
Oracle® Tuxedo
Using the Oracle Tuxedo Domains Component

11g Release 1 (11.1.1.3.0)

December 2011

Using the Oracle Tuxedo Domains Component, 11g Release 1 (11.1.1.3.0)

Copyright © 1996, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Using the Oracle Tuxedo Domains Component iii

Contents

1. About Domains
What Is the Oracle Tuxedo Domains Component?. 1-1

Interoperability Among Domains . 1-3

Types of Domain Gateways . 1-3

Example of a Domains Configuration. 1-4

Functionality Supported by Domain Gateways . 1-6

Request/Response Communication Between Local and Remote Domains. 1-6

Conversational Communication Between Local and Remote Domains 1-8

Queuing Messages on Remote Domains . 1-8

Encoding and Decoding Operations for Domains . 1-9

Oracle Tuxedo Domains Architecture . 1-9

Domains Configuration File . 1-10

Domain Gateway Servers. 1-10

Domains Administrative Servers . 1-11

Domains Administrative Tools . 1-13

Understanding the Domains Configuration File . 1-15

Location of DMCONFIG File . 1-15

Binary Version of DMCONFIG File . 1-15

Descriptions of Sections of the DMCONFIG File. 1-16

Terminology Improvements for DMCONFIG File . 1-22

Specifying Domains Data-Dependent Routing . 1-23

Specifying Domains Transaction and Blocking Timeouts . 1-24

iv Using the Oracle Tuxedo Domains Component

How the Domains Component Handles Transaction Timeouts 1-24

How the Domains Component Handles Blocking Timeouts 1-26

Specifying Domains Connection Policies . 1-27

How To Configure Your Connection Policy . 1-27

How To Use Connection Retry Processing. 1-37

How Connection Policy Determines Availability of Remote Services. 1-38

Specifying Domains Failover and Failback . 1-40

How to Configure Domains-Level Failover and Failback 1-40

How to Configure Domains Link-Level Failover. 1-40

Specifying Domains Keepalive . 1-41

What is TCP-Level Keepalive?. 1-42

How to Configure TCP-Level Keepalive for Domains. 1-43

What is Application-Level Keepalive? . 1-44

How to Configure Application-Level Keepalive for Domains 1-45

Keepalive Compatibility with Earlier Oracle Tuxedo Releases 1-47

Configuring a Domains Environment . 1-47

Configuring a Domains Environment for Migration . 1-49

How to Migrate the DMADM Server . 1-53

How to Migrate a TDomain Gateway Group . 1-53

Methods for Activating Individual Server Processes . 1-53

2. Planning and Configuring ATMI Domains
Planning to Build Domains from Multiple Oracle Tuxedo Applications 2-1

Option 1: Reconfigure the Applications as a Single Oracle Tuxedo Domain 2-6

Option 2: Reconfigure the Applications as a Domains Configuration 2-12

Examining the creditapp Domains Configuration . 2-22

Setting Up a Domains Configuration . 2-27

Configuring a Sample Domains Application (simpapp). 2-28

Using the Oracle Tuxedo Domains Component v

Configuration Tasks. 2-28

How to Set Environment Variables for lapp . 2-30

How to Define the Domains Environment for lapp in the UBBCONFIG File . . . 2-31

How to Define Domains Parameters for lapp in the DMCONFIG File 2-32

How to Compile Application and Domains Gateway Configuration Files for lapp2-35

How to Set Environment Variables for rapp . 2-36

How to Define the Domains Environment for rapp in the UBBCONFIG File . . . 2-37

How to Define Domains Parameters for rapp in the DMCONFIG File 2-38

How to Compile Application and Domain Gateway Configuration Files for rapp 2-40

How to Compress Data Between Domains . 2-41

How to Route Service Requests to Remote Domains . 2-41

Setting Up Security in a Domains Configuration . 2-42

Domains Security Mechanisms . 2-42

How to Configure Principal Names for Domains Authentication. 2-43

How to Configure Domains Password Security . 2-45

How to Configure Domains Access Control Lists . 2-52

How to Configure ACL Policy for a Remote Domain . 2-53

How to Configure Domains Link-Level Encryption. 2-54

Setting Up Connections in a Domains Configuration . 2-55

How to Request Connections for Client Demands (ON_DEMAND Policy) 2-56

How to Request Connections at Boot Time (ON_STARTUP Policy). 2-56

How to Limit Connections to Incoming Messages Only (INCOMING_ONLY Policy)
2-57

How to Configure the Connection Retry Interval for ON_STARTUP Only. 2-58

How to Configure the Maximum Retry Number. 2-59

Example of Coding Connection Policies Between Domains 2-60

Controlling Connections in a Domains Configuration . 2-61

How to Establish Connections Between Domains . 2-61

vi Using the Oracle Tuxedo Domains Component

How to Break Connections Between Domains. 2-61

How to Report on Connection Status . 2-62

How to Initiate Domain Connection Events . 2-63

Configuring Domains Link-Level Failover and Keepalive . 2-64

3. Planning and Configuring CORBA Domains
Overview of the CORBA Domains Environment . 3-1

Single-Domain Versus Multiple-Domain Communication . 3-2

Single-Domain Communication . 3-2

Multiple-Domain Communication . 3-3

Elements of a CORBA Domains Configuration . 3-4

Understanding and Using the Configuration Files . 3-5

The UBBCONFIG File . 3-6

The DMCONFIG File . 3-7

The factory_finder.ini File . 3-15

Specifying Unique Factory Object Identifiers in the factory_finder.ini File 3-19

Processing the factory_finder.ini File . 3-19

Types of CORBA Domains Configurations. 3-20

Directly Connected Domains . 3-20

Indirectly Connected Domains . 3-20

Examples of CORBA Domains Configurations. 3-22

Sample UBBCONFIG Files . 3-22

Sample DMCONFIG File . 3-26

Sample factory_finder.ini File. 3-31

4. Administering Domains
Using Domains Run-Time Administrative Commands . 4-1

Using the Administrative Interface, dmadmin(1). 4-3

Using the Oracle Tuxedo Domains Component vii

Using the Domains Administrative Server, DMADM(5). 4-4

Using the Gateway Administrative Server, GWADM(5). 4-4

Using the Domain Gateway Server . 4-6

Tuning the Performance of the Domain Gateway . 4-6

Managing Transactions in a Domains Environment. 4-7

Using the TMS Capability Across Domains . 4-8

Using GTRID Mapping in Transactions . 4-11

Using Logging to Track Transactions . 4-18

Recovering Failed Transactions . 4-20

viii Using the Oracle Tuxedo Domains Component

Using the Oracle Tuxedo Domains Component 1-1

C H A P T E R 1

About Domains

The following sections provide an overview of the Oracle Tuxedo Domains component:

What Is the Oracle Tuxedo Domains Component?

Example of a Domains Configuration

Functionality Supported by Domain Gateways

Oracle Tuxedo Domains Architecture

Understanding the Domains Configuration File

Specifying Domains Data-Dependent Routing

Specifying Domains Transaction and Blocking Timeouts

Specifying Domains Connection Policies

Specifying Domains Failover and Failback

Specifying Domains Keepalive

Configuring a Domains Environment

Configuring a Domains Environment for Migration

What Is the Oracle Tuxedo Domains Component?
As a company’s business grows, application engineers may need to organize the business
information management into distinct applications, each having administrative autonomy, based
on functionality, geographical location, or confidentiality. These distinct business applications,

1-2 Using the Oracle Tuxedo Domains Component

known as domains, need to share information. The Oracle Tuxedo Domains component provides
the infrastructure for interoperability among the domains of a business, thereby extending the
Oracle Tuxedo client/server model to multiple transaction processing (TP) domains. Figure 1-1
shows how the Oracle Tuxedo Domains component can tie multiple domains together.

Figure 1-1 Interdomain Communications Using the Oracle Tuxedo Domains Component

Oracle Tuxedo Domain

Oracle Tuxedo Domain

Oracle
TDomain
Gateway

Oracle
WTC

Gateway

Mainframe Center

Oracle WebLogic Server

Oracle
eLink

Gateway

Oracle
TDomain
Gateway

What I s the Orac l e Tuxedo Domains Component?

Using the Oracle Tuxedo Domains Component 1-3

Interoperability Among Domains
By transparently making services of a remote domain available to users of the local domain, and
making services of the local domain available to users of a remote domain, the Oracle Tuxedo
Domains component breaks down the walls between a company’s business applications. In
addition, the Domains component enables a company running an Oracle Tuxedo application to
expand its business by interoperating with applications running on other transaction processing
(TP) systems, such as Oracle’s WebLogic Server, IBM/Transarc’s Encina, and IBM’s CICS.

Because a company often uses the nature of a business application as part of its name,
applications have names like the “accounting” domain or the “order entry” domain. An Oracle
Tuxedo domain is a single computer or network of computers controlled by a single configuration
file known as the UBBCONFIG file. (The Oracle Tuxedo configuration file may have any name as
long as the content of the file conforms to the format described on reference page UBBCONFIG(5)
in Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System Processes Reference.) An
Oracle Tuxedo domain is administered as a single unit.

Types of Domain Gateways
The Oracle Tuxedo Domains component offers different types of gateways to be able to
communicate with different types of networks and domains. Specifically, the Domains
component offers the following domain gateways:

Oracle Tuxedo TDomain gateway (implemented by the GWTDOMAIN server process)—
provides interoperability between two or more Oracle Tuxedo domains through a specially
designed TP protocol that flows over network protocol TCP/IP. Working with the
WebLogic Tuxedo Connector (WTC) gateway, an Oracle WebLogic Server component, the
Oracle Tuxedo TDomain gateway can also provide interoperability between Tuxedo
domains and WebLogic Server applications.

Oracle TMA TCP gateway (implemented by the GWIDOMAIN server process) provides
interoperability between Oracle Tuxedo domains and applications running under IBM
OS/390 Customer Information Control System (CICS) and Information Management
System (IMS) over network protocol TCP/IP. The gateway supports only non-transactional
tasks.

Oracle TMA SNA gateway (implemented by the GWSNAX server process)—provides
interoperability between Oracle Tuxedo domains and applications running on any System
Network Architecture (SNA) Advanced Program-to-Program Communications (APPC) or
Common Programming Interface for Communications (CPI-C) supported platform,

1-4 Using the Oracle Tuxedo Domains Component

including IBM OS/400, OS/390 CICS and IMS systems and VSE/CICS. The gateway
supports communication with multiple SNA networks.

Oracle TMA OSI TP gateway (implemented by the GWOSITP server process)—provides
interoperability between Oracle Tuxedo domains and other transaction processing
applications that use the Open Systems Interconnection (OSI) transaction processing (TP)
standard. OSI TP is a protocol for distributed transaction processing defined by the
International Standards Organization (ISO). The gateway supports global transactions and
various non-transactional tasks.

The discussions that follow focus on the Oracle TDomain gateway and the communication
between Oracle Tuxedo domains. For information about the WTC gateway, see:

Oracle Tuxedo Product Overview

WebLogic Tuxedo Connector at
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wtc.html

For information about Oracle TMA gateways, see
http://download.oracle.com/docs/cd/E13161_01/tuxedo/tux100/interm/mainfrm.html.

Example of a Domains Configuration
Figure 1-2 shows an example Domains configuration involving four domains, three of which are
Oracle Tuxedo domains.

Example o f a Domains Conf igurat ion

Using the Oracle Tuxedo Domains Component 1-5

Figure 1-2 A Banking Domains Configuration—Example

The Oracle Tuxedo credit card authorization center at the bottom of the figure has two gateway
groups: a TDomain gateway group named bankgw1 and an OSI TP gateway group named
bankgw2. bankgw1 provides access to two remote Oracle Tuxedo domains, Bank ABC and Bank
CBA, using network protocol TCP/IP. bankgw2 provides access to one remote domain, Bank
XYZ, using network protocol OSI TP.

In this example, Bank ABC generates service requests to the credit card authorization center.
These requests are received by a domain gateway server process named GWTDOMAIN running
within group bankgw1. This gateway issues a service request, on behalf of the remote domain, to
the credit card authorization service provided by another locally running server process. This
server handles the request and sends the reply to the gateway, and the gateway forwards the reply
to Bank ABC.

The credit card authorization center may also issue service requests. For example, the
authorization center may send balance inquiries to Bank XYZ via a domain gateway server
process named GWOSITP.

1-6 Using the Oracle Tuxedo Domains Component

The Oracle Tuxedo Domains component makes the interdomain communications possible
through domain gateway server processes that advertises remote services—services available in
other domains—as if they were local services.

Functionality Supported by Domain Gateways
Domain gateways support the following functionality:

Multinetwork support—gateways can communicate with other domains via a variety of
network protocols, such as TCP/IP, IPX/SPX, OSI, and others. However, a gateway is
limited by the capabilities of the networking library to which it is linked. In other words, a
gateway typically supports a single type of network protocol. As an example, the Oracle
Tuxedo TDomain gateway supports only TCP/IP.

Multidomain Interaction—gateways can communicate with multiple domains.

Transaction management—gateways enable ATMI applications to interoperate with other
domains within a transaction. The gateway coordinates the commitment or rollback of
transactions running across domains.

Multiple messaging models—gateways support the following ATMI messaging models,
without any need to change existing Oracle Tuxedo applications:

– Request/response model—ATMI applications using the Oracle Tuxedo system can
request services from applications running in other domains.

– Conversational model—ATMI applications can establish conversations with programs
running in other domains.

– Queuing model—ATMI applications using the Oracle Tuxedo system can store data on
queues in other domains.

Typed buffer support—gateways can perform encoding and decoding operations for all the
types of buffers defined by Oracle Tuxedo ATMI applications.

Request/Response Communication Between Local and
Remote Domains
Domain gateways provide support for the request/response model of communication defined by
the ATMI interface. Except for the following Oracle Tuxedo ATMI functions, which are
logically limited to use within a single application and are not supported across domains, an
Oracle Tuxedo application can request remote services exactly as if they were offered locally:

Funct iona l i t y Suppor ted by Domain Gateways

Using the Oracle Tuxedo Domains Component 1-7

tpinit(3c)/tpterm(3c)—Oracle Tuxedo applications do not attach to the environment
of a remote domain; they use domain gateways to access a remote domain. Therefore, an
extra tpinit()/tpterm() sequence is not needed for remote applications.

tpadvertise(3c) and tpunadvertise(3c)—Domains does not support these functions
because domain gateways do not support dynamic service advertisements across domains.

tpnotify(3c) and tpbroadcast(3c)—Domains does not support the unsolicited
communication paradigm provided by these functions.

Event posting (tppost(3c)) and notification of events (tpsubscribe(3c))—Domains
does not support these functions across domains.

Support for tpforward(3c) is provided to preserve application portability. Forwarded requests
are interpreted by domain gateways as simple service requests. This process is shown in
Figure 1-3, which illustrates the simple scenario of a service using tpforward to send a request
to a remote service.

Figure 1-3 Using tpforward to Send a Request to a Remote Service

For more information about the Oracle Tuxedo request/response model, see “Request/Response
Communication” in Introducing Oracle Tuxedo ATMI.

1-8 Using the Oracle Tuxedo Domains Component

Conversational Communication Between Local and Remote
Domains
Domain gateways provide support for the conversational model of communication defined by the
ATMI interface. The ATMI is a connection-oriented interface that enables clients to establish and
maintain conversations with services programmed in the conversational model.

Oracle Tuxedo applications use tpconnect(3c) to open a conversation with a remote service,
tpsend(3c) and tprecv(3c) to communicate with this service, and tpdiscon(3c) to end the
conversation. Domain gateways maintain the conversation with the remote service, and support
the same semantics for returns (that is, tpreturn with TPSUCCESS or TPFAIL) and disconnects
that are defined for Oracle Tuxedo conversational services.

Note: The ATMI connection-oriented functions provide half-duplex conversations;
tpforward(3c) is not allowed within a conversational service.

For more information about the Oracle Tuxedo conversational model, see “Conversational
Communication” in Introducing Oracle Tuxedo ATMI.

Queuing Messages on Remote Domains
Domain gateways provide support for the queuing model of communication defined by the ATMI
interface. Any client or server can store messages or service requests in a queue in a remote
domain. All stored requests are sent through the transaction protocol to ensure safe storage.

The Oracle Tuxedo system enables messages to be queued to persistent storage (disk) or to
non-persistent storage (memory) for later processing or retrieval. ATMI provides primitives that
allow messages to be added (that is, tpenqueue) or read (that is, tpdequeue) from queues. Reply
messages and error messages can be queued for later return to clients. An administrative
command interpreter (that is, qmadmin) is provided for creating, listing, and modifying queues.
Servers are provided to accept requests to enqueue and dequeue messages (that is, TMQUEUE
server), to forward messages from the queue for processing (that is, TMQFORWARD server), and to
manage the transactions that involve queues (that is, TMS_QM server).

For more information about the Oracle Tuxedo queueing model, see “Message Queuing
Communication” in Introducing Oracle Tuxedo ATMI.

Orac le Tuxedo Domains A rch i tec ture

Using the Oracle Tuxedo Domains Component 1-9

Encoding and Decoding Operations for Domains
Domain gateways support all predefined types of typed buffers supported by the release of Oracle
Tuxedo system software in which the domain gateway server processes are running. Oracle
Tuxedo supports 11 predefined buffer types.

Each buffer type supported by an Oracle Tuxedo release has its own set of routines that can be
called automatically to initialize, send and receive messages, and encode and decode data
without programmer intervention. The set of routines is called a typed buffer switch.

In Oracle Tuxedo ATMI applications, typed buffers are used to send data—service requests and
replies—between clients and servers. Typed buffers, which by definition contain information
about themselves (metadata), allow application programmers to transfer data without needing to
know which data representation scheme is used by the machines on which the application’s
clients and servers are running.

A domain gateway can receive and process service requests sent from workstations, from local
Oracle Tuxedo machines, and from remote domains. Using the appropriate typed buffer switch,
a domain gateway will decode any service request that it receives encoded for the following
reasons:

Data-dependent routing depends upon matching specified criteria to fields within data.
Therefore, a domain gateway must decode the encoded data in order to route that data to
the appropriate remote domain for the service requested.

Different data formats may be used within different domains, depending on the networking
protocols implemented or used in a domain. Therefore, a domain gateway must decode the
encoded data to determine which data format is being used.

OSI terminology provides a useful distinction between abstract syntax (that is, the structure of the
data) and transfer syntax (that is, the particular encoding used to transfer the data). Each typed
buffer implicitly defines a particular data structure (that is, its abstract syntax) and the encoding
rules (or typed buffer operations) required to map the data structure to a particular transfer syntax
(for example, XDR). For the predefined buffer types that support encoding/decoding, the Oracle
Tuxedo system provides the encoding rules required to map these types to the XDR transfer syntax.

For more information about typed buffers and encoding and decoding operations, see “What Are
Typed Buffers?” in Introducing Oracle Tuxedo ATMI.

Oracle Tuxedo Domains Architecture
The Oracle Tuxedo Domains architecture consists of four major parts:

1-10 Using the Oracle Tuxedo Domains Component

Domains configuration file

Domain gateway servers

Domains administrative servers

Domains administrative tools

Domains Configuration File
A Domains configuration is a set of two or more domains (applications) that can communicate
and share services via the Oracle Tuxedo Domains component. How multiple domains are
connected and which services they make accessible to one another are defined in Domains
configuration files. Each Oracle Tuxedo domain involved in a Domains configuration requires its
own Domains configuration file.

The text version of the Domains configuration file is known as the DMCONFIG file, although it may
have any name as long as the content of the file conforms to the format described on reference
page DMCONFIG(5) in Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference. The binary version of the Domains configuration file is known as
BDMCONFIG. For a detailed description of the DMCONFIG file, see “Understanding the Domains
Configuration File” on page 1-15.

Domain Gateway Servers
The Oracle Tuxedo Domains component achieves multiple-domain interoperability through a
highly asynchronous, multitasking, multithreaded domain gateway process, which is an Oracle
Tuxedo supplied server that makes access to services across domains transparent to both the
application programmer and the application user.

Figure 1-4 illustrates how one Oracle Tuxedo domain communicates with another domain via a
domain gateway.

Orac le Tuxedo Domains A rch i tec ture

Using the Oracle Tuxedo Domains Component 1-11

Figure 1-4 Two-Way Communication Through a Gateway

In the figure, the domain gateway handles outgoing credit card authorization requests to another
domain. It also handles incoming authorization responses.

Domains Administrative Servers
Figure 1-5 shows the Oracle Tuxedo Domains administrative servers used to administer a
Domains configuration.

Oracle Tuxedo Domain

1-12 Using the Oracle Tuxedo Domains Component

Figure 1-5 Domains Administrative Servers

A domain gateway group, as shown in the previous figure, consists of a gateway administrative
server (GWADM), a domain gateway server (for example, GWTDOMAIN), and (optional) a Domains
transaction log (TLOG). The GWADM server enables run-time administration of the domain gateway.
An Oracle Tuxedo domain can communicate with one or more remote domains through a domain
gateway group.

Associated with all domain gateway groups running in an Oracle Tuxedo domain is a Domains
administrative server (DMADM), which enables run-time administration of the Oracle Tuxedo
Domains configuration file (BDMCONFIG).

GWADM Server
The GWADM(5) server registers with the DMADM server to obtain the configuration information
used by the corresponding gateway group. GWADM accepts requests from the DMADMIN service,
which is a generic administrative service advertised by the DMADM server, for run-time statistics
or changes in the run-time options of the specified gateway group. Periodically, GWADM sends an
“I-am-alive” message to the DMADM server. If no reply is received from DMADM, GWADM registers
again. This process ensures the GWADM server always has the current information about the
Domains configuration for its gateway group.

For more information about GWADM, see “Administering Domains” on page 4-1.

Orac le Tuxedo Domains A rch i tec ture

Using the Oracle Tuxedo Domains Component 1-13

DMADM Server
the DMADM(5) server provides a registration service for gateway groups. This service is requested
by GWADM servers as part of their initialization procedure. The registration service downloads the
configuration information required by the requesting gateway group. The DMADM server maintains
a list of registered gateway groups, and propagates to these groups any changes made to the
Domains configuration file (BDMCONFIG).

For more information about DMADM, see “Administering Domains” on page 4-1.

Domains Administrative Tools
The following Domains administrative tools are provided by the Oracle Tuxedo system for
setting up and maintaining a Domains configuration:

dmloadcf(1)—reads the DMCONFIG file, checks the syntax, and loads the binary
BDMCONFIG configuration file.

dmunloadcf(1)—translates the BDMCONFIG configuration file from binary to text format.

dmadmin(1)—allows an Oracle Tuxedo administrator to update the BDMCONFIG file when
the Tuxedo domain is running.

Figure 1-6 shows the relationships between the Domains administrative tools and the Domains
text and binary configuration files. Administration using the dmadmin utility is through the
DMADMIN service, which is advertised by the DMADM server.

Figure 1-6 Relationships Between Domains Administrative Tools and Files

1-14 Using the Oracle Tuxedo Domains Component

dmloadcf Command
The dmloadcf(1) command parses the DMCONFIG file and loads the information into
BDMCONFIG. The command uses the environment variable BDMCONFIG to point to the device or
system filename in which the configuration should be stored.

The dmloadcf command, through the -c option, also provides an estimate of the interprocess
communications (IPC) resources needed for each local domain specified in the configuration.

The dmloadcf command checks the DMTYPE file (%TUXDIR%\udataobj\DMTYPE for Windows
or $TUXDIR/udataobj/DMTYPE for UNIX) to verify that the domain gateway types specified in
the Domains configuration file are valid. Each type of domain gateway has a domain type
designator (TDOMAIN, SNAX, OSITP, OSITPX), which is used as a tag in the DMTYPE file. Each line
in this file has the following format:
dmtype:access_module_lib:comm_libs:tm_typesw_lib:gw_typesw_lib

The file has the following entry for the TDomain gateway:

TDOMAIN:-lgwt:-lnwi -lnws -lnwi::

For more information about dmloadcf, see reference page dmloadcf(1)in Oracle Tuxedo
Command Reference.

dmunloadcf Command
The dmunloadcf(1) command converts the BDMCONFIG configuration file from binary to text
format and prints the output to standard output. For more information about dmunloadcf, see
reference page dmunloadcf(1) in Oracle Tuxedo Command Reference.

dmadmin Command
The dmadmin(1) command allows an Oracle Tuxedo administrator to configure, monitor, and
tune domain gateways when the Tuxedo domain is running. It acts as an administrative command
interpreter that translates administrative commands and sends requests to the DMADMIN service, a
generic administrative service advertised by the DMADM server. DMADMIN invokes functions that
validate, retrieve, or update information in the BDMCONFIG file.

You invoke dmadmin with the -c option to dynamically update the BDMCONFIG file. Depending
on the configuration being changed, some updates will take place immediately, while others will
take place only for new occurrences of whatever is affected by the update.

For more information about dmadmin, see “Administering Domains” on page 4-1.

Unders tanding the Domains Conf igurat i on F i l e

Using the Oracle Tuxedo Domains Component 1-15

Understanding the Domains Configuration File
Each Oracle Tuxedo domain involved in a Domains configuration has a configuration file in
which the interdomain parameters are defined. The text version of the configuration file is
referred to as DMCONFIG, although the configuration file may have any name, as long as the
content of the file conforms to the format described on reference page DMCONFIG(5) in Oracle
Tuxedo File Formats, Data Descriptions, MIBs, and System Processes Reference. Typical
configuration filenames begin with the string dm, followed by a mnemonic string, such as config
in the filename dmconfig.

As the administrator for the Domains configuration, you need to create a separate DMCONFIG file
for each Oracle Tuxedo domain participating in the configuration. You can create and edit a
DMCONFIG file with any text editor.

Location of DMCONFIG File
For an Oracle Tuxedo domain involved in a Domains configuration, the DMCONFIG file resides on
the machine on which the Domains administrative server DMADM is to run, as specified in the
UBBCONFIG file for the Tuxedo domain. The DMADM server may run on any machine (master
machine, non-master machine) in a Tuxedo domain.

Note: The master machine for an Oracle Tuxedo domain contains the domain’s UBBCONFIG
file, and is designated as the master machine in the RESOURCES section of the UBBCONFIG
file. Starting, stopping, and administering a Tuxedo domain is done through the master
machine.

Binary Version of DMCONFIG File
The BDMCONFIG file is a binary version of the DMCONFIG file. It is created by running the
dmloadcf command, which parses DMCONFIG and loads the binary BDMCONFIG file to the
location referenced by the BDMCONFIG environment variable. As with DMCONFIG, the BDMCONFIG
file may be given any name; the actual name is the device or system filename specified in the
BDMCONFIG environment variable. The BDMCONFIG environment variable must be set to an
absolute pathname ending with the device or system filename where BDMCONFIG is to be loaded.

Unlike the TUXCONFIG file, which is the binary version of UBBCONFIG, the BDMCONFIG file is not
propagated to any other machine in a Tuxedo domain when the Tuxedo application is booted. For
the BDMCONFIG file to reside on any other machine in a Tuxedo domain, the administrator for that
domain must manually place it there.

1-16 Using the Oracle Tuxedo Domains Component

Descriptions of Sections of the DMCONFIG File
The DMCONFIG file is made up of specification sections. Lines beginning with an asterisk (*)
indicate the beginning of a specification section. Each such line contains the name of the section
immediately following the *. The asterisk is required when specifying a section name.

Allowable section names are:

DM_LOCAL (also known as DM_LOCAL_DOMAINS)

DM_REMOTE (also known as DM_REMOTE_DOMAINS)

DM_EXPORT (also known as DM_LOCAL_SERVICES)

DM_IMPORT (also known as DM_REMOTE_SERVICES)

DM_RESOURCES

DM_ROUTING

DM_ACCESS_CONTROL

DM_domtype, where domtype is TDOMAIN, OSITP, OSITPX, or SNACRM + SNALINKS +
SNASTACKS

Note: The DM_LOCAL section must precede the DM_REMOTE section.

As the administrator for the Domains configuration, you use these sections to:

Define local domain access points through which application clients on a remote domain
can access services on the local domain.

Specify the local services available through each local domain access point.

Define remote domain access points through which application clients on the local domain
can access services on a remote domain.

Specify the remote services available through each remote domain access point.

Map local domain access points and remote domain access points to specific domain
gateway groups (TDOMAIN, ...) and network addresses.

Figure 1-7 is a simple example of what you are trying to accomplish.

Unders tanding the Domains Conf igurat i on F i l e

Using the Oracle Tuxedo Domains Component 1-17

Figure 1-7 Establishing What Services Are Shared Between Two Oracle Tuxedo Domains—Example

In the example, you must also create a DMCONFIG file for Domain Y that complements the
DMCONFIG file created for Domain X. That is, a local domain access point in the Domain X
DMCONFIG file would be a remote domain access point in the Domain Y DMCONFIG file, and a
remote domain access point in the Domain X DMCONFIG file would be a local domain access point
in the Domain Y DMCONFIG file. The example demonstrates the use of the TDomain gateway
server.

Table 1-1 provides a description of each section in the DMCONFIG file.

Remote Domain

DMCONFIG

Local Domain

A. Remote Client Access to Local Services

Local Domain

DMCONFIGTuxedo
Client

Remote Domain

TDomain
Gateway

B. Local Client Access to Remote Services

TDomain
Gateway

Tuxedo
Server

Tuxedo
Client

TDomain
Gateway

TDomain
Gateway

Tuxedo
Server

Domain X

Domain X

Domain Y

Domain Y

1-18 Using the Oracle Tuxedo Domains Component

Table 1-1 DMCONFIG File Sections (Sheet 1 of 4)

Section Purpose

DM_LOCAL (also known as
DM_LOCAL_DOMAINS)

Defines one or more local domain access point identifiers (also known as local
domains, or LDOMs). For each local domain access point (logical name) that you
define, you specify a domain gateway group (TDOMAIN, ...) for the access point in
this section, and you specify in the DM_EXPORT section the local services available
through the access point. The local services available through the local domain
access point will be available to clients in one or more remote domains.

You can define multiple local domain access points in this section, one for each
gateway group (TDOMAIN, SNAX, OSITP, OSITPX) used by this Oracle Tuxedo
domain to communicate with a remote domain.

One and only one local domain access point is allowed per gateway group. A
domain gateway group consists of a GWADM server process and a domain gateway
server process (for example, GWTDOMAIN, the TDomain gateway server).

Example of a local domain access point entry:
*DM_LOCAL
LOCAL1 GWGRP=GWTGROUP

TYPE=TDOMAIN
ACCESSPOINTID=“BA.CENTRAL01”

Note: You may substitute DOMAINID for the ACCESSPOINTID parameter.

DM_REMOTE (also known as
DM_REMOTE_DOMAINS)

Defines one or more remote domain access point identifiers (also known as remote
domains, or RDOMs). For each remote domain access point (logical name) that you
define, you specify a domain gateway group (TDOMAIN, ...) for the access point in
this section, and you specify in the DM_IMPORT section the remote services
available through the access point. The remote services available through the
remote domain access point will be available to clients in the local domain.

You can define multiple remote domain access points in this section, one or more
for each gateway group (TDOMAIN, SNAX, OSITP, OSITPX) used by this Oracle
Tuxedo domain to communicate with a remote domain.

Example of remote domain access point entries:
*DM_REMOTE
REMOT1 TYPE=TDOMAIN

ACCESSPOINTID=“BA.BANK01”
REMOT2 TYPE=TDOMAIN

ACCESSPOINTID=“BA.BANK02”

Note: You may substitute DOMAINID for the ACCESSPOINTID parameter.

Unders tanding the Domains Conf igurat i on F i l e

Using the Oracle Tuxedo Domains Component 1-19

DM_EXPORT (also known as
DM_LOCAL_SERVICES)

Specifies the local services exported to one or more remote domains through a
local domain access point defined in the DM_LOCAL section. Only the services
specified for a local domain access point are available to clients on one or more
remote domains, meaning that specifying services in this section is a way to restrict
remote client access to local services. If the DM_EXPORT section is absent, or is
present but empty, all services advertised by the local domain are available to the
remote domains.

A local service made available to remote domains inherits many of its properties
from the SERVICES section of the local UBBCONFIG file. Some of the properties
that may be inherited are LOAD, PRIO, AUTOTRAN, ROUTING, BUFTYPE, and
TRANTIME.

Example of a local service made available to remote domains:
*DM_EXPORT
LTOLOWER LACCESSPOINT=LOCAL1

CONV=N
RNAME=“TOLOWER”
ACL=branch

Note: You may substitute LDOM for the LACCESSPOINT parameter.

DM_IMPORT (also known as
DM_REMOTE_SERVICES)

Specifies the remote services imported through one or more remote domain access
points defined in the DM_REMOTE section and made available to the local domain
through one or more local domain access points. If the DM_IMPORT section is
absent, or is present but empty, no remote services are available to the local
domain.

A remote Oracle Tuxedo service made available to the local domain inherits many
of its properties from the SERVICES section of the remote UBBCONFIG file. Some
of the properties that may be inherited are LOAD, PRIO, AUTOTRAN, ROUTING,
BUFTYPE, and TRANTIME.

Example of a remote service made available to the local domain:
*DM_IMPORT
RTOUPPER AUTOTRAN=N

RACCESSPOINT=REMOT1
LACCESSPOINT=LOCAL1
CONV=N
RNAME=“TOUPPER”

Note: You may substitute RDOM for the RACCESSPOINT parameter, and LDOM
for the LACCESSPOINT parameter.

Table 1-1 DMCONFIG File Sections (Sheet 2 of 4)

Section Purpose

1-20 Using the Oracle Tuxedo Domains Component

DM_RESOURCES Specifies global Domains configuration information, specifically a user-supplied
configuration version string. The only parameter in this section is
VERSION=string, where string is a field in which users can enter a version
number for the current DMCONFIG file. This field is not checked by the software.

DM_ROUTING Specifies data-dependent routing criteria for routing local service requests to one
of several remote domains offering the same service. For an example, see
“Specifying Domains Data-Dependent Routing” on page 1-23.

DM_ACCESS_CONTROL Specifies one or more access control list (ACL) names and associates one or more
remote domain access points with each specified ACL name. You can use the ACL
parameter in the DM_EXPORT section by setting ACL=ACL_NAME to restrict access
to a local service exported through a particular local domain access point to just
those remote domain access points associated with the ACL_NAME.

Example of an ACL entry:
*DM_ACCESS_CONTROL
branch ACLIST=REMOT1

Table 1-1 DMCONFIG File Sections (Sheet 3 of 4)

Section Purpose

Unders tanding the Domains Conf igurat i on F i l e

Using the Oracle Tuxedo Domains Component 1-21

For a detailed description of the DMCONFIG file, see reference pages DMCONFIG(5)and
DM_MIB(5)in Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System Processes
Reference.

DM_domtype Defines the parameters required for a particular Domains configuration. Currently,
the value of domtype can be TDOMAIN, OSITP, OSITPX, or SNACRM +
SNALINKS + SNASTACKS. Each domain type must be specified in a separate
section.

In a DM_TDOMAIN section, you define the TDomain-specific network
configuration for a local or remote domain access point. You can also define the
network configuration for one or more remote domain access points associated
with one or more WebLogic Server applications, to combine Tuxedo ATMI
servers and WebLogic Server Enterprise JavaBean (EJB) servers in an application;
for details, see Oracle Tuxedo Interoperability.

The DM_TDOMAIN section should have an entry per local domain access point if
requests from remote domains to local services are accepted through that access
point. For each local domain access point specified in this section, you must
specify the network address to be used for listening for incoming connections.

The DM_TDOMAIN section should have an entry per remote domain access point if
requests from the local domain to remote services are accepted through that access
point. For each remote domain access point specified in this section, you must
specify the destination network address to be used when connecting to that remote
domain access point.

Beginning with Tuxedo release 9.0, the DM_TDOMAIN section can have an entry
per TDomain session between specific local and remote domain access points. For
each TDomain session specified in this section, you must specify the destination
network address to use when connecting to that TDomain session.

When Domains link-level failover is in use, you can specify more than one
destination network address for a remote domain access point or TDomain session
to implement the mirrored gateway capability. For an example of a mirrored
gateway, see “How to Configure Domains Link-Level Failover” on page 1-40.

For information about the DM_OSITP, DM_OSITPX, DM_SNACRM,
DM_SNALINKS, and DM_SNASTACKS sections, see
http://download.oracle.com/docs/cd/E13161_01/tuxedo/tux100/interm/mainfrm.h
tml.

Table 1-1 DMCONFIG File Sections (Sheet 4 of 4)

Section Purpose

1-22 Using the Oracle Tuxedo Domains Component

Terminology Improvements for DMCONFIG File
For Oracle Tuxedo release 7.1 or later, the Domains MIB uses improved class and attribute
terminology to describe the interaction between local and remote domains. The improved
terminology has been applied to the DMCONFIG(5) reference page, section names, parameter
names, and error messages, and to the DM_MIB(5) reference page, classes, and error messages.

For backwards compatibility, aliases are provided between the DMCONFIG terminology used prior
to Oracle Tuxedo 7.1 and the improved Domains MIB terminology. For Oracle Tuxedo release
7.1 or later, both versions of DMCONFIG terminology are accepted. Table 1-2 shows the mapping
of the previous and improved terminology for the DMCONFIG file.

For Oracle Tuxedo release 7.1 or later, the dmunloadcf command generates by default a
DMCONFIG file that uses the improved domains terminology. Use the -c option to print a
DMCONFIG file that uses the previous domains terminology. For example:

prompt> dmunloadcf -c > dmconfig_prev

Table 1-2 Mapping of the Previous and Improved Terminology for the DMCONFIG File

Previous Terminology Improved Terminology

Section Name Parameter Name Section Name Parameter Name

DM_LOCAL_DOMAINS DM_LOCAL

DM_REMOTE_DOMAINS DM_REMOTE

DOMAINID ACCESSPOINTID

MAXRDOM MAXACCESSPOINT

MAXRDTRAN MAXRAPTRAN

DM_LOCAL_SERVICES DM_EXPORT

DM_REMOTE_SERVICES DM_IMPORT

LDOM LACCESSPOINT

RDOM RACCESSPOINT

Spec i f y ing Domains Data-Dependent Rout ing

Using the Oracle Tuxedo Domains Component 1-23

Specifying Domains Data-Dependent Routing
You can specify data-dependent routing criteria for the routing of local service requests to remote
domains in the DM_ROUTING section of the DMCONFIG file for any of the following buffer types:

FML

FML32

VIEW

VIEW32

X_C_TYPE

X_COMMON

XML

In the following example, the remote service TOUPPER is available through two different remote
domain access points named REMOT1 and REMOT2, and the data-dependent routing criteria for
TOUPPER is defined in the routing criteria table named ACCOUNT. In the example, RTOUPPER1 and
RTOUPPER2 are alias service names for TOUPPER, which is the actual service name expected by
the remote domains.

*DM_IMPORT
RTOUPPER1 AUTOTRAN=N

RACCESSPOINT=REMOT1
LACCESSPOINT=LOCAL1
CONV=N
RNAME=“TOUPPER”
ROUTING=ACCOUNT

RTOUPPER2 AUTOTRAN=N
RACCESSPOINT=REMOT2
LACCESSPOINT=LOCAL1
CONV=N
RNAME=“TOUPPER”
ROUTING=ACCOUNT

*DM_ROUTING
ACCOUNT FIELD=branchid

BUFTYPE=“VIEW:account”
RANGES=“MIN-1000:REMOT1,1001-3000:REMOT2”

1-24 Using the Oracle Tuxedo Domains Component

For the ACCOUNT routing table, VIEW and account are the type and subtype of data buffers for
which this routing table is valid, and branchid is the name of the field in the VIEW data buffer
to which routing is applied. The allowed values for the branchid field are as follows:

For the REMOT1 access point, the allowed values range from the minimum value allowed
on the machine associated with REMOT1 to less than or equal to 1000.

For the REMOT2 access point, the allowed values range from the 1001 to less than or equal
to 3000.

If the value of the branchid field for a TOUPPER service request is within the range MIN-1000,
the service request is routed through the REMOT1 access point. If the value of the branchid field
for a TOUPPER service request is within the range 1001-3000, the service request is routed
through the REMOT2 access point.

Specifying Domains Transaction and Blocking Timeouts
The Oracle Tuxedo system provides two timeout mechanisms: a transaction timeout mechanism
and a blocking timeout mechanism. The transaction timeout is used to define the duration of an
ATMI transaction, which may involve several service requests. The timeout value is defined
when the transaction is started. The blocking timeout is used to define the duration of individual
service requests, that is, how long the ATMI application is willing to wait for a reply to a service
request.

If a process is not in transaction mode, the Oracle Tuxedo system performs blocking timeouts. If
a process is in transaction mode, the Oracle Tuxedo system performs transaction timeouts but not
blocking timeouts. The latter statement is true for intradomain transactions (that is, transactions
handled within a single Oracle Tuxedo domain) but is not true for interdomain transactions. For
interdomain transactions, if a process is in transaction mode, the Domains software performs both
transaction timeouts and blocking timeouts.

How the Domains Component Handles Transaction Timeouts
The Oracle Tuxedo transaction timeout mechanism is used unchanged in the Domains
component. Use of the same transaction timeout mechanism is necessary because domain
gateways implement the transaction manager server (TMS) functionality and therefore are
required to handle the TMS timeout messages generated by the Oracle Tuxedo Bulletin Board
Liaison (BBL) administrative process.

Spec i f y ing Domains T ransact ion and B lock ing T imeouts

Using the Oracle Tuxedo Domains Component 1-25

A local service made available to remote domains in the DM_EXPORT section of the DMCONFIG file
inherits the following transaction-related properties from the SERVICES section of the local
UBBCONFIG file:

AUTOTRAN—When AUTOTRAN is turned on for a service and a service request is received
for the service that is not already within a transaction, the local Oracle Tuxedo system
automatically starts a transaction for the service.

TRANTIME—Transaction timeout value in seconds for transactions automatically started for
the service. If this timeout value is exceeded for a transaction, the Oracle Tuxedo nodes
(machines) infected with the transaction generate a TMS timeout message.

Similarly, a remote Oracle Tuxedo service made available to the local domain in the DM_IMPORT
section of the DMCONFIG file inherits the AUTOTRAN and TRANTIME properties from the SERVICES
section of the remote UBBCONFIG file. If the TRANTIME timeout value is exceeded for a
transaction, the Oracle Tuxedo nodes infected with the transaction generate a TMS timeout
message.

A service advertised on a machine running Oracle Tuxedo release 8.1 or later inherits an
additional transaction-timeout property named MAXTRANTIME from the RESOURCES section of the
UBBCONFIG file. If the MAXTRANTIME timeout value is less than the TRANTIME timeout value or
the timeout value passed in a tpbegin(3c) call to start a transaction, the timeout for a transaction
is reduced to the MAXTRANTIME value. MAXTRANTIME has no effect on a transaction started on a
machine running Oracle Tuxedo 8.0 or earlier, except that when a machine running Oracle
Tuxedo 8.1 or later is infected by the transaction, the transaction timeout value is capped—
reduced if necessary—to the MAXTRANTIME value configured for that node.

For a Domains configuration, the following transaction-handling scenarios are possible:

If an interdomain transaction infects a node that does not understand the MAXTRANTIME
parameter, or the node understands the MAXTRANTIME parameter but the parameter is not
set, the timeout value for the transaction is determined by TRANTIME or by the timeout
value passed in the tpbegin() call that started the transaction. If the TRANTIME or
tpbegin() timeout value is exceeded, all Oracle Tuxedo nodes infected with the
transaction—including the node that started the transaction—generate a TMS timeout
message.

If an interdomain transaction infects a node that understands the MAXTRANTIME parameter
and the parameter is set for that node, the timeout value for the transaction is reduced to no
greater than the MAXTRANTIME value on that node.

If the TRANTIME or tpbegin() timeout value is less than or equal to MAXTRANTIME, the
transaction-handling scenario becomes the one previously described.

1-26 Using the Oracle Tuxedo Domains Component

If the TRANTIME or tpbegin() timeout value is greater than MAXTRANTIME, the infected
node reduces the timeout value for the transaction to MAXTRANTIME. If the MAXTRANTIME
timeout value is exceeded, the infected node generates a TMS timeout message.

For more information about MAXTRANTIME, see MAXTRANTIME in the RESOURCES section in
UBBCONFIG(5) or TA_MAXTRANTIME in the T_DOMAIN class in TM_MIB(5).

How the Domains Component Handles Blocking Timeouts
The Oracle Tuxedo blocking timeout mechanism uses information stored in the registry slot
assigned to each Oracle Tuxedo client or server process—one registry slot per process—running
on the local machine. Information in the registry slot is used by the local BBL to detect requesters
that have been blocked for a time greater than BLOCKTIME. Because a domain gateway process is
a multitasking server that can process several service requests at a time (which would require
multiple registry slots), domain gateways cannot use the registry slot mechanism. When a
blocking timeout condition arises in a Domains environment, a domain gateway sends an
error/failure reply message to the requester and cleans any context associated with the service
request.

In the DM_LOCAL section of the DMCONFIG file, you can set the blocking timeout for a local domain
access point using the BLOCKTIME parameter. For example:

*DM_LOCAL
LOCAL1 GWGRP=GWTGROUP

TYPE=TDOMAIN
ACCESSPOINTID=“BA.CENTRAL01”
BLOCKTIME=30

The BLOCKTIME parameter specifies the maximum wait time a blocking ATMI call will block
before timing out. A blocking timeout condition implies that the affected service request has
failed.

The blocking timeout value is a multiplier of the SCANUNIT parameter specified in the
RESOURCES section of the UBBCONFIG file. The value SCANUNIT * BLOCKTIME must be greater
than or equal to SCANUNIT and less than or equal to 32,767 seconds.

If BLOCKTIME is not specified in the DMCONFIG file, the default is set to the value of the
BLOCKTIME parameter specified in the RESOURCES section of the UBBCONFIG file. If the
BLOCKTIME parameter is not specified in the UBBCONFIG file, the default is set so that (SCANUNIT
* BLOCKTIME) is approximately 60 seconds.

Be aware that interdomain transactions generate blocking timeout conditions when transaction
duration exceeds BLOCKTIME. That is, for an interdomain transaction, if the BLOCKTIME value is

Spec i f y ing Domains Connect i on Po l i c i es

Using the Oracle Tuxedo Domains Component 1-27

less than (a) the TRANTIME timeout value specified in the SERVICES section of the UBBCONFIG
file or (b) the timeout value passed in the tpbegin() call to start the transaction, the timeout for
the transaction is reduced to the BLOCKTIME value. In contrast, for intradomain transactions (that
is, transactions handled within a single Oracle Tuxedo domain), the BLOCKTIME value specified
in the RESOURCES section of the TUXCONFIG file has no effect on the timeout of an intradomain
transaction.

Specifying Domains Connection Policies
You can specify the conditions under which a local domain gateway tries to establish a
connection to one or more remote domains by selecting one of the following connection policies:

ON_DEMAND (default)—Connect when requested by either (1) a client request to a remote
service or (2) an administrative “connect” command. Under this connection policy, a
connection can be established in any of the following ways:

– Client request

– Manually through the dmadmin(1) connect command

– Through an incoming connection

ON_STARTUP—Connect at gateway server initialization (boot) time. Under this connection
policy, a connection can be established in any of the following ways:

– Automatically when the Oracle Tuxedo application boots

– Manual through the dmadmin(1) connect command

– Through an incoming connection

INCOMING_ONLY—Accept incoming connections but do not initiate a connection
automatically. Under this connection policy, a connection can be established in any of the
following ways:

– Manually through the dmadmin(1) connect command

– Through an incoming connection

Connection policy applies only to TDomain gateways.

How To Configure Your Connection Policy
In the DM_LOCAL section of the DMCONFIG file, you set the connection policy for a local domain
access point using the CONNECTION_POLICY parameter. For example:

1-28 Using the Oracle Tuxedo Domains Component

*DM_LOCAL
LOCAL1 GWGRP=GWTGROUP

TYPE=TDOMAIN
ACCESSPOINTID=“BA.CENTRAL01”
BLOCKTIME=30
CONNECTION_POLICY=ON_STARTUP

If you do not specify a connection policy for a local domain access point, the connection policy
for that access point defaults to ON_DEMAND.

Per Local/Remote Domain Connection Policy
For TDomain gateways running Oracle Tuxedo release 8.1 or later software, you can set the
connection policy on a per local or per remote domain basis in the DM_TDOMAIN section of the
DMCONFIG file. For example:

*DM_LOCAL
LOCAL1 GWGRP=GWTGROUP

TYPE=TDOMAIN
ACCESSPOINTID=“BA.CENTRAL01”
BLOCKTIME=30

*DM_REMOTE
REMOT1 TYPE=TDOMAIN

DOMAINID=”REMOT1”

REMOT2 TYPE=TDOMAIN
DOMAINID=”REMOT2”

*DM_TDOMAIN
LOCAL1 NWADDR=“//albany.acme.com:4051”

CONNECTION_POLICY=ON_STARTUP
REMOT1 NWADDR=“//newyork.acme.com:65431”

CONNECTION_POLICY=ON_DEMAND
REMOT2 NWADDR=“//philly.acme.com:65431”

The connection policy specified for a remote domain access point takes precedence over the
connection policy specified for a local domain access point. So, in the preceding example, the
connection policy configurations will be:

LOCAL1 to REMOT1 — ON_DEMAND
LOCAL1 to REMOT2 — ON_STARTUP

For Oracle Tuxedo 8.1 or later, you can specify any of the following connection policy values for
a local domain access point in the DM_TDOMAIN section of the DMCONFIG file:

Spec i f y ing Domains Connect i on Po l i c i es

Using the Oracle Tuxedo Domains Component 1-29

ON_DEMAND

ON_STARTUP

INCOMING_ONLY

Specifying no connection policy for a local domain access point defaults to the global connection
policy specified in the DM_LOCAL section of the DMCONFIG file. Specifying a global connection
policy in the DM_TDOMAIN section takes precedence over the global connection policy specified
in the DM_LOCAL section.

Note: If you choose to specify a global connection policy in the DM_TDOMAIN section, do not
specify a global connection policy in the DM_LOCAL section.

For Oracle Tuxedo 8.1 or later, you can also specify any of the following connection policy
values for a remote domain access point in the DM_TDOMAIN section of the DMCONFIG file:

LOCAL (default)

ON_DEMAND

ON_STARTUP

INCOMING_ONLY

Specifying LOCAL or no connection policy for a remote domain access point defaults to the global
connection policy.

Without the remote-domain connection policy capability, a global connection policy of
ON_STARTUP means that the local TDomain gateway will try to connect to all remote domains at
boot time, even if some of the remote domains will not be used initially. With a large number of
remote domains, the boot time could be substantial. With the remote-domain connection policy
capability, you can select which remote domain connections not to automatically establish at boot
time for a global connection policy of ON_STARTUP.

Per TDomain Session Connection Policy
Beginning with Oracle Tuxedo 9.0, you can set the connection policy for TDomain gateways on
a per TDomain session basis in the DM_TDOMAIN section of the DMCONFIG file.

In order to initiate a per TDomain session connection policy you must do the following:

Establish a TDomain session between specific local and remote domain gateway access
points. This gives you the ability to restrict session connection accessibility to one or more
local and remote domain gateways.

1-30 Using the Oracle Tuxedo Domains Component

You can create one or more record entries to describe the parameters and attributes you
want to use per TDomain session.

Specify the connection_policy parameter attributes you want to use. If you do not
specify a connection policy for a TDomain session, the connection policy attribute for that
session point defaults to LOCAL.

Creating A TDomain Session
Two parameters in the DM_TDOMAIN section of the DMCONFIG file are used to create a TDomain
session:

FAILOVERSEQ: Specifies a TDomain session failover sequence and primary record.

LACCESSPOINT (also known as LDOM): Specifies the name of a local domain access point
listed in the DM_LOCAL section.

You can specify other TDomain session parameters and attributes, for example SECURITY and
DMKEEPALIVE. For more information on FAILOVERSEQ and LACCESSPOINT, as well as other
TDomain parameters and attributes, see Optional parameters for the DM_TDOMAIN section in
Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System Processes Reference.

Creating A Per TDomain Session Connection Policy
The FAILOVERSEQ, LACCESSPOINT and CONNECTION_POLICY parameters are used to establish a
per TDomain session policy and are specified in Listing 1-1:

Listing 1-1 Per TDOMAIN Session Connection Policy Example

*DM_LOCAL

LOCAL1 GWGRP=GWTGROUP

TYPE=TDOMAIN

ACCESSPOINTID=“BA.CENTRAL01”

BLOCKTIME=30

LOCAL2 GWGRP=GWTGROUP

TYPE=TDOMAIN

ACCESSPOINTID=“BA.CENTRAL02”

BLOCKTIME=30

*DM_REMOTE

REMOT1 TYPE=TDOMAIN

DOMAINID=”REMOT1”

Spec i f y ing Domains Connect i on Po l i c i es

Using the Oracle Tuxedo Domains Component 1-31

REMOT2 TYPE=TDOMAIN

DOMAINID=”REMOT2”

*DM_TDOMAIN

LOCAL1 NWADDR=“//albany.acme.com:4051”

LOCAL2 NWADDR=“//chicago.acme.com:4032”

LOCAL1 NWADDR=“//albany.acme.com:4052”

REMOT1 NWADDR=“//newyork.acme.com:65431” LACCESSPOINT=LOCAL1

CONNECTION_POLICY=ON_STARTUP

MINENCRYPTBITS=128 MAXENCRYPTBITS=128

FAILOVERSEQ=100

REMOT1 NWADDR=“//newyork.acme.com:65432” LACCESSPOINT=LOCAL2

CONNECTION_POLICY=INCOMING_ONLY

FAILOVERSEQ=110

REMOT2 NWADDR=“//philly.acme.com:65431” LACCESSPOINT=LOCAL2

CONNECTION_POLICY=ON_DEMAND

FAILOVERSEQ=120

REMOT1 NWADDR=“//detroit.acme.com:65431” LACCESSPOINT=LOCAL1

CONNECTION_POLICY=INCOMING_ONLY

MINENCRYPTBITS=40 MAXENCRYPTBITS=40

FAILOVERSEQ=130

The DM_TDOMAIN section consists of seven records that include three TDomain sessions.

Record 4 is the primary record for TDomain session LOCAL1,REMOT1 since its
FAILOVERSEQ number is smaller than record 7. The connection policy for this TDomain
session is ON_STARTUP, and it requires 128 bits Link-Level Encryption security policy. If

Table 1-3 TDomain Sessions

Record Domain Session Connection Policy Connection/
Failover Sequence

Session
Hierarchy

4 [LOCAL1,REMOT1] ON_STARTUP 1st Primary

7 [LOCAL1,REMOT1] Ignored 2nd Secondary

5 [LOCAL2,REMOT1] INCOMING_ONLY 1st Primary

6 [LOCAL2,REMOT2] ON_DEMAND 1st Primary

1-32 Using the Oracle Tuxedo Domains Component

connection to this record fails, then a connection attempt is made to its secondary/backup
record, which is record 7.

Record 7 is the secondary or backup record for TDomain session LOCAL1,REMOT1 since its
FAILOVERSEQ number is larger than record 4.

The connection and security policies for record 7 are ignored because record 4 is the
primary record for this session. Record 7 has no secondary/backup failover record. If
connection to record 7 fails, then a connection to record 4 is retried as determined by
RETRY_INTERVAL until MAXRETRY is exhausted. For more information about
RETRY_INTERVAL, see “How To Use Connection Retry Processing” on page 1-37.

Record 5 is the primary record for TDomain session LOCAL2,REMOT1. The connection
policy for this TDomain session is INCOMING_ONLY. There is no secondary/backup failover
record for this session.

Record 6 is the primary record for TDomain session LOCAL2,REMOT2. The connection
policy for this session is ON_DEMAND. There is no secondary/backup failover record for this
session. Local access point LOCAL2 connects with two TDomain sessions: one with REMOT1
in record 5, and another with REMOT2.

If two or more records for the same TDomain session have the same FAILOVERSEQ value, the first
record entered will be the primary record. The failover sequence for the remaining records is
determined based on record-entry order.

To initiate your per TDomain session policy, perform the following steps:

Use dmloadcf -y to compile and convert DMCONFIG file into BDMCONFIG file.

Use tmboot -y to boot the server

Using Regular Expressions with TDomain Sessions
To make the DMCONFIG file smaller and easier to work with, LACCESSPOINT can contain regular
expressions to describe multiple local domain access points.

Note: DM_TDOMAIN is the only section in the DMCONFIG file that allows LACCESSPOINT to
contain regular expressions.

When the DMCONFIG file is compiled, regular expressions are expanded to their full local domain
names in the output binary BDMCONFIG file. The size of the BDMCONFIG file is increased
accordingly as shown in Listing 1-2:

Spec i f y ing Domains Connect i on Po l i c i es

Using the Oracle Tuxedo Domains Component 1-33

Listing 1-2 DMCONFIG File with Regular Expressions

*DM_LOCAL
ALPHA1 . . .
ALPHA2 . . .
ALPHA3 . . .
ALPHA10 . . .
ALPHA11 . . .
ALPHA24 . . .
ALPHA36 . . .
BETA2 . . .
BETA3 . . .
BETA15 . . .
BETA20 . . .
*DM_REMOTE
REMOT1 . . .
REMOT2 . . .
REMOT3 . . .
*DM_TDOMAIN
REMOT1 NWADDR=“//philly.acme.com:65431” LACCESSPOINT=ALPHA1

CONNECTION_POLICY=INCOMING_ONLY
FAILOVERSEQ=100

REMOT1 NWADDR=“//philly.acme.com:65432” LACCESSPOINT=BETA2
CONNECTION_POLICY=ON_DEMAND
FAILOVERSEQ=110

REMOT1 NWADDR=“//philly.acme.com:65433” LACCESSPOINT=”ALPHA[1-2][0-9]”
CONNECTION_POLICY=ON_STARTUP
FAILOVERSEQ=120

REMOT1 NWADDR=“//philly.acme.com:65434” LACCESSPOINT=”BETA[1-2][0-9]*”
CONNECTION_POLICY=ON_STARTUP
FAILOVERSEQ=130

TDomain session records three and four use regular expressions to define local access points.
When dmloadcf parses this DMCONFIG file, the BDMCONFIG file output is as follows in
Listing 1-3.

1-34 Using the Oracle Tuxedo Domains Component

Listing 1-3 Compiled BDMCONFIG File for DMCONFIG File with Regular Expressions

REMOT1 NWADDR=“//philly.acme.com:65431” LACCESSPOINT=ALPHA1
CONNECTION_POLICY=INCOMING_ONLY
FAILOVERSEQ=100

REMOT1 NWADDR=“//philly.acme.com:65432” LACCESSPOINT=BETA2
CONNECTION_POLICY=ON_DEMAND
FAILOVERSEQ=110

REMOT1 NWADDR=“//philly.acme.com:65433” LACCESSPOINT=”ALPHA10”
CONNECTION_POLICY=ON_STARTUP
FAILOVERSEQ=120

REMOT1 NWADDR=“//philly.acme.com:65433” LACCESSPOINT=”ALPHA11”
CONNECTION_POLICY=ON_STARTUP
FAILOVERSEQ=120

REMOT1 NWADDR=“//philly.acme.com:65433” LACCESSPOINT=”ALPHA24”
CONNECTION_POLICY=ON_STARTUP
FAILOVERSEQ=120

REMOT1 NWADDR=“//philly.acme.com:65434” LACCESSPOINT=”BETA2”
CONNECTION_POLICY=ON_STARTUP
FAILOVERSEQ=130

REMOT1 NWADDR=“//philly.acme.com:65434” LACCESSPOINT=”BETA15”
CONNECTION_POLICY=ON_STARTUP
FAILOVERSEQ=130

REMOT1 NWADDR=“//philly.acme.com:65434” LACCESSPOINT=”BETA20”
CONNECTION_POLICY=ON_STARTUP
FAILOVERSEQ=130

Using DM_MIB to Specify or Request TDomain Session Information
Using DM_MIB to specify and request TDomain session information directly modifies the
BDMCONFIG file. The original DMCONFIG file is unmodified. For more information about DM_MIB,
see DM_MIB(5) in Section 5 - File Formats, Data Descriptions, MIBs, and System Processes
Reference.

Note: You can use dmunloadcf >DMCONFIG to parse the BDMCONFIG file to update its changes
in the DMCONFIG file. For more information about dmunloadcf, see “Domains
Administrative Tools” on page 1-13.

DM_MIB uses three T_DM_TDOMAIN Class Definition attributes to create a per TDomain
session connection policy in the BDMCONFIG file:

TA_DMFAILOVERSEQ: Specifies and requests the session connection failover sequences and
primary records for a TDomain session record in the BDMCONFIG file.

Spec i f y ing Domains Connect i on Po l i c i es

Using the Oracle Tuxedo Domains Component 1-35

TA_DMLACCESSPOINT: Specifies and requests a local domain access point found in the
DM_LOCAL section for a TDomain session record in the BDMCONFIG file.

TA_DMCONNECTION_POLICY: Specifies a TDomain connection policy

You can also specify and request other T_DM_TDOMAIN Class Definition attributes, for
example security and keepalive. For more T_DM_TDOMAIN Class Definition attribute
information, see T_DM_TDOMAIN Class Definition in Section 5 - File Formats, Data
Descriptions, MIBs, and System Processes Reference.

You can use DM_MIB to add, delete, or retrieve TDomain session records in the BDMCONFIG file.
All applicable T_DM_TDOMAIN Class Definition key fields must be used to add, delete, or
retrieve requests for TDomain session record information.

For example:

Example 1: DM_MIB request used to add a new TDomain session and connection policy record.
TA_OPERATION SET
TA_CLASS T_DM_TDOMAIN
TA_DMACCESSPOINT RDOM1
TA_DMNWADDR //philly.acme.com:65431
TA_STATE NEW
TA_DMLACCESSPOINT LDOM3
TA_DMFAILOVERSEQ 50
TA_DMCONNECTION_POLICY ON_STARTUP

This will add the following TDomain session record in BDMCONFIG file:
RDOM1 NWADDR=“//philly.acme.com:65431” LACCESSPOINT=LDOM3

FAILOVERSEQ=50
CONNECTION_POLICY=ON_STARTUP

Example 2: DM_MIB request used to delete an existing TDomain session connection policy record.

The requested record is marked “invalid” in the BDMCONFIG file and is not included in the
TDomain session.
TA_OPERATION SET
TA_CLASS T_DM_TDOMAIN
TA_DMACCESSPOINT RDOM1
TA_DMNWADDR //philly.acme.com:65431
TA_STATE INV
TA_DMLACCESSPOINT LDOM3
TA_DMFAILOVERSEQ 50
TA_DMCONNECTION_POLICY ON_STARTUP

Example 3: DM_MIB request used to retrieve an existing TDomain session connection policy
record.

1-36 Using the Oracle Tuxedo Domains Component

TA_OPERATION GET
TA_CLASS T_DM_TDOMAIN
TA_DMACCESSPOINT RDOM1
TA_DMNWADDR //philly.acme.com:65431
TA_STATE INV
TA_DMLACCESSPOINT LDOM3
TA_DMFAILOVERSEQ 50
TA_DMCONNECTION_POLICY ON_STARTUP

Using DMADMIN to Specify or Request TDomain Session Information
You can use Tuxedo’s command line interface, DMADMIN, to specify and request TDomain
session information. For a general description of DMADMIN, see“Domains Administrative Tools”
on page 1-13.

Using DMADMIN to specify and request TDomain information works similarly to using DM_MIB.
That is to say, using DMADMIN modifies the BDMCONFIG file and leaves the original DMCONFIG file
unmodified.

DMADMIN uses three field indentifiers to add a per TDomain connection policy record in the
BDMCONFIG file:

TA_DMFAILOVERSEQ: Specifies and requests the session connection failover sequences and
primary records for a TDomain session record in the BDMCONFIG file.

TA_LDOM: Specifies and requests a local domain access point found in the DM_LOCAL
section for a TDomain session record in the BDMCONFIG file.

TA_CONNECTION_POLICY: Specifies a TDomain connection policy

For more information about TA_DMFAILOVERSEQ, TA_LDOM, TA_CONNECTION_POLICY and
other field indentifiers, see dmadmin(1) in Oracle Tuxedo Command Reference.

You can use DMADMIN to add, delete, or retrieve TDomain session records. The following
example illustrates how DMADMIN is used to add a TDomain session connection policy record in
the BDMCONFIG file:
TA_CMPLIMIT 2147483647
TA_MINENCRYPTBITS 0
TA_MAXENCRYPTBITS 128
TA_DMNWADDR //philly.acme.com:65431
TA_LDOM LDOM3
TA_DMFAILOVERSEQ 50
TA_RDOM RDOM1
TA_CONNECTION_POLICY ON_STARTUP

Spec i f y ing Domains Connect i on Po l i c i es

Using the Oracle Tuxedo Domains Component 1-37

TDomain Session Interoperability with Older Tuxedo Releases
Tuxedo 9.x TDomain gateways can communicate with older Tuxedo release TDomain gateways.
However, if you want to use the TDomain session feature running Tuxedo 9.x and 8.1 in a mixed
application environment, please note the following limitations:

You must use Tuxedo 9.x DMADM server and dmloadcf when you want to create a
TDomain session.

You should not limit Tuxedo 8.1 local domain gateway access to remote domains. If you
do, you run the risk of getting a routing failure error. Message routing in Tuxedo 8.1
assumes local domain gateway is capable of connecting to all remote domains.

The TDomain session feature does not work with Tuxedo releases older than 8.1 in a mixed
application environment.

How To Use Connection Retry Processing
When CONNECTION_POLICY is set to ON_STARTUP, you can configure two other parameters to
determine how many times the local domain gateway attempts to establish a connection to the
remote domains. By default, the local domain gateway retries failed connections every 60
seconds, but you can specify a different value for this interval using parameters MAXRETRY and
RETRY_INTERVAL.

You use the MAXRETRY parameter to specify the number of times that a domain gateway tries to
establish connections to remote domains. The minimum value is 0, and the maximum value is
2147483647. The default setting is 2147483647. Setting this parameter to 0 turns off connection
retry processing.

You use the RETRY_INTERVAL parameter to specify the number of seconds between automatic
attempts to establish a connection to remote domains. The minimum value is 0, and the maximum
value is 2147483647. The default setting is 60. If the MAXRETRY parameter is set to 0, setting
RETRY_INTERVAL is not allowed.

Example 1:

*DM_LOCAL
LOCAL1 GWGRP=GWTGROUP

TYPE=TDOMAIN
ACCESSPOINTID=“BA.CENTRAL01”
BLOCKTIME=30
CONNECTION_POLICY=ON_STARTUP
MAXRETRY=5
RETRY_INTERVAL=100

1-38 Using the Oracle Tuxedo Domains Component

Example 2 (Only possible for TDomain gateways running Oracle Tuxedo release 8.1 or later
software):

*DM_LOCAL
LOCAL1 GWGRP=GWTGROUP

TYPE=TDOMAIN
ACCESSPOINTID=“BA.CENTRAL01”
BLOCKTIME=30

*DM_TDOMAIN
LOCAL1 NWADDR=“//albany.acme.com:4051”

CONNECTION_POLICY=ON_STARTUP
MAXRETRY=5
RETRY_INTERVAL=100

REMOT1 NWADDR=“//newyork.acme.com:65431”
CONNECTION_POLICY=ON_STARTUP
MAXRETRY=10
RETRY_INTERVAL=40

In the second example, the MAXRETRY and RETRY_INTERVAL values 10 and 40 will be the
automatic connection retry criteria used by the local TDomain gateway to establish a connection
to the remote domain access point named REMOT1.

How Connection Policy Determines Availability of Remote
Services
The connection policy that you specify determines how services imported from a remote domain
are advertised in the Oracle Tuxedo bulletin board by the domain gateway:

For ON_DEMAND, the local domain gateway continually advertises services imported from a
remote domain.

For ON_STARTUP, the local domain gateway advertises services imported from a remote
domain as long as a connection exists to the remote domain.

For INCOMING_ONLY, the local domain gateway advertises services imported from a remote
domain when the gateway receives an incoming connection or when a dmadmin connect
command is issued.

When the connection policy is ON_STARTUP or INCOMING_ONLY (but not ON_DEMAND), Dynamic
Status, a TDomain gateway feature, checks the status of remote services. The status of a remote
service depends on the status of the network connection between the local and remote domain
gateways. Remote services are advertised and available on the local domain whenever a

Spec i f y ing Domains Connect i on Po l i c i es

Using the Oracle Tuxedo Domains Component 1-39

connection is successfully established to the domain on which they reside. Remote services are
suspended and unavailable whenever the connection is not established to the domain on which
they reside.

For each service, the domain gateway keeps track not only of the remote domains from which the
service is imported, but also of which remote domains are available. In this way, the gateway
provides intelligent load balancing of requests to remote domains. If all the remote domains from
which a service is imported become unreachable, the domain gateway suspends the service in the
Oracle Tuxedo bulletin board.

For example, suppose a service named RSVC is imported from two remote domains, as specified
by the following entries in the DM_IMPORT section of the DMCONFIG file:

*DM_IMPORT
RSVC AUTOTRAN=N

RACCESSPOINT=REMOT1
LACCESSPOINT=LOCAL1

RSVC AUTOTRAN=N
RACCESSPOINT=REMOT2
LACCESSPOINT=LOCAL1

When connections to both REMOT1 and REMOT2 are up, the domain gateway load balances
requests for the RSVC service. If the connection to REMOT1 goes down, the gateway sends all
requests for RSVC to REMOT2. If both connections go down, the gateway suspends RSVC in the
bulletin board. Subsequent requests for RSVC are either routed to a local service or fail with
TPENOENT.

See Also
Optional parameters for the DM_TDOMAIN section in Oracle Tuxedo File Formats, Data
Descriptions, MIBs, and System Processes Reference

T_DM_TDOMAIN Class Definition in Oracle Tuxedo File Formats, Data Descriptions,
MIBs, and System Processes Reference

“Setting Up Connections in a Domains Configuration” on page 2-55

“Controlling Connections in a Domains Configuration” on page 2-61

1-40 Using the Oracle Tuxedo Domains Component

Specifying Domains Failover and Failback
In the DM_IMPORT section of the DMCONFIG file, you can set up the Domains-level failover and
failback functionality for your Domains configuration. In the DM_TDOMAIN section of the
DMCONFIG file, you can set up the Domains link-level failover functionality for your Domains
configuration.

How to Configure Domains-Level Failover and Failback
Domains-level failover is a mechanism that transfers requests to alternate remote domains when
a failure is detected with a primary remote domain. It also provides failback to the primary remote
domain when that domain is restored.

To support Domains-level failover and failback, you specify a list of the remote domain access
points through which a particular service can be executed. For example:

*DM_IMPORT

TOUPPER RACCESSPOINT=“REMOT1,REMOT2,REMOT3”

In this example, the TOUPPER service can be executed through any of three remote domain access
points: REMOT1 (primary), REMOT2, and REMOT3. When REMOT1 is unavailable, REMOT2 is used
for failover. When REMOT1 and REMOT2 are both unavailable, REMOT3 is used for failover.

You must specify ON_STARTUP or INCOMING_ONLY as the value of the CONNECTION_POLICY
parameter if you want to configure alternate remote domains for a service. If you specify
ON_DEMAND as your connection policy, your servers cannot “fail over” to the alternate remote
domains that you have specified in the RACCESSPOINT parameter.

Domains-level failback occurs when a network connection to the primary remote domain is
re-established for any of the following reasons:

Automatic connection retries (ON_STARTUP only)

Incoming connections

Manual dmadmin connect command

How to Configure Domains Link-Level Failover
Domains link-level failover is a mechanism that ensures that a secondary network link becomes
active when a primary network link fails. However, it does not provide failback to the primary
link when that link is restored, meaning that when the primary link is restored, you must manually
bring down the secondary link to force traffic back onto the primary link.

Spec i f y ing Domains Keepal i ve

Using the Oracle Tuxedo Domains Component 1-41

To configure Domains link-level failover, you specify multiple entries for a remote domain
access point in the DM_TDOMAIN section of the DMCONFIG file. For example:

*DM_TDOMAIN
REMOT1 NWADDR=“//newyork.acme.com:65431”
REMOT1 NWADDR=“//trenton.acme.com:65431”

The first entry is considered to be the primary address, which means its NWADDR is the first
network address tried when a connection is being attempted to the remote domain access point.
The second entry is considered to be the secondary address, which means its NWADDR is the second
network address tried when a connection cannot be established using the primary address.

The second entry points to a secondary remote gateway that must reside in a different Oracle
Tuxedo domain than the Oracle Tuxedo domain in which the primary remote gateway resides.
The secondary and primary remote gateways must have the same ACCESSPOINTID defined in the
DM_LOCAL section of their associated DMCONFIG files; this arrangement is often referred to as a
mirrored gateway. This feature is not recommended for use with transactions or conversations.
In addition, the mirrored gateway is not recommended for use when the primary remote gateway
is available.

How to Configure TDomain Session Link-Level Failover
The FAILOVERSEQ parameter in the DM_TDOMAIN section of the DMCONFIG file is used to
configure TDomain session link-level failover. For more information about specifying
FAILOVERSEQ in a TDomain session, see “Per TDomain Session Connection Policy” on
page 1-29.

You can also use the TA_DMFAILOVERSEQ attribute in DM_MIB to configure TDomain session
link-level failover. For more information, see “Using DM_MIB to Specify or Request TDomain
Session Information” on page 1-34.

Specifying Domains Keepalive
Domains keepalive, available for TDomain gateways running Oracle Tuxedo release 8.1 or later
software, allows you to enable and configure a keepalive protocol at the TCP level and/or
application level for each TDomain gateway connection. TCP-level keepalive and
application-level keepalive are not mutually exclusive, meaning that you can configure a
Domains connection using both options.

Table 1-4 provides some key information about Domains keepalive.

1-42 Using the Oracle Tuxedo Domains Component

.

Most Oracle Tuxedo Domains configurations span across firewalls, and firewalls typically time
out idle connections. Not only will Domains keepalive keep Oracle Tuxedo interdomain
connections open during periods of inactivity, but it will also enable TDomain gateways to
quickly detect Domains connection failures. Currently, a TDomain gateway learns of a Domains
connection failure through the underlying TCP stack, which may report the failure 15 minutes or
more (depending on the local operating system configuration) after the failure occurs.

What is TCP-Level Keepalive?
Although the keepalive functionality is not part of the TCP specification, most operating systems
provide a TCP keepalive timer. The TCP keepalive timer allows the server machine at one end
of a TCP connection to detect whether the client machine at the other end of the connection is
reachable.

Every message received by the server machine over the TCP connection resets the TCP keepalive
timer. If the keepalive timer detects no activity on the TCP connection for a predefined period of
time (typically two hours), the timer expires, and the server machine sends a probe segment
packet to the client machine. If the connection is still open and the client machine is still alive,
the client machine responds by sending an acknowledgement to the server machine. If the server
machine does not receive an acknowledgement within a fixed period of time of sending the probe
segment packet, the server machine assumes that the connection is broken and releases any
resources associated with the connection.

Besides determining whether the connection is open and the client machine is alive, TCP-level
keepalive is a way of keeping idle connections open through firewalls. Automatically sending a

Table 1-4 About Domains Keepalive

Level Interoperate With Earlier
Tuxedo Release?

Individual
Timer?

Quicker Connection
Failure Detection?

Keepalive Event
With Firewall?

TCP-Level
Keepalive

Yes No Yes * Yes

Application-Level
Keepalive

No Yes Yes Yes

* For TCP-level keepalive to quickly detect a TDomain gateway connection failure, it must be set to a small time
interval. Doing so may flood the network with TCP packets.

Spec i f y ing Domains Keepal i ve

Using the Oracle Tuxedo Domains Component 1-43

probe segment packet after a predefined period of connection inactivity resets the firewall’s
idle-connection timer before it times out, which allows the connection to stay open.

The interval for an operating system’s TCP keepalive timer is typically set to two hours. This
interval can be changed, but changing it affects all TCP connections for a machine. An operating
system’s TCP keepalive interval is a system-wide value.

How to Configure TCP-Level Keepalive for Domains
The Oracle Tuxedo TCP-level keepalive option for Domains is named TCPKEEPALIVE, which has
been added as an optional parameter in the DM_TDOMAIN section of the DMCONFIG file. You can
use this parameter to enable the Domains TCP-level keepalive option on a per local or per remote
domain basis.

The allowed values for TCPKEEPALIVE are:

LOCAL (relevant only to remote domain access points)

NO (keepalive disabled)

YES (keepalive enabled)

By default, the Domains TCP-level keepalive option is disabled. When you enable TCP-level
keepalive for a Domains connection, the keepalive interval used for the connection is the
system-wide value configured for the operating system’s TCP keepalive timer.

To clarify the use of TCPKEEPALIVE, consider the following Domains TCP-level keepalive
configuration:

*DM_TDOMAIN
LOCAL1 NWADDR=“//albany.acme.com:4051”

TCPKEEPALIVE=Y
REMOT1 NWADDR=“//newyork.acme.com:65431”
REMOT2 NWADDR=“//philly.acme.com:65431”

TCPKEEPALIVE=NO

The TCP-level keepalive configuration specified for a remote domain access point takes
precedence over the TCP-level keepalive configuration specified for the local domain access
point. So, in the preceding example, the TCP-level keepalive configurations will be:

LOCAL1 to REMOT1 — TCP-level keepalive enabled
LOCAL1 to REMOT2 — TCP-level keepalive disabled

For a local domain access point, you can specify any of the following values for the
TCPKEEPALIVE parameter:

1-44 Using the Oracle Tuxedo Domains Component

NO (default)

YES

For a remote domain access point, you can specify any of the following values for the
TCPKEEPALIVE parameter:

LOCAL (default)

NO

YES

Specifying LOCAL or no configuration for a remote domain access point defaults to the local
TCP-level keepalive configuration.

Note: You can enable each of two interoperating Oracle Tuxedo domains with TCP-level
keepalive, assuming that both domains are running Oracle Tuxedo 8.1 or later software.

If the connection policy for a Domains connection is ON_STARTUP and the TCP connection is
closed due to a TCP-level keepalive failure, automatic connection retry attempts. If the
connection retry is not successful, you must use the dmadmin connect command to re-establish
the connection. For information about the dmadmin connect command, see “How to Establish
Connections Between Domains” on page 2-61.

What is Application-Level Keepalive?
Some people argue against using the operating system’s TCP keepalive, citing that the probe
segment packets consume unnecessary bandwidth and waste money on internet connections
where users pay on a per packet basis. Some people also believe that keepalive belongs in the
application layer or link layer, not in the transport (TCP) layer, citing that the application layer
should:

Decide whether the application has been waiting an excessively long time to receive
incoming messages.

Decide what actions to take to determine whether the TCP connection is still open and that
the machine and application at the other end of the connection are still running.

Regardless of who thinks what, one advantage of application-level keepalive over TCP-level
keepalive is that the interval for the keepalive timer can be set on a per connection basis. With
TCP-level keepalive, the timer interval must be set on a per machine basis.

Using application-level keepalive, the server application sends an application-specific keepalive
message whenever the application keepalive timer times out. (Typically, the keepalive message

Spec i f y ing Domains Keepal i ve

Using the Oracle Tuxedo Domains Component 1-45

consists of just header information, meaning that the message has no associated data.) The client
application responds by sending an acknowledgement to the server application. If the server
application does not receive an acknowledgement within a predefined period of time of sending
the keepalive message, the server application assumes that the connection is broken and releases
any resources associated with the connection.

Besides determining whether the connection is open and the client application is running,
application-level keepalive is a way of keeping idle connections open through firewalls.
Automatically sending a keepalive message after a predefined period of connection inactivity
resets the firewall’s idle-connection timer before it times out, which allows the connection to stay
open.

How to Configure Application-Level Keepalive for Domains
The Oracle Tuxedo application-level keepalive option for Domains is named KEEPALIVE. This
parameter and a companion parameter named KEEPALIVEWAIT have been added as optional
parameters in the DM_TDOMAIN section of the DMCONFIG file. You can use these parameters to
configure the Domains application-level keepalive option on a per local or per remote domain
basis.

You use the DMKEEPALIVE parameter to specify the maximum time that the local TDomain
gateway will wait without receiving any traffic on the Domains connection; if the maximum time
is exceeded, the gateway sends an application-level keepalive request message. The allowed
values for DMKEEPALIVE are:

-1 (relevant only to remote domain access points)

0 (keepalive disabled)

1 <= value <= 2147483647 (keepalive enabled), in milliseconds, currently rounded up to
the nearest second by the Domains software

The DMKEEPALIVE default setting is 0.

You use the DMKEEPALIVEWAIT parameter to specify the maximum time that the local TDomain
gateway will wait without receiving an acknowledgement to a sent keepalive message. If the
maximum time is exceeded, the gateway assumes that the connection to the remote TDomain
gateway is broken and releases any resources associated with the connection. The minimum value
for DMKEEPALIVEWAIT is 0, and the maximum value is 2147483647 milliseconds, currently
rounded up to the nearest second by the Domains software. The DMKEEPALIVEWAIT default
setting is 0.

1-46 Using the Oracle Tuxedo Domains Component

If DMKEEPALIVE is 0 (keepalive disabled), setting DMKEEPALIVEWAIT has no effect.

If DMKEEPALIVE is enabled and DMKEEPALIVEWAIT is set to a value greater than
DMKEEPALIVE, the local TDomain gateway will send more than one application-level
keepalive message before the DMKEEPALIVEWAIT timer expires. This combination of
settings is allowed.

If DMKEEPALIVE is enabled and DMKEEPALIVEWAIT is set to 0, receiving an
acknowledgement to a sent keepalive message is unimportant: any such acknowledgement
is ignored by the local TDomain gateway. The local TDomain gateway continues to send
keepalive messages every time the DMKEEPALIVE timer times out. Use this combination of
settings to keep an idle connection open through a firewall.

To clarify the use of DMKEEPALIVE and DMKEEPALIVEWAIT, consider the following Domains
application-level keepalive configuration:

*DM_TDOMAIN
LOCAL1 NWADDR=“//albany.acme.com:4051”

DMKEEPALIVE=1010
DMKEEPALIVEWAIT=20

REMOT1 NWADDR=“//newyork.acme.com:65431”
DMKEEPALIVE=4000
DMKEEPALIVEWAIT=3000

REMOT2 NWADDR=“//philly.acme.com:65431”
DMKEEPALIVE=-1

The keepalive configuration specified for a remote domain access point takes precedence over
the keepalive configuration specified for the local domain access point. So, in the preceding
example, the application-level keepalive configurations will be:

LOCAL1 to REMOT1 — Keepalive timer = 4 seconds, and wait timer = 3 seconds
LOCAL1 to REMOT2 — Keepalive timer = 2 seconds, and wait timer = 1 second

For a local domain access point, you can specify any of the following values for the
DMKEEPALIVE parameter:

0 (default)

1 <= value <= 2147483647 in milliseconds, currently rounded up to the nearest second by
the Domains software

For a remote domain access point, you can specify any of the following values for the
DMKEEPALIVE parameter:

-1 (default)

Conf igur ing a Domains Env i ronment

Using the Oracle Tuxedo Domains Component 1-47

0

1 <= value <= 2147483647 in milliseconds, currently rounded up to the nearest second by
the Domains software

Specifying -1 or no keepalive configuration for a remote domain access point defaults to the local
application-level keepalive configuration.

Note: You can configure each of two interoperating Oracle Tuxedo domains with
application-level keepalive, using the same or different wait intervals, assuming that both
domains are running Oracle Tuxedo 8.1 or later software.

If the connection policy for a Domains connection is ON_STARTUP and the connection
experiences an application-level keepalive failure, automatic connection retry processing
attempts to re-establish the connection. For more information about connection retry processing,
see “How To Use Connection Retry Processing” on page 1-37.

Keepalive Compatibility with Earlier Oracle Tuxedo
Releases
Domains TCP-level keepalive is compatible with Oracle Tuxedo 8.0 or earlier software. The
Oracle Tuxedo software running at the other end of the TCP connection may be any release of
Oracle Tuxedo because Domains TCP-level keepalive is executed at the network transport (TCP)
layer.

Domains application-level keepalive is not compatible with Oracle Tuxedo 8.0 or earlier
software. The Oracle Tuxedo software running at the other end of the TCP connection must be
Oracle Tuxedo 8.1 or later to be able to understand an application-level keepalive message. When
connected to a TDomain gateway running an earlier release of Oracle Tuxedo software, the
TDomain gateway does not send an application-level keepalive message; instead, it logs a
warning message in the local user log (ULOG) stating that the remote domain is running an
earlier release of Oracle Tuxedo software and does not support Domains application-level
keepalive.

Configuring a Domains Environment
The following list summarizes the tasks that you must complete to configure a Domains
environment for the TDomain gateway type:

1. Edit the UBBCONFIG file with any text editor and configure the Domains administrative
servers and the TDomain gateway server. For example:

1-48 Using the Oracle Tuxedo Domains Component

*GROUPS
DMADMGRP LMID=SITE1 GRPNO=1
GWTGROUP LMID=SITE2 GRPNO=2

*SERVERS
DMADM SRVGRP=DMADMGRP

SRVID=1001
REPLYQ=N
RESTART=Y
GRACE=0

GWADM SRVGRP=GWTGROUP
SRVID=1002
REPLYQ=N
RESTART=Y
GRACE=0

GWTDOMAIN SRVGRP=GWTGROUP
SRVID=1003
RQADDR=“GWTGROUP”
REPLYQ=N
RESTART=Y
GRACE=0

Note: In the previous example, REPLYQ=N is specified for the DMADM, GWADM, and
GWTDOMAIN servers. This setting is not required: you can, if you prefer, designate a
reply queue for any of these servers by specifying REPLYQ=Y. When REPLYQ is set to
N, however, performance may be improved.

The TDomain gateway server and its associated GWADM server must run on the same
machine in an Oracle Tuxedo domain. The DMADM server may run on any machine—master
machine, non-master machine—in the Oracle Tuxedo domain.

2. Load the Oracle Tuxedo configuration by running tmloadcf(1). The tmloadcf command
parses UBBCONFIG and loads the binary TUXCONFIG file to the location referenced by the
TUXCONFIG variable.

3. Edit the DMCONFIG file with any text editor and configure the Domains environment for the
TDomain gateway server. For example:

*DM_LOCAL
LOCAL1 GWGRP=GWTGROUP

TYPE=TDOMAIN
ACCESSPOINTID=“BA.CENTRAL01”
BLOCKTIME=30
CONNECTION_POLICY=ON_STARTUP
MAXRETRY=5
RETRY_INTERVAL=100

Conf igur ing a Domains Env i ronment fo r Migrat i on

Using the Oracle Tuxedo Domains Component 1-49

*DM_REMOTE
REMOT1 TYPE=TDOMAIN

ACCESSPOINTID=“BA.BANK01”
REMOT2 TYPE=TDOMAIN

ACCESSPOINTID=“BA.BANK02”

*DM_EXPORT
LTOLOWER LACCESSPOINT=LOCAL1

CONV=N
RNAME=“TOLOWER”

*DM_IMPORT
RTOUPPER AUTOTRAN=N

RACCESSPOINT=REMOT1
LACCESSPOINT=LOCAL1
CONV=N
RNAME=“TOUPPER”

*DM_TDOMAIN
LOCAL1 NWADDR=“//albany.acme.com:4051”
REMOT1 NWADDR=“//newyork.acme.com:65431”
REMOT2 NWADDR=“//philly.acme.com:65431”

The DMCONFIG file must reside on the same machine as the DMADM server.

4. Load the Domains configuration by running dmloadcf(1). The dmloadcf command parses
DMCONFIG and loads the binary BDMCONFIG file to the location referenced by the BDMCONFIG
variable.

5. Start the Oracle Tuxedo application servers by running tmboot(1). The tmboot command
executes all administrative processes and all servers listed in the SERVERS section of the
TUXCONFIG file named by the TUXCONFIG and TUXOFFSET environment variables. It starts the
servers in the order that they are listed in the SERVERS section: DMADM, then GWADM, and then
GWTDOMAIN. The Domains servers must be started in this order. In addition, the Domains
servers must be started before the application servers.

For a detailed example of configuring a Domains ATMI environment, see “Planning and
Configuring ATMI Domains” on page 2-1. For a detailed example of configuring a Domains
CORBA environment, see “Planning and Configuring CORBA Domains” on page 3-1.

Configuring a Domains Environment for Migration
Listing 1-4 and Listing 1-5 give you an idea of how to configure an Oracle Tuxedo application
for Domains migration. The entries of particular importance to the Domains migration are
highlighted in bold.

1-50 Using the Oracle Tuxedo Domains Component

Listing 1-4 Sample UBBCONFIG File Configured for Domains Migration

*RESOURCES

IPCKEY 76666

MASTER SITE1,SITE2

OPTIONS LAN,MIGRATE

MODEL MP

#

*MACHINES

mach1 LMID=SITE1

 TUXDIR=“/home/rsmith/tuxroot”

 APPDIR=“/home/rsmith/bankapp”

 TUXCONFIG=“/home/rsmith/bankapp/tuxconfig”

mach2 LMID=SITE2

 TUXDIR=“/home/rsmith/tuxroot”

 APPDIR=“/home/rsmith/bankapp”

 TUXCONFIG=“/home/rsmith/bankapp/tuxconfig”

mach3 LMID=SITE3

 TUXDIR=“/home/rsmith/tuxroot”

 APPDIR=“/home/rsmith/bankapp”

 TUXCONFIG=“/home/rsmith/bankapp/tuxconfig”

#

*GROUPS

DMADMGRP LMID=“SITE1,SITE3” GRPNO=1

GWTGROUP LMID=“SITE2,SITE3” GRPNO=2

.

.

.

*NETWORK

SITE1 NADDR=“//albany.acme.com:4065”

 NLSADDR=“//albany.acme.com:4068”

SITE2 NADDR=“//auburn.acme.com:4065”

 NLSADDR=“//auburn.acme.com:4068”

SITE3 NADDR=“//boston.acme.com:4065”

 NLSADDR=“//boston.acme.com:4068”

#

*SERVERS

Conf igur ing a Domains Env i ronment fo r Migrat i on

Using the Oracle Tuxedo Domains Component 1-51

DMADM SRVGRP=DMADMGRP

SRVID=1001

REPLYQ=N

RESTART=Y

GRACE=0

GWADM SRVGRP=GWTGROUP

SRVID=1002

REPLYQ=N

RESTART=Y

GRACE=0

GWTDOMAIN SRVGRP=GWTGROUP

SRVID=1003

RQADDR=“GWTGROUP”

REPLYQ=N

RESTART=Y

GRACE=0

.

.

.

Note: In the previous example, REPLYQ=N is specified for the DMADM, GWADM, and GWTDOMAIN
servers. This setting is not required: you can, if you prefer, designate a reply queue for
any of these servers by specifying REPLYQ=Y. When REPLYQ is set to N, however,
performance may be improved.

Listing 1-5 Sample DMCONFIG File Configured for Domains Migration

*DM_LOCAL

LOCAL1 GWGRP=GWTGROUP

TYPE=TDOMAIN

ACCESSPOINTID=“BA.CENTRAL01”

BLOCKTIME=30

CONNECTION_POLICY=ON_STARTUP

MAXRETRY=5

RETRY_INTERVAL=100

1-52 Using the Oracle Tuxedo Domains Component

*DM_REMOTE

REMOT1 TYPE=TDOMAIN

ACCESSPOINTID=“BA.BANK01”

REMOT2 TYPE=TDOMAIN

ACCESSPOINTID=“BA.BANK02”

*DM_EXPORT

LTOLOWER LACCESSPOINT=LOCAL1

CONV=N

RNAME=“TOLOWER”

*DM_IMPORT

RTOUPPER AUTOTRAN=N

RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1

CONV=N

RNAME=”TOUPPER”

*DM_TDOMAIN

LOCAL1 NWADDR=“//albany.acme.com:4051”

LOCAL1 NWADDR=“//boston.acme.com:4051”

REMOT1 NWADDR=“//newyork.acme.com:65431”

REMOT2 NWADDR=“//philly.acme.com:65431”

In the sample configuration files, the DMADM server and the TDomain gateway group servers are
configured to migrate to the SITE3 machine. For the DMADM migration, an administrator will
activate a DMADM server process on the SITE3 machine after completing the following tasks:

Setting the BDMCONFIG environment variable on the SITE3 machine.

Running the dmloadcf(1) command to load the BDMCONFIG file on the SITE3 machine.

For the TDomain gateway group migration, an administrator will activate GWADM and GWTDOMAIN
server processes on the SITE3 machine. At that point, the configurations and responsibilities
associated with the LOCAL1 access point will be handled by the new GWTDOMAIN server process
listening for incoming connection requests on network address boston.acme.com:4051.

Note: The DMADM and domain gateway group(s) do not have to be migrated to the same
machine.

Conf igur ing a Domains Env i ronment fo r Migrat i on

Using the Oracle Tuxedo Domains Component 1-53

How to Migrate the DMADM Server
To migrate DMADM to a new machine, follow these steps.

1. Copy DMCONFIG to the new machine and run dmloadcf.

2. Activate the DMADM server process on the new machine. For details, see “Methods for
Activating Individual Server Processes” on page 1-53.

3. Optional: Restart all domain gateway groups for the Oracle Tuxedo application. For details,
see “Methods for Activating Individual Server Processes” on page 1-53.

If you do not restart the domain gateway groups, they will continue to function, but after
DMADM has been migrated, all MIB requests for them will fail.

How to Migrate a TDomain Gateway Group
When transactions are being used in a Domains configuration, the TDomain gateway group can
be migrated only across machines of the same type.

To migrate a TDomain gateway group, follow these steps.

1. In the DMCONFIG file, add multiple listening addresses, in the following format, to the
DM_TDOMAIN section:

*DM_TDOMAIN
LOCAL1 NWADDR=“//primary:port”
LOCAL1 NWADDR=“//backup:port”

2. If you are using transactions, you must copy the Domains transaction log manually to the
backup machine.

3. The DMCONFIG files for the remote domains should include both network addresses specified
in step 1.

4. Activate the GWADM and GWTDOMAIN server processes on the new machine. For details, see the
following section.

Methods for Activating Individual Server Processes
You can use any of the following methods to activate individual Oracle Tuxedo server processes:

Oracle Tuxedo Administration Console

Command tmboot(1) with the -s command line option

1-54 Using the Oracle Tuxedo Domains Component

MIB (TM_MIB(5)) API

For information about performing application migration tasks, see “Migrating Your Application”
in Administering an Oracle Tuxedo Application at Run Time.

Using the OracleTuxedo Domains Component 2-1

C H A P T E R 2

Planning and Configuring ATMI
Domains

The following sections explain how to plan and configure a domain for an Oracle Tuxedo ATMI
Domains environment:

Planning to Build Domains from Multiple Oracle Tuxedo Applications

Examining the creditapp Domains Configuration

Setting Up a Domains Configuration

Setting Up Security in a Domains Configuration

Setting Up Connections in a Domains Configuration

Controlling Connections in a Domains Configuration

Configuring Domains Link-Level Failover and Keepalive

Planning to Build Domains from Multiple Oracle Tuxedo
Applications

Figure 2-1 shows two Oracle Tuxedo applications: the bankapp application and a credit card
authorization application.

2-2 Using the OracleTuxedo Domains Component

Figure 2-1 Two Oracle Tuxedo Applications

The bankapp application connects ATMs at various bank branches to the central bank office. The
credit card authorization application processes customer requests for credit cards. Over time, the
bank managers realize that their customers would be better served if the bankapp application
could communicate directly with the credit card authorization application. With direct
communication, the bank could offer instant credit cards to anyone opening a new account.

The bankapp application is a sample application included with the Oracle Tuxedo distribution,
and the credit card authorization application is a hypothetical extension of bankapp. The
bankapp application files reside at the following location:

tux_prod_dir\samples\atmi\bankapp (Windows)

tux_prod_dir/samples/atmi/bankapp (UNIX)

Where tux_prod_dir represents the directory in which the Oracle Tuxedo distribution is
installed.

Listing 2-1 shows the content of a file named ubbmp, which is the UBBCONFIG file for the
multiple-machine version of the bankapp application.

Plann ing to Bu i ld Domains f rom Mu l t ip l e Orac le Tuxedo App l icat ions

Using the OracleTuxedo Domains Component 2-3

Listing 2-1 ubbmp Configuration File for the bankapp Application

.

.

.
*RESOURCES
IPCKEY 80952
UID <user id from id(1)>
GID <group id from id(1)>
PERM 0660
MAXACCESSERS 40
MAXSERVERS 35
MAXSERVICES 75
MAXCONV 10
MAXGTT 20
MASTER SITE1,SITE2
SCANUNIT 10
SANITYSCAN 12
BBLQUERY 30
BLOCKTIME 30
DBBLWAIT 6
OPTIONS LAN,MIGRATE
MODEL MP
LDBAL Y
##SECURITY ACL
##AUTHSVC "..AUTHSVC"
#
*MACHINES
<SITE1's uname> LMID=SITE1

TUXDIR="<TUXDIR1>"
APPDIR="<APPDIR1>"
ENVFILE="<APPDIR1>/ENVFILE"
TLOGDEVICE="<APPDIR1>/TLOG"
TLOGNAME=TLOG
TUXCONFIG="<APPDIR1>/tuxconfig"
TYPE="<machine type1>"
ULOGPFX="<APPDIR1>/ULOG"

<SITE2's uname> LMID=SITE2
TUXDIR="<TUXDIR2>"
APPDIR="<APPDIR2>"
ENVFILE="<APPDIR2>/ENVFILE"
TLOGDEVICE="<APPDIR2>/TLOG"
TLOGNAME=TLOG
TUXCONFIG="<APPDIR2>/tuxconfig"
TYPE="<machine type2>"
ULOGPFX="<APPDIR2>/ULOG"

#
*GROUPS

2-4 Using the OracleTuxedo Domains Component

#
Group for Authentication Servers
#
##AUTHGRP LMID=SITE1 GRPNO=101

#
Group for Application Queue (/Q) Servers
#
##QGRP1 LMID=SITE1 GRPNO=102
TMSNAME=TMS_QM TMSCOUNT=2
OPENINFO="TUXEDO/QM:<APPDIR1>/qdevice:QSP_BANKAPP"

#
Group for Application Manager's Servers
#
##MGRGRP1 LMID=SITE1 GRPNO=103

#
Group for EventBroker Servers
#
##EVBGRP1 LMID=SITE1 GRPNO=104

DEFAULT: TMSNAME=TMS_SQL TMSCOUNT=2
BANKB1 LMID=SITE1 GRPNO=1

OPENINFO="TUXEDO/SQL:<APPDIR1>/bankdl1:bankdb:readwrite"
BANKB2 LMID=SITE2 GRPNO=2

OPENINFO="TUXEDO/SQL:<APPDIR2>/bankdl2:bankdb:readwrite"

*NETWORK
SITE1 NADDR="<network address of SITE1>"

BRIDGE="<device of provider1>"
NLSADDR="<network listener address of SITE1>"

SITE2 NADDR="<network address of SITE2>"
BRIDGE="<device of provider2>"
NLSADDR="<network listener address of SITE2>"

*SERVERS
#
TUXEDO System /T server providing application specific authentication.
Ref. AUTHSVR(5).
#
##AUTHSVR SRVGRP=AUTHGRP SRVID=1 RESTART=Y GRACE=0 MAXGEN=2
CLOPT="-A"

#
TUXEDO System /T Message Queue Manager. It is a server that enqueues and
dequeues messages on behalf of programs calling tpenqueue(3) and
tpdequeue(3) respectively. Ref. TMQUEUE(5).
#
##TMQUEUE SRVGRP=QGRP1 SRVID=1 CONV=N GRACE=0
CLOPT="-s QSP_BANKAPP:TMQUEUE"

Plann ing to Bu i ld Domains f rom Mu l t ip l e Orac le Tuxedo App l icat ions

Using the OracleTuxedo Domains Component 2-5

#
TUXEDO System /T Message Forwarding Server that forwards messages that have
been stored using tpenqueue(3) for later processing. Ref. TMQFORWARD(5).
#
##TMQFORWARD SRVGRP=QGRP1 SRVID=2 CONV=N REPLYQ=N GRACE=0
CLOPT="-- -e -n -d -q Q_OPENACCT_LOG"

#
TUXEDO System /T User Event Broker that manages user events by notifying
subscribers when those events are posted. Ref. TMUSREVT(5).
#
##TMUSREVT SRVGRP=EVBGRP1 SRVID=1 GRACE=3600
ENVFILE="<APPDIR1>/TMUSREVT.ENV"
CLOPT="-e tmusrevt.out -o tmusrevt.out -A --
-f <APPDIR1>/tmusrevt.dat"
SEQUENCE=11

#
TUXEDO Application Server that subscribes to certain events.
#
##ACCTMGR SRVGRP=MGRGRP1 SRVID=1
CLOPT="-A -o ACCTMGR.LOG -- -w 1000.00"
SEQUENCE=12

DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=Y CLOPT="-A"

TLR SRVGRP=BANKB1 SRVID=1 RQADDR=tlr1
CLOPT="-A -- -T 100 -e 1000.00"

TLR SRVGRP=BANKB1 SRVID=2 RQADDR=tlr1
CLOPT="-A -- -T 200 -e 1000.00"

TLR SRVGRP=BANKB2 SRVID=3 RQADDR=tlr2
CLOPT="-A -- -T 600 -e 1000.00"

TLR SRVGRP=BANKB2 SRVID=4 RQADDR=tlr2
CLOPT="-A -- -T 700 -e 1000.00"

XFER SRVGRP=BANKB1 SRVID=5
XFER SRVGRP=BANKB2 SRVID=6
ACCT SRVGRP=BANKB1 SRVID=7
ACCT SRVGRP=BANKB2 SRVID=8
BAL SRVGRP=BANKB1 SRVID=9
BAL SRVGRP=BANKB2 SRVID=10
BTADD SRVGRP=BANKB1 SRVID=11
BTADD SRVGRP=BANKB2 SRVID=12
AUDITC SRVGRP=BANKB1 SRVID=13 CONV=Y MIN=1 MAX=10 RQADDR="auditc
"
BALC SRVGRP=BANKB1 SRVID=24
BALC SRVGRP=BANKB2 SRVID=25
#
*SERVICES
DEFAULT: LOAD=50 AUTOTRAN=Y TRANTIME=30
WITHDRAWAL PRIO=50 ROUTING=ACCOUNT_ID

2-6 Using the OracleTuxedo Domains Component

DEPOSIT PRIO=50 ROUTING=ACCOUNT_ID
TRANSFER PRIO=50 ROUTING=ACCOUNT_ID
INQUIRY PRIO=50 ROUTING=ACCOUNT_ID
CLOSE_ACCT PRIO=40 ROUTING=ACCOUNT_ID
OPEN_ACCT PRIO=40 ROUTING=BRANCH_ID
BR_ADD PRIO=20 ROUTING=BRANCH_ID
TLR_ADD PRIO=20 ROUTING=BRANCH_ID
ABAL PRIO=30 ROUTING=b_id
TBAL PRIO=30 ROUTING=b_id
ABAL_BID PRIO=30 ROUTING=b_id
TBAL_BID PRIO=30 ROUTING=b_id
ABALC_BID PRIO=30 ROUTING=b_id
TBALC_BID PRIO=30 ROUTING=b_id
#
*ROUTING
ACCOUNT_ID FIELD=ACCOUNT_ID

BUFTYPE="FML"
RANGES="10000-59999:BANKB1,

60000-109999:BANKB2"
BRANCH_ID FIELD=BRANCH_ID

BUFTYPE="FML"
RANGES="1-5:BANKB1,

6-10:BANKB2"
b_id FIELD=b_id

BUFTYPE="VIEW:aud"
RANGES="1-5:BANKB1,

6-10:BANKB2"

The following sections demonstrate two different ways of reconfiguring the bankapp application
and the credit card authorization application so that they can communicate directly with one
another:

“Option 1: Reconfigure the Applications as a Single Oracle Tuxedo Domain” on page 2-6

“Option 2: Reconfigure the Applications as a Domains Configuration” on page 2-12

Option 1: Reconfigure the Applications as a Single Oracle
Tuxedo Domain
One solution is to combine the bankapp application and the credit card authorization application
into one Oracle Tuxedo application, or domain, as shown in Figure 2-2.

Plann ing to Bu i ld Domains f rom Mu l t ip l e Orac le Tuxedo App l icat ions

Using the OracleTuxedo Domains Component 2-7

Figure 2-2 Combining Two Oracle Tuxedo System Applications

Creating the UBBCONFIG File for the Combined Application
To create the UBBCONFIG file for the combined application, take the following information from
the UBBCONFIG file for the credit card authorization application and add it to the UBBCONFIG file
for the bankapp application:

Add machine, network, and group entries for the credit card authorization application to
the UBBCONFIG file.

Add Server entries for the credit card authorization application to the UBBCONFIG file.

Add Service entries for the credit card authorization to the UBBCONFIG file.

2-8 Using the OracleTuxedo Domains Component

Listing 2-2 shows a possible UBBCONFIG file for the combined application.

Listing 2-2 Sample UBBCONFIG File for the Combined Application

*RESOURCES
IPCKEY 76666
UID 0000
GID 000
PERM 0660
MAXACCESSERS 40
MAXSERVERS 35
MAXSERVICES 75
MAXCONV 10
MAXGTT 100
MASTER SITE1,SITE2
SCANUNIT 10
SANITYSCAN 5
BBLQUERY 50
BLOCKTIME 2
DBBLWAIT 6
OPTIONS LAN,MIGRATE
MODEL MP
LDBAL Y
#
*MACHINES
#
Machines for the bankapp part
mach1 LMID=SITE1
 TUXDIR=“/home/rsmith/tuxroot”
 APPDIR=“/home/rsmith/bankapp”
 ENVFILE=“/home/rsmith/bankapp/ENVFILE”
 TLOGDEVICE=“/home/rsmith/bankapp/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=“/home/rsmith/bankapp/tuxconfig”

TYPE=“type1”
ULOGPFX=“/home/rsmith/bankapp/ULOG”

mach2 LMID=SITE2
 TUXDIR=“/home/rsmith/tuxroot”
 APPDIR=“/home/rsmith/bankapp”
 ENVFILE=“/home/rsmith/bankapp/ENVFILE”
 TLOGDEVICE=“/home/rsmith/bankapp/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=“/home/rsmith/bankapp/tuxconfig”
 TYPE=“type2”
 ULOGPFX=“/home/rsmith/bankapp/ULOG”
mach3 LMID=SITE3
 TUXDIR=“/home/rsmith/tuxroot”

Plann ing to Bu i ld Domains f rom Mu l t ip l e Orac le Tuxedo App l icat ions

Using the OracleTuxedo Domains Component 2-9

 APPDIR=“/home/rsmith/bankapp”
 ENVFILE=“/home/rsmith/bankapp/ENVFILE”
 TLOGDEVICE=“/home/rsmith/bankapp/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=“/home/rsmith/bankapp/tuxconfig”
 TYPE=“type2”
 ULOGPFX=“/home/rsmith/bankapp/ULOG”
#
Machine for the credit card authorization part
sfexpz LMID=SITE4
 TUXDIR=“/home/rsmith/tuxroot”
 APPDIR=“/home/rsmith/bankapp”
 ENVFILE=“/home/rsmith/bankapp/ENVFILE”
 TLOGDEVICE=“/home/rsmith/bankapp/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=“/home/rsmith/bankapp/tuxconfig”

TYPE=“type1”
ULOGPFX=“/home/rsmith/bankapp/ULOG”

#
*GROUPS
DEFAULT: TMSNAME=TMS_SQL TMSCOUNT=2
#
Groups for the bankapp part
BANKB1 LMID=SITE1 GRPNO=1

OPENINFO=“TUXEDO/SQL:/home/rsmith/bankapp/bankdl1:bankdb:readwrite”
BANKB2 LMID=SITE2 GRPNO=2

OPENINFO=“TUXEDO/SQL:/home/rsmith/bankapp/bankdl2:bankdb:readwrite”
BANKB3 LMID=SITE3 GRPNO=3

OPENINFO=“TUXEDO/SQL:/home/rsmith/bankapp/bankdl3:bankdb:readwrite”
#
Group for the credit card authorization part
CREDIT LMID=SITE4 GRPNO=4

OPENINFO=“TUXEDO/SQL:/home/rsmith/bankapp/crdtdl1:bankdb:readwrite”
#
*NETWORK
#
Network connections for the bankapp part
SITE1 NADDR=“<network address of SITE1>”
 BRIDGE=“<device of provider1>”
 NLSADDR=“<network listener address of SITE1>”
SITE2 NADDR=“<network address of SITE2>”
 BRIDGE=“<device of provider2>”
 NLSADDR=“<network listener address of SITE2>”
SITE3 NADDR=“<network address of SITE3>”
 BRIDGE=“<device of provider3>”
 NLSADDR=“<network listener address of SITE3>”
#
Network connections for the credit card authorization part
SITE4 NADDR=“<network address of SITE4>”

2-10 Using the OracleTuxedo Domains Component

 BRIDGE=“<device of provider4>”
 NLSADDR=“<network listener address of SITE4>”
#
*SERVERS
DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=Y CLOPT=“-A”
#
Servers for the bankapp part
TLR SRVGRP=BANKB1 SRVID=1 RQADDR=tlr1

CLOPT=“-A -- -T 100 -e 1000.00”
TLR SRVGRP=BANKB1 SRVID=2 RQADDR=tlr1

CLOPT=“-A -- -T 200 -e 1000.00”
TLR SRVGRP=BANKB2 SRVID=3 RQADDR=tlr2

CLOPT=“-A -- -T 600 -e 1000.00”
TLR SRVGRP=BANKB2 SRVID=4 RQADDR=tlr2

CLOPT=“-A -- -T 700 -e 1000.00”
TLR SRVGRP=BANKB3 SRVID=5 RQADDR=tlr3

CLOPT=“-A -- -T 800 -e 1000.00”
TLR SRVGRP=BANKB3 SRVID=6 RQADDR=tlr3

CLOPT=“-A -- -T 900” -e 1000.00
XFER SRVGRP=BANKB1 SRVID=7
XFER SRVGRP=BANKB2 SRVID=8
XFER SRVGRP=BANKB3 SRVID=9
ACCT SRVGRP=BANKB1 SRVID=10
ACCT SRVGRP=BANKB2 SRVID=11
ACCT SRVGRP=BANKB3 SRVID=12
BAL SRVGRP=BANKB1 SRVID=13
BAL SRVGRP=BANKB2 SRVID=14
BAL SRVGRP=BANKB3 SRVID=15
BTADD SRVGRP=BANKB1 SRVID=16
BTADD SRVGRP=BANKB2 SRVID=17
BTADD SRVGRP=BANKB3 SRVID=18
AUDITC SRVGRP=BANKB1 SRVID=19 CONV=Y MIN=1 MAX=10 RQADDR=”auditc”
BALC SRVGRP=BANKB1 SRVID=20
BALC SRVGRP=BANKB2 SRVID=21
BALC SRVGRP=BANKB3 SRVID=22
#
Servers for the credit card authorization part
TLRA SRVGRP=CREDIT SRVID=26

CLOPT=“-A -- -T 300”
ACCTA SRVGRP=CREDIT SRVID=27
CRDT SRVGRP=CREDIT SRVID=35
#
*SERVICES
DEFAULT: LOAD=50 AUTOTRAN=Y TRANTIME=30
#
Services for the bankapp part
WITHDRAWAL PRIO=50 ROUTING=ACCOUNT_ID
DEPOSIT PRIO=50 ROUTING=ACCOUNT_ID
TRANSFER PRIO=50 ROUTING=ACCOUNT_ID

Plann ing to Bu i ld Domains f rom Mu l t ip l e Orac le Tuxedo App l icat ions

Using the OracleTuxedo Domains Component 2-11

INQUIRY PRIO=50 ROUTING=ACCOUNT_ID
CLOSE_ACCT PRIO=40 ROUTING=ACCOUNT_ID
OPEN_ACCT PRIO=40 ROUTING=BRANCH_ID
BR_ADD PRIO=20 ROUTING=BRANCH_ID
TLR_ADD PRIO=20 ROUTING=BRANCH_ID
ABAL PRIO=30 ROUTING=b_id
TBAL PRIO=30 ROUTING=b_id
ABAL_BID PRIO=30 ROUTING=b_id
TBAL_BID PRIO=30 ROUTING=b_id
ABALC_BID PRIO=30 ROUTING=b_id
TBALC_BID PRIO=30 ROUTING=b_id
#
Services for the credit card authorization part
WITHDRAWALA PRIO=50
INQUIRYA PRIO=50
OPENCA PRIO=40
CLOSECA PRIO=40
DEPOSITA PRIO=50
OPEN_ACCT2 PRIO=40
OPENC PRIO=40
#
*ROUTING
ACCOUNT_ID FIELD=ACCOUNT_ID

BUFTYPE=“FML”
RANGES=“10000-39999:BANKB1,

40000-69999:BANKB2,
70000-109999:BANKB3,
:”

BRANCH_ID FIELD=BRANCH_ID
BUFTYPE=“FML”
RANGES=“1-5:BANKB1,

6-10:BANKB2,
11-15:BANKB3”

b_id FIELD=b_id
BUFTYPE="VIEW:aud"
RANGES="1-5:BANKB1,

6-10:BANKB2,
11-15:BANKB3"

2-12 Using the OracleTuxedo Domains Component

Limitations of Option 1
Administering a single large application can be more cumbersome than administering two
smaller ones; each smaller one has its own UBBCONFIG file and hence its own
administrative interface.

Booting a networked application can be more costly because of the time required to boot
each server and because of the need to propagate bulletin boards across the network.
Smaller, separate applications can be booted simultaneously.

Option 2: Reconfigure the Applications as a Domains
Configuration
Another solution is to reconfigure the bankapp application and the credit card authorization
application as a Domains configuration, as shown in Figure 2-3. The two domains interoperate
through two TDomain gateway server processes, one running in each domain.

Figure 2-3 Domains Configuration

To create the Domains configuration for the bankapp and credit card authorization applications,
you need to create two UBBCONFIG files, one for each of the Oracle Tuxedo applications, and two
DMCONFIG files, one for each of the Oracle Tuxedo applications.

Oracle Tuxedo
System

Oracle Tuxedo
System

Oracle Tuxedo
System

Oracle Tuxedo Domain

Plann ing to Bu i ld Domains f rom Mu l t ip l e Orac le Tuxedo App l icat ions

Using the OracleTuxedo Domains Component 2-13

Creating the UBBCONFIG File for the bankapp Application in the Domains
Environment
To create the UBBCONFIG file for the bankapp application in the Domains environment, start with
a copy of the UBBCONFIG file shown in “Sample UBBCONFIG File for the Combined
Application” on page 2-8 and make the following changes:

In the MACHINES section, remove the machine entry for the credit card authorization
application.

In the NETWORK section, remove the network entry for the credit card authorization
application.

In the GROUPS section, do the following:

– Remove the group entry for the credit card authorization application.

– Add a group entry for the DMADM server and a different group entry for the GWADM and
GWTDOMAIN servers.

In the SERVERS section, do the following:

– Remove the server entries for the credit card authorization application.

– Add server entries for the DMADM, GWADM, and GWTDOMAIN servers.

In the SERVICES section, remove the service entries for the credit card authorization
application.

Listing 2-3 shows a possible UBBCONFIG file for the bankapp application in the Domains
environment.

Listing 2-3 Sample UBBCONFIG File for the bankapp Application in the Domains Environment

*RESOURCES
IPCKEY 76666
UID 0000
GID 000
PERM 0660
MAXACCESSERS 40
MAXSERVERS 35
MAXSERVICES 75
MAXCONV 10
MAXGTT 100
MASTER SITE1,SITE2
SCANUNIT 10

2-14 Using the OracleTuxedo Domains Component

SANITYSCAN 5
BBLQUERY 50
BLOCKTIME 2
DBBLWAIT 6
OPTIONS LAN,MIGRATE
MODEL MP
LDBAL Y
MAXBUFTYPE 16
#
*MACHINES
mach1 LMID=SITE1
 TUXDIR=“/home/rsmith/tuxroot”
 APPDIR=“/home/rsmith/bankapp”
 ENVFILE=“/home/rsmith/bankapp/ENVFILE”
 TLOGDEVICE=“/home/rsmith/bankapp/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=“/home/rsmith/bankapp/tuxconfig”

TYPE=“type1”
ULOGPFX=“/home/rsmith/bankapp/ULOG”

mach2 LMID=SITE2
 TUXDIR=“/home/rsmith/tuxroot”
 APPDIR=“/home/rsmith/bankapp”
 ENVFILE=“/home/rsmith/bankapp/ENVFILE”
 TLOGDEVICE=“/home/rsmith/bankapp/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=“/home/rsmith/bankapp/tuxconfig”
 TYPE=“type2”
 ULOGPFX=“/home/rsmith/bankapp/ULOG”
mach3 LMID=SITE3
 TUXDIR=“/home/rsmith/tuxroot”
 APPDIR=“/home/rsmith/bankapp”
 ENVFILE=“/home/rsmith/bankapp/ENVFILE”
 TLOGDEVICE=“/home/rsmith/bankapp/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=“/home/rsmith/bankapp/tuxconfig”
 TYPE=“type2”
 ULOGPFX=“/home/rsmith/bankapp/ULOG”
#
*GROUPS
DEFAULT: TMSNAME=TMS_SQL TMSCOUNT=2
#
Groups for bankapp
BANKB1 LMID=SITE1 GRPNO=1

OPENINFO=“TUXEDO/SQL:/home/rsmith/bankapp/bankdl1:bankdb:readwrite”
BANKB2 LMID=SITE2 GRPNO=2

OPENINFO=“TUXEDO/SQL:/home/rsmith/bankapp/bankdl2:bankdb:readwrite”
BANKB3 LMID=SITE3 GRPNO=3

OPENINFO=“TUXEDO/SQL:/home/rsmith/bankapp/bankdl3:bankdb:readwrite”
#

Plann ing to Bu i ld Domains f rom Mu l t ip l e Orac le Tuxedo App l icat ions

Using the OracleTuxedo Domains Component 2-15

Groups for Domains
DMADMGRP LMID=SITE1 GRPNO=4
GWTGROUP LMID=SITE2 GRPNO=5
#
*NETWORK
SITE1 NADDR=“<network address of SITE1>”
 BRIDGE=“<device of provider1>”
 NLSADDR=“<network listener address of SITE1>”
SITE2 NADDR=“<network address of SITE2>”
 BRIDGE=“<device of provider2>”
 NLSADDR=“<network listener address of SITE2>”
SITE3 NADDR=“<network address of SITE3>”
 BRIDGE=“<device of provider3>”
 NLSADDR=“<network listener address of SITE3>”
#
*SERVERS
DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=Y CLOPT=“-A”
#
Servers for Domains
DMADM SRVGRP=DMADMGRP

SRVID=1001
REPLYQ=N
RESTART=Y
GRACE=0

GWADM SRVGRP=GWTGROUP
SRVID=1002
REPLYQ=N
RESTART=Y
GRACE=0

GWTDOMAIN SRVGRP=GWTGROUP
SRVID=1003
RQADDR=”GWTGROUP”
REPLYQ=N
RESTART=Y
GRACE=0

#
Servers for bankapp
TLR SRVGRP=BANKB1 SRVID=1 RQADDR=tlr1

CLOPT=“-A -- -T 100 -e 1000.00”
TLR SRVGRP=BANKB1 SRVID=2 RQADDR=tlr1

CLOPT=“-A -- -T 200 -e 1000.00”
TLR SRVGRP=BANKB2 SRVID=3 RQADDR=tlr2

CLOPT=“-A -- -T 600 -e 1000.00”
TLR SRVGRP=BANKB2 SRVID=4 RQADDR=tlr2

CLOPT=“-A -- -T 700 -e 1000.00”
TLR SRVGRP=BANKB3 SRVID=5 RQADDR=tlr3

CLOPT=“-A -- -T 800 -e 1000.00”
TLR SRVGRP=BANKB3 SRVID=6 RQADDR=tlr3

CLOPT=“-A -- -T 900” -e 1000.00

2-16 Using the OracleTuxedo Domains Component

XFER SRVGRP=BANKB1 SRVID=7
XFER SRVGRP=BANKB2 SRVID=8
XFER SRVGRP=BANKB3 SRVID=9
ACCT SRVGRP=BANKB1 SRVID=10
ACCT SRVGRP=BANKB2 SRVID=11
ACCT SRVGRP=BANKB3 SRVID=12
BAL SRVGRP=BANKB1 SRVID=13
BAL SRVGRP=BANKB2 SRVID=14
BAL SRVGRP=BANKB3 SRVID=15
BTADD SRVGRP=BANKB1 SRVID=16
BTADD SRVGRP=BANKB2 SRVID=17
BTADD SRVGRP=BANKB3 SRVID=18
AUDITC SRVGRP=BANKB1 SRVID=19 CONV=Y MIN=1 MAX=10 RQADDR=”auditc”
BALC SRVGRP=BANKB1 SRVID=20
BALC SRVGRP=BANKB2 SRVID=21
BALC SRVGRP=BANKB3 SRVID=22
#
*SERVICES
DEFAULT: LOAD=50 AUTOTRAN=Y TRANTIME=30
WITHDRAWAL PRIO=50 ROUTING=ACCOUNT_ID
DEPOSIT PRIO=50 ROUTING=ACCOUNT_ID
TRANSFER PRIO=50 ROUTING=ACCOUNT_ID
INQUIRY PRIO=50 ROUTING=ACCOUNT_ID
CLOSE_ACCT PRIO=40 ROUTING=ACCOUNT_ID
OPEN_ACCT PRIO=40 ROUTING=BRANCH_ID
BR_ADD PRIO=20 ROUTING=BRANCH_ID
TLR_ADD PRIO=20 ROUTING=BRANCH_ID
ABAL PRIO=30 ROUTING=b_id
TBAL PRIO=30 ROUTING=b_id
ABAL_BID PRIO=30 ROUTING=b_id
TBAL_BID PRIO=30 ROUTING=b_id
ABALC_BID PRIO=30 ROUTING=b_id
TBALC_BID PRIO=30 ROUTING=b_id
#
*ROUTING
ACCOUNT_ID FIELD=ACCOUNT_ID

BUFTYPE=“FML”
RANGES=“10000-39999:BANKB1,

40000-69999:BANKB2,
70000-109999:BANKB3,
:”

BRANCH_ID FIELD=BRANCH_ID
BUFTYPE=“FML”
RANGES=“1-5:BANKB1,

6-10:BANKB2,
11-15:BANKB3”

b_id FIELD=b_id
BUFTYPE="VIEW:aud"
RANGES="1-5:BANKB1,

Plann ing to Bu i ld Domains f rom Mu l t ip l e Orac le Tuxedo App l icat ions

Using the OracleTuxedo Domains Component 2-17

6-10:BANKB2,
11-15:BANKB3"

Note: In the previous example, REPLYQ=N is specified for the DMADM, GWADM, and GWTDOMAIN
servers. This setting is not required: you can, if you prefer, designate a reply queue for
any of these servers by specifying REPLYQ=Y. When REPLYQ is set to N, however,
performance may be improved.

Creating a DMCONFIG File for the bankapp Application
You also need to create a DMCONFIG file for the bankapp application, an example of which is
shown in Listing 2-4. The binary version of the a DMCONFIG file (BDMCONFIG) must reside on the
same machine as the DMADM server.

Listing 2-4 Sample DMCONFIG File for the bankapp Application

*DM_LOCAL

LOCAL1 GWGRP=GWTGROUP

TYPE=TDOMAIN

ACCESSPOINTID=”BANK”

BLOCKTIME=10

CONNECTION_POLICY=ON_STARTUP

DMTLOGDEV=“/home/rsmith/bankapp/DMTLOG”

AUDITLOG=“/home/rsmith/bankapp/AUDITLOG”

#

*DM_REMOTE

REMOT1 TYPE=TDOMAIN

ACCESSPOINTID=”CREDIT.CARD”

#

If the DM_EXPORT section is absent, as in this sample DMCONFIG

file, all services advertised by the local domain are available

to the remote domains. Thus, the following bankapp services are

available to the credit card authorization application:

#

WITHDRAWAL

DEPOSIT

TRANSFER

2-18 Using the OracleTuxedo Domains Component

INQUIRY

CLOSE_ACCT

OPEN_ACCT

BR_ADD

TLR_ADD

ABAL

TBAL

ABAL_BID

TBAL_BID

ABALC_BID

TBALC_BID

#

*DM_IMPORT

WITHDRAWALA RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1

INQUIRYA RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1

OPENCA RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1

CLOSECA RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1

DEPOSITA RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1

OPEN_ACCT2 RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1

OPENC RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1

#

*DM_TDOMAIN

LOCAL1 NWADDR=“albany.acme.com:4051”

REMOT1 NWADDR=“newyork.acme.com:65431”

Plann ing to Bu i ld Domains f rom Mu l t ip l e Orac le Tuxedo App l icat ions

Using the OracleTuxedo Domains Component 2-19

Creating the UBBCONFIG File for the Credit Card Authorization Application in
the Domains Environment
To create the UBBCONFIG file for the credit card authorization application in the Domains
environment, make the following changes to the UBBCONFIG file for the credit card authorization
application:

In the GROUPS section, add a group entry for the DMADM server and a different group entry
for the GWADM and GWTDOMAIN servers.

In the SERVERS section, add server entries for the DMADM, GWADM, and GWTDOMAIN servers.

Listing 2-5 shows a possible UBBCONFIG file for the credit card authorization application in the
Domains environment.

Listing 2-5 Sample UBBCONFIG File for the Credit Card Authorization Application in the Domains Environment

*RESOURCES
IPCKEY 76666
UID 0000
GID 000
PERM 0660
MAXACCESSERS 40
MAXSERVERS 35
MAXSERVICES 75
MAXCONV 10
MAXGTT 100
MASTER SITE1
SCANUNIT 10
MODEL SHM
LDBAL Y
#
*MACHINES
sfexpz LMID=SITE1
 TUXDIR=“/home/rsmith/tuxroot”
 APPDIR=“/home/rsmith/creditapp”
 ENVFILE=“/home/rsmith/creditapp/ENVFILE”
 TLOGDEVICE=“/home/rsmith/creditapp/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=“/home/rsmith/creditapp/tuxconfig”

TYPE=“type1”
ULOGPFX=“/home/rsmith/creditapp/ULOG”

#
*GROUPS
DEFAULT: TMSNAME=TMS_SQL TMSCOUNT=2

2-20 Using the OracleTuxedo Domains Component

#
Group for credit card authorization
CREDIT LMID=SITE1 GRPNO=1

OPENINFO=“TUXEDO/SQL:/home/rsmith/creditapp/crdtdl1:bankdb:readwrite”
#
Groups for Domains
DMADMGRP LMID=SITE1 GRPNO=2
GWTGROUP LMID=SITE1 GRPNO=3
#
*SERVERS
DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=Y CLOPT=“-A”
#
Servers for Domains
DMADM SRVGRP=DMADMGRP

SRVID=50
REPLYQ=N
RESTART=Y
GRACE=0

GWADM SRVGRP=GWTGROUP
SRVID=60
REPLYQ=N
RESTART=Y
GRACE=0

GWTDOMAIN SRVGRP=GWTGROUP
SRVID=70
RQADDR=”GWTGROUP”
REPLYQ=N
RESTART=Y
GRACE=0

#
Servers for credit card authorization
TLRA SRVGRP=CREDIT SRVID=1

CLOPT=“-A -- -T 600”
ACCTA SRVGRP=CREDIT SRVID=2
CRDT SRVGRP=CREDIT SRVID=3
#
*SERVICES
DEFAULT: LOAD=50 AUTOTRAN=Y TRANTIME=30
Services for credit card authorization
WITHDRAWALA PRIO=50
INQUIRYA PRIO=50
OPENCA PRIO=40
CLOSECA PRIO=40
DEPOSITA PRIO=50
OPEN_ACCT2 PRIO=40
OPENC PRIO=40

Plann ing to Bu i ld Domains f rom Mu l t ip l e Orac le Tuxedo App l icat ions

Using the OracleTuxedo Domains Component 2-21

Note: In the previous example, REPLYQ=N is specified for the DMADM, GWADM, and GWTDOMAIN
servers. This setting is not required: you can, if you prefer, designate a reply queue for
any of these servers by specifying REPLYQ=Y. When REPLYQ is set to N, however,
performance may be improved.

Creating a DMCONFIG File for the Credit Card Authorization Application
You also need to create a DMCONFIG file for the credit card authorization application, an example
of which is shown in Listing 2-6.

Listing 2-6 Sample DMCONFIG File for the Credit Card Authorization Application

*DM_LOCAL

LOCAL1 GWGRP=GWTGROUP

TYPE=TDOMAIN

ACCESSPOINTID=”CREDIT.CARD”

BLOCKTIME=8

DMTLOGDEV=“/home/rsmith/creditapp/DMTLOG”

AUDITLOG=“/home/rsmith/creditapp/AUDITLOG”

#

*DM_REMOTE

REMOT1 TYPE=TDOMAIN

ACCESSPOINTID=”BANK”

#

If the DM_EXPORT section is absent, as in this sample DMCONFIG

file, all services advertised by the local domain are available

to the remote domains. Thus, the following credit card

authorization services are available to the bankapp application:

#

WITHDRAWALA

INQUIRYA

OPENCA

CLOSECA

DEPOSITA

OPEN_ACCT2

OPENC

#

*DM_IMPORT

2-22 Using the OracleTuxedo Domains Component

WITHDRAWAL RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1

DEPOSIT RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1

TRANSFER RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1

INQUIRY RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1

CLOSE_ACCT RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1

OPEN_ACCT RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1

BR_ADD RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1

TLR_ADD RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1

ABAL RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1

TBAL RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1

ABALC_BID RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1

TBALC_BID RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1

#

*DM_TDOMAIN

LOCAL1 NWADDR=“newyork.acme.com:65431”

REMOT1 NWADDR=“albany.acme.com:4051”

Examining the creditapp Domains Configuration
The creditapp application is a sample Domains configuration that spans four machines. In
effect, the creditapp application is yet another solution to reconfiguring the bankapp
application and the credit card authorization application—as described in “Planning to Build
Domains from Multiple Oracle Tuxedo Applications” on page 2-1—so that the two applications
can communicate directly with one another. In this solution, the bankapp and credit card

Examin ing the c red i tapp Domains Conf igurat ion

Using the OracleTuxedo Domains Component 2-23

authorization applications are reconfigured as four Oracle Tuxedo domains, one domain per
machine, that interoperate using TDomain gateway server processes.

The creditapp application is included with the Oracle Tuxedo distribution. Its files reside at the
following location:

tux_prod_dir\samples\atmi\creditapp (Windows)

tux_prod_dir/samples/atmi/creditapp (UNIX)

Where tux_prod_dir represents the directory in which the Oracle Tuxedo distribution is
installed.

The Domains configuration for the creditapp application requires four UBBCONFIG files, one
for each of the Oracle Tuxedo domains, and four DMCONFIG files, one for each of the Oracle
Tuxedo domains. The four UBBCONFIG files are named ubbdom1 through ubbdom4, and the four
DMCONFIG files are named domcon1 through domcon4. The files reside in the creditapp
directory.

Listing 2-7 shows the content of the ubbdom1 configuration file. Notice in the SERVERS section
that this domain is configured for three TDomain gateway groups, to be used by this domain to
communicate with the three other domains in the Domains configuration.

Listing 2-7 ubbdom1 Configuration File for the creditapp Application

.

.

.
*RESOURCES
IPCKEY 80952
UID <user id from id(1)>
GID <group id from id(1)>
PERM 0660
MAXACCESSERS 40
MAXSERVERS 35
MAXSERVICES 75
MAXCONV 10
MASTER SITE1
MODEL SHM
LDBAL Y
MAXGTT 100
MAXBUFTYPE 16
SCANUNIT 10
SANITYSCAN 5
DBBLWAIT 6

2-24 Using the OracleTuxedo Domains Component

BBLQUERY 50
BLOCKTIME 2
#
#
*MACHINES
<SITE1's uname> LMID=SITE1

TUXDIR="<TUXDIR1>"
APPDIR="<APPDIR1>"
ENVFILE="<APPDIR1>/ENVFILE"
TLOGDEVICE="<APPDIR1>/TLOG"
TLOGNAME=TLOG
TUXCONFIG="<APPDIR1>/tuxconfig"
ULOGPFX="<APPDIR1>/ULOG"
TYPE="<machine type1>"

#
#
*GROUPS
DEFAULT: LMID=SITE1
BANKB1 GRPNO=1 TMSNAME=TMS_SQLTMSCOUNT=2

OPENINFO="TUXEDO/SQL:<APPDIR1>/crdtdl1:bankdb:readwrite"
BANKB2 GRPNO=2
BANKB3 GRPNO=3
BANKB4 GRPNO=4
#
#
*SERVERS
#
DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=Y CLOPT="-A"
DMADM SRVGRP=BANKB2 SRVID=32
GWADM SRVGRP=BANKB2 SRVID=30
GWTDOMAIN SRVGRP=BANKB2 SRVID=31
GWADM SRVGRP=BANKB3 SRVID=24
GWTDOMAIN SRVGRP=BANKB3 SRVID=25
GWADM SRVGRP=BANKB4 SRVID=20
GWTDOMAIN SRVGRP=BANKB4 SRVID=21
TLRA SRVGRP=BANKB1 SRVID=2

CLOPT="-A -- -T 100"
BTADD SRVGRP=BANKB1 SRVID=3
ACCTA SRVGRP=BANKB1 SRVID=4
CRDT SRVGRP=BANKB1 SRVID=5
CRDTA SRVGRP=BANKB1 SRVID=6
#
*SERVICES
DEFAULT: LOAD=50
INQUIRYA PRIO=50
WITHDRAWALA PRIO=50
OPEN_ACCT2 PRIO=40
OPENC PRIO=40

Examin ing the c red i tapp Domains Conf igurat ion

Using the OracleTuxedo Domains Component 2-25

OPENCA PRIO=40
CLOSECA PRIO=40
BR_ADD PRIO=20
TLR_ADD PRIO=20

Listing 2-8 shows the content of the domcon1 Domains configuration file. Notice in the
DM_LOCAL section (also known as the DM_LOCAL_DOMAINS section) that this domain is configured
for three TDomain gateway groups, to be used by this domain to communicate with the three
other domains in the Domains configuration. The domcon1 content shown here has been updated
with the improved Domains terminology described in “Terminology Improvements for
DMCONFIG File” on page 1-22.

Listing 2-8 domcon1 Domains Configuration File for the creditapp Application

.

.

.

*DM_RESOURCES

#

VERSION=U22

#

#

#

*DM_LOCAL

#

QDOM1 GWGRP=BANKB2

TYPE=TDOMAIN

ACCESSPOINTID=”QDOM1”

BLOCKTIME=10

MAXACCESSPOINT=89

DMTLOGDEV=“<APPDIR1>/DMTLOG”

AUDITLOG=“<APPDIR1>/AUDITLOG”

DMTLOGNAME=”DMTLOG_TDOM1”

QDOM2 GWGRP=BANKB3

TYPE=TDOMAIN

ACCESSPOINTID=”QDOM2”

2-26 Using the OracleTuxedo Domains Component

BLOCKTIME=10

MAXACCESSPOINT=89

DMTLOGDEV=“<APPDIR1>/DMTLOG”

AUDITLOG=“<APPDIR1>/AUDITLOG”

DMTLOGNAME=”DMTLOG_TDOM2”

QDOM3 GWGRP=BANKB4

TYPE=TDOMAIN

ACCESSPOINTID=”QDOM3”

BLOCKTIME=10

MAXACCESSPOINT=89

DMTLOGDEV=“<APPDIR1>/DMTLOG”

AUDITLOG=“<APPDIR1>/AUDITLOG”

DMTLOGNAME=”DMTLOG_TDOM3”

#

#

*DM_REMOTE

#

TDOM1 TYPE=TDOMAIN

ACCESSPOINTID=”TDOM1”

TDOM2 TYPE=TDOMAIN

ACCESSPOINTID=”TDOM2”

TDOM3 TYPE=TDOMAIN

ACCESSPOINTID=”TDOM3”

#

#

*DM_TDOMAIN

#

TDOM1 NWADDR=“<network address of SITE2>”

NWDEVICE=”<device of provider2>

TDOM2 NWADDR=“<network address of SITE3>”

NWDEVICE=”<device of provider3>

TDOM3 NWADDR=“<network address of SITE4>”

NWDEVICE=”<device of provider4>

QDOM1 NWADDR=“<network address of SITE1>”

NWDEVICE=”<device of provider1>

Se t t ing Up a Domains Conf igurat ion

Using the OracleTuxedo Domains Component 2-27

QDOM2 NWADDR=“<network address of SITE1A>”

NWDEVICE=”<device of provider1>

QDOM3 NWADDR=“<network address of SITE1B>”

NWDEVICE=”<device of provider1>

#

#

*DM_EXPORT

#

WITHDRAWALA

INQUIRYA

OPENCA

CLOSECA

If you decide to run the creditapp application, start by reading the README file in the
creditapp directory. The README file explains how to use a UNIX shell script named RUNME.sh
to run the creditapp application. If you want to run the creditapp application on a Windows
system, read the README file to learn the basic setup information and then execute the comparable
tasks in the Windows environment. For details on using Oracle Tuxedo on Windows, see, Using
Oracle Tuxedo ATMI on Windows.

Setting Up a Domains Configuration
To configure a Domains environment, you as the Domains administrator must specify all the
information that an Oracle Tuxedo domain needs to know about the other domains—the remote
domains—involved in the Domains configuration. This information includes local services
exported to the remote domains, services imported from the remote domains, and addressing and
security parameters for contacting the remote domains. This information is defined in the
UBBCONFIG and DMCONFIG configuration files for each domain involved in the Domains
configuration.

The Domains example described in the following sections is based on the simpapp application,
which is a sample application included with the Oracle Tuxedo distribution at the following
location:

tux_prod_dir\samples\atmi\simpapp (Windows)

tux_prod_dir/samples/atmi/simpapp (UNIX)

2-28 Using the OracleTuxedo Domains Component

Where tux_prod_dir represents the directory in which the Oracle Tuxedo distribution is
installed.

Configuring a Sample Domains Application (simpapp)
The Domains example, illustrated in Figure 2-4, consists of two Oracle Tuxedo domains: lapp,
a local application based on simpapp, and rapp, a remote application based on simpapp. The
lapp application is configured to allow its clients to access a service called TOUPPER that is
available in the rapp application.

Figure 2-4 Local and Remote Applications in simpapp

Configuration Tasks
The following tasks are required to configure the lapp and rapp applications.

Se t t ing Up a Domains Conf igurat ion

Using the OracleTuxedo Domains Component 2-29

2-30 Using the OracleTuxedo Domains Component

How to Set Environment Variables for lapp
You need to set the following environment variables for the lapp application to be configured
successfully:

TUXDIR—Absolute pathname to the Oracle Tuxedo system root directory on this machine;
sometimes represented as tux_prod_dir.

APPDIR—Absolute pathname to the lapp application root directory on this machine.

TUXCONFIG—Absolute pathname of the device or filename where the application binary
configuration file for lapp is found on this machine.

BDMCONFIG—Absolute pathname of the device or filename where the Domains binary
configuration file for lapp is found on this machine.

PATH—must include %TUXDIR%\bin (Windows) or $TUXDIR/bin (UNIX).

LD_LIBRARY_PATH (UNIX only)—list of dynamically loadable libraries that must be
loaded on this machine (must include $TUXDIR/lib); on HP-UX on the HP 9000, use
SHLIB_PATH instead of LD_LIBRARY_PATH.

Windows Example
prompt> set TUXDIR=C:\bea\tuxedo
prompt> set APPDIR=C:\home\lapp
prompt> set TUXCONFIG=C:\home\lapp\lapp.tux
prompt> set BDMCONFIG=C:\home\lapp\lapp.bdm
prompt> set PATH=%APPDIR%;%TUXDIR%\bin;%PATH%

Note: Windows accesses the required dynamically loadable library files through its PATH
variable setting.

UNIX Example
prompt> TUXDIR=/home/rsmith/bea/tuxedo
prompt> APPDIR=/home/rsmith/lapp
prompt> TUXCONFIG=/home/rsmith/lapp/lapp.tux
prompt> BDMCONFIG=/home/rsmith/lapp/lapp.bdm
prompt> PATH=$APPDIR:$TUXDIR/bin:/bin:$PATH
prompt> LD_LIBRARY_PATH=$APPDIR:$TUXDIR/lib:/lib:/usr/lib:

$LD_LIBRARY_PATH

prompt> export TUXDIR APPDIR TUXCONFIG BDMCONFIG PATH LD_LIBRARY_PATH

Se t t ing Up a Domains Conf igurat ion

Using the OracleTuxedo Domains Component 2-31

How to Define the Domains Environment for lapp in the
UBBCONFIG File
In lapp.ubb, the text version of the lapp application configuration file, only the required
parameters are defined. Default settings are used for the other parameters. Listing 2-9 shows the
content of lapp.ubb.

Listing 2-9 lapp.ubb Configuration File

lapp.ubb
#
*RESOURCES
IPCKEY 111111
MASTER LAPP
MODEL SHM

*MACHINES
giselle
 LMID=LAPP
 TUXDIR=”/home/rsmith/tuxedo”
 APPDIR=”/home/rsmith/lapp”
 TUXCONFIG=”/home/rsmith/lapp/lapp.tux”

*GROUPS

LDMGRP GRPNO=1 LMID=LAPP

LGWGRP GRPNO=2 LMID=LAPP

.

.

.

*SERVERS

DMADM SRVGRP=LDMGRP SRVID=1

GWADM SRVGRP=LGWGRP SRVID=1

GWTDOMAIN SRVGRP=LGWGRP SRVID=2 REPLYQ=N

.

.

.

*SERVICES

.

.

.

2-32 Using the OracleTuxedo Domains Component

Note: In the previous UBBCONFIG file listing, REPLYQ=N is specified for the DMADM, GWADM, and
GWTDOMAIN servers. This setting is not required: you can, if you prefer, designate a reply
queue for any of these servers by specifying REPLYQ=Y. When REPLYQ is set to N,
however, performance may be improved.

Server Group Definitions
The following server groups are defined in lapp.ubb:

LDMGRP—contains the Domains administrative server (DMADM).

LGWGRP—contains the gateway administrative server (GWADM) and the TDomain gateway
server (GWTDOMAIN).

Server Definitions
DMADM—the Domains administrative server enables run-time modification of the Domains
configuration information in the binary Domains configuration file (BDMCONFIG). DMADM
supports a list of registered gateway groups. Only one instance of DMADM may be running in
an Oracle Tuxedo domain involved in a Domains configuration.

GWADM—the gateway administrative server enables run-time administration of a particular
domain gateway group. This server gets Domains configuration information from the
DMADM server. It also provides administrative functionality and transaction logging for the
gateway group.

GWTDOMAIN—the TDomain gateway server enables access to and from remote Oracle
Tuxedo domains, allowing interoperability of two or more Oracle Tuxedo domains.
Information about the local and remote services that the TDomain gateway exports and
imports is included in the Domains configuration file (DMCONFIG).

How to Define Domains Parameters for lapp in the
DMCONFIG File
In lapp.dom, the text version of the lapp Domains configuration file, only the required
parameters are defined. Default settings are used for optional parameters. Listing 2-10 shows the
content of the lapp.dom file.

Se t t ing Up a Domains Conf igurat ion

Using the OracleTuxedo Domains Component 2-33

Listing 2-10 lapp.dom Domains Configuration File

#

lapp.dom

#

*DM_LOCAL

LAPP GWGRP=LGWGRP

 TYPE=TDOMAIN

 ACCESSPOINTID=”111111"

*DM_REMOTE

RAPP TYPE=TDOMAIN

 ACCESSPOINTID=”222222"

*DM_EXPORT

*DM_IMPORT

TOUPPER

*DM_TDOMAIN

LAPP NWADDR=”//giselle:5000"

RAPP NWADDR=”//juliet:5000"

DM_LOCAL Section Definitions
The DM_LOCAL section identifies the local domain access points, their associated domain gateway
groups, and their characteristics. There is one and only one local domain access point per domain
gateway group.

The lapp.dom file specifies only one local domain access point, LAPP, and defines the following
properties for the LAPP access point:

GWGRP value is LGWGRP, the name of the domain gateway server group specified in the
lapp.ubb file.

TYPE of TDOMAIN indicates that the lapp application will be communicating with the rapp
application through the local TDomain gateway server. This parameter indicates the
protocol used by the gateways. Other TYPE values include IDOMAIN (Oracle eLink Adapter
for Mainframe gateway), SNAX (Oracle eLink Adapter for Mainframe SNA gateway), and
OSITP/OSITPX (Oracle eLink Adapter for Mainframe OSI TP gateway).

2-34 Using the OracleTuxedo Domains Component

ACCESSPOINTID identifies the name of the local domain access point; this identifier must
be unique across all domains involved in the Domains configuration.

DM_REMOTE Section Definitions
The DM_REMOTE section identifies the remote domain access points and their characteristics.
There may be one or more remote domain access points per domain gateway group.

The lapp.dom file specifies only one remote domain access point, RAPP, and defines the
following properties for the RAPP access point:

TYPE of TDOMAIN indicates that the lapp application will be communicating with the rapp
application through the local TDomain gateway server.

ACCESSPOINTID identifies the name of the remote domain access point; this identifier must
be unique across all domains involved in the Domains configuration.

DM_EXPORT Section Definitions
The DM_EXPORT section provides information about the services that are exported to one or more
remote domains through a local domain access point. If this section is absent, or is present but
empty, all services advertised by the local domain are available to the remote domains associated
with the access points defined in the DM_REMOTE section.

As specified in the lapp.dom file, no lapp services are available to the rapp application through
the LAPP access point.

DM_IMPORT Section Definitions
The DM_IMPORT section provides information about the services that are imported through one or
more remote domain access points and made available to the local domain through one or more
local domain access points. If this section is absent, or is present but empty, no remote services
are available to the local domain.

As specified in the lapp.dom file, the rapp service named TOUPPER is available to the lapp
application.

DM_TDOMAIN Section Definitions
The DM_TDOMAIN section defines the addressing information required by the Oracle Tuxedo
Domains component. Each domain access point specified in the LOCAL and REMOTE sections of
the configuration file appears as an entry in the in the DM_TDOMAIN section.

Se t t ing Up a Domains Conf igurat ion

Using the OracleTuxedo Domains Component 2-35

Associated with each local domain access point entry is a NWADDR value, which specifies the
network address at which the local domain will accept connections from one or more remote
domains.

Associated with each remote domain access point entry is a NWADDR value, which specifies the
network address at which the local domain will make a connection to a remote domain.

As specified in the lapp.dom file, the lapp application will listen for incoming connection
requests on the network address giselle:5000, where giselle is the name of the machine on
which the lapp application is running, and 5000 is the listening port. Also specified in lapp.dom
is that when the lapp application attempts to make a connection to the rapp application, it will
use the network address juliet:5000, where juliet is the name of the machine on which the
rapp application is running, and 5000 is the destination port.

How to Compile Application and Domains Gateway
Configuration Files for lapp
The lapp.ubb application configuration file contains the information necessary to boot the lapp
application. You compile this file into a binary data file by running tmloadcf(1).

The lapp.dom Domains configuration file contains the information used by the local lapp
TDomain gateway to communicate with the remote rapp TDomain gateway. You compile this
file into a binary data file by running dmloadcf(1).

To compile both configuration files, use the following sample session as a guide.

Windows:
prompt> cd C:\home\lapp
prompt> set TUXCONFIG=C:\home\lapp\lapp.tux
prompt> tmloadcf -y lapp.ubb
prompt> set BDMCONFIG=C:\home\lapp\lapp.bdm
prompt> dmloadcf -y lapp.dom

UNIX:
prompt> cd /home/rsmith/lapp
prompt> TUXCONFIG=/home/rsmith/lapp/lapp.tux
prompt> export TUXCONFIG
prompt> tmloadcf -y lapp.ubb
prompt> BDMCONFIG=/home/rsmith/lapp/lapp.bdm
prompt> export BDMCONFIG
prompt> dmloadcf -y lapp.dom

2-36 Using the OracleTuxedo Domains Component

Once you build both the lapp and rapp applications, you boot the applications on their respective
machines by executing the tmboot(1) command:

prompt> tmboot -y

The order in which the two applications are booted does not matter. Monitor the applications with
dmadmin(1), as described in “Administering Domains” on page 4-1. Once both applications are
booted, a client in the lapp application can call the TOUPPER service provided by the rapp
application.

How to Set Environment Variables for rapp
You need to set the following environment variables for the rapp application to be configured
successfully:

TUXDIR—Absolute pathname to the Oracle Tuxedo system root directory on this machine;
sometimes represented as tux_prod_dir.

APPDIR—Absolute pathname to the rapp application root directory on this machine.

TUXCONFIG—Absolute pathname of the device or filename where the application binary
configuration file for rapp is found on this machine.

BDMCONFIG—Absolute pathname of the device or filename where the Domains binary
configuration file for rapp is found on this machine.

PATH—must include %TUXDIR%\bin (Windows) or $TUXDIR/bin (UNIX).

LD_LIBRARY_PATH (UNIX only)—list of dynamically loadable libraries that must be
loaded on this machine (must include $TUXDIR/lib); on HP-UX on the HP 9000, use
SHLIB_PATH instead of LD_LIBRARY_PATH.

Windows Example
prompt> set TUXDIR=C:\bea\tuxedo
prompt> set APPDIR=C:\home\rapp
prompt> set TUXCONFIG=C:\home\rapp\rapp.tux
prompt> set BDMCONFIG=C:\home\rapp\rapp.bdm
prompt> set PATH=%APPDIR%;%TUXDIR%\bin;%PATH%

Note: Windows accesses the required dynamically loadable library files through its PATH
variable setting.

Se t t ing Up a Domains Conf igurat ion

Using the OracleTuxedo Domains Component 2-37

UNIX Example
prompt> TUXDIR=/home/rsmith/bea/tuxedo
prompt> APPDIR=/home/rsmith/rapp
prompt> TUXCONFIG=/home/rsmith/rapp/rapp.tux
prompt> BDMCONFIG=/home/rsmith/rapp/rapp.bdm
prompt> PATH=$APPDIR:$TUXDIR/bin:/bin:$PATH
prompt> LD_LIBRARY_PATH=$APPDIR:$TUXDIR/lib:/lib:/usr/lib:

$LD_LIBRARY_PATH

prompt> export TUXDIR APPDIR TUXCONFIG BDMCONFIG PATH LD_LIBRARY_PATH

How to Define the Domains Environment for rapp in the
UBBCONFIG File
In rapp.ubb, the text version of the rapp application configuration file, only the required
parameters are defined. Default settings are used for the other parameters. Listing 2-11 shows the
content of the rapp.ubb file.

Listing 2-11 rapp.ubb Application Configuration File

rapp.ubb

#

*RESOURCES

IPCKEY 222222

MASTER RAPP

MODEL SHM

*MACHINES

juliet

 LMID=RAPP

 TUXDIR=”/home/rsmith/bea/tuxedo”

 APPDIR=”/home/rsmith/rapp”

 TUXCONFIG=”/home/rsmith/rapp/rapp.tux”

*GROUPS

RDMGRP GRPNO=1 LMID=RAPP

RGWGRP GRPNO=2 LMID=RAPP

APPGRP GRPNO=3 LMID=RAPP

.

2-38 Using the OracleTuxedo Domains Component

.

.

*SERVERS

DMADM SRVGRP=RDMGRP SRVID=1

GWADM SRVGRP=RGWGRP SRVID=1

GWTDOMAIN SRVGRP=RGWGRP SRVID=2 REPLYQ=N

simpserv SRVGRP=APPGRP SRVID=1

.

.

.

*SERVICES

TOUPPER

.

.

.

Note: In the previous UBBCONFIG file listing, REPLYQ=N is specified for the DMADM, GWADM, and
GWTDOMAIN servers. This setting is not required: you can, if you prefer, designate a reply
queue for any of these servers by specifying REPLYQ=Y. When REPLYQ is set to N,
however, performance may be improved.

The following server groups are defined in rapp.ubb:

RDMGRP—contains the Domains server DMADM.

RGWGRP—contains the Domains servers GWADM and GWTDOMAIN.

APPGRP—contains the application server simpserv.

The simpserv server advertises the TOUPPER service, which converts strings from lowercase to
uppercase characters.

How to Define Domains Parameters for rapp in the
DMCONFIG File
In rapp.dom, the text version of the rapp Domains configuration file, only the required
parameters are defined. Default settings are used for the other parameters. Listing 2-12 shows the
content of the rapp.dom file.

Se t t ing Up a Domains Conf igurat ion

Using the OracleTuxedo Domains Component 2-39

Listing 2-12 rapp.dom Domains Configuration File

rapp.dom

#

*DM_LOCAL

RAPP GWGRP=RGWGRP

 TYPE=TDOMAIN

 ACCESSPOINTID=”222222"

*DM_REMOTE

LAPP TYPE=TDOMAIN

 ACCESSPOINTID=”111111"

*DM_EXPORT

TOUPPER

*DM_IMPORT

*DM_TDOMAIN

RAPP NWADDR=”//juliet:5000"

LAPP NWADDR=”//giselle:5000"

The rapp.dom Domains configuration file is similar to the lapp.dom Domains configuration
file, except that the two files list different services to be exported and imported. Specifically, the
rapp.dom file defines the following Domains configurations for the rapp application:

Specifies a local domain access point named RAPP, and a remote domain access point
named LAPP. Both access points are associated with the TDomain gateway server group
named RGWGRP.

Specifies that the rapp service named TOUPPER is available to the lapp application.

Specifies that no lapp services are available to the rapp application.

Specifies that the rapp application will listen for incoming connection requests on network
address juliet:5000, where juliet is the name of the machine on which the rapp
application is running, and 5000 is the listening port.

Specifies that if the rapp application attempts to make a connection to the lapp
application, it will use the network address giselle:5000, where giselle is the name of
the machine on which the lapp application is running, and 5000 is the destination port.

2-40 Using the OracleTuxedo Domains Component

How to Compile Application and Domain Gateway
Configuration Files for rapp
The rapp.ubb application configuration file contains the information necessary to boot the rapp
application. You compile this file into a binary data file by running tmloadcf(1).

The rapp.dom Domains configuration file contains the information used by the local rapp
TDomain gateway to communicate with the remote lapp TDomain gateway. You compile this
file into a binary data file by running dmloadcf(1).

To compile both configuration files, use the following sample session as a guide.

Windows:
prompt> cd C:\home\rapp
prompt> set TUXCONFIG=C:\home\rapp\rapp.tux
prompt> tmloadcf -y rapp.ubb
prompt> set BDMCONFIG=C:\home\rapp\rapp.bdm
prompt> dmloadcf -y rapp.dom

UNIX:
prompt> cd /home/rsmith/rapp
prompt> TUXCONFIG=/home/rsmith/rapp/rapp.tux
prompt> export TUXCONFIG
prompt> tmloadcf -y rapp.ubb
prompt> BDMCONFIG=/home/rsmith/rapp/rapp.bdm
prompt> export BDMCONFIG
prompt> dmloadcf -y rapp.dom

Once you build both the rapp and lapp applications, you boot the applications on their respective
machines by executing the tmboot(1) command:

prompt> tmboot -y

The order in which the two applications are booted does not matter. Monitor the applications with
dmadmin(1), as described in “Administering Domains” on page 4-1. Once both applications are
booted, a client in the lapp application can call the TOUPPER service provided by the rapp
application.

See Also
“Understanding the Domains Configuration File” on page 1-15

Se t t ing Up a Domains Conf igurat ion

Using the OracleTuxedo Domains Component 2-41

“How to Compress Data Between Domains” on page 2-41

“How to Route Service Requests to Remote Domains” on page 2-41

UBBCONFIG(5) in Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference

DMCONFIG(5) in Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference

How to Compress Data Between Domains
Data sent between domains can be compressed for faster performance. To configure
compression, set the CMPLIMIT parameter in the DM_TDOMAIN section of the DMCONFIG file. This
parameter, which is only relevant to remote domain access points, specifies the compression
threshold to be used when sending data to a remote domain. The minimum value is 0, and the
maximum value is 2147483647. The default setting is 2147483647. Application buffers larger
than the specified size will be compressed.

For more information about setting the CMPLIMIT parameter, see “Compressing Data Over a
Network” in Administering an Oracle Tuxedo Application at Run Time.

How to Route Service Requests to Remote Domains
Data-dependent routing information used by domain gateways to send service requests to specific
remote domains is provided in the DM_ROUTING section of the DMCONFIG file. The FML, FML32,
VIEW, VIEW32, X_C_TYPE, X_COMMON, and XML typed buffers are supported.

To create a routing table for a domain involved in a Domains configuration, you specify the
following information in the DM_ROUTING section of the DMCONFIG file:

Buffer type for which the routing entry is valid

Name of the routing entry and field

Ranges and associated remote domain names of the routing field.

For an example of a Domains data-dependent routing configuration, see “Specifying Domains
Data-Dependent Routing” on page 1-23. For a detailed description of Domains data-dependent
routing, see the DM_ROUTING section on reference page DMCONFIG(5)in Oracle Tuxedo File
Formats, Data Descriptions, MIBs, and System Processes Reference.

2-42 Using the OracleTuxedo Domains Component

Setting Up Security in a Domains Configuration
The Oracle Tuxedo ATMI environment provides the following basic security capabilities for
Domains configurations:

Authentication—Verifies the identities of the local domain and a remote domain when
attempting to establish a connection to one another

Authorization—Restricts remote client access to local services via access control lists
(ACLs)

Link-level encryption—Keeps interdomain communications private

The security capabilities available to Domains configurations and those available to individual
Oracle Tuxedo applications are relatively independent but compatible. For information about the
security capabilities available to Oracle Tuxedo applications, see Using Security in ATMI
Applications.

Domains Security Mechanisms
The Oracle Tuxedo Domains component provides the following security mechanisms:

Domains authentication—Supplies the means by which the local domain and a remote
domain can mutually authenticate one another when attempting to connect to one another.
You specify identities, or principal names, for the local domain and each remote domain
via the CONNECTION_PRINCIPAL_NAME parameter in the DM_LOCAL and DM_REMOTE
sections of the DMCONFIG file.

In addition, the local domain and a remote domain can use any of three levels of password
security when attempting to connect to one another. You configure the level of password
security on a local domain basis by setting the SECURITY parameter in the DM_LOCAL
section of the DMCONFIG file.

Domains local domain access—Restricts local services to remote domains. If a service is
not exported to remote domains, it is unavailable to them. You export a service by placing
an entry for the service in the DM_EXPORT section of the DMCONFIG file.

Domains access control lists (ACLs)—Restricts the availability of services in a local
domain to only certain remote domains. You create ACL names in the
DM_ACCESS_CONTROL section of the DMCONFIG file and apply the ACL names to services
in the EXPORT section of the DMCONFIG file.

Set t ing Up Secur i t y in a Domains Conf igurat ion

Using the OracleTuxedo Domains Component 2-43

Domains ACL policy—Controls the ACL policy for remote domains. You configure a local
or global ACL policy for a remote domain via the ACL_POLICY parameter in the
DM_REMOTE section of the DMCONFIG file.

Domains link-level encryption—Ensures data privacy between communicating domain
gateways. For TDomain gateways, you configure link-level encryption by setting the
MINENCRYPTBITS and MAXENCRYPTBITS parameters in the DM_TDOMAIN section of the
DMCONFIG file.

How to Configure Principal Names for Domains
Authentication
As described in “Establishing a Link Between Domains” in Using Security in ATMI Applications,
a local TDomain gateway needs an identity, or principal name, that both the local domain and a
remote domain know about so that the remote domain can authenticate the local domain when the
domains are attempting to connect to one another. Similarly, the remote TDomain gateway needs
an identity, or principal name, that both the remote domain and the local domain know about so
that the local domain can authenticate the remote domain when the domains are attempting to
establish a connection to one another. In addition, the local TDomain gateway uses its assigned
principal name to acquire a set of security credentials needed when setting up the connection.

The local TDomain gateway needs a second principle name to acquire a set of security credentials
required to enforce the local access control list (ACL) policy described in “How to Configure
ACL Policy for a Remote Domain” on page 2-53.

As the administrator, you use the following configuration parameters to specify the principal
names for the TDomain gateways running in your Release 7.1 or later Oracle Tuxedo
applications:

SEC_PRINCIPAL_NAME (string) in UBBCONFIG

Specifies the security principal name identification string to be used for authentication
purposes by an application running Oracle Tuxedo 7.1 or later software. This parameter
may contain a maximum of 511 characters (excluding the terminating NULL character). The
principal name specified for this parameter becomes the identity of one or more system
processes—including TDomain gateway (GWTDOMAIN) processes—running in this
application.

During application booting, each TDomain gateway process in the application calls the
authentication plug-in to acquire security credentials for the security principal name
specified in SEC_PRINCIPAL_NAME. A TDomain gateway acquires these credentials for the
principal name specified in the SEC_PRINCIPAL_NAME parameter.

2-44 Using the OracleTuxedo Domains Component

CONNECTION_PRINCIPAL_NAME (string) in DM_LOCAL section of DMCONFIG

Specifies the connection principal name identifier, which is the principal name for
verifying the identity of the domain gateway associated with this local domain access point
when establishing a connection to a remote domain. This parameter applies only to domain
gateways of type TDOMAIN running Oracle Tuxedo 7.1 or later software.

The CONNECTION_PRINCIPAL_NAME parameter may contain a maximum of 511 characters
(excluding the terminating NULL character). If this parameter is not specified, the
connection principal name defaults to the ACCESSPOINTID string for this local domain
access point.

For default authentication plug-ins, if a value is assigned to the
CONNECTION_PRINCIPAL_NAME parameter for this local domain access point, it must be
the same as the value assigned to the ACCESSPOINTID parameter for this local domain
access point. If these values do not match, the local TDomain gateway process will not
boot, and the system will generate the following userlog(3c) message: ERROR: Unable
to acquire credentials.

CONNECTION_PRINCIPAL_NAME (string) in DM_REMOTE section of DMCONFIG

Specifies the connection principal name identifier, which is the principal name for
verifying the identity of this remote domain access point when establishing a connection to
the local domain. This parameter applies only to domain gateways of type TDOMAIN
running Oracle Tuxedo 7.1 or later software.

The CONNECTION_PRINCIPAL_NAME parameter may contain a maximum of 511 characters
(excluding the terminating NULL character). If this parameter is not specified, the
connection principal name defaults to the ACCESSPOINTID string for this remote domain
access point.

For default authentication plug-ins, if a value is assigned to the
CONNECTION_PRINCIPAL_NAME parameter for this remote domain access point, it must be
the same as the value assigned to the ACCESSPOINTID parameter for this remote domain
access point. If these values do not match, any attempt to set up a connection between the
local TDomain gateway and the remote TDomain gateway will fail, and the system will
generate the following userlog(3c) message: ERROR: Unable to initialize
administration key for domain domain_name.

In the following example, the CONNECTION_PRINCIPAL_NAME identities in the DMCONFIG file are
used when establishing a connection through the LOCAL1 access point and the REMOT1 access
point.

*DM_LOCAL

LOCAL1 GWGRP=bankg1

Set t ing Up Secur i t y in a Domains Conf igurat ion

Using the OracleTuxedo Domains Component 2-45

TYPE=TDOMAIN

ACCESSPOINTID="BA.CENTRAL01"

CONNECTION_PRINCIPAL_NAME="BA.CENTRAL01"

*DM_REMOTE

REMOT1 TYPE=TDOMAIN

ACCESSPOINTID="BA.BANK01"

CONNECTION_PRINCIPAL_NAME="BA.BANK01"

How to Configure Domains Password Security
Domain gateways can be made to authenticate incoming connections requested by remote
domains. Application administrators can define when security should be enforced for incoming
connections from remote domains.

As the administrator, you can specify the level of security used by a particular local domain by
setting the SECURITY parameter in the DM_LOCAL section of the DMCONFIG file. There are three
levels of password security:

No security (using the NONE option)—Incoming connections from remote domains are not
authenticated.

Application password (using the APP_PW option)—Incoming connections from remote
domains are authenticated using the application password defined in the TUXCONFIG file.
(The application password is not included in the UBBCONFIG file.) The Oracle Tuxedo
application password is administered with tmloadcf(1), which prompts for the password
when the SECURITY option is enabled in the TUXCONFIG file. The password is
automatically propagated with the TUXCONFIG file to the other machines in the
configuration. You can update the password dynamically using the tmadmin command.

Domains password (using the DM_PW option)—Connections between the local and remote
domains are authenticated using passwords defined in the DM_PASSWORDS section of the
BDMCONFIG file. (The DM_PASSWORDS section is not included in the DMCONFIG file.) These
passwords are added to the binary configuration file after dmloadcf has been run, using
DM_MIB(5) or the passwd subcommand of the dmadmin(1) command. Each entry
contains the password used by a remote domain to access the local domain, and the
password required by the local domain to access a remote domain.

If in the TUXCONFIG file the SECURITY parameter is set to NONE or is not set, the Domains
configuration can still require the TDomain gateways to enforce security at the DM_PW level. If
the DM_PW option is selected, each remote domain must have a password defined in the

2-46 Using the OracleTuxedo Domains Component

DM_PASSWORDS section of the BDMCONFIG file. In other words, incoming connections without a
password are rejected by the TDomain gateway.

Using the DM_MIB(5) to Set Domains Passwords (DM_PW)
You can use the DM_MIB to set Domains passwords (DM_PW). The T_DM_PASSWORDS class in the
DM_MIB represents configuration information for interdomain authentication through local and
remote access points of type TDOMAIN. The T_DM_PASSWORDS class contains the following entries
for each remote domain.

TA_DMLACCESSPOINT—Name of the local domain access point to which the password
applies.

TA_DMRACCESSPOINT—Name of the remote domain access point to which the password
applies.

TA_DMLPWD—Local password used to authenticate connections between the local domain
access point (identified by TA_DMLACCESSPOINT) and the remote domain access point
(identified by TA_DMRACCESSPOINT).

TA_DMRPWD—Remote password used to authenticate connections between the remote
domain access point (identified by TA_DMRACCESSPOINT) and the local domain access
point (identified by TA_DMLACCESSPOINT).

Note: Passwords are stored securely in encrypted format.

For information about formatting MIB administrative requests and interpreting MIB
administrative replies, see reference page DM_MIB(5)in Oracle Tuxedo File Formats, Data
Descriptions, MIBs, and System Processes Reference.

Using the dmadmin Command to Set Domains Passwords (DM_PW)
You can also use the dmadmin command to set Domains passwords (DM_PW):

prompt> dmadmin
passwd [-r] local_domain_access_point_name

remote_domain_access_point_name

The dmadmin command prompts you for new passwords for the specified local and remote
domain access points. For more information about dmadmin(1), see “Administering Domains”
on page 4-1.

Set t ing Up Secur i t y in a Domains Conf igurat ion

Using the OracleTuxedo Domains Component 2-47

Examples of Coding Password Security Between Domains
The SECURITY parameter in the DM_LOCAL section of the DMCONFIG file specifies the security
type of a local domain. If authentication is required, it is done every time a connection is
established between the local domain and a remote domain. If the security types of the two
domains are incompatible, or if the passwords do not match, the connection fails.

Example 1: Setting Security to NONE
If SECURITY is set to NONE for a local domain, incoming connection attempts are not
authenticated. Even with SECURITY set to NONE, a local domain can still connect to a remote
domain that has SECURITY set to DM_PW, but before such a connection can be established, you
must define the passwords on both sides by using DM_MIB(5) or the dmadmin passwd command.

Listing 2-13 shows setting security to NONE for both application and domains.

Listing 2-13 Setting Security to NONE for Both Application and Domains

LOCAL1: SECURITY in UBBCONFIG set to NONE

SECURITY in DMCONFIG set to NONE

REMOT1: SECURITY in UBBCONFIG set to NONE

SECURITY in DMCONFIG set to DM_PW

In this example, LOCAL1 is not enforcing any security but REMOT1 is enforcing DM_PW security.
On the initiator (LOCAL1) side, the pertinent attributes in UBBCONFIG and DMCONFIG are set as
follows:

UBBCONFIG

*RESOURCES

 SECURITY NONE

DMCONFIG

*DM_LOCAL

LOCAL1 GWGRP=bankg1

TYPE=TDOMAIN

ACCESSPOINTID="BA.CENTRAL01"

CONNECTION_PRINCIPAL_NAME="BA.CENTRAL01"

SECURITY=NONE

2-48 Using the OracleTuxedo Domains Component

*DM_REMOTE

REMOT1 TYPE=TDOMAIN

ACCESSPOINTID="BA.BANK01"

CONNECTION_PRINCIPAL_NAME="BA.BANK01"

On the responder (REMOT1) side, the pertinent attributes in UBBCONFIG and DMCONFIG are set as
follows:

UBBCONFIG

*RESOURCES

 SECURITY NONE

DMCONFIG

*DM_LOCAL

REMOT1 GWGRP=bankg2

TYPE=TDOMAIN

ACCESSPOINTID="BA.BANK01"

CONNECTION_PRINCIPAL_NAME="BA.BANK01"

SECURITY=DM_PW

*DM_REMOTE

LOCAL1 TYPE=TDOMAIN

ACCESSPOINTID="BA.CENTRAL01"

CONNECTION_PRINCIPAL_NAME="BA.CENTRAL01"

After the required attributes have been set in the TUXCONFIG and BDMCONFIG files, boot the
applications on LOCAL1 and REMOT1.

On LOCAL1:

 dmadmin

 passwd LOCAL1 REMOT1

 Enter Local Domain Password:foo1

 Reenter Local Domain Password:foo1

 Enter Remote Domain Password:foo2

 Reenter Remote Domain Password:foo2

On REMOT1:

 dmadmin

 passwd REMOT1 LOCAL1

 Enter Local Domain Password:foo2

 Reenter Local Domain Password:foo2

Set t ing Up Secur i t y in a Domains Conf igurat ion

Using the OracleTuxedo Domains Component 2-49

 Enter Remote Domain Password:foo1

Reenter Remote Domain Password:foo1

Once passwords have been created on both domains, a connection can be established and services
can be invoked on the remote domain.

Listing 2-14 shows the setting application security to NONE and domains security to DM_PW.

Listing 2-14 Setting Application Security to NONE and Domains Security to DM_PW

On the initiator (LOCAL1) side, the pertinent attributes in UBBCONFIG and DMCONFIG are set as
follows:

UBBCONFIG

*RESOURCES

 SECURITY NONE

DMCONFIG

*DM_LOCAL

LOCAL1 GWGRP=bankg1

TYPE=TDOMAIN

ACCESSPOINTID="BA.CENTRAL01"

CONNECTION_PRINCIPAL_NAME="BA.CENTRAL01"

SECURITY=DM_PW

*DM_REMOTE

REMOT1 TYPE=TDOMAIN

ACCESSPOINTID="BA.BANK01"

CONNECTION_PRINCIPAL_NAME="BA.BANK01"

On the responder (REMOT1) side, the pertinent attributes in UBBCONFIG and DMCONFIG are set as
follows:

UBBCONFIG

*RESOURCES

 SECURITY NONE

DMCONFIG

*DM_LOCAL

REMOT1 GWGRP=bankg2

TYPE=TDOMAIN

ACCESSPOINTID="BA.BANK01"

2-50 Using the OracleTuxedo Domains Component

CONNECTION_PRINCIPAL_NAME="BA.BANK01"

SECURITY=DM_PW

*DM_REMOTE

LOCAL1 TYPE=TDOMAIN

ACCESSPOINTID="BA.CENTRAL01"

CONNECTION_PRINCIPAL_NAME="BA.CENTRAL01"

After the required attributes have been set in the TUXCONFIG and BDMCONFIG files, boot the
applications on LOCAL1 and REMOT1:

On LOCAL1:

 dmadmin

 passwd LOCAL1 REMOT1

 Enter Local Domain Password:foo1

 Reenter Local Domain Password:foo1

 Enter Remote Domain Password:foo2

Reenter Remote Domain Password:foo2

On REMOT1:

 dmadmin

 passwd REMOT1 LOCAL1

 Enter Local Domain Password:foo2

 Reenter Local Domain Password:foo2

 Enter Remote Domain Password:foo1

 Reenter Remote Domain Password:foo1

Once passwords have been created on both domains, a connection can be established and services
can be invoked on the remote domain.

Example 2: Setting Security to APP_PW
If the SECURITY parameter in the UBBCONFIG is set to APP_PW or higher, then SECURITY in the
DMCONFIG can be set to NONE, APP_PW, or DM_PW. Because you can define multiple views of a
domain in one DMCONFIG file (one view per local domain definition), you can assign a different
type of security mechanism to each of those views.

Note: If SECURITY is set to APP_PW for a local domain access point in the DMCONFIG, then
SECURITY in the UBBCONFIG must be set to APP_PW or higher.

Set t ing Up Secur i t y in a Domains Conf igurat ion

Using the OracleTuxedo Domains Component 2-51

Listing 2-15 shows the setting security to APP_PW for both application and domains.

Listing 2-15 Setting Security to APP_PW for Both Application and Domains

LOCAL1: SECURITY in UBBCONFIG set to APP_PW

 SECURITY in DMCONFIG set to APP_PW

REMOT1: SECURITY in UBBCONFIG set to APP_PW

 SECURITY in DMCONFIG set to APP_PW

In this example, both LOCAL1 and REMOT1 enforce APP_PW security.

On the initiator (LOCAL1) side, the pertinent attributes in UBBCONFIG and DMCONFIG are set as
follows:

UBBCONFIG

*RESOURCES

 SECURITY APP_PW

DMCONFIG

*DM_LOCAL

LOCAL1 GWGRP=bankg1

TYPE=TDOMAIN

ACCESSPOINTID="BA.CENTRAL01"

CONNECTION_PRINCIPAL_NAME="BA.CENTRAL01"

SECURITY=APP_PW

*DM_REMOTE

REMOT1 TYPE=TDOMAIN

ACCESSPOINTID="BA.BANK01"

CONNECTION_PRINCIPAL_NAME="BA.BANK01"

On the responder (REMOT1) side, the pertinent attributes in UBBCONFIG and DMCONFIG are set as
follows.

UBBCONFIG

*RESOURCES

 SECURITY APP_PW

2-52 Using the OracleTuxedo Domains Component

DMCONFIG

*DM_LOCAL

REMOT1 GWGRP=bankg2

TYPE=TDOMAIN

ACCESSPOINTID="BA.BANK01"

CONNECTION_PRINCIPAL_NAME="BA.BANK01"

SECURITY=APP_PW

*DM_REMOTE

LOCAL1 TYPE=TDOMAIN

ACCESSPOINTID="BA.CENTRAL01"

CONNECTION_PRINCIPAL_NAME="BA.CENTRAL01"

After the TUXCONFIG and BDMCONFIG files have been created, boot the applications on LOCAL1
and REMOT1.

How to Configure Domains Access Control Lists
To set up a Domains access control list (ACL) in the DM_ACCESS_CONTROL section of the
DMCONFIG file, you specify the name of the ACL and the remote domain access points associated
with the ACL name. Table 2-1 clarifies the procedure.

Upon creating an ACL, you use the ACL parameter in the DM_EXPORT section of the DMCONFIG
file to restrict access to a local service exported through a particular local domain access point to

Table 2-1 How to Configure Domains Access Control Lists

Domain ACL Field Description

Domains ACL name The name of this ACL.

A valid name consists of a string of 1-30 characters, inclusive. It
must be printable and it may not include a colon, a pound sign, or
a newline character.

Example: ACLGRP1

Remote Domains list The list of remote domains that are granted access in this access
control list.

A valid value in this field is a set of one or more comma-separated
remote domain names.

Examples: REMDOM1,REMDOM2,REMDOM3

Set t ing Up Secur i t y in a Domains Conf igurat ion

Using the OracleTuxedo Domains Component 2-53

just those remote domain access points associated with the ACL name (for example,
ACL=ACLGRP1).

How to Configure ACL Policy for a Remote Domain
As the administrator, you use the following configuration parameters to set and control the ACL
policy for remote domains running Oracle Tuxedo release 7.1 or later software. You set these
parameters in the DM_REMOTE section of the DMCONFIG file.

ACL_POLICY (LOCAL | GLOBAL)

Specifies the access control list (ACL) policy for this remote domain access point. This
parameter applies only to domain gateways of type TDOMAIN running Oracle Tuxedo 7.1 or
later software and domain gateways of type OSITPX running Oracle Tuxedo 8.0 or later
software.

LOCAL means that the local domain replaces the credential (identity) of any service request
received from the remote domain with the principal name specified in the
LOCAL_PRINCIPAL_NAME parameter for this remote domain access point. GLOBAL means
that the local domain does not replace the credential received with a remote service
request; if no credential is received with a remote service request, the local domain
forwards the service request to the local service as is (which usually fails). If not specified,
the default is LOCAL.

LOCAL_PRINCIPAL_NAME (string)

The local principal name identifier (credential) assigned by the local domain to service
requests received from the remote domain when the ACL_POLICY parameter for this remote
domain access point is set (or defaulted) to LOCAL. This parameter applies only to domain
gateways of type TDOMAIN running Oracle Tuxedo 7.1 or later software and domain
gateways of type OSITPX running Oracle Tuxedo 8.0 or later software.

The LOCAL_PRINCIPAL_NAME parameter may contain a maximum of 511 characters
(excluding the terminating NULL character). If this parameter is not specified, the local
principal name defaults to the ACCESSPOINTID string for this remote domain access point.

CREDENTIAL_POLICY (LOCAL | GLOBAL)

Specifies the credential policy for this remote domain access point. This parameter applies
only to domain gateways of type TDOMAIN running Oracle Tuxedo 8.0 or later software.

LOCAL means that the local domain removes the credential (identity) from a local service
request destined for this remote domain access point. GLOBAL means that the local domain

2-54 Using the OracleTuxedo Domains Component

does not remove the credential from a local service request destined for this remote domain
access point. If not specified, the default is LOCAL.

Note that the CREDENTIAL_POLICY parameter controls whether or not the local domain
removes the credential from a local service request before sending the request to a remote
domain. The ACL_POLICY parameter controls whether or not the local domain replaces the
credential of a service request received from a remote domain with the principal name
specified in the LOCAL_PRINCIPAL_NAME parameter.

In the following example, the connection for the REMOT1 access point is configured for global
ACL in the DMCONFIG file, meaning that the domain gateway for the LOCAL1 access point passes
client requests from the REMOT1 access point without change. For global ACL, the
LOCAL_PRINCIPAL_NAME entry for the REMOT1 access point is ignored. Also, because
CREDENTIAL_POLICY=GLOBAL, the domain gateway for the LOCAL1 access point does not
remove the credential from any local service request destined for the REMOT1 access point.

*DM_LOCAL

LOCAL1 GWGRP=bankg1

TYPE=TDOMAIN

ACCESSPOINTID="BA.CENTRAL01"

CONNECTION_PRINCIPAL_NAME="BA.CENTRAL01"

SECURITY=DM_PW

*DM_REMOTE

REMOT1 TYPE=TDOMAIN

ACCESSPOINTID="BA.BANK01"

CONNECTION_PRINCIPAL_NAME="BA.BANK01"

ACL_POLICY=GLOBAL

CREDENTIAL_POLICY=GLOBAL

LOCAL_PRINCIPAL_NAME="BA.BANK01.BOB"

How to Configure Domains Link-Level Encryption
Domains link-level encryption (LLE) establishes data privacy for messages moving over the
network links that connect the local domain gateway to the remote domain gateway. There are
three levels of link-level encryption security: 0-bit (no encryption), 56-bit (International), and
128-bit (United States and Canada).

To set up Domains link-level encryption on domain gateway links, follow these steps.

1. Open the DMCONFIG file with a text editor and add the following lines to the DM_TDOMAIN
section.

Se t t ing Up Connect i ons in a Domains Conf igurat ion

Using the OracleTuxedo Domains Component 2-55

*DM_TDOMAIN
LOCAL1 NWADDR=“newyork.acme.com:65431”

MINENCRYPTBITS=min
MAXENCRYPTBITS=max

REMOT1 NWADDR=“albany.acme.com:4051”
MINENCRYPTBITS=min
MAXENCRYPTBITS=max

2. Load the configuration by running dmloadcf(1). The dmloadcf command parses DMCONFIG
and loads the binary BDMCONFIG file to the location referenced by the BDMCONFIG variable.

In the preceding example, when tmboot(1) starts the application, each domain gateway reads
the BDMCONFIG file to access various parameters, including MINENCRYPTBITS and
MAXENCRYPTBITS, and propagates those parameters to its local and remote domains. When the
local domain is establishing a network link with a remote domain, the two domains negotiate the
key size until they agree on the largest key size supported by both.

Setting Up Connections in a Domains Configuration
You can specify the conditions under which a local domain gateway tries to establish a
connection to a remote domain. To specify these conditions, assign a value to the
CONNECTION_POLICY parameter in the DM_LOCAL section of the DMCONFIG file. You can select
any of the following connection policies:

Connect when a local client program requests a remote service (ON_DEMAND)

Connect at boot time (ON_STARTUP)

Accept incoming connections but do not initiate a connection automatically
(INCOMING_ONLY)

For Oracle Tuxedo release 8.1 or later, you can also define the connection policy on a per remote
domain basis in the DM_TDOMAIN section of the DMCONFIG file. For details, see “How To
Configure Your Connection Policy” on page 1-27.

For connection policies of ON_STARTUP and INCOMING_ONLY, Dynamic Status is invoked.
Dynamic Status, described in “How Connection Policy Determines Availability of Remote
Services” on page 1-38, is a Oracle Tuxedo Domains capability that checks and reports the status
of remote services.

2-56 Using the OracleTuxedo Domains Component

How to Request Connections for Client Demands
(ON_DEMAND Policy)
A connection policy of ON_DEMAND (CONNECTION_POLICY=ON_DEMAND) means that a connection
is attempted only when either a local client requests a remote service or an administrative
dmadmin connect command is run. ON_DEMAND is the default connection policy setting.

Figure 2-5 shows how connections are attempted and made by a domain gateway for which the
connection policy is ON_DEMAND.

Figure 2-5 Connections Made with an ON_DEMAND Policy

How to Request Connections at Boot Time (ON_STARTUP
Policy)
A connection policy of ON_STARTUP (CONNECTION_POLICY=ON_STARTUP) means that a domain
gateway attempts to establish a connection with its remote domains when the domain gateway
server is initialized. By default, the ON_STARTUP connection policy retries failed connections
every 60 seconds, but you can specify a different value for this interval, as explained in “How to
Configure the Connection Retry Interval for ON_STARTUP Only” on page 2-58.

Se t t ing Up Connect i ons in a Domains Conf igurat ion

Using the OracleTuxedo Domains Component 2-57

Figure 2-6 shows how connections are attempted and made by a domain gateway for which the
connection policy is ON_STARTUP.

Figure 2-6 Connections Made with an ON_STARTUP Policy

How to Limit Connections to Incoming Messages Only
(INCOMING_ONLY Policy)
A connection policy of INCOMING_ONLY (CONNECTION_POLICY=INCOMING_ONLY) means that a
domain gateway does not try to establish a connection to remote domains upon starting.
Figure 2-7 shows how connections are attempted and made by a domain gateway for which the
connection policy is INCOMING_ONLY.

2-58 Using the OracleTuxedo Domains Component

Figure 2-7 Connections Made with an INCOMING_ONLY Policy (Accept Incoming Connections)

How to Configure the Connection Retry Interval for
ON_STARTUP Only
When the CONNECTION_POLICY parameter is set to ON_STARTUP, automatic connection retry
processing is available. Connection retry processing enables a domain gateway to retry,
automatically, a failed attempt to connect to a remote domain. As the administrator, you can
control the frequency of automatic connection attempts. To do so, specify the length (in seconds)
of the interval during which the gateway should wait before trying, again, to establish a
connection. You can specify the retry interval by setting the RETRY_INTERVAL parameter as
follows:

RETRY_INTERVAL=number_of_seconds

You can specify between 0 and 2147483647 seconds. If the connection policy is ON_STARTUP and
you do not specify a value for the RETRY_INTERVAL parameter, a default of 60 seconds is used.

The RETRY_INTERVAL parameter is valid only when the connection policy is ON_STARTUP. For
the other connection policies (ON_DEMAND and INCOMING_ONLY), connection retry processing is
not available.

Se t t ing Up Connect i ons in a Domains Conf igurat ion

Using the OracleTuxedo Domains Component 2-59

How to Configure the Maximum Retry Number
You indicate the number of times that a domain gateway tries to establish connections to remote
domains before quitting by assigning a value to the MAXRETRY parameter: the minimum value is
0; the default and maximum value is the value of the MAXLONG parameter (2147483647).

If you set MAXRETRY=0, connection retry processing is turned off. The local domain
gateway does not attempt to connect to the remote domain gateway(s) automatically.

If you set MAXRETRY=number, the gateway tries to establish a connection the specified
number of times before quitting.

If you set MAXRETRY=MAXLONG, the default setting, connection retry processing is repeated
up to 2147483647 times or until a connection is established.

The MAXRETRY parameter is valid only when the connection policy is ON_STARTUP. For the other
connection policies (ON_DEMAND and INCOMING_ONLY), connection retry processing is not
available.

Table 2-2 presents examples of how MAXRETRY and RETRY_INTERVAL affect automatic
connection retry processing.

Table 2-2 Example Settings of the MAXRETRY and RETRY_INTERVAL Parameters

If You Set... Then...

CONNECTION_POLICY=ON_STARTUP
MAXRETRY=3
RETRY_INTERVAL=30

The local domain gateway makes three attempts
to establish a connection, at 30 seconds intervals,
before quitting.

CONNECTION_POLICY=ON_STARTUP
MAXRETRY=0

The local domain gateway attempts to establish a
connection at initialization time but does not retry
if the first attempt fails.

CONNECTION_POLICY=ON_STARTUP
RETRY_INTERVAL=30

The domain gateway attempts to establish a
connection every 30 seconds until a connection is
established.

2-60 Using the OracleTuxedo Domains Component

Example of Coding Connection Policies Between Domains
Because domains involved in a Domains configuration work independently of one another, any
combination of connection policies is allowed in a Domains configuration. However, not every
connection policy combination is practical. In most cases, for example, configuring each of two
interoperating domains with a connection policy of ON_STARTUP does not make much sense.

The following configuration example is a practical connection policy combination. In this
example, LOCAL1 is configured for ON_STARTUP in the local DMCONFIG file, and REMOT1 is
configured for INCOMING_ONLY in the remote DMCONFIG file.

In local DMCONFIG file:

*DM_LOCAL

LOCAL1 GWGRP=bankg1

TYPE=TDOMAIN

CONNECTION_POLICY=ON_STARTUP

MAXRETRY=5

RETRY_INTERVAL=100

*DM_REMOTE

REMOT1 TYPE=TDOMAIN

ACCESSPOINTID="BA.BANK01"

In remote DMCONFIG file:
*DM_LOCAL
REMOT1 GWGRP=bankg2

TYPE=TDOMAIN
ACCESSPOINTID="BA.BANK01"
CONNECTION_POLICY=INCOMING_ONLY

*DM_REMOTE

LOCAL1 TYPE=TDOMAIN

ACCESSPOINTID="BA.CENTRAL01"

CONNECTION_PRINCIPAL_NAME="BA.CENTRAL01"

Cont ro l l ing Connect i ons in a Domains Conf igurat ion

Using the OracleTuxedo Domains Component 2-61

Controlling Connections in a Domains Configuration
As the administrator, you can control the number of connections you want to establish between
domains. You can also break the connections between local and remote domains.

How to Establish Connections Between Domains
To establish a connection between a local domain gateway and a remote domain, run the dmadmin
command with the connect (co) subcommand:

prompt> dmadmin co -d local_domain_access_point_name

By default, connections are established between the local domain you have specified and all
remote domains configured for the local gateway. If you want to establish a connection to only
one remote domain, specify that domain on the command line with the -R option:

prompt> dmadmin co -d local_domain_access_point_name
-R remote_domain_access_point_name

If a connection attempt fails and the connection policy is ON_STARTUP with connection retry
processing turned on, repeated attempts to connect (via connection retry processing) are made.

How to Break Connections Between Domains
To break a connection between a local gateway and a remote domain (making sure that the
gateway does not try to re-establish the connection through automatic connection retry
processing), run the dmadmin command with the disconnect (dco) subcommand:

prompt> dmadmin dco -d local_domain_access_point_name

By default, all remote domains configured for the local gateway are disconnected. If you want to
end the connection to only one remote domain, specify that domain on the command line with the
-R option:

prompt> dmadmin dco -d local_domain_access_point_name
-R remote_domain_access_point_name

Automatic connection retry processing is stopped by this command, regardless of whether there
are any active connections when the command is run.

2-62 Using the OracleTuxedo Domains Component

How to Report on Connection Status
Using the dmadmin printdomain command, you can generate a report on connection status and
the connections being retried. The connect command reports whether a connection attempt has
succeeded. The printdomain command prints information about the specified local domain,
including a list of remote domains, a list of remote domains to which it is connected, and a list of
remote domains to which it is trying to establish connections.

The following example shows a dmadmin session in which the printdomain command is issued
(in its abbreviated form, pd) for a local domain access point named LOCAL1.

prompt> dmadmin

dmadmin - Copyright ...

.

.

.

pd -d LOCAL1

Local domain :LOCAL1

 Connected domains:

 Domainid: REMOT1

 Disconnected domains being retried:

 Domainid: REMOT2

dco -d LOCAL1 -R REMOT1

Operation completed successfully. Use printdomain(pd) to obtain results.

dco -d LOCAL1 -R REMOT2

Operation completed successfully. Use printdomain(pd) to obtain results.

co -d LOCAL1 -R REMOT1

Operation completed successfully. Use printdomain(pd) to obtain results.

pd -d LOCAL1

Local domain :LOCAL1

 Connected domains:

 Domainid: REMOT1

In this example, the remote domain access point names (REMOT1, REMOT2) and their DOMAINID—
ACCESSPOINTID—names (REMOT1, REMOT2) are the same, as defined in the DM_REMOTE section
of the DMCONFIG file, to keep the example simple.

Cont ro l l ing Connect i ons in a Domains Conf igurat ion

Using the OracleTuxedo Domains Component 2-63

How to Initiate Domain Connection Events
Domain connection events are generated by default when configuration or connection status
changes occur between two or more domains; however, you must subscribe to a domain
connection event in order to display/output warning or error messages.

Tuxedo generates the following four domain connection events:

.SysConnectionSuccess - Connection successfully established

.SysConnectionConfig - Connection configuration has changed. The Connection
configuration changed event may happen when the following configuration parameters
change between two domains:
– CONNECTION_POLICY

– CMPLIMIT

– MINENCRYPTBITS

– MAXENCRYPTBITS

– RETRY_INTERVAL

– MAXRETRY

– DMKEEPALIVE

– DMKEEPALIVEWAIT

– TCPKEEPALIVE

When several parameters are changed in one operation (DMMIB or dmadmin), only one
event is generated.

.SysConnectionDropped - Connection has dropped. The .SysConnectionDropped
event must also indicate the reason for the drop. There are three specific reasons why a
connection drop can occur and each of them must be appended to the INFO message. They
are:

– ·LDOM issued disconnect

– ·RDOM issued disconnect

– ·Unknown connection loss

.SysConnectionFailed - Connection is unsuccessful. The .SysConnectionFailed
event also indicates the reason for failure. There can be several reasons for why a failure
and all must be appended to the INFO message:

– ·Socket Failure

2-64 Using the OracleTuxedo Domains Component

– ·Authentication Failure

– ·Unconfigured RDOM

Configuring Domains Link-Level Failover and Keepalive
Domains link-level failover is a mechanism that ensures that an alternate network link becomes
active when a primary link fails. Domains keepalive is a mechanism that keeps interdomain
connections open through firewalls during periods of inactivity and enables quick detection of
connection failures. Domains keepalive is available in Oracle Tuxedo release 8.1 or later.

For a description of Domains link-level failover, see “How to Configure Domains Link-Level
Failover” on page 1-40. For a description of Domains keepalive, see “Specifying Domains
Keepalive” on page 1-41.

Using the Oracle Tuxedo Domains Component 3-1

C H A P T E R 3

Planning and Configuring CORBA
Domains

The following sections explain how to plan and configure a domain for an Oracle Tuxedo
CORBA Domains environment:

Overview of the CORBA Domains Environment

Single-Domain Versus Multiple-Domain Communication

Elements of a CORBA Domains Configuration

Understanding and Using the Configuration Files

Specifying Unique Factory Object Identifiers in the factory_finder.ini File

Processing the factory_finder.ini File

Types of CORBA Domains Configurations

Examples of CORBA Domains Configurations

Overview of the CORBA Domains Environment
An Oracle Tuxedo Domains configuration is an extension of the core ATMI domain
environment, as explained in “What Is the Oracle Tuxedo Domains Component?” on page 1-1.
An Oracle Tuxedo domain, or business application, is a construct that is entirely administrative.
There are no programming interfaces that refer to domains. Only an administrator is aware of
domains.

3-2 Using the Oracle Tuxedo Domains Component

In an Oracle Tuxedo Domains configuration, an administrator can configure which services of a
domain are available to other domains in the configuration. So, from a CORBA perspective, the
Oracle Tuxedo Domains component is simply the means for Oracle Tuxedo CORBA applications
to interoperate with one another and share resources. The CORBA clients and the participating
applications themselves do not need to know anything about the Domains configuration. All they
need to know is what factory objects are available and how to access those objects.

This transparency between domains allows administrators to configure services in individual
domains and to spread resources across multiple domains. If applications were to include
information about domains, changing configurations would require that the applications be
rewritten as well.

Single-Domain Versus Multiple-Domain Communication
Figure 3-1 shows a simple Domains configuration consisting of two Oracle Tuxedo CORBA
applications.

Figure 3-1 Domains Configuration Consisting of Two CORBA Applications

The single-domain and multiple-domain discussions that follow are based on this simple
Domains configuration.

Single-Domain Communication
The following steps describe single-domain communication between CORBA Client X and
Domain A in the simple Domains configuration:

text
Client X Server

for Q
Domain
Gateway

Domain
Gateway

Server
for R

Domain A Domain C

S ing le-Domain Ve rsus Mu l t ip l e-Domain Communicat ion

Using the Oracle Tuxedo Domains Component 3-3

1. Client X connects to Domain A using the Bootstrap object. The client application uses the
Bootstrap object to locate a FactoryFinder and then uses the FactoryFinder to ask for a factory
for objects of type Q. (The FactoryFinder call is itself an invocation on Domain A.)

2. When the FactoryFinder returns a factory, the client invokes that factory in Domain A.

3. The factory returns a reference to an object of type Q, called Q1.

4. The client then invokes on object Q1 in Domain A.

Throughout these steps, the client does not know where any of the objects are, or which domains
they are in.

The administrative actions for connecting a client to Domain A are relatively simple for a client
because the client is a simple machine and has very little infrastructure; it stands alone for the
most part. Indeed, the connection to an Oracle Tuxedo domain is the primary administration for
a client. The actual administrative chore is setting the address of the ISL that is in Domain A.

Multiple-Domain Communication
For multiple-domain communication, Q1 in the simple Domains configuration needs the services
of Object R1, which is in Domain C; therefore, object Q1 must execute operations similar to those
previously described in steps 1 through 4, but across domain boundaries. The actual steps are as
follows:

1. Object Q1 uses a Bootstrap object to locate a FactoryFinder and then uses the FactoryFinder
to ask for a factory for objects of type R.

2. When the FactoryFinder returns a reference to a factory in Domain C, Object Q1 invokes that
factory.

3. The factory returns a reference to an object of type R, called R1.

4. Object Q1 invokes on Object R1.

As with Client X, there must be some administration to allow Object Q1 to get at the factories
and objects in Domain C. As the simple Domains configuration shows, the mechanism for
communication between domains is a domain gateway. A domain gateway is a system server in
a domain.

A system server is different than a user-written server because it is part of the Oracle Tuxedo
product; other system servers are the name servers, FactoryFinders, and ISLs. A domain gateway
is somewhat similar in concept to an ISL because it is the “contact” point for a domain. It is
different from an ISL, however, because a domain gateway connects to another domain gateway,

3-4 Using the Oracle Tuxedo Domains Component

which is itself a contact point for a domain; that is, a domain gateway’s job is to connect to
another domain gateway. Thus, the pair of domain gateways cooperate to make sure that
invocation on objects that inhabit different domains are routed to the correct domain.

Elements of a CORBA Domains Configuration
The following elements work together to accomplish an Oracle Tuxedo Domains configuration
for CORBA:

Oracle Tuxedo configuration file

This text file, known as the UBBCONFIG file, names a domain and identifies the group and
server entry for a domain gateway server. No attributes of domain gateways are specified
in the UBBCONFIG file; all such attributes are in the Domains configuration file (explained
next).

Note that the Oracle Tuxedo configuration file may have any name as long as the content
of the file conforms to the format described on reference page UBBCONFIG(5) in Oracle
Tuxedo File Formats, Data Descriptions, MIBs, and System Processes Reference.

Domains configuration file

This text file, known as the DMCONFIG file, describes the remote domains that are
connected to this domain—the local domain. One DMCONFIG file is required for each
domain participating in a Domains configuration. If a domain is not connecting to another
domain, the DMCONFIG file is not needed.

Note that the Domains configuration file may have any name as long as the content of the
file conforms to the format described on reference page DMCONFIG(5) in Oracle Tuxedo
File Formats, Data Descriptions, MIBs, and System Processes Reference.

FactoryFinder Domains configuration file

This text file, known as factory_finder.ini, specifies which factories can be searched
for or found across domain boundaries. One factory_finder.ini file is required for
each domain participating in a CORBA Domains configuration. If a domain is not
connecting to another domain, the factory_finder.ini file is not needed.

You must carefully coordinate the factory_finder.ini file with the DMCONFIG so that
they both have information about the same connected domains and provide the same
connectivity.

Note that the FactoryFinder Domains configuration file may have any name as long as the
content of the file conforms to the format described on reference page

Unders tanding and Us ing the Conf igura t i on F i l es

Using the Oracle Tuxedo Domains Component 3-5

factory_finder.ini(5) in Oracle Tuxedo File Formats, Data Descriptions, MIBs, and
System Processes Reference.

Invocation of an object in a remote domain

From a CORBA perspective, the whole point of the Oracle Tuxedo Domains component is
for an application in one CORBA domain to be able to make an invocation on an object in
another CORBA domain, without either the client or server applications being aware that
domains are a factor. Configuration information is intended to allow such invocations to
cross domain boundaries and to hide those boundaries from applications.

References to objects in a remote domain

Any object reference may specify a local domain or a remote domain. A reference to a
remote domain typically happens when a FactoryFinder returns a reference to a factory in a
remote domain. It also happens when that factory, in turn, creates and returns a reference to
an object in that remote domain (although, of course, the reference is local to the domain
of the factory).

Note: Applications are not aware of the domain of an object reference. Applications cannot find
out what domain an object reference refers to.

FactoryFinders

For a server in a local domain to obtain an object reference to an object in another domain,
the application uses the same FactoryFinder pattern as it does for objects in the local
domain. The application uses the same pattern because it is not aware that the
FactoryFinder returns a reference to a factory in another domain. The configuration files
hide this fact.

Once an object reference has been obtained via a FactoryFinder or factory, the object
reference can be passed anywhere; that is, passed to objects in the local domain, returned
to a client, or passed to another domain.

Understanding and Using the Configuration Files
You use the following three configuration files to set up a CORBA Domains configuration:

UBBCONFIG, the Oracle Tuxedo configuration file

DMCONFIG, the Domains configuration file

factory_finder.ini, the FactoryFinder Domains configuration file

3-6 Using the Oracle Tuxedo Domains Component

Each domain in a CORBA Domains configuration requires a set of these three files. As the
administrator, you must coordinate the configurations within each set of configuration files and
between sets of configuration files. As the number of domains grows in a Domains configuration,
your effort to coordinate the configurations also grows.

The UBBCONFIG File
You must specify the following parameters in the UBBCONFIG file to configure multiple domains:

Domain name

Gateway group

Gateway server

Domain Name
Though not required for single Oracle Tuxedo domains (that is, standalone domains), a domain
that is connected to another domain must have a DOMAINID. You specify this parameter in the
RESOURCES section of the UBBCONFIG file as follows:

DOMAINID domain_name

The domain_name must be 1 to13 characters long. For example:

DOMAINID headquarters

domain_name is the name that will be referenced in the DM_EXPORT and DM_IMPORT sections of
the related DMCONFIG file. In that file, the domain_name will be referenced as:

"//domain_name"

The quotes are part of the reference. The slashes (//) mean that the name applies to Oracle
Tuxedo CORBA domains, rather than to Oracle Tuxedo ATMI domains. For example:

"//headquarters"

Every domain in an enterprise must have a unique domain_name.

Gateway Group and Server Names
As with every other Oracle Tuxedo system server, there must be a group and a server name
specified for a gateway. For example, the GROUPS section in the UBBCONFIG file might contain:

LGWGRP LMID=LDOM GRPNO=4

Unders tanding and Us ing the Conf igura t i on F i l es

Using the Oracle Tuxedo Domains Component 3-7

In this example, LGWGRP is a name chosen by a user (perhaps an abbreviation for “Local Gateway
Group”).

The server name for an Oracle Tuxedo domain gateway—the TDomain gateway—is GWTDOMAIN
and must be associated, like every other group, with a server group and a server ID. You specify
the GWTDOMAIN name in the SERVERS section associated with the server group name chosen. For
example:

GWTDOMAIN SRVGRP=LGWGRP SRVID=1

This entry tells the Oracle Tuxedo CORBA application that a TDomain gateway is to be used and
that additional information is found in the DMCONFIG file.

The DMCONFIG File
Each Oracle Tuxedo domain participating in a Domains configuration requires its own DMCONFIG
file. A DMCONFIG file describes the relationship between the local domain (the domain in which
the DMCONFIG file resides) and one or more remote domains (the domains with which the local
domain will interoperate).

In most documentation for the DMCONFIG file, the focus is on the configuring of Oracle Tuxedo
ATMI domains to share services, a concept not applicable to Oracle Tuxedo CORBA
environments. For an Oracle Tuxedo CORBA Domains environment, a “service” is simply the
name of an Oracle Tuxedo domain that can service Oracle Tuxedo CORBA requests.

The following seven sections of the DMCONFIG file apply to a CORBA Domains environment:

DM_LOCAL (also known as DM_LOCAL_DOMAINS)

DM_REMOTE (also known as DM_REMOTE_DOMAINS)

DM_EXPORT (also known as DM_LOCAL_SERVICES)

DM_IMPORT (also known as DM_REMOTE_SERVICES)

DM_RESOURCES

DM_ACCESS_CONTROL

DM_TDOMAIN

Note: The DM_LOCAL section must precede the DM_REMOTE section.

Many of the of the parameters in these seven sections are not relevant to configuring a CORBA
Domains environment because they are ATMI-specific parameters.

The discussions that follow are based on the sample DMCONFIG file shown in Listing 3-1.

3-8 Using the Oracle Tuxedo Domains Component

Listing 3-1 Sample DMCONFIG File for a Oracle Tuxedo CORBA Domains Environment

#

BEA Tuxedo CORBA Domains Configuration File

#

*DM_RESOURCES

VERSION=Experimental8.9

*DM_LOCAL

LDOM GWGRP=LGWGRP TYPE=TDOMAIN ACCESSPOINTID="MUTT"

*DM_REMOTE

TDOM1 TYPE=TDOMAIN ACCESSPOINTID="JEFF"

*DM_EXPORT

"//MUTT"

*DM_IMPORT

"//JEFF" RACCESSPOINT=TDOM1

*DM_TDOMAIN

LDOM NWADDR="//sanfran.kmart.com:2507"

TDOM1 NWADDR="//sanhose.kmart.com:3186"

Note: The ACCESSPOINTID parameter in this listing may be replaced with the DOMAINID
parameter, and the RACCESSPOINT parameter may be replaced with the RDOM parameter.
This listing uses the improved DMCONFIG terminology.

DM_RESOURCES
The DM_RESOURCES section specifies global Domains configuration information, specifically a
user-supplied configuration version string. The only parameter in this section is
VERSION=string, where string is a field in which users can enter a version number for the
current DMCONFIG file. This field is not checked by the software.

In the sample DMCONFIG file, the VERSION parameter is set to Experimental8.9:

*DM_RESOURCES

VERSION=Experimental8.9

Unders tanding and Us ing the Conf igura t i on F i l es

Using the Oracle Tuxedo Domains Component 3-9

DM_LOCAL
The DM_LOCAL section, also known as the DM_LOCAL_DOMAINS section, defines one or more local
domain access points (logical names). For each local domain access point that you define, you
specify a domain gateway group (TDOMAIN, ...) for the access point in this section, and—for the
CORBA environment—you specify in the DM_EXPORT section the domain_name of the local
Oracle Tuxedo domain available through the access point. The local domain will be available
through the local domain access point to CORBA clients in one or more remote Oracle Tuxedo
domains.

The DM_LOCAL section must have one and only one entry for each domain gateway group defined
in the UBBCONFIG file. Each entry specifies the parameters required for the domain gateway
processes running in that group.

Entries in the DM_LOCAL section have the form:

LocalAccessPoint required_parameters [optional_parameters]

where LocalAccessPoint is the local domain access point identifier (logical name) that you
choose to represent a gateway group defined in the UBBCONFIG file. Note that the local domain
access point is not the same name as the domain_name or the gateway group that is specified in
the UBBCONFIG file. Rather, a local domain access point is a name used only within the DMCONFIG
file to provide an extra level of insulation from potential changes in the UBBCONFIG file (changes
in UBBCONFIG will affect only the defined parameters for the local domain access point, not the
logical name of the local domain access point used throughout the DMCONFIG file).

The following parameters are required parameters:

GWGRP = identifier

This parameter specifies the name of a domain gateway server group (the name provided in
the GROUPS section of the UBBCONFIG file) associated with this local domain access point.

TYPE = TDOMAIN

The TYPE parameter is required to specify the use of TDomain gateways for Oracle Tuxedo
CORBA environments.

ACCESSPOINTID = string

The ACCESSPOINTID parameter, also known as DOMAINID, is used to identify the gateway
group associated with this local domain access point for purposes of security when setting
up connections to remote domains. The gateway server group specified in the GWGRP
parameter uses this string during any security checks. It has no required relationship to the
domain_name found in the RESOURCES section of the UBBCONFIG file. ACCESSPOINTID

3-10 Using the Oracle Tuxedo Domains Component

must be unique across both local and remote domains. The value of string can be a
sequence of characters (for example, “BA.CENTRAL01”), or a sequence of hexadecimal
digits preceded by 0x (for example, “0x0002FF98C0000B9D6”). ACCESSPOINTID must be
32 octets or fewer in length. If the value is a string, it must be 32 characters or fewer
(counting the trailing NULL).

For example, the lines

*DM_LOCAL
LDOM GWGRP=LGWGRP TYPE=TDOMAIN ACCESSPOINTID="MUTT"

identify LDOM as the local domain access point associated with the local TDomain gateway group
having server group name LGWGRP (as specified in the UBBCONFIG file). If the domain gateway is
ever involved in a domain-to-domain security check, it goes by the name MUTT.

Note: If the domain gateway is ever involved in a domain-to-domain security check and the
CONNECTION_PRINCIPAL_NAME parameter is specified for the local domain access point,
the gateway goes by the name specified in that parameter.

Optional parameters in the DM_LOCAL section describe resources and limits used in the operation
of domain gateways. For a description of these parameters, see reference page DMCONFIG(5) in
Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System Processes Reference.

DM_REMOTE
The DM_REMOTE section, also known as the DM_REMOTE_DOMAINS section, defines one or more
remote domain access points (logical names). For each remote domain access point that you
define, you specify a domain gateway group (TDOMAIN, ...) for the access point in this section,
and—for the CORBA environment—you specify in the DM_IMPORT section the domain_name of
the remote Oracle Tuxedo domain available through the access point. The remote domain will be
available through the remote domain access point to CORBA clients in the local domain.

You can define multiple remote domain access points in this section, one or more for each domain
gateway group used by this Oracle Tuxedo domain to communicate with a remote domain.

Entries in the DM_REMOTE section have the form:

RemoteAccessPoint required_parameters

where RemoteAccessPoint is a remote domain access point identifier (logical name) that you
choose for a particular remote domain to be accessed by a particular gateway group defined in
the UBBCONFIG file. Note that a remote domain access point is not the same name as the
domain_name or the gateway group that is specified in the local or remote domain’s UBBCONFIG
file. Rather, a remote domain access point is a name used only within the DMCONFIG to provide

Unders tanding and Us ing the Conf igura t i on F i l es

Using the Oracle Tuxedo Domains Component 3-11

an extra level of insulation from potential changes in UBBCONFIG (changes in UBBCONFIG will
affect only the defined parameters for the remote domain access point, not the logical name of the
remote domain access point used throughout the DMCONFIG file).

The required parameters are:

TYPE = TDOMAIN
The TYPE parameter is required to specify the use of TDomain gateways for Oracle
Tuxedo CORBA environments.

ACCESSPOINTID = string
The ACCESSPOINTID parameter, also known as DOMAINID, is used to identify the remote
domain associated with this remote domain access point for purposes of security when
setting up a connection to the remote domain. The gateway uses this string during any
security checks. ACCESSPOINTID has no required relationship to the domain_name found
in the RESOURCES section of the UBBCONFIG file. ACCESSPOINTID must be unique across
both local and remote domains. The value of string can be a sequence of characters (for
example, “BA.BANK01”), or a sequence of hexadecimal digits preceded by 0x (for
example, “0x0002FF98C0000B9D6”). ACCESSPOINTID must be 32 octets or fewer in
length. If the value is a string, it must be 32 characters or fewer (counting the trailing
NULL).

For example, the lines

*DM_REMOTE
TDOM1 TYPE=TDOMAIN ACCESSPOINTID="JEFF"

identify TDOM1 as a remote domain access point name associated with a local TDomain gateway
group. If the domain gateway is ever involved in a domain-to-domain security check with a
partner gateway, the gateway expects that partner to go by the name JEFF.

Note: If the domain gateway is ever involved in a domain-to-domain security check and the
CONNECTION_PRINCIPAL_NAME parameter is specified for the remote domain access
point, the gateway expects the partner to go by the name specified in that parameter.

DM_EXPORT
The DM_EXPORT section, also known as the DM_LOCAL_SERVICES section, specifies in a CORBA
environment the domain_name of the Oracle Tuxedo domain to be exported through a local
domain access point defined in the DM_LOCAL section. The Oracle Tuxedo domain specified for
a local domain access point is available to CORBA clients on one or more remote Oracle Tuxedo
domains. The DM_EXPORT section is required for a CORBA Domains configuration.

Entries in the DM_EXPORT section have the form:

3-12 Using the Oracle Tuxedo Domains Component

service [LACCESSPOINT=local access point name]
 [ACL=...]

where service is of the form:

"//domain_name"

This domain_name is the name assigned to the DOMAINID parameter in the RESOURCES section
of the local UBBCONFIG file. Entering this name in the DM_EXPORT section means that the local
domain accepts CORBA requests from remote domains. Also possible is to specify a service
entry that accepts requests for a domain name other than the domain name of the local domain,
in the case where the local domain acts as a pass-through for routing purposes.

The optional parameter, ACL, specifies the name of the access control list (ACL) to be used by the
local domain to restrict requests made to the local domain by remote Oracle Tuxedo CORBA
domains. The name of the ACL is defined in the DM_ACCESS_CONTROL section of the DMCONFIG
file. If this parameter is not specified, access control is not performed for remote requests to the
local domain.

For example, the lines:

*DM_EXPORT
"//MUTT"

mean that the local domain with name MUTT accepts remote CORBA requests through any remote
domain access point defined in the DM_REMOTE section.

DM_IMPORT
The DM_IMPORT section, also known as the DM_REMOTE_SERVICES section, specifies in a
CORBA environment the domain_name of the Oracle Tuxedo domain to be imported through a
remote domain access point defined in the DM_REMOTE section. The Oracle Tuxedo domain
specified for a remote domain access point is available to CORBA clients on the local domain.
The DM_IMPORT section is required for a CORBA Domains configuration.

Entries in the DM_IMPORT section have the form:

service [RACCESSPOINT=remote domain access point]
 [LACCESSPOINT=local domain access point]

[TRANTIME=...]

where service is of the form:

"//domain_name"

Unders tanding and Us ing the Conf igura t i on F i l es

Using the Oracle Tuxedo Domains Component 3-13

This domain_name is the name assigned to the DOMAINID parameter in the RESOURCES section
of the remote UBBCONFIG file. Entering this name in the DM_IMPORT section means that the
remote domain accepts CORBA requests from the local domain. Also possible is to specify a
service entry that accepts requests for a domain name other than the domain name of the remote
domain, in the case where the remote domain acts as a pass-through for routing purposes.

For example, the lines:

*DM_IMPORT
 "//JEFF" RACCESSPOINT=TDOM1

mean that the remote domain with name JEFF and associated with remote domain access point
TDOM1 accepts CORBA requests through any local domain access point defined in the DM_LOCAL
section.

DM_ACCESS_CONTROL
The DM_ACCESS_CONTROL section specifies one or more access control list (ACL) names and
associates one or more remote domain access points with each specified ACL name. You can use
the ACL parameter in the DM_EXPORT section by setting ACL=ACL_NAME to restrict access to a local
domain exported through a particular local domain access point to just those remote domain
access points associated with the ACL_NAME.

Entries in the DM_ACCESS_CONTROL section have the form:

ACL_NAME required_parameters

where ACL_NAME is an identifier used to specify an access control list; it may contain no more
than 15 characters.

The only required parameter is:

ACLIST = identifier [,identifier]

where an ACLIST is composed of one or more remote domain access point names separated by
commas. The wildcard character (*) can be used to specify that all the remote domain access
points defined in the DM_REMOTE section can access a local domain.

DM_TDOMAIN
The DM_TDOMAIN section defines the network addressing information for the TDomain gateways
implementing the Oracle Tuxedo CORBA domains. The DM_TDOMAIN section should have:

One entry per local domain access point if CORBA requests from remote domains are
accepted through that access point

3-14 Using the Oracle Tuxedo Domains Component

One entry per remote domain access point if CORBA requests from the local domain to the
remote domain are accepted through that access point

In the DM_TDOMAIN section, you can also define the configuration for one or more remote domain
access points associated with one or more WebLogic Server applications, to combine Tuxedo
CORBA servers and WebLogic Server Enterprise JavaBean (EJB) servers in an application. For
details, see “Interoperability with Oracle WebLogic Server” on page 2-1 in Oracle Tuxedo
Interoperability.

Entries in the DM_TDOMAIN section have the form:

AccessPoint required_parameters [optional_parameters]

where AccessPoint is an identifier value used to identify either (1) a local domain access point
in the DM_LOCAL section or (2) a remote domain access point in the DM_REMOTE section.

The following parameter is required:

NWADDR = string
This parameter specifies the network address associated with a local domain access point
or a remote domain access point. If the association is with a local domain access point, the
network address is used by the local domain gateway to listen for connection requests
from remote domains. If the association is with a remote domain access point, the network
address is used by the local domain gateway to initiate a connection to the remote domain.

If string has the form "0xhex-digits" or "\\xhex-digits", it must contain an even
number of valid hex digits. These forms are translated internally into a character array
containing TCP/IP addresses. The addresses may also be in either of the following two
forms:

"//hostname:port_number"
"//#.#.#.#:port_number"

In the first of these formats, hostname is resolved to a TCP/IP host address at the time the
address is bound, using the locally configured name resolution facilities accessed via
gethostbyname(3c). The "#.#.#.#" is the dotted decimal format, where each #
represents a decimal number in the range 0 to 255.

Port_number is a decimal number in the range 0 to 65535 (the hexadecimal
representations of the string specified).

For example, the lines:

*DM_TDOMAIN
 LDOM NWADDR="//sanfran.kmart.com:2507"
 TDOM1 NWADDR="//sanhose.kmart.com:3186"

Unders tanding and Us ing the Conf igura t i on F i l es

Using the Oracle Tuxedo Domains Component 3-15

mean that the TDomain gateway belonging to gateway group LGWGRP—as stated in the DM_LOCAL
section for the LDOM access point—is configured to listen at address
"//sanfran.kmart.com:2507" for connection requests from remote domains. The TDomain
gateway is also configured to initiate a connection to "//sanhose.kmart.com:3186" when
sending requests to the remote domain associated with the TDOM1 access point.

For a description of the optional parameters for the DM_TDOMAIN section, see reference page
DMCONFIG(5) in Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System Processes
Reference.

The factory_finder.ini File
The factory_finder.ini file identifies the remote factory objects that can be used in the local
domain. It also identifies the local factory objects that can be used in remote domains.

The factory_finder.ini file contains two sections, DM_REMOTE_FACTORIES and
DM_LOCAL_FACTORIES. As clarified in the following display, the format of the
factory_finder.ini file is modeled after the syntax used in the DMCONFIG file:

*DM_REMOTE_FACTORIES

 "local_factory_id.factory_kind"

 DOMAINID="domain_id"

 RNAME="remote_factory_id.factory_kind"

 ...

*DM_LOCAL_FACTORIES

 "factory_id.factory_kind"

 ...

The following display demonstrates the syntax for CORBA factory objects:

*DM_REMOTE_FACTORIES

 "AccountFactory.FactoryKind"

 DOMAINID="MyAccountFactoryDomain"

 RNAME="MyAccountFactory.FactoryKind

where AccountFactory is the name used to register the factory in the local domain’s
FactoryFinder, MyAccountFactoryDomain is the name of the remote domain, and
MyAccountFactory is the name used to register the factory in the remote domain’s
FactoryFinder.

Note: No two CORBA domains participating in a Domains configuration are allowed to have
factory objects with the same factory_id.factory_kind identifier. For details, see

3-16 Using the Oracle Tuxedo Domains Component

“Specifying Unique Factory Object Identifiers in the factory_finder.ini File” on
page 3-19.

DM_REMOTE_FACTORIES
The DM_REMOTE_FACTORIES section specifies which factory objects in remote domains are
available (imported) to the local domain. Identifiers for remote factory objects are listed in this
section. The identifier, under which the object is registered, including a kind value of
FactoryInterface, must be listed in this section. For example, the entry for a remote factory
object to be registered by the TP Framework with the identifier Teller in domain Norwest
would be specified as:

*DM_REMOTE_FACTORIES
 "Teller.FactoryInterface"
 DOMAINID="Norwest"
 RNAME="BankTeller.FactoryInterface"

If the RNAME is not specified, the factory_kind must be specified in the factory name, and the
factory name must be enclosed in quotation marks; otherwise, the NameManager is not able to
locate the appropriate factory. An entry that does not contain a factory_kind value is not
defaulted with a value of FactoryInterface.

The following example shows a factory object to be registered with the identifier Teller in
domain Norwest. Note the absence of the RNAME specification, the specification of the
factory_kind value, and the quotation marks around the factory name.

*DM_REMOTE_FACTORIES
 "Teller.FactoryInterface"
 DOMAINID="Norwest"

Because the identities of factories in a Domains configuration may collide, the factory identifier
and the RNAME parameters allow you to specify alternative identities, or “aliases,” in the local
domain for remote factories. Listing 3-2 shows two examples of a remote factory that is
registered by the TP Framework with the identifier BankTeller in domain Norwest. In both
examples, the factory is made available in the local domain with an alias of Teller.

Listing 3-2 Assigning an Alias to a Remote Factory

#EXAMPLE 1:
*DM_REMOTE_FACTORIES
 Teller

Unders tanding and Us ing the Conf igura t i on F i l es

Using the Oracle Tuxedo Domains Component 3-17

 DOMAINID="Norwest"
 RNAME=”BankTeller.FactoryInterface”

#EXAMPLE 2:
*DM_REMOTE_FACTORIES
 "Teller.FactoryInterface"
 DOMAINID="Norwest"
 RNAME="BankTeller.FactoryInterface"

You can also assign multiple aliases to the same remote factory. In the example shown in
Listing 3-3, the remote factory will be registered in the local domain with two aliases: Teller
and BankTeller.

Listing 3-3 Assigning Multiple Aliases to a Remote Factory

*DM_REMOTE_FACTORIES
 "Teller.FactoryInterface"
 DOMAINID="Norwest"
 RNAME="BankTeller.FactoryInterface"
 "BankTeller.FactoryInterface"
 DOMAINID="Norwest"
 RNAME="BankTeller.FactoryInterface"

DM_LOCAL_FACTORIES
The DM_LOCAL_FACTORIES section specifies which factory objects in the local domain are
available (exported) to remote domains. This section can be used in the following ways:

If the DM_LOCAL_FACTORIES section is not present in a factory_finder.ini, or is
present but empty, all factory objects in the local domain are available to remote domains.
This software behavior allows administrators an easy means to make local factory objects
available to remote domains without having to provide an entry for every factory object in
the local domain.

If the DM_LOCAL_FACTORIES section is present in a factory_finder.ini file but
contains the reserved keyword NONE, none of the factory objects in the local domain are
available to remote domains. Using the NONE keyword allows administrators to restrict
access without having to provide an entry for every factory object in the local domain.

3-18 Using the Oracle Tuxedo Domains Component

The identifier, or name, under which the factory object is registered, including a kind value of
FactoryInterface, must be listed in the DM_LOCAL_FACTORIES section. For example, the entry
for a factory object to be registered by the TP Framework with the identifier Teller would be
specified as:

*DM_LOCAL_FACTORIES
 "Teller.FactoryInterface"

The factory_kind must be specified for the NameManager to locate the appropriate factory
object. An entry that does not contain a factory_kind value is not defaulted with a value of
FactoryInterface. This software behavior allows for the use of the CORBA NamingService.

An entry into the file for Domain A might be:

*DM_REMOTE_FACTORIES
fA.FactoryInterface DOMAINID=B

This entry means that a request in Domain A to find a factory with the identifier fA can be
satisfied by the FactoryFinder in Domain B. Of course, the UBBCONFIG and DMCONFIG files for
the two domains must also be set up so that there are connected domain gateways between the
two domains.

An alternate form of the entry is:

CDE.FactoryInterface DOMAINID=B RNAME=fA.FactoryInterface

This entry means that a request in Domain A to find a factory with the identifier CDE will be
satisfied by the FactoryFinder in Domain B using the ID fA. The alternate form is sometimes
called an alias.

Note: The factory ID must have .FactoryInterface at the end. For simplicity, in discussions
about test configurations, the .FactoryInterface is left off, but it should appear in the
factory_finder.ini file.

See Also
UBBCONFIG(5)in Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference

DMCONFIG(5)in Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference

factory_finder.ini(5)in Oracle Tuxedo File Formats, Data Descriptions, MIBs, and
System Processes Reference

Spec i f y ing Un ique Fac to ry Ob jec t I dent i f i e rs in the fac to r y_f inder . in i F i l e

Using the Oracle Tuxedo Domains Component 3-19

Specifying Unique Factory Object Identifiers in the
factory_finder.ini File

In a single-domain configuration, multiple factory objects with the same name are allowed, to
achieve load balancing. In a Domains configuration, however, no two domains are allowed to
have factory objects with the same factory_id.factory_kind identifier. If the same identifier,
or name, is used in two domains, the software’s behavior varies depending on whether or not
Oracle WebLogic Enterprise was used to configure the CORBA Domains environment:

In releases prior to Oracle WebLogic Enterprise 5.1, the software allows the first server in
a domain to register the factory without issuing an error message. If two factories with the
same name are registered in a domain, the Master NameManager fails.

In Oracle WebLogic Enterprise 5.1 or later and Oracle Tuxedo 8.0 or later, the software
generates an error and writes it to the ULOG.

There are two ways to ensure that your identifiers, or names, are unique across domains and thus
avoid this problem:

Use unique identifiers throughout the enterprise. Choosing this method may mean keeping
a master list of all identifiers.

In the factory_finder.ini file, use the RNAME parameter so that an alias is used by the
local NameManager. Choosing this method means that you must also modify local clients
to use the alias to access the remote factory object. The listing “Assigning an Alias to a
Remote Factory” on page 3-16 shows an example of a factory_finder.ini file that uses
the RNAME parameter to create an alias.

Processing the factory_finder.ini File
When starting up, the Master NameManager reads the factory_finder.ini file. The condition
under which the Master NameManager is started determines whether the Master NameManager
reads all or just some of the factory_finder.ini file:

If the Master NameManager process is started as part of booting the CORBA application
(the initialization mode), it reads the entire content of the factory_finder.ini file.
Thus, any new factory objects added to the DM_REMOTE_FACTORIES section of the
factory_finder.ini file are made known to the local Oracle Tuxedo application.

If the Master NameManager process is restarted as a result of process failure, it reads only
the DM_LOCAL_FACTORIES section of the factory_finder.ini file. Thus, any new

3-20 Using the Oracle Tuxedo Domains Component

factory objects added to the DM_REMOTE_FACTORIES section are not made known to the
local Oracle Tuxedo application.

When adding a new domain with factory objects to the DM_REMOTE_FACTORIES section of the
factory_finder.ini file, you must shut down and restart the Master NameManager. For more
information about NameManager, see TMFFNAME(5)in Oracle Tuxedo File Formats, Data
Descriptions, MIBs, and System Processes Reference.

Types of CORBA Domains Configurations
When using the Oracle Tuxedo Domains component to connect multiple Oracle Tuxedo CORBA
domains, you can configure two types of configurations: directly connected domains and
indirectly connected domains. You, as the administrator, configure both types using the
DMCONFIG file.

Directly Connected Domains
Every domain in a Domains configuration can have a gateway connection—a direct connection—
to every other domain in the Domains configuration. With directly connected domains, a request
goes directly to the target domain.

A directly connected Domains configuration, or “n-way” configuration, is reasonable when the
number of domains is small, but each new domain added to the configuration requires two, four,
... or more new gateways. At some point, you may consider giving up speed of delivery for ease
of management of domain connections by configuring indirectly connected domains.

Indirectly Connected Domains
You should consider what the likely traffic patterns are. Domains that have only occasional
interactions are candidates for gateway removal. Since there will still be interactions, it must still
be possible to reach the other domain. The technique used is to route the request through an
intermediate domain that does have direct access to the target domain.

For example, consider the three domains, A, B, and C, shown in Figure 3-2.

Types o f CORBA Domains Conf igurat ions

Using the Oracle Tuxedo Domains Component 3-21

Figure 3-2 Indirectly Connected Domains

Domains A and B are directly connected, and Domains B and C are directly connected, but A and
C are not directly connected. For Domains A and C to communicate, they must use Domain B as
the intermediary. Therefore, the DMCONFIG file for Domain A must state that it is possible to
connect to Domain C by going through Domain B (and vice versa). That is, the connectivity is:

Domains A <-> B <-> C
Gateways GAB GBA GBC GCB

Domain A has a gateway process, GAB (the gateway from A to B), that connects to Domain B.
The Domain A DMCONFIG file states that GAB acts as a gateway to two domains, Domains B and
C. The DMCONFIG file for Domain C has a similar configuration, stating that GCB is connected to
B and A. The DMCONFIG file for Domain B has two gateway processes, one which connects to A
(GBA) and one which connects to C (GBC). This configuration is called an indirect connection.

Given this indirect connection, when a server in A invokes a request on an object in C, Oracle
Tuxedo CORBA server knows that it can send the request to gateway GAB. The Oracle Tuxedo
gateway does not know that its partner gateway in B cannot service the request itself, but that is
acceptable. Once the request is in Domain B, it is routed through GBC to C, which can service
the request. Thus, the request is serviced with one extra hop.

It is even possible for the two gateways in Domain B to be a single gateway, so that there is not
an extra hop within B. In effect, the same processing occurs in Domain B, but it all occurs within
a single gateway process.

3-22 Using the Oracle Tuxedo Domains Component

Examples of CORBA Domains Configurations
The following examples show how to configure directly connected CORBA domains. If you want
to use these examples, you will need to change the APPDIR, TUXCONFIG, and TUXDIR variables
to match your environment. Also, you will have to substitute appropriate information wherever
text is enclosed by left (<) and right (>) angle brackets (for example, <App Server Name>) and
delete the angle brackets.

Sample UBBCONFIG Files
Listing 3-4 and Listing 3-5 show the UBBCONFIG files for three directly connected domains:
Here, There, and Yonder. To use these files, you must replace host with the name of the local
machine.

Listing 3-4 UBBCONFIG File for the Here Domain

#

Copyright (c) 1999 BEA Systems, Inc.

All rights reserved

#

#

#

RESOURCES

#

*RESOURCES

 IPCKEY 123312

 DOMAINID HereD

 MASTER LAPP

 MODEL SHM

 LDBAL N#

MACHINES

#

*MACHINES

 <host>

 LMID=LAPP

 APPDIR="/tst1/wle4.2/test_dom/t07:

 /tst1/wle4.2/dec_unix/wlemdomai"

Examples o f CORBA Domains Conf igurat ions

Using the Oracle Tuxedo Domains Component 3-23

 TUXCONFIG="/tst1/wle4.2/test_dom/tuxconfig"

 TUXDIR="/lclobb/lc"

 MAXWSCLIENTS=10

#

GROUPS

#

*GROUPS

 DEFAULT: LMID=LAPP

 ICEGRP GRPNO=11 OPENINFO=NONE

 GROUP1 GRPNO=21 OPENINFO=NONE

 LDMGRP GRPNO=3

 LGWGRP GRPNO=4

#

SERVERS

#

*SERVERS

 DEFAULT: CLOPT="-A"

 DMADM SRVGRP=LDMGRP SRVID=1

 GWADM SRVGRP=LGWGRP SRVID=1

 GWTDOMAIN SRVGRP=LGWGRP SRVID=2

 TMSYSEVT SRVGRP=ICEGRP SRVID=1

 TMFFNAME SRVGRP=ICEGRP SRVID=2

 CLOPT="-A -- -N -M -f <FF ini file for Here>"

 TMFFNAME SRVGRP=ICEGRP SRVID=3 CLOPT="-A -- -N"

 TMFFNAME SRVGRP=ICEGRP SRVID=4 CLOPT="-A -- -F"

 <App Server Name> SRVGRP=GROUP1 SRVID=2

 ISL SRVGRP=GROUP1 SRVID=1

 CLOPT="-A -- -d /dev/tcp -n //<host>:<port>"

#

SERVICES

#

*SERVICES

UBBCONFIG File for the “There” Domain

#

Copyright (c) 1999 BEA Systems, Inc.

3-24 Using the Oracle Tuxedo Domains Component

All rights reserved

#

RESOURCES

#

*RESOURCES

 IPCKEY 133445

 DOMAINID ThereD

 MASTER LAPP1

 MODEL SHM

 LDBAL N

#

MACHINES

#

*MACHINES

 <host>

 LMID=LAPP1

 APPDIR="D:\test_dom\t07;D:\Iceberg\qa\orb\bld\wlemdomain"

 TUXCONFIG="D:\test_dom\tuxconfig"

 TUXDIR="D:\Iceberg"

 MAXWSCLIENTS=10

#

GROUPS

#

*GROUPS

 DEFAULT LMID=LAPP1

 ICEGRP GRPNO=11 OPENINFO=NONE

 GROUP1 GRPNO=21 OPENINFO=NONE

 LDMGRP GRPNO=3

 LGWGRP GRPNO=4

#

SERVERS

#

*SERVERS

 DEFAULT: CLOPT="-A"

 DMADM SRVGRP=LDMGRP SRVID=1

 GWADM SRVGRP=LGWGRP SRVID=1

 GWTDOMAIN SRVGRP=LGWGRP SRVID=2

 TMSYSEV SRVGRP=ICEGRP SRVID=1

Examples o f CORBA Domains Conf igurat ions

Using the Oracle Tuxedo Domains Component 3-25

 TMFFNAME SRVGRP=ICEGRP SRVID=2

 CLOPT="-A -- -N -M -f <FF ini file for There>"

 TMFFNAME SRVGRP=ICEGRP SRVID=3 CLOPT="-A -- -N"

 TMFFNAME SRVGRP=ICEGRP SRVID=4 CLOPT="-A -- -F"

 <App Server Name> SRVGRP=GROUP1 SRVID=2

 ISL SRVGRP=GROUP1 SRVID=1

 CLOPT="-A -- -d /dev/tcp -n //<host>:<port>"

#

SERVICES

#

*SERVICES

Listing 3-5 UBBCONFIG File for the Yonder Domain

Copyright (c) 1999 BEA Systems, Inc.

All rights reserved

#

RESOURCES

#

*RESOURCES

 IPCKEY 123334

 DOMAINID YonderD

 MASTER LAPP

 MODEL SHM

 LDBAL N

#

MACHINES

#

*MACHINES

 <host>

 LMID=LAPP

 APPDIR="/tst1/wle4.2/test_dom/t07p:

 /tst1/wle4.2/<host3>/wlemdomain"

 TUXCONFIG="/tst1/wle4.2/test_dom/<host3>/tuxconfig"

 TUXDIR="/lclobb/lc"

 MAXWSCLIENTS=10

3-26 Using the Oracle Tuxedo Domains Component

#

GROUPS

#

*GROUPS

 DEFAULT: LMID=LAPP

 ICEGRP GRPNO=11 OPENINFO=NONE

 GROUP1 GRPNO=21 OPENINFO=NONE

 LDMGRP GRPNO=3

 LGWGRP GRPNO=4

#

SERVERS

#

*SERVERS

 DEFAULT: CLOPT="-A"

 DMADM SRVGRP=LDMGRP SRVID=1

 GWADM SRVGRP=LGWGRP SRVID=1

 GWTDOMAIN SRVGRP=LGWGRP SRVID=2

 TMSYSEVT SRVGRP=ICEGRP SRVID=1

 TMFFNAME SRVGRP=ICEGRP SRVID=2

 CLOPT="-A -- -N -M"

 TMFFNAME SRVGRP=ICEGRP SRVID=3 CLOPT="-A -- -N"

 TMFFNAME SRVGRP=ICEGRP SRVID=4 CLOPT="-A -- -F"

 <App Server Name> SRVGRP=GROUP1 SRVID=2

 ISL SRVGRP=GROUP1 SRVID=1

 CLOPT="-A -- -d /dev/tcp -n //<host>:<port>"

#

SERVICES

#

*SERVICES

Sample DMCONFIG File
Listing 3-6, Listing 3-7 and Listing 3-8 show the DMCONFIG files for three directly connected
domains: Here, There, and Yonder. To use these listings in a Domains configuration, you must
replace host1 with the name of the local machine for the Here domain, replace host2 with the

Examples o f CORBA Domains Conf igurat ions

Using the Oracle Tuxedo Domains Component 3-27

name of the local machine for the There domain, and replace host3 with the name of the local
machine for the Yonder domain.

Listing 3-6 DMCONFIG File for the Local Machine in the Here Domain in a Three-Domain Configuration

#

Copyright (c) 1999 BEA Systems, Inc.

All rights reserved

#

#

Tuxedo Domains Configuration File

#

*DM_RESOURCES

 VERSION=U22

#

DM_LOCAL

#

*DM_LOCAL

 LDOM1 GWGRP=LGWGRP TYPE=TDOMAIN ACCESSPOINTID="HereG"

#

DM_REMOTE

#

*DM_REMOTE

 TDOM1 TYPE=TDOMAIN ACCESSPOINTID="ThereG"

 TDOM2 TYPE=TDOMAIN ACCESSPOINTID="YonderG"

#

DM_TDOMAIN

#

*DM_TDOMAIN

 LDOM1 NWADDR="//<host1>:<tcpport>"

 TDOM1 NWADDR="//<host2>:<tcpport>"

 TDOM2 NWADDR="//<host3>:<tcpport>"

#

3-28 Using the Oracle Tuxedo Domains Component

DM_EXPORT

#

*DM_EXPORT

 "//HereD"

#

DM_IMPORT

#

*DM_IMPORT

 "//ThereD" RACCESSPOINT=TDOM1

 "//YonderD" RACCESSPOINT=TDOM2

To use the following listing in a Domains configuration, you must replace host1 with the name
of the local machine for the There domain, replace host2 with the name of the local machine for
the Here domain, and replace host3 with the name of the local machine for the Yonder domain.

Listing 3-7 DMCONFIG File for the There Domain in a Three-Domain Configuration

#

Copyright (c) 1999 BEA Systems, Inc.

All rights reserved

#

#

Tuxedo Domains Configuration File

#

*DM_RESOURCES

 VERSION=U22

#

DM_LOCAL

#

*DM_LOCAL

 LDOM1 GWGRP=LGWGRP TYPE=TDOMAIN ACCESSPOINTID="ThereG"

#

DM_REMOTE

Examples o f CORBA Domains Conf igurat ions

Using the Oracle Tuxedo Domains Component 3-29

#

*DM_REMOTE

 TDOM1 TYPE=TDOMAIN ACCESSPOINTID="HereG"

 TDOM2 TYPE=TDOMAIN ACCESSPOINTID="YonderG"

#

DM_TDOMAIN

#

*DM_TDOMAIN

 LDOM1 NWADDR="//<host1>:<tcpport>"

 TDOM1 NWADDR="//<host2>:<tcpport>"

 TDOM2 NWADDR="//<host3>:<tcpport>"

#

DM_EXPORT

#

*DM_EXPORT

 "//ThereD"

#

DM_IMPORT

#

*DM_IMPORT

 "//HereD" RACCESSPOINT=TDOM1

 "//YonderD" RACCESSPOINT=TDOM2

To use the following listing in a Domains configuration, you must replace host1 with the name
of the local machine for the Yonder domain, replace host2 with the name of the local machine
for the Here domain, and replace host3 with the name of the local machine for the There
domain.

Listing 3-8 DMCONFIG File for the Yonder Domain in a Three-Domain Configuration

#

Copyright (c) 1999 BEA Systems, Inc.

All rights reserved

3-30 Using the Oracle Tuxedo Domains Component

#

#

Tuxedo Domains Configuration File

#

*DM_RESOURCES

 VERSION=U22

#

DM_LOCAL

#

*DM_LOCAL

 LDOM1 GWGRP=LGWGRP TYPE=TDOMAIN ACCESSPOINTID="YonderG"

#

DM_REMOTE

#

*DM_REMOTE

 TDOM1 TYPE=TDOMAIN ACCESSPOINTID="HereG"

 TDOM2 TYPE=TDOMAIN ACCESSPOINTID="ThereG"

#

DM_TDOMAIN

#

*DM_TDOMAIN

 LDOM1 NWADDR="//<host1>:<tcpport>"

 TDOM1 NWADDR="//<host2>:<tcpport>"

 TDOM2 NWADDR="//<host3>:<tcpport>"

#

DM_EXPORT

#

*DM_EXPORT

 "//YonderG"

#

DM_IMPORT

#

*DM_IMPORT

 "//HereD" RACCESSPOINT=TDOM1

 "//ThereD" RACCESSPOINT=TDOM2

Examples o f CORBA Domains Conf igurat ions

Using the Oracle Tuxedo Domains Component 3-31

Sample factory_finder.ini File
Listing 3-9 and Listing 3-10 show the factory_finder.ini files for the Here and There
domains. The Yonder domain does not require a factory_finder.ini file.

Listing 3-9 factory_finder.ini File for the Here Local Domain

Copyright (c) 1999 BEA Systems, Inc.

All rights reserved

#

Factory Finder Initialization file for Domain “Here”

This is the local domain.

#

DM_LOCAL_FACTORIES

#

*DM_LOCAL_FACTORIES

 "AFactory.FactoryInterface"

#

DM_REMOTE_FACTORIES

#

*DM_REMOTE_FACTORIES

 "AFacYonder.FactoryInterface"

 DOMAINID="YonderD"

 RNAME="AFactory.FactoryInterface"

 "BFactory.FactoryInterface"

 DOMAINID="YonderD"

Listing 3-10 factory_finder.ini File for the There Remote Domain

#

Copyright (c) 1999 BEA Systems, Inc.

All rights reserved

3-32 Using the Oracle Tuxedo Domains Component

#

Factory Finder Initialization file for Domain “There”

This is a remote domain.

#

DM_LOCAL_FACTORIES

#

*DM_LOCAL_FACTORIES

 "AFactory.FactoryInterface"

#

DM_REMOTE_FACTORIES

#

*DM_REMOTE_FACTORIES

 "AFacYonder.FactoryInterface"

 DOMAINID="YonderD"

 RNAME="AFactory.FactoryInterface"

 "BFactory.FactoryInterface"

 DOMAINID="YonderD"

Using the Oracle Tuxedo Domains Component 4-1

C H A P T E R 4

Administering Domains

The following sections explain how to administer an Oracle Tuxedo Domains environment:

Using Domains Run-Time Administrative Commands

Using the Administrative Interface, dmadmin(1)

Using the Domains Administrative Server, DMADM(5)

Using the Gateway Administrative Server, GWADM(5)

Using the Domain Gateway Server

Managing Transactions in a Domains Environment

Using Domains Run-Time Administrative Commands
To integrate the Domains component with an existing Oracle Tuxedo application, you add entries
for domain gateway groups and gateway servers to the TUXCONFIG file. You can use either the
tmconfig(1) or tmadmin(1) command to add a Domains configuration to a running Oracle
Tuxedo application. You can also use tmadmin to list the information available in the bulletin
board for domain gateway groups and individual domain gateways.

Once your Domains environment is configured and integrated, you can administer it dynamically
using a set of administrative tools provided by the Domains component. For example, you can
specify and modify the list of services that are accessible across applications. The Domains
software preserves the characteristics of the Oracle Tuxedo programming interface (ATMI) and
extends the scope of the ATMI so that clients can invoke services across domains. This

4-2 Using the Oracle Tuxedo Domains Component

functionality allows programmers to expand or partition applications without changing any
application code.

Figure 4-1 shows the relationship between administrative commands and servers in the Domains
administrative subsystem.

Figure 4-1 Domains Run-Time Administration

The Oracle Tuxedo Domains component offers the following administrative commands:

dmadmin(1) command, a generic administrative service—Enables administrators to
configure, monitor, and tune domain gateway groups dynamically, and to update the
Domains configuration file (BDMCONFIG) while the Oracle Tuxedo application is running.
The command acts as a front-end process that translates administrative commands and
sends service requests to the DMADMIN service, a generic administrative service advertised
by the DMADM server. The DMADMIN service invokes the validation, retrieval, or update of
functions provided in the DMADM server to maintain the BDMCONFIG file.

DMADM(5), the Domains administrative server—Provides the administrative processing
required for updating the Domains configuration. This server acts as a back-end to the
dmadmin command. It provides a registration service to domain gateway groups. This
registration service is requested by GWADM servers as part of their initialization procedure.
The registration service downloads the configuration information required by the
requesting domain gateway group. The DMADM server maintains a list of registered domain
gateway groups, and propagates to these groups any changes made to the configuration.

GWADM(5), the gateway administrative server—Registers with the DMADM server to obtain
the configuration information used by the corresponding domain gateway group. The

Us ing the Admin is t ra t i ve In te r face , dmadmin(1)

Using the Oracle Tuxedo Domains Component 4-3

GWADM accepts queries from DMADM to obtain run-time statistics or to change the run-time
options of the corresponding domain gateway group. Periodically, the GWADM server sends
an “I-am-alive” message to the DMADM server. If no reply is received from the DMADM
server, the GWADM server registers again. This mechanism makes sure the GWADM server
always has the latest copy of the Domains configuration for its group.

GWTDOMAIN(5), the TDomain gateway server—Provides interoperability between two or
more Oracle Tuxedo domains. Working with the WebLogic Tuxedo Connector (WTC)
gateway, an Oracle WebLogic Server component, the Oracle Tuxedo TDomain gateway
can also provide interoperability between Tuxedo domains and WebLogic Server
applications.

Note: For information about domain gateway types other than GWTDOMAIN, see
http://download.oracle.com/docs/cd/E13161_01/tuxedo/tux100/interm/mainfrm.htm
l.

BDMCONFIG—the binary version of the Domains configuration file, which together with the
TUXCONFIG file and factory_finder.ini file (CORBA only) contain all the
configuration parameters that the Oracle Tuxedo software needs to create a Domains
configuration.

Note: You can also specify gateway parameters when a domain gateway group is booted using
the CLOPT parameter, when the GWADM server is defined in the SERVERS section of the
TUXCONFIG file.

Using the Administrative Interface, dmadmin(1)
dmadmin is an administrative interface to the DMADM and GWADM servers. The communication
between the two servers is done via FML typed buffers. Administrators can use the dmadmin
command in the following ways:

For the interactive administration of the information stored in the BDMCONFIG file and the
different domain gateway groups running within a particular Oracle Tuxedo application.

To obtain statistics or other information gathered by domain gateway groups.

To change domain gateway group parameters.

To add (or update) information in the BDMCONFIG file.

Note: You can delete information from the BDMCONFIG file at run time only if the deletions do
not involve an active domain gateway group.

4-4 Using the Oracle Tuxedo Domains Component

See Also
dmadmin(1) in Oracle Tuxedo Command Reference

Using the Domains Administrative Server, DMADM(5)
The Domains administrative server, DMADM(5), is an Oracle Tuxedo-supplied server that
performs the following functions:

Supports run-time administration of the BDMCONFIG file

Maintains the BDMCONFIG file

Supports a list of registered domain gateway groups

Propagates run-time configuration changes to the registered domain gateway groups

The DMADM server advertises two services:

DMADMIN, which is used by the dmadmin command and the GWADM server.

A service called DMADM_svrid, where srvid is the appropriate server ID for the service.
Registered GWADM servers use DMADM_svrid for specific administrative functions (for
example, to refresh the domain gateway group configuration information or to signal that a
GWADM is still registered).

The DMADM server must be defined in the SERVERS section of the TUXCONFIG file as a server
running within a group (for example, DMADMGRP). There should be only one instance of the DMADM
server in this group.

See Also
DMADM(5) in Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference

Using the Gateway Administrative Server, GWADM(5)
The gateway administrative server, GWADM(5), is an Oracle Tuxedo-supplied server that provides
administrative functions for a domain gateway group. The main functions of the GWADM server
include:

Getting Domains configuration information from the DMADM server, and accepting queries
from dmadmin. The GWADM server gets the domain gateway group configuration

Us ing the Gateway Admin is t rat i ve Se rve r , GWADM(5)

Using the Oracle Tuxedo Domains Component 4-5

information by registering with the DMADM server. The GWADM server then makes the
configuration available to gateways by storing the information in shared memory.

Providing administrative functionality for a domain gateway group, for example, by
accepting queries from dmadmin for run-time statistics or by changing the run-time
parameters of the domain gateway group.

Providing transaction logging functionality for a domain gateway group. The GWADM server
determines which transactions need to be logged by reading information stored in shared
memory. When the GWADM server is booted, it scans the log to see whether any transactions
need to be recovered, and then reconstructs the transaction information in shared memory.
The gateway server scans the information in shared memory and performs recovery for the
corresponding transactions. The recovery procedure is performed asynchronously with new
incoming or outgoing requests received by the domain gateway group.

The GWADM server advertises a service name based on the local domain access point name (as
specified in the DM_LOCAL section of the BDMCONFIG file) associated with the domain gateway
group to which the GWADM server belongs. The dmadmin command uses this service to retrieve
information from all active domain gateway groups or from a specific domain gateway group.

The GWADM server must be defined in the SERVERS section of the TUXCONFIG file. It should not be
part of the MSSQ used by the gateways associated with the group. It must be the first server booted
within the domain gateway group; that is, either (a) it must have a SEQUENCE number, or (b) it
must be defined ahead of the gateway servers.

The GWADM server requires the existence of a DMADM server. Specifically, a DMADM server must be
booted before that GWADM is booted.

The GWADM server must create the shared memory required by the domain gateway group to
populate the configuration tables with information received from the DMADM server. The GWADM
server uses IPC_PRIVATE with shmget and stores the ipckey returned in the shmid field of its
registry entry in the bulletin board. Gateways can obtain the ipckey by retrieving the GWADM
registry entry and checking the shmid field.

See Also
GWADM(5) in Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference

4-6 Using the Oracle Tuxedo Domains Component

Using the Domain Gateway Server
A domain gateway server provides connectivity to remote domain gateway servers, and can
communicate with one or more remote gateways simultaneously. A gateway advertises the
services imported to an Oracle Tuxedo application and controls access to the local services
exported by the application. You define your application’s exported and imported services in the
Domains configuration file (DMCONFIG). Use dmadmin to dynamically configure, monitor, and
tune domain gateway groups.

See Also
“Types of Domain Gateways” on page 1-3

Tuning the Performance of the Domain Gateway
Oracle Tuxedo 9.x improves the GWTDOMAIN gateway performance while also keeping
compatibility with other types of /Domain gateways. It limits most of the performance to the
threaded platforms. It also allows other types of /Domain gateways to take advantage of this
feature in the enhanced Common Gateway Architecture with simple program changes.

Many factors may affect performance of applications across multiple domains. For example:

Service processing time

Database transactions

Message buffer size

Security facilities, such as Link Level Encryption

Network transmission speed

Therefore, in order to observe achieved Domain Gateway performance improvement, the
application has to minimize the above-mentioned factors. Otherwise the performance
improvement for the gateway may not be significant.

Some suggestions for performance testing this feature are listed below:

Many clients send a request to a single remote service. The size of the message is small
(less than a few K bytes.)

Many clients send a request to different remote services or use load balancing to distribute
service requests. In this case, the message size can be larger.

Managing T ransact ions in a Domains Env i ronment

Using the Oracle Tuxedo Domains Component 4-7

Note: As a prerequisite, service processing time on the server side should not be
time-consuming. The total response time contains both gateway processing time and
service processing time. If service processing time is quite long, the performance
improvement for the gateway is submerged.

Managing Transactions in a Domains Environment
Application programmers can request the execution of remote services within a transaction. Also,
users of remote domains can request local services to be executed within a transaction. Domains,
therefore, coordinates the mapping of remote transactions to local transactions, and the sane
termination (commitment or rollback) of these transactions.

The Oracle Tuxedo system architecture uses a separate process, the Transaction Manager Server
(TMS), to coordinate the commitment and recovery of transaction branches accessing a particular
group. In a Domains environment, however, this architecture would require extra messages from
the gateway to the TMS server to process a commitment for an incoming transaction. To simplify
the Domains architecture and to reduce the number of messages, the TMS code is integrated with
the gateway code. Thus, domain gateways can process the transaction protocol used by the Oracle
Tuxedo system. The Oracle Tuxedo transaction protocol requires that the domain gateway group
advertise the TMS service, which is done when the first gateway is booted. Once the TMS service
is advertised, any transaction control messages directed to the domain gateway group are placed
on the gateway’s queue.

Domain gateway groups should be defined in the TUXCONFIG file without the TMSNAME,
TMSCOUNT, OPENINFO, and CLOSEINFO parameters. These four parameters apply only to groups
that use an XA-compliant resource manager, which domain gateways do not use.

The commitment protocol across domains is strictly hierarchical. It is not possible to flatten the
transaction tree because the structure of the transaction tree is not fully known by every domain;
a superior knows only its immediately subordinate domains. Flattening the tree would also
require the root domain to be fully connected to all domains participating in the transaction.

Domain gateways provide four capabilities that you can use to manage transactions. These
capabilities are described in the following sections:

“Using the TMS Capability Across Domains” on page 4-8

“Using GTRID Mapping in Transactions” on page 4-11

“Using Logging to Track Transactions” on page 4-18

“Recovering Failed Transactions” on page 4-20

4-8 Using the Oracle Tuxedo Domains Component

Using the TMS Capability Across Domains
In the Oracle Tuxedo system, the TMS is a special server that is implicitly associated with server
groups that use X/Open XA-compliant resource managers. The TMS server releases application
servers from the delays associated with the distributed 2-phase commitment protocol. TMS servers
coordinate the commitment of a transaction via special service requests to the TMS service, which
is offered by all TMS servers.

In a Domains environment, GWTDOMAIN gateways are not associated with an XA-compliant
resource manager. The Transaction Processing Working Group (TPWG) of X/Open has proposed
an advanced XA interface. This interface is not used in the Oracle Tuxedo system because the
interface does not match the highly asynchronous and non-blocking model required by the
gateway. While domain gateways do not use a separate TMS server, they do offer the Transaction
Manager Servers capability, which allows gateways to coordinate the 2-phase commitment of
transactions executed across domains.

Domain gateways coordinate transactions across domains in the following manner:

1. Domain gateways advertise the TMS service and perform all operations associated with that
service. Messages sent to this service are placed on the queue used by the appropriate domain
gateway group, and the gateways manage the transactions associated with the group.

2. A gateway can act as a subordinate of transactions coordinated by another group within the
domain. In this case, the gateway is a superior of the transaction branches executed in other
remote domains. When acting as a subordinate of a transaction coordinated by a remote
domain, the gateway also acts as the coordinator for all groups in the local domain accessed
by the transaction. The gateway, acting as both subordinate and coordinator, is illustrated in
Figure 4-2.

Managing T ransact ions in a Domains Env i ronment

Using the Oracle Tuxedo Domains Component 4-9

Figure 4-2 The Domain Gateway as Subordinate/Coordinator of Another Domain Gateway Group

3. As a coordinator of transactions within the domain, the gateway manages the commitment of
a transaction for a particular client. This is illustrated in Figure 4-3.

4-10 Using the Oracle Tuxedo Domains Component

Figure 4-3 Client Commit Managed by a Domain Gateway

4. Gateways manage transaction commitment for a particular client or for a server that uses the
forwarding service with the AUTOTRAN capability. When this combination is used, the last
server in the forward chain (the domain gateway) issues the commit and becomes the
coordinator of the transaction. (A domain gateway always acts as the last server in a forward
chain.)

5. Gateways automatically start and terminate transactions for remote services specified with the
AUTOTRAN capability. This capability is required when an the application administrator wants
to enforce reliable network communication with remote services. Administrators can specify
this capability by setting the AUTOTRAN parameter to Y in the corresponding remote service
definition.

For more information, see the DM_IMPORT section of DMCONFIG(5) in Oracle Tuxedo File
Formats, Data Descriptions, MIBs, and System Processes Reference.

6. Gateways map the Oracle Tuxedo system transaction protocol to the networking transaction
protocol used for interoperation with remote domains. How this mapping is done depends on
which instantiation of domain gateway you are using: TDomain, SNA, or OSI TP.

Managing T ransact ions in a Domains Env i ronment

Using the Oracle Tuxedo Domains Component 4-11

Using GTRID Mapping in Transactions
In the Oracle Tuxedo system, a transaction tree is a 2-level tree where the root is the domain
gateway group coordinating a global transaction and branches are involved in the transaction.
Each group performs its part of the global transaction independently from the parts performed by
other groups. Each group, therefore, implicitly defines a transaction branch. The Oracle Tuxedo
system, through TMS servers, coordinates the completion of the global transaction, making sure
each branch is completed.

A GTRID is a Global Transaction Identifier. GTRID mapping defines how to construct a transaction
tree that crosses domain boundaries. You specify GTRIDs using the MAXGTT parameter in the
RESOURCES section of the Oracle Tuxedo configuration file.

Defining Tightly-coupled and Loosely-coupled Relationships
In the X/Open DTP Model, a Transaction Manager Server can construct transaction trees by
defining either tightly-coupled or loosely-coupled relationships with a resource manager (RM) by
the way it interprets the transaction identifiers (XIDs) used by the XA interface.

A tightly-coupled relationship is one in which a single transaction identifier, XID, is used by all
processes participating in a single global transaction, accessing a single RM. This relationship
maximizes data sharing between processes; XA-compliant RMs expect to share locks for
resources used by processes having the same XID. The Oracle Tuxedo system achieves the
tightly-coupled relationship via the group concept; that is, all work done by a group on behalf of
a given global transaction belongs to the same transaction branch; all the processes executed by
the group are given the same XID.

In a loosely-coupled relationship, the TMS generates a transaction branch for each part of the work
in support of the global transaction. The RM handles each transaction branch separately; there is
no sharing of data or of locks between the transaction branches. Deadlocks between transaction
branches can occur and result in the rollback of a global transaction. In the Oracle Tuxedo
application, when different groups participate in a single global transaction, each group defines a
separate transaction branch, which results in a loosely-coupled relationship.

Global Transactions Across Domains
There are several differences between global transactions in a single Oracle Tuxedo application
and global transactions across domains. The first difference is that in the Domains framework,
the transaction tree cannot be flattened to a 2-level tree. There are two reasons for this:

4-12 Using the Oracle Tuxedo Domains Component

The transaction may involve more domains than can be known from the root domain
(where the transaction is controlled), so the structure of the transaction tree cannot be fully
known.

If a transaction tree is flattened to two levels, the root domain must be connected directly
to all domains in the transaction.

This means that the commitment protocol across domains must be hierarchical. Even a loopback
service request defines a new branch in the transaction tree.

Note: A loopback request goes to another domain and then comes back to be processed in the
original domain. For example, Domain A requests a service of Domain B. The service in
Domain B requests another service in Domain A. The transaction tree has two branches
at the network level: a branch b1 from A to B and a branch b2 from B to A. Domain A
cannot commit the work done on branch b2 before receiving commit instructions from B.

The structure of a transaction tree for global transactions across domains also depends on the
distributed transaction processing protocol used by a relevant domain gateway instantiation. For
example, in the OSI TP protocol each dialogue (the OSI TP word for a service request) is
associated with a different transaction branch. In the Oracle Tuxedo system, the OSI TP
instantiation uses a dialogue for each service request, so each service request is mapped to a
separate transaction branch. The XAP-TP interface hides this mapping and provides a mechanism
by which an entire OSI TP subtree can be referenced by a user-defined identifier. (In the Oracle
Tuxedo implementation, this identifier is the GTRID.) The GTRID is used to instruct XAP-TP how
a transaction tree must be constructed, that is, which dialogues must be included within a given
OSI TP transaction. Therefore, from the Oracle Tuxedo perspective, a whole OSI TP subtree can
be managed as a single transaction branch.

This property, however, applies only to outgoing service requests (that is, service requests sent
from the root domain to subordinate domains). It cannot be applied to incoming service requests.
The OSI TP instantiation consequently implements a loosely-coupled relationship; each
incoming service request is mapped to a new Oracle Tuxedo global transaction.

The TDomain instantiation tries to optimize GTRID mapping by implementing a tightly-coupled
relationship. In TDomain, multiple service requests issued on behalf of the same global
transaction are mapped to the same network transaction branch. Therefore, incoming service
requests can be mapped to a single Oracle Tuxedo transaction. However, the hierarchical
structure of interdomain communication and the interdomain transaction tree must still be
maintained.

The optimization that TDomain introduces applies only to a single domain. When two or more
domains are involved in a transaction, the network transaction tree contains at least one branch

Managing T ransact ions in a Domains Env i ronment

Using the Oracle Tuxedo Domains Component 4-13

per domain interaction. Hence, across domains, the network transaction tree remains
loosely-coupled. There are as many branches as there are domains involved in the transaction
(even if all the branches access the same resource manager instance).

Domain gateway groups implement a loosely-coupled relationship because they generate
different transaction branches for interdomain transactions.

Example of a Service Request Graph Generating Local and Remote Requests
Figure 4-4 shows the service request graph for a client that generates three service requests: one
local request (r0) and two remote requests (r2 and r3). Request r0 goes to a local service (Svc0),
which generates another remote service request (r1). Request r1 goes to remote service Rsvc1,
which issues a loopback service request r4 to local service Svc4. Svc0 and Svc4 are executed in
different groups (G0 and G4). The domain gateway is executed within another group (GW), and the
remote services Rscv1, Rsvc2, and Rsvc3 are executed in another domain (Domain B).

4-14 Using the Oracle Tuxedo Domains Component

Figure 4-4 Service Request Graph

Transaction Trees for Oracle eLink OSI TP and Oracle Tuxedo Domains
The following two figures show the transaction tree for Oracle eLink OSI TP and the transaction
tree for Oracle Tuxedo domains. It is assumed, in these figures, that both Domain A and Domain
B are Oracle Tuxedo system applications.

Oracle eLink OSI TP is loosely-coupled because of the OSI TP protocol. The transaction tree for
this instantiation shows group G0 in Domain A coordinating the global transaction started by the
client. Group G0 coordinates group GW. Requests r1, r2, and r4 are mapped each to an OSI TP
dialogue and therefore to an OSI TP transaction branch. However, OSI TP uses the XAP-TP
feature that allows an entire OSI TP transaction to be referred by a unique identifier (T1) and uses

Managing T ransact ions in a Domains Env i ronment

Using the Oracle Tuxedo Domains Component 4-15

this identifier for requests r1, r2, and r3. It is up to XAP-TP to generate OSI TP transaction
identifiers and to construct the corresponding OSI TP transaction tree. The only function that
must be performed by the generic Domains software is the mapping of service requests r1, r2, and
r3 to the T1 identifier.

In Domain B, OSI TP uses the rule that new transaction branches must be mapped to a new Oracle
Tuxedo transaction. Therefore, OSI TP transaction branches r1, r2, and r3 get mapped to three
different Oracle Tuxedo transactions (the corresponding mapping is represented by identifiers T2,
T3, and T4). The graph shows the domain gateway group GW in Domain B coordinating three
Oracle Tuxedo transactions on group G1.

Finally, there is the loopback service request r4 that generates another branch in the transaction
tree. OSI TP maps this request to identifier T2, but XAP-TP generates a new branch in its
transaction tree (r4: B to A'). This is a new transaction branch on Domain A, and therefore, the
gateway generates a new mapping T5 to a new Oracle Tuxedo transaction. Therefore, the
transaction graph shows that domain gateway group GW on Domain A coordinates group G4.

Notice that the hierarchical nature of the OSI TP protocol is fully enforced by these mappings.
However, because these mappings introduce a loosely-coupled relationship, the probability of
intratransaction deadlock is increased (for example, there are three Oracle Tuxedo transactions
accessing the RM represented by group G1).

The transaction tree for Oracle eLink OSI IP environment is shown in Figure 4-5.

4-16 Using the Oracle Tuxedo Domains Component

Figure 4-5 Transaction Tree for Oracle eLink OSI TP Environment

Managing T ransact ions in a Domains Env i ronment

Using the Oracle Tuxedo Domains Component 4-17

The TDomain instantiation provides a tightly-coupled integration that solves this deadlock
problem by minimizing the number of transaction branches required in the interoperation
between two domains. The corresponding transaction tree is shown in Figure 4-6.

Figure 4-6 Transaction Tree for TDomain Environment

Notice that the gateway still must perform mappings between an Oracle Tuxedo system
transaction and a network transaction, and that the hierarchical nature of the communication
between domains must be strictly enforced. The diagram shows that requests r1, r2, and r3 are
mapped to a single TDomain transaction branch. Therefore, on Domain B only one Oracle
Tuxedo system transaction needs to be generated; T2 represents this mapping and the graph
shows domain gateway group GW on Domain B coordinating group G1. Request r4 is mapped to
identifier T2 on Domain B, but TDomain will generate a new branch in its transaction tree (r4:

4-18 Using the Oracle Tuxedo Domains Component

B to A'). Because this is a new transaction branch on Domain A, the gateway generates a new
mapping, T3, to a new Oracle Tuxedo system transaction. The graph shows that domain gateway
group GW on Domain A also coordinates group G4. Hence, the hierarchical nature of interdomain
communication is fully enforced with this mapping: group G4 cannot commit before group G1.

Summary of Domains Transaction Management
Domains transaction management can be summarized as follows:

Gateways generate mappings from an Oracle Tuxedo system transaction to a network
transaction. A new mapping is generated for each Oracle Tuxedo system transaction and
each incoming network transaction branch.

Each instantiation of domain gateway (TDomain, SNA, or OSI TP) handles its own
representation of the network transaction tree. All instantiations observe the hierarchical
nature of the interdomain communication.

Using Logging to Track Transactions
Logging is used to keep track of the progress of a 2-phase commit protocol. The information
stored in the log is used to make sure a transaction is completed in the event of a network failure
or machine crash.

To ensure completion of transactions across domains, domain gateways log the mapping between
local and remote identifiers. Along with this information, the Domains transaction management
facility records the decisions made during different phases of the commitment protocol, and any
information available about the remote domains involved in the transaction. In the OSI TP case,
the XAP-TP interface logs the information required for the recovery of the OSI TP protocol
machine. The information is referred to as a blob (binary large object) and is kept in the same log
record as the commit information to make recovery easier.

Domains log records have a different structure from the log records stored in the Oracle Tuxedo
system TLOG. TLOG records are fixed in size and are stored in a single page. Domains log records
vary in size; more than one page may be required to store the record. The Domains logging
mechanism, DMTLOG, has the capability of storing variable-size log records.

When a TMS is the superior of a domain gateway group, the Oracle Tuxedo TLOG is still required
to coordinate the commitment.

Logging is performed by the GWADM administrative server. The request for a log write is made by
the GWTDOMAIN process, but the actual log write is performed by the GWADM process.

Managing T ransact ions in a Domains Env i ronment

Using the Oracle Tuxedo Domains Component 4-19

You must create a log called DMTLOG for each domain gateway group. The DMTLOG files are
defined in the DM_LOCAL section of the DMCONFIG file. To create a DMTLOG file, add an entry for
the DMTLOGDEV parameter:

DMTLOGDEV=string

where string is the name of the log file. In addition, you cam set one or both of the two optional
parameters:

DMTLOGNAME=identifier

DMTLOGSIZE=numeric

For more information, see DMCONFIG(5) in Oracle Tuxedo File Formats, Data Descriptions,
MIBs, and System Processes Reference.

Administrators also have the option of using the run-time administration utility (dmadmin) to
create a DMTLOG. For more information, see dmadmin(1) in Oracle Tuxedo Command Reference.

If a DMTLOG has not been created when a domain gateway group is booted, the gateway server
automatically creates the log, based on information in the BDMCONFIG file.

Until a logging device is specified in the BDMCONFIG file, a domain gateway group cannot process
requests in transaction mode and the domain gateway group cannot offer the TMS service.

To coordinate the commit protocol, domain gateways require the following two log records:

Ready record—a ready record is a file created by a gateway acting as a leaf or intermediate
machine in a transaction tree. It records information about the superior and subordinate
remote domains involved in the transaction. A ready record indicates that all subordinates
of the domain gateway group logging the record have been prepared.

Commit record—a commit record documents that a transaction has been committed. A
domain gateway creates a commit record as the coordinator of a particular transaction tree.

When a transaction has been committed on all machines, these logs for the transaction are
removed.

When the OSI TP protocol is being used, two types of heuristic records are logged:

Log Heuristic record—this record holds the details of a heuristic decision in the domain
until the outcome of the relevant transaction is known by the superior.

Log Damage record—this record is created to indicate one of two conditions for a
transaction branch: (run with tmadmin(1)) a heuristic hazard (when the outcome of the
transaction branch for a subordinate is unknown) or a heuristic mix (when the transaction
subtree has a mixed outcome).

4-20 Using the Oracle Tuxedo Domains Component

Heuristic log records persist until they are explicitly removed by the administrator. This
persistence is required to provide the correct information during recovery after a crash, and to
provide diagnostic information for administrators.

The administrator uses the forgettran command (run with tmadmin(1)) to remove heuristic
records when they are no longer needed.

Recovering Failed Transactions
When a domain gateway group is booted, the gateway server performs an automatic warm-start
of the DMTLOG. The warm-start includes scanning the log to see if any transactions were not
completed. If incomplete transactions are found, action is taken to complete them.

In OSI TP, any blobs stored in the DMTLOG with a transaction record are passed to the network
access module, which uses the blobs to reconstruct its internal state and to recover any failed
connections

In the case of heuristic decisions, if a domain gateway group is a subordinate of a local TMS and
a heuristic decision has been indicated, the TMS generates a TMS_STATUS message to learn the
final decision:

If a gateway fails, then it cleans up after itself when it is restarted (this is called a
hot-start). The gateway rolls back all undecided transactions in which it was involved.

If a communication line failure occurs and the first phase of the commit has not been
completed, the gateway rolls back the transactions associated with that connection.

If OSI TP Domains is being used and a transaction fails in the second phase of the commit,
recovery is managed by XAP-TP.

