name>.chl

These programs read a file on input and write a sequential file on output with fixed length records.
The output file is read by the SQL*LOADER utility. For each CLOB and BLOB columns, these
programs write a line sequential file on output. This file contains the list of LOBS files written
by the DB2 unloading utility (one file per column per row). The reloading Korn Shell script treats
this line sequential file.

Listing 4-20 FILE CONTROL Section - for Transcoding Programs MOD_<tahle_name>

SELECT MW-ENTREE
ASSIGN TO "ENTREE™
ORGANIZATION IS SEQUENTIAL
ACCESS 1S SEQUENTIAL
FILE STATUS 1S I10-STATUS.

SELECT MW-SORTIE
ASSIGN TO "'SORTIE™
ORGANIZATION IS RECORD SEQUENTIAL
ACCESS 1S SEQUENTIAL
FILE STATUS 1S I10-STATUS.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-45

4-46

Listing 4-21 FILE CONTROL Section - addendum for Transcoding Programs MOD_<tahle_name> in case of
LOBS Columns

* * file(s) declaration for LOBs datatype
SELECT MW-LOB-<lobs_column_name>-FNAME
ASSIGN TO "<lobs_column_name>_FNAME"
ORGANIZATION 1S LINE SEQUENTIAL
FILE STATUS 1S I10-STATUS.

A record count is written to the log file and displayed at the end of processing via:
DISPLAY "CONVERTING TERMINATED OK™.
DISPLAY "Nb rows reloaded: " D-NB-RECS.
DISPLAY ™ ™

String columns (CHAR, VARCHAR) are converted from EBCDIC to ASCII using CONVERTMW. cpy
copy file. This conversion applies to SBCS data only. If the data contains MBCS characters, you
need to make the conversion using transfer tools, such as FTP. Binary columns (SMALLINT,
INTEGER) are converted depending on the target platform.

The validity of the numeric fields is tested to prevent any formatting problems of the z/OS
produced file (discrepancy between the DB2 DDL and the unloaded table). If a field expected to
be numeric is not, an ABORT is triggered.

The same checks are made on the technical fields, (NULL indicator fields).

COBOL Programs CLOB_<tahle_name>_<column_name>.chl

These programs read the list of CLOB files written by the MOD_<table_name> programs. They
read all CLOB files (written by the DB2 unloading utility, one file per CLOB column per row)
on input and write sequential files on output with the same size. The output file is read by the
SQL*LOADER utility during the loading process.

Listing 4-22 FILE CONTROL Section - Transcoding Programs CLOB_<tahle_name>_<column_name>

SELECT MW-LOB-LONGTEXT-FNAME

Oracle Tuxedo Application Rehosting Workbench Reference Guide

ASSIGN TO "LONGTEXT_FNAME"
ORGANIZATION 1S LINE SEQUENTIAL
FILE STATUS 1S I10-STATUS.

Listing 4-23 DYNAMIC CALL Paragraph - Transcoding Programs CLOB_<tahle_name>_<column_name>

GET-OPEN-LOB-FNAME .
MOVE SPACES TO MW-FILE-NAME OF MW-ENTREE.
STRING
ENTREE-DIR-NAME DELIMITED BY SPACE
/" DELIMITED BY SIZE
LOB-<clob_column_name>-FNAME DELIMITED BY SPACE
INTO MW-FILE-NAME OF MW-ENTREE
END-STRING.
CALL "CBL_OPEN_FILE"
USING [--.]

MOVE SPACES TO MW-FILE-NAME OF MW-SORTIE.
STRING
SORTIE-DIR-NAME DELIMITED BY SPACE
"/" DELIMITED BY SIZE
LOB-<clob_column_name>-FNAME DELIMITED BY SPACE
"_ascii'" DELIMITED BY SIZE
INTO MW-FILE-NAME OF MW-SORTIE
END-STRING.
CALL "CBL_CREATE_FILE"
USING [...]-

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-47

4-48

E-GET-OPEN-LOB-FNAME.

EXIT.

A record count is written to the log file and displayed at the end of processing via:

DISPLAY "CONVERTING TERMINATED OK™.

DISPLAY "Nb clob files reloaded: " D-NB-RECS.
DISPLAY ™

CLOB columns are converted from EBCDIC to ASCII using CONVERTMW. cpy copy file.

Reloading Korn Shell Scripts

The Reloading Korn shell scripts are generated using the -g option of the rdbms.sh command.
They are then (using the i option) installed in:

$HOME/trf/reload/rdbms/<schema name>/ksh
The scripts are named: loadrdbms-<table name>.ksh
They contain three phases:
e t— transcodephase
e | —loadingphase
e c — checkphase
The execution of the scripts produces an execution log in $MT_LOG/<nom de table>.log
Listing 4-24 shows the variables set at the beginning of each script.

Note: The transcoding phase does not exist when <jcl_unload_format_file> option is set
to “csv”.

Listing 4-24 Reloading Script Variables (when jcl_unload_format_file option is not used or set to ‘hinary’)

f="0 (c) Metaware:reload-tables-ksh.pgm. $Revision: 1.14 $"

export DD_ENTREE=${DD_ENTREE:-${DATA_SOURCE}/PJ01DB2.0DCSFOX1.DATA}
export DD_SORTIE=${DD_SORTIE:-${DATA_TRANSCODE}/ODCSFO.ascii}
export DD_MVSLOG=${DD_MVSLOG: -${DATA_SOURCE}/PJ01DB2.0DCSFOX1.L0OG}

Oracle Tuxedo Application Rehosting Workbench Reference Guide

table_name="0DCSFO"
logtab=$MT_LOG/0ODCSFO. log
reportfile=${DATA_TRANSCODE}/${table_name}.rpt

L]

Listing 4-25 Reloading Script Variables (when jcl_unload_format_file option is set to ‘csv’)

f="0 (c) Metaware:reload-tables-csv-ksh.pgm. $Revision: 1.16.4.6 $"
export DD_ENTREE=${DD_ENTREE:-${DATA_SOURCE}/PJ01DB2.0DCSFOX1.DATA}
export DD_MVSLOG=${DD_MVSLOG: -${DATA_SOURCE}/PJO1DB2.0DCSFOX1.LOG}
table_name="0DCSFO"

logtab=$MT_LOG/ODCSFO. log
reportfile=${DATA_TRANSCODE}/${table_name}.rpt

Listing 4-26 Reloading Script Variables (when CLOB and/or BLOB column is present)

export DD_ENTREE=${DD_ENTREE:-${DATA_SOURCE}/TLOB.TESTCLOB.DATA}
export DD_SORTIE=${DD_SORTIE:-${DATA_ TRANSCODE}/TESTCLOB.ascii}
export DD_MVSLOG=${DD_MVSLOG:-${DATA_SOURCE}/TLOB.TESTCLOB.LOG}
special LOBs datatypes

export LOBDIR=${LOBDIR:-""TLOB.TESTCLOB"}

export DD_ENTREE_DIR=${DD_ENTREE_DIR:-${DATA_SOURCE}}

export DD_SORTIE_DIR=${DD_SORTIE_DIR:-${DATA_TRANSCODE}}

export
DD_LONGTEXT_FNAME=${DD_LONGTEXT_FNAME : -${DATA_TRANSCODE}/TLOB.TESTCLOB/LON
GTEXT_FNAME. loblst}

#
DD_ENTREE_DIR="${DD_ENTREE_DIR%%/}"

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-49

4-50

DD_SORTIE_DIR="${DD_SORTIE_DIR%%/}"

export JCL_UNLOAD_UTILITY_NAME=${JCL_UNLOAD_UTILITY_NAME:-"dsnutilb"}
table_name="TLOB.TESTCLOB"

logtab=$MT_LOG/TESTCLOB. log
reportfile=${DATA_TRANSCODE}/${table_name}.rpt
sysinfile=${TMPPROJECT}/TESTCLOB.sysin.tmp

L]

To change the file names, set the DD_ENTREE and DD_SORTIE variables before calling the script.

To change the LOBS default parameters, set the LOBDIR, DD_ENTREE_DIR, DD_SORTIE_DIR
variables before calling the script. All binary LOBS files created by the unloading utility have to
be transferred in binary mode into the directory ${DD_ENTREE_DIR}/${LOBDIR}.

Various messages may be generated during the three execution phases of the scripts. These
messages are listed in Oracle Tuxedo Application Rehosting Workbench Messages.

On normal termination, a return code of 0 is returned.

Transcoding Phase: First Step
The transcoding phase is not applicable when the <jcl_unload_format_file> option is set to

Csv .

This step launches the execution of the COBOL transcoding program associated with the Oracle
table processed:

runb MOD_ODCSFO >>$logtab 2>&1

“runb” is a part of OracleTuxedo Application Runtime Batch (see the Oracle Tuxedo Application
Runtime Batch Reference Guide).

On normal termination the following message is displayed:

file ${DD_SORTIE} transcoded
Note: Ifthe table contains CLOB or BLOB columns and you want to launch this step only once
(that is, without launching next CLOB or BLOB step), use -T option of the rdbms.sh

command. The program also displays the dataset type used for LOBS files during the
unloading step (depends on parameter <jcl_unload_lob_file_system>):

Oracle Tuxedo Application Rehosting Workbench Reference Guide

LOB FILENAME 1S IN PDS/MVS FORMAT
or
LOB FILENAME 1S IN HFS/UNIX FORMAT

Transcoding Phase: Next Step for BLOB Columns

If the table contains a BLOB column, this step launches the following UNIX command for all
BLOB files:

In -sT $DD_ENTREE_DIR/$LOBDIR/<filename> $DD_SORTIE_DIR/$LOBDIR/<filename>

This list of BLOB files is created by the MOD_<table_name> COBOL program above (see
DD_<column_name>_FNAME variable).

On normal termination, the following message is displayed:
All BLOB files for column <name> linked in ${DD_SORTIE_DIR}/${LOBDIR}

Note: If you want to launch this step only once, use the rdbms.sh command -T option
(COBOL program MOD_<table_name> should be launched at least one time).

Transcoding Phase: Next Step for CLOB Columns
If the table contains a CLOB column, this step launches after the COBOL program:
runb CLOB_TESTCLOB_LONGTEXT >>$logtab 2>&1

This COBOL program transcodes all CLOB files. This list of CLOB files is created by the
MOD_<table_name> COBOL program above (see DD_<column_name>_FNAME variable).

runb is a part of OracleTuxedo Application Runtime Batch. For more information, see the Oracle
Tuxedo Application Runtime Batch Reference Guide.

On normal termination, the following message is displayed:

All CLOB files for column <name> transcoded in ${DD_SORTIE_DIR}/${LOBDIR}

Note: If you want to launch this step only once, use the rdbms.sh command -T option
(COBOL program MOD_<table_name> should be launched at least one time).

Loading Phase
This step loads the Oracle table using the SQL*LOADER utility:

${BIN}/RunSqglLoader .sh $CTL/ODCSFO.ctl $opt >>$logtab 2>&1
On normal termination the following message is displayed:

echo "Table ${table_name} successfully loaded."

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-51

../artbatch/index.html
../artbatch/index.html
../artbatch/index.html
../artbatch/index.html

Check Phase

This step verifies that the reloaded Oracle table contains the same number of records as the
equivalent table unloaded from z/OS by the DB2 unloading utility. If the number of records is
different, an error message is produced:

if ["$qgteFile” -ne "$qteTranscode™]
If the number of records is equal, this message is produced:

echo "Number of rows written in output file is equal to number written
in the report file: OK"

Note: To execute this step, it is necessary to transfer the DB2 unloading log file to the target
environment.

Target DDL

The ORACLE DDL is generated using the -c or -C option of the rdbms.sh command. They are
then (using the -i option) installed in:

$HOME/trf/SQL/rdbms/<schema name>

The script naming rules are described in Table 4-1.

TABLE and COLUMNS

Listing 4-27 Oracle Table and Column Generation

WHENEVER SQLERROR CONTINUE;

DROP TABLE <schema>.<target_table_name> CASCADE CONSTRAINTS;
WHENEVER SQLERROR EXIT 3;

CREATE TABLE <schema>.<target_ table_name>

(

<target_column_name> <column_data_type> <attribute(s).>[,]

4-52 Oracle Tuxedo Application Rehosting Workbench Reference Guide

INDEX

Listing 4-28 Oracle Index Generation

WHENEVER SQLERROR CONTINUE;
DROP INDEX <schema>.<target_index_name>;
WHENEVER SQLERROR EXIT 3;

CREATE [UNIQUE] INDEX <schema>.<target_index_name> ON
<schema>.<target_table_name>

(

[<nls_function>(J<target_column_name> [, "<nls_attributes>")]
[ASC|DESC]L.]

);

The parameters <nls_function> and <nls_attributes> are optional. If the db-param
parameters rdbms: indexsort and rdbms: indexlang are set in the db-param .cfg file, then
the Rehosting Workbench generates these options in the CREATE INDEX command.

Listing 4-29 Oracle Index Generation Without rdbms:indexsort and rdbms:indexlang Parameters

WHENEVER SQLERROR CONTINUE;
DROP INDEX MYDB.TAB2_I1DX;
WHENEVER SQLERROR EXIT 3;
CREATE INDEX MYDB.TAB2_IDX ON MYDB.TAB2
(
MYCOL1 ASC,
MYCOL2 DESC

);

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-53

The following samples show an index creation with rdbms: indexsort=french parameter.

Listing 4-30 Oracle Index Generation With rdbms:indexsort=french Parameter

WHENEVER SQLERROR CONTINUE;

DROP INDEX MYDB.TAB1_IDX;

WHENEVER SQLERROR EXIT 3;

CREATE INDEX MYDB.TAB1_IDX ON MYDB.TAB1

(
nlssort(MYCOL11, "nls_sort=FRENCH") ASC

);

CONSTRAINT

Listing 4-31 Oracle Constraint Generation

WHENEVER SQLERROR CONTINUE;

ALTER TABLE <schema name>.<target_table_name> DROP CONSTRAINT
<target_constraint_name>;

WHENEVER SQLERROR EXIT 3;

ALTER TABLE <schema name>.<target_table_name> ADD CONSTRAINT
<target_constraint_name>

< the syntax according to the constraint creation is inserted here>

4-54 Oracle Tuxedo Application Rehosting Workbench Reference Guide

COMMENT

Listing 4-32 Oracle Comment Generation

CREATE COMMENT ON TABLE <schema name>.<target_table_name>

IS "<comment_table>"

CREATE COMMENT ON COLUMN<schema name>
-<target_table_name>._<target_column_name>

IS "<comment_column>*

Note: The tool accepts only COMMENT on TABLE and COLUMN.

VIEW

Listing 4-33 Oracle View Generation

WHENEVER SQLERROR CONTINUE;
DROP VIEW <target_view_name>;
WHENEVER SQLERROR EXIT 3;
CREATE VIEW <target_view_name>

AS <the syntax according to the existing view is inserted here>

SEQUENCE

For a sequence already present in the DB2 database.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

4-55

Listing 4-34 Oracle Sequence Generation

WHENEVER SQLERROR CONTINUE;

DROP SEQUENCE <schema name>.<target_sequence_name>;
WHENEVER SQLERROR EXIT 3;

CREATE SEQUENCE <schema name> .<target_sequence_nhame>

<the syntax according to the existent sequence is inserted here>

SYNONYM

For the synonym of a table, or a synonym of a view:

Listing 4-35 Oracle Synonym Generation

WHENEVER SQLERROR CONTINUE;

DROP SYNONYM <schema name>.<target_synonym_name>;
WHENEVER SQLERROR EXIT 3;

CREATE SYNONYM <schema name>.<target_synonym_name>

FOR <schema name>.[<target_table_name> | <target_synonym_name>|
<target_view_name>]

Identity Engineering
The DB2 column identity is replaced by two Oracle objects:

e Sequence associated with table <target_table_name> .

e Trigger associated with table <target_table_name>.

4-56 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Listing 4-36 Oracle Sequence and Trigger Generation

-- Sequence associated with table <target_table_name>
-- for identity column <target_column_name>

WHENEVER SQLERROR CONTINUE;

DROP SEQUENCE <schema name>.<table_name_26> SEQ;
WHENEVER SQLERROR EXIT 3;

CREATE SEQUENCE <schema name>.<table_name_26>_SEQ
START WITH 1 INCREMENT BY 1

-- Trigger associated with table <target_table_name> for

-- identity column <target_column_name>

CREATE OR REPLACE TRIGGER <schema name>.<table_name_26>_IDY
BEFORE INSERT ON <schema name>.<table_name>

REFERENCING NEW AS NEW FOR EACH ROW

BEGIN

SELECT <schema name>.<target_table_name>_SEQ.nextval INTO
:NEW.<target_column_name>

FROM dual;
END;
/

After reloading the ORACLE table, the script must be modified to adapt the CREATE
SEQUENCE with the MAX value of the column concerned.

Ordered List of Tahles File

This file is generated using the -c or -C option of the rdbms.sh command. It is then (using the
-1 option) installed in:

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-57

4-58

$Home/trf/SQL/rdbms/<schema name>

It is named <schema name>.lIst.

This file contains the names of all of the tables in hierarchical sequence (parent table then child
tables).

COBOL Conversion Guide File

This file is generated using the -s option of the rdbms.sh command.

This file is used by the Rehosting Workbench DB2-to-Oracle Convertor to rename object names
and to modify options in SQL functions. These objects and functions are stored in SQL
applicative requests, inside EXEC SQL and END-EXEC verbs.

File Name
The language conversion file is created with this complete name:

$PARAM/dynamic-config/rdbms-conv-<schema name>.xml
$PARAM/dynamic-config/rdbms-conv.txt
Where:

<schema name>
Name of the current schema.

Generated Sample

Listing 4-37 Sample COBOL Conversion Guide

<?xml version="1.0" encoding="1S0-8859-1" ?>
<I-- DOCTYPE RDBMS CONVERSION "metaware_rdbms.dtd" -->
<rdbms revision="1.4" compilationdate="20090101 10:00"
Generateddate="20090608 08:01"">
<comment>
</comment>
<sourceformat>

<date>YYYYMMDD</date>

Oracle Tuxedo Application Rehosting Workbench Reference Guide

</sourceformat>
<tablelist>
<table source_name="DESC'">
<target_name>DESCl</target_name>
</table>
<table source_name="USER">
<target_name>USER1</target_name>
</table>
<table source_name="MYTB'">
<column source_name="USER"">
<target_name>USER1</target_name>
</column>
</table>

</tablelist>

SQL*LOADER Control Files
This file is generated using the -i option of the rdbms.sh command in:

$HOME/trf/reload/rdbms/<schema name>/ctl/<target_table_name>._ctl

These files are generated for the Sql*Loader Oracle utility. They contain the description of the
data file created by the transcoding programs. Data files are read by Sql*Loader and fully loaded
into Oracle Tables.

File Name
$HOME/trf/reload/rdbms/<schema name>/ctl/<target_table_name>._ctl

Where

<schema name>
Name of the current schema.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-59

<target_table_name>
Name of the target table name.

Generated Example
The following examples are found in the CTL file (Control file) used by Sql*Loader.

They show all the Sql*Loader data types and the file structures managed by this Oracle Loader
utility. They are generated using different parameters (see db-param.cfg).

Listing 4-38 CTL File Example (when jel_unload_format_file option is not used or set to ‘binary’)

LOAD DATA
INFILE "PHAM.ascii® "fix 512"
BADFILE "PHAM.bad"
APPEND
PRESERVE BLANKS
INTO TABLE PHO.PHAM
REENABLE
(
MOUV_REF POSITION(1:19) CHAR(19),

MOUV_REF_IND FILLER POSITION(20:20),

col POSITION(21:30) CHAR(10) NULLIF (31:31) = "N",
COl IND FILLER POSITION(31:31),
DATE_FAB POSITION(32:41) DATE(10) "DD.MM.YYYY",

DATE_FAB_IND FILLER POSITION(42:42),

M_COEFF_TR POSITION(43:60) DECIMAL EXTERNAL,

M_COEFF_TR_IND FILLER POSITION(61:61),

PHDESC POSITION(62:483) VARCHAR(420)

PHDESC_IND FILLER POSITION(484:484),

DATMOD POSITION(485:510) TIMESTAMP "YYYY_MM.DD.HH24_MI1_SS_FF6" ,

4-60 Oracle Tuxedo Application Rehosting Workbench Reference Guide

DATMOD_IND FILLER POSITION(511:511)

Note: DATE and TIMESTAMP formats are replaced by values described in the db-param. cfg

file.

Listing 4-39 shows the content of a CTL when these parameters below are set in the
db-param.cfg:

rdbms:jcl_unload_utility_name:dsnuproc
rdbms:jcl_unload_format_file:csv

Listing 4-39 CTL File Example (when jcl_unload_format_file option is set to ‘csv’)

-- MVS file name: PHAM

-- table name: PHO.PHAM

LOAD DATA
INFILE "PHAM.DATA"
BADFILE "PHAM.bad"

APPEND
CONTINUEIF NEXT PRESERVE(1:1) 1= """
INTO TABLE PHO.PHAM
FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY """
TRAILING NULLCOLS
¢

MOUV_REF,

co1,

DATE_FAB,

M_COEFF_TR,

PHDESC,

Oracle Tuxedo Application Rehosting Workbench Reference Guide

4-61

DATMOD

Listing 4-40 shows the content of a CTL when these parameters below are set in the
db-param.cfg:

rdbms: lobs_fname_length:40
rdbms: jcl_unload_utility name:dsnutilb

Listing 4-40 CTL File Example With CLOB Column

LOAD DATA

INFILE "TESTCLOB.ascii® "fix 81"
BADFILE *"TESTCLOB.bad*"

APPEND

PRESERVE BLANKS

INTO TABLE TESTCLOB
REENABLE
(
KEY POSITION(1:10) CHAR(10),
KEY_IND FILLER POSITION(11:11),

TMSINPUT POSITION(12:37) TIMESTAMP *YYYY-MM-DD:HH24:MI:SS:FF6" NULLIF
(38:38) = "N",

TMSINPUT_IND FILLER POSITION(38:38),

LONGTEXT_FNAME FILLER TERMINATED BY WHITESPACE,

LONGTEXT_SPACE FILLER POSITION(79:79),

LONGTEXT_IND FILLER POSITION(80:80),

LONGTEXT LOBFILE(LONGTEXT_FNAME) TERMINATED BY EOF NULLIF (80:80) = "N
)

4-62 Oracle Tuxedo Application Rehosting Workbench Reference Guide

DDL Translator Log File

The DDL translator outputs a log file for each schema that it translates. This file contains
information about the translation process and describes the major translation actions that were
preformed. It also contains any error or translation issue messages.

Below is an annotated example log file.

The header shows translator version information and starting time.

Listing 4-41 DDL Translator Log File — Header

Rdbms-converter. Rev: 0.0.0.beta. <revision date/time> <build date/time> .

BeginTime: <starting date/time>

The RDBMS Parameters section lists the input parameters for the translation run.

Listing 4-42 DDL Translator Log File — Parameters

RDBMS Parameters

System description file (-system-description):
.. ./samples/param/system.desc

Schemas (-ddl): TEST,OTHER

Schema names file (-ddls-file): None

Target 0S (-target-os): UNIX

Target RDBMS (-target-rdbms): ORACLE

Target RDBMS version (-target-rdbms-version): 11g

Target directory (-target-directory): .../samples/latest/

Rename objects file (-rename-objects):
.. ./samples/param/rename-objects.conf

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-63

REBMS parameters file (-rdbms-parameters):
.. ./samples/param/rdbms-parameters.conf

Recatalog allowed? (-with-ddl-changes): true

The Database Parameters section lists important properties of the source database.

Listing 4-43 DDL Translator Log File — Database Parameters

Database Parameters

DATE_FORMAT: DD.MM.YYYY
TIME_FORMAT: HH24 _MI .SSXFF
TIMESTAMP_FORMAT: YYYY._.MM.DD.HH24 _MI .SS.FF6

INDEXSORT: FRENCH

The Schema Translation section is a transcript of the translation process.

Listing 4-44 DDL Translator Log File — Schema Translation

Schema Translation

Beginning translation
Mode: MVS DB2 8 to UNIX ORACLE 11g
Schemas to translate: TESTOTHER

Schemas to skip:

4-64 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Schemas to not translate: OTHER

Translating schema TEST (1/2) ..

setting up pre-translation .. 3 issues
inspecting the original schema .. 0 issues
preparing the schema for translation .. 0 issues
canonicalizing the original schema .. 0 issues
analyzing the original schema .. 0 issues

Alter-Table-Stmt: 1

Base-Table-Def: 2

Comment-On-Def: 3

Index-Def: 1

Sequence-Def: 1

Synonym-Def: 1

View-Def: 2
translating the schema .. 1 issue

translating dml objects .. 0 issues
outputting the translated schema files .. 0 issues
outputting the language conversion file .. 0 issues
outputting the data mapper file .. 0 issues
outputting the mapper file .. 0 issues
outputting the COBOL copy book files .. 0 issues
outputting the data loader files .. 0 issues
inspecting the final translation .. 0 issues

The DDL Analysis section describes the major translation actions that were performed to change
the input schema into the output schema.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

4-65

Listing 4-45 DDL Translator Log File — DDL Analysis

DDL Analysis

table TABLE2
copy name is TABLE2.cpy
logical name is TABLE2X2
table TABLE1l
copy name is TABLEl.cpy
logical name is TABLE1X1
table TABLE1 has a new target name NEW_TABLE1

column COL_CHAR, child of table TABLE1l, has a new target name NEW_COL_CHAR

The Output Files section lists all files that where created during the translation of the schema.

Listing 4-46 DDL Translator Log File — Output Files

Output Files

Target directory: '".../samples/latest/"
Output Files:
LOG file:
outputs/TEST/rdbms-converter-TEST. log
DDL files:
SQL/TEST/COMMENT-NEW_TABLE1.sql
SQL/TEST/CONSTRAINT-NEW_TABLE1.sql

4-66 Oracle Tuxedo Application Rehosting Workbench Reference Guide

SQL/TEST/IDENTITY-NEW_TABLE1.sql
SQL/TEST/ INDEX-NEW_TABLE1.sql
SQL/TEST/SEQUENCE-SEQUENCE1.sql
SQL/TEST/SYNONYM-TAB1.sql
SQL/TEST/TABLE-NEW_TABLE1.sql
SQL/TEST/TABLE-TABLE2.sql
SQL/TEST/TEST.Ist
SQL/TEST/VIEW-VIEW1.sqgl
SQL/TEST/VIEW-VIEW2.sqgl
COPYBOOK files:
outputs/TEST/TABLEL.cpy
outputs/TEST/TABLE2.cpy
LANGUAGE-CONVERSION file:
outputs/TEST/rdbms-conv-TEST .xml
DATA-MAP file:
outputs/TEST/Datamap-TEST.re
MAPPER file:
outputs/TEST/mapper-TEST.re
SQL*LOADER files:
outputs/TEST/NEW_TABLE1.ctl

outputs/TEST/TABLE2.ctl

The Translation Issues section summarizes any translation issues that were detected during the
translation.

Listing 4-47 DDL Translator Log File — Translation Issues

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-67

4-68

Translation Issues

Showing 3 translation issues.

Setup 2 issues
Next-Schema O issues
Inspect-Original 0 issues
Setup-Schema-Root 0 issues
Canonicalize-Original 0 issues
Analyze-Original 0 issues
Translate-Ddl 0 issues
Inspect-Translated 0 issues
Output-Ddl 0 issues
Output-Lang-Conv 0 issues
Output-Data-Map 0 issues
Output-Mapper 0 issues
Output-Copy-Books 0 issues
Output-Data-Loaders 0 issues
Inspect-Final 0 issues
Shutdown 0 issues
Total 2 issues

Translation Phase: :SETUP (2 issues).

Original File: unknown
Original Line: unknown
Phase: Setup

RDBMS-0024:
None, Version: "None').

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Incomplete source information
Defaulting to (0S: MVS, DB: DB2, Version: "8").

for the system (0S: MVS, DB:

Original File: unknown
Original Line: unknown
Phase: Setup

RDBMS-0083: Rename pattern "COLUMN; X; TABLE1l; COL_CHAR; NEW_COL_CHAR™
is pre-empted by an earlier pattern and will never be applied.

The trailer shows the ending date and time. It also gives a success/failure indication.

Listing 4-48 DDL Translator Log File — Trailer

EndTime: <ending date/time>

Status: Failure

Execution Reports

rdbms . sh creates different execution reports depending on the options chosen. In the following
examples the following command is used:

rdbms.sh -Cgrmi $HOME/trf PJO1DB2

Listing 4-49 Messages Produced When Using the Options -c¢ or -C With rdbms.sh

HHHH B HHHH AR R R R R R R R
Hit

CONVERSION OF DDLs and CTL files and GENERATION of directive files

CMD : /Qarefine/release/M2_L3_4/scripts/launch rdbms-converter -s
/home2/wkb9/param/system.desc -td /home2/wkb9/tmp -rdbms-parameters

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-69

4-70

/home2/wkb9/tmp/config-rdbms-PJO1DB2-param.tmp -ddl PJO1DB2 -target-rdbms

oracle -target-rdbms-version 11 -target-o0s unix

MetaWorld starter

Loading lib: /Qarefine/release/M2_L3_4/Linux64/1ib64/l1ocalext.so
(funcall BATCH-TRANSLATE-SQL-DDL)

Starting translation at 2010/01/15 11:45:16

Preparing for translation

Loading system description: /home2/wkb9/param/system.desc
Warning! OS clause is absent, assuming OS is IBM

Current OS is IBM-MF

Loading the SQL System:

--- Building or Loading SQL-System...

--. Loading SQL-System...

Loading /home2/wkb9/source/sql-system-STDB20RA.pob at 11:45:16...

11:45:17
... Loading SQL-System-Statements.. .

Loading /home2/wkb9/source/sql-system-STDB20RA-Statements.pob at
11:45:17... done at 11:45:17

... Loading SQL-System-Statements...done: #l<a SOURCE-FILE>
... Building or Loading SQL-System...done: #2<a SQL-SYSTEM>
... 6 elements in 1 schema.

Warning! OS clause is absent, assuming OS is IBM

Beginning translation
Mode: MVS DB2 8 to UNIX ORACLE 11g

Schemas to translate: PJ01DB2

Oracle Tuxedo Application Rehosting Workbench Reference Guide

done at

Schemas to skip:

Schemas to not translate:

{1
Ending translation at 2010/01/15 11:45:17
WARNING: errors still exist but are ignored (Total=5>S+1=5).

Check /home2/wkb9/tmp/outputs/PJ01DB2/rdbms-converter-PJO01DB2.1og log
file
Process can continue

Converted DDLS are in /home2/wkb9/tmp/SQL/PJO01DB2 directory

Generated directives files are in /home2/wkb9/tmp/outputs/PJ01DB2 directory

Listing 4-50 Messages Produced When Using the Options -g With rdbms.sh

HHHH AR

Control of schema PJ01DB2

HAHAH AR AR AR AR A AR A AR R R AR
Control of templates

Project Templates list file is missing
/home2/wkb9/param/rdbms/rdbms-templates. txt

OK: Use Default Templates list file

File name is
/Qarefine/release/M2_L3_4/convert-data/default/rdbms/rdbms-templates.txt

HHHH B HHHH AR AR R H AR AR AR

Control of Mapper

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4N

HHHH B HH R R R R R R R R R R R
GENERATION OF PROGRAMS

CMD : /Qarefine/release/M2_L3 4/scripts/launch file-converter -s
/home2/wkb9/param/system.desc -mf /home2/wkb9/tmp/mapper-PJO1DB2.re.tmp
-dmf /home2/wkb9/tmp/outputs/PJ01DB2/Datamap-PJO1DB2.re -td
/home2/wkb9/tmp -tmps /home2/wkb9/tmp/rdbms-templates-PJO1DB2. tmp
-target-sghd oraclell -target-os unix -varchar2 29 -abort

MetaWorld starter

Loading lib: /Qarefine/release/M2_L3 4/Linux64/1ib64/l1ocalext.so
(funcall LOAD-THE-SYS-AND-APPLY-DMAP-AND-MAPPER)

FILE-0092: **File-Converter*: We are in BATCH mode

FILE-0087: * Comand line arguments: begining of analyze

FILE-0088: * recognized argument -s value: /home2/wkb9/param/system.desc

FILE-0088: * recognized argument -mf value:
/home2/wkb9/tmp/mapper-PJO1DB2. re.tmp

FILE-0088: * recognized argument -dmf value:
/home2/wkb9/tmp/outputs/PJ01DB2/Datamap-PJO1DB2 . re

FILE-0088: * recognized argument -td value: /home2/wkb9/tmp

FILE-0088: * recognized argument -tmps value:
/home2/wkb9/tmp/rdbms-templates-PJO1DB2. tmp

FILE-0088: * recognized argument -of value:
/home2/wkb9/tmp/options-Ffile4rdbms-PJO1DB2 . tmp

FILE-0088: * recognized argument -target-sghd value: oraclell

FILE-0088: * recognized argument -target-os value: unix

FILE-0088: * recognized argument -varchar2 value: 29

FILE-0089: * recognized argument -used-for-rdbms

FILE-0089: * recognized argument -abort

FILE-0091: * End of Analyze

FILE-0094: * Parsing mapper file /home2/wkb9/tmp/mapper-PJO1DB2.re.tmp ...

4-12 Oracle Tuxedo Application Rehosting Workbench Reference Guide

FILE-0095: * Parsing data-map file
/home2/wkb9/tmp/outputs/PJ01DB2/Datamap-PJO1DB2.re ...

FILE-0096: * Parsing system description file /home2/wkb9/param/system.desc

Warning! OS clause is absent, assuming OS is IBM
Current OS is IBM-MF

Loading /home2/wkb9/source/symtab-STDB20RA.pob at 11:45:18... done at
11:45:18

... Loading SQL System from POB...

Loading /home2/wkb9/source/sql-system-STDB20RA.pob at 11:45:18... done at
11:45:18

Build-Symtab-DL1 #l<a SYMTAB-DL1>

... Postanalyze-System-RPL. ..
sym=#2<a SYMTAB>
PostAnalyze-Common #2<a SYMTAB>

0 classes

0 classes

0 classes

0 classes

0 classes

13 classes
Loading /home2/wkb9/source/BATCH/pob/RSSBBB0O1.cbl _shrec. ..
Loading /home2/wkb9/source/COPY/pob/0ODCSFO.cpy.cdm. ..
Loading /home2/wkb9/source/COPY/pob/0ODCSFU.cpy.cdm. ..
FILE-0001: * Point 1 I!
FILE-0002: * Point 2 I!
FILE-0010: * Parsing file /home2/wkb9/tmp/outputs/PJ01DB2/0DCSFO.cpy - ..

Parsed 12 lines

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-73

4-14

FILE-0003: * Point 3 !!
FILE-0004: * Point 4 11!
FILE-0005: * Point 5 !!

FILE-0052: * loading pob file
/Qarefine/release/M2_L3_4/convert-data/templates/rdbms/unloading/jcl-unloa
d-DB2-table-SQL.pgm.pob

FILE-0085: * Expanding
/Qarefine/release/M2_L3_4/convert-data/templates/rdbms/unloading/jcl-unloa
d-DB2-table-SQL.pgm ...

FILE-0054: * Writing ODCSFOX1.jclunload

L--}

FILE-0053: * Parsing template file
/Qarefine/release/M2_L3_4/convert-data/default/rdbms/rdbms-move-assignatio
n.pgm

FILE-0085: * Expanding
/Qarefine/release/M2_L3_4/convert-data/default/rdbms/rdbms-move-assignatio
n.pgm ...

FILE-0054: * Writing rdbms-move-assignation.lIst

Rest in peace, Refine...

Listing 4-51 Messages Produced When Using the Options -m with rdbms.sh

HHHH B HHHH AR AR R H AR R AR R A
FORMATTING COBOL LINES
Modified: MOD_PHAM.cbl

HHHH B HHHH AR AR R H AR R AR R A

Oracle Tuxedo Application Rehosting Workbench Reference Guide

CHANGE ATTRIBUTE TO KSH or SH scripts

Listing 4-52 Messages Produced by The -r Options of rdbms.sh

HHAHH AR AR

REMOVE SCHEMA INFORMATION IN SPECIFIC SCRIPTS

RDBMS Table_is_PJ01DB2.0DCSFO=====

Modified <Templates>:loadrdbms-ODCSFO.ksh

Modified <outputs>:0DCSFO.ctl

Modified <SQL>:TABLE-ODCSFO.sqgl

Modified <SQL>:INDEX-ODCSFO.sql

Modified <SQL>:CONSTRAINT-ODCSFO.sql

IGNORED <SQL>:COMMENT-ODCSFO.sql is missing but is optional
==_all_schema_==

IGNORED <SQL>:VIEW-*_sql is missing but is optional
IGNORED <SQL>:SEQUENCE-*.sql is missing but is optional
IGNORED <SQL>:SYNONYM-*_.sql is missing but is optional

IGNORED <SQL>:IDENTITY-*_.sgl is missing but is optional

Number of modified files: 5

Number of ignored files: 5

Oracle Tuxedo Application Rehosting Workbench Reference Guide

4-75

Listing 4-53 Messages Produced by the-i Option of rdbms.sh

HHHH B HH R R R R R R R R R R R

INSTALL COMPONENTS INTO SOURCES USING modif-source-rdbms.sh.sh

==_PJ01DB2.0DCSFO_==

Copied <Templates>:0DCSFOX1.jclunload to
<td>/unload/rdbms/PJ01DB2/0DCSFOX1. jclunload

Copied <Templates>:loadrdbms-ODCSFO.ksh to
<td>/reload/rdbms/PJ01DB2/ksh/1oadrdbms-0ODCSFO.ksh

L-}

Copied <SQL>:CONSTRAINT-ODCSFO.sql to
<td>/SQL/rdbms/PJ01DB2/CONSTRAINT-ODCSFO.sql

IGNORED <SQL>:COMMENT-ODCSFO.sqgl is missing but is optional

IGNORED <SQL>:VIEW-*_.sql is missing but is optional
)

Copied <fixed-components>:CreateReportFromMVS.sh to
<td>/reload/bin/CreateReportFromMVS.sh

Dynamic_configuration

Copied <outputs>:rdbms-conv-PJ01DB2.xml to
/home2/wkb9/param/dynamic-config/rdbms-conv-PJ01DB2 . xml

Number of copied files: 12
Number of executed scripts: 0

Number of ignored files: 5

4-76 Oracle Tuxedo Application Rehosting Workbench Reference Guide

HHHH B HH R R R R R R R R R R R

Detailed Processing

This section describes the Command-line Syntax used by the DB2-to-Oracle Convertor, the
Process Steps summary and the Conversion of DB2 Data Types.

The processes required on the source and target platforms concern:

Configuring the Environments and Installing the Components,

Unloading Data,

e Transferring the Data,

Reloading the Data,

Checking the Transfers,

Command-line Syntax
rdbms.sh

Name
rdbms. sh - generate DB2 migration components.

Synopsis
rdboms.sh [[-c]-C] [-9] [-m] [-r] [-i <installation directory>] <schema
name>] -s <installation directory> (<schema name>,...)]

Description

rdbms . sh generates the Rehosting Workbench components used to migrate z/OS DB2 databases
to UNIX/Linux Oracle databases.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-7117

Options

Generation Options

-C <schema name>
Triggers the generation in $TMPPROJECT, for the schema indicated, of the following
components: ORACLE DDL, CTL files of SQL*LOADER, XML file used by the
COBOL Converter, configuration file(mapper file and Datamap file).

If an error occurs, the process is aborted.

-¢c <schema name>
This option has the same result as the -C option, except the process will abort for any error
or warning.

-g <schema name>
Triggers the generation in $STMPPROJECT, for the schema indicated, of the unloading and
loading components. This generation depends on the information found in the
configuration files.

Modification Options

-m <schema name>
Makes the generated SHELL scripts executable. COBOL programs are adapted to the
target COBOL fixed format. When presented, the shell script belonging to a project, (see
File Modifying Generated Components), that modifies the generated sources is executed.

-r <schema name>
Removes the schema name from generated objects (ORACLE DDL, CTL file, KSH).
When this option is used, the name of the schema can also be removed from COBOL
components by using the option: remove-sql-qualifier Clause located in the COBOL
conversion configuration file used when converting COBOL components.

Installation Option

-i <installation directory> <schema name>
Places the components in the installation directory. This operation uses the information
located in the rdbms-move-assignation.pgm file.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Final Option

-s <installation directory> (<schema name 1>, <schema name 2>, ...)
Enables the generation of the COBOL converter configuration file. This file takes all of

the unitary XML files of the project.

All these files are created in $PARAM/dynamic-config

Example
rdbms.sh -Cgrmi $HOME/trf PJO1DB2

rdoms.sh -s $HOME/trf PJO1DB2

Unitary Usage Sequence
If the rdbms_sh options are used one at a time, they should be used in the following order:

1.

o o~ w N

=>-cor-C
=>-g
=>-m
=>-r

=>

=> -5 (should be executed once steps 1 to 5 have been executed for all schemas).

Process Steps

Configuring the Environments and Installing the Components
This section describes the preparation work on the source and target platforms.

Installing the Unloading Components Under z/0S

The components used for the unloading (generated in $HOME/trf/unload/rdbms) should be
installed on the source z/OS platform (the generated JCL may need adapting to specific site
constraints).

Oracle Tuxedo Application Rehosting Workbench Reference Guide

4-19

Installing the Reloading Components on the Target Platform

The components used for the reloading (generated in $HOME/trf/reload/rdbms) should be
installed on the target platform.

The following environment variables should be set on the target platform:

Table 4-13 Target Platform Environment Variables

Variable

Value

DATA_SOURCE

The name of the directory containing the unloaded DB2 tables transferred
from z/OS to be reloaded into Oracle tables.

BIN The location of the generic reload and control scripts
($HOME/trf/reload/bin).

TMPPROJECT The temporary directory.

MT_LOG Directory to contain execution logs.

CTL Directory containing the <table name>_ctl files used by the

SQL*LOADER ($HOME/trf/reload/rdbms/<schema
name>/ctl).

DATA_TRANSCODE

Temporary directory used by the DB2 binary data transcoding script (contains
temporary files in ASCII format).

Note: This directory is not used when the value of
<jcl_unload_format_file>is “csv”. The MVS file created
by the DB2 utility has already been converted by the transfer

protocol.
NLS_LANG Set according to the instructions in the Oracle documentation: Oracle
Database Globalization Support Guide
NLS_SORT Set according to the instructions in Index, Sort Parameters section and the
NLS COMP Oracle Database Globalization Support Guide.

NLS_DATE_FORMAT

NLS_TIMESTAMP_FO
RMAT

NLS_TIME_FORMAT

Set according to the instructions in Date, Time Parameters section and the
Oracle Database Globalization Support Guide.

4-80 Oracle Tuxedo Application Rehosting Workbench Reference Guide

In addition, the following variable should be set according to the information in the Oracle
Tuxedo Application Rehosting Workbench Installation Guide:

e MT_DB_LOGIN.

Installing the MWDB20RA Package Component on the Target Platform

Oracle Tuxedo Application Rehosting Workbench has to reproduce the same behavior found on
the DB2/z0S platform on the Oracle database. In order to handle certain DB2/zOS specific cases,
the DB2-to-Oracle Convertor includes Oracle packages named MWDB20RA and MWDB20RA_CONST
which contain the Oracle functions and project constants respectively.

Those functions are used for managing all DATE, TIME and TIMESTAMPS features. They are
added to the COBOL programs by the COBOL Converter SQL Rules.

The packages enabling the DB2 behavior are located in the directory:
REFINEDIR/convert-data/fixed-components/
The packages are named:

MWDB20RA.plb
MWDB20RA_CONST.sql
To activate the package, install it on the target Oracle database:

1. Copy MWDB20RA.plb and MWDB20RA_CONST.sql onto your target UNIX/Linux platform.
2. Modify MWDB20ORA_CONST .sql package in order to adapt format of constant values.

3. Install the package under SQLPLUS:
sqlplus $MT_DB_LOGIN <<EOF
start REFINEDIR/convert-data/fixed-components/MWDB20RA_CONST.sql
start REFINEDIR/convert-data/fixed-components/MWDB20RA.plb
quit
EOF

Listing 4-54 Messages Produced when Installing the MWDB20RA Package Under SQLPLUS

SQL*Plus: Release 11.1.0.6.0 - Production on ...
Copyright (c) 1982, 2007, Oracle. All rights reserved.

Connected to:

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-81

4-82

Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 - 64bit Production

With the Partitioning, OLAP, Data Mining and Real Application Testing
options

SQL>

Package created.

SQL>

Package created.
Package body created.

SQL> Disconnected from Oracle Database 11g Enterprise Edition Release
11.1.0.6.0 - 64bit Production

With the Partitioning, OLAP, Data Mining and Real Application Testing
options

Unloading Data

To unload each DB2 table, a JCL using the IBM DB2 utility is executed. If the DB2 table does
not contain the CLOB and BLOB data types, the utility creates three files:

e adata file,
e alog file,

e a SYSPUNCH file.

If the DB2 table contains a CLOB or BLOB data types, the dsnuti Ib utility creates one file per
each LOBS column and row in the DB2 table:

e a LOBS data file (the location depends on <jcl_unload_lob_fFile_system> parameter)
These unloading JCLs are named <table name>.jclunload
A return code of 0 is sent on normal job end.

If the table name is shorter or longer than eight characters, the Rehosting Workbench attributes
an eight-character name to the z/OS JCL as close as possible to the original. The renaming
process maintains the uniqueness of each table name.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Transferring the Data

The unloaded data files should be transferred between the source z/OS platform and the target
UNIX/Linux platform using the file transfer tools available at the site (CFT, FTP, ...).

Transferring the SBCS Data

If the data files are Single-Byte Character Set (SBCS) encoding, the transfer mode listed in
Table 4-14 could be used on the file transfer tools according to the file types and db-param.cfg
parameters:

Table 4-14 Transfer Mode Used for File Transfer Tools

File Type Parameter Transfer Mode
DATA rdbms:jcl_unload_format_file:binary Binary
DATA missing parameter Binary

rdbms: jcl_unload_format_file

DATA rdbms:jcl_unload_utility_name:dsnuproc Text
rdbms: jcl_unload_format_file:csv

BLOB & rdbms:jcl_unload_utility_name:dsnutilb Binary
DATA

CLOB & rdbms:jcl_unload_utility_name:dsnutilb Binary
DATA

LOG Text
SYSPUNCH Text

The files transferred to the target UNIX/Linux platform should be stored in the $DATA_SOURCE
directory.

Transferring the MBCS Data

If the data files are Multiple-Byte Character Set (MBCS) encoding, you need to use the FTP for
transcoding.

Typically, the procedures for transferring the MBCS data file (take Simplified Chinese as an
example) from Mainframe to open system are the following:

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-83

4-84

Log in the source platform.

Run "tso ftp" command to connect the target platform.

. Set the transfer options using ftp commands:

locsite encoding=MBCS
locsite mbdataconn=(file_system_codepage, network_transfer_codepage)
locsite mbsendeol=CRLF

file_system_codepage and network_transfer_codepage are the corresponding
Mainframe code pairs to your target MBCS. For example, for Simplified Chinese character
set, choose I1BM-5488 as file_system_codepage and IMB-1388 or UTF-8 as
network_transfer_codepage.

Run "ftp put” command to transfer the data file to target platform.

. Set NLS_LANG environment parameter and reload the data file without transcoding.

For example: export NLS_LANG="SIMPLIFIED CHINESE_CHINA.XXXX"

Reloading the Data

The scripts enabling the transcoding (except for transcoding when
<jcl_unload_format_fFile> is set to “csv”) and reloading of data are generated in the
directory:

$HOME/trf/reload/rdbms/<schema name>/ksh.

The format of the script names is:

loadrdbms-<table name>.ksh

Each script launches the COBOL program that performs the transcoding and then the
SQL*LOADER utility. The CTL files used by SQL*LOADER are named:

<table name>.ctl

The reloading script uses the SQL*LDR Oracle utility. Because this utility can access to ORACLE
server only, this variable should not contain @<oracle_sid> string especially for this reloading
step.

Transcoding and Reloading Command

Name
loadrdbms — transcode and reload data.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Synopsis
loadrdbms-<table name>_ksh [-t | [-O]|-T1] [-1] [-c: <method>]

Options
-t
Transcodes the file, including all BLOB or CLOB files if any.
-T
Transcodes the file associated to the table only (it ignores CLOB and BLOB files). This
option is used when a table contains CLOB or BLOB columns.
-0
For BLOB columns: creates only an UNIX link to all binary BLOB transferred files.
For CLOB columns: transcodes only all binary CLOB transferred files.
-l
Reloads the data into Oracle table.
-C rows
Implements the verification of the transfer (see Checking the Transfers).
Checking the Transfers

This check uses the following option of the loadrdbms-<table name>.ksh

-c dsntiaul

This option verifies after the reloading that the reloaded Oracle table contains the same number
of records as the equivalent table unloaded from z/OS by the DB2 unloading utility. If the
number of records is different, an error message is produced.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 4-85

4-86 Oracle Tuxedo Application Rehosting Workbench Reference Guide

File Convertor: Introduction

This chapter introduces the Rehosting Workbench File Convertor used to migrate files from the
source platform (z/OS) to Unix/Linux Micro Focus or COBOL-IT files or to RDBMS tables, it
contains common explanations and usages for specific behaviors of those File Convertors.

You can combine the conversion target between files and RDBMS tables, depending on an
optional clause in a Configuration file.

The File Convertor documentation is split into four parts:
e File Convertor: Introduction: introduces the file convertors and explains common behavior.
e File-to-File Converter: describes File-to-File conversion.
e File-to-Oracle Converter: describes File-to-Oracle conversion.

e File-to-Db2/luw (udb) Converter: describes File to Db2/luw conversion.

This chapter cdescribes the migration tools that are generated. The conversion is performed in the
context of other components translated or generated by the other Oracle Tuxedo Application
Rehosting Workbench tools.

Several configuration files need to be set, see List of the Input Components, before launching the
conversion process.

The different objects generated are described in the target specific sections. Some objects are only
generated when migrating VSAM files to Oracle, you can find PCO programs for Oracle, SQB
programs for Db2/luw, SQL files, relational module, logical module, utilities, configuration
files,unloading JCL and COBOL program conversion, ...

Oracle Tuxedo Application Rehosting Workbench Reference Guide 5-1

Overview of the File Convertor

5-2

Purpose

The purpose of this section and the target specific File Convertor sections is to describe precisely
all the features of the Rehosting Workbench File Convertor tools including:

e Inventory of files to migrate.

e Detailed description of converted files and Oracle tables or Db2/luw (udb) tables on the
target platform for each file.

Description of the different commands to be used with the File Convertor.

Description of the data unloading options on the source platform.

e Description of the data loading options on the target platform.

Structure
e Overview of the File Convertor.
e List of the Input Components.

e For messages, see File Convertor Messages.

See Also

The conversion of data is closely linked to the conversion of COBOL programs, see:

e COBOL Converter
For information about the specific output components generated see:

e File-to-File Converter
e File-to-Oracle Converter

e File-to-Db2/luw (udb) Converter

File Organizations Processed

Note: You cannot generate both Oracle and DB2/Luw target databases at the same time.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

z/0S File Organizations

The Oracle Tuxedo Application Rehosting Workbench File Convertor supports different file
organizations on the target platform.

Table 5-1 lists the file organizations handled by z/OS.

Table 5-1 z/0S File Organizations

z/0S Source File Comment

QSAM Sequential file
VSAM KSDS Indexed file

VSAM RRDS Relative file

VSAM ESDS Sequential file
PDS/PDS2 File Partitioned DataSet
Organization

GDG File Organization Generation Data Group

File Conversion to File or to RDBMS Table

When migrating files from a z/OS source platform to a target platform, the first question to ask,
when VSAM is concerned, is whether to keep a file or migrate the data to an RDBMS table. For
example, permanent files to be later used via Oracle or Db2/luw databases or files that needs
locking at the record level.

Oracle Tuxedo Application Rehosting Workbench
Configuration Name

A configuration name is related to a set of files to be converted. Each set of files can be freely
assembled. Each configuration could be related to a different application for example, or a set of
files required for tests.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 5-3

5-4

File Descriptions and Managing Files With the Same
Structure

For each candidate file for migration, its structure should be described in COBOLCOBOL
format. This description is used in a COBOL copy by the Rehosting Workbench COBOL
converter, subject to the limitations described in COBOL Description.

Once built, the list of files to migrate can be purged of files with the same structure in order to
save work when migrating the files by limiting the number of programs required to transcode and
reload data.

Using the purged list of files, a last task consists of building the files:
e Datamap-<datamap name>.re

® Mapper-<mapper name>.re

COBOL Description

A COBOL description is related to each file and considered as the representative COBOL
description used within the application programs. This description can be a complex COBOL
structure using all COBOL data types, including the OCCURS and REDEFINES notions.

This COBOL description will often be more developed than the COBOL file description (FD).
For example, an FD field can be described as a PIC X(364) but really contain a three times
defined area including, in one case a COMP-3 based numerals table, and in another case a
complex description of several characters/digits fields etc.

It is this developed COBOL description which describes the application reality and therefore is
used as a base to migrate a specific physical file.

The quality of the file processing execution depends on the quality of this COBOL description.
From this point, the COBOL description is not separable from the file and when referring to the
file concerned, we mean both the file and its representative COBOL description. The description
must be provided in COBOL format, in a file with the following name:

<COPY name>.cpy

Note: If a copy book on the source platform provides a detailed description of the file, the file
can be directly used and declared in the Rehosting Workbench.

COBOL Description Format

The format of the COBOL description must conform to the following rules:

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Only one level 01.
The word FILLER is not allowed.

Fields names must be unique.

e Some words are reserved, a list is supplied in the Appendix of the Rehosting Workbench
Reference Guide.

e The description should begin in column 1 without any preceding COBOL sequence
numbers.

e Comments may be inserted by placing an * in column 1.

e Field level numbers can start from column 2.

COBOL Description and Related Discrimination Rules

Within a COBOL description there are several different ways to describe the same area, which
means to store objects with different structures and descriptions at the same place.

As the same zone can contain objects with different descriptions, to be able to read the file, we
need a mechanism to determine the description to use in order to interpret correctly this data area.

We need a rule which, according to some criteria, generally the content of one or more fields of
the record, will enable us to determine (discriminate) the description to use for reading the
re-defined area.

In the Rehosting Workbench this rule is called a discrimination rule.

Any redefinition inside a COBOL description lacking discrimination rules presents a major risk
during the file transcoding. Therefore, any non-equivalent redefined field requests a
discrimination rule. On the other hand, any equivalent redefinition (called technical redefinition)
must be subject to a cleansing within the COBOL description (see the example below COBOL
Description Format).

The discrimination rules must be presented per file and highlight the differences and
discriminated areas. Regarding the files, it is impossible to reference a field external to the file
description.

The discrimination rules are provided in the mapper file. The syntax is described in chapter
Mapper File of this document.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 5-5

List of the Input Components

The File Convertor needs input components to generate the migration components to be used on
the source and target platforms. The Input Components required are:

e Configuration file: db-param.cfg.
e Script modifying the generated components: file-modif-source.sh.
e List of templates: file-template.txt or file-template-db2luw.txt.

e Transfer of components generated: fi le-move-assignation.pgm or
File-move-assignation-db2luw.pgm.

e Configuration file: Datamap-<configuration name>.re.
e Configuration file: mapper-<configuration name>.re.
e COBOL description.

e Internal POB Files.

The two configuration files (mapper and datamap) are described in this section. The others are
described in detail for each target output:

o File-to-File Converter
o File-to-Oracle Converter

e File-to-Db2/luw (udb) Converter

Datamap File

This is a configuration file used by the Rehosting Workbench file converter to add or modify
information on the physical files of a system.

Each ZOS file to be migrated must be listed in this file; the file only contains the list of files to
be migrated.

The Datamap file must be created in the directory: $PARAM/Fi le with the complete name:

Datamap-<configuration name>.re
Where <configuration name> is the name of the current configuration used.

5-6 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Datamap Syntax and Parameters

Listing 5-1 Datamap File

data map <configuration name>-map system cat::<project name>
Ffile <physical file name>
organization <organization>
[is-gdg limit <p> [scratch/noscratch] [empty/noempty]
[keys offset <n> bytes length <m> bytes primary]

[relkey size <m> bytes]

Table 5-2 Datamap File Parameters

Parameter Value

<configuration name> Name of the configuration to process.

<project name> Project name as described in the System Description File.
<physical file name> z/OS physical file name.

<organization> File organization: Indexed, Sequential or Relative.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 5-7

5-8

Tahle 5-2 Datamap File Parameters

Parameter

Value

is-gdg limit <p>
[scratch/noscratch]
[empty/noempty]

« p parameter value is used to specify the total number of
generations that the GDG may contain.

¢ scratch/noscratch parameters are mutually exclusive.
Scratch parameter specifies that whenever an entry of the
GDG is removed from the index, it should be deleted
physically and uncataloged. Noscratch parameter specifies
that whenever an entry of the GDG is removed from the
index, it should be uncataloged but not physically deleted.

* empty/noempty parameters are mutually exclusive.
Empty specifies that all existing generations of the GDG are
to be uncataloged whenever the generations of GDG reaches
the maximum limit . Noempty specifies that only the oldest
generation of the GDG is to be uncataloged if the limit is
reached.

keys clause .<n> .. <m> ..

For indexed files, this clause is used to describe the key;
where <n> is the start position and <m> is the length of the
key.

relkey clause ..<m>

For relative files, this clause is used to describe the key,
where <m> is the length of the key.

If this clause is omitted, the default value of the relative
key size is 8 bytes, which means the maximal value of the
relative key is 99,999,9909.

% text

Comment ignored by the Rehosting Workbench.

Listing 5-2 Datamap Example

data map STFILEORA-map system cat::STFILEORA

%% Datamap File PJO1AAA_SS.QSAM.CUSTOMER

Tile PJO1AAA.SS.QSAM.CUSTOMER

organization Sequential

%% Datamap File PJO1AAA_SS.VSAM.CUSTOMER

Tile PJO1AAA.SS._VSAM.CUSTOMER

Oracle Tuxedo Application Rehosting Workbench Reference Guide

organization Indexed

keys offset 1 bytes length 6 bytes primary
file PJO1AAA.SS.VSAM.CODPAY

organization Relative

relkey size 6 bytes

Mapper File

This is a configuration file used by the Rehosting Workbench File Convertor to associate each
file to migrate with:

e A description,
e Discrimination rules (when necessary)

e Reengineering options (as described in the following sections).

Each z/OS file listed in the Datamap File, must be described in the mapper file.

Mapping File Clause

Mapping files consists in choosing, for each physical file to be treated, the associated COBOL
description and discrimination rules.

Listing 5-3 Mapper File Clause Structure

file <Physical file name>

[converted] [transferred]

table name <Table Name>
include <"path/Copy name'>
map record <record name> defined in <"path/Copy name'>

source record <record name> defined iIn <"path/Copy name'>
logical name <logical file name>

converter name <converter name>

Oracle Tuxedo Application Rehosting Workbench Reference Guide 5-9

[attributes <attribute clause>]

[mapping strategies clauses]

Table 5-3 Mapper File Parameters

file <physical Z0S physical file name, Name used in the Datamap file.

filename>

converted Indicates file is to be converted to an RDBMS table or via an access
function (converted clause can be combined with transferred
clause)

transferred Indicates that the file is to be loaded and reloaded (can be combined with
converted).

table name RDBMS table name.

include “<path/COPY Access path and name of the descriptive copy of the file to migrate.

name>"’
map record <record e record name: corresponds to the level 01 field name of the
name> defined in copy description.

<“path/COPY name’>
e path/COPY name: corresponds to the access path and name

of the descriptive copy of the file to migrate.

source record e record name: corresponds to the level 01 field name of the
<record names> copy description of the file to migrate.

defined in

<"path/COPY name'> e path/COPY name: corresponds to the access path and name of

the descriptive copy of the file to migrate.

Logical name The Logical file name is chosen by the user, maximum eight characters.
<logical file name> This name is used for naming the objects (COBOL, JCL) created by the
different tools in the Rehosting Workbench.

5-10 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Table 5-3 Mapper File Parameters

Converter name Same name and use as logical file name.
<program name>

attributes This optional clausehas two attributes that can be used:
<attribute clause> ., | oGICAL_MODULE_IN_ADDITION

e LOGICAL_MODULE_ONLY

Their action is described in the next table.

Table 5-4 Mapper File Attributes

attributes <attribute clause> Role

Attribute clause absent To be used when the target file is an RDBMS table.

In this case some access functions and Korn shell utilities are
generated.

LOGICAL_MODULE_IN_ADDITION To be used when the target file is an RDBMS table.

In this case some access functions, ogical access functions
and Korn shell utilities are generated.

LOGICAL_MODULE_ONLY This clause can be used when the target file is an RDBMS
table or a MicroFocus/COBOL-IT file.

In this case only the ASG_<logical file name> access
function is generated. This access function can be called by
Oracle Tuxedo Application Runtime for CICS.

Note: For access functions, see Access Functions and Utility Programs in File-to-Oracle
Converter or Access Functions and Utility Programs in File-to-Db2/luw (udb) Converter.

Listing 5-4 Mapper File Example

ufas mapper STFILEORA

Tile PJO1AAA_SS_VSAM.CUSTOMER converted transferred
table name CUSTOMER
include ""COPY/ODCSFOB.cpy"*

map record VS-ODCSFO-RECORD defined in "COPY/ODCSFOB.cpy"

Oracle Tuxedo Application Rehosting Workbench Reference Guide 5-11

source record VS-ODCSFO-RECORD defined in *""COPY/ODCSFOB.cpy"*
logical name ODCSFOB
converter name ODCSFOB

attributes LOGICAL_MODULE_IN_ADDITION

In this example the mapper file is named STFILEORA. The file processes only one file named
PJO1AAA.SS.VSAM.CUSTOMER that is migrated to an Oracle RDBMS table using the convert
option. The ODCSFOB. cpy copy file used to describe the file is one of the source copy files.

Choice of Oracle or Db2/luw (udb) is made in the db-param.cfg configuration file.

COBOL Description

Oracle Tuxedo Application Rehosting Workbench File Convertor needs a description associated
with each table, so a first step generates a COBOL copy description.

Once the COBOL description files have been prepared, the copy files described in the
mapper-<configuration name>.re file should be placed in the SPARAM/Fi le/recs-source
directory.

If you use a COBOL copy book from the source platform to describe a file (see COBOL
Description), then it is the location of the copy book that is directly used.

POB Files

These files are created during cataloging, for further information see POB Files for ASTs.

Symtab File

symtab-<schema name>.pob

This file is created during cataloging, it must be up-to-date and present so that File Convertor can
migrate DB2 objects to Oracle. See The Cataloger Symtab and Other Miscellaneous Files.

5-12 Oracle Tuxedo Application Rehosting Workbench Reference Guide

File-to-File Converter

This chapter describes the Rehosting Workbench File-to-File Converter used to migrate files
from the source platform (z/OS) to Unix/Linux Micro Focus or COBOL-IT files and describes
the migration tools that are generated. The conversion is performed in the context of other
components translated or generated by the other Oracle Tuxedo Application Rehosting
Workbench tools.

Several configuration files need to be set, see Description of the Configuration Files, before
launching the conversion process.

This chapter is a continuation of the File Convertor: Introduction section, and includes several
links, for example, the different objects generated are described in List of the Input Components.

Overview of the File-to-File Converter
Purpose

The purpose of this section is to describe precisely all the features of the Rehosting Workbench
File-to-File Converter tools including:

e Inventory of files to migrate.
o Detailed description of converted files on the target platform for each file.
e Description of the different commands to be used with the File-to-File Converter.

e Description of the data unloading options on the source platform.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 6-1

e Description of the data loading options on the target platform.

Structure

e Overview of the File-to-File Converter.

e Description of the Input Components including Description of the Configuration Files.
e Description of the Output Files including the Generated Objects.

e Detailed Processing including the Command-Line Syntax.

e For messages, see File Convertor Messages.

See Also
The conversion of data is closely linked to the conversion of COBOL programs, see:

e COBOL Converter
The previous chapter explains all common usages:

e File Convertor: Introduction

File Organizations Processed
Keeping z/0S File Organization on the Target Platform

The Oracle Tuxedo Application Rehosting Workbench File-to-File Converter is used for those
files that keep their source platform format (sequential, relative or indexed files) on the target
platform. On the target platform, these files use a Micro Focus COBOL or COBOL-IT file
organization equivalent to the one on the source platform.

The following table lists the file organizations handled by z/OS and indicates the organization
proposed on the target platform

Tahle 6-1 z/0S to UNIX File Organizations
z/0S source file UNIX ISAM target file

QSAM Line sequential ISAM

VSAM KSDS Indexed ISAM

6-2 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Tahle 6-1 z/0S to UNIX File Organizations
z/0S source file UNIX ISAM target file

VSAM RRDS Relative ISAM
VSAM ESDS Line sequential ISAM
PDS File Organization

Files that are part of a PDS are identified as such by their physical file name, for example:
METAWOO.NIV1_ESSAI(FIC).

An unloading JCL adapted to PDS is generated in this case. The source and target file
organizations as indicated in the above table are applied.

GDG File Organization

Generation Data Group (GDG) files are handled specially by the unloading and reloading
components in order to maintain their specificity (number of GDG archives to unload and reload).
They are subsequently managed as generation files by OracleTuxedo Application Runtime Batch
(see the Oracle Tuxedo Application Runtime Batch Reference Guide). On the target platform
these files have a LINE SEQUENTIAL organization.

Oracle Tuxedo Application Rehosting Workbench
Configuration Name

A configuration name is related to a set of files to be converted. Each set of files can be freely
assembled. Each configuration could be related to a different application for example, or a set of
files required for tests. The set of files can contain both files or RDBMS table targets.

Environment Variables
Before starting the process of migrating data two environment variables should be set:
o export TMPPROJECT=/$HOME/tmp
Indicates the location to store temporary objects generated by the process.
o export PARAM=/$HOME/param

Indicates the location where the configuration files required by the process are stored.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 6-3

Description of the Input Components

6-4

File Locations

Location of file.sh
The file.sh tool is located in the directory:

$REFINEDIR/convert-data/

Location of db-param.cfg File
The db-param.cfg configuration file is located in the directory given in the variable:

$PARAM

Description of the Configuration Files

This section lists the files and their parameters that can be used to control the migration of z/OS
files to UNIX\Linux files.

db-param.cfg
This file should be created in the directory indicated by the $SPARAM directory:

$PARAM/db-param.cfg

Listing 6-1 db-param.cfg Template

This configuration file is used by FILE & RDBMS converter
Lines beginning by "#" are ignored

#
#
#
write information in lower case

#

common parameters for FILE and RDBMS

#

source information is written into system descriptor file (DBMS=,

DBMS-VERSI0N=)

Oracle Tuxedo Application Rehosting Workbench Reference Guide

target_rdbms_name:<target_rdbms_name>
target_rdbms_version:<target rdbms_version>
target_os:<target_os>

optional parameter

target_cobol :<target_cobol>

#

specific parameters for FILE to RDBMS conversion

Ffile:char_limit_until_varchar:<char_limit>

Parameters and Syntaxes

Table 6-2 db-param.cfg Parameters

Parameter Description Value

General Parameters

<target_rdbms_name> Name of target RDBMS oracle
<target_rdbms_version> Version of target RDBMS 11
<target_os> Name of target operating system unix or linux

Optional Parameter

<target_cobol> Name of COBOL language. cobol_mf
Default value is “cobol_m¥” for COBOL cobol_it
Microfocus.

Choice to this COBOL language impacts the
generation of access functions.

Specific file-to-oracle conversion parameters

<char_limit> Not applied

Oracle Tuxedo Application Rehosting Workbench Reference Guide 6-5

Note: This section describesthe File Convertor tool. A configuration file can be used to migrate
z/OS files to UNIX/Linux files or RDBMS tables.

File Modifying Generated Components

The generated components may be modified using a project's own scripts. These scripts (sed,
awk, perl,...) should be placed in:

$PARAM/File/File-modif-source.sh

When present, this file will be automatically executed at the end of the generation process. It will
be called using the <configuration name> as an argument.

file-template.txt

This file is put in place during the installation of the Rehosting Workbench, it contains the
templates that perform the generation of the different migration tools. The file is located in:

$REFINEDIR/convert-data/defaul t/file/file-templates.txt

Listing 6-2 file-template.txt

% Unloading all File
% All SAM file were transfered using FTP/Binary

% VSAM unloaded step:

#VAR: TEMPLATES#/unloading/jcl-unload-MVS-REPRO.pgm

%

% To create a specific template, copy this template into :

% -- #VAR:PARAM#/fFile/specific-templates/unloading/jcl-unload-customer.pgm

%

% Loading
#VAR:TEMPLATES#/l1oading/file-reload-files-txt.pgm

% Loading File to File
#VAR:TEMPLATES#/loading/unix-file/reload-files-ksh.pgm

#VAR: TEMPLATES#/loading/unix-Ffile/reload-mono-rec.pgm

% Loading File to Oracle

6-6 Oracle Tuxedo Application Rehosting Workbench Reference Guide

#VAR:TEMPLATES#/l1oading/unix-oracle/load-tables-ksh._pgm
#VAR:TEMPLATES#/loading/unix-oracle/rel-mono-rec.pgm
#VAR:TEMPLATES#/dml/clean-tables-ksh._pgm

#VAR: TEMPLATES#/dml/drop-tables-ksh_pgm
#VAR:TEMPLATES#/dml/create-tables-ksh.pgm

#VAR: TEMPLATES#/dml/ifempty-tables-ksh.pgm
#VAR:TEMPLATES#/dml/ifexist-tables-ksh.pgm

%

% Generate Logical & Relational Module
#VAR: TEMPLATES#/dml/module/open-multi-assign-free.pgm
#VAR: TEMPLATES#/dml/module/open-mono-rec-idx-perf.pgm
#VAR: TEMPLATES#/dml/module/open-mono-rec-sequential . pgm
#VAR: TEMPLATES#/dml/module/open-mono-rec-relative.pgm

%

% and utilities
#VAR: TEMPLATES#/dml/module/decharge-mono-rec.pgm
#VAR:TEMPLATES#/dml/module/recharge-table.pgm
#VAR:TEMPLATES#/dml/module/close-all-files_pgm
#VAR:TEMPLATES#/dml/module/init-all-files.pgm

%

% configuration file for translation and runtime ******x
#VAR:TEMPLATES#/dml/generate-config-wb-translator-jcl.pgm
#VAR:TEMPLATES#/dml/generate-rdb-txt._pgm

%

% included file to include into modified-components

#VAR: TEMPLATES#/dml/include-modified-components.pgm

%

Oracle Tuxedo Application Rehosting Workbench Reference Guide 6-7

6-8

% S
% MANDATORY

% : used just after the generation
#VAR:TEMPLATES#/dml/generate-post-process.pgm
% : used when using -i arguments

#VAR:DEFAULT#/file-move-assignation.pgm

Note: This file contains both File-to-File and File-to-Oracle migration parameters.

When required, another version of the file-template.txt file can be placed in the
$PARAM/Fi le directory. The use of an alternative file is signaled during the execution of
file.sh by the message:

Listing 6-3 Execution log with Alternative Template File

HHHHH AR AR R R R R R R R R R R
Control of templates
OK: Use Templates list file from current project:
File name is /home2/wkb9/param/file/file-templates.txt

HHHH B HH R R R R R H R R R R R R

file-move-assignation.pgm

This file is placed during the installation of the Rehosting Workbench, it controls the transfer of
components generated in the different installation directories. This file indicates the location of
each component to copy during the installation phase of file.sh, when launched using
file.sh -i.

The file is located in:
$REFINEDIR/convert-data/defaul t/file/file-move-assignation.pgm

This file can be modified following the instructions found at the beginning of the file:

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Listing 6-4 file-move-assignation.pgm Modification Instructions

L-1

*@ (c) Metaware:file-move-assignation.pgm. $Revision: 1.2 $
*release_format=2.4

*

* format is:

* <typ>:<source_directory>:<file_name>:<target_directory>

* typ:

* 0: optional copy: if the <file_name> is missing, it is ignored

* M: Mandatory copy: abort if <file_name> is missing.

* E: Execution: execute the mandatory script <file_name>.

* Parameters for script to be executed are:

* basedir: directory of REFINEDIR/convert-data

* targetoutputdir: value of "-i <targetdir>"

* schema: schema name

* target_dir: value written as 4th parameter in this file.

* d: use this tag to display the word which follows

* source_directory:

* T: generated components written in <targetdir>/Templates/<schema>

* 0: components written in <targetdir>/outputs/<schema>

* S: SQL requests (DDL) generated into <targetdir>/SQL/<schema> directory

* F: fixed components present in REFINEDIR

* s: used with -s arguments: indicates the target directory for DML
utilities
* (in REFINEDIR/modified-components/) which manipulate all schemas.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 6-9

6-10

* file_name: (except for typ:d)

* name of the file in <source_directory>

* target_directory: (except for typ:d, given at 4th argument for typ:E)

* name of the target directory

* IT the 1st character is /', component is copied using static directory
* and not In <td> directory

* IT the 1st character is "!', target directory contains both directory
and

* target file name.

*

L]

Note: This file contains both File-to-File and File-to-Oracle migration parameters.

Datamap File

This is a configuration file used by the Rehosting Workbench file converter to add or modify
information on the physical files of a system.

See File Convertor: Introduction: Datamap File .

Mapper File

This is a configuration file used by the Rehosting Workbench File-to-File Converter to associate
each file to migrate.

See File Convertor: Introduction: Mapper File.

Note: In the mapper file, the converted clause is associated withthe RDBMS table target
only. Do not use this clause inthe File-to-File Converter.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Tahle 6-3 Mapper File Specific Parameters for the File-to-File Converter

file <physical
filename>

Z0S physical file name, Name used in the Datamap file.

converted

Used with the attributes LOGICAL_MODULE_ONLY clause, it
indicates this file is kept as a MicroFocus or COBOL-IT file. It is
accessed with a logical access COBOL function by Oracle Tuxedo
Application Runtime CICS.

Without the attributes clause above, it indicates that this file is to
be converted to an RDBMS table. You have to ignore this clause to
indicate that the file is to be converted to a file.

The converted clause can be combined with the transferred
clause.

transferred

Indicates that the file is to be loaded and reloaded (can be combined with
the converted clause).

include “<path/COPY
name>"’

Access path and name of the descriptive copy of the file to migrate.

map record <record
name> defined in
<“path/COPY name’>

e record name: corresponds to the level 01 field name of the copy
description.

e path/COPY name: corresponds to the access path and name of the
descriptive copy of the file to migrate.

source record
<record names>
defined in
<"path/COPY name''>

* record name: corresponds to the level 01 field name of the copy
description of the file to migrate.

e path/COPY name: corresponds to the access path and name of the
descriptive copy of the file to migrate.

Logical name
<logical file name>

The Logical file name is chosen by the user, maximum eight characters.
This name is used for naming the objects (COBOL, JCL) created by the
different tools in the Rehosting Workbench.

Converter name
<program name>

Same name and use as logical file name.

attributes
<attribute clause>

In File-to-File Converter, this optional clause can be used to allow
generation of a logical module access function. Attribute clause can be:

= LOGICAL_MODULE_ONLY

In this case only the ASG_<logical file name> access function is
generated

Oracle Tuxedo Application Rehosting Workbench Reference Guide 6-11

6-12

Discrimination Rules

A discrimination rule must be set on the redefined field; it describes the code to determine which
description of the REDEFINES to use and when.

[field <field_name>]
L]

rule iIf <condition> then Field_Name_x
[elseif <condition> then field_Name_y]

[else Field_Name_z]
Discrimination Rules Syntax and Parameters

Table 6-4 Discrimination Rules

Syntax Description

Field_Name_{X,Y,Z Thisisthe field that will be used when the associated condition is validated:;

} this field is one of the redefined fields.

Condition Is a conditional expression composed with field name, operators and
COBOL constants.

» Logical operators are: not, and, or

» Comparison operators are: = <> < >

« Specific operators are: is numeric, is all SPACE

* Following COBOL constants may be used: spaces, zeros, high-value,
low-value

Note: These conditions can be parenthesized.

Discrimination Rules Examples

In the following example the fields DPODP-DMDCHQ, DPONO-PRDTIV, DP5CP-VALZONNUM are
redefined.

Listing 6-5 Discrimination Rule COBOL Description

01 ZART1.
05 DPODP PIC X(20).

Oracle Tuxedo Application Rehosting Workbench Reference Guide

05 DPODP-RDCRPHY PIC 9.
05 DPODP-DMDCHQ PIC X(6).-
05 DPODP-REMCHQ REDEFINES DPODP-DMDCHQ.
10 DPODP-REMCHQ1 PIC 999.
10 DPODP-REMCHQ2 PIC 999.
05 DPODP-VIREXT REDEFINES DPODP-DMDCHQ.
10 DPODP-VIREXT1 PIC S9(11) COMP-3.
05 DPONO-NPDT PIC X(5).-
05 DPONO-PRDTIV PIC 9(8)V99.
05 DPONO-PRDPS REDEFINES DPONO-PRDTIV PIC X(10).
05 DP5CP-VALZONNUM PIC 9(6) .
05 DP5CP-VALZON REDEFINES DP5CP-VALZONNUM PIC X(6).

The following discrimination rules are applied:

Listing 6-6 Discrimination Rules

field DPODP-DMDCHQ

rule if DPODP-RDCRPHY = 1 then DPODP-DMDCHQ
elseif DPODP-RDCRPHY = 2 then DPODP-REMCHQ
elseif DPODP-RDCRPHY = 3 then DPODP-VIREXT
else DPODP-DMDCHQ,

Tield DPONO-PRDTIV

rule if DPONO-NPDT (1:2) 01" then DPONO-PRDTIV

elseif DPONO-NPDT (1:2)

"'02"™ then DPONO-PRDPS,
field DP5CP-VALZONNUM

rule if DPODP-RDCRPHY is numeric then DP5CP-VALZONNUM

Oracle Tuxedo Application Rehosting Workbench Reference Guide

6-13

else DP5CP-VALZON

The first rule is to test the value of the numeric field DPODP-RDCRPHY.

The second rule tests the first two characters of an alphanumeric field DPONO-NPDT. Only the
values 01 and 02 are allowed.

The third rule tests whether the field DPODP-RDCRPHY is numeric.

COBOL Description

Oracle Tuxedo Application Rehosting Workbench File-to-File Converter needs a description
associated with each File, so a first step consists in preparing a COBOL copy description.

Once the COBOL description files have been prepared, the copy files described in the
mapper-<configuration name>.re file should be placed in the SPARAM/Fi le/recs-source
directory.

If you use a COBOL copy book from the source platform to describe a file (see COBOL
Description), then it is the location of the copy book that is directly used.

Description of the Output Files

6-14

File Locations

Location of Temporary Files

The temporary objects generated by the Rehosting Workbench File-to-File Converter are stored
in:

$TMPPROJECT

$TMPPROJECT/Template/<configuration name>

$TMPPROJECT/outputs/<configuration name>
Note: The $TMPPROJECT variable is set to: $HOME/ tmp

Location of Log Files
The execution log files are stored in:

e Log generated by the option -g:

Oracle Tuxedo Application Rehosting Workbench Reference Guide

$TMPPROJECT/outputs mapper-log-<configuration name>

Location of Generated Files

The unloading and loading components generated with the -i $HOME/trT option are placed in
the following locations:

Table 6-5 Component Locations

Location Contents

$HOME/trf/unload/file/<configura The JCL used for each unloading file are generated
tion name> for each <configuration name>.

These JCL are named:

<file name>_ jclunload

$HOME/trf/reload/file/<configura Location by <configuration name> of the
tion name> COBOL programs and KSH used for each loading.

For afile to file migration, the programs and KSH are
named:

RELFILE-<target file name>.cbl

loadfile-<target file name>_ksh

For a Generation Data Group file migration, the
programs and KSH are named:

RELFILE-<target file name>._cbl
loadgdg-<target file name>_.ksh

loadgds-<target file name>.ksh

$HOME/trf/DML If you used the attributes clause in the mapper
file, an access function will be generated:

ASG_<target file name>.cbl

Note: <target table name>isthefilenameonthetargetplatform,thisfile nameis
furnished in the mapper file.

Generated Objects

The following sections describe the objects generated during the migration of z/OS files and the
directories in which they are placed.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 6-15

6-16

Unloading JCL

The JCL used to unload the files are generated using the -g option of the file.sh command.
They are then (using the i option) installed in:

$HOME/trf/unload/file/<configuration name>

Each JCL contains two steps and unloads one file using the z/0S 1DCAMS REPRO utility. The
JCL return code is equal to 0 or 4 for a normal termination.

Step 1 DEL IDCAMS DELETE files (deletion of log, data files)

Step 2 UNLOAD IDCAMS REPRO of the indicated file
Specifically for GDG files, one STEP for each VERSION

The JCLs are named: <file name>.jclunload

Note: The . jclunload extension should be deleted for execution under z/OS.

The generated JCL may need adapting to specific site constraints including:
e JOB cards: <cardjob_parameter_id>,

e access paths to input and output files: <data>.

Unloading JCL for QSAM and VSAM files

Listing 6-7 Unload JCL Example

//<crdjob> <cardjob_parameter_1>,"FIL QSAM®,

// <cardjob_parameter_2>
// <cardjob_parameter_3>
// <cardjob_parameter_4>

//*@ (C) Metaware:jcl-unload-MVS-REPRO.pgm. $Revision: 1.6 $

//**

//* UNLOAD THE FILE:
//7* <datain>.QSAM.CUSTOMER

Oracle Tuxedo Application Rehosting Workbench Reference Guide

//* INTO <data>.AV.QSAM
/7* LENGTH=266

// ialeieke
/) e *
//* DELETE DATA AND LOG FILES
) S *
//DEL EXEC PGM=1DCAMS
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSIN DD *
DELETE <data>.AV.QSAM.LOG
DELETE <data>.AV.QSAM

SET MAXCC=0

//COPYFILE EXEC PGM=IDCAMS
//SYSPRINT DD SPACE=(CYL, (150,150),RLSE),

// DISP=(NEW,CATLG),
// UNIT=SYSDA,
// DSN=<data>.AV.QSAM.LOG

//SYSOUT DD SYSOUT=*
//1NDD DD DISP=SHR,
DSN=METAWOO . QSAM.CUSTOMER

//0UTD DD SPACE=(CYL, (150,150),RLSE),
// DISP=(NEW,CATLG),
// UNIT=SYSDA,

Oracle Tuxedo Application Rehosting Workbench Reference Guide

6-17

6-18

// DCB=(LRECL=266,RECFM=FB),
// DSN=<data>.AV.QSAM
//SYSIN DD *

REPRO INFILECINDD) OUTFILE(OUTD)
/>

Unloading JCL for Generation Data Group

The JCL used to unload the Generation Data Sets for Generation Data Group organization are
also generated using the -g option of the file.sh command.

This JCL creates two files for each VERSION (number of version is given by the LIMIT clause).
Created files are named:

e <data>.<filename>_DAT<id>

o <data>.<filename>.L0OG<id>

where <id> is a numerical value which identifies all version (0: current version, 1:first previous,
2:..)

Listing 6-8 Unload JCL Example for GDG

//<crdjob> <cardjob_parameter_1>,"GDG GDG",

// <cardjob_parameter_2>
// <cardjob_parameter_3>
// <cardjob_parameter_4>

//*@ (C) Metaware:jcl-unload-GDG-MVS-REPRO.pgm. $Revision: 1.5 $

//
//* UNLOAD GDS FILES

/7/* <datain>.PJO1DDD.TEST.GDG
//* INTO <data>.M2L3.GDG.DAT<ID>

//* CURRENT FILE HAS <I1D>=0

Oracle Tuxedo Application Rehosting Workbench Reference Guide

//* OLDEST FILE HAS GREATEST <ID>.

//* LENGTH=266

//* LIMIT=5

//* NOEMPTY

//* SCRATCH

// ialeieke

/) e *

//* DELETE DATA AND LOG FILES

)

//DEL

EXEC PGM=

IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSOUT

//SYSIN
DELETE
DELETE
DELETE
DELETE
DELETE
DELETE
DELETE
DELETE
DELETE
DELETE

DD SYSOUT=*

DD *
<data>.M2L3.
<data>.M2L3.
<data>.M2L3.
<data>.M2L3.
<data>.M2L3.
<data>.M2L3.
<data>.M2L3.
<data>.M2L3.
<data>.M2L3.

<data>_.M2L3.

SET MAXCC=0

GDG.LOGO
GDG.DATO
GDG.LOG1
GDG.DAT1
GDG.LOG2
GDG.DAT2
GDG.LOG3
GDG.DAT3
GDG.LOG4

GDG.DAT4

Oracle Tuxedo Application Rehosting Workbench Reference Guide

6-19

6-20

//COPYFIO EXEC PGM=IDCAMS
//SYSPRINT DD SPACE=(CYL, (150,150),RLSE),

// DISP=(NEW,CATLG),
// UNIT=SYSDA,
// DSN=<data>.M2L3.GDG.LOGO

//SYSOUT DD SYSOUT=*

//1NDD DD DISP=SHR,

// DSN=PJO1DDD. TEST.GDG(0)
//0UTD DD SPACE=(CYL, (150,150),RLSE),
// DISP=(NEW,CATLG),

// UNIT=SYSDA,

// DCB=(LRECL=266 ,RECFM=FB),
// DSN=<data>.M2L3.GDG . DATO

//SYSIN DD *
REPRO INFILECINDD) OUTFILE(OUTD)
/>
V4 Aokl Whakaied
//COPYFI1 EXEC PGM=IDCAMS
//SYSPRINT DD SPACE=(CYL, (150,150),RLSE),

// DISP=(NEW,CATLG),
// UNIT=SYSDA,
// DSN=<data>.M2L3.GDG.LO0G1

//SYSOUT DD SYSOUT=*

//1NDD DD DISP=SHR,
// DSN=PJO1DDD . TEST.GDG(-1)
//0UTD DD SPACE=(CYL, (150,150),RLSE),

Oracle Tuxedo Application Rehosting Workbench Reference Guide

// DISP=(NEW,CATLG),

// UNIT=SYSDA,
// DCB=(LRECL=266,RECFM=FB),
// DSN=<data>_M2L3.GDG.DAT1

//SYSIN DD *
REPRO INFILECINDD) OUTFILE(OUTD)
/*
L---1
/*
L---1
/*
//COPYF14 EXEC PGM=IDCAMS
//SYSPRINT DD SPACE=(CYL, (150,150),RLSE),

// DISP=(NEW,CATLG),
// UNIT=SYSDA,
// DSN=<data>.M2L3.GDG.L0G4

//SYSOUT DD SYSOUT=*

//1NDD DD DISP=SHR,

// DSN=PJO1DDD . TEST.GDG(-4)
//0UTD DD SPACE=(CYL, (150,150),RLSE),
// DISP=(NEW,CATLG),

// UNIT=SYSDA,

// DCB=(LRECL=266 ,RECFM=FB),
// DSN=<data>.M2L3.GDG.DAT4

Oracle Tuxedo Application Rehosting Workbench Reference Guide

6-21

6-22

//SYSIN DD *
REPRO INFILECINDD) OUTFILE(OUTD)
/*

COBOL Transcoding Programs
Migration of z/0S Files to UNIX/Linux Files

The COBOL transcoding programs are generated using the —g option of the file.sh command.
They are then (using the i option) installed in:

$HOME/trf/reload/file/<configuration name>/src
The programs are named: RELFILE-<logical file name>.cbl

The programs should be compiled using the target COBOL compilation options documented in
Compiler Options.

The compilation of these programs requires the presence of a CONVERTMW.cpy copy file
adapted to the project, documented in Codeset Conversion chapter.

These files read a file on input and write an output file of the same organization as on z/OS
(Sequential, Relative, Indexed). For sequential files, the organization in the UNIX/Linux Micro
Focus/COBOL-IT environment will be Line Sequential.

Listing 6-9 FILE CONTROL Section - for Transcoding Programs

SELECT MW-ENTREE
ASSIGN TO "ENTREE™
ORGANIZATION IS SEQUENTIAL
ACCESS 1S SEQUENTIAL
FILE STATUS 1S I10-STATUS.
SELECT MW-SORTIE
ASSIGN TO "'SORTIE™
ORGANIZATION 1S LINE SEQUENTIAL
FILE STATUS 1S I10-STATUS.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

A record count is written to the output file and is displayed at the end of processing via:

DISPLAY "RELOADING TERMINATED OK™".
DISPLAY "Nb rows reloaded: " D-NB-RECS.

DISPLAY ™ ™
DISPLAY "NUMERIC MOVED WHEN USING CHAR FORMAT: "
DISPLAY "™ NUMERIC-BCD : " MW-COUNT-NUMERIC-BCD-USE-X.

DISPLAY "™ NUMERIC-DISP: " MW-COUNT-NUMERIC-DISP-USE-X.

The last two lines displayed signal the movement of data into fields where the COBOL
description does not match the content of the input file (packed numeric fields containing
non-numeric data and numeric DISPLAY fields containing non-numeric data). When such cases
are encountered, each field name and its value is displayed.

Note: When migrating to a target platform using Intel hardware the message: “PROCESSOR
UNIT IS INTEL” is output at the beginning of transcoding.

Listing 6-10 FILE CONTROL Section - for Transcoding Programs

SELECT MW-ENTREE
ASSIGN TO "ENTREE™
ORGANIZATION IS RECORD SEQUENTIAL
ACCESS 1S SEQUENTIAL
FILE STATUS 1S 10-STATUS.

Reloading Korn Shell Scripts

The Reloading Korn shell scripts are generated using the —g option of the file.sh command.
They are then (using the -i option) installed in:

$HOME/trf/reload/file/<configuration name>

Reloading Korn Shell Scripts for Migrating z/0S QSAM/VSAM Files to UNIX/Linux Files
The scripts are named: loadfile-<logical Ffile name>.ksh

Oracle Tuxedo Application Rehosting Workbench Reference Guide 6-23

6-24

They contain a transcoding (or loading) phase and a check phase. These different phases can be
launched separately.

The execution of the scripts produces an execution log in $MT_L0G/<logical file name>.log

The following variables are set at the beginning of each script:

Listing 6-11 Reloading File Script Variables

="0 (c) Metaware:reload-files-ksh.pgm. $Revision: 1.9 $null”
echo "Reloading file ODCSFU ODCSFU"

export DD_ENTREE=${DD_ENTREE :-${DATA_SOURCE}/ODCSFU}

export DD_SORTIE=${DD_SORTIE:-${DATA}/ODCSFU}
logfile=${MT_LOG}/ODCSFU. log

reportfile=${MT_LOG}/0ODCSFU.rpt

L]

Note: To change the file names, set the DD_ENTREE and DD_SORT IE variables before calling the
script.

Various messages may be generated during the execution phases of the scripts, these messages
are explained in Oracle Tuxedo Application Rehosting Workbench Messages.

On normal end, a return code of 0 is returned.

Reloading Korn Shell Scripts for Migrating z/0S Generation Data Set to UNIX/Linux Files
The master scripts are named: loadgdg-<logical file name>.ksh.

For each version - i.e. for each Generation Data Set - they call the script: 1oadgds-<logical
file name>_ksh and do a check phase. The loadgdg-*ksh script contains a transcoding (or
loading) phase. These different phases can be launched separately.

The execution of the master script produces an execution log in $MT_LOG/<logical file
name>. log

The following variables are set at the beginning of each script:

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Listing 6-12 Reloading File Script Variables

f="0 (c) Metaware:reload-GDG-files-ksh.pgm. $Revision: 1.6 $null"
echo "Reloading GDG file GDG GDG"

Remarks:

DD_ENTREE* contains only filename prefix! This script add .DAT<ID> prefix
DD_SORTIE* contains GDG file name

Per default, file name transferred from MVS should be :

$DATA_SOURCE/GDG . DAT<ID>

export DD_ENTREE_ORIGDG=${DD_ENTREE : -${DATA_SOURCE}/GDG}

export DD_SORTIE_ORIGDG=${DD_SORTIE:-${DATA}/PJ01DDD.TEST.GDG}
logfile=${MT_LOG}/GDG. log

tmpfi le=${TMPPROJECT}/GDG . tmp

ksh4ejr=${DATA_TRANSCODE}/GDG.ksh

L]

Note: To change the prefix file names, set the DD_ENTREE and DD_SORT I E variables before
calling the script.

Various messages may be generated during the execution phases of the scripts, these messages
are explained in Oracle Tuxedo Application Rehosting Workbench Messages.

On normal end, a return code of 0 is returned.

Transcoding and Loading Phases

These steps launch the execution of the COBOL transcoding program associated with the file
processed:

EJR -v ${kshdejr} >> $logfile 2>&1

EJR is a part of Oracle Tuxedo Application Runtime Batch. For more information, see the Oracle
Tuxedo Application Runtime Batch Reference Guide. It contains a delete and reload steps.

On normal termination, the following message is displayed:

Oracle Tuxedo Application Rehosting Workbench Reference Guide 6-25

../artbatch/ref/index/html
../artbatch/ref/index/html

File ${DD_ENTREE} successfully transcoded and reloaded into ${DD_SORTIE}

Check Phase

This step verifies after the reloading that the targeted file contains the same number of records as
were transferred from the z/OS source platform. If the number of records is different, an error
message is produced:

FILELD-0106: the number of rows written in file <f> is not equal to the
number calculated using the log file (see created report <rf>) !

File : <recsreloaded>

Report: <recstransferred>

If the number of records is equal, this message is produced:

echo ""Number of rows written in output file is equal to number calculated
using the log file: OK"

Note: To execute this step, it is necessary to transfer the z/OS IDCAMS log file to the target
environment.

Access Functions and Utility Programs

Access Functions

These access functions are generated using the -g option of file.sh and installed
in$HOME/trf/DML using the -i and -s options.

Table 6-6 Access Functions

Access Function Role

ASG_<logical file name>.cbl Optional module generated when there are multiple
assigns. When using the File-to-File Converter tool,
thismodule is generated when the attributes clause
is present in the mapper configuration file.

getfileinfo.cbl This program checks if the <logical file name>.rdb
associated with the assign-name given as an input
argument exists. This function is called by
ASG_<logical file name>.cbl.

6-26 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Tahle 6-6 Access Functions

Access Function Role

init_all_files.cbl Callsall init_all_files_<configuration
name>.cbl (function used by Oracle Tuxedo
Application Runtime Batch).

init_all_files_<configuration Initializes a transaction. All variables used by relational

name>.cbl module and ASG_<logical file name> module
are initialized for the configuration name listed.
(function used by Oracle Tuxedo Application Runtime
Batch).

dml_locking.cbl This program manages locking for all configuration
files (function used by Oracle Tuxedo Application
Runtime Batch).

close_all_files_<configuration Closes a transaction. This program closes all cursors

name>.cbl opened in tables for the configuration listed and
unlocks all files opened with logical accessor
ASG_<logical file name> (function used by
Oracle Tuxedo Application Runtime Batch).

close_all_files.cbl Callsall close_all_files_<configuration
name>._cbl (function used by Oracle Tuxedo
Application Runtime Batch).

Access Function Call Arguments

The ASG_<logical file name>._cbl access functions use the following variables

Tahle 6-7 Access Call Implemented Variables

Variahle Description/origin

Function code Indicates the type of operation to execute, for example OPEN, WRITE,
etc. The code is passed using the FILE-CODE-F variable of the
MWFITECH copy file.

File open mode A file can be opened in different modes: INPUT, OUTPUT, | O,
EXTEND. The mode is passed using the F1LE-OPEN-MODE variable of
the MWFITECH copy file.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 6-27

6-28

Tahle 6-7 Access Call Implemented Variables

Variahle

Description/origin

10-STATUS

The IO-STATUS variable is linked to each file providing the execution
status of the last relational module operation.

Record to transmit
or receive

The record to transmit has an access function for write operations or access
by key; the record to receive has a read access function. These are
described in the LINKAGE SECTION.

Name of secondary
key to use

For indexed files with secondary keys, and only for files with this
organization, an extra variable is required to identify the secondary key to
use for a START operation.

The name of the secondary key is passed using the
FILE-ALT-KEY-NAME variable of the MWFITECH copy file.

For files without secondary keys, this argument is unnecessary.

Relative Key

For a relative file, the value of the relative key is passed to or from the
access module using the FILE-REL-KEY variable of the MWFITECH
copy file.

Listing 6-13 LINKAGE SECTION Structure

LINKAGE SECTION.

01 10-STATUS PIC XX.

COPY MWFITECH.

* *COBOL Record Description

01 VS-ODCSFO-RECORD.

06 X-VS-CUSTIDENT.

07 VS-CUSTIDENT PI1C 9(006).
06 VS-CUSTLNAME PIC X(030).
06 VS-CUSTFNAME PIC X(020).
06 VS-CUSTADDRS PIC X(030).
06 VS-CUSTCITY PIC X(020).

Oracle Tuxedo Application Rehosting Workbench Reference Guide

06 VS-CUSTSTATE PIC X(002).
06 X-VS-CUSTBDATE.
07 VS-CUSTBDATE PIC 9(008).
06 VS-CUSTBDATE-G REDEFINES VS-CUSTBDATE.
11 X-VS-CUSTBDATE-CC.
12 VS-CUSTBDATE-CC PIC 9(002).
11 X-VS-CUSTBDATE-YY.
12 VS-CUSTBDATE-YY PIC 9(002).
11 X-VS-CUSTBDATE-MM.
12 VS-CUSTBDATE-MM PIC 9(002).
11 X-VS-CUSTBDATE-DD.
12 VS-CUSTBDATE-DD PIC 9(002).
06 VS-CUSTEMAIL PIC X(040).
06 X-VS-CUSTPHONE.
07 VS-CUSTPHONE PIC 9(010).
06 VS-FILLER PIC X(100).
PROCEDURE DIVISION USING 10-STATUS
MW-FILE-TECH

VS-ODCSFO-RECORD.

Call Arguments Used

OPEN
For all OPEN operations, the FILE-CODE-F variable should contain the key-word OPEN.

The FILE-OPEN-MODE variable should contain the type of OPEN to perform as follows:.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 6-29

Table 6-8 Call Argument File Open Modes

Source Target

OPEN INPUT filenamel INPUT => FILE-OPEN-MODE

OPEN OUTPUT OUTPUT => FILE-OPEN-MODE

filenamel

OPEN 1-0 filenamel 1-0 => FILE-OPEN-MODE

OPEN EXTEND EXTEND => FILE-OPEN-MODE

filenamel
CLOSE
For CLOSE operations, the FILE-CODE-F variable should contain the key-word CLOSE.
CLOSE-LOCK
For CLOSE LOCK operations, the FILE-CODE-F variable should contain the key-word
CLOSE-LOCK.
DELETE

Depending on the file access mode, the DELETE operation is either the current record or the one
indicated by the file key.

The corresponding function code is indicated as follows:

Table 6-9 Call Argument Delete Modes

Access Source Target

Sequential DELETE DELETE-CUR => FILE-CODE-F
filenamel

Random or dynamic DELETE DELETE-KEY => FILE-CODE-F
filenamel

READ

The function code depends on the file access mode and the type of read required: sequential read,
read primary key or read secondary key

6-30 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Table 6-10 Read Operation Values Depending on Arguments

Access Source Target

Sequential READ filenamel [NEXT] READ-NEXT => FILE-CODE-F
Random READ filenamel READ-KEY =>FILE-CODE-F
Dynamic READ filenamel NEXT READ-NEXT => FILE-CODE-F

READ filenamel

READ-KEY =>FILE-CODE-F

READ filenamel PREVI10US

READ-PREV =>FILE-CODE-F

If DataNamel is a READ filenamel KEY DataNamel

variable corresponding
to the keyAltKeyl

"AltKeyl" =>
FILE-ALT-KEY-NAME

READ-ALT-KEY => FILE-CODE-F

DataNamel represents READ filenamel
the relative key KEY DataNamel

READ-REL-KEY => FILE-CODE-F
"RelKeyVar" =>FILE-REL-KEY

Note: If the INTO clause is found, a MOVE operation is added after the call in order to set the

value of the indicated field.

REWRITE

The function code depends on the file access mode and the type of read required: sequential read,

read primary key or read secondary key.

Tahle 6-11 Rewrite Operation Values Depending on Arguments

Access Source

Target

Sequential REWRITE RecNamel

REWRITE-CUR => FILE-CODE-F

Random or dynamic REWRITE RecNamel

REWRITE-KEY => FILE-CODE-F

Note: If the FROM clause is found, a MOVE operation is added before the call in order to set

the value of the indicated field.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

6-31

START

Whether the file is relative, indexed, with or without secondary key, the function code depends
on the exact type of start.

Table 6-12 Rewrite Operation Values Depending on Arguments

When Source Target
START filel START-EQUAL => FILE-CODE-F
DataNamel START filel KEY {EQUAL| = START-EQUAL => FILE-CODE-F
represents the |[EQUALS} DataNamel
relative key or
filel |GREATER} DataNamel
START filel KEY {NOT LESS START-SUPEQ => FILE-CODE-F
|[GREATER OR EQUAL |NOT <|>=}
DataNamel
START filel KEY {<|LESS} START-INF =>FILE-CODE-F
DataNamel

START filel KEY {NOT GREATER START-INFEQ => FILE-CODE-F
ILESS OR EQUAL |NOT >|<=}
DataNamel

6-32 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Tahle 6-12 Rewrite Operation Values Depending on Arguments

When Source Target
DataNamel is a START filel KEY {EQUAL| = AltKeyl =>
variable |[EQUALS} DataNamel FILE-ALT-KEY-NAME

corresponding to

START-ALT-EQUAL =>
the AltKey1 key FILE-CODE-F
START filel KEY {EXCEEDS| > Altkeyl =>
IGREATER} DataNamel FILE-ALT-KEY-NAME
START-ALT-SUP =>
FILE-CODE-F
START filel KEY {NOT LESS]| Altkeyl =>
GREATER OR EQUAL |NOT< |>=} FILE-ALT-KEY-NAME
DataNamel START-ALT-SUPEQ =>
FILE-CODE-F
START filel KEY AltKeyl =>
{< |LESS} DataNamel FILE-ALT-KEY-NAME
START-ALT-INF =>
FILE-CODE-F
START filel KEY {NOT GREATER AltKeyl =>
ILESS OR EQUAL |NOT >|<=} FILE-ALT-KEY-NAME
DataName1l START-ALT- INFEQ =>
FILE-CODE-F

WRITE

The function code depends on the file access mode and the type of read required: sequential read,

read primary key or read secondary key.

Tahle 6-13 Write Operation Values Depending on Arguments

Access Source Target
Sequential WRITE RecNamel WRITE-SEQ => FILE-CODE-F
Random or dynamic WRITE RecNamel WRITE-KEY => FILE-CODE-F

Oracle Tuxedo Application Rehosting Workbench Reference Guide

6-33

Note: If the FROM clause is found, a MOVE operation is added before the call in order to set
the value of the indicated field.

Copy Files to Be Implemented

The following copy files are used by certain access functions. They should be placed in the
directory: < installation platform>/fixed-copy/ during the installation of the Rehosting
Workbench:

o MW-PARAM-TRACE-VAR.cpy

o MW-PARAM-TRACE . cpy

o MW-PARAM-GETFILEINFO-VAR.cpy
o MW-PARAM-GETFILEINFO.cpy

o MW-PARAM-ERROR-VAR.cpy

o MW-PARAM-ERROR.cpy

o MW-PARAM-DML-LOCKING . cpy

o MWFITECH.cpy

e ERROR-SQLCODE.cpy

Execution Reports

file.sh creates different execution reports depending on the options chosen. In the following
examples the following command is used:

file.sh -gmi $HOME/trf STFILEFILE

Listing 6-14 Messages Produced when Using the Options -g with file.sh (step 1)

HHHHH AR AR R R R R R R R
Control of configuration STFILEFILE

HHHHH AR AR R

Control of templates

OK: Use Default Templates list file

6-34 Oracle Tuxedo Application Rehosting Workbench Reference Guide

File name is
/Qarefine/release/M3_L3_5/convert-data/default/file/file-templates.txt

HAHHH AR A R R R
Control of Mapper

HAHHH AR A R R R
COMPONENTS GENERATION

CMD : /Qarefine/release/M3_L3 5/scripts/launch file-converter -s
/home2/wkb4/param/system.desc -mf
/home2/wkb4/tmp/mapper-STFILEFILE.re.tmp -dmf
/home2/wkb4/param/file/Datamap-STFILEFILE.re -td /home2/wkb4/tmp -tmps
/home2/wkb4/tmp/file-templates-STFILEFILE.tmp -target-sgbd oraclell
-target-os unix -varchar2 29 -print-ddl -print-dml -abort

MetaWorld starter

Loading lib: /Qarefine/release/M3_L3_5/Linux64/1ib64/1ocalext.so
(funcall LOAD-THE-SYS-AND-APPLY-DMAP-AND-MAPPER)

FILE-0092: *File-Converter*: We are in BATCH mode

FILE-0087: * Comand line arguments: begining of analyze

FILE-0088: * recognized argument -s value: /home2/wkb4/param/system.desc

FILE-0088: * recognized argument -mf value:
/home2/wkb4/tmp/mapper-STFILEFILE.re.tmp

FILE-0088: * recognized argument -dmf value:
/home2/wkb4/param/file/Datamap-STFILEFILE.re

FILE-0088: * recognized argument -td value: /home2/wkb4/tmp

FILE-0088: * recognized argument -tmps value:
/home2/wkb4/tmp/file-templates-STFILEFILE. tmp

FILE-0088: * recognized argument -target-sghd value: oraclell
FILE-0088: * recognized argument -target-os value: unix
FILE-0088: * recognized argument -varchar2 value: 29
FILE-0089: * recognized argument -print-ddl

FILE-0089: * recognized argument -print-dml

Oracle Tuxedo Application Rehosting Workbench Reference Guide 6-35

6-36

FILE-0089: * recognized argument -abort
FILE-0091: * End of Analyze
FILE-0094: * Parsing mapper file /home2/wkb4/tmp/mapper-STFILEFILE.re.tmp

FILE-0095: * Parsing data-map file
/home2/wkb4/param/file/Datamap-STFILEFILE.re

FILE-0096: * Parsing system description file /home2/wkb4/param/system.desc
Warning! OS clause is absent, assuming OS is IBM
Current OS is IBM-MF

Loading /home2/wkb4/source/symtab-STFILEFILE.pob at 12:10:27... done at
12:10:27

Bui ld-Symtab-DL1 #l<a SYMTAB-DL1>
- .. Postanalyze-System-RPL. ..
sym=#2<a SYMTAB>
PostAnalyze-Common #2<a SYMTAB>
0 classes
0 classes
0 classes
0 classes
1 classes
13 classes
Loading /home2/wkb4/source/BATCH/pob/RSSABBO1.cbl.shrec. ..
Loading /home2/wkb4/source/COPY/pob/0ODCSFO.cpy.cdm.. .
Loading /home2/wkb4/source/COPY/pob/0ODCSFOB.cpy.cdm. ..
Loading /home2/wkb4/source/COPY/pob/0ODCSFU.cpy.cdm.. .
FILE-0001: * Point 1 !!
FILE-0002: * Point 2 !!
FILE-0010: * Parsing file /home2/wkb4/source/COPY/ODCSFO.cpy - ..

Parsed 22 lines

Oracle Tuxedo Application Rehosting Workbench Reference Guide

FILE-0010: * Parsing file
/home2/wkb4/source/ . . /param/file/rec-source/ODCSFR.cpy - ..

Parsed 8 lines

FILE-0010: * Parsing file /home2/wkb4/source/COPY/ODCSFU.cpy ...
Parsed 24 lines

FILE-0010: * Parsing file /home2/wkb4/source/COPY/ODCSFOB.cpy ...
Parsed 22 lines

FILE-0003: * Point 3 I!

FILE-0004: * Point 4 1!

FILE-0005: * Point 5 I!

FILE-0052: * loading pob file
/Qarefine/release/M3_L3_5/convert-data/templates/file/unloading/jcl-unload
-MVS-REPRO. pgm.pob

FILE-0085: * Expanding
/Qarefine/release/M3_L3 5/convert-data/templates/file/unloading/jcl-unload
-MVS-REPRO.pgm ...

FILE-0054: * Writing ODCSFR.jclunload
FILE-0054: * Writing ODCSFU.jclunload
FILE-0054: * Writing ODCSFOQ.jclunload

L---1

FILE-0052: * loading pob file
/Qarefine/release/M3_L3_5/convert-data/templates/file/dml/generate-post-pr
ocess.pgm.pob

FILE-0085: * Expanding
/Qarefine/release/M3_L3_5/convert-data/templates/file/dml/generate-post-pr
ocess.pgm ...

FILE-0054: * Writing post-process-file.sh

FILE-0053: * Parsing template file
/Qarefine/release/M3_L3_5/convert-data/default/file/file-move-assignation.

pgm

Oracle Tuxedo Application Rehosting Workbench Reference Guide 6-37

6-38

FILE-0085: * Expanding
/Qarefine/release/M3_L3_5/convert-data/default/file/file-move-assignation.

pgm ...
FILE-0054: * Writing file-move-assignation.lIst

Rest in peace, Refine...

Generated components are in /home2/wkb4/tmp/Template/STFILEFILE
(Optionaly in /home2/wkb4/tmp/SQL/STFILEFILE)

Listing 6-15 Messages Produced when Using the Options -m with file.sh (step 2)

HH R R R R R R R R R R R R R AR R
FORMATTING COBOL LINES

HH R R R R R R R R R R R R R AR R
CHANGE ATTRIBUTE TO KSH or SH scripts

HAHAHHHHHH AR AR AR A AR A AR R R R AR
INSTALL COMPONENTS INTO SPECIFIC DIRECTORY USING file-move-assignation.lIst

== PJ01AAA.SS.VSAM.CUSTOMER_==
Copied <Templates>:ASG_ODCSFO.cbl to <td>/DML/ASG_ODCSFO.cbl

==_PJO01AAA_SS.QSAM.CUSTOMER.REPORT_==

Copied <Templates>:0DCSFR.jclunload to
<td>/unload/file/STFILEFILE/ODCSFR. jclunload

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Copied <Templates>:loadfile-ODCSFR.ksh to
<td>/reload/file/STFILEFILE/loadfile-ODCSFR.ksh

Copied <Templates>:RELFILE-ODCSFR.cbl to
<td>/reload/file/STFILEFILE/RELFILE-ODCSFR.cbl

==_PJO01AAA_SS.QSAM.CUSTOMER.UPDATE_==

Copied <Templates>:0DCSFU.jclunload to
<td>/unload/file/STFILEFILE/ODCSFU. jclunload

Copied <Templates>:loadfile-ODCSFU.ksh to
<td>/reload/file/STFILEFILE/loadfile-ODCSFU.ksh

Copied <Templates>:RELFILE-ODCSFU.cbl to
<td>/reload/file/STFILEFILE/RELFILE-ODCSFU.cbl

==_PJO01AAA_SS.QSAM.CUSTOMER_==

Copied <Templates>:0DCSFOQ. jclunload to
<td>/unload/file/STFILEFILE/ODCSFOQ. jclunload

Copied <Templates>:loadfile-ODCSFOQ.ksh to
<td>/reload/file/STFILEFILE/loadfile-ODCSFOQ.ksh

Copied <Templates>:RELFILE-ODCSFOQ.cbl to
<td>/reload/file/STFILEFILE/RELFILE-ODCSFO0Q.cbl

Copied <Templates>:close_all_files_STFILEFILE.cbl to
<td>/DML/close_all_files_STFILEFILE.cbl

Copied <Templates>:init_all_files_STFILEFILE.cbl to
<td>/DML/init_all_files_STFILEFILE.cbl

Copied <Templates>:reload-files.txt to
<td>/reload/file/STFILEFILE/reload-files.txt

Copied <fixed-components>:getfileinfo.cbl to <td>/DML/getfileinfo.cbl

Copied <fixed-components>:RunSqlLoader.sh to
<td>/reload/bin/RunSqlLoader.sh

Oracle Tuxedo Application Rehosting Workbench Reference Guide 6-39

Copied <fixed-components>:CreateReportFromMVS_sh to
<td>/reload/bin/CreateReportFromMVS.sh

Dynamic_configuration

Copied_! <Templates>:File-in-table-STFILEFILE to
/home2/wkb4/param/dynamic-config/File-in-table-STFILEFILE (is empty)

Copied <Templates>:../../Conv-ctrl-STFILEFILE to
/home2/wkb4/param/dynamic-config/Conv-ctr1-STFILEFILE

post-process
executed <Templates>:post-process-file.sh

/home2/wkb4/param/dynamic-config/Conv-ctr1-STFILEFILE treated

Number of copied files: 18
Number of executed scripts: 1
Number of ignored files: 0

HHHH AR R

Detailed Processing

6-40

This section describes the Command-Line Syntax used by the File-to-File Converter, and the
Process Steps summary.

The processes required on the source and target platforms concern:

e Configuring the Environments and Installing the Components,

Unloading Data,

Transferring the Data,

e Reloading the Data,

Checking the Transfers

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Command-Line Syntax
file.sh

Name

file._sh - generate file migration components.

Synopsis
file.sh [[-g] [-m] [-i <installation directory>] <configuration name> | -s

<installation directory> (<configuration namel>,<configuration name2>,...)

1

Description

file.sh generates the Rehosting Workbench components used to migrate z/OS files to UNIX
Micro Focus/COBOL-IT files.

Options

Generation Options

-g <configuration name>
Triggers the generation, for the configuration indicated, of the unloading and loading
components in $TMPPROJECT. This generation depends on the information found in the
configuration files.

Modification Options

-m <configuration name>
Makes the generated SHELL scripts executable. COBOL programs are adapted to the
target COBOL fixed format. When present, the shell script described in File Modifying
Generated Components is executed.

Installation Option

-i <installation directory> <configuration name>
Places the components in the installation directory. This operation uses the information
located in the file-move-assignation.pgm file.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 6-41

6-42

Final Option

-s <installation directory> (<configuration name 1>, <configuration name 2>, ...)
Enables the generation of the COBOL and JCL converter configuration files. These
generated files take all of the unitary files of the project.

All these files are created in $PARAM/dynamic-config

Example
file.sh -gmi $HOME/trf FTFILOO1

Unitary Usage Sequence
If the File.sh options are used one at a time, they should be used in the following order:

1. =g

2. =>-m

3. =>-i

4. =>-s (should be executed once steps 1 to 3 have been executed for all configurations).

Process Steps

Configuring the Environments and Installing the Components
This section describes the preparation work on the source and target platforms.

Installing the Unloading Components Under z/0S

The components used for the unloading (generated in $HOME/trf/unload/file) should be
installed on the source z/OS platform (the generated JCL may need adapting to specific site
constraints including JOB cards, library access paths and access paths to input and out put files).

Installing the Reloading Components on the Target Platform

The components used for the reloading (generated in $HOME/trf/reload/file) should be
installed on the target platform.

Table 6-14 lists the environment variables that should be set on the target platform.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Table 6-14 Target Platform Environment Variables

Variable Value

DATA_SOURCE The name of the directory containing the unloaded files transferred from z/OS
to be reloaded into MicroFocus or COBOL-IT files.

DATA The name of the directory containing the physical files converted to ASCII
format and ready to be used by the applications.

BIN The location of the generic reload and control scripts
($HOME/trf/reload/bin).

TMPPROJECT The temporary directory.

MT_LOG Directory to contain execution logs.

DATA_TRANSCODE Temporary directory used by the file binary data transcoding script (contains
temporary files in ASCII format).

PATH This UNIX/Linux variable has to contain the directory of the Oracle
Tuxedo Application Runtime for Batch utilities.

Compiling COBOL Transcoding Programs

The COBOL transcoding programs should be compiled using the options specified in Compiler
Options.

Compiling these programs requires the presence of a copy of CONVERTMW. cpy adapted to the
project.

Unloading Data

To unload each file, a JCL using the IBM IDCAMS REPRO utility is executed. The IDCAMS
REPRO utility creates two files for each file:

e adata file,

e alog file
These unloading JCLs are named <logical filename>.jclunload

A return code of 0 is sent on normal job end.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 6-43

6-44

Transferring the Data

The unloaded data files should be transferred between the source z/OS platform and the target
UNIX/Linux platform in binary format using the file transfer tools available at the site (CFT,
FTP, ...).

The files transferred to the target UNIX/Linux platform should be stored in the $DATA_SOURCE
directory.

Reloading the Data

The scripts enabling the transcoding and reloading of data are generated in the directory:
$HOME/trf/reload/file/<configuration name>/

the format of the script names are:
loadfile-<logical file name>_ksh
loadgdg-<logical file name>.ksh and loadgds-<logical file name>.ksh

Note: The loadgdg-<logical file name>.ksh script enables the execution of the different
loadgds-<logical file name>._ksh scripts. Each loadgds script is used to reload one
unitary generation of the file (each data set within a GDG is called a generation or a
Generation Data Set — GDS).

Transcoding and Reloading Command for Files

Name
loadfile transcode and reload data to file.

Synopsis
loadfile-<logical file name>.ksh [-t] [-1] [-c: <method>]
Options

-t
Transcode and reload the file.

Transcode and reload the file (same action as -t parameter).

-c ftp:<...>i<..>
Implement the verification of the transfer (see Checking the Transfers).

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Transcoding and reloading command for Generation Data Group files

Name
loadgdg and loadgds transcode and reload data to file.

Synopsis
loadgdg-<logical file name>_ksh [-t] [-1] [-c: <method>]

loadgds-<logical file name>_ksh [-t] [-1] [-c: <method>]

Options

-t
Transcode the member files of the GDG.

Reload the member files of the GDG using the Oracle Tuxedo Application Runtime for
Batch utilities.

-c ftp:<...>i<.>
Implement the verification of the transfer (see Checking the Transfers).

Note: the loadgdg-<logical file name>.ksh script call the loadgds-<logical file
name>.ksh script for each Generation Data Set.

Checking the Transfers
This check uses the following option of the loadfile-<logical file name>_ksh or
loadfile-<logical file name>.ksh

-c ftp:<name of transferred physical file>:<name of FTP log under UNIX>

This option verifies, after the reloading, that the physical file transferred from z/OS and the file
reloaded on the target platform contains the same number of records. This check is performed
using the FTP log and the execution report of the reloading program. If the number of records is
different, an error message is produced.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 6-45

6-46 Oracle Tuxedo Application Rehosting Workbench Reference Guide

File-to-Oracle Converter

This chapter describes the Rehosting Workbench File-to-Oracle Converter used to migrate files
from the source platform (z/OS) to Oracle tables, and describes the migration tools that are
generated. The conversion is performed in the context of other components translated or
generated by the other Oracle Tuxedo Application Rehosting Workbench tools.

Several configuration files need to be set, see Description of the Configuration Files, before
launching the conversion process.

This section is a continuation of the description contained in the File Convertor: Introduction
section. Several links in this section are made, for example to the different objects generated are
described in List of the Input Components. Some objects are only generated when migrating
VSAM files to Oracle tables (PCO programs, SQL files, relational module, logical module,
utilities and configuration files for JCL and COBOL conversion).

Overview of the File-to-Oracle Converter
Purpose

The purpose of this section is to describe precisely all the features of the Rehosting Workbench
File-to-Oracle Converter tools including:

e Inventory of files to migrate.
e Detailed description of Oracle tables on the target platform for each file.

e Description of the different commands to be used with the File-to-Oracle Converter.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 1-1

1-2

e Description of the data unloading options on the source platform.

e Description of the data loading options on the target platform.

Structure

o Overview of the File-to-Oracle Converter.

e Description of the Input Components including Description of the Configuration Files.

Description of the Output Files including the Generated Objects.

Detailed Processing including the Command-Line Syntax.

e For messages, see File Convertor Messages.

See Also

The conversion of data is closely linked to the conversion of COBOL programs, see:

e COBOL Converter

The previous chapter explains all common usages:

e File Convertor: Introduction

File Organizations Processed

When migrating files from a z/OS source platform to a target platform, the first question to ask,
when VSAM is concerned, is whether to keep a file or migrate the data to an Oracle table.

Migrating to Oracle Table on the Target Platform
KSDS, RRDS and ESDS VSAM files can be migrated into Oracle tables.

To make this work, the first task is to list all of the VSAM files to be migrated, and then identify
those files that should be converted to Oracle tables. For example, permanent files to be later used
via Oracle or files that needs locking at the record level.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Oracle Tuxedo Application Rehosting Workbench
Configuration Name

A configuration name is related to a set of files to be converted. Each set of files can be freely
assembled. Each configuration could be related to a different application for example, or a set of
files required for Oracle Tuxedo Application Runtime. The set of files can contain both files or
Oracle tables targets.

VSAM Files Becoming Oracle Tahle
Specific Migration Rules Applied

e Each table name is stipulated in the mapper-<configuration name>.re file using the table
name clause.

e Each elementary field name contained in a copy description of the file becomes a column
in an Oracle table. Hyphens (-) are replaced by underscore (_) characters.

e For sequential VSAM files (vSAM ESDS): the Rehosting Workbench adds a technical
column: *_SEQ_NUM NUMBER.
This column is incremented each time a new line is added to the table and becomes the
primary key of the table.

e For relative VSAM files (VSAM RRDS): the Rehosting Workbench adds a technical column:
*_RELATIVE_NUM.

The size of the column is deduced from the information supplied in the Datamap parameter
file; the column becomes the primary key of the table.

The column:
— is incremented when a sequential write is made to the table, and the relative key is zero.

— contains a relative key when the relative key is not zero.

e For indexed VSAM files (VSAM KSDS): the Rehosting Workbench does not add a technical
column unless duplicate keys are accepted; the primary key of the vSAM file becomes the
primary key of the table.

Rules Applied to Picture Clauses

The following rules are applied to COBOL Picture clauses when migrating data from VSAM files
to Oracle tables.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 1-3

Table 7-1 Picture Clause Re-engineering

COBOL Picture Oracle format

PIC 9(length) NUMBER(length)
PIC S9(length)
PIC 9(length) COMP-3

PIC S9(length)
COMP-3

PIC 9(prec,scale) NUMBER(prec+scale, scale)
PIC S9(prec,scale)

PIC 9(prec,scale)
COMP-3

PIC S9(prec,scale)
COMP-3

PIC S9(length) NUMBER(real_binary_length)

BINARY Sample: PIC S9(4) BINARY is migrated as NUMBER(5)
PIC S9(length) COMP

PIC S9(length)

COMP-4

COMP-1 DATATYPE_DOUBLE

COMP-2 DATATYPE_DOUBLE

PIC X(.) Becomes CHAR if length <= 2000

Becomes VARCHAR2 if length > 2000 and <= 4000

If the parameter file:char_limit_until_varchar is set in
the db-param.cfg file, it takes precedence over the above rule.

Environment Variables

Before starting the process of migrating data two environment variables should be set:

e export TMPPROJECT=/$HOME/tmp
Indicates the location to store temporary objects generated by the process.

o export PARAM=/$HOME/param

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Indicates the location where the configuration files required by the process are stored.

Description of the Input Components

File Locations

Location of file.sh
The file.sh tool is located in the directory:

$REFINEDIR/convert-data/

Location of db-param.cfg File
The db-param.cfg configuration file is located in the directory given in the variable:

$PARAM

Description of the Configuration Files

This section lists the files and their parameters that can be used to control the migration of z/OS
files to Oracle table.

db-param.cfg

This file should be created in the directory indicated by the $PARAM directory:
$PARAM/db-param.cfg

Listing 7-1 db-param.cfg Template

#

This configuration file is used by FILE & RDBMS converter
Lines beginning by "#" are ignored

write information in lower case

#

common parameters for FILE and RDBMS

#

Oracle Tuxedo Application Rehosting Workbench Reference Guide 1-5

source information is written into system descriptor file (DBMS=,
DBMS-VERSI0ON=)

target_rdbms_name:<target_rdbms_name>
target_rdbms_version:<target_rdbms_version>
target_os:<target_os>

optional parameter

target_cobol :<target_cobol>

#

specific parameters for FILE to RDBMS conversion

file:char_limit_until_varchar:<char_limit>

Parameters and Syntaxes

Table 7-2 db-param.cfg Parameters

Parameter Description Value

General Parameters

<target_rdbms_name> Name of target RDBMS oracle
<target_rdbms_version> Version of target RDBMS 11
<target_os> Name of target operating system unix or linux

Optional Parameter

<target_cobol> Name of COBOL language. cobol_mf
Default value is “cobol_mf” for COBOL cobol_it
Microfocus.

Choice to this COBOL language impacts the
generation of access functions.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Table 7-2 db-param.cfg Parameters

Parameter Description Value

Specific file-to-oracle conversion parameters

<char_limit> * For a field size <= 2000, a COBOL
alphanumeric field is migrated on
ORACLE in CHAR

e For afield size > 2000 it is migrated in
VARCHARZ2, except if the parameter
file:char_limit_until_varchar
is used.

This parameter indicates the maximum
length of a COBOL alphanumeric (PIC X)
field before the field will be transformed into
an ORACLE VARCHAR?2 data type.

If the parameter contains:
file:char_limit_until_varchar:29

Then, fields longer than 29 characters will
become VARCHARZ2, fields shorter than 30
characters will become CHAR fields.

File Modifying Generated Components

The generated components may be modified using a project's own scripts. These scripts (sed,
awk, perl,...) should be placed in:

$PARAM/File/file-modif-source.sh

When present, this file will be automatically executed at the end of the generation process. It will
be called using the <configuration name> as an argument.

file-template.txt

This file is put in place during the installation of the Rehosting Workbench, it contains the
templates that perform the generation of the different migration tools. The file is located in:

$REFINEDIR/convert-data/defaul t/file/file-templates.txt

Oracle Tuxedo Application Rehosting Workbench Reference Guide 1-1

1-8

Listing 7-2 file-template.txt

% Unloading all File
% All SAM file were transfered using FTP/Binary

% VSAM unloaded step:

#VAR: TEMPLATES#/unloading/jcl-unload-MVS-REPRO.pgm

%

% To create a specific template, copy this template into :

% -- #VAR:PARAM#/fFile/specific-templates/unloading/jcl-unload-customer.pgm

%

% Loading

#VAR:TEMPLATES#/loading/file-reload-files-txt.pgm

% Loading File to File
#VAR: TEMPLATES#/loading/unix-file/reload-files-ksh.pgm

#VAR: TEMPLATES#/loading/unix-Ffile/reload-mono-rec.pgm

% Loading File to Oracle
#VAR:TEMPLATES#/1oading/unix-oracle/load-tables-ksh.pgm
#VAR: TEMPLATES#/loading/unix-oracle/rel-mono-rec.pgm
#VAR: TEMPLATES#/dml/clean-tables-ksh.pgm

#VAR: TEMPLATES#/dml/drop-tables-ksh.pgm

#VAR: TEMPLATES#/dml/create-tables-ksh.pgm

#VAR: TEMPLATES#/dml/ifempty-tables-ksh.pgm

#VAR: TEMPLATES#/dml/ifexist-tables-ksh.pgm

%

% Generate Logical & Relational Module
#VAR: TEMPLATES#/dml/module/open-multi-assign-free.pgm
#VAR: TEMPLATES#/dml/module/open-mono-rec-idx-perf.pgm

#VAR: TEMPLATES#/dml/module/open-mono-rec-sequential . pgm

Oracle Tuxedo Application Rehosting Workbench Reference Guide

#VAR: TEMPLATES#/dml/module/open-mono-rec-relative.pgnm

%

% and utilities
#VAR: TEMPLATES#/dml/module/decharge-mono-rec.pgm
#VAR:TEMPLATES#/dml/module/recharge-table.pgm

#VAR: TEMPLATES#/dml/module/close-all-files_pgm
#VAR:TEMPLATES#/dml/module/init-all-files.pgm

%

% configuration file for translation and runtime *******
#VAR:TEMPLATES#/dml/generate-config-wb-translator-jcl.pgm
#VAR:TEMPLATES#/dml/generate-rdb-txt._pgm

%

% included file to include into modified-components

#VAR: TEMPLATES#/dml/include-modified-components.pgm

%

%
% MANDATORY

% : used just after the generation
#VAR:TEMPLATES#/dml/generate-post-process.pgm
% : used when using -i arguments

#VAR:DEFAULT#/file-move-assignation.pgm

Note: This file contains both File-to-File and File-to-Oracle migration parameters.

When required, another version of the file-template.txt file can be placed in the
$PARAM/Fi le directory. The use of an alternative file is signaled during the execution of
file.sh by the message:

Oracle Tuxedo Application Rehosting Workbench Reference Guide

1-9

1-10

Listing 7-3 Execution Log with Alternative Template File

HH R R R R R R R R R R R R R AR R
Control of templates
OK: Use Templates list file from current project:
File name is /home2/wkb9/param/file/file-templates.txt
HH AR R R R R R R R R R R R AR R

file-move-assignation.pgm

This file is placed during the installation of the Rehosting Workbench, it controls the transfer of
components generated in the different installation directories. This file indicates the location of
each component to copy during the installation phase of file.sh, when launched using
file.sh -i.

The file is located in:

$REFINEDIR/convert-data/defaul t/file/file-move-assignation.pgm

This file can be modified following the instructions found at the beginning of the file:

Listing 7-4 file-move-assignation.pgm Modification Instructions

L-1

*@ (c) Metaware:file-move-assignation.pgm. $Revision: 1.2 $
*release_format=2.4

*

* format is:

* <typ>:<source_directory>:<file_name>:<target _directory>

* typ:
* 0: optional copy: if the <file_name> is missing, it is ignored
* M: Mandatory copy: abort if <file_name> is missing.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

* E: Execution: execute the mandatory script <file_name>.

* Parameters for script to be executed are:

* basedir: directory of REFINEDIR/convert-data

* targetoutputdir: value of "-iI <targetdir>"

* schema: schema name

* target_dir: value written as 4th parameter in this file.

* d: use this tag to display the word which follows

* source_directory:

* T: generated components written in <targetdir>/Templates/<schema>

* 0: components written in <targetdir>/outputs/<schema>

* S: SQL requests (DDL) generated into <targetdir>/SQL/<schema> directory

* F: fixed components present in REFINEDIR

* s: used with -s arguments: indicates the target directory for DML
utilities
* (in REFINEDIR/modified-components/) which manipulate all schemas.

*

* File_name: (except for typ:d)

* name of the file in <source_directory>

* target_directory: (except for typ:d, given at 4th argument for typ:E)

* name of the target directory

* IT the 1st character is "/'", component is copied using static directory
* and not In <td> directory

* IT the 1st character is "!'", target directory contains both directory
and

* target file name.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 1-11

1-12

L]

Note: This file contains both File-to-File and File-to-Oracle migration parameters.

Datamap File

This is a configuration file used by the Rehosting Workbench file converter to add or modify
information on the physical files of a system.

See File Convertor: Introduction — Datamap File .

Mapper File

This is a configuration file used by the Rehosting Workbench File-to-Oracle Converter to

associate each file to migrate

See File Convertor: Introduction — Mapper File.

Note: In the mapper file, the converted clause has to be used for RDBMS Table target.

Table 7-3 Mapper File Specific Parameters Used with the File-to-Oracle Converter

file <physical

Z0S physical file name, Name used in the Datamap file.

filename>

converted Indicates file is to be converted to Oracle table (converted clause can
be combined with transferred clause)

transferred Indicates that the file is to be loaded and reloaded (can be combined with

converted clause).

include “<path/COPY
name>"’

Access path and name of the descriptive copy of the file to migrate.

map record <record
name> defined in
<“path/COPY name”>

e record name: corresponds to the level 01 field name of the
copy description.

e path/COPY name: corresponds to the access path and name
of the descriptive copy of the file to migrate.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Tahle 7-3 Mapper File Specific Parameters Used with the File-to-Oracle Converter

source record
<record names>
defined in
<"path/COPY name''>

e record name: corresponds to the level 01 field name of the
copy description of the file to migrate.

e path/COPY name: corresponds to the access path and name of
the descriptive copy of the file to migrate.

Logical name
<logical file name>

The Logical file name is chosen by the user, maximum eight characters.
This name is used for naming the objects (COBOL, JCL) created by the
different tools in the Rehosting Workbench.

Converter name
<program name>

Same name and use as logical file name.

table name

Oracle table name.

attributes
<attribute clause>

This optional clause has two attributes that can be used:
e LOGICAL_MODULE_IN_ADDITION
e LOGICAL_MODULE_ONLY

Their action is described in the next table.

Table 7-4 Mapper File Attributes

attributes <attribute clause>

Role

Attribute clause absent

In this case the following access functions are generated:
* RM_<logical file name>,

e UL_<logical file name>,

* DL_<logical file name>

and the Korn shell utilities.

See Access Functions and Utility Programs.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 1-13

1-14

Table 7-4 Mapper File Attributes

attributes <attribute clause> Role

LOGICAL_MODULE_IN_ADDITION In this case the following access functions are generated:
e ASG_<logical file name>
¢ RM_<logical file name>,
e UL_<logical file name>,
« DL_<logical file name>
and the Korn shell utilities.

See Access Functions and Utility Programs.

LOGICAL_MODULE_ONLY In this case only the ASG_<logical file name> access
function is generated.

Listing 7-5 Mapper File Example

ufas mapper STFILEORA

file PJO1AAA_SS_VSAM.CUSTOMER converted transferred
table name CUSTOMER
include ""COPY/ODCSFOB.cpy"*
map record VS-ODCSFO-RECORD defined in ""COPY/ODCSFOB.cpy"
source record VS-ODCSFO-RECORD defined in *""COPY/ODCSFOB.cpy"*
logical name ODCSFOB
converter name ODCSFOB

attributes LOGICAL_MODULE_IN_ADDITION

In this example the mapper file is named STFILEORA. The file processes only one file named
PJO1AAA.SS.VSAM.CUSTOMER that is migrated to an Oracle table using the convert option. The
ODCSFOB. cpy copy file used to describe the file is one of the source copy files.

Mapping Strategy Clauses

[field <field_name>

Oracle Tuxedo Application Rehosting Workbench Reference Guide

[use detail table]

[use opaque field <field name>]
[table name <target table name>]
[mapped type <target data type>]
[discard field <field name>]

[discard subfields <field name>]

[discrimination rule]]

Mapping Strategy Clause Syntax and Parameters
For OCCURS and REDEFINES clauses, using discrimination rules, three reengineering
possibilities are proposed:
e Creation of sub-tables (use detail table)
— Redefinitions: each description is associated with a sub-table (one sub-table for each description).

— Occurs: one sub-table is created containing a technical column that references the original table
to which the data corresponds.

e Creation of an opaque field (use opaque field).
— Redefinitions: all the descriptions are stored in an opaque field type CHAR or VARCHAR?2.
— Occurs: all the occurrences are stored in an opaque field type CHAR or VARCHAR2.

e Extended description (default)
— Redefinitions: all the fields described in the copy file are created as columns in the Oracle table.

— Occurs: each occurrence of a field in a redefined area is created as a column in the Oracle table,
one column for each occurrence in the OCCURS clause.

Table 7-5 Mapping Strategies

Strategy Description

table name < table name > Name of sub-table in case of mapping 'use detail table'.

mapped type <target data type> Enables the modification of the column type chosen by default. Two
possibilities are proposed: CHAR or VARCHAR?2.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 1-15

1-16

Table 7-5 Mapping Strategies

Strategy Description
discard field Enables the deletion of a non-useful redefined field.
discard subfields When a field has several levels of description, this option allows to

keep only the higher level.

Mapping Strategy Examples

Discard Subfield Example

05 NIV1.
10 NIV2A PIC 99.
10 NIV2B PIC 999.

When discarding subfields at the level NI1VV1, the Rehosting Workbench File-to-Oracle Converter
only processes the field NIVl PIC 9(5). When not discarding subfields, the N1v1 field is
ignored and the two fields N1V2A and N1V2B are processed.

Redefines With Default Option Example
This redefines example is without any specific options:

Listing 7-6 Descriptive Copy of the File: PJO1AAA.SS.VSAM.CUSTOMER

01 VS-ODCSFO-RECORD.

05 VS-CUSTIDENT PI1C 9(006).
05 VS-CUSTLNAME PIC X(030).
05 VS-CUSTFNAME PIC X(020).
05 VS-CUSTADDRS PIC X(030).
05 VS-CUSTCITY PIC X(020).
05 VS-CUSTSTATE PIC X(002).
05 VS-CUSTBDATE PI1C 9(008).

Oracle Tuxedo Application Rehosting Workbench Reference Guide

05 VS-CUSTBDATE-G REDEFINES VS-CUSTBDATE.
10 VS-CUSTBDATE-CC PIC 9(002).
10 VS-CUSTBDATE-YY PIC 9(002).
10 VS-CUSTBDATE-MM PIC 9(002).
10 VS-CUSTBDATE-DD PIC 9(002).

05 VS-CUSTEMAIL PIC X(040).
05 VS-CUSTPHONE PIC 9(010).
05 VS-FILLER PIC X(100).

The mapper file implemented is:

Listing 7-71 Mapper File for the File: PJO1AAA.SS.VSAM.CUSTOMER

ufas mapper STFILEORA
Tile PJO1AAA_SS_VSAM.CUSTOMER converted transferred
table name CUSTOMER
include "COPY/ODCSFOB.cpy"
map record VS-ODCSFO-RECORD defined in "COPY/ODCSFOB.cpy"
source record VS-ODCSFO-RECORD defined in "COPY/ODCSFOB.cpy"
logical name ODCSFOB
converter name ODCSFOB
attributes LOGICAL_MODULE_IN_ADDITION
field VS-CUSTBDATE
rule iIf VS-CUSTSTATE = "02" then VS-CUSTBDATE

else VS-CUSTBDATE-G

The table is generated as follows (all the unitary fields of the REDEFINES are handled).

Oracle Tuxedo Application Rehosting Workbench Reference Guide 1-11

Listing 7-8 Table Generation for the File: PJO1AAA.SS.VSAM.CUSTOMER

WHENEVER SQLERROR CONTINUE;

DROP TABLE CUSTOMER CASCADE CONSTRAINTS;
WHENEVER SQLERROR EXIT 3;

CREATE TABLE CUSTOMER (

VS_CUSTIDENT NUMBER(6) NOT NULL,
VS_CUSTLNAME VARCHAR2(30),
VS_CUSTFNAME CHAR (20),
VS_CUSTADDRS VARCHAR2(30),
VS_CUSTCITY CHAR (20),
VS_CUSTSTATE CHAR (2),
VS_CUSTBDATE NUMBER(8) ,
VS_CUSTBDATE_CC NUMBER(2) ,
VS_CUSTBDATE_YY NUMBER(2) ,
VS_CUSTBDATE_MM NUMBER(2) ,
VS_CUSTBDATE_DD NUMBER(2) ,
VS_CUSTEMAIL VARCHAR2(40),
VS_CUSTPHONE NUMBER(10),
VS_FILLER VARCHAR2(100) ,

CONSTRAINT PK_CUSTOMER PRIMARY KEY (
VS_CUSTIDENT)

);

1-18 Oracle Tuxedo Application Rehosting Workbench Reference Guide

REDEFINES With OPAQUE FIELD Option Example

Listing 7-9 Descriptive Copy of the File: PJO1AAA.SS.VSAM.CUSTOMER

01 VS-ODCSFO-RECORD.

05 VS-CUSTIDENT PI1C 9(006).
05 VS-CUSTLNAME PIC X(030).
05 VS-CUSTFNAME PIC X(020).
05 VS-CUSTADDRS PIC X(030).
05 VS-CUSTCITY PIC X(020).
05 VS-CUSTSTATE PIC X(002).
05 VS-CUSTBDATE PI1C 9(008).
05 VS-CUSTBDATE-G REDEFINES VS-CUSTBDATE.

10 VS-CUSTBDATE-CC PIC 9(002).
10 VS-CUSTBDATE-YY PIC 9(002).
10 VS-CUSTBDATE-MM PIC 9(002).
10 VS-CUSTBDATE-DD PIC 9(002).

05 VS-CUSTEMAIL PIC X(040).
05 VS-CUSTPHONE PIC 9(010).
05 VS-FILLER PIC X(100).

The mapper file implemented is:

Listing 7-10 Mapper File for the File: PJO1AAA.SS.VSAM.CUSTOMER

ufas mapper STFILEORA
Ffile PJO1AAA_SS.VSAM.CUSTOMER converted transferred

table name CUSTOMER

Oracle Tuxedo Application Rehosting Workbench Reference Guide

1-19

include "COPY/ODCSFOB.cpy"*

map record VS-ODCSFO-RECORD defined in ""COPY/ODCSFOB.cpy"
source record VS-ODCSFO-RECORD defined in *""COPY/ODCSFOB.cpy"*
logical name ODCSFOB

converter name ODCSFOB

attributes LOGICAL_MODULE_IN_ADDITION

field VS-CUSTBDATE

use opaque field

rule If VS-CUSTSTATE = 02" then VS-CUSTBDATE

else VS-CUSTBDATE-G

The table is generated as follows (only the VS_CUSTBDATE field is kept).

Listing 7-11 Table Generation for the File: PJO1AAA.SS.VSAM.CUSTOMER

WHENEVER SQLERROR CONTINUE;

DROP TABLE CUSTOMER CASCADE CONSTRAINTS;
WHENEVER SQLERROR EXIT 3;

CREATE TABLE CUSTOMER (

VS_CUSTIDENT NUMBER(6) NOT NULL,
VS_CUSTLNAME VARCHAR2(30),
VS_CUSTFNAME CHAR (20),
VS_CUSTADDRS VARCHAR2(30),
VS_CUSTCITY CHAR (20),
VS_CUSTSTATE CHAR (2),
VS_CUSTBDATE RAW (8),
VS_CUSTEMAIL VARCHAR2(40),

1-20 Oracle Tuxedo Application Rehosting Workbench Reference Guide

VS_CUSTPHONE NUMBER(10),
VS_FILLER VARCHAR2(100),
CONSTRAINT PK_CUSTOMER PRIMARY KEY (
VS_CUSTIDENT)

);

REDEFINES With DETAIL TABLE Option Example

Listing 7-12 Descriptive Copy of the File: PJO1AAA.SS.VSAM.CUSTOMER

01 VS-ODCSFO-RECORD.

05 VS-CUSTIDENT PIC 9(006).
05 VS-CUSTLNAME PIC X(030).
05 VS-CUSTFNAME PIC X(020).
05 VS-CUSTADDRS PIC X(030).
05 VS-CUSTCITY PIC X(020).
05 VS-CUSTSTATE PIC X(002).
05 VS-CUSTBDATE PIC 9(008).
05 VS-CUSTBDATE-G REDEFINES VS-CUSTBDATE.

10 VS-CUSTBDATE-CC PIC 9(002).
10 VS-CUSTBDATE-YY PIC 9(002).
10 VS-CUSTBDATE-MM PIC 9(002).
10 VS-CUSTBDATE-DD PIC 9(002).

05 VS-CUSTEMAIL PIC X(040).
05 VS-CUSTPHONE PIC 9(010).
05 VS-FILLER PIC X(100).

Oracle Tuxedo Application Rehosting Workbench Reference Guide

1-21

The mapper file implemented is:

Listing 7-13 Mapper File for the File: PJO1AAA.SS.VSAM.CUSTOMER

ufas mapper STFILEORA
file PJO1AAA_SS_VSAM.CUSTOMER converted transferred
table name CUSTOMER
include ""COPY/ODCSFOB.cpy"*
map record VS-ODCSFO-RECORD defined in ""COPY/ODCSFOB.cpy"
source record VS-ODCSFO-RECORD defined in *""COPY/ODCSFOB.cpy"*
logical name ODCSFOB
converter name ODCSFOB
attributes LOGICAL_MODULE_IN_ADDITION
field VS-CUSTBDATE
use detail table
rule If VS-CUSTSTATE = 02" then VS-CUSTBDATE

else VS-CUSTBDATE-G

The tables are generated as follows (a parent table is generated using the fields not part of the
REDEFINES, and two child tables are generated, one for each REDEFINES description).

Listing 7-14 Table Generation for the File: PJO1AAA.SS.VSAM.CUSTOMER

WHENEVER SQLERROR CONTINUE;
DROP TABLE CUSTOMER CASCADE CONSTRAINTS;
WHENEVER SQLERROR EXIT 3;
CREATE TABLE CUSTOMER (
VS_CUSTIDENT NUMBER(6) NOT NULL,

1-22 Oracle Tuxedo Application Rehosting Workbench Reference Guide

VS_CUSTLNAME VARCHAR2(30),

VS_CUSTFNAME CHAR (20),
VS_CUSTADDRS VARCHAR2(30),
VS_CUSTCITY CHAR (20),
VS_CUSTSTATE CHAR (2),
VS_CUSTEMAIL VARCHAR2(40),
VS_CUSTPHONE NUMBER(10),
VS_FILLER VARCHAR2(100),

CONSTRAINT PK_CUSTOMER PRIMARY KEY (
VS_CUSTIDENT)

);

WHENEVER SQLERROR CONTINUE;

DROP TABLE VS_CUSTBDATE CASCADE CONSTRAINTS;

WHENEVER SQLERROR EXIT 3;

CREATE TABLE VS_CUSTBDATE (

VS_CUSTBDATE_CUSTIDENT NUMBER(6) NOT NULL,
VS_CUSTBDATE NUMBER(8),

CONSTRAINT FK_VS_CUSTBDATE_CUSTOMER FOREIGN KEY (
VS_CUSTBDATE_CUSTIDENT) REFERENCES CUSTOMER (
VS_CUSTIDENT),

CONSTRAINT PK_VS_CUSTBDATE PRIMARY KEY (

VS_CUSTBDATE_CUSTIDENT)
);

WHENEVER SQLERROR CONTINUE;

Oracle Tuxedo Application Rehosting Workbench Reference Guide

1-23

DROP TABLE VS_CUSTBDATE_G CASCADE CONSTRAINTS;

WHENEVER SQLERROR EXIT 3;

CREATE TABLE VS_CUSTBDATE_G (
VS_CUSTBDATE_G_CUSTIDENT NUMBER(6) NOT NULL,

VS_CUSTBDATE_CC NUMBER(2),
VS_CUSTBDATE_YY NUMBER(2),
VS_CUSTBDATE_MM NUMBER(2),
VS_CUSTBDATE_DD NUMBER(2),

CONSTRAINT FK_VS_CUSTBDATE_G_CUSTOMER FOREIGN KEY (
VS_CUSTBDATE_G_CUSTIDENT) REFERENCES CUSTOMER (
VS_CUSTIDENT),

CONSTRAINT PK_VS_CUSTBDATE_G PRIMARY KEY (
VS_CUSTBDATE_G_CUSTIDENT));

Discrimination Rules

A discrimination rule must be set on the redefined field; it describes the code to determine which
description of the REDEFINES to use and when.

[field <field_name>]

L]
rule if <condition> then Field_Name_x
[elseif <condition> then field_Name_y]

[else Field_Name_z]

1-24 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Discrimination Rules Syntax and Parameters

Table 7-6 Discrimination Rules

Syntax Description

Field_Name_{X,Y,Z} This is the field that will be used when the associated condition is validated;
this field is one of the redefined fields.

Condition Is a conditional expression composed with field name, operators and
COBOL constants.

* Logical operators are: not, and, or

» Comparison operators are: = <> < >

» Specific operators are: is numeric, is all SPACE

* Following COBOL constants may be used: spaces, zeros, high-value,
low-value

Note: These conditions can be parenthesized.

Discrimination Rules Examples

In the following example the fields DPODP-DMDCHQ, DPONO-PRDTIV, DP5CP-VALZONNUM are
redefined.

Listing 7-15 Discrimination Rule COBOL Description

01 ZART1.

05 DPODP PIC X(20).

05 DPODP-RDCRPHY PIC 9.

05 DPODP-DMDCHQ PIC X(6).

05 DPODP-REMCHQ REDEFINES DPODP-DMDCHQ.
10 DPODP-REMCHQL PIC 999.
10 DPODP-REMCHQ2 PIC 999.

05 DPODP-VIREXT REDEFINES DPODP-DMDCHQ.
10 DPODP-VIREXT1 PIC S9(11) COMP-3.

05 DPONO-NPDT PIC X(5).

Oracle Tuxedo Application Rehosting Workbench Reference Guide 1-25

05 DPONO-PRDTIV PIC 9(8)V99.

05 DPONO-PRDPS REDEFINES DPONO-PRDTIV PIC X(10).
05 DP5CP-VALZONNUM PIC 9(6) .-

05 DP5CP-VALZON REDEFINES DP5CP-VALZONNUM PIC X(6).

The following discrimination rules are applied:

Listing 7-16 Discrimination Rules

field DPODP-DMDCHQ
rule if DPODP-RDCRPHY = 1 then DPODP-DMDCHQ
elseif DPODP-RDCRPHY = 2 then DPODP-REMCHQ
elseif DPODP-RDCRPHY = 3 then DPODP-VIREXT
else DPODP-DMDCHQ,
Field DPONO-PRDTIV
rule if DPONO-NPDT (1:2)

01" then DPONO-PRDTIV

elseif DPONO-NPDT (1:2)

02" then DPONO-PRDPS,
field DP5CP-VALZONNUM
rule if DPODP-RDCRPHY is numeric then DP5CP-VALZONNUM

else DP5CP-VALZON

The first rule is to test the value of the numeric field DPODP-RDCRPHY.

The second rule tests the first two characters of an alphanumeric field DPONO-NPDT. Only the
values 01 and 02 are allowed.

The third rule tests whether the field DPODP-RDCRPHY is numeric.

1-26 Oracle Tuxedo Application Rehosting Workbench Reference Guide

COBOL Description

Oracle Tuxedo Application Rehosting Workbench File-to-Oracle Converter needs a description
associated with each file, so a first step consists in preparing a COBOL copy description.

Once the COBOL description files have been prepared, the copy files described in the
mapper-<configuration name>.re file should be placed in the SPARAM/Fi le/recs-source
directory.

If you use a COBOL copy book from the source platform to describe a file (see COBOL
Description), then it is the location of the copy book that is directly used.

Description of the Output Files
File Locations

Location of Temporary Files

The temporary objects generated by the Rehosting Workbench File-to-Oracle Converter are
stored in:

$TMPPROJECT

$TMPPROJECT/Template/<configuration name>

$TMPPROJECT/outputs/<configuration name>
Note: The $TMPPROJECT variable is set to: $HOME/ tmp

Location of Log Files
The execution log files are stored in:
e Log generated by the option -g:

$TMPPROJECT/outputs mapper-log-<configuration name>

Location of Generated Files

The unloading and loading components generated with the —-i $HOME/trf option are placed in
the following locations

Oracle Tuxedo Application Rehosting Workbench Reference Guide 1-27

1-28

Table 7-7 Component Locations

Location

Contents

$HOME/trf/unload/file/<configura
tion name>

The JCL used for each unloading table are generated
for each <configuration name>.

These JCL are named:
<file name>. jclunload

$HOME/trf/reload/file/<configura
tion name>

For a file to Oracle migration, the programs and KSH
are named:

RELTABLE-<target file name>._pco

loadtable-<target file name>._ksh

$HOME/trf/SQL/file/<configuratio
n name>

(When migrating files to Oracle
tables).

Location by <configuration name> of the SQL
scripts used to create the Oracle objects.

$HOME/trf/config/tux

Location of configuration files used by Oracle
Tuxedo Application Runtime for files migrated to
tables.

$HOME/trf/DML

List of components is depending on the optional
attributes clause initialized in the mapper file.

See Mapping Strategy Clause Syntax and Parameters

Note:
furnished in the mapper file.

Generated Objects

<target table name>isthefilename onthetargetplatform, thisfilenameis

The following sections describe the objects generated during the migration of z/OS files and the

directories in which they are placed.

Unloading JCL

The JCL used to unload the files are generated using the -g option of the file.sh command.
They are then (using the -i option) installed in:

$HOME/trf/unload/file/<configuration name>

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Each JCL contains two steps and unloads one file using the z/0S IDCAMS REPRO utility. The

JCL return code is equal to 0 or 4 for a normal termination.

Step 1 DEL IDCAMS DELETE files (deletion of log, data files)

Step 2 UNLOAD IDCAMS REPRO of the indicated file

The JCLs are named: <file name>.jclunload

Note: The .jclunload extension should be deleted for execution under z/OS.
The generated JCL may need adapting to specific site constraints including:

e JOB cards: <cardjob_parameter_id>,

e access paths to input and output files: <data>.

Listing 7-17 Unload JCL Example

//<crdjob> <cardjob_parameter_1>,"FIL QSAM",

// <cardjob_parameter_2>
// <cardjob_parameter_3>
// <cardjob_parameter_4>

//*@ (C) Metaware:jcl-unload-MVS-REPRO.pgm. $Revision: 1.6 $

//
//* UNLOAD THE FILE:

//* <datain>.QSAM.CUSTOMER
//* INTO <data>.AV.QSAM

//* LENGTH=266

/7
= *
//* DELETE DATA AND LOG FILES

e — *

Oracle Tuxedo Application Rehosting Workbench Reference Guide

1-29

//DEL EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSIN DD *
DELETE <data>.AV.QSAM.LOG
DELETE <data>.AV.QSAM

SET MAXCC=0

//COPYFILE EXEC PGM=IDCAMS
//SYSPRINT DD SPACE=(CYL, (150,150),RLSE),

// DISP=(NEW,CATLG),
// UNIT=SYSDA,
// DSN=<data>.AV.QSAM.LOG

//SYSOUT DD SYSOUT=*
//1NDD DD DISP=SHR,
DSN=METAWOO . QSAM.CUSTOMER

//0UTD DD SPACE=(CYL, (150,150),RLSE),
V24 DISP=(NEW,CATLG),

// UNIT=SYSDA,

// DCB=(LRECL=266,RECFM=FB),
// DSN=<data>.AV.QSAM

//SYSIN DD *
REPRO INFILECINDD) OUTFILE(OUTD)
/*

1-30 Oracle Tuxedo Application Rehosting Workbench Reference Guide

COBOL Transcoding Programs

Migration of z/0S Files to Oracle Tables

The COBOL transcoding programs are generated using the —g option of the file.sh command.
They are then (using the -i option) installed in:

$HOME/trf/reload/file/<configuration name>/src
The programs are named: RELTABLE-<logical file name>._pco

The programs should be compiled using the target COBOL compilation options and Oracle
Precompiler options documented in Compiler Options.

The compilation of these programs requires the presence of a CONVERTMW.cpy copy file
adapted to the project, documented in Codeset Conversion..

These files read a file on input and directly load an Oracle table using the SQL INSERT verb.

Listing 7-18 FILE CONTROL Section - for Rranscoding Programs

SELECT MW-ENTREE
ASSIGN TO "ENTREE"
ORGANIZATION IS RECORD SEQUENTIAL
ACCESS IS SEQUENTIAL
FILE STATUS 1S I0-STATUS.

For Oracle table with technical column, a SEQUENCE object is created:
CREATE SEQUENCE <table_name>_<type> SEQ START WITH <num_rows>
A commit is made every 1000 records:
IF MW-NB-INSERT >= 1000
CALL "do_commit"
Note: The do_commit module is part of Oracle Tuxedo Application Runtime Batch.
A record count is written to the output file and is displayed at the end of processing via:

DISPLAY "RELOADING TERMINATED OK™.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 1-31

1-32

DISPLAY "Nb rows reloaded: ' D-NB-RECS.

DISPLAY ™ ™
DISPLAY "NUMERIC MOVED WHEN USING CHAR FORMAT : '
DISPLAY " NUMERIC-BCD : " MW-COUNT-NUMERIC-BCD-USE-X.

DISPLAY "™ NUMERIC-DISP: " MW-COUNT-NUMERIC-DISP-USE-X.

The last two lines displayed signal the movement of data into fields where the COBOL
description does not match the content of the input file (packed numeric fields containing
non-numeric data and numeric DISPLAY fields containing non-numeric data). When such cases
are encountered, each error is displayed.

Note: When migrating to a target platform using Intel hardware the message: “PROCESSOR
UNIT IS INTEL” is output at the beginning of transcoding.

Reloading Korn Shell Scripts

The Reloading Korn shell scripts are generated using the -g option of the File.sh command.
They are then (using the i option) installed in:

$HOME/trf/reload/file/<configuration name>

Reloading Korn Shell Scripts for Migrating z/0S Files to Oracle Tables

The scripts are named: loadtable-<logical file name>_ksh

They contain a DDL creation phase, a transcoding (or loading) phase and a check phase. The
different phases may be launched separately.

The execution of the scripts produces an execution log in $MT_L0OG/<logical file name>.log

The following variables are set at the beginning of each script:

Listing 7-19 Reloading Table Script Variables

f="@ (c) Metaware:load-tables-ksh.pgm. $Revision: 1.14 $null"
echo "reloading ODCSFOB into ORACLE™

export DD_ENTREE=${DD_ENTREE:-${DATA_SOURCE}/ODCSFOB}
logfile=$MT_LOG/ODCSFOB. log

reportfile=${MT_LOG}/0ODCSFOB.rpt

dd I file=${DDL}/STFILEORA/ODCSFOB.sql

Oracle Tuxedo Application Rehosting Workbench Reference Guide

L]

To change the file names, set the DD_ENTREE and DD_SORTIE variables before calling the script.

Various messages may be generated during the three execution phases of the scripts; explanations
of these messages are listed in Oracle Tuxedo Application Rehosting Workbench Messages.

On normal end, a return code of 0 is returned.

Creating Oracle DDL Phase
Oracle objects are created under SQLPLUS using: ${DDL}/STFILEORA/ODCSFOB.sql
sqlplus $MT_DB_LOGIN >>$logfile 2>&1 <<!EOF
WHENEVER SQLERROR EXIT 3;
start ${ddIfile}
exit

TEOF

On normal termination the following message is displayed:

echo "Table(s) created"

Transcoding and Loading Phases

These steps launch the execution of the COBOL transcoding program associated with the file
processed:

runb RELTABLE-ODCSFOB >> $logfile 2>&1
On normal termination the following message is displayed:

echo "File ${DD_ENTREE} successfully transcoded and reloaded into ORACLE"

Check Phase

This step verifies after the reloading that the reloaded Oracle table contains the same number of
records as the records transferred from ZOS on target platform. If the number of records is
different, an error message is produced:. If the number of records is equal, this message is
produced:

"Number of rows written in output file is equal to number calculated using
the log file: OK"

Oracle Tuxedo Application Rehosting Workbench Reference Guide 1-33

Target DDL

The ORACLE DDL is generated using the -g option of the file.sh command. They are then
(using the -i option) installed in:

$HOME/trf/SQL/File/<schema name>
They are named: <target file name>.sqgl
The format used is:

WHENEVER SQLERROR CONTINUE;
DROP TABLE <target_table_name> CASCADE CONSTRAINTS;
WHENEVER SQLERROR EXIT 3;
CREATE TABLE <target_table_name> (
<target_column_name> <column_data_type> <attribute>[, ..]
CONSTRAINT <constraint_name> PRIMARY KEY (<target_column_name>)

CONSTRAINT <fk_constraint_name> FOREIGN KEY
(<target_column_name>)]

):
Where:

<target_table_name> Oracle table name.

<target_column_name> Oracle column name.

<column_data_type> Oracle data type (CHAR, VARCHAR2 or NUMBER).

<attribute> NOT NULL when primary key.

<constraint_name> Constraint name of primary key (PK_<Oracle table name>

<fk_constraint_name> Constraint name of foreign key (FK_<Oracle table
name>_<parent_table_name>)

Listing 7-20 DDL Generation sgl Example

WHENEVER SQLERROR CONTINUE;
DROP TABLE CUSTOMER CASCADE CONSTRAINTS;
WHENEVER SQLERROR EXIT 3;

1-34 Oracle Tuxedo Application Rehosting Workbench Reference Guide

CREATE TABLE CUSTOMER (
VS_CUSTIDENT
VS_CUSTLNAME
VS_CUSTFNAME
VS_CUSTADDRS
VS_CUSTCITY
VS_CUSTSTATE
VS_CUSTBDATE
VS_CUSTEMAIL
VS_CUSTPHONE

VS_FILLER

NUMBER(6) NOT NULL,
VARCHAR2(30),

CHAR (20),
VARCHAR2(30),

CHAR (20),

CHAR (2),
NUMBER(8) ,
VARCHAR2(40),
NUMBER(10),
VARCHAR2(100) ,

CONSTRAINT PK_CUSTOMER PRIMARY KEY (

VS_CUSTIDENT)
);

Access Functions and Utility Programs

Access Functions

These access functions are generated using the -g option of File.sh and installed
in$HOME/trf/DML using the -i and -s options.

Tahle 7-8 Access Functions

Access function

Role

RM_<logical file name>_pco

Relational access module to Oracle table that replaces
the specified logical file name.

DL_<logical file name>._cbl

Download module of the specified logical file (function
used by Oracle Tuxedo Application Runtime Batch).

UL_<logical file name>._cbl

Upload module of the specified logical file (function
used by Oracle Tuxedo Application Runtime Batch).

Oracle Tuxedo Application Rehosting Workbench Reference Guide 1-35

Tahle 7-8 Access Functions

Access function Role

ASG_<logical file name>.cbl Optional module generated when there are multiple
assigns. See Mapper File Attributes

getfileinfo.cbl This program checks if the <logical file name>.rdb
associated with the assign-name given as an input
argument exists. This function is called by
ASG_<logical file name>.cbl.

init_all_files.cbl Callsall init_all_files_<configuration
name>_cbl (function used by Oracle Tuxedo
Application Runtime Batch).

init_all_files_<configuration Initializes a transaction. All variables used by relational

name>.cbl module and ASG_<logical file name> module
are initialized for the configuration name listed
(function used by Oracle Tuxedo Application Runtime
Batch).

dml_locking.cbl This program manages locking for all configuration
files (function used by Oracle Tuxedo Application
Runtime Batch).

close_all_files_<configuration Closes a transaction. This program closes all cursors

name>.cbl opened in tables for the configuration listed and
unlocks all files opened with logical accessor
ASG_<logical file name> (function used by
Oracle Tuxedo Application Runtime Batch).

close_all_files.cbl Callsall close_all_files_<configuration
name>_cbl (function used by Oracle Tuxedo
Application Runtime Batch).

Access Function Call Arguments

The RM_<logical Ffile name>.pco and ASG_<logical file name>.cbl access functions
use the following variables:

1-36 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Table 7-9 Access Call Implemented Variables

Variable Description/origin

Function code Indicates the type of operation to execute, for example OPEN, WRITE,
etc. The code is passed using the FILE-CODE-F variable of the
MWFITECH copy file.

File open mode A file can be opened in different modes: INPUT, OUTPUT, | O,
EXTEND. The mode is passed using the FILE-OPEN-MODE variable of
the MWFITECH copy file.

10-STATUS The IO-STATUS variable is linked to each file providing the execution
status of the last relational module operation.

Record to transmit Therecord to transmit has an access function for write operations or access
or receive by key; the record to receive has a read access function. These are
described in the LINKAGE SECTION.

Name of secondary For indexed files with secondary keys, and only for files with this
key to use organization, an extra variable is required to identify the secondary key to
use for a START operation.

The name of the secondary key is passed using the
FILE-ALT-KEY-NAME variable of the MWFITECH copy file.

For files without secondary keys, this argument is unnecessary.

Relative Key For a relative file, the value of the relative key is passed to or from the
access module using the FILE-REL-KEY variable of the MWFITECH
copy file.

Listing 7-21 LINKAGE SECTION Structure

LINKAGE SECTION.
01 10-STATUS PIC XX.
COPY MWFITECH.

* *COBOL Record Description
01 VS-ODCSFO-RECORD.

06 X-VS-CUSTIDENT.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 1-317

07 VS-CUSTIDENT PIC 9(006).

06 VS-CUSTLNAME PIC X(030).
06 VS-CUSTFNAME PIC X(020).
06 VS-CUSTADDRS PIC X(030).
06 VS-CUSTCITY PIC X(020).
06 VS-CUSTSTATE PIC X(002).

06 X-VS-CUSTBDATE.
07 VS-CUSTBDATE PIC 9(008).
06 VS-CUSTBDATE-G REDEFINES VS-CUSTBDATE.
11 X-VS-CUSTBDATE-CC.
12 VS-CUSTBDATE-CC PIC 9(002).
11 X-VS-CUSTBDATE-YY.
12 VS-CUSTBDATE-YY PIC 9(002).
11 X-VS-CUSTBDATE-MM.
12 VS-CUSTBDATE-MM PIC 9(002).
11 X-VS-CUSTBDATE-DD.
12 VS-CUSTBDATE-DD PIC 9(002).
06 VS-CUSTEMAIL PIC X(040).
06 X-VS-CUSTPHONE.
07 VS-CUSTPHONE PIC 9(010).
06 VS-FILLER PIC X(100).
PROCEDURE DIVISION USING 10-STATUS
MW-FILE-TECH

VS-ODCSFO-RECORD.

1-38 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Call Arguments Used

OPEN
For all OPEN operations, the FILE-CODE-F variable should contain the key-word OPEN.

The FILE-OPEN-MODE variable should contain the type of OPEN to perform as follows:.

Table 7-10 Call Argument File Open Modes

Source Target

OPEN INPUT filenamel INPUT => FILE-OPEN-MODE

OPEN OUTPUT filenamel OUTPUT => FILE-OPEN-MODE

OPEN 1I-O filenamel I-O =>FILE-OPEN-MODE

OPEN EXTEND filenamel ~ EXTEND => FILE-OPEN-MODE

CLOSE
For CLOSE operations, the FILE-CODE-F variable should contain the key-word CLOSE.

CLOSE-LOCK

For CLOSE LOCK operations, the FI1LE-CODE-F variable should contain the key-word
CLOSE-LOCK.

DELETE

Depending on the file access mode, the DELETE operation is either the current record or the one
indicated by the file key.

The corresponding function code is indicated as follows:

Table 7-11 Call Argument Delete Modes

Access Source Target

Sequential DELETE filenamel DELETE-CUR => FILE-CODE-F

Random or dynamic DELETE filenamel DELETE-KEY => FILE-CODE-F

Oracle Tuxedo Application Rehosting Workbench Reference Guide 1-39

READ

The function code depends on the file access mode and the type of read required: sequential read,
read primary key or read secondary key.

Table 7-12 Read Operation Values Depending on Arguments

Access Source Target

Sequential READ filenamel [NEXT] READ-NEXT =>FILE-CODE-F

Random READ filenamel READ-KEY =>FILE-CODE-F

Dynamic READ filenamel NEXT READ-NEXT => FILE-CODE-F
READ filenamel READ-KEY =>FILE-CODE-F
READ filenamel PREVIOUS READ-PREV => FILE-CODE-F

If DataNamel is a READ filenamel KEY DataNamel READ-ALT-KEY =>FILE-CODE-F

variable corresponding "Altkeyl" =>

to the keyAltKeyl FILE-ALT-KEY-NAME

DataNamel represents ~ READ filenamel READ-REL-KEY => FILE-CODE-F

the relative key KEY DataNamel "RelKeyVar" =>FILE-REL-KEY

Note: Ifthe INTO clause is found, a MOVE operation is added after the call in order to set the
value of the indicated field.

REWRITE

The function code depends on the file access mode and the type of read required: sequential read,
read primary key or read secondary key

Table 7-13 Rewrite Operation Values Depending on Arguments

Access Source Target
Sequential REWRITE RecNamel REWRITE-CUR => FILE-CODE-F
Random or dynamic REWRITE RecNamel REWRITE-KEY => FILE-CODE-F

Note: If the FROM clause is found, a MOVE operation is added before the call in order to set
the value of the indicated field.

1-40 Oracle Tuxedo Application Rehosting Workbench Reference Guide

START

Whether the file is relative, indexed, with or without secondary key, the function code depends
on the exact type of start.

Table 7-14 Rewrite Operation Values Depending on Arguments

When Source Target
START filel START-EQUAL => FILE-CODE-F
DataNamel START filel KEY {EQUAL| = START-EQUAL => FILE-CODE-F
represents the |[EQUALS} DataNamel
relative key or
filel |GREATER} DataNamel
START filel KEY {NOT LESS START-SUPEQ => FILE-CODE-F
|[GREATER OR EQUAL |NOT <|>=}
DataNamel
START filel KEY {<|LESS} START-INF =>FILE-CODE-F
DataNamel

START filel KEY {NOT GREATER START-INFEQ => FILE-CODE-F
ILESS OR EQUAL |NOT >|<=}
DataNamel

Oracle Tuxedo Application Rehosting Workbench Reference Guide 1-41

Table 7-14 Rewrite Operation Values Depending on Arguments

When Source Target
DataNamel is a START filel KEY {EQUAL| = AltKeyl =>
variable |[EQUALS} DataNamel FILE-ALT-KEY-NAME

corresponding to

START-ALT-EQUAL =>
the AltKey1 key FILE-CODE-F
START filel KEY {EXCEEDS| > Altkeyl =>
IGREATER} DataNamel FILE-ALT-KEY-NAME
START-ALT-SUP =>
FILE-CODE-F
START filel KEY {NOT LESS]| Altkeyl =>
GREATER OR EQUAL |NOT< |>=} FILE-ALT-KEY-NAME
DataNamel START-ALT-SUPEQ =>
FILE-CODE-F
START filel KEY AltKeyl =>
{< |LESS} DataNamel1 FILE-ALT-KEY-NAME
START-ALT-INF =>
FILE-CODE-F
START filel KEY {NOT GREATER AltKeyl =>
ILESS OR EQUAL |NOT >|<=} FILE-ALT-KEY-NAME
DataName1l START-ALT- INFEQ =>
FILE-CODE-F

WRITE

The function code depends on the file access mode and the type of read required: sequential read,
read primary key or read secondary key

Table 7-15 Write Operation Values Depending on Arguments

Access Source Target
Sequential WRITE RecNamel WRITE-SEQ => FILE-CODE-F
Random or dynamic WRITE RecNamel WRITE-KEY => FILE-CODE-F

1-42 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Note:

the value of the indicated field.

Copy Files to Be Implemented

The following copy files are used by certain access functions. They should be placed in the
directory: < installation platform>/fixed-copy/ during the installation of the Rehosting
Workbench:

MW-PARAM-TRACE-VAR. cpy
MW-PARAM-TRACE . cpy
MW-PARAM-GETFILEINFO-VAR . cpy
MW-PARAM-GETFILEINFO.cpy
MW-PARAM-ERROR-VAR . cpy
MW-PARAM-ERROR . cpy
MW-PARAM-DML-LOCKING . cpy
MWFITECH . cpy

ERROR-SQLCODE . cpy

Korn Shell Utilities

These KSH scripts are generated using the -g option of File.sh and then installed in
$HOME/trf/SQL/File/<configuration name> using the —i option. When necessary, they are
used by Oracle Tuxedo Application Runtime Batch.

Tahle 7-16 Korn Shell Utilities

If the FROM clause is found, a MOVE operation is added before the call in order to set

Korn shell script name

Role

cleantable-<logical file
name>_ksh

Script file that CLEANS all tables associated with this
file.

createtable-<logical file
name>_ksh

Script file that CREATEs all table, constraint and
indexes associated with this file.

droptable-<logical file
name>_.ksh

Script file that DROPs all tables associated with this
file.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 1-43

Tahle 7-16 Korn Shell Utilities

Korn shell script name Role

ifemptytable-<logical file Script file that checks if all tables are empty.
name>._ksh

ifexisttable-<logical file Script file that checks if all tables exist.
name>_ksh

Oracle Tuxedo Application Runtime for CICS Configuration
Files

The desc.vsam and envfile_tux files are generated in the $SHOME/trf/config/tux/
directory when VSAM files are migrated to Oracle tables. They are used by Oracle Tuxedo
Application Runtime CICS.

COBOL and JCL Conversion Guide Files

These files are generated using the -s option of the file.sh command.

This file is used by the Rehosting Workbench COBOL Converter and JCL Converter to rename
object names.

Table 7-17 Conversion File Names

File-in-table-<configuration Used by the Rehosting Workbench JCL

name> converter

File-in-table.txt Used by the Rehosting Workbench JCL
converter

Conv-ctrl._txt Used by the Rehosting Workbench COBOL
converter

Conv-ctrl-<configuration Used by the Rehosting Workbench COBOL

name> converter

1-44 Oracle Tuxedo Application Rehosting Workbench Reference Guide

.-rdb Files

These files are created when VSAM files are converted to Oracle tables. They are used by Oracle
Tuxedo Application Runtime Batch to bridge the technical differences between the z/OS file on the source
platform and the corresponding Oracle table on the target platform.

The files are generated in: $SHOME/trf/data
They are named: <source platform physical file name>.rdb

The files contain two lines described in the next section.

Parameters and Syntax

${DATA}/<source platform physical file name> <max> <org> <form> UL_<logical
file name> <asgn_in> DL_<logical file name> <asgn_out> RM_<logical file
name> <target table name> ${DDL}/<configuration name/cleantable-<target
table name>.ksh ${DDL}/<configuration name>/droptable-<target table
name>_ksh ${DDL}/<configuration name>/createtable-<target table name>.ksh
${DDL}/<configuration name>/ifemptytable-<target table name>_ksh
${DDL}/<configuration name>/ifexisttable-<target table name>_ksh

IDX_KEY <column name> <n m>

REL_KEY - <m>

Tahle 7-18 .rdb file Parameters

Parameter Description
First Line:
<source platform Physical file name

physical file name>

<max> Maximum Record Size (in COBOL description).

<org> File organization:
e IDX: indexed without alternate key
e IDX_ALT: indexed with alternate key(s)
* SEQ: sequential
e REL: relative

Oracle Tuxedo Application Rehosting Workbench Reference Guide 1-4%5

Tahle 7-18 .rdb file Parameters

Parameter

Description

<form>

Record format:
e FIX: fixed file

¢ VAR:<min> variable file with minimal size. If <min> is missing,
minimal size will be 1.

UL_<logical file name>

Uploading component name used by Oracle Tuxedo Application
Runtime Batch.

<asgn_in>

Assign file name used by the uploading component.

DL_<logical file name>

Downloading component name used by Runtime.

<asgn_out>

Assign file name used by the downloading component.

RM_<logical file name>

Relational module name.

<target table name>

Name of the first table name (master table name or first table name
for multi-record).

${DDL}/<configuration
name/cleantable-<targe
t table name>._ksh

Name of the script file that CLEANS all tables associated with this
file.

${DDL}/<configuration
name/droptable-<target
table name>_ksh

Name of the script file that DROPs all tables associated with this file

${DDL}/<configuration
name>/createtable-<tar
get table name>_ksh

Name of the script file that CREATEsS all tables associated with this
file and their objects (constraints, indexes).

${DDL}/<configuration
name>/ifemptytable-<ta
rget table name>_ksh

Name of the script file that checks if all tables are empty.

${DDL}/<configuration
name>/ifexisttable-<ta
rget table name>_ksh

Name of the script file that checks if all tables exist.

Second Line for indexed file and indexed with alternate key file only:

IDX_KEY

Constant.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Tahle 7-18 .rdb file Parameters

Parameter Description

<VS-column name> Indexed key name (group zone name or elementary field name as
described in COBOL description).

<n m> e n: offset of the indexed key (in COBOL description).
« m: length of the indexed key (in COBOL description).

Second Line for relative file:

REL_KEY Constant.
- Constant.
<m> * m: length of the relative key (in COBOL description).

Example of .rdb File

The following example is generated when migrating an indexed VSAM file to an Oracle table.
On the source platform, the VSAM file is named: PJO1AAA.SS.VSAM.CUSTOMER

Listing 7-22 .rdb indexed VSAM Example

${DATA}/PJ01AAA_SS_VSAM_CUSTOMER 266 IDX FIX UL_ODCSFOB ENTREE DL_ODCSFOB
SORTIE RM_ODCSFOB CUSTOMER ${DDL}/STFILEORA/cleantable-ODCSFOB.ksh
${DDL}/STFILEORA/droptable-0ODCSFOB.ksh
${DDL}/STFILEORA/createtable-ODCSFOB.ksh

${DDL}/STFILEORA/ ifemptytable-ODCSFOB.ksh
${DDL}/STFILEORA/ifexisttable-ODCSFOB.ksh

IDX_KEY VS-CUSTIDENT 1 6

Execution Reports

file_sh creates different execution reports depending on the options chosen. In the following
examples the following command is used:

file.sh -gmi $HOME/trf STFILEORA

Oracle Tuxedo Application Rehosting Workbench Reference Guide 1-47

1-48

Listing 7-23 Messages Produced when Using the options -g with file.sh (step 1)

HHHHH AR AR R R R R R R R R R
Control of configuration STFILEORA

HHHHH B H A AR R

Control of templates

OK: Use Default Templates list file

File name is
/Qarefine/release/M3_L3_6/convert-data/default/file/file-templates.txt

HAHHHH AR A R R
Control of Mapper

HAHHHH AR A R R A
COMPONENTS GENERATION

CMD : /Qarefine/release/M3_L3 6/scripts/launch file-converter -s
/home2/wkb4/param/system.desc -mf /home2/wkb4/tmp/mapper-STFILEORA.re.tmp
-dmf /home2/wkb4/param/file/Datamap-STFILEORA.re -td /home2/wkb4/tmp -tmps
/home2/wkb4/tmp/file-templates-STFILEORA.tmp -target-sgbd oraclell
-target-os unix -varchar2 29 -print-ddl -print-dml -abort

MetaWorld starter

Loading lib: /Qarefine/release/M3_L3_6/Linux64/1ib64/1ocalext.so
(funcall LOAD-THE-SYS-AND-APPLY-DMAP-AND-MAPPER)

FILE-0092: *File-Converter*: We are in BATCH mode

FILE-0087: * Comand line arguments: begining of analyze

FILE-0088: * recognized argument -s value: /home2/wkb4/param/system.desc

FILE-0088: * recognized argument -mf value:
/home2/wkb4/tmp/mapper-STFILEORA. re.tmp

Oracle Tuxedo Application Rehosting Workbench Reference Guide

FILE-0088: * recognized argument -dmf value:
/home2/wkb4/param/file/Datamap-STFILEORA.re

FILE-0088: * recognized argument -td value: /home2/wkb4/tmp

FILE-0088: * recognized argument -tmps value:
/home2/wkb4/tmp/file-templates-STFILEORA. tmp

FILE-0088: * recognized argument -target-sghd value: oraclell

FILE-0088: * recognized argument -target-os value: unix

FILE-0088: * recognized argument -varchar2 value: 29

FILE-0089: * recognized argument -print-ddl

FILE-0089: * recognized argument -print-dml

FILE-0089: * recognized argument -abort

FILE-0091: * End of Analyze

FILE-0094: * Parsing mapper file /home2/wkb4/tmp/mapper-STFILEORA.re.tmp

FILE-0095: * Parsing data-map file
/home2/wkb4/param/file/Datamap-STFILEORA.re ...

FILE-0096: * Parsing system description file /home2/wkb4/param/system.desc

Warning! 0OS clause is absent, assuming OS is IBM
Current OS is IBM-MF

Loading /home2/wkb4/source/symtab-STFILEORA._pob at 16:38:42... done at
16:38:42

Build-Symtab-DL1 #l<a SYMTAB-DL1>

... Postanalyze-System-RPL. ..
sym=#2<a SYMTAB>
PostAnalyze-Common #2<a SYMTAB>

0 classes

0 classes

0 classes

Oracle Tuxedo Application Rehosting Workbench Reference Guide 1-49

0 classes
1 classes
13 classes
Loading /home2/wkb4/source/BATCH/pob/RSSABBO1.cbl . shrec...
Loading /home2/wkb4/source/COPY/pob/ODCSFO.cpy.cdm. . .
Loading /home2/wkb4/source/COPY/pob/0ODCSFOB.cpy.cdm. ..
Loading /home2/wkb4/source/COPY/pob/ODCSFU.cpy.cdm. . .
FILE-0001: * Point 1 I!
FILE-0002: * Point 2 1!
FILE-0010: * Parsing file /home2/wkb4/source/COPY/ODCSFO.cpy - ..
Parsed 22 lines
FILE-0010: * Parsing file /home2/wkb4/source/COPY/MW_SYSOUT.cpy - -.
Parsed 8 lines
FILE-0010: * Parsing file /home2/wkb4/source/COPY/ODCSFU.cpy - ..
Parsed 24 lines
FILE-0010: * Parsing file /home2/wkb4/source/COPY/ODCSFOB.cpy .. -
Parsed 22 lines
FILE-0003: * Point 3 I!
FILE-0004: * Point 4 11!
FILE-0005: * Point 5 I!

FILE-0052: * loading pob file
/Qarefine/release/M3_L3_6/convert-data/templates/file/unloading/jcl-unload
-MVS-REPRO. pgm.pob

FILE-0085: * Expanding
/Qarefine/release/M3_L3_6/convert-data/templates/file/unloading/jcl-unload
-MVS-REPRO.pgm - ..

FILE-0054: * Writing MW-SYSOUT.jclunload

FILE-0054: * Writing ODCSFU.jclunload

1-50 Oracle Tuxedo Application Rehosting Workbench Reference Guide

FILE-0054: * Writing ODCSFOQ.jclunload

L---1

FILE-0052: * loading pob file
/Qarefine/release/M3_L3_6/convert-data/templates/file/dml/generate-post-pr
ocess.pgm.pob

FILE-0085: * Expanding
/Qarefine/release/M3_L3_6/convert-data/templates/file/dml/generate-post-pr
ocess.pgm ...

FILE-0054: * Writing post-process-file.sh

FILE-0053: * Parsing template file
/Qarefine/release/M3_L3_6/convert-data/default/file/file-move-assignation.
pgm

FILE-0085: * Expanding
/Qarefine/release/M3_L3_6/convert-data/default/file/file-move-assignation.

pgm ...
FILE-0054: * Writing file-move-assignation.lIst

Rest in peace, Refine...

Generated components are in /home2/wkb4/tmp/Template/STFILEORA
(Optionaly in /home2/wkb4/tmp/SQL/STFILEORA)

Listing 7-24 Messages Produced when Using the Options -m with file.sh (step 2)

HHHH B HHHH AR AR R R R
FORMATTING COBOL LINES
HHHH B HH AR AR AR AR

CHANGE ATTRIBUTE TO KSH or SH scripts

Components are modified into /home2/wkb9/tmp directory
Messages produced using the -i option in file_.sh (step 3)

INSTALL COMPONENTS INTO SPECIFIC DIRECTORY USING file-move-assignation.lst

==_PJO01AAA_SS.VSAM.CUSTOMER_==

Copied <Templates>:0DCSFOB.jclunload to
<td>/unloading/file/STFILEORA/ODCSFOB. jclunload

Copied <Templates>:loadtable-ODCSFOB.ksh to
<td>/reload/file/STFILEORA/loadtable-ODCSFOB.ksh

Copied <Templates>:RELTABLE-ODCSFOB.pco to
<td>/reload/file/STFILEORA/RELTABLE-ODCSFOB.pco

Copied <Templates>:ASG_ODCSFOB.cbl to <td>/DML/ASG_ODCSFOB.cbl
Copied <Templates>:RM_ODCSFOB.pco to <td>/DML/RM_ODCSFOB.pco
Copied <Templates>:DL_ODCSFOB.cbl to <td>/DML/DL_ODCSFOB.cbl
Copied <Templates>:UL_ODCSFOB.cbl to <td>/DML/UL_ODCSFOB.cbl

Copied <Templates>:PJ01AAA.SS.VSAM.CUSTOMER.rdb to
<td>/data/PJO01AAA_SS.VSAM.CUSTOMER. rdb

Copied <SQL>:ODCSFOB.sql to <td>/SQL/File/STFILEORA/ODCSFOB.sql

Copied <Templates>:cleantable-ODCSFOB.ksh to
<td>/SQL/file/STFILEORA/cleantable-0ODCSFOB.ksh

Copied <Templates>:droptable-ODCSFOB.ksh to
<td>/SQL/File/STFILEORA/droptable-ODCSFOB.ksh

Copied <Templates>:createtable-ODCSFOB.ksh to
<td>/SQL/File/STFILEORA/createtable-0ODCSFOB.ksh

Copied <Templates>:ifemptytable-ODCSFOB.ksh to
<td>/SQL/File/STFILEORA/ ifemptytable-ODCSFOB.ksh

Copied <Templates>:ifexisttable-ODCSFOB.ksh to
<td>/SQL/file/STFILEORA/ifexisttable-ODCSFOB.ksh

L---1

1-52 Oracle Tuxedo Application Rehosting Workbench Reference Guide

==_PJO01AAA_SS.QSAM.CUSTOMER.REPORT_==

Copied <Templates>:loadfile-MW-SYSOUT.ksh to
<td>/reload/fTile/STFILEORA/ loadfile-MW-SYSOUT.ksh

Copied <Templates>:RELFILE-MW-SYSOUT.cbl to
<td>/reload/file/STFILEORA/RELFILE-MW-SYSOUT.cbl

==_PJO01AAA_SS.QSAM.CUSTOMER.UPDATE_==

Copied <Templates>:loadfile-ODCSFU.ksh to
<td>/reload/file/STFILEORA/ loadfile-ODCSFU.ksh

Copied <Templates>:RELFILE-ODCSFU.cbl to
<td>/reload/file/STFILEORA/RELFILE-ODCSFU.cbl

==_PJO01AAA_SS.QSAM.CUSTOMER_==

Copied <Templates>:loadfile-ODCSFO.ksh to
<td>/reload/file/STFILEORA/loadfile-ODCSFO.ksh

Copied <Templates>:RELFILE-ODCSFO.cbl to
<td>/reload/file/STFILEORA/RELFILE-ODCSFO.cbl

Copied <Templates>:close_all_files_STFILEORA.cbl to
<td>/DML/close_all_files_STFILEORA.cbl

Copied <Templates>:init_all_files STFILEORA.cbhbl to
<td>/DML/init_all_files_STFILEORA.cbl

Copied <Templates>:reload-files.txt to
<td>/reload/file/STFILEORA/reload-files.txt

Copied <fixed-components>:getfileinfo.cbl to <td>/DML/getfileinfo.cbl
Copied <fixed-components>:MWFITECH.cpy to <td>/fixed-copy/MWFITECH.cpy

Copied <fixed-components>:MW-PARAM-ERROR.cpy to
<td>/fixed-copy/MW-PARAM-ERROR . cpy

Oracle Tuxedo Application Rehosting Workbench Reference Guide 1-53

Copied <fixed-components>:MW-PARAM-ERROR-VAR.cpy to
<td>/fixed-copy/MW-PARAM-ERROR-VAR. cpy

Copied <fixed-components>:MW-PARAM-TRACE.cpy to
<td>/fixed-copy/MW-PARAM-TRACE . cpy

Copied <fixed-components>:MW-PARAM-TRACE-VAR.cpy to
<td>/fixed-copy/MW-PARAM-TRACE-VAR.cpy

Copied <fixed-components>:MW-PARAM-GETFILEINFO.cpy to
<td>/Fixed-copy/MW-PARAM-GETFILEINFO.cpy

Copied <fixed-components>:MW-PARAM-GETFILEINFO-VAR.cpy to
<td>/fixed-copy/MW-PARAM-GETFILEINFO-VAR.cpy

Copied <fixed-components>:MW-PARAM-DML-LOCKING.cpy to
<td>/fixed-copy/MW-PARAM-DML-LOCKING. cpy

Copied <fixed-components>:ERROR-SQLCODE.cpy to
<td>/fixed-copy/ERROR-SQLCODE . cpy

Copied <fixed-components>:RunSqlLoader.sh to
<td>/reload/bin/RunSqlLoader.sh

Copied <fixed-components>:CreateReportFromMVS.sh to
<td>/reload/bin/CreateReportFromMVS.sh

Dynamic_configuration

Copied <Templates>:File-in-table-STFILEORA to
/home2/wkb9/param/dynamic-config/File-in-table-STFILEORA

Copied <Templates>:../../Conv-ctrl1-STFILEORA to
/home2/wkb9/param/dynamic-config/Conv-ctr1-STFILEORA

post-process
executed <Templates>:post-process-file.sh

/home2/wkb9/param/dynamic-config/Conv-ctrl-STFILEORA treated

Number of copied files: 37

1-54 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Number of executed scripts: 1

Number of ignored files: 0

HHHH B HH R R R R R R R R R R R R R R

Detailed Processing

This section describes the Command-Line Syntax used by the File-to-Oracle Converter, and the
Process Steps summary.

The processes required on the source and target platforms concern:
e Configuring the Environments and Installing the Components,
e Unloading Data,

e Transferring the Data,
e Reloading the Data,

e Checking the Transfers,
Command-Line Syntax
file.sh

Name
file.sh - generate file migration components.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 1-5%5

Synopsis
file.sh [[-g] [-m] [-i <installation directory>] <configuration name> | -s
<installation directory> (<configuration namel>,<configuration name2>,...)

1

Description

file.sh generates the Rehosting Workbench components used to migrate z/OS files to Oracle
databases.

Options

Generation Options

-g <configuration name>
Triggers the generation, for the configuration indicated, of the unloading and loading
components in STMPPROJECT. This generation depends on the information found in the
configuration files.

Modification Options

-m <configuration name>
Makes the generated SHELL scripts executable. COBOL programs are adapted to the
target COBOL fixed format. When present, the shell script described in File Modifying
Generated Components is executed.

Installation Option

-i <installation directory> <configuration name>
Places the components in the installation directory. This operation uses the information
located in the file-move-assignation.pgm file.

Final Option

-s <installation directory> (<configuration name 1>, <configuration name 2>, ...)
Enables the generation of the COBOL and JCL converter configuration files and DML
utilities. These generated files take all of the unitary files of the project.

All configuration files are created in $PARAM/dynamic-config and DML files in
<trf>/DML directory.

1-56 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Example
file.sh -gmi $HOME/trf FTFILOO1

Unitary Usage Sequence
If the File.sh options are used one at a time, they should be used in the following order:

1. =>-g

2. =>-m

3. =>j

4. =>-s (should be executed once steps 1 to 3 have been executed for all configurations).

Process Steps

Configuring the Environments and Installing the Components
This section describes the preparation work on the source and target platforms.

Installing the Unloading Components Under z/0S

The components used for the unloading (generated in $HOME/trf/unload/file) should be
installed on the source z/OS platform (the generated JCL may need adapting to specific site
constraints including JOB cards, library access paths and access paths to input and out put files).

Installing the Reloading Components on the Target Platform

The components used for the reloading (generated in $HOME/trf/reload/file) should be
installed on the target platform.

The following environment variables should be set on the target platform:

Table 7-19 Target Platform Environment Variables

Variable Value

DATA_SOURCE The name of the directory containing the unloaded files transferred from z/OS
to be reloaded into Oracle tables.

BIN The location of the generic reload and control scripts
($HOME/trf/reload/bin).

Oracle Tuxedo Application Rehosting Workbench Reference Guide 1-57

1-58

Table 7-19 Target Platform Environment Variables

Variable Value
TMPPROJECT The temporary directory.
MT_LOG Directory to contain execution logs.

DATA_TRANSCODE Temporary directory used by the file binary data transcoding script (contains
temporary files in ASCII format).

DDL The location of SQL scripts used to create Oracle objects:
($HOME/Ztrf/sSQL/File/<configuration name>).

NLS_LANG Set according to the instructions in the Oracle Database Globalization
Support Guide.

PATH This UNIX/Linux variable has to contain the directory of the Oracle
Tuxedo Application Runtime for Batch utilities

In addition, the following variable should be set according to the information in the Oracle
Tuxedo Application Rehosting Workbench Installation Guide:

e MT_DB_LOGIN.

Compiling COBOL Transcoding Programs

The COBOL transcoding programs should be compiled using the options specified in Compiler
Options.

Compiling these programs requires the presence of a copy of CONVERTMW. cpy adapted to the
project.

Unloading Data

To unload each file, a JCL using the IBM IDCAMS REPRO utility is executed. The IDCAMS
REPRO utility creates two files for each file:

e adata file,

e alog file,
These unloading JCLs are named <logical filename>.jclunload

A return code of 0 is sent on normal job end.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Transferring the Data

The unloaded data files should be transferred between the source z/OS platform and the target
UNIX/Linux platform in binary format using the file transfer tools available at the site (CFT,
FTP, ...).

The files transferred to the target UNIX/Linux platform should be stored in the $DATA_SOURCE
directory.

Reloading the Data

The scripts enabling the transcoding and reloading of data are generated in the directory:

$HOME/trf/reload/file/<configuration name>/
For a file-to-Oracle conversion, the format of the script names is:

loadtable-<logical file name>._ksh
Transcoding and Reloading Command for Tables

Name
loadtable transcode and reload data to table.

Synopsis
loadtable-<logical file name>.ksh [-t] [-1] [-c: <method>]
Options
-t
Transcode the file.

Reload the file

-c ftp:<...><...>
Implement the verification of the transfer (see Checking the Transfers).

Checking the Transfers
This check uses the following option of the loadtable-<logical file name>.ksh

-c ftp:<name of transferred physical file>:<name of FTP log under UNIX>

Oracle Tuxedo Application Rehosting Workbench Reference Guide 1-59

This option verifies, after the reloading, that the physical file transferred from z/OS and the
Oracle table reloaded on the target platform contains the same number of records. This check is
performed using the FTP log and the execution report of the reloading program. If the number of
records is different, an error message is produced.

1-60 Oracle Tuxedo Application Rehosting Workbench Reference Guide

CHAPTERa

File-to-Db2/luw (udb) Converter

This chapter describes the Rehosting Workbench File-to-Db2/luw (udb) Converter used to
migrate files from the source platform (z/OS) to Db2/luw (udb) tables (luw as Linux, UNIX,
Windows, old name is udb), and describes the migration tools that are generated. The conversion
is performed in the context of other components translated or generated by the other Oracle
Tuxedo Application Rehosting Workbench tools.

Several configuration files need to be set, see Description of the Configuration Files, before
launching the conversion process.

This section continues from the File Convertor: Introduction section and contains several links to
this section for example the different objects generated are described in List of the Input
Components. Some objects are only generated when migrating VSAM files to Db2/luw tables
(SQ@B programs, SQL files, relational module, logical module, utilities and configuration files for
JCL and COBOL conversion).

Overview of the File-to-Db2/luw (udb) Converter
Purpose

The purpose of this section is to describe precisely all the features of the Rehosting Workbench
File-to-Db2/luw (udb) Converter tools including:

o Inventory of files to migrate.

e Detailed description of Db2/luw (udb) tables on the target platform for each file.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 8-1

8-2

e Description of the different commands to be used with the File-to-Db2/luw (udb)
Converter.

e Description of the data unloading options on the source platform.

e Description of the data loading options on the target platform.

Structure

e Overview of the File-to-Db2/luw (udb) Converter.

e Description of the Input Components including Description of the Configuration Files.
e Description of the Output Files including the Generated Objects.

e Detailed Processing including the Command-Line Syntax.

e For messages, see File Convertor Messages.

See Also

The conversion of data is closely linked to the conversion of COBOL programs, see:

e COBOL Converter

This section describes common data conversion usages:

e File Convertor: Introduction

File Organizations Process

When migrating files from a z/OS source platform to a target platform, the first question to ask,
when VSAM is concerned, is whether to keep a file or migrate the data to an Db2/luw (udb) table.

Migrating to Db2/luw (udb) Table on the Target Platform
KSDS, RRDS and ESDS vsAM files can be migrated into Db2/luw (udb) tables.

To make this work, the first task is to list all of the vSAM files to be migrated, and then identify
those files that should be converted to Db2/luw (udb) tables. For example, permanent files to be
later used via Oracle or files that needs locking at the record level.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Oracle Tuxedo Application Rehosting Workbench
Configuration Name

A configuration name is related to a set of files to be converted. Each set of files can be freely
assembled. Each configuration could be related to a different application for example, or a set of
files required for Oracle Tuxedo Application Runtime. The set of files can contain both files or
Db2/luw (udb) tables targets.

VSAM Files Becoming Db2/luw (udb) Tahle
Specific Migration Rules Applied

e Each table name is stipulated in the mapper-<configuration name>.re file using the
table name clause.

e Each elementary field name contained in a copy description of the file becomes a column
in an Db2/luw (udb) table. Hyphens (-) are replaced by underscore (_) characters.

e For sequential vSAM files (vSAM ESDS): the Rehosting Workbench adds a technical column:
* SEQ_NUM NUMERIC.
This column is incremented each time a new line is added to the table and becomes the
primary key of the table.

e For relative VSAM files (VSAM RRDS): the Rehosting Workbench adds a technical column:
* RELATIVE_NUM.

The size of the column is deduced from the information supplied in the Datamap parameter
file; the column becomes the primary key of the table.

The column:
— is incremented when a sequential write is made to the table, and the relative key is zero.

— contains a relative key when the relative key is not zero.

e For indexed VSAM files (VSAM KSDS): the Rehosting Workbench does not add a technical
column unless duplicate keys are accepted; the primary key of the vSAM file becomes the
primary key of the table.

Rules Applied to Picture Clauses

The following rules are applied to COBOL Picture clauses when migrating data from VSAM files
to Db2/luw (udb) tables:

Oracle Tuxedo Application Rehosting Workbench Reference Guide 8-3

Table 8-1 Picture Clause Re-engineering

COBOL Picture Oracle format

PIC 9(length) NUMERIC(length)
PIC S9(length)
PIC 9(length) COMP-3

PIC S9(length)
COMP-3

PIC 9(prec,scale) NUMERIC(prec+scale, scale)
PIC S9(prec,scale)

PIC 9(prec,scale)
COMP-3

PIC S9(prec,scale)
COMP-3

PIC S9(length) NUMERIC(real_binary_length)
BINARY

PIC S9(length) COMP
PIC S9(length)

Sample:
PIC S9(4) BINARY 1is migrated as NUMERIC(5)

COMP-4

COMP-1 REAL

COMP-2 DOUBLE

PIC X(.) Becomes CHAR if length <= 255

Becomes VARCHAR if length > 255 and <= 4000

If the parameter file:char_limit_until_varchar is set in the
db-param.cfg file, it takes precedence over the above rule.

Environment Variables

Before starting the process of migrating data two environment variables should be set:

e export TMPPROJECT=/$HOME/tmp
Indicates the location to store temporary objects generated by the process.

o export PARAM=/$HOME/param

8-4 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Indicates the location where the configuration files required by the process are stored.

Description of the Input Components

File Locations

Location of file.sh
The file.sh tool is located in the directory:

$REFINEDIR/convert-data/

Location of db-param.cfg File
The db-param.cfg configuration file is located in the directory given in the variable:

$PARAM

Description of the Configuration Files

This section lists the files and their parameters that can be used to control the migration of z/OS
files to Db2/luw (udb) table.

db-param.cfg

This file should be created in the directory indicated by the $PARAM directory:
$PARAM/db-param.cfg

Listing 8-1 db-param.cfg Template

#

This configuration file is used by FILE & RDBMS converter
Lines beginning by "#" are ignored

write information in lower case

#

common parameters for FILE and RDBMS

#

Oracle Tuxedo Application Rehosting Workbench Reference Guide 8-5

source information is written into system descriptor file (DBMS=,
DBMS-VERSI0ON=)

target_rdbms_name:<target_rdbms_name>
target_rdbms_version:<target_rdbms_version>
target_os:<target_os>

optional parameter

target_cobol :<target_cobol>

#

specific parameters for FILE to RDBMS conversion

file:char_limit_until_varchar:<char_limit>

Parameters and Syntaxes

Table 8-2 db-param.cfg Parameters

Parameter Description Value

General Parameters

<target_rdbms_name> Name of target RDBMS udb
<target_rdbms_version> Version of target RDBMS 9
<target_os> Name of target operating system unix or linux

Optional parameter

<target_cobol> Name of COBOL language. cobol_mf
Default value is “cobol_mf” for COBOL cobol_it
Microfocus.

Choice to this COBOL language impacts the
generation of access functions.

8-6 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Table 8-2 db-param.cfg Parameters

Parameter Description Value

Specific file-to-oracle conversion parameters

<char_limit> * For a field size <= 255, a COBOL
alphanumeric field is migrated on
Db2/luw (udb) in CHAR

« For afield size > 255 it is migrated in
VARCHAR, except if the parameter
file:char_limit_until_varchar
is used.

This parameter indicates the maximum
length of a COBOL alphanumeric (PIC X)
field before the field will be transformed into
an Db2/luw (udb) VARCHAR data type.

If the parameter contains:
file:char_limit_until_varchar:29

Then, fields longer than 29 characters will
become VARCHAR, fields shorter than 30
characters will become CHAR fields.

File Modifying Generated Components

The generated components may be modified using a project's own scripts. These scripts (sed,
awk, perl,...) should be placed in:

$PARAM/File/file-modif-source.sh

When present, this file will be automatically executed at the end of the generation process. It will
be called using the <configuration name> as an argument.

file-template-db2luw.txt

This file is put in place during the installation of the Rehosting Workbench, it contains the
templates that perform the generation of the different migration tools. The file is located in:

$REFINEDIR/convert-data/defaul t/file/file-templates-db2luw.txt

Oracle Tuxedo Application Rehosting Workbench Reference Guide 8-7

Listing 8-2 file-template-db2luw.txt

% Unloading all File
% All SAM file were transfered using FTP/Binary

% VSAM unloaded step:

#VAR: TEMPLATES#/unloading/jcl-unload-MVS-REPRO.pgm

#VAR: TEMPLATES#/unloading/jcl-unload-GDG-MVS-REPRO. pgm

%

% To create a specific template, copy this template into :

% -- #VAR:PARAM#/file/specific-templates/unloading/jcl-unload-customer.pgm

%

% Loading
#VAR:TEMPLATES#/l1oading/file-reload-files-txt.pgm

% Loading File to File
#VAR: TEMPLATES#/loading/unix-file/reload-files-ksh.pgm
#VAR: TEMPLATES#/1oading/unix-file/reload-GDG-files-ksh.pgm

#VAR: TEMPLATES#/loading/unix-Ffile/reload-mono-rec.pgm

% Loading File to Oracle
#VAR: TEMPLATES#/1oading/unix-db2luw/load-tables-ksh-db2luw.pgm
#VAR: TEMPLATES#/1oading/unix-db2luw/rel-mono-rec-db2luw.pgm
#VAR: TEMPLATES#/dml/unix-db2luw/clean-tables-ksh-db2luw.pgm
#VAR: TEMPLATES#/dml/unix-db2luw/drop-tables-ksh-db2luw.pgm
#VAR: TEMPLATES#/dml/unix-db2luw/create-tables-ksh-db2luw. pgm
#VAR: TEMPLATES#/dml/unix-db2luw/ i fempty-tables-ksh-db2luw.pgm
#VAR: TEMPLATES#/dml/unix-db2luw/ifexist-tables-ksh-db2luw.pgm

%

% Generate Logical & Relational Module

#VAR: TEMPLATES#/dml/module/open-multi-assign-free.pgm

8-8 Oracle Tuxedo Application Rehosting Workbench Reference Guide

#VAR: TEMPLATES#/dml/module/unix-db2luw/open-mono-rec-idx-db2luw.pgm
#VAR: TEMPLATES#/dml/module/unix-db2luw/open-mono-rec-seq-db2luw. pgm
#VAR: TEMPLATES#/dml/module/unix-db2luw/open-mono-rec-rel-db2luw.pgm

%

% and utilities
#VAR: TEMPLATES#/dml/module/decharge-mono-rec.pgm

#VAR: TEMPLATES#/dml/module/recharge-table.pgm
#VAR:TEMPLATES#/dml/module/close-all-files_pgm
#VAR:TEMPLATES#/dml/module/init-all-files.pgm

%

% configuration file for translation and runtime *******
#VAR:TEMPLATES#/dml/generate-config-wb-translator-jcl.pgm
#VAR:TEMPLATES#/dml/generate-rdb-txt._pgm

%

% included file to include into modified-components

#VAR: TEMPLATES#/dml/include-modified-components.pgm

%

%
% MANDATORY

% : used just after the generation
#VAR:TEMPLATES#/dml/generate-post-process.pgm
% : used when using -i arguments
#VAR:DEFAULT#/file-move-assignation-db2luw.pgm

%

Note: This file contains both File-to-File and File-to-Db2/luw (udb) migration parameters.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

8-9

8-10

When required, another version of the fille-template-db2luw.txt file can be placed in the
$PARAM/Ti le directory. The use of an alternative file is signaled during the execution of
file_sh by the message:

Listing 8-3 Execution Log with Alternative Template File

HHHHH AR A AR A A R R R A R R R R R A R R
Control of templates
OK: Use Templates list file from current project:
File name is /home2/wkb9/param/file/file-templates-db2luw.txt
HAHAH AR AR AR AR A AR A AR R R R AR

file-move-assignation-db2luw.pgm

This file is placed during the installation of the Rehosting Workbench, it controls the transfer of
components generated in the different installation directories. This file indicates the location of
each component to copy during the installation phase of file.sh, when launched using
file.sh -i.

The file is located in:

$REFINEDIR/convert-data/defaul t/file/file-move-assignation-db2luw.pgm

This file can be modified following the instructions found at the beginning of the file:

Listing 8-4 file_move_assignation.txt Modification Instructions

L1
*@ (c) Metaware:file-move-assignation.pgm. $Revision: 1.2 $

*release_format=2.4

*

* format is:

* <typ>:<source_directory>:<file_name>:<target directory>

Oracle Tuxedo Application Rehosting Workbench Reference Guide

*

*

typ:

O: optional copy: if the <file_name> is missing, it is ignored

M: Mandatory copy: abort if <file_name> is missing.

E: Execution: execute the mandatory script <file_name>.

Parameters for script to be executed are:

basedir: directory of REFINEDIR/convert-data
targetoutputdir: value of "-i <targetdir>"
schema: schema name

target_dir: value written as 4th parameter in this file.

d: use this tag to display the word which follows

source_directory:
T: generated components written in <targetdir>/Templates/<schema>
0: components written in <targetdir>/outputs/<schema>
S: SQL requests (DDL) generated into <targetdir>/SQL/<schema> directory
F: fixed components present in REFINEDIR

s: used with -s arguments: indicates the target directory for DML

utilities

*

*

(in REFINEDIR/modified-components/) which manipulate all schemas.

file_name: (except for typ:d)

name of the file in <source_directory>

target_directory: (except for typ:d, given at 4th argument for typ:E)
name of the target directory
IT the 1st character is "/'", component is copied using static directory

and not In <td> directory

Oracle Tuxedo Application Rehosting Workbench Reference Guide 8-11

8-12

* IT the 1st character is "!', target directory contains both directory
and

* target file name.

*

L]

Note: This file contains both File-to-File and File-to-DB2/LUW migration parameters.

Datamap File

This is a configuration file used by the Rehosting Workbench file converter to add or modify
information on the physical files of a system.

See File Convertor: Introduction — Datamap File.

Mapper File

This is a configuration file used by the Rehosting Workbench File-to-Db2/luw (udb) Converter
to associate each file to migrate

See File Convertor: Introduction — Mapper File.

Note: In the mapper file, the converted clause has to be used for RDBMS Table target.

Table 8-3 Mapper File Specific Parameters to he Used with File-to-Db2/luw (udb) Converter

file <physical Z0S physical file name, Name used in the Datamap file.
filename>
converted Indicates file is to be converted to Db2/luw (udb) table (converted

clause can be combined with transferred clause)

transferred Indicates that the file is to be loaded and reloaded (can be combined with
converted clause).

include “<path/COPY Access path and name of the descriptive copy of the file to migrate.
name>”

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Tahle 8-3 Mapper File Specific Parameters to he Used with File-to-Db2/luw (udb) Converter

map record <record
name> defined in
<“path/COPY name”>

e record name: corresponds to the level 01 field name of the

copy description.

e path/COPY name: corresponds to the access path and name

of the descriptive copy of the file to migrate.

source record
<record names>
defined in
<"path/COPY name''>

e record name: corresponds to the level 01 field name of the

copy description of the file to migrate.

e path/COPY name: corresponds to the access path and name of

the descriptive copy of the file to migrate.

Logical name
<logical file name>

The Logical file name is chosen by the user, maximum eight characters.
This name is used for naming the objects (COBOL, JCL) created by the

different tools in the Rehosting Workbench.

Converter name
<program name>

Same name and use as logical file name.

table name

Db2/luw (udb) table name.

attributes
<attribute clause>

It is an optional clause. Two attributes can be used:
 LOGICAL_MODULE_IN_ADDITION

* LOGICAL_MODULE_ONLY

Their action is described in the next table.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

8-13

Tahle 8-4 Mapper File Attributes

attributes <attribute clause>

Role

Attribute clause absent

In this case the following access functions are generated:
¢ RM_<logical file name>,

* UL_<logical file name>,

* DL_<logical file name>

and the Korn shell utilities.

See Access Functions and Utility Programs.

LOGICAL_MODULE_IN_ADDITION

In this case the following access functions are generated:
* ASG_<logical file name>

* RM_<logical file name>,

e UL_<logical file name>,

* DL_<logical file name>

and the Korn shell utilities.

See Access Functions and Utility Programs.

LOGICAL_MODULE_ONLY

In this case only the ASG_<logical file name> access
function is generated.

Listing 8-5 Mapper File Example

ufas mapper STFILEUDB

file PJO1AAA.SS.VSAM.CUSTOMER converted transferred

table name CUSTOMER

include ""COPY/ODCSFOB.cpy"

map record VS-ODCSFO-RECORD defined in "COPY/ODCSFOB.cpy"

source record VS-ODCSFO-RECORD defined in "COPY/ODCSFOB.cpy"

logical name ODCSFOB

converter name ODCSFOB

attributes LOGICAL_MODULE_IN_ADDITION

8-14 Oracle Tuxedo Application Rehosting Workbench Reference Guide

In this example the mapper file is named STFILEUDB. The file processes only one file named
PJO1AAA_SS.VSAM.CUSTOMER that is migrated to an Db2/luw (udb) table using the convert
option. The ODCSFOB. cpy copy file used to describe the file is one of the source copy files.

Mapping Strategy Clauses

[Field <Field_name>
[use detail table]
[use opaque field <field name>]
[table name <target table name>]
[mapped type <target data type>]
[discard field <field name>]

[discard subfields <field name>]

[discrimination rule]]

Mapping Strategy Clause Syntax and Parameters

For OCCURS and REDEFINES clauses, using discrimination rules, three reengineering
possibilities are proposed:

e Creation of sub-tables (use detail table)
— Redefinitions: each description is associated with a sub-table (one sub-table for each description).

— Occurs: one sub-table is created containing a technical column that references the original table
to which the data corresponds.

e Creation of an opaque field (use opaque field).
— Redefinitions: all the descriptions are stored in an opaque field type CHAR or VARCHAR.
— Occurs: all the occurrences are stored in an opaque field type CHAR or VARCHAR.

e Extended description (default)

— Redefinitions: all the fields described in the copy file are created as columns in the Db2/luw
(udb) table.

— Occurs: each occurrence of a field in a redefined area is created as a column in the Db2/luw
(udb) table, one column for each occurrence in the OCCURS clause

Oracle Tuxedo Application Rehosting Workbench Reference Guide 8-15

8-16

Table 8-5 Mapping Strategies

Strategy Description

table name < table name Name of sub-table in case of mapping 'use detail table'.
>

mapped type <target Enables the modification of the column type chosen by default. Two
data type> possibilities are proposed: CHAR or VARCHAR.

discard field Enables the deletion of a non-useful redefined field.

discard subfields When a field has several levels of description, this option allows to

keep only the higher level.

Mapping Strategy Examples
Discard Subfield Example

05 NIV1.
10 NIV2A PIC 99.
10 NIV2B PIC 999.

When discarding subfields at the level NIV1, the Rehosting Workbench File-to-Db2/luw (udb)
Converter only processes the field NIV1 PIC 9(5). When not discarding subfields, the N1V1
field is ignored and the two fields N1V2A and N1V2B are processed.

Redefines With Default Option Example
This redefines example is without any specific options:

Listing 8-6 Descriptive Copy of the File: PJO1AAA.SS.VSAM.CUSTOMER

01 VS-ODCSFO-RECORD.

05 VS-CUSTIDENT PI1C 9(006).
05 VS-CUSTLNAME PIC X(030).
05 VS-CUSTFNAME PIC X(020).

Oracle Tuxedo Application Rehosting Workbench Reference Guide

05 VS-CUSTADDRS PIC X(030).

05 VS-CUSTCITY PIC X(020).
05 VS-CUSTSTATE PIC X(002).
05 VS-CUSTBDATE PI1C 9(008).
05 VS-CUSTBDATE-G REDEFINES VS-CUSTBDATE.

10 VS-CUSTBDATE-CC PIC 9(002).
10 VS-CUSTBDATE-YY PIC 9(002).
10 VS-CUSTBDATE-MM PIC 9(002).
10 VS-CUSTBDATE-DD PIC 9(002).

05 VS-CUSTEMAIL PIC X(040).
05 VS-CUSTPHONE PIC 9(010).
05 VS-FILLER PIC X(100).

The mapper file implemented is:

Listing 8-7 Mapper File for the File: PJO1AAA.SS.VSAM.CUSTOMER

ufas mapper STFILEUDB
Tile PJO1AAA_SS_VSAM.CUSTOMER converted transferred
table name CUSTOMER
include ""COPY/ODCSFOB.cpy"*
map record VS-ODCSFO-RECORD defined in "COPY/ODCSFOB.cpy"
source record VS-ODCSFO-RECORD defined in "COPY/ODCSFOB.cpy"
logical name ODCSFOB
converter name ODCSFOB
attributes LOGICAL_MODULE_IN_ADDITION
field VS-CUSTBDATE

Oracle Tuxedo Application Rehosting Workbench Reference Guide

8-17

rule if VS-CUSTSTATE = "02'" then VS-CUSTBDATE

else VS-CUSTBDATE-G

The table is generated as follows (all the unitary fields of the REDEFINES are handled).

Listing 8-8 Table Generation for the File: PJO1AAA.SS.VSAM.CUSTOMER

DROP TABLE CUSTOMER ;
COMMIT ;
CREATE TABLE CUSTOMER (

VS_CUSTIDENT NUMERIC (6) NOT NULL,
VS_CUSTLNAME VARCHAR (30),
VS_CUSTFNAME CHAR (20),
VS_CUSTADDRS VARCHAR (30),
VS_CUSTCITY CHAR (20),
VS_CUSTSTATE CHAR (2,
VS_CUSTBDATE NUMERIC (8),
VS_CUSTBDATE_CC NUMERIC (2),
VS_CUSTBDATE_YY NUMERIC (2),
VS_CUSTBDATE_MM NUMERIC (2),
VS_CUSTBDATE_DD NUMERIC (2),
VS_CUSTEMAIL VARCHAR (40),
VS_CUSTPHONE NUMERIC (10),
VS_FILLER VARCHAR (100),

CONSTRAINT PKCUSTOMER PRIMARY KEY (
VS_CUSTIDENT)) ;

COMMIT ;

8-18 Oracle Tuxedo Application Rehosting Workbench Reference Guide

REDEFINES With OPAQUE FIELD Option Example

Listing 8-9 Descriptive Copy of the File: PJO1AAA.SS.VSAM.CUSTOMER

01 VS-ODCSFO-RECORD.

05 VS-CUSTIDENT PI1C 9(006).
05 VS-CUSTLNAME PIC X(030).
05 VS-CUSTFNAME PIC X(020).
05 VS-CUSTADDRS PIC X(030).
05 VS-CUSTCITY PIC X(020).
05 VS-CUSTSTATE PIC X(002).
05 VS-CUSTBDATE PI1C 9(008).
05 VS-CUSTBDATE-G REDEFINES VS-CUSTBDATE.

10 VS-CUSTBDATE-CC PIC 9(002).
10 VS-CUSTBDATE-YY PIC 9(002).
10 VS-CUSTBDATE-MM PIC 9(002).
10 VS-CUSTBDATE-DD PIC 9(002).

05 VS-CUSTEMAIL PIC X(040).
05 VS-CUSTPHONE PIC 9(010).
05 VS-FILLER PIC X(100).

The mapper file implemented is:

Listing 8-10 Mapper File for the File: PJO1AAA.SS.VSAM.CUSTOMER

ufas mapper STFILEUDB
Ffile PJO1AAA_SS.VSAM.CUSTOMER converted transferred

table name CUSTOMER

Oracle Tuxedo Application Rehosting Workbench Reference Guide

8-19

8-20

include "COPY/ODCSFOB.cpy"*

map record VS-ODCSFO-RECORD defined in ""COPY/ODCSFOB.cpy"
source record VS-ODCSFO-RECORD defined in *""COPY/ODCSFOB.cpy"*
logical name ODCSFOB

converter name ODCSFOB

attributes LOGICAL_MODULE_IN_ADDITION

field VS-CUSTBDATE

use opaque field

rule If VS-CUSTSTATE = 02" then VS-CUSTBDATE

else VS-CUSTBDATE-G

The table is generated as follows (only the VS_CUSTBDATE field is kept).

Listing 8-11 Table Generation for the File: PJO1AAA.SS.VSAM.CUSTOMER

DROP TABLE CUSTOMER ;
COMMIT ;
CREATE TABLE CUSTOMER (

VS_CUSTIDENT NUMERIC (6) NOT NULL,
VS_CUSTLNAME VARCHAR (30),
VS_CUSTFNAME CHAR (20),
VS_CUSTADDRS VARCHAR (30),
VS_CUSTCITY CHAR (20),
VS_CUSTSTATE CHAR (2,
VS_CUSTBDATE CHAR (8)

FOR BIT DATA,
VS_CUSTEMAIL VARCHAR (40),

Oracle Tuxedo Application Rehosting Workbench Reference Guide

VS_CUSTPHONE NUMERIC (10),

VS_FILLER VARCHAR (100),

CONSTRAINT PKCUSTOMER PRIMARY KEY (
VS_CUSTIDENT)) ;

COMMIT ;

REDEFINES With DETAIL TABLE Option Example

Listing 8-12 Descriptive Copy of the File: PJO1AAA.SS.VSAM.CUSTOMER

01 VS-ODCSFO-RECORD.

05 VS-CUSTIDENT PIC 9(006).
05 VS-CUSTLNAME PIC X(030).
05 VS-CUSTFNAME PIC X(020).
05 VS-CUSTADDRS PIC X(030).
05 VS-CUSTCITY PIC X(020).
05 VS-CUSTSTATE PIC X(002).
05 VS-CUSTBDATE PIC 9(008).
05 VS-CUSTBDATE-G REDEFINES VS-CUSTBDATE.

10 VS-CUSTBDATE-CC PIC 9(002).
10 VS-CUSTBDATE-YY PIC 9(002).
10 VS-CUSTBDATE-MM PIC 9(002).
10 VS-CUSTBDATE-DD PIC 9(002).

05 VS-CUSTEMAIL PIC X(040).
05 VS-CUSTPHONE PIC 9(010).
05 VS-FILLER PIC X(100).

Oracle Tuxedo Application Rehosting Workbench Reference Guide

8-21

The mapper file implemented is:

Listing 8-13 Mapper File for the File: PJO1AAA.SS.VSAM.CUSTOMER

ufas mapper STFILEUDB
file PJO1AAA_SS_VSAM.CUSTOMER converted transferred
table name CUSTOMER
include ""COPY/ODCSFOB.cpy"*
map record VS-ODCSFO-RECORD defined in ""COPY/ODCSFOB.cpy"
source record VS-ODCSFO-RECORD defined in *""COPY/ODCSFOB.cpy"*
logical name ODCSFOB
converter name ODCSFOB
attributes LOGICAL_MODULE_IN_ADDITION
field VS-CUSTBDATE
use detail table
rule If VS-CUSTSTATE = 02" then VS-CUSTBDATE

else VS-CUSTBDATE-G

The tables are generated as follows (a parent table is generated using the fields not part of the
REDEFINES, and two child tables are generated, one for each REDEFINES description).

Listing 8-14 Table Generation for the Gile: PJO1AAA.SS.VSAM.CUSTOMER

DROP TABLE CUSTOMER ;

COMMIT ;

CREATE TABLE CUSTOMER (
VS_CUSTIDENT NUMERIC (6) NOT NULL,
VS_CUSTLNAME VARCHAR (30),

8-22 Oracle Tuxedo Application Rehosting Workbench Reference Guide

VS_CUSTFNAME CHAR 20),

VS_CUSTADDRS VARCHAR (30),
VS_CUSTCITY CHAR 20),
VS_CUSTSTATE CHAR),

VS_CUSTEMAIL VARCHAR (40),
VS_CUSTPHONE NUMERIC (10),
VS_FILLER VARCHAR (100),

CONSTRAINT PKCUSTOMER PRIMARY KEY (
VS_CUSTIDENT)) ;

COMMIT ;

DROP TABLE VS_CUSTBDATE ;

COMMIT ;

CREATE TABLE VS_CUSTBDATE (
VS_CUSTBDATE_CUSTIDENT NUMERIC (6) NOT NULL,
VS_CUSTBDATE NUMERIC (8),
CONSTRAINT PKVS_CUSTBDATE PRIMARY KEY (

VS_CUSTBDATE_CUSTIDENT)) ;

COMMIT ;

ALTER TABLE VS_CUSTBDATE

FOREIGN KEY FKVS_CUSTBDATECUSTOMER (
VS_CUSTBDATE_CUSTIDENT)
REFERENCES CUSTOMER
ON DELETE CASCADE;

COMMIT ;

DROP TABLE VS_CUSTBDATE G ;

COMMIT ;

CREATE TABLE VS_CUSTBDATE G (

Oracle Tuxedo Application Rehosting Workbench Reference Guide

8-23

VS_CUSTBDATE_G_CUSTIDENT NUMERIC (6) NOT NULL,

VS_CUSTBDATE_CC NUMERIC (2),
VS_CUSTBDATE_YY NUMERIC (2),
VS_CUSTBDATE_MM NUMERIC (2),
VS_CUSTBDATE_DD NUMERIC (2),

CONSTRAINT PKVS_CUSTBDATE_G PRIMARY KEY (
VS_CUSTBDATE_G_CUSTIDENT)) ;
COMMIT ;
ALTER TABLE VS_CUSTBDATE_G
FOREIGN KEY FKVS_CUSTBDATE_GCUSTOMER (
VS_CUSTBDATE_G_CUSTIDENT)
REFERENCES CUSTOMER
ON DELETE CASCADE;
COMMIT ;

Discrimination Rules

A discrimination rule must be set on the redefined field; it describes the code to determine which
description of the REDEFINES to use and when.

[field <field_name>]

L]
rule if <condition> then Field_Name_x
[elseif <condition> then field_Name_y]

[else Field_Name_z]

8-24 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Discrimination Rules Syntax and Parameters

Table 8-6 Discrimination Rules

Syntax Description

Field_Name_{X,Y,Z} This is the field that will be used when the associated condition is validated;
this field is one of the redefined fields.

Condition Is a conditional expression composed with field name, operators and
COBOL constants.

e Logical operators are: not, and, or

« Comparison operators are: = <> < >

« Specific operators are: is numeric, is all SPACE

« Following COBOL constants may be used: spaces, zeros, high-value,
low-value

Note: These conditions can be parenthesized.

Discrimination Rules Examples

In the following example the fields DPODP-DMDCHQ, DPONO-PRDTIV, DP5CP-VALZONNUM are
redefined.

Listing 8-15 Discrimination Rule COBOL Description

01 ZART1.

05 DPODP PIC X(20).

05 DPODP-RDCRPHY PIC 9.

05 DPODP-DMDCHQ PIC X(6).

05 DPODP-REMCHQ REDEFINES DPODP-DMDCHQ.
10 DPODP-REMCHQL PIC 999.
10 DPODP-REMCHQ2 PIC 999.

05 DPODP-VIREXT REDEFINES DPODP-DMDCHQ.
10 DPODP-VIREXT1 PIC S9(11) COMP-3.

05 DPONO-NPDT PIC X(5).

Oracle Tuxedo Application Rehosting Workbench Reference Guide 8-25

05 DPONO-PRDTIV PIC 9(8)V99.

05 DPONO-PRDPS REDEFINES DPONO-PRDTIV PIC X(10).
05 DP5CP-VALZONNUM PIC 9(6) .-

05 DP5CP-VALZON REDEFINES DP5CP-VALZONNUM PIC X(6).

The following discrimination rules are applied:

Listing 8-16 Discrimination Rules

field DPODP-DMDCHQ
rule if DPODP-RDCRPHY = 1 then DPODP-DMDCHQ
elseif DPODP-RDCRPHY = 2 then DPODP-REMCHQ
elseif DPODP-RDCRPHY = 3 then DPODP-VIREXT
else DPODP-DMDCHQ,
Field DPONO-PRDTIV
rule if DPONO-NPDT (1:2)

01" then DPONO-PRDTIV

elseif DPONO-NPDT (1:2)

02" then DPONO-PRDPS,
field DP5CP-VALZONNUM
rule if DPODP-RDCRPHY is numeric then DP5CP-VALZONNUM

else DP5CP-VALZON

The first rule is to test the value of the numeric field DPODP-RDCRPHY.

The second rule tests the first two characters of an alphanumeric field DPONO-NPDT. Only the
values 01 and 02 are allowed.

The third rule tests whether the field DPODP-RDCRPHY is numeric.

8-26 Oracle Tuxedo Application Rehosting Workbench Reference Guide

COBOL Description

Oracle Tuxedo Application Rehosting Workbench File-to-Db2/luw (udb) Converter needs a
description associated with each table, so a first step consists in preparing a COBOL copy
description.

Once the COBOL description files have been prepared, the copy files described in the
mapper-<configuration name>.re file should be placed in the SPARAM/Fi le/recs-source
directory.

If you use a COBOL copy book from the source platform to describe a file (see COBOL
Description), then it is the location of the copy book that is directly used.

Description of the Output Files
File Locations

Location of Temporary Files

The temporary objects generated by the Rehosting Workbench File-to-Db2/luw (udb) Converter
are stored in:

$TMPPROJECT

$TMPPROJECT/Template/<configuration name>

$TMPPROJECT/outputs/<configuration name>
Note: The $TMPPROJECT variable is set to: $HOME/ tmp

Location of Log Files
The execution log files are stored in:
e Log generated by the option -g:

$TMPPROJECT/outputs mapper-log-<configuration name>

Location of Generated Files

The unloading and loading components generated with the -i $HOME/trT option are placed in
the following locations:

Oracle Tuxedo Application Rehosting Workbench Reference Guide 8-27

Table 8-7 Component Locations

Location Contents

$HOME/Ztrf/unload/file/<configura The JCL used for each unloading table are generated
tion name> for each <configuration name>.

These JCL are named:
<file name>. jclunload

$HOME/trf/reload/file/<configura For afile to Db2/luw (udb) migration, the programs
tion name> and KSH are named:

RELTABLE-<target file name>_sgb

loadtable-<target file name>._ksh

$HOME/Ztrf/SQL/File/<configuratio Location by <configuration name> of the SQL

n name> scripts used to create the Db2/luw (udb) objects.

(When migrating files to Db2/luw

tables).

$HOME/trf/config/tux Location of configuration files used by Oracle
Tuxedo Application Runtime CICS for files migrated
to tables.

$HOME/trf/DML Liste of components is depending on the optional

attributes clause initialized in the mapper file.
See Mapping Strategy Clause Syntax and Parameters

Note: <target table name> Isthefilenameonthetargetplatform;thisfile nameis
furnished in the mapper file.

Generated Objects

The following sections describe the objects generated during the migration of z/OS files and the
directories in which they are placed.

Unloading JCL

The JCL used to unload the files are generated using the -g option of the file.sh command.
They are then (using the -i option) installed in:

$HOME/trf/unload/file/<configuration name>

8-28 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Each JCL contains two steps and unloads one file using the z/OS IDCAMS REPRO utility. The

JCL return code is equal to 0 or 4 for a normal termination.

Step 1 DEL IDCAMS DELETE files (deletion of log, data files)

Step 2 UNLOAD IDCAMS REPRO of the indicated file

The JCLs are named: <file name>.jclunload

Note: The .jclunload extension should be deleted for execution under z/OS.
The generated JCL may need adapting to specific site constraints including:

e JOB cards: <cardjob_parameter_id>,

e access paths to input and output files: <data>.

Listing 8-17 Unload JCL Example

//<crdjob> <cardjob_parameter_1>,"FIL QSAM",

// <cardjob_parameter_2>
// <cardjob_parameter_3>
// <cardjob_parameter_4>

//*@ (C) Metaware:jcl-unload-MVS-REPRO.pgm. $Revision: 1.6 $

//
//* UNLOAD THE FILE:

//* <datain>.QSAM.CUSTOMER
//* INTO <data>.AV.QSAM

//* LENGTH=266

/7
= *
//* DELETE DATA AND LOG FILES

e — *

Oracle Tuxedo Application Rehosting Workbench Reference Guide

8-29

//DEL EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSIN DD *
DELETE <data>.AV.QSAM.LOG
DELETE <data>.AV.QSAM

SET MAXCC=0

//COPYFILE EXEC PGM=IDCAMS
//SYSPRINT DD SPACE=(CYL, (150,150),RLSE),

// DISP=(NEW,CATLG),
// UNIT=SYSDA,
// DSN=<data>.AV.QSAM.LOG

//SYSOUT DD SYSOUT=*
//1NDD DD DISP=SHR,
DSN=METAWOO . QSAM.CUSTOMER

//0UTD DD SPACE=(CYL, (150,150),RLSE),
V24 DISP=(NEW,CATLG),

// UNIT=SYSDA,

// DCB=(LRECL=266,RECFM=FB),
// DSN=<data>.AV.QSAM

//SYSIN DD *
REPRO INFILECINDD) OUTFILE(OUTD)
/*

8-30 Oracle Tuxedo Application Rehosting Workbench Reference Guide

COBOL Transcoding Programs
Migration of z/0S Files to Dh2/luw (udb) Tables

The COBOL transcoding programs are generated using the —g option of the file.sh command.
They are then (using the -i option) installed in:

$HOME/trf/reload/file/<configuration name>/src
The programs are named: RELTABLE-<logical file name>._sgb

The programs should be compiled using the target COBOL compilation options and db2
Precompiler options documented in Compiler Options.

The compilation of these programs requires the presence of a CONVERTMW.cpy copy file
adapted to the project documented in Codeset Conversion..

These files read a file on input and directly load an Db2/luw (udb) table using the SQL INSERT
verb.

Listing 8-18 FILE CONTROL Section - for Transcoding Programs

SELECT MW-ENTREE
ASSIGN TO "ENTREE"
ORGANIZATION IS RECORD SEQUENTIAL
ACCESS IS SEQUENTIAL
FILE STATUS 1S I10-STATUS.

For Db2/luw (udb) table with technical column, a SEQUENCE object is created:
CREATE SEQUENCE <table_name>_<type> SEQ START WITH <num_rows>

A commit is made every 1000 records:
IF MW-NB-INSERT >= 1000
CALL "‘do_commit"

Note: The do_commit module is part of Oracle Tuxedo Application Runtime Batch.

A record count is written to the output file and is displayed at the end of processing via:

Oracle Tuxedo Application Rehosting Workbench Reference Guide 8-31

8-32

DISPLAY "RELOADING TERMINATED OK™".
DISPLAY "Nb rows reloaded: " D-NB-RECS.

DISPLAY ™ ™
DISPLAY "NUMERIC MOVED WHEN USING CHAR FORMAT : '
DISPLAY "™ NUMERIC-BCD : " MW-COUNT-NUMERIC-BCD-USE-X.

DISPLAY " NUMERIC-DISP: " MW-COUNT-NUMERIC-DISP-USE-X.

The last two lines displayed signal the movement of data into fields where the COBOL
description does not match the content of the input file (packed numeric fields containing
non-numeric data and numeric DISPLAY fields containing non-numeric data). When such cases
are encountered, each error is displayed.

Note: When migrating to a target platform using Intel hardware the message: “PROCESSOR
UNIT IS INTEL” is output at the beginning of transcoding.

Reloading Korn Shell Scripts

The Reloading Korn shell scripts are generated using the -g option of the file.sh command.
They are then (using the -i option) installed in:

$HOME/trf/reload/file/<configuration name>

Reloading Korn Shell Scripts for Migrating z/0S Files to Db2/luw (udb) Tables
The scripts are named: loadtable-<logical file name>_ksh

They contain a DDL creation phase, a transcoding (or loading) phase and a check phase. The
different phases may be launched separately.

The execution of the scripts produces an execution log in $MT_LOG/<logical file name>.log

The following variables are set at the beginning of each script:

Listing 8-19 Reloading Table Script Variables

f="0 (c) Metaware:load-tables-ksh-db2luw.pgm. $Revision: 1.2.2_.1 $null”
echo "reloading ODCSFOB into DB2 UNIX"

export DD_ENTREE=${DD_ENTREE:-${DATA_SOURCE}/ODCSFOB}

logfi le=$MT_LOG/ODCSFOB. log

reportfile=${MT_LOG}/ODCSFOB. rpt

Oracle Tuxedo Application Rehosting Workbench Reference Guide

ddIfile=${DDL}/STFILEORA/ODCSFOB.sq]
L1

To change the file names, set the DD_ENTREE and DD_SORTIE variables before calling the script.

Various messages may be generated during the three execution phases of the scripts; explanations
of these messages are listed in Oracle Tuxedo Application Rehosting Workbench Messages.

On normal end, a return code of 0 is returned.

Creating Oracle DDL Phase

Db2/luw (udb) objects are created under db2 command using:
${DDL}/STFILEUDB/ODCSFOB.sql

db2 -ec -tvf ${ddIfile} >>$logfile 2>&1
On normal termination the following message is displayed:
echo "Table(s) created"

Note: Log file can contain errors on DROP statements: these errors are ignored by the script.

Transcoding and Loading Phases

These steps launch the execution of the COBOL transcoding program associated with the file
processed:

runb RELTABLE-ODCSFOB >> $logfile 2>&1

“runb” is a part of Oracle Tuxedo Application Runtime Batch. For more information, see
see Oracle Tuxedo Application Runtime Batch Reference Guide.

On normal termination the following message is displayed:

echo "File ${DD_ENTREE} successfully transcoded and reloaded into
DB2/LUW"

Check Phase

This step verifies after the reloading that the reloaded Db2/luw (udb) table contains the same
number of records as the records transferred from ZOS on target platform. If the number of
records is different, an error message is produced:. If the number of records is equal, this message
is produced:

Oracle Tuxedo Application Rehosting Workbench Reference Guide 8-33

../artbatch/ref/index..html

“Number of rows written in output file is equal to number calculated using
the log file: OK"

Target DDL
The Db2/luw (udb) DDL is generated using the -g option of the file.sh command. They are
then (using the -i option) installed in:
$HOME/trf/SQL/File/<schema name>
They are named: <target Ffile name>.sqgl
The format used is:

DROP TABLE <target_table_name>;

COMMIT;

CREATE TABLE <target_table_name> (

<target_column_name> <column_data_type> <attribute>[, ..]
CONSTRAINT <constraint_name> PRIMARY KEY (<target_column_name>)

CONSTRAINT <fk_constraint_name> FOREIGN KEY (<target_column_name>)]

)
Where

<target_table_name> Db2/luw (udb) table name.

<target_column_name> Db2/luw (udb) column name.

<column_data_type> Db2/luw (udb) data type (CHAR, VARCHAR or NUMERIC).
<attribute> NOT NULL when primary key.
<constraint_name> Constraint name of primary key (PK_<UDB table name>

<fk_constraint_name> Constraint name of foreign key (FK_<UDB table
name>_<parent_table_name>)

Listing 8-20 DDL Generation sql Example

DROP TABLE CUSTOMER ;
COMMIT ;

8-34 Oracle Tuxedo Application Rehosting Workbench Reference Guide

CREATE TABLE CUSTOMER (

VS_CUSTIDENT NUMERIC (6) NOT NULL,
VS_CUSTLNAME VARCHAR (30),
VS_CUSTFNAME CHAR 20),
VS_CUSTADDRS VARCHAR (30),
VS_CUSTCITY CHAR 20),
VS_CUSTSTATE CHAR),
VS_CUSTBDATE NUMERIC (8),
VS_CUSTEMAIL VARCHAR (40),
VS_CUSTPHONE NUMERIC (10),
VS_FILLER VARCHAR (100),

CONSTRAINT PKCUSTOMER PRIMARY KEY (
VS_CUSTIDENT)) ;

COMMIT ;

Access Functions and Utility Programs

Access Functions

These access functions are generated using the -g option of File.sh and installed
in$HOME/trf/DML using the -i and -s options..

Tahle 8-8 Access Functions

Access function Role

RM_<logical file name>.sgb Relational access module to Db2/luw (udb) table that
replaces the specified logical file name.

DL_<logical file name>.cbl Download module of the specified logical file (function
used by Oracle Tuxedo Application Runtime Batch).

Oracle Tuxedo Application Rehosting Workbench Reference Guide 8-35

Tahle 8-8 Access Functions

Access function Role

UL_<logical file name>.cbl Upload module of the specified logical file (function
used by Oracle Tuxedo Application Runtime Batch).

ASG_<logical file name>._cbl Optional module generated when there are multiple
assigns. See Mapper File Attributes

getfileinfo.cbl This program checks if the <logical file name>.rdb
associated with the assign-name given as an input
argument exists. This function is called by
ASG_<logical file name>.cbl.

init_all_files.cbl Callsall init_all_files_<configuration
name>.cbl (function used by Oracle Tuxedo
Application Runtime Batch).

init_all_files_<configuration Initializes a transaction. All variables used by relational

name>.cbl module and ASG_<logical file name> module
are initialized for the configuration name listed
(function used by Oracle Tuxedo Application Runtime
Batch).

dml_locking.cbl This program manages locking for all configuration
files (function used by Oracle Tuxedo Application
Runtime Batch).

close_all_files_<configuration Closes a transaction. This program closes all cursors

name>.cbl opened in tables for the configuration listed and
unlocks all files opened with logical accessor
ASG_<logical file name> (function used by
Oracle Tuxedo Application Runtime Batch).

close_all_files.cbl Callsall close_all_files_<configuration
name>.cbl (function used by Oracle Tuxedo
Application Runtime Batch).

Access Function Call Arguments

The RM_<logical file name>.sgb and ASG_<logical file name>.cbl access functions
use the following variables

8-36 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Table 8-9 Access Call Implemented Variables

Variable Description/origin

Function code Indicates the type of operation to execute, for example OPEN, WRITE,
etc. The code is passed using the FILE-CODE-F variable of the
MWFITECH copy file.

File open mode A file can be opened in different modes: INPUT, OUTPUT, | O,
EXTEND. The mode is passed using the FILE-OPEN-MODE variable of
the MWFITECH copy file.

10-STATUS The IO-STATUS variable is linked to each file providing the execution
status of the last relational module operation.

Record to transmit Therecord to transmit has an access function for write operations or access
or receive by key; the record to receive has a read access function. These are
described in the LINKAGE SECTION.

Name of secondary For indexed files with secondary keys, and only for files with this
key to use organization, an extra variable is required to identify the secondary key to
use for a START operation.

The name of the secondary key is passed using the
FILE-ALT-KEY-NAME variable of the MWFITECH copy file.

For files without secondary keys, this argument is unnecessary.

Relative Key For a relative file, the value of the relative key is passed to or from the
access module using the FILE-REL-KEY variable of the MWFITECH
copy file.

Listing 8-21 LINKAGE SECTION Structure

LINKAGE SECTION.
01 10-STATUS PIC XX.
COPY MWFITECH.

* *COBOL Record Description
01 VS-ODCSFO-RECORD.

06 X-VS-CUSTIDENT.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 8-37

07 VS-CUSTIDENT PIC 9(006).

06 VS-CUSTLNAME PIC X(030).
06 VS-CUSTFNAME PIC X(020).
06 VS-CUSTADDRS PIC X(030).
06 VS-CUSTCITY PIC X(020).
06 VS-CUSTSTATE PIC X(002).

06 X-VS-CUSTBDATE.
07 VS-CUSTBDATE PIC 9(008).
06 VS-CUSTBDATE-G REDEFINES VS-CUSTBDATE.
11 X-VS-CUSTBDATE-CC.
12 VS-CUSTBDATE-CC PIC 9(002).
11 X-VS-CUSTBDATE-YY.
12 VS-CUSTBDATE-YY PIC 9(002).
11 X-VS-CUSTBDATE-MM.
12 VS-CUSTBDATE-MM PIC 9(002).
11 X-VS-CUSTBDATE-DD.
12 VS-CUSTBDATE-DD PIC 9(002).
06 VS-CUSTEMAIL PIC X(040).
06 X-VS-CUSTPHONE.
07 VS-CUSTPHONE PIC 9(010).
06 VS-FILLER PIC X(100).
PROCEDURE DIVISION USING 10-STATUS
MW-FILE-TECH

VS-ODCSFO-RECORD.

8-38 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Call Arguments Used

OPEN
For all OPEN operations, the FILE-CODE-F variable should contain the key-word OPEN.

The FILE-OPEN-MODE variable should contain the type of OPEN to perform as follows:.

Tahle 8-10 Call Argument File Open Modes

Source Target

OPEN INPUT filenamel INPUT => FILE-OPEN-MODE

OPEN OUTPUT filenamel OUTPUT => FILE-OPEN-MODE

OPEN 1I-O filenamel I-O =>FILE-OPEN-MODE

OPEN EXTEND filenamel ~ EXTEND => FILE-OPEN-MODE

CLOSE
For CLOSE operations, the FILE-CODE-F variable should contain the key-word CLOSE.

CLOSE-LOCK

For CLOSE LOCK operations, the FI1LE-CODE-F variable should contain the key-word
CLOSE-LOCK.

DELETE

Depending on the file access mode, the DELETE operation is either the current record or the one
indicated by the file key.

The corresponding function code is indicated as follows:

Table 8-11 Call Argument Delete Modes

Access Source Target

Sequential DELETE filenamel DELETE-CUR => FILE-CODE-F

Random or dynamic DELETE filenamel DELETE-KEY => FILE-CODE-F

Oracle Tuxedo Application Rehosting Workbench Reference Guide 8-39

READ

The function code depends on the file access mode and the type of read required: sequential read,
read primary key or read secondary key.

Table 8-12 Read Operation Values Depending on Arguments

Access Source Target

Sequential READ filenamel [NEXT] READ-NEXT =>FILE-CODE-F

Random READ filenamel READ-KEY =>FILE-CODE-F

Dynamic READ filenamel NEXT READ-NEXT => FILE-CODE-F
READ filenamel READ-KEY =>FILE-CODE-F
READ filenamel PREVIOUS READ-PREV => FILE-CODE-F

If DataNamel is a READ filenamel KEY DataNamel READ-ALT-KEY =>FILE-CODE-F

variable corresponding "Altkeyl" =>

to the keyAltKeyl FILE-ALT-KEY-NAME

DataNamel represents ~ READ filenamel READ-REL-KEY => FILE-CODE-F

the relative key KEY DataNamel "RelKeyVar" =>FILE-REL-KEY

Note: Ifthe INTO clause is found, a MOVE operation is added after the call in order to set the
value of the indicated field.

REWRITE

The function code depends on the file access mode and the type of read required: sequential read,
read primary key or read secondary key

Table 8-13 Rewrite Operation Values Depending on Arguments

Access Source Target
Sequential REWRITE RecNamel REWRITE-CUR => FILE-CODE-F
Random or dynamic REWRITE RecNamel REWRITE-KEY => FILE-CODE-F

Note: If the FROM clause is found, a MOVE operation is added before the call in order to set
the value of the indicated field.

8-40 Oracle Tuxedo Application Rehosting Workbench Reference Guide

START

Whether the file is relative, indexed, with or without secondary key, the function code depends
on the exact type of start.

Table 8-14 Rewrite Operation Values Depending on Arguments

When Source Target
START filel START-EQUAL => FILE-CODE-F
DataNamel START filel KEY {EQUAL| = START-EQUAL => FILE-CODE-F
represents the |[EQUALS} DataNamel
relative key or
filel |GREATER} DataNamel
START filel KEY {NOT LESS START-SUPEQ => FILE-CODE-F
|[GREATER OR EQUAL |NOT <|>=}
DataNamel
START filel KEY {<|LESS} START-INF =>FILE-CODE-F
DataNamel

START filel KEY {NOT GREATER START-INFEQ => FILE-CODE-F
ILESS OR EQUAL |NOT >|<=}
DataNamel

Oracle Tuxedo Application Rehosting Workbench Reference Guide 8-41

Tahle 8-14 Rewrite Operation Values Depending on Arguments

When Source Target
DataNamel is a START filel KEY {EQUAL| = AltKeyl =>
variable |[EQUALS} DataNamel FILE-ALT-KEY-NAME

corresponding to

START-ALT-EQUAL =>
the AltKey1 key FILE-CODE-F
START filel KEY {EXCEEDS| > Altkeyl =>
IGREATER} DataNamel FILE-ALT-KEY-NAME
START-ALT-SUP =>
FILE-CODE-F
START filel KEY {NOT LESS]| Altkeyl =>
GREATER OR EQUAL |NOT< |>=} FILE-ALT-KEY-NAME
DataNamel START-ALT-SUPEQ =>
FILE-CODE-F
START filel KEY AltKeyl =>
{< |LESS} DataNamel1 FILE-ALT-KEY-NAME
START-ALT-INF =>
FILE-CODE-F
START filel KEY {NOT GREATER AltKeyl =>
ILESS OR EQUAL |NOT >|<=} FILE-ALT-KEY-NAME
DataName1l START-ALT- INFEQ =>
FILE-CODE-F

WRITE

The function code depends on the file access mode and the type of read required: sequential read,
read primary key or read secondary key

Tahle 8-15 Write Operation Values Depending on Arguments

Access Source Target
Sequential WRITE RecNamel WRITE-SEQ => FILE-CODE-F
Random or dynamic WRITE RecNamel WRITE-KEY => FILE-CODE-F

8-42 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Note:

the value of the indicated field.

Copy Files to Be Implemented

The following copy files are used by certain access functions. They should be placed in the
directory: < installation platform>/fixed-copy/ during the installation of the Rehosting
Workbench:

MW-PARAM-TRACE-VAR. cpy
MW-PARAM-TRACE . cpy
MW-PARAM-GETFILEINFO-VAR . cpy
MW-PARAM-GETFILEINFO.cpy
MW-PARAM-ERROR-VAR . cpy
MW-PARAM-ERROR . cpy
MW-PARAM-DML-LOCKING . cpy
MWFITECH . cpy
ERROR-SQLCODE-DB2LUW . cpy

Korn Shell Utilities

These KSH scripts are generated using the -g option of File.sh and then installed in
$HOME/trf/SQL/File/<configuration name> using the —i option. When necessary, they are
used by Oracle Tuxedo Application Runtime Batch.

Tahle 8-16 Korn Shell Utilities

If the FROM clause is found, a MOVE operation is added before the call in order to set

Korn shell script name

Role

cleantable-<logical file
name>_ksh

Script file that CLEANS all tables associated with this
file.

createtable-<logical file
name>_ksh

Script file that CREATEs all table, constraint and
indexes associated with this file.

droptable-<logical file
name>_.ksh

Script file that DROPs all tables associated with this
file.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 8-43

Tahle 8-16 Korn Shell Utilities

Korn shell script name Role

ifemptytable-<logical file Script file that checks if all tables are empty.
name>._ksh

ifexisttable-<logical file Script file that checks if all tables exist.
name>_ksh

Oracle Tuxedo Application Runtime for CICS Configuration
Files

The desc.vsam and envfile_tux files are generated in the $SHOME/trf/config/tux/
directory when VSAM files are migrated to Db2/luw (udb) tables. They are used by Oracle Tuxedo
Application Runtime CICS.

COBOL and JCL Conversion Guide Files

These files are generated using the -s option of the file.sh command.

This file is used by the Rehosting Workbench COBOL Converter and JCL Converter to rename
object names.

Table 8-17 Conversion file Names

File-in-table-<configuration Used by the Rehosting Workbench JCL

name> converter

File-in-table.txt Used by the Rehosting Workbench JCL
converter

Conv-ctrl._txt Used by the Rehosting Workbench COBOL
converter

Conv-ctrl-<configuration Used by the Rehosting Workbench COBOL

name> converter

8-44 Oracle Tuxedo Application Rehosting Workbench Reference Guide

.-rdb Files

These files are created when VSAM files are converted to Db2/luw (udb) tables. They are used by
Oracle Tuxedo Application Runtime Batch to bridge the technical differences between the z/OS file on the
source platform and the corresponding Db2/luw (udb) table on the target platform.

The files are generated in: $SHOME/trf/data
They are named: <source platform physical file name>.rdb

The files contain two lines described in the next section.

Parameters and Syntax

${DATA}/<source platform physical file name> <max> <org> <form> UL_<logical
file name> <asgn_in> DL_<logical file name> <asgn_out> RM_<logical file
name> <target table name> ${DDL}/<configuration name/cleantable-<target
table name>.ksh ${DDL}/<configuration name>/droptable-<target table
name>_ksh ${DDL}/<configuration name>/createtable-<target table name>.ksh
${DDL}/<configuration name>/ifemptytable-<target table name>_ksh
${DDL}/<configuration name>/ifexisttable-<target table name>_ksh

IDX_KEY <column name> <n m>

REL_KEY - <m>

Tahle 8-18 .rdb File Parameters

Parameter Description
First Line:
<source platform Physical file name

physical file name>

<max> Maximum Record Size (in COBOL description).

<org> File organization:
e IDX: indexed without alternate key
e IDX_ALT: indexed with alternate key(s)
* SEQ: sequential
* REL: relative

Oracle Tuxedo Application Rehosting Workbench Reference Guide 8-45

Tahle 8-18 .rdb File Parameters

Parameter

Description

<form>

Record format:
e FIX: fixed file

¢ VAR:<min> variable file with minimal size. If <min> is missing,
minimal size will be 1.

UL_<logical file name>

Uploading component name used by Oracle Tuxedo Application
Runtime Batch.

<asgn_in>

Assign file name used by the uploading component.

DL_<logical file name>

Downloading component name used by Runtime.

<asgn_out>

Assign file name used by the downloading component.

RM_<logical file name>

Relational module name.

<target table name>

Name of the first table name (master table name or first table name
for multi-record).

${DDL}/<configuration
name/cleantable-<targe
t table name>._ksh

Name of the script file that CLEANS all tables associated with this
file.

${DDL}/<configuration
name/droptable-<target
table name>_ksh

Name of the script file that DROPs all tables associated with this file

${DDL}/<configuration
name>/createtable-<tar
get table name>_ksh

Name of the script file that CREATEsS all tables associated with this
file and their objects (constraints, indexes).

${DDL}/<configuration
name>/ifemptytable-<ta
rget table name>_ksh

Name of the script file that checks if all tables are empty.

${DDL}/<configuration
name>/ifexisttable-<ta
rget table name>_ksh

Name of the script file that checks if all tables exist.

Second Line for indexed file and indexed with alternate key file only:

IDX_KEY

Constant.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Tahle 8-18 .rdb File Parameters

Parameter Description

<VS-column name> Indexed key name (group zone name or elementary field name as
described in COBOL description).

<n m> e n: offset of the indexed key (in COBOL description).
« m: length of the indexed key (in COBOL description).

Second Line for relative file:

REL_KEY Constant.
- Constant.
<m> * m: length of the relative key (in COBOL description).

Example of .rdb File

The following example is generated when migrating an indexed VSAM file to an Db2/luw (udb)
table. On the source platform, the VSAM file is named: PJO1AAA_SS.VSAM.CUSTOMER

Listing 8-22 .rdb Indexed VSAM Example

${DATA}/PJ01AAA_SS_VSAM_CUSTOMER 266 IDX FIX UL_ODCSFOB ENTREE DL_ODCSFOB
SORTIE RM_ODCSFOB CUSTOMER ${DDL}/STFILEORA/cleantable-ODCSFOB.ksh
${DDL}/STFILEORA/droptable-0ODCSFOB.ksh
${DDL}/STFILEORA/createtable-ODCSFOB.ksh

${DDL}/STFILEORA/ ifemptytable-ODCSFOB.ksh
${DDL}/STFILEORA/ifexisttable-ODCSFOB.ksh

IDX_KEY VS-CUSTIDENT 1 6

Execution Reports

file_sh creates different execution reports depending on the options chosen. In the following
examples the following command is used:

file.sh -gmi $HOME/trf STFILEUDB

Oracle Tuxedo Application Rehosting Workbench Reference Guide 8-47

8-48

Listing 8-23 Messages Produced when Using the Options -g with File.sh (step 1)

HHHHH AR AR R R R R R R R R R
Control of configuration STFILEUDB
HHHHH B H A AR R
Control of templates
OK: Use Default Templates list file

File name is
/Qarefine/release/M3_L3_6/convert-data/default/file/file-templates-db2luw.
™t

HH AR R
Control of Mapper

HH AR R
COMPONENTS GENERATION

CMD : /Qarefine/release/M3_L3 6/scripts/launch file-converter -s
/home2/wkb4/param/system.desc -mf /home2/wkb4/tmp/mapper-STFILEUDB.re.tmp
-dm¥ /home2/wkb4/param/file/Datamap-STFILEUDB.re -td /home2/wkb4/tmp -tmps
/home2/wkb4/tmp/file-templates-STFILEUDB. tmp -target-sgbd udb9 -target-os
unix -varchar2 29 -print-ddl -print-dml -abort

MetaWorld starter

Loading lib: /Qarefine/release/M3_L3_6/Linux64/1ib64/1ocalext.so
(funcall LOAD-THE-SYS-AND-APPLY-DMAP-AND-MAPPER)

FILE-0092: *File-Converter*: We are in BATCH mode

FILE-0087: * Comand line arguments: begining of analyze

FILE-0088: * recognized argument -s value: /home2/wkb4/param/system.desc

FILE-0088: * recognized argument -mf value:
/home2/wkb4/tmp/mapper-STFILEUDB. re. tmp

Oracle Tuxedo Application Rehosting Workbench Reference Guide

FILE-0088: * recognized argument -dmf value:
/home2/wkb4/param/file/Datamap-STFILEUDB. re

FILE-0088: * recognized argument -td value: /home2/wkb4/tmp

FILE-0088: * recognized argument -tmps value:
/home2/wkb4/tmp/file-templates-STFILEUDB. tmp

FILE-0088: * recognized argument -target-sgbd value: udb9

FILE-0088: * recognized argument -target-os value: unix

FILE-0088: * recognized argument -varchar2 value: 29

FILE-0089: * recognized argument -print-ddl

FILE-0089: * recognized argument -print-dml

FILE-0089: * recognized argument -abort

FILE-0091: * End of Analyze

FILE-0094: * Parsing mapper file /home2/wkb4/tmp/mapper-STFILEUDB.re.tmp

FILE-0095: * Parsing data-map file
/home2/wkb4/param/file/Datamap-STFILEUDB.re ...

FILE-0096: * Parsing system description file /home2/wkb4/param/system.desc

Warning! 0OS clause is absent, assuming OS is IBM
Current OS is IBM-MF

Loading /home2/wkb4/source/symtab-STFILEUDB.pob at 14:49:41... done at
14:49:41

Build-Symtab-DL1 #l<a SYMTAB-DL1>

... Postanalyze-System-RPL. ..
sym=#2<a SYMTAB>
PostAnalyze-Common #2<a SYMTAB>

0 classes

0 classes

0 classes

Oracle Tuxedo Application Rehosting Workbench Reference Guide 8-49

0 classes
1 classes
13 classes
Loading /home2/wkb4/source/BATCH/pob/RSSABBO1.cbl . shrec...
Loading /home2/wkb4/source/COPY/pob/ODCSFO.cpy.cdm. . .
Loading /home2/wkb4/source/COPY/pob/0ODCSFOB.cpy.cdm. ..
Loading /home2/wkb4/source/COPY/pob/ODCSFU.cpy.cdm. . .
FILE-0001: * Point 1 I!
FILE-0002: * Point 2 1!
FILE-0010: * Parsing file /home2/wkb4/source/COPY/ODCSFO.cpy - ..
Parsed 22 lines
FILE-0010: * Parsing file /home2/wkb4/source/COPY/MW_SYSOUT.cpy - -.
Parsed 8 lines
FILE-0010: * Parsing file /home2/wkb4/source/COPY/ODCSFU.cpy - ..
Parsed 24 lines
FILE-0010: * Parsing file /home2/wkb4/source/COPY/ODCSFOB.cpy .. -
Parsed 22 lines
FILE-0003: * Point 3 I!
FILE-0004: * Point 4 11!
FILE-0005: * Point 5 I!

FILE-0052: * loading pob file
/Qarefine/release/M3_L3_6/convert-data/templates/file/unloading/jcl-unload
-MVS-REPRO. pgm.pob

FILE-0085: * Expanding
/Qarefine/release/M3_L3_6/convert-data/templates/file/unloading/jcl-unload
-MVS-REPRO.pgm - ..

FILE-0054: * Writing ODCSFOB.jclunload

[---1

8-50 Oracle Tuxedo Application Rehosting Workbench Reference Guide

FILE-0052: * loading pob file
/Qarefine/release/M3_L3_6/convert-data/templates/file/dml/generate-post-pr
ocess.pgm.pob

FILE-0085: * Expanding
/Qarefine/release/M3_L3_6/convert-data/templates/file/dml/generate-post-pr
ocess.pgm ...

FILE-0054: * Writing post-process-file.sh

FILE-0053: * Parsing template file
/Qarefine/release/M3_L3_6/convert-data/default/file/file-move-assignation-
db2luw.pgm

FILE-0085: * Expanding
/Qarefine/release/M3_L3_6/convert-data/default/file/file-move-assignation-
db2luw.pgm ...

FILE-0054: * Writing file-move-assignation.lIst

Rest in peace, Refine...

Generated components are in /home2/wkb4/tmp/Template/STFILEUDB
(Optionaly in /home2/wkb4/tmp/SQL/STFILEUDB)

Listing 8-24 Messages Produced When Using the Options -m with File.sh (step 2)

HHAHH AR H AR
FORMATTING COBOL LINES
HHAHH AR H AR

CHANGE ATTRIBUTE TO KSH or SH scripts

Oracle Tuxedo Application Rehosting Workbench Reference Guide 8-51

Components are modified into /home2/wkb4/tmp directory
B

UDBINSTALL COMPONENTS INTO SPECIFIC DIRECTORY USING
file-move-assignation.lIst

==_PJO01AAA_SS.VSAM.CUSTOMER_==

Copied <Templates>:0DCSFOB.jclunload to
<td>/unload/file/STFILEUDB/ODCSFOB. jclunload

Copied <Templates>:loadtable-ODCSFOB.ksh to
<td>/reload/file/STFILEUDB/ loadtable-ODCSFOB.ksh

Copied <Templates>:RELTABLE-ODCSFOB.sqgb to
<td>/reload/file/STFILEUDB/RELTABLE-ODCSFOB.sqgb

Copied <Templates>:ASG_ODCSFOB.cbl to <td>/DML/ASG_ODCSFOB.cbl
Copied <Templates>:RM_ODCSFOB.sgb to <td>/DML/RM_ODCSFOB.sgb
Copied <Templates>:DL_ODCSFOB.cbl to <td>/DML/DL_ODCSFOB.cbl
Copied <Templates>:UL_ODCSFOB.cbl to <td>/DML/UL_ODCSFOB.cbl

Copied <Templates>:PJ01AAA.SS.VSAM.CUSTOMER.rdb to
<td>/data/PJ01AAA.SS.VSAM.CUSTOMER. rdb

Copied <SQL>:0ODCSFOB.sql to <td>/SQL/file/STFILEUDB/ODCSFOB.sql

Copied <Templates>:cleantable-ODCSFOB.ksh to
<td>/SQL/file/STFILEUDB/cleantable-0ODCSFOB.ksh

Copied <Templates>:droptable-ODCSFOB.ksh to
<td>/SQL/file/STFILEUDB/droptable-ODCSFOB.ksh

Copied <Templates>:createtable-ODCSFOB.ksh to
<td>/SQL/file/STFILEUDB/createtable-ODCSFOB.ksh

Copied <Templates>:ifemptytable-ODCSFOB.ksh to
<td>/SQL/File/STFILEUDB/ ifemptytable-ODCSFOB.ksh

Copied <Templates>:ifexisttable-ODCSFOB.ksh to
<td>/SQL/file/STFILEUDB/ifexisttable-ODCSFOB.ksh

8-52 Oracle Tuxedo Application Rehosting Workbench Reference Guide

==_PJO01AAA_SS.QSAM.CUSTOMER.REPORT_==

Copied <Templates>:MW-SYSOUT.jclunload to
<td>/unload/file/STFILEUDB/MW-SYSOUT. jclunload

Copied <Templates>:loadfile-MW-SYSOUT.ksh to
<td>/reload/file/STFILEUDB/ loadfile-MW-SYSOUT . ksh

Copied <Templates>:RELFILE-MW-SYSOUT.cbl to
<td>/reload/file/STFILEUDB/RELFILE-MW-SYSOUT.cbl

==_PJO01AAA.SS.QSAM.CUSTOMER.UPDATE_==

Copied <Templates>:0DCSFU.jclunload to
<td>/unload/file/STFILEUDB/ODCSFU. jclunload

Copied <Templates>:loadfile-ODCSFU.ksh to
<td>/reload/file/STFILEUDB/loadfile-ODCSFU.ksh

Copied <Templates>:RELFILE-ODCSFU.cbl to
<td>/reload/file/STFILEUDB/RELFILE-ODCSFU.cbl

==_PJO01AAA_SS.QSAM.CUSTOMER_==

Copied <Templates>:0DCSFOQ.jclunload to
<td>/unload/file/STFILEUDB/ODCSFOQ. jclunload

Copied <Templates>:loadfile-ODCSFOQ.ksh to
<td>/reload/file/STFILEUDB/ loadfile-ODCSFOQ.ksh

Copied <Templates>:RELFILE-ODCSFOQ.cbl to
<td>/reload/file/STFILEUDB/RELFILE-ODCSFOQ.cbl

Copied <Templates>:close_all_files_STFILEUDB.cbl to
<td>/DML/close_all_files_STFILEUDB.cbl

Copied <Templates>:init_all_files_STFILEUDB.cbl to
<td>/DML/init_all_files STFILEUDB.cbl

Copied <Templates>:reload-files.txt to
<td>/reload/file/STFILEUDB/reload-files.txt

Oracle Tuxedo Application Rehosting Workbench Reference Guide

8-53

Copied <fixed-components>:getfileinfo.cbl to <td>/DML/getfileinfo.cbl

Copied <fixed-components>:CreateReportFromMVS_sh to
<td>/reload/bin/CreateReportFromMVS.sh

Dynamic_configuration

Copied <Templates>:File-in-table-STFILEUDB to
/home2/wkb4/param/dynamic-config/File-in-table-STFILEUDB

Copied <Templates>:../../Conv-ctrl-STFILEUDB to
/home2/wkb4/param/dynamic-config/Conv-ctr1-STFILEUDB

post-process
executed <Templates>:post-process-file.sh

/home2/wkb4/param/dynamic-config/Conv-ctr-STFILEUDB treated

Number of copied files: 30
Number of executed scripts: 1
Number of ignored files: 0

HHHH B HHHH AR AR R AR AR R A

Detailed Processing

This section describes the Command-Line Syntax used by the File-to-Db2/luw (udb) Converter,
and the Process Steps summary.

The processes required on the source and target platforms concern:

8-54 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Configuring the Environments and Installing the Components,

Unloading Data,
e Transferring the Data,
e Reloading the Data,

e Checking the Transfers,
Command-Line Syntax
file.sh

Name

file._sh - generate file migration components.

Synopsis
Ffile.sh [[-g] [-m] [-1 <installation directory>] <configuration name> | -s
<installation directory> (<configuration namel>,<configuration name2>,...)

1

Description

fi le.sh generates the Rehosting Workbench components used to migrate z/OS files to Db2/luw
(udb) databases.

Options

Generation Options

-g <configuration name>
Triggers the generation, for the configuration indicated, of the unloading and loading
components in $TMPPROJECT. This generation depends on the information found in the
configuration files.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 8-55

8-56

Modification Options

-m <configuration name>
Makes the generated SHELL scripts executable. COBOL programs are adapted to the
target COBOL fixed format. When present, the shell script described in File Modifying
Generated Components is executed.

Installation Option

-i <installation directory> <configuration name>
Places the components in the installation directory. This operation uses the information
located in the file-move-assignation-db2luw.pgm file.

Final Option

-s <installation directory> (<configuration name 1>, <configuration name 2>, ...)
Enables the generation of the COBOL and JCL converter configuration files and DML
utilities. These generated files take all of the unitary files of the project.

All configuration files are created in $PARAM/dynamic-config and DML files in
<trf>/DML directory.

Example
file.sh -gmi $HOME/trf FTFILOO1

Unitary Usage Sequence
If the File.sh options are used one at a time, they should be used in the following order:

1. =>4

2. =>-m

3. =>-i

4. =>-s (should be executed once steps 1 to 3 have been executed for all configurations).

Process Steps

Configuring the Environments and Installing the Components
This section describes the preparation work on the source and target platforms.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Installing the Unloading Components Under z/0S

The components used for the unloading (generated in $HOME/trf/unload/file) should be
installed on the source z/OS platform (the generated JCL may need adapting to specific site
constraints including JOB cards, library access paths and access paths to input and out put files).

Installing the Reloading Components on the Target Platform

The components used for the reloading (generated in $HOME/trf/reload/file) should be
installed on the target platform.

The following environment variables should be set on the target platform.

Table 8-19 Target Platform Environment Variables

Variable

Value

DATA_SOURCE

The name of the directory containing the unloaded files transferred from z/OS
to be reloaded into Db2/luw (udb) tables.

BIN The location of the generic reload and control scripts
($HOME/trf/reload/bin).

TMPPROJECT The temporary directory.

MT_LOG Directory to contain execution logs.

DATA_TRANSCODE

Temporary directory used by the file binary data transcoding script (contains
temporary files in ASCII format).

DDL The location of SQL scripts used to create Db2/luw (udb) objects:
($HOME/trf/SQL/file/<configuration name>).
PATH This UNIX/Linux variable has to contain the directory of Oracle Tuxedo

Application Runtime for Batch utilities

In addition, the following variable should be set according to the information in the Oracle
Tuxedo Application Rehosting Workbench Installation Guide:

e MT_DB_DBNAME
e MT_DB_USER
e MT_DB_PWD

Oracle Tuxedo Application Rehosting Workbench Reference Guide 8-57

8-58

Compiling COBOL Transcoding Programs

The COBOL transcoding programs should be compiled using the options specified in Compiler
Options.

Compiling these programs requires the presence of a copy of CONVERTMW . cpy adapted to the
project.

Unloading Data

To unload each file, a JCL using the IBM IDCAMS REPRO utility is executed. The IDCAMS
REPRO utility creates two files for each file:

e adata file,
e alog file,
These unloading JCLs are named <logical filename>.jclunload

A return code of 0 is sent on normal job end.

Transferring the Data

The unloaded data files should be transferred between the source z/OS platform and the target
UNIX/Linux platform in binary format using the file transfer tools available at the site (CFT,
FTP, ...).

The files transferred to the target UNIX/Linux platform should be stored in the $DATA_SOURCE
directory.

Reloading the Data

The scripts enabling the transcoding and reloading of data are generated in the directory:

$HOME/trf/reload/file/<configuration name>/
Note: For a file-to-Db2/luw (udb) conversion, the format of the script names is:

loadtable-<logical file name>.ksh
Transcoding and Reloading Command for Tables

Name
loadtable transcode and reload data to table.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Synopsis
loadtable-<logical file name>.ksh [-t] [-1] [-c: <method>]

Options

-t
Transcode the file.

Reload the file

-c ftp:<...>i<.>
Implement the verification of the transfer (see Checking the Transfers).

Checking the Transfers
This check uses the following option of the loadtable-<logical file name>.ksh
-c ftp:<name of transferred physical file>:<name of FTP log under UNIX>

This option verifies, after the reloading, that the physical file transferred from z/OS and the
Db2/luw (udb) table reloaded on the target platform contains the same number of records. This
check is performed using the FTP log and the execution report of the reloading program. If the
number of records is different, an error message is produced.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 8-59

8-60 Oracle Tuxedo Application Rehosting Workbench Reference Guide

JCL Translator

Overview

Oracle Tuxedo Rehosting platform is a packaged and comprehensive solution composed of tools
(Oracle Tuxedo Application Rehosting Workbench) and runtime components (Oracle Tuxedo
Application Runtime for CICS and Batch) which allow its users:

e To perform a replatforming project with minimum risk and cost.

e To run the replatformed applications in the Linux/UNIX standardized environment.

Oracle Tuxedo Application Rehosting Workbench is used only during the replatforming project
itself, whereas the Runtime components are used throughout the whole life of the migrated
system. Oracle Tuxedo Application Rehosting Workbench is composed of several tools, among
which is the JCL Translator.

As its name suggests, the role of this tool is to translate JCLs running on the source platform
(z/0S, IBM Job Control Language) into Korn-shell (KSH) shell scripts running on the target
platform (Unix or Linux, Korn shell (KSH) dialect with invocations of Oracle Tuxedo
Application Runtime for Batch functions) with the same behavior, in the context of other
components translated or generated by the other Oracle Tuxedo Application Rehosting
Workbench tools. The purpose of this chapter is to describe precisely all the features of the JCL
translator.

JCL Translator Definitions

The following terms are used when describing the JCL Translator.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 9-1

JCL.: Job Control Language
A command language for the IBM operating system family. The components written in
this language are called JCL jobs or simply JCLs. A source asset to be migrated with
Oracle Tuxedo Application Runtime generally contains components of this type.

KSH or Korn Shell
A particular variant in the family of Unix Shell command languages. It is also the name
of the shell interpreter itself. A shell script compatible with this language/interpreter is a
KSH script. KSH scripts are the components in the target asset which correspond to source
JCLs.

JES2
Job Entry Subsystem 2

SYMBOLS
Variables in JCLs, allowing them to be parameterized according to the environment.
These variables are handled (substituted) by the JES2 reader.

Card Continuation
JCL cards (commands) of more than 72 characters need to be split over several lines.
Lines after the first one are called continuation lines (or cards). The previous line must end
before column 72 with an optional separator character (generally the comma character)
and the continuation line starts with "//" followed by enough spaces to reach the option
area. Comments may be embedded on continuation lines after the option area and must be
separated from the latter by at least one space. Example:

//SYSIN DD DSN=LIB454R.COMMUN.SER, this is a comment
// DISP=SHR
See also the Concepts described in the Introduction.

General Description and Operation

General Information

Oracle Tuxedo Application Rehosting Workbench JCL Translator handles every required
translation in a single pass to:

e Create the structure of the target shell script (execution loop) and populate it with the
original sequence of steps.

e Handle conditions and return codes.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Handle file assignments (DD cards), including access modes and disposition as well as
GDG files, spool files, etc.

e Invoke COBOL programs, including through launchers as well as passing parameters.

Invoke most common utility programs such as file manipulation (IDCAMS, DFSORT, etc.)
in a UNIX/Linux manner.

Invoke other utility programs through a generic interface.

e More generally, implement all the features of the original JCL which are relevant to the
target platform.

With the aid of the Oracle Tuxedo Application Runtime for Batch components, the resulting shell
scripts can be compiled and run on the target platform with the same behavior as on the source
platform, except in some cases detailed in the section Behavior Coverage.

The JCL translator takes as input:

e The abstract syntax trees of the JCL scripts to translate (one or more), stored in the POB
files produced by the Cataloger.

e A number of configuration files:

— (mandatory) the System Description File, which describes where to locate the JCL files and
sub-files on the migration platform file system.

— (mandatory) the conversion configuration file, which specifies the general parameters of the
conversion and gives the location of the specific configuration sub-files.

— (optional) specific configuration sub-files such as the file-to-RDBMS conversion table; see
COBOL and JCL Conversion Guide Files in File-to-Oracle Converter or COBOL and JCL
Conversion Guide Files in File-to-Db2/luw (udb) Converter.

It produces as output:
e An execution log;

e Translated KSH components in their textual representation: scripts (main files) and
sub-files for procedures, INCLUDE files and possibly SYSIN files.

The JCL translation process acts individually and separately on each JCL. However, it is not
suitable to run the JCL Translator concurrently on multiple JCLs at the same time because, if
several of these JCL contain the same sub-file, then their translator instances may want to write
the translation of this sub-file at the same time, with the risk of corrupting it. In practice, JCL
translation is fast and incremental, so there is no real need to accelerate it using multiple
processors.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 9-3

Behavior Coverage

For a detailed description of which JCL cards, parameters, options and utility programs are
supported by the JCL translator and the underlying Oracle Tuxedo Application Runtime for
Batch components, please refer to the chapter Z/OS JCL in the Oracle Tuxedo Application
Runtime Batch Environment in the book Oracle Tuxedo Application Runtime for Batch
Reference Guide.

Description of Input Components

9-4

The input components are all the JCL scripts (main files) in the asset, after they have been parsed
by the cataloger. In fact, the JCL translator loads the POB files for the scripts, not their source
files. In addition to the restrictions imposed by the cataloger (no multiple jobs per JCL, etc.; see
the Cataloger), the following rules must be respected before attempting the JCL translation:

e All the anomalies reported by the cataloger must be fixed. Otherwise, there is a risk that
the translation is incorrect, or even that the translator fails (crashes). In fact, the translator
will refuse to translate any JCL which contains a FATAL anomaly. But even ERRORS or
simple WARNINGs may cause trouble, so it is strongly advised to fix all anomalies.

e The data migration process must have been run before JCL translation is started, because
the latter depends on the former, for instance to decide which files will be migrated into
relational DB tables; see the Oracle Tuxedo Application Runtime Process Guide for more
details. This dependency is concretized in the fact that the file migration tools generate
some of the configuration files read by the JCL translator.

Description of the Configuration Files

The JCL translator is driven by two parameter files, the system description file and the
JCL-translation configuration file.

The System Description File

The System Description File describes the location, type and possible dependencies of all the
source files in the asset to process. As such, it is the key by which the cataloger, but also all of
the Rehosting Workbench tools, including the JCL translator, can access these source files and
the corresponding components.

The following component types are relevant to the JCL translator:

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Table 9-1 JCL Translator Component Types

JCL Main JCL files, defining one or more JCL jobs.

JCL-Lib JCL sub-files, either defining procedures invoked by EXEC or containing
statements invoked by INCLUDE.

JCL-Sysin SYSIN files used by utility programs or program launchers in JCL scripts. Not
all SYSIN files are required by the parser/cataloger.

The following (global and/or local) options are relevant to the JCL translator

Table 9-2 JCL Translator Global and Local Options

JCL-globals List of pairs var-name is a symbol (or string interpreted as a symbol) and
var-name var-valueisastring. When parsing a JCL script, the parser simulates
= the JCL-variable substitution process performed by JES2. The
var-value name-value pairs given here are used to substitute global variables (as
separated by opposed to parameters, etc.). The parser reports an error when it cannot

commas find a suitable value for a variable.
strict-jcl-libr ~ None The presence of this option influences how SYSIN files referenced by
aries (Boolean a JCL are searched in the whole system. See chapter Normal Sub-File
flag) Search operation in the Cataloger chapter.
jclz-launcher string Path of the JCL-launcher specification file to use for this system or
-spec[s]-file directory; see the section JCL-Launcher Specification Files in the
Cataloger chapter for more information on the contents and use of these
files.

Listing 9-1 JCL Translator global and local options examples

options jcl-globals = VARO1 = "T23RT", PARM = "USERT".

directory '"'Sysin/BPRO.PARMIMS" logical-name '""BPRO.BXZ.PARMFIX" type
JCL-SYSIN files "*.sysin".

directory "JCL/BPRO™ type JCL files "*_jcl" libraries "Sysin/BPRO.PARMIMS™.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 9-5

The JCL-Translation Configuration File

The contents of the JCL-translation configuration file is a list of "assignments" of the form
parameter-name = parameter-value. Some of these assignments, those in which the
parameter-value is a sequence of strings, must be terminated by a period; the strings are separated
by commas. The following parameters are available:

Table 9-3 JCL-translation Configuration File Contents

root-skeleton String Path of the root directory in which the hierarchy of generated KSH
scripts will be stored. This parameter is mandatory, no default value
exists. The given path may be either absolute or relative to the location
of the system description file.

target-proc String Path of the root directory in which the hierarchy of the sub-files
extracted from generated KSH scripts (PROCs, INCLUDEs, possibly
some SYSINSs) will be stored. The default value is the root-skeleton. The
given path may be either absolute or relative to the location of the system
description file.

use-sort Symbol Target sort utility to use either mf-sortor sync-sort, orcit-sort
(inrelease 11.1.1.2.2). Default is mf-sort.

var-dataroot String Root directory for target permanent data files. Default is "${DATA}",
which allows to easily run the target shell scripts on different
environments, such as test and production.

var-tmp String Root directory for target temporary data files. Default is "${TMP}/".
var-spool String Root directory for target spool (print) files. Default is "${SPOOL}/".
top-skeleton String String which will be inserted as header in all target KSH scripts. It is

suggested that it contains only comments, not executable statements. It
can be used as a standardized template for maintenance information.
Default is no header (empty string).

bottom-skeleton String String which will be inserted as trailer in all target KSH scripts. It is
suggested that it contains only comments, not executable statements. It
can be used as a standardized template for maintenance information such
as CVS log. Default is no trailer (empty string).

9-6 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Tahle 9-3 JCL-translation Configuration File Contents

file-list-in-table String Path of the file containing a list of paths for files containing the DSNs of

the (source) data files to be migrated into Oracle tables, if any. This file,
and the files it refers to, are automatically generated by the
data-migration tools (File-To-Oracle). The path of this file, and the paths
it contains, may be given either in absolute form or relative to (the
directory containing) the system description file.

suffix-skeleton String File extension (suffix) of the target KSH scripts. Default is ".ksh". Note

that the extension for PROCs, INCLUDEs and SYSINs is not
customizable.

set-no-delete-fsn ~ Sequen List of file assignments to keep in the target KSH scripts, when they

ce of would normally be removed. See set-delete-fsn and set-no-delete-fsn for
FSNs more details.

set-delete-fsn Sequen List of file assignments to remove from the target KSH scripts, when

ce of they would normally be kept. See set-delete-fsn and set-no-delete-fsn for
FSNs more details.

set-delete-fsn and set-no-delete-fsn

For the last two parameter names, set-delete-fsn and set-no-delete-fsn, the syntax of
the parameter value is as follows:

ddname (program-name, program-name, ..) , ddname (program-name ..) ,

Note:

The DD-names and program-names are written as symbols using the source syntax. The
separators (parentheses, commas and trailing period) are mandatory.

The semantics of this parameter value is as follows: when a DD name is associated with
an explicit list of program names, it stands for exactly these logical files (a logical file is
some FD or SD in some pro-gram); when a DD-name is associated with no program
name, it stands for all the logical files (FD or SD) which have these names in all programs
in the asset. After expansion, we get two lists of logical files, the "to-keep" and the
"to-remove”. The "to-keep" list is subtracted from the "to-remove" list; then any file
assignment (DD card) pertaining to some "to-remove" logical file is not translated into
the target KSH script. This allows to "clean up" the target scripts from file assignments
which are not directly useful to the invoked programs, such as temporary sort files,
physical database files, etc.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 9-7

Description of Output Files

9-8

Translated KSH Scripts and Sub-Files
KSH Version

The generated scripts are certified to be compatible only with ksh88 or pdksh (public-domain
KSH). Note that the Oracle Tuxedo Application Runtime for Batch components invoked by the
script may have more stringent requirements regarding the underlying KSH engine.

File Structure, Naming Scheme and Sub-File Handling

For each (main) JCL file (job), the JCL translator produces one (main) KSH file (script) with the
same base name and extension as specified with the suffix-skeleton configuration parameter (see
JCL-translation Configuration File Contents). This file is placed under the hierarchy rooted at the
directory specified with the root-skeleton configuration parameter, in the same relative
sub-directory as was the source file under the system root. If the target file existed before the
translation, it is overwritten.

e For each sub-file which was included into the main file by the JCL parser (procedure,
include file, SYSIN...), the JCL translator produces a corresponding translated sub-file
with the same base name and fixed file extension (".proc" for a procedure, ".incl" for an
include file, ...). This file is placed under the hierarchy rooted at the directory specified
with the target-proc configuration parameter, in the same relative sub-directory as was the
source file under the system root. If the target file existed before the translation, it is
overwritten.

If a sub-file referenced by some main file is absent from the source asset when the main file is
processed by the cataloger, the latter will complain in the log (with a message of the form
"MWarning*: ZZzZ file XXXXXX not found in JCL file YYYYYY", where ZZZ is PROC
or INCL or SYSIN) and an anomaly will be reported. In this case, the JCL translator will refuse
to process the (incomplete) main file or produce a non-working, incomplete KSH script.

Procedures are invoked using the m_ProcInclude Oracle Tuxedo Application Runtime for
Batch function. The target sub-file is not "executable" outside of this function and, more
generally, an Oracle Tuxedo Application Runtime for Batch-generated KSH script. The
procedure contents are inserted into the script structure in the "conversion" phase of job
processing, see the Oracle Tuxedo Application Runtime for Batch User Guide.

Similarly, include files are invoked using the m_Shel I Include Oracle Tuxedo Application
Runtime for Batch function and cannot be used outside this context. Most include files are

Oracle Tuxedo Application Rehosting Workbench Reference Guide

translated into separate sub-files; however, in some cases, when the include file contains an
EXEC card but does not define a (sequence of) complete steps(s), the extraction cannot be
performed and the contents of the original sub-file is translated as if it came from the main file.

SYSIN files and their contents are either directly translated into KSH statements (function
invocations) or handled as standard file assignments (see below for more details).

In-stream procedures and SYSIN files are handled as their out-of-stream sisters, as far as
translation is concerned, but of course they remain inside the main target file. In-stream
procedures are moved to the end of the main file; in-stream SY SINs remain within the
corresponding step.

Handling of JCL and KSH Variables

The z/OS variables used in the original JCL are translated into special symbols of the form
$[PARM], which are "statically" substituted in the manner of JES2 in the conversion phase, just
before the execution phase. See the Oracle Tuxedo Application Runtime for Batch User Guide
for more details.

Besides this, the generated KSH script and the components of the Oracle Tuxedo Application
Runtime for Batch use a small number of KSH and environment variables, for instance:

e environment variables for file-paths prefixes, such as ${DATA};

o shell variables for return codes, step labels at which to jump ($JUMP_LABEL), etc.
These variables are substituted at run-time, in the execution phase.

Script Structure

The target KSH script is organized around an execution loop which allows to implement any kind
of control flow, including "backward" jumps; it also makes it possible to (re)start the script at any
step. The different steps in the original JCL are implemented in the same order in the loop body,
and delimited by their label (the same as in the source JCL) and the case-element terminator.
Technical support and bookkeeping operations are inserted at the beginning and end of each step,
as well as at the beginning and end of the whole script. They allow for instance to handle the
control flow (condition codes, jumps, etc.).

Script Layout

The following JCL cards or constructs are translated into invocations of appropriate Oracle
Tuxedo Application Runtime for Batch functions: JOB, JCLLIB, SET, DD, proc-overriding DD,

Oracle Tuxedo Application Rehosting Workbench Reference Guide 9-9

EXEC (program), EXEC (procedure), INCLUDE, IF/THEN/ ELSE/ENDIF from the original JCL, IF
from IDCAMS command files and the COND option.

Comments in the source JCL are translated into KSH comments, which the translator tries to
place as close as possible to "the right place". However, comments in the continuation area (i.e.,
after the first space after the parameters) are ignored and not reproduced in the result script.

The /7 card which terminates the job is translated as a jump to the end of the script.

As mentioned above, an EXEC procedure card is translated into an invocation of the
m_ProclInclude Oracle Tuxedo Application Runtime for Batch function, and an INCLUDE card
is translated into an invocation of the m_Shel I Include function. SYSIN files and references
(DD cards) are handled in two different ways:

e SYSIN for usual applicative programs: they are handled as any other data file, the DD card
being translated into an invocation of the m_Fi leAssign function;

e SYSIN for utility programs: depending on which utility program is considered, its SYSIN
can either be handled as any other data file-the interpretation of its contents being left to
the program implementing the same operation as the utility program, possibly a component
of the Oracle Tuxedo Application Runtime for Batch or a user-supplied program-or
directly translated into invocation of appropriate Oracle Tuxedo Application Runtime for
Batch functions-for instance, a REPRO command for the IDCAMS utility is generally
translated into an invocation of the m_Fi leLoad function which performs the file copy.

In-stream data files (DD * cards and associated contents), which are generally text-like files, are
also implemented inside the target script. The EBCDIC-to-ASCII conversion of their contents is
performed at the same time as the source JCL file is converted, during the transfer to the
migration platform.

Execution Logs

The execution log reports about the progress of the translation process. Its structure is as follows:

e At the beginning of the log file:

— CMD: ..., the translation command with all its options.

Parsing system file: ..., a reference to the system description file.

MY _DIR = ..., location of the execution scripts.

Current OS is ..., source OS defined in the system description file (message to remove).

Parsing config file : ..., a reference to the configuration file.

9-10 Oracle Tuxedo Application Rehosting Workbench Reference Guide

— Filelistin table : ..., a reference to the file listing the data files migrated into RDBMS tables (if
any).

e For each JCL to translate:

Creating target file, creation of the target KSH file (empty at this point, acts as a lock to
synchronize concurrent processes).

Loading, the POB file associated with the JCL to translate is loaded in memory.

(In case of version mismatch between the cataloguer and the translator) Patching, adapts the
loaded POB to the translator (if necessary).

Printing, after the target code is created in memory on top of the AST, it is printed into the target
file (and sub-files).

e At the end of the log file:

— Restin peace, ART..., normal end of the translation process.

— continue ..., in a controlled way, the translation process is terminated and then restarted, to free
memory.

— Error ..., abnormal termination of the translator.

Listing 9-2 Example Log file:

CMD : /refine/launch._bash jclz-unix -archi64 -s ../param/sys.desc -c
. ./param/config.desc

MetaWorld starter

(funcall MAKE-TRANSLATE)

interactive-mode-string *UNDEFINED*

Parsing system file : ../param/system.desc

MY_DIR = /refine

Current OS is IBM-MF

Parsing config file : ../param/config-trad-JCL.desc

File list in table :
/workspace/FTJCLO1/source/ . ./param/file-list-in-table.txt

Creating target file /workspace/FTJCLO1/trf-jcl/JCL/BBSAJOO1.ksh ...
At 12:02:08, Loading /workspace/FTJCLO1/source/JCL/pob/BBSAJOO0L. jcl . pob...

Oracle Tuxedo Application Rehosting Workbench Reference Guide 9-11

Printing /workspace/FTJCLO1/trf-jcl/JCL/BBSAJO01.ksh

done

Creating target file /workspace/FTJCLO1/trf-jcl/JCL/BDBAJOO1.ksh ...

At 12:02:08, Loading /workspace/FTJCLO1/source/JCL/pob/BDBAJOO1. jcl . pob. ..

Patching because current version (*'9.9.1") and POB version (*'0.8.6") are not
the same

Printing /workspace/FTJCLO1/trf-jcl/JCL/BDBAJO0O1.ksh
done

Rest in peace, ART...

Detailed Operation

9-12

General Information

When the JCL translator starts, it reads and checks the various configuration files, starting with
the main one. If any inconsistency is detected at this stage, one or more error messages are printed
and the translator exits. Otherwise, the translator uses both command-line options and
configuration-file options to set its internal parameters, including the list of (source) JCLs to
process. Then it proceeds to handle each of these JCLs in turn; for each JCL.:

1. According to the make-like, incremental behavior of the translator, it checks whether the
target KSH script already exists and is up-to-date with reference to the POB file for its
corresponding source JCL. If so, the translator skips to the next JCL. Otherwise, it continues
with the next step.

2. The POB file for the JCL is loaded. The translator then checks whether it contains anomalies
of severity FATAL. If so, it prints out a warning message and skips to the next JCL. Otherwise,
it continues with the next step.

3. The AST of the JCL is then traversed, and the target code for each construct is created and
assembled with that of surrounding nodes. Code to print "out-of-stream”, in sub-files or at the
end of the target main file, is marked in consequence.

4. The (text of the) target code is then printed out in the target KSH file and sub-files.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

5. Lastly, if the post-translation file is specified in the configuration file, it is exercised by the
post-translator on the main target KSH file and on all target sub-files.

The translator cannot be executed by several concurrent processes at the same time, because there
is a risk that two different processes want to write the same sub-file at the same time.

Command-line Syntax

The Refine Launcher Interface

The JCL translator is designed to be run through the refine command, which is the generic Oracle
Tuxedo Application Rehosting Workbench launcher. It handles various aspects of the operation
of these tools, such as execution log management and incremental/repetitive operations. See
Command-line Syntax in the Cataloger chapter.

The jclz-unix Command

Syntax
$REFINEDIR/refine jclz-unix [launcher-options..] \

(-s | -system-desc-file) system-desc-path \
(-¢ | -config) main-config-file-path \
(source-file-path | (-f | -file | -Ffile-list-file) file-of-files)..

The launcher options are described in Command-line Syntax in the Cataloger chapter. The
mandatory options are:

(-s | -system-desc-file) system-desc-path
Specifies the location of the system description file. As usual for Unix/Linux commands,
the given path can be absolute or relative to the current working directory. Note that many
other paths used by many Oracle Tuxedo Application Rehosting Workbench tools are then
derived from the location of this file, including that of the main configuration file (see next
item); this makes it easy to run the same command from different working directories.

(-c | -config) main-config-file-path
Specifies the location of the main conversion configuration file. The given path can be
either an absolute path or a relative path; in the latter case, it is relative to the directory
containing the system description file, as usual for the Rehosting Workbench tools.

The generic options which define which source JCLs to process are:

Oracle Tuxedo Application Rehosting Workbench Reference Guide 9-13

9-14

source-file-path
Adds to the work-list the JCL source file designated by this path. The path must be given
as relative to the root directory of the system, $SYSROOT, even if the current working
directory is different.

(-f| -file | -file-list-file) file-of-files
Adds to the work-list the JCL source files listed in the file designated by this path. The
file-of-files itself may be located anywhere, and its path is either absolute or relative to the
current working directory. The JCL source files listed in this file though, must be given
relative to the root directory of the system.

You can give as many individual JCLs and/or files-of-files as you wish. The work-list is built
when the command line is analyzed by the JCL translator, see the detailed description above.

Repetitive and Incremental Operation

Even with the powerful computing platforms easily available nowadays, processing a complete
asset using the Rehosting Workbench remains a computing-intensive, long-running,
memory-consuming task. Oracle Tuxedo Application Rehosting Workbench tools are hence
designed to be easily stoppable and restartable and, thanks to a make-like mechanism, not repeat
any piece of work which has already been done. This allows efficient operation in all phases of a
migration project.

Initial Processing: Repetitive Operation

In the initial phase, starting with a completely fresh asset up to the end of the first conversion /
translation / generation, with a stable asset, the make-like mechanism is used to allow repetitive
operation, as follows:

1. When some tool-say, the JCL translator-starts, it begins with studying the current state of the
asset (source files and target files such as the target JCL files) and determining what work
remains to be done to reach a complete and consistent set of results. It then undertakes this
work, producing more and more result files.

2. The Oracle Tuxedo Application Rehosting Workbench process consumes more and more
memory. Regularly, it checks whether the available physical memory drops below the
threshold set by the minimum-free-ram-percent option in the system description file.

3. If the work to do is complete before memory runs out, the process definitely stops.

4. Otherwise, the process stops but restarts immediately, after having freed memory. Going back
to step 1 above, there is less work to do, so that the process eventually terminates.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

This mode is particularly well suited for tools or commands which operate globally on the whole
asset, such as the cataloger, but it is also useful for component-specific tools such as the JCL
translator. This is the normal mode of operation for the Rehosting Workbench tools and there is
no specific action required to activate it.

Changes in the Asset: Incremental Operation

The JCL translator knows the dependencies between the various components (main JCL files and
sub-files) and associated result files (POB files, target KSH files). Using this information, it is
able to react incrementally when some change occurs in the asset, i.e. when a JCL source file is
added, modified or removed: the cataloger reparses the affected JCLs, and then the JCL translator
re-translates only the reparsed JCLs. Again, this is the normal mode of operation for the
Rehosting Workbench tools and there is no specific action required to activate it.

Concurrent Operation

As mentioned above, it is not advised to run the JCL translator concurrently with several
processes, because different processes might wish to write the same target sub-file at the same
time. However, JCL translation is fast and there is generally no need to make it faster using
concurrent processing.

Use through make

to be completed

Frequently Asked Questions
When do | translate anew some JCL?

e When you have modified some options in the configuration file:

The root directory for the target components

The target sort-utility choice

The header and footer skeletons
- Etc.

e When the JCL or one of its sub-files (procedure, include file or SYSIN) has just been
added, modified or deleted. In principle, incremental operation of the cataloger and
translator ensure that this situation is handled automatically: simply re-run both of them.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 9-15

9-16

How do | force the (re)translation of a JCL?
Either:

e Delete the target KSH, or

e Change the contents of the JCL, or simply change its modification date (using the touch
Unix command).

The former solution is recommended, because it is less "intrusive"” on the source asset than the
other.

| deleted a JCL. Why is the corresponding KSH still present?

You have to delete the latter by hand, together with its sub-files such as procedures and include
files (if they are not used by any other KSH).

| run the translator but it produces no translation

e Check whether the translator produces any anomaly messages (see previous appendix);
resolve reported anomalies or conflicts.

e Check that you indeed have components to translate, i.e. new or modified JCLSs.
Remember, the translator is incremental.

The procedures are not included in the JCLs, and hence in
the KSH

In the system description file, check the following:
e You have defined a directory of type JCL-LIB containing these procedures.

o In the definition of the directory(ies) containing the JCLs, you have a libraries clause
pointing to the procedure directory(ies).

Where do | find the translated procedures?

They are located in the directory defined by the target-proc (or possibly root-skeleton) option of
the translator configuration file. To this path is appended the relative path of the procedures under
the root directory of the source asset (as defined in the system description file). For instance, with
the following directives:

Oracle Tuxedo Application Rehosting Workbench Reference Guide

e In the translator configuration file:

target-proc=/Workspace/Master-Proc

e In the system description file:
directory "PROC"™ type JCL-LIB files "*.proc™.
directory "INCLUDE" type JCL-LIB files "*.incl".

directory "JCL" type JCL files "*_jclI" libraries "SYSIN", "INCLUDE",
"PROC™.

The procedures will be located in the directory /Workspace/Master-Proc/PROC.

Why are some FSNs lost during translation?

Check that the FSNs you want to keep are not in the list of FSNs to delete (set-delete-fsn option
in the translator configuration file). If so, remove them from this list or, if you still want to delete
some of them but not all ("wild card" in the set-delete-fsn list), add those you want to keep into
the set-keep-fsn list.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 9-17

9-18 Oracle Tuxedo Application Rehosting Workbench Reference Guide

COBOL Converter

The role of this tool is to convert COBOL programs running on the source platform (z/OS, IBM
COBOL dialect) into COBOL programs running on the target platform (UNIX or Linux,
Micro-Focus COBOL dialect or COBOL-IT) while maintaining the same behavior of the
application. The conversion is performed in the context of other components translated or
generated by the other Oracle Tuxedo Application Rehosting Workbench tools.

The purpose of this document is to describe precisely all the features of the COBOL Converter.

Overview of the COBOL Converter

Scope

The Refine COBOL converter handles the following transformations in a single pass:

e COBOL dialectal correction (from z/OS COBOL to the target COBOL (MicroFocus or
COBOL-IT)).

e Adaptation to target platform UNIX interfaces (e.g., replacement of SEQUENTIAL files
by more efficient LINE SEQUENTIAL files or handling of printer control characters).

e Embedded SQL conversion (from DB2 to Oracle DBMS), including the interface with the
host program (SQLCODE, host variables...).

e Any code adaptation consecutive to supported reengineering options such as file to
RDBMS conversion or component renaming.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 10-1

e Normalization of the EXEC CICS statements and the programs to make them suitable for
the run-time EXEC CICS preprocessor.

The resulting programs can be compiled and run on the target platform with the same behavior
as on the source platform, except in some cases detailed in Scope.

Inputs

The COBOL converter takes as input:

e The abstract syntax trees of the COBOL programs to convert (one or more), stored in the
POB files produced by the Rehosting Workbench Cataloger;

e A number of configuration files:

— (mandatory) the system description file, which describes where to locate the COBOL programs
on the migration platform file system.

— (mandatory) the conversion configuration file, which specifies the general parameters of the
conversion and gives the location of the specific configuration sub-files.

— (optional) specific configuration sub-files such as the variable-renaming table, the
component-renaming table, the file-to-RDBMS conversion table, etc.; see Main Conversion
Configuration File.

Outputs

It produces as output:
e An execution log.
e Converted COBOL components in their textual representation: programs and copy files.

e Additional files such as dependence files for make.

Conversion Phases

The COBOL conversion process is logically divided in two phases:

e Individual conversion: this phase acts "locally" and separately on each program. It converts
the AST in its internal form, and then prints out the converted form of both the main
source file (in the target directory) and the copy files (in a private subdirectory of the target
directory). It also runs the post-translator on each of these files, if requested.

e Copy file reconciliation: the copy files have been converted separately for each program,
but the objective is a single set of copy files for all programs. The reconciliation process

Oracle Tuxedo Application Rehosting Workbench Reference Guide

builds this set by "factorizing" all privately-converted copy files and storing them in a
common file base, taking care to not mix different versions of the same copy file (these
different versions may come from context-dependent conversions).

The individual conversion phase can run concurrently on several programs but, since the
copy-reconciliation phase updates the global copy file base, it must run as a single process,
possibly incrementally. This dictates the possible execution modes of the COBOL converter; see
Command-Line Syntax for more details.

Restrictions and Limitations

By definition, the Rehosting Workbench COBOL Converter accepts only those programs
accepted by the Rehosting Workbench COBOL Cataloger, but imposes no further restriction on
entry.

The resulting programs can be compiled and run on the target platform with the same behavior
as on the source platform, except for the following potential pitfalls for which we take no
responsibility:

e Some target-compiler options, such as the IBMCOMP option of MicroFocus, must be set
as mandatory in this document (see Compiler Options).

e Problems with data files which would be incorrectly migrated because incorrect
information was supplied to the data-migration tools.

e Differences of behavior in "incorrect” pieces of code, such as accessing an array with an
out-of-bounds index value, or pieces of code which work "by chance", such as code
assuming that two records which are adjacent in the Working-Storage Section are also
adjacent in memory.

o Issues related to the semantic nature of some COBOL variables or requiring a deep,
semantic understanding of the program. Some of these issues are described later in this
chapter.

Use of COMP-5 Type on Linux Platforms

The Oracle Tuxedo Application Rehosting Workbench COBOL converter translates "portable”
binary integer types (BINARY, COMP, COMP-4) to the native binary type COMP-5. This is in
order to ensure compatibility with sub-programs written in C such as those in the transaction
processing framework (see the CICS section of the Oracle Tuxedo Application Rehosting
Workbench Reference Guide), and to improve execution performance. This may cause problems
when the target platform does not have the same "endianness" as the source platform, in particular

Oracle Tuxedo Application Rehosting Workbench Reference Guide 10-3

10-4

on Linux and Intel platforms (the Intel processor line is little-endian whereas the zSeries
processor is big-endian; most other processors, such as IBM pSeries and HP-RISC, are also
big-endian). Indeed, in this case, the order of bytes in a binary variable is reversed with respect
to the source platform. This can lead to different behavior when such a binary variable is
redefined by a character (PIC X) variable and this redefinition is used to access the individual
bytes in the binary variable. For Example:

Listing 10-1 Binary Field Manipulation Example

WORKING-STORAGE SECTION.
01 FILLER.
02 BINVAR PIC S9(9) COMP.
02 CHARVAR REDEFINES BINVAR PIC X(4).
PROCEDURE DIVISION.

MOVE ... TO BINVAR
IF CHARVAR(1:1) = ... THEN ...

On a big-endian machine such as the z/OS hardware, CHARVAR(1:1) contains the most
significant (higher-order) byte of BINVAR. However, on a little-endian machine, with the same
code, CHARVAR(1:1) will contain the least significant (lower-order) byte of BINVAR; this is
definitely a change of behavior and will probably lead to different observable results. However,
the Rehosting Workbench COBOL Converter is unable to detect and fix all occurrences of this
situation (the example above is "obvious", but there exists many much more complex cases);
these must be handled manually.

Use of COMP-5 Type and the TRUNC Compiler Option

As mentioned in the previous paragraph, the Rehosting Workbench COBOL converter translates
portable binary integer types (BINARY, COMP, COMP-4) to the native binary type COMP-5. In
addition to endianness problems, this may cause another kind of difference of behavior for

applications which were compiled with the (default) TRUNC(STD) option on the source platform
— this option corresponds to the TRUNC option of Micro Focus COBOL or the BINARY-TRUNCATE

Oracle Tuxedo Application Rehosting Workbench Reference Guide

option of COBOL-IT. Indeed, both on the source and on the target platforms, the portable binary
types obey this option whereas the native type does not. In general, the probability of observing
a real difference of behavior is very low, because in general, binary-integer variables are used to
hold "control" values (loop counters, array indices, etc.) rather than applicative values. In any
case, if differences of behavior are observed, it is up to the Rehosting Workbench user to deal
with them, either by accepting them or by manually correcting them, for instance by returning a
few selected variables to their original binary type.

EBCDIC-to-ASCII Conversion Issues

For reasons of efficiency and compatibility with native utility programs on the target platform—
for instance, simply browsing through a data file on the terminal—one of the fundamental design
choices for the migration performed by the Rehosting Workbench is to convert textual
(alphabetic) data from the native character set of the source platform (EBCDIC, or one of its
variants) into the native character set of the target platform (ASCII, or one of its variants). This
common-sense decision however has important consequences on the migration process:

e The migration of the data itself must be handled with great care. In particular, the actual
EBCDIC-to-ASCII conversion table used for your specific project must take into account
the particular non-standard characters you use on your screens (e.g. accented letters, the
Euro or pound sign, etc.), together with their encoding in the source character set, and
make sure that they are appropriately transcoded into the corresponding characters in the
target character set. See the Oracle Tuxedo Application Rehosting Workbench Process
Guide and the Rehosting Workbench Data Migration Tools documentation in this guide
and in the Oracle Tuxedo Application Rehosting Workbench Reference Guide.

e An important issue in the data migration process is that the EBCDIC-to-ASCII conversion
must not apply to non-textual data such as binary, packed-BCD or floating-point data. This
requires that each data structure (file, opaque SQL column, etc.) be described by a detailed
and precise COBOL record exhibiting all these non-text fields. See the Rehosting
Workbench Process Guide and the Rehosting Workbench Data Migration Tools
documentation.

e The same EBCDIC-to-ASCII conversion is applied to the source file of the components, so
that they appear visually correct on the target platform. This is important for their correct
maintenance. This also means that it is applied to the contents of literal character strings in
the programs or JCLSs.

In most cases, if you comply correctly with these directives, the resulting application will run
smoothly. There is one issue however, for which no efficient solution can be found: the collating
sequences of the EBCDIC and ASCII character sets are not quite the same, and this may lead to

Oracle Tuxedo Application Rehosting Workbench Reference Guide 10-5

10-6

different behavior in sorting and string comparisons. In most cases, there is no problem, because
you sort or compare "homogeneous" data such as names (alphabetic) or dates (humeric); only
special characters such as accented letters may sort a bit differently but still satisfactorily.
However, in cases when you sort or compare data which contains mixed letters and digits, you
may find differences of behavior, because letters sort before digits in EBCDIC and after digits in
ASCII. One typical example is when you compute a key for some type of data (account number,
etc.) using both digits and letters. The COBOL converter cannot handle such issues because these
are dynamic issues related to the contents of COBOL variables, not static issues related to their
declarations.

Literal Constants: Characters or Numbers?

As mentioned above, string or character literals in COBOL programs, including hexadecimal
string literals, are subject to EBCDIC-to-ASCII conversion. This is legitimate when these literals
denote texts or pieces of text. Sometimes however, such constant values denote (numeric) codes
such as file status codes, condition codes, CICS-related values, etc. In this case, it is generally not
appropriate to apply EBCDIC-to-ASCII conversion to these values. However, the COBOL
converter, like any automatic tool, cannot reliably "guess" the semantic nature of a COBOL
variable or literal, so it cannot handle itself these exceptions; this will have to be done manually
using post-translation, see post-translation-file Clause).

Note: CICS-related values and codes defined as character literals in standard copy files cause
no trouble, because the Rehosting Workbench and Oracle Tuxedo Application Runtime
for CICS come with pre-translated, validated versions of these copy files. Only
user-defined constants may cause trouble.

Use of Floating-Point Variables

Source floating-point variables (COMP-1 and COMP-2) types are "translated" to the same types on
the target platform. Given this, the Micro Focus COBOL compiler and run-time system offer the
possibility to use floating-point data (COMP-1 and COMP-2 variables) in either the IBM
hexadecimal format or the native (IEEE 754) format. If the NONAT IVEFLOATINGPOINT option is
set at compile time (which is true by default), then the floating-point format is selected at
run-time, depending on the MAINFRAME_FLOATING_POINT environment variable and/or the
mainframe_floating_point tunable:

o MAINFRAME_FLOATING_POINT environment variable set, or mainframe_floating_point
tunable set to true: the IBM format will be used.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

o MAINFRAME_FLOATING_POINT environment variable unset, and
mainframe_floating_point tunable unset or set to false: the native format will be used.

In the first case, the Micro Focus run-time system will ensure that you will observe no difference
of behavior. However, this is at the expense of run-time efficiency, because the handling of this
format is done entirely in software, whereas the native format is directly supported by the
processor. Furthermore, this format is not directly compatible with the Oracle floating-point data
types (BINARY_FLOAT and BINARY_DOUBLE) and cannot be converted to other numeric types by
the Oracle engine; in fact, the only thing you can do with it is store it in opaque columns (RAW(4)
and RAW(8), respectively), which forbids using such values in SQL code.

In consequence, we recommend that, at migration time or later, you consider using the native
IEEE754 floating-point format, more efficient, more portable (defined by an international
standard) and more compatible, if only with Oracle. Of course, because:

1. The representation of single- and double-precision floating-point values are not the same in
this format as in the source IBM format,

2. The source and target compilers may make different choices regarding arithmetic expressions
using floating-point variables (order of computation, precision of intermediate variables,
rounding mode, etc.),

3. Thetextual, printable representation of the same floating-point value may be different on both

platforms (use of scientific notation, number of digits before and after the decimal point, etc.),
you will probably observe differences of behavior between the original and migrated
applications. However, in our opinion, these differences of behavior are largely acceptable, if you
keep in mind that floating-point arithmetic is only an approximation of the mathematical
exactness: you will simply get a different approximation on the target machine than on the source
Oone...

Note: To help you deal with this issue, we performed various experiments using varied floating
point-values and computations, and we found out that:
e On the source platform, COMP-1 and COMP-2 types have the same representation
range, from about 107° to 1078, whereas on the target platforms (which all natively
support the IEEE 754 format), the range for COMP-1 is about from 10 t0 10%8
and the range for COMP-2 is about from 107323 to 103%8, So the tradeoff between
range and precision is different on both platforms.

When the same computations are performed on ranges available on both the source and target
platforms, the relative error between the observed results (as printed by DISPLAY) is always less

Oracle Tuxedo Application Rehosting Workbench Reference Guide 10-7

10-8

than 107® when using CoMP-1 variables and less than 1014 using CoMP-2 variables. This is not a
definitive proof that everything works fine, but it is at least an encouraging indication.

Given these results, it seems that one can always reproduce the same behavior on the target as on
the source, up to insignificant approximations, possibly by replacing some COMP-1 variables by
COMP-2 ones.

Note: If you decide to go with the native IEEE 754 format, we recommend that you set the
NAT IVEFLOAT INGPOINT compiler option, which forces the use of this format at
compile-time, regardless of run-time options and tunables. Thus, you will save the
run-time format tests.

REWRITE Operations on LINE SEQUENTIAL Files

By default, data files which are SEQUENTIAL on the source platform are translated into LINE
SEQUENTIAL files on the target platform, to be more "usable”. In general, this is a good choice
and such files are well supported by the target COBOL system. However, there is a catch: since
such files are inherently of variable record size, a REWRITE operation may cause unpredictable
results and differences of behavior (see the Micro Focus and COBOL-IT documentation). If you
are not sure that REWRITE operations on a given SEQUENTIAL file would always succeed if that
file is turned into a LINE SEQUENTIAL one, we advise to keep it purely SEQUENTIAL; this can be
done by inserting its description in the configuration sub-file referenced by the
pure-seg-map-File clause below.

To ease the handling of this problem, in a future version, the Rehosting Workbench cataloger will
produce the list of SEQUENTIAL logical files which incur a REWRITE operation.

Pointer Manipulation

Pointer Size Changes: Beware of Redefinitions

On the source platform, a variable of type POINTER occupies 4 bytes in memory (32 bits); on all
the sup-ported target platforms, based on 64-bit Operating Systems, such a variable occupies 8
bytes. This may lead to various kinds of differences of behavior for which we take no
responsibility:

e Technical redefinitions: if a POINTER variable is directly redefined by a PIC X(4) or PIC
S9(9) COMP variable used to manipulate the representation of the pointer values, the
redefining variable and the code dealing with it will have to be manually rewritten.
However, we strongly discourage such machine-dependent "hacks".

Oracle Tuxedo Application Rehosting Workbench Reference Guide

e Structure alignments: if a POINTER variable is part of a structure containing variants
(redefinitions), and if the different variants (sub-structures) are designed so that one
particular field of one variant must be aligned with (have the same location as) some other
field in some other variant, then this property must be maintained after the POINTER
variable changes size: compensation fillers must be inserted, etc. Again, this must be
handled manually. Note that such intended alignments must be maintained across
redefinitions, but also across MOVES to other structures.

e Structure size: if a POINTER variable is part of a structure which is moved to some
unstructured PIC X(..) variable which was big enough to hold the structure before the
POINTER variable changes size, then you must make sure that it is still the case after the
change.

Linkage-Section Arguments with NULL Address

On both the source and target platforms, a program parameter (defined in the Linkage Section
and listed in the USING clause of the procedure division) which is not actually passed by the
caller, either because of an explicit OMITTED item is passed instead or because the caller passes
less arguments than the callee expects, appears to have a NULL address in the callee. So it is quite
legal, and in fact recommended, to check whether the ADDRESS OF some parameter is NULL
before accessing the value of this parameter.

e However, when the callee fails to check the parameter address and the actual address is
NULL, the source and target platforms may behave differently. For instance:
— On z/0S and AlX, NULL is address 0 and this is considered as a legal address, so when the

parameter is accessed, you get whatever is stored at that address (possibly with unpredictable
results).

— On Linux however, although NULL is also address 0, this is not considered as a legal address, so
when the parameter is accessed, the program crashes.

It is not possible to automatically handle this situation and the associated differences of behavior,
because even if the converter could insert address checks, what should it do when the test fails?
Furthermore, the set of subprograms and parameters which are really affected by this problem is
a very small minority of all subprograms and parameters and it would be ugly to insert such
address checks for all of them. This will have to be handled manually, possibly using
post-translation.

e There is one exception, though, which may alleviate the problem for a large majority of the
offending cases: the Oracle Tuxedo Application Runtime for CICS will ensure that all
programs called from it (first program in a transaction, EXEC CICS XCTL, EXEC CICS

Oracle Tuxedo Application Rehosting Workbench Reference Guide 10-9

LINK, etc.) will receive a valid COMMAREA: either the one passed from the caller or a
dummy-but-legal one.

e See also the discussion of the STICKY-LINKAGE compiler option below.

Representation of the NULL Pointer Value

The representation of the NULL pointer value may vary from one platform to another, in particular
between the source and target platforms —if only because they don't have the same size, like every
other pointer value. In consequence, every program which assumes a specific representation for
this value, for instance by "casting" it to or from some binary integer value, may have a different
behavior from one platform to another. The COBOL converter cannot handle this issue by itself,
automatically, and it will have to be handled manually. Anyway, we strongly discourage such
machine-dependent "hacks".

Description of the Input Components, Prerequisites

10-10

The input components are all the COBOL programs in the asset, after they have been parsed by
the cataloger. In fact, the COBOL Converter loads the POB files for the programs, not their
source files. In addition to the restrictions imposed by the cataloger (no nested programs, etc.; see
Cataloger), the following rules must be respected before attempting the COBOL conversion:

e All the anomalies reported by the cataloger must be fixed. Otherwise, there is a risk that
the conversion is incorrect, or even that the Converter fails (crashes). In fact, the Converter
will refuse to convert any program that contains a FATAL error. But even ERRORS or
simple WARNINGs may cause trouble, so it is strongly advised to fix all anomalies. See
force-translation Clause, however.

e The source format for all COBOL source files (main programs and copy files) must be
fixed format with a numbering area (columns 1-6) and a comment area C (columns 73-80)
physically removed. This must be done before cataloging. Note that information thus
removed can be re-attached to the converted COBOL files, using the post-processor
AddComment.

e The data migration process must have been run before COBOL conversion is started,
because the latter depends on the former, for instance to decide which files will be
migrated into relational database tables; see the Process Guide for more details. This
dependency is concretized by the fact that the file migration tools generate some of the
configuration files read by the COBOL converter.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Description of the Configuration Files
System Description File

The system description file describes the location, type and possible dependencies of all the
source files in the asset to process. As such, it is the key by which the cataloger, but also all of
the Rehosting Workbench tools, including the COBOL Converter, can access these source files
and the corresponding components.

Note: Because of the need to have COBOL source files with the numbering area and comment
area C removed, option Cobol-left-margin must be set to 1 (one) and option
Cobol-right-margin must be set to 66; these are the default values.

Main Conversion Configuration File

This file is given to the COBOL converter using the -c or -config mandatory command-line
option. It defines various "scalar" parameters influencing the conversion and points to
subordinate files containing "large” configuration data, such as renaming files.

Note: Many of the parameters configurable in this file can also be set on the command line; in
this case, the command-line value overrides the configuration-file value.

Tip: Although not mandatory, it is advisable to store this file in the same parameter directory
as the system description file.

General Syntax

The contents of the main conversion configuration file is a free-format, unordered list of clauses,
each beginning with a keyword and ending with a period. Some clauses take one or more
arguments, others are boolean clauses with no argument. The keywords are case-insensitive
symbols; the arguments are integers, symbols or (case-sensitive) strings. Spaces, new lines, etc.,
are comments. Comments can be written in the configuration file in two ways:

e Start with a sharp sign ("#") and extend to the end of the same line.

e Start with the "/*" delimiter and extend to the matching "*/* delimiter; in this form,
comments can be spread over several lines and be nested.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 10-11

10-12

target-dir Clause

Syntax

Target-dir : dir-path .

This clause specifies the location of the directory that will contain the complete hierarchy of
target files, for both programs and copy files. If there is a source program A/B/name . ext in the
root directory of the asset (as specified in the system description file), then the corresponding
target program will be located as A/B/name . ext in this target directory (possibly with a different
file extension, see below). The same mechanism is used for copy files, except that the target path
will be Master-copy/A/B/name . ext (or possibly a different file extension). The Master-copy
directory is related to the copy reconciliation process, see Command-Line Syntax.

e The dir-path is given as a string. It can be either an absolute path or a relative path; in the
latter case, it is relative to the directory containing the system description file, as usual for
the Rehosting Workbench tools.

e The actual target directory will be created automatically, if necessary, when the COBOL
Converter is run.

Sql-rules Clause

Syntax
Sql-rules : target-sql-syntax.

This clause specifies the target SQL syntax. Its value can be oracle or none. If the value is none,
the sgl code in the source files isn't translated. It's transferred as it is to the target components.
The default value of this clause is oracle. In the latter case, it's not necessary to set sql-rules
to oracle in the configuration file.

keep-same-file-names, target-program-extension and
target-copy-extension Clauses

Syntax
keep-same-file-names.
target-program-extension : extension .(or) tpe : extension .
target-copy-extension : extension .(or) tce : extension .

These clauses direct how the file extensions for the converted programs (main source files) and
copy files are determined:

Oracle Tuxedo Application Rehosting Workbench Reference Guide

o If the keep-same-File-names clause is given, the converted programs and copy files will
have the same file extensions as the original files in the source asset (as cataloged). The
other clauses, if given, will be ignored.

e Otherwise:

— If the target-program-extension clause is given, then the converted programs will have
the given file extension,

— If the target-copy-extension clause is given, then the converted copy files will have the
given file extension.

e By default, the converted programs will have the file extension cbl and the converted copy
files will have file extension cpy.

Verbosity-Level Clause

Syntax
verbosity-level : level

This clause specifies the amount of detail which the COBOL converter writes to the execution
log. The default value of 2 is fairly verbose, higher values are even more verbose, value 1 only
displays important (error) messages.

deferred-copy-reconcil Clause

Syntax
deferred-copy-reconcil.

or

deferred-crp.

or

dcrp.

This clause specifies that the copy-reconciliation process crp is to be deferred until after the
conversion is completed; this allows COBOL conversion to run in multiple concurrent processes.
By default, in the absence of this clause, the copy-reconciliation process is executed
incrementally immediately after each program is converted, which mandates single-process
execution. See the copy-reconciliation process below for more details.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 10-13

10-14

force-translation Clause

Syntax
force-translation.

This clause directs the COBOL converter to (try to) convert even those programs that contain
FATAL errors although without any guarantees: the converter may produce incorrect results or
even crash. By default, in this case, the converter refuses to work on this program and skips to the
next one.

rename-copy-map-file Clause

Syntax

rename-copy-map-file : file-path .
This clause specifies the location of the subordinate configuration file containing information to
rename copy files, see the copy-renaming Configuration File below. The file path is given as a
string. It can be either an absolute path or a relative path; in the latter case, it is relative to the
directory containing the system description file, as usual for the Rehosting Workbench tools.

rename-call-map-file Clause

Syntax
rename-call-map-file : file-path .

This clause specifies the location of the subordinate configuration file containing information to
rename sub-programs and their calls, see the Call-Renaming Configuration File. The file path is
given as a string. It can be either an absolute path or a relative path; in the latter case, it is relative
to the directory containing the system description file, as usual for the Rehosting Workbench
tools.

post-translation-file Clause

Syntax
post-translation-file : file-path .

This clause specifies the location of the subordinate configuration file containing the description
of manual transformations to apply after the Rehosting Workbench Converter, see the
Post-Translation Configuration File. The file path is given as a string. It can be either an absolute

Oracle Tuxedo Application Rehosting Workbench Reference Guide

path or a relative path; in the latter case, it is relative to the directory containing the system
description file, as usual for the Rehosting Workbench tools.

on-size-error-call Clause

Syntax
on-size-error-call: proc-name .

This clause specifies the name, as a symbol, of the procedure to call to cause a definite
termination of the program. This name is used to force termination in situations in which the IBM
compiler would force termination but not the target compiler, such as size errors in arithmetic
statements. The default name is .ABORT.

hexa-map-file Clause

Syntax

hexa-map-file : file-path .
This clause specifies the location of the subordinate configuration file containing the
EBCDIC-to-ASCII transformation to apply to characters in hexadecimal form, see the
Hexadecimal Conversion Configuration File. The file path is given as a string. It can be either an
absolute path or a relative path; in the latter case, it is relative to the directory containing the
system description file, as usual for the Rehosting Workbench tools.

conv-ctri-file Clause and alt-key-file Clause
These two clauses go together.

Syntax
conv-ctrl-file : file-path or conv-ctrl-list-file : file-path .
alt-key-file : file-path
These clauses specify the location of the two subordinate configuration files containing
information regarding file-to-Oracle conversion. These files are generated by the Rehosting

Workbench File-to-Oracle conversion tool, as respectively the Conv-ctrl-file or the
Conv-ctrl-list-file and the Al t-key file. See File-to-RDBMS Configuration Files.

Only one of the first two clauses must be given: either the conv-ctri-file clause or the
conv-ctrl-list-file clause, but not both.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 10-15

10-16

The file path is given as a string. It can be either an absolute path or a relative path; in the latter
case, it is relative to the directory containing the system description file, as usual for the
Rehosting Workbench tools.

RDBMS-conversion-file Clause

Syntax
RDBMS-conversion-file : file-path .

This clause specifies the location of the top-level subordinate configuration file containing
information about relational DBMS conversion (from DB2 to Oracle). See the
RDBMS-conversion Configuration Files for more details. The file path is given as a string. It can
be either an absolute path or a relative path; in the latter case, it is relative to the directory
containing the system description file, as usual for the Rehosting Workbench tools.

keywords-file Clause

Syntax
keywords-file : file-path .

This clause specifies the location of the subordinate configuration file containing information to
rename COBOL identifiers which happen to be keywords or reserved words in the target COBOL
dialect, see the keywords File for more details. The file path is given as a string. It can be either
an absolute path or a relative path; in the latter case, it is relative to the directory containing the
system description file, as usual for the Rehosting Workbench tools.

accept-date and accept-day Clauses

Syntax

accept-date: date-entry-name .

accept-day: day-entry-name .
These clauses specify sub-program names to replace ACCEPT ... FROM DATE and ACCEPT
... FROM DAY statements. For instance, the statement:

ACCEPT MY-DATE FROM DATE
would be replaced by:
CALL "DATE-ENTRY-NAME" USING MY-DATE BY VALUE LENGTH OF MY-DATE

Oracle Tuxedo Application Rehosting Workbench Reference Guide

This allows more control and more flexibility on how programs acquire their current date. For
instance, during regression tests, it is necessary to run migrated programs with the same current
date as when the source programs were run; these sub-programs (to be supplied by the Rehosting
Workbench users, according to their requirements) will allow this.

If any of these clauses is not specified, the corresponding statements are not transformed. You
can use the target COBOL parameters (for example current_day, current_month, and
current_year parameters of the Microfocus COBOL run-time system) to control the date returned
by the ACCEPT statements; see the MicroFocus/COBOL-IT documentation.

sql-stored-procedures-file Clause

Syntax
sql-stored-procedures-file: file-path .

This clause specifies the location of the subordinate configuration file containing the list of DB2
stored procedures called directly from COBOL, see the stored-procedure File for more details.
The file path is given as a string. It can be either an absolute path or a relative path; in the latter
case, it is relative to the directory containing the system description file, as usual for the
Rehosting Workbench tools.

remove-sql-qualifier Clause

Syntax
remove-sql-qualifier.

This clause enables the transformation rule which removes the schema qualifier from every SQL
identifier which has one. The resulting program will hence rely on implicit schema qualification.

Tip: This is generally not needed, and possibly even not desired, but it is useful if you want to
run the program concurrently in multiple environments (connecting to multiple databases
or schemas), for instance in multiple test corridors.

activate-cics-rules Clause

Syntax

activate-cics-rules.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 10-17

10-18

This clause forces the COBOL converter to apply to any program processed in the current
execution the rules which normalize the EXEC CICS statements and prepare the program for use
with the Oracle Tuxedo Application Runtime for CICS environment, including the CICS
preprocessor.

Notes:

e There exists a command-line option of the same name (see cobol-convert
Command) which has the same effect as this clause, and which is more flexible to
use. So we believe that the configuration-file clause will be seldom used, except
perhaps in projects in which the TP and batch parts of the asset are well identified
and strictly separated in the migration project.

o Whether this clause is given or not, the above rules will be applied anyway to
every program which contains one or more EXEC CICS statement. So this clause
(or the equivalent command-line argument) will be effective only for subprograms
used in a CICS environment (implicit COMMAREA, etc). but do not perform
CICS operations themselves.

pure-seq-map-file Clause

Syntax
pure-seq-map-file: file-path .
or
purely-sequential-map-file: file-path .

This clause specifies the location of the subordinate configuration file containing the list of
SEQUENTIAL logical files which are to be kept (record) SEQUENTIAL rather than converted to
LINE SEQUENTIAL. See purely-sequential Configuration File for more details. The file-path is
given as a string. It can be either an absolute path or a relative path; in the latter case, it is relative
to the directory containing the system description file, as usual for the Rehosting Workbench
tools.

dont-print-what-string Clause

Syntax

dont-print-what-string .
When present, this clause specifies that the what-string containing conversion timestamp and
converter version information, which the converter normally inserts at the beginning of every

Oracle Tuxedo Application Rehosting Workbench Reference Guide

converted file, is not to be printed out in this execution. This will be seldom used, unless you
really want to hide the fact that your application is migrated using the Rehosting Workbench!

remove-empty-copies Clause

Syntax
remove-empty-copies .or rec.

When present, this clause specifies that COPY directives referencing copy files which no longer
contain useful COBOL code after conversion are to be commented out; by default, these
directives remain active. This applies for instance to copy files defining whole FD paragraphs for
files which migrate into database tables.

sql-return-codes-file Clause

Syntax
sql-return-codes-file: file-path .

This clause specifies the location of the subordinate configuration file containing additional pairs
of equivalent DB2 & Oracle SQLCODE values. See the sgl-return-codes Configuration File for
more details. The file-path is given as a string. It can be either an absolute path or a relative path;
in the latter case, it is relative to the directory containing the system description file, as usual for
the Rehosting Workbench tools.

copy-renaming Configuration File

Thisfile is associated with the rename-copy-map-file Clause. Its contents are in CSV format, with
the semicolon character used as separator. Each line is in the form:

original-copy-name;original-library-name;new-copy-name.

All names are COBOL-like, case-insensitive symbols. The meaning of such a line is that, when
the directive:

COPY ORIGINAL-COPY-NAME OF ORIGINAL-LIBRARY-NAME { REPLACING .. }
is encountered in a program, it is replaced by:
COPY NEW-COPY-NAME { REPLACING .. }

Note that library names are not used on the target platform because they are inconvenient; it is
much better to use search paths, see the COBCPY environment variable). When the
original-library-name field is empty, the rule is to replace unqualified directives of the form:

Oracle Tuxedo Application Rehosting Workbench Reference Guide 10-19

10-20

COPY ORIGINAL-COPY-NAME { REPLACING .. }

The same renaming applies to the copy file itself: when the Converter prints out, in the target
private copy directory, the copy file referenced by this directive (see below for more information
about copy reconciliation), it is printed with the new name.

When the rename-copy-map-file Clause is not present, or when this file is empty, no copy
renaming takes place. It is an error when the file cannot be found or read, or when the same
original-copy-name;original-library-name combination is associated with different
new-copy-names in different lines of the file. In this case, the converter stops with an error
message and does not convert any programs. Note however that it does not check whether two
different copy files in the same directory are renamed to the same target file. In principle, this
would be handled gracefully by the copy reconciliation process, but without guarantee.

Call-Renaming Configuration File

This file is associated with the rename-call-map-file Clause described above. Its contents are in
CSV format, with the semicolon character as separator. Each line is in the form:

original-call-name;new-call-name.

All names are COBOL-like, case-insensitive symbols. The meaning of such a line is that, when
the statement:

CALL "ORIGINAL-CALL-NAME™ { USING .. }
is encountered in a program, it is replaced by:

CALL ""NEW-CALL-NAME'™ { USING .. }

The converter also attempts to rename literal strings which are "associated" with variables used
in dynamic calls using direct constructs (VALUE, MOVE, etc.). For obvious reasons, it cannot
handle truly dynamic calls in which the callee name is "computed" using complex manipulations
(STRING, etc.), transported thru opaque containers or obtained from outside the caller program
(e.g., read from a file or passed as parameter); such situations must be handled manually.

The same renaming applies to called sub-programs and their entry points: when the converter
prints out in the target directory, a program whose base name matches one of the original names
listed in the renaming file, it is printed with the corresponding new name. Similarly, for ENTRY
statements whose argument is a string matching one of the original names, the string is
transformed into the new name.

When the rename-call-map-file Clause clause is not present, or when this file is empty, no call
renaming takes place. It is an error when the file cannot be found or read, or when the same
original-call-name is associated with different new-call-names in different lines of the file. In this

Oracle Tuxedo Application Rehosting Workbench Reference Guide

case, the converter stops with an error message and does not convert any programs. Note however
that it does not check whether two different subprograms in the same directory are renamed to
the same target file.

Post-Translation Configuration File

This file is associated with the post-translation-file Clause. Its contents are a sequence of rules
with the following syntax:

rule rule_name
filter [
(+]-)program_name_regexp
1
transform [
source_lines_block
1
into [
target_lines_block
1

The semantics of such a rule are simple: if, in a program, the (base) name of which matches any
of the "positive" program_name_regexp's but none of the "negative" ones, a block of lines

matching source_1I ines_block1 is encountered, it is replaced by target_lines_block.
rule_name is used in the comment associated with the application of the transformation. See
appendix the post-translator below for more details.

The post-translation file may contain as many rules as desired, in any order (although the
behavior of the post-translator is not defined when two source_lines_blocks overlap, or when a
source_lines_block and a target_lines_block overlap).

Tip: Inthe syntax above, it is very important that the square brackets closing the filter,
transform, and into clauses, are in column 1, at the very beginning of the line; otherwise,
they will be interpreted as part of the block.

1. In this context, matching simply means that the two blocks of lines must be identical when you reduce each se-
quence of spaces in both of them to a single space. This is basically “identical” with a little flexibility added.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 10-21

10-22

Comments start with a sharp sign ("#") and extend to the end of the line; you can insert them
anywhere between the rules, between the four clauses in a rule and after the rule name; if you
insert such a comment inside a square-bracketed filter or transform or into block, it will be
considered as part of the block contents rather than as a comment.

Hexadecimal Conversion Configuration File

This file is associated with the hexa-map-file Clause above. Its contents are an
EBCDIC-to-ASCII conversion table to apply to characters in hexadecimal form (characters in
textual form are supposed to be converted at the same time as the source file itself). The syntax
is simply a CSV file with a semicolon as separator. Each line is in the form:

source-hexa-code; target-hexa-code,

Each hexa-code being written as usual, with two hexadecimal characters (0-9, A-F). The
semantics of this conversion table are that if some hexadecimal literal in the source file does not
match any source code in this table, it is left as is, unconverted. Such conversion works also on
embedded-SQL code. Note that the converter makes no attempt to check the intrinsic consistency
of the conversion table (e.g. the fact that no source-hexa-code or no target-hexa-code appears
twice), nor the fact that it really describes some EBCDIC-to-ASCII conversion.

Tip: Itisstrongly suggested that this table be derived from the global, project-specific
conversion table used to convert data and source files, see Oracle Tuxedo Application
Runtime Process Guide for more details. Failure to do so may lead to differences of
behavior on the target platform, for which we take no responsibility.

How to Generate the hexa-map File

Oracle Tuxedo Application Rehosting Workbench makes avalaible a script which generates the
hexa-map file based on the CONVERTMW copy file, see Using the COBOL CONVERTMW. cpy file
in Codeset Conversion chapter.

The script generating the hexa-map file is located in the directory:

REFINEDIR/scripts/
The script names is:

convert-hexa-copy-to-map.sh

Syntax

REFINEDIR/scripts/convert-hexa-copy-to-map.sh convertmw_copy_file

Oracle Tuxedo Application Rehosting Workbench Reference Guide

convertmw_copy_TFile: location of the CONVERTMW.cpy file

The script automatically generates the tr-hexa.map file inside the current directory (PARAM
directory is a better choice). This generated file name has to be used as file-path value with
the hexa-map-TFi le attribute.

On normal end, a return code of 0 is returned. Otherwise, see displayed messages and content of
tr-hexa.map file.

Error Messages

WBART-1001:
Example: COPY file <filename> not found. Check argument 1.

Explanation: Argument 1 must contain the CONVERTMW COBOL copy file name.

WBART-1003:
Example: bad status returned by awk

Explanation: see messages written into tr-hexa.map file

Messages could be :
too many FILLER in TRANSCODE-[SOURCE | CIBLE]
The filler number id does not contains enough hexa element: num instead of 64
not enough FILLER in TRANSCODE-SOURCE and/or TRANSCODE-CIBLE

File-to-RDBMS Configuration Files

These files are associated with the conv-ctrl-file Clause and alt-key-file Clause. They contain
information about file-to-RDBMS conversion, e.g. to define which logical files (FDs) are
converted into RDBMS tables (actually, because the physical files they are associated with are
converted to these DB tables). Since these files are automatically generated by the Rehosting
Workbench File-to-Oracle conversion tool and should not be modified by hand, their contents are
not further specified here.

RDBMS-conversion Configuration Files

These files are associated with the RDBMS-conversion-file Clause above. The information they
contain is accessed in a two-level way:

e The top-level file is named in the RDBMS-conversion-file Clause proper. Its contents is a
CSV table, with each line in the form:

Oracle Tuxedo Application Rehosting Workbench Reference Guide 10-23

10-24

schema-name; file-path.

File-path is the path to the file containing RDBMS-conversion information pertaining to
SQL schema schema-name. As usual, it can be either an absolute path or a relative path; in
the latter case, it is relative to the directory containing the system description file. This file
must be created by the Rehosting Workbench user.

e For each schema in the application, the file containing RDBMS-conversion information
pertaining to this schema (default date and time format, renaming map, etc.) is an XML
file generated by the File-to-Oracle tool, which should not be modified by hand. In
consequence, its content is not further specified here.

keywords File

This file is associated with the keywords-file Clause. Its contents are a CSV table using the
semicolon as separator, each line being in the form:

old-name;new-name.

The effect of such a line is to rename every COBOL identifier (variable name, paragraph name,
etc.) named old-name in every program into new-name. This is required for names which happen
to be keywords or reserved words in the target COBOL dialect, such as TEST, but it may also be
useful to rename plain identifiers for reengineering purposes.

stored-procedure File

This file is associated with the sql-stored-procedures-file Clause. Its contents are a list of
subprogram names, one per line. When one of these names appears in a COBOL CALL
statement, the latter is replaced by an SQL CALL statement. In addition, declarations of the
parameters of the CALL, if any, are adapted so that they can be used in SQL statements.

purely-sequential Configuration File

This file is associated with the pure-seq-map-file Clause. Its contents is a CSV table using the
semi-colon as separator, each line being in the form

program-name ; FD-name

with both names being symbols. The effect of such a line is to prevent this particular logical file
(the given FD in the given program), assumed to be (record) SEQUENT IAL on the source platform,
to be converted to LINE SEQUENTIAL on the target platform; rather, it is kept unchanged as a
record SEQUENTIAL file. This makes it much less amenable to manipulation using standard
target-platform utilities, but on the other hand, it will support unrestricted REWRITE operations

Oracle Tuxedo Application Rehosting Workbench Reference Guide

(see section REWRITE operations on LINE SEQUENTIAL files above). This might also be useful
for files exchanged with a z/OS platform in binary form.

sql-return-codes Configuration File

This file is associated with the sql-return-codes-file Clause. Its contents is a CSV table using the
semicolon as separator, each line being in the form:

DB2-sqglcode-value;Oracle-sqlcode-value

with both values being positive or negative integers. The effect of such a line is to add the pair of
values to the translation table used to map "remarkable” DB2 SQLCODE values to their
equivalent Oracle SQLCODE values. This translation table is initialized as if read from the
following file:

Listing 10-2 DB2 to Oracle SQL Return Code Mapping

+100;+1403
-810;-1422
-803;-1
-530;-2291
-516;-1002
-501;-1001
-407;-1451
-305;-1405
-180;-1820
-181;-1821
-811;-2112
-204;-942

Of course, value 0 (zero) is mapped to itself.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 10-25

Note: The COBOL converter does not currently check the consistency of this translation table;
for instance, it does not complain if the same DB2 value is mapped to more than one
distinct Oracle value.

Description of Output Files

10-26

Converted Programs and Copy Files

Naming Scheme

As mentioned above, the main purpose of the Rehosting Workbench COBOL Converter is to
produce the converted COBOL components, in the form of their source files. There is a direct,
one-to-one correspondence between the hierarchy of main program files inside the source root
directory and the hierarchy of main program files inside the target root directory; the only
possible differences, as far as file names are concerned, come from the CALL-renaming map and
the choice of the target program-file extension, see rename-call-map-file Clause and
keep-same-file-names, target-program-extension and target-copy-extension Clauses. The same
comments apply for the target copy files, with the following observations:

e The hierarchy of target copy files is located in the Master-copy sub-directory of the target
root directory.

e The names of the target copy files may differ from those of the source files because of the
COPY-renaming map and the choice of the target copy-file extension.

e The correspondence between source and target copy files may not be strictly one-to-one. It
may be one-to-many when the transformations applied by the converter on the contents of
some copy file depend on the context in which this file is included. This is handled by the
copy reconciliation process, see below for more details.

If file ORIGCOPY (.s-ext) is translated into multiple versions, these versions are named
ORIGCOPY (. t-ext), ORIGCOPY_V1(.t-ext), ORIGCOPY_V2(.t-ext), etc.

Transformation Comments

In principle, COBOL conversion is a "light" process, because COBOL on the target platform is
not that different from COBOL on the source platform. This is why this process is called
conversion rather than translation. Indeed, a converted file, either main file or copy file, generally
differs from its corresponding source file only in very few places; the bulk of the contents is not
affected in any way and is reproduced in the target file exactly as it is in the source file. The
differing places, however, are identified by specific transformation comments.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Modified Code

In places at which some transformation actually took place, the converter inserts transformation
comments describing the effects of the transformation. The affected code is composed of:

e A header line giving the transformation-rule name and version; the header line starts with a
recognizable prefix, namely "*{", in which the opening curly bracket symbolizes the start
of the transformation.

e The original code, commented out.
e An intermediate separator, namely a line composed of "*--".
e The new code which replaces the original one.

e A terminating line, namely "*}", in which the closing curly bracket symbolizes the end of
the transformation.

Listing 10-3 Transformation Comment Example

*{ tr-binary-to-comp-5 1.2
* 77 MY-VAR PIC S9(9) COMP.

*

77 MY-VAR PIC S9(9) COMP-5.
*}

Added Code

Some rules not only transform existing code but also insert some completely new code in some
remote places, for instance, the declaration of an intermediate variable in the Working-Storage
Section. In this case, the affected area in the program is composed of:

e A header line giving the transformation-rule name and version; the header line starts with
the prefix "*+{", in which the opening curly bracket symbolizes the start of the
transformation and the plus sign indicates that this is an insertion rather than a
transformation.

e The inserted code.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 10-27

e The terminating line "*+}".

Deleted Code

When arule simply deletes some code rather than transforming it, the affected area in the program
has the same organization as for modified code, except that the "new code" area is empty:

Moved Code

Some rules move code from one place in the program to another, for instance, when a file is
migrated into a relational DB table, the corresponding FD is deleted and the data records it
contains are moved to the Working-Storage Section. In this case, the code at the original location
is shown as deleted and the code at the new location is shown as inserted.

Other Comment Rules

e It is possible that some transformation acts on the code produced by a previous
transformation. In this case, the transformation comments are properly nested.

e The format of the transformation comments is designed both:

— To be informative and help the program maintenance team to understand the transformations
which were applied during migration by the COBOL Converter; studying these transformations is
a quick way for the developer to understand the differences between the source and target
COBOL dialects, and become proficient with the latter.

— To be automatically deletable when they cease to be useful and become a nuisance.

Layout

When the COBOL Converter applies a transformation rule to a piece of code, it attempts to keep
the same layout for the new code, by minimizing how elements of the code which exist in both
the original and new versions are moved around. In addition, when the converter inserts a new
element, for instance a statement or a variable declaration, it tries to align the new element with
similar ones before or after it. When, by following these guidelines, a transformed or new line of
code becomes too long for the fixed format, the converter cuts the line at the right-most "nice"
cutting point (preferably between two words) and wraps the rest on the next line, flush with the
right margin, to indicate that these wrapped elements are logically part of the previous line.

e \We recognize however that the layout issue is a subjective matter and that the result of a
transformation might not appear exactly as you would have made it yourself. Consider
though that:

10-28 Oracle Tuxedo Application Rehosting Workbench Reference Guide

— The only obligation of the Converter is to produce code which is correct; aesthetic considerations
are not part of the contract.

— The converter only applies rules which have to be deterministic; it does not have the power to
estimate the aesthetic value of this or that layout.

— Some other people might actually be completely satisfied with the resulting layout!

Miscellaneous Issues

When the Converter prints out a copy file invoked in the main program file with a REPLACING
clause, it takes great care to undo the effect of the replacements. However, when the
transformations performed by the converter apply to pieces of text generated by some
replacement, it may be very hard for the converter to compute the "inverse" of the transformation
and create the transformed replacement clause — for instance, when the COPY clause replaces
"something" by "nothing", the converter may have a hard time finding the "nothing" to replace
back by "something™ when the area is affected by a transformation. In such cases, some manual
correction might be necessary; use the post-translation feature to apply it in a repeatable way.

Compiler Options

To guarantee identical behavior between the source programs and the target ones produced by the
COBOL converter, up to the limitations described above, the target programs must be compiled
with a certain set of compiler options in effect. Indeed, some of the target COBOL compiler
options do change the behavior of the executed code. The transformations applied by the
Rehosting Workbench COBOL converter are hence tailored to the option set described below.
No support is provided for programs compiled with a different, or at least conflicting, option set.
For more information, please see the Micro Focus COBOL documentation, in particular the
Compiler Directives book and the COBOL-IT Compiler Suite Entreprise Edition - Reference
Manual.

MicroFocus

Mandatory Options

The mandatory compiler options are listed below. For each of them, we indicate whether it is set
by default, we give a brief description and we justify why we require it.

DIALECT"MF" (default)
Sets the most “native” and efficient mode of operation. Since the aim of the Rehosting
Workbench is not simply to emulate the source mainframe, but to forget about it and lead
you towards the benefits of the target platform, this is the best choice. It will enable you

Oracle Tuxedo Application Rehosting Workbench Reference Guide 10-29

10-30

to use the modern features of MF COBOL such as Unicode support and object-oriented
programming.

CHARSET"ASCII" (default)
Sets the default character set and collating sequence to those supported natively on the
target platform. This is an obvious choice, too.

SOURCEFORMAT"FIXED" (default)
Directs the compiler to stick with the “old” standard, fixed-format, column-based format.
This may appear contradictory with our aim of modernity, but unfortunately the Oracle
Pro*COBOL compiler, even the latest 11g version, is still not quite compatible with the
MicroFocus free format, and we have to require fixed format to guarantee correct
behavior.

ALIGN"8" (default)
Defines the alignment for top-level structures (01 and 77-level). Required to make sure
that structures retain the same layout as on the source platform, and yields the best
performance, at a slight expense in memory size.

COMP5-BYTE-ORDER"NATIVE" (default)
Uses native byte ordering for COMP-5 variables. Necessary for compatibility with the C
language and the Oracle Tuxedo Application Runtime.

P64 (to set explicitly, except on MicroFocus installations set up to compile to 64-bit mode by
default)
Compiles for 64-bit platforms. All the target platforms supported by the Rehosting
Workbench are 64-bit.

SIGN"EBCDIC" (to set explicitly)
Uses the EBCDIC convention rather than the ASCII convention for representing
overpunched sign on DISPLAY numeric values. This is the same convention as on the
source platform and hence provides for less differences of behavior when the last digit of
such a numeric value is redefined by a character variable.

DEFAULTBYTE"00" (to set explicitly, except if the previous option is given)
Specifies the value with which to initialize all otherwise-undefined variables in the
Working-Storage Section. Not strictly necessary, since on the source platform, the
Working-Storage Section is officially not implicitly initialized, but we found that it leads
to less differences of behavior when a numeric variable is redefined by a character
variable.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

RWHARDPAGE (to set explicitly)
Causes the Report Writer control module to execute a form feed after the last item has
been printed on a page, instead of the usual multiple blank lines. All Unix printer systems
correctly handle Form Feed characters.

INDD or INDD"SYSIN8OL" (to set explicitly)
Causes “default” ACCEPT statements to read from the specified logical file instead of from
the Unix standard input file. This is the same behavior as on the source platform and is
appropriate with ART-translated KSH scripts, which treats SYSIN as any other file for
COBOL programs.

OUTDD or OUTDD"SYSOUTS8O0L" (to set explicitly)
Causes “default” DISPLAY statements to write to the specified logical file instead of to the
Unix standard output file. This is the same behavior as on the source platform and is
appropriate with the Rehosting Workbench-translated KSH scripts, which treat SYSOUT as
any other file for COBOL programs.

HOSTARITHMETIC, HOST-NUMMOVE"2", HOST-NUMCOMPARE"2",
ARITHMETIC"ENTCOBOL", CHECKDIV"ENTCOBOL",
FP-ROUNDING"ENTCOBOL", REMAINDER"2" (to set explicitly)
All these options control various aspects of the treatment of numeric variables and
expressions. Their settings maximizes the compatibility with the source platform.

IBMCOMRP (to set explicitly)
Turns on word-storage mode for the layout of the structures, the same mode as on the
source platform. It also enables the SYNC[HRON1ZED] clause to have an effect for
“machine-native” types (binary integers, binary floats, pointers, etc.), so as to yield the
most efficient performance, at a slight increase in memory consumption.

ODOSLIDE (to set explicitly)
Moves data items that follow a variable-length table in the same record as the table's
length changes. This affects data items that appear after a variable-length table in the same
record; that is, after an item with an OCCURS DEPENDING clause, but not subordinate to it.
With ODOSL IDE, these items always immediately follow the table, whatever its current
size; this means their addresses change as the table's size changes. With NOODOSL IDE,
these items have fixed addresses, and begin after the end of the space allocated for the
table at its maximum length. Setting ODOSL 1DE leads to the same behavior as on the source
platform.

PERFORM-TYPE"ENTCOBOL" (to set explicitly)
Enables the same behavior as on the source platform regarding nested PERFORM
statements with overlapping ranges. The default option PERFORM-TYPE"'MF"" is
semantically cleaner and allows more efficient execution, but may lead to differences of

Oracle Tuxedo Application Rehosting Workbench Reference Guide 10-31

10-32

behavior which are hard to detect and diagnose; hence, unless you know that your
PERFORM ranges are “well-behaved” and never overlap, we can’t recommend the default
setting.

RDW (to set explicitly)
Enables you to find out the length of a record that has just been read from a variable-length
sequential file, by providing a “hidden” length variable just before the first record of the
FD (see more details in the MicroFocus documentation). This “trick” is available on the
source platform, although not explicitly advertised, and this option allows to reproduce the
same behavior.

RECMODE"ENTCOBOL" (to set explicitly)
Directs the MicroFocus compiler to use the same algorithm as the source compiler to
determine whether a file has fixed-length or variable-length format, depending on the
length of the various records in the file definition.

ASSIGN"EXTERNAL" (to set explicitly)
Directs the MicroFocus compiler to use, by default, the EXTERNAL file-assignment
method. In this method, the SELECT names are used as keys to search the actual file names
in environment variables of the form DD_NAME. This is the mode chosen for the Rehosting
Workbench, because it allows the file assignments to be specified outside the programs,
namely in the calling KSH scripts. Not only is this closer in philosophy to the source
behavior, but in our opinion this is the most flexible method.

SYSPUNCH""80" (to set explicitly)
Defines the record length for the SYSPUNCH logical file. Default setting (132) is not the
same as on the source platform.

ZEROLENGTHFALSE (to set explicitly)
When ZEROLENGTHFALSE is set, all comparisons between zero-length group items, and
between zero-length items and figurative constants, return false; when it is not set, they
all return true. To reproduce the same behavior as on the source platform, it must be set.

NOADYV (default)
Do not use special printer-control characters on text files. Target-platform printing
utilities will simply print a file with the same layout as it appears on the screen.

NOTRUNCCALLNAME (default)
Does not truncate names of subprograms referenced in CALL statements. This is necessary
for the Rehosting Workbench-migrated assets, because data access routines generated by
the Rehosting Workbench have long names. In addition, in future evolutions of the asset,
you will want to get rid of the short-names limitations imposed on the source platform.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

NOTRUNCCOPY (default)
Does not truncate names of copy files referenced in COPY directives. This is necessary for
the Rehosting Workbench-migrated assets, because copy files generated or inserted by the
Rehosting Workbench have long names. In addition, in future evolutions of the asset, you
will want to get rid of the short-names limitations imposed on the source platform.

NOCOPYLBR (default)
Treat copy-file names as plain paths, not library archives (. Ibr files). This is necessary
for the Rehosting Workbench-migrated assets, because copy files converted or generated
by the Rehosting Workbench are not grouped in archives.

NOSPZERO / NOSIGN-FIXUP (default)
NOS IGN-FIXUP provides emulation of the mainframe compiler option NUMPROC(PFD)
when using the HOST-NUMCOMPARE and HOST-NUMMOVE directives. This option gives the
best performance, given that it is not possible to provide a complete emulation of
NUMPROC(NOPFD) behavior.

REPORT-LINE"256" (default)
Specifies the maximum length of a Report Writer line.

COPYEXT"'cpy,cbl™ (to set explicitly)
Specifies the filename extension of the copyfile that the compiler is to look for if a
filename in a COPY statement is specified without an extension. This non-default setting
is appropriate for AST-migrated asset, because copy files generated by the Rehosting
Workbench always have the . cpy extension and copy files converted by the Rehosting
Workbench generally have the same extension. However, if you configure the COBOL
converter for another extension, you will have to adapt the setting of this option
appropriately.

After taking into account default and explicit options, and dependencies, the required option list
must start with the following:

Listing 10-4 Validated COBOL Compiler Option List

P64 SIGN"EBCDIC" RWHARDPAGE INDD OUTDD HOSTARITHMETIC HOST-NUMMOVE'2"
HOST-NUMCOMPARE™'2" ARITHMETIC"ENTCOBOL" CHECKDIV'"ENTCOBOL"
FP-ROUNDING"ENTCOBOL"™ IBMCOMP ODOSLIDE PERFORM-TYPE"ENTCOBOL' RDW
RECMODE"ENTCOBOL™ REMAINDER™2"™ ASSIGN"EXTERNAL"™ SYSPUNCH'80"
ZEROLENGTHFALSE COPYEXT"cpy,cbl™

Oracle Tuxedo Application Rehosting Workbench Reference Guide 10-33

No guarantee will be given for programs compiled with an option list which contradicts the above
one._The current version of Oracle Tuxedo Application Rehosting Workbench and Oracle
Tuxedo Application Runtime for CICS, have been validated with this option list.

Note: Mandatory Oracle SQL compilation options for the Pro*COBOL preprocessor are listed
in the ART Workbench RDBMS Converter Reference Guide.

Note: The P64 option is not necessary on Micro Focus installations set up to compile to 64-bit
mode by default.

Installation-dependent Options

These options are not strictly necessary but may help you handle assets in which programs
contain a mixture of upper-case and lower-case letters:

FOLDCALLNAME"UPPER" (to set explicitly)
Directs the compiler to map subprogram names in CALL statements to upper case.

FOLDCOPYNAME"UPPER" (to set explicitly)
Directs the compiler to map copy file names in COPY directives to upper case.

MAPNAME (to set explicitly)
Makes the Compiler alter program-names and entry-point names to make them
compatible with the source platform.

By experimenting with these settings, you may find the combination which is appropriate for
your particular asset. For instance, FOLDCALLNAME"'UPPER'" and MAPNAME taken together provide
a good enough emulation of the PGMNAME (COMPAT) source-compiler option, but there is no sure
way to emulate the other values of this option.

1.1.1.3 Options Depending on Customer Choice

The following options influence the behavior of the target asset, but may be set more or less at
will by the user of the ART system.

BOUND and SSRANGE
checks that each index is between the correct bounds when accessing an array or in
reference modifiers. This is similar to the SSRANGE option of the IBM compiler. We
strongly recommend that both of these options be set, at least during migration tests and
in the first few months of operation (note that setting SSRANGE also sets BOUND). This
choice is a bit controversial because it can break some programs which apparently run
correctly on the source platform (without the SSRANGE option). However, in our
experience, the only programs which break are incorrect programs which just happen to
work by chance on the source platform and would not work in the same way, or at all, on

10-34 Oracle Tuxedo Application Rehosting Workbench Reference Guide

the target platform. The sooner we detect these programs and fix them, the better. In the
same way, you could consider setting the CHECK option, which enables various (other)
kinds of run-time checks and allows to detect other kinds of seemingly-correct programs.

TRUNC
specifies whether truncation to the given PI1C size occurs when assigning a value to a
BINARY variable (or COMP, or COMP-4). This is similar to the TRUNC(STD) option of the
IBM compiler. However, with the present specification of the ART COBOL converter, all
such variables are transformed into COMP-5 variables, which do not obey the TRUNC
option. See the discussion in Use of COMP-5 type and the TRUNC compiler option above.

APOST and QUOTE
allow to choose which character, single or double quote, the QUOTE symbolic constant will
represent. This is similar to the IBM options of the same name. Use the same setting as on
the source platform.

NOALTER
forbids the presence of ALTER statements in the COBOL programs. Since ALTER
statements are a thing of the past, and a very bad thing if any, we recommend that you take
the opportunity of migrating your asset with the ART Workbench to chase out any
remaining ALTER. Then, set this option to prevent their reappearance and to make
compiled code more efficient and safe.

AREACHECK
Causes the Compiler to treat any token which starts in area A in the Procedure Division
as a paragraph or section label, regardless of the preceding tokens. If AREACHECK is not
specified, only tokens which follow a period are treated as possible labels. This directive
provides closer compatibility with IBM error handling, where omitting a period before the
label produces a less serious message. We recommend that such erroneous source code is
corrected.

NOBYTEMODEMOVE
Controls behavior for alphanumeric moves between overlapping data items. If
BYTE-MODE-MOVE is specified, data is moved one byte at a time from the source to the
target. If NOBYTE-MODE-MOVE is specified, the data is moved in granules of two, four or
more bytes at a time (depending on environment) from the source to the target.
Consequently, if the overlap is less than the size of the granule, each granule moved
overwrites part of the next granule to be moved. NO-BYTE-MODE-MOVE gives better
performance, but may yield incorrect code on some very rare programs which work
correctly on the source platform; we suggest that you start with the “more compatible”
setting (BYTE-MODE-MOVE), perform complete regression tests until satisfaction, then
choose the other option and re-test.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 10-35

10-36

DYNAM
Specifies that CANCEL statements are not to be ignored. This is similar to the IBM option
of the same name (but not quite the same, see the MicroFocus documentation). We
strongly recommend that you set this option, because the Tuxedo servers in the ART TP
Run-time system, which execute the applicative CICS programs, use CANCEL statements
to free the memory used to load and run those programs. If NODYNAM is in effect, the
amount of memory use by these servers would grow as they execute more and more
different programs.

NOFDCLEAR, NOHOSTFD
The “positive” settings of these options reproduce the restrictions on FD usage imposed by
the IBM compiler (FD records allocated only at OPEN time, record contents lost after
WRITE, etc.). We feel that these restrictions are silly and hence recommend that you don’t
use these options.

NATIVEFLOATINGPOINT
see the discussion in Use of floating-point variables above.

NOSEG
turns off segmentation and ignores all segment numbers. The resulting program is asingle
piece with no overlay. Who still uses segmentation, anyway?

STICKY-LINKAGE'"2" / NOSTICKY-LINKAGE
this option controls how a program parameter (Linkage Section item) which has been
linked to some actual data item in a previous invocation of the program may be re-linked
with the same item if the current invocation specifies no new linking (no actual argument
supplied). The STICKY-LINKAGE'2" setting is “more compatible” with the behavior of
the source platform, especially for CICS programs, but it is certainly non-standard and
error-prone. It may also be incompatible with certain features of the ART TP run-time
system, in particular the possibility to distribute TP transactions over several servers
running in a cluster with no shared memory. So we strongly suggest to use the default
NOST ICKY-L INKAGE setting from the beginning and fix any sticky-linkage-related bug
discovered during regression testing. See also the discussion in Linkage-section
arguments with NULL address above.

1.1.1.4 Options Influencing Compile-Time Operation

The following options influence only the production of the compilation listing and may be chosen
at will:

LIST
Specifies the location and format of the compilation listing.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

SETTINGS

Specifies whether to include the complete list of compiler options in the compilation
listing.

TRACE

Specifies whether tracing statements (READY TRACE and RESET TRACE) are obeyed.

WARNING

Specifies the verbosity of error messages printed in the compilation listing.

FLAG “dialect”

Specifies whether the compiler must produce language-level certification flags when it
finds syntax that is not part of the specified dialect of COBOL.

Mandatory Options

The mandatory compiler options are listed below. For each of them, we indicate whether it is set
by default, we give a brief description and we justify why we require it.

DIALECT"MF" (default): sets the most "native" and efficient mode of operation. Since the
aim of Oracle ART is not simply to emulate the source mainframe, but to forget about it
and lead you towards the benefits of the target platform, this is the best choice. It will
enable you to use the modern features of MF Cobol such as Unicode support and
object-oriented programming.

CHARSET"ASCII" (default): sets the default character set and collating sequence to those
supported natively on the target platform. This is an obvious choice, too.

SOURCEFORMAT"FIXED" (default): directs the compiler to stick with the "old" standard,
fixed-format, column-based format. This may appear contradictory with our aim at
modernity, but unfortunately the Oracle Pro*Cobol compiler, even the latest 11g version, is
still not quite compatible with the MicroFocus free format, and we have to require fixed
format to guarantee correct behavior.

ALIGN"8" (default): defines the alignment for top-level structures (01 and 77-level).
Required to make sure that structures retain the same layout as on the source platform, and
yields the best performance, at a slight expense in memory size.

COMP5-BYTE-ORDER"NATIVE" (default): uses native byte ordering for COMP-5 variables.
Necessary for compatibility with the C language and the ART TP run-time system.

P64 (to set explicitly): compiles for 64-bit platforms. All the target platforms supported by
ART are 64-bit.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 10-37

10-38

e SIGN"EBCDIC" (to set explicitly): uses the EBCDIC convention rather than the ASCII

convention for representing overpunched sign on DISPLAY numeric values. This is the
same convention as on the source platform and hence provides for less differences of
behavior when the last digit of such a numeric value is redefined by a character variable.

DEFAULTBYTE"00" (to set explicitly, except if the previous option is given): specifies the
value with which to initialize all otherwise-undefined variables in the Working-Storage
Section. Not strictly necessary, since on the source platform, the Working-Storage Section
is officially not implicitly initialized, but we found that it leads to less differences of
behavior when a numeric variable is redefined by a character variable.

RWHARDPAGE (to set explicitly): Causes the Report Writer control module to execute a form
feed after the last item has been printed on a page, instead of the usual multiple blank lines.
All Unix printer systems correctly handle Form Feed characters.

INDD or INDD"SYSINSOL" (to set explicitly): causes "default” ACCEPT statements to read
from the specified logical file instead of from the UNIX standard input file. This is the
same behavior as on the source platform and is appropriate with ART-translated KSH
scripts, which treats SYSIN as any other file for Cobol programs.

OUTDD or OUTDD"SYSOUTS8O0L" (to set explicitly): causes "default” DISPLAY statements to
write to the specified logical file instead of to the UNIX standard output file. This is the
same behavior as on the source platform and is appropriate with ART-translated KSH
scripts, which treat SYSOUT as any other file for Cobol programs.

HOSTARITHMETIC, HOST-NUMMOVE"*2", HOST-NUMCOMPARE™2",
ARITHMETIC"ENTCOBOL", CHECKDIV*ENTCOBOL', FP-ROUNDING"ENTCOBOL",
REMAINDER™2" (to set explicitly): all these options control various aspects of the treatment
of numeric variables and expressions. Their settings maximizes the compatibility with the
source platform.

IBMCOMP (to set explicitly): turns on word-storage mode for the layout of the structures, the
same mode as on the source platform and also the one yielding the most efficient
performance, at a slight increase in memory consumption.

ODOSL IDE (to set explicitly): Moves data items that follow a variable-length table in the
same record as the table's length changes. This affects data items that appear after a
variable-length table in the same record; that is, after an item with an OCCURS
DEPENDING clause, but not subordinate to it. With ODOSLIDE, these items always
immediately follow the table, whatever its current size; this means their addresses change
as the table's size changes. With NOODOSLIDE, these items have fixed addresses, and
begin after the end of the space allocated for the table at its maximum length. Setting
ODOSLIDE leads to the same behavior as on the source platform.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

PERFORM-TYPE"ENTCOBOL" (to set explicitly): enables the same behavior as on the source
platform regarding nested PERFORM statements with overlapping ranges. The default
option PERFORM-TYPE"MF" is semantically cleaner and allows more efficient execution,
but may lead to differences of behavior which are hard to detect and diagnose; hence,
unless you know that your PERFORM ranges are "well-behaved” and never overlap, we
can't recommend the default setting.

RDW (to set explicitly): Enables you to find out the length of a record that has just been read
from a variable-length sequential file, by providing a "hidden" length variable just before
the first record of the FD (see more details in the Micro Focus documentation). This “trick"
is available on the source platform, although not explicitly advertised, and this option
allows to reproduce the same behavior.

RECMODE"ENTCOBOL" (to set explicitly): directs the Micro Focus compiler to use the same
algorithm as the source compiler to determine whether a file has fixed-length or
variable-length for-mat, depending on the length of the various records in the file
definition.

ASSIGN"EXTERNAL" (to set explicitly): directs the MicroFocus compiler to use, by default,
the EXTERNAL file-assignment method. In this method, the SELECT names are used as
keys to search the actual file names in environment variables of the form DD_NAME. This
is the mode chosen for ART, because it allows the file assignments to be specified outside
the programs, namely in the calling KSH scripts. Not only is this closer in philosophy to
the source behavior, but in our opinion this is the most flexible method.

SYSPUNCH"80" (to set explicitly): defines the record length for the SYSPUNCH logical file.
Default setting (132) is not the same as on the source platform.

ZEROLENGTHFALSE (to set explicitly): When ZEROLENGTHFALSE is set, all comparisons
between zero-length group items, and between zero-length items and figurative constants,
return false; when it is not set, they all return true. To reproduce the same behavior as on
the source platform, it must be set.

NOADV (default): don't use special printer-control characters on text files. Target-platform
print-ing utilities will simply print a file with the same layout as it appears on the screen.

NOTRUNCCALLNAME (default): does not truncate names of subprograms referenced in CALL
state-ments. This is necessary for ART-migrated assets, because data access routines
generated by ART have long names. In addition, in future evolutions of the asset, you will
want to get rid of the short-names limitations imposed on the source platform.

NOTRUNCCOPY (default): does not truncate names of copy files referenced in COPY
directives. This is necessary for ART-migrated assets, because copy files generated or
inserted by ART have long names. In addition, in future evolutions of the asset, you will
want to get rid of the short-names limitations imposed on the source platform.

Oracle Tuxedo Application Rehosting Workbench Reference Guide 10-39

10-40

e NOCOPYLBR (default): treat copy-file names as plain paths, not library archives (.Ibr files).
This is necessary for ART-migrated assets, because copy files converted or generated by
ART are not grouped in archives.

e REPORT-LINE"256" (default): Specifies the maximum length of a Report Writer line.

e COPYEXT'"cpy,cbl™ (to set explicitly): Specifies the filename extension of the copyfile
that the compiler is to look for if a filename in a COPY statement is specified without an
extension. This non-default setting is appropriate for AST-migrated asset, because copy
files generated by ART always have the .cpy extension and copy files converted by ART
generally have the same extension. However, if you configure the Cobol converter for
another extension, you will have to adapt the setting of this option appropriately.

After taking into account default and explicit options, and dependencies, the required option list
must start with the following:

Listing 10-5 Required Compiler Option List

P64 SIGN"EBCDIC" RWHARDPAGE INDD OUTDD HOSTARITHMETIC HOST-NUMMOVE'2"
HOST-NUMCOMPARE™'2" ARITHMETIC"ENTCOBOL" CHECKDIV'"ENTCOBOL"
FP-ROUNDING"ENTCOBOL" IBMCOMP ODOSLIDE PERFORM-TYPE"ENTCOBOL' RDW

RECMODE"ENTCOBOL™ REMAINDER™"2'" ASSIGN"EXTERNAL™ SYSPUNCH'80"

Note: Mandatory Oracle SQL compilation options for the Pro*Cobol preprocessor are listed in
the ART Workbench RDBMS Converter Reference Guide.

Installation-dependent options

These options are not strictly necessary but may help you handle assets in which programs
contain a mixture of upper-case and lower-case letters:

e FOLDCALLNAME"UPPER™ (to set explicitly): directs the compiler to map subprogram names
in CALL statements to upper case.

e FOLDCOPYNAME"UPPER" (to set explicitly): directs the compiler to map copy file names in
COPY directives to upper case.

e MAPNAME (to set explicitly): Makes the Compiler alter program-names and entry-point
names to make them compatible with the source platform.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

By experimenting with these settings, you may find the combination which is appropriate for
your particular asset. For instance, FOLDCALLNAME"UPPER" and MAPNAME taken
together provide a good enough emulation of the PGMNAME(COMPAT) source-compiler
option, but there is no sure way to emulate the other values of this option...

Options depending on customer choice

The following options influence the behavior of the target asset, but may be set more or less at
will by the user of the ART system.

e BOUND and SSRANGE check that each index is between the correct bounds when accessing
an array or in reference modifiers. This is similar to the SSRANGE option of the IBM
compiler. We strongly recommend that both of these options be set, at least during
migration tests and in the first few months of operation (note that setting SSRANGE also
sets BOUND). This choice is a bit controversial because it can break some programs which
apparently run correctly on the source platform (without the SSRANGE option). However,
in our experience, the only programs which break are incorrect programs which just
happen to work by chance on the source platform and would not work in the same way, or
at all, on the target platform. The sooner we detect these programs and fix them, the better.
In the same way, you could consider setting the CHECK option, which enables various
(other) kinds of run-time checks and allows to detect other kinds of seem-ingly-correct
programs.

e TRUNC: specifies whether truncation to the given PIC size occurs when assigning a value
to a BINARY variable (or COMP, or COMP-4). This is similar to the TRUNC(STD) option of
the IBM compiler. However, with the present specification of the ART Cobol converter, all
such variables are transformed into COMP-5 variables, which do not obey the TRUNC
option. See the discussion in Use of COMP-5 Type and the TRUNC Compiler Option.

e APOST and QUOTE: allow to choose which character, single or double quote, the QUOTE
symbolic constant will represent. This is similar to the IBM options of the same name. Use
the same setting as on the source platform.

e NOALTER: forbids the presence of ALTER statements in the Cobol programs. Since ALTER
statements are a thing of the past, and a very bad thing at that, we recommend that you
take the opportunity of migrating your asset with the ART Workbench to chase out any
remaining ALTER clauses. Then, set this option to prevent their reappearance and to make
compiled code more efficient and safe.

e AREACHECK: Causes the Compiler to treat any token which starts in area A in the Procedure
Division as a paragraph or section label, regardless of the preceding tokens. If AREACHECK
is not specified, only tokens which follow a period are treated as possible labels. This

Oracle Tuxedo Application Rehosting Workbench Reference Guide 10-41

10-42

directive provides closer compatibility with IBM error handling, where omitting a period
before the label produces a less serious message. We recommend that such erroneous
source code is corrected.

NOBYTEMODEMOVE: Controls behavior for alphanumeric moves between overlapping data
items. If BYTE-MODE-MOVE is specified, data is moved one byte at a time from the source
to the target. If NOBYTE-MODE-MOVE is specified, the data is moved in granules of two,
four or more bytes at a time (depending on environment) from the source to the target.
Consequently, if the overlap is less than the size of the granule, each granule moved
overwrites part of the next granule to be moved. NO-BYTE-MODE-MOVE gives better
performance, but may yield incorrect code on some very rare programs which work
correctly on the source platform; we suggest that you start with the "more compatible”
setting (BYTE-MODE-MOVE), perform complete regression tests until satisfaction, then
choose the other option and re-test.

DYNAM: Specifies that CANCEL statements are not to be ignored. This is similar to the IBM
option of the same name (but not quite the same, see the Micro Focus documentation). We
strongly recommend that you set this option, because the Tuxedo servers in the ART TP
Runtime system, which execute the applicative CICS programs, use CANCEL statements to
free the memory used to load and run those programs. If NODYNAM is in effect, the amount
of memory used by these servers would grow as they execute more and more different
programs.

NOFDCLEAR, NOHOSTFD: The "positive™ settings of these options reproduce the restrictions
on FD usage imposed by the IBM compiler (FD records allocated only at OPEN time, record
contents lost after WRITE, etc.). We feel that these restrictions are silly and hence
recommend that you don't use these options.

NAT IVEFLOAT INGPOINT: see the discussion in Use of Floating-point Variables.

NOSEG: turns off segmentation and ignores all segment numbers. The resulting program is a
single piece with no overlay. Who still uses segmentation, anyway?

STICKY-LINKAGE™2" / NOSTICKY-LINKAGE: this option controls how a program
parameter (Linkage Section item) which has been linked to some actual data item in a
previous invocation of the program may be re-linked with the same item if the current
invocation specifies no new linking (no actual argument supplied). The
STICKY-LINKAGE™2" setting is "more compatible” with the behavior of the source
platform, especially for CICS programs, but it is certainly non-standard and error-prone. It
may also be incompatible with certain features of the ART TP runtime system, in particular
the possibility to distribute TP transactions over several servers running in a cluster with no
shared memory. So we strongly suggest to use the default NOSTICKY-LINKAGE setting

Oracle Tuxedo Application Rehosting Workbench Reference Guide

from the beginning and fix any sticky-linkage-related bugs discovered during regression
testing. See also the discussion in Linkage-Section Arguments with NULL Address.

Options influencing compile-time operation

The following options influence only the production of the compilation listing and may be chosen
at will:

e LIST: specifies the location and format of the compilation listing.

e SETTINGS: specifies whether to include the complete list of compiler options in the
compilation listing.

e TRACE: specifies whether tracing statements (READY TRACE and RESET TRACE) are
obeyed.

e WARNING: specifies the verbosity of error messages printed in the compilation listing.

e FLAG"dialect": specifies whether the compiler must produce language-level certification
flags when it finds syntax that is not part of the specified dialect of Cobol.

To guarantee identical behavior between the source programs and the target ones produced by the
Cobol Converter, in light of the limitations previously described, the target programs must be
compiled with a certain set of compiler options in effect. Indeed, some of the MicroFocus Cobol
compiler options do change the behavior of the executed code. The transformations applied by
the the Rehosting Workbench Cobol Converter are hence tailored to the option set described
below. No support will be provided for programs compiled with a different, or at least conflicting,
option sets. For more information, please see the MicroFocus Cobol documentation, in particular
the Compiler Directives book.

The main behavior-influencing option to set mandatory is DIALECT"ENTCOBOL"". Indeed, this
dialect option sets a number of sub-options, such as PERFORM-TYPE"ENTCOBOL"", which make
the target program behave as closely as possible to the original source program compiled by the
IBM Enterprise Cobol Compiler.

However, the Refine Cobol converter departs from the Enterprise Cobol basic choices by using
the native character set of the target platform, namely ASCII. This mandates to set the option
CHARSET"ASCII". Conversely, it sticks to the IBM convention for representing overpunched
sign on DISPLAY numeric values, so the option SIGN"EBCDIC" must be set.

The following minor options must also be set to guarantee the correct behavior of target
programs:

Oracle Tuxedo Application Rehosting Workbench Reference Guide 10-43

10-44

e NOADV: do not use special printer-control characters on text files. Target-platform printing

utilities will simply print a file with the same layout as it appears on the screen.

e ALIGN™8": 01- and 77-level data items are aligned at the "most universal” memory

boundary.

e BOUND: check that each index is between the correct bounds when accessing an array. This

choice is a bit controversial because it can break some programs which apparently run
correctly on the source platform. However, in our experience, the only programs which
break are incorrect programs which just happen to work by chance on the source platform
and would not work in the same way, if at all, on the target platform. The sooner we detect
these programs and fix them, the better.

e COMP-5"2": use native byte ordering for COMP-5 variables. This is necessary for
compatibility with the the Rehosting Workbench CICS Runtime routines, among others.

e NOCOPYLBR: copy files are just plain files, not .Ibr library files.

e HOSTARITHMETIC: try to comply with IBM behavior on size error conditions in arithmetic
computations.

e INTLEVEL"4": allow numeric variables up to 38 digits, and more generally use improved
arithmetic behavior.

e REPORT-LINE'256": specifies maximum line size for Report Writer.

e RWHARDPAGE: use "hard" Form Feed (FF) characters to jump to a new page in Report
Writer, instead of using multiple Line Feeds. FF is recognized as jumping to a new page by
all target-platform printing utilities.

e NOTRUNCCALLNAME: do not truncate the names of CALLed subprograms to 8 characters, as
the ENTCOBOL dialect would normally do, because the Oracle Tuxedo Application
Rehosting Workbench Cobol Converter uses longer names (and this is better for future
evolution anyway).

e NOTRUNCCOPY: same thing for names of COPY files.

e The following options do not influence run-time behavior and can be set according to site
convention or requirements:

e COPYEXT: specifies the file extensions used for copy files. To set according to the choices
you made during migration (see the target-copy-extension configuration clause).

e LIST: specifies the location and format of the compilation listing.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

e SETTINGS: specifies whether to include the complete list of compiler options in the
compilation listing.

e TRACE: specifies whether tracing statements (READY TRACE and RESET TRACE) are
obeyed.

e WARNING: specifies the verbosity of error messages printed in the compilation listing.

COBOL-IT

To reproduce the source COBOL compiler behavior, COBOL-IT offers an IBM compatible
configuration file (ibm.conf). This configuration file will be used to compile the targer COBOL
asset.

In addition to the compiler options set in the configuration file ibm.conf, at least the following
options must be added to improve compatibility between the source and the target COBOL
environments.

External-mapping
If set to yes, all the file names of the file declared as EXTERNAL are resolved at runtime
using environment variables. It must be set to yes.

Binary-truncate
Binary-truncate is a boolean operator that governs the behavior of the runtime when
binary data is truncated. It must be set to no. This corresponds to the behavior of the
MicroFocus compiler directive NOTRUNC.

Spzero
If set to yes, Space character moved to NUMERIC USAGE field are converted in "0, It
must be set to no.

Depending on the customer needs, other compiler options can be set. To learn about the
COBOL-IT compiler options, please refer to the COBOL-IT Compiler Suite Entreprise Edition -
Reference Manual.

Detailed Processing

Overview

When the COBOL Converter starts, it reads and checks the various configuration files, starting
with the main one. If any inconsistency is detected at this stage, one or more error messages are
printed and the converter exits. Otherwise, the converter uses both command-line options and

Oracle Tuxedo Application Rehosting Workbench Reference Guide 10-45

10-46

configuration-file options to set its internal parameters, including the list of (source) programs to
process. Then it proceeds to process each of these programs in turn; for each of them:

1.

According to the make-like, incremental behavior of the Converter, it checks whether the
target program already exists and is up-to-date with reference to the POB file for its
corresponding source program. If not, the converter skips to the next program. Otherwise, it
continues with the next step.

The POB file for the program is loaded. The converter then checks whether it contains FATAL
errors. If so, and unless the force-translation flag is set on the command-line or in the
configuration file, it prints out a warning message and skips to the next program. Otherwise,
it continues with the next step.

The various transformation rules are then applied on the program AST, in several passes. Each
transformation modifies the AST and then updates the program layout accordingly (textual
appearance).

The (text of the) resulting AST is then printed out in the target program file. When the
beginning of a copy file is encountered, the COPY clause is written to the caller file and the
sequel of the output is diverted to a new output file for this copy file, in a private directory; if
a file with this name already exists in the directory, it probably is because the same copy file
is included more than once in the program, and the new file carries a new version number (the
existing version is not overwritten). If the copy file was invoked with a REPLACING clause,
the effects of the replacements are undone before the file is printed out (see the caveat
Miscellaneous Issues regarding interferences between transformations and replacements).
When the end of the copy file is reached, output is reverted to the caller file. This allows to
correctly handle nested copy files.

If the post-translation file is specified in the configuration file, it is exercised by the
post-translator on the main target program file and on all target copy files in the private
directory.

Lastly, if the deferred-copy-reconcil Clause is not given, either on the command-line or in the
con-figuration file, the copy reconciliation process is applied to the target copy files in the
private directory.

The converter can be executed by several concurrent processes at the same time, provided that
the deferred-copy-reconcil Clause is given either on the command-line or in the configuration
file; otherwise, the copy-reconciliation phase of these concurrent processes may run into access
conflicts over the "data-base" of final, reconciled copy files, which could lead to corrupted
results.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Command-Line Syntax

Refine Launcher Interface

The COBOL Converter is designed to be run through the refine command, which is the generic
Oracle Tuxedo Application Rehosting Workbench launcher and is also used to launch all "big"
Oracle Tuxedo Application Rehosting Workbench tools. This launcher handles various aspects
of the operation of these tools, such as execution log management and incremental/repetitive
operation.

cobol-convert Command

Synopsis
$REFINEDIR/refine cobol-convert [launcher-options..] \
(-s | -system-desc-file) system-desc-path \
(-¢ | -config) main-config-file-path \
[other-specific-flags..] \

(source-file-path | (-F | -file | -file-list-file) file-of-files
).

Options
The mandatory options are:

(-s | -system-desc-file) system-desc-path
Specifies the location of the System Description File. As usual for Unix/Linux commands,
the given path can be absolute or relative to the current working directory. Note that many
other paths used by many of the Rehosting Workbench tools are then derived from the
location of this file, including that of the main configuration file (see next option); this
makes it easy to run the same command from different working directories.

(-¢c | -config) main-config-file-path
Specifies the location of the Main Conversion Configuration File. The given path can be
either an absolute path or a relative path; in the latter case, it is relative to the directory
containing the system description file, as usual for the Rehosting Workbench tools.

The generic options which define which source programs to process are:

Oracle Tuxedo Application Rehosting Workbench Reference Guide 10-47

10-48

source-file-path
Adds to the work-list the program source file designated by this path. The path must be
given as relative to the root directory of the system, $SYSROOT, even if the current
working directory is different.

(-F | -File | -File-list-file) Ffile-of-files
Adds to the work-list the program source files listed in the file designated by this path. The
file-of-files itself may be located anywhere, and its path is either absolute or relative to the
current working directory. The program source files listed in this file, though, must be
given relative to the root directory of the system.

You can give as many individual programs and/or files-of-files as you wish. The work-list
is built when the command line is analyzed by the COBOL Converter, see the detailed
description above.

The optional specific flags or options are:

-dcrp or -deferred-copy-reconcil
Has the same effect as the deferred-copy-reconcil Clause of the configuration file, namely
to not run the copy reconciliation process incrementally after converting each program.
Only with this clause or flag can the COBOL converter run in multiple concurrent
processes.

-tpe extension or -target-program-extension extension
This option has the same effect as the configuration-file clause of the same name, and
overrides it when given.

-tce extension or -target-copy-extension extension
This option has the same effect as the configuration-file clause of the same name, and
overrides it when given.

-keep or -keep-same-file-names
This option has the same effect as the configuration-file clause of the same name, and
overrides it when given.

-force or -force-translation
This option has the same effect as the configuration-file clause of the same name, and
overrides it when given.

-cics or -activate-cics-rules
This option has the same effect as the configuration-file clause of the same name, and
overrides it when given.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Repetitive and Incremental Operation

Even with the powerful computing platforms easily available nowadays, processing a complete
asset using the Rehosting Workbench remains a computing-intensive, long-running,
memory-consuming task. The Work-bench tools are hence designed to be easily stopped and
restarted and, thanks to a make-like mechanism, not repeat any piece of work which has already
been done. This allows efficient operation in all phases of a migration project.

Initial Processing: Repetitive Operation

In the initial phase, when starting with a completely fresh asset and up to the end of the first
conversion-translation-generation cycle of a stable asset, the make-like mechanism is used to
allow repetitive operation, as follows:

1. When the COBOL Converter starts, it begins by studying the current state of the asset (source
files and target files such as the target program files) and determining what work remains to
do to reach a complete and consistent set of results. It then undertakes this work, producing
more and more result files.

2. As the volume of processed files grows, the Rehosting Workbench process consumes more
and more memory.

3. Regularly, the tool checks whether the available physical memory drops below the threshold
set by the minimum-free-ram-percent option in the system description file.

— If the work to be performed is complete before running our of memory, the process definitely
stops.

— Otherwise, the process stops but restarts immediately, after memory is freed. Going back to step
1 above, there is less work to do, so that the process eventually terminates.
This mode is particularly well suited for tools or commands which operate globally on the whole
asset such as the Cataloger, but it is also useful for component-wise tools such as the COBOL
Converter. This is the normal mode of operation for the Rehosting Workbench tools and there is
nothing specific to choose it.

Changes in the Asset: Incremental Operation

The COBOL converter knows the dependencies between the various components (main program
files) and associated result files (POB files, target program files). Using this information, it is able
to react incrementally when some change occurs in the asset. For example, when a COBOL
source file is added, modified or removed: the cataloguer re-parses the affected programs, and

Oracle Tuxedo Application Rehosting Workbench Reference Guide 10-49

then the COBOL converter re-converts only those. Again, this is the normal mode of operation
for the Rehosting Workbench tools and there is nothing specific to choose it.

10-50 Oracle Tuxedo Application Rehosting Workbench Reference Guide

APPENDlxa

Oracle Tuxedo Application Rehosting
Workbench Messages

The messages in this section are organized by tool. The following tools are documented:
¢ RDBMS - DB2-to-Oracle Converter Messages
e FILE - File Convertor Messages

e JCL - JCL Translator Messages

DB2-to-0Oracle Converter Messages

Overview

The error and warning messages generated by the DB2-to-Oracle Convertor fall into one of the
following categories:

e DB2-to-Oracle Converter Messages.
e File Internally Called Script Messages.

e Reloading Error Messages.

Oracle Tuxedo Application Rehosting Workbench Reference Guide A-1

DB2-to-Oracle Convertor Error Messages and Translation
Issues

Overview
There are two types of reason why error messages may be produced:

e Environment problem: Your working environment is either not correctly installed or
incorrectly configured. The environment has perhaps been modified during the data
migration.

e Internal error: To resolve any internal errors, check the error messages produced during
preceding phases, including the Cataloger phase.
DB2-to-Oracle Convertor Set-up Error Messages

RDBMS-0005:
Message: The configuration file <arg> should be an absolute path.

Environment problem.

RDBMS-0006:
Message: The configuration file <arg> has an unexpected name. Expected
param/trans.conf.

Environment problem.

RDBMS-0008:
Message: Filenames in <arg> must be relative to the param directory.

Environment problem.

RDBMS-0009:
Message: Filenames passed to the SQL DB2-to-Oracle Converter on the command line
must be absolute.

Environment problem.

RDBMS-0010:
Message: No -s command line argument.

Environment problem.

A-2 Oracle Tuxedo Application Rehosting Workbench Reference Guide

RDBMS-0011:
Message: No -target-os command line argument.

Environment problem

RDBMS-0012:
Message: No -target-rdbms command line argument.

Environment problem: The target database management system must be specified with
the -target-rdbms command line argument. Check your configuration files.

RDBMS-0013:
Message: No -target-rdbms-version command line argument.

Environment problem.

RDBMS-0014:
Message: One of either -ddl or -ddIs-file must be on the command line.

Environment problem.

RDBMS-0020:
Message: Ambiguous source information from the system (OS: <arg>, DB: <arg>,
Version: <arg>). No suitable default could be determined.

Environment problem.

RDBMS-0021:
Message: Invalid source OS or database specified: (OS: <arg>, DB: <arg>, Version:
<arg>).

Environment problem.

RDBMS-0022:
Message: Ambiguous target information from the system (OS: <arg>, DB: <arg>,
Version: <arg>). No suitable default could be determined.

Explanation: The target operating system and database information specified in the
configuration files was ambiguous. The system could not find any default configuration
that matches the information that was provided.

RDBMS-0023:
Message: Invalid target OS or database specified: (OS: <arg>, DB: <arg>, Version:
<arg>).

Environment problem.

Oracle Tuxedo Application Rehosting Workbench Reference Guide A-3

RDBMS-0030:
Message: Translation from <arg> to <arg> is not supported.

Environment problem.

RDBMS-0040:
Message: Cannot find the DB properties file <arg>.

Environment problem.

RDBMS-0041:
Message: Unrecognized db properties line <arg>.

Explanation: The DB properties line has an incorrect format.

RDBMS-0042:
Message: Both :indexsort <arg> and :indexlang <arg> were specified.

Explanation: The :indexsort and : indexlang properties are mutually exclusive. The
configuration file specified both. Remove one of these properties.

RDBMS-0043:
Message: Invalid lobs_fname_length.

Explanation: The lobs_fname_length parameter must be a valid integer, giving the
maximum length of external file names containing LOB data.

RDBMS-0060:
Message: Cannot find the reserved words file <arg>.

Environment problem.

RDBMS-0061:
Message: Cannot determine the reserved words for <arg>.

Explanation: The system could not determine the set of reserved words for a SQL dialect.

RDBMS-0080:
Message: Cannot find rename file <arg>.

Environment problem.

RDBMS-0081:
Message: Invalid rename pattern: <arg>.

Explanation: The rename file line could not be parsed as a rename pattern.

A-4 Oracle Tuxedo Application Rehosting Workbench Reference Guide

RDBMS-0082:
Message: Unrecognized renaming pattern line <arg>

Explanation: The rename file line has an incorrect format.

RDBMS-0100:
Message: Could not find system description file <arg>.

Environment problem.

RDBMS-0101:
Message: The SQL source contains parse errors. The mis-parsed files are: <arg>.

Explanation: Some of the SQL files in the system mis-parsed. Check the files for correct
syntax.

RDBMS-0102:
Message: The SQL source does not contain any statements.

Explanation: There are no statements in the SQL system. Check your source files.

RDBMS-0103:
Message: Loading system description file <arg> failed.

Environment problem.

RDBMS-0104:
Message: Failed to update system catalog for <arg>.

Environment problem.

RDBMS-0105:
Message: Catalog for <arg> is out of date and needs to be updated externally.

Explanation: The catalog for the system is out of date. Either update it directly or specify
the -will-ddl-changes command line argument.

RDBMS-0106:
Message: Bad source directory <arg>.

Environment problem.

RDBMS-0107:
Message: Bad target directory <arg>.

Environment problem.

Oracle Tuxedo Application Rehosting Workbench Reference Guide A-5

RDBMS-0120:
Message: Cannot find schema name file <arg>.

Environment problem.

RDBMS-0121:
Message: Bad SQL system <arg>.

Environment problem.

RDBMS-0122:
Message: Bad virtual file <arg>.

Environment problem.

RDBMS-0123:
Message: Could not extract schema <arg>.

Explanation: The schema could not be extracted from the SQL system.

RDBMS-0124:
Message: Bad schemas were extracted <arg>.

Explanation: Some of the schemas that were extracted are corrupted.

RDBMS-0125:
Message: Elements <arg> were claimed by several schemas.

Explanation: Some SQL elements were claimed by multiple schemas.

RDBMS-0126:
Message: <arg> is not a known schema name.

Explanation: A schema name was specified that does not exist in the SQL system.

RDBMS-0127:
Message: The current schema is corrupted.

Explanation: The current schema for translation is corrupted.

RDBMS-0128:
Message: SQL schema <arg> is empty.

Explanation: There are no SQL elements in the given schema.

RDBMS-0129:
Message: Adding duplicate schema element: <arg>

A-6 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Explanation: An attempt was made to add a duplicate element to a schema.

Setup Translation-Issue Messages

RDBMS-0024:
Message: Incomplete source information for the system (OS: <arg>, DB: <arg>, Version:
<arg>). Defaulting to (OS: <arg>, DB: <arg>, Version: <arg>).

Environment problem.

RDBMS-0025:
Message: Incomplete target information for the system (OS: <arg>, DB: <arg>, Version:
<arg>). Defaulting to (OS: <arg>, DB: <arg>, Version: <arg>).

Environment problem.

RDBMS-0045:
Message: Unknown RDBMS parameter <arg> <arg>.

Environment problem.

RDBMS-0083:
Message: Rename pattern <arg> is pre-empted by an earlier pattern and will never be
applied.

Explanation: The renaming pattern is not effective because there is a pattern earlier in the
pattern sequence that will be applied in the same situations. Review the sequence of
renaming patterns.

RDBMS-0130:
Message: Schema <arg> is not in the system. It will be skipped.

Explanation: The indicated schema could not be found in the system. It will not be
translated.

RDBMS-0131:
Message: Schemas <arg> are not in the system. They will be skipped.

Explanation: The indicated schemas could not be found in the system. They will not be
translated.

RDBMS-0132:
Message: <num> schema elements <arg> not claimed by any schema. The <arg>: <arg>.

Oracle Tuxedo Application Rehosting Workbench Reference Guide A-1

A-8

Explanation: There are SQL elements in the system that cannot be mapped to any schema. The

types of the elements are listed in the message.

Translation Error Messages
There are currently no error messages associated with the translation phase.

Translation Issue Messages

RDBMS-1000:
Message: No source file information for a <arg> node.

Internal error.

RDBMS-1001:
Message: <num> <arg> violations detected.

Internal error.

RDBMS-1002:
Message: <arg> violation: <arg>

Internal error.

RDBMS-1003:
Message: Unlinked identifier <arg>.

Internal error.

RDBMS-1004:
Message: Multi linked identifier <arg>.

Internal error.

RDBMS-1005:
Message: Instantiated interior class <arg>.

Internal error.

RDBMS-1040:
Message: There are DATE data types but the :date_format was not specified.

Explanation: The translator needs knowledge of the :date_format in order to translate

DATE data types.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

RDBMS-1041:
Message: There are TIME data types but the : time_format was not specified.

Explanation: The translator needs knowledge of the - time_format in order to translate
TIME data types.

RDBMS-1042:
Message: There are TIMESTAMP data types but the : timestamp_format was not
specified.

Explanation: The translator needs knowledge of the : timestamp_format in order to
translate TIMESTAMP data types.

RDBMS-1043:
Message: There are CLOB or BLOB data types but the :lobs_fname_length was not
specified.

Explanation: The translator needs knowledge of the :lobs_fname_length in order to
translate CLOB or BLOB data types.

RDBMS-1060:
Message: Unexpected top-level DDL element of class <arg>.

Internal error.

RDBMS-1080:
Message: Unknown table constraint type <arg>.

Explanation: The translator found a table constraint that it could not identify.

RDBMS-1081:
Message: Unrecognized table constraint type <arg> for <arg>.

Explanation: The translator found a type of table constraint that it was not expecting.

RDBMS-1082:
Message: Unknown column constraint type for <arg>.

Explanation: The translator found a column constraint that it could not identify.

RDBMS-1083:
Message: Unrecognized column constraint type <arg> for <arg>.

Explanation: The translator found a type of column constraint that it was not expecting.

Oracle Tuxedo Application Rehosting Workbench Reference Guide A-9

RDBMS-1085:
Message: Could not determine default NULL value for data type <arg>.

Explanation: The translator could not determine a translation for a DEFAULT value of
NULL for a data type.

RDBMS-1086:
Message: Could not determine default empty string value for data type <arg>.

Explanation: The translator could not determine a translation for a DEFAULT value of
for a data type.

RDBMS-1100:
Message: Untranslated data type <arg>.

Explanation: A source data type was not translated to a target data type.

RDBMS-1101:
Message: CHAR to VARCHAR?2 size is too long: <num>.

Explanation: The length of the CHAR type is greater than the maximum allowed
VARCHAR? length.

RDBMS-1200:
Message: Identifier name <arg> conflicts with a reserved word.

Explanation: An identifier name conflicts with a reserved word. Add a rename rule to
remove the conflict.

RDBMS-1201:
Message: There are duplicate <arg> schema elements: <arg>.

Explanation: Duplicate schema elements were detected in the final translation.

RDBMS-1202:
Message: Table <arg> has duplicate column names <arg>.

Explanation: There are duplicate column names in a table definition.

RDBMS-1203:
Message: <arg> was not fully applied to the schema elements.

Internal error.

A-10 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Output Error Messages
There are currently no error messages associated with the output phase.

Output Translation-Issue Messages
There are currently no translation issues associated with the output phase.

Miscellaneous Error Messages

RDBMS-3001:
Message: There is no base directory, but this file is relative: <arg>.

Environment problem.

RDBMS-3002:
Message: Invalid value of Configuration-From(<arg>).

Environment problem.

RDBMS-3003:
Message: Catalog system <arg> did not load correctly.

Environment problem.

RDBMS-3004:
Message: SQL System <arg> did not load correctly.

Environment problem.

RDBMS-3005:
Message: Poorly formed parse tree <arg>.

Internal error.

RDBMS-3011:
Message: Bad value for *rename-pattern-match-mode*: <arg>.

Explanation: The renaming sub-system has detected an internal inconsistency.

RDBMS-3012:
Message: DIALECT-LOOKUP: no value in <arg> for <arg>.

Internal error.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

A-1

A-12

RDBMS-3013:
Message: DIALECT-LOOKUP-2: no value in <arg> for <<arg>, <arg>>.

Internal error.

RDBMS-3015:
Message: DDL-TRANS-ELEMENTS-SUCH-THAT: bad predicate <arg>.

Internal error.

RDBMS-3016:
Message: Adding duplicate root element: <arg>.

Internal error.

RDBMS-3017:
Message: Problem linking original <arg> (<arg>) and copy <arg> (<arg>).

Internal error.

RDBMS-3018:
Message: Unexpected unlinked id action <arg>.

Internal error.

RDBMS-3019:
Message: Do not make multiple name generators of class <arg>.

Internal error.

RDBMS-3020:
Message: Unknown DB2-to-Oracle Converter mode <arg>.

Internal error.

RDBMS-3021:
Message: IN-ORIGINAL-SCHEMAZ?: no current schema to check <arg>.

Internal error.

RDBMS-3022:
Message: IN-TRANSLATION-TREE?: no translation root to check <arg>.

Internal error.

RDBMS-3023:
Message: RECORD-OUTPUT-FILE: unknown output file type <arg>.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Internal error.

RDBMS-3024:
Message: GET-OUTPUT-FILES-OF-TYPE: unknown output file type <arg>.

Internal error.

RDBMS-3025:
Message: OUTPUT-DATA-LOADER-FILES: <arg> is not callable.

Internal error.

RDBMS-3026:
Message: Bad dialect comparison mode <arg>.

Internal error.

RDBMS-3027:
Message: Bad dialect canonicalization function <arg>.

Internal error.

Miscellaneous Translation-Issue Messages:

RDBMS-3007:
Message: Failed to output DDL for <arg>.

Explanation: A DDL element was not output to the SQL files.

RDBMS-3008:
Message: Could not determine data type class for column <arg>.

Explanation: The data type class could not be determined for a column type.

RDBMS-3009:
Message: No COBOL DDEs for <arg>.

Explanation: The translator did not produce any data description entries for a column.

RDBMS-3010:
Message: Could not determine SQL*Loader data type for <arg>.

Explanation: The SQL*Loader data type for a column data type could not be determined.

Oracle Tuxedo Application Rehosting Workbench Reference Guide A-13

A-14

RDBMS Script Error Messages

The messages in this section are organized by tool. The following tools are documented:
e RDBMS -DB2-to-Oracle Converter messages
e DB2-to-Oracle Converter Setup Error Messages:

RDBMSWB-0001:
Example: $usage

Explanation: Error in the arguments entered for the rdbms.sh command.

RDBMSWB-0002:
Example: Do not mix -C and -C parameters. $usage

Explanation: The -c and -C parameters cannot be used simultaneously to concurrently to
launch rdbms.sh, correct and relaunch the execution.

RDBMSWB-0003:
Example: Unix variable TMPPROJECT is not set or contains a bad directory name.

Explanation: Check the value of the TMPPROJECT variable and relaunch the execution.

RDBMSWB-0004:
Example: Temporary output directory $tempoutputdir is missing.

Explanation: Check the value of the TMPPROJECT variable and relaunch the execution.

RDBMSWB-0005:
Example: Invalid argument: do not use -s argument with -c|-C or -g or -m or -r or -i.
$usage

Explanation: Check the arguments passed with the rdbms.sh command and relaunch the
execution.

RDBMSWB-0006:
Example: Target output directory $targetoutputdir is missing. Check parameters: -i
<output_directory> <schema>

Explanation: Check the arguments passed with the rdbms.sh command and relaunch the
execution.

RDBMSWB-0007:
Example: Target output directory $targetoutputdir is missing. Check parameters: -s
<output_directory> (<schema>,...)

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Explanation: Check the arguments passed with the rdbms.sh command and relaunch the
execution.

RDBMSWB-0008:
Example: Mandatory argument is list of schema (<schema>,...). $usage

Explanation: The -s option expects an installation directory and a list of schemas as
arguments.

RDBMSWB-0009:
Example: Mandatory argument is <schema_name>. $usage

Explanation: The -i option expects an installation directory and a list of schemas as
arguments.

RDBMSWB-0010:
Example: Too many arguments: $2. $usage

Explanation: Check the arguments passed with the rdbms.sh command and relaunch the
execution.

RDBMSWB-0011:
Example: External Variable PARAM is not set!

Explanation: Initialize the PARAM variable and relaunch the execution.

RDBMSWB-0021:
Example: Can not access to directory $tempoutputdir/Template/$schema.

Explanation: Check the sequence of options used to execute the rdbms.sh script.

RDBMSWB-0022:
Example: can not access to directory $tempoutputdir.

Explanation: Check the value of the TMPPROJECT variable and relaunch the Rehosting
Workbench.

RDBMSWB-0102:
Example: in reading configuration file db-param.cfg. Check previous error messages (1)

Explanation:

RDBMSWB-0111:
Example: The file <file> containing list of unsupported objects is missing.

Explanation: Check previous error messages.

Oracle Tuxedo Application Rehosting Workbench Reference Guide A-15

A-16

RDBMSWB-0112:
Example: Error during reading the file containing list of unsupported objects. Check
previous error messages.

Explanation: __

RDBMSWB-0199:
Example: conversion aborted $addMess. Check previous error messages.

Explanation:

RDBMSWB-0201:
Example: Mapper file $tempoutputdir/$schema/mapper-$schema.re does not exist!
$addMess

Explanation: This file is automatically generated; check the system messages displayed
before this error.

RDBMSWB-0202:
Example: Mapper file $tempoutputdir/$schema/mapper-$schema.re is empty! $addMess

Explanation: This file is automatically generated; check your work environment.

RDBMSWB-0203:
Example: Datamap file $tempoutputdir/$schema/Datamap-$schema.re does not exist!
$addMess

Explanation: This file is automatically generated; check the system messages displayed
before this error.

RDBMSWB-0204:
Example: Default Templates list file $defaulttemplatesfile is missing !

Explanation: Check the system messages displayed before this error.

RDBMSWB-0205:
Example: Can not modify #VAR: strings (in templates list file)

Explanation: Check the system messages displayed before this error.

RDBMSWB-0206:
Example: Check $templatesfile and $tmptemplatesfile files

Explanation: Check the system messages displayed before this error.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

RDBMSWB-0207:
Example: Mapper file $orimapperfile is missing!

Explanation: This file is automatically generated; check the system messages displayed
before this error.

RDBMSWB-0208:
Example: Can not modify #VAR: strings (in mapper file)

Explanation: Check the system messages displayed before this error.

RDBMSWB-0211:
Example: The file <file> containing list of generated components to be discarded is
missing.

Explanation: Check previous error messages.

RDBMSWB-0212:
Example: Error during reading the file containing list of generated components to be
discarded. Check previous error messages.

Explanation: __

RDBMSWB-0242:
Example: unknown datatype for field %FLD-1:-C%INDICES:: %FLD-1:-IBM-DESC /
%FLD-1:-MF-DESC

Explanation: The DB2 DDL is incorrect or the data type is not supported.

RDBMSWB-0243:
Example: datatype not supported in DB2/MVS. field %FLD-1:-C%INDICES::
%FLD-1:-IBM-DESC / %FLD-1:-MF-DESC

Explanation: The DB2 DDL is incorrect or the data type is not supported.

RDBMSWB-0244:
Example: OCCURS engineering not supported in SPLIT %SPLIT-1:-L

Explanation: COBOL OCCURS not supported in the data description copy files.

RDBMSWB-0250:
Example: Unknown JCL_UNLOAD_UTILITY_NAME option. Check '<VAL>'

Explanation: Bad value for parameter rdbms: jcl_unload_utility_name: in
db-param.cfg configuration file.

Oracle Tuxedo Application Rehosting Workbench Reference Guide A-17

A-18

RDBMSWB-0251:
Example: Unknown JCL_UNLOAD_FORMAT _FILE option. Check '<VAL>’

Explanation: Bad value for parameter rdbms: jcl_unload_format_file: in
db-param.cfg configuration file.

RDBMSWB-0252:
Example: JCL_UNLOAD_FORMAT_FILE='csv' is only compatible with
JCL_UNLOAD_UTILITY_NAME="dsnuproc’. Check '<VAL>'

Explanation:

RDBMSWB-0299:
Example: generation aborted. Check previous error messages

Explanation:

RDBMSWB-0303:
Example: There was a problem during dynamic modification of programs

Explanation: The script used to modify the generated components has not ended normally;
check the script and relaunch the execution.

RDBMSWB-0304:
Example: There was a problem during modification. Check previous message.

Explanation:

RDBMSWB-0305:
Example: problem in modifying $ext files

Explanation: Check the system messages displayed before this error.

RDBMSWB-0306:
Example: problem during chmod of shell $file

Explanation: Check the system messages displayed before this error.

RDBMSWB-0307:
Example: problem in accessing *sh files

Explanation: Check the system messages displayed before this error.

RDBMSWB-0402:
Example: can not access to directory $tempoutputdir/outputs/$schema.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Explanation: Check the system messages displayed before this error.

RDBMSWB-0403:
Example: can not access to directory $tempoutputdir/SQL/$schema.

Explanation: Check the system messages displayed before this error.

RDBMSWB-0404:
Example: can not access to generates script $scriptfile. # Check -g parameter

Explanation: Check the use of the -g parameter of the rdbms.sh.

RDBMSWB-0405:
Example: script $scriptfile is not executable. # Use -r after -m parameter.

Explanation: When executing the rdbms.sh script the -r parameter should be used after the
-m parameter.

RDBMSWB-0407:
Example: Remove schema name step aborted. Check script file name $scriptfile.

Explanation: Check the previous messages.

RDBMSWB-0501:
Example: installation aborted. Check previous message.

Explanation: __

RDBMSWB-0502:
Example: Configuration file generation aborted. Check previous error messages

Explanation:
RDBMS and File Internally Called Script Messages
The messages in this section are organized by tool. The following tools are documented:
¢ RDBMS -DB2-to-Oracle Converter messages
e DB2-to-Oracle Converter Setup Error Messages:

DATAWB-1001:
Example: File $template is missing!

Explanation: The Oracle Tuxedo Application Rehosting Workbench working
environment is not correctly installed.

Oracle Tuxedo Application Rehosting Workbench Reference Guide A-19

A-20

DATAWB-1002:
Example: Missing Template file: $file or his pob version

Explanation: The *templates.txt file is incorrectly installed or has been incorrectly
modified.

DATAWB-1003:
Example: Remove the pob extension to file name $file

Explanation: The *templates.txt file is incorrectly installed or has been incorrectly
modified.

DATAWB-1011:
Example: missing file name argl

Explanation: Internal error, The Oracle Tuxedo Application Rehosting Workbench
working environment is not correctly installed or configured.

DATAWB-1012:
Example: bad return code for awk

Explanation: Check the previous system messages.

DATAWB-1013:
Example: There was a problem during updating component $fixedfile

Explanation: Check the previous system messages.

DATAWB-1014:
Example: There was a problem during comparing component $file

Explanation: Check the previous system messages.

DATAWB-1021:
Example: Bad 1st parameter. <InputFile> <OutputFile>

Explanation: Check the previous system messages.

DATAWB-1022:
Example: Bad 2nd parameter. <InputFile> <OutputFile>

Explanation: Internal error, The Oracle Tuxedo Application Rehosting Workbench
working environment is not correctly installed or configured.

DATAWB-1023:
Example: sed script return a bad return code

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Explanation: Check the previous messages.

DATAWB-1031:
Example: can not access to directory Template/$schema.

Explanation: Internal error, The Oracle Tuxedo Application Rehosting Workbench
working environment is not correctly installed or configured.

DATAWB-1032:
Example: can not found $movefile file

Explanation: Internal error, The Oracle Tuxedo Application Rehosting Workbench
working environment is not correctly installed or configured.

DATAWB-1033:
Example: can not read $movefile file

Explanation: Internal error, The Oracle Tuxedo Application Rehosting Workbench
working environment is not correctly installed or configured.

DATAWB-1034:
Example: Version $relformat in $movefile is not supported by this tool.

Explanation: Internal error, The Oracle Tuxedo Application Rehosting Workbench
working environment is not correctly installed or configured.

DATAWB-1035:
Example: can not evaluate string [$line] from $movefile

Explanation: Internal error, The Oracle Tuxedo Application Rehosting Workbench
working environment is not correctly installed or configured.

DATAWB-1036:
Example: bad 1st argument typ in line $line

Explanation: Internal error, The Oracle Tuxedo Application Rehosting Workbench
working environment is not correctly installed or configured.

DATAWB-1037:
Example: bad 2nd argument source_directory in line $line

Explanation: Internal error, The Oracle Tuxedo Application Rehosting Workbench
working environment is not correctly installed or configured.

DATAWB-1038:
Example: $info_filename is missing or empty (in <td>/$inputfile)

Oracle Tuxedo Application Rehosting Workbench Reference Guide

A-21

A-22

Explanation: Internal error, The Oracle Tuxedo Application Rehosting Workbench
working environment is not correctly installed or configured.

DATAWB-1039:
Example: $info_filename: problem when creating directory $targetdirectory for
$outputfile

Explanation: Check the previous system messages.

DATAWB-1040:
Example: $info_filename: problem during a copy $inputfile to $outputfile in line $line

Explanation: Check the previous system messages.

DATAWB-1041:
Example: $info_filename: can not chmod executable $outputfile

Explanation: Check the previous system messages.

DATAWB-1042:
Example: $info_filename: can not chmod non executable script $inputfile

Explanation: Check the previous system messages.

DATAWB-1043:
Example: bad return code when executing $inputfile

Explanation: Check the previous system messages.

DATAWB-1051:
Example: can not access to directory Template/$schema. Separator character between
each schema name has to be a coma',".

Explanation: Internal error, The Oracle Tuxedo Application Rehosting Workbench
working environment is not correctly installed or configured.

DATAWB-1052:
Example: can not grep $movefile file

Explanation: Internal error, The Oracle Tuxedo Application Rehosting Workbench
working environment is not correctly installed or configured.

DATAWB-1053:
Example: content of file $movefileori are not equal for tag 'M:s:'

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Explanation: Internal error, The Oracle Tuxedo Application Rehosting Workbench
working environment is not correctly installed or configured.

DATAWB-1054:
Example: can not find generated file $filetoinclude

Explanation: Internal error, The Oracle Tuxedo Application Rehosting Workbench
working environment is not correctly installed or configured.

DATAWB-1055:
Example: can not modify a file

Explanation: Check the previous system messages.

DATAWB-1056:
Example: can not generate $outputfile using perl program

Explanation: Check the previous system messages.

DATAWB-1057:
Example: $info_filename: can not chmod a temporary file $tmpfilemc in line $line

Explanation: Check the previous system messages.

DATAWB-1061:
Example: Bad parameters: file[rdbms <configfile> <OutputFile>

Explanation: Check the previous system messages.

DATAWB-1062:
Example: Configuration file $configfile is missing !

Explanation: Check the previous system messages.

DATAWB-1063:
Example: Can not create temporary parameter file $outputfile

Explanation: Check the previous system messages.

DATAWB-1064:
Example: Can not insert a line into the temporary parameter file $outputfile

Explanation: Check the previous system messages.

DATAWB-1065:
Example: Bad 1st parameter. file|rdbms <configfile> <OutputFile>

Oracle Tuxedo Application Rehosting Workbench Reference Guide A-23

Explanation: Check the previous system messages.

DATAWB-1101:
Example: usage is $scriptname <format_log> <mvslog_filename>
<output_report_filename>

Explanation: Impossible to process the LOG file containing the z/OS unloading
information.

DATAWB-1102:
Example: in $scriptname. Input mvs log file is missing $mvslogfile.

Explanation: Impossible to process the LOG file containing the z/OS unloading
information.

DATAWB-1103:
Example: in $scriptname.$0. bad return code for awk reading $mvslogfile

Explanation: Impossible to process the LOG file containing the z/OS DSNTIAUL
unloading information.

DATAWB-1104:
Example: in $scriptname.$0. can not found SUCCESSFUL UNLOAD x ROWS
information in SYSPRINT LOG report file $mvslogfile

Explanation: Impossible to process the LOG file containing the z/OS DSNTIAUL
unloading information.

DATAWB-1105:
Example: in $scriptname.$0. empty 4th arg. Susagedargs

Explanation: Impossible to process the LOG file containing the z/OS FTP unloading
information.

DATAWB-1106:
Example: in $scriptname.$0. illegal format for 4th arg ‘$Soptionalargs'. $usage4args

Explanation: Impossible to process the LOG file containing the z/OS FTP unloading
information.

DATAWB-1107:
Example: in $scriptname.$0. empty physical file name '$physfilename’ in 4th arg
‘$optionalargs'. $usagedargs

A-24 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Explanation: Impossible to process the LOG file containing the z/OS FTP unloading
information.

DATAWB-1108:
Example: in $scriptname.$0. can not found binary transferred file
‘$hinaryTransferredFile' in 4th arg ‘Soptionalargs'. $usage4args

Explanation: Impossible to process the LOG file containing the z/OS FTP unloading
information.

DATAWB-1109:
Example: in $0. bad return code for awk reading $mvslogfile. $recfmandreclen

Explanation: Impossible to process the LOG file containing the z/OS FTP unloading
information.

DATAWB-1110:
Example: in $0. can not found $physfilename information in ftp report file $mvslogfile

Explanation: Impossible to process the LOG file containing the z/OS FTP unloading
information.

DATAWB-1111:
Example: in $scriptname. bad return code for Is or awk reading $mvslogfile. $rows

Explanation: Impossible to process the LOG file containing the z/OS FTP unloading
information.

DATAWB-1112:
Example: in $scriptname. can not create output report file $outputreportfile

Explanation: Impossible to process the LOG file containing the z/OS unloading
information.

DATAWB-1113:
Example: in $scriptname. Bad mvs log format: $mvsformat.

Explanation: Impossible to process the LOG file containing the z/OS unloading
information.

DATAWB-1114:
Example: in $scriptname. internal variable tableAndRows is empty.

Explanation: Impossible to process the LOG file containing the z/OS unloading
information.

Oracle Tuxedo Application Rehosting Workbench Reference Guide A-25

A-26

DATAWB-1115:
Example: in $scriptname. can not create report file $outputreportfile

Explanation: Impossible to process the LOG file containing the z/OS unloading
information.

DATAWB-1120:
Example: in ${scriptname}.$0. bad return code for awk reading ${mvslogfile}

Explanation: Impossible to process the LOG file containing the z7OS DSNUPROC
unloading information.

DATAWB-1121:
Example: in ${scriptname}.$0. can not found NUMBER OF RECORDS UNLOADED
information in SYSPRINT LOG report file ${mvslogfile}

Explanation: Impossible to process the LOG file containing the z/OS DSNUPROC
unloading information.

DATAWB-1122:
Example: in $0. bad return code for awk reading $mvslogfile. $recfmandreclen

Explanation: Impossible to process the LOG file containing the z/OS DSNUTILB
unloading information.

DATAWB-1122:
Example: in $0. bad return code for awk reading $mvslogfile. $recfmandreclen

Explanation: Impossible to process the LOG file containing the z/OS DSNUTILB
unloading information.

DATAWB-1201:
Example: unix variable NLS_LANG not set

Explanation: Check the value of the NLS_LANG variable before relaunching
the.execution.

DATAWB-1203:
Example: unix variable MT_DB_USER not set

Explanation: Check the value of the MT_DB_USER variable before relaunching
the.execution.

DATAWB-1204:
Example: unix variable MT_DB_PWD not set

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Explanation: Check the value of the MT_DB_PWD variable before relaunching
the.execution.

DATAWB-1204:
Example: can not found directory $SMT_LOG : $MT_LOG

Explanation: Check the value of the MT_LOG variable before relaunching the execution.

DATAWB-1205:
Example: can not found directory $TMPPROJECT : $TMPPROJECT

Explanation: Check the value of the TMPPROJECT variable before relaunching the
execution.

DATAWB-1206:
Example: can not find Control File : $ctl. Use -h for help

Explanation: Check the generation step reached by the Rehosting Workbench.

DATAWB-1207:
Example: Bad Parameter: $1

Explanation: Internal error.

DATAWB-1208:
Example: bad Control File. Can not found table name.

Explanation: The *.ctl is not adapted, check its generation.

DATAWB-1209:
Example: Bad argument for parameter: $1

Explanation: this parameter accepts an argument as value after the “:” character.

DATAWB-1210:
Example: can not create log file

Explanation: Check the system messages displayed before this error.

DATAWB-1212:
Example: unix variable MT_DB_LOGIN not set

Explanation: Check the value of the MT_DB_LOGIN variable before relaunching
the.execution.

Oracle Tuxedo Application Rehosting Workbench Reference Guide A-217

A-28

DATAWB-1221:
Example: can not clean this table! Check file STMPPROJECT/truncate_$table.log

Explanation: The table does not exist or contains integrity constraints.

DATAWB-1222:
Example: Syntax or Oracle Error: Oracle errors are listed bellow

Explanation:

DATAWB-1223:
Example: can not give how many rows have been inserted into table $table

Explanation: Internal error.

DATAWB-1224:
Example: can not modify current CTL file.

Explanation: Check the system messages displayed before this error.

DATAWB-1241:
Example: can not found report file

Explanation: Check the system messages displayed before this error.

DATAWB-1242:
Example: the report file containing the number of rows to be inserted is missing:
$fichierReport

Explanation: The number of records is absent from the LOG of the transcodage program.

DATAWB-1243:
Example: the number of rows inserted into table $table is not equal to the number written
in the report file $fichierReport !Oracle $gteOraReport $qgteFile

Explanation: __

DATAWB-1299:
Example: an error occurred! Checks also file: $log

Explanation: Check the LOG and the messages displayed before this error.

Reloading Error Messages
The messages in this section are organized by tool. The following tools are documented:

e RDBMS -DB2-to-Oracle Converter messages

Oracle Tuxedo Application Rehosting Workbench Reference Guide

e DB2-to-Oracle Converter Setup Error Messages:

RDBMSLD-0001:
Example: invalid parameter: $usage

Explanation: Error when entering the arguments for the loadrdbms.sh script

RDBMSLD-0002:
Example: can not create log file $logtab

Explanation: System error.

RDBMSLD-0003:
Example: input file $DD_ENTREE not found Content of log file $logtab is

Explanation: Check the configuration used and the presence of the file unloaded by the
DB2 unloading utility.

RDBMSLD-0004:
Example: bad conversion for file $DD_ENTREE

Explanation: Check previous messages.

RDBMSLD-0005:
Example: bad loading for table $table_name

Explanation: Check previous messages.

RDBMSLD-0006:
Example: input file $DD_SORTIE not foundContent of log file $logtab is

Explanation: The file to reload using SQL*LOADER is absent, check preceding messages

RDBMSLD-0007:
Example: variable $var is badly or is not initialized.

Explanation: Check the value of the $var variable before relaunching the.execution.

RDBMSLD-0020:
Example: csv format file does not need transcoding step.

Explanation: Check “rdbms:” parameters in db-param.cfg parameter file or remove -t
option.

RDBMSLD-0021:
Example: csv format file does not accept filesystem type.

Oracle Tuxedo Application Rehosting Workbench Reference Guide A-29

A-30

Explanation: Do not use -f option.

RDBMSLD-0031:
Example: bad filesystem for LOB datatypes. Allowed filesystem types are 'hfs', 'pds'
(default).

Explanation: Check if the argument of the -f option is badly set or parameter in
db-param.cfg configuration file.

RDBMSLD-0032:
Example: input ${DD_ENTREE_DIR}/${LOBDIR} directory for LOB files does not
exist.

Explanation: Check the value of these internal variables and the presence of the directory.

RDBMSLD-0033:
Example: -O argument for LOB datatypes is not allowed for this table.

Explanation:

RDBMSLD-0034:
Example: -T argument for table with LOB datatypes is not allowed for this table.

Explanation:

RDBMSLD-0035:
Example: -f argument for LOB datatypes is not allowed for this table.

Explanation: __

RDBMSLD-0036:
Example: can not create LOB directory ${DD_SORTIE_DIR}/${LOBDIR}

Explanation: Check the previous system messages.

RDBMSLD-0037:
Example: can not create sysin file $sysinfile

Explanation: Check the previous system messages.

RDBMSLD-0038:
Example: output ${DD_SORTIE_DIR}/${LOBDIR} directory for LOB files does not
exist

Explanation: Check the previous error messages or -O argument of the loadrdbms.sh
script has been used without a previously launch with -T or -t argument.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

RDBMSLD-0039:
Example: list of clob files name ${DD_%{FLD-1:-T}} does not exist

Explanation: Check the previous error messages or -O argument of the loadrdbms.sh
script has been used without a previously launch with -T or -t argument.

RDBMSLD-0040:
Example: list of blob files name ${DD_%{FLD-1:-T}} does not exist

Explanation: Check the previous error messages or -O argument of the loadrdbms.sh
script has been used without a previously launch with -T or -t argument.

RDBMSLD-0045:
Example: bad conversion for the clob column %{FLD-1:-T}

Explanation: Check the previous system messages or COBOL program messages.

RDBMSLD-0046:
Example: input file for the blob column %{FLD-1:-T} does not exist

Explanation: Check the configuration used and the presence of the directory.

RDBMSLD-0047:
Example: bad link for the blob column %{FLD-1:-T}

Explanation: Check the previous system messages.

RDBMSLD-0102:
Example: bad method of check. Allowed method is 'rows'$usage

Explanation: Error when entering the -c argument of the loadrdbms.sh script.

RDBMSLD-0104:
Example: can not create a report file for table $table_name

Explanation: System error.

RDBMSLD-0107:
Example: the number of rows written by the transcode process is not equal to the number
calculated using the log file (see created report $reportfile) 'Transcode
$qteTranscodeReport $qteFile

Explanation:

RDBMSLD-0113:
Example: input file $DD_MVSLOG not found.Content of log file $logtab is

Oracle Tuxedo Application Rehosting Workbench Reference Guide A-31

Explanation: The DB2 unloading utility Log created on z/OS is not available.

RDBMSLD-0201:
Example: INPUT ENTREE FAILEDIO-STATUS = I0-STATUS

Explanation: Control the COBOL 1/O status.

RDBMSLD-0202:
Example: OUTPUT SORTIE FAILEDIO-STATUS = 10-STATUS

Explanation: Control the COBOL 1/O status.

RDBMSLD-0203:
Example: WRITE SORTIE FAILEDIO-STATUS = IO-STATUS

Explanation: Control the COBOL 1/O status.

RDBMSLD-0204:
Example: UNABLE TO APPLY DISCRIM RULEINVALID DATA in REC Num
D-NB-RECSREDEFINE %SPLIT-1-L

Explanation: The discrimination rule is incorrect; some data cannot be processed by it.

RDBMSL D-0205:
Example: DD_ENTREE_DIR variable not set

Explanation: System error.

RDBMSLD-0206:
Example: DD_SORTIE_DIR variable not set

Explanation: System error.

RDBMSLD-0207:
Example: BAD PARAMETER. MUST BE P OR H

Explanation: System error.

RDBMSLD-0210:
Example: BAD VALUE IN INDICATOR FIELDINDICATOR FIELD
%FLD-1-C-IND%INDICESCONTAINS A BAD VALUE (NOT '?', SPACEOR
LOW-VALUE)CURRENT BAD VALUE IS [E-%FLD-1-C-IND%INDICES]

Explanation: Check the content of the DSNTIAUL file from z/OS.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

RDBMSLD-0211:
Example: FIELD %FLD-1:-C%INDICES:NOT NUMERICGroup Zone value is [
X-E-%FLD-1-C%INDICES |

Explanation: Check the content of the DB2 unloading file from z/OS.

RDBMSLD-0212:
Example: BAD VALUE FOR LOB FIELD <field> LOB ROW FILE NAME IS [xx]

Explanation: Format of the LOBS file name written in the unloading DB2 file is not
correct. Check HFS or PFS dataset type.

RDBMSLD-0213:
Example: MAX FILE NAME LENGTH IS REACH FOR LOB FIELD <field>LOB
ROW FILE NAME IS [xx IMAX LENGTH HAS TO BE <max>

Explanation: System error.

RDBMSLD-0214:
Example: TOO MANY DIRECTORIES FOR LOB FIELD <field> LOB ROW FILE
NAME IS [xx]

Explanation: System error

File Convertor Messages

File Script Error Messages

FILEWB-0001:
Example: $usage

Explanation: Error when entering the arguments of the file.sh command.

FILEWB-0003:
Example: Unix variable TMPPROJECT is not set or contains a bad directory name.

Explanation: Check the value of the TMPPROJECT variable and relaunch the execution.

FILEWB-0004:
Example: Temporary output directory $tempoutputdir is missing.

Explanation: Check the value of the TMPPROJECT variable and relaunch the execution.

Oracle Tuxedo Application Rehosting Workbench Reference Guide A-33

A-34

FILEWB-0005:
Example: invalid argument: do not use -s argument with -g or -m or -i. $usage

Explanation: Check the arguments passed to the file.sh command and relaunch the
execution.

FILEWB-0006:
Example: Target output directory $targetoutputdir is missing. Check parameters: -i
<output_directory> <configuration_name>. $usage

Explanation: Check the arguments passed to the file.sh command and relaunch the
execution.

FILEWB-0007:
Example: Target output directory $targetoutputdir is missing. Check parameters: -s
<output_directory> (<configuration>,...). $usage

Explanation: Check the arguments passed to the file.sh command and relaunch the
execution.

FILEWB-0008:
Example: Mandatory argument is list of configuration name (<configuration>,...). $usage

Explanation: The -s option expects an installation directory name and a list of
configurations as arguments.

FILEWB-0009:
Example: Mandatory argument is <configuration_name>. $usage

Explanation: The -s option expects an installation directory name and a configuration
name as arguments.

FILEWB-0010:
Example: Too many arguments: $2. $usage

Explanation: Check the arguments passed to the file.sh command and relaunch the
execution.

FILEWB-0011:
Example: External Variable PARAM is not set!

Explanation: Initialize the PARAM variable.

FILEWB-0021:
Example: can not access to directory $tempoutputdir/Template/$schema.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Explanation: Check the sequence of options used to execute the file.sh command.

FILEWB-0022:
Example: can not access to directory $tempoutputdir.

Explanation: Check the value of the TMPPROJECT variable and relaunch the execution.

FILEWB-0201:
Example: Mapper file SPARAM/file/mapper-$schema.re does not exist !

Explanation: A mapper-<schema name>.re configuration file should be created to execute
file.sh.

FILEWB-0202:
Example: Mapper file SPARAM/file/mapper-$schema.re is empty !

Explanation: A mapper-<schema name>.re configuration file should be set to execute
file.sh.

FILEWB-0203:
Example: Datamap file $PARAM/file/Datamap-$schema.re does not exist !

Explanation: A mapper-<schema name>.re configuration file should be created to execute
file.sh.

FILEWB-0204:
Example: Default Templates list file $defaulttemplatesfile is missing !

Explanation: Check the system errors proceeding this error.

FILEWB-0205:
Example: Can not modify #VAR: strings (in templates list file)

Explanation: Check the system errors proceeding this error.

FILEWB-0206:
Example: Check $templatesfile and $tmptemplatesfile files

Explanation: Check the system errors proceeding this error.

FILEWB-0207:
Example: Mapper file $orimapperfile is missing !

Explanation: Check the system errors proceeding this error.

Oracle Tuxedo Application Rehosting Workbench Reference Guide A-35

A-36

FILEWB-0208:
Example: Can not modify #VAR: strings (in mapper file)

Explanation: Check the system errors proceeding this error.

FILEWB-0209:
Example: in reading configuration file db-param.cfg. Check previous error messages

Explanation:

FILEWB-0210:
Example: in treating configuration file db-param.cfg. Bad targetdatabase version in
db-param.cfg file (${targetdatabase})

Explanation:

FILEWB-0241:
Example: unknown sign format for field %FLD-1:-C%INDICES:: %FLD-1:-IBM-DESC
| %FLD-1:-MF-DESC

Explanation: Sign format not supported; check the syntax.

FILEWB-0242:
Example: unknown datatype for field %FLD-1:-C%INDICES:: %FLD-1:-IBM-DESC /
%FLD-1:-MF-DESC

Explanation: Datatype format not supported, check the COBOL syntax.

FILEWB-0299:
Example: generation aborted. Check previous error messages

Explanation:

FILEWB-0303:
Example: There was a problem during dynamic modification of components. Check
SPARAM/$type_shell/modif-source-$shell_name.sh script

Explanation: the script created to modify the generated components did not end normally:
check the script and relaunch the execution.

FILEWB-0304:
Example: There was a problem during modification. Check previous message

Explanation: Check the errors preceding this error.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

FILEWB-0305:
Example: problem in modifying $ext files

Explanation: Check the system errors preceding this error.

FILEWB-0306:
Example: problem during chmod of shell $file

Explanation: Check the system errors preceding this error.

FILEWB-0307:
Example: problem in accessing *sh files

Explanation: Check the system errors preceding this error.

FILEWB-0501:
Example: installation aborted. Check previous message.

Explanation: __

FILEWB-0601:
Example: configuration file generation aborted. Check previous error messages

Explanation: __

File Internally Called Script Messages

DATAWB-1001:
Example: File $template is missing!

Explanation: Oracle Tuxedo Application Rehosting Workbench working environment is
not correctly installed.

DATAWB-1002:
Example: Missing Template file: $file or his pob version

Explanation: Installation problem or modification error for the *templates.txt file.

DATAWB-1003:
Example: Remove the pob extension to file name $file

Explanation: Installation problem or modification error for the *templates.txt file.

DATAWB-1011:
Example: missing file name argl

Oracle Tuxedo Application Rehosting Workbench Reference Guide A-37

Explanation: Internal error, the Rehosting Workbench working environment is incorrectly
installed or wrongly configured.

DATAWB-1012:
Example: bad return code for awk

Explanation: Check the preceding system messages.

DATAWB-1013:
Example: There was a problem during updating component $fixedfile

Explanation: Check the preceding system messages.

DATAWB-1014:
Example: There was a problem during comparing component $file

Explanation: Check the preceding system messages.

DATAWB-1021:
Example: Bad 1st parameter. <InputFile> <OutputFile>

Explanation: Check the preceding system messages.

DATAWB-1022:
Example: Bad 2nd parameter. <InputFile> <OutputFile>

Explanation: Internal error, the Rehosting Workbench working environment is
incorrectly installed or wrongly configured.

DATAWB-1023:
Example: sed script return a bad return code

Explanation: Check the preceding system messages.

DATAWB-1031:
Example: can not access to directory Template/$schema.

Explanation: Internal error, the Rehosting Workbench working environment is
incorrectly installed or wrongly configured.

DATAWB-1032:
Example: can not found $movefile file

Explanation: Internal error, the Rehosting Workbench working environment is
incorrectly installed or wrongly configured.

A-38 Oracle Tuxedo Application Rehosting Workbench Reference Guide

DATAWB-1033:
Example: can not read $movefile file

Explanation: Internal error, the Rehosting Workbench working environment is
incorrectly installed or wrongly configured.

DATAWB-1034:
Example: Version $relformat in $movefile is not supported by this tool.

Explanation: Internal error, the Rehosting Workbench working environment is
incorrectly installed or wrongly configured.

DATAWB-1035:
Example: can not evaluate string [$line] from $movefile

Explanation: Internal error, the Rehosting Workbench working environment is
incorrectly installed or wrongly configured.

DATAWB-1036:
Example: bad 1st argument typ in line $line

Explanation: Internal error, the Rehosting Workbench working environment is
incorrectly installed or wrongly configured.

DATAWB-1037:
Example: bad 2nd argument source_directory in line $line

Explanation: Internal error, the Rehosting Workbench working environment is
incorrectly installed or wrongly configured.

DATAWB-1038:
Example: Sinfo_filename is missing or empty (in <td>/$inputfile)

Explanation: Internal error, the Rehosting Workbench working environment is
incorrectly installed or wrongly configured.

DATAWB-1039:
Example: Sinfo_filename: problem when creating directory $targetdirectory for
Soutputfile

Explanation: Check the preceding system messages.

DATAWB-1040:

Example: $info_filename: problem during a copy $inputfile to $outputfile in line $line

Explanation: Check the preceding system messages.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

A-40

DATAWB-1041:
Example: $info_filename: can not chmod executable $outputfile

Explanation: Check the preceding system messages.

DATAWB-1042:
Example: $info_filename: can not chmod non executable script $inputfile

Explanation: Check the preceding system messages.

DATAWB-1043:
Example: bad return code when executing $inputfile

Explanation: Check the preceding system messages.

DATAWB-1051:
Example: can not access to directory Template/$schema. Separator character between
each schema name has to be a coma',".

Explanation: Internal error, the Rehosting Workbench working environment is
incorrectly installed or wrongly configured.

DATAWB-1052:
Example: can not grep $movefile file

Explanation: Internal error, the Rehosting Workbench working environment is
incorrectly installed or wrongly configured.

DATAWB-1053:
Example: content of file $movefileori are not equal for tag 'M:s:"'

Explanation: Internal error, the Rehosting Workbench working environment is
incorrectly installed or wrongly configured.

DATAWB-1054:
Example: can not find generated file $filetoinclude

Explanation: Internal error, the Rehosting Workbench working environment is
incorrectly installed or wrongly configured.

DATAWB-1055:
Example: can not modify a file

Explanation: Check the preceding system messages.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

DATAWB-1056:
Example: can not generate $outputfile using perl program

Explanation: Check the preceding system messages.

DATAWB-1057:
Example: $info_filename: can not chmod a temporary file $tmpfilemc in line $line

Explanation: Check the preceding system messages.

DATAWB-1061:
Example: Bad parameters: file[rdbms <configfile> <OutputFile>

Explanation: Check the preceding system messages.

DATAWB-1062:
Example: Configuration file $configfile is missing!

Explanation: Check the preceding system messages.

DATAWB-1063:
Example: Can not create temporary parameter file $outputfile

Explanation: Check the preceding system messages.

DATAWB-1064:
Example: Can not insert a line into the temporary parameter file $outputfile

Explanation: Check the preceding system messages.

DATAWB-1065:
Example: Bad 1st parameter. file[rdbms <configfile> <OutputFile>

Explanation: Check the preceding system messages.

DATAWB-1101:
Example: usage is $scriptname <format_log> <mvslog_filename>
<output_report_filename>

Explanation: Impossible to process the LOG file containing the information unloaded
from z/OS.

DATAWB-1102:
Example: in $scriptname. Input mvs log file is missing $mvslogfile.

Oracle Tuxedo Application Rehosting Workbench Reference Guide A-4

Explanation: Impossible to process the LOG file containing the information unloaded
from z/OS.

DATAWB-1103:
Example: in $scriptname.$0. bad return code for awk reading $mvslogfile

Explanation: Impossible to process the LOG file containing the information unloaded
from z/OS.

DATAWB-1104:
Example: in $scriptname.$0. can not found SUCCESSFUL UNLOAD x ROWS
information in SYSPRINT LOG report file $mvslogfile

Explanation: Impossible to process the LOG file containing the information unloaded
from z/OS.

DATAWB-1105:
Example: in $scriptname.$0. empty 4th arg. $usagedargs

Explanation: Impossible to process the LOG file containing the information unloaded
from z/OS.

DATAWB-1106:
Example: in $scriptname.$0. illegal format for 4th arg '$optionalargs'. $usagedargs

Explanation: Impossible to process the LOG file containing the information unloaded
from z/OS.

DATAWB-1107:
Example: in $scriptname.$0. empty physical file name '$physfilename’ in 4th arg
‘$optionalargs'. $usagedargs

Explanation: Impossible to process the LOG file containing the information unloaded
from z/OS.

DATAWB-1108:
Example: in $scriptname.$0. can not found binary transferred file $binaryTransferredFile'
in 4th arg '$optionalargs'. $usagedargs

Explanation: Impossible to process the LOG file containing the information unloaded
from z/OS.

DATAWB-1109:
Example: in $0. bad return code for awk reading $mvslogfile. $recfmandreclen

A-42 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Explanation: Impossible to process the LOG file containing the information unloaded
from z/OS.

DATAWB-1110:
Example: in $0. can not found $physfilename information in ftp report file $mvslogfile

Explanation: Impossible to process the LOG file containing the information unloaded
from z/OS.

DATAWB-1111:
Example: in $scriptname. bad return code for Is or awk reading $mvslogfile. $rows

Explanation: Impossible to process the LOG file containing the information unloaded
from z/OS.

DATAWB-1112:
Example: in $scriptname. can not create output report file $outputreportfile

Explanation: Impossible to process the LOG file containing the information unloaded
from z/OS.

DATAWB-1113:
Example: in $scriptname. Bad mvs log format: $mvsformat.

Explanation: Impossible to process the LOG file containing the information unloaded
from z/OS.

DATAWB-1114:
Example: in $scriptname. internal variable tableAndRows is empty.

Explanation: Impossible to process the LOG file containing the information unloaded
from z/OS.

DATAWB-1115:
Example: in $scriptname. can not create report file $outputreportfile

Explanation: Impossible to process the LOG file containing the information unloaded
from z/OS.

DATAWB-1201:
Example: unix variable NLS_LANG not set

Explanation: Check the value of the NLS_LANG variable before relaunching the
execution.

Oracle Tuxedo Application Rehosting Workbench Reference Guide A-43

A-44

DATAWB-1202:
Example: unix variable MT_DB_USER not set

Explanation: Check the value of the MT_DB_USER variable before relaunching the
execution.

DATAWB-1203:
Example: unix variable MT_DB_PWD not set

Explanation: Check the value of the MT_DB_PWD variable before relaunching the
execution.

DATAWB-1204:
Example: can not found directory $MT_LOG: $MT_LOG

Explanation: Check the value of the MT_LOG variable before relaunching the execution.

DATAWB-1205:
Example: can not found directory $TMPPROJECT : $TMPPROJECT

Explanation: Check the value of the TMPPROJECT variable before relaunching the
execution.

DATAWB-1206:
Example: can not found Control File : $ctl. Use -h for help

Explanation: Check the generation step reached by the Rehosting Workbench.

DATAWB-1207:
Example: Bad Parameter: $1

Explanation: Internal error.

DATAWB-1208:
Example: bad Control File. Can not found table name.

Explanation: The *.ctl file is not adapted, check the generation.

DATAWB-1210:
Example: can not create log file

Explanation: Check the system errors preceding this error.

DATAWB-1212:
Example: unix variable MT_DB_LOGIN not set

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Explanation: Check the value of the MT_DB_LOGIN variable before relaunching the
execution.

DATAWB-1221:
Example: can not clean this table! Check file $STMPPROJECT/truncate_$table.log

Explanation: The table does not exit or there are integrity constraints.

DATAWB-1222:
Example: Syntax or Oracle Error:Oracle errors are listed bellow

Explanation: __

DATAWB-1223:
Example: can not give how many rows have been inserted into table $table

Explanation: Internal error.

DATAWB-1241:
Example: can not found report file

Explanation: Check the system errors preceding this error.

DATAWB-1242:
Example: the report file containing the number of rows to be inserted is missing:
S$fichierReport

Explanation: The number of records is absent from the LOG of the transcoding program.

DATAWB-1243:
Example: the number of rows inserted into table $table is not equal to the number written
in the report file $fichierReport !Oracle $qteOraReport $qteFile

Explanation:

DATAWB-1299:
Example: an error occurred! Checks also file: $log

Explanation: Check the LOG and the messages displayed before this error.

Reloading Error Messages

FILELD-0001:
Example: invalid parameter: $usage

Explanation: Error when inputting the arguments for the loadfile or loadtable scripts.

Oracle Tuxedo Application Rehosting Workbench Reference Guide A-45

A-46

FILELD-0002:
Example: can not create log file $logfile

Explanation: System error. - Check the preceding messages.

FILELD-0003:
Example: input file $DD_ENTREE not found Content of log file $logdfile is

Explanation: Transferred file is missing or the DD_ENTREE variable is wrongly
initialized.

FILELD-0004:
Example: file $DD_ENTREE is not reloadedContent of log file $logfile is

Explanation:

FILELD-0005:
Example: input variable DD_ENTREE must be set

Explanation: Installation problem. - Check the use of the loadgdg script.

FILELD-0006:
Example: input variable DD_SORTIE must be set

Explanation: Installation problem. - Check the use of the loadgdg script.

FILELD-0007:
Example: input variable DD_GENEID must be set

Explanation: Installation problem. - Check the use of the loadgdg script.

FILELD-0008:
Example: can not create temporary file $tmpfile.list

Explanation: System error. - Check the proceeding messages.

FILELD-0009:
Example: GDS file ($geneid) is missing and it already exists a previous GDS file.

Explanation: Files, members of a GDG, are missing.

FILELD-0010:
Example: Content of log file $tmpfile.loadgds is :See message above.

Explanation: Error when executing loadgds.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

FILELD-0011:
Example: problem with sort of $tmpfile.list

Explanation: System error. - Check the preceding messages.

FILELD-0012:
Example: none GDS file are converted. (LIMIT is %LIMIT-GDG:)

Explanation: __

FILELD-0013:
Example: can not create temporary script $tmpfile.ksh

Explanation: System error. - Check the preceding messages.

FILELD-0014:

Example: transcoded GDS file ($geneid) is missing and it already exists a previous GDS

file.
Explanation: Transcoded files, members of a GDG, are missing.

FILELD-0015:
Example: can not modify temporary script $tmpfile.ksh

Explanation: System error. - Check the preceding messages.

FILELD-0016:
Example: none GDS file are prepared. (LIMIT is %LIMIT-GDG:)

Explanation: The loadgdg script was launched with the -l option and the -t option has not

executed correctly.

FILELD-0017:
Example: can not add final line in temporary file $tmpfile.ksh

Explanation: System error. - Check the preceding messages.

FILELD-0018:
Example: can not chmod temporary script $tmpfile.ksh

Explanation: System error. - Check the preceding messages.

FILELD-0019:
Example: can not create GDG file using RT BATCH EJR utility.

Oracle Tuxedo Application Rehosting Workbench Reference Guide

A-41

A-48

Explanation: Check preceding messages (See the Oracle Tuxedo Application Runtime for
Batch Reference Guide).

FILELD-0101:
Example: bad sub parameters 'SOPTARG%%:*' for method ftpParameter has to be
‘ftp<physical_name_in_ftplogfile><ftplog_file>'$usage

Explanation: Check the arguments of the -c option.

FILELD-0102:
Example: bad method '$methodofcheck’ of check. Allowed method is 'ftp'$usage

Explanation: Check the configuration of the loadfile script. Then relaunch the execution.

FILELD-0103:
Example: input file $DD_MVSLOG not found. Check parameter -c.Content of log file
Slogfile is

Explanation: Impossible to process the LOG file containing the information unloaded
from z/OS.

FILELD-0104:
Example: can not create a report file for $DD_ENTREE

Explanation: System error. - Check the preceding messages.

FILELD-0105:
Example: awk return a bad return code when analyzing logfileContent of log file $logfile
is

Explanation: System error. - Check the preceding messages.

FILELD-0106:
Example: the number of rows written in file $DD_SORTIE is not equal to the number
calculated using the log file (see created report $reportfile) IReport $recstransferred

Explanation:

FILELD-0111:
Example: bad sub parameters 'SOPTARG%%:*' for method ftpParameter has to be
'ftp<begin_physical_name_in_ftplogfile><ftplog_file>'$usage

Explanation: Check the arguments of the -c option specific to the case of GDGs.

FILELD-0151:
Example: missing or empty DDL file $ddIfileContent of log file $logfile is

Oracle Tuxedo Application Rehosting Workbench Reference Guide

Explanation: Check the content of the $DDL variable.

FILELD-0152:
Example: can not create <RDBMS> DDL using $ddlfile file

Explanation: Check the RDBMS error messages and the values of the associated
variables.

FILELD-0153:
Example: %FILE-1:-L. File $DD_ENTREE not reloaded into RDBMS. Content of log
file $logfile is

Explanation: __

FILELD-0154:
Example: can not connect to db2 using MT_DB_DBNAME unix variable

Explanation: Check the RDBMS error messages and the values of the associated
variables.

FILELD-0155:
Example: can not execute a ‘connect reset' db2 statement

Explanation: Check the RDBMS error messages.

FILELD-0156:
Example: can not execute a 'terminate’ db2 statement

Explanation: Check the RDBMS error messages.

FILELD-0201:
Example: OPEN INPUT %FILE-1:-CONVERTER-NAME FAILEDASSIGN
ENTREEIO-STATUS = 10-STATUS

Explanation: Check the COBOL I/0O status.

FILELD-0202:
Example: OUTPUT %FILE-1:-CONVERTER-NAME FAILEDASSIGN
SORTIEIO-STATUS = I0-STATUS

Explanation: Check the COBOL I/O status.

FILELD-0203:
Example: WRITE %FILE-1:-CONVERTER-NAME FAILEDASSIGN
SORTIEIO-STATUS = I0-STATUS

Oracle Tuxedo Application Rehosting Workbench Reference Guide A-49

Explanation: Check the COBOL 1/O status.

FILELD-0204:
Example: UNABLE TO APPLY DISCRIM RULEINVALID DATA in REC Num
D-NB-RECSREDEFINE %SPLIT-1-L

Explanation: The discrimination rule is not correct, some data cannot be processed by this
rule.

FILELD-0205:
Example: INSERT %FILE-1:-L FAILEDIO-STATUS = 10-STATUS

Explanation: Check the preceding error message and the RDBMS SQL code.

FILELD-0206:
Example: UNABLE TO GET A NEXTVAL FROM
:%TABLE-1-SEQ-NUM-SEQUENCE-TSQLCODE= SQLCODE

Explanation: Check the RDBMS SQL code.

FILELD-0207:
Example: INSERT INTO %TABLE-1:SQLCODE= SQLCODESQLERRMC=
SQLERRMC(1SQLERRML)MW-SORTIE-REC

Explanation: Check the RDBMS SQL code.

FILELD-0209:
Example: BAD CREATING
SEQUENCE:%TABLE-1-SEQ-NUM-SEQUENCE-TSQLCODE=
SQLCODESQLERRMC= SQLERRMC(1SQLERRML)

Explanation: Check the RDBMS SQL code.

JCL Translator Messages
JCL Translator Error Messages

When the translator encounters uses of utility programs which are only partially supported, it may
produce error messages of the form: #{keyword} utility [optional sub parameter].

Message: Not yet translated.
Example: No yet translated ICETOOL with SELECT

A-50 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Explanation: Operation or command SELECT of utility program ICETOOL will not be
translated, because the translation is not yet implemented.

Message: Untranslated
Example: Untranslated IEBGENER, GENERATE with MEMBER

Explanation: Operation or command GENERATE with MEMBER of utility program
IEBGENER will not be translated, because the translator does not know how to reproduce
the original behavior with the information available to it. Use post-translation facilities to
implement the required behavior.

Message: Ignored
Example: Ignored ICETOOL with OCCUR

Explanation: Operation or command OCCUR of utility program ICETOOL will not be
translated, because there is no need for it on the target platform.

JCL Translator Log Errors

Message: Configuration file is absent or inaccessible
Error: The file #P"._./param/system.desc' does not exist.
ERROR*: Parse-Whole-File: file /param/file-in-tabler._txt not found!

Message: Syntax error in the system description file
Parsing system file : ../param/system.desc
Parse error at character position nnn in Ffile:

While parsing in grammar CATALOG::SYSTEM-GRAMMAR,

Message: Syntax error in the translator configuration file
Parsing config file : .._./param/config-trad-JCL.desc
Parse error at character position nnn in File:

While parsing in grammar JCLZ::CONFIG

Message: Impossible to find the POB file for the component to translate
FATAL INTERNAL ERROR:
Can*t find POB fTile
/JCL/pob/BPRAJOO1. jcl.pob; please re-catalog the system.

Message: The JCL source file is more recent than the POB file
FATAL INTERNAL ERROR:
POB /JCL/pob/BPRAJOO1.jcl.pob is less recent
than source file /JCL/BPRAJOO1.jcl; please re-catalog the system.

Oracle Tuxedo Application Rehosting Workbench Reference Guide A-51

A-52 Oracle Tuxedo Application Rehosting Workbench Reference Guide

Common Information

COBOL Reloading Programs Reserved Words List
MW-ENTREE
MW-SORTIE
MW-BINARY-DATA
MW-REL-KEY
MW-SEQ-KEY
MW-NB-INSERT
Future use: MW-IND-OCC-<copy-field_name>
MW-COUNT-NUMERIC-BCD-USE-X
MW-COUNT-NUMERIC-DISP-USE-X
MW-DISCRIM-TO-TRANSCODE
MW-CHECK-ONE-CHAR
MW-CHECK-ONE-CHAR-SPECIAL-SIGN

DISCRIM-RULE-RESULT

IO-STATUS
D-NB-RECS

Oracle Tuxedo Application Rehosting Workbench Reference Guide

B-2

D-NB-RECS-MAX

TR-<copy-field_name>
TRANSCODE-STR
TRANSCODE-STR-LENGTH
TRANSCODE-LENGTH
TRANSCODE-SOURCE
TRANSCODE-CIBLE

MW-FILE-END-OF-LINE

Oracle Tuxedo Application Rehosting Workbench Reference Guide

	Oracle Tuxedo Application Rehosting Workbench
	11g Release 1 (11.1.1.3.0)

	Oracle Tuxedo Application Rehosting Workbench Reference Guide, 11g Release 1 (11.1.1.3.0)
	Introduction
	Concepts

	Codeset Conversion
	Overview of Codeset Conversion
	Purpose
	Audience

	z/OS - Displaying Graphical Characters
	Reference Monitor
	REFCOD80 File
	Viewing Characters Under z/OS

	UNIX/Linux: Displaying Graphical Characters
	Reference Monitor
	COBOL CONVERTMW.cpy

	Validating and Adapting the Transcoding Copy File
	Validation
	Adapting the COBOL CONVERTMW.cpy Copy File
	Finding the z/OS Character
	Finding the UNIX Characters to Replace
	Replacing the UNIX Character
	Remarks Concerning the Example

	Special Characters

	Using the COBOL CONVERTMW.cpy File
	Error Messages
	See Also

	Cataloger
	Overview of the Cataloger
	Inputs to the Cataloger Process
	Outputs from the Cataloger Process
	The Cataloger Process

	Description of the Input Components
	COBOL
	References
	Restrictions

	Embedded CICS
	References

	SQL
	References

	JCL
	References
	General Information
	Restrictions

	BMS screen definition
	CICS Configuration

	Description of the Configuration Files
	System Description File
	General Structure
	Global Options
	Special Options
	Directories
	files Clause
	logical-name clause
	options-clause
	libraries-clause
	sql-libraries-clause

	Example of System Description File
	JCL-Launcher Specification Files
	Purpose
	Syntax
	Option List
	Usage and Default Value

	Description of the Output Files
	Catalog Reports
	Format and Location
	Field Definitions
	report-${SYSNAME}-COBOL-Programs
	report-${SYSNAME}-COBOL-Copy
	report-${SYSNAME}-JCL-Files
	report-${SYSNAME}-JCL-Sub-Files
	report-${SYSNAME}-JCL-Jobs
	report-${SYSNAME}-Screens
	report-${SYSNAME}-SQL-Tables
	report-${SYSNAME}-SQL-Views
	report-${SYSNAME}-Transactions
	report-${SYSNAME}-Anomalies

	Execution Logs
	Description of Other Output Files
	POB Files for ASTs
	CDM Files for COBOL Programs and Copy Files
	The Cataloger Symtab and Other Miscellaneous Files

	Detailed Processing
	Processing Phases
	Command-line Syntax
	The Oracle Tuxedo Application Rehosting Workbench Launcher

	System-Wide Commands
	The preparse-files Command

	Component Search Operation
	Compile-Time References
	Normal Sub-File Search

	Run-Time Reference
	Unrestricted Search
	Directed Search

	Repetitive and Incremental Operation
	Initial Processing: Repetitive Operation
	Changes in the Asset: Incremental Operation

	DB2-to-Oracle Convertor
	Overview of the DB2-to-Oracle Convertor
	Purpose
	Structure
	See Also
	Oracle Tuxedo Application Rehosting Workbench Schema
	Environment Variables

	Description of the Input Components
	File Locations
	Location of rdbms.sh
	Location of db-param.cfg File

	DB2 DDL Converted
	Conversion of DB2 Data Types
	DB2 Column Property Conversion

	Description of the Configuration Files
	POB Files
	DB2 DDL POB File
	system.desc
	db-param.cfg
	File Modifying Generated Components
	Renaming File
	rdbms-template.txt
	rdbms_move_assignation.txt

	Description of the Output Files
	File Locations
	Location of Temporary Files
	Locations of Log Files
	Locations of Warning Files
	Location of Generated Files

	Generated Objects
	Temporary Files
	Datamap File
	Mapper File
	COBOL Description
	Unloading JCL
	Unloading JCL: DSNTIAUL
	Unloading JCL: DSNUPROC
	Unloading JCL: DSNUTILB
	COBOL Transcoding Programs
	Reloading Korn Shell Scripts
	Target DDL
	Ordered List of Tables File
	COBOL Conversion Guide File
	SQL*LOADER Control Files
	DDL Translator Log File
	Execution Reports

	Detailed Processing
	Command-line Syntax
	rdbms.sh
	Unitary Usage Sequence

	Process Steps
	Configuring the Environments and Installing the Components
	Unloading Data
	Transferring the Data
	Reloading the Data
	Checking the Transfers

	File Convertor: Introduction
	Overview of the File Convertor
	Purpose
	Structure
	See Also
	File Organizations Processed
	z/OS File Organizations
	File Conversion to File or to RDBMS Table

	Oracle Tuxedo Application Rehosting Workbench Configuration Name
	File Descriptions and Managing Files With the Same Structure
	COBOL Description
	COBOL Description Format
	COBOL Description and Related Discrimination Rules

	List of the Input Components
	Datamap File
	Mapper File
	COBOL Description
	POB Files

	File-to-File Converter
	Overview of the File-to-File Converter
	Purpose
	Structure
	See Also
	File Organizations Processed
	Keeping z/OS File Organization on the Target Platform
	PDS File Organization
	GDG File Organization

	Oracle Tuxedo Application Rehosting Workbench Configuration Name
	Environment Variables

	Description of the Input Components
	File Locations
	Location of file.sh
	Location of db-param.cfg File

	Description of the Configuration Files
	db-param.cfg
	File Modifying Generated Components
	file-template.txt
	file-move-assignation.pgm
	Datamap File
	Mapper File
	Discrimination Rules
	COBOL Description

	Description of the Output Files
	File Locations
	Location of Temporary Files
	Location of Log Files
	Location of Generated Files

	Generated Objects
	Unloading JCL
	Unloading JCL for Generation Data Group
	COBOL Transcoding Programs
	Reloading Korn Shell Scripts
	Access Functions and Utility Programs

	Access Function Call Arguments
	Call Arguments Used
	Copy Files to Be Implemented

	Execution Reports

	Detailed Processing
	Command-Line Syntax
	file.sh
	Unitary Usage Sequence

	Process Steps
	Configuring the Environments and Installing the Components
	Unloading Data
	Transferring the Data
	Reloading the Data
	Checking the Transfers

	File-to-Oracle Converter
	Overview of the File-to-Oracle Converter
	Purpose
	Structure
	See Also
	File Organizations Processed
	Migrating to Oracle Table on the Target Platform

	Oracle Tuxedo Application Rehosting Workbench Configuration Name
	VSAM Files Becoming Oracle Table
	Specific Migration Rules Applied
	Rules Applied to Picture Clauses

	Environment Variables

	Description of the Input Components
	File Locations
	Location of file.sh
	Location of db-param.cfg File

	Description of the Configuration Files
	db-param.cfg
	File Modifying Generated Components
	file-template.txt
	file-move-assignation.pgm
	Datamap File
	Mapper File
	Mapping Strategy Clauses
	Mapping Strategy Clause Syntax and Parameters
	Mapping Strategy Examples
	Discrimination Rules
	COBOL Description

	Description of the Output Files
	File Locations
	Location of Temporary Files
	Location of Log Files
	Location of Generated Files

	Generated Objects
	Unloading JCL
	COBOL Transcoding Programs
	Reloading Korn Shell Scripts
	Target DDL
	Access Functions and Utility Programs

	Access Function Call Arguments
	Call Arguments Used
	Copy Files to Be Implemented

	Korn Shell Utilities
	Oracle Tuxedo Application Runtime for CICS Configuration Files
	COBOL and JCL Conversion Guide Files
	.rdb Files
	Parameters and Syntax
	Example of .rdb File

	Execution Reports

	Detailed Processing
	Command-Line Syntax
	file.sh
	Unitary Usage Sequence

	Process Steps
	Configuring the Environments and Installing the Components
	Unloading Data
	Transferring the Data
	Reloading the Data
	Checking the Transfers

	File-to-Db2/luw (udb) Converter
	Overview of the File-to-Db2/luw (udb) Converter
	Purpose
	Structure
	See Also
	File Organizations Process
	Migrating to Db2/luw (udb) Table on the Target Platform

	Oracle Tuxedo Application Rehosting Workbench Configuration Name
	VSAM Files Becoming Db2/luw (udb) Table
	Specific Migration Rules Applied
	Rules Applied to Picture Clauses

	Environment Variables

	Description of the Input Components
	File Locations
	Location of file.sh
	Location of db-param.cfg File

	Description of the Configuration Files
	db-param.cfg
	File Modifying Generated Components
	file-template-db2luw.txt
	file-move-assignation-db2luw.pgm
	Datamap File
	Mapper File
	Mapping Strategy Clauses
	Mapping Strategy Clause Syntax and Parameters
	Mapping Strategy Examples
	Discrimination Rules
	COBOL Description

	Description of the Output Files
	File Locations
	Location of Temporary Files
	Location of Log Files
	Location of Generated Files

	Generated Objects
	Unloading JCL
	COBOL Transcoding Programs
	Reloading Korn Shell Scripts
	Target DDL
	Access Functions and Utility Programs

	Access Function Call Arguments
	Call Arguments Used
	Copy Files to Be Implemented

	Korn Shell Utilities
	Oracle Tuxedo Application Runtime for CICS Configuration Files
	COBOL and JCL Conversion Guide Files
	.rdb Files
	Parameters and Syntax
	Example of .rdb File

	Execution Reports

	Detailed Processing
	Command-Line Syntax
	file.sh
	Unitary Usage Sequence

	Process Steps
	Configuring the Environments and Installing the Components
	Unloading Data
	Transferring the Data
	Reloading the Data
	Checking the Transfers

	JCL Translator
	Overview
	JCL Translator Definitions

	General Description and Operation
	General Information
	Behavior Coverage

	Description of Input Components
	Description of the Configuration Files
	The System Description File
	The JCL-Translation Configuration File

	Description of Output Files
	Translated KSH Scripts and Sub-Files
	KSH Version
	File Structure, Naming Scheme and Sub-File Handling
	Handling of JCL and KSH Variables
	Script Structure
	Script Layout

	Execution Logs

	Detailed Operation
	General Information
	Command-line Syntax
	The Refine Launcher Interface
	The jclz-unix Command

	Repetitive and Incremental Operation
	Initial Processing: Repetitive Operation
	Changes in the Asset: Incremental Operation
	Concurrent Operation

	Frequently Asked Questions
	When do I translate anew some JCL?
	How do I force the (re)translation of a JCL?
	I deleted a JCL. Why is the corresponding KSH still present?
	I run the translator but it produces no translation
	The procedures are not included in the JCLs, and hence in the KSH
	Where do I find the translated procedures?
	Why are some FSNs lost during translation?

	COBOL Converter
	Overview of the COBOL Converter
	Scope
	Inputs
	Outputs
	Conversion Phases

	Restrictions and Limitations
	Use of COMP-5 Type on Linux Platforms
	Use of COMP-5 Type and the TRUNC Compiler Option
	EBCDIC-to-ASCII Conversion Issues
	Literal Constants: Characters or Numbers?
	Use of Floating-Point Variables
	REWRITE Operations on LINE SEQUENTIAL Files
	Pointer Manipulation
	Pointer Size Changes: Beware of Redefinitions
	Linkage-Section Arguments with NULL Address
	Representation of the NULL Pointer Value

	Description of the Input Components, Prerequisites
	Description of the Configuration Files
	System Description File
	Main Conversion Configuration File
	General Syntax
	target-dir Clause
	Sql-rules Clause
	keep-same-file-names, target-program-extension and target-copy-extension Clauses
	Verbosity-Level Clause
	deferred-copy-reconcil Clause
	force-translation Clause
	rename-copy-map-file Clause
	rename-call-map-file Clause
	post-translation-file Clause
	on-size-error-call Clause
	hexa-map-file Clause
	conv-ctrl-file Clause and alt-key-file Clause
	RDBMS-conversion-file Clause
	keywords-file Clause
	accept-date and accept-day Clauses
	sql-stored-procedures-file Clause
	remove-sql-qualifier Clause
	activate-cics-rules Clause
	pure-seq-map-file Clause
	dont-print-what-string Clause
	remove-empty-copies Clause
	sql-return-codes-file Clause

	copy-renaming Configuration File
	Call-Renaming Configuration File
	Post-Translation Configuration File
	Hexadecimal Conversion Configuration File
	How to Generate the hexa-map File

	File-to-RDBMS Configuration Files
	RDBMS-conversion Configuration Files
	keywords File
	stored-procedure File
	purely-sequential Configuration File
	sql-return-codes Configuration File

	Description of Output Files
	Converted Programs and Copy Files
	Naming Scheme
	Transformation Comments
	Layout
	Miscellaneous Issues

	Compiler Options
	MicroFocus
	Installation-dependent Options
	1.1.1.3 Options Depending on Customer Choice
	1.1.1.4 Options Influencing Compile-Time Operation
	COBOL-IT

	Detailed Processing
	Overview
	Command-Line Syntax
	Refine Launcher Interface
	cobol-convert Command

	Repetitive and Incremental Operation
	Initial Processing: Repetitive Operation
	Changes in the Asset: Incremental Operation

	Oracle Tuxedo Application Rehosting Workbench Messages
	DB2-to-Oracle Converter Messages
	Overview
	DB2-to-Oracle Convertor Error Messages and Translation Issues
	Overview
	DB2-to-Oracle Convertor Set-up Error Messages
	Setup Translation-Issue Messages
	Translation Error Messages
	Translation Issue Messages
	Output Error Messages
	Output Translation-Issue Messages
	Miscellaneous Error Messages
	Miscellaneous Translation-Issue Messages:
	RDBMS Script Error Messages

	File Convertor Messages
	File Script Error Messages
	File Internally Called Script Messages
	Reloading Error Messages

	JCL Translator Messages
	JCL Translator Error Messages
	JCL Translator Log Errors

	Common Information
	COBOL Reloading Programs Reserved Words List

