
Oracle® Service Architecture Leveraging Tuxedo (SALT)
Reference Guide

11g Release 1 (11.1.1.2)

April 2011

Oracle Service Architecture Leveraging Tuxedo (SALT) Reference Guide, 11g Release 1 (11.1.1.2)

Copyright © 2006, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Oracle SALT Command Reference 1
buildscaclient 2
buildscacomponent 6
buildscaserver 11
GWWS(5) 15
mkfldfromschema, mkfld32fromschema 16
mkviewfromschema, mkview32fromschema 18
scaadmin 19
SCAHOST (5) 21
scapasswordtool 22
scastructc32, scastructc(1) 23
scastructdis32, scastructdis 26
scatuxgen(1) 27
setSCAPasswordCallback(3c) 29
tmscd(1) 30
tmwsdlgen 32
tuxscagen(1) 34
WEBHNDLR (5) 38
wsadmin 40
wsdlcvt 44
wsloadcf 46
Oracle SALT Web Service Definition File Reference 1
Overview 1
Oracle SALT WSDF Format 2
XML Schema 3
Oracle SALT WSDF Examples 3
Oracle SALT WSDF Element Descriptions 4
<Definition> 4
<WSBinding> 5
<Servicegroup> 6
<Service> 6
<Input> 7
<Output> 8
<Fault> 8
<Msghandler> 9

<Policy> 9
<Property> 10
<SOAP> 11
<AccessingPoints> 12
<Endpoint> 12
<Realm> 13
Oracle SALT Deployment File Reference 1
Overview 1
Oracle SALT SALTDEPLOY Format 2
XML Schema 4
Oracle SALT SALTDEPLOY Example 4
Oracle SALT SALTDEPLOY Element Description 5
<Deployment> 5
<WSDF> 6
<WSGateway> 6
<GWInstance> 6
<System> 12
Oracle SALT WS-ReliableMessaging Policy Assertion Reference 1
Overview 1
WS-RM Policy Assertion Format 2
WS-RM Assertion File Example 2
WS-RM Assertion Element Description 3
<wsrm:InactivityTimeout> 3
<wsrm:AcknowledgementInterval> 3
<wsrm:BaseRetransmissionInterval> 3
<wsrm:ExponentialBackoff> 4
<beapolicy:Expires> 4
<beapolicy:QOS> 4
<wsrm:RMAssertion> 4
Oracle SALT WS-AT Assertion Reference 1
Overview 1
Policy File Example 2
Oracle SALT WS-SecurityPolicy Assertion 1.2 Reference 1
Overview 1
Oracle SALT WSSP 1.2 Policy File Example 2

Oracle SALT WSSP 1.2 Policy Templates 3
Oracle SALT WSSP1.2 Assertion Description 4
<sp:SignedParts> 4
<sp:UsernameToken> 5
<sp:X509Token> 5
<sp:AlgorithmSuite> 6
<sp:Layout> 6
<sp:TransportBinding > 6
<sp:AsymmetricBinding> 7
<sp:SupportingToken> 10
Oracle SALT WS-SecurityPolicy Assertion 1.0 Reference 1
Overview 1
SALT WSSP 1.0 Policy Assertion Format 2
SALT WSSP 1.0 Assertion File Example 3
SALT WSSP 1.0 Policy Templates 3
SALT WSSP 1.0 Assertion Element Description 4
<CanonicalizationAlgorithm> 4
<Claims> 5
<DigestAlgorithm> 5
<Identity> 5
<Integrity> 5
<MessageParts> 6
<SecurityToken> 6
<SignatureAlgorithm> 7
<SupportedTokens> 8
<Target> 8
<Transform> 8
<UsePassword> 9
Usage of MessageParts 9
Oracle SALT SCA ATMI Binding Reference 1
SCA ATMI Binding Schema 1
SCA ATMI Binding Attributes Description 3
</binding.atmi/@requires> 3
</binding.atmi/tuxconfig> 4
</binding.atmi/map> 5

</binding.atmi/serviceType> 5
</binding.atmi/inputBufferType>, </binding.atmi/outputBufferType>, </bind-
ing.atmi/errorBufferType> 5
</binding.atmi/workStationParameters> 7
</binding.atmi/authentication> 8
</binding.atmi/fieldTablesLocation> 9
</binding.atmi/fieldTablesLocation32> 9
</binding.atmi/fieldTables> 9
</binding.atmi/fieldTables32> 9
</binding.atmi/viewFilesLocation> 9
</binding.atmi/viewFilesLocation32> 9
</binding.atmi/viewFiles> 10
</binding.atmi/viewFiles32> 10
</binding.atmi/remoteAccess> 10
</binding.atmi/transaction/@timeout> 10
See Also 11
Oracle SALT HTTP FML32 Buffer Format 1
Oracle SALT HTTP FML32 Buffer Format 1
Input Buffers 4
Output Buffers 8

Oracle SALT Command Reference
The Oracle SALT Command Reference describes system processes and commands delivered
with the Oracle SALT software.

Table 1 lists Oracle SALT commands and functions.

Table 1 Oracle SALT Commands and Functions

Name Description

buildscaclient Builds processes that call SCA components.

buildscacomponent Builds SCA components.

buildscaserver Parses SCDL definitions and interfaces and produces a
Tuxedo-deployable server and elements.

GWWS(5) Web service gateway server.

mkfldfromschema,
mkfld32fromschema

The mkfldfromschema and mkfld32fromschema
commands take an XML schema as input and produce
a field table.

mkviewfromschema,
mkview32fromschema

The mkviewfromschema and mkview32fromschema
commands take an XML schema as input and produce
a view file.

scaadmin SCA server management command interpreter.
Oracle SALT Reference Guide 1

buildscaclient
Name

buildscaclient – Builds processes that call SCA components.

SCAHOST (5) Generic server for Python, Ruby, or PHP components.

scapasswordtool Manages passwords for Oracle Tuxedo authentication in
SCA clients.

scastructc32, scastructc(1) Oracle SALT structure description file compiler

scastructdis32, scastructdis Binary structure and view files disassembler.

scatuxgen(1) Generates Oracle Tuxedo Service Metadata Repository
interface information from an SCA interface.

setSCAPasswordCallback(3c) Sets the callback for retrieving a password associated
with an identifier in a <binding.atmi> element.

tmscd(1) Command line utility used to activate and deactivate service
contract discovery.

tmwsdlgen WSDL document generator.

tuxscagen(1) Generates SCA, SCDL, and server-side interface files for
Tuxedo services.

WEBHNDLR (5) Generic Web Application server handler for PHP,
Python or Ruby applications.

wsadmin Oracle SALT administration command interpreter.

wsdlcvt WSDL document converter.

wsloadcf Reads SALT Deployment file and other referenced
artifacts. Loads a binary SALTCONFIG file.

Table 1 Oracle SALT Commands and Functions

Name Description
2 Oracle SALT Reference Guide

bui ldscac l i ent
Synopsis
buildscaclient -c default_component [-v] [-h] [-k] [-o name] [-s SCAroot]

[-f firstfiles] [-l lastfiles] [-S structurefiles]

Description
This command is used to build client processes that can call SCA components hosted in Tuxedo
environments. The command combines files, specified using the -f and -l options, with the SCA
and standard Tuxedo ATMI libraries to form a client application. The client application is built
using the default C++ language compile command defined for the operating system in use, unless
overridden using the CC environment variable.

All specified .c and .cpp files are compiled in one invocation of the compilation system based
on the operating system. Users may specify the compiler to invoke by setting the CC environment
variable to the name of the compiler. If the CC environment variable is not defined when
buildscaclient is invoked, the default C++ language compile command for the operating
system is invoked to compile all .c and .cpp files.

You may specify additional options to be passed to the compiler by setting the CFLAGS or the
CPPFLAGS environment variables. If CFLAGS is not defined when buildobjclient is invoked,
then buildscaclient uses the value of CPPFLAGS, if that variable is defined.

Parameters and Options
buildscaclient supports the following parameters and options:

-c defaultcomponent
Required parameter. Indicates which component should be used for this application.

[-v]
Specifies that the buildscaclient command should work in verbose mode. In
particular, it writes the compile command to its standard output.

[-k]
Maintains the generated stubs. buildscaclient generates proxy files that allow
dynamic interfacing of clients and references. This is normally compiled and then
removed when the proxy is built. This option indicates that the source file should be
retained.

Caution: The generated contents of this file may change from release to release. It is advised
that you do not depend on the data structures and interfaces exposed in this file. This
option is provided to aid in debugging of build problems.
Oracle SALT Reference Guide 3

[-o name]
Specifies the name of the client application generated by this command. If the name is not
supplied, the application file is named client<.type>, where type is an extension that
is dependent on the operating system. For example, on a UNIX system, there would not
be a type, but on a Windows system, the type would be .EXE.

[-s scaroot]
Specifies the location of SCA root, where the SCDL files for the required components are
located. If not set, the APPDIR environment value is used.

[-f firstfiles]
Specifies the file to be included first in the compile and link phases of the
buildscaclient command. The specified file is included before the SCA libraries are
included. There are two ways of specifying a file or files:

Note: Filenames that include spaces are not supported.
The -f option may be specified multiple times.

[-l lastfiles]
Specifies a file to be included last in the compile and link phases of the buildscaclient
command. The specified file is included after the SCA libraries are included. There are
two ways of specifying the file, as shown in the following table.

Note: Filenames that include spaces are not supported.
The -l option may be specified multiple times.

Filename Specification Description

-f firstfile One file is specified

-f "file1.cpp file2.cpp
file3.cpp …"

Multiple files may be specified if their names are
enclosed in quotation marks and are separated using
white spaces.

Filename Specification Description

-l lastfile One file is specified

-l "file1.cpp file2.cpp
file3.cpp …"

Multiple files may be specified if their names are
enclosed in quotation marks and are separated using
white spaces.
4 Oracle SALT Reference Guide

bui ldscac l i ent
[-S structurefiles]
Specifies an SCA structure description file. The structure description file may be either a
source file or a binary structure description file. If more than one file is specified, file
names must be separated by white space and the entire list must be enclosed in quotation
marks. The -S option may be specified multiple times on the same command line.

The use of structure description files is optional. If a structure description is not provided
for a particular structure then the source code where the structure is defined is used
describe the structure; in SCA-ATMI mode, the FML32 field name corresponding to each
structure element is the same as the name of the structure element.

Note: Filenames that include spaces are not supported.
The -S option may be specified multiple times.

Environment Variables
Following is a list of environment variables for buildSCAclient:

TUXDIR
Finds the SCA libraries and includes files to use when compiling the client applications.

CC
Indicates the compiler for all files with .c or .cpp file extensions. If not defined, the
default C++ language compile command is invoked to compile all .c and .cpp files,
based on the operating system.

CFLAGS
Indicates any arguments that are passed as part of the compiler command line for any files
with .c or .cpp file extensions. If CFLAGS does not exist in the buildscaclient
command environment, the command checks for the CPPFLAGS environment variable.

Note: Arguments passed by the CFLAGS environment variable take priority over the
CPPFLAGS variable.

CPPFLAGS
Contains a set of arguments that are passed as part of the compiler command line for any
files with .c or .cpp file extensions.

This is in addition to the command line option "-I$(TUXDIR)/include" for UNIX
systems or the command line option /I%TUXDIR%\include for Windows systems, which
is passed automatically by the buildscaclient command. If CPPFLAGS does not exist
in the buildscaclient command environment, no compiler commands are added.
Oracle SALT Reference Guide 5

LD_LIBRARY_PATH (UNIX systems)
Indicates the directories that contain shared objects to be used by the compiler, in addition
to the objects shared by the CORBA software. A colon (:) is used to separate the list of
directories. Some UNIX systems require different environment variables:

HP-UX systems use the SHLIB_PATH environment variable

AIX systems use LIBPATH

LIB (Windows systems)
Indicates a list of directories that contain the library files. A semicolon (;) is used to
separate the list of directories.

Portability
This utility can be used on any platform that supports the Oracle SALT environment.

Example(s)
buildscaclient -s /myApplication/scaSrc/uBike -c uBike.client -f
uBikeClient.cpp -o uBikeClient

See Also
buildscaserver, buildscacomponent

Oracle SALT SCA Programming in the Oracle SALT Programming Guide

buildscacomponent
Name

buildscacomponent - builds SCA components

Synopsis
buildscacomponent [-v] [-s scaroot] [-f firstfiles] [-l lastfiles] [-S

structurefiles] -c compositename[/componentname][,compositename,..]] [-y]

[-k] [-h]

Description
buildscacomponent is used to build individual SCA components from source code. The
command reads SCDL source, finds the component(s) in the composite(s) file(s) specified, parses
the corresponding .componentType file(s) and produces corresponding executable libraries, in
the same location as the .componentType files.
6 Oracle SALT Reference Guide

../prog/index.html

bui ldscacomponent
The command automatically builds component implementations based on the contents of
<implementation.cpp> elements as follows:

The value of /implementation.cpp/@header is used to determine the name of the
source and componentType files containing the implementation.

For example, an element such as
<implementation.cpp library="myLib" header="myComponentImpl.h"/>

causes buildscacomponent to look for a myComponentImpl.cpp file and compile it,
along with stubs generated from its interface located in a corresponding
myComponentImpl.componentType file.

Composites may contain one or more components, and the buildscacomponent command may
build one or more composites in one pass. If more than one component is built, the files specified
using the -f and -l switches are included in each component. To build a single component, the
-c composite/component syntax should be used. This addresses the cases where individual
components are made up of specific sets of source code or libraries.

All specified .c and .cpp files are compiled in one invocation of the compilation system for the
operating system in use. Users may specify the compiler to be invoked by setting the CC
environment variable to the name of the compiler. If the CC environment variable is not defined
when buildscacomponent is invoked, the default C++ language compile command for the
operating system in use is invoked to compile all .c and .cpp files.

Users may specify options to be passed to the compiler by setting the CFLAGS or the CPPFLAGS
environment variable. If CFLAGS is not defined but CPPFLAGS is defined when
buildscacomponent is invoked, the CPPFLAGS value is used.

Parameters and Options
buildscacomponentsupports the following parameters and options:

[-v]
Specifies that buildscacomponent should work in verbose mode.

[-s scaroot]
Specifies the location of the SCA root, where the SCDL file(s) for the component(s) is
(are) located, and where the source code of components is processed.

If not specified, the value of APPDIR is used.

[-f firstfiles]
Specifies a file to be included first in the compile and link phases of the
buildscacomponent command. The specified file is included before the SCA libraries
Oracle SALT Reference Guide 7

are included. There are two ways of specifying a file or files, as shown in the following
table.

Note: Filenames that include spaces are not supported.
The -f option may be specified multiple times.

[-l lastfiles]
Specifies a file to be included last in the compile and link phases of the
buildscacomponent command. The specified file is included after the SCA libraries are
included. There are two ways of specifying a file, as shown in the following table.

Note: Filenames that include spaces are not supported.
The -l option may be specified multiple times.

-c {composite[,composite]|composite/component}
Specifies the name(s) of the composite(s) processed. The composite(s) is (are) searched
in APPDIR or in the SCDL directory specified above with the -s switch. If it cannot be
found, the component libraries are not built.

A list of composites may be specified, in which case all the components listed in the
composites will be built. If any of the composites cannot be found or an error is detected
(incorrect name, composite does not have any ATMI service binding), a warning message

Table 2 File Specification Using [-f firstfiles]

Filename Specification Definition

-f firstfile One file is specified

-f "file1.cpp file2.cpp file3.cpp …" Multiple files may be specified if their names are
enclosed in quotation marks and are separated by
white space.

Table 3 File Specification Using [-l lastfiles]

Filename Specification Definition

-l lastfile One file is specified

-l "file1.cpp file2.cpp file3.cpp …“ Multiple files may be specified if their names are
enclosed in quotation marks and are separated by
white space.
8 Oracle SALT Reference Guide

bui ldscacomponent
is displayed and the user is prompted to confirm whether the command should continue
processing or abort.
If the composite/component notation is used, a single component contained in the
specified composite is allowed. This notation covers the situation where specific source
files specified with -f and -l need to be included in the build process of a component.

[-y]
Optionally forces processing of input files, automatically ignoring warnings, such as
composites specified using the -c switch but not physically present from the root
directory.

[-k]
Keeps the generated proxy and wrapper source. buildscacomponent generates proxy
and wrapper code with data structures such as the method operation and parameter
handling. This is normally compiled and then removed when the component is built. This
option indicates that the source file should be kept (to see what the source filename is, use
the -v option).

Note: The generated contents of this file may change from release to release. Do Not
count on the data structures and interfaces exposed in this file. This option is
provided to aid in debugging of build problems.

[-S structurefiles]
Specifies an SCA structure description file. The structure description file may be either a
source file or a binary structure description file. If more than one file is specified, file
names must be separated by white space and the entire list must be enclosed in quotation
marks. The -S option may be specified multiple times on the same command line.

The use of structure description files is optional. If a structure description is not provided
for a particular structure then the source code where the structure is defined is used
describe the structure; in SCA-ATMI mode, the FML32 field name corresponding to each
structure element is the same as the name of the structure element.

Note: Filenames that include spaces are not supported.
The -S option may be specified multiple times.

Environment Variables
TUXDIR

Finds the SCA libraries and include files to use when compiling the client applications.

APPDIR
Indicates the SCA application root location, where the top-level composite should reside.
Oracle SALT Reference Guide 9

CC
Indicates the compiler to use to compile all files with .c or .cpp file extensions. If not
defined, the default C++ language compile command for the operating system in use will
be invoked to compile all .c and .cpp files.

CFLAGS
Indicates any arguments that are passed as part of the compiler command line for any files
with a .c or .cpp file extensions. If CFLAGS does not exist in the buildscacomponent
command environment, the buildscacomponent command checks for the CPPFLAGS
environment variable.

CPPFLAGS

Note: Arguments passed by the CFLAGS environment variable take priority over the
CPPFLAGS variable.

Contains a set of arguments that are passed as part of the compiler command line for any
files with a .c or .cpp file extensions.

This is in addition to the command line option -I$(TUXDIR)/include for UNIX systems
or the command line option /I%TUXDIR%\include for Windows systems, which is
passed automatically by the buildscacomponent command. If CPPFLAGS does not exist
in the buildscacomponent command environment, no compiler commands are added.

LD_LIBRARY_PATH (UNIX systems)
Indicates which directories contain shared objects to be used by the compiler, in addition
to the objects shared by the CORBA software. A colon (:) is used to separate the list of
directories. Some UNIX systems require different environment variables: for HP-UX
systems, use the SHLIB_PATH environment variable; for AIX, use LIBPATH.

LIB (Windows systems)
Indicates a list of directories within which to find libraries. A semicolon (;) is used to
separate the list of directories.

Portability
This utility can be used on any platform that supports the Oracle SALT environment.

Example(s)
buildscacomponent -f utils.c -c searchInventory,updateItem

See also
buildscaserver,buildscaclient

Oracle SALT SCA Programming in the Oracle SALT Programming Guide
10 Oracle SALT Reference Guide

../prog/index.html

bui ldscaserve r
buildscaserver
Name

buildscaserver – Builds an Oracle Tuxedo server containing SCA components.

Synopsis
-o servername -c composite[,composite][-v][-s scaroot]
[-w] [-r rmname][-y] [-k] [-t] [-S]

Description
buildscaserver is used to build a Tuxedo server that is used to route requests to SCA
components previously built with the buildscacomponent command. The command generates a
main routine that contains bootstrap routines to route Tuxedo or SCA requests to SCA
components, and compiles it to form a server host application. The server host application is built
using the default C++ compiler provided for the platform.

If the SCDL code contains references or services with <binding.ws> elements, these are
automatically converted into WSDF files for use by the Web Services gateway (GWWS). All
SCA servers built using buildscaserver are multi-threaded servers.

Parameters and Options
buildscaserver supports the following parameters and options:

-o servername
Required. Specifies the name of the server application generated by this command.

-c compositename[,compositename]
Required. Specifies the name of the composite hosted. The composite is searched for
starting in APPDIR, or in the SCDL directory specified above with the -s switch. If it is
not found, the server is not built. In case you specify a list of composites, then all the listed
composites are hosted by the same Tuxedo server.

If any of the composites are not found or an error is detected such as incorrect name or
composite does not have any atmi service binding, a warning message is
displayed and the user is prompted to confirm whether the command should continue
processing or abort.

[-v]
Specifies that buildscaserver should work in verbose mode.
Oracle SALT Reference Guide 11

[-s scaroot]
Specifies the target location of the SCA root, where the SCDL files for the components to
be deployed are located.

This directory has a layout suitable to SCA composites and components. Each composite
is represented as a directory and contains components in the run-time form, which
includes SCDL code and libraries. At run time, the server application uses this directory
to find the run-time SCA components.

If components are using the Web Services binding, the root location also receives a WSDF
definition file.

[-w]
Specifies that the generated server will host Web services binding enabled components.
By default, a server hosting ATMI binding enabled components is generated. Both types
of servers can host the same actual components simultaneously (i.e. there can exist an
ATMI and a WS servers, both hosting the same components previously built using the
buildscacomponent command).

[-r rmname]
Specifies the resource manager associated with this server. The value rmname must appear
in the resource manager table located in $TUXDIR/udataobj/RM on UNIX systems or
%TUXDIR%\udataobj\RM on Windows systems. Each entry in this file is of the following
form:

rmname:rmstructure_name:library_names

Using the rmname value, the entry in $TUXDIR/udataobj/RM or
%TUXDIR%\udataobj\RM automatically includes the associated libraries for the resource
manager and sets up the interface between the transaction manager and the resource
manager. The value TUXEDO/SQL includes the libraries for the Oracle Tuxedo
System/SQL resource manager. Other values can be specified once they are added to the
resource manager table. If the -r option is not specified, the null resource manager is used,
by default.

[-y]
Optionally forces processing of input files, automatically ignoring warnings.

[-k]
Keeps the server main stub. buildscaserver generates a main stub with data structures
such as the service table and a main() function. This is normally compiled and then
removed when the server is built. This option indicates that the source file should be
retained.

Note: To see the source filename, use the -v option.
12 Oracle SALT Reference Guide

bui ldscaserve r
Caution: The generated contents of this file may change from release to release. It is advised
that you do not depend on the data structures and interfaces exposed in this file. This
option is provided to aid in debugging build problems.

[-t]
Not used in current release.

[-S]
Required when the server makes use of C structure input or output buffers and the -w
option is specified.

Note: When the -w option is not specified, buildscaserver uses ATMI binding to
determines if structures are used.The -S option is not required.

The buildscaserver -S option does not take an option argument.

Environment Variables
TUXDIR

Finds the SCA libraries and include files to use when compiling the client applications.

CC
Indicates the compiler to use to compile all files with .c or .cpp file extensions. If not
defined, the default C++ language compile command is invoked to compile all .c and
.cpp files.

CFLAGS
Indicates any arguments that are passed as part of the compiler command line for any files
with a .c or .cpp file extensions. If CFLAGS does not exist in the buildscaserver
command environment, the buildscaserver command checks for the CPPFLAGS
environment variable.

Note: Arguments passed by the CFLAGS environment variable take priority over the
CPPFLAGS variable.

CPPFLAGS
Contains a set of arguments that are passed as part of the compiler command line for any
files with a .c or .cpp file extensions.

This is in addition to the command line option "-I$(TUXDIR)/include" for UNIX
systems or the command line option /I%TUXDIR%\include for Windows systems, which
is passed automatically by the buildscaserver command. If CPPFLAGS does not exist
in the buildscaserver command environment, no compiler commands are added.
Oracle SALT Reference Guide 13

LD_LIBRARY_PATH (UNIX systems)
Indicates the directories that contain shared objects to be used by the compiler, in addition
to the objects shared by the CORBA software. A colon (:) is used to separate the list of
directories. Some UNIX systems require different environment variables:

HP-UX systems use SHLIB_PATH

AIX systems use LIBPATH

LIB (Windows only)
Indicates a list of directories where libraries are available. A semicolon (;) is used to
separate the list of directories.

Portability
This utility can be used on any platform that supports the Oracle SALT environment.

Example(s)
buildscaserver -c uBike.server -o uBikeSCASvr

Error Reporting
This command checks for the following inconsistencies in the SCDL code and reports error
messages if:

at least one syntax error in the SCDL files

none of the composites contain any service with an ATMI binding

at least one composite contains services defining ATMI bindings with incompatible
<remoteAccess> elements. <remoteAccess> elements with a value of WorkStation are
not supported by this command.

/binding.atmi/@requires contains a legacy value and /binding.atmi/map elements
contain values that conflict (for example, the same Tuxedo service name mapped to two or
more different methods)

See Also
GWWS(5), buildscacomponent

Oracle SALT SCA Programming in the Oracle SALT Programming Guide
14 Oracle SALT Reference Guide

../prog/index.html

GWWS(5)
GWWS(5)
Name

GWWS – Web service gateway server.

Synopsis
GWWS SRVGRP="identifier" SRVID=number [other_parms]
CLOPT="-A -- –i InstanceID"

Description
The GWWS server is the Web service gateway for Tuxedo applications, the core component of
Oracle SALT. The GWWS gateway server provides communication with Web service programs via
SOAP 1.1/1.2 protocols. The GWWS server has bi-directional (inbound/outbound) capability. It
can accept SOAP requests from Web service applications and passes Tuxedo native calls to
Tuxedo services (inbound). It also accepts Tuxedo ATMI requests and passes SOAP calls to Web
service applications (outbound). GWWS servers are used as Tuxedo system processes and are
described in the *SERVERS section of the UBBCONFIG file.

The CLOPT option is a string of command-line options passed to the GWWS server when it is booted.
The GWWS server accepts the following CLOPT options:

-i InstanceID
Specifies the GWWS instance unique ID. It is used to distinguish multiple GWWS instances
provided in the same Tuxedo domain. This value must be unique among multiple GWWS
items within the UBBCONFIG file.

Note: The InstanceID value must be pre-defined in the <WSGateway> section of the
Oracle SALT Deployment File.

Environment Variables
The SALTCONFIG environment variable must be set before the GWWS server is booted.
Accesslog(5) can be enabled by setting environment variable TMENABLEALOG=y .

Deprecation
The following SALT 1.1 GWWS parameter is deprecated in the current release.

-c Config_file
Specifies the SALT 1.1 configuration file.

Note: Starting with the SALT 2.0 release, the GWWS server loads the SALT configuration from
the binary SALTCONFIG file instead of the XML-based configuration file. The
Oracle SALT Reference Guide 15

../../tuxedo/docs11gr1ps1/rf5/rf5.html
../../tuxedo/docs11gr1ps1/rf5/rf5.html

configuration file is no longer a GWWS server input parameter. The SALTCONFIG file
must be generated using wsloadcf before booting GWWS servers.

Diagnostics
For inbound call, if an error occurs during SOAP message processing, the error is logged. The
error is also translated into appropriate SOAP fault and/or HTTP error status code and returned
to the Web service client.

For outbound call, if an error occurs during processing, the error is logged. The error is also
translated into appropriate Tuxedo system error code (tperrno) and returned to the Tuxedo
client.

Example(s)

Listing 1 GWWS Description in the UBBCONFIG File

*SERVERS

GWWS SRVGRP=GROUP1 SRVID=10

CLOPT="-A -- –i GW1"

GWWS SRVGRP=GROUP1 SRVID=11

CLOPT="-A -- –i GW2"

GWWS SRVGRP=GROUP2 SRVID=20

CLOPT="-A -- –i GW3"

See Also
UBBCONFIG(5)

tmwsdlgen

Oracle SALT Deployment File Reference

Oracle SALT Web Service Definition File Reference

mkfldfromschema, mkfld32fromschema
The mkfldfromschema and mkfld32fromschema commands take an XML schema as input and
produce a field table. This table can be processed by the mkfldhdr or mkfldhdr32 command or
is loaded by programs that need it. mkfldfromschema is used with 16-bit FML and
mlfld32fromschema is used with 32-bit FML.
16 Oracle SALT Reference Guide

../../../tuxedo/docs11gr1ps1/rf5/rf5.html
../ref/index.html
../ref/deploy.html
../ref/wsdf.html

mkf ld f romschema, mkf ld32f romschema
These commands have the following restrictions:

Attributes cannot be specified

Restrictions are ignored because their meaning is application-related

Name
mkfldfromschema, mkfld32fromschema – Generates field table from an XML schema

Synopsis
mkfldfromschema [{-i schema|-u schemaurl}] [-b basenumber]]-o outputfile]

mkfld32fromschema [{-i schema|-u schemaurl}] [-b basenumber]]-o

outputfile]

Description
These commands take an XML schema as input and generate a field table. The XML schema may
be specified using either the -i option or the -u option. If neither option is specified, the schema
is read from standard input.

Parameters and Options
mkfldfromschema and mkfld32fromschema supports the following options:

-b basenumber
Adds a *base basenumber line to the generated field table.

-i schema
Displays the name of a file containing an XML schema. The -i option cannot be specified
in conjunction with the -u option.

-u schemaurl
A URL where the input schema is located. The URL must start with http://. The -u option
cannot be specified in conjunction with the -i option.

-o outputfile
The name of a file that will contain the field table. If this option is not specified, the field
table will be written to standard output.

Portability
This utility can be used on any platform that supports the Oracle Tuxedo server environment.

See Also
mkviewfromschema, mkview32fromschema
Oracle SALT Reference Guide 17

mkviewfromschema, mkview32fromschema
The mkviewfromschema and mkview32fromschema commands take an XML schema as input
and produce a view file. This file can be processed by the viewc or viewc32 command.
mkviewfromschema is used with 16-bit views and mkview32fromschema is used with 32-bit
views.

Name
mkviewfromschema, mkview32fromschema – Generates view table from an XML schema

Synopsis
mkviewfromschema [{-i schema|-u schemaurl}] [-o outputfile]

mkview32fromschema [{-i schema|-u schemaurl}] [-o outputfile]

Description
These commands take an XML schema as input and generate a view file. The XML schema may
be specified using either the -i option or the -u option. If neither option is specified, the schema
is read from standard input.

Options
mkviewfromschema, mkview32fromschema supports the following options:

-i schema
The name of a file containing an XML schema. The -i option cannot be specified in
conjunction with the -u option.

-u schemaurl
A URL where the input schema is located. The URL must start with http://. The -u option
cannot be specified in conjunction with the -i option.

-o outputfile
The name of a file that contains the output view file. If this option is not specified, the field
table is written to standard output.

Portability
This utility can be used on any platform that supports the Oracle Tuxedo server environment.

See Also
mkfldfromschema, mkfld32fromschema

SDO for C++ Specification V2.1published December, 2006
18 Oracle SALT Reference Guide

scaadmin
scaadmin
Name

scaadmin – SCA server management command interpreter

Synopsis
scaadmin [-v]

Description
Use the scaadmin command to dynamically redeploy SCA composites or display statistics and
status of individual services. The TUXCONFIG environment variable is used to determine the
location where the Tuxedo configuration file is loaded.

This command has no effect on servers that have not been built using the buildscaserver(1)
command.

Options
The scaadmin command supports the following option:

[-v]
Causes scaadmin to display the Oracle SALT version number, SALT Patch Level. The
command exits after print out.

scaadmin must run on an active node.

Commands
default [-m machine] [-g groupename] [-i srvid]] [-s servername]

Sets the corresponding argument to be the default machine name, groupname, server id,
or servername. If the default command is entered with no arguments, the current defaults
are printed.

reload [-m machine] [-g groupname] [-i srvid]] [-s servername]
This command dynamically reloads the SCA components hosted on Tuxedo servers. The
-m, -g, -i and -s options can be used to restrict the reloaded servers to any combination
of machine, group, server id and server name.

printstats [-m machine] [-g groupname] [-i srvid] [-s servername]
This command displays the list of services hosted by a server and the associated method,
number of queries, and status (active, idle). The -m, -g, -i and -s options can be used
to restrict the reloaded servers to any combination of machine, group, server id and server
name.
Oracle SALT Reference Guide 19

verbose (v) [{off | on}]
Produces output in verbose mode. If no option is given, the current setting is toggled and
the new setting is printed. The initial setting is set to off.

help (h) [{command | all}]
Prints help messages. If command is specified, the abbreviation, arguments, and
description for that command are printed. all causes a description of all commands to be
displayed. Omitting all arguments causes the syntax of all commands to be displayed.

echo (e) [{off | on}]
Echoes input command lines when set to on. If no option is given, the current setting is
toggled, and the new setting is printed. The initial setting is off.

quit (q)
Terminates the session

Interoperability
The scaadmin command must run on an active node.

Environment Variables
TUXCONFIG

Used to determine the location where the Tuxedo configuration file is loaded.

Portability
This utility can be used on any platform that supports the Oracle SALT environment.

Example(s)
The following command reloads all the composites hosted by the uBikeServer Tuxedo
application server, which was built using the buildscaserver(1) command.
scaadmin

> reload -s uBikeServer

The following command displays statistics on the services offered by the uBikerServer Tuxedo
application server, which was built using the buildscaserver(1) command.

scaadmin

> printstats -s uBikeServer

Service Method Status Requests

 Processed

SEARCHINVENTORY searchInventory A 37
20 Oracle SALT Reference Guide

SCAHOST (5)
SCAHOST (5)
Name

SCAHOST - Generic server for Python, Ruby, or PHP SCA components.

Synopsis
SCAHOST SRVGRP="identifier" SRVID="number"

 CLOPT="[-A] [servopts options]

 -- -w -c composite"

Description
SCAHOST is an Oracle Tuxedo system provided server that provides boot-strapping functionality
for Python, Ruby, or PHP programs hosted as SCA components.

SCAHOST relies on Oracle Tuxedo Service Metadata Repository information, and therefore
requires being defined after the TMMETADATA system process in the UBBCONFIG file.

Python, Ruby, and PHP components can be hosted by a single SCAHOST. It is preferable that the
component(s) hosted contain only Python, Ruby, and PHP components (i.e., no C++
components).

Parameters and Options
-w

Specifies that an SCAHOST instance exposes Web services. By default, only ATMI binding
services are exposed. Webs services and ATMI bindings cannot be hosted by the same
SCAHOST server, if a composite has services exposed with both bindings, two SCAHOST
instances must be configured in order to expose all ATMI and Web Services bindings.

-c composite
Specifies the name of the component that this server will host.

Portability
This command is available on any platform on which the Oracle Tuxedo server environment is
supported.

Example(s)
Listing 2 provides an SCAHOST example.
Oracle SALT Reference Guide 21

Listing 2 SCAHOST Example

*SERVERS

SCAHOST SRVGRP=GROUP1 SRVID=100

CLOPT="-A -- -c Account"

SCAHOST SRVGRP=GROUP2 SRVID=100

CLOPT="-A -- -c Loan"

See Also
Oracle SALT SCA Programming, Python, Ruby, and PHP Binding in the Oracle SALT
Programming Guide

scapasswordtool
Name

scapasswordtool – Manages passwords for Tuxedo authentication in SCA clients.

Synopsis
scapasswordstore -i passwordidentifier -[a|d]

Description
This command manages the password.store file used by SCA components to refer to
Tuxedo-based services.

Passwords are prompted and encrypted. The encrypted version is stored in this file, associated
with a clear-text identifier. This command is also used to delete identifier/password pairs from
the file.

The password is limited to 40 characters. If standard input is not a terminal, that is, if the user
cannot be prompted for a password (as with a Here file, for example), then the APP_PW
environment variable is accessed to set the password. If the APP_PW environment variable is not
set and standard input is not a terminal, then scapasswordtool prints an error message and
exits.

A password.store file is created in the current directory if it does not previously exist.
22 Oracle SALT Reference Guide

../prog/index.html

scast ruc tc32 , scast ructc (1)
Parameters and Options
-i passwordidentifier

Required. The identifier specified in the <binding> element. SCA components search the
password for this element.

-[a|d]
The -a option adds an identifier/password pair, whereas the -d option deletes it. An error
message is printed out and the command processing is aborted in one of the following
situations:

If -a is used to add an already existing identifier

If -d is used to delete a non-existing identifier

Portability
This utility can be used on any platform that supports the Oracle SALT environment.

See Also
setSCAPasswordCallback(3c)

scastructc32, scastructc(1)
Name

scastructc32, scastructc - Structure description compiler for Oracle SALT.

Synopsis
scastructc32 [-n] [-d viewdir] structfile [structfile . . .]
scastructc [-n] [-d viewdir] structfile [structfile . . .]

Description
scastructc32 and scastructc are a Oracle SALT SCA structure description compiler
programs. These commands take a source structure description file and produces:

A binary file, which is interpreted at run time to effect the actual mapping of data between
FML buffers and C++ structures.

One or more header files.

Note: COBOL is not supported in the SCA environment, therefore scastructc32 and
scastructc do not have options to generate COBOL copyfiles.
Oracle SALT Reference Guide 23

SCA structure description files are identical to Oracle Tuxedo viewfiles, with the exception that
SCA structure description files allow the following extensions:

Nested structures are supported. A nested structure may be specified by using the struct
keyword in column 1. When this keyword is used, the "cname" value in column 2 must be
the name of a previously defined view that describes a nested structure.

The value in column 3 will be interpreted as the name of the element for the inner structure
within the outer structure. If the value in column 3 is "-", then the name of the inner
structure element will be the same as the name of the inner structure.

As with other types, the value in column 4 can be used to specify a count of the number of
times the inner structure is included in the outer structure. The "flag" and "size" values in
columns 5 and 6 are not used for struct elements.

scastructc32 is used for 32-bit FML. It uses the FIELDTBLS32 and FLDTBLDIR32
environment variables. scastructc is used for 16-bit FML. It uses the FIELDTBLS and
FLDTBLDIR environment variables.

If none of the SCA structure file extensions are used, then binary files produced by
scastructc32 are compatible with binary files produced by viewc32 and binary files produced
by scastructc are compatible with binary files produced by viewc.

The structfile is a file containing source structure descriptions. More than one structfile can be
specified on the scastructc32 or scastructc command line as long as the same VIEW name
is not used in more than one structfile.

By default, all views in the structfile are compiled and two or more files are created: a view object
file (with a .V suffix) and a C header file (with a .h suffix). The name of the object file is
structfile.V in the current directory unless an alternate directory is specified through the -d
option. C header files are created in the current directory.

Note: scastructc32 and scastructc generate a binary file with suffix .V on Unix and suffix
.VV on Windows.

At scastructc32 or scastructc compile time, the compiler matches each field id and field
name specified in the viewfile with information obtained from the field table file, and stores
mapping information in an object file for later use. Therefore, it is essential to set and export the
environment variables FIELDTBLS and FLDTBLDIR to point to the related field table file. For
more information, see Programming an Oracle Tuxedo ATMI Application Using FML and
Programming an Oracle Tuxedo ATMI Application Using C.
24 Oracle SALT Reference Guide

../../../tuxedo/docs11gr1ps1/fml/index.html
../../../tuxedo/docs11gr1ps1/pgc/index.html

scast ruc tc32 , scast ructc (1)
If the scastructc32 or scastructc compiler cannot match a field name with its field id
because either the environment variables are not set properly or the field table file does not
contain the field name, a warning message, Field not found, is displayed.

With the -n option, it is possible to create a view description file for a C structure that is not
mapped to an FML buffer. Programming an Oracle Tuxedo ATMI Application Using C discusses
how to create and use such an independent view description file.

Parameters and Options
The following options are interpreted by scastructc32 and scastructc:

-n
Used when compiling a structure description file for a C structure that does not map to an
FML buffer. It informs the structure compiler not to look for FML information.

-d viewdir
Used to specify that the structure object file is to be created in a directory other than the
current directory.

Note: On Windows, the following additional options are recognized:

-c { m | b }
Specifies the C compilation system to be used. The supported value for this option
is m for the Microsoft C compiler. The Microsoft C compiler is the default for this
option. The -c option is supported for Windows only.

-1 filename
Specifies that pass 1 should be run, and the resulting batch file called filename.bat
should be created. After this file is created, it, should be executed before running
pass 2. Using pass 1 and pass 2 increases the size of the views that can be compiled.
The -1 option is supported for Windows only.

-2 filename
Specifies that pass 2 should be run to complete processing, using the output from
pass 1. The -2 option is supported for Windows only.

Portability
The output view file is a binary file that is machine and compiler-dependent. It is not possible to
generate a view on one machine with a specific compiler and use that view file on another
machine type or with a compiler that generates structure offsets differently (for example, with
different padding or packing).
Oracle SALT Reference Guide 25

See Also
scastructdis32, scastructdis

Programming an Oracle Tuxedo ATMI Application Using FML

Introduction to FML Functions in Oracle Tuxedo ATMI FML Function Reference

Programming an Oracle Tuxedo ATMI Application Using C

Oracle SALT SCA Programming in the Oracle SALT Programming Guide

scastructdis32, scastructdis
Name

scastructdis32, scastructdis - Disassembler for binary structure files and viewfiles.

Synopsis
scastructdis32 [-E envlabel] viewobjfile [viewobjfile...]
scastructdis [-E envlabel] viewobjfile [viewobjfile...]

Description
scastructdis32 disassembles a view object file produced by scastructc32 or viewc32 and
displays view information in viewfile format. In addition, it displays the offsets of structure
members in the associated structure.

One or more viewobjfiles (with a .V suffix) can be specified on the command line. By default,
the viewobjfile in the current directory is disassembled. If this is not found, an error message is
displayed.

Because the information in the viewobjfile was obtained from a match of each field id and field
name in the viewfile with information in the field table file, it is important to set and export the
environment variables FIELDTBLS32 and FLDTBLDIR32.

The scastructdis32 output looks the same as the original structure description(s), and is
mainly used to verify the accuracy of the compiled object structure descriptions.

scastructdis is used for files originally compiled with scastructc or viewc. It uses the
FIELDTBLS and FLDTBLDIR environment variables instead of FIELDTBLS32 and
FLDTBLDIR32.

See Also
scastructc32, scastructc(1)
26 Oracle SALT Reference Guide

../../tuxedo/docs11gr1ps1/fml/index.html
../../tuxedo/docs11gr1sp1/rf3fml/rf3fml.html
../../tuxedo/docs11gr1ps1/pgc/index.html
../prog/index.html

scatuxgen(1)
Programming an Oracle Tuxedo ATMI Application Using FML

Oracle SALT SCA Programming in the Oracle SALT Programming Guide

scatuxgen(1)
Name

scatuxgen - Generates Tuxedo Service Metadata Repository interface information from an SCA
interface.

Synopsis
scatuxgen (-c <composite file name> | -i <interface file name> [-I <inbuf>]

[-O <outbuf>])-s <service name> [-t <string-type>][-w [-n <namespace> -a

<network address>]] [-v]

Description
Generates Tuxedo Service Metadata Repository interface information based on SCA abstract
class definitions. Service Metadata generation is performed by parsing a composite file (in
SCDL) which allows locating the interface referenced by the <service name> value, or directly
by specifying the interface to process at the command line.

The interface is an SCA-compliant abstract class definition contained in a C++ header file.
Parsing the composite file allows you to take advantage of binding.atmi details (for example,
buffer types and xsd schemas) when available.

When binding.atmi information is not available, scatuxgen can directly process a C++
interface directly by giving the name of the header file containing it as an argument to the
command line.

The generated file name is composed using the service name, input using the command-line
option, and the .mif file, and possibly the.wsdf extension.

Options
-c composite file name

Specifies the pathname of the composite file to be processed. This path is relative to where
the command is run.

-i interface file name
Specifies the name of the interface file to be processed. This path is relative to where the
command is run.
Oracle SALT Reference Guide 27

../../tuxedo/docs11gr1ps1/fml/index.html
../prog/index.html

-I inbuf
Specifies the type of input Tuxedo buffer to generate in the service metadata entry. This
option is only valid when used in conjunction with the -i and -w options . Acceptable
values are STRING, CARRAY, X_OCTET, VIEW/<viewname>, X_C_TYPE /<viewname>,
X_COMMON/<viewname>, VIEW32/<viewname>, FML, FML32, MBSTRING and XML.

-O outbuf
Specifies the type of output Tuxedo buffer to generate in the service metadata entry. This
option is only valid when used in conjunction with option -i. Acceptable values are
STRING, CARRAY, X_OCTET, VIEW/<viewname>, X_C_TYPE/<viewname>,
X_COMMON/<viewname>, VIEW32/<viewname>, FML, FML32, MBSTRING and XML.

-E outbuf
Specifies the type of error Tuxedo buffer to generate in the service metadata entry. This
option is only valid when used in conjunction with option -i. Acceptable values are
STRING, CARRAY, X_OCTET, VIEW/<viewname>, X_C_TYPE/<viewname>,
X_COMMON/<viewname>, VIEW32/<viewname>, FML, FML32, MBSTRING and XML.

-s service name
Specifies the name of the service to be generated when using an interface file. It also
specifies the base of the output file(s).

-t string-type
Specifies that scatuxgen should map xsd:string types in XML schemas to Tuxedo
mbstring (FLD_MBSTRING).

-w
Specifies scatuxgen produces a WSDF document.

-n
When producing a WSDF document, can be used to indicate the
Definition/@wsdlNameSpace attribute value. If not specified, the
Definition/@wsdlNamespace attribute contains the '##NAMESPACE##' placeholder.

-a
When producing a WSDF document, can be used to indicate the
Definition/WSBinding/AccessingPoints/Endpoint/@address attribute value. If
not specified, the Definition/WSBinding/AccessingPoints/Endpoint/@address
attribute will contain the '##ADDRESS##' placeholder.

-v
Specifies scatuxgen in verbose mode.

Portability
This utility can be used on any platform that supports the Oracle SALT environment.
28 Oracle SALT Reference Guide

se tSCAPasswordCal lback(3c)
Example
The following example results in a TOUPPER.mif file created in the same directory where
scatuxgen is invoked:
$ scatuxgen -c simpapp.composite -s TOUPPER

See Also
tuxscagen(1)

Oracle SALT SCA Programming in the Oracle SALT Programming Guide

setSCAPasswordCallback(3c)
Name

setSCAPasswordCallback() – Sets the callback for retrieving a password associated with an
identifier in a <binding.atmi> element.

Synopsis
#include <tuxsca.h>
void setSCAPasswordCallback(char * (_TMDLLENTRY *)(*disp) (char
*identifier))

Description
setSCAPasswordCallback() allows an SCA component to identify the callback that returns
the clear-text password that is passed to the appropriate authentication code.

The function pointer passed on the call to setSCAPasswordCallback() must conform to the
specified parameter definition. The _TMDLLENTRY macro is required for Windows-based
operating systems to obtain the proper calling conventions between the Tuxedo libraries and your
code. On UNIX systems, the _TMDLLENTRY macro is not required because it expands to the null
string.

The identifier points to the password identifier passed to the callback function. The callback
function then returns a char * that points to the actual clear-text password.

Return Values
The setSCAPasswordCallback() function does not return any data.

Errors
On failure, setSCAPasswordCallback() sets tperrno to one of the following values:
Oracle SALT Reference Guide 29

../prog/index.html

[TPEPROTO]
setSCAPasswordCallback() has been called in an improper context.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error is written to a
log file.

[TPEOS]
An operating system error has occurred.

See Also
scapasswordtool

tmscd(1)
Name

tmscd(1) – Activates and deactivates service contract discovery.

Synopsis
tmscd start|stop|status [-e] [-f <file>][id1 [id2 [...]]]

Description
The tmscd command line utility is used to activate and deactivate service contract discovery.

Parameters and Options
tmscd accepts following parameters and options:

start|stop|status
Required. Starts, stops, or displays service contract dictionary settings for specific
services, or all services if none are specified. A start or stop request for a service that
has already activated or deactivated contract discovery is ignored. Effective service
information is displayed when handling the requests.

Note: start|stop|status must occur after -e and -f , if either of those options are
specified.

[-e]
Specifies the service scope as a regular expression.

[-f <file>]
The service scope is defined in the given <file>. The file may contain sections to group
related definitions together. All entries for a section must be written together line-by-line.
30 Oracle SALT Reference Guide

tmscd(1)
Empty lines or lines starting with '#' are ignored. Lines starting with '*' are section lines.
Other lines are "id=content" definitions.

id1 id2 ...
Indicates one or more services. If -e is specified, a regular expression is used to match the
service name. If -e is not specified, the service name is matched exactly.

Example(s)
Example 1 - start discovery for TOUPPER, TOLOWER:

tmscd start TOUPPER TOLOWER

Example 2 - start discovery for services started with TO and BR:

tmscd -e start TO.* BR.*

Example 3 - same request as example 1 but via file:

tmscd -f svcfile start id1 id2

Note: The first found definition is used if section is not provided:

Example 4 - same request as example 2 but via file:

tmscd -e -f svcfile start case4.svcs

Listing 3 shows content of the file named "svcfile".

Listing 3 svcfile Content

file: svcfile
*case3
id1 = TOUPPER
id2 = TOLOWER

*case4
svcs = TO.*|BR.*

Diagnostics
tmscd fails if TMMETADATA is not booted or booted using the -r (readonly) option without
the -o option.
Oracle SALT Reference Guide 31

See Also
TMMETADATA(5)

Configuring Service Contract Discovery in the Oracle SALT Administration Guide

tmwsdlgen
Name

tmwsdlgen – WSDL document generator.

Synopsis
tmwsdlgen –c wsdf_file [-y] [-o wsdl_file] [-m {pack|raw|mtom}] [-t
{wls|axis}]

Description
tmwsdlgen generates a WSDL document file from a Tuxedo native Web Service Definition File
(WSDF). The generated WSDL document is WSDL 1.1 specification compliant, and represents
both the service contracts and policies. tmwsdlgen collects Tuxedo service contract information
throughout the Tuxedo Service Metadata Repository management (TMMETADATA)process.
tmwsdlgen works as a Tuxedo native client and requires the following:

the TUXCONFIG environment variable must be set correctly

the relevant Tuxedo application using TMMETADATA must be booted prior to executing
tmwsdlgen.

WARNING: The given WSDF must be a Tuxedo native WSDF. Do not use a wsdlcvt
converted non-native WSDF file as input.

tmwsdlgen accepts the following parameters:

-c wsdf_file
Mandatory. Used to specify the SALT WSDF local path.

tmwsdlgen accepts the following optional parameters:

-o wsdl_file
Used to specify the output WSDL document file path. If the option is not present, the
default file, tuxedo.wsdl, is created in the current directory. If the specified WSDL
document file already exists, then a prompt displays to confirm to overwriting the existing
file.
32 Oracle SALT Reference Guide

../../../tuxedo/docs11gr1ps1/rf5/index.html
../admin/config.html
../admin/intro.html#wp1034616

tmwsd lgen
-y
Overwrites the existing WSDL document file without prompting.

-m
Used to specify the WSDL data mapping policy for certain Tuxedo typed buffers.
Currently, it applies to the Tuxedo CARRAY buffer type. If raw mode is specified,
CARRAY is represented to the MIME attachment. If pack mode is specified,
xsd:base64Binary is used to represent CARRAY. The default value is pack mode.

Note: raw mode cannot be used for .Net clients. The .Net Framework does not support
MIME attachments.

If mtom is specified, CARRAY is mapped to the MTOM SOAP message.

-t
This option takes effect only when the -m option is specified in raw mode. It accepts two
options, wls or axis:

wls indicates tmwsdlgen generates the WSDL document file in compliance with
WebLogic 9.x. The default is wls.

axis indicates the WSDL document file format can be recognized by the Apache
Axis toolkit.

Deprecation
The following SALT 1.1 tmwsdlgen parameters are deprecated in the current release.

-c Config_file
Mandatory. Used to specify the Oracle SALT Configuration File path.

Note: In the current SALT release, the SALT 1.1 configuration file is specified as the
tmwsdlgen input using the following optional parameters:

-s
Used to specify the encoding style used for Web service SOAP messages. Specifies rpc
for RPC/encoded style and doc for Doc/literal encoded style. If this option is not present
or the specified value is invalid, Doc is the default style.

-v
Used to specify the SOAP protocol version that the WSDL file supports. Specify 1.1 for
SOAP 1.1 protocol and 1.2 for SOAP 1.2 protocol. If this option is not present or the
specified value is invalid, SOAP 1.1 is used as the default.

Note: In the current SALT release, the SOAP version and message style attribute are
specified in the Oracle SALT WSDF.
Oracle SALT Reference Guide 33

Diagnostics
If a syntax error is detected in the given WSDF, an “ERROR” or “FATAL” message indicating
that problem is printed to the standard error, and no WSDL file is generated and tmwsdlgen exits
with exit code 1.

A “WARN” message is printed to the console if:

1. WSDF content may result in a potential run-time risk, or

2. default values are used because they are not specified in the WSDF. “WARN” messages do
not interrupt tmwsdlgen execution.

Upon successful completion, tmwsdlgen exits with exit code 0.

Example(s)
The following command generates a WSDL document file, Salt.wsdl, from the specified
SALT WSDF, tux.wsdf.

tmwsdlgen –c tux.wsdf –o Salt.wsdl

The following command generates a default WSDL document file with SOAP w/Attachment
capability from the specified SALT WSDF, app_wsdf.xml.

tmwsdlgen –c app_wsdf.xml –m raw

SEE ALSO
GWWS(5)

wsdlcvt

Oracle SALT Web Service Definition File Reference

tuxscagen(1)
Name

tuxscagen – Generates SCA, SCDL, and server-side interface files for Tuxedo services.

Synopsis
tuxscagen [-s <target-root-directory>] [-d <service-name>][-C

<TUXEDO_cltname>][-u <TUXEDO_username>][(-S | -j <java_package_name>)][-o

<output_SCDL_filename>][-i <output_interface_filename>[-m

<max-intf-arguments>][-y] [-v] [-F] [-c] [-h][-g<i|a|s>]

[-trepository=<filename> | -tinfile=<metarepos.infile> | -tmetadata]
34 Oracle SALT Reference Guide

../ref/wsdf.html

tuxscagen(1)
Description
tuxscagen is used to generate interface and SCDL files. The interface files are used for
developing the SCA component using ATMI binding, or wrap existing Tuxedo services in an
SCA component. The SCDL files are assembly artifacts that help SCA run time to locate the
module and services.

Parameters and Options
tuxscagen supports the following options:

-s target-root-directory
Specifies the location of the root directory where the generated SCDL and interface files
are located. The directory must exist and with write access permission; if it does not exist,
the tool issues an error message and fails.

-d<service-name>
Specifies the name of Tuxedo service in the Tuxedo Metadata Repository. If this option
is not specified, all services in the repository or in the input file are selected.

Abbreviation: there is no abbreviation for this option

-C <TUXEDO_cltname>
The Tuxedo client name. Use cltname as the client name when joining the Tuxedo
application.

-u <TUXEDO_username>
The Tuxedo user name. Use username as the user name when joining the Tuxedo
application. This is required when Tuxedo security level is higher than APP_PW and input
method is to retrieve Tuxedo Service Metadata from TUXEDO.TMMETAREPOS Service.

-j <java_package_name>
This option generates JAVA interface files. By default, tuxscagen generates C++ header
files. If -g is not specified but if -j <java_package_name> is specified then -ga is
assumed. However, if -g sub-option i or s is specified, a warning message is displayed.

-o <output_SCDL_filename>
This option specifies the output SCDL filenames for single composite and single
componentType file. If this option is not specified, then by default, one composite and
one componentType are generated for each Tuxedo service. However, if this option is
specified with the output filename, only one composite and one componentType file is
generated for all the matching Tuxedo services. If the specified
<output_SCDL_filename> already exists, an interactive prompt is displayed and
requires user input (unless -y is specified). If this option is specified, -F is automatically
implied.
Oracle SALT Reference Guide 35

-i <output_interface_filename>
This option specifies the output interface filenames for single abstract class header file and
single class implementation header file. If this option is not specified, then by default, it
generates one abstract interface class header file and one implementation class header file.

However, if this option is specified with output interface filename then only one abstract
class header file and one implementation header file is generated for all matching Tuxedo
services. If the specified <output_interface_filename> already exists, an interactive
prompt is displayed and requires user input (unless -y is specified).

If this option is specified, -F is automatically implied.

-m <max-intf-arguments>
This option specifies the maximum number of arguments allowed in the interface method.
If the number of arguments exceeds the specified threshold then a complex data type is
used as the input argument for the interface method. The complex data type used is
commonj::sdo::DataObjectPtr.

If -m is not specified, the default threshold is 10.

If 0 specified, it will always generate using commonj::sdo::DataObjectPtr.

If -ga is not specified, this option is ignored.

-y
This option suppresses Really overwrite files:<filename> [y, q] ? so that the
script can run without user input. This question appears if either or both -o and -i are
specified. If both these options are not specified, by default existing files are replaced.

-v
This option turns on the verbose mode.

-h
If this option is specified, online help is printed and all other options are ignored.

-F
Flat File view. If this option is specified, then all the generated files are put in the target
root directory. The default is Tree File view.

-c
Generates client-side SCDL. By default tuxscagen generates server-side SCDL,
specifying this option changes it to generate client-side SCDL.

-g a|i|s
This option is used to specify the files to generate. The sub-options can be
combined. The a sub-option is used to generate abstract base class header files.
The sub-option i is to generate implementation class header files. Sub-option s is
36 Oracle SALT Reference Guide

tuxscagen(1)
used to generate SCDL files. To generate both header files, specify -gai. To
generate all files, specify -gais.
If not specified, -gais is assumed.

[-trepository=<filename> | -tinfile=<metarepos.infile> | -tmetadata]
This option specifies the processing type.

If -trepository=<filename> is specified, tuxscagen retrieves service parameter
information from the Service Metadata repository file <filename>.If
-tinfile=<metarepos.infile> is specified, then tuxscagen retrieves service
parameter information from <metarepos.infile>, where the <metarepos.infile>
syntax is suitable for input to tmloadrepos. If -tmetadata is specified, tuxscagen
retrieves service parameter information from the Tuxedo TMMETADATA server.

At most, one -t option can be specified; the default is -tmetadata.

[-S]
Specifies tuxscagen generate a structures for any function parameter or return value that
would otherwise have been passed using DataObjectPtr.

When the -S option is used, a structure definition is generated as part of the generated
abstract class header file ${TUXSERVICE}.h. tuxscagen -S also generates a Tuxedo
view file ${TUXSERVICE}.v describing the generated view(s).

If tuxscagen input does not specify a maximum number of occurrences for a field, then
tuxscagen -S generates 1 occurrence for that field. If tuxscagen input specifies an
unlimited number of occurrences for a field, then tuxscagen -S generates an error.

If tuxscagen input does not specify a maximum length for a string, carray, or mbstring
parameter, then tuxscagen generates a maximum length of 80 characters plus trailing
NULL for that parameter and outputs a warning message to check if this is sufficient.

Note: The use of an 80 character default is different from viewc. An unspecified length
in viewc causes a length of 1 character plus trailing null to be generated, which is
insufficient for most applications.

The tuxscagen -S option will not change the underlying Tuxedo transport type specified
for the <inputBufferType>, <outputBufferType>, and <errorBufferType>
elements in the generated composite file. When data is passed via DataObjectPtr or via
a structure, this will normally be FML32.

Note: Structures are not supported for the SCA Java interface. Using tuxscagen with
both the -j and -S options results in an error.
Oracle SALT Reference Guide 37

Portability
This utility can be used on any platform that supports the Oracle SALT environment.

Example
The following command is used to generate SCDL, interface, and implementation header files
from a Tuxedo Metadata Repository file named myrepository in the current working directory.
The number of interface method input arguments is limited to 8. If the limit is exceeded, the XSD
schema file is still generated.
tuxscagen -s /home/tux/sca -Dname=TRANSFER -gais -m 8
-trepository=myrepository

See Also
scatuxgen(1),tmloadrepos(1), tmunloadrepos(1)

Managing The Tuxedo Service Metadata Repository in Setting up an Oracle Tuxedo Application

Oracle SALT SCA Programming in the Oracle SALT Programming Guide

WEBHNDLR (5)
Name

WEBHNDLR - Generic Web Application server handler for PHP, Python or Ruby applications.

Synopsis
WEBHNDLR SRVGRP="identifier" SRVID="number"

 CLOPT="[-A] [servopts options]

 -- -l [PHP|Python|Ruby] [-V interpreter version]

 -S service name"

Description
WEBHNDLR is a system process server designed to contain scripts written in PHP, Python or Ruby,
and work in conjunction with the mod_tuxedo (Apache 2 module) or tux_nsapi (iPlanet Web
Server) plugin.

PHP scripts can be used as is, without any code modification. Python and Ruby scripts must be
written in CGI mode as follows.
38 Oracle SALT Reference Guide

../../../tuxedo/docs11gr1ps1/rfcm/index.html
../../../tuxedo/docs11gr1ps1/rfcm/index.html
../tuxedo/docs11gr1ps1/ads/admrp.html
../prog/index.html

WEBHNDLR (5)
Python scripts must be written following the WSGI (Web Server Gateway Interface)
specification. For more information, see Web Application Server Programming in the
Oracle SALT Programming Guide.

Ruby scripts must be written using a Ruby rack approach. For more information, see Web
Application Server Programming in the Oracle SALT Programming Guide.

WEBHNDLR supports the following options:

-l [PHP | Python | Ruby]
Specifies which language interpreter to initialize for this Web Application handler. PHP
selects the PHP handler, Python selects the Python handler and Ruby selects the Ruby
handler.

-V interpreter version
Optional. Specifies which version of the language interpreter to initialize for this Web
Application handler. Supported values are (default in bold):

PHP: 5

Python: 2.5

Ruby: 1.9

-S service name
Specifies which Tuxedo service needs to be advertised for this handler. This service name
must match the TuxService parameter value configured in mod_tuxedo.

Environment Variable(s)

APP_CONFIG (Python only)
Mandatory. Specifies a Python WSGI-compliant application as an environment variable
value. This variable may be set in the environment prior to starting the server, or using an
environment file (ENVFILE).

The application can be a stand-alone WSGI function in a module, or a
middleware-wrapped class (for example,WSGIHandler for a Django application). To
specify a stand-alone application, the following format is used:

APP_CONFIG="application-name.function-name"
To specify a middleware-wrapper application, the following format is used:

APP_CONFIG="wrapper.class.full.name.Handler (application-name)"
For example, a stand-alone non-wrapped application is configured as follows (the
path to the script must be added to the PYTHONPATH environment variable, or the
script must be placed in a PYTHONPATH location):
Oracle SALT Reference Guide 39

../prog/index.html
http://rack.rubyforge.org/
../prog/index.html
../prog/index.html

APP_CONFIG=test_app
A wrapped application is configured (using Django for example) as follows:
APP_CONFIG="django.core.handlers.wsgi (WSGIHandler)"

APP_CONFIG (Ruby only)
Mandatory. Specifies a Ruby rack-compliant application as an environment variable
value. This variable may be set in the environment prior to starting the server, or using an
environment file (ENVFILE).

The application is a rackup script. For more information on rackup see the Ruby Rack
documentation. The format of this application string is as follows:

APP_CONFIG=<location of rack-up script>
For example, the Rack Lobster web example can be configured as follows
(assuming Ruby is installed in /usr/lib/ruby):

APP_CONFIG=/usr/lib/ruby/gems/1.9.2/gems/rack-1.2.1/example/lobster.
ru

For more information, see Developing Python and Ruby Web Applications, Web Application
Server Programming in the Oracle SALT Programming Guide.

Portability
This command is available on any platform on which the Oracle Tuxedo server environment is
supported.

Example(s)
*SERVERS

WEBHNDLR SRVGRP=GROUP1 SRVID=100

 CLOPT="-A -- -l PHP -S PHP_SVC"

wsadmin
Name

wsadmin – Oracle SALT administration command interpreter.

Synopsis
wsadmin [-v]
40 Oracle SALT Reference Guide

../prog/index.html

wsadmin
Description
wsadmin uses specific commands to monitor and administrate active GWWS processes in the
specified Tuxedo domain. The TUXCONFIG environment variable is used to determine the location
where the Tuxedo configuration file is loaded. wsadmin is used in the same manner as
tmadmin(1) or dmadmin(1).

wsadmin accepts below optional parameter:

-v
Causes wsadmin to display the Oracle SALT version number, SALT Patch Level and
license information. wsadmin exits after print out.

wsadmin Commands
Commands may be entered using either their full name or their abbreviation (as given in
parentheses), followed by any appropriate arguments. Arguments appearing in brackets [], are
optional; arguments in braces, {}, indicate a selection from mutually exclusive options.

Note: Command line options that are not in brackets do not need to appear in the command line
if the corresponding default has been set via the default command.

wsadmin supports the following commands:

configstats(cstat) -i gwws_instance_id
Displays the current configuration status for the specified GWWS process. The -i
parameter must be specified.

default(d) [-i gwws_instance_id]
Sets the corresponding argument to the default GWWS Instance ID. The defaults can be
changed by specifying * as an argument. If the default command is entered without
arguments, the current defaults are printed.

echo(e) [{off | on}]
Repeats input command lines when set to on. If no option is given, the current setting is
toggled, and the new setting is printed. The initial setting is off.

forgettrans (ft) -i gateway_instance_id [-c Coord_context]
Forgets one or all heuristic log records for the named GWWS instance. If the transaction
identifier tran_id or coord_context coordination context is specified, only the
heuristic log record for that transaction is forgotten. The coordination context
(coord_context) can be obtained from the printtrans command or from the ULOG
file.

help (h) [command]
Prints help messages. If command is specified, the abbreviation, arguments, and
description for that command are printed.
Oracle SALT Reference Guide 41

Omitting all arguments causes the syntax of all commands to be displayed.

gwstats(gws) -i gwws_instance_id [-s serviceName]
Displays global level run time statistics information for the specified GWWS processes
including fail, success, pending number for both inbound and outbound call, average
processing time, active thread number, etc. If -s serviceName specified, the server-level
information is displayed.

-i is mandatory. -s is optional.

paginate(page) [{off | on}]
Paginates output. If no option is given, the current setting is toggled, and the new setting
is printed. The initial setting is on, unless either standard input or standard output is a
non-tty device. Pagination may be turned on only when both standard input and standard
output are tty devices.

The default paging command is indigenous to the native operating system environment.
In a UNIX operating system environment, for example, the default paging command is pg.
The shell environment variable PAGER may be used to override the default command
used for paging output.

printtrans (pt) -i gateway_instance_id
Prints transaction information for the named GWWS instance. The output for each
transaction record contains the following colon-delimited string fields:

process ID:GWWS instance id:service name:local GTRID:remote
coordination context ID:record type:timestamp.

quit (q)
Terminates the session.

verbose (v) [{off | on}]
Produces output in verbose mode. If no option is given, the current setting is toggled, and
the new setting is printed. The initial setting is off.

! shellcommand
Escapes to the shell and executes shell command.

! !
Repeats previous shell command.

[text]
Specifies comments. Lines beginning with # are ignored.

<CR>
Repeats the last command.
42 Oracle SALT Reference Guide

wsadmin
Example(s)

1. The following command inspects run time statistics for both inbound and outbound service
on GW2:

wsadmin
> gws -i GW2
GWWS Instance : GW2

Inboud Statistics :

Request Response Succ : 3359
Request Response Fail : 0

Oneway Succ : 0
Oneway Fail : 0

Total Succ : 3359

Total Fail : 0

Avg. Processing Time : 192.746 (ms)

Outboud Statistics :

Request Response Succ : 4129
Request Response Fail : 0

Oneway Succ : 0
Oneway Fail : 0

Total Succ : 4129
Total Fail : 0

Avg. Processing Time : 546.497 (ms)

 Total request Pending : 36

Outbound request Pending : 0
Oracle SALT Reference Guide 43

 Active Thread Number : 141

2. The following command inspects run time statistics for the ToUpperWS service on GW1 and
gets output in verbose mode.

wsadmin
> > verbose
Verbose now on.
> gws -i GW1 -s ToUpperWS
GWWS Instance : GW1

Service : ToUpperWS

Outboud Statistics :

Oneway Succ : 0
Oneway Fail : 0

 Avg. Processing Time : 0.000 (ms)

See Also
GWWS(5)

Oracle SALT Administration Guide

wsdlcvt
Name

wsdlcvt – WSDL document converter.

Synopsis
wsdlcvt -i WSDL_URL -o output_basename [-m] [-v] [-y] [-w][-sh] [-sp]

Description
wsdlcvt is used to convert an existing WSDL 1.1 document to a Metadata Input File, FML32
mapping File and Oracle SALT Web Service Definition File (WSDF). It is a wrapper script for
wsdl2mif.xsl, wsdl2fml32*.xsl and wsdl2wsdf.xsl for Xalan. Apache Xalan 2.7 libraries
are bundled with Oracle SALT product.

JRE 1.5 or higher is required to run wsdlcvt.
44 Oracle SALT Reference Guide

../admin/index.html

wsdlcv t
Parameters
wsdlcvt accepts the following parameters:

-i
Specifies the URL of the input WSDL document. The URL can be a local file path or a
downloadable HTTP URL link.

-o
Specifies the output files basename. The following suffixes are appended after the
basename:

wsdlcvt accepts the following optional parameters:

-y
Specifies that all the output destination files are overwritten without prompting if they
exist. If this parameter is not specified, a prompt message is output.

-m
Specifies that the “xsd:string” data type is mapped to an FML32 typed buffer Tuxedo
FLD_MBSTRING data type. If this parameter is not specified, Tuxedo FLD_STRING data
type is mapped by default.

-v
Specifies that wsdlcvt works in verbose mode. In particular, it shows context information
in the message and output context as FML32 field comments.

-w
If the given WSDL document is published using Microsoft .NET WCF, specifies this
parameter to ensure wsdlcvt can handle it correctly.

-sh
Specifies the SOCKS proxy host name to use when a network connection needs to be
established (for instance to download the WSDL document from a remote host). This can

Table 4 wsdlcvt-Created File Suffixes

Suffix Output File

.mif Tuxedo Service Metadata Input File

.fml32 FML32 Field Table Definition File

.wsdf SALT Web Service Definition File

.xsd The WSDL Document embedded XML Schema File
Oracle SALT Reference Guide 45

be a hostname or an IP address. If the proxy name is incorrect and a connection can not
be established, wsdlcvt will attempt to connect directly.

-sp
Specifies the SOCKS proxy host port number to use if necessary in conjunction with the
-sh option. The default value is 1080.

Environment Variable(s)
The TUXDIR and LANG environment variables must be set correctly.

The PATH environment variable must be set appropriately to execute “java”.

Diagnostics
Error, warning or information messages are output to standard output.

Example(s)
The following command converts the local WSDL file, sample.wsdl.

wsdlcvt -i sample.wsdl -o sample

The following command converts a WSDL document from a HTTP URL link. The
“xsd:string” data type is mapped to the Tuxedo FLD_MBSTRING field type.

wsdlcvt -i http://api.google.com/GoogleSearch.wsdl -o GSearch -m

See Also
Creating The Tuxedo Service Metadata Repository

field_tables(5)

Oracle SALT Web Service Definition File Reference

wsloadcf
Name

wsloadcf – Reads SALT Deployment file and other referenced artifacts. Loads a binary
SALTCONFIG file.

Synopsis
Usage 1: wsloadcf [-n][-y][-D loglevel] saltdeploy_file
Usage 2: wsloadcf [-n][-y][-D loglevel] -1 [-s rpc|doc]
[-v 1.1|1.2] salt_1.1_config
46 Oracle SALT Reference Guide

../../../tuxedo/docs11gr1ps1/ads/admrp.html
/tuxedo/tux91/ads/admrp.htm#1022618
../../../tuxedo/docs11gr1ps1/rf5/index.html
../ref/wsdf.html
../admin/intro.html#wp1034616

ws loadcf
Description
wsloadcf reads a SALT deployment file and other referenced files (WSDF files, WS-Policy
files), checks the syntax, and optionally loads a binary SALTCONFIG file. The SALTCONFIG
environment variable points to the SALTCONFIG file where the information should be stored. The
generated SALTCONFIG file is necessary to boot GWWS servers.

wsloadcf accepts the following optional parameters:

-n
Do validation only without generating the SALTCONFIG file.

-y
After checking the syntax, tmloadcf checks whether: (a) the file referenced by
SALTCONFIG exists; (b) it is a valid Oracle Tuxedo system file system; and (c) it contains
SALTCONFIG tables. If these conditions are not true, wsloadcf prompts you to indicate
whether you want the command to create and initialize SALTCONFIG.
Initialize SALTCONFIG file: path [y, q]?
Prompting is suppressed if the -y option is specified on the command line.

-D
Used to specify the configuration parsing log level.

For SALT 1.1 backward compatibility, wsloadcf can also read a SALT 1.1 configuration file.
Besides generating the SALTCONFIG binary file, wsloadcf also generates one SALT Web
Service Definition File (WSDF) and one SALT Deployment file according to the given SALT
1.1 configuration file.

-1
Turns on the SALT 1.1 compatible mode. To pass the SALT 1.1 configuration file to
wsloadcf, you must specify this flag first.

-v
Only takes effect when a SALT 1.1 configuration file is used. This option is used to
specify which SOAP version is applied to the generated WSDF file.

-s
Only takes effect when a SALT 1.1 configuration file is used. This option is used to
specify which SOAP message style is applied to the generated WSDF file.

Environment Variables
The SALTCONFIG environment variable must be set before executing wsloadcf.
Oracle SALT Reference Guide 47

Diagnostics
If a syntax error is detected in the given configuration files, an “ERROR” or “FATAL” message
indicating that problem is printed to the console, and no information is updated in the
SALTCONFIG file. wsloadcf exits with exit code 1.

A “WARN” message is printed to the console if: (1) configuration files may result in a potential
run-time risk or (2) default values are used because they are not specified in the configuration
files. “WARN” messages do not interrupt wsloadcf execution.

Upon successful completion, wsloadcf exits with exit code 0. If the SALTCONFIG file is updated,
a userlog message is generated.

See Also
Oracle SALT Web Service Definition File Reference

Oracle SALT Deployment File Reference
48 Oracle SALT Reference Guide

../ref/wsdf.html
../ref/deploy.html

A P P E N D I X A
Oracle SALT Web Service Definition File
Reference
The following sections provide SALT Web Service Definition File (WSDF) reference
information:

Overview

Oracle SALT WSDF Format

XML Schema

Oracle SALT WSDF Examples

Oracle SALT WSDF Element Descriptions

Overview
The Oracle SALT Web Service Definition File (WSDF) is an XML-based file used to define Oracle
SALT Web service components (for example, Web Service Bindings, Web Service Operations,
Web Service Policies, and so on). WSDF is a SALT specific representation of the Web Service
Definition Language data model. There are two WSDF types:

Native WSDF (Tuxedo generated)

A native WSDF is composed manually. You must define a set of Tuxedo services and how
they are exposed as Web services in a native WSDF. The native WSDF is similar to the SALT
1.1 configuration file.

Note: A native WSDF is the input file used by the SALT WSDL generator (tmwsdlgen).
Oracle SALT Reference Guide A-1

Non-native WSDF (Externally generated)

A non-native WSDF is generated from an external WSDL file via the SALT WSDL
converter (wsdlcvt). In most cases, you do not need to change the generated WSDF
except for configuring advanced features.

 For more information, see tmwsdlgen and wsdlcvt in the Oracle SALT Command Reference.

Oracle SALT WSDF Format
Figure A-1 shows a graphical representation of the WSDF format.

Figure A-1 SALT Web Service Definition File Format

<Definition>

<WSBinding> *

<Servicegroup>

<Policy> *

<Service> *

<Policy> *

<Input> ?

<Msghandler> ?

<Output> ?

<Msghandler> ?

<Fault> ?

<Msghandler> ?

<Property> *

* : Zero or more
+: One or more

No annotation: Exactly o

? : Zero or one
A-2 Oracle SALT Reference Guide

XML Schema
XML Schema
An XML Schema is associated with the WSDF. The XML Schema file that describes the WSDF
format is located in the following directory: $TUXDIR/udataobj/salt/wsdf.xsd.

Oracle SALT WSDF Examples
Listing A-1 and Listing A-2 show native and non-native WSDF examples.

Listing A-1 Native WSDF (Composed Manually)

<Definition name="bankapp"
 xmlns=http://www.bea.com/Tuxedo/WSDF/2007 >
 <WSBinding id="bankapp_binding" >
 <Servicegroup id="bankapp">
 <Policy location="/home/user/rm.xml" />
 <Service name="inquiry" />
 <Service name="deposit" />
 </Servicegroup>
 <SOAP>
 <AccessingPoints>
 <Endpoint id="HTTP1" address="http://myhost:7001" />
 <Endpoint id="HTTPS1" address="https://myhost:7002/bankapp" />
 </AccessingPoints>
 </SOAP>
 </ WSBinding >
</Definition>

Listing A-2 Non-Native WSDF (Generated from an External WSDL Document)

<Definition name="myWebservice"
 wsdlNamespace="http://www.example.org/myWebservice"
 xmlns=http://www.bea.com/Tuxedo/WSDF/2007 >
 <WSBinding id="A_binding">
 <Servicegroup id="portType">
 <Service name="operation_1" soapAction="op1" />
Oracle SALT Reference Guide A-3

 <Service name="operation_2" soapAction="op2" />
 </Servicegroup>
 <SOAP version="1.1" style="rpc" use="encoded">
 <AccessingPoints>
 <Endpoint id="example_http_port"
 address="http://www.example.org/abc" />
 <Endpoint id="example_https_port"
 address="https://www.example.org/abcssl" />
 </AccessingPoints>
 </SOAP>
 </WSBinding>
 <WSBinding id="B_binding">
 <Servicegroup id="portType">
 <Service name="operation_3" soapAction="op3" />
 <Service name="operation_4" soapAction="op4" />
 </Servicegroup>
 <SOAP version="1.2">
 <AccessingPoints>
 <Endpoint id="another_http_port"
 address="http://www.example.org/def" />
 </AccessingPoints>
 </SOAP>
 </WSBinding>
</Definition>

Oracle SALT WSDF Element Descriptions
WSDF format elements and their attributes are listed and described in the following section.

<Definition>
The WSDF file root element.
A-4 Oracle SALT Reference Guide

Orac le SALT WSDF E lement Desc r ip t ions
<WSBinding>
Defines concrete protocol binding information. Zero or more WSBinding objects can be specified
in one WSDF file.

Native WSDF: you can set SOAP version, encoding style, several endpoints for Web Service
Client connection through sub element <SOAP> and a set of Tuxedo services to be exposed for
invocation through sub element <Servicegroup>.

Non-native WSDF: each SOAP binding object (i.e., wsdl:binding object with soap:binding
extension) in the external WSDL document is translated into one WSBinding object.

Table A-1 <Definition> Attributes

Attribute Description Required

name The WSDF name. This attribute value may contain a maximum of 30
characters (excluding the terminating NULL character).

Native WSDF: you must manually provide a distinct application
name.

Non-native WSDF: this value is the same as the WSDL converter
(wsdlcvt) command line input parameter “output_basename.

Yes

wsdlNamespace The corresponding WSDL document target namespace for the
WSDF.

Native WSDF: you can optionally specify a distinct URI string so
that the generated WSDL can use this as the target namespace. If not
specified, the default WSDL target namespace is as follows:
"urn:<wsdf_name>.wsdl". For example, if the WSDF name is
“simpapp”, then the default WSDL target namespace is
“urn:simpapp.wsdl”.

Non-native WSDF: the value is the WSDL target namespace of the
external WSDL document.

No
Oracle SALT Reference Guide A-5

<Servicegroup>
Defines a Servicegroup object for one WSBinding object. Each WSBinding object must have
exactly one Servicegroup. The Servicegroup object is used to encapsulate a set of Tuxedo
services.

<Service>
Specifies a service for the WSBinding object.

Native WSDF: each service is a Tuxedo service.

Non-native WSDF: each service represents a converted Tuxedo service from a wsdl:operation
object defined in the external WSDL document.

Table A-2 <WSBinding> Attributes

Attribute Description Required

id Identifies the WSBinding object. The value must be unique within the
WSDF. This attribute value may contain a maximum of 78 characters
(excluding the terminating NULL character).

Native WSDF: the value is specified by customers and is used as the
wsdl:binding name in the generated WSDL document.

Non-native WSDF: the value is the wsdl:binding name defined in
the external WSDL document.

Yes

Table A-3 <Servicegroup> Attributes

Attribute Description Required

id Specifies the service group id. This attribute value may contain a
maximum of 78 characters (excluding the terminating NULL
character).

Native WSDF: the value is specified by customers and is used as the
wsdl:portType name in the generated WSDL document.

Non-native WSDF: the value is the wsdl:portType name
defined in the external WSDL document.

Yes
A-6 Oracle SALT Reference Guide

Orac le SALT WSDF E lement Desc r ip t ions
<Input>
Specifies Input message attributes for a particular service. This element is optional.

Table A-4 <Service> Attributes

Attribute Description Required

name Specifies the service name. This attribute value may contain a
maximum of 255 characters (excluding the terminating NULL
character).

Native WSDF: the service name value is used as the
wsdl:operation name in the generated WSDL document.

Non-native WSDF: the service name is equal to the
wsdl:operation name defined in the external WSDL document.

Yes

tuxedoRef An optional attribute used to reference the service definition in the
Tuxedo Service Metadata Repository.

If not specified, attribute "name" value is used as the reference
value.

No

soapAction Specifies the service soapAction attribute. This is a non-native
WSDF attribute. It is used to save the soapAction setting for each
wsdl:operation defined in the external WSDL document.

Note: Do not specify this attribute for a native WSDF.

No

namespace Specifies service namespace attribute. This is a non-native WSDF
attribute. It is used to save the namespace setting for each
wsdl:operation defined in the external WSDL document.

Note: Do not specify this attribute for a native WSDF.

No
Oracle SALT Reference Guide A-7

<Output>
Specifies Output message attributes for a particular service. This element is optional.

<Fault>
Specifies Fault message attributes for a particular service. This element is optional.

Table A-5 <Input> Attributes

Attribute Description Required

name Specifies the service input message name attribute. This is a
non-native WSDF attribute. It is used is used to save the name for the
input wsdl:message defined in the external WSDL document.

Note: Do not specify this attribute for a native WSDF.

No

wsaAction Specifies the service input message wsaAction attribute. This is a
non-native WSDF attribute. It is used is used to save the wsaAction
attribute of the input wsdl:message defined in the external
WSDL document.

Note: Do not specify this attribute for a native WSDF.

No

Table A-6 <Output> Attributes

Attribute Description Required

name Specifies the service output message name attribute. This is a
non-native WSDF attribute. It is used to save the name for the output
wsdl:message defined in the external WSDL document.

Note: Do not specify this attribute for a native WSDF.

No

wsaAction Specifies the service output message name attribute. This is a
non-native WSDF attribute. It is used to save the wsaAction attribute
of the output wsdl:message defined in the external WSDL
document.

Note: Do not specify this attribute for a native WSDF.

No
A-8 Oracle SALT Reference Guide

Orac le SALT WSDF E lement Desc r ip t ions
<Msghandler>
Specifies a customized message conversion handler. Optional for <Input>, <Output> and/or
<Fault> elements of any service. The value of this element is the handler name, which may
contain a maximum of 30 characters (excluding the terminating NULL character).

The GWWS server looks for the message conversion handler from all known message conversion
plug-in shared libraries using the handler name.The message conversion handler allows you to
develop customized Tuxedo buffer and SOAP message payload transformation functions to
replace the default GWWS message conversions.

For more information, see “Programming Message Conversion Plug-ins in the Oracle SALT
Programming Web Services.

<Policy>
References one Web Service Policy file applied to one of the following two levels:

<Servicegroup> level

<Service> level

At most, 10 Web Service policies can be referenced for each object.

Table A-7 <Fault> Attributes

Attribute Description Required

name Specifies the service fault message name attribute. This is a
non-native WSDF attribute. It is used to save the name for the fault
wsdl:message defined in the external WSDL document.

Note: Do not specify this attribute for a native WSDF.

No

wsaAction Specifies the service fault message wsaAction attribute. This is a
non-native WSDF attribute. It is used to save the wsaAction attribute
of the fault wsdl:message defined in the external WSDL
document.

Note: Do not specify this attribute for a native WSDF.

No
Oracle SALT Reference Guide A-9

../prog/plugin.html#wp1043350

<Property>
Specifies SALT specific properties for each service object.

Table A-8 <Policy> Attributes

Attribute Description Required

location Specifies the local file path for the referenced WS-Policy file. This
attribute value may contain a maximum of 256 characters (excluding the
terminating NULL character).

Specifically, Oracle SALT pre-defines WS-Policy template files for
typical WS-* scenarios. These files can be found under the
$TUXDIR/udataobj/salt/policy directory. You can reference
these template files using the string format
“salt:<template_file_name>”.

For example, if you want to reference SALT WS-SecurityPolicy 1.0
template file “wssp1.0-signbody.xml”, you should define the
following XML snippet in the WSDF file:

<Policy location=”salt:wssp1.0-signbody.xml” />

Yes

use Specifies if the WS-Policy file is applied to the input message, output
message, fault message, or the combination of the three. If multiple
messages are set, use a space as the delimiter.

For example, if you want to configure a WS-Policy file “mypolicy.xml”
to be applied to “input” and “output” messages, you should define the
following XML snippet in the WSDF file:

<Policy location=”mypolicy.xml” use=”input output”/>

Oracle SALT limits the applicable messages for each supported
WS-Policy assertion.

For more information, see the following sections:
• “Configuring Advanced Web Service Messaging Features” in the

Oracle SALT Administration Guide
• “Configuring Message-Level Web Service Security” in the Oracle

SALT Administration Guide
• Oracle SALT WS-ReliableMessaging Policy Assertion Reference
• Oracle SALT WS-SecurityPolicy Assertion 1.2 Reference
• Oracle SALT WS-SecurityPolicy Assertion 1.0 Reference

No
A-10 Oracle SALT Reference Guide

../admin/index.html
../admin/config.html

Orac le SALT WSDF E lement Desc r ip t ions
The following table lists all properties that can be specified for each service object.

<SOAP>
Specifies SOAP protocol information for the WSBinding object. SOAP version, message style
accessing endpoints are specified in this element.

Table A-9 <Property> Attributes

Attribute Description Required

name Specifies the property name. Table A-10 lists all the GWWS
server properties.

Yes

value Specifies the property value. Yes

Table A-10 <Property> Name List

Property Description Values

async_timeout Outbound service: Specifies a time setting to
wait for SOAP response.

Inbound service: No behavior impact.

(0-32767] (sec)

Default: 60 secs.

disableWSAddressing Outbound service: Disables explicit Web Service
Addressing requests with this property.

Inbound service: No behavior impact.

{True|False}

Default: False

Table A-11 <SOAP> Attributes

Attribute Description Required

version Specifies SOAP version for this WSBinding object. The valid values
are “1.1” and “1.2”. If not specified, "1.1" is used.

No
Oracle SALT Reference Guide A-11

Note: In the current SALT release, only “rpc/encoded” and “document/literal” are
supported.

<AccessingPoints>
Specifies the endpoint list for the WSBinding object. Each sub element <Endpoint> represents
one particular endpoint.

There is no attribute for this element.

<Endpoint>
Specifies each accessing endpoint for the WSBinding object.

style Specifies SOAP message style for this WSBinding object. The valid
values are “rpc” and “document”. If not specified, "document"
is used.

No

use Specifies SOAP message encoding style for this WSBinding object.
The valid values are “encoded” and “literal”.

If not specified explicitly, this value is automatically selected
according to “style” value. If “style” is “rpc”, then
“encoded” is used; if “style” is “document”, then “literal”
is used.

No

Table A-12 <Endpoint> Attributes

Attribute Description Required

id Specifies a unique endpoint id value within the WSBinding object.
This attribute value may contain a maximum of 78 characters
(excluding the terminating NULL character).

Yes

address Specifies the endpoint address. The address value must use the
following format:

"http(s)://<host>:<port>/<context_path>"

Note: Two endpoints cannot be specified with exact the same
address URL value.

Yes

Table A-11 <SOAP> Attributes

Attribute Description Required
A-12 Oracle SALT Reference Guide

Orac le SALT WSDF E lement Desc r ip t ions
<Realm>
Specifies the HTTP Realm attribute of an HTTP and/or HTTP/S endpoint. If this element is
configured for one endpoint, the GWWS tries to incorporate HTTP basic authentication
information in the request messages when issuing outbound calls through this endpoint.

For more information, see “Configuring Transport Level Security” in the Oracle SALT
Administration Guide.

Note: This element only works for non-native (external) WSDF files.
Oracle SALT Reference Guide A-13

../admin/config.html#wp1054801

A-14 Oracle SALT Reference Guide

A P P E N D I X B
Oracle SALT Deployment File Reference
The following sections provide SALT Deployment File reference information:

Overview

Oracle SALT SALTDEPLOY Format

XML Schema

Oracle SALT SALTDEPLOY Example

Oracle SALT SALTDEPLOY Element Description

Overview
The Oracle SALT Deployment File (SALTDEPLOY) is an XML-based file used to define Oracle
SALT GWWS server deployment information on a per Tuxedo machine basis. SALTDEPLOY does
the following:

lists all necessary Web Service Definition Files (WSDF)

specifies how many GWWS servers are deployed on a Tuxedo machine

associates inbound and outbound Web Service access endpoints for each GWWS server.

SALTDEPLOY also provides a system section to configure global resources (for example
certificates, plug-in load libraries, and so on).
Oracle SALT Reference Guide B-1

Oracle SALT SALTDEPLOY Format
Figure B-1 shows a graphical representation of the Oracle SALT SALTDEPLOY format.
B-2 Oracle SALT Reference Guide

Orac le SALT SALTDEPLOY Fo rmat
Figure B-1 SALT Deployment File Format

<Deployment>

<System>

<Certificate> ?

<WSDF>

<Import> *

<WSGateway>

<GWInstance> *
<Inbound> ?

<Endpoint> +

<Property> *

<Plugin> ?

<Interface> *

<Binding> *

<Outbound> ?

<Endpoint> *

<Binding> *

<Properties> ?

* : Zero or more
+: One or more

No annotation: Exactly one

? : Zero or one

<WSAddressing> ?
<Endpoint>

<PrivateKey>
<VerifyClient> ?

<TrustedCert> ?
<CertPath> ?

<MaxTran>*
<WSATEndPoint>*

<TLogName>*

<TLogDevice>*
Oracle SALT Reference Guide B-3

XML Schema
An XML Schema is associated with an Oracle SALT Deployment File. The XML Schema file
that describes the Oracle SALT Deployment File format is located in the following directory:
$TUXDIR/udataobj/salt/saltdep.xsd.

Oracle SALT SALTDEPLOY Example
Listing B-1 shows a sample SALT Deployment File.

Listing B-1 SALT Deployment File Example

<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">

 <WSDF>

 <Import location="/home/myapp/bankapp.wsdf" />

 <Import location="/home/myapp/amazon.wsdf" />

 </WSDF>

 <WSGateway>

 <GWInstance id="GW1">

 <Inbound>

 <Binding ref="bankapp:bankapp_binding">

 <Endpoint use="http1"/>

 <Endpoint use="https1" />

 </Binding>

 </Inbound>

 <Outbound>

 <Binding ref="amazon:default_binding"/>

 </Outbound>

 <Properties>

 <Property
B-4 Oracle SALT Reference Guide

Orac le SALT SALTDEPLOY E lement Descr ip t ion
 name="socksAddrList"

 value="proxy.server.com,10.123.10.10:1080"/>

 </Properties>

 </GWInstance>

 </WSGateway>

 <System>

 <Certificate>

 <PrivateKey>/home/user/cert.pem</PrivateKey>

 </Certificate>

 <Plugin>

 <Interface library="/home/user/mydatahandler.so" />

 </Plugin>

 </System>

</Deployment>

Oracle SALT SALTDEPLOY Element Description
SALTDEPLOYF format elements and their attributes are listed and described in the following
section.

<Deployment>
The SALTDEPLOY file root element.

There is no attribute for this element.

Three sections must be defined within the <Deployment> element:

<WSDF> elements

<WSGateway> element

<System> element.

There can be only one <Deployment> element defined in a SALTDEPLOY file.
Oracle SALT Reference Guide B-5

<WSDF>
Top element that encapsulates all imported WSDF files.

There is no attribute for this element.

<Import>
Specifies the WSDF to be imported in the SALTDEPLOY file. Multiple WSDF can be imported at the
same time. Each WSDF file can only be imported once. Multiple WSDF with the same WSDF name
cannot be imported in the same SALTDEPLOY file.

<WSGateway>
Top element that encapsulates all GWWS instance definitions.

There is no attribute for this element.

<GWInstance>
Specifies a single GWWS instance.

<Inbound>
Specifies inbound WSBinding objects for the GWWS server. Each inbound WSBinding object is
specified using the <Binding> sub element.

There is no attribute for this element.

Table B-1 <Import> Attributes

Attribute Description Required

location Specifies the WSDF local file path. Yes

Table B-2 <GWInstance> Attributes

Attribute Description Required

id Specifies the GWWS identifier. This attribute value may contain
a maximum of 12 characters (excluding the terminating NULL
character). The identifier value must be unique within the
SALTDEPLOY file.

Yes
B-6 Oracle SALT Reference Guide

Orac le SALT SALTDEPLOY E lement Descr ip t ion
<Outbound>
Specifies outbound WSBinding objects for the GWWS server. Each outbound WSBinding object is
specified using the <Binding> sub element.

There is no attribute for this element.

<Binding>
Specifies a concrete WSBinding object as either an inbound or outbound binding, depending on
the parent element.

Note: Please note the following maximum WSBinding object limitations for each GWWS
server:

Each GWWS server may reference at most 64 inbound WSBinding objects.

Each GWWS server may reference at most 128 outbound WSBinding objects.

For TCP/IP addresses, one of the following formats is used as shown in Table B-4.

For more information, see TMUSEIPV6 in the TUXENV(5) environment variable listing found in
the Tuxedo 10g R3 Reference Guide, Section 5 - File Formats, Data Descriptions, MIBs, and
System Processes Reference.

Table B-3 <Binding> Attributes

Attribute Description Required

ref Specifies a concrete WSBinding object using the following
Qualified Name format:

“<WSDF_name>:<WSBinding_id>”

Yes

Table B-4 Ipv4 and IPv6 Address Formats

IPv4 IPv6

//IP:port //[IPv6 address]:port

//hostname:port_number //hostname:port_number

//#.#.#.#:port_number Hex format is not
supported
Oracle SALT Reference Guide B-7

<Endpoint>
Specifies a single WSBinding objects endpoint reference.

If the referenced endpoint is specified as an inbound endpoint, the GWWS server creates the
corresponding HTTP and/or HTTPS listen endpoint. At least one inbound endpoint must be
specified for one inbound WSBinding object.

If the referenced endpoint is specified as an outbound endpoint, the GWWS server creates HTTP
and/or HTTPS connections per SOAP requests for the outbound WSBinding object.

If an outbound endpoint is not specified for the outbound WSBinding object, the first 10
endpoints (at most) are auto-selected.

The referenced endpoint must already be defined in the WSDF.

Note: Please note the following maximum endpoints limitations for each GWWS server:

Each GWWS server may create at most 128 inbound endpoints in all inbound
WSBinding objects to accept SOAP requests.

Each GWWS server may create connectivity with at most 256 outbound endpoints
in all outbound WSBinding objects.

<WSAddressing>
Specifies if Web Service Addressing is enabled for the outbound WSBinding object.

If this element is present, by default all SOAP messages are sent out with a Web Service
Addressing message header. The sub element <Endpoint> must be specified for the listen
endpoint address if this element is present.

There is no attribute for this element.

<Endpoint>
Specifies the WS-Addressing listen endpoint address for the referenced outbound WSBinding
object.

Table B-5 <Endpoint> Attributes

Attribute Description Required

use The referenced endpoint id defined in the WSDF. Yes
B-8 Oracle SALT Reference Guide

Orac le SALT SALTDEPLOY E lement Descr ip t ion
<TLogDevice>
One attribute "location" describes the location of the Transaction file. This is required if WS-TX
transaction support is required.

<TLogName>
 One attribute "id" describes the name of the transaction log inside a Transaction file. This is
required if WS-TX transaction support is required.

<WSATEndpoint>
 One attribute "address" describes the WS-AT protocol end point.

<MaxTran>
One attribute "value" describes the maximum number of concurrent WS-TX transactions
allowed. This is bounded by Oracle Tuxedo MAXGTT.

<Properties>
Top element that encapsulates all GWWS server property settings using the <Property> sub
element.

Table B-6 <Endpoint> Attributes

Attribute Description Required

address Specifies the WS-Addressing listen endpoint address.

The address value must be in the following format:

"http(s)://<host>:<port>/<context_path>"

The GWWS server creates listen endpoints and usage for
receiving WS-Addressing SOAP response messages.

Yes
Oracle SALT Reference Guide B-9

<Property>
Specifies one GWWS property.

Table B-7 <Properties> Attributes

Attribute Description Required

socksAddrL
ist

If necessary, endpoints can be grouped by GWInstance to
achieve separation between proxy-using endpoints and
non-proxy-using ones.

Value: String type containing a list of proxy server URLs.

For example: proxy.server1.com,10.123.1.1:1080.

Yes

Table B-8 <Property> Attributes

Attribute Description Required

name Specifies the property name. Table B-9 lists all the GWWS
server properties.

Yes

value Specifies the property value. Yes
B-10 Oracle SALT Reference Guide

Orac le SALT SALTDEPLOY E lement Descr ip t ion
Table B-9 GWWS <Property> List

Property Description Values

max_content_length Enables the GWWS server to deny the HTTP
requests when the content length is larger than
the property setting. If not specified, the GWWS
server does not check for it. The string value can
be one of the following three formats:
1. Integer number in bytes. No suffix means the

unit is bytes.
2. Float number in kilobytes. The suffix must

be ‘K’. For instance, 10.4K, 40K, etc.
3. Float number in megabytes. The suffix must

be ‘M’. For instance, 100M, 20.6M, etc.

The equivalent
byte size value
must be in [1
byte, 1G
byte] range.

thread_pool_size Specifies the maximum thread pool size for the
GWWS server.

Note: This value defines the maximum
possible threads that may be spawned in
the GWWS server. When the GWWS server
is running, the actual spawned threads
may be less than this value.

The valid value is
in [1, 1024].

Default value: 16

timeout Specifies the network time-out value, in seconds. The valid value is
in [1, 65535].

Default value:
300

max_backlog Specifies the backlog listen socket value. It
controls the maximum queue length of pending
connections by operating system.

Note: Generally no tuning is needed for this
value.

The valid value is
[1-255].

Default value: 16
Oracle SALT Reference Guide B-11

<System>
Specifies global settings, including certificate information, plug-in interfaces.

<Certificate>
Specifies global certificate information using sub elements <PrivateKey>, <VerifyClient>,
<TrustedCert> and <CertPath>.

There is no attribute for this element.

<PrivateKey>
Specifies the PEM format private key file. The key file path is specified as the text value for this
element. The server certificate is also stored in this private key file. The value of this element may
contain a maximum of 256 characters (excluding the terminating NULL character).

This element is mandatory if the parent <Certificate> element is configured.

<VerifyClient>
Specifies if Web service clients are required to send a certificate via HTTP over SSL connections.
The valid element values are "true" and "false".

This element is optional. If not specified, the default value is "false".

enableMultiEncoding Toggles on/off multiple encoding message
support for the GWWS server. If multiple
encoding support property is turned off, only
UTF-8 HTTP / SOAP messages can be accepted
by the GWWS server.

The valid values
are “true”,
“false”.

Default value:
false

enableSOAPValidation Toggles on/off XML Schema validation for
inbound SOAP request messages if the
corresponding Tuxedo input buffer is associated
with a customized XML Schema.

The valid values
are “true”,
“false”.

Default value:
false

Table B-9 GWWS <Property> List

Property Description Values
B-12 Oracle SALT Reference Guide

Orac le SALT SALTDEPLOY E lement Descr ip t ion
<TrustedCert>
Specifies the file name of the trusted PEM format certificate files. The value of this element may
contain a maximum of 256 characters (excluding the terminating NULL character).

This element is optional.

<CertPath>
Specifies the local directory where the trusted certificates are located. The value of this element
may contain a maximum of 256 characters (excluding the terminating NULL character).

This element is optional.

Note: If <VerifyClient> is set to “true”, or if WS-Addressing is used with SSL, trusted
certificates must be stored in the directory setting with this element.

<Plugin>
Specifies the global plug-in load library information. Each <Interface> sub element specifies one
plug-in library to be loaded.

There is no attribute for this element.

<Interface>
Specifies one particular plug-in interface or a plug-in library for all plug-in interfaces inside the
library.

Note: For more information about how to develop a SALT plug-in interface, see “Using Oracle
SALT Plug-ins” in the Oracle SALT Programming Web Services.

Table B-10 <Interface> Attributes

Attribute Description Required

library Mandatory. Specifies a local shared library file path. This
attribute value may contain a maximum of 256 characters
(excluding the terminating NULL character).

Yes

params Optional. Specifies a particular string value that is passed to the
library when initialized by the GWWS server at boot time. This
attribute value may contain a maximum of 256 characters
(excluding the terminating NULL character).

No
Oracle SALT Reference Guide B-13

../prog/plugin.html
../prog/plugin.html

B-14 Oracle SALT Reference Guide

A P P E N D I X C
Oracle SALT WS-ReliableMessaging
Policy Assertion Reference
The following sections provide SALT WS-ReliableMessaging (WS-RM) Policy Assertion
reference information:

Overview

WS-RM Policy Assertion Format

WS-RM Assertion File Example

WS-RM Assertion Element Description

Overview
Oracle SALT provides support for WS-ReliableMessaging (WS-ReliableMessaging 1.0, Feb.,
2005 specification), which allows two Web Service applications running on different GWWS
instances to communicate reliably in the event of software component, system, or networks
failure.

A WS-Policy file containing WS-ReliableMessaging Policy Assertion is used to configure the
reliable messaging capabilities of a GWWS server on a destination endpoint. SALT supports the
WS-ReliableMessaging Policy Assertion specification to ensure the interoperability with Oracle
WebLogic 9.x / 10.

For more information about configuring a reliable GWWS server, see “Configuring Advanced
Web Service Messaging Features in the Oracle SALT Administration Guide.
Oracle SALT Reference Guide C-1

../admin/config.html#wp1055943
../admin/config.html#wp1055943

Orac le SALT WS-Re l iab leMessag ing Po l i cy Asse r t i on Refe rence
WS-RM Policy Assertion Format
Figure C-1 shows a graphical representation of the WS-ReliableMessaging Policy Assertion
format in a WS-Policy file.

Figure C-1 WS-ReliableMessaging Policy Assertion Format

WS-RM Assertion File Example
Listing C-1 shows a sample WS-Policy file that contains WS-RM policy assertion.

Listing C-1 Sample WS-ReliableMessaging Policy Assertion File

<?xml version="1.0"?>
<wsp:Policy wsp:Name="ReliableSomeServicePolicy"
 xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:beapolicy="http://www.bea.com/wsrm/policy">
 <wsrm:RMAssertion>
 <wsrm:InactivityTimeout Milliseconds="600000" />
 <wsrm:BaseRetransmissionInterval Milliseconds="500"/>

wsp:Policy

<wsrm:RMAssertion> ?

<wsrm:InactivityTimeout> ?

* : Zero or more
+: One or more

No annotation: Exactly one

? : Zero or one

<wsrm:AcknowledgementInterval> ?

<wsrm:BaseRetransmissionInterval> ?

<wsrm:ExponentialBackoff> ?

<beapolicy:Expires> ?

<beapolicy:QOS> ?
C-2 Oracle SALT Reference Guide

WS-RM Asser t i on E lement Descr ip t ion
 <wsrm:ExponentialBackoff />
 <wsrm:AcknowledgementInterval Milliseconds="2000" />
 <beapolicy:Expires Expires="P1D" />
 <beapolicy:QOS QOS="ExactlyOnce InOrder" />
 </wsrm:RMAssertion>
</wsp:Policy>

WS-RM Assertion Element Description
All RM assertions are optional, and if not specified, the default value are used. The following
definitions describe the RM assertion options.

<wsrm:InactivityTimeout>
Specifies the number of milliseconds, specified with the Milliseconds attribute, which defines an
inactivity interval. After time has elapsed, if the destination endpoint has not received a message
from the source endpoint, the destination endpoint may terminate current sequence due to
inactivity. The source endpoint can also use this parameter.

Sequences never time out by default.

<wsrm:AcknowledgementInterval>
Specifies the maximum interval, in milliseconds, in which the destination endpoint must transmit
a stand-alone acknowledgement.

This element is optional. If this element is not specified, There is no time limit by default.

<wsrm:BaseRetransmissionInterval>
Specifies the interval, in milliseconds, that the source endpoint waits after transmitting a message
and before it retransmits the message if it receives no acknowledgment for that message. This
value will apply to the GWWS server when it sends a response in an outbound sequence.

The default value is 20000 milliseconds.
Oracle SALT Reference Guide C-3

Orac le SALT WS-Re l iab leMessag ing Po l i cy Asse r t i on Refe rence
<wsrm:ExponentialBackoff>
Specifies that the retransmission interval is adjusted using the exponential back off algorithm.
This value applies to the GWWS server when it sends a response in an outbound sequence.

<beapolicy:Expires>
Specifies the amount of time after which the reliable Web service expires and does not accept any
new sequence messages.

This element has a single attribute, Expires, whose data type is an XML Schema duration type.
For example, if you want to set the expiration time to one day, use the following:

< beapolicy:Expires Expires="P1D" />

The default value is never expire.

<beapolicy:QOS>
Specifies the delivery assurance. SALT supports the following assurances:

AtMostOnce - Messages are delivered at most once, without duplication. There is
possibility that some messages may not be delivered.

AtLeastOnce - Every message is delivered at least once. There is possibility that some
messages are delivered more than once.

ExactlyOnce - Each message is delivered exactly once, without duplication.

InOrder - Messages are delivered in the order that they were sent. This delivery assurance
can be combined with one of the preceding three assurances.

The default value is "ExactlyOnce InOrder".

<wsrm:RMAssertion>
Main WS-RM assertion that groups all the other assertions under a single element.

The presence of this assertion in a WS-Policy file indicates that the corresponding Web Service
application must be invoked reliably.
C-4 Oracle SALT Reference Guide

A P P E N D I X D
Oracle SALT WS-AT Assertion Reference
The following sections provide Oracle SALT WS-AT Assertion reference information:

Overview

Policy File Example

Overview
WS-AT defines a policy assertion that allows requests to indicate whether an operation call must
or may be made as part of an Atomic Transaction. For the configuration impact of Atomic
Transaction policy assertions, see the "Configuration Changes" chapter.

Depending on the direction of the calls and meaning of the policy assertion setting, the runtime
inbound/outbound transaction behavior is as follows:

Inbound Transactions

For inbound transactions, there are no particular runtime behavior changes. The client
consuming the WSDL accepts transactions based on the configured value. Runtime
behavior is normal.

Outbound Transactions

– If an ATAssertion element without "Optional=true" is configured for a service, the
call has to be made in a transaction. If no corresponding XA transaction exists at the
time, the WS-TX transaction is initiated (but not associated with any Oracle Tuxedo
XA transactions). If an XA transaction exists, there is no change in behavior.
Oracle SALT Reference Guide D-1

Orac le SALT WS-AT Asser t ion Re fe rence
– If an ATAssertion element with "Optional=true" is configured for a service, an
outbound transaction context is requested only if a corresponding Oracle Tuxedo XA
transaction exists in the context of the call.

– If no ATAssertion element is configured for a service, the corresponding service call
is made outside of any transaction. When a call is made to an external Web Service in
the context of an Oracle Tuxedo XA transaction, the Web Service call does not
propagate the transaction. This allows excluding certain Web Service calls from a
global transaction, and represents the default for most existing Web Services calls that
do not support WS-TX.

Policy File Example
The existing policy file mechanism includes the addition of WS-AT policy elements.WS-AT
defines the ATAssertion element, with an Optional attribute, as follows:
/wsat:ATAssertion/@wsp:Optional="true"

Listing D-1 shows an example policy.xml file with an ATAssertion element.

Listing D-1 policy.xml File with an ATAssertion Element

<?xml version="1.0"?>

<wsp:Policy wsp:Name="TransactionalServicePolicy"

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

 xmlns:wsat="http://docs.oasis-open.org/ws-tx/wsat/2006/06">

 <wsat:ATAssertion wsp:Optional="true"/>

</wsp:Policy>
D-2 Oracle SALT Reference Guide

A P P E N D I X E
Oracle SALT WS-SecurityPolicy
Assertion 1.2 Reference
The following sections provide SALT WSSP1.2 reference information:

Overview

Oracle SALT WSSP 1.2 Policy File Example

Oracle SALT WSSP 1.2 Policy Templates

Oracle SALT WSSP1.2 Assertion Description

Overview
Oracle SALT implements part of WS-Security protocol version 1.1 for inbound services.
Authentication with UsernameToken and X509v3Token are supported. To describe how the
authentication is carried out, WS-SecurityPolicy is used in WSDL definition.

In order to communicate with Oracle WebLogic Release 10 via WS-Security 1.1, SALT
implements the counterparts of WS-SecurityPolicy (WSSP) 1.2 supported by WebLogic 10. But
the supported WSSP 1.2 assertions are limited as follows:

Protection Assertions

– Integrity Assertion

• <sp:SignedParts> Assertion (Limited support)

Token Assertions:

– <sp:UsernameToken> Assertion (Limited support)
Oracle SALT Reference Guide E-1

Orac le SALT WS-Secur i t yPo l i c y Asse r t i on 1 .2 Refe rence
– <sp:X509Token> Assertion (Limited support)

Security Binding Assertions:

– AsysmmetricBinding Assertion (Limited support)

– <sp:TransportBinding > Assertion (Limited support)

Supporting Tokens Assertions:

– SupportingTokens Assertion (Limited support)

For more details about limitations of WS-SecurityPolicy 1.2 assertions, please refer to Oracle
SALT WSSP1.2 Assertion Description.

For more information about WSSP 1.2 assertions supported by WebLogic 10, please refer to
“Using WS-SecurityPolicy 1.2 Policy Files in the Oracle WebLogic Web Services
Documentation.

In this document, XML namespace prefix “sp” stands for namespace URI
“http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512”.

Oracle SALT WSSP 1.2 Policy File Example
Listing E-1 demonstrates how to apply Username token authentication with WSSP 1.2 assertions.

Listing E-1 WSSP 1.2 Policy File Sample

<!-Binding Policy -->
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512">
 <sp:TransportBinding>
 <wsp:Policy>
 <sp:TransportToken>
 <wsp:Policy>
 <sp:HttpToken/>
 </wsp:Policy>
 </sp:TransportToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
E-2 Oracle SALT Reference Guide

http://edocs.bea.com/wls/docs100/webserv_sec/message.html#wp243698

Orac le SALT WSSP 1 .2 Po l i cy Templates
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 </wsp:Policy>
 </sp:TransportBinding>
 <sp:SupportingTokens>
 <wsp:Policy>
 <sp:UsernameToken
 sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypol

icy/200512/IncludeToken/AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssUsernameToken10/>
 </wsp:Policy>
 </sp:UsernameToken>
 </wsp:Policy>
 </sp:SupportingTokens>
</wsp:Policy>

Oracle SALT WSSP 1.2 Policy Templates
Oracle SALT provides a number of WS-SecurityPolicy 1.2 template files you can use for most
typical Web Service applications. These policy files are located in directory
TUXDIR/udataobj/salt/policy.
Oracle SALT Reference Guide E-3

Orac le SALT WS-Secur i t yPo l i c y Asse r t i on 1 .2 Refe rence
These template files can be referenced directly in the WSDF files with location value format:
salt:<template_file_name>

For example, if you want to configure signbody, you can specify the followings in your WSDF
file:
<Policy location=”salt:wssp1.2-signbody.xml” />

Oracle SALT WSSP1.2 Assertion Description
Below are all Oracle SALT supported WSSP 1.2 assertions and limitations for each one.
Customers should obey the limitation when writing their own customized WSSP 1.2 policy files.
Oracle SALT does not check any customized WSSP 1.2 policy file against the limitation rules. If
something claimed in the customized WSSP 1.2 policy file cannot be supported by Oracle SALT,
web service client program may result run time errors.

WS-SecurityPolicy 1.2 assertions not listed below are definitely not supported by Oracle SALT.

<sp:SignedParts>
Specifies the parts of a SOAP message to be digitally signed. Oracle SALT only supports the
entire SOAP body to be signed.

Limitations
Child element <sp:Body> is supported for configuring the entire SOAP body to be signed.

Child element <sp:Header> is not yet supported.

Table E-1 Oracle SALT WSSP 1.2 Policy Template Files

Policy File Description

wssp1.2-UsernameToken-pla
in-auth.xml

Username token with plain text password is sent in the request
for authentication.

wssp1.2-x509v3-auth.xml X509 V3 binary token (certificate) is sent in the request for
authentication. The request is optionally signed with some
message parts in the requests.

wssp1.2-signbody.xml The entire SOAP body is signed.
E-4 Oracle SALT Reference Guide

Orac le SALT WSSP1.2 Asse r t ion Descr ip t ion
No nesting WSSP 1.2 assertion for this assertion.

<sp:UsernameToken>
Specifies username token to be included in the SOAP message. Oracle SALT only supports
username token with clear text password defined in WS-Security Username Token Profile 1.0.
<UsernameToken> assertion must be used as a nested assertion of Security Binding Assertions
and Supporting Token Assertions.

Limitations
Supported Nesting Assertions

– <sp:WssUsernameToken10>

Not yet supported Nesting Assertions

– <sp:WssUsernameToken11>

– <sp:NoPassword>

– <sp:HashPassword>

<sp:X509Token>
Specifies a binary security token carrying an X509 token to be included in the SOAP message.
<X509Token> assertion must be used as a nested assertion of Security Binding Assertions and
Supporting Token Assertions.

Limitations
Supported Nesting Assertions

– <sp:WssX509V3Token10>

– <sp:WssX509V3Token11>

Non-Supported Nesting Assertions

– <sp:WssX509Pkcs7Token10>

– <sp:WssX509Pkcs7Token11>

– <sp:WssX509PkiPathV1Token10>

– <sp:WssX509PkiPathV1Token11>
Oracle SALT Reference Guide E-5

Orac le SALT WS-Secur i t yPo l i c y Asse r t i on 1 .2 Refe rence
– <sp:WssX509V1Token10>

– <sp:WssX509V1Token11>

<sp:AlgorithmSuite>
Specifies the algorithm suite to be used for performing cryptographic operations with security
tokens. <AlgorithmSuite> Assertion must be used as a nested assertion of Security Binding
Assertions.

Limitations
Supported Nesting Algorithm Suite

– <sp:Basic256>

Non-Supported Nesting Algorithm Suites

– All the other Algorithm Suite listed in the WS-Security Policy 1.2 specification.

<sp:Layout>
Specifies the layout rules when adding items to the security header. <Layout> Assertion must be
used as a nested assertion of Security Binding Assertions.

Limitations
Supported Nesting Layout rules

– <sp:Lax>

Non-Supported Nesting Layout rules

– <sp:Strict>

– <sp:LaxTimestampFirst>

– <sp:LaxTimestampLast>

<sp:TransportBinding >
Specifies the message protection and security correlation is provided using the means of the
transport. The <TransportBinding> token is used mainly for carrying isolated Username Token
in the SOAP message.
E-6 Oracle SALT Reference Guide

Orac le SALT WSSP1.2 Asse r t ion Descr ip t ion
Limitations
Supported Nesting Assertions

– <sp:TransportToken>

– <sp:AlgorithmSuite>

– <sp:Layout>

– <sp:IncludeTimestamp>

Nesting Assertion <sp:TransportToken> only supports <sp:HttpToken>

Listing E-2 shows an Oracle SALT supported TransportToken Assertion example.

Listing E-2 Supported TransportToken Assertions

 <sp:TransportBinding>
 <wsp:Policy>
 <sp:TransportToken>
 <wsp:Policy>
 <sp:HttpToken />
 </wsp:Policy>
 </sp:TransportToken>
 <sp:Algorithm>
 <wsp:Policy>
 <sp:Basic256>
 </wsp:Policy>
 </sp:Algorithm>
 </wsp:Policy>
 </sp:TransportBinding>

<sp:AsymmetricBinding>
Specifies the message protection is provided by means defined in WS-Security SOAP Message
Security, and the request and response message can use distinct keys for encryption and signature,
because of their different lifecycles. The <AsymmetricBinding> Assertion is used mainly for
carrying X.509 binary security token in the SOAP request messages for inbound calls.
Oracle SALT Reference Guide E-7

Orac le SALT WS-Secur i t yPo l i c y Asse r t i on 1 .2 Refe rence
Limitations
Supported Nesting Assertions

– <sp:InitiatorToken>

– <sp:RecipientToken>

– <sp:AlgorithmSuite>

– <sp:Layout>

– <sp:IncludeTimestamp>

– <sp:ProtectTokens>

– <sp:OnlySignEntireHeadersAndBody>

Non-supported Nesting Assertions

– <sp:InitiatorSignatureToken>

– <sp:InitiatorEncryptToken>

– <sp:RecipientSignatureToken>

– <sp:RecipientEncryptToken>

– <sp:EncryptBeforeSigning>

– <sp:EncryptSignature>

<sp:InitiatorToken> must be associated with <sp:X509Token> and the Token inclusion
type must be “AlwaysToRecipient“

<sp:RecipientToken> must be associated with <sp:X509Token> and the Token inclusion
type must be “Never”

Listing E-3 shows an Oracle SALT supported AsymmetricBinding assertion example. This
assertion indicates the X.509 V3 binary token that defined in WS-Security X.509 Token Profile
1.1 specification is used for digital signature for the SOAP request messages and the X.509 token
is always included in the SOAP message security header:

Listing E-3 Supported AsymmetricBinding Assertion

 <sp:AsymmetricBinding>
 <wsp:Policy>
 <sp:InitiatorToken>
E-8 Oracle SALT Reference Guide

Orac le SALT WSSP1.2 Asse r t ion Descr ip t ion
 <wsp:Policy>
 <sp:X509Token

 sp:IncludeToken=”http://docs.oasis-open.org/ws-sx/ws-securit

ypolicy/200512/IncludeToken/AlwaysToRecipient”>
 <wsp:Policy>
 <sp:WssX509V3Token11 />
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token

 sp:IncludeToken=”http://docs.oasis-open.org/ws-sx/ws-securit

ypolicy/200512/IncludeToken/Never”>
 <wsp:Policy>
 <sp:WssX509V3Token11 />
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:Algorithm>
 <wsp:Policy>
 <sp:Basic256>
 </wsp:Policy>
 </sp:Algorithm>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp />
 </wsp:Policy>
 </sp:AsymmetricBinding>
Oracle SALT Reference Guide E-9

Orac le SALT WS-Secur i t yPo l i c y Asse r t i on 1 .2 Refe rence
<sp:SupportingToken>
Specifies security tokens that are included in the security header and may optionally include
additional message parts to sign and/or encrypt. For Oracle SALT, <SupportingToken> Assertion
is used mainly to include Username Token in the security header when <sp:AsymmetricBinding>
Assertion is used.

Limitations
Supported Nesting Assertions

– <sp:UsernameToken>

– <sp:X509Token>

Not-non Supported Nesting Assertions

– <sp:SignedParts>

– <sp:SignedElements

– <sp:EncryptedParts>

– <sp:EncryptedElements>

All supported token assertions must be defined with Token inclusion type
“AlwaysToRecipient”.

Listing E-4 shows an Oracle SALT supported SupportingToken assertion example. This
assertion indicates the Username token is always included in SOAP request messages:

Listing E-4 Supported SupportingToken Assertion

 <sp:SupportingTokens>
 <wsp:Policy>
 <sp:UsernameToken

 sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypol

icy/200512/IncludeToken/AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssUsernameToken10/>
 </wsp:Policy>
 </sp:UsernameToken>
E-10 Oracle SALT Reference Guide

Orac le SALT WSSP1.2 Asse r t ion Descr ip t ion
 </wsp:Policy>
 </sp:SupportingTokens>
Oracle SALT Reference Guide E-11

Orac le SALT WS-Secur i t yPo l i c y Asse r t i on 1 .2 Refe rence
E-12 Oracle SALT Reference Guide

A P P E N D I X F
Oracle SALT WS-SecurityPolicy
Assertion 1.0 Reference
The following sections provide SALT WS-SecurityPolicy (WSSP) 1.0 assertion reference
information:

Overview

SALT WSSP 1.0 Policy Assertion Format

SALT WSSP 1.0 Assertion File Example

SALT WSSP 1.0 Policy Templates

SALT WSSP 1.0 Assertion Element Description

Overview
Oracle SALT implements part of WS-Security protocol version 1.0 for inbound services.
Authentication with UsernameToken and X509v3Token are supported. WS-SecurityPolicy 1.0
assertions are used in WSDL definition to describe how the authentication is carried out. The
WS-SecuirtyPolicy1.0 specification (2002) is supported in order to ensure the interoperability
with Oracle WebLogic 9.x.

Below are all Oracle SALT supported WS-SecurityPolicy 1.0 assertions:

SecurityToken Assertions:

– UsernameToken Assertion and X509Token Assertion

Integrity Assertion
Oracle SALT Reference Guide F-1

Orac le SALT WS-Secur i t yPo l i c y Asse r t i on 1 .0 Refe rence
Identity Assertion

There are some extension assertions used in WebLogic 9.x, SALT only implements a subset of
them. Integrity Assertion is only used when using X509v3 token for authentication. And the only
message part can be specified for signature is the whole SOAP Body.

SALT WSSP 1.0 Policy Assertion Format
Figure F-1 shows a graphical representation of the Oracle SALT supported WS-SecurityPolicy
1.0 Assertion format in a WS-Policy file.

Figure F-1 SALT Supported WS-SecurityPolicy 1.0 Assertion Format

<SecurityToken> +

<Integrity> ?

<SignatureAlgorithm>

<CanonicalizationAlgorithm>

<Target> +

<DigestAlgorithm>
<Transform> *

<MessageParts>

<wsp:Policy>
<Identity> ?

<SupportedTokens> ?

<SupportedTokens> ?

<Claims> ?

<UsePassword> ?

<SecurityToken> +

* : Zero or more
+: One or more

No annotation: Exactly one

? : Zero or one
F-2 Oracle SALT Reference Guide

SALT WSSP 1 .0 Asse r t i on F i l e Example
SALT WSSP 1.0 Assertion File Example
Listing F-1 demonstrates how to apply Username token authentication with WSSP 1.0
Assertions.

Listing F-1 WSSP 1.0 Policy File Sample

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/WLS/security/policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssec

urity-utility-1.0.xsd">
 <wssp:Identity>
 <wssp:SupportedTokens>
 <wssp:SecurityToken

 TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-200401

-wss-username-token-profile-1.0#UsernameToken">
 <wssp:Claims>
 <wssp:UsePassword>http://docs.oasis-open.org/wss/2004/01/oasis-2

00401-wss-username-token-profile-1.0#PasswordText</wssp:UsePassword>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Identity>
</wsp:Policy>

SALT WSSP 1.0 Policy Templates
Oracle SALT provides a number of WS-SecurityPolicy 1.0 template files you can use for most
typical Web Service applications. These policy files are located in directory
TUXDIR/udataobj/salt/policy.
Oracle SALT Reference Guide F-3

Orac le SALT WS-Secur i t yPo l i c y Asse r t i on 1 .0 Refe rence
These template files can be referenced directly in the WSDF files with location value format:
salt:<template_file_name>

For instance, if you want to configure signbody, you can specify the followings in your WSDF
file:
<Policy location=”salt:wssp1.0-signbody.xml” />

SALT WSSP 1.0 Assertion Element Description
Oracle SALT implements part of WebLogic 9.x / 10 WS-SecurityPolicy 1.0 assertions. For a
complete list of WSSP 1.0 assertions supported by WebLogic, see
http://edocs.bea.com/wls/docs100/webserv_ref/sec_assert.html

<CanonicalizationAlgorithm>
Specifies the algorithm used to canonicalize the SOAP message elements that are digitally
signed.

Table F-1 SALT WSSP 1.0 Policy Template Files

Policy File Description

wssp1.0-UsernameToken-plain-auth.
xml

Username token with plain text password is sent in the request
for authentication.

wssp1.0-x509v3-auth.xml X509 V3 binary token (certificate) is sent in the request for
authentication. The request is optionally signed with some
message parts in the requests.

wssp1.0-signbody.xml The whole SOAP body is signed.

Table F-2 <CanonicalizationAlgorithm> Attribute

Attribute Description Required?

URI The algorithm used to canonicalize the SOAP message being
signed.

SALT supports only the following canonicalization algorithm:
http://www.w3.org/TR/xml-exc-c14n/

Yes
F-4 Oracle SALT Reference Guide

http://www.w3.org/TR/xml-exc-c14n/
http://edocs.bea.com/wls/docs100/webserv_ref/sec_assert.html

SALT WSSP 1 .0 Asser t i on E lement Descr ip t ion
<Claims>
Specifies additional metadata information that is associated with a particular type of security
token. Depending on the type of security token, you must specify the following child elements:

For username tokens, you must specify a <UsePassword> child element to specify what
kind of the password will be used for in username authentication.

This element does not have any attributes.

<DigestAlgorithm>
Specifies the digest algorithm that is used when digitally signing the specified parts of a SOAP
message. Use the <MessageParts> sibling element to specify the parts of the SOAP message you
want to digitally sign.

<Identity>
Specifies the type of security tokens (username or X.509) that are supported for authentication.

This element has no attributes.

<Integrity>
Specifies that part or all of the SOAP message must be digitally signed, as well as the algorithms
and keys that are used to sign the SOAP message.

For example, a Web Service may require that the entire body of the SOAP message must be
digitally signed and only algorithms using SHA1 and an RSA key are accepted.

Table F-3 <DigestAlgorithm> Attributes

Attribute Description Required?

URI The digest algorithm that is used when digitally signing the
specified parts of a SOAP message.

SALT supports only the following digest algorithm:

http://www.w3.org/2000/09/xmldsig#sha1

Yes
Oracle SALT Reference Guide F-5

Orac le SALT WS-Secur i t yPo l i c y Asse r t i on 1 .0 Refe rence
<MessageParts>
Specifies the parts of the SOAP message that should be signed. SALT only supports certain
pre-defined message part function, wsp:Body(), i.e. the entire SOAP body to be digitally signed.

The MessageParts assertion is always a child of a <Target> assertion. The <Target> assertion can
be a child of an Integrity assertion (to specify how the SOAP message is digitally signed).

See “Usage of MessageParts” for more information about how to specify the parts of the SOAP
message that should be signed.

<SecurityToken>
Specifies the security token that is supported for authentication or digital signatures, depending
on the parent element.

If this element is defined in the <Identity> parent element, then is specifies that a client
application, when invoking the Web Service, must attach a security token to the SOAP request.

Table F-4 <Integrity> Attributes

Attribute Description Required?

SignToken Specifies whether the security token, specified using the
<SecurityToken> child element of <Integrity>, should also
be digitally signed, in addition to the specified parts of the SOAP
message.

The valid values for this attribute are true and false. The default
values is true.

No

Table F-5 <MessageParts> Attributes

Attribute Description Required?

Dialect Identifies the dialect used to identity the parts of the SOAP message
that should be signed.

SALT only supports the following value:
• http://schemas.xmlsoap.org/2002/12/wsse#part

Convenience dialect used to specify parts of SOAP message that
should be signed.

Yes
F-6 Oracle SALT Reference Guide

SALT WSSP 1 .0 Asser t i on E lement Descr ip t ion
For example, a Web Service might require that the client application present a Username token
for the Web Service to be able to access Tuxedo service. If this element is part of <Integrity>,
then it specifies the token used for digital signature.

The specific type of the security token is determined by the value of its TokenType attribute, as
well as its parent element.

<SignatureAlgorithm>
Specifies the cryptographic algorithm used to compute the digital signature.

Table F-6 <SecurityToken> Attributes

Attribute Description Required?

IncludeInMes
sage

Specifies whether to include the token in the SOAP message.

Valid values are true or false.

The default value of this attribute is true when used in the
<Integrity> assertion.

The value of this attribute is always true when used in the
<Identity> assertion, even if you explicitly set it to false.

No

TokenType Specifies the type of security token. Valid values are:
• http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-x509-token-profile-1.0#X509v3 (To
specify a binary X.509 v3 token)

• http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-username-token-profile-1.0#Usern
ameToken (To specify a username token)

Yes
Oracle SALT Reference Guide F-7

Orac le SALT WS-Secur i t yPo l i c y Asse r t i on 1 .0 Refe rence
<SupportedTokens>
Specifies the list of supported security tokens that can be used for authentication, or digital
signatures, depending on the parent element.

This element has no attributes.

<Target>
Encapsulates information about which targets of a SOAP message are to be signed. When used
in <Integrity>, you can specify the <DigestAlgorithm>, <Transform>, and <MessageParts> child
elements.

Ideally, you can have one or more targets. But at most one target is enough for SALT, since SALT
only supports the entire SOAP body to be configured for digital signature.

This element has no attributes.

<Transform>
Specifies the URI of a transformation algorithm that is applied to the parts of the SOAP message
that are signed. Only can exist in a child element of the <Integrity> element.

You can specify zero or more transforms, which are executed in the order they appear in the
<Target> parent element.

Table F-7 <SignatureAlgorithm> Attributes

Attribute Description Required?

URI Specifies the cryptographic algorithm used to compute the
signature.

Note: Be sure that you specify an algorithm that is compatible
with the certificates you are using in your enterprise.

Valid values are:

http://www.w3.org/2000/09/xmldsig#rsa-sha1

http://www.w3.org/2000/09/xmldsig#dsa-sha1

Yes
F-8 Oracle SALT Reference Guide

SALT WSSP 1 .0 Asser t i on E lement Descr ip t ion
<UsePassword>
Specifies that whether the plaintext or the digest of the password appear in the SOAP messages. This
element is used only with username tokens. In SALT, it must be specified as plaintext.

Usage of MessageParts
When you use the <Integrity> assertion in your WS-Policy file, you are required to also use the
Target child assertion to specify the targets of the SOAP message to digitally sign. The <Target>
assertion in turn requires that you use the <MessageParts> child assertion to specify the actual

Table F-8 <Transform> Attributes

Attribute Description Required?

URI Specifies the URI of the transformation algorithm.

SALT only supports the following transformation algorithm:
• http://www.w3.org/2000/09/xmldsig#base64

(Base64 decoding transforms)

For detailed information about these transform algorithms, see
XML-Signature Syntax and Processing.

Yes

Table F-9 <UsePassword> Attributes

Attribute Description Required?

Type Specifies the type of password. SALT only supports cleartext
passwords, the value URI is:
• http://docs.oasis-open.org/wss/2004/01/oasi

s-200401-wss-username-token-profile-1.0#P
asswordText

Specifies that cleartext passwords should be used in the
SOAP messages.

Note: For backward compatibility reasons, the preceding URI
can also be specified with an initial "www." For
example:

– http://www.docs.oasis-open.org/wss/2004/
01/oasis-200401-wss-username-token-pro
file-1.0#PasswordText

Yes
Oracle SALT Reference Guide F-9

http://www.w3.org/TR/xmldsig-core/#sec-TransformAlg

Orac le SALT WS-Secur i t yPo l i c y Asse r t i on 1 .0 Refe rence
parts of the SOAP message that should be digitally signed. You can use the Dialect attribute of
<MessageParts> to specify the dialect used to identify the SOAP message parts. Oracle SALT
Web services security module supports only the following dialect:

Pre-Defined Message Part Selection Function

Be sure that you specify a message part that actually exists in the SOAP messages that result from
a client invoke of a message-secured Web Service. If the Web Services security module
encounters an inbound SOAP message that does not include a part that the WS-Policy file
indicates should be signed or encrypted, then the Web Services security module returns an error
and the invoke fails.

Pre-Defined Message Part Selection Function
This section shows SALT supported functions that are used with the
"http://schemas.xmlsoap.org/2002/12/wsse#part" dialect for selecting parts of a
message:

You can only specify the entire SOAP body to be signed. It is recommended that you use the
dialect that pre-defines the wsp:Body() function for this purpose.

Listing F-2 shows a wsp:Body() function example

Listing F-2 wsp:Body() Function

<wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
</wssp:MessageParts>

Table F-10 SALT Supported Message Part Selection Function

Function Description

wsp:Body() Specifies the entire SOAP message body to be selected as one part
F-10 Oracle SALT Reference Guide

A P P E N D I X G
Oracle SALT SCA ATMI Binding
Reference
The following sections provide SCA ATMI Binding reference information:

SCA ATMI Binding Schema

SCA ATMI Binding Attributes Description

SCA ATMI Binding Schema
Listing G-1 shows how the ATMI binding element (<binding.atmi>) is defined. This is a
pseudoschema that depicts how the grammar is used and what parameters are legal.

Notes: The parameters "transactionalintent legacyintent" are not literal values.
transactionalintent can be substituted with "suspendsTransaction" or
"propagatesTransaction" or omitted. "legacyintent" can be substituted with
"legacy" or omitted.

Parameters with a ? may be specified 0 or 1 times, and parameters with * may be
specified 0 or more times.

When using the <binding.atmi>element, the total length of /reference/@name
(or/service/@name) and method name must be equal to or less than the maximum
length of a Tuxedo service name (this varies depending on the Tuxedo release). To
overcome this limitation, see </binding.atmi/map>.
Oracle SALT Reference Guide G-1

Orac le SALT SCA ATMI B ind ing Re fe rence
Listing G-1 SCA ATMI Binding Pseudoschema

<binding.atmi requires="transactionalintent legacyintent"?>
<tuxconfig>...</tuxconfig>?

<map target="name">...</map>*
<serviceType target="name">...</serviceType>*
<inputBufferType target="name">...</inputBufferType>*
<outputBufferType target="name">...</outputBufferType>*
<errorBufferType target="name">...</errorBufferType>*
<workStationParameters>?

<networkAddress>...</networkAddress>?
<secPrincipalName>...</secPrincipalName>?
<secPrincipalLocation>...</secPrincipalLocation>?
<secPrincipalPassId>...</secPrincipalPassId>?
<encryptBits>...</encryptBits>?

</workStationParameters>
<authentication>?

<userName>...</userName>?
<clientName>...</clientName>?
<groupName>...</groupName>?
<passwordIdentifier>...</passwordIdentifier>?
<userPasswordIdentifier>...

</userPasswordIdentifier>?
</authentication>
<fieldTablesLocation>...</fieldTablesLocation>?
<fieldTables>...</fieldTables>?
<fieldTablesLocation32>...</fieldTablesLocation32>?
<fieldTables32>...</fieldTables32>?
<viewFilesLocation>...</viewFilesLocation>?
<viewFiles>...</viewFiles>?
<viewFilesLocation32>...</viewFilesLocation32>?
<viewFiles32>...</viewFiles32>?
<remoteAccess>...</remoteAccess>?
<transaction timeout="xsd:long"/>?

</binding.atmi>
G-2 Oracle SALT Reference Guide

SCA ATMI B ind ing A t t r ibu tes Descr ip t ion
SCA ATMI Binding Attributes Description
The <binding.atmi> element supports the following attributes

</binding.atmi/@requires>

</binding.atmi/tuxconfig>

</binding.atmi/map>

</binding.atmi/serviceType>

</binding.atmi/inputBufferType>, </binding.atmi/outputBufferType>,
</binding.atmi/errorBufferType>

</binding.atmi/workStationParameters>

</binding.atmi/authentication>

</binding.atmi/fieldTablesLocation>

</binding.atmi/fieldTablesLocation32>

</binding.atmi/fieldTables>

</binding.atmi/fieldTables32>

</binding.atmi/viewFilesLocation>

</binding.atmi/viewFilesLocation32>

</binding.atmi/viewFiles>

</binding.atmi/viewFiles32>

</binding.atmi/remoteAccess>

</binding.atmi/transaction/@timeout>

</binding.atmi/@requires>
When this attribute contains the legacy value, it is used to perform interoperability with
existing Tuxedo services. When not specified, communications are assumed to have SCA
to SCA semantics where the actual Tuxedo service name is constructed from
/service/@name or /reference/@name and actual method name (see Listing G-1),
unless a /binding.atmi/map element is defined. When this attribute encounters a legacy
Oracle SALT Reference Guide G-3

Orac le SALT SCA ATMI B ind ing Re fe rence
value, and no /binding.atmi/map element is defined for the method being called, it has
the following run-time behavior:

– In a <reference> element: the value specified in the /reference/@name is used to
perform the Tuxedo call, with semantics used according to the interface method.

– In a <service> element: the Tuxedo service specified in the /binding.atmi/map
element is advertised, and mapped to the method specified in the
/binding.atmi/map/@target attribute.

When this attribute contains a transaction value, it specifies the transactional behavior that
the binding extension follows when this binding is used. Possible values are as follows:

– not specified (no value) - all transactional behavior is controlled by the Tuxedo
configuration. If the Tuxedo configuration supports transactions, then one may be
propagated if it exists. If the Tuxedo configuration does not support transactions and
one exists then an error will occur. However, a transaction cannot start if one does not
already exist.

– suspendsTransaction - transaction context is propagated to the called service. For a
<service> element when a transaction is present, it is automatically suspended before
invoking the application code. It resumes afterwards, regardless of the outcome of the
invocation. For a <reference> element, it is equivalent to making a tpcall() with
the TPNOTRAN flag.

– propagatesTransaction - only applicable to <reference> elements. It is ignored
for <service> elements. This value starts a new transaction if one does not already
exist, otherwise it participates in the existing transaction.

Such behavior can be obtained in a component or composite <service> element by
configuring AUTOTRAN in the UBBCONFIG file. An error is generated if a Tuxedo
server hosts the SCA component implementation and it is not configured in a
transactional group in the UBBCONFIG file.

</binding.atmi/tuxconfig>
Used in <reference> elements when /binding.atmi/workstationParameters is not set,
and for client-only processes. It indicates the Tuxedo application that the process should join. One
process can join multiple applications, or switch applications without having to restart.

If not set, the TUXCONFIG environment variable is used. If not set, but one is required, the process
exits and returns an error.
G-4 Oracle SALT Reference Guide

SCA ATMI B ind ing A t t r ibu tes Descr ip t ion
</binding.atmi/map>
For <reference> elements, </binding.atmi/map>provides the Tuxedo service name that
should be used when performing the invocation to the corresponding
/binding.atmi/map/@target value, this value being the name of the method being called.

For <service> elements, </binding.atmi/map> provides the Tuxedo service name that
should be advertised for the corresponding /binding.atmi/map/@target value.

The /binding.atmi/map/@target value must match the method name of the corresponding
service interface.

If a /binding.atmi/map element is present, it takes precedence over any other form of
service/method to Tuxedo service name mapping. See </binding.atmi/@requires> attribute.

</binding.atmi/serviceType>
Optional element that specifies the type of call being handled. The accepted values are:

Oneway - the call will not expect a response.

RequestResponse - regular call paradigm, default value.

</binding.atmi/inputBufferType>,
</binding.atmi/outputBufferType>,
</binding.atmi/errorBufferType>
Optional elements that specify the type of buffer that the processes exchange. The
inputBufferType element is used by the binding extension to determine or check the type of
the request.

The outputBufferType element is used by the binding extension to determine or check the type
of the reply.

The errorBufferType element is used to determine the type of buffer specified in the data
portion of the Exception thrown received by a client or thrown by a server.

Table G-1 lists supported values and corresponding Tuxedo buffer types. An incorrect value or
syntax is detected at run time and causes the call to fail. If not specified, the default value used is
STRING.
Oracle SALT Reference Guide G-5

Orac le SALT SCA ATMI B ind ing Re fe rence
Table G-1 SCA Supported Tuxedo Buffer Types

/binding.atmi/bufferType value Tuxedo buffer type Note

STRING STRING

CARRAY CARRAY

X_OCTET X_OCTET

VIEW VIEW Format is VIEW/<subtype>

X_C_TYPE X_C_TYPE Format is
X_C_TYPE/<subtype>

X_COMMON X_COMMON Format is:
X_COMMON/<subtype>

VIEW32 VIEW32 Format is VIEW32/<subtype>

XML XML

FML FML Format is:

FML/<subtype>, <subtype>
is optional

The <subtype> value allows
to specify the SDO type to use
for that message (request or
response) when it is described in
an XML schema

Note: FML32 <subtype> is
not available for JATMI
binding.
G-6 Oracle SALT Reference Guide

SCA ATMI B ind ing A t t r ibu tes Descr ip t ion
</binding.atmi/workStationParameters>
An optional element that specifies parameters specific to the Tuxedo WorksStation protocol.
Only used in references.

/binding.atmi/workStationParameters/networkAddress

The address of the workstation listener to which this application will connect. Any address
format accepted by the Tuxedo workstation software is allowed. The most common address
format is:

//<hostname or IP address>:<port>.

For more information, see the SALT Programming Guide

More than one address can be specified (if required), by specifying a comma-separated list of
pathnames for WSNADDR Addresses are tried in order until a connection is established. Any
member of an address list can be specified as a parenthesized grouping of pipe-separated network
addresses. For example:

<networkAddress>

 (//m1.acme.com:3050|//m2.acme.com:3050),//m3.acme.com:3050

</networkAddress>

FML32 FML32 Format is:

FML32/<subtype>,
<subtype> is optional

The <subtype> value allows
to specify the SDO type to use
for that message (request or
response) when it is described in
an XML schema

Note: FML32 <subtype> is
not available for JATMI
binding.

MBSTRING MBSTRING

Table G-1 SCA Supported Tuxedo Buffer Types

/binding.atmi/bufferType value Tuxedo buffer type Note
Oracle SALT Reference Guide G-7

Orac le SALT SCA ATMI B ind ing Re fe rence
Tuxedo randomly selects one of the parenthesized addresses. This strategy distributes the load
randomly across a set of listener processes. Addresses are tried in order until a connection is
established.

On versions of Tuxedo that support ipv6, the corresponding addressing format will also be
supported, following the same format as used in WSNADDR for Tuxedo /WS clients.

secPrincipalName, secPrincipalLocation, secPrincipalPassId

These parameters specify the necessary parameters when an SSL connection is required by
a workstation client. The password is stored in a separate file and accessed using a callback
mechanism. The default callback uses the password.store file maintained using the
scapasswordtool command. For more information, see the SALT Programming Guide

encryptBits

Specifies the encryption strength that this client connection will attempt to negotiate. The
format is <minencryptbits>/<maxencprytbits> (for example, 128/128), those values
being numerical. Invalid values will result in a configuration exception being thrown.
Values can be 0 (if no encryption is used), or 40, 56, 128, or 256 (if the number specified is
the number of significant bits in the encryption key).

</binding.atmi/authentication>
Specifies the security parameters used in reference-type calls to establish a connection with the
Tuxedo application. The following values respectively correspond to the TPINFO structure
elements usrname, cltname, grpname and passwd (for more information, see tpinit(3c) in
the Oracle Tuxedo ATMI C Function Reference guide):

/binding.atmi/authentication/userName

/binding.atmi/authentication/clientName

/binding.atmi/authentication/groupName

/binding.atmi/authentication/passwordIdentifier-(application password)

/binding.atmi/authentication/userPasswordIdentifier-(user password in
per-user authentication)

Passwords are not stored in clear text, but are looked up using an identifier. A callback
function may be used to retrieve passwords. For more information, see
setSCAPasswordCallback()in the Oracle SALT Reference Guide.

By default, passwords are maintained encrypted in a passwords store file located in the
same directory as the composite file that contains the
/reference/binding.atmi/authentication/passwordIdentifier or
G-8 Oracle SALT Reference Guide

SCA ATMI B ind ing A t t r ibu tes Descr ip t ion
/reference/binding.atmi/authentication/userPasswordIdentifier element.
This identifier is read as necessary to perform authentication.

For more information, see scapasswordtool and setSCAPasswordCallback(3c) in the
Oracle SALT Reference Guide.

Note: This information should be handled with policy sets and intents when the SCA Kernel
supports it.

</binding.atmi/fieldTablesLocation>
Optional element that specifies a directory in the local file system where field tables should be
searched. If a relative path is specified, files are searched in that location relative to $APPDIR,
otherwise the location is assumed to be absolute.

</binding.atmi/fieldTablesLocation32>
Same as fieldTablesLocation, but for FML32 buffers.

</binding.atmi/fieldTables>
Optional element that specifies the FML field tables available. Field tables are searched in the
location specified by the /binding.atmi/fieldTablesLocation element.

If the /binding.atmi/bufferType value is FML and this element is not specified or invalid
(that is, the tables indicated cannot be found or are not field tables), an error is displayed at
initialization time for client processes, or boot time for server processes.

</binding.atmi/fieldTables32>
Same as fieldTables, but for FML32 buffers.

</binding.atmi/viewFilesLocation>
Optional element that specifies a directory in the local file system where view tables should be
searched. If a relative path is specified, files are searched in that location relative to $APPDIR,
otherwise the location is assumed to be relative.

</binding.atmi/viewFilesLocation32>
Same as viewTablesLocation, but for VIEW32 buffers.
Oracle SALT Reference Guide G-9

Orac le SALT SCA ATMI B ind ing Re fe rence
</binding.atmi/viewFiles>
Optional element that specifies the VIEW files to be used by the affected component(s). If the
/binding.atmi/bufferType value is VIEW and this element is not specified or invalid (that
is, the files indicated cannot be found, or are not view files), an error is displayed at run time for
client processes, or boot time for server processes.

</binding.atmi/viewFiles32>
Same as ViewFiles but for VIEW32 buffers.

Note: FML/FML32 and VIEW/VIEW32 parameters are optional and may be omitted, in which
case the corresponding Tuxedo environment variables are required (FLDTBLDIR/32,
FLDTBLS/32, VIEWDIR/32 and VIEWFILES/32). If neither are used, an error message
is printed at run time when attempting to use a fielded buffer. If both are set, the
parameters contained in the SCDL code take precedence.

</binding.atmi/remoteAccess>
Optional element that specifies the communication protocol with one of the values below. The
default is Native.

Native - indicates that components use standard Tuxedo native communications (IPC
queues)

WorkStation - indicates that components use the Tuxedo /WS communication protocol.

If set to this value, the binding extension checks that the
/binding.atmi/workStationParameters element is also populated and valid; if not, it
reports a run-time error message.

</binding.atmi/transaction/@timeout>
Specifies the amount of time, in seconds, a transaction can execute before timing out. This
attribute affects components or clients that effectively start a global transaction. It is mandatory
for <reference> components and ignored if set on <service> components. Additionally, the
value is ignored on components for which the transaction has already been started. If a transaction
needs to be started and this attribute is not present (for example,
"requires=propagatesTransaction" is set), a configuration error occurs.
G-10 Oracle SALT Reference Guide

See A l so
See Also
buildscaclient, buildscacomponent, and buildscaserver in the Oracle SALT
Command Reference.

Oracle SALT Programming Guide
Oracle SALT Reference Guide G-11

http://e-docs.bea.com/salt/docs11gr1ps1/prog/index.html

Orac le SALT SCA ATMI B ind ing Re fe rence
G-12 Oracle SALT Reference Guide

A P P E N D I X H
Oracle SALT HTTP FML32 Buffer Format
The following section(s) provide Oracle SALT HTTP FML32 Buffer Format information:

Oracle SALT HTTP FML32 Buffer Format

Oracle SALT HTTP FML32 Buffer Format
Oracle Tuxedo services may be developed to generate dynamic HTML content.These services
are sent data in a specific FML32 format, and must return responses in another FML32 buffer as
shown in Listing H-1

Listing H-1 Oracle SALT HTTP FML32 Buffer Format

#include <atmi.h>

#include <userlog.h>

#include <fml32.h>

#include <httpflds.h> /* contains the HTTP field definitions */

/**

 * MyService. Must match the TuxService parameter

 * configured in mod_tuxedo
Oracle SALT Reference Guide H-1

 */

MyService(TPSVCINFO *rqst) {

 FBFR32 *response_buf;

 int rc;

 char *query_string;

 long query_len;

 char *response_body = "<html>\n<head>\n<title>Tuxedo"

 "Test</title>\n</head>\n<body>\n"

 "<p>Hello World</p>\n</body>\n<html>";

 query_string = malloc(QUERY_SIZE);

 if (query_string == NULL) {

 userlog("Unable to allocate query_string: %d", errno);

 tpreturn(TPFAIL, 0, NULL, 0L, 0);

 }

 rc = Fget32(rqst->data, QUERY_STRING, 0,

 (char*)query_string,

 &query_len);

 if (rc < 0) {

 userlog("Problem extracting query_string: %s",

 Fstrerror32(Ferror32));

 tpreturn(TPFAIL, 0, NULL, 0L, 0);

 }

 userlog("QUERY_STRING received: %s", query_string);
H-2 Oracle SALT Reference Guide

Orac le SALT HTTP FML32 Buf fe r Fo rmat
 if((response_buf =

 (FBFR32 *) tpalloc("FML32", NULL, 1024)) == NULL) {

 userlog("Unable to allocate response_buf:%s",

 tpstrerror(tperrno));

 tpreturn(TPFAIL, 0, NULL, 0L, 0);

 }

 if((response_data =

 tpalloc("CARRAY", NULL, strlen(response_body) + 1) == NULL) {

 userlog("Unable to allocate response_buf:%s",

 tpstrerror(tperrno));

 tpreturn(TPFAIL, 0, NULL, 0L, 0);

 }

 strcpy(response_data, response_body);

 rc = Fchg32(response_buf, RESPONSE_DATA, 0,

 (char*)respone_data,

 0);

 if (rc < 0) {

 userlog("Problem setting response data: %s",

 Fstrerror32(Ferror32));

 tpreturn(TPFAIL, 0, NULL, 0L, 0);

 }

 tpreturn(TPSUCCESS, 0, (char *)response_buf, 0L, 0);

}

Oracle SALT Reference Guide H-3

Input Buffers
Upon invocation by mod_tuxedo, an Oracle Tuxedo service receives an FML32 buffer as listed
in Table H-1.

Table H-1 Input Buffers

Field Name Description Type

AUTH_TYPE Describes the authentication
method used by the web browser if
any authentication method was
used. This is not present unless
security is used.

string

CONTENT_TYPE Tells the media type of data being
received from the user. This is used
for requests performed using the
POST method, and not present
otherwise.

string

DOCUMENT_ROOT The root path to the home HTML
page for the server. Example:

/home/httpd/html

string

PATH_INFO Extra path information added to the
end of the URL that accessed the
server side script program.

string

PATH_TRANSLATED A translated version of the
PATH_INFO variable translated by
the webserver from virtual to
physical path information.

string
H-4 Oracle SALT Reference Guide

Orac le SALT HTTP FML32 Buf fe r Fo rmat
QUERY_STRING <A
HREF="/cgi-bin/hits.pl?mainpage
>

The information after the ? is the
QUERY_STRING which is
"mainpage" in this case. In this case
QUERY_STRING will contain:

mainpage

string

REMOTE_ADDR The IP address of the client
computer. Example:

132.15.28.124

string

REMOTE_HOST The fully qualified domain name of
the client machine making the
HTTP request. It may not be
possible to determine this name
since many client computers names
are not recorded in the DNS system.
Example:

myhost.mycompany.com

string

REMOTE_IDENT The ability to use this field is
limited to servers that support RFC
931. This field may contain the
client machine's username, but it is
intended to be used for logging
purposes only, when it is available.

string

REMOTE_PORT The clients requesting port. An
example:

3465

string

REMOTE_USER If security is enabled and the user
had to be logged in to get access to
the service, this value will contain
the user's log in name.

string

Table H-1 Input Buffers

Field Name Description Type
Oracle SALT Reference Guide H-5

REQUEST_URI The path of the request sent by the
client. An example:

/tux/processorder?orderId=1234

string

REQUEST_METHOD This describes the request method
used by the browser which is
normally GET, POST, or HEAD.

string

SERVER_ADMIN The e-mail address of the server
administrator. Example:

webadmin@myhost.mycompany.c
om

string

SERVER_NAME The server hostname, IP address or
DNS alias name shown as a self
referencing URL. This does not
include the protocol identifier such
as "HTTP:", the machine name, or
port number. Example:

myhost

string

SERVER_PORT The port number the HTTP requests
and responses are being sent on.
Example:

80

string

SERVER_PROTOCOL This value is normally HTTP which
describes the protocol being used
between the client and server
computers. Example:

HTTP/1.1

string

SERVER_SIGNATURE Server information specifying the
name and version of the web server
and the port being serviced.
Example:

Apache/2.2.15 Server at myhost
Port 80

string

Table H-1 Input Buffers

Field Name Description Type
H-6 Oracle SALT Reference Guide

Orac le SALT HTTP FML32 Buf fe r Fo rmat
SERVER_SOFTWARE The name and version of the web
server. Example:

Apache/2.2.15 (Unix)
mod_fastcgi/2.4.6
mod_tuxedo/1.0.0

string

HTTP_ACCEPT The media types of data that the
client browser can accept. These
data types are separated by
commas. An example:

image/gif, image/x-xbitmap,
image/jpeg, image/pjpeg,
application/vnd.ms-excel,
application/msword,
application/vnd.ms-powerpoint,
/

string

HTTP_ACCEPT_ENCODING An example:

gzip, deflate

string

HTTP_ACCEPT_LANGUAGE The language the client browser
accepts. Example:

en-us

string

HTTP_COOKIE Used as an environment variable
that contains cookies associated
with the server domain from the
browser.

string

HTTP_FORWARDED For example:

by
http://proxy.yourcompany.com:80
80 (Netscape-Proxy/3.5)

string

HTTP_HOST For example:

yourhost.yourcompany.com

string

HTTP_PRAGMA For example:

No-Cache

string

Table H-1 Input Buffers

Field Name Description Type
Oracle SALT Reference Guide H-7

Output Buffers
An Oracle Tuxedo server called by mod_tuxedo must return an FML32 buffer containing the
fields described in Table H-2 . Returning a buffer of any other type, or missing any of the
mandatory fields results in a server error being returned to the client browser.

HTTP_REFERRER The page address where the HTTP
request originated.

string

HTTP_USER_AGENT The name of the client web browser
being used to make the request.
Example:

Mozilla/5.0 (X11; U; Linux i686;
en-US) AppleWebKit/532.9
(KHTML, like Gecko)
Chrome/5.0.307.11

string

POST_DATA For POST requests, the data as it
was sent by the client browser. The
data is url-encoded. Example:

Name=Jonathan+Doe&Age=23&F
ormula=a+%2B+b+%3D%3D+13
%25%21

carray

Table H-1 Input Buffers

Field Name Description Type
H-8 Oracle SALT Reference Guide

Orac le SALT HTTP FML32 Buf fe r Fo rmat
Table H-2 Output Buffers

Field Name Description Type

RESPONSE_CODE* Numeric code corresponding to the
status string to return to the client.

Examples: 200 or 404 or 302.

This field is mandatory.

long

STATUS_LINE String version containing the
complete status string to return to
the client.

Examples:

200 OK

302 FOUND

This field is optional.

String

CONTENT_TYPE Gives the MIME-type of the data in
the body, such as text/html or
image/gif.

A typical value is text/html, but
programs may generate images and
return image/gif contents.

If not specified, a text/html header
is generated and returned.

string

HTTP_COOKIE Corresponds to the Set-cookie
header. May contain cookie data.
For example, session ids may be set
using this field.

Example contents:

sessionid=bbdb4cd00829aa5ffb54
02395cb8f8c0; expires=Fri,
18-Mar-2011 19:39:19 GMT;
Max-Age=1209600; Path=/

This field is optional.

string
Oracle SALT Reference Guide H-9

LOCATION Usually used in conjunction with
'302 FOUND' response codes,
contains the location of the redirect
url.

Example:

http://123.456.1.123:2280/admin/

This field is mandatory if a '302
FOUND' response is returned.

string

RESPONSE_DATA* The data that will be returned to the
client browser or program,
excluding headers. Proper headers
are handled and generated by
mod_tuxedo. For example:
<html>

 <head>

 <title>Tuxedo
Test</title>

 </head>

 <body>

 <p>Hello World</p>

 </body>

<html>

carray

Table H-2 Output Buffers

Field Name Description Type
H-10 Oracle SALT Reference Guide

	Oracle® Service Architecture Leveraging Tuxedo (SALT)
	11g Release 1 (11.1.1.2)

	Oracle Service Architecture Leveraging Tuxedo (SALT) Reference Guide, 11g Release 1 (11.1.1.2)
	Oracle SALT Command Reference
	buildscaclient
	buildscacomponent
	buildscaserver
	GWWS(5)
	mkfldfromschema, mkfld32fromschema
	mkviewfromschema, mkview32fromschema
	scaadmin
	SCAHOST (5)
	scapasswordtool
	scastructc32, scastructc(1)
	scastructdis32, scastructdis
	scatuxgen(1)
	setSCAPasswordCallback(3c)
	tmscd(1)
	tmwsdlgen
	tuxscagen(1)
	WEBHNDLR (5)
	wsadmin
	wsdlcvt
	wsloadcf

	Oracle SALT Web Service Definition File Reference
	Overview
	Oracle SALT WSDF Format
	XML Schema
	Oracle SALT WSDF Examples
	Oracle SALT WSDF Element Descriptions
	<Definition>
	<WSBinding>
	<Servicegroup>
	<Service>
	<Input>
	<Output>
	<Fault>
	<Msghandler>
	<Policy>
	<Property>
	<SOAP>
	<AccessingPoints>
	<Endpoint>
	<Realm>

	Oracle SALT Deployment File Reference
	Overview
	Oracle SALT SALTDEPLOY Format
	XML Schema
	Oracle SALT SALTDEPLOY Example
	Oracle SALT SALTDEPLOY Element Description
	<Deployment>
	<WSDF>
	<Import>

	<WSGateway>
	<GWInstance>
	<Inbound>
	<Outbound>
	<Binding>
	<Endpoint>
	<WSAddressing>
	<Endpoint>
	<TLogDevice>
	<TLogName>
	<WSATEndpoint>
	<MaxTran>
	<Properties>
	<Property>

	<System>
	<Certificate>
	<PrivateKey>
	<VerifyClient>
	<TrustedCert>
	<CertPath>
	<Plugin>
	<Interface>

	Oracle SALT WS-ReliableMessaging Policy Assertion Reference
	Overview
	WS-RM Policy Assertion Format
	WS-RM Assertion File Example
	WS-RM Assertion Element Description
	<wsrm:InactivityTimeout>
	<wsrm:AcknowledgementInterval>
	<wsrm:BaseRetransmissionInterval>
	<wsrm:ExponentialBackoff>
	<beapolicy:Expires>
	<beapolicy:QOS>
	<wsrm:RMAssertion>

	Oracle SALT WS-AT Assertion Reference
	Overview
	Policy File Example

	Oracle SALT WS-SecurityPolicy Assertion 1.2 Reference
	Overview
	Oracle SALT WSSP 1.2 Policy File Example
	Oracle SALT WSSP 1.2 Policy Templates
	Oracle SALT WSSP1.2 Assertion Description
	<sp:SignedParts>
	Limitations

	<sp:UsernameToken>
	Limitations

	<sp:X509Token>
	Limitations

	<sp:AlgorithmSuite>
	Limitations

	<sp:Layout>
	Limitations

	<sp:TransportBinding >
	Limitations

	<sp:AsymmetricBinding>
	Limitations

	<sp:SupportingToken>
	Limitations

	Oracle SALT WS-SecurityPolicy Assertion 1.0 Reference
	Overview
	SALT WSSP 1.0 Policy Assertion Format
	SALT WSSP 1.0 Assertion File Example
	SALT WSSP 1.0 Policy Templates
	SALT WSSP 1.0 Assertion Element Description
	<CanonicalizationAlgorithm>
	<Claims>
	<DigestAlgorithm>
	<Identity>
	<Integrity>
	<MessageParts>
	<SecurityToken>
	<SignatureAlgorithm>
	<SupportedTokens>
	<Target>
	<Transform>
	<UsePassword>
	Usage of MessageParts
	Pre-Defined Message Part Selection Function

	Oracle SALT SCA ATMI Binding Reference
	SCA ATMI Binding Schema
	SCA ATMI Binding Attributes Description
	</binding.atmi/@requires>
	</binding.atmi/tuxconfig>
	</binding.atmi/map>
	</binding.atmi/serviceType>
	</binding.atmi/inputBufferType>, </binding.atmi/outputBufferType>, </binding.atmi/errorBufferType>
	</binding.atmi/workStationParameters>
	</binding.atmi/authentication>
	</binding.atmi/fieldTablesLocation>
	</binding.atmi/fieldTablesLocation32>
	</binding.atmi/fieldTables>
	</binding.atmi/fieldTables32>
	</binding.atmi/viewFilesLocation>
	</binding.atmi/viewFilesLocation32>
	</binding.atmi/viewFiles>
	</binding.atmi/viewFiles32>
	</binding.atmi/remoteAccess>
	</binding.atmi/transaction/@timeout>

	See Also

	Oracle SALT HTTP FML32 Buffer Format
	Oracle SALT HTTP FML32 Buffer Format
	Input Buffers
	Output Buffers

