
Oracle® Endeca Information Discovery

Integrator Server Guide

Version 2.4.0 • November 2012

Copyright and disclaimer
Copyright © 2003, 2012, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No
other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including applications that may
create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software
or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

Teragram Language Identification Software Copyright © 1997-2005 Teragram Corporation. All rights reserved.

Oracle® Endeca Information Discovery : Integrator Server Guide Version 2.4.0 • November 2012

Oracle Endeca Supplement to Clover Server
This supplement provides specific information about support and limitations when using the Clover Server as
the Oracle Endeca Integrator Server.

Supported Containers

Oracle Endeca Integrator Server is only supported in the following containers:

• Apache Tomcat

• Oracle WebLogic

While the Clover Server allows installation to other containers, installation into these containers is not
supported for Oracle Endeca Integrator Server.

Oracle® Endeca Information Discovery : Integrator Server Guide Version 2.4.0 • November 2012

iii

Table of Contents
1. What is CloverETL Server .. 1
2. Installation ... 3

Evaluation Server .. 3
Enterprise Server .. 4

Apache Tomcat .. 5
Jetty ... 8
IBM Websphere .. 10
Glassfish / Sun Java System Application Server .. 13
JBoss .. 15
Oracle WebLogic Server .. 17
Possible issues during installation .. 19

Memory Settings ... 23
Upgrading Server to Newer Version ... 23

3. Server Side Job files - Sandboxes ... 25
Referencing files from the ETL graph or Jobflow ... 26
Sandbox Content Security and Permissions .. 26
Sandbox Content ... 27
Job config properties ... 32

4. Viewing Job Runs - Executions History ... 35
5. Users and Groups .. 38

LDAP authentication .. 38
Web GUI section Users .. 40
Web GUI section Groups ... 43

6. Scheduling ... 45
Timetable Setting .. 45
Tasks .. 48

7. Graph Event Listeners .. 55
Graph Events .. 55
Listener ... 56
Tasks .. 56
Use cases ... 60

8. Jobflow Event Listeners .. 63
Jobflow Events ... 63
Listener ... 64
Tasks .. 64

9. JMS messages listeners ... 65
Optional Groovy code .. 66
Message data available for further processing ... 66

10. Universal event listeners ... 69
Groovy code ... 69

11. Manual task execution .. 70
12. File event listeners ... 71

Observed file .. 71
File Events ... 72
Check interval, Task and Use cases .. 73

13. WebDAV ... 74
WebDAV clients ... 74
WebDAV authentication/authorization .. 74

14. Simple HTTP API ... 76
Operation help .. 76
Operation graph_run .. 77
Operation graph_status ... 77
Operation graph_kill .. 78
Operation server_jobs .. 79
Operation sandbox_list ... 79

CloverETL Server

iv

Operation sandbox_content ... 79
Operation executions_history ... 79
Operation suspend ... 81
Operation resume .. 81
Operation sandbox_create ... 82
Operation sandbox_add_location .. 82
Operation sandbox_remove_location ... 82
Cluster status .. 83

15. JMX mBean .. 84
JMX configuration .. 84
Operations .. 87

16. SOAP WebService API ... 88
SOAP WS Client .. 88
SOAP WS API authentication/authorization ... 88

17. Launch Service .. 89
Launch Service Overview ... 89
Deploying Graph in Launch Service ... 89
Designing the ETL graph/Jobflow for Launch Service ... 90
Configuring the job in CloverETL Server web GUI ... 90
Sending the Data to Launch Service ... 94
Results of the Graph Execution ... 94

18. Configuration .. 96
Config Sources and Their Priorities .. 96
Examples of DB Connection Configuration .. 97

Embedded Apache Derby ... 97
MySQL ... 98
DB2 .. 98
Oracle .. 100
MS SQL .. 101
Postgre SQL ... 101
JNDI DB DataSource ... 101

List of Properties ... 102
19. Graph parameters ... 106

Another sets of parameters according the type of execution ... 106
executed from Web GUI ... 106
executed by Launch Service invocation ... 106
executed by HTTP API run graph operation invocation .. 106
executed by RunGraph component .. 106
executed by WS API method executeGraph invocation ... 107
executed by task "graph execution" by scheduler ... 107
executed from JMS listener ... 107
executed by task "graph execution" by graph event listener ... 107
executed by task "graph execution" by file event listener .. 108

How to add another graph parameters ... 108
Additional "Graph Config Parameters" .. 108
Task "execute_graph" parameters ... 108

20. Recommendations for transformations developers .. 109
Add external libraries to app-server classpath ... 109
Another graphs executed by RunGraph component may be executed only in the same JVM instance
.. 109

21. Logging .. 110
Main logs ... 110
Graph run logs .. 110

22. Extensibility (Embedded OSGi framework) ... 111
Groovy Code API .. 111
Embedded OSGi framework .. 112

23. Extensibility CloverETL engine plugins ... 114
24. Clustering ... 115

CloverETL Server

v

High Availability ... 115
Scalability .. 115

Transformation Requests ... 116
Parallel Data Processing ... 116

Recommendations for Cluster Deployment ... 120
Example of Distributed Execution .. 120

Details of the Example Transformation Design ... 121
Scalability of the Example Transformation ... 123

Cluster configuration .. 125
Mandatory properties .. 125
Optional properties .. 126
Example of 2 node cluster configuration .. 126
Load balancing properties ... 127

25. Temp Space Management .. 129
Overview ... 129
Setup ... 129

Adding Temp Space ... 130

1

Chapter 1. What is CloverETL Server
CloverETL Server (CS) is the integrating member of CloverETL products family. It introduces the powerful Clover
tool into the world of corporate applications. CloverETL Server itself is an enterprise class application, thus it is
shipped as WAR file (WAR stands for Web Archive). CS is tested and works on a range of application servers:
Apache Tomcat, Jetty, IBM Websphere, Sun Glassfish, JBoss or Oracle Weblogic. Basically, CS is a runtime
environment for graphs, which brings new possibilities of integrating Clover with your own software. Whereas
Clover Engine can be integrated only as an embedded library, CS implements several interfaces which can be
called by other applications using common protocols like HTTP. In addition, CS implements some thread and
memory management optimizations.

Chapter 1. What is
CloverETL Server

2

Table 1.1. CloverETL Server and CloverETL Engine comparison

 CloverETL Server CloverEngine as executable tool

possibilities of executing
graphs

by calling http (or JMX, etc.) APIs (See
details in Chapter 14, Simple HTTP
API (p. 76).)

by executing external process or by
calling java API

engine initialization during server startup init is called for each graph execution

thread and memory
optimalization

threads recycling, graphs cache, etc. not implemented

scheduling scheduling by timetable, onetime trigger,
logging included

external tools (i.e. Cron) can bes used

statistics each graph execution has its own log file
and result status is stored; each event
triggered by the CS is logged

not implemented

monitoring If graph fails, event listener will be
notified. It may send email, execute
shell command or execute another graph.
See details in Chapter 7, Graph Event
Listeners (p. 55). Additionally server
implements various APIs (HTTP and
JMX) which may be used for monitoring
of server/graphs status.

JMX mBean can be used while graph is
running

storage of graphs and
related files

graphs are stored on server file system in
so called sandboxes

security and authorization
support

CS supports users/groups management,
so each sandbox may have its own
access privileges set. All interfaces
require authentication. See details in
Chapter 3, Server Side Job files -
Sandboxes (p. 25).

passwords entered by user may be
encrypted

integration capabilities CS provides APIs which can be called
using common protocols like HTTP. See
details in Chapter 14, Simple HTTP
API (p. 76).

CloverEngine library can be used as
embedded library in client's Java code or it
may be executed as separated OS process
for each graph.

development of graphs CS supports team cooperation above one
project (sandbox). CloverETL Designer
will be integrated with CS in further
versions.

scalability CS implements horisontal scalability
of transformation requests as well as
data scalability. See details in Chapter
24, Clustering (p. 115) In addition
CloverEngine implements is vertical
scalability nativelly.

Clover Engine implements vertival
scalability

jobflow CS implements various jobflow
components. See details in the
CloverETL manual.

Clover Engine itself has limited support of
jobflow.

3

Chapter 2. Installation
Following sections describe two different installation types. the section called “Evaluation Server” (p. 3) for
quick and most simple installation without configuration and the section called “Enterprise Server” (p. 4) for
further testing and production on choosen app-container and database.

Evaluation Server

The default installation of CloverETL Server does not need any extra database server. It uses the embedded
Apache Derby DB. What is more, it does not need any subsequent configuration. CloverETL Server configures
itself during the first startup. Database tables and some necessary records are automatically created on first startup
with an empty database. In the Sandboxes section of the web GUI, you can then check that sandboxes and a few
demo graphs are created there.

If you need to evaluate CloverETl Server features which need any configuration changes, e.g. sending emails,
LDAP authentication, clustering, etc., or the CloverETL Server must be evaluated on another application container
then Tomcat, please proceed with the common installation: the section called “Enterprise Server” (p. 4)

Installation of Apache Tomcat

CloverETL Server requires Apache Tomcat version 6.0.x to run.

If you have Apache tomcat already installed, you can skip this section.

1. Download the ZIP with binary distribution from http://tomcat.apache.org/download-60.cgi. Tomcat may be
installed as a service on Windows OS as well, however there may be some issues with access to file system,
so it's not recommended aproach for evaluation.

2. After you download the zip file, unpack it.

3. Run Tomcat by [tomcat_home]/bin/startup.sh (or [tomcat_home]/bin/startup.bat on
Windows OS).

4. Check whether Tomcat is running on URL: http://localhost:8080/. Apache Tomcat info page should appear.

5. Apache Tomcat is installed.

If in need of detailed installation instructions, go to: http://tomcat.apache.org/tomcat-6.0-doc/setup.html

Installation of CloverETL Server

1. Check if you meet prerequisites:

• JDK or JRE v. 1.6.x or higher

• JAVA_HOME or JRE_HOME environment variable has to be set.

• Apache Tomcat 6.0.x is installed. See Installation of Apache Tomcat (p. 3) for details.

2. Set memory limits and other switches. See section the section called “Memory Settings” (p. 23) for details.

Create setenv file:

Unix-like systems: [tomcat]/bin/setenv.sh

http://tomcat.apache.org/download-60.cgi
http://localhost:8080/
http://tomcat.apache.org/tomcat-6.0-doc/setup.html

Chapter 2. Installation

4

export CATALINA_OPTS="$CATALINA_OPTS -XX:MaxPermSize=512m -Xms128m -Xmx2048m"
export CATALINA_OPTS="$CATALINA_OPTS -Dderby.system.home=$CATALINA_HOME/temp -server"
echo "Using CATALINA_OPTS: $CATALINA_OPTS"

Windows systems: [tomcat]/bin/setenv.bat

set CATALINA_OPTS="%CATALINA_OPTS% -XX:MaxPermSize=512m -Xms128m -Xmx2048m"
set CATALINA_OPTS="%CATALINA_OPTS% -Dderby.system.home=%CATALINA_HOME%/temp -server"
echo "Using CATALINA_OPTS: %CATALINA_OPTS%"

3. Download the web archive file (clover.war) containing CloverETL Server for Apache Tomcat and
clover-license.war containing valid license.

4. Deploy both WAR files: clover.war and clover-license.war to [tomcat_home]/webapps
directory.

To avoid deployment problems, Tomcat should be down during the copying.

5. Run Tomcat by [tomcat_home]/bin/startup.sh (or [tomcat_home]/bin/startup.bat on
Windows OS).

6. Check whether CloverETL Server is running on URLs:

• Web-app root

http://[host]:[port]/[contextPath]

The default Tomcat port for the http connector is 8080 and the default contextPath for CloverETL Server
is "clover", thus the default URL is:

http://localhost:8080/clover/

• Web GUI

http://[host]:[port]/[contextPath]/gui http://localhost:8080/clover/gui

Use default administrator credentials to access the web GUI: username - "clover", password - "clover".

7. CloverETL Server is now installed and prepared for basic evaluation. There are couple of sandboxes with
various demo transformations installed.

Enterprise Server

This section describes instalation of CloverETL Server on various app-containers in detail, also describes the ways
how to configure the server. If you need just quickly evaluate CloverETl Server features which don't need any
configuration, evaluation installation may be suitable: the section called “Evaluation Server” (p. 3)

CloverETL Server for enterprise environment is shipped as a Web application archive (WAR file). Thus standard
methods for deploying a web application on you application server may be used. However each application server
has specific behavior and features. Detailed information about their installation and configuration can be found
in the chapters below.

List of suitable containers:

• Apache Tomcat (p. 5)

• Jetty (p. 8)

• IBM Websphere (p. 10)

http://localhost:8080/clover/
http://localhost:8080/clover/gui

Chapter 2. Installation

5

• Glassfish / Sun Java System Application Server (p. 13)

• JBoss (p. 15)

• Oracle WebLogic Server (p. 17)

In case of problems during your installation see Possible issues during installation (p. 19).

Apache Tomcat

Installation of Apache Tomcat

CloverETL Server requires Apache Tomcat version 6.0.x to run.

If you have Apache tomcat already installed, you can skip this section.

1. Download the binary distribution from http://tomcat.apache.org/download-60.cgi.

2. After you download the zip file, unpack it.

3. Run Tomcat by [tomcat_home]/bin/startup.sh (or [tomcat_home]/bin/startup.bat on
Windows OS).

4. Check whether Tomcat is running on URL: http://localhost:8080/. Apache Tomcat info page should appear.

5. Apache Tomcat is installed.

If in need of detailed installation instructions, go to: http://tomcat.apache.org/tomcat-6.0-doc/setup.html

Installation of CloverETL Server

1. Download the web archive file (clover.war) containing CloverETL Server for Apache Tomcat.

2. Check if you meet prerequisites:

• JDK or JRE v. 1.6.x or higher

• JAVA_HOME or JRE_HOME environment variable has to be set.

• Apache Tomcat 6.0.x is installed. CloverETL Server is developed and tested with the Apache Tomcat 6.0.x
container (it may work unpredictably with other versions). See Installation of Apache Tomcat (p. 5)
for details.

• It is strongly recommended you change default limits for the heap and perm gen memory spaces.

See section the section called “Memory Settings” (p. 23) for details.

You can set the minimum and maximum memory heap size by adjusting the "Xms" and "Xmx" JVM
parameters. You can set JVM parameters for Tomcat by setting the environment variable JAVA_OPTS in
the [TOMCAT_HOME]/bin/setenv.sh file (if it does not exist, you may create it).

Create setenv file:

Unix-like systems: [tomcat]/bin/setenv.sh

http://tomcat.apache.org/download-60.cgi
http://localhost:8080/
http://tomcat.apache.org/tomcat-6.0-doc/setup.html

Chapter 2. Installation

6

export CATALINA_OPTS="$CATALINA_OPTS -XX:MaxPermSize=512m -Xms128m -Xmx1024m"
export CATALINA_OPTS="$CATALINA_OPTS -Dderby.system.home=$CATALINA_HOME/temp -server"
echo "Using CATALINA_OPTS: $CATALINA_OPTS"

Windows systems: [tomcat]/bin/setenv.bat

set CATALINA_OPTS="%CATALINA_OPTS% -XX:MaxPermSize=512m -Xms128m -Xmx1024m"
set CATALINA_OPTS="%CATALINA_OPTS% -Dderby.system.home=%CATALINA_HOME%/temp -server"
echo "Using CATALINA_OPTS: %CATALINA_OPTS%"

As visible in the settings above, there is also switch -server. For performance reasons, it is recommended
to run the container in the "server" mode.

3. Copy clover.war (which is built for Tomcat) to [tomcat_home]/webapps directory.

Please note, that copying is not an atomic operation. If Tomcat is running, mind duration of the copying process!
Too long copying might cause failure during deployment as Tomcat tries to deploy an incomplete file. Instead,
manipulate the file when the Tomcat is not running.

4. War file should be detected and deployed automatically without restarting Tomcat.

5. Check whether CloverETL Server is running on URLs:

• Web-app root

http://[host]:[port]/[contextPath]

The default Tomcat port for the http connector is 8080 and the default contextPath for CloverETL Server
is "clover", thus the default URL is:

http://localhost:8080/clover/

• Web GUI

http://[host]:[port]/[contextPath]/gui

The default Tomcat port for the http connector is 8080 and the default contextPath for CloverETL Server
is "clover", thus the default URL is:

http://localhost:8080/clover/gui

Use default administrator credentials to access the web GUI: user name - "clover", password - "clover".

Configuration of CloverETL Server on Apache Tomcat

Default installation (without any configuration) is recommended only for evaluation purposes. For production, at
least DB data source and SMTP server configuration is recommended.

There are more ways how to set config properties.

Context Parameters (Available on Apache Tomcat)

Some application servers allow setting context parameters without modifying the WAR file. This way of
configuration is recommended for Tomcat.

On Tomcat, it is possible to specify context parameters in the context configuration file - [tomcat_home]/
conf/Catalina/localhost/clover.xml. The file is created automatically just after deploying the
CloverETL Server web application.

http://localhost:8080/clover/
http://localhost:8080/clover/gui

Chapter 2. Installation

7

To specify a property, add this element:

<Parameter name="[propertyName]" value="[propertyValue]" override="false" />

To modify Tomcat context params, add this to the context config file (modify credentials accordingly):

<Parameter name="jdbc.driverClassName" value="..." override="false" />
<Parameter name="jdbc.url" value="..." />
<Parameter name="jdbc.username" value="..." override="false" />
<Parameter name="jdbc.password" value="..." override="false" />
<Parameter name="jdbc.dialect" value="..." override="false" />

Note

Special characters you type in the context file have to be specified as XML entities. For instance,
ampsersand "&" as "&" etc.

Properties File on Specified Location

Example of such a file:

jdbc.driverClassName=...
jdbc.url=...
jdbc.username=...
jdbc.password=...
jdbc.dialect=...

Which location the common properties file is loaded from is specified by the system property or environment
variable clover_config_file (clover.config.file). This is a recommended way of configuring if
context parameters cannot be set in application server.

On Apache Tomcat, you can set the system property in the [TOMCAT_HOME]/bin/setenv.sh file (if it does
not exist, you may create it). Just add: JAVA_OPTS="$JAVA_OPTS -Dclover_config_file=/path/
to/cloverServer.properties".

Installation of CloverETL Server License

To be able to execute graphs, CloverETL Server requires a valid license. You can install CloverETL Server without
any license, but no graph will be executed.

There are two ways of installing license on Tomcat. A simpler way is a separate web application clover-
license.war. However, in cluster environment, configuring the plain license file has to be done (common for
all application containers).

a) Separate License WAR

1. Download the web archive file clover-license.war.

2. Copy clover-license.war to the [tomcat_home]/webapps directory.

3. The war file should be detected and deployed automatically without restarting Tomcat.

4. Check whether the license web-app is running on:

Chapter 2. Installation

8

http://[host]:[port]/clover-license/ (Note: contextPath clover-license is mandatory
and cannot by changed)

b) License.file Property

Alternatively, configure the server's "license.file" property. Set its value to full path to the license.dat file.

Note

CloverETL license can be changed any time by re-deploying clover-license.war.
Afterwards, you have to let CloverETL Server know the license has changed.

• Go to server web GUI →Monitoring →License

• Click Reload license.

• Alternatively, you can restart the CloverETL Server application.

Warning: Keep in mind that during the WAR file redeployment, directory [tomcat_home]/
webapps/[contextPath] has to be deleted. If Tomcat is running, it should do it automatically.
Still, we suggest you check it manually, otherwise changes will not take any effect.

Apache Tomcat on IBM AS/400 (iSeries)

To run CloverETL Server on the iSeries platform, there are some additional settings:

1. Declare you are using Java 6.0 32-bit

2. Run java with parameter -Djava.awt.headless=true

To configure this you can modify/create a file [tomcat_home]/bin/setenv.sh which contains:

JAVA_HOME=/QOpenSys/QIBM/ProdData/JavaVM/jdk50/32bit

JAVA_OPTS="$JAVA_OPTS -Djava.awt.headless=true"

Jetty

Installation of CloverETL Server

1. Download the web archive file (clover.war) containing the CloverETL Server application which is built
for Jetty.

2. Check if prerequisites are met:

• JDK or JRE version 1.6.x or higher

• Jetty 6.1.x - only this particular version is supported

All jetty-6 releases are available from http://jetty.codehaus.org/jetty/. Jetty 7 is not supported (as of Jetty 7,
there have been huge differences in distribution packages as it is hosted by the Eclipse Foundation.

http://jetty.codehaus.org/jetty/

Chapter 2. Installation

9

• Memory allocation settings

It involves JVM parameters: -Xms -Xmx (heap memory) and -XX:MaxPermSize (classloaders memory
limit). See section the section called “Memory Settings” (p. 23) for details.

You can set the parameters by adding

JAVA_OPTIONS='$JAVA_OPTIONS -Xms128m -Xmx1024m -XX:MaxPermSize=256m'

to [JETTY_HOME]/bin/jetty.sh

3. Copy clover.war to [JETTY_HOME]/webapps.

4. Create a context file clover.xml in [JETTY_HOME]/contexts and fill it with the following lines:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE Configure PUBLIC "-//Jetty//Configure//EN" "http://www.eclipse.org/jetty/configure.dtd">
<Configure class="org.mortbay.jetty.webapp.WebAppContext">
 <Set name="contextPath">/clover</Set>
 <Set name="war"><SystemProperty name="jetty.home" default="."/>/webapps/clover.war</Set>
</Configure>

clover.xml will be detected by Jetty and the application will be loaded automatically.

5. Run [JETTY_HOME]/bin/jetty.sh start (or [JETTY_HOME]/bin/Jetty-Service.exe on
Windows OS).

Finally, you can check if the server is running e.g. on http://localhost:8080/test/.

Configuration of CloverETL Server on Jetty

Default installation (without any configuration) is recommended only for evaluation purposes. For production, at
least DB data source and SMTP server configuration is recommended.

There are more ways how to set config properties, yet the most common one is properties file in a specified location.

Properties file in Specified Location

Example of such a file:

jdbc.driverClassName=...
jdbc.url=...
jdbc.username=...
jdbc.password=...
jdbc.dialect=...
license.file=/path/to/license.dat

The common properties file is loaded from a location which is specified by the environment/system property
clover_config_file or clover.config.file. This is a recommended way of configuring Jetty.

On Jetty, you can set system property in the [JETTY_HOME]/bin/jetty.sh file. Add:

http://localhost:8080/test/

Chapter 2. Installation

10

JAVA_OPTIONS="$JAVA_OPTIONS -Dclover_config_file=/path/to/cloverServer.properties"

Installation of CloverETL Server license

In order to execute graphs, CloverETL Server requires a valid license file. Despite that, you can install CloverETL
Server without a license, but no graph will be executed.

1. Get the license.dat file.

2. Set the CloverETL Server license.file parameter to the path to license.dat.

• Add "license.file" property to the config properties file (as decribed in Configuration of CloverETL Server
on Jetty (p. 9). Set its value to full path to the license.dat file.

• Restart Jetty.

There are more ways how to configure the license. See Chapter 18, Configuration (p. 96) for a description
of all possibilities.

Note

CloverETL license can be changed any time by replacing the license.dat file. Afterwards, you
have to let CloverETL Server know the license has changed.

• Go to server web GUI →Monitoring →License

• Click Reload license.

• Alternatively, you can restart the CloverETL Server application.

IBM Websphere

Installation of CloverETL Server

1. Get the web archive file (clover.war) with CloverETL Server application which is built for Websphere.

2. Check if you meet prerequisites:

• JDK or JRE version 1.6.x or higher

• IBM Websphere 7.0 (see http://www.ibm.com/developerworks/downloads/ws/was/)

• Memory allocation settings

It involves JVM parameters: -Xms -Xmx and -XX:MaxPermSize. See section the section called “Memory
Settings” (p. 23) for details.

You can set heap size and perm space in IBM Websphere's Integrated Solutions Console (by default
accessible at: http://[host]:10003//ibm/console/)

• Go to Servers →Application servers →[server1] (or another name of your server) →Process

Management →Java Virtual Machine

• There is the Maximum heap size field. Default value is only 256 MB, which is not enough for ETL
transformations.

http://www.ibm.com/developerworks/downloads/ws/was/

Chapter 2. Installation

11

Figure 2.1. Adjusting Maximum heap size limit

• On the same page, there is Generic JVM arguments. Add the perm space limit there, e.g. like this:

-XX:MaxPermSize=512M

• Restart the server to confirm these changes.

3. Deploy WAR file

• Go to Integrated Solutions Console

(http://localhost:9060/ibm/console/)

• Go to Applications →New Application →New Enterprise Application

4. Configure logging

Websphere loggers do not use log4j by default. This may cause CloverETL Server logging to be ill-configured.
As a result, some CloverETL Engine messages are missing in graph execution logs. Thus it is recommended
to configure Websphere properly to use log4j.

• Add a config file to the Websphere directory: AppServer/profiles/AppSrv01/properties/
commons-logging.properties

• Insert these lines into the file:

http://localhost:9060/ibm/console/

Chapter 2. Installation

12

 priority=1
 org.apache.commons.logging.LogFactory=org.apache.commons.logging.impl.LogFactoryImpl
 org.apache.commons.logging.Log=org.apache.commons.logging.impl.Log4JLogger

• Copy jar files from the clover.war/WEB-INF/lib archive to the AppServer/lib directory. Copy
all files like commons-logging-*.jar and log4j-*.jar.

5. Try if the server is running

Provided you set clover.war as the application running with "clover" context path. Notice the port number
has changed:

http://localhost:9080/clover

Configuration of CloverETL Server on IBM Websphere

Default installation (without any configuration) is recommended only for evaluation purposes. For production,
configuring at least the DB data source and SMTP server is recommended.

There are more ways how to set config properties. The most common one is properties file in a specified location.

Properties File in Specified Location

Example of such a file:

jdbc.driverClassName=...
jdbc.url=...
jdbc.username=...
jdbc.password=...
jdbc.dialect=...
license.file=/path/to/license.dat

Set system property (or environment variable) clover_config_file pointing to the config properties file.

• go to Integrated Solutions Console

(http://localhost:9060/ibm/console/)

• Go to Servers →Application servers →[server-name] →Java and Process Management →Process

Definition →Environment Entries

• Create system property named clover_config_file whose value is full path to config file named e.g.
cloverServer.properties on your file system.

• This change requires restarting IBM Websphere.

Installation of CloverETL Server license

CloverETL Server requires a valid license for executing graphs. You can install CloverETL Server without a
license, but no graph will be executed.

1. Get the license.dat file.

2. Set CloverETL Server's license.file parameter to path to the license.dat file.

• Add "license.file" property to the config properties file as decribed in Configuration of CloverETL Server
on IBM Websphere (p. 12). Value of the property has to be full path to the license.dat file.

http://localhost:9080/clover
http://localhost:9060/ibm/console/

Chapter 2. Installation

13

• Restart CloverETL Server.

There are other ways how to do this. The most direct one is to set system property or environment variable
clover_license_file. (See Chapter 18, Configuration (p. 96) for description of all possibilities).

Note

Properly configured CloverETL license can be changed any time by replacing file license.dat.
Then you have to let CloverETL Server know the license has changed.

• Go to web GUI →monitoring section →license tab

• Click button Reload license.

• Alternatively, you can restart the CloverETL Server application.

Glassfish / Sun Java System Application Server

Installation of CloverETL Server

1. Get CloverETL Server web archive file (clover.war) which is built for Glassfish (Tomcat).

2. Check if you meet prerequisites

• JDK or JRE version 1.6.x or higher

• Glassfish (CloverETL Server is tested with V2.1)

• Memory allocation settings

It involves JVM parameters: -Xms -Xmx and -XX:MaxPermSize See section the section called
“Memory Settings” (p. 23) for details.

You can set heap size and perm space in XML file [glassfish]/domains/domain1/config/
domain.xml Add these sub-elements to <java-config>:

<jvm-options>-XX:MaxPermSize=512m</jvm-options>
<jvm-options>-Xmx2048m</jvm-options>

These changes require restarting Glassfish.

3. Deploy WAR file

• Copy WAR file to the server filesystem. CloverETL Server is packed in a WAR file of 100 MB approx., so
it cannot be uploaded directly from your local filesystem using the Admin Console.

• Fill in attributes Application name and Context Root with "clover". Fill in path to the WAR file on the
server filesystem.

• Go to Glassfish Admin Console

It is accessible at http://localhost:4848/ by default; default username/password is admin/adminadmin

• Go to Applications →Web Applications and click Deploy.

• Submit form

Chapter 2. Installation

14

Configuration of CloverETL Server on Glassfish

Default installation (without any configuration) is recommended only for evaluation purposes. For production,
configuring at least the DB data source and SMTP server is recommended.

There are more ways how to set config properties. The most common one is properties file in a specified location.

Properties File in Specified Location

Example of such a file:

jdbc.driverClassName=...
jdbc.url=...
jdbc.username=...
jdbc.password=...
jdbc.dialect=...
license.file=/path/to/license.dat

Set system property (or environment variable) clover_config_file pointing to the config properties file:

• Go to Glassfish Admin Console

By default accessible at http://localhost:4848/ with username/password: admin/adminadmin

• Go to Configuration →System Properties

• Create system property named clover_config_file whose value is full path to a file on your file system
named e.g. cloverServer.properties.

• This change requires restarting Glassfish.

Installation of CloverETL Server License

CloverETL Server requires a valid license for executing graphs. You can install CloverETL Server without a
license, but no graph will be executed.

License configuration is quite similar to WebSphere (p. 10).

1. Get the license.dat file.

2. Set CloverETL Server's license.file parameter to path to license.dat.

• Add "license.file" property to the config properties file as decribed in Properties File in Specified
Location (p. 14). Set its value to full path to the license.dat file.

• Restart CloverETL Server.

There are of course other ways how to do this. The most direct one is setting system property or environment
variable clover_license_file. (See Chapter 18, Configuration (p. 96) for description of all
possibilities).

Note

Properly configured CloverETL license can be changed any time by replacing license.dat.
Next, you need to let CloverETL Server know the license has changed.

• Go to web GUI →Monitoring →License

• Click Reload license.

Chapter 2. Installation

15

• Alternatively, you can restart CloverETL Server.

JBoss

Installation of CloverETL Server

1. Get CloverETL Server web archive file (clover.war) which is built for JBoss.

2. Check if you meet prerequisites

• JDK or JRE version 1.6.x or higher

• JBoss 6.0 or JBoss 5.1 - see http://www.jboss.org/jbossas/downloads

• Memory settings for jboss java process. See section the section called “Memory Settings” (p. 23) for
details.

You can set the memory limits in [jboss-home]/bin/run.conf (run.conf.bat on Windows OS):

JAVA_OPTS="$JAVA_OPTS -XX:MaxPermSize=512m -Xms128m -Xmx2048m"

On Windows, perform steps analogic to the ones above.

3. Configure DB data source

Since JBoss does not work with embedded derby DB, a DB connection always has to be configured. We used
MySQL in this case

• Create datasource config file [jboss-home]/server/default/deploy/mysql-ds.xml

<datasources>
 <local-tx-datasource>
 <jndi-name>CloverETLServerDS</jndi-name>
 <connection-url>jdbc:mysql://localhost:3306/cloverServerDB</connection-url>
 <driver-class>com.mysql.jdbc.Driver</driver-class>
 <user-name>root</user-name>
 <password></password>
 </local-tx-datasource>
</datasources>

Note

Special characters in the XML file have to be typed in as XML entities. For instance,
ampsersand "&" as "&" etc.

JNDI name has to be exactly "CloverETLServerDS". The thing to do here is to set DB connection
parameters (connection-url, driver-class,user-name and password) to the created database.
The database has to be empty before the first execution, the server creates its tables itself.

JNDI data source is the only way of configuring CloverETL Server DB connection in JBoss.

• Put JDBC driver for your DB to the app server classpath. We copied JDBC driver mysql-connector-
java-5.1.5-bin.jar to [jboss-home]/server/default/lib

4. Configure CloverETL Server according to description in the next section (p. 16).

http://www.jboss.org/jbossas/downloads

Chapter 2. Installation

16

5. Deploy WAR file

Copy clover.war to [jboss-home]/server/default/deploy

6. Start jboss via [jboss-home]/bin/run.sh (or run.bat on Windows OS)

It may take a couple of minutes until all applications are started.

7. Check JBoss response and CloverETL Server response

• JBoss administration console is accessible at http://localhost:8080/ by default. Default username/password
is admin/admin

• CloverETL Server is accessible at http://localhost:8080/clover by default.

8. If you like, you can move default and example sandboxes (created automatically in the temp directory) to a
more suitable directory on your filesystem.

• These sandboxes are created automatically during the first deployment and are located in the web-app
directory, which is related to the specific deployment. If you redeployed the web application for a reason,
the directory would be recreated. That is why it is better to move the sandboxes to a location which will
not change.

Configuration of CloverETL Server on JBoss

Default installation (without any configuration) is recommended only for evaluation purposes. For production,
configurin at least tha DB data source and SMTP server is recommended.

There are more ways how to set config properties. The most common one is properties file in a specified location.

Properties File in Specified Location

• Create cloverServer.properties in a suitable directory

datasource.type=JNDI
datasource.jndiName=java:/CloverETLServerDS
jdbc.dialect=org.hibernate.dialect.MySQLDialect
license.file=/home/clover/config/license.dat

Do not change datasource.type and datasource.jndiName properties, but set a correct JDBC
dialect according to your DB server (Chapter 18, Configuration (p. 96)). Also set path to your license file.

• Set system property (or environment property) clover_config_file.

It should contain the full path to the cloverServer.properties file created in the previous step.

The simplest way is seting java parameter in [jboss-home]/bin/run.sh, e.g.:

 export JAVA_OPTS="$JAVA_OPTS -Dclover_config_file=/home/clover/config/cloverServer.properties"

Please do not override other settings in the JAVA_OPTS property. i.e. memory settings described above.

On Windows OS, edit [jboss-home]/bin/run.conf.bat and add this line to the section where options
are passed to the JVM:

Chapter 2. Installation

17

 set JAVA_OPTS=%JAVA_OPTS% -Dclover_config_file=C:\JBoss6\cloverServer.properties

• This change requires restarting JBoss.

Installation of CloverETL Server License

CloverETL Server requires a valid license for executing graphs. You can install CloverETL Server without a
license, but no graph will be executed.

1. Get the license.dat file.

If you only have clover_license.war, extract it as a common zip archive and you will find
license.dat in the WEB-INF subdirectory

2. Fill CloverETL Server parameter license.file with path to license.dat.

The best way how to configure license is setting the license.file property in the
cloverServer.properties file as described in the previous section.

There are other ways how to do this. (See Chapter 18, Configuration (p. 96) for description of all
possibilities).

3. Changes in configuration require restarting the app-server.

Note

CloverETL license can be changed any time by replacing file license.dat. Then you have to
let CloverETL Server know the license is changed.

• Go to web GUI →Monitoring →License

• Then click Reload license.

• Alternatively, you can restart CloverETL Server application.

Oracle WebLogic Server

Installation of CloverETL Server

1. Get CloverETL Server web archive file (clover.war) which is built for WebLogic.

2. Check if you meet prerequisites

• JDK or JRE version 1.6.x or higher

• WebLogic (CloverETL Server is tested with 10.3.5, see http://www.oracle.com/technetwork/middleware/
ias/downloads/wls-main-097127.html)

WebLogic has to be running and a domain has to be configured. You can check it by connecting to
Administration Console: http://hostname:7001/console/ (7001 is the default port for HTTP). Username and
password are specified during installation.

• Memory allocation settings

It involves JVM parameters: -Xms -Xmx and -XX:MaxPermSize

Chapter 2. Installation

18

See section the section called “Memory Settings” (p. 23) for details.

You can set it i.e. by adding

export JAVA_OPTIONS='$JAVA_OPTIONS -Xms128m -Xmx2048m -XX:MaxPermSize=512m' to the start script

This change requires restarting the domain.

3. Change HTTP Basic Authentication configuration

• When WebLogic finds "Authentication" header in an HTTP request, it tries to find a user in its own realm.
His behavior has to be disabled so CloverETL could auhenticate users itself.

• Modify config file [domainHome]/config/config.xml. Add element: <enforce-valid-
basic-auth-credentials>false</enforce-valid-basic-auth-credentials> into
element <security-configuration> (just before the end tag).

4. Deploy WAR file

• Upload the WAR to server filesystem. When it is done, move it to [domainHome]/autodeploy.
Since the WAR file size is 100 MB approx., it is recommended you move the file, not copy it, because
WebLogic might start deploying when the file is still incomplete. You can also deploy the application using
Administration Console.

5. Configure license (and other configuration properties)

• See separate section (p. 18) below

6. Check CloverETL Server URL

• Web-app is started automatically after deploy, so you can check whether it is up and running.

CloverETL Server is accessible at http://host:7001/clover by default. Port 7001 is the default WebLogic
HTTP Connector port.

Configuration of CloverETL Server on Weblogic

Default installation (without any configuration) is recommended only for evaluation purposes. For production, at
least the DB data source and SMTP server configuration is recommended.

There are more ways how to set config properties. The most common one is properties file in a specified location.

Properties File in Specified Location

Create cloverServer.properties in a suitable directory.

Config file should contain DB datasource config, SMTP connection config, etc.

Set system property (or environment variable) clover_config_file pointing to the config properties file

• Set JAVA_OPTIONS variable in the WebLogic domain start script [domainHome]/startWebLogic.sh

JAVA_OPTIONS="${JAVA_OPTIONS} -Dclover_config_file=/path/to/clover-config.properties

• This change requires restarting Weblogic.

Chapter 2. Installation

19

Installation of CloverETL Server License

CloverETL Server requires a valid license for executing graphs. You can install CloverETL Server without a
license, but no graph will be executed.

1. Get the license.dat file.

If you only have clover_license.war, extract it as a common zip archive and you will find
license.dat file in WEB-INF subdirectory

2. Fill CloverETL Server parameter license.file with path to license.dat file

The best way how to configure license, is setting property license.file in the
cloverServer.properties file as described in the previous section.

There are other ways how to do this. (See Chapter 18, Configuration (p. 96) for description of all
possibilities).

3. Changes in configuration require restarting the app-server.

Note

Properly configured CloverETL license can be changed any time by replacing file license.dat.
Then you have to let CloverETL Server know the license has changed.

• Go to web GUI →Monitoring →License

• Click Reload license.

• Or you can restart CloverETL Server application.

Possible issues during installation

Since CloverETL Server is considered a universal JEE application running on various application servers,
databases and jvm implementations, problems may occur during the installation. These can be solved by a proper
configuration of the server environment. This section contains tips for the configuration.

Memory issues on Derby

If your server suddenly starts consuming too much resources (CPU, memory) despite having been working well
before, it might be beacuse of running the internal Derby DB. Typically, causes are incorrect/incomplete shutdown
of Apache Tomcat and parallel (re)start of Apache Tomcat.

Solution: move to a standard (standalone) database.

How to fix this? Redeploy CloverETL Server:

1. Stop Apache Tomcat and verify there are no other instances running. If so, kill them.

2. Backup config.properties from webapps/clover/WEB-INF and clover/WEB-INF/
sandboxes (if you have any data there).

3. Delete the webapps/clover directory.

4. Start Apache Tomcat server. It will automatically redeploy Clover Server.

5. Verify you can connect from Designer and from web.

Chapter 2. Installation

20

6. Shutdown Apache Tomcat.

7. Restore config.properties and point it to your regular database.

8. Start Apache Tomcat.

JAVA_HOME or JRE_HOME environment variables are not defined

If you are getting this error message during an attempt to start your application server (mostly Tomcat), perform
the following actions.

Linux:

These two commands will help you set paths to the variables on the server.

• [root@server /] export JAVA_HOME=/usr/local/java

• [root@server /] export JRE_HOME=/usr/local/jdk

As a final step, restart the application server.

Windows OS:

Set JAVA_HOME to your JDK installation directory, e.g. C:\Program Files\java\jdk1.6.0. Optionally,
set also JRE_HOME to the JRE base directory, e.g. C:\Program Files\java\jre6.

Important

If you only have JRE installed, specify only JRE_HOME.

Tomcat log file catalina.out is missing on Windows

Tomcat start batch files for Windows aren't configured to create catalina.out file which contains standard output of
the application. Catalinal.out may be vital when the Tomcat isn't started in console and any issue occurs. Or even
when Tomcat is executed in the console, it may be closed automatically just after the error message appears in it.

Please follow these steps to enable catalina.out creation:

• Modify [tomcat_home]/bin/catalina.bat. Add parameter "/B" to lines where "_EXECJAVA" variable is set.
There should be two these lines. So they will look like this:

set _EXECJAVA=start /B [the rest of the line]
Parameter /B causes, that "start" command doesn't open new console window, but runs the command it's own
console window.

• Create new startup file. e.g. [tomcat_home]/bin/startupLog.bat, containing only one line:

catalina.bat start > ..\logs\catalina.out 2<&1
It executes Tomcat in the usual way, but standard output isn't put to the console, but to the catalina.out file.

Then use new startup file instead of [tomcat_home]/bin/startup.bat

Timeouts waiting for JVM

If you get the Jetty application server successfully running but cannot start Clover Server, it might be because of
the wrapper waiting for JVM too long (it is considered a low-memory issue). Examine [JETTY_HOME]\logs
\jetty-service.log for a line like this:

Chapter 2. Installation

21

Startup failed: Timed out waiting for signal from JVM.

If it is there, edit [JETTY_HOME]\bin\jetty-service.conf and add these lines:

wrapper.startup.timeout=60
wrapper.shutdown.timeout=60

If that does not help either, try setting 120 for both values. Default timeouts are 30 both.

clover.war as default context on Websphere (Windows OS)

If you are deploying clover.war on the IBM Websphere server without context path specified, be sure to check
whether it is the only application running in the context root. If you cannot start Clover Server on Websphere,
check the log and look for a message like this:

 com.ibm.ws.webcontainer.exception.WebAppNotLoadedException:
 Failed to load webapp: Failed to load webapp: Context root /* is already bound.
 Cannot start application CloverETL

If you can see it, then this is the case. Getting rid of the issue, the easiest way is to stop all other (sample)
applications and leave only clover.war running on the server. That should guarantee the server will be available
in the context root from now on (e.g. http://localhost:9080/).

Figure 2.2. Clover Server as the only running application on IBM Websphere

Tomcat 6.0 on Linux - Default DB

When using the internal (default) database on Linux, your Clover Server might fail on first start for no obvious
reasons. Chances are that the /var/lib/tomcat6/databases directory was not created (because of access
rights in parent folders).

Solution: Create the directory yourself and try restarting the server. This simple fix was successfully tested with
Clover Server deployed as a WAR file via Tomcat web admin.

http://localhost:9080/

Chapter 2. Installation

22

Derby.system.home cannot be accessed

If the server cannot start and the following message is in the log:

java.sql.SQLException: Failed to start database 'databases/cloverserver'

then see the next exception for details. After that check settings of the derby.system.home system property.
It may point to an unaccessible directory, or files may be locked by another process. We suggest you set a specific
directory as the system property.

Environment variables and more than one CloverETL Server instances
running on single machine

If you are setting environment variables like clover_license_file or clover_config_file ,
remember you should not be running more than one CloverETL Server. Therefore if you ever needed to run more
instances at once, use other ways of setting parameters (see Chapter 18, Configuration (p. 96) for description
of all possibilities) The reason is the environment variable is shared by all applications in use causing them to share
configurations and fail unexpectedly. Instead of environment variables you can use system properties (passed to
the application container process using parameter with -D prefix: -Dclover_config_file).

Special characters and slahes in path

When working with servers, you ought to stick to folder naming rules more than ever. Do not use any special
characters in the server path, e.g. spaces, accents, diacritics are all not recommended. It's unfortunatelly common
naming strategy on Windows systems. It can produce issues which are hard to find. If you are experiencing weird
errors and cannot trace the source of them, why not install your application server in a safe destination like:

C:\JBoss6\

Similarly, use slashes but never backslahes in paths inside the *.properties files, e.g. when pointing to the
Clover Server license file. If you incorrectly use backlash, it will be considered an escape character and the server
may not work fine. This is an example of a correct path:

license.file=C:/CoverETL/Server/license.dat

JAXB and early versions of JVM 1.6

CloverETL Server contains jaxb 2.1 libraries since version 1.3. This may cause conflicts on early versions of JVM
1.6 which contain jaxb 2.0. However JDK6 Update 4 release finally contains jaxb 2.1, thus update to this or newer
version of JVM solves possible conflicts.

File system permissions

Application server must be executed by OS user which has proper read/write permissions on file system. Problem
may occur, if app-server is executed by root user for the first time, so log and other temp files are created by root
user. When the same app-server is executed by another user, it will fail because it cannot write to root's files.

JMS API and JMS third-party libraries

Missing JMS libraries do not cause fail of server startup, but it is issue of deployment on application server, thus
it still suits to this chapter.

Chapter 2. Installation

23

clover.war itself does not contain jms.jar, thus it has to be on application server's classpath. Most of the application
servers have jms.jar by default, but i.e. tomcat does not. so if the JMS features are needed, the jms.jar has to be
added explicitly.

If "JMS Task" feature is used, there must be third-party libraries on server's classpath as well. The same approach
is recommended for JMS Reader/Writer components, even if these components allow to specify external libraries.
It is due to common memory leak in these libraries which causes "OutOfMemoryError: PermGen space".

Memory Settings

Current implementation of Java Virtual Machine allows only global configuration of memory for the JVM system
process. Thus whole application server, together with WARs and EARs running on it, share one memory space.

Default JVM memory settings is to low for running application container with CloverETL Server. Some
application servers, like IBM Websphere, increase JVM defaults themselves, however they still may be too low.

The best memory limits depend on many conditions, i.e. transformations which CloverETL should execute. Please
note, that maximum limit isn't amount of permanently allocated memory, but limit which can't be exceeded. If the
limit was exhaused, the OutOfMemoryError would be raised.

You can set the minimum and maximum memory heap size by adjusting the "Xms" and "Xmx" JVM parameters.
There are more ways how to change the settings depending on the used application container.

If you have no idea about the memory required for the transformations, a maximum of 1-2 GB heap memory is
recommended. This limit may be increased during transformations development when OutOfMemoryError
occurs.

Memory space for loading classes (so called "PermGen space") is separated from heap memory, and can be set
by the JVM parameter "-XX:MaxPermSize". By default, it is just 64 MB which is not enough for enterprise
applications. Again, suitable memory limit depends on various criteria, but 512 MB should be enought in most
cases. If the PermGen space maximum is too low, OutOfMemoryError: PermGen space may occur.

Please see the specific container section for details how to make the settings.

Upgrading Server to Newer Version

Getting New Version to Work

1. Get the web archive file (WAR) with a newer build of CloverETL Server.

2. Re-deploy the web application. Instructions how to do that are application server dependant - see Enterprise
Server (p. 4) for installation details on all supported servers. After you re-deploy, your new server will be
configured based on the previous version's configuration.

3. If any changes to the database schema are necessary, the new server will automatically make them when you
run it for the first time. It's recommended to backup database before upgrade.

Upgrading Server License

1. The license file is shipped as a text containing a unique set of characters. If you:

• received the new license as a file (*.dat), then simply overwrite your old license file.

• have been sent the licence text e.g inside an e-mail, then copy the license contents (i.e. all text between
Company and END LICENSE) into a new file called clover-license.dat. Next, overwrite the old
license file with the new one.

2. In Clover Server configuration, change the full path to your new license file if necessary.

Chapter 2. Installation

24

3. In server web GUI →Monitoring →License, click Reload license. Alternatively, restart Clover Server.

Important

Evaluation Version - a mere upgrade of your license is not sufficient. When moving from evaluation
to enterprise server, you should not use the default configuration and database. Instead, take some
time to configure Clover Server so that it best fits your production environment.

25

Chapter 3. Server Side Job files - Sandboxes
Sandbox is a base storage unit for project. Sandbox is actually a server-side analogy to a CloverETL Designer
project. Since CloverETL Designer has a connector to CloverETL Server, a designer project and a server sandbox
may be linked together. This remote CloverETL Designer project looks and works like common local project, but
all files are stored on the server side and all operations are performed on server side. See CloverETL Designer
manual for details on configuring a connection to the server.

Technically speaking, a sandbox is a dedicated directory on the server file system. A sandbox cannot contain
another sandbox. It is recommended to have one directory as sandboxes container and create a subdirectory for
each sandbox. Files and directories in sandboxes are read by JVM of Application Server. Thus, all these directories
must be accessible to the OS user who executes JVM of Application Server. i.e. If Apache Tomcat is executed as
an OS service by "tomcat" user, all sandboxes must be accessible to this user.

In cluster mode, there are three sandbox types: "shared", "local" and "partitioned". See Chapter 24,
Clustering (p. 115) for details.

Figure 3.1. Sandboxes Section in CloverETL Server Web GUI

Each sandbox is defined by following attributes:

Table 3.1. Sandbox attributes

ID Unique "name" of the sandbox. It is used in server APIs to identify sandbox. It must meet
common rules for identifiers. It is specified by user in during sandbox creation and it can be
modified later. Note: modifying is not recommended, because it may be already used by some
CS APIs clients.

Name Sandbox name used just for display. It is specified by user in during sandbox creation and it
can be modified later.

Root path Absolute server side file system path to sandbox root. It is specified by user during sandbox
creation and it can be modified later. This attribute is used only in standalone mode. See Chapter
24, Clustering (p. 115) for details about cluster mode.

Owner It is set automatically during sandbox creation. It may be modified later.

Chapter 3. Server Side
Job files - Sandboxes

26

Figure 3.2. Sandbox Detail in CloverETL Server Web GUI

Referencing files from the ETL graph or Jobflow

In some components you can specify file URL attribute as a reference to some resource on the file system. Also
external metadata, lookup or DB connection definition is specified as reference to some file on the filesystem.
With CloverETL Server there are more ways how to specify this relation.

• Relative path

All relative paths in your graphs are considered as relative paths to the root of the same sandbox which contains
job file (ETL graph or Jobflow).

• sandbox:// URLs

Sandbox URL allows user to reference the resource from different sandboxes with standalone CloverETL Server
or the cluster. In cluster environment, CloverETL Server transparently manages remote streaming if the resource
is accessible only on some specific cluster node.

See Using a Sandbox Resource as a Component Data Source (p. 119) for details about the sandbox URLs.

Sandbox Content Security and Permissions

Each sandbox has its owner which is set during sandbox creation. This user has unlimited privileges to this sandbox
as well as administrators. Another users may have access according to sandbox settings.

Chapter 3. Server Side
Job files - Sandboxes

27

Figure 3.3. Sandbox Permissions in CloverETL Server Web GUI

Permissions to specific sandbox are modifiable in Permissions tab in sandbox detail. In this tab, selected user
groups may be allowed to perform particular operations.

There are 3 types of operations:

Table 3.2. Sandbox permissions

R - read Users can see this sandbox in their sandboxes list.

W - write Users can modify files in the sandbox through CS APIs.

X - execution Users can execute graphs in this sandbox. Note: graph executed by "graph event listener" is
actually executed by the same user as graph which is source of event. See details in "graph
event listener". Graph executed by schedule trigger is actually executed by the schedule
owner. See details in Chapter 6, Scheduling (p. 45).

Please note that, these permissions modify access to the content of specific sandboxes. In additions, it's possible to
configure permissions to perform operations with sandbox configuration. e.g. create sandbox, edit sandbox, delete
sandbox, etc. Please see Chapter 5, Users and Groups (p. 38) for details.

Sandbox Content

Sandbox should contain jobflows, graphs, metadata, external connection and all related files. Files especially graph
or jobflow files are identified by relative path from sandbox root. Thus you need two values to identify specific
job file: sandbox and path in sandbox. Path to the Jobflow or ETL graph is often referred as "Job file".

Chapter 3. Server Side
Job files - Sandboxes

28

Figure 3.4. Web GUI - section "Sandboxes" - context menu on sandbox

Although web GUI section sandboxes isn't file-manager, it offers some useful features for sandbox management.

Figure 3.5. Web GUI - section "Sandboxes" - context menu on folder

Download sandbox in ZIP

Select sandbox in left panel, then web GUI displays button "Download sandbox in ZIP" in the tool bar on the
right side.

Created ZIP contains all readable sandbox files in the same hierarchy as on file system. You can use this ZIP file
for upload files to the same sandbox, or another sandbox on different server instance.

Chapter 3. Server Side
Job files - Sandboxes

29

Figure 3.6. Web GUI - download sandbox in ZIP

Upload ZIP to sandbox

Select sandbox in left panel. You must have write permission to the selected sandbox. Then select tab "Upload
ZIP" in the right panel. Upload of ZIP is parametrized by couple of switches, which are described below. Open
common file chooser dialog by button "+ Upload ZIP". When you choose ZIP file, it is immediately uploaded to
the server and result message is displayed. Each row of the result message contains description of one single file
upload. Depending on selected options, file may be skipped, updated, created or deleted.

Chapter 3. Server Side
Job files - Sandboxes

30

Figure 3.7. Web GUI - upload ZIP to sandbox

Figure 3.8. Web GUI - upload ZIP results

Table 3.3. ZIP upload parameters

Label Description

Encoding of packed file
names

File names which contain special characters (non ASCII) are encoded. By this select
box, you choose right encoding, so filenames are decoded properly.

Overwrite existing files If this switch is checked, existing file is overwriten by new one, if both of them are
stored in the same path in the sandbox and both of them have the same name.

Replace sandbox content If this option is enabled, all files which are missing in uploaded ZIP file, but they
exist in destination sandbox, will be deleted. This option might cause loose of data, so
user must have special permission "May delete files, which are missing in uploaded
ZIP" to enable it.

Chapter 3. Server Side
Job files - Sandboxes

31

Download file in ZIP

Select file in left panel, then web GUI displays button "Download file in ZIP" in the tool bar on the right side.

Created ZIP contains just selected file. This feature is useful for large files (i.e. input or output file) which cannot
be displayed directly in web GUI. So user can download it.

Figure 3.9. Web GUI - download file in ZIP

Download file HTTP API

It is possible to download/view sandbox file accessing "download servlet" by simple HTTP GET request:

http://[host]:[port]/[Clover Context]/downloadFile?[Parameters]

Server requires BASIC HTTP Authentication. Thus with linux command line HTTP client "wget" it would look
like this:

wget --user=clover --password=clover
 http://localhost:8080/clover/downloadFile?sandbox=default\&file=data-out/data.dat

Please note, that ampersand character is escaped by back-slash. Otherwise it would be interpreted as command-
line system operator, which forks processes.

URL Parameters

• sandbox - Sandbox code. Mandatory parameter.

• file - Path to the file relative from sandbox root. Mandatory parameter.

• zip - If set to "true", file is returned as ZIP and response content type is "application/x-zip-compressed". By
default it is false, so response is content of the file.

Chapter 3. Server Side
Job files - Sandboxes

32

Job config properties

Each ETL graph or Jobflow may have set of config properties, which are applied during the execution. Properties
are editable in web GUI section "sandboxes". Select job file and go to tab "Config properties".

The same config properties are editable even for each sandbox. Values specified for sandbox are applied for each
job in the sandbox, but with lower priority then config properties specified for the job.

If neither sandbox or job have config properties specified, defaults from main server configuration are
applied. Global config properties related to Job config properties have prefix "execution.". E.g. server property
"executor.classpath" is default for Job config property "classpath". (See Chapter 18, Configuration (p. 96)
for details)

In addition, it is possible to specify additional job parameters, which can be used as placeholders in job XML.
Please keep in mind, that these placeholders are resolved during loading and parsing of XML file, thus such job
couldn't be pooled.

Chapter 3. Server Side
Job files - Sandboxes

33

Table 3.4. Job config parameters

Property name Default value Description

tracking_interval 2000 Interval in ms for sampling nodes status in running
transformation.

max_running_concurrently unlimited Max number of concurrently running instances of
this transformation.

enqueue_executions false Boolean value. If it is true, executions above
max_running_concurrently are enqueued, if it is
false executions above max_running_concurrently
fail.

log_level INFO Log4j log level for this graph executions. (ALL
| TRACE | DEBUG | INFO | WARN | ERROR
| FATAL) For lower levels (ALL, TRACE or
DEBUG), also root logger level must be set
to lower level. Root logger log level is INFO
by default, thus transformation run log does not
contain more detail messages then INFO event if
job config parameter "log_level" is set properly.
See Chapter 21, Logging (p. 110) for details
about log4j configuration.

max_graph_instance_age 0 Time interval in ms which specifies how long
may transformation instance last in server's cache.
0 means that transformation is initialized and
released for each execution. Transformation cannot
be stored in the pool and reused in some
cases (transformation uses placeholders using
dynamically specified parameters)

classpath List of paths or jar files which contain
external classes used in the job file
(transformations, generators, JMS processors).
Separator is specified by Engine property
"DEFAULT_PATH_SEPARATOR_REGEX".
Directory path must always end with slash
character "/", otherwise ClassLoader doesn't
recognize it's a directory. Server always
automatically adds "trans" subdirectory of job's
sandbox, so It doesn't have to be added explicitly.

skip_check_config default value is taken from
engine property

Switch which specifies whether check config must
be performed before transformation execution.

password Password for decoding of encoded DB connection
passwords.

verbose_mode true If true, more descriptive logs of job runs are
generated.

use_jmx true If true, job executor registers jmx mBean of running
transformation.

debug_mode false If true, edges with enabled debug store data
into files in debug directory. See property
"graph.debug_path".

Without explicit setting, running of a graph from
Designer with server integration would set the
debug_mode to true. On the other hand, running
of a graph from the server console sets the
debug_mode to false.

executor.use_local_context_urlIf true, the context URL of
a running job will be a local
"file:" URL. Otherwise, a
"sandbox:" URL will be used.

false

executor.jobflow_token_trackingIf false, token tracking in
jobflow executions will be
disabled.

true

Chapter 3. Server Side
Job files - Sandboxes

34

Figure 3.10. Job config properties

35

Chapter 4. Viewing Job Runs - Executions History
Section Executions History shows all persistent job executions. Table shows only basic info about the job: Run
Id, Job file, current status, time of execution, and some useful links.

Filtering and ordering

User may filter records in the table by various criteria: Run ID, Job File, Date/time of execution, Status, user
who executed the job. Also user may show children executions, which are filtered-out by default (e.g. workers of
partitioned executions or jobs executed from jobflows).

Last jobs are on the top by default.

Please note, that some jobs may have disabled persistence to increase performance. It would be typically jobs
executed by Launch Services, since the performance may be more important then detail info about the execution.

Figure 4.1. Executions History - executions table

When some job execution is selected in the table, the detail info is shown on the right side.

Chapter 4. Viewing Job
Runs - Executions History

36

Table 4.1. Persistent run record attributes

Attribute Description

Run ID Unique number identifying the run of the job. Server APIs usually return this number
as simple response of execution request. It's useful as parameter of subsequent calls
for specification of the job execution.

Execution type Type of job as recognized by the server. STANDALONE for ETL graph, JOBFLOW
for Jobflow, MASTER for main record of partitioned execution in cluster,
PARTITIONED_WORKER for worker record of partitioned execution in cluster

Parent run ID Run ID of the parent job. Typically Jobflow which executed this job, or master
execution which encapsulate this worker execution.

Root run ID Run ID of the root parent job. Job execution which wasn't executed by another parent
job.

Nested jobs Indication that this job execution has or has not any child execution.

Node In cluster mode shows ID of the cluster node which this execution was running on.

Executed by User which executed the job. Either directly using some API/GUI or indirectly using
the scheduling or event listeners.

Sandbox Sandbox containing job file. For jobs which are sent together with execution request,
so the job file doesn't exist on the server site, it's set to "default" sandbox.

Job file Path to job file, relative to the sandbox root. For jobs which are sent together with
execution request, so the job file doesn't exist on the server site, it's set to generated
string.

Job version Revision of the job file. It's string generated by CloverETL Designer and stored in
the job file.

Status Status of the job execution. READY - waiting for execution start, RUNNING -
processing job, FINISHED OK - job finished without any error, ABORTED - job
was aborted directly using some API/GUI or by parent Jobflow, ERROR - job failed,
N/A (not awailable) - server process died suddenly, so it couldn't properly abort the
jobs, so after sertart the jobs with unknown status are set as N/A

Started Server date-time (and timezone) of the execution start.

Finished Server date-time (and timezone) of the execution finish.

Duration Execution duration

Error in component ID If the job failed due the error in a component, this field contains ID of the component.

Error in component type If the job failed due the error in a component, this field contains type of the
component.

Error message If the job failed, this field contains error description.

Exception If the job failed, this field contains error stack trace.

Input parameters List of input parameters passed to the job. Job file can't be cached, since the
parameters are applied during loading from the job file. Job file isn't cached by
default.

Input dictionary List of dictionary elements passed to the job. Dictionary is used independently on
job file caching.

Output dictionary List of dictionary elements at the moment the job ends.

For jobs which have some children executions, e.g. partitioned or jobflows also executions hierarchy tree is shown.

Chapter 4. Viewing Job
Runs - Executions History

37

Figure 4.2. Executions History - overall perspective

Since the detail panel and expecially job logs may be wide, it may be usefull to hide table on the left, so the detail
panel spreads. Click on the link "Hide results" on the top of the list panel to hide panel. Then to show list panel
agan, click to the "Show results" button on the left.

Figure 4.3. Executions Hierarchy with docked list of jobs

Executions hierarchy may be rather complex, so it's possible to filter the content of the tree by fulltext filter.
However when the filter is used, the selected executions aren't hierarchically structured.

38

Chapter 5. Users and Groups
CloverETL Server implements security module, which manages users and groups. Security module may be
globally switched off (see Chapter 18, Configuration (p. 96) for details), but by default it is on, and all interfaces
require client authentication by username and password. Relation between users and groups is N:M, thus one user
may be assigned in more groups and one group may be assigned in more users.

All relations between users and groups are configurable in web GUI in sections Users and Groups.

Both sections are accessible only for users which have "List users" ("List groups" resp.) permission. To modify
users/groups "create", "edit" and "delete" permissions are necessary.

LDAP authentication

Since 3.2 it's possible to configure CloverETL Server to use LDAP server for users authentication. So the
credentials of users registered in LDAP may be used for authentication to any CloverETL Server interface (API
or GUI).

However authorization (access levels to sandboxes content and privileges for operations) is still handled by Clover
security module. Each user, event though logged-in using LDAP authentication, must have his own "user" record
(with related groups) in CloverETL security module. So there must be the user with the same username and domain
set to "LDAP". If no such user record exists, it's automatically created according to CloverETL configuration.

What does the CloverETL do to authenticate a LDAP user?

1. User specifies the LDAP credentials i.e. in login form to the web GUI

2. CloverETL Server connects to the LDAP and checks whether the user exists (it uses specified search to lookup
in LDAP)

3. If the user exists in LDAP, CloverETL Server performs authentication

4. If succeeded, CloverETL Server searches for LDAP user's groups.

5. CloverETL Server checks whether the user is assigned in LDAP groups which are allowed to login to Clover.

6. Clover user record is created/updated according to current LDAP values.

7. Clover user is assigned to the Clover groups according to his current assignation to the LDAP groups.

8. User is logged-in

Note

Switching domains:

• If a user was created as LDAP and then switched to clover domain, you have to set a password
for him in Change password tab.

• If a user was created as clover and then switched to LDAP domain, he has a password in
clover domain, but it is overriden by the LDAP password. After switching back to clover domain,
the original password is re-used. It can be reset in the Change password tab if needed (e.g.
forgotten).

Configuration

By default CloverETL Server allows only its own internal mechanism for authentication. To enable authentication
with LDAP, set config property "security.authentication.allowed_domains" properly. It's list of user domains
which are used for authentication.

Chapter 5. Users and Groups

39

Currently there are 2 authentication mechanism implemented: "LDAP" and "clover" ("clover" is identifier of
CloverETL internal authentication and may be changed by security.default_domain property, but only for white-
labelling purposes). To enable LDAP authentication, set value to "LDAP" (only LDAP) or "clover,LDAP". Users
from both domain may login. It's recommended to allow both mechanisms together, until the LDAP is properly
configured. So the admin user can still login to web GUI although the LDAP connection isn't properly configured.

Basic LDAP connection properties

Implementation of context factory
security.ldap.ctx_factory=com.sun.jndi.ldap.LdapCtxFactory
timeout for all queries sent to LDAP server
security.ldap.timeout=5000
limit for number of records returned from LDAP
security.ldap.records_limit=50

URL of LDAP server
security.ldap.url=ldap://hostname:port
Some generic UserDN which allows lookup for the user and groups.
security.ldap.userDN=
Password for the user specified above
security.ldap.password=

Configuration of user lookup

Specified values work for this specific LDAP tree:

• dc=company,dc=com

• ou=groups

• cn=admins
(objectClass=groupOfNames,member=(uid=smith,dc=company,dc=com),member=(uid=jones,dc=company,dc=com))

• cn=developers (objectClass=groupOfNames,member=(uid=smith,dc=company,dc=com))

• cn=consultants (objectClass=groupOfNames,member=(uid=jones,dc=company,dc=com))

• ou=people

• uid=smith (fn=John,sn=Smith,mail=smith@company.com)

• uid=jones (fn=Bob,sn=Jones,mail=jones@company.com)

Following properties are necessary for lookup for the LDAP user by his username. (step [2] in the login process
above)

Base specifies the node of LDAP tree where the search starts
security.ldap.user_search.base=dc=company,dc=eu
Filter expression for searching the user by his username.
Please note, that this search query must return just one record.
Placeholder ${username} will be replaced by username specified by the logging user.
security.ldap.user_search.filter=(uid=${username})
Scope specifies type of search in "base". There are three possible values: SUBTREE | ONELEVEL | OBJECT
http://download.oracle.com/javase/6/docs/api/javax/naming/directory/SearchControls.html
security.ldap.user_search.scope=SUBTREE

Following properties are names of attributes from the search defined above. They are used for getting basic info
about the LDAP user in case the user record has to be created/updated by Clover security module: (step [6] in
the login process above)

Chapter 5. Users and Groups

40

security.ldap.user_search.attribute.firstname=fn
security.ldap.user_search.attribute.lastname=sn
security.ldap.user_search.attribute.email=mail
This property is related to the following step "searching for groups".
Groups may be obtained from specified user's attribute, or found by filter (see next paragraph)
Please leave this property empty if the user doesn't have such attribute.
security.ldap.user_search.attribute.groups=memberOf

In the following step, clover tries to find groups which the user is assigned to. (step [4] in the login process above).
There are two ways how to get list of groups which the user is assigned to. The user-groups relation is specified
on the "user" side. The user record has some attribute with list of groups. It's "memberOf" attribute usually. Or the
relation is specified on the "group" side. The group record has attribute with list of assigned users. It's "member"
attribute usually.

In case the relation is specifien on users side, please specify property:

security.ldap.user_search.attribute.groups=memberOf

Leave it empty otherwise.

In case the relation is specifien on groups side, please specify properties for searching:

security.ldap.groups_search.base=dc=company,dc=com
Placeholder ${userDN} will be replaced by user DN found by the search above
If the filter is empty, searching will be skipped.
security.ldap.groups_search.filter=(&(objectClass=groupOfNames)(member=${userDN}))
security.ldap.groups_search.scope=SUBTREE

Otherwise, please leave property security.ldap.groups_search.filter empty, so the search will be skipped.

Clover user record will be assigned to the clover groups according to the LDAP groups found by the search (or
the attribute). (Groups check is performed during each login)

Value of the following attribute will be used for lookup for the Clover group by its code.
So the user will be assigned to the Clover group with the same "code"
security.ldap.groups_search.attribute.group_code=cn

It's also possible to specify LDAP groups which are able to login to Clover. (step [5] in the login process above)

Semicolon separated list of LDAP group DNs (distinguished names).
LDAP user must be assigned to one or more of these groups, otherwise new clover user can't be created.
Special value "_ANY_" disables this check and basically any LDAP user may login.
If the LDAP group DNs are configured, also security.ldap.groups_search.* properties must be configured.
value could be e.g. "cn=developers,dc=company,dc=com;cn=admins,dc=company,dc=com"
security.ldap.allowed_ldap_groups=_ANY_

Web GUI section Users

This section is intended to users management. It offers features in dependence of user's permissions. i.e. User may
enter this section, but cannot modify anything. Or user may modify, but cannot create new users.

All possible features of users section:

Chapter 5. Users and Groups

41

• create new user

• modify basic data

• change password

• disable/enable user

• assign user to groups - Assignment to groups gives user proper permissions

Table 5.1. After default installation above empty DB, there are two users created

User name Description

clover Clover user has admin permissions, thus default password "clover"
should be changed after installation.

system System user is used by application instead of common user, when
no other user can be used. i.e. when security is globally switched
off. This user cannot be removed and it is impossible to login as
this user.

Figure 5.1. Web GUI - section "Users" under "Configuration"

Table 5.2. User attributes

Attribute Description

username Common user identifier. Must be unique, cannot contain spaces or
special characters, just letters and numbers.

password Case sensitive password. If user looses his password, the new one
must be set. Password is stored in encrypted form for security
reasons, so it cannot be retrieved from database and must be
changed by the user who has proper permission for such operation.

first name

last name

email Email which may be used by CloverETL administrator or by
CloverETL server for automatic notifications. See Task - Send
Email (p. 57) for details.

Edit user record

User with permission "Create user" or "Edit user" can use this form to set basic user parameters.

Chapter 5. Users and Groups

42

Figure 5.2. Web GUI - edit user

Change users Password

If user looses his password, the new one must be set. So user with permission "Change passwords" can use this
form to do it.

Figure 5.3. Web GUI - change password

Group assignment

Assignment to groups gives user proper permissions. Only logged user with permission "Groups assignment" can
access this form and specify groups which the user is assigned in. See Web GUI section Groups (p. 43) for
details about permissions.

Figure 5.4. Web GUI - groups assignment

Chapter 5. Users and Groups

43

Disabling / enabling users

Since user record has various relations to the logs and history records, it can't be deleted. So it's disabled instead.
It basically means, that the record doesn't display in the list and the user can't login.

However disabled user may be enabled again. Please note, that disabled user is removed from its groups, so groups
should be assigned properly after re-enabling.

Web GUI section Groups

Group is abstract set of users, which gives assigned users some permissions. So it is not necessary to specify
permission for each single user.

There are independent levels of permissions implemented in CloverETL Server

• permissions to Read/Write/eXecute in sandboxes - sandbox owner can specify different permissions for different
groups. See Sandbox Content Security and Permissions (p. 26) for details.

• permissions to perform some operation - user with operation permission "Permission assignment" may assign
specific permission to existing groups.

• permissions to launch specific service - see Chapter 17, Launch Service (p. 89) for details.

Table 5.3. Default groups created during installation

Group name Description

admins This group has operation permission "all" assigned, which means,
that it has unlimited permission. Default user "clover" is assigned
to this group, which makes him administrator.

all users Every single CloverETL user is assigned to this group by default.
It is possible to remove user from this group, but it is not a
recommended approach. This group is useful for some permissions
to sandbox or some operation, which you would like to make
accessible for all users without exceptions.

Figure 5.5. Web GUI - section "Groups"

Users Assignment

Relation between users and groups is N:M. Thus in the same way, how groups are assignable to users, users are
assignable to groups.

Chapter 5. Users and Groups

44

Figure 5.6. Web GUI - groups assignment

Groups permissions

Groups permissions are structured as tree, where permissions are inherited from root to leafs. Thus if some
permission (tree node) is enabled (blue dot), all permissions in sub tree are automatically enabled (white dot).
Permissions with red cross are disabled.

Thus for "admin" group just "all" permission is assigned, every single permission in sub tree is assigned
automatically.

Figure 5.7. Tree of permissions

45

Chapter 6. Scheduling
Scheduling allows user to create his own timetable for operations which he does not want to trigger manually. Each
schedule represents separated timetable and basically its specification WHEN to do something and WHAT to do.

In cluster environment, scheduling is processed only on master node, thus tasks are triggered only on master node.

Figure 6.1. Web GUI - section "Scheduling" - create new

Timetable Setting

This section should describe how to specify WHEN schedule should be triggered. Please keep in mind, that exact
trigger times are not guaranteed. There may be couple of seconds delay. Schedule itself can be specified in different
ways.

• Onetime Schedule (p. 45)

• Periodical schedule by Interval (p. 46)

• Periodical schedule by timetable (Cron Expression) (p. 47)

Onetime Schedule

It is obvious, that this schedule is triggered just once.

Table 6.1. Onetime schedule attributes

Type "onetime"

Start date/time Date and time, specified with minutes precision.

Chapter 6. Scheduling

46

Figure 6.2. Web GUI - onetime schedule form

Figure 6.3. Web GUI - schedule form - calendar

Periodical schedule by Interval

This type of schedule is the simplest periodical type. Trigger times are specified by these attributes:

Chapter 6. Scheduling

47

Table 6.2. Periodical schedule attributes

Type "periodic"

Periodicity "interval"

Start date/time Date and time, specified with minutes precision.

End date/time Date and time, specified with minutes precision.

Interval in minutes Specifies interval between two trigger times. Next task is triggered even if
previous task is still running.

Fire misfired ASAP switch If checked and trigger time is missed because of any reason (i.e. server
restart), it will be triggered immediately, when it is possible. Otherwise it
is ignored and it will be triggered at next scheduled time.

Figure 6.4. Web GUI - periodical schedule form

Periodical schedule by timetable (Cron Expression)

Timetable is specified by powerful (but a little bit tricky) cron expression.

Table 6.3. Cron periodical schedule attributes

Type "periodic"

Periodicity "interval"

Start date/time Date and time, specified with minutes precision.

End date/time Date and time, specified with minutes precision.

Cron expression Cron is powerful tool, which uses its own format for scheduling. This
format is well known among UNIX administrators. i.e. "0 0/2 4-23 * * ?"
means "every 2 minutes between 4:00am and 11:59pm".

Fire misfired ASAP switch If checked and trigger time is missed because of any reason (i.e. server
restart), it will be triggered immediately when it is possible. Otherwise it is
ignored and it will be triggered at next scheduled time.

Chapter 6. Scheduling

48

Figure 6.5. Cron periodical schedule form

Tasks

Task basically specifies WHAT to do at trigger time. There are several tasks implemented for schedule and for
graph event listener as follows:

• Task - Execution of Graph (p. 48)

• Task - Execution of Jobflow (p. 49)

• Task - Kill Job (p. 50)

• Task - Execution of Shell Command (p. 51)

• Task - Send Email (p. 52)

• Task - Execute Groovy Code (p. 52)

• Task - Archive Records (p. 53)

Task - Execution of Graph

Please note that behaviour of this task type is almost the same as Task - Execution of Jobflow (p. 49)

Chapter 6. Scheduling

49

Table 6.4. Attributes of "Graph execution" task

Task type "execute graph"

Sandbox This select box contains sandboxes which are readable for logger user.
Select sandbox which contains graph to execute.

Graph This select box is filled by all graphs files accessible in selected sandbox.

Parameters Key-value pairs which are passed to the executed job as parameters.
Besides, if this task is triggered by job (graph or jobflow) event, you can
specify source job parameters, which shall be passed from the source job
to executed job. i.e. event source has these parameters: paramName2 with
value "val2", paramName3 with value "val3", paramName5 with value
"val5". Task has "Parameters" attribute set like this:

 paramName1=paramValue1
 paramName2=
 paramName3
 paramName4

So executed job gets these parameters and values: paramName1 with
value "paramValue1" (specified explicitly in the task configuration)
paramName2 with value "" (empty string specified explicitly in the task
configuration overrides event source parameters), paramName3 with value
"val3" (value is taken from event source). These parameters aren't passed:
paramName4 isn't passed, since it does not have any value in event source.
paramName5 isn't passed, since it is not specified among the parameters to
pass in the task.

Event parameters like "EVENT_RUN_RESULT", "EVENT_RUN_ID"
etc. are passed to the executed job without limitations.

Figure 6.6. Web GUI - Graph execution task

Task - Execution of Jobflow

Please note that behaviour of this task type is almost the same as Task - Execution of Graph (p. 48)

Chapter 6. Scheduling

50

Table 6.5. Attributes of "Jobflow execution" task

Task type "execute jobflow"

Sandbox This select box contains sandboxes which are readable for logger user.
Select sandbox which contains jobflow to execute.

Jobflow This select box is filled by all jobflow files accessible in selected sandbox.

Parameters Key-value pairs which are passed to the executed job as parameters.
Besides, if this task is triggered by job (graph or jobflow) event, you can
specify source job parameters, which shall be passed from the source job
to executed job. i.e. event source has these parameters: paramName2 with
value "val2", paramName3 with value "val3", paramName5 with value
"val5". Task has "Parameters" attribute set like this:

 paramName1=paramValue1
 paramName2=
 paramName3
 paramName4

So executed job gets these parameters and values: paramName1 with
value "paramValue1" (specified explicitly in the task configuration)
paramName2 with value "" (empty string specified explicitly in the task
configuration overrides event source parameters), paramName3 with value
"val3" (value is taken from event source). These parameters aren't passed:
paramName4 isn't passed, since it does not have any value in event source.
paramName5 isn't passed, since it is not specified among the parameters to
pass in the task.

Event parameters like "EVENT_RUN_RESULT", "EVENT_RUN_ID"
etc. are passed to the executed job without limitations.

Figure 6.7. Web GUI - Jobflow execution task

Task - Kill Job

This task, when activated kills/aborts specified job (ETL graph or jobflow), if it is currently running.

Chapter 6. Scheduling

51

Table 6.6. Attributes of "Kill Job" task

Task type "kill job"

Kill source of event If this switch is on, task will kill job which is source of the event, which
activated this task. Attributes sandbox and job are ignored.

Sandbox Select sandbox which contains job to kill. This attribute works only when
"Kill source of event" switch is off.

Job This select box is filled by all jobs accessible in selected sandbox. All
instances of selected job, whose are currently running will be killed. This
attribute works only when "Kill source of event" switch is off.

Figure 6.8. Web GUI - "Kill job"

Task - Execution of Shell Command

Table 6.7. Attributes of "Shell command" task

Task type "shell command"

Command line Command line for execution of external process.

Working directory Working directory for process. If not set, working directory of application
server process is used.

Timeout Timeout in milliseconds. After period of time specified by this number,
external process is terminated and all results are logged.

Figure 6.9. Web GUI - shell command

Chapter 6. Scheduling

52

Task - Send Email

This task is very useful, but for now only as response for graph events. This feature is very powerful for monitoring.
(see Chapter 7, Graph Event Listeners (p. 55) for description of this task type).

Note: It seems useless to send emails periodically, but it may send current server status or daily summary. These
features will be implemented in further versions.

Task - Execute Groovy Code

This type of task allows execute code written in script language Groovy. It is possible to use some variables. Only
parameter of this task is source code of written in Groovy.

Table 6.8. List of variables available in Groovy code

variable class description availability

event com.cloveretl.server.events.AbstractServerEvent every time

task com.cloveretl.server.persistent.Task every time

now java.util.Date current time every time

parametersjava.util.Properties Properties of task every time

user com.cloveretl.server.persistent.UserSame as event.getUser() every time

run com.cloveretl.server.persistent.RunRecord When the event is instance of
GraphServerEvent

tracking com.cloveretl.server.persistent.TrackingGraphsame as run.getTrackingGraph() When the event is instance of
GraphServerEvent

sandbox com.cloveretl.server.persistent.Sandboxsame as run.getSandbox() When the event is instance of
GraphServerEvent

schedulecom.cloveretl.server.persistent.Schedulesame as
((ScheduleServerEvent)event).getSchedule()

When the event is instance of
ScheduleServerEvent

servletContextjavax.servlet.ServletContext every time

cloverConfigurationcom.cloveretl.server.spring.CloverConfigurationConfiguration values for
CloverETL Server

every time

serverFacadecom.cloveretl.server.facade.api.ServerFacadeReference to the facade
interface. Useful for calling
CloverETL Server core.

WAR file contains JavaDoc of
facade API and it is accessible
on URL: http://host:port/clover/
javadoc/index.html

every time

sessionTokenString Valid session token of the user
who owns the event. It is useful
for authorisation to the facade
interface.

every time

Variables run, tracking and sandbox are available only if event is instance of GraphServerEvent class. Variable
schedule is available only for ScheduleServerEvent as event variable class.

Example of use Groovy script

This example shows script which writes text file describing finished graph. It shows use of 'run' variable.

../javadoc/index.html
../javadoc/index.html

Chapter 6. Scheduling

53

import com.cloveretl.server.persistent.RunRecord;
String dir = "/tmp/";
RunRecord rr = (RunRecord)run;

String fileName = "report"+rr.getId()+"_finished.txt";

FileWriter fw = new FileWriter(new File(dir+fileName));
fw.write("Run ID :"+rr.getId()+"\n");
fw.write("Graph ID :"+rr.getGraphId()+"\n");
fw.write("Sandbox :"+rr.getSandbox().getName()+"\n");
fw.write("\n");
fw.write("Start time :"+rr.getStartTime()+"\n");
fw.write("Stop time :"+rr.getStopTime()+"\n");
fw.write("Duration :"+rr.getDurationString()+"\n");
fw.write("Final status :"+rr.getFinalStatus()+"\n");
fw.close();

Task - Archive Records

As name suggests, this task can archive (or delete) obsolete records from DB.

Table 6.9. Attributes of "archive records" task

Task type "archivator"

Older then Time period (in minutes) - it specifies which records are evaluated as
obsolete. Records older then the specified interval are stored in archives.

Archivator type There are two possible values: "archive" or "delete". Delete removes
records without any possibility of UNDO operation. Archive removes
records from DB, but creates ZIP package with CSV files containing
deleted data.

Output path for archives This attribute makes sense only for "archive" type.

Include executions history

Run record with status If status is selected, only run records with specified status will be archived.
It is useful e.g. If you want to delete records for successfully finished jobs,
but you want to keep failed jobs for further investigation.

Include temp files

Temp files with record status If status is selected, only temp files related to the run records with selected
status will be archived. It is useful e.g. If you want to delete files for
successfully finished jobs, but you want to keep failed jobs for further
investigation.

Include tasks history If checked, archivator will include run records. Log files of graph runs are
included as well.

Task types If this task type is selected, only logs for selected task type are archived.

Task result mask Mask applied to task log result attribute. Only records whose result meets
this mask are archived. Specify string without any wildcards. Each task
log which contains specified string in the "result" attribute will be deleted/
archived. Case sensitivity depends on database collation.

Include debug files If checked, archivator removes all graph debug files older then given
timestamp defined in "Older than" attribute.

Include dictionary files If checked, archivator removes all dictionary temporary files older then
given timestamp defined in "Older than" attribute.

Chapter 6. Scheduling

54

Figure 6.10. Web GUI - archive records

55

Chapter 7. Graph Event Listeners
Graph event listener is powerful feature, which allows user to monitor success of failure of ETL graph executions.
It is also possible to create relations between executions, or execute backup script in dependence of graph success
or failure.

Please note that Graph Event Listeners work very similar to Jobflow Event Listeners (Chapter 8, Jobflow Event
Listeners (p. 63)) in many ways, since ETL Graph and Jobflow are both "jobs" from the point of view of
CloverETL Server.

In cluster environment, event exists only on cluster node, which runs jobflow, thus if the node isn't explicitly
specified, the task is triggered on the same node.

Graph Events

Each event carries properties of graph, which is source of event. If there is a event listener specified, task may use
these properties. i.e. next graphs in the chain may use "EVENT_FILE_NAME" placeholder which activated first
graph in the chain. Graph properties, which are set specifically for each graph run (i.e. RUN_ID), are overridden
by last graph.

For now, there are these types of graph events:

• graph started (p. 55)

• graph phase finished (p. 55)

• graph finished OK (p. 55)

• graph error (p. 55)

• graph aborted (p. 56)

• graph timeout (p. 56)

• graph status unknown (p. 56)

graph started

Event of this type is created, when ETL graph execution successfully started.

graph phase finished

Event of this type is created, everytime when graph phase is finished and all its nodes are finished with status
FINISHED_OK.

graph finished OK

Event of this type is created, when all phases and nodes of graph are finished with status FINISHED_OK.

graph error

Event of this type is created, when graph cannot be executed from any reason, or when any node of graph fails.

Chapter 7. Graph Event Listeners

56

graph aborted

Event of this type is created, when graph is explicitly aborted.

graph timeout

Event of this type is created, when graph runs longer then specified interval. Thus you have to specify "Job timeout
interval" attribute for each listener of graph timeout event. You can specify this interval in seconds or in minutes
or in hours.

Figure 7.1. Web GUI - graph timeout event

graph status unknown

Event of this type is created, when the server, during the startup, detects run records with undefined status in the
executions history. Undefined status means, that server has been killed during graph run. Server automatically
changes state of graph to "Not Available" and sends 'graph status unknown' event. Please note, that this works
just for executions, which have persistent record in executions history. It is possible to execute transformation
without persistent record in executions history, typically for better performance of fast running transformations
(i.e. using Launch Services).

Listener

User may create listener for specified event type and graph (or all graphs in sandbox). Listener is actually
connection between graph event and task, where graph event specifies WHEN and task specifies WHAT to do.

So progress is like this:

• event is created

• listeners for this event are notified

• each listener performs related task

Tasks

Task types "execute shell command", "execute graph" and "archivator" are described in section "scheduling" see
this section for details about these task types. There is one more task type, which is useful especially with graph
event listeners, thus it is described here. It is task type "send email".

Note: You can use task of any type for both scheduling and graph event listener. Description of task types is divided
into two sections just to show the most obvious use cases.

Chapter 7. Graph Event Listeners

57

• Task - Send Email (p. 57)

• Task - JMS Message (p. 59)

Task - Send Email

This type of task is useful for notifications about result of graph execution. I.e. you can create listener with this
task type to be notified about each failure in specified sandbox or failure of particular graph.

Table 7.1. Attributes of "Send email" task

Task type "email"

Email pattern This select box contains all predefined email patterns. If user chooses any
of them, all fields below are automatically filled by values from pattern.

To Recipient's email address. It is possible to specify more addresses
separated by comma. It is also possible to use placeholders. See
Placeholders (p. 58) for details.

Cc Cc stands for 'carbon copy'. Copy of email will be delivered to these
addresses. It is possible to specify more addresses separated by comma. It
is also possible to use placeholders. See Placeholders (p. 58) for details.

BCc Bcc: stands for 'Blind carbon copy'. It is the same as Cc, but the others
recipients aren't aware, that these recipients get copy of email.

Reply-to (Sender) Email address of sender. It must be valid address according to SMTP server.
It is also possible to use placeholders. See Placeholders (p. 58) for
details.

Subject Email subject. It is also possible to use placeholders. See
Placeholders (p. 58) for details.

Plain text Body of email in plain text. Email is created as multipart, so HTML
body should have a precedence. Plain text body is only for email clients
which do not display HTML. It is also possible to use placeholders. See
Placeholders (p. 58) for details.

HTML Body of email in HTML. Email is created as multipart, so HTML body
should have a precedence. Plain text body is only for email clients
which do not display HTML. It is also possible to use placeholders. See
Placeholders (p. 58) for details.

Log file as attachment If this switch is checked, email will have an attachment with packed log
file of related graph execution.

Chapter 7. Graph Event Listeners

58

Figure 7.2. Web GUI - send email

Note: Do not forget to configure connection to SMTP server (See Chapter 18, Configuration (p. 96) for details).

Placeholders

Place holder may be used in some fields of tasks. They are especially useful for email tasks, where you can generate
content of email according to context variables.

Note: In most cases, you can avoid this by using email patterns (See Email task for details)

These fields are preprocessed by Apache Velocity templating engine. See Velocity project URL for syntax
description http://velocity.apache.org/

There are several context variables, which you can use in place holders and even for creating loops and conditions.

• event

• now

• user

• run

• sandbox

Some of them may be empty in dependence of occasion which field is processed in. I.e. If task is processed because
of graph event, then run and sandbox variables contain related data, otherwise they are empty,

http://velocity.apache.org/

Chapter 7. Graph Event Listeners

59

Table 7.2. Placeholders useful in email templates

Variable name Contains

now Current date-time

user User, who caused this event. It may be owner of schedule, or someone who
executed graph. Contains sub-properties, which are accessible using dot notation (i.e.
${user.email}) email, username, firstName, lastName, groups (list of values)

run Data structure describing one single graph execution. Contains sub-properties,
which are accessible using dot notation (i.e. ${run.graphId}) graphId, finalStatus,
startTime, stopTime, errNode, errMessage, errException, logLocation

tracking Data structure describing status of components in graph execution. Contains sub-
properties, which are accessible using Velocity syntax for loops and conditions.

#if (${tracking})
<table border="1" cellpadding="2" cellspacing="0">
#foreach ($phase in $tracking.trackingPhases)
<tr><td>phase: ${phase.phaseNumber}</td>
 <td>${phase.execTime} ms</td>
 <td></td><td></td><td></td></tr>
 #foreach ($node in $phase.trackingNodes)
 <tr><td>${node.nodeName}</td>
 <td>${node.result}</td>
 <td></td><td></td><td></td></tr>
 #foreach ($port in $node.trackingPorts)
 <tr><td></td><td></td>
 <td>${port.portType}:${port.index}</td>
 <td>${port.totalBytes} B</td>
 <td>${port.totalRows} rows</td></tr>
 #end
 #end
#end
</table>
#end
}

sandbox Data structure describing sandbox containing executed graph. Contains sub-
properties, which are accessible using dot notation (i.e. ${sandbox.name}) name,
code, rootPath

schedule Data structure describing schedule which triggered this task. Contains sub-
properties, which are accessible using dot notation (i.e. ${schedule.description})
description, startTime, endTime, lastEvent, nextEvent, fireMisfired

Task - JMS Message

This type of task is useful for notifications about result of graph execution. I.e. you can create graph event listener
with this task type to be notified about each failure in specified sandbox or failure of particular graph.

JMS messaging requires JMS API (jms.jar) and third-party libraries. All these libraries must be available on
application server classpath. Some application servers contain these libraries by default, some do not, thus the
libraries must be added explicitly.

Chapter 7. Graph Event Listeners

60

Table 7.3. Attributes of JMS message task

Task type "JMS message"

Initial context class name Full class name of javax.naming.InitialContext implementation. Each
JMS provider has own implementation. i.e. for Apache MQ it is
"org.apache.activemq.jndi.ActiveMQInitialContextFactory". If it is empty,
server uses default initial context

Connection factory JNDI name JNDI name of connection factory. Depends on JMS provider.

Destination JNDI name of message queue/topic on the server

Username Username for connection to JMS message broker

Password Password for connection to JMS message broker

URL URL of JMS message broker

JMS pattern This select box contains all predefined JMS message patterns. If user
chooses any of them, text field below is automatically filled by value from
pattern.

Text Body of JMS message. It is also possible to use placeholders. See
Placeholders (p. 58) of send email task for details.

Figure 7.3. Web GUI - Task JMS message editor

Use cases

Possible use cases are the following:

• Execute graphs in chain (p. 61)

• Email notification about graph failure (p. 61)

• Email notification about graph success (p. 62)

• Backup of data processed by graph (p. 62)

Chapter 7. Graph Event Listeners

61

Execute graphs in chain

Let's say, that we have to execute graph B, only if another graph A finished without any error. So there is some
kind of relation between these graphs. We can achieve this behaviour by creating graph event listener. We create
listener for event graph finished OK of graph A and choose task type execute graph with graph B
specified for execution. And that is it. If we create another listener for graph B with task execute graph with
graph C specified, it will work as chain of graphs.

Figure 7.4. Event source graph isn't specified, thus listener works for all graphs in specified sandbox

Email notification about graph failure

Figure 7.5. Web GUI - email notification about graph failure

Chapter 7. Graph Event Listeners

62

Email notification about graph success

Figure 7.6. Web GUI - email notification about graph success

Backup of data processed by graph

Figure 7.7. Web GUI - backup of data processed by graph

63

Chapter 8. Jobflow Event Listeners
Please note that Jobflow Event Listeners work very similar to Graph Event Listener (the section called
“Tasks” (p. 56)) in many ways, since ETL Graph and Jobflow are both "jobs" from the point of view of CloverETL
Server.

In cluster environment, event exists only on cluster node, which runs jobflow, thus if the node isn't explicitly
specified, the task is triggered on the same node.

Jobflow Events

Each event carries properties of the event source job. If there is a event listener specified, task may use these
properties. e.g. next job in the chain may use "EVENT_FILE_NAME" placeholder which activated first job in the
chain. Job properties, which are set specifically for each run (e.g. RUN_ID), are overridden by last job.

There are these types of jobflow events:

• jobflow started (p. 63)

• jobflow phase finished (p. 63)

• jobflow finished OK (p. 63)

• jobflow error (p. 63)

• jobflow aborted (p. 63)

• jobflow timeout (p. 64)

• jobflow status unknown (p. 64)

jobflow started

Event of this type is created, when jobflow execution successfully started.

jobflow phase finished

Event of this type is created, everytime when jobflow phase is finished and all its nodes are finished with status
FINISHED_OK.

jobflow finished OK

Event of this type is created, when all phases and nodes of jobflow are finished with status FINISHED_OK.

jobflow error

Event of this type is created, when jobflow cannot be executed from any reason, or when any node of the jobflow
fails.

jobflow aborted

Event of this type is created, when jobflow is explicitly aborted.

Chapter 8. Jobflow Event Listeners

64

jobflow timeout

Event of this type is created, when jobflow runs longer then specified interval. Thus you have to specify "Job
timeout interval" attribute for each listener of jobflow timeout event. You can specify this interval in seconds or
in minutes or in hours.

Figure 8.1. Web GUI - jobflow timeout event

jobflow status unknown

Event of this type is created, when the server, during the startup, detects run records with undefined status in the
executions history. Undefined status means, that server has been killed during jobflow run. Server automatically
changes state of jobflow to "Not Available" and sends 'jobflow status unknown' event. Please note, that this works
just for executions, which have persistent record in executions history. It is possible to execute transformation
without persistent record in executions history, typically for better performance of fast running transformations
(e.g. using Launch Services).

Listener

User may create listener for specified event type and jobflow (or all jobflows in sandbox). Listener is actually
connection between jobflow event and task, where jobflow event specifies WHEN and task specifies WHAT to do.

So progress is like this:

• event is created

• listeners for this event are notified

• each listener performs related task

Tasks

Task specifies operation which should be performed as the reaction to the triggered event.

Task types are described in the section called “Tasks” (p. 48) and the section called “Tasks” (p. 56)

Note: You can use task of any type for jobflow event listener. Description of task types is divided into two sections
just to show the most obvious use cases.

65

Chapter 9. JMS messages listeners
This feature allows you to specify listener for incoming JMS messages. Such listener can then process one of
predefined tasks as usual for all event listeners. So for each listener user specifies source of JMS messages (JMS
Topic or JMS Queue) and task which will be processed as a result of each incoming JMS message.

JMS messaging requires JMS API (jms.jar) and third-party libraries. All these libraries must be available on
application server classpath. Some application servers contain these libraries by default, some do not, thus the
libraries must be added explicitly.

JMS itself is quite complex topic beyond of scope of this document. Detail information about it can be found on
Sun web site: http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JMS6.html

Table 9.1. Attributes of JMS message task

Attribute Description

Node ID to handle the
event

This attribute makes sense only in cluster environment. It is node ID where the
listener should be initialized. If it is not set, listener is initialized on all nodes in the
cluster.

Initial context class name Full class name of javax.naming.InitialContext implementation. Each
JMS provider has own implementation. i.e. for Apache MQ it is
"org.apache.activemq.jndi.ActiveMQInitialContextFactory". If it is empty, server
uses default initial context. Specified class must be on web-app classpath or
application-server classpath. It is usually included in one library with JMS API
implementation for each specific JMS broker provider.

Connection factory JNDI
name

JNDI name of connection factory. Depends on JMS provider.

Destination JNDI name JNDI name of message queue/topic on the server

Username Username for connection to JMS message broker

Password Password for connection to JMS message broker

URL URL of JMS message broker

Durable subscriber (only
for Topics)

If it is false, message consumer is connected to the broker as "non-durable", so it
receives only messages which are sent while the connection is active. Other messages
are lost. If it is true, consumer is subscribed as "durable" so it receives even messages
which are sent while the connection is inactive. The broker stores such messages
until they can be delivered or until the expiration is reached. This switch makes sense
only for Topics destinations, because Queue destinations always store messages until
they can be delivered or the expiration is reached. Please note, that consumer is
inactive i.e. during server restart and during short moment when user updates the
"JMS message listener" ant it must be re-initialized. So during these intervals the
message in the Topic may get lost if the consumer does not have durable subscription.

If the subscription is durable, client must have "ClientId" specified. This attribute
can be set in different ways in dependence of JMS provider. I.e. for ActiveMQ, it is
set as URL parameter tcp://localhost:1244?jms.clientID=TestClientID

Message selector This "query string" can be used as specification of conditions for filtering incoming
messages. Syntax is well described on Java EE API web site: http://java.sun.com/
j2ee/1.4/docs/api/javax/jms/Message.html It has different behaviour depending on
type of consumer (queue/topic) Queue: If a its a queue the messages that are filtered
out remain on the queue. Topic: Messages filtered out by a Topic subscriber's
message selector will never be delivered to the subscriber. From the subscriber's
perspective, they do not exist.

Groovy code Groovy code may be used for additional message processing and/or for refusing
message. Both features are described below.

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JMS6.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

Chapter 9. JMS messages listeners

66

Optional Groovy code

Groovy code may be used for additional message processing or for refusing message.

• Additional message processing Groovy code may modify/add/remove values stored in containers "properties"
and "data".

• Refuse/acknowledge the message if Groovy code returns Boolean.FALSE, message is refused. Otherwise,
message is acknowledged. Refused message may be redelivered, however JMS broker should have configured
some limit for redelivering messages. If groovy code throws an exception, it is considered as coding error and
JMS message is NOT refused because of it. So if the message refusal is directed by some exception, it must
be handled in groovy.

Table 9.2. Variables accessible in groovy code

type key description

javax.jms.Message msg instance of JMS message

java.util.Properties properties See below for details. Contains values (String
or converted to String) read from message and
it is passed to the task which may use them
somehow. I.e. task "execute graph" passes these
parameters to the executed graph.

java.util.Map<String, Object> data See below for details. Contains values (Object,
Stream, ..) read or proxied from the message
instance and it is passed to the task which may
use them somehow. I.e. task "execute graph"
passes it to the executed graph as "dictionary
entries".

javax.servlet.ServletContext servletContext instance of ServletContext

javax.jms.Message msg instance of JMS message

com.cloveretl.server.api.ServerFacade serverFacade instance of serverFacade usable for calling
CloverETL Server core features.

String sessionToken sessionToken, needed for calling serverFacade
methods

Message data available for further processing

JMS message is processed and data it contains is stored basically in two data structures. "properties" and "data"

Chapter 9. JMS messages listeners

67

Table 9.3. "properties" elements

key description

JMS_PROP_[property
key]

For each message property is created one entry, where "key" is made of prefix
"JMS_PROP_" and property key.

JMS_MAP_[map entry
key]

If the message is instance of MapMessage, for each map entry is created one
entry, where "key" is made of prefix "JMS_MAP_" and map entry key. Values are
converted to String.

JMS_TEXT If the message is instanceof TextMessage, this property contains content of the
message.

JMS_MSG_CLASS Class name of message implementation

JMS_MSG_CORRELATIONIDCorrelation ID is either provider-specific message ID or application-specific String
value

JMS_MSG_DESTINATIONThe JMSDestination header field contains the destination to which the message is
being sent.

JMS_MSG_MESSAGEID A JMSMessageID is a String value that should function as a unique key for
identifying messages in a historical repository. The exact scope of uniqueness is
provider-defined. It should at least cover all messages for a specific installation of a
provider, where an installation is some connected set of message routers.

JMS_MSG_REPLYTO Destination to which a reply to this message should be sent.

JMS_MSG_TYPE Message type identifier supplied by the client when the message was sent.

JMS_MSG_DELIVERYMODEThe DeliveryMode value specified for this message.

JMS_MSG_EXPIRATION The time the message expires, which is the sum of the time-to-live value specified
by the client and the GMT at the time of the send.

JMS_MSG_PRIORITY The JMS API defines ten levels of priority value, with 0 as the lowest priority and
9 as the highest. In addition, clients should consider priorities 0-4 as gradations of
normal priority and priorities 5-9 as gradations of expedited priority.

JMS_MSG_REDELIVERED"true" if this message is being redelivered.

JMS_MSG_TIMESTAMP The time a message was handed off to a provider to be sent. It is not the time the
message was actually transmitted, because the actual send may occur later due to
transactions or other client-side queueing of messages.

Please note, that all values in "properties" structure are of String type, nevertheless it is number or text.

All listed properties are accessible with lower-case keys as well for backwards compatibility, however it's
deprecated approach.

Table 9.4. "data" elements

key description

JMS_MSG instance of javax.jms.Message

JMS_DATA_STREAM Instance of java.io.InputStream. Accessible only for TextMessage, BytesMessage,
StreamMessage, ObjectMessage(only if payload object is instance of String). Strings
are encoded in UTF-8.

JMS_DATA_TEXT Instance of String. Only for TextMessage and ObjectMessage, where payload object
is instance of String.

JMS_DATA_OBJECT Instance of java.lang.Object - message payload. Only for ObjectMessage.

"data" container is passed to the task which may use them somehow according to its implementation. I.e. task
"execute graph" passes it to the executed graph as "dictionary entries". Please note that it is not serializable, thus
if the task is relying on it, it can be processed properly only on the same cluster node.

Chapter 9. JMS messages listeners

68

Dictionary entries can be used in some of graph component attributes. I.e. in fileURL attribute like this:
"dict:JMS_DATA_STREAM:discrete". So the reader reads data directly from incoming JMS message using this
proxy stream.

All listed dictionary entries are accessible with lower-case keys as well for backwards compatibility, however it's
deprecated approach.

69

Chapter 10. Universal event listeners
Since 2.10

This feature allows you to specify Groovy code, which decides when the event is created. Subsequently specified
task is processed. So for each listener user specifies Groovy source code and task which will be processed if groovy
code decides to.

Table 10.1. Attributes of Universal message task

Attribute Description

Node ID to handle the
event

This attribute makes sense only in cluster environment. It is node ID where the
listener should be initialized. If it is not set, listener is initialized on all nodes in the
cluster.

Interval of check in
seconds

Periodicity of Groovy code execution.

Groovy code Groovy code is used for deciding whether the event should be created or not. See
below for details about groovy code.

Groovy code

Groovy code is used for deciding whether the event should be created or not.

i.e. it may do some checks of data sources, which are vital for execution of graph. Or it may do some complex
checks of running graph and make decision to kill it. It may call CloverETL Server core functions using
ServerFacade interface, which is described in its own chapter.

Creating "event" is simple. If Groovy code returns Boolean.TRUE, event is created and specified task is processed.
Otherwise, nothing happens. If groovy code throws an exception, it is considered as coding error and event is NOT
created because of it. So if it is necessary, the exceptions must be handled in groovy code.

Table 10.2. Variables accessible in groovy code

type key description

java.util.Properties properties Empty container which may be filled by String-
String key-value pairs in your Groovy code.
It is passed to the task which may use them
somehow. I.e. task "execute graph" passes these
parameters to the executed graph.

java.util.Map<String, Object> data Empty container which may be filled by String-
Object key-value pairs in your Groovy code.
It is passed to the task which may use them
somehow according to its implementation. I.e.
task "execute graph" passes it to the executed
graph as "dictionary entries". Please note that it
is not serializable, thus if the task is relying on
it, it can be processed properly only on the same
cluster node.

javax.servlet.ServletContext servletContext instance of ServletContext

com.cloveretl.server.api.ServerFacade serverFacade instance of serverFacade usable for calling
CloverETL Server core features.

String sessionToken sessionToken, needed for calling serverFacade
methods

70

Chapter 11. Manual task execution
Since 3.1

Manual task execution allows user to invoke task processing. Task is entity which describes how to react to some
source event. So normally task is processed only as a response to some source event. Since 3.1 user can manually
invoke task processing.

In addition user can specify some parameters to simulate source event which would normally trigger task
processing. Following figure displays how could be simulated "file event". Parameters for various event sources
are listed in section "Graph parameters"

Figure 11.1. Web GUI - "Manual task execution" section

71

Chapter 12. File event listeners
Since 1.3

File event listener allows system to monitor changes on server filesystem. User may define, which filesystem
resource should be observed as a source of file event. User also specifies task, which should be processed as
reaction to change on filesystem.

There is process which performs checks for changes on file system. This process works with preconfigured
periodicity, thus there is minimal interval which for checks. You can set this minimal interval by clover property
"clover.event.fileCheckMinInterval".

In cluster environment, each event listener has attribute "node ID" which specifies cluster node, which checks its
local filesystem. In "standalone" environment, "node ID" attribute is ignored.

Figure 12.1. Web GUI - "File event listeners" section

Observed file
Observed file is specified by directory path and file name pattern.

User may specify just one exact file name or file name pattern for observing more matching files in specified
directory. If there are more changed files matching the pattern, separated event is triggered for each of these files.

There are three ways how to specify file name pattern of observed file(s)

• Exact match (p. 71)

• Wildcards (p. 71)

• Regullar expression (p. 72)

Exact match

You specify exact name of the observed file.

Wildcards

You can use wildcards common in most operating systems (*, ?, etc.)

Chapter 12. File event listeners

72

• * - Matches zero or more instances of any character

• ? - Matches one instance of any character

• [...] - Matches any of characters enclosed by the brackets

• \ - Escape character

Examples

• *.csv - Matches all CSV files

• input_*.csv - Matches i.e. input_001.csv, input_9.csv

• input_???.csv - Matches i.e. input_001.csv, but does not match input_9.csv

Regullar expression

Examples

• (.*?)\.(jpg|jpeg|png|gif)$ - Matches image files

Notes

• It is strongly recommended to use absolute paths. It is possible to use relative path, but working directory
depends on application server.

• Use forward slashes as file separators, even on MS Windows OS. Backslashes might be evaluated as escape
sequences.

File Events

For each listener you have to specify event type, which you are interested in.

There are four types of file events:

• file APPEARANCE (p. 72)

• file DISAPPEARANCE (p. 72)

• file SIZE (p. 73)

• file CHANGE_TIME (p. 73)

file APPEARANCE

Event of this type occurs, when the observed file is created or copied from another location between two checks.
Please keep in mind, that event of this type occurs immediately when new file is detected, regardless it is complete
or not. Thus task which may need complete file is executed when file is still incomplete. Recommended approach is
to save file to the different location and when it is complete, move/rename to observed location where CloverETL
Server may detect it. File moving/renaming should be atomic operation.

Event of this type does not occur when the file has been updated (change of timestamp or size) between two
checks. Appearance means that the file didn't exist during previous check and it exists now, during current check.

file DISAPPEARANCE

Event of this type occurs, when observed file is deleted or moved to another location between two checks.

Chapter 12. File event listeners

73

file SIZE

Event of this type occurs when the size of the observed file has changed between two checks. Event of this type
is never produced when file is created or removed. File must exist during both checks.

file CHANGE_TIME

Event of this type occurs, when change time of observed file has changed between two checks. Event of this type
is never produced when file is created or removed. File must exist during both checks.

Check interval, Task and Use cases

• User may specify minimal time interval between two checks. It is specified in seconds.

• Each listener defines task, which will be processed as the reaction for file event. All task types and theirs
attributes are described in section Scheduling and GraphEventListeners

• • Graph Execution, when file with input data is accessible

• Graph Execution, when file with input data is updated

• Graph Execution, when file with generated data is removed and must be recreated

How to use source of event during task processing

File, which caused event (considered as source of event) may be used during task processing. i.e. reader/writer
components in graph transformations may refer to this file by special placeholders: ${EVENT_FILE_PATH} -
path to directory which contains event source ${EVENT_FILE_NAME} - name of event source.

Please note that previous versions used lower-case placeholders. Since version 3.3, placeholders are upper-case,
however lower-case still work for backward compatibility.

i.e. if event source is: /home/clover/data/customers.csv, placeholders will contain:
EVENT_FILE_PATH - /home/clover/data, EVENT_FILE_NAME - customers.csv

For "graph execution" task this works only if the graph is not pooled. Thus "keep in pool interval" must be set
to 0 (default value).

74

Chapter 13. WebDAV
Since 3.1

WebDAV API allows user to use standard WebDAV clients for managing sandboxes content.

It allows specifically:

• browsing directory structure

• editing files

• removing files/folders

• renaming files/folders

• creating files/folders

• copying files

• moving files

It is accessible on URL "http://[host]:[port]/clover/webdav".

Although common www browsers can open this URL, most of them are not rich WebDAV clients, thus you can
just see list of items, but you cannot browse the directory structure with common www browsers.

WebDAV clients

There are many WebDAV clients for various operating systems, some OS support WebDAV natively.

Linux like OS

Great WebDAV client working on linux systems is Konqueror. Please use different protocol in the URL: webdav://
[host]:[port]/clover/webdav

MS windows

Last distributions of MS Windows (Win XP and later) have native support for WebDAV. Unfortunatelly, it is
more or less unreliable, so it is recommended to use some free or commercial WebDAV client.

• The best WebDAV client we've tested is BitKinex: http://www.bitkinex.com/webdavclient

• Another option is to use Total Commander (http://www.ghisler.com/index.htm) with WebDAV plugin: http://
www.ghisler.com/plugins.htm#filesys

Mac OS

Mac OS supports WebDAV natively and in this case it should be without any problems. You can use "finder"
application, select "Connect to the server ..." menu item and use URL with HTTP protocol: "http://[host]:[port]/
clover/webdav".

WebDAV authentication/authorization

CloverETL Server WebDAV API uses the HTTP Basic Authentication by default. However it may be reconfigured
to use HTTP Digest Authentication. Please see the Configuration section for details.

Chapter 13. WebDAV

75

Digest Authentication may be useful, since some WebDAV clients can't work with HTTP Basic Authentication,
only with Digest Authentication.

HTTP Digest Authentication is feature added to the version 3.1. If you upgraded your older CloverETL Server
distribution, users created before the upgrade cannot use the HTTP Digest Authentication until they reset their
passwords. So when they reset their passwords (or the admin does it for them), they can use Digest Authentication
as well as new users.

76

Chapter 14. Simple HTTP API
This API is intended for all HTTP clients (even for the simplest ones - like wget tool). All operations are accessible
using http GET method and return plain text. Thus response can be parsed by simple tools. If global security is on
(default setting), BASIC HTTP authentication is required. Use CloverETL Server user with proper permissions.

Please note, that ETL graph related operations "graph_run", "graph_status" and "graph_kill" work for jobflows
as well.

URL has this pattern:

http://[domain]:[port]/[context]/[servlet]/[operation]?[param1]=[value1]&[param2]=[value2]...

For wget client, you can use following command line:

wget --user=$USER --password=$PASS -O ./$OUTPUT_FILE $REQUEST_URL

• Operation help (p. 76)

• Operation graph_run (p. 77)

• Operation graph_status (p. 77)

• Operation graph_kill (p. 78)

• Operation server_jobs (p. 79)

• Operation sandbox_list (p. 79)

• Operation sandbox_content (p. 79)

• Operation executions_history (p. 79)

• Operation suspend (p. 81)

• Operation resume (p. 81)

• Operation sandbox_create (p. 82)

• Operation sandbox_add_location (p. 82)

• Operation sandbox_remove_location (p. 82)

• Cluster status (p. 83)

Operation help

parameters

no

returns

list of possible operations and parameters with its descriptions

Chapter 14. Simple HTTP API

77

example

http://localhost:8080/clover/request_processor/help

Operation graph_run

Call this operation to start execution of the specified job. Operation is called graph_run for backward compatibility,
however it may execute ETL graph or jobflow.

parameters

Table 14.1. Parameters of graph_run

parameter name mandatory default description

graphID yes - Text Id, which is unique in specified sandbox. May be file
path relative to sandbox root

sandbox yes - Text ID of sandbox

additional graph
parameters

no Any URL parameter with "param_" prefix is passed
to executed graph and may be used in graph XML
as placeholder, but without "param_" prefix. i.e.
"param_FILE_NAME" specified in URL may be used in the
graph as ${FILE_NAME}. These parameters are resolved
only during loading of graph XML, so graph cannot be
pooled.

nodeID no - In cluster mode it's ID of node which should execute the job.
However it's not final. If the graph is distributed, or the node
is disconnected, the graph may be executed on some another
node.

verbose no MESSAGE MESSAGE | FULL - how verbose should possible error
message be.

returns

run ID: incremental number, which identifies each execution request

example

http://localhost:8080/clover/request_processor/graph_run?graphID=graph/graphDBExecute.grf&sandbox=mva

Operation graph_status

Call this operation to obtain status of specified job execution. Operation is called graph_status for backward
compatibility, however it may return status of ETL graph or jobflow.

parameters

Chapter 14. Simple HTTP API

78

Table 14.2. Parameters of graph_status

parameter name mandatory default description

runID yes - Id of each graph execution

returnType no STATUS STATUS | STATUS_TEXT | DESCRIPTION |
DESCRIPTION_XML

waitForStatus no - Status code which we want to wait for. If it is specified, this
operation will wait until graph is in required status.

waitTimeout no 0 If waitForStatus is specified, it will wait only specified
amount of milliseconds. Default 0 means forever, but it
depends on application server configuration. When the
specified timeout expires and graph run still isn't in required
status, server returns code 408 (Request Timeout). 408 code
may be also returned by application server if its HTTP
request timeout expires before.

verbose no MESSAGE MESSAGE | FULL - how verbose should possible error
message be.

returns

Status of specified graph. It may be number code, text code or complex description in dependence of optional
parameter returnType. Description is returned as plain text with pipe as separator, or as XML. Schema describing
XML format of the XML response is accessible on CloverETL Server URL: http://[host]:[port]/clover/schemas/
executions.xsd In dependence on waitForStatus parameter may return result immediately or wait for specified
status.

example

http://localhost:8080/clover/request_processor/graph_status ->
 -> ?runID=123456&returnType=DESCRIPTION&waitForStatus=FINISHED&waitTimeout=60000

Operation graph_kill

Call this operation to abort/kill job execution. Operation is called graph_kill for backward compatibility, however
it may abort/kill ETL graph or jobflow.

parameters

Table 14.3. Parameters of graph_kill

parameter name mandatory default description

runID yes - Id of each graph execution

returnType no STATUS STATUS | STATUS_TEXT | DESCRIPTION

verbose no MESSAGE MESSAGE | FULL - how verbose should possible error
message be.

returns

Status of specified graph after attempt to kill it. It may be number code, text code or complex description in
dependence of optional parameter.

example

http://localhost:8080/clover/request_processor/graph_kill?runID=123456&returnType=DESCRIPTION

Chapter 14. Simple HTTP API

79

Operation server_jobs

parameters

no

returns

List of runIDs currently running jobs.

example

http://localhost:8080/clover/request_processor/server_jobs

Operation sandbox_list

parameters

no

returns

List of all sandbox text IDs. In next versions will return only accessible ones.

example

http://localhost:8080/clover/request_processor/sandbox_list

Operation sandbox_content

parameters

Table 14.4. Parameters of sandbox_content

parameter name mandatory default description

sandbox yes - text ID of sandbox

verbose no MESSAGE MESSAGE | FULL - how verbose should possible error
message be.

returns

List of all elements in specified sandbox. Each element may be specified as file path relative to sandbox root.

example

http://localhost:8080/clover/request_processor/sandbox_content?sandbox=mva

Operation executions_history

parameters

Chapter 14. Simple HTTP API

80

Table 14.5. Parameters of executions_history

parameter name mandatory default description

sandbox yes - text ID of sandbox

from no Lower datetime limit. Operation will return only records
after(and equal) this datetime. Format: "yyyy-MM-dd
HH:mm" (must be URL encoded)

to no Lower datetime limit. Operation will return only records
after(and equal) this datetime. Format: "yyyy-MM-dd
HH:mm" (must be URL encoded) status

status no Current execution status. Operation will return only records
with specified STATUS. Meaningful values are RUNNING
| ABORTED | FINISHED_OK | ERROR

sandbox no Sandbox code. Operation will return only records for graphs
from specified sandbox.

graphId no Text Id, which is unique in specified sandbox. File path
relative to sandbox root

orderBy no Attribute for list ordering. Possible values: id | graphId |
finalStatus | startTime | stopTime. There is no ordering by
default.

orderDescend no true Switch which specifies ascending or descending ordering. If
it is true (which is default), ordering is descending.

returnType no IDs Possible values are: IDs | DESCRIPTION |
DESCRIPTION_XML

index no 0 Index of the first returned records in whole record set.
(starting from

records no infinite Max amount of returned records.

verbose no MESSAGE MESSAGE | FULL - how verbose should possible error
message be.

returns

List of executions according to filter criteria.

For returnType==IDs returns simple list of runIDs (with new line delimiter).

For returnType==DESCRIPTION returns complex response which describes current status of selected
executions, their phases, nodes and ports.

execution|[runID]|[status]|[username]|[sandbox]|[graphID]|[startedDatetime]|[finishedDatetime]|[clusterNode]|[graphVersion]
phase|[index]|[execTimeInMilis]
node|[nodeID]|[status]|[totalCpuTime]|[totalUserTime]|[cpuUsage]|[peakCpuUsage]|[userUsage]|[peakUserUsage]
port|[portType]|[index]|[avgBytes]|[avgRows]|[peakBytes]|[peakRows]|[totalBytes]|[totalRows]

example of request

http://localhost:8080/clover/request_processor/executions_history ->
 -> ?from=&to=2008-09-16+16%3A40&status=&sandbox=def&graphID=&index=&records=&returnType=DESCRIPTION

example of DESCRIPTION (plain text) response

execution|13108|FINISHED_OK|clover|def|test.grf|2008-09-16 11:11:19|2008-09-16 11:11:58|nodeA|2.4

Chapter 14. Simple HTTP API

81

phase|0|38733
node|DATA_GENERATOR1|FINISHED_OK|0|0|0.0|0.0|0.0|0.0
port|Output|0|0|0|0|0|130|10
node|TRASH0|FINISHED_OK|0|0|0.0|0.0|0.0|0.0
port|Input|0|0|0|5|0|130|10
node|SPEED_LIMITER0|FINISHED_OK|0|0|0.0|0.0|0.0|0.0
port|Input|0|0|0|0|0|130|10
port|Output|0|0|0|5|0|130|10
execution|13107|ABORTED|clover|def|test.grf|2008-09-16 11:11:19|2008-09-16 11:11:30
phase|0|11133
node|DATA_GENERATOR1|FINISHED_OK|0|0|0.0|0.0|0.0|0.0
port|Output|0|0|0|0|0|130|10
node|TRASH0|RUNNING|0|0|0.0|0.0|0.0|0.0
port|Input|0|5|0|5|0|52|4
node|SPEED_LIMITER0|RUNNING|0|0|0.0|0.0|0.0|0.0
port|Input|0|0|0|0|0|130|10
port|Output|0|5|0|5|0|52|4

For returnType==DESCRIPTION_XML returns complex data structure describing one or more selected
executions in XML format. Schema describing XML format of the XML response is accessible on CloverETL
Server URL: http://[host]:[port]/clover/schemas/executions.xsd

Operation suspend

Suspends server or sandbox(if specified). Suspension means, that no graphs may me executed on suspended server/
sandbox.

parameters

Table 14.6. Parameters of suspend

parameter name mandatory default description

sandbox no - Text ID of sandbox to suspend. If not specified, it suspends
whole server.

atonce no If this param is set to true, running graphs from suspended
server(or just from sandbox) are aborted. Otherwise it can
run until it is finished in common way.

returns

Result message

Operation resume

parameters

Table 14.7. Parameters of resume

parameter name mandatory default description

sandbox no - Text Id of sandbox to resume. If not specified, server will
be resumed.

verbose no MESSAGE MESSAGE | FULL - how verbose should possible error
message be.

returns

Result message

Chapter 14. Simple HTTP API

82

Operation sandbox_create

This operation creates specified sandbox. If it's sandbox of "partitioned" or "local" type, create also locations by
"sandbox_add_location" operation.

parameters

Table 14.8. Parameters of sandbox create

parameter name mandatory default description

sandbox yes - Text Id of sandbox to be created.

path no - Path to the sandbox root if server is running in standalone
mode.

type no shared Sandbox type: shared | partitioned | local. For standalone
server may be left empty, since the default "shared" is used.

createDirs no true Switch whether to create directory structure of the sandbox
(only for standalone server or "shared" sandboxes in cluster
environment).

verbose no MESSAGE MESSAGE | FULL - how verbose should possible error
message be.

returns

Result message

Operation sandbox_add_location

This operation adds location to specified sandbox. Only useable for sandboxes of type partitioned or local.

parameters

Table 14.9. Parameters of sandbox add location

parameter name mandatory default description

sandbox yes - Sandbox which we want to add location to.

nodeId yes - Location attribute - node which has direct access to the
location.

path yes - Location attribute - path to the location root on the specified
node.

location no - Location attribute - location storage ID. If it's not specified,
new one will be generated.

verbose no MESSAGE MESSAGE | FULL - how verbose should possible error
message be.

returns

Result message

Operation sandbox_remove_location

This operation removes location from specified sandbox. Only sandboxes of type partitioned or local can have
locations asociated.

Chapter 14. Simple HTTP API

83

parameters

Table 14.10. Parameters of sandbox add location

parameter name mandatory default description

sandbox yes - Removes specified location from its sandbox.

location yes - Location storage ID. If the specified location isn't attached
to the specified sandbox, sandbox won't be changed.

verbose no MESSAGE MESSAGE | FULL - how verbose should possible error
message be.

returns

Result message

Cluster status

This operation displays cluster's nodes list.

parameters

no

returns

Cluster's nodes list.

84

Chapter 15. JMX mBean
CloverETL Server JMX mBean is API, which is useful for monitoring of CloverETL Server's internal status.

MBean is registered with name:

com.cloveretl.server.api.jmx:name=cloverServerJmxMBean

.

JMX configuration

Application's JMX MBeans aren't accessible outside of JVM by default. It needs some changes in application
server configuration to make them accessible.

This section describes how to configure JMX Connector for development and testing. Thus authentication may be
disabled. For production deployment authentication should be enabled. Please refer further documentation to see
how to achieve this. i.e. http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html#auth

Configurations and possible problems:

• How to configure JMX on Apache Tomcat (p. 84)

• How to configure JMX on Glassfish (p. 85)

• Websphere 7 (p. 86)

• Possible problems (p. 87)

How to configure JMX on Apache Tomcat

Tomcat's JVM must be executed with these self-explanatory parameters:

1. -Dcom.sun.management.jmxremote=true

2. -Dcom.sun.management.jmxremote.port=8686

3. -Dcom.sun.management.jmxremote.ssl=false

4. -Dcom.sun.management.jmxremote.authenticate=false

On UNIX like OS set environment variable CATALINA_OPTS i.e. like this:

export CATALINA_OPTS="-Dcom.sun.management.jmxremote=true
 -Dcom.sun.management.jmxremote.port=8686
 -Dcom.sun.management.jmxremote.ssl=false
 -Dcom.sun.management.jmxremote.authenticate=false"

File TOMCAT_HOME/bin/setenv.sh (if it does not exist, you may create it) or TOMCAT_HOME/bin/catalina.sh

On Windows it might be tricky, that each parameter must be set separately:

set CATALINA_OPTS=-Dcom.sun.management.jmxremote=true
set CATALINA_OPTS=%CATALINA_OPTS% -Dcom.sun.management.jmxremote.port=8686
set CATALINA_OPTS=%CATALINA_OPTS% -Dcom.sun.management.jmxremote.authenticate=false

http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html#auth

Chapter 15. JMX mBean

85

set CATALINA_OPTS=%CATALINA_OPTS% -Dcom.sun.management.jmxremote.ssl=false

File TOMCAT_HOME/bin/setenv.bat (if it does not exist, you may create it) or TOMCAT_HOME/bin/
catalina.bat

With these values, you can use URL

service:jmx:rmi:///jndi/rmi://localhost:8686/jmxrmi

for connection to JMX server of JVM. No user/password is needed

How to configure JMX on Glassfish

Go to Glasfish admin console (by default accessible on http://localhost:4848 with admin/adminadmin as user/
password)

Go to section "Configuration" > "Admin Service" > "system" and set attributes like this:

Figure 15.1. Glassfish JMX connector

With these values, you can use URL

service:jmx:rmi:///jndi/rmi://localhost:8686/jmxrmi

for connection to JMX server of JVM.

Use admin/adminadmin as user/password. (admin/adminadmin are default glassfish values)

Chapter 15. JMX mBean

86

How to configure JMX on Websphere

Websphere does not require any special configuration, but the clover MBean is registered with the name, that
depends on application server configuration:

com.cloveretl.server.api.jmx:cell=[cellName],name=cloverServerJmxMBean,node=[nodeName],
 process=[instanceName]

Figure 15.2. Websphere configuration

Websphere 7

URL for connecting to JMX server is:

service:jmx:iiop://[host]:[port]/jndi/JMXConnector

where host is the host name you are connectiong to and port is RMI port number. If you have a default Websphere
installation, the JNDI port number will likely be 2809, 2810, ... depending on how many servers there are installed
on one system and the specific one you want to connect to. To be sure, when starting Websphere, check the logs,
as it will dump a line like

0000000a RMIConnectorC A ADMC0026I: The RMI Connector is available at port 2810

How to configure JMX on Websphere7

Websphere does not require any special configuration, but the clover MBean is registered with the name, that
depends on application server configuration:

com.cloveretl.server.api.jmx:cell=[cellName],name=cloverServerJmxMBean,node=[nodeName],
 process=[instanceName]

Chapter 15. JMX mBean

87

Figure 15.3. Websphere7 configuration

URL for connecting to JMX server is:

service:jmx:iiop://[host]:[port]/jndi/JMXConnector

where host is the host name you are connectiong to and port is RMI port number. If you have a default Websphere
installation, the JNDI port number will likely be 2809, 2810, ... depending on how many servers there are installed
on one system and the specific one you want to connect to. To be sure, when starting Websphere, check the logs,
as it will dump a line like

0000000a RMIConnectorC A ADMC0026I: The RMI Connector is available at port 2810

You will also need to set on the classpath following jar files from Websphere home directory:

/runtimes/com.ibm.ws.admin.client_7.0.0.jar
/runtimes/com.ibm.ws.ejb.thinclient_7.0.0.jar
/runtimes/com.ibm.ws.orb_7.0.0.jar

Possible problems

• Default JMX mBean server uses RMI as a transport protocol. Sometimes RMI cannot connect
remotely when one of peers uses Java version 1.6. Solution is quite easy, just set these two
system properties: -Djava.rmi.server.hostname=[hostname or IP address] -
Djava.net.preferIPv4Stack=true

Operations

For details about operations please see the JavaDoc of the MBean interface:

JMX API MBean JavaDoc is accessible in the running CloverETL Server instance on URL: http://[host]:[port]/
[contextPath]/javadoc-jmx/index.html

../javadoc-jmx/index.html
../javadoc-jmx/index.html

88

Chapter 16. SOAP WebService API
CloverETL Server SOAP Web Service is API, which allows its clients to manipulate with content of the sandboxes,
to monitor status of executed graphs and more.

Service is accessible on URL:

http://[host]:[port]/clover/webservice

Service descriptor is accessible on URL:

http://[host]:[port]/clover/webservice?wsdl

Protocol HTTP can be changed to secured HTTPS according to web server configuration.

SOAP WS Client

Exposed service is implemented with the most common binding style "document/literal", which is widely
supported by libraries in various programming languages.

To create client for this API, only WSDL document (see the URL above) is needed together with some
development tools according to your programming language and development environments.

JavaDoc of WebService interface with all related classes is accessible in the running CloverETL Server instance
on URL http://[host]:[port]/[contextPath]/javadoc-ws/index.html

If the web server has HTTPS connector configured, also the client must meet the security requirements according
to web server configuration. i.e. client trust + key stores configured properly

SOAP WS API authentication/authorization

Since exposed service is stateless, authentication "sessionToken" has to be passed as parameter to each operation.
Client can obtain authentication sessionToken by calling "login" operation.

../javadoc-ws/index.html

89

Chapter 17. Launch Service
The Launch Service provides users with convenient way of remotely executing the CloverETL graphs or Jobflows
via a simple web-based interface.

The Launch Services can be used with any HTTP client. This allows for convenient control of the job execution
which can be easily tied to external tools if necessary (requests can be sent from custom applications as well).

Launch Service Overview

The architecture of Launch Service is relatively simple and follows the basic design of multi-tiered applications
utilizing the browser.

The Launch Service and underlaying CloverETL Server jobs may work as back-end for any front-end. It may be
client's web application or third party application which calls CloverETL Launch Service by HTTP request. Thus
Launch Services allow full customization of the outside appearance of the web - for example, it can be a simple
web form which communicates with users in the terminology they are familiar with.

Figure 17.1. Launch Services and CloverETL Server as web application back-end

Deploying Graph in Launch Service

To enable users to access the specific job via Launch Service, several steps have to be taken:

1. The job has to be designed to allow its parameters to be passed via dictionary.

2. The job has to be configured in CloverETL Server in Launch Service section.

3. The form which will submit the data to Launch Service has to be written.

Chapter 17. Launch Service

90

Overall the deployment of the job to the Launch Service is not much more complex compared to the regular job
development process. In following chapters all the steps will be described in more detail alongside some basic
examples.

Designing the ETL graph/Jobflow for Launch Service

To use the jobs from Launch Service, the Launch Service requires the job to use dictionary when parameters have
to be passed to the job. Dictionary is a data storage associated with each run of the job in CloverETL. For more
details about the dictionary see section "Dictionary" in CloverETL Designer docs.

To use the Dictionary from the Launch Service, the job author is required to specify the entries of the dictionary in
job's XML source file. For more details about the Dictionary XML element see section "Dictionary" in CloverETL
Designer docs.

Apart from the use of the dictionary, the Launch Service does not impose any other restriction on the jobs it should
run. The jobs can therefore use all the facilities provided by the CloverETL engine.

Configuring the job in CloverETL Server web GUI

To notify the Launch Service about the jobs that will be available via its interface, the Launch Service has to be
properly configured via CloverETL Server GUI.

Launch Service uses launch configurations to store the details about how each job can be run. Each launch
configuration contains full description of the job's parameters, how they are mapped to the parameters passed from
the web interface and so on.

Each launch configuration is identified by its name, user and group restriction. Several configurations with the
same name can be created as long as they differ in their user or group restrictions.

Use restrictions can be used to launch different jobs for different users even though they use the same launch
configuration (for example, the developers may want to use debug version of the job while the end customers will
want to use the production job). The user restriction can also be used to prohibit certain users from executing the
launch configuration.

Similarly, the group restriction can be used to differentiate jobs based on the group membership of the user which
runs the launch configuration.

When the configuration is launched, the correct configuration is picked based on the configuration name, user
specification and group specification. If multiple configuration match the current user/group and configuration
name, the most specific one is picked (the user name has higher priority than the group name).

Adding New Launch Configuration

New launch configurations can be added by clicking on New launch configuration link on the Launch Services
tab in CloverETL Server GUI:

Chapter 17. Launch Service

91

Figure 17.2. Launch Services section

After the configuration has been created it will appear in the table on the left side among the other existing
configuration. Before using the configuration user will have to add parameter mapping. To add parameter
mappings click on the detail link for the newly created configuration. The details will be displayed on the right
side of the window in a simple table:

Figure 17.3. Overview tab

The Overview tab shows the basic details about the launch configuration. These can be modified in the Edit
Configuration tab:

Chapter 17. Launch Service

92

Figure 17.4. Edit Configuration tab

Following fields can be modified:

• Name - is the name under which the configuration will be accessible from web.

• Description - the description of the configuration.

• Group - restricts the configuration to specific group of users.

• User - restricts the configuration to specified user.

• Sandbox - selects the CloverETL Sandbox in which the configuration will be launched.

• Job file - selects the job to run when the configuration is launched.

• Save run record - if checked, the details about the launch configuration will be visible in Execution History
in the CloverETL Server GUI. If unchecked, the job executions will not be logged and will not be displayed
in the Execution History.

• Display error message detail - if checked, detailed error messages will be displayed in case the launch fails. If
unchecked, only simpler messages will be displayed to the user.

Finally, the tab Edit Parameters can be used to configure parameter mappings for the launch configuration. The
mappings are required for the Launch Service to be able to correctly assign parameters values based on the values
sent in the launch request.

Chapter 17. Launch Service

93

Figure 17.5. Creating new parameter

To add new parameter mapping click on the New property link. Each property required by the job has to be created
(internal job properties do not need mappings).

Figure 17.6. Edit Parameters tab

Following fields are available for each property:

• Name - the name of the property in the job's dictionary.

• Request parameter - the name of the parameter as specified in the launch request generated by the request page.
This name can be different than the name used in job's dictionary.

• Parameter required - if checked the parameter is mandatory and error will be reported if it is omitted.

• Pass to job - if checked the parameter will be also passed to job among the additional parameters as well as
in the dictionary. In such case, the parameter can also be referenced as ${ParameterName} in the job's XML
file. Since the additional parameters are resolved when the XML file is parsed, the job which use this method
cannot be pooled.

• Default value - is the default value which will be applied in case the parameter is omitted in the launch request.

To create the new mapping, click on the Create button after all the fields have been filled. After the mapping
is created, it will be displayed in the list of existing mappings. It can be later edited or deleted by clicking on
appropriate links.

Chapter 17. Launch Service

94

Sending the Data to Launch Service

To launch the job which has been configured for use with Launch Service, the user has to send a launch request. The
launch request can be sent via HTTP GET or POST methods. A launch request is simply an URL which contains
the values of all parameters that should be passed to the job. The request URL is composed of several parts:

[Clover Context]/launch/[Configuration name]?[Parameters]

• [Clover Context] is the URL to the context in which the CloverETL is running. Usually this is
the full URL to CloverETL Server (for example, for CloverETL Demo Server this would be http://server-
demo.cloveretl.com:8080/clover).

• [Configuration name] is the name of the launch configuration which has been specified when the
configuration has been created. In our example, this would be set to NewMountains (distinction between upper-
and lower-case is important).

• [Parameters] is the list of parameters the configuration requires in the format used for example by PHP.
Therefore the parameter list is a list of name-value pairs separated by "&" character. Each name-value pair
is specified as [name]=[value] where value has to be properly encoded according to RFC 1738 to make sure
URL is valid.

Based on the above, the full URL of launch request for our example with mountains may be like this: http://
server-demo.cloveretl.com:8080/clover/launch/NewMountains?heightMin=4000. In the request above, the value
of heightMin property is set to 4000.

Results of the Graph Execution

After the job's run terminates, the results are sent back to the HTTP client as a content of HTTP response. The
output is partially defined in the dictionary which is declared in the job's XML file. The dictionary can mark
selected parameters as output parameters. All the output parameters are sent to the user after the job execution
is finished.

Depending on the number of output parameters, the following output is sent to the HTTP client:

• No output parameters - only summary page is returned. The format of the summary page cannot be customized.
The page will contain details like when the job was started, when it finished, user name and so on.

• One output parameter - in this case the output is sent to the HTTP client with its content type defined by the
property type in the dictionary.

• Multiple output parameters - in this case each output parameter is sent to the HTTP client as a part of multipart
HTTP response. The content type of the response is either multipart/related or multipart/x-mixed-replace
depending on the HTTP client (the client detection is of course fully automatic). The multipart/related type
is used for browsers based on Microsoft Internet Explorer, the multipart/x-mixed-replace is sent to browsers
based on Gecko or Webkit.

Launch requests are recorded in the log files in directory specified by launch.log.dir property in CloverETL
Server configuration. For each launch configuration one log file named [Configuration name]#[Launch ID].log is
created. For each launch request this file will contain only one line with following tab-delimited fields:

If the property launch.log.dir is not specified, log files are created in temp directory
[java.io.tmpdir]/cloverlog/launch. Where "java.io.tmpdir" is system property.

• Launch start time

• Launch end time

• Logged-in user name

Chapter 17. Launch Service

95

• Run ID

• Execution status FINISHED_OK, ERROR or ABORTED

• IP Address of the client

• User agent of the HTTP client

• Query string passed to the Launch Service (full list of parameters of the current launch)

In case the configuration is not valid, the same launch details are saved into the _no_launch_config.log file in the
same directory. All unauthenticated requests are saved to the same file as well.

96

Chapter 18. Configuration
Default installation (without any configuration) is recommended only for evaluation purposes. For production, at
least DB connection and SMTP server configuration is recommended.

Config Sources and Their Priorities

There are several sources of configuration properties. If property isn't set, application default is used.

Warning: Do not combine sources specified below. Configuration becomes confusing and maintenance will be
much more difficult.

Context Parameters (Available on Apache Tomcat)

Some application servers allow to set context parameters without modification of WAR file. This way of
configuration is possible and recommended for Tomcat.

Example for Apache Tomcat

On Tomcat it is possible to specify context parameters in context configuration file. [tomcat_home]/conf/
Catalina/localhost/clover.xml which is created automatically just after deployment of CloverETL
Server web application.

You can specify property by adding this element:

<Parameter name="[propertyName]" value="[propertyValue]" override="false" />

Environment Variables

Set environment variable with prefix clover. , i.e. (clover.config.file)

Some operating systems may not use dot character, so also underlines (_) may be used instead of dots (.). So the
clover_config_file works as well.

System Properties

Set system property with prefix clover. , i.e. (clover.config.file)

Also underlines (_) may be used instead of dots (.) so the clover_config_file works as well.

Properties File on default Location

Source is common properties file (text file with key-value pairs):

[property-key]=[property-value]

By default CloverETL tries to find config file [workingDir]/cloverServer.properties.

Properties File on specified Location

The same as above, but properties file is not loaded from default location, because its location is specified
by environment variable or system property clover_config_file or clover.config.file. This is
recommended way of configuration if context parameters cannot be set in application server.

Chapter 18. Configuration

97

Modification of Context Parameters in web.xml

Unzip clover.war and modify file WEB-INF/web.xml, add this code:

<context-param>
 <param-name>[property-name]</param-name>
 <param-value>[property-value]</param-value>
</context-param>

This way isn't recommended, but it may be useful when none of above ways is possible.

Priorities of config Sources

Configuration sources have these priorities:

1. context parameters (specified in application server or directly in web.xml)

2. external config file CS tries to find it in this order (only one of them is loaded):

• path specified by context parameter config.file

• path specified by system property clover_config_file or clover.config.file

• path specified by environment variable clover_config_file or clover.config.file

• default location ([workingDir]/cloverServer.properties)

3. system properties

4. environment variables

5. default values

Examples of DB Connection Configuration
Configuration of DB connection is optional. Embedded Apache Derby DB is used by default and it is sufficient
for evaluation. However, configuration of external DB connection is strongly recommended for production
deployment. It is possible to specify common JDBC DB connection attributes (URL, username, password) or
JNDI location of DB DataSource.

Configurations and their changes may be as follows:

• Embedded Apache Derby (p. 97)

• MySQL (p. 98)

• DB2 (p. 98)

• Oracle (p. 100)

• MS SQL (p. 101)

• Postgre SQL (p. 101)

• JNDI DB DataSource (p. 101)

Embedded Apache Derby

Apache Derby embedded DB is used with default CloverETL Server installation. It uses working directory as
storage directory for data persistence by default. This may be problem on some systems. In case of any problems

Chapter 18. Configuration

98

with connecting to Derby DB, we recommend you configure connection to external DB or at least specify Derby
home directory:

Set system property derby.system.home to set path which is accessible for application server. You can
specify this system property by this JVM execution parameter:

-Dderby.system.home=[derby_DB_files_root]

If you use properties file for configuration, specify these parameters: jdbc.driverClassName,
jdbc.url, jdbc.username, jdbc.password, jdbc.dialect. For example:

jdbc.driverClassName=org.apache.derby.jdbc.EmbeddedDriver
jdbc.url=jdbc:derby:databases/cloverDb;create=true
jdbc.username=
jdbc.password=
jdbc.dialect=org.hibernate.dialect.DerbyDialect

Take a closer look at the jdbc.url parameter. Part databases/cloverDb means a subdirectory for DB
data. This subdirectory will be created in the directory which is set as derby.system.home (or in the working
directory if derby.system.home is not set). Value databases/cloverDb is a default value, you may
change it.

MySQL

CloverETL Server requires MySql 5.x

If you use properties file for configuration, specify these parameters: jdbc.driverClassName,
jdbc.url, jdbc.username, jdbc.password, jdbc.dialect. For example:

jdbc.driverClassName=com.mysql.jdbc.Driver
jdbc.url=jdbc:mysql://127.0.0.1:3306/clover?useUnicode=true&characterEncoding=utf8
jdbc.username=root
jdbc.password=
jdbc.dialect=org.hibernate.dialect.MySQLDialect

Since 3.0 JDBC driver is not included in CloverETL Server web archive, thus it must be added to the application
server classpath.

Create DB with proper charset, like this:

CREATE DATABASE IF NOT EXISTS clover DEFAULT CHARACTER SET 'utf8';

DB2

DB2 on Linux/Windows

If you use properties file for configuration, specify these parameters: jdbc.driverClassName,
jdbc.url, jdbc.username, jdbc.password, jdbc.dialect. For example:

jdbc.driverClassName=com.ibm.db2.jcc.DB2Driver
jdbc.url= jdbc:db2://localhost:50000/clover
jdbc.username=usr
jdbc.password=pwd
jdbc.dialect=org.hibernate.dialect.DB2Dialect

Chapter 18. Configuration

99

Possible problems

Wrong pagesize

Database clover has to be created with suitable PAGESIZE. DB2 has several possible values for this property:
4096, 8192, 16384 or 32768.

CloverETL Server should work on DB with PAGESIZE set to 16384 or 32768. If PAGESIZE value is not set
properly, there should be error message in the log file after failed CloverETL Server startup:

ERROR:
DB2 SQL Error: SQLCODE=-286, SQLSTATE=42727, SQLERRMC=16384;
ROOT, DRIVER=3.50.152

SQLERRMC contains suitable value for PAGESIZE.

You can create database with proper PAGESIZE like this:

CREATE DB clover PAGESIZE 32768;

The table is in the reorg pending state

After some ALTER TABLE commands, some tables may be in "reorg pending state". This behaviour is specific for
DB2. ALTER TABLE DDL commands are executed only during the first start of new CloverETL Server version.

Error message for this issue may look like this:

Operation not allowed for reason code "7" on table "DB2INST2.RUN_RECORD"..
 SQLCODE=-668, SQLSTATE=57016

or like this

DB2 SQL Error: SQLCODE=-668, SQLSTATE=57016, SQLERRMC=7;DB2INST2.RUN_RECORD, DRIVER=3.50.152

In this case "RUN_RECORD" is table name which is in "reorg pending state" and "DB2INST2" is DB instance
name.

To solve this, go to DB2 console and execute command (for table run_record):

reorg table run_record

DB2 console output should look like this:

db2 => connect to clover1
Database Connection Information

Database server = DB2/LINUX 9.7.0
SQL authorization ID = DB2INST2
Local database alias = CLOVER1

db2 => reorg table run_record
DB20000I The REORG command completed successfully.
db2 => disconnect clover1
DB20000I The SQL DISCONNECT command completed successfully.

"clover1" is DB name

DB2 does not allow ALTER TABLE which trims DB column length.

This problem depends on DB2 configuration and we've experienced this only on some AS400s so far. CloverETL
Server applies set of DP patches during the first installation after application upgrade. Some of these patches

Chapter 18. Configuration

100

may apply column modifications which trims length of the text columns. These changes never truncate any data,
however DB2 does not allow this since it "may" truncate some data. DB2 refuses these changes even in DB table
which is empty. Solution is, to disable the DB2 warning for data truncation, restart CloverETL Server which
applies patches, then enable DB2 warning again.

DB2 on AS/400

The connection on AS/400 might be slightly different.

If you use properties file for configuration, specify these parameters: jdbc.driverClassName,
jdbc.url, jdbc.username, jdbc.password, jdbc.dialect. For example:

jdbc.driverClassName=com.ibm.as400.access.AS400JDBCDriver
jdbc.username=javlin
jdbc.password=clover
jdbc.url=jdbc:as400://host/cloversrv;libraries=cloversrv;date format=iso
jdbc.dialect=org.hibernate.dialect.DB2400Dialect

Use credentials of your OS user for jdbc.username and jdbc.password.

cloversrv in jdbc.url above is the name of the DB schema.

You can create schema in AS/400 console:

• execute command STRSQL (SQL console)

• execute CREATE COLLECTION cloversrv IN ASP 1

• cloversrv is the name of the DB schema and it may be at most 10 characters long

Proper JDBC driver must be in the application server classpath.

I use JDBC driver jt400ntv.jar, which I've found in /QIBM/ProdData/Java400 on the server.

Use jt400ntv.jar JDBC driver.

Do not forget to add jar with JDBC driver to the Tomcat classpath.

Oracle

If you use properties file for configuration, specify these parameters: jdbc.driverClassName,
jdbc.url, jdbc.username, jdbc.password, jdbc.dialect. For example:

jdbc.driverClassName=oracle.jdbc.OracleDriver
jdbc.url=jdbc:oracle:thin:@host:1521:db
jdbc.username=user
jdbc.password=pass
jdbc.dialect=org.hibernate.dialect.Oracle9Dialect

Do not forget to add jar with JDBC driver to the application server classpath.

Since CloverETL Server version 1.2.1, dialect org.hibernate.dialect.Oracle10gDialect is no
longer available. Please use org.hibernate.dialect.Oracle9Dialect instead.

These are privileges which have to be granted to schema used by CloverETL Server:

CONNECT
CREATE SESSION
CREATE/ALTER/DROP TABLE
CREATE/ALTER/DROP SEQUENCE

Chapter 18. Configuration

101

QUOTA UNLIMITED ON <user_tablespace>;
QUOTA UNLIMITED ON <temp_tablespace>;

MS SQL

Ms SQL requires configuration of DB server.

• Allowing of TCP/IP connection:

• execute tool SQL Server Configuration Manager

• go to Client protocols

• switch on TCP/IP (default port is 1433)

• execute tool SQL Server Management Studio

• go to Databases and create DB clover

• go to Security/Logins and create user and assign this user as owner of DB clover

• go to Security and check SQL server and Windows authentication mode

If you use properties file for configuration, specify these parameters: jdbc.driverClassName,
jdbc.url, jdbc.username, jdbc.password, jdbc.dialect. For example:

jdbc.driverClassName=com.microsoft.sqlserver.jdbc.SQLServerDriver
jdbc.url=jdbc:sqlserver://localhost:1433;databaseName=clover
jdbc.username=user
jdbc.password=pass
jdbc.dialect=org.hibernate.dialect.SybaseDialect

Do not forget to add jar with JDBC driver to the Tomcat classpath.

Postgre SQL

If you use properties file for configuration, specify these parameters: jdbc.driverClassName,
jdbc.url, jdbc.username, jdbc.password, jdbc.dialect. For example:

jdbc.driverClassName=com.microsoft.sqlserver.jdbc.SQLServerDriver
jdbc.url=jdbc:postgresql://localhost/clover?charSet=UTF-8
jdbc.username=postgres
jdbc.password=
jdbc.dialect=org.hibernate.dialect.PostgreSQLDialect

Do not forget to add jar with JDBC driver to the Tomcat classpath.

JNDI DB DataSource

Server can connect to JNDI DB DataSource, which is configured in application server or container. However there
are some CloverETL parameters which must be set, otherwise the behaviour may be unpredictable:

datasource.type=JNDI # type of datasource; must be set, because default value is JDBC
datasource.jndiName=# JNDI location of DB DataSource; default value is java:comp/env/jdbc/clover_server #
jdbc.dialect=# Set dialect according to DB which DataSource is connected to.
The same dialect as in sections above. #

The parameters above may be set in the same ways as other params (in properties file or Tomcat context file)

Chapter 18. Configuration

102

Example of DataSource configuration in Apache Tomcat. Add following code to context file.

<Resource name="jdbc/clover_server" auth="Container"
 type="javax.sql.DataSource" driverClassName="com.mysql.jdbc.Driver"
 url="jdbc:mysql://192.168.1.100:3306/clover?useUnicode=true&characterEncoding=utf8"
 username="root" password="" maxActive="20" maxIdle="10" maxWait="-1"/>

Note

Special characters you type in the context file have to be specified as XML entities. E.g. ampersand
"&" as "&" etc.

List of Properties

Table 18.1. General configuration

key description default

config.file location of CloverETL Server configuration file [working_dir]/
cloverServer.properties

license.file location of CloverETL Server licence file (license.dat)

engine.config.file location of CloverETL engine configuration properties
file

properties file packed
with CloverETL

private.properties List of server properties which are used only by
CloverETL Server code. So these properties are not
accessible outside of the ServerFacade. By default there
are all properties which may contain password in the list.
Basically it means, that their values are not visible for
web GUI users. Values are replaced by single star "*".
Changes in this list may cause unexpected behavior of
some server API.

jdbc.password,
executor.password,
security.ldap.password,
clover.smtp.password

engine.plugins.src This property may contain absolute path to some
"source" of additional CloverETL engine plugins. These
plugins are not a substitute for plugins packed in WAR.
"Source" may be directory or zip file. Both directory and
zip must contain subdirectory for each plugin. Changes
in the directory or the ZIP file apply only when the server
is restarted. For details see section "Extensibility - engine
plugins".

empty

datasource.type Set this explicitly to JNDI if you need CloverETL Server
to connect to DB using JNDI datasource. In such case,
parameters "datasource.jndiName" and "jdbc.dialect"
must be set properly. Possible values: JNDI | JDBC

JDBC

datasource.jndiName JNDI location of DB DataSource. It is applied only if
"datasource.type" is set to "JNDI".

java:comp/env/jdbc/
clover_server

jdbc.driverClassName class name for jdbc driver name

jdbc.url jdbc url used by CloverETL Server to store data

jdbc.username jdbc database user name

jdbc.password jdbc database user name

jdbc.dialect hibernate dialect to use in ORM

quartz.driverDelegateClass SQL dialect for quartz. Value is automatically derived
from "jdbc.dialect" property value.

Chapter 18. Configuration

103

key description default

security_enabled true | false If it is set to false, then no authentication is
required and anyone has admin privileges.

true

security.default_domain Domain which all new users are included in. Stored in
user's record in the database. Shouldn't be changed unless
the "clover" must be white-labelled.

clover

security.basic_authentication.
features_list

Semi-colon separated list of features which are accessible
using HTTP and which should be protected by Basic
HTTP Authentication. Each feature is specified by its
servlet path.

/request_processor;/
simpleHttpApi;/
launch;/launchIt;/
downloadStorage;/
downloadFile;/
uploadSandboxFile;/
downloadLog

security.basic_authentication.
realm

Realm string for HTTP Basic Authentication. CloverETL Server

security.digest_authentication.
features_list

Semi-colon separated list of features which are accessible
using HTTP and which should be protected by HTTP
Digest Authentication. Each feature is specified by its
servlet path. Please keep in mind, that HTTP Digest
Authentication is feature added to the version 3.1. If
you upgraded your older CloverETL Server distribution,
users created before the upgrade cannot use the HTTP
Digest Authentication until they reset their passwords. So
when they reset their passwords (or the admin does it for
them), they can use Digest Authentication as well as new
users.

/webdav

security.digest_authentication.
realm

Realm string for HTTP Digest Authentication. If it
is changed, all users have to reset their passwords,
otherwise they won't be able to access to the server
features protected by HTTP digest Authentication.

CloverETL Server

security.digest_authentication.
nonce_validity

Interval of validity for HTTP Digest Authentication
specified in seconds. When the interval passes, server
requires new authentication from the client. Most of the
HTTP clients do it automatically.

300

clover.event.
fileCheckMinInterval

Interval of file checkes (in milliseconds) See Chapter 12,
File event listeners (p. 71) for details.

1000

clover.smtp.host SMTP server hostname or IP address

clover.smtp.port SMTP server port

clover.smtp.authentication true/false If it is false, username and password are
ignored

clover.smtp.username SMTP server username

clover.smtp.password SMTP server password

logging.project_name used in log messages where it is neccessary to name the
product name

CloverETL

logging.default_subdir name of default subdirectory for all server logs; it
is relative to the path specified by system property
"java.io.tmpdir". Don't specify absolute path, use
properties which are intended for absolute path.

cloverlogs

Chapter 18. Configuration

104

key description default

launch.log.dir Location, where server should store launch requests logs.
See Launch Services section for details.

${java.io.tmpdir}/
[logging.
default_subdir]/
launch where
${java.io.tmpdir} is
system property

graph.logs_path Location, where server should store Graph run logs. See
Logging section for details.

${java.io.tmpdir}/
[logging.
default_subdir]/graph
where
${java.io.tmpdir} is
system property

temp.default_subdir Name of default subdirectory for server tmp files; it
is relative to the path specified by system property
"java.io.tmpdir".

clovertmp

graph.debug_path Location, where server should store Graph debug info. ${java.io.tmpdir}/
[temp.default_subdir]/
debug where
${java.io.tmpdir} is
system property

graph.dictionary_path Location, where server should store graph dictionary
temporary files.

${java.io.tmpdir}/
[temp.default_subdir]/
dictionary where
${java.io.tmpdir} is
system property

graph.pass_event_params
_to_graph_in_old_style

Since 3.0. It is switch for backwards compatibility of
passing parameters to the graph executed by graph event.
In version prior to 3.0 all params has been passed to
executed graph. Since 3.0 just specified parameters are
passed. Please see Task - Execution of Graph (p. 48) for
details.

false

threadManager.pool.
corePoolSize

Number of threads which are always active (running
or idling). Related to thread pool for processing server
events.

4

threadManager.pool.
queueCapacity

Max size of the queue(FIFO) which contains tasks
waiting for thread. Related to thread pool for processing
server events. It means, that there won't be more then
"queueCapacity" waiting tasks. i.e. queueCapacity=0 -
no waiting tasks, each task is immediatelly executed in
available thread or in new thread. queueCapacity=1024 -
up to 1024 tasks may be waiting in the queue for available
thread from "corePoolSize".

12

threadManager.pool.
maxPoolSize

Max number of active threads. If no thread from core
pool is available and queue capacity is exceeded, pool
creates new threads up to "maxPoolSize" threads. If
there are more concurrent tasks then maxPoolSize, thread
manager refuses to execute it. Thus keep queueCapacity
or maxPoolSize big enough.

1024

task.archivator.batch_size Max number of records deleted in one batch. It is used
for deleting of archived run records.

50

launch.http_header_prefix Prefix of HTTP headers added by launch services to the
HTTP response.

X-cloveretl

Chapter 18. Configuration

105

key description default

task.archivator.
archive_file_prefix

Prefix of archive files created by archivator. cloverArchive_

license.context_names Comma separated list of web-app contexts which may
contain license. Each of them has to start with slash!
Works only on Apache Tomcat.

/clover-license,/
clover_license

license.display_header Switch which specifies whether display license header in
server web GUI or not.

false

Table 18.2. Defaults for job execution configuration - see section Job config properties for details

key description default

executor.tracking_interval Interval in milliseconds for scanning current status of running
graph. The shorter interval, the bigger log file.

2000

executor.log_level Log level of graph runs. TRACE | DEBUG | INFO | WARN |
ERROR

INFO

executor.max_running_concurrently Amount of graph instances which may exist(or run) concurrently.
0 means no limits

0

executor.max_graph_instance_age Interval in milliseconds. Specifies how long graph instance can
be idling before it is released from memory. 0 means no limits.
This property has been renamed since 2.8. Original name was
executor.maxGraphInstanceAge

0

executor.classpath Classpath for transformation/processor classes used in the graph.
Directory [sandbox_root]/trans/ does not have to be listed here,
since it is automatically added to graph run classpath.

executor.skip_check_config Disables check of graph configuration. Increases performance
of graph execution, however may be useful during graph
development.

true

executor.password Password for decoding of encoded DB connection passwords.

executor.verbose_mode If true, more descriptive logs of graph runs are generated. true

executor.use_jmx If true, graph executor registers jmx mBean of running graph. true

executor.debug_mode If true, edges with enabled debug store data into files in debug
directory. See property "graph.debug_path"

false

See "Clustering" section for more properties.

106

Chapter 19. Graph parameters
CloverETL Server passes set of parameters for each graph execution. Please keep in mind, that placeholders
${paramName} are resolved only during loading of graph XML, so if you need placeholders resolving for each
graph execution, graph cannot be pooled. However current parameter values are always accessible by inline java
code like this:

String runId = getGraph().getGraphProperties().getProperty("RUN_ID");

Properties may be added or replaced like this:

getGraph().getGraphProperties().setProperty("new_property", value);

This is set of parameters which are always set by CloverETL Server:

Table 19.1. Defaults for graph execution configuration - see section Graph config properties for details

key description

SANDBOX_CODE Code of sandbox which contains executed graph.

JOB_FILE Path to the file, relative to sandbox root path.

SANDBOX_ROOT Absolute path sandbox root.

RUN_ID ID of the graph execution. In standalone mode or in
cluster mode, it is always unique. It may be lower then
0 value, if the run record isn't persistent. See "Launch
Services" for details.

Another sets of parameters according the type of execution

There are some more parameters in dependence of way, how the graph is executed.

executed from Web GUI

no more parameters

executed by Launch Service invocation

Service parameters which have attribute Pass to graph enabled are passed to the graph not only as "dictionary"
input data, but also as graph parameter.

executed by HTTP API run graph operation invocation

Any URL parameter with "param_" prefix is passed to executed graph but without "param_" prefix. i.e.
"param_FILE_NAME" specified in URL is paased to the graph as property named "FILE_NAME".

executed by RunGraph component

Since 3.0 only parameters specified by "paramsToPass" attribute are passed from the "parent" graph to the executed
graph. However common properties (RUN_ID, PROJECT_DIR, etc.) are overwritten by new values.

Chapter 19. Graph parameters

107

executed by WS API method executeGraph invocation

Parameters with values may be passed to the graph with the request for execution.

executed by task "graph execution" by scheduler

Table 19.2. passed parameters

key description

EVENT_SCHEDULE_EVENT_TYPE Type of schedule SCHEDULE_PERIODIC |
SCHEDULE_ONETIME

EVENT_SCHEDULE_LAST_EVENT Date/time of previous event

EVENT_SCHEDULE_DESCRIPTION Schedule description, which is displayed in web GUI

EVENT_USERNAME User who "owns" the event. For schedule it is the user
who created the schedule

EVENT_SCHEDULE_ID ID of schedule which triggered the graph

executed from JMS listener

There are many graph parameters and dictionary entries passed, depending on the type of incomming message.
See details in Chapter 9, JMS messages listeners (p. 65).

executed by task "graph execution" by graph event listener

Since 3.0 only specified properties from "source" graph are passed to executed graph by default. There is server
config property "graph.pass_event_params_to_graph_in_old_style" which can change this behavior so that ALL
parameters from "source" graph are passed to the executed graph. This switch is implemented for backwards
compatibility. Regarding the default behaviour: You can specified list of parameters to pass in the editor of graph
event listener. Please see the section "Task - Execution of Graph" for details.

However following parameters with current values are always passed to the target graph

Table 19.3. passed parameters

key description

EVENT_RUN_SANDBOX Sandbox with graph, which is source of the event

EVENT_GRAPH_EVENT_TYPE GRAPH_STARTED | GRAPH_FINISHED |
GRAPH_ERROR | GRAPH_ABORTED |
GRAPH_TIMEOUT |
GRAPH_STATUS_UNKNOWN

EVENT_RUN_GRAPH graphId of the graph, which is source of the event

EVENT_RUN_ID ID of the graph execution, which is source of the event.

EVENT_TIMEOUT Number of miliseconds which specifies interval of
timeout. Makes sence only for "timeout" graph event.

EVENT_RUN_RESULT Result (or current status) of the execution, which is
source of the event.

EVENT_USERNAME User who "owns" the event. For graph events it is the
user who created the graph event listener

Chapter 19. Graph parameters

108

executed by task "graph execution" by file event listener

Table 19.4. passed parameters

key description

EVENT_FILE_PATH Path to file, which is source of the event. Does not
contain file name. Does not end with file separator.

EVENT_FILE_NAME Filename of the file which is source of the event.

EVENT_FILE_EVENT_TYPE SIZE | CHANGE_TIME | APPEARANCE |
DISAPPEARANCE

EVENT_FILE_PATTERN Pattern specified in file event listener

EVENT_FILE_LISTENER_ID

EVENT_USERNAME User who "owns" the event. For file events it is the user
who created the file event listener

How to add another graph parameters

Additional "Graph Config Parameters"

It is possible to add so-called additional parameters in Web GUI - section Sandboxes for the selected graph or for
all graphs in the selected sandbox. See details in the section called “Job config properties” (p. 32).

Task "execute_graph" parameters

The "execute graph" task may be triggered by schedule, graph event listener or file event listener. Task editor
allows you to specify key=value pairs which are passed to executed graph.

109

Chapter 20. Recommendations for transformations
developers

Add external libraries to app-server classpath

i.e. connections (JDBC/JMS) may require third party libraries. It is strongly recommended to add these libraries
to app-server classpath.

CloverETL allows you to specify these libraries directly in graph definition so CloverETL may load these
libraries dynamically, but external libraries may cause memory leak resulting with "java.lang.OutOfMemoryError:
PermGen space" in this case.

In addition, app-servers should have the JMS API on their classpath and the third-party libraries often bundle this
API as well. So it may result in classloading conflicts if these libraries are not loaded by the same classloader.

Another graphs executed by RunGraph component may be
executed only in the same JVM instance

In server environment, all graphs are executed in the same VM instance. Attribute "same instance" of RunGraph
component cannot be set to false.

110

Chapter 21. Logging

Main logs

CloverETL Server uses log4j library for logging. WAR file contains default log4j configuration.

By default, log files are produced in directory specified by system property "java.io.tmpdir" in "cloverlogs"
subdirectory.

"java.io.tmpdir" usually contains common system temp dir i.e. "/tmp". On tomcat, it is usually
"[TOMCAT_HOME]/temp"

Default logging configuration may be overridden by system property "log4j.configuration", which should contain
URL to log4j config file.

log4j.configuration=file:/home/clover/config/log4j.xml

Since such configuration overrides default configuration, it may have influence over Graph run logs. So your own
log config has to contain following fragment to preserve Graph run logs

<logger name="Tracking" additivity="false">
 <level value="debug"/>
</logger>

These system properties allow logging of HTTP requests/responses to stdout:

client side:

com.sun.xml.ws.transport.http.client.HttpTransportPipe.dump=true (for more
information consult CloverETL Designer Users's Guide - chapter Integrating CloverETL Designer with
CloverETL Server)

server side:

com.sun.xml.ws.transport.http.HttpAdapter.dump=tru

Graph run logs

Each graph run has it is own log file, which is accessible i.e. in web GUI, section "executions history".

By default these log files are produced in subdirectory cloverLogs/graph in the directory specified by
"java.io.tmpdir" system property.

It is possible to specify different location for these logs by CloverETL property "graph.logs_path". This property
does not have any influence over main server logs.

http://www.cloveretl.com/documentation/UserGuide/topic/com.cloveretl.gui.docs/docs/designer-server-integration.html
http://www.cloveretl.com/documentation/UserGuide/topic/com.cloveretl.gui.docs/docs/designer-server-integration.html

111

Chapter 22. Extensibility (Embedded OSGi
framework)
CloverETL Server implements extensibility of its APIs, so the server may expose its fetures with custom API.

For now, there are two possibilities: Groovy code API and OSGi plugin.

Groovy Code API

Since 3.3

CloverETL Server Groovy Code API allows clients to execute groovy code stored on the server by HTTP request.
Executed code has access to the serverFacade, instance HTTP request and HTTP response, so it's possible to
implement custom CloverServer API in the Groovy code.

To execute the code call URL:

http://[host]:[port]/clover/groovy/[sandboxCode]/[pathToGroovyCodeFile]

Protocol HTTP can be changed to secured HTTPS according to web server configuration.

Server uses Basic or Digest authentication according to the configuration. so the user must be authorized and must
have permission to execute in the specified sandbox and permission to call "Groovy Code API".

Please note, that permission to call "Groovy Code API" (and edit them) is wery strong permission, since the Groovy
Code can basically do the same as Java code and it's running as the same system process as whole application
container.

Variables accessible in the Groovy code

By default, there are some variables accessible in the groovy code

Table 22.1. Variables accessible in groovy code

type key description

javax.servlet.http.HttpServletRequest request Instance of HTTP request, which triggered the
code.

javax.servlet.http.HttpServletResponse response Instance of HTTP response, which will be sent
to the client when the script finishes.

javax.servlet.http.HttpSession session Instance of HTTP session.

javax.servlet.ServletConfig servletConfig instance of ServletConfig

javax.servlet.ServletContext servletContext instance of ServletContext

com.cloveretl.server.api.ServerFacade serverFacade Instance of serverFacade usable for calling
CloverETL Server core features.

WAR file contains JavaDoc of facade API and
it is accessible on URL: http://host:port/clover/
javadoc/index.html

String sessionToken sessionToken, needed for calling serverFacade
methods

../javadoc/index.html
../javadoc/index.html

Chapter 22. Extensibility
(Embedded OSGi framework)

112

Code examples

Code may return string which will be returned as a content of HTTP response, or it may itself construct the output
to the output Writer

Following script writes its own output and doesn't return anything, so the underlaying servlet doesn't modify
the output at all. Advantage of this aproach is, that output may be constructed on the fly and sent to the client
continuously. However when the output stream(or writer) is opened, servlet won't send any error description in
case of any error during the script processing.

response.getWriter().write("write anything to the output");

Following script returns String, so the underlaying servlet puts the string to the output. Advantage od this aproach
is, that in case of any error during code processing, servlet returns full stacktrace, so the script may be fixed.
However the constructed output may consume some amount of memory.

String output = "write anything to the output";
return output;

Following script is little bit more complex. It returns XML with list of all configured schedules. User must have
permission to list the schedules.

// uses variables: response, sessionToken, serverFacade
import java.io.*;
import java.util.*;
import javax.xml.bind.*;
import com.cloveretl.server.facade.api.*;
import com.cloveretl.server.persistent.*;
import com.cloveretl.server.persistent.jaxb.*;

JAXBContext jc = JAXBContext.newInstance("com.cloveretl.server.persistent:com.cloveretl.server.persistent.jaxb");
Marshaller m = jc.createMarshaller();
m.setProperty(Marshaller.JAXB_ENCODING, "UTF-8");
m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, Boolean.TRUE);
m.setProperty(Marshaller.JAXB_SCHEMA_LOCATION, "/clover/schemas/csc.xsd");

Response<List<Schedule>> list = serverFacade.findScheduleList(sessionToken, null);
SchedulesList xmlList = new SchedulesList();
xmlList.setSchedulesList(list.getBean());
m.marshal(xmlList, response.getWriter());

Embedded OSGi framework

Since 3.0

CloverETL Server includes embedded OSGi framework which allows implementation of "plugin" (OSGi bundle)
which works as new API (or even GUI) of the server and it is independent of released clover.war.

Plugin possibilities

Basically the plugin may work as new server API similarly as Launch Services, HTTP API, WebServices API.
It may be just simple JSP, HttpServlet or complex SOAP Web Services. So if the plugin contains some HTTP
service, it is registered to listen on specified URL during the startup and incoming HTTP requests are "bridged"

Chapter 22. Extensibility
(Embedded OSGi framework)

113

from the web container to the plugin. Plugin itself has access to the internal CloverETL Server interface called
"ServerFacade". ServerFacade offers methods for execution graphs, obtaining of graph status and executions
history, manipulation with scheduling, listeners, configuration and many more. So the API may be customized
according to the needs of specific deployment.

Deploying an OSGi bundle

There are 2 CloverETL Server configuration properties related to the OSGi framework.

• plugins.path - Absolute path to the directory containing all your plugins (jar files).

• plugins.autostart - It is comma separated plugin names list. These plugins will be started during server startup.
Theoretically OSGi framework can start the OSGi bundle on demand, however it is unreliable when the servlet
bridge to the servlet container is used, so it is strongly recommended to name all your plugins.

So do deploy your plugin: set two config properties, copy plugin to the directory specified by "plugins.path" and
restart the server.

114

Chapter 23. Extensibility CloverETL engine plugins
Since 3.1.2

CloverETL Server may use external engine plugins loaded from specified source. Source is specified by config
property "engine.plugins.src"

See details about possibilities of CloverETL configuration in Chapter 18, Configuration (p. 96)

This property must be absolute path to the directory or zip file with additional CloverETL engine plugins. Both
directory and zip must contain subdirectory for each plugin. These plugins are not a substitute for plugins packed
in WAR. Changes in the directory or the ZIP file apply only when the server is restarted.

Each plugin has its own class-loader which uses parent-first strategy by default. Parent of plugins' classloaders
is web-app classloader (content of [WAR]/WEB-INF/lib). If the plugin uses any third-party libraries, there may
be some conflict with libraries on parent-classloaders classpath. These are common exceptions/errors suggesting,
that there is something wrong with classloading:

• java.lang.ClassCastException

• java.lang.ClassNotFoundException

• java.lang.NoClassDefFoundError

• java.lang.LinkageError

There are couple of ways how to ged rid of such conflicts:

• Remove your conflicting third-party libraries and use libraries on parent classloaders (web-app or app-server
classloaders)

• Use different class-loading strategy for your plugin.

• in the plugin descriptor plugin.xml, set attribute greedyClassLoader="true" in the element "plugin"

• it means, that plugin classloader will use self-first strategy

• Set inverse class-loading strategy for selected java packages.

• In the plugin descriptor plugin.xml, set attribute "excludedPackages" in the element "plugin".

• It's comma separated list of package prefixes. E.g. like this:
excludedPackages="some.java.package,some.another.package"

• In previous example all classes from "some.java.package", "some.another.package" and all their sub-
packages would be loaded with the inverse loading strategy then the rest of classes on the plugins classpath.

Of course, the suggestions above may be combined. It's not easy to find the best solution for these conflicts and
it may depend on the libraries on app-server classpath.

For more convinient debugging it is useful to set TRACE log level for related class-loaders.

<logger name="org.jetel.util.classloader.GreedyURLClassLoader">
 <level value="trace"/>
</logger>
<logger name="org.jetel.plugin.PluginClassLoader">
 <level value="trace"/>
</logger>

See "Logging" section for details about overriding server log4j configuration.

115

Chapter 24. Clustering
CloverETL Server only works in the cluster if the user's license allows it.

There are two common cluster features, high availability and scalability. Both of them are implemented by
CloverETL Server on various levels. This section should clarify the basics of CloverETL Clustering.

High Availability

Since version 3.0, CloverETL Server does not recognize any differences between cluster nodes. Thus, there are
no "master" or "slave" nodes meaning all nodes can be virtually equal. There is no single point of failure(SPOF)
in the CloverETL cluster itself, however SPOFs may be in the input data or some other external element.

Clustering offers high availability(HA) for all features accessible through HTTP. This includes sandbox browsing,
modification of services configuration (scheduling, launch services, listeners) and primarily graph executions.
Any cluster node may accept incoming HTTP requests and process them itself or delegate it to another node.

Since all nodes are equal, almost all requests may be processed by any cluster node:

• All graph files, metadata files, etc. are located in shared sandboxes. Thus all nodes have access to them. A
shared filesystem may be a SPOF, thus it is recommended to use a replicated filesystem instead.

• The database is shared by all cluster nodes. Again, a shared DB might be a SPOF, however it may be clustered
as well.

But there is still a possibility, that a node cannot process a request by itself. In such cases, it completely and
transparently delegates the request to a node which can process the request.

These are the requests which are limited to one (or more) node(s):

• a request for the content of a partitioned or local sandbox. These sandboxes aren't shared among all cluster
nodes. Please note that this request may come to any cluster node which then delegates it to a target node,
however, this target node must be up and running.

• A graph is configured to use a partitioned or local sandbox. These graphs need nodes which have a physical
access to the required sandboxes.

Thus an inaccessible partitioned or local sandbox may cause a failure from the request, however...

1. it is still possible to configure redundant sandboxes stored on other cluster nodes.

2. these types of sandboxes are used only for scalability on the data level(described below), which is a different
approach to using a CloverETL cluster.

CloverETL itself implements a load balancer for executing graphs. So a graph which isn't configured for some
specific node(s) may be executed anywhere in the cluster and the CloverETL load balancer decides, according to
the current load, which node will process the graph. All this is done transparently.

To achieve HA, it is recommended to use an independent HTTP load balancer. Independent HTTP load balancers
allow transparent fail-overs for HTTP requests. They send requests to the nodes which are running.

Scalability

There are two independent levels of scalability implemented. Scalability of transformation requests(and any HTTP
requests) and data scalability (parallel data processing).

Both of these "scalability levels" are "horizontal". Horizontal scalability means adding nodes to the cluster, whereas
vertical scalability means adding resources to a single node. Vertical scalability is supported natively by the
CloverETL engine and it is not described here.

Chapter 24. Clustering

116

Transformation Requests

Basically, the more nodes we have in the cluster , the more transformation requests (or HTTP requests in general)
we can process at one time. This type of scalability is the CloverETL server's ability to support a growing number
of clients. This feature is closely related to the use of an HTTP load balancer which is mentioned in the previous
section.

Parallel Data Processing

When a transformation is processed in parallel, the whole graph (or its parts) runs in parallel on multiple cluster
nodes having each node process just a part of the data.

So the more nodes we have in the cluster, the more data can be processed in the specified time.

The data may be split(partitioned) before the graph execution or by the graph itself on the fly. The resulting data
may be stored in partitions or gathered and stored as one group of data.

The curve of scalability may differ according to the type of transformation. It may be almost linear, which is
almost always ideal, except when there is a single data source which cannot be read by multiple readers in parallel
limiting the speed of further data transformation. In such cases it is not beneficial to have parallel data processing
since it would actually wait for input data.

Node Allocation

Node allocation is the specification of which cluster nodes will run the graph and which parts of the graph they
will run. Allocation is basically specified by the partitioned sandboxes used in the graph phase. Each phase may
have its own (just one) allocation. Basically, each partitioned sandbox has a list of locations. When some part of
the graph runs in parallel, there is one worker for each partitioned sandbox location. See "Partitioned sandbox" in
Partitioned and Local Sandboxes (p. 118) for details.

Allocation is specified in the graph either by:

• sandbox resources pointing to a partitioned sandbox, if workers read/write some partitioned data to/from their
own location of this partitioned sandbox, or by

• the node attribute "node allocation", if workers do not read/write their partitioned data, however there must be
an allocation specified.

If there is a conflict, execution fails and an error message appears containing the description of the conflict. A
single conflict may be caused by using two different allocations in a single phase.

Partitioning/gathering Data

As mentioned before, data may be partitioned and gathered in multiple ways. It may be prepared before the graph
is executed or it may be partitioned on the fly.

Partitioning/gathering "on the fly"

There are two special components to consider: ClusterPartitioner and ClusterGather. Both work similarly, but in
the opposite way.

ClusterPartitioner works like a common partitioner, but node allocation is applied simultaneously behind the
ClusterPartitioner component. All components preceding the ClusterPartitioner run on just one node (so called
the primary worker - see below) whereas components behind the ClusterPartitioner run in parallel according to
node allocation. Thus, these nodes work with just part of the data. There are more partitioning types: "round-
robin" (default), "by record key", and "by load".

Chapter 24. Clustering

117

ClusterGather works in the opposite way. Components preceding the gather run in parallel while components
behind the gather run on just one node (primary worker). The cluster gather component gathers records in the
same way as SimpleGather and its attributes are the same. By default it does not sort input records in any way.
It just gathers them in the order they come.

Primary worker node - some parts of the graph designed to run in parallel may run on a single node anyway. i.e. the
part where the graph reads/writes data from/to a single resource. It may be the part preceding ClusterPartitioner
or the part behind ClusterGatherer respectively. It also may be on all components in the phase which do not
have node allocation specified at all. Each phase may have its own primary worker. All graph primary workers
are chosen during graph execution primarily according to the local sandbox datasources used in the phases.
Basically, the node which has direct(local) access to a sandbox datasource(s) used in the phase is selected as the
primary worker. Of course, there may be multiple different local sandbox datasources, or even no local sandbox
datasources used in the phase. In such cases, the server uses some minor parameters to choose the primary worker.

Both components may be combined in a single phase in any way, but there must be just one node allocation and
just one primary worker in each single phase.

This example shows how data would be processed in 2 different node allocations, on 2 different primary workers.

• phase 1 starts

• processing data on primary worker (nodeA)

• cluster partitioner component

• processing data in parallel (nodeA, nodeB, nodeC)

• cluster gatherer component

• processing data on primary worker (nodeA)

• phase 1 ends

• phase 2 starts

• processing data on primary worker (nodeA)

• cluster partitioner component

• processing data in parallel (nodeB, nodeD)

• phase 2 ends

• phase 3 starts

• processing data in parallel (nodeB, nodeD)

• cluster gatherer component

• processing data on primary worker (nodeD)

• phase 3 ends

Results are stored on a different node (nodeD) then the node that read (nodeA) and data is actually repartitioned
(from nodeA, nodeB, nodeC to nodeB, nodeD).

Partitioning/gathering data by external tools

Partitioning data on the fly may in some cases be an unnecessary bottleneck. Splitting data using low-level tools
can be much better for scalability. The optimal case being, that each running worker reads data from an independent

Chapter 24. Clustering

118

data source. Thus there does not have to be a ClusterPartitioner component in the first phase and the graph runs
in parallel from the beginning.

• phase 1 starts

• processing data in parallel (nodeA, nodeB, nodeC)

• cluster gatherer component

• processing data on primary worker (nodeA)

• phase 1 ends

Or the whole graph may run in parallel, however the results would be partitioned.

• phase 1 starts

• processing data in parallel (nodeA, nodeB, nodeC)

• phase 1 ends

Partitioned and Local Sandboxes

Partitioned and local sandboxes were mentioned in previous sections. These new sandbox types were introduced
in version 3.0 and they are vital for parallel data processing.

Together with shared sandboxes, we have three sandbox types in total.

Shared sandbox

This type of sandbox must be used for all data which is supposed to be accessible on all cluster nodes. This includes
all graphs, metadata, connections, classes and input/output data for graphs which should support HA, as described
above.

Figure 24.1. Dialog form for creating new shared sandbox

As you can see in the screenshot above, you cannot specify any root path on the filesystem. Shared sandboxes
are stored in the directory specified by "cluster.shared_sandboxes_path". Each shared sandbox has its own
subdirectory in it, which is named by sandbox ID.

Local sandbox

This sandbox type is intended for data, which is accessible only by certain cluster nodes. It may include massive
input/output files. The purpose being, that any cluster node may access content of this type of sandbox, but only
one has local(fast) access and this node must be up and running to provide data. The graph may use resources from
multiple sandboxes which are physically stored on different nodes since cluster nodes are able to create network
streams transparently as if the resource was a local file. See Using a Sandbox Resource as a Component Data
Source (p. 119) for details.

Chapter 24. Clustering

119

Do not use local sandbox for common project data (graphs, metadata, connections, lookups, properties files, etc.).
It would cause odd behaviour. Use shared sandboxes instead.

Figure 24.2. Dialog form for creating new local sandbox

Partitioned sandbox

This type of sandbox is actually an abstract wrapper for a couple of physical locations existing typically on different
cluster nodes. However, there may be multiple locations on the same node. A partitioned sandbox has two purposes
which are both closely related to parallel data processing.

1. node allocation specification - locations of a partitioned sandbox define the workers which will run the graph
or its parts. So each physical location will cause a single worker to run. This worker does not have to actually
store any data to "its" location. It is just a way to tell the CloverETL Server: "execute this graph/phase in parallel
on these nodes"

2. storage for part of the data during parallel data processing. Each physical location contains only part of the
data. In a typical use, we have input data split in more input files, so we put each file into a different location
and each worker processes its own file.

As you can see on the screenshot above, for a partitioned sandbox, you can specify one or more physical locations
on different cluster nodes.

Do not use partitioned sandbox for common project data (graphs, metadata, connections, lookups, properties files,
etc.). It would cause odd behavior. Use shared sandboxes instead.

Using a Sandbox Resource as a Component Data Source

A sandbox resource, whether it is a shared, local or partitioned sandbox (or ordinary sandbox on standalone server),
is specified in the graph under the fileURL attributes as a so called sandbox URL like this:

sandbox://data/path/to/file/file.dat

where "data" is a code for sandbox and "path/to/file/file.dat" is the path to the resource from the sandbox root.
URL is evaluated by CloverETL Server during graph execution and a component (reader or writer) obtains the
opened stream from the server. This may be a stream to a local file or to some other remote resource. Thus, a graph
does not have to run on the node which has local access to the resource. There may be more sandbox resources
used in the graph and each of them may be on a different node. In such cases, CloverETL Server would choose
the node with the most local resources to minimalize remote streams.

The sandbox URL has a specific use for parallel data processing. When the sandbox URL with the resource
in a partitioned sandbox is used, that part of the graph/phase runs in parallel, according to the node allocation
specified by the list of partitioned sandbox locations. Thus, each worker has it is own local sandbox resource.
CloverETL Server evaluates the sandbox URL on each worker and provides an open stream to a local resource
to the component.

The sandbox URL may be used on standalone server as well. It is excellent choice when graph references
some resources from different sandboxes. It may be metadata, lookup definition or input/output data. Of course,
referenced sandbox must be accessible for the user who executes the graph.

Chapter 24. Clustering

120

Recommendations for Cluster Deployment

1. All nodes in the cluster should have a synchronized system date-time.

2. All nodes share sandboxes stored on a shared or replicated filesystem. The filesystem shared among all nodes
is single point of failure. Thus, the use of a replicated filesystem is strongly recommended.

3. All nodes share a DB, thus it must support transactions. I.e. The MySQL table engine, MyISAM, may cause
strange behaviour because it is not transactional.

4. All nodes share a DB, which is a single point of failure. Use of a clustered DB is strongly recommended.

5. Configure the license as "license.file" for this property on Tomcat. Do not use clover_license.war.
Tomcat loads web-apps in an unpredictable order and for the cluster, the license must be loaded before
CloverETL Server itself.

Figure 24.3. List of nodes joined to the cluster

Example of Distributed Execution

The following diagram shows a transformation graph used for parsing invoices generated by a few cell phone
network providers in Czech Republic.

Chapter 24. Clustering

121

The size of these input files may be up to a few gigabytes, so it is very beneficial to design the graph to work
in the cluster environment.

Details of the Example Transformation Design

Please note there is only one phase and there are four cluster components in the graph (highlighted by red border).
These components define a point of change "node allocation", so the part of the graph demarcated by these
components is highlighted by the red rectangle. This part of the graph performs data processing in parallel. This
means that the components inside the dotted rectangle run on cluster nodes according to the "node allocation" of
that part of the graph.

The rest of the graph runs just on one node called "primary worker".

Specification of "node allocation"

Since there is only one phase, the whole graph has just one primary worker and only one node allocation.

• node allocation is applied for groups of components running in parallel (demarcated by the four cluster
components)

• the outer part of the graph run on a single node - primary worker.

The primary worker is specified by the sandbox code used in the URLs of input data. The following dialog shows
the File URL value: "sandbox://data/path-to-csv-file", where "data" is the ID of the server sandbox containing the
specified file. And it is the "data" local sandbox which defines the primary worker in the graph.

The part of the graph demarcated by the four cluster components may have specified its allocation by the file
URL attribute as well, but this part does not work with files at all, so there is no file URL. Thus, we will use
the "allocation" attribute. Since all components in this part must have the same allocation, it is sufficient to set
it only for one component.

Again, "dataPartitioned" in the following dialog is the sandbox ID.

Chapter 24. Clustering

122

Let's investigate our sandboxes. This project requires 3 sandboxes: "data", "dataPartitioned" and
"PhoneChargesDistributed".

• data

• contains input and output data

• local sandbox (yellow folder), so it has only one physical location

• accessible only on node "i-4cc9733b" in the specified path

• dataPartitioned

• partitioned sandbox (red folder), so it has a list of physical locations on different nodes

• does not contain any data and since the graph does not read or write to this sandbox, it is used only for the
definition of "nodes allocation"

• on the following figure, allocation is configured for two cluster nodes

• PhoneChargesDistributed

• common sandbox containing the graph file, metadata, and connections

• shared sandbox (blue folder), so all cluster nodes have access to the same files

Chapter 24. Clustering

123

If the graph was executed with the sandbox configuration of the previous figure, the node allocation would be:

• components which run only on primary worker, will run only on the "i-4cc9733b" node according to the "data"
sandbox location.

• components with allocation according to the "dataPartitioned" sandbox will run on nodes "i-4cc9733b" and
"i-52d05425".

Scalability of the Example Transformation

The example transformation has been tested in the Amazon Cloud environment with the following conditions for
all executions:

• the same master node

• the same input data: 1,2 GB of input data, 27 million records

• three executions for each "node allocation"

• "node allocation" changed between every 2 executions

• all nodes has been of "c1.medium" type

We tested "node allocation" from 1 single node, all the way up to 8 nodes.

The following figure shows the functional dependence of run-time on the number of nodes in the cluster:

Chapter 24. Clustering

124

Figure 24.4. Cluster Scalability

The following figure shows the dependency of "speedup factor" on the number of nodes in the cluster. The speedup
factor is the ratio of the average runtime with one cluster node and the average runtime with x cluster nodes. Thus:

speedupFactor = avgRuntime(1 node) / avgRuntime(x nodes)

We can see, that the results are favourable up to 4 nodes. Each additional node still improves cluster performance,
however the effect of the improvement decreases. Nine or more nodes in the cluster may even have a negative
effect because their benefit for performance may be lost in the overhead with the management of these nodes.

These results are specific for each transformation, there may be a transformation with much a better or possibly
worse function curve.

Figure 24.5. Speedup factor

Table of measured runtimes:

nodes runtime 1 [s] runtime 2 [s] runtime 3 [s] average
runtime [s]

speedup factor

1 861 861 861 861 1

2 467 465 466 466 1.85

3 317 319 314 316.67 2.72

4 236 233 233 234 3.68

5 208 204 204 205.33 4.19

6 181 182 182 181.67 4.74

7 168 168 168 168 5.13

8 172 159 162 164.33 5.24

Chapter 24. Clustering

125

Cluster configuration

Cluster can work properly only if each node is properly configured. Clustering must be enabled, nodeID must be
unique on each node, all nodes must have access to shared DB and shared sandboxes, and all properties for inter-
node cooperation must be set according to network environment.

Properties and possible configuration are the following:

• Mandatory properties (p. 125)

• Optional properties (p. 126)

• Example of 2 node cluster configuration (p. 126)

• Load balancing properties (p. 127)

Mandatory properties

Besides mandatory cluster properties, you need to set license.file, database connection and other necessary
properties which are not specifically related to the cluster environment.

Table 24.1. Mandatory properties - these properties must be properly set on each node of the cluster

property type default

cluster.enabled boolean false

description: switch whether server is connected to the cluster or not

cluster.node.id String node01

description: each cluster node must have unique ID

cluster.shared_sandboxes_path String, path

description: Path, where all shared sandboxes are stored on this node. If cluster
is enabled, all sandboxes are shared, thus "rootPath" attribute of the
sandbox is ignored. Path to the root directory of the sandbox is
constructed like this: [shared_sandboxes_path]/[sandboxID]

cluster.jgroups.bind_address String, IP address 127.0.0.1

description: IP address of ethernet interface, which is used for communication with
another cluster nodes. Necessary for inter-node messaging.

cluster.jgroups.start_port int, port 7800

description: Port where jGroups server listens for inter-node messages.

cluster.jgroups.tcpping.initial_hosts String, in format:
"IPaddress1[port1],IPaddress2[port2]"

127.0.0.1[7800]

description: List of IP addresses(with ports) where we expect running
and listening nodes. It is related to another nodes
"bind_address" and "start_port" properties. I.e. like this:
bind_address1[start_port1],bind_address2[start_port2],... It is not
necessary to list all nodes of the cluster, but at least one of listed host:port
must be running. Necessary for inter-node messaging.

cluster.http.url String, URL http://localhost:8080/clover

description: URL to the root of web application of configured node. Necessary for
inter-node cooperation. This value will be sent to all other nodes in the
cluster to let them know how to connect to this node.

Chapter 24. Clustering

126

Optional properties

Table 24.2. Optional properties - these properties aren't vital for cluster configuration - default values
are sufficient

property type default description

cluster.node.sendinfo.interval int 5000 time interval in ms; each
node sends info about itself
to another nodes; this interval
specified how often the info is
sent

cluster.node.remove.interval int 15000 time interval in ms; if no node
info comes in this interval, node
is considered as lost and it is
removed from the cluster

cluster.max_allowed_time_shift_between_nodes int 2000 Max allowed time shift between
nodes. If time shift exceeds this,
node will be selected as invalid.

cluster.group.name String cloverCluster Each cluster has its unique
group name. If you need 2
clusters in the same network
environment, each of them
would have its own group
name.

cluster.max_allowed_time_shift_between_nodes int 2000 How many miliseconds is
maximum allowed time shift
between nodes in the cluster.
All nodes must have system
time synchronized. Otherwise
cluster may not work properly.
So if this threshold is exceeded,
node will be set as invalid.

Example of 2 node cluster configuration

This section contain example of CloverETL cluster nodes configuration. In addition it is necessssary to configure:

• sharing or replication of directory /home/clover/nfs_shared/sandboxes

• connection to the same database from both nodes

• HTTP load balancer

Configuration of node on 192.168.1.131

 jdbc.dialect=org.hibernate.dialect.MySQLDialect
 datasource.type=JNDI
 datasource.jndiName=java:comp/env/jdbc/clover_server

 cluster.enabled=true
 cluster.node.id=node01
 cluster.shared_sandboxes_path=/home/clover/nfs_shared/sandboxes

 license.file=/home/clover/license/license.dat

Chapter 24. Clustering

127

 cluster.group.name=cloverCluster
 cluster.jgroups.bind_address=192.168.1.131
 cluster.jgroups.start_port=7800
 cluster.jgroups.tcpping.initial_hosts=192.168.1.13[7800]

 cluster.http.url=http://192.168.1.131:8080/clover

Configuration of node on 192.168.1.13

 jdbc.dialect=org.hibernate.dialect.MySQLDialect
 datasource.type=JNDI
 datasource.jndiName=java:comp/env/jdbc/clover_server

 cluster.enabled=true
 cluster.node.id=node02
 cluster.shared_sandboxes_path=/home/clover/nfs_shared/sandboxes

 license.file=/home/clover/license/license.dat

 cluster.group.name=cloverCluster
 cluster.jgroups.bind_address=192.168.1.13
 cluster.jgroups.start_port=7800
 cluster.jgroups.tcpping.initial_hosts=192.168.1.131[7800]

 cluster.http.url=http://192.168.1.13:8080/clover

Load balancing properties

Multiplicators of load balancing criteria. Load balancer decides which cluster node executes graph. It means, that
any node may process request for execution, but graph may be executed on the same or on different node according
to current load of the nodes and according to these multiplicators.

The higher number, the higher relevance for decision. All multiplicators must be greater then 0.

Each node of the cluster may have different load balancing properties. Any node may process incomming requests
for transformation execution and each may apply criteria for loadbalancing in a different way according to its
own configuration.

These properties aren't vital for cluster configuration - default values are sufficient

Chapter 24. Clustering

128

Table 24.3. Load balancing properties

property type default description

cluster.lb.balance.running_graphs float 3 Specify importance of running graphs for
load balancing.

cluster.lb.balance.memused float 0.5 Specify importance of used memmory for
load balancing.

cluster.lb.balance.cpus float 1.5 Specify importance of number of CPUs
for load balancing.

cluster.lb.balance.master_bonus float 1 Specify importance of the fact, that the
node is master. Usually it does not
affect anything, thus value 1 says to load
balancer: "consider master node the same
as any other node"

cluster.lb.balance.this_node float 2 Specify importance of the fact, that
the node is the same which processes
request for execution. The same node,
which decides where to execute graph.
If you specify this multiplicator great
enough, it will cause, that graph will be
always executed on the same node, which
processes request for execution.

129

Chapter 25. Temp Space Management
Many of the components available in the CloverETL require temporary files or directories in order to work
properly. Temp space is a physical location on local file system where these files or directories are created and
maintained.

Overview

The overview of temp spaces defined in CloverETL Server is available under Configuration > Temp space
management > Overview

Figure 25.1. Configured temp spaces overview - one default temp space on each cluster node

Setup

Temp space management offers an iterface to add, suspend, resume and delete a temp space. It is accessible under
Configuration > Temp space management > Edit.

The screen is divided in two drop-down areas: Global Configuration and Per Node Configuration. The Global
configuration manages temp spaces of standalone server or in case of a server cluster temp spaces on all its nodes.
The Per Node Configuration allows to maintain temp spaces separately on each node.

Initialization

When CloverETL Server is started the system checks temp space configuration: in case no temp space is configured
a new default temp space is created in the directory where java.io.tmpdir system property points. The
directory are named as follows:

• ${java.io.tmpdir}/clover_temp in case of a standalone server

Chapter 25. Temp
Space Management

130

• ${java.io.tmpdir}/clover_temp_<node_id> in case of server cluster

Adding Temp Space

In order to define new temp space enter its path into text field under lastrow in the table and click the "Add" link.
Note that environment variables and system properties may be used in the path, e.g.: ${VARIABLE_NAME}/
temp_space If the directory entered does not exist, it will be created.

Note
The environment variables have higher priority than system properties of the same name. The path
with varibles are resolved after system has added new temp space and while the server is starting. In
case the variable value has been changed it is necessary to restart the server to such change take effect.

Tip
The main point of adding additional temp spaces is to enable higher system throughtput - therefore
the paths entered should point to directories residing on different physical devices to achieve maximal
I/O performance.

Figure 25.2. Newly added global temp space using environment property set on both nodes.

Suspending Temp Space

To suspend a temp space click on "Suspend" link in the panel. In case there are files left from previous or current
graph executions a notification is displayed. Once the temp space has been suspended, no new temporary files will
be created in it, but the files already created may be still used by running jobs.

Note
The system ensures that at least one active (i.e. not suspended) temp space is available.

Chapter 25. Temp
Space Management

131

Figure 25.3. Suspend operation asks for confirmation in case there are data present from running jobs.

Resuming Temp Space

To resume a temp space click on "Resume" link in the panel. Resumed temp space is active, i.e. availabale for
temporal files and directories creation.

Removing Temp Space

To remove a temp space click on "Remove" link in the panel. Only suspended temp space may be removed. Should
be there any running jobs using the temp space, system will not allow its removal. In case there are some files left
in the the temp space directory, it is possible to remove them in the displayed notification panel. The available
options are:

• Remove - remove temp space from system, but keep its content

• Remove and delete - remove the temp space from system and its content too

• Cancel - do not proceed with operation

Chapter 25. Temp
Space Management

132

Figure 25.4. Remove operation asks for confirmation in case there are data present in the temp space.

133

List of Figures
2.1. Adjusting Maximum heap size limit ... 11
2.2. Clover Server as the only running application on IBM Websphere .. 21
3.1. Sandboxes Section in CloverETL Server Web GUI ... 25
3.2. Sandbox Detail in CloverETL Server Web GUI .. 26
3.3. Sandbox Permissions in CloverETL Server Web GUI .. 27
3.4. Web GUI - section "Sandboxes" - context menu on sandbox ... 28
3.5. Web GUI - section "Sandboxes" - context menu on folder .. 28
3.6. Web GUI - download sandbox in ZIP ... 29
3.7. Web GUI - upload ZIP to sandbox ... 30
3.8. Web GUI - upload ZIP results ... 30
3.9. Web GUI - download file in ZIP ... 31
3.10. Job config properties .. 34
4.1. Executions History - executions table ... 35
4.2. Executions History - overall perspective .. 37
4.3. Executions Hierarchy with docked list of jobs ... 37
5.1. Web GUI - section "Users" under "Configuration" ... 41
5.2. Web GUI - edit user .. 42
5.3. Web GUI - change password .. 42
5.4. Web GUI - groups assignment .. 42
5.5. Web GUI - section "Groups" .. 43
5.6. Web GUI - groups assignment .. 44
5.7. Tree of permissions ... 44
6.1. Web GUI - section "Scheduling" - create new .. 45
6.2. Web GUI - onetime schedule form ... 46
6.3. Web GUI - schedule form - calendar .. 46
6.4. Web GUI - periodical schedule form .. 47
6.5. Cron periodical schedule form ... 48
6.6. Web GUI - Graph execution task ... 49
6.7. Web GUI - Jobflow execution task .. 50
6.8. Web GUI - "Kill job" .. 51
6.9. Web GUI - shell command ... 51
6.10. Web GUI - archive records ... 54
7.1. Web GUI - graph timeout event .. 56
7.2. Web GUI - send email ... 58
7.3. Web GUI - Task JMS message editor ... 60
7.4. Event source graph isn't specified, thus listener works for all graphs in specified sandbox 61
7.5. Web GUI - email notification about graph failure ... 61
7.6. Web GUI - email notification about graph success .. 62
7.7. Web GUI - backup of data processed by graph ... 62
8.1. Web GUI - jobflow timeout event .. 64
11.1. Web GUI - "Manual task execution" section .. 70
12.1. Web GUI - "File event listeners" section ... 71
15.1. Glassfish JMX connector .. 85
15.2. Websphere configuration .. 86
15.3. Websphere7 configuration ... 87
17.1. Launch Services and CloverETL Server as web application back-end .. 89
17.2. Launch Services section .. 91
17.3. Overview tab .. 91
17.4. Edit Configuration tab .. 92
17.5. Creating new parameter .. 93
17.6. Edit Parameters tab .. 93
24.1. Dialog form for creating new shared sandbox ... 118
24.2. Dialog form for creating new local sandbox ... 119
24.3. List of nodes joined to the cluster ... 120
24.4. Cluster Scalability .. 124

CloverETL Server

134

24.5. Speedup factor .. 124
25.1. Configured temp spaces overview - one default temp space on each cluster node 129
25.2. Newly added global temp space using environment property set on both nodes. 130
25.3. Suspend operation asks for confirmation in case there are data present from running jobs. 131
25.4. Remove operation asks for confirmation in case there are data present in the temp space. 132

135

List of Tables
1.1. CloverETL Server and CloverETL Engine comparison .. 2
3.1. Sandbox attributes ... 25
3.2. Sandbox permissions ... 27
3.3. ZIP upload parameters ... 30
3.4. Job config parameters .. 33
4.1. Persistent run record attributes ... 36
5.1. After default installation above empty DB, there are two users created .. 41
5.2. User attributes .. 41
5.3. Default groups created during installation .. 43
6.1. Onetime schedule attributes .. 45
6.2. Periodical schedule attributes .. 47
6.3. Cron periodical schedule attributes ... 47
6.4. Attributes of "Graph execution" task .. 49
6.5. Attributes of "Jobflow execution" task .. 50
6.6. Attributes of "Kill Job" task .. 51
6.7. Attributes of "Shell command" task .. 51
6.8. List of variables available in Groovy code ... 52
6.9. Attributes of "archive records" task .. 53
7.1. Attributes of "Send email" task .. 57
7.2. Placeholders useful in email templates .. 59
7.3. Attributes of JMS message task ... 60
9.1. Attributes of JMS message task ... 65
9.2. Variables accessible in groovy code ... 66
9.3. "properties" elements ... 67
9.4. "data" elements ... 67
10.1. Attributes of Universal message task ... 69
10.2. Variables accessible in groovy code .. 69
14.1. Parameters of graph_run ... 77
14.2. Parameters of graph_status .. 78
14.3. Parameters of graph_kill ... 78
14.4. Parameters of sandbox_content .. 79
14.5. Parameters of executions_history .. 80
14.6. Parameters of suspend .. 81
14.7. Parameters of resume ... 81
14.8. Parameters of sandbox create ... 82
14.9. Parameters of sandbox add location .. 82
14.10. Parameters of sandbox add location .. 83
18.1. General configuration ... 102
18.2. Defaults for job execution configuration - see section Job config properties for details 105
19.1. Defaults for graph execution configuration - see section Graph config properties for details 106
19.2. passed parameters .. 107
19.3. passed parameters .. 107
19.4. passed parameters .. 108
22.1. Variables accessible in groovy code .. 111
24.1. Mandatory properties - these properties must be properly set on each node of the cluster 125
24.2. Optional properties - these properties aren't vital for cluster configuration - default values are
sufficient .. 126
24.3. Load balancing properties .. 128

	CloverETL Server
	Table of Contents
	Chapter 1. What is CloverETL Server
	Chapter 2. Installation
	Evaluation Server
	Enterprise Server
	Apache Tomcat
	Jetty
	IBM Websphere
	Glassfish / Sun Java System Application Server
	JBoss
	Oracle WebLogic Server
	Possible issues during installation

	Memory Settings
	Upgrading Server to Newer Version

	Chapter 3. Server Side Job files - Sandboxes
	Referencing files from the ETL graph or Jobflow
	Sandbox Content Security and Permissions
	Sandbox Content
	Job config properties

	Chapter 4. Viewing Job Runs - Executions History
	Chapter 5. Users and Groups
	LDAP authentication
	Web GUI section Users
	Web GUI section Groups

	Chapter 6. Scheduling
	Timetable Setting
	Tasks

	Chapter 7. Graph Event Listeners
	Graph Events
	Listener
	Tasks
	Use cases

	Chapter 8. Jobflow Event Listeners
	Jobflow Events
	Listener
	Tasks

	Chapter 9. JMS messages listeners
	Optional Groovy code
	Message data available for further processing

	Chapter 10. Universal event listeners
	Groovy code

	Chapter 11. Manual task execution
	Chapter 12. File event listeners
	Observed file
	File Events
	Check interval, Task and Use cases

	Chapter 13. WebDAV
	WebDAV clients
	WebDAV authentication/authorization

	Chapter 14. Simple HTTP API
	Operation help
	Operation graph_run
	Operation graph_status
	Operation graph_kill
	Operation server_jobs
	Operation sandbox_list
	Operation sandbox_content
	Operation executions_history
	Operation suspend
	Operation resume
	Operation sandbox_create
	Operation sandbox_add_location
	Operation sandbox_remove_location
	Cluster status

	Chapter 15. JMX mBean
	JMX configuration
	Operations

	Chapter 16. SOAP WebService API
	SOAP WS Client
	SOAP WS API authentication/authorization

	Chapter 17. Launch Service
	Launch Service Overview
	Deploying Graph in Launch Service
	Designing the ETL graph/Jobflow for Launch Service
	Configuring the job in CloverETL Server web GUI
	Sending the Data to Launch Service
	Results of the Graph Execution

	Chapter 18. Configuration
	Config Sources and Their Priorities
	Examples of DB Connection Configuration
	Embedded Apache Derby
	MySQL
	DB2
	Oracle
	MS SQL
	Postgre SQL
	JNDI DB DataSource

	List of Properties

	Chapter 19. Graph parameters
	Another sets of parameters according the type of execution
	executed from Web GUI
	executed by Launch Service invocation
	executed by HTTP API run graph operation invocation
	executed by RunGraph component
	executed by WS API method executeGraph invocation
	executed by task "graph execution" by scheduler
	executed from JMS listener
	executed by task "graph execution" by graph event listener
	executed by task "graph execution" by file event listener

	How to add another graph parameters
	Additional "Graph Config Parameters"
	Task "execute_graph" parameters

	Chapter 20. Recommendations for transformations developers
	Add external libraries to app-server classpath
	Another graphs executed by RunGraph component may be executed only in the same JVM instance

	Chapter 21. Logging
	Main logs
	Graph run logs

	Chapter 22. Extensibility (Embedded OSGi framework)
	Groovy Code API
	Embedded OSGi framework

	Chapter 23. Extensibility CloverETL engine plugins
	Chapter 24. Clustering
	High Availability
	Scalability
	Transformation Requests
	Parallel Data Processing

	Recommendations for Cluster Deployment
	Example of Distributed Execution
	Details of the Example Transformation Design
	Scalability of the Example Transformation

	Cluster configuration
	Mandatory properties
	Optional properties
	Example of 2 node cluster configuration
	Load balancing properties

	Chapter 25. Temp Space Management
	Overview
	Setup
	Adding Temp Space

	LDIServer.pdf
	Copyright and disclaimer

	LDIServer.pdf
	Copyright and disclaimer

