
Oracle® Endeca Server

Data Loading Guide

Version 7.4.0 • September 2012

Copyright and disclaimer
Copyright © 2003, 2013, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No
other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including applications that may
create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software
or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Oracle® Endeca Server : Data Loading Guide Version 7.4.0 • September 2012

Table of Contents

Copyright and disclaimer ..ii

Preface..v
About this guide...v
Who should use this guide ...v
Contacting Oracle Customer Support ...v

Chapter 1: Introduction ..1
Overview of the Data Ingest Web Service..1
List of operations..3
Important usage note...3
Data Ingest logging ..4
Generating client stubs ...4

Chapter 2: Prerequisite Information ...6
Version and namespaces for the Data Ingest Web Service6
Property types for Dgraph records ...8

string property..9
numeric properties...9
geocode property ..10
boolean property ...10
dateTime property ..11
time property..13
duration property...13

Default values for new attributes in the data store15
NCName format for attributes in the data store ...16
Interaction with the Transaction Web Service ..16
Troubleshooting connection timeouts ..17

Chapter 3: Adding New Records ...18
About primary-key attributes...18
Adding new records...20
Initial loading of records..22
Adding records after the initial load..23
Loading managed attribute values ..24

Chapter 4: Updating Records..27
About updates...27
Adding key-value assignments...28
Removing record assignments ...30
Deleting records ...32

Oracle® Endeca Server : Data Loading Guide Version 7.4.0 • September 2012

Chapter 5: Resetting the Data Store ..33
Removing all records from the data store ...33
Provisioning the data store..34

Chapter 6: Bulk Load API ...36
About the Bulk Load API ...36
Bulk Load sample program ...37
Records, assignments, and data types ...39
Sending records to the data store...41

Oracle® Endeca Server : Data Loading Guide Version 7.4.0 • September 2012

Preface
Oracle® Endeca Server is the core search-analytical database. It organizes complex and varied data from
disparate source systems into a faceted data model that is extremely flexible and reduces the need for up-
front data modeling. This highly-scalable server enables users to explore data in an unconstrained and
impromptu manner and to rapidly address new questions that inevitably follow every new insight.

About this guide
This guide describes the two interfaces that allow you to load data into an Endeca data store.

The two interfaces are:

• Data Ingest Web Service, which enables loading, updating, and deleting records in the data store, as well
as resetting the data store.

• Bulk Load Interface, which enables loading and replacing records in the data store.

The guide assumes that you are familiar with Oracle Endeca Server concepts and the front-end application
development for the Oracle Endeca Server, as well as the specifics of your ETL tool.

Who should use this guide
This guide is intended for developers who are responsible for using ETL utilities to load source data into the
Oracle Endeca Server.

Contacting Oracle Customer Support
Oracle Endeca Customer Support provides registered users with important information regarding Oracle
Endeca software, implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Endeca Customer Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Oracle® Endeca Server : Data Loading Guide Version 7.4.0 • September 2012

https://support.oracle.com

Chapter 1

Introduction

This section provides an introductory overview to the Data Ingest Web Service.

Overview of the Data Ingest Web Service

List of operations

Important usage note

Data Ingest logging

Generating client stubs

Overview of the Data Ingest Web Service
The Data Ingest Web Service loads data into a running data store on the Oracle Endeca Server and can also
update existing records.

The Data Ingest Web Service therefore allows you to use a data integration platform, such as Integrator, to
load data into an application.

You can access the Data Ingest Web Service WSDL at the following URL:

http://localhost:<port>/ws/ingest/<DataStore>?wsdl

Version 7.4.0 • September 2012

where the localhost and port are the host and port of the running Oracle Endeca Server, and DataStore
is the name of the Endeca data store.

The Data Ingest Web Service enables performing these tasks:

• Provision the primordial schema records for an initial data store configuration.

• Reset the data store by removing its records and schema.

• Add new records to a running data store. The service accepts batches of records to add. The number of
records in each batch is set by the client program. The records can be added to an empty data store (this
operation is called an initial load) or to one that already has records.

• Add managed attribute values to a running data store. If the managed values belong to a managed
attribute that is not currently in the data store, the service will also create the managed attribute.

• Modify existing records in a running data store. You can add or remove standard attribute values and
managed values from already added records.

• Delete records or record data from a running data store.

The Data Ingest Web Service is able to modify a record multiple times in a single transaction (any combination
of create, add assignments, delete assignments, and delete record).

Oracle® Endeca Server : Data Loading Guide

Introduction 2

The service returns a response indicating the number of records, standard attributes, or managed attribute
values that were added or removed as a result of the request. In addition, error messages are returned via a
fault mechanism.

The data is sent by an ETL client (such as Integrator) via a program that is running on the client. Typically,
ETL client programs written by users use stubs generated from the Data Ingest WSDL and calls from the ETL
tool's SDK.

Interaction with transactions
Any request to the Data Ingest Web Service can contain an optional element OuterTransactionId that
specifies the ID of an outer transaction (if it has been started by the Transaction Web Service).

This element must be specified as the first element in the request only if a request made by the Data Ingest
service is started after a request to start an outer transaction has been made by the Transaction Web Service.

If no outer transactions have been started, the OuterTransactionId should not be specified in the request,
or the value of this element should be empty. (If the attribute's value is empty, the request ignores the element
and interprets it as not specified.)

About Integrator

Integrator is a high-performance data integration platform that lets you extract source records from a variety of
source types (from flat files to databases) and send those records to either the Data Ingest Web Service or the
Bulk Load Interface, both of which in turn load the records into the data store.

The records are loaded into the data store via one of the four custom connectors that communicate with the
Data Ingest Web Service or a connector that uses the Bulk Load Interface.

For details on Integrator, see the Oracle Endeca Information Discovery Integrator Guide, Oracle Endeca
Information Discovery Integrator Server Guide, and Oracle Endeca Information Discovery Integrator
Components Guide.

Data Ingest API

The Data Ingest API is a framework that provides ETL developers with a flexible mechanism to load records
from an ETL data source to a running data store. Because it is defined by WSDL documents, the Data Ingest
API is language-agnostic. That is, it can be used with any programming language that has Web services
support. Thus, the API lets developers choose their favorite development environment (Java, Visual Studio
.NET, etc.) on which to write their components.

The Oracle Endeca Server API Reference is the documentation generated from the WSDL and XSD files that
describe a Web service. This reference provides API-level information about Web services that are packaged
with the Oracle Endeca Server. The Oracle Endeca API Reference is located in the doc directory of the
Oracle Endeca Server installation.

About the Bulk Load Interface

Besides the Data Ingest API, the Bulk Load Interface is available to ingest records into an Endeca data store.
The Bulk Load API exists in the form of a collection of Java classes in a single endeca_bulk_load.jar file,
which is shipped in the Endeca Server's apis directory. For information on the Bulk Load API, see Bulk Load
API on page 36.

Oracle® Endeca Server : Data Loading Guide Version 7.4.0 • September 2012

Introduction 3

List of operations
This topic lists the operations available in the Data Ingest Web Service.

The operations are the following:

Operation Description

ingestRecords Adds, modifies, and deletes records (including removing
standard attributes and managed attribute value assignments).

ingestDimensionValues Adds and updates managed values.

clearMdex Deletes the data records and schema records from the data
store, indicating the number of records deleted. This operation
must be followed by the provisionMdex operation.

Unlike deleteRecords, clearMdex deletes all records and
does not require specifying record IDs.

provisionMdex Provisions the primordial schema records in the data store. This
operation is typically run after the clearMdex operation. It adds
the primordial records (such as PDRs and DDRs), and resets
these records to their default values.

Important usage note
This topic discusses operations in the data store you can perform using the Data Ingest Web Service. It also
lists several data store operations that are not recommended.

Supported data store operations

You can use the Data Ingest Web Service to perform the following actions on the records in the data store:

• Add new individual records to the data store

• Add managed attribute values

• Add key-value assignments on the existing records in the data store

• Delete specified record assignments

• Delete individual records

• Remove all data records and the schema records from the data store

• Provision the data store (by creating the schema records, such as PDRs and DDRs, and resetting these
records to their default values).

Operations that are not recommended

While the actions listed below can be done with the Data Ingest Web Service, it is not recommended to use
the Data Ingest Web Service for them.

Oracle® Endeca Server : Data Loading Guide Version 7.4.0 • September 2012

Introduction 4

The Data Ingest Web Service does not perform reference checks, so it is possible to render your data store
invalid or unusable by performing certain operations using this Web service. Here is a list of operations to use
with caution:

• Removal of system records — these are records that define your schema (such as PDR, DDR, or other
system records). For example, removing a PDR may invalidate a group to which the attribute defined by
this PDR belongs. As a workaround, you can remove all records and schema and then provision the data
store using the Reset Data Store connector in Integrator. For more information on custom connectors
available in Integrator, see the Oracle Endeca Information Discovery Integrator Components Guide.

• Creation of records that define groups or entities (used for views in Studio). It is recommended to use
either the Configuration Web Service or Studio for these actions. For information on the Configuration
Web Service, see the Oracle Endeca Server Developer's Guide. For information on Studio, see the Oracle
Endeca Information Discovery Studio User's Guide.

Data Ingest logging
The Data Ingest Web Service writes its output to the Dgraph logs.

By default, each SOAP request for the Data Ingest Web Service is written to the Dgraph request log.

The Ingest SOAP response provides fault and summary information. If Dgraph verbose logging is turned on
(via the Dgraph -v flag), this information, as well as the entire SOAP request, is written to the Dgraph
standard-out log. The Dgraph stdout/stderr log is created with the Dgraph --out flag.

Generating client stubs
To create a client application that consumes the Data Ingest Web Service, you need the Web service's WSDL
file to generate client stubs.

A WSDL file specifies value types, exceptions, and available methods in a Web service in a programmatic
fashion. Typically, a client developer uses a tool that parses the WSDL file and generates client-side stubs
(also called proxy classes) and value types. These generated files include all the code necessary to serialize
and deserialize SOAP messages and make the SOAP layer transparent to the client developer. The Data
Ingest WSDL files can be used with any language that has Web services support.

Tools that generate client stub code from the WSDLs that have been tested are the following:

• Apache CXF 2.2 or later.

• Apache Axis2 1.5.1 or later.

• Web Services Description Language Tool (wsdl.exe), available as part of the Microsoft .NET Framework
SDK.

For details on using a WSDL code-generation utility, refer to the utility's documentation.

Keep in mind that the exact syntax of a class member depends on the output of the WSDL tool that you are
using. Therefore, check the client stub classes that are generated by your WSDL tool for the exact syntax of
the class members.

Oracle® Endeca Server : Data Loading Guide Version 7.4.0 • September 2012

Introduction 5

Obtaining the WSDL from the deployed service

The Data Ingest Web Service has a unique URL associated with it. If you append ?wsdl to the service
endpoint URL, and specify the name of the data store, the service will automatically generate a service
description for the deployed service and return it as XML in your browser, as in this example URL:

http://localhost:5555/ws/ingest/datastore?wsdl

Version 7.4.0 • September 2012

You can also use this URL in your WSDL tool to generate the stubs, as in this Apache Axis2 example:

wsdl2java -uri http://localhost:5555/ws/ingest/datastore
?wsdl -d xmlbeans -s -p com.endeca.dataingest.axis2.addrecords

You can insert the wsdl2java command in a batch or shell script, or in a build file.

Oracle® Endeca Server : Data Loading Guide

Chapter 2

Prerequisite Information

This section provides overview information you need to know before using the Data Ingest Web Service.

Version and namespaces for the Data Ingest Web Service

Property types for Dgraph records

Default values for new attributes in the data store

NCName format for attributes in the data store

Interaction with the Transaction Web Service

Troubleshooting connection timeouts

Version and namespaces for the Data Ingest Web Service
This topic describes the version of the Data Ingest Web Service and two namespaces used for data ingest
operations.

XML namespaces provide a method for qualifying element and attribute names used in Extensible Markup
Language documents by associating them with namespaces identified by URI references. The Data Ingest
Web Service uses two namespaces.

Data Ingest Web Service version and namespace

The namespace for the Data Ingest Web Service (DIWS) is:

http://www.endeca.com/MDEX/ingest/1/0

Version 7.4.0 • September 2012

This namespace reflects the version of the Data Ingest Web Service. This namespace is included in the
WSDL document for the web service.

In this example, the string 1/0 indicates the version as 1.0, where 1 is the major version, and 0 is the minor
version. Note that the version in the service that you have installed may not match this example.

Changes to minor versions are backward-compatible. If any backward-compatible versions exist, additional
namespaces are included in the WSDL, listing them. You can use any backward-compatible minor version that
is listed. For example, if both 1.0 and 1.1 versions are listed in the WSDL, you can use either of them.

Changes to major versions are not backward-compatible, thus previous major versions are not listed in the
WSDL namespaces.

Important: After you upgrade the Oracle Endeca Server, verify the versions of the web services you
have been using against the installed versions, to avoid version mismatch. It is recommended to use
the web service versions that match the ones installed with the Oracle Endeca Server.

Oracle® Endeca Server : Data Loading Guide

Prerequisite Information 7

In particular:

• If the minor version of the web service on your client does not match the version installed with the
Oracle Endeca Server, you can still use this version if it is listed in the WSDL namespaces,
although it is recommended to upgrade.

• If the major version of the web service on your client does not match the version of the web
service installed with the Oracle Endeca Server, you must upgrade to the most recent major
version of the web service (this may include upgrading client code to use client stubs generated
from the most recent versions).

For more information on web service versions, see the Oracle Endeca Server Developer's Guide.

The xmlns attribute specifies this namespace for a DIWS prefix for a document, as in this example, also
showing the version:

<ingest:ingestRecords
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0"
...
<ingest:addAssignments>

...
</ingest:addAssignments>

</ingest:ingestRecords>

Version 7.4.0 • September 2012

After this declaration, all DIWS elements will use the same prefix, which will be associated with the same
namespace. In the example, the prefix ingest is defined for all DIWS elements, such as the
ingest:addAssignments element.

You can use a prefix of your own choosing, but it must be bound to the DIWS namespace listed above. In this
guide, the prefix ingest will be used in the examples.

mdex element namespace
The namespace for mdex elements is:

http://www.endeca.com/MDEX/XQuery/2009/09

The important mdex elements used in data ingesting are mdex:record for records and the nine property types,
such as the mdex:string property type.

You must also use the xmlns attribute to set the mdex namespace in your XML documents:

<ingest:ingestRecords
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<ingest:addAssignments>
<mdex:record>

<FactSalesID>683</FactSalesID>
<Price type="mdex:double">59.99</Price>
<NumInStock type="mdex:int">68</NumInStock>
<Description type="mdex:string">Road gloves</Description>

</mdex:record>
</ingest:addAssignments>

</ingest:ingestRecords>

Oracle® Endeca Server : Data Loading Guide

Prerequisite Information 8

Property types for Dgraph records
This topic describes the format of the property types supported by the Dgraph process of the Oracle Endeca
Server and the Data Ingest Web Service.

The following table lists the property types that are used by the Dgraph process of the Oracle Endeca Server
to create standard attributes:

Dgraph property name Property type

mdex:string Represents XML-valid character strings.

mdex:int Represents a 32-bit signed integer.

mdex:long Represents a 64-bit signed integer.

mdex:double Represents a floating point.

mdex:boolean Represents a Boolean.

mdex:time Represents the time of day to a resolution of milliseconds.

mdex:dateTime Represents the date and time to a resolution of milliseconds.

mdex:duration Represents a length of time with a resolution of milliseconds.

mdex:geocode Represents latitude and longitude pairs.

The type for properties is specified in the type attribute. The default type of created standard attributes is
mdex:string if not otherwise specified. Assignments for an existing standard attribute that specify a type
different from that of the associated standard attribute will succeed or fail as per the underlying put-record

functionality.

Errors from incorrect property values

You must ensure that you specify the appropriate value type for each property type. For example, attempting
to assign a double value (such as 19.99) to an mdex:int property will return an ingestFault indication a
parsing error:

<detail>
<ingest:ingestFault xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0">

<ingest:errorDetail>Error applying updates: Unable to parse
property value "19.99" for property "NumInStock" with
type "mdex:int" on record FactSalesD:569

</ingest:errorDetail>
</ingest:ingestFault>

</detail>

Version 7.4.0 • September 2012

The "Unable to parse property value" error should be returned for any mismatched property value,
including using an incorrect case for Boolean values (for example, specifying "FALSE" instead of "false").

Oracle® Endeca Server : Data Loading Guide

Prerequisite Information 9

string property
mdex:string properties represent character strings.

An mdex:string property represents variable-length character strings. The characters should conform to the
specification for valid XML characters, as described in the W3C XML document at this URL:
http://www.w3.org/TR/REC-xml/#charsets

Keep in mind that mdex:string is the default property data type. That is, if you do not explicitly specify the
property type when creating a standard attribute, then mdex:string will be used as the property type of the
Dgraph record for that attribute.

Example of ingesting string properties

This example shows how to use string property types for record assignments:

<ingest:ingestRecords
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<ingest:addAssignments>
<mdex:record>

<FactSalesID>568</FactSalesID>
<Description type="mdex:string">winter tights</Description>

</mdex:record>
</ingest:addAssignments>

</ingest:ingestRecords>

Version 7.4.0 • September 2012

numeric properties

The Dgraph records can have three numeric properties.

The three numeric properties are:

• mdex:int

• mdex:long

• mdex:double

int properties
An mdex:int property represents a 32-bit signed integer. It has a minimum value of -2147483648 and a
maximum value of 2147483647 (inclusive).

long properties
An mdex:long property represents a 64-bit signed integer. It has a minimum value of -9223372036854775808
and a maximum value of 9223372036854775807 (inclusive).

double properties
An mdex:double property represents a floating point value. Values can be specified in a decimal-point format
(such as 20.0) or in a scientific notation format using "e" or "E" (such as 2.0E1).

Oracle® Endeca Server : Data Loading Guide

http://www.w3.org/TR/REC-xml/#charsets

Prerequisite Information 10

Example of ingesting numeric properties

This example shows how to use the numeric property types for record assignments:

<ingest:ingestRecords
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<ingest:addAssignments>
<mdex:record>

<FactSalesID>504</FactSalesID>
<Price type="mdex:double">19.99</Price>
<NumInStock type="mdex:int">45</NumInStock>
<TotalSold type="mdex:long">92233720</TotalSold>

</mdex:record>
</ingest:addAssignments>

</ingest:ingestRecords>

Version 7.4.0 • September 2012

geocode property
mdex:geocode properties represent latitude and longitude pairs.

mdex:geocode properties use the format:

latvalue lonvalue

where each is a double-precision floating-point value:

• latvalue is the latitude of the location in whole and fractional degrees. Positive values indicate north
latitude and negative values indicate south latitude.

• lonvalue is the longitude of the location in whole and fractional degrees. Positive values indicate east
longitude, and negative values indicate west longitude.

The latitude and longitude numbers may be separated by arbitrary white space or tab characters. Values are
always re-serialized with a single space character regardless of the form of the parsed string.

For example, the following request updates Record 778 with a Location geocode property:

<ingest:ingestRecords
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<ingest:addAssignments>
<mdex:record>

<FactSalesID>778</FactSalesID>
<Location type="mdex:geocode">42.365615 -71.075647</Location>

</mdex:record>
</ingest:addAssignments>

</ingest:ingestRecords>

The value of the geocode property specifies a location at 42.365615 north latitude, 71.075647 west longitude.

boolean property
mdex:boolean property values are useful for tracking true/false conditions.

The valid Boolean values for the mdex:boolean property type are:

• true or 1 (i.e., 1 is a synonym for true)

• false or 0 (i.e., 0 is a synonym for false)

Note that true and false are case sensitive and must be specified in lower case.

Oracle® Endeca Server : Data Loading Guide

Prerequisite Information 11

For example, the following request updates Record 492 with two Boolean properties:

<ingest:ingestRecords
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<ingest:addAssignments>
<mdex:record>

<FactSalesID>492</FactSalesID>
<isInStock type="mdex:boolean">true</isInStock>
<isActive type="mdex:boolean">1</isActive>

</mdex:record>
</ingest:addAssignments>

</ingest:ingestRecords>

Version 7.4.0 • September 2012

In the example, both properties (isInStock and isActive) are set to true.

dateTime property
mdex:dateTime properties represents a single point in time.

An mdex:dateTime property represents the year, month, day, hour, minute, and seconds of a time point, with
the optional specification of fractional seconds. You can specify a datetime value as either a universal (UTC)
date time or as a local time plus a UTC timezone offset. Note that specifying just a local time is not supported.

format for universal datetime
The mdex:dateTime format for a UTC date time is:

yyyy '-' mm '-' dd 'T' hh ':' mm ':' ss {'.' s+} Z

where:

• yyyy represents a four-digit year. The year value may not be negative, which means that specifying a year
prior to 1 BCE is not supported. Year 0000 is not a valid year.

• The first mm is a two-digit numeral that represents the month. Numerals representing the first nine months
must have a leading zero, such as 07 for July.

• dd is a two-digit numeral that represents the day of the month, such as 03 for the third day of the month or
30 for the thirtieth day.

• T is a literal separator indicating that time-of-day follows.

• hh is a two-digit numeral that represents the hour. Note that specifying 24 is not permitted (to represent
24, use all zeros for the time portion).

• The second mm is a two-digit numeral that represents the minute.

• ss is a two-digit numeral that represents the whole seconds.

• '.' s+ is optional and, if present, represents the fractional seconds. The internal representation is only
precise to the millisecond, which means that a specification of four or more digits is truncated to three
digits.

• Z (added to the time without a space) is a literal indicator that this date time is Coordinated Universal Time
(UTC, sometimes called Greenwich Mean Time). Z is the zone designator for the zero UTC offset.

Note that a hyphen ('-') is the separator between parts of the date portion, a colon (':') is the separator
between parts of the time-of-day portion, and a period ('.') is the separator for fractional seconds.

For example, to indicate noon on November 18, 2010 in New York City, you would specify:

Oracle® Endeca Server : Data Loading Guide

Prerequisite Information 12

2010-11-18T17:00:00Z

Version 7.4.0 • September 2012

format for local time plus UTC offset
Alternatively, you can specify the value for an mdex:dateTime property as a local time plus a UTC offset. The
format for this representation is:

yyyy '-' mm '-' dd 'T' hh ':' mm ':' ss {'.' s+} zzzzzz

The meanings of the date and time portions are the same as the universal datetime format. zzzzzz represents
the timezone. Timezones are durations of hours and minutes. Timezones may be specified as positive or
negative durations.

The format for a timezone is:

('+' | '-') hh ':' mm

where:

• hh is a two-digit numeral (with leading zeros as required) that represents the hours. The value for hh
cannot be greater than 14.

• mm is a two-digit numeral that represents the minutes. The value for mm cannot be greater than 59.
However, if hh is 14, then mm must be 00.

• '+' indicates a non-negative duration.

• '-' indicates a non-positive duration.

For example, to indicate noon on November 18, 2010 in New York City, you would specify:

2010-11-18T12:00:00+05:00

Note that this time represented in this example is the same as the "2010-11-18T17:00:00Z" time in the
universal datetime format.

Example of ingesting dateTime properties

The following request updates Record 506 with two dateTime properties:

<ingest:ingestRecords
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<ingest:addAssignments>
<mdex:record>

<FactSalesID>506</FactSalesID>
<dT1 type="mdex:dateTime">2010-11-18T17:00:00Z</dT1>
<dT2 type="mdex:dateTime">2010-11-18T12:00:00+05:00</dT2>

</mdex:record>
</ingest:addAssignments>

</ingest:ingestRecords>

The dT1 property uses the universal datetime format while the dT2 property specifies the datetime as a local
time plus a UTC offset.

Oracle® Endeca Server : Data Loading Guide

Prerequisite Information 13

time property
mdex:time properties represent an instant of time that recurs every day.

An mdex:time property represents the hour and minutes of an instance of time, with the optional specification
of fractional seconds. A timezone is not allowed as part of the time representation.

The mdex:time format is:

hh ':' mm ':' ss {'.' s+}

Version 7.4.0 • September 2012

where:

• hh is a two-digit numeral that represents the hour. Use a leading zero for a single-digit hour, such as 04.

• mm is a two-digit numeral that represents the minute.

• ss is a two-digit numeral that represents the whole seconds.

• '.' s+ is optional and, if present, represents the fractional seconds. The internal representation is only
precise to the millisecond, which means that a specification of four or more digits is truncated to three
digits.

A colon (':') is the separator between hours, minutes, and whole seconds, while a period ('.') is the separator
for fractional seconds.

Be sure to use a leading zero for single-digit hours, minutes, and whole seconds.

Example of ingesting time properties

The following request updates Record 624 with two time properties:

<ingest:ingestRecords
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<ingest:addAssignments>
<mdex:record>

<FactSalesID>624</FactSalesID>
<time1 type="mdex:time">13:25:43.261</time1>
<time2 type="mdex:time">09:14:52</time2>

</mdex:record>
</ingest:addAssignments>

</ingest:ingestRecords>

Note that the time2 property uses a leading zero (i.e., "09") to specify the hour. Omitting the leading zero will
cause the operation to fail, with a fault similar to this example:

<faultstring>Error applying updates: Unable to parse property
value "9:14:52" for property "time2" with type "mdex:time" on
record FactSalesID:624</faultstring>

duration property
mdex:duration properties represent a duration of time.

An mdex:duration property represents a duration of the days, hours, and minutes of an instance of time. A
timezone is not allowed as part of the time representation.

The mdex:duration format is:

'P' {d 'D'} 'T' {h 'H'} {m 'M'} {s {'.' s+} 'S'}

Oracle® Endeca Server : Data Loading Guide

Prerequisite Information 14

where:

• P is a mandatory literal that indicates that this is a period of time.

• For the d'D' parameter, d specifies the number of days while the literal D indicates that this is the days
field.

• T is a literal date/time separator that must be present if (and only if) any time fields are specified.

• For the h'H' parameter, h specifies the number of hours while the literal H indicates that this is the hours
field.

• For the m'M' parameter, m specifies the number of minutes while the literal M indicates that this is the
minutes field.

• For the s'S' parameter, s specifies the number of whole seconds while the literal S indicates that this is
the seconds field. '.' s+ is optional and, if present, represents the fractional seconds (the internal
representation is only precise to the millisecond, which means that a specification of four or more digits is
truncated to three digits).

Note that all time durations are optional, but at least one must be present. An optional preceding minus sign ('-
') is allowed to indicate a negative duration.

duration format examples

This example specifies a duration of 429 days, 1 hour, 2 minutes, and 3 seconds:

P429DT1H2M3S

Version 7.4.0 • September 2012

This example specifies a duration of 429 days:

P429D

This example specifies a duration of 429 days, 2 minutes, and 3.25 seconds:

P429DT2M3.25S

This example specifies a 1 hour and 2 minutes:

PT1H2M

This example specifies a negative duration of 429 days and 3 seconds:

-P429DT3S

Example of ingesting duration properties

The following request updates Record 344 with five duration properties:

<ingest:ingestRecords
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<ingest:addAssignments>
<mdex:record>

<FactSalesID>344</FactSalesID>
<duration1 type="mdex:duration">P429DT1H2M3S</duration1>
<duration2 type="mdex:duration">P429D</duration2>
<duration3 type="mdex:duration">P429DT2M3.25S</duration3>
<duration4 type="mdex:duration">PT1H2M</duration4>
<duration5 type="mdex:duration">-P429DT3S</duration5>

</mdex:record>
</ingest:addAssignments>

</ingest:ingestRecords>

Oracle® Endeca Server : Data Loading Guide

Prerequisite Information 15

Note that the duration5 property has a negative duration value.

Default values for new attributes in the data store
New standard attributes and managed attributes created during an ingest are given a set of default values.

During any data ingest operation, if a non-existent standard attribute is specified for a record, the specified
standard attribute is automatically created by the Data Ingest Web Service. Likewise, non-existent managed
attributes specified for a record are also automatically created. Note that you cannot disable this automatic
creation of properties.

Default values for standard attributes

The PDR for a standard attribute that is automatically created will use the system default settings, which
(unless they have been changed by the data developer) are:

PDR property Default setting

mdex-property_Key Set to the standard attribute name specified in the
request.

mdex-property_Type Set to the Dgraph property type specified in the
request. If no property type was specified, defaults to
an mdex:string type.

mdex-property_IsPropertyValueSearchable true (the standard attribute will be enabled for value
search)

mdex-property_IsSingleAssign false (a record may have multiple value
assignments for the standard attribute)

mdex-property_IsTextSearchable false (the standard attribute will be disabled for
record search)

mdex-property_IsUnique false (more than one record may have the same
value of this standard attribute)

mdex-property_TextSearchAllowsWildcards false (wildcard search is disabled for this standard
attribute)

system-navigation_Select single (allows selecting only one refinement from
this standard attribute)

system-navigation_ShowRecordCounts true (record counts will be shown for a refinement)

system-navigation_Sorting record-count (refinements are sorted in
descending order, by the number of records available
for each refinement)

Oracle® Endeca Server : Data Loading Guide Version 7.4.0 • September 2012

Prerequisite Information 16

Default values for managed attributes

A managed attribute that is automatically created will have both a PDR and a DDR created by the Data Ingest
Web Service. The default values for the PDR are the same as listed in the table above, except that mdex-
property_IsPropertyValueSearchable will be false (i.e., the managed attribute will be disabled for value
search).

The DDR will use the system default settings, which (unless they have been changed by the data developer)
are:

DDR property Default setting

mdex-dimension_Key Set to the managed attribute name specified in the
request.

mdex-dimension_EnableRefinements true (refinements will be displayed)

mdex- false (hierarchical search is disabled during value
dimension_IsDimensionSearchHierarchical searches)

mdex-dimension_IsRecordSearchHierarchical false (hierarchical search is disabled during record
searches)

NCName format for attributes in the data store
The names of standard attributes and managed attributes in the data store must be in an NCName format.

The NCName format is defined in the W3C document Namespaces in XML 1.0 (Second Edition), located at
this URL: http://www.w3.org/TR/REC-xml-names/#NT-NCName

As defined in the W3C document, an NCName must start with either a letter or an underscore (but keep in
mind that the W3C definition of Letter includes many non-Latin characters). If the name has more than one
character, it must be followed by any combination of letters, digits, periods, dashes, underscores, combining
characters, and extenders. (See the W3C document for definitions of combining characters and extenders.)
The NCName cannot have colons or white space.

After creating the Endeca attribute, you can use the mdex-property_DisplayName property on the PDR to
specify a display name. The display name, which can use a non-NCName format, is intended to serve as an
easy-to-understand name for the data store's attribute when it is displayed in the application's front end (such
as in Studio's Results Table component).

Interaction with the Transaction Web Service
All requests made with the Data Ingest Web Service can optionally specify the outer transaction ID.

If you submit any request to the Data Ingest Web Service after a Transaction Web Service request that starts
an outer transaction, the request must specify the outer transaction ID. If no transactions have been started,
the ID attribute must be omitted in the request.

Oracle® Endeca Server : Data Loading Guide Version 7.4.0 • September 2012

http://www.w3.org/TR/REC-xml-names/#NT-NCName

Prerequisite Information 17

The outer transaction ID is issued by the Transaction Web Service, once a request is sent to it to start an
outer transaction. From that point on, all requests issued to the Oracle Endeca Server's data store must
reference this ID, until the outer transaction is committed.

(If an outer transaction is in progress and you don't know the ID, you can obtain it by using the
listOuterTransaction operation on the Transaction Web Service.)

The format of the request that has an outer transaction ID specified may be similar to the following (top-level
namespaces are omitted in this example):

<ingest:clearMdex >
<OuterTransactionId>MyID</OuterTransactionID>
</ingest>

Version 7.4.0 • September 2012

Note: The <OuterTransactionId> element must be the first element in the request.

Troubleshooting connection timeouts
You can use the Dgraph --net-timeout flag to help prevent timeout issues during data ingest operations.

The Dgraph process of the Oracle Endeca Server has a default request timeout of 30 seconds. This setting
determines the maximum number of seconds that the Dgraph process waits for the client to download data
from queries across the network. The client can be an end user sending a query to the Oracle Endeca Server,
or for data ingest operations, an ETL client program that is loading records into the data store.

If the client opens a connection with the server, the server will wait (for the length of the timeout period) for the
receipt of client data on that socket. If the client does not send data within the timeout limit, then the server will
drop the connection and log an HTTP 408 error in the Dgraph log.

For ingest operations, this timeout limit may pose problems if you have a DIWS client that takes longer to
send data. If the timeout limit is exceeded, the ingest request fails (because the server closes the connection)
and the record batch is not loaded into the data store residing on the server.

If you continually see HTTP 408 errors in the logs, first verify that your ETL client is working properly. For
example, make sure that the program is not spending an unusual amount of time in an operation that would
cause it to exceed the timeout limit.

If you believe that the ETL client is executing as expected but needs a longer request timeout period, then you
can try increasing the request timeout setting. Use the Dgraph --net-timeout flag to set the request
timeout to a number that works for the ETL client. You will probably have to experiment with several settings
to find the one that is optimal for your needs.

Oracle® Endeca Server : Data Loading Guide

Chapter 3

Adding New Records

This section describes how to initially load records into the data store, as well as how to ingest additional new
records and managed values.

About primary-key attributes

Adding new records

Initial loading of records

Adding records after the initial load

Loading managed attribute values

About primary-key attributes
A primary key is required in order to add, delete, or modify a record in the data store.

Each record in the data store is uniquely identified by a unique record identifier, which is a combination of a
unique standard attribute and a value that appears only on that record (that is, no other record in the data set
has the same key-value pair that is on this record). This unique standard attribute is called a primary-key
attribute. The primary-key attribute and a value assigned to a record becomes the primary key of the record.
Every record added to the data store must have a primary key.

The primary-key attribute type can be of any supported Dgraph property types. The name of the primary-key
attribute must be in an NCName format.

Typically, you would use the mdex:string or mdex:int types for the primary-key attribute. When you use the
primaryKey element to create the primary-key attribute, the resulting property type will be whatever type is
specified by the record's primary key (which is in the addAssignments element). Note that the primary-key
attribute is created only if it is assigned to a record.

The PDR (Property Description Record) for the primary-key attribute must have this property set:

• mdex-property_IsUnique must be set to true. This means that a value may be assigned to at most one
record.

For example, assume that the name of a primary-key attribute is partID. The value partID=P123 can be
assigned to only one record in the data set and is the primary key for that record. No other record can have
this key-value pair. As a result, this primary key uniquely identifies this record in the data set.

Note: Keep in mind that multiple primary key attributes can exist in the data store. Each record must
have one (and only one) primary key. The Data Ingest Web Service will throw an error if you attempt
to add a second primary-key attribute to a record that already has a primary key.

Oracle® Endeca Server : Data Loading Guide Version 7.4.0 • September 2012

Adding New Records 19

Using the primaryKey element

When adding a record, the primary-key attribute (that will be assigned on the record) must already exist in the
data store or (if it does not exist) must be specified in the add-records request with the primaryKey element.
This example shows the primaryKeys section of a request:

<ingest:ingestRecords
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<ingest:primaryKeys>
<ingest:primaryKey name="partID"/>

</ingest:primaryKeys>
<ingest:addAssignments>

<mdex:record>
<partID type="mdex:string">P123</partID>
<modelNum type="mdex:int">2562</modelNum>

</mdex:record>
</ingest:addAssignments>

</ingest:ingestRecords>

Version 7.4.0 • September 2012

The example creates one primary-key attribute (partID), which is used to create a record whose primary key is
partID=P123.

Default values for primary-key attributes

If you specify a non-existent attribute as the primary key, the standard attribute is automatically created by the
Data Ingest Web Service. The PDR for the attribute will use the system default settings, which (unless they
have been changed by the data developer) are:

PDR property Default setting

mdex-property_Key Set to the name specified in the request.

mdex-property_Type Set to the Dgraph property type specified in the
request. If no property type was specified, defaults to
an mdex:string type.

mdex-property_IsPropertyValueSearchable true (the attribute will be enabled for value search)

mdex-property_IsSingleAssign true (a record may have at most one value for the
attribute)

mdex-property_IsTextSearchable false (the attribute will be disabled for record
search)

mdex-property_IsUnique true (a value may be assigned to at most one
record)

mdex-property_TextSearchAllowsWildcards false (wildcard search is disabled for this attribute)

system-navigation_Select single (allows selecting only one refinement from
this attribute)

system-navigation_ShowRecordCounts true (record counts will be shown for a refinement)

Oracle® Endeca Server : Data Loading Guide

Adding New Records 20

PDR property Default setting

system-navigation_Sorting record-count (refinements are sorted in
descending order, by the number of records
available for each refinement)

Adding new records
The addAssignments element of the ingestRecords operation allows you to add new records to the data
store.

The records to be added are considered totally additive. That is, if a record with the same primary key already
exists in the data store, the key-value pair list of the added record will be merged into the existing record. If
attribute values with the same name already exist, then the added key-value pairs will be additional values for
the same attribute (multi-assign).

Note: The addAssignments element is also used to extend (update) existing records. This usage is
described in the following chapter.

ingestRecords request
An add-records request uses the ingestRecords operation with the addAssignments element. The record to
be added must have a primary-key assignment. It can have other key-value pair assignments as needed.

Note: If you submit the ingestRecords request after a Transaction Web Service request that starts
an outer transaction, the request must specify the outer transaction ID. If no outer transactions have
been started, the ID attribute must be omitted in the request.

The basic request format is:

<ingest:ingestRecords
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<ingest:addAssignments>
<mdex:record>

<primaryKeyProp>primaryKeyValue</primaryKeyProp>
<!-- List of other property assignments -->

</mdex:record>
</ingest:addAssignments>

</ingest:ingestRecords>

Version 7.4.0 • September 2012

For example, this request adds one record (with the primary key P123) to the data store.

<ingest:ingestRecords
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<ingest:addAssignments>
<mdex:record>

<partID>P123</partID>
<color type="mdex:string">red</color>
<price type="mdex:double">19.99</price>

</mdex:record>
</ingest:addAssignments>

</ingest:ingestRecords>

Oracle® Endeca Server : Data Loading Guide

Adding New Records 21

The primary key of the record is the partID primary-key attribute (which in this case must already exist in the
data store of the Oracle Endeca Server). The request also creates the color and price attributes, which
previously did not exist in the data store.

Success response
An ingestRecordsResponse for a successful add-records request looks like this example:

<ingest:ingestRecordsResponse
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0">

<ingest:numPropertiesCreated>2</ingest:numPropertiesCreated>
<ingest:numRecordsAffected>1</ingest:numRecordsAffected>
<ingest:numRecordsDeleted>0</ingest:numRecordsDeleted>

</ingest:ingestRecordsResponse>

Version 7.4.0 • September 2012

The sample response shows that one record was created and that two attributes (the color and price
attributes) were also created. The partID attribute was not created because it already existed in the data
store.

Failure response
On failure, a SOAP fault is returned. The ingestFault and errorDetail elements should contain the error
that caused the failure.

For example, assume that one of the record assignments contained a mismatched attribute element that
looked like this:

<partNum type="mdex:int">24869</price>

The errorDetail element would return an error similar to this:

'request' cannot be parsed as XML.
Reason: Unable to fetch resource:Expected end of tag 'partNum'

In this example, the reason for the error is that the </partNum> ending tag was not found (because
</price> was mistakenly used instead).

State of the data ingest process on failure

The Data Ingest Web Service uses an all-or-nothing insertion strategy for each batch of records. This means
that if at least one record in a batch is considered invalid by the Dgraph process of the Oracle Endeca Server,
then all of the records are rejected. For example, if a batch of 1000 records contains 999 valid records and 1
invalid record, then the 999 valid records (and the invalid record) are not loaded into the data store.

If the data ingest process is interrupted (for example, by the ETL client or the Dgraph process crashing), then
the current batch (i.e., the batch that was being processed when the interruption occurred) is not loaded into
the data store. However, all previous valid batches have been loaded into the data store. For example, if 5000
batches are to be loaded and an interruption occurs during batch 3500, then batch 3500 is not loaded into the
data store, but the previous 3499 batches will be present in the data store.

Standard attribute assignments and creations

When adding standard attributes, the operation works as follows for the new attribute (i.e., the attribute to be
added):

• If the new attribute already exists in the data store but with a different type, an error is thrown and the new
attribute is not added.

Oracle® Endeca Server : Data Loading Guide

Adding New Records 22

• If the new attribute already exists in the data store and is of the same type, no error is thrown and nothing
is done.

Standard attribute names must use an NCName format. The standard attribute name is used as the element
name for the assignment, in this format:

<propertyName type="propertyType">property value</propertyName>

Version 7.4.0 • September 2012

For example, assigning a standard attribute named ItemID would look like this:

<ItemID type="mdex:int">247</ItemID>

Standard attributes are created as needed when non-existent attributes are specified for a record. The PDR
for the attribute will use the system default settings, which is explained in Default values for new attributes in
the data store on page 15. Note that you cannot disable this automatic creation of attributes.

Initial loading of records
The use case for the initial load of records assumes that you are loading records into an empty data store that
has been created in the Oracle Endeca Server.

The initial data load is performed via one or more invocations of the Data Ingest Web Service ingestRecords

operation specifying one or more mdex:record elements.

The following actions take place during the initial load of records:

• All of your source records are loaded into the data store.

• Appropriate primary-key attributes are created by using the primaryKey element in the request. (This is
because the initially created data store contains no primary-key attributes and they must be created.)

The request for an initial load should use one or more primaryKey elements to create the primary-key
attributes. An example of a full request is:

<ingest:ingestRecords
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<ingest:primaryKeys>
<ingest:primaryKey name="partID"/>
<ingest:primaryKey name="supplierID"/>

</ingest:primaryKeys>
<ingest:addAssignments>

<mdex:record>
<partID type="mdex:string">P123</partID>
<modelNum type="mdex:int">2562</modelNum>

</mdex:record>
<mdex:record>

<supplierID type="mdex:string">S456</supplierID>
<location type="mdex:geocode">42.365615 -71.075647</location>

</mdex:record>
</ingest:addAssignments>

</ingest:ingestRecords>

The request first creates the partID and supplierID primary-key attributes, and then adds two new
records to the data store. The primary key of the first record is partID=P123 while supplierID=S456 is the
primary key of the second record. The request also creates two standard attributes (modelNum and
location) because they do not exist in the data store.

Note: If you submit the ingestRecords request after a Transaction Web Service request that starts
an outer transaction, the request must specify the outer transaction ID. If no outer transactions have
been started, the ID attribute must be omitted in the request.

Oracle® Endeca Server : Data Loading Guide

Adding New Records 23

To load records into an empty data store:

1. Use the create-ds command of the Oracle Endeca Server to create an instance of the data store
and start the Dgraph process.

2. Create an ingest:ingestRecords request, similar to the example above, and send the request to the
Data Ingest Web Service.
The request is typically created and managed by a ETL client.

3. After the request is made, check the ingestRecordsResponse to determine if the request transaction
was successful.

A successful ingestRecordsResponse returned from the above sample request should look like this:

<ingest:ingestRecordsResponse xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0">
<ingest:numPropertiesCreated>4</ingest:numPropertiesCreated>
<ingest:numRecordsAffected>2</ingest:numRecordsAffected>
<ingest:numRecordsDeleted>0</ingest:numRecordsDeleted>

</ingest:ingestRecordsResponse>

Version 7.4.0 • September 2012

Adding records after the initial load
You can add more records to the data store at any time after the initial loading of records is complete.

Adding more records after the data store is created and its Dgraph process is up and running with the initially-
loaded record set is very similar to the initial-load scenario, which means:

• You use the ingestRecords operation with the addAssignments element and one or more mdex:record

elements.

• If you are adding new records with new primary keys, you must use the primaryKey element in the
request. Otherwise, do not use this element if the new records use an existing primary-key attribute.

• As with an initial load operation, standard attributes are created as needed when non-existent attributes
are specified for a new record. The PDR for the standard attribute will use the system default settings.

• If a standard attribute is configured as multi-assign, a record can have multiple assignments of that
attribute.

• You can add multiple records with the same request. You can also update other, existing records with the
same request.

In addition, the request can contain deleteRecords elements to delete records.

New record request
The format of the ingestRecords request to add new records is the same as documented in the "Adding new
records" topic in this section.

Note: If you submit the ingestRecords request after a Transaction Web Service request that starts
an outer transaction, the request must specify the outer transaction ID. If no outer transactions have
been started, the ID attribute must be omitted in the request.

For example, this request adds two records to the data store:

<ingest:ingestRecords
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

Oracle® Endeca Server : Data Loading Guide

Adding New Records 24

<ingest:addAssignments>
<mdex:record>

<partID>P247</partID>
<color>blue</color>
<weight>3</weight>
<price>19.99</price>

</mdex:record>
<mdex:record>

<supplierID>S394</supplierID>
<company>Acme Inc.</company>
<phone>1-555-123-4567</phone>

</mdex:record>
</ingest:addAssignments>

</ingest:ingestRecords>

Version 7.4.0 • September 2012

Note that none of the key-value assignments specify a Dgraph property type. This is because all the attributes
already exist in the data store and therefore do not need to be created. The type of the assignment property
value must match the type of the attribute.

Loading managed attribute values
The ingestDimensionValues operation allows you to load managed values into the data store.

Within the ingestDimensionValues structure, the ingestDimensionValue element specifies the managed
attribute to which each managed value belongs. If the managed attribute does not exist in the data store, the
service automatically creates the managed attribute. For the default values of the managed attribute's PDR
and DDR, see Default values for new attributes in the data store on page 15.

You can use the ingestDimensionValues operation to load an externally managed taxonomy (EMT) into the
data store. When loaded, externally managed taxonomies are added as managed attributes and managed
values.

ingestDimensionValues request
An ingestDimensionValues operation request uses this format:

<ingest:ingestDimensionValues
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<!--Zero or more repetitions:-->
<ingest:dimensionValue dimension="dimName" displayName="dimValName"

parentSpec="pSpec" spec="dimValId">
<!--Zero or more repetitions:-->
<ingest:synonym>synName</ingest:synonym>
<!--Optional:-->
<ingest:properties>

<!--Zero or more repetitions:-->
<propName type="mdex:string">propValue</propName>

</ingest:properties>
</ingest:dimensionValue>

</ingest:ingestDimensionValues>

Oracle® Endeca Server : Data Loading Guide

Adding New Records 25

Each DimensionValue element defines one managed value. The meanings of the attributes and sub-elements
are:

Element/Attribute Purpose

dimension The name of the managed attribute to which the managed value belongs.
The name must use the NCName format.

displayName The name for the managed value.

parentSpec Specifies the parent ID (managed attribute spec) for this managed value, If
this is a root managed value, use a forward slash (/) as the ID. If this is a
child managed value, specify the unique ID of the parent managed value.

spec A unique string identifier for the managed value. It is the responsibility of the
client to provide the identifier for the request.

synonym Optionally defines the name of a synonym. You can add synonyms to a
managed value so that users can search for other text strings and still get the
same records as a search for the original managed value name. Synonyms
can be added to both root and child managed values.

properties Optionally defines a property for a managed value. Managed value properties
provide descriptive information about a given managed value and are
intended to be used for display purposes by the application.

The following example creates the Component managed attribute and adds three managed values (Derailleur,
Tire, and Michelin) to it:

<ingest:ingestDimensionValues
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<ingest:dimensionValue
dimension="Component"
displayName="Derailleur"
parentSpec="/"
spec="22">

<ingest:synonym>Chain</ingest:synonym>
<ingest:synonym>Gear</ingest:synonym>

</ingest:dimensionValue>
<ingest:dimensionValue

dimension="Component"
displayName="Tire"
parentSpec="/"
spec="47">

<ingest:properties>
<myStrProp type="mdex:string">source:CAS</myStrProp>

</ingest:properties>
</ingest:dimensionValue>
<ingest:dimensionValue

dimension="Component"
displayName="Michelin"
parentSpec="47"
spec="35" />

</ingest:ingestDimensionValues>

Version 7.4.0 • September 2012

In the example, the Derailleur and Tire managed values are at the root of the managed attribute, while the
Michelin managed value is a child of the Tire managed value. Note also that two synonyms were created for

Oracle® Endeca Server : Data Loading Guide

Adding New Records 26

the Derailleur managed value and a string property (named myStrProp) was created for the Tire managed
values.

ingestDimensionValuesResponse
An ingestDimensionValuesResponse for a successful operation would look like this example:

<ingest:ingestDimensionValuesResponse
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0">

<ingest:numDimensionsCreated>1</ingest:numDimensionsCreated>
<ingest:numDimensionValuesCreated>3</ingest:numDimensionValuesCreated>

</ingest:ingestDimensionValuesResponse>

Version 7.4.0 • September 2012

In the sample response, the numDimensionsCreated element shows that one managed attribute was created,
while the numDimensionValuesCreated element shows that three managed values were created.

Failure response
On failure, a SOAP fault is returned. The ingest:ingestFault and ingest:errorDetail elements
should contain the error that caused the failure.

For example, assume that the following request was made to create the Saddle child managed value:

<ingest:ingestDimensionValues>
<ingest:dimensionValue dimension="Component" displayName="Saddle"

parentSpec="58" spec="39" />
</ingest:ingestDimensionValues>

The ingest:errorDetail element would return an error similar to this:

<soapenv:Fault>
<faultcode>soapenv:Client</faultcode>
<faultstring>Error applying updates: Dimension value put refers to parent spec "58",

which does not exist in dimension "Component"
</faultstring>
<detail>

<ingest:ingestFault xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0">
<ingest:errorDetail>Error applying updates: Dimension value put refers to

parent spec "58", which does not exist in dimension "Component"
</ingest:errorDetail>

</ingest:ingestFault>
</detail>

</soapenv:Fault>

In this example, the reason for the error is that the request refers to a non-existent parent managed value (58
in the example).

Oracle® Endeca Server : Data Loading Guide

Chapter 4

Updating Records

This section describes how you can incrementally modify the data store by updating and deleting records.

About updates

Adding key-value assignments

Removing record assignments

Deleting records

About updates
The ingestRecords operation lets you incrementally update the data store running in the Oracle Endeca
Server, including adding additional records.

Using the Data Ingest Web Service, you can perform the following types of incremental updates:

• Add a brand-new record to the data set.

• Update an existing record by adding standard attribute and/or managed values.

• Update an existing record by removing standard attributes and/or managed values.

How updates are applied

The records to be added are considered totally additive. That is, if a record with the same primary key already
exists in the data store, the key-value pair list of the added record will be merged with the existing record.

If a standard attribute with the same name already exists (but has a different assigned value), then the added
attribute will be an additional value for the same attribute (multi-assign). For example, if the existing record has
one standard attribute named color with a value of red and the request adds a color standard attribute
with a value of blue, then the resulting record will have two color attributes.

Keep in mind, however, that you cannot add a second value to a single-assign attribute. (That is, a standard
attribute whose PDR has the mdex-property_IsSingleAssign set to true.) In the color example, if color
were a single-assign attribute and the record already had one color assignment, then an attempt to add a
second color assignment would fail.

When adding standard attributes, the operation works as follows for the new standard attribute (i.e., the
standard attribute to be added):

• If the new standard attribute already exists in the data store but with a different type, an error is thrown
and the new standard attribute is not added.

• If the new standard attribute already exists in the data store and is of the same type, no error is thrown
and nothing is done.

Oracle® Endeca Server : Data Loading Guide Version 7.4.0 • September 2012

Updating Records 28

• If the new standard attribute is a primary-key attribute and a managed attribute already exists with the
same name, an error is thrown and the new standard attribute is not added.

Note that updating a record can cause it to change place in the default order. That is, if you have records
ordered A, B, C, D, and you update record B, records A, C, and D remain ordered. However, record B may
move as a result of the update, which means the resulting order might end up as B,A,C,D or A,C,B,D or
another order.

Order of update operations
An ingestRecords request can contain all four types of updates. In this case, the order of processing is:

1. deleteRecords requests are processed first.

2. wildcardDeletes requests are processed second.

3. deleteAssignments requests are processed third.

4. addAssignments requests are processed last.

If a record is included in the deleteRecords element and is also included in one or more of the other
elements, then the record is deleted and added again in the same transaction.

If a record attribute or attribute assignment is specified in the wildcardDeletes or deleteAssignments list
and is specified again in the addAssignments list, then the attribute assignment is deleted and added again in
the same transaction.

If identical records, standard attributes or assignments are specified in any of the elements, the redundant
entries are ignored.

Affected records with update operations
The numRecordsAffected element in the ingestRecordsResponse lists how many records were affected (i.e.,
modified) by an ingestRecords operation.

However, it is possible that an affected record may not actually be changed by the operation. Any operation
that results in the output record being the same as the input record will mark the record as affected but will
leave it unchanged. These types of unaffected operations are adding an assignment that already exists,
deleting an assignment that does not exist, performing a wildcard delete on a record property that has no
assignments, and deleting an assignment and then adding the same assignment.

Adding key-value assignments
Records in the data store can be updated with new assignments for standard attributes and managed values.

The ingestRecords operation, when used with the addAssignments element, lets you update existing records
in the data store by adding standard attribute values and/or managed values. The element can also create a
standard or managed attribute if the attribute to be added does not exist. In this case, it is added with the
defaults listed in Default values for new attributes in the data store on page 15.

Because the Dgraph process of the Oracle Endeca Server performs type-checking when adding standard
attributes, keep the following in mind:

• When adding a value for a pre-existing standard attribute, make sure that the new value is of the proper
type. An error will occur for type mismatches (for example, if you attempt to assign the string "red" to an
integer standard attribute).

Oracle® Endeca Server : Data Loading Guide Version 7.4.0 • September 2012

Updating Records 29

• When creating and adding a new standard attribute, you should specify the Dgraph process property type.

• Any standard attribute that is not specifically typed will be treated by default as a string type.

You can assign multiple values from a given standard attribute only if the attribute is configured as a multi-
assign standard attribute. That means that the PDR for the standard attribute has the mdex-

property_IsSingleAssign property set to true. If the addAssignments list attempts to assign multiple
values to a standard attribute that does not accept multiple values, an error is signaled.

Managed values can be added to records even if the managed attribute to which they belong does not exist in
the data store. In this case, the Data Ingest Web Service automatically creates the managed attribute.

addAssignments request
You use the addAssignments element in a request to add key-value pairs to an existing record. The request
must specify the primary key of the record to be updated, using this request format:

<ingest:ingestRecords
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<ingest:addAssignments>
<mdex:record>

<primaryKeyProp>keyValue</primaryKeyProp>
<propToAdd>keyValue</propToAdd>
<!-- Other property assignments -->

</mdex:record>
</ingest:ingest:addAssignments>

</ingest:ingestRecords>

Version 7.4.0 • September 2012

For example, this request updates a record (with the primary key P123) with three standard attributes (color,
price, and numInStock) and one managed value (the managed value with the managed value spec of 4 in the
Style managed attribute):

<ingest:ingestRecords
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<ingest:addAssignments>
<mdex:record>

<partID>P123</partID>
<color>yellow</color>
<price>18.99</price>
<numInStock type="mdex:int">10</numInStock>
<Style>4</Style>

</mdex:record>
</ingest:addAssignments>

</ingest:ingestRecords>

Note that the Dgraph process property type of the numInStock standard attribute is specified, because the
standard attribute does not exist and therefore will be created as part of the request. The other standard
attributes and the Style managed attribute already exist in the data store.

Note: If you submit the ingestRecords request after a Transaction Web Service request that starts
an outer transaction, the request must specify the outer transaction ID. If no outer transactions have
been started, the ID attribute must be omitted in the request.

Oracle® Endeca Server : Data Loading Guide

Updating Records 30

Removing record assignments
You can update records in a running data store by removing standard attribute and managed value
assignments.

The ingestRecords operation has two elements that delete assignments from records in the data store:

• deleteAssignments

• wildcardDeletes

Both elements can delete standard attribute assignments as well as managed value assignments. Note that
the standard attributes or managed values are not removed from the data store; they are removed only from
the specified records.

You can use both elements in the same ingestRecords operation. In this case, the wildcardDeletes request
is processed before the deleteAssignments request.

Both elements are case sensitive, including the standard attribute and managed value names and their
assignment values.

Note: If you submit the ingestRecords request after a Transaction Web Service request that starts
an transaction, the request must specify the outer transaction ID. If no outer transactions have been
started, the ID attribute must be omitted in the request.

deleteAssignments request
The deleteAssignments element of the ingestRecords operation removes individual standard attribute
and/or managed value assignments from Endeca records, but does not otherwise affect the record. You can
remove one or more assignments in the same request.

The request must specify the primary key of the record to be updated. The deleteAssignments request
format is:

<ingest:ingestRecords
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<ingest:deleteAssignments>
<mdex:record>

<primaryKeyProp>keyValue</primaryKeyProp>
<propName>keyValueToRemove</propName>
<!-- Other property or dimension value assignments to remove -->

</mdex:record>
</ingest:deleteAssignments>

</ingest:ingestRecords>

Version 7.4.0 • September 2012

To remove an individual assignment, specify the key name (i.e., standard attribute name or managed value
name) and its value, as in this example:

<ingest:ingestRecords
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<ingest:deleteAssignments>
<mdex:record>

<partID>P123</partID>
<color>red</color>
<color>blue</color>
<Component>crankset</Component>

</mdex:record>
</ingest:deleteAssignments>

</ingest:ingestRecords>

Oracle® Endeca Server : Data Loading Guide

Updating Records 31

The example removes two values ("red" and "blue") of the color standard attribute assignment and one
managed value ("crankset") from the Component managed value assignment.

A successful ingestRecordsResponse returned from the above sample request should look like this:

<ingest:ingestRecordsResponse
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0">

<ingest:numPropertiesCreated>0</ingest:numPropertiesCreated>
<ingest:numRecordsAffected>1</ingest:numRecordsAffected>
<ingest:numRecordsDeleted>0</ingest:numRecordsDeleted>

</ingest:ingestRecordsResponse>

Version 7.4.0 • September 2012

The numRecordsAffected element in the response shows that one record was successfully modified.

wildcardDeletes request
The wildcardDeletes element of the ingestRecords operation removes all assignments from the same
standard attribute or managed value at once.

The request must specify the primary key of the record to be updated, using this request format:

<ingest:ingestRecords
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<ingest:wildcardDeletes>
<mdex:record>

<primaryKeyProp>keyValue</primaryKeyProp>
<propToRemove />
<!-- Other property or dimension value assignments to remove -->

</mdex:record>
</ingest:wildcardDeletes>

</ingest:ingestRecords>

Note that unlike the deleteAssignments usage, the wildcardDeletes element requires that the
propToRemove specification cannot have an assignment value. Only the name of the standard attribute or
managed value can be specified.

To remove all assignments on the record from a specific standard attribute or managed value, use a single tag
with the attribute, as in this example that removes all assignments from the color standard attribute:

<ingest:ingestRecords
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<ingest:wildcardDeletes>
<mdex:record>

<partID>P123</partID>
<color/>
<sizes/>

</mdex:record>
</ingest:wildcardDeletes>

</ingest:ingestRecords>

In the example, if record P123 had six assignments from the color standard attribute, then all six
assignments would be removed; if it had three assignments from the sizes standard attribute, all three would
be removed.

If successful, the operation returns the same ingestRecordsResponse as a deleteAssignments request.

Oracle® Endeca Server : Data Loading Guide

Updating Records 32

Deleting records
The Data Ingest Web Service lets you delete records from a running data store.

You use the deleteRecords element in a request to delete a record. The request must specify the primary
key of the record to be deleted, using this request format:

<ingest:ingestRecords>
<ingest:deleteRecords>

<mdex:record>
<primaryKeyProp>keyValue</primaryKeyProp>

</mdex:record>
</ingest:deleteRecords>

</ingest:ingestRecords>

Version 7.4.0 • September 2012

Multiple records can be deleted in the same request. Each record must be specified within an mdex:record
element.

If you submit the ingestRecords request after a Transaction Web Service request that starts an outer
transaction, the request must specify the outer transaction ID. If no outer transactions have been started, the
ID attribute must be omitted in the request.

To delete a record from the data store:

1. Make certain that both the data store's Dgraph process and the Data Ingest service are running.

2. Create a deleteRecords request, similar to the example below that deletes two records, and send
the request to the Data Ingest service.

<ingest:ingestRecords>
<ingest:deleteRecords>

<mdex:record>
<partID>PK-123</partID>

</mdex:record>
<mdex:record>

<supplierID>SV-789</supplierID>
</mdex:record>

</ingest:deleteRecords>
</ingest:ingestRecords>

3. After the request is made, check the ingestRecordsResponse to determine if the request
transaction was successful.

A successful ingestRecordsResponse returned from the above sample request should look like this:

<ingest:ingestRecordsResponse
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0">

<ingest:numPropertiesCreated>0</ingest:numPropertiesCreated>
<ingest:numRecordsAffected>0</ingest:numRecordsAffected>
<ingest:numRecordsDeleted>2</ingest:numRecordsDeleted>

</ingest:ingestRecordsResponse>

Note that when specifying an invalid or missing primary key record, the deleteRecords operation will not
fail, but instead will ignore the record. In this case, the numRecordsDeleted element in the response will
have a value of 0 (zero) and an entry (similar to the following example) is made in the Dgraph log:

Request: - fn:trace(, delete-records.xq:
A record with specifier (partID = SV-352) does not exist.)

Oracle® Endeca Server : Data Loading Guide

Chapter 5

Resetting the Data Store

The clearMdex and provisionMdex operations of the Data Ingest Web Service are intended to be used
together for removing the data and configuration from the Data Store while keeping the Dgraph process of the
data store running on the Oracle Endeca Server. Running these operations implies that you have exported the
configuration and will import it, after clearing and provisioning the data store.

Note: Clearing the data store without provisioning it again leaves the data store in an invalid state,
preventing all further operations, including importing the configuration.

In a typical scenario, clearMdex is run as part of updating an existing data store without having to stop the
Dgraph process or remove the configuration. This scenario implies that you export your configuration, remove
all data and configuration records with clearMdex, provision the data store with provisionMdex, and import
the configuration.

It is useful to note the difference between the clearMdex operation and the deleteRecords element in the
ingestRecords operation of the Data Ingest Web Service (since both of these options let you delete
records):

• deleteRecords deletes one or more specific data records.

• clearMdex deletes all data records and schema records from the data store.

While you can send these operations directly to the data store, both of these operations are utilized by the
Reset Data Store connector in Integrator. The connector is used for removing the records and the
configuration from the data store and provisioning the data store while keeping the Dgraph process for the
data store running. For more information on the connector, see the Oracle Endeca Information Discovery
Integrator Components Guide.

It is recommended to run clearMdex and provisionMdex in conjunction, using the Reset Data Store
connector in Integrator. In addition, it is recommended to run these operations within an outer transaction. You
can start an outer transaction through the Transaction RunGraph connector in Integrator.

Removing all records from the data store

Provisioning the data store

Removing all records from the data store
Use the clearMdex operation in the Data Ingest Web Service to remove all data records and also the
schema records that define the data store configuration).

Before using this operation, ensure that you export the configuration. Also, it is assumed that you intend to
remove all data records by using this operation (for example, with the intent to populate the data store with a
new set of records).

Oracle® Endeca Server : Data Loading Guide Version 7.4.0 • September 2012

Resetting the Data Store 34

To remove all data and schema records, use the clearMdex element in a Data Ingest Web Service request.
The request should use this format:

<ingest:clearMdex/>

Version 7.4.0 • September 2012

Note: If you submit this request after a Transaction Web Service request that starts an outer
transaction, the clearMdex request must specify the outer transaction ID element as the first element
in the request. If no transactions have been started, the ID element must be omitted or its value
should be empty.

To remove all records from the Oracle Endeca Server:

1. Create a clearMdex request, similar to the example below, and send the request to the Data Ingest
Web Service:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0">
<soapenv:Header/>

<soapenv:Body>
<ingest:clearMdex>

<ingest:OuterTransactionId>txId</ingest:OuterTransactionId>
</ingest:clearMdex>

</soapenv:Body>
</soapenv:Envelope>

This request removes the data records and the schema records in the data store.

A successful clearMdexResponse returned from the above sample request should return the number of
records deleted, and look like this:

<ingest:clearMdexResponse>
<ingest:OuterTransactionId>txId</ingest:OuterTransactionId>
<ingest:numRecordsDeleted>175</ingest:numRecordsDeleted>

</ingest:clearMdexResponse>

Note that if you specify an outer transaction ID that does not match the ID of the currently running transaction,
the clearMdex operation fails, notifying you of the transaction ID that is in progress. In addition, if no outer
transactions have been started with the Transaction Web Service, but you still specify an element with the
value for an ID, this request also fails.

After you have removed all the data and schema records from the data store, you want to provision it again
with the default configuration settings. To provision the data store, run provisionMdex.

Note: Clearing the data store without provisioning it again leaves the data store in an invalid state,
preventing all further operations, including importing the configuration.

Provisioning the data store
To provision the data store, use the provisionMdex operation in the Data Ingest Web Service. This
operation creates the primordial records (such as PDRs and DDRs), and resets these records to their default
values.

It is assumed that you run this operation after running clearMdex. It is also assumed that you have
previously exported your configuration defined in the schema records and will import it after you run the
provisionMdex operation.

Oracle® Endeca Server : Data Loading Guide

Resetting the Data Store 35

To provision the data store and create PDRs and DDRs with their default values, use the provisionMdex
element in a Data Ingest Web Service request. The request should use this format:

<ingest:provisionMdex/>

Version 7.4.0 • September 2012

Note: If you submit the provision request after a Transaction Web Service request that starts a an
outer transaction, the provision request must specify the outer transaction ID as the first element. If no
outer transactions have been started, the ID element must be omitted in the request, or its value must
be empty.

To provision the data store:

1. Create a provisionMdex request, similar to the example below and send the request to the Data
Ingest Web Service:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ingest="http://www.endeca.com/MDEX/ingest/1/0">
<soapenv:Header/>

<soapenv:Body>
<ingest:provisionMdex>

<ingest:OuterTransactionId>txId</ingest:OuterTransactionId>
</ingest:provisionMdex>

</soapenv:Body>
</soapenv:Envelope>

This request adds the primordial schema records in the data store and sets these schema records to
their defaults.

A successful provisionMdexResponse returned from the above sample request should look similar to this
example:

<ingest:provisionMdexResponse>
<ingest:OuterTransactionId>txId</ingest:OuterTransactionId>
<ingest:numPropertiesCreated>2</ingest:numPropertiesCreated>
<ingest:numRecordsAffected>2</ingest:numRecordsAffected>
<ingest:numRecordsDeleted>0</ingest:numRecordsDeleted>

</ingest:provisionMdexResponse>

After you have run the provisionMdex operation, you can import your configuration and run
admin/<DataStore>?op=updateaspell to update the spelling dictionary.

If you use Reset Data Store for running clearMDEX and provisionMDEX operations, then this connector
also updates the spelling dictionary.

Oracle® Endeca Server : Data Loading Guide

Chapter 6

Bulk Load API

This chapter describes how to use the Bulk Load API.

About the Bulk Load API

Bulk Load sample program

Records, assignments, and data types

Sending records to the data store

About the Bulk Load API
Data records can be added or replaced via the Dgraph's Bulk Load Interface.

Besides the Data Ingest API, the Bulk Load Interface is available to ingest records into an Endeca data store.
The Bulk Load API exists in the form of a collection of Java classes in a single endeca_bulk_load.jar file,
which is shipped in the Endeca Server's apis directory. The Javadoc for the Bulk Load API is located in the
apis/doc/bulk_load directory.

Bulk Load characteristics

The characteristics of the interface are:

• The API can load data source records only. It cannot load PDRs, DDRs, managed attribute values, the
GCR, or the Dgraph configuration documents.

• Existing records in the Endeca data store are replaced, not updated. That is, the replace operation is not
additive. Therefore, the key/value pair list of the incoming record will completely replace the key/value pair
list of the existing record.

• A primary-key attribute (also called the record spec) is required for each record to be added or replaced.

• If an assignment is for a standard attribute (property) that does not exist in the Endeca data store, the new
standard attribute is automatically created with system default values for the PDR. For these default
values, see Default values for new attributes in the data store on page 15.

The interface rejects non-XML 1.0 characters upon ingest. That is, a valid character for ingest must be a
character according to production 2 of the XML 1.0 specification. If an invalid character is detected, an
exception is thrown with this error message:

Character <c> is not legal in XML 1.0

Version 7.4.0 • September 2012

The record with the invalid character is rejected.

Oracle® Endeca Server : Data Loading Guide

Bulk Load API 37

Post-ingest behavior

There are two operations that must occur at some time after each bulk-load ingest:

• A merge of the ingested records to a single generation, which re-indexes the database to optimize query
performance.

• A rebuild of the aspell spelling dictionary, so that the newly-added data will be available for spelling DYM
and autocorrect.

The BulkIngester constructor's doFinalMerge parameter lets you set when the post-ingest merge occurs:

• If set to true, the merge is forced immediately after ingest. This behavior is intended to maximize query
performance at the end of a single, large, homogenous data update that would occur during a regularly
scheduled update window.

• If set to false, a merge is not forced at the end of an update, but instead relies on the regular
background merge process to keep the generations in order over time. This behavior is more suitable for
parallel heterogeneous data updates where low overall update latency is paramount.

The BulkIngester constructor's doUpdateDictionary parameter lets you specify when the aspell spelling
dictionary is updated:

• A setting of true means a dictionary update is forced immediately after the ingest.

• A setting of false means the dictionary update is disabled. You can later update the dictionary via the
updateaspell administrative operation, which is described in the Oracle Endeca Server Administrator's
Guide.

If you are doing multiple, consecutive bulk-load operations, you can set both properties to false on all except
the last one.

Bulk Load sample program
The following sample program will be used to illustrate the Bulk Load classes and methods.

class BulkLoadDemo {

Record makeProductRecord(String name, int size, double price) {

Record.Builder recBuilder = Record.newBuilder();

Assignment.Builder assgtBuilder = Assignment.newBuilder();
assgtBuilder.setName("Name");
assgtBuilder.setStringValue(name);
assgtBuilder.setDataType(Assignment.DataType.STRING);
Assignment nameAssgt = assgtBuilder.build();
recBuilder.setSpec(nameAssgt);

assgtBuilder.clear();
assgtBuilder.setName("Size");
assgtBuilder.setIntValue(size);
assgtBuilder.setDataType(Assignment.DataType.INT);
Assignment sizeAssgt = assgtBuilder.build();
recBuilder.addAssignments(sizeAssgt);

assgtBuilder.clear();
assgtBuilder.setName("Price");
assgtBuilder.setDoubleValue(price);
assgtBuilder.setDataType(Assignment.DataType.DOUBLE);
Assignment priceAssgt = assgtBuilder.build();
recBuilder.addAssignments(priceAssgt);

Version 7.4.0 • September 2012Oracle® Endeca Server : Data Loading Guide

Bulk Load API 38

Record product = recBuilder.build();

return product;
}

void main(int argc, String[] argv) {

ErrorCallback errorCallback = new ErrorCallback() {
void handleError(String reason, Record reject) {

System.out.println("Record "
+ reject.getSpec().getName()
+ " rejected: " + reason);

}
};

FinishedCallback finishedCallback = new FinishedCallback() {
void handleFinished() {

System.out.println("Finished!");
}

};

AbortCallback abortCallback = new AbortCallback() {
void handleAbort(String reason) {

System.out.println("Aborted: " + reason);
}

};

StatusCallback statusCallback = new StatusCallback() {
void handleStatus(long recordsAdded,

long recordsQueued,
long recordsRejected,
String state) {

System.out.println("Added: " + recordsAdded + "\n"
+ "Queued: " + recordsQueued + "\n"
+ "Rejected: " + recordsRejected + "\n"
+ "State: " + state + "\n");

}
};

BulkIngester ingester("endecaserver.example.com",
1234, // port
false, // useSSL
true, // doFinalMerge
true, // doUpdateDictionary
90000 // timeout in ms
errorCallback,
finishedCallback,
abortCallback,
statusCallback);

Record widget = makeProductRecord("Widget", 12, 99.95);
Record thing = makeProductRecord("Thing", 110, 3.14);

ingester.begin();
ingester.sendRecord(widget);
ingester.requestStatusUpdate();
ingester.sendRecord(thing);
ingester.endIngest();

}
}

Version 7.4.0 • September 2012Oracle® Endeca Server : Data Loading Guide

Bulk Load API 39

Records, assignments, and data types
A Data.Record is the fundamental data type for loading data into an Endeca data store.

Records and assignments

Client programs using the Bulk Load API to load data into an Endeca data store must convert the source data
records from their native format into a Record object. Conceptually, a Record is a named set of key/value
pairs. A key/value pair is a Data.Assignment. The key is a String and the value can be any of the supported
data types listed below.

The name of the Record is also an Assignment, and can therefore also be any of these types; for this reason
it is known as the Spec. The Spec serves as the primary key of the data record and each Record must have
one.

The Spec is set on the Record with the setSpec() method of the Data.Record.Builder class, as shown in
this snippet from the sample program:

Record.Builder recBuilder = Record.newBuilder();

Assignment.Builder assgtBuilder = Assignment.newBuilder();
assgtBuilder.setName("Name");
assgtBuilder.setStringValue(name);
assgtBuilder.setDataType(Assignment.DataType.STRING);
Assignment nameAssgt = assgtBuilder.build();
recBuilder.setSpec(nameAssgt);

Version 7.4.0 • September 2012

Non-Spec key/value assignments are set with the addAssignments() method of the same
Data.Record.Builder class:

assgtBuilder.setName("Price");
assgtBuilder.setDoubleValue(price);
assgtBuilder.setDataType(Assignment.DataType.DOUBLE);
Assignment priceAssgt = assgtBuilder.build();
recBuilder.addAssignments(priceAssgt);

Builders
Data and Record objects are created via an associated Builder type:

• The Data.Record.Builder has set() and clear() methods for the spec and for the Assignment

objects.

• The Data.Assignment.Builder has the same methods for its key and all of the supported data types.

All of the setter functions in the Builder classes return the object they were invoked on, so they can be strung
together. This makes it possible, if desired, to build the entire thing on one line:

Data.Assignment.newBuilder().setName("SKU").setString("AB1234").setDataType(Data.Assignment.DataType.
STRING).build();

Oracle® Endeca Server : Data Loading Guide

Bulk Load API 40

Data types
The Data.Assignment.DataType enum contains entries for each of the data types supported by the Dgraph
process. These correspond to the Assignment.Builder class's setter methods as follows:

Enum DataType Assignment.Builder setter Dgraph data type

BOOLEAN setBoolValue() mdex:boolean

DOUBLE setDoubleValue() mdex:double

DATETIME setStringValue() mdex:dateTime

DURATION setStringValue() mdex:duration

GEOCODE setStringValue() mdex:geocode

INT setInt32Value() mdex:int

INT64 setInt64Value() mdex:long

STRING setStringValue() mdex:string

TIME setStringValue() mdex:time

The setDataType() method tells the Endeca server what the Assignment data type is. For example, if you
call setStringValue("foo") and setDataType(Data.Assignment.DataType.DOUBLE) and include the
resulting Assignment in a Record that you send to the server, the server will attempt to extract the DOUBLE

value and get back nothing. If you do not specify a data type, the Assignment is invalid.

Examples of setting the data types are as follows:

// BOOLEAN example:
assgtBuilder.setBoolValue(false);
assgtBuilder.setDataType(Assignment.DataType.BOOLEAN);

// DOUBLE example:
assgtBuilder.setDoubleValue(99.95);
assgtBuilder.setDataType(Assignment.DataType.DOUBLE);

// DATETIME example:
assgtBuilder.setStringValue("2010-11-18T17:00:00Z");
assgtBuilder.setDataType(Assignment.DataType.DATETIME);

// DURATION example:
assgtBuilder.setStringValue("P429DT1H2M3S");
assgtBuilder.setDataType(Assignment.DataType.DURATION);

// GEOCODE example:
assgtBuilder.setStringValue("42.365615 -71.075647");
assgtBuilder.setDataType(Assignment.DataType.GEOCODE);

// INT example:
assgtBuilder.setInt32Value(128);
assgtBuilder.setDataType(Assignment.DataType.INT);

// INT64 example:
assgtBuilder.setInt64Value(92233720);
assgtBuilder.setDataType(Assignment.DataType.INT64);

Version 7.4.0 • September 2012Oracle® Endeca Server : Data Loading Guide

Bulk Load API 41

// STRING example:
assgtBuilder.setStringValue("Road Bikes");
assgtBuilder.setDataType(Assignment.DataType.STRING);

// TIME example:
assgtBuilder.setStringValue("09:14:52");
assgtBuilder.setDataType(Assignment.DataType.TIME);

Version 7.4.0 • September 2012

Sending records to the data store
The BulkIngester class is the primary entry point for the client-side Bulk Load Interface for loading data into
an Endeca data store.

BulkIngester makes a socket connection to the Endeca data store and spawns a thread to handle replies. Its
sendRecord() method sends the provided record over the wire to the data store.

Clients to this interface must:

1. Define classes that implement the four callback interfaces (ErrorCallback, FinishedCallback,
AbortCallback, and StatusCallback), and perform the appropriate action when their handler methods
are called (which happens in the response thread).

2. Instantiate a BulkIngester object with the appropriate parameters required by the constructor.

3. Call the begin() method to start the response thread. If this is not called, an IOException will be thrown.

4. Call sendRecord() repeatedly to send Record objects to the Endeca data store.

5. When finished sending records, call endIngest() to terminate the response thread and close the socket.

Defining callback interfaces
The BulkIngester constructor requires the four callback interfaces as parameters:

• ErrorCallback handles error conditions. The handleError() method

• FinishedCallback is called when the Dgraph reports that it has finished with the ingestion. No further
records will be accepted without calling begin() again.

• AbortCallback handles abort conditions. An abort condition can happen either in BulkIngester or on the
Dgraph.

• StatusCallback handles status updates, including the number of successfully ingested records and the
number of rejected records.

ErrorCallback is especially useful as it reports the reason that a record was rejected. The sample program
defines this callback as:

ErrorCallback errorCallback = new ErrorCallback() {
void handleError(String reason, Record reject) {

System.out.println("Record "
+ reject.getSpec().getName()
+ " rejected: " + reason);

}
};

Oracle® Endeca Server : Data Loading Guide

Bulk Load API 42

Instantiating a BulkIngester object
The BulkIngester constructor requires ten parameters, in this order:

• host – the name (a String) of the machine on which the Endeca data store is running.

• port – the bulk load port (an int) of the Endeca data store.

• useSSL – a boolean to specify whether to use SSL for the connection.

• doFinalMerge – a boolean that specifies whether a merge is forced immediately after ingest.

• doUpdateDictionary – a boolean that specifies whether the aspell dictionary is updated immediately
after ingest.

• timeout – the timeout in milliseconds (an int) for connecting to the Endeca data store.

• errorCallback – the ErrorCallback object.

• finishedCallback – the FinishedCallback object.

• abortCallback – the AbortCallback object.

• statusCallback – the StatusCallback object.

The sample program constructs the BulkIngester as follows:

BulkIngester ingester("endecaserver.example.com",
1234, // port
false, // useSSL
true, // doFinalMerge
true, // doUpdateDictionary
90000 // timeout in ms
errorCallback,
finishedCallback,
abortCallback,
statusCallback);

Version 7.4.0 • September 2012

Beginning and ending the ingest

After the client program has made a connection to the Endeca data store, the ingest process requires the use
of these BulkIngester methods in this order:

1. The begin() method starts the ingest process.

2. A series of sendRecord() calls actually sends the Record objects to the data store.

3. The endIngest() method terminates the ingest process.

The sample program, which ingests only two records, is coded as follows:

Record widget = makeProductRecord("Widget", 12, 99.95);
Record thing = makeProductRecord("Thing", 110, 3.14);

ingester.begin();
ingester.sendRecord(widget);
ingester.requestStatusUpdate();
ingester.sendRecord(thing);
ingester.endIngest();

Note that the requestStatusUpdate() method is used to retrieve the status of the ingest operation.

Oracle® Endeca Server : Data Loading Guide

Index

int 9A
long 9

adding primordial schema records 34 string 9
assignments time 13

adding with Bulk Load API 39 dimension values
adding with Data Ingest API 28 See managed values
removing 30

double property type 9
duration property type 13B

boolean property type 10 E
Bulk Load API

externally managed taxonomies, loading 24creating records 39
data types 40
overview 36 G
post-ingest behavior 37 geocode property type 10

C I
client stubs, generating 4 incremental updates, performing 27

Ingest Web ServiceD See Data Ingest
Data Ingest initial loading of records 22

adding key-value pairs to records 28 Integrator, about 2adding new records 20
int property type 9deleting all data records and schema

records 34
deleting records 32 K
deleting records and provisioning the data

key-value pairs, adding 28store 33
failure response 21
generating client stubs 4 L
ingestRecords request 20

logging for Data Ingest requests 4initial record loading 22
long property type 9logging 4

overview 1
provisioning the data store 34 M
removing properties 30

managed attributesData Ingest Web Service default values 16list of operations 3 NCName format 16not recommended data store operations 3
managed valuessupported data store operations 3

adding to records 28version 6
loading 24data store supported operations with DIWS 3

dateTime property type 11 N
DDR default values 16

namespaces for data ingest 6deleting records and schema 34
NCName format for attribute names 16Dgraph process property types
network connection timeouts, troubleshooting 17boolean 10

dateTime 11 new records
double 9 adding with Bulk Load API 39
duration 13 adding with Data Ingest API 20
geocode 10
inclusive list of 8

Oracle® Endeca Server : Data Loading Guide Version 7.4.0 • September 2012

Index 44

O S
outer transaction ID 16 standard attributes

default values 15
NCName format 16P primary key 19

PDR default values 15 removing from records 30
rules for creation and assignments 21primary keys, creating 19

string property type 9properties
See standard attributes stub generation tools 4

provisioning the data store 34

T
R time property type 13

records troubleshooting network connection timeouts 17
adding with Data Ingest API 20
creating with Bulk Load API 39 Vdeleting 32
deleting with Data Ingest API 32 version of Data Ingest Web Service 6

records and schema, deleting 34
rules for standard attribute creation 21 W

WSDL file, generating client stubs from 4

Oracle® Endeca Server : Data Loading Guide Version 7.4.0 • September 2012

	Copyright and disclaimer
	Table of Contents
	Preface
	About this guide
	Who should use this guide
	Contacting Oracle Customer Support

	Chapter 1: Introduction
	Overview of the Data Ingest Web Service
	List of operations
	Important usage note
	Data Ingest logging
	Generating client stubs

	Chapter 2: Prerequisite Information
	Version and namespaces for the Data Ingest Web Service
	Property types for Dgraph records
	string property
	numeric properties
	geocode property
	boolean property
	dateTime property
	time property
	duration property

	Default values for new attributes in the data store
	NCName format for attributes in the data store
	Interaction with the Transaction Web Service
	Troubleshooting connection timeouts

	Chapter 3: Adding New Records
	About primary-key attributes
	Adding new records
	Initial loading of records
	Adding records after the initial load
	Loading managed attribute values

	Chapter 4: Updating Records
	About updates
	Adding key-value assignments
	Removing record assignments
	Deleting records

	Chapter 5: Resetting the Data Store
	Removing all records from the data store
	Provisioning the data store

	Chapter 6: Bulk Load API
	About the Bulk Load API
	Bulk Load sample program
	Records, assignments, and data types
	Sending records to the data store

	Index

