
Oracle® Tuxedo
Using CORBA Request-Level Interceptors

11g Release 1 (11.1.1.3.0)

December 2011

Oracle Tuxedo Using CORBA Request-Level Interceptors, 11g Release 1 (11.1.1.3.0)

Copyright © 1996, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Using CORBA Request-Level Interceptors iii

Contents

1. Introduction to CORBA Request-Level Interceptors
Interceptor Architecture . 1-2

Capabilities and Limitations . 1-3

Execution Flow . 1-5

Client-side Execution. 1-5

Client-side Exception Handling . 1-7

Target-side Execution. 1-9

Target-side Exception Handling . 1-10

The exception_occurred Method . 1-12

About Short-circuit Behavior. 1-12

Using Multiple Request-Level Interceptors . 1-12

Multiple Client-side Interceptors . 1-15

Multiple Target-side Interceptors. 1-15

Interceptors and Meta-Operations. 1-16

2. Developing CORBA Request-Level Interceptors
Step 1: Identify the Interfaces of Your CORBA Application . 2-2

Step 2: Write the Interceptor Implementation Code . 2-2

Starting the Implementation File . 2-3

Initializing the Interceptor at Run Time. 2-3

Obtaining the Interface Name from a Request. 2-4

Identifying Operations in the Request . 2-5

iv Using CORBA Request-Level Interceptors

Implementing the Interceptor’s Response Operation . 2-5

Reading Parameters Out of a Data Input Stream . 2-6

Exceptions . 2-7

Step 3: Create the Interceptor Header File . 2-7

Step 4: Build the Interceptor . 2-9

Step 5: Test the Interceptor . 2-9

3. Deploying CORBA Request-Level Interceptors
Registering an Interceptor . 3-1

Unregistering an Interceptor. 3-2

Changing the Order in Which Interceptors Are Called . 3-3

4. PersonQuery Sample Application
How the PersonQuery Sample Application Works . 4-2

PersonQuery Database . 4-2

Client Application Command-line Interface. 4-3

The OMG IDL for the PersonQuery Sample Application . 4-5

Building and Running the PersonQuery Sample Application . 4-8

Copying the Files for the PersonQuery Sample Application 4-9

Changing the Protection on PersonQuery Application Files 4-12

Setting the Environment Variables . 4-13

Building the CORBA Client and Server Applications . 4-13

Start the PersonQuery Client and Server Applications . 4-13

Running the PersonQuery Sample Application . 4-13

Stopping the PersonQuery Sample Application . 4-14

5. InterceptorSimp Sample Interceptors
How the PersonQuery Sample Interceptors Work . 5-1

Registering and Running the PersonQuery Interceptors . 5-2

Using CORBA Request-Level Interceptors v

Examining the Output of the Interceptors. 5-3

Unregistering the Interceptors . 5-3

Unregistering the Interceptors . 5-4

6. InterceptorSec Sample Interceptors
How the PersonQuery Sample Interceptors Work . 6-1

How the InterceptorSec Target-side Interceptor Works . 6-2

Using the SecurityCurrent Object . 6-3

Obtaining the SecurityCurrent Object . 6-3

Creating the List of User Attributes . 6-4

Registering and Running the PersonQuery Interceptors. 6-6

Examining the Interceptor Output . 6-7

Unregistering the Interceptors . 6-7

7. InterceptorData Sample Interceptors
InterceptorDataClient Interceptor . 7-1

InterceptorDataTarget Interceptor . 7-2

Implementing the InterceptorData Interceptors . 7-3

Registering and Running the InterceptorData Interceptors . 7-3

Examining the Interceptor Output . 7-4

Unregistering the Interceptors . 7-6

8. Request-Level Interceptor API
Interceptor Hierarchy . 8-2

Note on Unused Interfaces . 8-2

Interceptors::Interceptor Interface . 8-3

RequestLevelInterceptor::
RequestInterceptor Interface . 8-8

vi Using CORBA Request-Level Interceptors

RequestLevelInterceptor::
ClientRequestInterceptor Interface . 8-17

RequestLevelInterceptor::
TargetRequestInterceptor Interface. 8-24

CORBA::DataInputStream Interface . 8-32

A. Starter Request-Level Interceptor Files
Starter Implementation Code . A-1

Starter Header File Code . A-10

Using CORBA Request-Level Interceptors 1-1

C H A P T E R 1

Introduction to CORBA Request-Level
Interceptors

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

A request-level interceptor is a user-written CORBA object that provides a means to insert
functionality, such as security or monitoring components, into the invocation path between the
client and server components of a CORBA application. When you have an interceptor installed
and registered with an Object Request Broker (ORB) on a particular machine, the interceptor is
involved with all the CORBA applications on that machine. You can use interceptors to insert
any additional functionality into the invocation path of an object invocation, at either the client,
or the server, or both ends of the invocation.

Request-level interceptors are not usually part of a typical CORBA environment. Implementing
them is considered an advanced programming task.

The CORBA environment in the Oracle Tuxedo system supports two categories of interceptors:

Client-side interceptors, which are called by the ORB at the client side of an invocation
and are run in the process of an entity making a request. Client-side interceptors inherit
from the ClientRequestInterceptor class.

1-2 Using CORBA Request-Level Interceptors

Target-side interceptors, which are called by the ORB at the target side of an invocation
and are run with the target application process. The target of an invocation may be a
CORBA server application or a CORBA joint client/server application. Target-side
interceptors inherit from the TargetRequestInterceptor class.

The CORBA environment Oracle Tuxedo system is very flexible about where you can install and
use interceptors, with respect to the relative location of the client and target objects. It is
transparent to a client application whether the target of its request is in the same or a different
process.

Although client- and target-side interceptors inherit from separate interfaces, it is often
convenient to implement the interceptors in a single source file.

Interceptor Architecture
The following figure shows the relationship between request-level interceptors and the Oracle
Tuxedo system.

Note the following about the Oracle Tuxedo implementation of CORBA interceptors:

Interceptors are registered administratively and are called by the ORB at the appropriate
time during the execution of the application.

When a client-side interceptor is installed and registered with an ORB, that interceptor is
called with every request coming from any CORBA client application on that machine.

ORBORB

Request-Level
Interceptor

Entity Making a Request Target Object

Request-Level
Interceptor

Response

Request

Capabi l i t i es and L imi ta t ions

Using CORBA Request-Level Interceptors 1-3

During the course of a single, successful request-response cycle of an invocation, a
client-side interceptor is called twice by the ORB:

a. When the request is first issued from the client application and arrives at the ORB (the
client_invoke operation)

b. When the target response arrives back at the client application process (the
client_response operation)

When a target-side interceptor is installed and registered with an ORB, that interceptor is
called with every request that arrives for any target object on that machine.

During the course of a single request-response cycle of an invocation, a target-side
interceptor is called twice by the ORB:

a. When the client request first arrives at the ORB (the target_invoke operation)

b. When the target object response arrives at the ORB (the target_response operation)

You can install and register multiple client- or target-side interceptors with an ORB.

Interceptors are independent of each other, and they do not require knowledge about the
potential presence of other interceptors.

Interceptors can short-circuit an invocation by returning a response directly to the client
without involving the target object at all.

Interceptors impact overall application performance because they add an additional step in
the execution of every request.

The ORB maintains a list of registered interceptors. Registering an interceptor is something you
do as an administrative task. During application run time, the ORB uses this list to determine
when to call the interceptors and in what order, because multiple interceptors can be installed and
created. When you have multiple interceptors registered, the ORB executes each interceptor
consecutively. Establishing the order in which multiple interceptors are called is also an
administrative task.

Capabilities and Limitations
Request-level interceptors are especially useful for implementing several different types of
service applications, such as:

Instrumentation points for collecting statistics

Probe points that include monitoring or tracing facilities

1-4 Using CORBA Request-Level Interceptors

Security checks to determine whether a particular type of invocation should be permitted,
or whether a specific bit of information can be returned to a client application. For more
information about interceptors and security, see Chapter 6, “InterceptorSec Sample
Interceptors.”

The following are current limitations on CORBA interceptors:

Interceptors are called only by an ORB. Neither CORBA client nor server applications can
call an interceptor directly.

Interceptors implemented in a specific programming language can intercept invocations
only from entities that are also implemented in that same language.

Interceptors cannot write to the DataInputStream object.

Interceptors cannot pass or manipulate the service context object.

Interceptors cannot pass or manipulate the transaction current object.

Interceptors cannot invoke methods on the Tobj_Bootstrap object.

The REPLY_NO_EXCEPTION return status value is not supported, although it appears in the
method signatures operations on interceptor classes.

An interceptor can make invocations on other objects; however, those invocations are
subject to interception as well. When an interceptor invokes an object, make sure the
interceptor doesn’t intercept its own invocation in an infinite loop—which will happen if
the object being invoked is in the same server process as the interceptor. In such a
situation, the system can hang.

The method signatures for operations on classes derived from the
RequestLevelInterceptor interface include parameters for the following interfaces:
– RequestLevelInterceptor::DataOutputStream

– RequestLevelInterceptor::ServiceContextList

These interfaces are not used in the Oracle Tuxedo product. These interfaces are defined in
the Oracle Tuxedo software so that you do not need to recompile your CORBA application
if an implementation of these interfaces is ever provided in a future release of the Oracle
Tuxedo product. The ORB will always pass a nil object for the actual argument. You
should not attempt to use these arguments; doing so will likely end the process with a
serious error.

Execut ion F l ow

Using CORBA Request-Level Interceptors 1-5

Execution Flow
The following sections explain what happens during the execution of a CORBA application that
uses interceptors. In general, request-level interceptors are instantiated and initialized only when
the ORB is initialized. At no other time can request-level interceptors be instantiated.

The return status of an interceptor controls the execution flow of the ORB run-time and any other
request-level interceptors that may be installed.

Depending on the return status of an interceptor after it has been called, one of the following
events may occur:

The invocation resumes its normal path to the target object, back to the client application,
or to another interceptor.

The interceptor on either the client or the server side services the client request and sends
an exception back to the client. (In this case, the request may never be sent to the target
object, or the target object may provide a response that the interceptor replaces with an
exception. This would happen transparently to the client application.)

Multiple request-level interceptors can be involved in a single invocation, and no interceptor
needs to know about any other interceptor.

The events that take place during a request-response cycle of an invocation are presented in two
categories:

Client-side execution

Target-side execution

Client-side Execution
Each interceptor is called twice during the request-response cycle of an invocation: once when a
request is going from the client towards the target, and again when a response returns back to the
client. The client interceptor class, ClientRequestInterceptor, has two corresponding
operations, among others, for these two calls:

client_invoke()—called when the request made on an object reference arrives at the
client-side ORB.

client_response()—called when the response is returned back towards the entity
making the request.

1-6 Using CORBA Request-Level Interceptors

The flow of execution of a CORBA application that uses a client-side interceptor is shown in
Figure 1-1. This figure shows a basic and successful request-response invocation cycle (that is,
no exceptions are raised).

Figure 1-1 Client-side Interceptor

In Figure 1-1, note the following events that are called out:

1. The request leaves the client and arrives at the ORB.

2. The ORB calls the client_invoke operation on the client-side interceptor. (The section
“Using Multiple Request-Level Interceptors,” explains what happens when you have multiple
client-side interceptors installed.)

3. The client-side interceptor processes the request and returns a status code to the ORB.

Entity Issuing a Request

Client-side
Interceptor

client_invoke()

client_response()

Target Object

Request

Response

ORB1

2
3

4

5

6

7

8

Execut ion F l ow

Using CORBA Request-Level Interceptors 1-7

4. If no exception is returned as a result of the client_invoke operation, the request resumes
its path toward the target object.

5. The target object processes the request and issues a response.

6. The response arrives back at the ORB, and the ORB calls the client_response operation
on the interceptor.

7. The interceptor processes the response and returns a status code to the ORB.

8. The response is sent to the client application.

Client-side Exception Handling
The client_invoke and client_response operations each return a status value that indicates
whether the client interceptor processing should continue. The interceptors may return exception
status values, which cause exception handling to take place. Table 1-1 shows what happens
depending on what status value is returned from these operations, and shows how the
interceptors, together with the ORB, handle exceptions.

1-8 Using CORBA Request-Level Interceptors

Table 1-1 Client Interceptor Return Status Values

Operation Return Status Value What Happens

client_invoke() INVOKE_NO_EXCEPTION The ORB continues normal processing of the
request toward the target, calling other
interceptors, if any.

REPLY_NO_EXCEPTION

(In version 8.0 of the Oracle
Tuxedo product, the ORB
cannot process this return value,
so do not implement this as a
return value in your
interceptors.)

The interceptor has serviced the request and no
further process toward the target is needed. The
request will be considered serviced as if the target
processed it. Thus, the ORB short circuits the
invocation and starts calling interceptors back
towards the client. The client_response
operation is not called on the same interceptor, but
this operation on any previously invoked
interceptor is called.

REPLY_EXCEPTION The interceptor returns an exception to the ORB.
The ORB then calls each previous client-side
interceptors’ exception_occurred operation.
The exception_occurred method gives these
previous interceptors an opportunity to clean up
state before the ORB returns an exception back to
the client application. Thus, the ORB short
circuits the invocation, and the invocation is now
complete. For more information about the
exception_occurred method, see the section
“The exception_occurred Method” on page 1-12.

client_response() RESPONSE_NO_EXCEPTION The ORB continues normal processing of the
request toward the client, calling other
interceptors, if any.

RESPONSE_EXCEPTION The interceptor passes an exception back to the
ORB, overriding any previous result of the
request. The ORB invokes the
exception_occurred method on each
previous interceptor back towards the client, then
returns an exception to the client application.

Execut ion F l ow

Using CORBA Request-Level Interceptors 1-9

Target-side Execution
As on the client side, a target-side interceptor is called twice during a request-response cycle.
Target-side interceptors inherit from the TargetRequestInterceptor class, which includes the
following operations:

target_invoke()—called when the request arrives at the ORB that is part of the target
object process.

target_response()—called when the response is sent back to the client.

The flow of execution of a CORBA application that uses a target-side interceptor is shown in
Figure 1-2. This figure shows a basic and successful request-response invocation cycle (that is,
no exceptions are raised).

Figure 1-2 Target-side Interceptor

Target Object

Target-side
Interceptor

target_invoke()

target_response()

Entity Making
a Request

Response

Request

ORB

1

4

5

8

6
7

3
2

1-10 Using CORBA Request-Level Interceptors

In Figure 1-2, note the following events that are called out:

1. The client request arrives at the ORB.

2. The ORB calls the target_invoke operation on the target-side interceptor. (The section
“Using Multiple Request-Level Interceptors,” explains what happens when you have multiple
target-side interceptors installed.)

3. The target-side interceptor processes the request and returns a status code to the ORB.

4. If no exception is raised during the execution of the target_invoke operation, the request
resumes its path toward the target object.

5. The target object processes the request and issues a response.

6. The target-side ORB calls the target_response operation on the interceptor.

7. The interceptor processes the response and returns a status code to the ORB.

8. The response is sent to the client application.

Target-side Exception Handling
Table 1-2 shows what happens to an invocation on the target side depending on what status values
are returned by the target_invoke and target_response operations, explaining what
happens when exceptions are thrown.

Execut ion F l ow

Using CORBA Request-Level Interceptors 1-11

Table 1-2 Target Interceptor Return Status Values

Operation Return Status Value What Happens

target_invoke() INVOKE_NO_EXCEPTION The ORB continues normal processing of the
request toward the target (the object
implementation), calling other interceptors, if any.

REPLY_NO_EXCEPTION

(In version 8.0 of the Oracle
Tuxedo product, the ORB
cannot process this return value,
so do not implement this as a
return value in your
interceptors.)

The interceptor has serviced the request and no
further process toward the target is needed. The
request will be considered serviced as if the target
processed it. Thus, the ORB short circuits the
invocation and starts calling interceptors back
towards the client. The target_response
operation is not called on the same interceptor, but
this operation on any previously invoked
interceptor is called.

REPLY_EXCEPTION The interceptor returns an exception to the ORB.
The ORB then calls each previous target-side
interceptors’ exception_occurred operation.
The exception_occurred method gives these
previous interceptors an opportunity to clean up
state before the ORB returns an exception back to
the client ORB. Thus, the target ORB short
circuits the invocation, and the invocation is now
complete. For more information about the
exception_occurred method, see the section
“The exception_occurred Method” on page 1-12.

target_response() RESPONSE_NO_EXCEPTION The ORB continues normal processing of the
request toward the client, calling other
interceptors, if any.

RESPONSE_EXCEPTION The interceptor passes a new exception back ORB,
overriding any previous result of the request.
Instead of calling the target_response
operation for interceptors on the way back to the
client, the ORB calls the
exception_occurred operation on those
interceptors instead.

1-12 Using CORBA Request-Level Interceptors

The exception_occurred Method
Every interceptor has the exception_occurred method, which the ORB may call under the
following circumstances:

The ORB has found an internal problem; for example, an operating system resource error
or a communication problem.

A different interceptor has set an exception (rather than an exception being generated by
the ORB or the method). For example, the ORB is calling Interceptors A and B,
respectively. Interceptor A has set an exception, so the ORB then calls the
exception_occurred method on Interceptor B instead of the client_response or
target_response methods. Your interceptor can take advantage of this behavior to
examine both the context in which the response containing the exception is being
processed and the actual value of the exception without reading the exception from the
DataInputStream structure.

The client application is using a deferred synchronous DII invocation on a Request object
and then releases the Request object. In this case no response is delivered to the client.

When one of the preceding situations has occurred, calling the exception_occurred method is
an alternative to calling the client_response or target_response methods; however, the
effect is essentially the same in that the client invocation is complete.

For more information about keeping track of requests, see the section “Implementing the
Interceptor’s Response Operation” on page 2-5.

About Short-circuit Behavior
As mentioned earlier, an interceptor can short-circuit a client request by servicing the request
itself or by returning an exception. In either case, the client request is never actually serviced by
the target object.

This short-circuit behavior works only in the client_invoke or target_invoke methods. It
doesn’t apply to the client_response or target_response methods.

Using Multiple Request-Level Interceptors
Multiple request-level interceptors are installed in a queue such that the ORB can execute one
after the other in a sequential order. The ORB gives each request-level interceptor the request in
succession until there are no more request-level interceptors left in the queue to execute. If all
interceptors indicate success, the request is processed. The ORB delivers the resulting response

Using Mul t ip l e Reques t-Leve l In te rcepto rs

Using CORBA Request-Level Interceptors 1-13

to the transport in the client case, or to the object implementation in the target case. The ORB
executes the interceptors servicing a response in the reverse order than that of servicing a request.

When an interceptor does not indicate success, a short circuit response results. This short circuit
can be performed by the client_invoke or target_invoke operations. The status returned
from the interceptor tells the ORB that the interceptor itself has decided to respond to the request
with an exception, rather than to allow the target object to handle the request. (An interceptor’s
client_response or target_response operation cannot perform any short-circuit behavior,
but it can replace the target response.)

Each interceptor is normally unaware of the other interceptors, unless they explicitly share
information. This independent programming model is preserved by the execution semantics with
regards to short circuits: When an interceptor indicates that a response should be short-circuited
and not reach its intended destination (which is the transport on the client side, and the object
implementation on the target side), the response circulates back through the interceptors through
which it has successfully passed. For example, if Interceptor A returns the status value
INVOKE_NO_EXCEPTION after processing a client_invoke operation, expecting the request to
be delivered, and the next Interceptor, B, denies the request with an exception, that exception gets
put into the response and is delivered to Interceptor A’s exception_occurred operation. The
analogous execution model on the target side is in effect also.

Figure 1-3 shows the sequence of execution when multiple client-side interceptors are installed
on an ORB. (A similar series of operations occur with multiple target-side interceptors.)

1-14 Using CORBA Request-Level Interceptors

Figure 1-3 Multiple Interceptors on an ORB

In Figure 1-3, note the following events that are called out:

1. The client request arrives in the ORB, and the ORB calls Interceptors A through D in
sequence.

2. The request goes to the target object.

3. The target object processes the request and returns a response.

4. The response arrives back at the ORB with the client-side interceptors. The ORB then calls
each of the registered interceptors in a sequence that’s the reverse of the order in which they
were called when the request went out.

5. The response arrives back at the client application.

Entity Making a Request

 Interceptor A

Target Object

Request

Response

ORB

4

5

 Interceptor B

 Interceptor C

 Interceptor D

2

1

3

Using Mul t ip l e Reques t-Leve l In te rcepto rs

Using CORBA Request-Level Interceptors 1-15

Multiple Client-side Interceptors
When the ORB receives a request, the ORB calls each client-side interceptor’s client_invoke
operation in turn. If the return value INVOKE_NO_EXCEPTION is returned from each
client_invoke operation (the normal case), the resulting request is marshaled into a message
by the ORB and sent to the target object.

Under the following circumstances, instead of calling the client_response operation on
remaining interceptors back towards the client, the ORB calls the exception_occurred on
those interceptors, and then returns an exception back to the client application:

The return value from any client_invoke operation is REPLY_EXCEPTION.

In this instance, the ORB ceases to propagate the request to remaining interceptors or to
the transport. The ORB thus short-circuits the request.

The return value from any client_response operation is RESPONSE_EXCEPTION.

In this instance, the interceptor passes an exception back to the ORB, overriding any
previous result of the request.

Multiple Target-side Interceptors
As with the client-side interceptor processing, the ORB calls each target-side interceptor’s
target_invoke operation in succession. If the return value INVOKE_NO_EXCEPTION is returned
from each target_invoke operation, the request is passed onto the target object.

Under the following circumstances, instead of calling the target_response operation on
remaining interceptors back towards the client, the ORB calls the exception_occurred on
those interceptors, and then returns an exception back towards the client application:

The return value from any target_invoke operation is REPLY_EXCEPTION.

In this instance, the ORB ceases to propagate the request to any remaining interceptors and
the target object. At this point the ORB returns a response to the client ORB, and the target
ORB short-circuits the request.

The return value from any target_response operation is RESPONSE_EXCEPTION.

In this instance, the interceptor passes an exception back to the ORB, overriding any
previous result of the request.

1-16 Using CORBA Request-Level Interceptors

Interceptors and Meta-Operations
Meta-operations are operations that support the CORBA Object interface, such as is_a,
get_interface, and non_existent. Some meta-operations can be performed by the ORB
without issuing an invocation, but other operations sometimes need to invoke the object; namely,
the is_a, get_interface, and non_existent methods. These operations can thus trigger
interceptors.

The CORBA-specified language binding of these operations converts the operation names from
the names defined in IDL to the following:

_is_a

_interface

_non_existent (or _not_existent)

If you are implementing a security-based interceptor, be aware of this behavior because the ORB
may invoke these operations as part of a client request. You typically should avoid the situation
where an interceptor permits only a specific set of client requests to be sent to a target object, but
fails to take these meta-operations into account.

Using CORBA Request-Level Interceptors 2-1

C H A P T E R 2

Developing CORBA Request-Level
Interceptors

Developing a CORBA request-level interceptor typically involves the following steps:

Step 1: Identify the Interfaces of Your CORBA Application

Also identify the machines on which you plan to deploy the interceptors.

Step 2: Write the Interceptor Implementation Code

Step 3: Create the Interceptor Header File

Step 4: Build the Interceptor

Step 5: Test the Interceptor

The preceding steps are usually iterative. For example, the first time you build and test your
interceptor, you might have only the most basic code in the interceptor that merely verifies that
the interceptor is running. With subsequent builds and tests, you gradually implement the full
functionality of the interceptor.

The sections that follow explain each of these steps in detail, using the sample interceptors
packaged with the Oracle Tuxedo software for examples.

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code

2-2 Using CORBA Request-Level Interceptors

samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Step 1: Identify the Interfaces of Your CORBA Application
Deploying an interceptor on a given machine constitutes a significant overhead because that
interceptor will be invoked every time any application on that machine issues (in the case of a
client-side interceptor) or receives (target-side interceptor) a request. Therefore, any interceptor
you create must be well-matched to those applications.

For example, a security interceptor typically needs to know about what kinds of requests are of
concern, and what kinds of data are being handled in the request.

Any interceptor that deals with specific requests needs to be able to extract the interface
repository ID from the request. With that interface knowledge, the interceptor then has a way of
knowing what kind of data is in the request, and can then handle that data in a request-specific
fashion.

In addition, if a request is sent that is not of interest, the interceptor needs to be able to pass the
request through quickly and efficiently.

The PersonQuery example described in Chapter 4, “PersonQuery Sample Application,” uses an
interceptor that determines whether the user of the PersonQuery client application can receive
addresses. If the identity of the user matches specific criteria, the interceptor allows the full
address number to be returned to the client. If no match exists, the interceptor returns only the
string of x characters to the log file in place of the address.

Step 2: Write the Interceptor Implementation Code
To implement an interceptor:

For your first pass on implementing an interceptor, keep it simple. For example, you might
decide for each function member to implement a statement that prints a message to a log
file. This would simply verify that the interceptor is properly built, registered, and running.
Once you know your interceptor is working properly, you can iteratively add code until
you have all the functionality you need.

Step 2 : Wr i te the In te rcepto r Implementat i on Code

Using CORBA Request-Level Interceptors 2-3

If you are planning to deploy client- and target-side interceptors to implement a specific
piece of functionality, you can implement both interceptors in a single source file. Then
when you build and deploy the interceptors, you can configure them separately on the
client- and target-side machines if you desire. The sample interceptors provided with the
Oracle Tuxedo software are done this way.

The topics that follow discuss implementation considerations that may be typical of many
interceptors. Examples from the InterceptorData interceptors, which are described in Chapter 7,
“InterceptorData Sample Interceptors,” are provided.

Starting the Implementation File
You can use the code fragments included in Appendix A as a place to start implementing your
interceptor. You may use the code included in Appendix A, or you may copy the following starter
files available at the WebLogic Enterprise Developer Center on the Oracle Web site:

For information about getting these starter files from the WebLogic Enterprise Developer Center,
see the Release Notes.

You can start your interceptor implementation using the sample interceptor code provided in
Appendix A, where YourInterceptor represents the name of the interceptor you are
implementing. The ORB will always pass nil references for the ServiceContextList and
CORBA::DataOutputStream parameters. You should not use or reference those parameters.
You should not test those parameters for nil because this restriction may change in a future
version.

Initializing the Interceptor at Run Time
All interceptors are instantiated when the ORB is initialized. At no other time are request-level
interceptors instantiated. As part of initializing, the interceptor’s initialization routine must
instantiate an instance of an implementation for a client interceptor, or a target interceptor, or
both, depending upon what the interceptor intends to support. As mentioned earlier, a single

File Name Description

intercep.h Interceptor header starter file. The contents of this file, and
instructions for using it, are in the section “Step 3: Create the
Interceptor Header File” on page -7.

intercep.cpp Interceptor implementation starter file.

2-4 Using CORBA Request-Level Interceptors

shareable image can support both the client-side and target-side interceptors. The instances of any
interceptor instantiated are then returned from the initialization routine and registered with the
ORB run time.

The following code fragment is from the InterceptorData interceptor, and shows the declaration
of the initialization operation invoked by the client-side ORB when that ORB is initialized:

void InterceptorDataClientInit(
 CORBA::ORB_ptr TheORB,
 RequestLevelInterceptor::ClientRequestInterceptor ** ClientPtr,
 RequestLevelInterceptor::TargetRequestInterceptor ** TargetPtr,
 CORBA::Boolean * RetStatus)

The following code fragment shows the statements to instantiate the InterceptorData client
interceptor class. Note that this fragment uses a class named tracker, which is used for keeping
track of each incoming client request so that it can be matched with the response returned by the
target object. The tracker class is described in the section “Identifying Operations in the Request”
on page -5.

ClientInterceptorData * client = new ClientInterceptorData(TheORB, tracker);
 if (!client)
 {
 tmpfile << "InterceptorDataClientInit: Client alloc failed"
 << endl << endl;
 *RetStatus = CORBA_FALSE;
 delete tracker;
 return;
 }

The following code fragment shows the statements to return the interceptor class to the ORB:

*ClientPtr = client;

*TargetPtr = 0;

*RetStatus = CORBA_TRUE;

return;

Obtaining the Interface Name from a Request
If you have an interceptor that works with specific interfaces or requests, the interceptor needs a
way to extract the interface ID associated with a request so that the interceptor can identify it and
thus know how to handle the data in the request. For example, the InterceptorData interceptor
manipulates the request parameters sent in requests from the PersonQuery application. To
manipulate the request parameters, the interceptor needs to know which request is being sent.

Step 2 : Wr i te the In te rcepto r Implementat i on Code

Using CORBA Request-Level Interceptors 2-5

The following code fragment from the InterceptorData sample shows the interface ID extracted
from the RequestContext structure:

if (strcmp(request_context.interface_id.in(),

 PersonQuery::_get_interface_name()) != 0)

 return ret_status;

Identifying Operations in the Request
Using the extracted interface ID, the InterceptorData sample uses a simple switch statement to
identify the operation in the client request. That way, the interceptor will know what do with the
request parameters contained in the request.

The following code fragment shows the switch statement that checks for either the Exit
operation or the operation to query the database for a person by name. Note the use of the parser
object, which extracts operations from the request retrieved from the tracker object.

m_outfile << “ Operation: “ << request_context.operation << endl;
 PQ parser;
 PQ::op_key key = parser.MapOperation(request_context.operation.in());
 switch (key)
 {
 default:
 m_outfile << “ ERROR: operation is not member of “
 << request_context.interface_id.in() << endl;
 excep_val = new CORBA::BAD_OPERATION();
 return Interceptors::REPLY_EXCEPTION;

 case PQ::Exit:
 m_outfile << endl;
 return ret_status;

 case PQ::ByPerson:
 {
 PersonQuery::Person per;
 parser.GetByPerson(request_arg_stream, &per);
 m_outfile << “ Parameters:” << endl;
 m_outfile << per << endl;
 }
 break;

Implementing the Interceptor’s Response Operation
Extracting an interface ID out of a client request is fairly straightforward. However, it’s not quite
as simple to do that with a target response. If an interceptor needs to know what interface and

2-6 Using CORBA Request-Level Interceptors

operation is associated with the response it receives from the ORB, it needs to have special logic
for tracking requests. It is the interceptor’s responsibility to track requests coming from the client.

The InterceptorData samples implement a language object, called Tracker, that keeps a record
of the target-bound requests, and then matches the target responses to them when those responses
arrive back at the interceptor.

The client_response and target_response operations on the InterceptorData samples
extract interface and operation information from the Tracker object when responses are returned
from the target.

The following InterceptorData code fragment extracts the request associated with a response:

RequestInfo * req_info = m_tracker->CompleteRequest(reply_context);
 if (!req_info)
 {
 m_outfile << “ unable to find request for this reply (must not be one
 we care about)” << endl << endl;
 return Interceptors::RESPONSE_NO_EXCEPTION;
 }

 //
 // This is the interface we are expecting. Now identify the operation
 // being invoked, so we can parse the request parameters.
 //

 m_outfile << “ ReplyStatus: “;
 OutputReplyStatus(m_outfile, reply_context.reply_status);
 m_outfile << endl;
 m_outfile << “ Interface: “ << req_info->intf() << endl;
 m_outfile << “ Operation: “ << req_info->op() << endl;
 PQ parser;
 PQ::op_key key = parser.MapOperation(req_info->op());

Now that the interceptor has obtained the request associated with the response, the interceptor can
handle the data in the response appropriately.

Reading Parameters Out of a Data Input Stream
The following code fragment shows an example of how the InterceptorData sample places the
request parameters from a data stream into a structure. The parameter S in the following code
fragment represents a pointer to a DataInputStream structure that can be used by the interceptor
implementation to retrieve the value of the reply parameters of the PersonQuery operation. The
code encapsulated by the braces in this code fragment extracts the parameters of the response

Step 3 : C reate the In te rcepto r Header F i l e

Using CORBA Request-Level Interceptors 2-7

from the DataInputStream structure. For more information about the DataInputStream
structure, see Chapter 8, “Request-Level Interceptor API.”

void PQ::get_addr(CORBA::DataInputStream_ptr S,

 PersonQuery::Address *addr)

{

 addr->number = S->read_short();

 addr->street = S->read_string();

 addr->town = S->read_string();

 addr->state = S->read_string();

 addr->country = S->read_string();

}

Exceptions
Exceptions from interceptors returned via the excep_val parameter can only be a derived type
from the CORBA::SystemException base class. (Any other exception type that the interceptor
implementations return to the ORB is converted by the ORB to a CORBA::UNKNOWN exception,
which is passed via the excep_val parameter.) You need to map exceptions to a
CORBA::SystemException class or one of its derivatives.

Step 3: Create the Interceptor Header File
After you have created any implementation code in the interceptor implementation file, you need
to provide any data or operations as needed to the interceptor header file.

The following code example shows basic information that is required in the header file for an
interceptor implementation file that implements both client- and target-side interceptors.

This example also shows:

The include file needed for security

Target data members for security

In this code example, YourInterceptor represents the name of the interceptor you are creating.

#include <CORBA.h>
#include <RequestLevelInterceptor.h>
#include <security_c.h> //for security

class YourInterceptorClient : public virtual
RequestLevelInterceptor::ClientRequestInterceptor

2-8 Using CORBA Request-Level Interceptors

{
private:
 YourInterceptorClient() {}
 CORBA::ORB_ptr m_orb;
public:
 YourInterceptorClient(CORBA::ORB_ptr TheOrb);
 ~YourInterceptorClient() {}
 Interceptors::ShutdownReturnStatus shutdown(
 Interceptors::ShutdownReason reason,
 CORBA::Exception_ptr & excep_val);
 CORBA::String id();
 void exception_occurred (
 const RequestLevelInterceptor::ReplyContext & reply_context,
 CORBA::Exception_ptr excep_val);
 Interceptors::InvokeReturnStatus client_invoke (
 const RequestLevelInterceptor::RequestContext & request_context,
 RequestLevelInterceptor::ServiceContextList_ptr service_context,
 CORBA::DataInputStream_ptr request_arg_stream,
 CORBA::DataOutputStream_ptr reply_arg_stream,
 CORBA::Exception_ptr & excep_val);
 Interceptors::ResponseReturnStatus client_response (
 const RequestLevelInterceptor::ReplyContext & reply_context,
 RequestLevelInterceptor::ServiceContextList_ptr service_context,
 CORBA::DataInputStream_ptr arg_stream,
 CORBA::Exception_ptr & excep_val);

};

class YourInterceptorTarget : public virtual
RequestLevelInterceptor::TargetRequestInterceptor
{
private:
 YourInterceptorTarget() {}
 CORBA::ORB_ptr m_orb;
 SecurityLevel1::Current_ptr m_security_current; //for security
 Security::AttributeTypeList * m_attributes_to_get; //for security
public:
 YourInterceptorTarget(CORBA::ORB_ptr TheOrb);
 ~YourInterceptorTarget();
 Interceptors::ShutdownReturnStatus shutdown(
 Interceptors::ShutdownReason reason,
 CORBA::Exception_ptr & excep_val);
 CORBA::String id();
 void exception_occurred (
 const RequestLevelInterceptor::ReplyContext & reply_context,
 CORBA::Exception_ptr excep_val);
 Interceptors::InvokeReturnStatus target_invoke (
 const RequestLevelInterceptor::RequestContext & request_context,
 RequestLevelInterceptor::ServiceContextList_ptr service_context,

Step 4 : Bu i ld the In te rcepto r

Using CORBA Request-Level Interceptors 2-9

 CORBA::DataInputStream_ptr request_arg_stream,
 CORBA::DataOutputStream_ptr reply_arg_stream,
 CORBA::Exception_ptr & excep_val);
 Interceptors::ResponseReturnStatus target_response (
 const RequestLevelInterceptor::ReplyContext & reply_context,
 RequestLevelInterceptor::ServiceContextList_ptr service_context,
 CORBA::DataInputStream_ptr arg_stream,
 CORBA::Exception_ptr & excep_val);

};

Step 4: Build the Interceptor
Interceptors are built into shareable libraries. Therefore, the steps for building an interceptor are
platform-specific. For details about the specific commands and options used to build interceptors
on any particular platform, execute the makefile that builds the interceptor sample applications
provided with the Oracle Tuxedo software, and view the results of the build in the log file that
results from the build.

The command to build the sample interceptors is as follows:

Windows 2003

> nmake -f makefile.nt

UNIX

> make -f makefile.mk

For more information about building and running the sample interceptors provided with the
Oracle Tuxedo software, see Chapter 4, “PersonQuery Sample Application.”

Step 5: Test the Interceptor
Testing an interceptor requires you to perform the following tasks:

Register the interceptor

Boot the CORBA server application using the tmboot command

Run the CORBA client application

Check the interceptor’s log file to verify the interceptor’s behavior

For information about registering interceptors, see Chapter 3, “Deploying CORBA
Request-Level Interceptors.”

2-10 Using CORBA Request-Level Interceptors

Using CORBA Request-Level Interceptors 3-1

C H A P T E R 3

Deploying CORBA Request-Level
Interceptors

There are three administrative tasks associated with managing the registration of CORBA
request-level interceptors:

Registering an Interceptor

Unregistering an Interceptor

Changing the Order in Which Interceptors Are Called

This section explains these three tasks.

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Registering an Interceptor
You use the epifreg command to register your interceptors with an ORB. When you register an
interceptor, the interceptor is added to the end of the list of interceptors already registered with
the ORB. This is important when you have multiple interceptors registered with an ORB.

The syntax of the epifreg command for registering interceptors is the following:

3-2 Using CORBA Request-Level Interceptors

epifreg -t bea/wle -i AppRequestInterceptor \

 –p <InterceptorName> –f <FileName> –e <EntryPoint> \

 -u "DisplayName=<Administrative Name>" -v 1.0

In the preceding command line:

InterceptorName represents the name of the interceptor registered with the ORB, and the
name you choose needs to be unique among those previously registered. You use this name
for specifying the order of multiple interceptors and for unregistering an interceptor. The
FileName, EntryPoint, and DisplayName arguments that follow are associated with this
name.

FileName represents the location of the file containing the implementation of the
interceptor. This name is operating system and language dependent. This file is a sharable
image file.

EntryPoint represents a string value that is the name of the entry point for the interceptor.
This name is programming language specific. This value is the name of the initialization
function in the shareable image that creates an instance of the interceptor.

DisplayName specifies a string value used for administrative functions and other reporting
purposes. This name is strictly an administrative name.

Note: When you register an interceptor on a machine on which Oracle Tuxedo CORBA server
processes are already running, those processes will not be subject to interception. Only
those processes that are started after an interceptor is registered are subject to
interception. If you want to make sure that all CORBA server processes are subject to
interception, make sure that you register you interceptors before you boot any CORBA
server processes.

Unregistering an Interceptor
Use the epifunreg command to unregister an interceptor from an ORB. This command has the
following syntax:

epifunreg -t bea/wle -p <InterceptorName>

The argument <InterceptorName> is the same case-insensitive name specified in the epifreg
command. Unregistering an interceptor takes it out of the interceptor order.

Changing the Order in Wh ich In te rcepto rs A re Ca l led

Using CORBA Request-Level Interceptors 3-3

Changing the Order in Which Interceptors Are Called
You can see the order in which interceptors are registered, and thus called, by using the following
command:

epifregedt -t bea/wle -g –k SYSTEM/interfaces/AppRequestInterceptor

The epifregedit displays the order in which interceptors are executed when the ORB receives
a request.

You can change the order in which the interceptors are executed using the following command:

epifregedt -t bea/wle -s -k SYSTEM/interfaces/AppRequestInterceptor \
-a Selector=Order -a Order=<InterceptorName1>,<InterceptorName2>,...

Each <InterceptorName> is the case-insensitive name of the interceptor that must have been
previously registered. This command replaces the order currently in the registry. The
epifregedt command must specify every interceptor that you want to have loaded and executed
by the ORB. If an interceptor is still registered and if you do not specify its name using
epifregedt command, the interceptor is not loaded.

3-4 Using CORBA Request-Level Interceptors

Using CORBA Request-Level Interceptors 4-1

C H A P T E R 4

PersonQuery Sample Application

To understand and use the interceptor examples packaged with the Oracle Tuxedo software, you
need to build and run the PersonQuery sample application. The PersonQuery sample application
itself does not contain any interceptors; however, this application is used as the basis for the
sample interceptor applications that are described in the three chapters that follow.

This topic includes the following sections:

How the PersonQuery Sample Application Works

The OMG IDL for the PersonQuery Sample Application

Building and Running the PersonQuery Sample Application

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

4-2 Using CORBA Request-Level Interceptors

How the PersonQuery Sample Application Works
The PersonQuery sample application implements a simple database query interface. Using the
PersonQuery application, a user can get information about people in the database that match
specific search criteria, such as:

Physical characteristics, such as age, weight, hair color, eye color, or skin color

Name, address, or other details

The PersonQuery application contains the following components:

A client application, which issues requests that contain a variety of data types as
parameters. The client application accepts command line input from the user in a specific
form, packages the input according to the sample interface, and sends the appropriate
request.

When the client application receives the result of the query from the server, it will report
the number of items that were found. The user can then enter the command that displays
the result of the latest query, or specify a new query.

A server application, which contains a simple, built-in database. The server application
accesses the database to service the client request.

PersonQuery Database
The PersonQuery database in the server application contains the following information about
each person in the database:

Name

Address

U.S. Social Security number

Sex

Age

Marital status

Hobby

Date of birth

Height

How the Pe rsonQuery Sample App l i cat i on Works

Using CORBA Request-Level Interceptors 4-3

Weight

Hair color

Skin color

Eye color

Other physical characteristics

Client Application Command-line Interface
The PersonQuery sample application implements a simple command-line interface in the client
component with which the user can enter database query commands and the command to exit
from the application.

The database query commands have the following syntax:

Option? command [keyword] [command [keyword]]...

In this command syntax:

Option? is the PersonQuery command prompt.

command is one of the PersonQuery commands from Table 4-1.

keyword is one of the keywords from Table 4-1. Note the following rules on specifying
keywords:

– Compound keywords, as typically supplied for the name and address commands, must
be separated by spaces and enclosed in double-quote characters (""), as in the following
command:

Option? name "Thomas Mann"

– When specifying an address, always separate street name, city name, state or province,
country name, and other parts of the address with commas, as in the following
command:

Option? address "116 Einbahnstrasse, Frankfurt am Main, BRD"

You may specify multiple commands in a single line, as in Table 4-1:

Option? hair brown eyes blue

4-4 Using CORBA Request-Level Interceptors

Table 4-1 PersonQuery Application Commands and Keywords

Command Keyword Description

name "firstname lastname" Queries by name. Strings with spaces
must be quoted.

address "number street,
city..."

Queries by address. Strings with spaces
must be quoted. Address parts are street
number, street, town, state, and country.
Entries for street, town, state, and
country must be separated by commas.

ss xxx-xx-xxxx Queries by U.S. Social Security number.
The keyword must in the form
xxx-xx-xxxx.

sex sex Queries by sex. Choices are male,
female, and cant_tell.

age age Queries by age.

marriage status Queries by marital status. Choices are
married, single, divorced, and
not_known.

hobby hobby Queries by hobby. Choices are
who_cares, rocks, swim, tv,
stamps, photo, and weaving.

dob mm/dd/yyyy Queries by date. The keyword must be
in the form mm/dd/yyyy.

height inches Queries by height, in inches.

weight pounds Queries by weight, in pounds.

hair color Queries by hair color. Choices are
white, black, red, brown, green, yellow,
blue, gray, and unknown.

skin color Queries by skin color. Choices are
white, black, brown, yellow, green, and
red.

The OMG IDL fo r the PersonQuery Sample App l i cat ion

Using CORBA Request-Level Interceptors 4-5

The OMG IDL for the PersonQuery Sample Application
Listing 4-1 provides the OMG IDL code for the implemented in the PersonQuery sample
application.

Listing 4-1 OMG IDL Code for the PersonQuery Application Interfaces

#pragma prefix “beasys.com”

interface PersonQuery

{

enum MONTHS {Empty,Jan, Feb, Mar, Apr, May, Jun, Jul, Aug,

Sep, Oct, Nov, Dec};

struct date_ {

MONTHS Month;

short Day;

short Year;

};

typedef date_ Date;

struct addr_ {

short number;

string street;

eyes color Queries by eye color. Choices are blue,
brown, gray, green, violet, black, and
hazel.

other feature Queries by other physical features.
Choices are tattoo, limb (that is, a limb
is missing), scar, and none.

result Displays the result of last query on
output.

exit Displays bill for services rendered and
closes application.

Table 4-1 PersonQuery Application Commands and Keywords

Command Keyword Description

4-6 Using CORBA Request-Level Interceptors

string town;

string state;

string country;

};

typedef addr_ Address;

enum MARRIAGE {not_known, single, married, divorced};

enum HOBBIES {who_cares, rocks, swim, tv, stamps, photo,

weaving};

enum SEX {cant_tell, male, female};

enum COLOR {white, black, brown, yellow, red, green, blue,

gray, violet, hazel, unknown, dontcare};

enum MARKINGS {dont_care, tattoo, scar, missing_limb,

none};

struct person_ {

string name;

Address addr;

string ss;

SEX sex;

short age;

MARRIAGE mar;

HOBBIES rec;

Date dob;

short ht;

long wt;

COLOR hair;

COLOR eye;

COLOR skin;

MARKINGS other;

};

typedef person_ Person;

typedef sequence <Person> Possibles;

union reason_ switch (short)

{

case 0: string name;

case 1: Address addr;

case 2: string ss;

case 3: SEX sex;

case 4: short age;

The OMG IDL fo r the PersonQuery Sample App l i cat ion

Using CORBA Request-Level Interceptors 4-7

case 5: MARRIAGE mar;

case 6: HOBBIES rec;

case 7: Date dob;

case 8: short ht;

case 9: long wt;

case 10: COLOR hair;

case 11: COLOR eyes;

case 12: COLOR skin;

case 13: MARKINGS other;

};

typedef reason_ Reason;

exception DataOutOfRange

{

Reason why;

};

boolean findPerson (

in Person who, out Possibles hits)

raises (DataOutOfRange);

boolean findPersonByName (

in string name, out Possibles hits)

raises (DataOutOfRange);

boolean findPersonByAddress (

in Address addr, out Possibles hits)

raises (DataOutOfRange);

boolean findPersonBySS (

in string ss, out Possibles hits)

raises (DataOutOfRange);

boolean findPersonByAge (

in short age, out Possibles hits)

raises (DataOutOfRange);

boolean findPersonByMarriage (

in MARRIAGE mar, out Possibles hits)

raises (DataOutOfRange);

boolean findPersonByHobbies (

in HOBBIES rec, out Possibles hits)

raises (DataOutOfRange);

boolean findPersonBydob (

4-8 Using CORBA Request-Level Interceptors

in Date dob, out Possibles hits)

raises (DataOutOfRange);

boolean findPersonByHeight (

in short ht, out Possibles hits)

raises (DataOutOfRange);

boolean findPersonByWeight (

in long wt, out Possibles hits)

raises (DataOutOfRange);

boolean findPersonByHairColor (

in COLOR col, out Possibles hits)

raises (DataOutOfRange);

boolean findPersonBySkinColor (

in COLOR col, out Possibles hits)

raises (DataOutOfRange);

boolean findPersonByEyeColor (

in COLOR col, out Possibles hits)

raises (DataOutOfRange);

boolean findPersonByOther (

in MARKINGS other, out Possibles hits)

raises (DataOutOfRange);

void exit();

};

interface QueryFactory

{

PersonQuery createQuery (in string name);

};

Building and Running the PersonQuery Sample
Application

To build and run the PersonQuery sample application:

1. Copy the files for the PersonQuery sample application into a work directory.

2. Change the protection of the files for the PersonQuery sample application.

3. Set the environment variables.

Bui ld ing and Running the PersonQuery Sample App l i cat ion

Using CORBA Request-Level Interceptors 4-9

4. Build the CORBA client and server sample applications.

5. Start the PersonQuery client and server applications.

6. Using the client application, enter a number of commands to search the database on the server.

7. Stop the PersonQuery sample application.

Copying the Files for the PersonQuery Sample Application
The request-level interceptor sample application files are located in the following directory:

$TUXDIR\samples\corba\interceptors_cxx

To create a copy of these files so that you can build them and run them, do the following:

1. Create a working directory into which to copy the sample files.

2. Copy the interceptors_cxx samples to the working directory created in the previous step:

Windows 2003

> xcopy /s/i %TUXDIR%\samples\corba\interceptors_cxx <workdirectory>\cxx

UNIX

> cp -R $TUXDIR/samples/corba/interceptors_cxx <workdirectory>/cxx

3. Change to the working directory containing the sample files:

Windows 2003

> cd <workdirectory>\cxx

UNIX

> cd <workdirectory>/cxx

You will use the files listed and described in Table 4-2 in the PersonQuery sample application.

4-10 Using CORBA Request-Level Interceptors

Table 4-2 Files Included in the Interceptors Sample Applications

Directory File Description

app_cxx
(subdirectory under
interceptors_cxx)

Readme.txt The file that provides the latest information about
building and running the set of interceptor sample
applications.

makefile.mk The makefile for building the entire set of interceptor
sample applications (the PersonQuery application
and all the sample interceptors) on UNIX systems.

makefile.nt The makefile for building the entire set of
interceptors sample applications (the PersonQuery
application and all the sample interceptors) on
Windows 2003 systems.

makefile.inc The generic makefile that uses the macros defined in
the appropriate platform.inc file.

personquery_i.h and
personquery_i.cpp

The implementation of the PersonQuery interfaces.

personqueryc.cpp The PersonQuery client application source file.

personquerys.cpp The PersonQuery database server source file.

setenv.ksh The shell file that sets all the required environment
variables for building the entire set of interceptor
sample applications on UNIX systems.

setenv.cmd The command file that sets all the required
environment variables for building the entire set of
interceptor sample applications on Windows 2003
systems.

Bui ld ing and Running the PersonQuery Sample App l i cat ion

Using CORBA Request-Level Interceptors 4-11

data_cxx
(subdirectory under
interceptors_cxx)

InterceptorData.cpp The InterceptorData C++ source file.

InterceptorData.h The InterceptorData class definition file.

makefile.inc The generic makefile that uses the macros defined in
the appropriate platform.inc file to build the
InterceptorData interceptors.

makefile.mk The makefile that builds the InterceptorData
interceptors on UNIX systems.

makefile.nt The makefile that builds the InterceptorData
interceptors on Windows 2003 systems.

simple_cxx
(subdirectory under
interceptors_cxx)

InterceptorSimp.cpp The InterceptorSimp C++ source file.

InterceptorSimp.h The InterceptorSimp class definition file.

makefile.inc The generic makefile that uses the macros defined in
the appropriate platform.inc file to build the
InterceptorSimp interceptors.

makefile.mk The makefile that builds the InterceptorSimp
interceptors on UNIX systems.

makefile.nt The makefile that builds the InterceptorSimp
interceptors on Windows 2003 systems.

security_cxx
(subdirectory under
interceptors_cxx)

InterceptorSec.cpp The InterceptorSec C++ source file.

InterceptorSec.h The InterceptorSec class definition file.

makefile.inc The generic makefile that uses the macros defined in
the appropriate platform.inc file to build the
InterceptorSec interceptors.

makefile.mk The makefile that builds the InterceptorSec
interceptors on UNIX systems.

makefile.nt The makefile that builds the InterceptorSec
interceptors on Windows 2003 systems.

Table 4-2 Files Included in the Interceptors Sample Applications

Directory File Description

4-12 Using CORBA Request-Level Interceptors

Changing the Protection on PersonQuery Application Files
During the installation of the Oracle Tuxedo software, the sample application files are marked
read-only. Before you can edit or build the files in the PersonQuery sample application, you need
to change the protection attribute of the files you copied into your work directory, as follows.
First make sure you are in the working directory into which you copied the sample application
files.

Windows 2003

prompt>attrib -r /s *.*

UNIX

prompt>/bin/ksh

ksh prompt>chmod -R u+w *.*

common (subdirectory
under
interceptors_cxx)

app.inc The file that contains the makefile definitions for the
application configuration.

platform.inc The file that contains platform-specific make
definitions for building the set of interceptor sample
applications, where platform represents the
system platform for the machine you are using.

common.mk The file that contains makefile definitions for UNIX
systems.

makefile.inc The generic makefile that uses the macros defined in
the appropriate platform.inc file.

makefile.mk The makefile that builds the entire set of sample
application files on UNIX systems.

makefile.nt The makefile that builds the entire set of sample
application files on Windows systems.

personquery.idl The OMG IDL file that defines the interfaces for the
PersonQuery sample application.

Table 4-2 Files Included in the Interceptors Sample Applications

Directory File Description

Bui ld ing and Running the PersonQuery Sample App l i cat ion

Using CORBA Request-Level Interceptors 4-13

Setting the Environment Variables
Before building and running the PersonQuery sample application, you need to set the
environment in which the application runs. To set the environment variables and other property
settings needed to build and run the PersonQuery sample application, enter the following
command:

Windows 2003

> setenv.cmd

UNIX:

> $. ./setenv.ksh

Building the CORBA Client and Server Applications
The following command builds the PersonQuery application, creates a machine-specific
UBBCONFIG file, and loads the UBBCONFIG file:

Windows 2003

> nmake -f makefile.nt

UNIX

$ make -f makefile.mk

Note: For convenience, the makefile executed in this step builds the entire set of interceptor
samples. This includes the InterceptorSimp, InterceptorSec, and InterceptorData
interceptors as well. Details on implementing and building those interceptors, as well as
running them with the PersonQuery sample application, are provided in the chapters that
follow.

Start the PersonQuery Client and Server Applications
Start the PersonQuery sample application by entering the following command:

prompt> tmboot -y

Running the PersonQuery Sample Application
A typical usage scenario of the PersonQuery sample application involves the following steps:

1. Enter a query command for one feature, and check for number of returned items, for example:

4-14 Using CORBA Request-Level Interceptors

Option? hair brown eyes blue

2. Enter additional query data about the feature queried in the preceding step.

3. Continue queries until all the query data is narrowed down to a desirable level.

4. Enter the result command to see the final query result.

5. Start a new query cycle.

6. Enter the exit command to quit from the application.

Stopping the PersonQuery Sample Application
To stop the PersonQuery sample application, enter the following command:

prompt>tmshutdown -y

Using CORBA Request-Level Interceptors 5-1

C H A P T E R 5

InterceptorSimp Sample Interceptors

This topic includes the following sections:

How the PersonQuery Sample Interceptors Work

Registering and Running the PersonQuery Interceptors

Examining the Output of the Interceptors

Unregistering the Interceptors

Before trying out the steps described in this chapter, make sure you have completed all the steps
described in Chapter 4, “PersonQuery Sample Application.”

How the PersonQuery Sample Interceptors Work
The InterceptorSimp sample interceptor shows how the operation in a request passed to an
interceptor can be accessed via a RequestContext object. When the InterceptorSimp sample
intercepts a request, the interceptor does the following:

Writes the operation name out to a data file, but does not interpret or modify the
parameters in the request

Returns appropriate status from the interceptor methods

Assuming a successful call to the interceptor, the client invocation is passed onto the target object
and serviced in the usual way. Thus the InterceptorSimp sample interceptor shows the following:

5-2 Using CORBA Request-Level Interceptors

An implementation of a basic monitoring service, which simply tracks each operation on
the target object that has been invoked.

How an interceptor can identify the operation contained in the request by accessing the
parameters passed by the ORB to the interceptor methods.

The InterceptorSimp sample interceptor also shows two different interceptors being defined and
registered, but implemented in a single source file. In this example, the client and target
interceptors are registered separately, with the client interceptor initialized first.

Registering and Running the PersonQuery Interceptors
When you run the makefile that builds the PersonQuery sample application in Chapter 4,
“PersonQuery Sample Application,” the entire set of sample interceptors are built as well,
including the InterceptorSimp interceptor. This section describes how to register the
InterceptorSimp interceptor so that it works with PersonQuery application at run time.

To register and run the InterceptorSimp client and server interceptors:

1. Change directory to the InterceptorSimp sample directory, where workdirectory represents
the name of the directory into which you copied the interceptor sample applications in
Chapter 4, “PersonQuery Sample Application.”

Windows 2003
> cd <workdirectory>\cxx\simple_cxx

UNIX
$ cd <workdirectory>/cxx/simple_cxx

2. Register the interceptor:

Windows 2003

> nmake -f makefile.nt config

UNIX

$ make -f makefile.mk config

3. Boot the CORBA server and run the client:

Windows 2003
> cd <workdirectory>\cxx\app_cxx

> tmboot -y

> PersonQueryClient

Examin ing the Output o f the In te rcepto rs

Using CORBA Request-Level Interceptors 5-3

UNIX
> cd <workdirectory>/cxx/app_cxx

> tmboot -y

> PersonQueryClient

4. Perform any number of invocations using the PersonQuery client application, using the
command syntax described in Chapter 4, “PersonQuery Sample Application.”

5. Stop the PersonQuery application:
> tmshutdown -y

Examining the Output of the Interceptors
The output from the simple client interceptor is in files named with the following syntax:

InterceptorSimpClientxxxx.out

In the preceding syntax line, xxxx represents the process ID of the executable within which the
interceptor ran. For example, there are three InterceptorSimpClientxxx.out files; one each
for the following:

The FactoryFinder, TMFFNAME

The PersonQueryServer

The PersonQueryClient

The content of each file varies according to how the ORB interacted with the executable. For
example, target interceptors run on servers and client interceptors run on clients, so the
InterceptorSimpClient log files typically have very little output from the target interceptor, but it
has more output from the client interceptor.

Unregistering the Interceptors
After you have run the PersonQuery sample application with the InterceptorSimp sample
interceptors, you can unregister those interceptors using the following steps:

1. Shut down all running CORBA applications by entering the following command:

> tmshutdown -y

2. Unregister the interceptors.

5-4 Using CORBA Request-Level Interceptors

Unregistering the Interceptors
To unregister the InterceptorSimp client and server interceptors:

1. Change directory to the InterceptorSimp sample directory, where workdirectory represents
the name of the directory into which you copied the interceptor sample applications in
Chapter , “PersonQuery Sample Application:”

Windows 2003

> cd <workdirectory>\cxx\simple_cxx

UNIX

$ cd <workdirectory>/cxx/simple_cxx

2. Unregister the interceptors:

Windows 2003

> nmake -f makefile.nt unconfig

UNIX

$ make -f makefile.mk unconfig

Using CORBA Request-Level Interceptors 6-1

C H A P T E R 6

InterceptorSec Sample Interceptors

This topic includes the following sections:

How the PersonQuery Sample Interceptors Work

Registering and Running the PersonQuery Interceptors

Examining the Interceptor Output

Unregistering the Interceptors

Before trying out the steps described in this chapter, make sure you have completed all the steps
described in Chapter 4, “PersonQuery Sample Application.”

How the PersonQuery Sample Interceptors Work
The InterceptorSec sample interceptors show a simple client/server interceptor pair that
implement a basic security model. The InterceptorSec client-side interceptor simply logs each
client request that is handled by the ORB. The InterceptorSec target-side interceptor implements
a simple security mechanism that checks to see whether the user of the client application is
authorized to perform the operation in the request.

The InterceptorSec sample interceptors show the client and target interceptor pair initialized
through a single initialization function and implemented in a single library. Since a single
initialization function is called, the interceptor registration command registers one initialization
function and one implementation library.

6-2 Using CORBA Request-Level Interceptors

How the InterceptorSec Target-side Interceptor Works
When the target-side ORB receives a request, the ORB calls the InterceptorSec target-side
interceptor and passes the RequestContext and DataInputStream objects from the client
request.

The target-side interceptor then does the following to authorize the user of the client application
for the operation contained in the request:

1. Checks to see if the request is an invocation on the PersonQuery interface. If it is not, the
interceptor returns a INVOKE_NO_EXCEPTION.

2. If the operation contained in the request is an invocation on the PersonQuery interface, the
interceptor:

a. Obtains a reference to the SecurityCurrent object, which the interceptor then narrows.

b. Invokes the SecurityContext object, requesting the attribute list for the user of the client
application.

c. Walks through the attribute list to obtain two attributes:

d. Matches the user against the PrimaryGroupId and the AccessId. If the user successfully
matches the criteria for these two attributes, the interceptor returns
INVOKE_NO_EXCEPTION.

e. If no match is found, the interceptor returns REPLY_EXCEPTION, which prevents the
request from being sent to the target object. Instead, the ORB returns an exception to the
client application.

The sections that immediately follow discuss interceptor security topics and show code fragments
of interest from the InterceptorSec target-side interceptor.

PrimaryGroupId Identifies the client name of the user of the client application. In this
interceptor, the client name must contain either the character r or a
NULL string.

AccessId Identifies the user of the client application. In this interceptor, the
username must have the characters R, P, or N (either upper- or
lowercase).

How the Pe rsonQuery Sample In te rcepto rs Work

Using CORBA Request-Level Interceptors 6-3

Using the SecurityCurrent Object
Interceptors obtain the SecurityCurrent object from the ORB, not from the Bootstrap object. The
SecurityCurrent object available from the ORB has the API that interceptors need for obtaining
information about the client.

To obtain the SecurityCurrent object, your interceptors can invoke the
resolve_initial_references(“SecurityCurrent”) operation on the ORB. The
interceptor can then narrow the SecurityCurrent reference to a SecurityCurrentLevel1
current.

Obtaining the SecurityCurrent Object
The SecurityCurrent object is available only through the ORB, and this object’s primary
functionality is to provide CORBA server applications access to attributes related to the client
invocation.

The ORB’s resolve_initial_references(“SecurityCurrent”) method provides the
interceptor a reference to a SecurityCurrent object from which the interceptor is provided with
Level 1 Security functionality. The interceptor can obtain the attributes of the client invocation
via the get_attributes method on the SecurityCurrent object, which returns an attribute list to
the interceptor. The attribute list contains the attributes that pertain to the user of the client
application that performed the invocation being intercepted. The behavior of any and all methods
from the CORBA security service is still the same, with the exceptions noted above.

The following C++ code fragment shows obtaining the SecurityCurrent object.

try
 {
 sec_current = m_orb->resolve_initial_references("SecurityCurrent");
 }
 catch (...)
 {
 *m_outfile <<
 "ERROR: ORB::resolve_initial_references threw exception"
 << endl << endl << flush;
 excep_val = new CORBA::UNKNOWN();
 return Interceptors::REPLY_EXCEPTION;
 }
 if (CORBA::is_nil(sec_current.in()))
 {
 *m_outfile << "ERROR: No SecurityCurrent present"
 << endl << endl << flush;
 excep_val = new CORBA::NO_PERMISSION();

6-4 Using CORBA Request-Level Interceptors

 return Interceptors::REPLY_EXCEPTION;
 }

 m_security_current = SecurityLevel1::Current::_narrow(sec_current.in());
 if (!m_security_current)
 {
 *m_outfile << "ERROR: Couldn't narrow security
 current to SecurityLevel1::Current"
 << endl << endl << flush;
 excep_val = new CORBA::NO_PERMISSION();
 return Interceptors::REPLY_EXCEPTION;
 }

Creating the List of User Attributes
The code fragments in this section show how the InterceptorSec target-side interceptor creates a
list of user attributes and then walks through this list to determine if the user matches the
authorization criteria.

In the InterceptorSec sample, creating the list of attributes, then walking through them are done
in separate steps. Note that if you specify a client attribute list length of zero (0) to be returned,
the SecurityCurrent object returns all the attributes for the client.

// Get the attributes that correspond to the information that we need to
// do an authorization check:
// PrimaryGroupId (clientname of the logged in client)
// AccessId (username of the logged in client)
Security::AttributeList_var client_attr = 0;
try
{
 client_attr =
m_security_current->get_attributes(*m_attributes_to_get);

The following fragment shows creating the list:

 Security::AttributeTypeList_var attr = new Security::AttributeTypeList(2);
 if (!attr.ptr())
 {
 cout <<
 "ERROR: can't allocation security list: Out of memory"
 << endl << endl << flush;
 return;
 }
 attr.inout().length(2);
 attr[(CORBA::ULong)0].attribute_family.family_definer = 0;
 attr[(CORBA::ULong)0].attribute_family.family = 1;
 attr[(CORBA::ULong)0].attribute_type = Security::PrimaryGroupId;
 attr[(CORBA::ULong)1].attribute_family.family_definer = 0;

How the Pe rsonQuery Sample In te rcepto rs Work

Using CORBA Request-Level Interceptors 6-5

 attr[(CORBA::ULong)1].attribute_family.family = 1;
 attr[(CORBA::ULong)1].attribute_type = Security::AccessId;
 m_attributes_to_get = attr._retn();
 return;

The following fragment shows walking through the attribute list to check whether the user
matches the authorization criteria:

if (client_attr[i].attribute_type.attribute_type == Security::PrimaryGroupId)
 {
 //
 // This attribute is the client name.
 // Compare to some client name value.
 // For this example, we're going to accept anything with
 // an 'r' in it, or a NULL string. You will want to compare
 // the client name to some set of values you have authorized.
 //
 if ((strlen(value_buffer) == 0) ||
 (strchr(value_buffer, 'r') != 0))
 {
 *m_outfile << " INFO: Valid client name found: "
 << value_buffer << endl;
 clientname_ok = 1;
 }
 else
 {
 *m_outfile << " ERROR: Invalid client name found: "
 << value_buffer << endl;
 }
 }
 else if (client_attr[i].attribute_type.attribute_type == Security::AccessId)
 {
 // This attribute is the user name. We're arbitrarily
 // choosing to authorize anyone who has an 'r', 'n', or 'p'
 // in their user id. You will likely want to choose
 // some other criteria for authorization.
 //
 if ((strchr(value_buffer, 'r') != 0) ||
 (strchr(value_buffer, 'R') != 0) ||
 (strchr(value_buffer, 'P') != 0) ||
 (strchr(value_buffer, 'p') != 0) ||
 (strchr(value_buffer, 'N') != 0) ||
 (strchr(value_buffer, 'n') != 0))
 {
 *m_outfile << " INFO: Valid username found: "
 << value_buffer << endl;
 username_ok = 1;
 }

6-6 Using CORBA Request-Level Interceptors

Registering and Running the PersonQuery Interceptors
When you run the makefile that builds the PersonQuery sample application in Chapter 4,
“PersonQuery Sample Application,” the entire set of sample interceptors are built as well,
including the InterceptorSec interceptor. This section describes how to register the InterceptorSec
interceptor so that it works with PersonQuery application at run time.

To register and run the InterceptorSec client and server interceptors:

1. Change directory to the InterceptorSec sample directory, where workdirectory represents
the name of the directory into which you copied the interceptor sample applications in
Chapter , “PersonQuery Sample Application:”

Windows 2003
> cd <workdirectory>\cxx\security_cxx

UNIX
$ cd <workdirectory>/cxx/security_cxx

2. Register the interceptor:

Windows 2003
> nmake -f makefile.nt config

UNIX
$ make -f makefile.mk config

3. Boot the CORBA server and run the CORBA client:

Windows 2003
> cd <workdirectory>\cxx\app_cxx

> tmboot -y

> PersonQueryClient

UNIX
> cd <workdirectory>/cxx/app_cxx

> tmboot -y

> PersonQueryClient

4. Perform any number of invocations using the PersonQuery client application, using the
command syntax described in Chapter 4, “PersonQuery Sample Application.”

Examin ing the In te rcepto r Output

Using CORBA Request-Level Interceptors 6-7

5. Stop the PersonQuery application:
> tmshutdown -y

Examining the Interceptor Output
The InterceptorSec client and target interceptors log their output to the files named, respectively,
InterceptorSecClientxxx.out and InterceptorSecTargetxxx.out. These files contain
debugging output from the interceptors that is automatically loaded and executed by the ORB for
the PersonQuery application.

Unregistering the Interceptors
After you have run the PersonQuery sample application with the InterceptorSec sample
interceptors, you can unregister those interceptors using the following steps:

1. Shut down all running CORBA applications by entering the following command:

> tmshutdown -y

2. Change directory to the InterceptorSec sample directory, where workdirectory represents
the name of the directory into which you copied the interceptor sample applications in
Chapter , “PersonQuery Sample Application:”

Windows 2003

> cd <workdirectory>\cxx\security_cxx

UNIX

$ cd <workdirectory>/cxx/security_cxx

3. Unregister the interceptors:

Windows 2003

> nmake -f makefile.nt unconfig

UNIX

$ make -f makefile.mk unconfig

6-8 Using CORBA Request-Level Interceptors

Using CORBA Request-Level Interceptors 7-1

C H A P T E R 7

InterceptorData Sample Interceptors

This chapter describes the following two sample interceptors that are designed to be used with
the PersonQuery sample application:

InterceptorDataClient Interceptor, which is installed on the machine hosting the
PersonQuery client component.

InterceptorDataTarget Interceptor, which is installed on the machine hosting the
PersonQuery server component.

This chapter explains how each interceptor works, then shows how to build and run them with
the PersonQuery sample application.

InterceptorDataClient Interceptor
The InterceptorDataClient interceptor intercepts and logs each client application request and
reply parameters. This interceptor also allows certain operations on the PersonQuery server
application to be invoked by users of the client application who meet specific criteria. The
InterceptorDataClient interceptor implements the InterceptorDataClient interface, which
inherits from the ClientRequestInterceptor class.

The InterceptorDataClient class implements the methods as follows:

id()

This method returns the string InterceptorDataClient.

shutdown()

This method removes the request from the tracker object.

7-2 Using CORBA Request-Level Interceptors

exception_occurred()

When invoked by the ORB, this method removes the request from the tracker object.

client_invoke()

This method determines if the interface and operation are “of interest.” If the client request
is “of interest,” this method parses the request parameters and outputs the parameters to the
log file. If the client request is not “of interest,” this method simply returns.

client_response()

This method determines if the interface and operation in the request are “of interest.” If the
interface and operation are “of interest,” this method walks through the CORBA
DataInputStream parameter to obtain the reply parameters and write them to the log file.
If the interface and operation in the request are not “of interest,” this method simply
returns.

In addition, the data interceptor provides the InterceptorDataClientInit method to initialize
the client interceptor class.

InterceptorDataTarget Interceptor
The InterceptorDataTarget interceptor intercepts and logs request and reply data parameters. This
interceptor also removes sensitive data from specific reply parameters by masking the data with
x characters. The InterceptorDataTarget interceptor implements the InterceptorDataTarget
interface, which inherits from the TargetRequestInterceptor class.

The InterceptorDataTarget class implements the methods as follows:

id()

This method returns the string InterceptorDataTarget.

shutdown()

This method simply returns.

exception_occurred()

This method removes the request from the tracker object.

target_invoke()

This method determines if the interface and operation are “of interest.” If so, this method
parses the request parameters and outputs that data to the log file. If the interface and
operation in the request are not “of interest,” this method simply returns. If the operation in
the request is exit, this method returns the status value INVOKE_NO_EXCEPTION.

Implement ing the In te rcepto rData In te rcepto rs

Using CORBA Request-Level Interceptors 7-3

target_response()

This method determines if the interface and operation are “of interest.” If so, this method
walks through the DataInputStream parameter to obtain the response parameters and
output to the log file. Sensitive data items are substituted in the log. For example, a
person’s social security number will not be output to the log. If the interface and operation
in the request are not “of interest,” this method simply returns.

In addition, the data interceptor provides the InterceptorDataTargetInit method to initialize
the target interceptor class.

Implementing the InterceptorData Interceptors
Information about the code used to implement the InterceptorData interceptors is provided in
Chapter 2, “Developing CORBA Request-Level Interceptors.” Refer to that chapter for
information about how to do the following:

1. “Starting the Implementation File” on page 2-3.

2. “Initializing the Interceptor at Run Time” on page 2-3.

3. “Obtaining the Interface Name from a Request” on page 2-4.

4. “Identifying Operations in the Request” on page 2-5.

5. “Implementing the Interceptor’s Response Operation” on page 2-5.

6. “Reading Parameters Out of a Data Input Stream” on page 2-6.

Registering and Running the InterceptorData
Interceptors

When you run the makefile that builds the PersonQuery sample application in Chapter 4,
“PersonQuery Sample Application,” the entire set of sample interceptors are built as well,
including the InterceptorData interceptors. This section describes how to register the
InterceptorData interceptor so that it works with PersonQuery application at run time.

To register and run the InterceptorData client and server interceptors:

1. Change directory to the InterceptorData sample directory, where workdirectory represents
the name of the directory into which you copied the interceptor sample applications in
Chapter , “PersonQuery Sample Application:”

7-4 Using CORBA Request-Level Interceptors

Windows 2003

> cd <workdirectory>\cxx\data_cxx

UNIX

$ cd <workdirectory>/cxx/data_cxx

2. Register the interceptor:

Windows 2003

> nmake -f makefile.nt config

UNIX

$ make -f makefile.mk config

3. Boot the CORBA server and run the CORBA client:

Windows 2003

> cd <workdirectory>\cxx\app_cxx
> tmboot -y
> PersonQueryClient

UNIX

> cd <workdirectory>/cxx/app_cxx
> tmboot -y
> PersonQueryClient

4. Perform any number of invocations using the PersonQuery client application, using the
command syntax described in Chapter 4, “PersonQuery Sample Application.”

5. Stop the PersonQuery application:

> tmshutdown -y

Examining the Interceptor Output
The InterceptorData client and target interceptors log each invocation. For each PersonQuery
application session, the client interceptor creates a log file named
InterceptorDataClientxxx.out, and the target interceptor creates a log file named
InterceptorDataTargetxxx.out. This section shows sample log file data for each
interceptor.

Sample Client Interceptor Log Output

Examin ing the In te rcepto r Output

Using CORBA Request-Level Interceptors 7-5

InterceptorDataClientInit called
ClientInterceptorData::id called

ClientInterceptorData::client_invoke called
ClientInterceptorData::client_response called
 Request Id: 1
 unable to find request for this reply (must not be one we care about)

ClientInterceptorData::client_invoke called
 Request Id: 2
 Interface: IDL:beasys.com/PersonQuery:1.0
 Operation: findPerson
 Parameters:
 name: ALISTER LANCASHIRE
 address: 3 PENNY LANE
 LONDON GB UK
 ss: 999-99-9999
 sex: can't tell
 age(yrs.): 85
 marital status: single
 hobby: stamp collecting
 date-of-birth: 11/25/1913
 height(in.): 32
 weight(lbs.): 57
 hair color: unknown
 eye color: blue
 skin color: white
 other markings: missing limb

Sample Target Interceptor Log Output

InterceptorDataTargetInit called
TargetInterceptorData::id called

TargetInterceptorData::target_response called
 Request Id: 2
 ReplyStatus: GIOP::NO_EXCEPTION
 Interface: IDL:beasys.com/PersonQuery:1.0
 Operation: findPerson
 Method Result: TRUE
 Parameters:
 Maximum: 8
 Length: 8

 Item 0
 name: ALISTER LANCASHIRE
 address: 3 PENNY LANE
 LONDON GB UK
 ss: NO PRIVILEDGE

7-6 Using CORBA Request-Level Interceptors

 sex: NO PRIVILEDGE
 age (years): NO PRIVILEDGE
 marital status: NO PRIVILEDGE
 hobby: stamp collecting
 date-of-birth: NO PRIVILEDGE
 height (in.): 32
 weight (lbs.): 57
 hair color: unknown
 eye color: blue

 skin color: NO PRIVILEDGE
 other markings: missing limb

Unregistering the Interceptors
After you have run the PersonQuery sample application with the InterceptorData sample
interceptors, you can unregister those interceptors using the following steps:

1. Shut down all running CORBA applications by entering the following command:

> tmshutdown -y

2. Change directory to the InterceptorData sample directory, where workdirectory represents
the name of the directory into which you copied the interceptor sample applications in
Chapter , “PersonQuery Sample Application:”

Windows 2003

> cd <workdirectory>\cxx\data_cxx

UNIX

$ cd <workdirectory>/cxx/data_cxx

3. Unregister the interceptors:

Windows 2003

> nmake -f makefile.nt unconfig

UNIX

$ make -f makefile.mk unconfig

Using CORBA Request-Level Interceptors 8-1

C H A P T E R 8

Request-Level Interceptor API

This chapter documents the following interfaces that you use to implement request-level
interceptors:

Interceptors::Interceptor

RequestLevelInterceptor::RequestInterceptor

RequestLevelInterceptor::ClientRequestInterceptor

RequestLevelInterceptor::TargetRequestInterceptor

CORBA::DataInputStream

Each of these interfaces is a locality-constrained object. Any attempt to pass a reference outside
its locality (that is, its process), or any attempt to externalize an object supporting this interface
using the CORBA ORB object_to_string operation, results in the CORBA MARSHAL system
exception (CORBA::MARSHAL) being raised.

Reques t-Leve l In te rcepto r AP I

8-2 Using CORBA Request-Level Interceptors

Interceptor Hierarchy
Request-level interceptors are divided into two interfaces, providing separate client- and
target-side functionality. The following figure illustrates the inheritance hierarchy of the
request-level interceptors supported in the Oracle Tuxedo product.

Note on Unused Interfaces
The method signatures for operations on classes derived from the RequestLevelInterceptor
interface include parameters for the following interfaces:

RequestLevelInterceptor::DataOutputStream

RequestLevelInterceptor::ServiceContextList

In te rcepto rs : : In te rcepto r In te r face

Using CORBA Request-Level Interceptors 8-3

These interfaces are not used in the Oracle Tuxedo product. However, they are defined in the
Oracle Tuxedo product so that you do not need to recompile your CORBA application if an
implementation of these interfaces is ever provided in a future release of the Oracle Tuxedo
product. The ORB always passes a nil for the actual argument. You should not attempt to use this
argument; doing so will likely end the process with a serious error.

Interceptors::Interceptor Interface
The Interceptors::Interceptor interface is defined as the base interface of all types of
interceptors, including request-level interceptors. This interface contains the set of operations
and attributes that are supported by all types of interceptors. The Interceptors::Interceptor
interface is defined as an abstract interface; thus an instance of the interface cannot be
instantiated.

Listing 8-1 OMG IDL for the Interceptors::Interceptor Interface

//File: Interceptors.idl

#ifndef _INTERCEPTORS_IDL

#define _INTERCEPTORS_IDL

#pragma prefix "beasys.com"

module Interceptors

{

native ExceptionValue;

local Interceptor

{

readonly attribute string id; // identifier of interceptor

// called by ORB when interceptor is being shutdown

ShutdownReturnStatus shutdown(

in ShutdownReason reason,

out ExceptionValue excep_val

);

}; // locality constrained

Reques t-Leve l In te rcepto r AP I

8-4 Using CORBA Request-Level Interceptors

};

#endif /* _INTERCEPTORS_IDL */

The implementation of the operations _duplicate, _narrow, and _nil are inherited from the
implementation of the CORBA::LocalBase interface provided by the CORBA ORB in the Oracle
Tuxedo product.

Listing 8-2 C++ Declaration of the Interceptors::Interceptor Interface

#ifndef _INTERCEPTORS_H
#define _INTERCEPTORS_H

#include <string.h>
#include <CORBA.h>

class OBBEXPDLL Interceptors
{
public:
class Interceptor;
typedef Interceptor * Interceptor_ptr;

enum InvokeReturnStatus
{
INVOKE_NO_EXCEPTION,// proceed normally
REPLY_NO_EXCEPTION, // stop proceeding; start reply processing
REPLY_EXCEPTION // stop proceeding; reply with exception
};

enum ResponseReturnStatus
{

RESPONSE_NO_EXCEPTION, // proceed normally
RESPONSE_EXCEPTION

};

enum ShutdownReturnStatus
{
SHUTDOWN_NO_EXCEPTION,
SHUTDOWN_EXCEPTION
};

enum ShutdownReason
{
ORB_SHUTDOWN,

In te rcepto r : : i d

Using CORBA Request-Level Interceptors 8-5

CONNECTION_ABORTED,
RESOURCES_EXCEEDED
};

struct Version
{
CORBA::Octet major_version;
CORBA::Octet minor_version;
};

typedef Version * Version_ptr;

//+
// Abstract base interface for all Interceptors
//-
class OBBEXPDLL Interceptor : public virtual CORBA::LocalBase
{
public:

static Interceptor_ptr _duplicate(Interceptor_ptr obj);
static Interceptor_ptr _narrow(Interceptor_ptr obj);
static Interceptor_ptr _nil();
virtual ShutdownReturnStatus

shutdown(ShutdownReason reason,
CORBA::Exception_ptr & excep_val) = 0;

virtual CORBA::String id() = 0;

protected:
Interceptor();
virtual ~Interceptor();

};
};#endif /* _INTERCEPTORS_H */

Interceptor::id

Synopsis
Obtains the vendor assigned identity of the interceptor as a string value.

C++ Mapping
virtual CORBA::String id() = 0;

Parameters
None.

Reques t-Leve l In te rcepto r AP I

8-6 Using CORBA Request-Level Interceptors

Exceptions
None.

Description
The id accessor operation is used by the ORB to obtain the vendor assigned identity of the
interceptor as a string value. This attribute is used primarily for debugging and tracing of
operations on the interceptors called by the ORB.

Return Values
This operation returns a pointer to a null-terminated string containing the identity of the
interceptor as assigned by the provider of the interceptor implementation.

Interceptor::shutdown

Synopsis
Notifies an implementation of an interceptor that the interceptor is being shut down.

C++ Binding
virtual ShutdownReturnStatus

 shutdown(ShutdownReason reason,

 CORBA::Exception_ptr & excep_val) = 0;

Parameters
reason

A ShutdownReason value that indicates the reason why the interceptor is being shut
down. The following ShutdownReason values can be passed to the operation:

Status Value Description

ORB_SHUTDOWN Indicates that the ORB is being shut down.

RESOURCES_EXCEEDED Indicates that resources of the process have been
exhausted.

CONNECTION_ABORTED This exception is not reported in Oracle Tuxedo 8.0.

I n te rcepto r : : shutdown

Using CORBA Request-Level Interceptors 8-7

excep_val
A reference to an ExceptionValue in which the operation is to store any exception
raised. This parameter is valid only if a value of SHUTDOWN_EXCEPTION is returned from
the operation.
ExceptionValue is mapped to the class CORBA::Exception.

Exceptions
None.

Description
The shutdown operation is used by the ORB to notify an implementation of an interceptor that
the interceptor is being shut down. The ORB destroys the instance of the interceptor once control
is returned from the operation back to the ORB.

Return Values
SHUTDOWN_NO_EXCEPTION

Indicates that the operation has not raised an exception.

SHUTDOWN_EXCEPTION
Indicates that the operation has raised an exception. The value of the exception is stored
in the excep_val parameter.

Reques t-Leve l In te rcepto r AP I

8-8 Using CORBA Request-Level Interceptors

RequestLevelInterceptor::
RequestInterceptor Interface

The RequestLevelInterceptor::RequestInterceptor interface is the base interface of all
request-level interceptors. It inherits directly from the Interceptors::Interceptor interface.
The RequestLevelInterceptor::RequestInterceptor interface:

Contains the set of operations and attributes that are supported by all request-level
interceptors.

Is defined as an abstract interface; therefore, an instance of the interface cannot be
instantiated.

The local keyword in OMG IDL indicates that the RequestInterceptor interface is not a
normal CORBA object, so it cannot be used as such.

Listing 8-3 OMG IDL for the RequestLevelInterceptor::RequestInterceptor Interface

#ifndef _REQUEST_LEVEL_INTERCEPTOR_IDL

#define _REQUEST_LEVEL_INTERCEPTOR_IDL

#include <orb.idl>

#include <Giop.idl>

#include <Interceptors.idl>

#pragma prefix “beasys.com”

module RequestLevelInterceptor

{

local RequestInterceptor : Interceptors::Interceptor

{

void exception_occurred(

in ReplyContext reply_context,

in ExceptionValue excep_val

);

};

};

#endif /* _REQUEST_LEVEL_INTERCEPTOR_IDL */

RequestLeve l In te rcepto r : : Request In te rcepto r In te r face

Using CORBA Request-Level Interceptors 8-9

The implementation of the RequestInterceptor interface inherits from CORBA::LocalBase
rather than from CORBA::Object. CORBA::LocalBase provides an implementation of the
operations _duplicate, _narrow, and _nil, similar to those of CORBA::Object.

Listing 8-4 C++ Declaration for the RequestInterceptor Interface

#ifndef _RequestLevelInterceptor_h
#define _RequestLevelInterceptor_h

#include <CORBA.h>
#include <IOP.h>
#include <GIOP.h>
#include <Interceptors.h>

class OBBEXPDLL RequestLevelInterceptor
{
public:
class RequestInterceptor;
typedef RequestInterceptor * RequestInterceptor_ptr;

struct RequestContext
{
Interceptors::Version struct_version;
CORBA::ULong request_id;
CORBA::Octet response_flags;
GIOP::TargetAddress target;
CORBA::String_var interface_id;
CORBA::String_var operation;
RequestContext &operator=(const RequestContext &_obj);
};

typedef RequestContext * RequestContext_ptr;
typedef GIOP::ReplyStatusType_1_2 ReplyStatus;

struct ReplyContext
{
Interceptors::Version struct_version;
CORBA::ULong request_id;
ReplyStatus reply_status;
};

typedef ReplyContext * ReplyContext_ptr;

Reques t-Leve l In te rcepto r AP I

8-10 Using CORBA Request-Level Interceptors

class OBBEXPDLL RequestInterceptor :
public virtual Interceptors::Interceptor

{
public:

static RequestInterceptor_ptr
_duplicate(RequestInterceptor_ptr obj);

static RequestInterceptor_ptr
_narrow(RequestInterceptor_ptr obj);

inline static RequestInterceptor_ptr _nil() { return 0; }

virtual void
exception_occurred(const ReplyContext & reply_context,

CORBA::Exception_ptr excep_val) = 0;

protected:
RequestInterceptor(CORBA::LocalBase_ptr obj = 0) { }
virtual ~RequestInterceptor(){ }

private:
RequestInterceptor(const RequestInterceptor&) { }
void operator=(const RequestInterceptor&) { }

}; // class RequestInterceptor
#endif /* _RequestLevelInterceptor_h */

RequestContext Structure

Synopsis
Contains the information that represents the context in which a request is to be processed.

C++ Binding
struct RequestContext

 {

 Interceptors::Version struct_version;

 CORBA::ULong request_id;

 CORBA::Octet response_flags;

 GIOP::TargetAddress target;

 CORBA::String_var interface_id;

 CORBA::String_var operation;

 RequestContext &operator=(const RequestContext &_obj);

 };

RequestContex t S t ruc ture

Using CORBA Request-Level Interceptors 8-11

Members
struct_version

An indication of the version of the RequestContext that provides an indication of the
format and members. The version information is separated into the following two pieces:

request_id
An unsigned long value that specifies the identifier assigned to a request by the initiating
ORB.

response_flags
The lowest order bit of response_flags is set to 1 if a reply message is expected for this
request. If the operation is not defined as oneway, and the request is not invoked via the
DII with the INV_NO_RESPONSE flag set, response_flags will be set to \x03.
If the operation is defined as oneway, or the request is invoked via the DII with the
INV_NO_RESPONSE flag set, response_flags may be set to \x00 or \x01.
When this flag is set to \x01 for a oneway operation, receipt of a reply does not imply
that the operation has necessarily completed.

target
A discriminated union that identifies the object that is the target of the invocation. The
discriminator indicates the format in which the target addressing is presented. The
possible discriminator values are:

Version Member Description

major_version Indicates the major version value. The value of this
member is incremented anytime a change is made to the
contents or layout of a RequestContext that is not
backward compatible with previous versions.

minor_version Indicates the minor version value. The value of this
member is incremented anytime a change is made to the
contents or layout of a RequestContext that is
backward compatible with previous versions.

Reques t-Leve l In te rcepto r AP I

8-12 Using CORBA Request-Level Interceptors

interface_id
A NULL-terminated string that specifies the repository identifier assigned to the interface
of the object.

operation
A NULL-terminated string that specifies the name of the operation being requested on the
target object indicated by the target member and that supports the interface specified by
the value of the interface_id member.

Description
The RequestContext data object contains the information that represents the context in which
a request is to be processed. The context information contained in the RequestContext provides
information necessary to coordinate between the processing of a given request and its
corresponding reply.

The context information in the RequestContext structure cannot be modified by the interceptor
implementation. The ORB maintains ownership of the RequestContext and is responsible for
freeing any resources associated with the RequestContext when it has completed using it.

Discriminator Description

KeyAddr The object_key field from the transport-specific GIOP
profile (for example, from the encapsulated IIOP profile of
the IOR for the target object). This value is meaningful only
to the server and is not interpreted or modified by the client.

ProfileAddr The transport-specific GIOP profile selected for the target’s
IOR by the client ORB.

Note: In the Oracle Tuxedo 8.0 product, this discriminator
value is not supported, but is provided for future
support of GIOP 1.2.

ReferenceAddr The full IOR of the target object. The
selected_profile_index indicates the
transport-specific GIOP profile that was selected by the
client ORB.

Note: In the Oracle Tuxedo 8.0 product, this discriminator
value is not supported, but is provided for future
support of GIOP 1.2.

ReplyContex t S t ruc tu re

Using CORBA Request-Level Interceptors 8-13

ReplyContext Structure

Synopsis
Contains the information that represents the context in which a reply is to be processed.

C++ Binding
struct ReplyContext

 {

 Interceptors::Version struct_version;

 CORBA::ULong request_id;

 ReplyStatus reply_status;

 };

Members
struct_version

An indication of the version of the ReplyContext that provides an indication of the
format and members. The version information is separated into the following two pieces:

request_id
An unsigned long value that specifies the identifier assigned to a request by the initiating
ORB.

reply_status
Indicates the completion status of the associated request, and also determines part of the
reply body contents.

Version Member Description

major_version Indicates the major version value. The value of this
member is incremented anytime a change is made to the
contents or layout of a ReplyContext that is not
backward compatible with previous versions.

minor_version Indicates the minor version value. The value of this
member is incremented anytime a change is made to the
contents or layout of a ReplyContext that is backward
compatible with previous versions.

Reques t-Leve l In te rcepto r AP I

8-14 Using CORBA Request-Level Interceptors

Status Value Description

NO_EXCEPTION Indicates that the requested operation
completed successfully and that the value of the
arg_stream parameter contains the return
values of the operation.

USER_EXCEPTION Indicates that the requested operation failed
because of an exception reported by the target
object.

SYSTEM_EXCEPTION Indicates that the request operation failed
because of an exception reported either by the
target object or by the infrastructure.

LOCATION_FORWARD Indicates that the body contains an object
reference (IOR). The client ORB is responsible
for resending the original request to that
(different) object. This resending is transparent
to the client program making the request, but the
resending is not transparent to the interceptor.

LOCATION_FORWARD_PERM Indicates that the body contains an object
reference. The usage is similar to
LOCATION_FORWARD, but when used by a
server, this value also provides an indication to
the client that the client may replace the old IOR
with the new IOR. Both the old IOR and the
new IOR are valid, but the new IOR is preferred
for future use. This resending is transparent to
the client program making the request, but the
resending is not transparent to the interceptor.

NEEDS_ADDRESSING_MODE Indicates that the body contains a
GIOP::AddressingDisposition. The
client ORB is responsible for resending the
original request using the requested addressing
mode. This resending is transparent to the client
program making the request, but the resending
is not transparent to the interceptor.

Request In te rcepto r : : e xcept ion_occur red

Using CORBA Request-Level Interceptors 8-15

Description
The ReplyContext data object contains the information that represents the context in which a
reply is to be processed. The context information contained in ReplyContext provides
information necessary to coordinate between the processing of a given request and its
corresponding reply.

The context information in ReplyContext cannot be modified by the interceptor
implementation. The ORB maintains ownership of ReplyContext and is responsible for freeing
any resources associated with ReplyContext when it has completed using it.

RequestInterceptor::exception_occurred

Synopsis
Is called by the ORB to allow the interceptor to clean up any state that the interceptor might have
been managing that is specific to a request.

C++ Binding
virtual void

 exception_occurred(const ReplyContext & reply_context,

 CORBA::Exception_ptr excep_val) = 0;

Parameters
reply_context

A reference to a ReplyContext that contains information about the context in which the
reply is being performed.

excep_val
A pointer to the exception reported by the ORB or by another interceptor.

Exceptions
None.

Description
The exception_occurred operation is called on a request-level interceptor implementation in
one of three cases:

1. Another interceptor sets an exception (rather than an exception being generated by the ORB
or the method).

Reques t-Leve l In te rcepto r AP I

8-16 Using CORBA Request-Level Interceptors

2. The ORB detects an operating system or communication-related problem.

3. A client deletes a Request object that was used to initiate a deferred synchronous DII. The
exception_occurred method is called instead of the client_response or
target_response method of that interceptor. The ORB calls the exception_occurred
method to allow the interceptor implementation to clean up any state that it might have been
managing that is specific to a request.

Return Values
None.

RequestLeve l In te rcepto r : : C l i entRequest In te rcepto r In te r face

Using CORBA Request-Level Interceptors 8-17

RequestLevelInterceptor::
ClientRequestInterceptor Interface

This is the base interface of all request-level interceptors. It inherits directly from the
RequestLevelInterceptor::RequestInterceptor interface. The interface contains the set
of operations and attributes that are supported by all client-side request-level interceptors.

Listing 8-5 OMG IDL Definition

//File: RequestLevelInterceptor.idl

#ifndef _REQUEST_LEVEL_INTERCEPTOR_IDL
#define _REQUEST_LEVEL_INTERCEPTOR_IDL

#include <orb.idl>
#include <Giop.idl>
#include <Interceptors.idl>

#pragma prefix “beasys.com”

module RequestLevelInterceptor
{
local ClientRequestInterceptor : RequestInterceptor
{
InvokeReturnStatus

client_invoke(
in RequestContext request_context,
in ServiceContextList service_context,
in CORBA::DataInputStream request_arg_stream,
in CORBA::DataOutputStream reply_arg_stream,
out ExceptionValue excep_val

);

ResponseReturnStatus
client_response(

in ReplyContext reply_context,
in ServiceContextList service_context,
in CORBA::DataInputStream arg_stream,
out ExceptionValue excep_val
);

};
};

#endif /* _REQUEST_LEVEL_INTERCEPTOR_IDL */

Reques t-Leve l In te rcepto r AP I

8-18 Using CORBA Request-Level Interceptors

The implementation of the operations _duplicate, _narrow, and _nil are inherited indirectly
from the implementation of the CORBA::LocalBase interface provided by the CORBA ORB in
the Oracle Tuxedo product.

Listing 8-6 C++ Declaration

#ifndef _RequestLevelInterceptor_h
#define _RequestLevelInterceptor_h

#include <CORBA.h>
#include <IOP.h>
#include <GIOP.h>
#include <Interceptors.h>

class OBBEXPDLL RequestLevelInterceptor
{
public:
class ClientRequestInterceptor;
typedef ClientRequestInterceptor *

ClientRequestInterceptor_ptr;

class OBBEXPDLL ClientRequestInterceptor :
public virtual RequestInterceptor

{
public:

static ClientRequestInterceptor_ptr
_duplicate(ClientRequestInterceptor_ptr obj);

static ClientRequestInterceptor_ptr
_narrow(ClientRequestInterceptor_ptr obj);

inline static ClientRequestInterceptor_ptr
_nil() { return 0; }

virtual Interceptors::InvokeReturnStatus
client_invoke(

const RequestContext & request_context,
ServiceContextList_ptr service_context,
CORBA::DataInputStream_ptr request_arg_stream,
CORBA::DataOutputStream_ptr reply_arg_stream,
CORBA::Exception_ptr & excep_val) = 0;

virtual Interceptors::ResponseReturnStatus
client_response(

const ReplyContext & reply_context,
ServiceContextList_ptr service_context,
CORBA::DataInputStream_ptr arg_stream,
CORBA::Exception_ptr & excep_val) = 0;

Cl ientRequest In te rcepto r : : c l i en t_ invoke

Using CORBA Request-Level Interceptors 8-19

protected:
ClientRequestInterceptor(CORBA::LocalBase_ptr obj = 0) { }
virtual ~ClientRequestInterceptor(){ }

private:
ClientRequestInterceptor(const ClientRequestInterceptor&)

{ }
void operator=(const ClientRequestInterceptor&) { }

}; // class ClientRequestInterceptor
};

#endif /* _RequestLevelInterceptor_h */

ClientRequestInterceptor::client_invoke

Synopsis
Is called by the client-side ORB anytime the client application sends an invocation to a target
object.

C++ Binding
virtual Interceptors::InvokeReturnStatus

 client_invoke(

 const RequestContext & request_context,

 ServiceContextList_ptr service_context,

 CORBA::DataInputStream_ptr request_arg_stream,

 CORBA::DataOutputStream_ptr reply_arg_stream,

 CORBA::Exception_ptr & excep_val) = 0;

Parameters
request_context

A reference to a RequestContext that contains information about the context in which the
request is being performed.

service_context
A pointer to a ServiceContextList containing service context information to be sent as
part of the request to the target object.

Note: In Oracle Tuxedo 8.0, the value of this parameter is always a nil object.

Reques t-Leve l In te rcepto r AP I

8-20 Using CORBA Request-Level Interceptors

request_arg_stream
A pointer to a DataInputStream that can be used by the interceptor implementation to
retrieve the value of the parameter of the operation.
The DataInputStream contains all in and inout parameters, in the order in which they
are specified in the operation’s IDL definition, from left to right. A nil DataInputStream
indicates that no arguments exist.

reply_arg_stream
A pointer to a CORBA::DataOutputStream that can be used to populate the parameters
to be returned to the initiator of the invocation as a reply. The use of this parameter is only
valid if a status of REPLY_NO_EXCEPTION is returned.

Note: In Oracle Tuxedo 8.0, the value of this parameter is always a nil object.

excep_val
A reference to a location in which the interceptor can return an exception in order to report
an error. The use of this parameter is only valid if a status of REPLY_EXCEPTION is
returned. Note that the ORB is responsible for the memory management for the
excep_val parameter.

Exceptions
None.

Description
The client_invoke operation is called on an interceptor implementation that supports the
RequestLevelInterceptor::ClientRequestInterceptor interceptor interface. The
operation is called by the ORB anytime that an invocation is being sent to a target object,
regardless of whether the target object is in a different address space or the same address space
as the target object.

Return Values
INVOKE_NO_EXCEPTION

Indicates that the interceptor successfully performed any processing required and that the
ORB should continue processing the invocation in order to deliver it to the target object.

REPLY_NO_EXCEPTION
Indicates that the interceptor successfully performed any processing required to totally
satisfy the request. The ORB should consider the request completed and begins processing
any information in the reply_arg_stream, if any, as the return parameter values for the
request.

Note: In Oracle Tuxedo 8.0, an interceptor cannot return this status value.

Cl i entRequest In te rcep to r : : c l i ent_response

Using CORBA Request-Level Interceptors 8-21

REPLY_EXCEPTION
Indicates that the interceptor encountered an error that should result in the discontinued
processing of the request toward the target. The parameter excep_val is used to report
the exception to the ORB. The ORB calls interceptors on the way back to the client
application with the exception_occurred operation rather than with the
client_response operation. Note that the ORB is responsible for the memory
management for the excep_val parameter.

ClientRequestInterceptor::client_response

Synopsis
Is called on an interceptor implementation that supports the
RequestLevelInterceptor::ClientRequestInterceptor interface.

C++ Binding
virtual Interceptors::ResponseReturnStatus

 client_response(

 const ReplyContext & reply_context,

 ServiceContextList_ptr service_context,

 CORBA::DataInputStream_ptr arg_stream,

 CORBA::Exception_ptr & excep_val) = 0;

Parameters
reply_context

A reference to a ReplyContext that contains information about the context in which the
reply is being performed.

service_context
A pointer to a ServiceContextList containing service context information received as
a result of processing the request by the target object.
Note: In Oracle Tuxedo 8.0, the value of this parameter is always a nil object.

arg_stream
A pointer to a DataInputStream that can be used by the interceptor implementation to
retrieve the value of the reply parameters of the operation.

The following table identifies what the client_response method returns in the
DataInputStream object based on the status contained in the ReplyContext object:

Reques t-Leve l In te rcepto r AP I

8-22 Using CORBA Request-Level Interceptors

Note: Exceptions contain a string followed by any exception members. The string
contains the repository ID for the exception. The exception members are passed in the
same manner as a struct. A system exception contains two unsigned long members, a
minor code, and a completion status.

excep_val
A reference to a location in which the interceptor can return an exception in order to report
an error. The use of this parameter is only valid if a status of REPLY_EXCEPTION is
returned. Note that the ORB is responsible for the memory management for the
excep_val parameter.

Exceptions
None.

Description
The client_response operation is called on an interceptor implementation that supports the
RequestLevelInterceptor::ClientRequestInterceptor interface. The operation is
called by the ORB anytime that a reply to an invocation is being received by the initiator of the
request, regardless of whether the initiator is in a different address space or the same address
space as the target object.

Status Value Description

LOCATION_FORWARD,
LOCATION_FORWARD_PERM,
or
NEEDS_ADDRESSING_MODE

A nil DataInputStream is supplied.

NO_EXCEPTION The DataInputStream contains first any operation
return value, then any inout and out parameters in the
order in which they appear in the operation's IDL
definition, from left to right. A nil DataInputStream
indicates that no arguments exist.

USER_EXCEPTION or
SYSTEM_EXCEPTION

The DataInputStream contains the exception that was
raised by the operation.

Cl i entRequest In te rcep to r : : c l i ent_response

Using CORBA Request-Level Interceptors 8-23

Return Values
RESPONSE_NO_EXCEPTION

Indicates that the interceptor successfully performed any processing required and that the
ORB should continue processing the reply to the request to deliver it to the initiator of the
request.

RESPONSE_EXCEPTION
Indicates that the interceptor encountered an error. The parameter excep_val is used to
report the exception to the ORB. Any interceptors not yet called on the way back to the
client have their exception_occurred operation called by the ORB to notify them that
processing the request has failed.

Reques t-Leve l In te rcepto r AP I

8-24 Using CORBA Request-Level Interceptors

RequestLevelInterceptor::
TargetRequestInterceptor Interface

This is the base interface of all request-level interceptors. It inherits directly from the
RequestLevelInterceptor::RequestInterceptor interface. The interface contains the set
of operations and attributes that are supported by all target-side request-level interceptors.

Listing 8-7 OMG IDL Definition

//File: RequestLevelInterceptor.idl

#ifndef _REQUEST_LEVEL_INTERCEPTOR_IDL

#define _REQUEST_LEVEL_INTERCEPTOR_IDL

#include <orb.idl>

#include <Giop.idl>

#include <Interceptors.idl>

#pragma prefix “beasys.com”

module RequestLevelInterceptor

{

local TargetRequestInterceptor : RequestInterceptor

{

InvokeReturnStatus

target_invoke(

in RequestContext request_context,

in ServiceContextList service_context,

in CORBA::DataInputStream request_arg_stream,

in CORBA::DataOutputStream reply_arg_stream,

out ExceptionValue excep_val

);

ResponseReturnStatus

target_response(

in ReplyContext reply_context,

in ServiceContextList service_context,

RequestLeve l In te rcepto r : : Ta rgetRequest In te rcepto r In te r face

Using CORBA Request-Level Interceptors 8-25

in CORBA::DataInputStream arg_stream,

out ExceptionValue excep_val

);

};

};

#endif /* _REQUEST_LEVEL_INTERCEPTOR_IDL */

The implementation of the operations _duplicate, _narrow, and _nil are inherited indirectly
from the implementation of the CORBA::LocalBase interface provided by the CORBA ORB in
the Oracle Tuxedo product.

Listing 8-8 C++ Declaration

#ifndef _RequestLevelInterceptor_h
#define _RequestLevelInterceptor_h

#include <CORBA.h>
#include <IOP.h>
#include <GIOP.h>
#include <Interceptors.h>

class OBBEXPDLL RequestLevelInterceptor
{
public:
class TargetRequestInterceptor;
typedef TargetRequestInterceptor *

TargetRequestInterceptor_ptr;

class OBBEXPDLL TargetRequestInterceptor :
public virtual RequestInterceptor

{
public:

static TargetRequestInterceptor_ptr
_duplicate(TargetRequestInterceptor_ptr obj);

static TargetRequestInterceptor_ptr
_narrow(TargetRequestInterceptor_ptr obj);

inline static TargetRequestInterceptor_ptr
_nil() { return 0; }

virtual Interceptors::InvokeReturnStatus target_invoke(
const RequestContext & request_context,
ServiceContextList_ptr service_context,

Reques t-Leve l In te rcepto r AP I

8-26 Using CORBA Request-Level Interceptors

CORBA::DataInputStream_ptr request_arg_stream,
CORBA::DataOutputStream_ptr reply_arg_stream,
CORBA::Exception_ptr & excep_val) = 0;

virtual Interceptors::ResponseReturnStatus
target_response(

const ReplyContext & reply_context,
ServiceContextList_ptr service_context,
CORBA::DataInputStream_ptr arg_stream,
CORBA::Exception_ptr & excep_val) = 0;

protected:
TargetRequestInterceptor(CORBA::LocalBase_ptr obj = 0) { }
virtual ~TargetRequestInterceptor(){ }

private:
TargetRequestInterceptor(const TargetRequestInterceptor&)

{ }
void operator=(const TargetRequestInterceptor&) { }

}; // class TargetRequestInterceptor
};

#endif /* _RequestLevelInterceptor_h */

TargetRequestInterceptor::target_invoke

Synopsis
Is called by the target-side ORB anytime an invocation is being received by a target object.

C++ Binding
virtual Interceptors::InvokeReturnStatus

 target_invoke(

 const RequestContext & request_context,

 ServiceContextList_ptr service_context,

 CORBA::DataInputStream_ptr request_arg_stream,

 CORBA::DataOutputStream_ptr reply_arg_stream,

 CORBA::Exception_ptr & excep_val) = 0;

Parameters
request_context

A reference to a RequestContext that contains information about the context in which
the request is being performed.

Targe tRequest Inte rcepto r : : ta rge t_ invoke

Using CORBA Request-Level Interceptors 8-27

service_context
A pointer to a ServiceContextList containing service context information received as
part of the request to the target object.
In Oracle Tuxedo 8.0, the value of this parameter is always a nil object.

request_arg_stream
A pointer to a DataInputStream that can be used by the interceptor implementation to
retrieve the value of the parameter of the operation.
The DataInputStream contains all in and inout parameters, in the order in which they
are specified in the operation’s IDL definition, from left to right. A nil DataInputStream
indicates that no arguments exist.

reply_arg_stream
A pointer to a DataOutputStream that can be used to populate the parameters to be
returned to the initiator of the invocation as a reply. The use of this parameter is only valid
if a status of REPLY_NO_EXCEPTION is returned.

In Oracle Tuxedo 8.0, the value of this parameter is always a nil object.

excep_val
A reference to a location in which the interceptor can return an exception in order to report
an error. The use of this parameter is only valid if a status of REPLY_EXCEPTION is
returned. Note that the ORB is responsible for the memory management for the
excep_val parameter.

Exceptions
None.

Description
The target_invoke operation is called on an interceptor implementation that supports the
RequestLevelInterceptor::TargetRequestInterceptor interface. The operation is
called by the ORB anytime that an invocation is being received by a target object, regardless of
whether the target object is in a different address space or the same address space as the target
object.

Return Values
INVOKE_NO_EXCEPTION

Indicates that the interceptor successfully performed any processing required and that the
ORB should continue processing the invocation in order to deliver it to the target object.

REPLY_NO_EXCEPTION
Indicates that the interceptor successfully performed any processing required to totally
satisfy the request. The ORB should consider the request completed and begins processing

Reques t-Leve l In te rcepto r AP I

8-28 Using CORBA Request-Level Interceptors

any information in the reply_arg_stream, if any, as the return parameter values for the
request.

Note: In Oracle Tuxedo 8.0, an interceptor cannot return this status value.

REPLY_EXCEPTION
Indicates that the interceptor encountered an error that should result in the discontinued
processing of the request in order to deliver it to the target object. The parameter
excep_val is used to report the exception to the ORB. The ORB calls interceptors on
the way back to the client with the exception_occurred operation, rather than with the
target_response operation. Note that the ORB is responsible for the memory
management for the excep_val parameter.

TargetRequestInterceptor::target_response

Synopsis
Is called by the target-side ORB anytime that a reply to an invocation is being sent to the initiator
of the request.

C++ Binding
virtual Interceptors::ResponseReturnStatus

 target_response(

 const ReplyContext & reply_context,

 ServiceContextList_ptr service_context,

 CORBA::DataInputStream_ptr arg_stream,

 CORBA::Exception_ptr & excep_val) = 0;

Parameters
reply_context

A reference to a ReplyContext that contains information about the context in which the
reply is being performed.

service_context
A pointer to a ServiceContextList containing service context information to be sent as
a result of processing the request by the target object.
Note: In Oracle Tuxedo 8.0, the value of this parameter is always a nil object.

arg_stream
A pointer to a DataInputStream that can be used by the interceptor implementation to
retrieve the value of the reply parameters of the operation.

TargetRequest In te rcep to r : : ta rge t_response

Using CORBA Request-Level Interceptors 8-29

The following table identifies what the target_response method returns in the
DataInputStream object based on the status contained in the ReplyContext object:

Note: Exceptions contain a string followed by any exception members. The string
contains the repository ID for the exception. The exception members are passed in the
same manner as a struct. A system exception contains two unsigned long members, a
minor code, and a completion status.

excep_val
A reference to a location in which the interceptor can return an exception in order to report
an error. The use of this parameter is valid only if a status of REPLY_EXCEPTION is
returned. Note that the ORB is responsible for the memory management for the
excep_val parameter.

Exceptions
None.

Description
The target_response operation is called on an interceptor implementation that supports the
RequestLevelInterceptor::TargetRequestInterceptor interface. The operation is
called by the target-side ORB anytime that a reply to an invocation is being sent to the initiator
of the request, regardless of whether the initiator is in a different address space or the same
address space as the target object.

Status Value Description

LOCATION_FORWARD,
LOCATION_FORWARD_PERM,
or
NEEDS_ADDRESSING_MODE

A nil DataInputStream is supplied

NO_EXCEPTION The DataInputStream contains first any operation
return value, then any inout and out parameters in the
order in which they appear in the operation's IDL
definition, from left to right. A nil DataInputStream
indicates that no arguments exist.

USER_EXCEPTION or
SYSTEM_EXCEPTION

The DataInputStream contains the exception that was
raised by the operation.

Reques t-Leve l In te rcepto r AP I

8-30 Using CORBA Request-Level Interceptors

Return Values
RESPONSE_NO_EXCEPTION

Indicates that the interceptor successfully performed any processing required and that the
ORB should continue processing the reply to the request to deliver it to the initiator of the
request.

RESPONSE_EXCEPTION

Indicates that the interceptor encountered an error. The parameter excep_val is used to
report the exception to the ORB. Any interceptors not yet called on the way back to the
client have their exception_occurred operation called by the ORB in order to notify
them that processing the request has failed. Note that the ORB is responsible for the
memory management for the excep_val parameter.

AppRequestInterceptorInit

Synopsis
Instantiates and initializes client-side and target-side interceptors.

C++ Binding
typedef void (*AppRequestInterceptorInit)(

 CORBA::ORB_ptr TheORB,

 RequestLevelInterceptor::ClientRequestInterceptor ** ClientPtr,

 RequestLevelInterceptor::TargetRequestInterceptor ** TargetPtr,

 CORBA::Boolean * RetStatus);

Parameters
TheORB

A pointer to the ORB object with which the implementation of the interceptors are
associated.

ClientPtr
A pointer in which to return a pointer to the instance of the
RequestLevelInterceptor::ClientRequestInterceptor that was instantiated for
use by the ORB.

TargetPtr
A pointer in which to return a pointer to the instance of the
RequestLevelInterceptor::TargetRequestInterceptor that was instantiated for
use by the ORB.

AppRequest Inte rcepto r In i t

Using CORBA Request-Level Interceptors 8-31

RetStatus
A pointer to a location into which the interceptor implementation indicates whether the
instantiation and initialization of the interceptor was successful. A value of CORBA::TRUE
is used to indicate that instantiation and initialization of the interceptors was successful.
A value of CORBA::FALSE is used to indicate that the instantiation and initialization of the
interceptors was unsuccessful for some reason.

Exceptions
None.

Description
The AppRequestInterceptorInit function is a user-provided function that is used by the ORB
to instantiate and initialize client-side and target-side interceptors.

Return Values
None.

Reques t-Leve l In te rcepto r AP I

8-32 Using CORBA Request-Level Interceptors

CORBA::DataInputStream Interface
The abstract valuetype keywords in IDL applied to DataInputStream indicates that it is
not the same as an interface.

Listing 8-9 OMG IDL Definition

module CORBA {
//... all the rest

// Definitions used by DataInputStream
typedef sequence<any> AnySeq;
typedef sequence<boolean> BooleanSeq;
typedef sequence<char> CharSeq;
typedef sequence<octet> OctetSeq;
typedef sequence<short> ShortSeq;
typedef sequence<unsigned short> UShortSeq;
typedef sequence<long> LongSeq;
typedef sequence<unsigned long> ULongSeq;
typedef sequence<float> FloatSeq;
typedef sequence<double> DoubleSeq;

// DataInputStream - for reading data from the stream
abstract valuetype DataInputStream

{
any read_any(); // Raises NO_IMPLEMENT
boolean read_boolean();
char read_char();
octet read_octet();
short read_short();
unsigned short read_ushort();
long read_long();
unsigned long read_ulong();
float read_float();
double read_double();
string read_string ();
Object read_Object();
TypeCode read_TypeCode();
void read_any_array(inout AnySeq seq,

in unsigned long offset,
in unsigned long length);

// Raises NO_IMPLEMENT
void read_boolean_array(inout BooleanSeq seq,

in unsigned long offset,
in unsigned long length);

void read_char_array(inout CharSeq seq,

CORBA: :Data InputSt ream In te r face

Using CORBA Request-Level Interceptors 8-33

in unsigned long offset,
in unsigned long length);

void read_octet_array(inout OctetSeq seq,
in unsigned long offset,
in unsigned long length);

void read_short_array(inout ShortSeq seq,
in unsigned long offset,
in unsigned long length);

void read_ushort_array(inout UShortSeq seq,
in unsigned long offset,
in unsigned long length);

void read_long_array(inout LongSeq seq,
in unsigned long offset,
in unsigned long length);

void read_ulong_array(inout ULongSeq seq,
in unsigned long offset,
in unsigned long length);

void read_float_array(inout FloatSeq seq,
in unsigned long offset,
in unsigned long length);

void read_double_array(inout DoubleSeq seq,
in unsigned long offset,
in unsigned long length);

};
};

The implementation of CORBA::DataInputStream inherits from CORBA::ValueBase rather
than from CORBA::Object. You cannot use, for example, _duplicate, _narrow, and _nil
operations since they apply only to CORBA::Object. At this time, there is nothing of interest for
users in the CORBA::ValueBase interface.

Listing 8-10 C++ Declaration

class CORBA
{
 public:

class AnySeq {/* Normal sequence definition */};
typedef AnySeq * AnySeq_ptr;

class BooleanSeq {/* Normal sequence definition */};
typedef BooleanSeq * BooleanSeq_ptr;
static const CORBA::TypeCode_ptr _tc_BooleanSeq;

Reques t-Leve l In te rcepto r AP I

8-34 Using CORBA Request-Level Interceptors

class CharSeq {/* Normal sequence definition */};
typedef CharSeq * CharSeq_ptr;
static const CORBA::TypeCode_ptr _tc_CharSeq;

class OctetSeq {/* Normal sequence definition */};
typedef OctetSeq * OctetSeq_ptr;
static const CORBA::TypeCode_ptr _tc_OctetSeq;

class ShortSeq {/* Normal sequence definition */};
typedef ShortSeq * ShortSeq_ptr;
static const CORBA::TypeCode_ptr _tc_ShortSeq;

class UshortSeq {/* Normal sequence definition */};
typedef UShortSeq * UShortSeq_ptr;
static const CORBA::TypeCode_ptr _tc_UShortSeq;

class LongSeq {/* Normal sequence definition */};
typedef LongSeq * LongSeq_ptr;
static const CORBA::TypeCode_ptr _tc_LongSeq;

class UlongSeq {/* Normal sequence definition */};
typedef ULongSeq * ULongSeq_ptr;
static const CORBA::TypeCode_ptr _tc_ULongSeq;

class FloatSeq {/* Normal sequence definition */};
typedef FloatSeq * FloatSeq_ptr;
static const CORBA::TypeCode_ptr _tc_FloatSeq;

class DoubleSeq {/* Normal sequence definition */};
typedef DoubleSeq * DoubleSeq_ptr;
static const CORBA::TypeCode_ptr _tc_DoubleSeq;

class OBBEXPDLL DataInputStream : public virtual ValueBase
{
public:
static DataInputStream_ptr _downcast(ValueBase_ptr obj);

virtual Any * read_any (); // Raises NO_IMPLEMENT
virtual Boolean read_boolean ();
virtual Char read_char ();
virtual Octet read_octet ();
virtual Short read_short ();
virtual UShort read_ushort ();
virtual Long read_long ();
virtual ULong read_ulong ();
virtual Float read_float ();
virtual Double read_double ();
virtual Char * read_string ();

Data InputS t ream: : r ead_<pr imi t i ve>

Using CORBA Request-Level Interceptors 8-35

virtual Object_ptr read_Object ();
virtual TypeCode_ptr read_TypeCode ();

virtual void read_any_array (AnySeq & seq,
ULong offset, ULong length);
// Raises NO_IMPLEMENT

virtual void read_boolean_array(BooleanSeq & seq,
ULong offset, ULong length);

virtual void read_char_array (CharSeq & seq,
ULong offset, ULong length);

virtual void read_octet_array (OctetSeq & seq,
ULong offset, ULong length);

virtual void read_short_array (ShortSeq & seq,
ULong offset, ULong length);

virtual void read_ushort_array (UShortSeq & seq,
ULong offset, ULong length);

virtual void read_long_array (LongSeq & seq,
ULong offset, ULong length);

virtual void read_ulong_array (ULongSeq & seq,
ULong offset, ULong length);

virtual void read_float_array (FloatSeq & seq,
ULong offset, ULong length);

virtual void read_double_array (DoubleSeq & seq,
ULong offset, ULong length);

protected:
DataInputStream(){ };
virtual ~DataInputStream(){ }

private:
void operator=(const DataInputStream&) { }

 };

typedef DataInputStream * DataInputStream_ptr;
};

DataInputStream::read_<primitive>

Synopsis
Returns a value from the stream.

C++ Binding
<primitive> read_<primitive>();

Reques t-Leve l In te rcepto r AP I

8-36 Using CORBA Request-Level Interceptors

Parameters
None.

Exceptions
None.

Description
The operations to read a primitive element (<primitive>) from a DataInputStream all have
the same format. Each operation returns a value from the stream.

Note: String_var, TypeCode_var, or Object_var can be used for memory management.
Otherwise, strings must be released using the string_free() operation on the CORBA
object, and TypeCode or Object pointers must be released using the release()
operation on the CORBA object.

The primitives are the following:

AnySeq (Not implemented)
BooleanSeq

CharSeq

OctetSeq

ShortSeq

UshortSeq

LongSeq

UlongSeq

FloatSeq

DoubleSeq

Return Values
None.

DataInputStream::read_array_<primitive>

Synopsis
Returns an array of primitive values from the stream into a CORBA sequence.

Data InputS t ream: : r ead_array_<pr imi t i ve>

Using CORBA Request-Level Interceptors 8-37

C++ Binding
void read_array_<primitive>(<primitive>Seq & seq,

 ULong offset,

 ULong length);

Parameters
<primitive>Seq

A sequence of the appropriate type that will receive the array elements read.

If the sequence was not long enough to contain the additional elements, the length will be
set to the sum offset+length. (The length will not be adjusted down.)

Offset
The offset into the array to read the elements. That is, the array will have new elements
starting at array index offset up to array index offset+length-1.

Length
The number of elements of the array to be returned into the seq parameter.

Exceptions
None.

Description
The operations to read an array of primitive elements (<primitive>) from a DataInputStream
all have the same format. Each operation returns an array of primitive values from the stream into
a CORBA sequence of that same primitive type.

The primitives are the following:

AnySeq (Not implemented)
BooleanSeq

CharSeq

OctetSeq

ShortSeq

UshortSeq

LongSeq

UlongSeq

FloatSeq

DoubleSeq

Reques t-Leve l In te rcepto r AP I

8-38 Using CORBA Request-Level Interceptors

Return Values
None.

Using CORBA Request-Level Interceptors A-1

A P P E N D I X A

Starter Request-Level Interceptor Files

This appendix contains the following code that you can use as a place to start implementing your
interceptors:

Starter Implementation Code

Starter Header File Code

If you use this code, replace the string YourInterceptor with the name of the interceptor you
are implementing.

Starter Implementation Code
#if defined(WIN32)
#include <windows.h>
#endif

#include <ctype.h>

#include "YourInterceptor.h"

// Cleanup class -- suggested
class Cleanup
{

public:
Cleanup() {}
~Cleanup()
{

// <<<Fill in your code here>>>

A-2 Using CORBA Request-Level Interceptors

}
};
static Cleanup CleanupOnImageExit;

#define SECURITY_BUFFSIZE 100

#if defined(WIN32)
// suggestion for standard DLL processing

BOOL WINAPI DllMain(HANDLE hDLL,
DWORD dwReason,
LPVOID lpReserved)

{
switch(dwReason)
{
case DLL_PROCESS_ATTACH:

break;
case DLL_PROCESS_DETACH:

break;
case DLL_THREAD_ATTACH:

break;
case DLL_THREAD_DETACH:

break;
}

// Return that the operation was successful
return(TRUE);
}

#endif /* WIN32 */

/***

FUNCTION NAME: YourInterceptorInit

FUNCTIONAL DESCRIPTION:

Initialization routine called by the ORB during initialization.
This routine will create and return instances of the
RequestLevelInterceptor classes that it supports.

NOTE: An interceptor library can support more than one set of
interceptors by supplying multiple initialization entry points
(each initialization entry must be separately registered with the
ORB) Also, it is legal for only one kind of interceptor to be
supplied (i.e. only a client or only a target.)

***/
#ifdef WIN32

Star te r Imp lementat i on Code

Using CORBA Request-Level Interceptors A-3

extern "C" __declspec(dllexport) void __cdecl
#else
extern "C" void
#endif
YourInterceptorInit(

CORBA::ORB_ptr TheORB,
RequestLevelInterceptor::ClientRequestInterceptor ** ClientPtr,
RequestLevelInterceptor::TargetRequestInterceptor ** TargetPtr,
CORBA::Boolean * RetStatus)

{
// <<<Fill in your code here>>>

}

/***

FUNCTION NAME: YourInterceptorClient constructor

FUNCTIONAL DESCRIPTION:

***/
YourInterceptorClient::YourInterceptorClient(CORBA::ORB_ptr TheOrb)
{

// This next line is useful, but not absolutely necessary.

m_orb = TheOrb;

// <<<Fill in your code here>>>
}

/***

FUNCTION NAME: YourInterceptorClient::shutdown

FUNCTIONAL DESCRIPTION:

The shutdown operation is used by the ORB to notify an
implementation of an interceptor that the interceptor
is being shutdown. The ORB will destroy the instance
of the interceptor once control is returned from the
operation back to the ORB.

***/

Interceptors::ShutdownReturnStatus YourInterceptorClient::shutdown(
Interceptors::ShutdownReason reason,
CORBA::Exception_ptr & excep_val)

{
// The following lines are a suggestion only. Replace them if you wish.

A-4 Using CORBA Request-Level Interceptors

Interceptors::ShutdownReturnStatus ret_status =
Interceptors::SHUTDOWN_NO_EXCEPTION;

switch (reason)
{
case Interceptors::ORB_SHUTDOWN:

// <<<Fill in your code here>>>
break;

case Interceptors::CONNECTION_ABORTED:
// <<<Fill in your code here>>>

break;
case Interceptors::RESOURCES_EXCEEDED:

// <<<Fill in your code here>>>

break;
}
return ret_status;

}

/***

FUNCTION NAME: YourInterceptorClient::id

FUNCTIONAL DESCRIPTION:
The id accessor operation is used by the ORB to obtain
the vendor assigned identity of the interceptor as a string
value. This attribute is used primarily for debugging and
tracing of operations on the interceptors called by the ORB.

***/
CORBA::String YourInterceptorClient::id()
{

// <<<Fill in your code here>>>

// The next line is a possible implementation that is useful
return CORBA::string_dup("YourInterceptorClient");

}

/***

FUNCTION NAME: YourInterceptorClient::exception_occurred

FUNCTIONAL DESCRIPTION:

The exception_occurred operation is called on a request-level
interceptor implementation when an exception occurs.
It is called instead of the <xxx>_response
method of that interceptor. The ORB calls this operation to

Star te r Imp lementat i on Code

Using CORBA Request-Level Interceptors A-5

allow the interceptor implementation to clean-up any state
that it might have been managing that is specific to a request.

***/
void YourInterceptorClient::exception_occurred (

const RequestLevelInterceptor::ReplyContext & reply_context,
CORBA::Exception_ptr excep_val)

{
// <<<Fill in your code here>>>

}

/***

FUNCTION NAME: YourInterceptorClient::client_invoke

FUNCTIONAL DESCRIPTION:

This operation is called by the ORB anytime that an
invocation is being sent to a target object, regardless
of whether the target object is in a different address
space or the same address space as the target object.

***/
Interceptors::InvokeReturnStatus YourInterceptorClient::client_invoke (

const RequestLevelInterceptor::RequestContext & request_context,
RequestLevelInterceptor::ServiceContextList_ptr service_context,
CORBA::DataInputStream_ptr request_arg_stream,
CORBA::DataOutputStream_ptr reply_arg_stream,
CORBA::Exception_ptr & excep_val)

{
// The next line is a suggestion that works in conjunction with the last line

below

Interceptors::InvokeReturnStatus ret_status =
Interceptors::INVOKE_NO_EXCEPTION;

// <<<Fill in your code here>>>

return ret_status;
}

/***

FUNCTION NAME: YourInterceptorClient::client_response

FUNCTIONAL DESCRIPTION:

A-6 Using CORBA Request-Level Interceptors

The operation is called by the ORB anytime that a reply
to an invocation is being received by the initiator of
the request, regardless of whether the initiator is in
a different address space or the same address space as
the target object.

***/
Interceptors::ResponseReturnStatus YourInterceptorClient::client_response (

const RequestLevelInterceptor::ReplyContext & reply_context,
RequestLevelInterceptor::ServiceContextList_ptr service_context,
CORBA::DataInputStream_ptr arg_stream,
CORBA::Exception_ptr & excep_val)

{
// The next line is a suggestion that works in conjunction with the last line

below

// See the examples for other suggestions of general use

Interceptors::ResponseReturnStatus ret_status =
Interceptors::RESPONSE_NO_EXCEPTION;

// <<<Fill in your code here>>>

return ret_status;

}

/***

FUNCTION NAME: YourInterceptorTarget constructor

FUNCTIONAL DESCRIPTION:

This function constructs the target interceptor instance.
This example provides data members that could be used to
implement a security interceptor.

***/
YourInterceptorTarget::YourInterceptorTarget(CORBA::ORB_ptr TheOrb) :

m_orb(TheOrb), // suggestion
m_security_current(0), // suggestion for security interceptors
m_attributes_to_get(0) // suggestion for security interceptors

{
// <<<Fill in your code here>>>

Star te r Imp lementat i on Code

Using CORBA Request-Level Interceptors A-7

}

/***

FUNCTION NAME: YourInterceptorTarget::shutdown

FUNCTIONAL DESCRIPTION:

The shutdown operation is used by the ORB to notify an
implementation of an interceptor that the interceptor
is being shutdown. The ORB will destroy the instance
of the interceptor once control is returned from the
operation back to the ORB.

***/
Interceptors::ShutdownReturnStatus YourInterceptorTarget::shutdown(

Interceptors::ShutdownReason reason,
CORBA::Exception_ptr & excep_val)

{
// <<<Fill in your code here>>>

// The following lines are a suggestion only. Replace them if you wish.

Interceptors::ShutdownReturnStatus ret_status =
Interceptors::SHUTDOWN_NO_EXCEPTION;

switch (reason)
{
case Interceptors::ORB_SHUTDOWN:

// <<<Fill in your code here>>>
break;

case Interceptors::CONNECTION_ABORTED:
// <<<Fill in your code here>>>
break;

case Interceptors::RESOURCES_EXCEEDED:
// <<<Fill in your code here>>>
break;

}
return ret_status;

}

/***

FUNCTION NAME: YourInterceptorTarget::id

FUNCTIONAL DESCRIPTION:

A-8 Using CORBA Request-Level Interceptors

The id accessor operation is used by the ORB to obtain
the vendor assigned identity of the interceptor as a string
value. This attribute is used primarily for debugging and
tracing of operations on the interceptors called by the ORB.

***/
CORBA::String YourInterceptorTarget::id()
{

// <<<Fill in your code here>>>

// The next line is a possible implementation that is useful

return CORBA::string_dup("YourInterceptorTarget");
}

/***

FUNCTION NAME: YourInterceptorTarget::exception_occurred

FUNCTIONAL DESCRIPTION:

The exception_occurred operation is called on a request-level
interceptor implementation when an exception occurs.
It is called instead of the <xxx>_response
method of that interceptor. The ORB calls this operation to
allow the interceptor implementation to clean-up any state
that it might have been managing that is specific to a request.

***/
void YourInterceptorTarget::exception_occurred (

const RequestLevelInterceptor::ReplyContext & reply_context,
CORBA::Exception_ptr excep_val)

{
// <<<Fill in your code here>>>

}

/***

FUNCTION NAME: YourInterceptorTarget::target_invoke

FUNCTIONAL DESCRIPTION:

The operation is called by the ORB anytime that an
invocation is being received by a target object,
regardless of whether the target object is in a
different address space or the same address space
as the target object.

Star te r Imp lementat i on Code

Using CORBA Request-Level Interceptors A-9

***/
Interceptors::InvokeReturnStatus YourInterceptorTarget::target_invoke (

const RequestLevelInterceptor::RequestContext & request_context,
RequestLevelInterceptor::ServiceContextList_ptr service_context,

CORBA::DataInputStream_ptr request_arg_stream,
CORBA::DataOutputStream_ptr reply_arg_stream,
CORBA::Exception_ptr & excep_val)

{
// The next line is a suggestion that works in conjunction with the last line

below

Interceptors::InvokeReturnStatus ret_status =
Interceptors::INVOKE_NO_EXCEPTION;

// <<<Fill in your code here>>>

return ret_status;

}

/***

FUNCTION NAME: YourInterceptorTarget::target_response

FUNCTIONAL DESCRIPTION:

The operation is called by the ORB anytime that a reply
to an invocation is being sent to the initiator of the
request, regardless of whether the initiator is in a
different address space or the same address space as
the target object.

***/
Interceptors::ResponseReturnStatus YourInterceptorTarget::target_response (

const RequestLevelInterceptor::ReplyContext & reply_context,
RequestLevelInterceptor::ServiceContextList_ptr service_context,
CORBA::DataInputStream_ptr arg_stream,
CORBA::Exception_ptr & excep_val)

{
// The next line is a suggestion that works in conjunction with the last line

below

Interceptors::ResponseReturnStatus ret_status =
Interceptors::RESPONSE_NO_EXCEPTION;

A-10 Using CORBA Request-Level Interceptors

// <<<Fill in your code here>>>

return ret_status;

}

/***

FUNCTION NAME: YourInterceptorTarget destructor

FUNCTIONAL DESCRIPTION:

***/
YourInterceptorTarget::~YourInterceptorTarget()
{

// <<<Fill in your code here>>>

}

Starter Header File Code
#include <CORBA.h>
#include <RequestLevelInterceptor.h>
#include <security_c.h> //used with security

class YourInterceptorClient : public virtual
RequestLevelInterceptor::ClientRequestInterceptor
{
private:

YourInterceptorClient() {}
CORBA::ORB_ptr m_orb;

public:
YourInterceptorClient(CORBA::ORB_ptr TheOrb);
~YourInterceptorClient() {}
Interceptors::ShutdownReturnStatus shutdown(

Interceptors::ShutdownReason reason,
CORBA::Exception_ptr & excep_val);

CORBA::String id();
void exception_occurred (

const RequestLevelInterceptor::ReplyContext & reply_context,
CORBA::Exception_ptr excep_val);

Interceptors::InvokeReturnStatus client_invoke (
const RequestLevelInterceptor::RequestContext & request_context,
RequestLevelInterceptor::ServiceContextList_ptr service_context,

Star te r Header F i l e Code

Using CORBA Request-Level Interceptors A-11

CORBA::DataInputStream_ptr request_arg_stream,
CORBA::DataOutputStream_ptr reply_arg_stream,
CORBA::Exception_ptr & excep_val);

Interceptors::ResponseReturnStatus client_response (
const RequestLevelInterceptor::ReplyContext & reply_context,
RequestLevelInterceptor::ServiceContextList_ptr service_context,
CORBA::DataInputStream_ptr arg_stream,
CORBA::Exception_ptr & excep_val);

};

class YourInterceptorTarget : public virtual
RequestLevelInterceptor::TargetRequestInterceptor
{
private:

YourInterceptorTarget() {}
CORBA::ORB_ptr m_orb;
SecurityLevel1::Current_ptr m_security_current; //used with security
Security::AttributeTypeList * m_attributes_to_get; //used with security

public:
YourInterceptorTarget(CORBA::ORB_ptr TheOrb);
~YourInterceptorTarget();
Interceptors::ShutdownReturnStatus shutdown(

Interceptors::ShutdownReason reason,
CORBA::Exception_ptr & excep_val);

CORBA::String id();
void exception_occurred (

const RequestLevelInterceptor::ReplyContext & reply_context,
CORBA::Exception_ptr excep_val);

Interceptors::InvokeReturnStatus target_invoke (
const RequestLevelInterceptor::RequestContext & request_context,
RequestLevelInterceptor::ServiceContextList_ptr service_context,
CORBA::DataInputStream_ptr request_arg_stream,
CORBA::DataOutputStream_ptr reply_arg_stream,
CORBA::Exception_ptr & excep_val);

Interceptors::ResponseReturnStatus target_response (
const RequestLevelInterceptor::ReplyContext & reply_context,
RequestLevelInterceptor::ServiceContextList_ptr service_context,
CORBA::DataInputStream_ptr arg_stream,
CORBA::Exception_ptr & excep_val);

};

A-12 Using CORBA Request-Level Interceptors

