
Oracle® Endeca Information Discovery

Studio Developer's Guide

Version 2.4.0 • November 2012



Copyright and disclaimer
Copyright © 2003, 2013, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No
other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including applications that may
create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software
or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.4.0 • November 2012



Table of Contents

Copyright and disclaimer ..........................................................ii

Preface .........................................................................iv
About this guide ................................................................iv
Who should use this guide ........................................................iv
Contacting Oracle Customer Support.................................................iv

Chapter 1: Security Extensions to Studio.............................................1
Security Manager class summary ...................................................1
Creating a new Security Manager....................................................2
Implementing a new Security Manager ................................................3
Using the Security Manager........................................................3

Chapter 2: Managing Data Source State in Studio .....................................4
About the State Manager interface ...................................................4
Creating a new State Manager......................................................5
Implementing a State Manager......................................................5
Using the State Manager ..........................................................7

Chapter 3: Installing and Using the Component SDK...................................8
Software and licensing requirements for component development ............................8
Downloading and configuring the Component SDK .......................................9
Configuring Eclipse for component development .........................................9
Developing a new component .....................................................10

Creating a new component ...................................................10
Importing the project in Eclipse.................................................11
Building and testing your new component.........................................11
Adding and removing components from the WebLogic .ear file .........................12

Modifying the build enhancements to the Component SDK ................................12

Chapter 4: Working with QueryFunction Classes .....................................14
Provided QueryFunction filter classes................................................14
Provided QueryConfig functions ....................................................18
Creating a custom QueryFunction class ..............................................24
Implementing a custom QueryFunction class ..........................................25
Deploying a custom QueryFunction class .............................................25
Adding the custom QueryFunction .jar file to your Eclipse build path .........................26
Obtaining query results ..........................................................26

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.4.0 • November 2012



Preface
Oracle® Endeca Information Discovery Studio is an enterprise data discovery platform for advanced, yet
intuitive, exploration and analysis of complex and varied data.

Information is loaded from disparate source systems and stored in a faceted data model that dynamically
supports changing data. This integrated and enriched data is made available for search, discovery, and
analysis via interactive and configurable applications. Oracle Information Discovery Studio includes a
Provisioning Service that allows you to upload data directly from spreadsheet files.

Oracle Endeca Information Discovery Studio enables an iterative “model-as-you-go” approach that
simultaneously frees IT from the burdens of traditional data modeling and supports the broad exploration and
analysis needs of business users.

About this guide
This guide provides information on extending Studio to use customized versions of the Studio
SecurityManager and StateManager. It also provides information on using Studio's Component SDK.

Who should use this guide
This guide is intended for developers who want to extend Studio.

Contacting Oracle Customer Support
Oracle Customer Support provides registered users with important information regarding Oracle software,
implementation questions, product and solution help, as well as overall news and updates from Oracle.

You can contact Oracle Customer Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.4.0 • November 2012

https://support.oracle.com


Chapter 1

Security Extensions to Studio

You may require more than the default data source role-based security discussed in the Oracle Endeca
Information Discovery Studio User's Guide. If so, you can customize the automated filtering of data from the
Oracle Endeca Server (based on user profile details such as the user's role or group association) by creating
a custom Security Manager.

Security Manager class summary

Creating a new Security Manager

Implementing a new Security Manager

Using the Security Manager

Security Manager class summary
A Security Manager is a concrete class that implements
com.endeca.portal.data.security.MDEXSecurityManager.

Abstract base class com.endeca.portal.data.security.MDEXSecurityManager

Default implementation class com.endeca.portal.data.DefaultMDEXSecurityManager

Description Handles pre-execution query modification based on the user, role, or
group-based security configuration of filters.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.4.0 • November 2012



Security Extensions to Studio 2

Default implementation behavior The default Security Manager implementation uses the following
properties:

• securityEnabled. If the value is not present, then
securityEnabled defaults to false.

• securityFilters. Record filters are the only supported type of
securityFilter.

• rolePermissions

• inheritSecurity. If the data source has a parent, then
inheritSecurity defaults to true. Otherwise, the value defaults
to false.

• parentDataSource

These properties are defined in data source configurations in order to
apply role-based security filters to queries issued to the Endeca Server
backing a given data source.

Users are assigned to Studio roles in the Control Panel. The related
associations are made available to every component throughout the
user's session.

Users who have not yet logged in are automatically assigned the
Guest user role. Any role-based restrictions for the Guest role are also
applied to these users.

For each data source, the Security Manager maintains an internal map
of security filters to always apply to queries issued during that user's
session.

Creating a new Security Manager
The Studio Component SDK includes Windows and Linux batch scripts for creating a new Security Manager.

To create a new Security Manager project:

1. In a terminal, change your directory to endeca-extensions within the Component SDK's root
directory (normally called components).

2. Run one of the following commands:
• On Windows: .\create-mdexsecuritymanager.bat <your-security-manager-name>

• On Linux: ./create-mdexsecuritymanager.sh <your-security-manager-name>

This command creates a your-security-manager-name directory under endeca-extensions.
This directory is an Eclipse project that you can import directly into Eclipse, if you use Eclipse as your
IDE.

This directory also contains a sample implementation that you can use to help understand how the
Security Manager can be used. The sample implementation is essentially identical to the default
implementation of the Security Manager used by Studio.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.4.0 • November 2012



Security Extensions to Studio 3

Implementing a new Security Manager
Your Security Manager must implement the applySecurity method.

There are two versions of the applySecurity method, one of which your Security Manager must implement:

public void applySecurity(PortletRequest request, MDEXState mdexState, Query query) throws
MDEXSecurityException;

Version 2.4.0 • November 2012

The Query class in this signature is com.endeca.portal.data.Query. This class provides a simple wrapper
around an ENEQuery.

Using the Security Manager
In order to use your Security Manager, you must specify a new class for Studio to use in place of the default
Security Manager implementation.

The your-security-manager-name directory you created contains an ant build file. The ant deploy task
places a .jar file containing your Security Manager into the portal/tomcat-<version>/lib/ext directory.

To configure Studio to use your new class:

1. From the Studio menu, select Control Panel.

2. In the Information Discovery section of the Control Panel menu, select Framework Settings.

3. Change the value of the df.mdexSecurityManager property to the full name of your class, similar to
following example:

df.mdexSecurityManager = com.endeca.portal.extensions.YourSecurityManagerClass

4. Click Update Settings.

5. Restart Studio so the change can take effect. You may also need to clear any cached user sessions.

Oracle® Endeca Information Discovery: Studio Developer's Guide



Chapter 2

Managing Data Source State in Studio

Studio allows you to define your own interaction model for data sources by creating a custom State Manager.
For information on the default interaction model between related data sources, see the Oracle Endeca
Information Discovery Studio User's Guide.

About the State Manager interface

Creating a new State Manager

Implementing a State Manager

Using the State Manager

About the State Manager interface
The State Manager controls how data sources interact during updates and query construction.

Interface (required) com.endeca.portal.data.MDEXStateManager

Abstract base class (optional) com.endeca.portal.data.AbstractMDEXStateManager

Default implementation class com.endeca.portal.data.DefaultMDEXStateManager

Description Handles:

• Updating a data source with a new query state (called from
DataSource.setQueryState(QueryState newState))

• Retrieving the current query state from a data source (called from
DataSource.getQueryState())

• Resetting a data source's query state to its initial state (called from
DataSource.resetQueryState())

• Retrieving a copy of the data source's initial state without resetting
the data source (called from
DataSource.getInitialQueryState())

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.4.0 • November 2012



Managing Data Source State in Studio 5

Default implementation behavior The default State Manager implementation uses the
ParentDataSource property from the data source configuration to
propagate state changes throughout the hierarchy of data source
relationships.

When a component changes the query state of its data source, that
modification is applied to:

• The parent data source

• All of the children of the parent data source

This is recursive, applying all the way up and back down an ancestor
tree.

Configuring a hierarchy of data source relationships allows application
developers to create more advanced interfaces, such as a tabbed
result set where a single Guided Navigation component controls the
query state for Results Table components on different tabs.

Creating a new State Manager
The endeca-extensions directory of the Component SDK includes scripts for creating a State Manager
project on either Windows or Linux.

To create a new State Manager project:

1. In a terminal, change to the endeca-extensions directory within the Component SDK's root
directory (normally called components).

2. Run one of the following commands:
• On Windows: .\create-mdexstatemanager.bat <your-state-manager-name>

• On Linux: ./create-mdexstatemanager.sh <your-state-manager-name>

This command creates a <your-state-manager-name> directory under endeca-extensions.
This directory is an Eclipse project. If you use Eclipse as your IDE, you can import the project directly
into Eclipse.

The directory also contains a sample implementation, which is essentially identical to the default
implementation of the State Manager used by Studio. You can use this sample implementation to help
understand how to use the State Manager.

Implementing a State Manager
Custom State Managers implement the MDEXStateManager interface. There are methods for updating,
retrieving, and resetting the data source query state.

Recommendations for implementing

To create a custom State Manager, you must at minimum implement the
com.endeca.portal.data.MDEXStateManager interface. The recommended approach is to extend
com.endeca.portal.data.AbstractMDEXStateManager, which in turn implements MDEXStateManager.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.4.0 • November 2012



Managing Data Source State in Studio 6

You also should extend com.endeca.portal.data.AbstractMDEXStateManager, which in turn implements
MDEXStateManager. The AbstractMDEXStateManager abstract class contains the useful utility method
addEventTrigger(PortletRequest, MDEXState).

The default state manager implementation is com.endeca.portal.data.DefaultMDEXStateManager. The
Studio Component SDK creates state managers that extend DefaultMDEXStateManager, because they will
work without any modification. If you want your custom state manager to inherit some of the default
functionality, you can extend DefaultMDEXStateManager instead of AbstractMDEXStateManager.

Required methods

Your State Manager must implement the following methods:

public void handleStateUpdate(PortletRequest request, MDEXState mdexState, QueryState newQueryState)
throws QueryStateException;

public QueryState handleStateMerge(PortletRequest request, MDEXState mdexState) throws
QueryStateException;

public void handleStateReset(PortletRequest request, MDEXState mdexState) throws QueryStateException;

public QueryState handleStateInitial(PortletRequest request, MDEXState mdexState) throws
QueryStateException;

Version 2.4.0 • November 2012

handleStateUpdate() Called when a component calls DataSource.setQueryState(qs).

This method should eventually call mdexState.setQueryState().
However, it is not required to make this call if it determines that the
MDEXState's QueryState should not change.

If the data source state is changed by handleStateUpdate(), you must
mark the affected data sources.

To mark the data sources, you call the
addEventTrigger(PortletRequest request, MDEXState ds) method,
passing in the request object and any MDEXState objects that are
changed.

handleStateMerge() Called when a component calls DataSource.getQueryState().

You are expected to return the QueryState that the component should
get access to for the data source represented by the mdexState, taking
into account any data source relationships or other aspects of your
State Manager that might affect the query state.

Oracle® Endeca Information Discovery: Studio Developer's Guide



Managing Data Source State in Studio 7

handleStateReset() Called when a component calls DataSource.resetQueryState().

This method returns the data source to the "initial state" defined by your
state manager.

The default implementation (DefaultMDEXStateManager) clears all
query functions from the data source except those defined in the
baseFunctions key of the data source's .json file, and similarly updates
all parent and child data sources.

If the data source state changes while it is being reset, you must mark
the affected data sources.

To mark the data sources, you call the
addEventTrigger(PortletRequest request, MDEXState ds) method,
passing in the request object and any MDEXState objects that are
changed.

handleStateInitial() Called when a component calls
DataSource.getInitialQueryState().

This method returns a copy of the data source's initial state as defined
by your state manager.

The default implementation (DefaultMDEXStateManager) returns a
QueryState with query functions made up of the union of the
baseFunctions from:

• The current data source

• All of the current data source's parents

Using the State Manager
In order to use your State Manager, you must specify a new class for Studio to use in place of the default
State Manager implementation.

The <your-state-manager-name> directory you created contains an ant build file. The ant deploy task
places a .jar file containing your State Manager into the portal/tomcat-<version>/lib/ext directory.

To configure Studio to use your State Manager:

1. From the Studio menu, select Control Panel.

2. In the Information Discovery section of the Control Panel menu, select Framework Settings.

3. Change the value of df.mdexStateManager property to the full name of your class, similar to following
example:

df.mdexStateManager = com.endeca.portal.extensions.YourStateManagerClass

Version 2.4.0 • November 2012

4. Click Update Settings.

5. Restart Studio so the change can take effect. You may also need to clear any cached user sessions.

Oracle® Endeca Information Discovery: Studio Developer's Guide



Chapter 3

Installing and Using the Component SDK

The Studio Component SDK is a packaged development environment that you can use to add or modify
components, themes, and layout templates.

Note: The Studio Component SDK is designed to work with the Studio Tomcat bundle. It will not work
out-of-the-box on other platforms.

Software and licensing requirements for component development

Downloading and configuring the Component SDK

Configuring Eclipse for component development

Developing a new component

Modifying the build enhancements to the Component SDK

Software and licensing requirements for component
development
To develop custom components, you need the following software and licenses.

Software requirements

In addition to the Studio Component SDK, component development requires the following software:

• Eclipse

• JDK 1.5 or above

• Apache Ant 1.7.1 or higher

Ext JS license requirement

Studio uses Ext JS in its components and in the default components created by its SDK.

The Oracle Endeca Information Discovery license does not bundle licensing for Ext JS.

Therefore, customers developing components with Ext JS must either purchase their own development
licenses from Ext JS, or remove Ext JS and develop components without using that Javascript framework.

About obtaining junit.jar for component unit tests
If you are planning to create unit tests for your custom components, you will need to first obtain junit.jar.

The Component SDK can use JUnit for unit tests, but does not come with the junit.jar file.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.4.0 • November 2012

http://www.extjs.com/products/js/


Installing and Using the Component SDK 9

Downloading and configuring the Component SDK
The Studio Component SDK is available with the Studio installer.

Before installing the Component SDK, download and unzip EID_<version>_Studio_portal.zip, as
described in the Studio portion of the Oracle Endeca Information Discovery Installation Guide. This is the base
Studio code, upon which the Component SDK depends. You do not have to start Studio.

Note: Do not install the Component SDK in a directory path that contains spaces.

Note: On Windows, for steps b and d below, backslashes in paths must be escaped. That is, use a
path similar to the following:

portal.base.dir=C:\\my_folder\\EID-portal

Version 2.4.0 • November 2012

instead of:

portal.base.dir=C:\my_folder\EID-portal

To install the Component SDK:

1. Download and unzip EID_<version>_Studio_components_sdk.zip to a separate directory.

This is the Component SDK itself.

2. Perform the following steps within the Component SDK:
(a) Create a file components/build.<user>.properties

where <user> is the user name with which you logged on to this machine.

(b) Within that properties file, add a single property
portal.base.dir=<absolute_path_to_portal>

where <absolute_path_to_portal> is the path to the unzipped
EID_<version>_Studio_portal.zip.

(c) Create a shared.properties file in the shared/ directory.

(d) Edit shared/shared.properties and set the single property
portal.base.dir=<absolute_path_to_portal>

where <absolute_path_to_portal> is the path to the unzipped
EID_<version>_Studio_portal.zip.

Configuring Eclipse for component development
Before using the Component SDK to develop Studio components in Eclipse, you need to create two Eclipse
classpath variables.

Note: Depending on your version of Eclipse, the steps below may vary slightly.

To configure the Eclipse classpath variables for Studio component development:

1. In Eclipse, go to Window>Preferences>Java>Build Path>Classpath Variables.

Oracle® Endeca Information Discovery: Studio Developer's Guide



Installing and Using the Component SDK 10

2. Create two new variables:

Name Path

DF_GLOBAL_LIB Path to the application server global library.

Example:

C:/endeca-portal/tomcat-<version>/lib

DF_PORTAL_LIB Path to the Studio ROOT Web application library.

Example:

C:/endeca-portal/tomcat-<version>/webapps/ROOT/WEB-
INF/lib

Once these variables have been created, the components generated by the Component SDK can be
imported into Eclipse.

Developing a new component
Here is a high-level overview of the component development process.

To develop a new Studio component:

1. Create the component.

2. Import the project in Eclipse.

3. Build and test the new component.

Creating a new component
New Studio components are extensions of the EndecaPortlet class.

To create a new component:

1. At a command prompt, navigate to the Component SDK directory, and from there to
components/portlets.

2. Run the command:

create.bat <component-name-no-spaces> "<ComponentDisplayName>"

Version 2.4.0 • November 2012

For example:

create.bat johns-test "John's Test Component"

In the command, the first argument is the component name. The component name:

• Cannot have spaces.

• Cannot include the string -ext, because it causes confusion with the ext plugin extension. For
example, my-component-extension would not be a valid name.

Oracle® Endeca Information Discovery: Studio Developer's Guide



Installing and Using the Component SDK 11

• Has the -portlet automatically appended to the name. For example, if you set the name to
johns-test, the name will actually be johns-test-portlet.

The second argument is intended to be a more human-friendly display name. The display name can
have spaces, but if it does, it must be enclosed in quotation marks.

Importing the project in Eclipse

Before beginning component development, you have to import the component project you just created into
Eclipse.

To import the Studio Component SDK project you just created into Eclipse:

1. Within Eclipse, choose File>Import>General>Existing Projects into Workspace.

2. As the root directory from which to import, select the directory where you installed the Component
SDK.

You should see multiple projects to import.

3. Import the components you need to work with.

If your components depend on shared library projects located within the /shared directory, import
those as well.

Note: It takes some time for projects to build after they are imported.

Building and testing your new component

Next, you can build your new component in Eclipse and ensure that it is available in Studio.

To build your new component in Eclipse:

1. In your new project, open the build.xml file at the top level.

2. In the outline view, right-click the deploy task and select Run as...>Ant Build.

Note: This step is only necessary if you do not have Build Automatically checked in the
Eclipse Project menu.

3. If Studio is not already running, start Studio and log in.

4. Look at the Studio logs to confirm that the component was picked up successfully.

5. To test your new component within Studio:

(a) From the Studio menu, select Add Component.

(b) In the Add Component dialog, expand the Sample category.

Your component should be listed in that category.

(c) To add the new component to the Studio page, drag and drop it from the Add Component dialog.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.4.0 • November 2012



Installing and Using the Component SDK 12

Adding and removing components from the WebLogic .ear file

If you have installed Studio on Oracle WebLogic Server, then you can also add the component to the
deployed .ear file, so that it will be deployed automatically the next time you deploy the file, for example when
installing a production instance after you have completed testing on a development instance.

To add components to and remove components from the WebLogic .ear file:

1. To add a custom component to the .ear file:
(a) Copy your component to the <LIFERAY_HOME>/deploy directory.

(b) After the component has been processed and moved to the <LIFERAY_HOME>/weblogic-
deploy directory, undeploy the .ear file.

(c) Add the processed component .war file to the root of the zipped .ear file.
(d) In the .ear file, add an entry for the new component to META-INF/application.xml.

2. To remove a component from the .ear file:

(a) Remove the component .war file from the root of the .ear file.
(b) In the .ear file, remove the component entry from META-INF/application.xml.

Modifying the build enhancements to the Component SDK
The build.xml file in the root directory of each component created by the Component SDK contains
properties that control whether to include the build enhancements.

By default, these properties are:

<property name="shared.libs" value="endeca-common-resources,endeca-discovery-taglib" />
<property name="endeca-common-resources.includes" value="**/*" />
<property name="endeca-common-resources.excludes" value="" />

Version 2.4.0 • November 2012

The properties control the following behavior:

shared.libs Controls which projects in the shared/ directory to
include in your component.

These shared projects are compiled and included as
.jar files where appropriate.

endeca-common-resources.includes Controls which files in the shared/endeca-
common-resources project are copied into your
component.

The default value is "**/*", indicating that all of the
files are included,

These files provide:

• AJAX enhancements (preRender.jspf and
postRender.jspf)

• The ability to select a different data source for
the component (dataSourceSelector.jspf)

Oracle® Endeca Information Discovery: Studio Developer's Guide



Installing and Using the Component SDK 13

endeca-common-resources.excludes Controls which files from the shared/endeca-
common-resources project are excluded from your
component.

By default, the value is "", indicating that no files are
excluded.

If your component needs to override any of these
files, you must use this build property to exclude
them. If you do not exclude them, your code will be
overwritten.

The includes and excludes properties can be specified for any shared library, for example:

<property name="endeca-discovery-taglib.includes" value="**/*" />
<property name="endeca-discovery-taglib.excludes" value="" />

Version 2.4.0 • November 2012Oracle® Endeca Information Discovery: Studio Developer's Guide



Chapter 4

Working with QueryFunction Classes

Studio provides a set of QueryFunction classes to allow you to filter and query data. You can also create and
implement your own QueryFunction classes.

Provided QueryFunction filter classes

Provided QueryConfig functions

Creating a custom QueryFunction class

Implementing a custom QueryFunction class

Deploying a custom QueryFunction class

Adding the custom QueryFunction .jar file to your Eclipse build path

Obtaining query results

Provided QueryFunction filter classes
Studio provides the following filter classes. Filters are used to change the current query state. They can be
used in the definition of a Studio data source, or called by a custom component.

The available filter classes are:

• DataSourceFilter

• RecordFilter

• RefinementFilter

• NegativeRefinementFilter

• RangeFilter

• SearchFilter

Note that the examples below use the syntax for calling the filters from a component. For details on
configuring filters in a data source definition, see the Oracle Endeca Information Discovery Studio User's
Guide.

DataSourceFilter

Uses an EQL snippet to provide the filtering.

When used in a data source definition, a DataSourceFilter is a permanent filter designed to be used for
security purposes.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.4.0 • November 2012



Working with QueryFunction Classes 15

The available properties are:

filterString The EQL snippet containing the filter information.

For a DataSourceFilter, this would be the content of a WHERE
clause for an EQL statement.

For details on the EQL syntax, see the Oracle Endeca Server
Query Language Reference.

For example, to filter data to only show records from the Napa Valley region with a price lower than 40 dollars:

ExpressionBase expression = dataSource.parseLQLExpression("Region='Napa Valley' and P_Price<40");
DataSourceFilter dataSourceFilter = new DataSourceFilter(expression);

Version 2.4.0 • November 2012

RecordFilter
A RecordFilter can be configured to include multiple filters with Boolean logic.

When used in a data source definition, a RecordFilter provides permanent filtering of the data.

The properties for a RecordFilter are:

recordFilter String

The filter content. For details on the RecordFilter syntax, see
the Oracle Endeca Server Developer's Guide.

In the following example, the data is filtered to only include records that have a value of Midwest for the
Region attribute.

RecordFilter recordFilter = new RecordFilter("Region:Midwest");

RefinementFilter

Used to filter data to include only those records that have the provided attribute values. End users can remove
RefinementFilter refinements.

The properties for a RefinementFilter are:

attributeValue String

The attribute value to use for the refinement.

For a managed attribute, this is the value ID.

attributeKey String

The attribute key. Identifies the attribute to use for the
refinement.

Oracle® Endeca Information Discovery: Studio Developer's Guide



Working with QueryFunction Classes 16

multiSelect AND |OR | NONE

For multi-select attributes, how to do the refinement if the filters
include multiple values for the same attribute.

If set to AND, then matching records must contain all of the
provided values.

If set to OR, then matching records must contain at least one of
the provided values.

If set to NONE, then multi-select is not supported. Only the first
value is used for the refinement.

In the following example, the data is refined to only include records that have a value of 1999 for the Year
attribute.

RefinementFilter refinementFilter = new RefinementFilter("1999", "Year");

Version 2.4.0 • November 2012

NegativeRefinementFilter

Used to filter data to exclude records that have the provided attribute value. End users can remove
NegativeRefinementFilter refinements.

The properties for a NegativeRefinementFilter are:

attributeValue String

The attribute value to use for the refinement.

attributeKey String

The attribute key. Identifies the attribute to use for the
refinement.

For example, to refine the data to only include records that do NOT have a value of 2003 for the Year
attribute:

NegativeRefinementFilter negativeRefinementFilter = new NegativeRefinementFilter("Year", "2003");

RangeFilter

Used to filter data to include only those records that have attribute values within the specified range. End
users can remove RangeFilter refinements.

The properties for a RangeFilter are:

attributeKey String

The attribute key. Identifies the attribute to use for the filter.

Oracle® Endeca Information Discovery: Studio Developer's Guide



Working with QueryFunction Classes 17

rangeOperator LT | LTEQ |GT |GTEQ| BTWN |GCLT |GCGT | GCBTWN

The type of comparison to use.

• LT - Less than

• LTEQ - Less than or equal to

• GT - Greater than

• GTEQ - Greater than or equal to

• BTWN - Between. Inclusive of the specified range values.

• GCLT - Geocode less than

• GCGT - Geocode greater than

• GCBTWN - Geocode between

rangeType NUMERIC | CURRENCY | DATE | GEOCODE

The type of value that is being compared.

value1 Numeric

The value to use for the comparison.

For BTWN, this is the low value for the range.

For the geocode range operators, the origin point for the
comparison.

value2 Numeric

For a BTWN, this is the high value for the range.

For GCLT and GCGT, this is the value to use for the comparison.

For GCBTWN, this is the low value for the range.

value3 Numeric

Only used for the GCBTWN operator. The high value for the
range.

In the following example, the data is refined to only include records where the value of P_Score is a number
between 80 and 100:

RangeFilter rangeFilter
= new RangeFilter("P_Score", RangeType.NUMERIC, RangeOperator.BTWN, "80", "100");

Version 2.4.0 • November 2012

SearchFilter

Used to filter the data to include records that have the provided search terms. End users can remove
SearchFilter refinements.

Oracle® Endeca Information Discovery: Studio Developer's Guide



Working with QueryFunction Classes 18

The properties for a SearchFilter are:

searchInterface String

Either the name of the search interface to use, or the name of
an attribute that is enabled for text search.

terms String

The search terms.

matchMode ALL | PARTIAL | ANY | ALLANY | ALLPARTIAL | PARTIALMAX |
BOOLEAN

The match mode to use for the search.

enableSnippeting boolean

Whether to enable snippeting.

Optional. If not provided, the default is false.

snippetLength int

The number of characters to include in the snippet.

Required if enableSnippeting is true.

To enable snippeting, set enableSnippeting to true, and
provide a value for snippetLength.

In the following example, the filter uses the "default" search interface to search for the terms "California" and
"red". The matching records must include all of the search terms. Snippeting is supported, with a 100-
character snippet being displayed.

SearchFilter.Builder builder = new SearchFilter.Builder("default", "California red");
builder.matchMode(MatchMode.ALL);
builder.enableSnippeting(true);
builder.snippetLength(100);
SearchFilter searchFilter = builder.build();

Version 2.4.0 • November 2012

Provided QueryConfig functions
Studio provides the following QueryConfig functions, used to manage the results returned by a query. These
are more advanced functions for component development.

Each QueryConfig function generally has a corresponding function in DiscoveryServiceUtils to get the
results.

QueryConfig functions are specific to a component. Because of this, QueryConfig functions should never be
persisted to a data source using setQueryState(), as this would affect all of the components bound to that
data source. Instead, QueryConfig functions should only be added to a component's local copy of the
QueryState object.

The available QueryConfig functions are:

• AttributeValueSearchConfig

Oracle® Endeca Information Discovery: Studio Developer's Guide



Working with QueryFunction Classes 19

• BreadcrumbsConfig

• ExposeRefinement

• LQLQueryConfig

• NavConfig

• RecordDetailsConfig

• ResultsConfig

• ResultsSummaryConfig

• SearchAdjustmentsConfig

• SearchKeysConfig

• SortConfig

AttributeValueSearchConfig

Used for typeahead in search boxes. For example, used in Guided Navigation to narrow down the list of
available values for an attribute.

AttributeValueSearchConfig has the following properties:

searchTerm String

The term to search for in the attribute values.

maxValuesToReturn int (optional)

The maximum number of matching values to return.

If you do not provide a value, then the default is 10.

attribute String (optional)

The attribute key for the attribute in which to search.

Use the attribute property to search against a single attribute.
To search against multiple attributes, use searchWithin.

searchWithin List<String> (optional)

A list of attributes in which to search for matching values.

matchMode ALL|PARTIAL|ANY|ALLANY|ALLPARTIAL|PARTIALMAX|BOOLEAN

(optional)

The match mode to use for the search.

relevanceRankingStrategy String (optional)

The name of the relevance ranking strategy to use during the
search.

The following example searches for the term "red" in the WineType attribute values:

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.4.0 • November 2012



Working with QueryFunction Classes 20

AttributeValueSearchConfig attributeValueSearchConfig
= new AttributeValueSearchConfig("red", "WineType");

Version 2.4.0 • November 2012

BreadcrumbsConfig

Used to return the breadcrumbs associated with the query. Allows you to specify whether to display the full
path for hierarchical attribute values.

BreadcrumbsConfig has the following property:

returnFullPath boolean (optional)

For a hierarchical managed attribute, whether to return the full
path to the selected value.

The default is true, indicating to return the full path.

To not return the full path, set this to false.

This example returns the breadcrumbs, but does not return the full path for hierarchical managed attributes:

BreadcrumbsConfig breadcrumbsConfig = new BreadcrumbsConfig(false);

ExposeRefinement
Affects results from a NavConfig function. Used to implement Guided Navigation. Controls whether to display
available attributes within groups, and whether to display available refinements for attributes.

ExposeRefinement has the following properties:

dimValId String

The ID of the selected attribute value.

You would provide an attribute value ID if you were displaying
the next level of available values in a managed attribute
hierarchy.

dimensionId String

The name of the attribute.

You must provide at least one dimValId or dimensionId.

ownerId String (optional)

The ID of the associated NavConfig instance.

If not provided, then uses the first NavConfig instance.

dimExposed boolean (optional)

Whether to display the available values for the attribute, to the
number specified in maxRefinements.

The default is true.

Oracle® Endeca Information Discovery: Studio Developer's Guide



Working with QueryFunction Classes 21

exposeAll boolean (optional)

Whether to display the complete list of available values.

For example, on the Guided Navigation component, would
indicate whether the "More..." link is selected.

The default is false.

maxRefinements int (optional)

The maximum number of available values to display.

The default is 1000.

groupKey String (required)

The name of a group.

groupExposed boolean (optional)

Whether to display all of the attributes in the specified group.

The default is true.

The following example shows the available attributes for the Flavors attribute within the Characteristics group.

ExposeRefinement exposeRefinement = new ExposeRefinement("/", "Flavors", "Characteristics");

Version 2.4.0 • November 2012

LQLQueryConfig

Executes an EQL query on top of the current filter state.

LQLQuery has the following property:

LQLQuery AST

The EQL query to add.

To retrieve the AST from the query string, call
DataSource.parseLQLQuery.

The following example retrieves the average of the P_Price attribute grouped by Region:

Query query
= dataSource.parseLQLQuery("return mystatement as select avg(P_Price) as avgPrice group by Region",
true);
LQLQueryConfig lqlQueryConfig = new LQLQueryConfig(query);

NavConfig

Used to retrieve a navigation menu, such as in the Guided Navigation component.

Oracle® Endeca Information Discovery: Studio Developer's Guide



Working with QueryFunction Classes 22

NavConfig has the following properties:

exposeAllRefinements boolean

Whether to display all of the available values for the attributes.

Determines the initial state of the menu. The associated
ExposeRefinement function is then applied.

The default is false.

List<RefinementGroupConfigs> List of groups for which to return the available attributes.

If no RefinementGroupConfigs are specified, no attribute
groups or attributes are returned.

The following examples returns attributes in the Source and Characteristics groups:

List<RefinementGroupConfig> refinementGroups = new ArrayList<RefinementGroupConfig>();
RefinementGroupConfig source = new RefinementGroupConfig();
source.setName("Source");
source.setExpose(true);
refinementGroups.add(source);
RefinementGroupConfig characteristics = new RefinementGroupConfig();
characteristics.setName("Characteristics");
characteristics.setExpose(true);
refinementGroups.add(characteristics);
NavConfig navConfig = new NavConfig();
navConfig.setRefinementGroupConfig(refinementGroups);

Version 2.4.0 • November 2012

RecordDetailsConfig

Sends an attribute key-value pair to assemble the details for a selected record. The complete set of attribute-
value pairs must uniquely identify the record.

RecordDetailsConfig has the following property:

recordSpecs List<RecordSpec>

Each new RecordDetailsConfig is appended to the previous
RecordDetailsConfig.

The following example sends the value of the P_WineID attribute:

List<RecordSpec> recordSpecs = new ArrayList<RecordSpec>();
recordSpecs.add(new RecordSpec("P_WineID", "37509"));
RecordDetailsConfig recordDetailsConfig = new RecordDetailsConfig(recordSpecs);

ResultsConfig

Used to manage the returned records. Allows for paging of the records.

Oracle® Endeca Information Discovery: Studio Developer's Guide



Working with QueryFunction Classes 23

ResultsConfig has the following properties:

recordsPerPage long

The number of records to return at a time.

offset long (optional)

The position in the list at which to start. The very first record is
at position 0.

For example, if recordsPerPage is 10, then to get the second
page of results, the offset would be 10.

columns String[] (optional)

The columns to include in the results.

If not specified, then the results include all of the columns.

numBulkRecords int (optional)

The number of records to return. Overrides the value of
recordsPerPage.

The following example returns a selected set of columns for the third page of records, where each page
contains 50 records:

ResultsConfig resultsConfig = new ResultsConfig();
resultsConfig.setOffset(100);
resultsConfig.setRecordsPerPage(50);
String[] columns = {"Wine_ID", "Name", "Description", "WineType", "Winery", "Vintage"};
resultsConfig.setColumns(columns);

Version 2.4.0 • November 2012

ResultsSummaryConfig

Gets the number of records returned from a query.

ResultsSummaryConfig resultsSummaryConfig = new ResultsSummaryConfig();

SearchAdjustmentsConfig

Returns "Did you mean" and auto-correction items for a search.

SearchAdjustmentsConfig searchAdjustmentsConfig = new SearchAdjustmentsConfig();

SearchKeysConfig

Returns the list of available search interfaces.

SearchKeysConfig searchKeysConfig = new SearchKeysConfig();

SortConfig
Used to sort the results of a query. Used in conjunction with ResultsConfig.

Oracle® Endeca Information Discovery: Studio Developer's Guide



Working with QueryFunction Classes 24

SortConfig has the following properties:

ownerId String (optional)

The ID of the ResultsConfig that this SortConfig applies to. If
not provided, uses the default ResultsConfig ID.

If you configure a different ID, then you must provide a value for
ownerId.

property String

The attribute to use for the sort.

ascending boolean

Whether to sort in ascending order.

If set to false, then the results are sorted in descending order.

For example, with the following SortConfig, the results are sorted by the P_Score attribute in descending
order:

SortConfig sortConfig = new SortConfig("P_Score", false);

Version 2.4.0 • November 2012

Creating a custom QueryFunction class
The Component SDK directory includes scripts for creating new QueryFunction classes.

Note: Before you can create QueryFunction classes, you must install the Component SDK, which is
a separate download. See Downloading and configuring the Component SDK on page 9.

To create a new QueryFilter or QueryConfig class:

1. In a terminal window, change to the endeca-extensions subdirectory of the Component SDK's root
directory (normally called components).

2. Run the appropriate command to create the QueryFilter or QueryConfig class.

To create a QueryFilter class:

On Windows: .\create-queryfilter.bat <your-query-filter-name>

On Linux: ./create-queryfilter.sh <your-query-filter-name>

To create a QueryConfig class:

On Windows: .\create-queryconfig.bat <your-query-config-name>

On Linux: ./create-queryconfig.sh <your-query-config-name>

Oracle® Endeca Information Discovery: Studio Developer's Guide



Working with QueryFunction Classes 25

The command creates in the endeca-extensions directory a new directory for the QueryFilter or
QueryConfig class:

• For a QueryFilter, the directory is <your-query-filter-name>-filter.

• For a QueryConfig, the directory is <your-query-config-name>-config.

This directory is an Eclipse project that you can import directly into Eclipse, if you use Eclipse as your IDE.

It contains an empty sample implementation of a QueryFilter or QueryConfig. This has no effect on
QueryState in its original form.

The skeleton implementation creates source files that:

• Extend either QueryFilter or QueryConfig.

• Create stubs for the applyToDiscoveryServiceQuery, toString, and beforeQueryStateAdd methods.

applyToDiscoveryServiceQuery and toString are required methods that you must implement.

beforeQueryStateAdd is an optional method to verify the query state before the function is added. This
method is used to prevent invalid query states such as duplicate refinements.

• Create a no-argument, protected, empty constructor. The protected access modifier is optional, but
recommended.

• Create a private member variable for logging.

Implementing a custom QueryFunction class
After you create your new QueryFunction class, you then implement it.

To implement your new QueryFunction, you must:

• Add private filter or configuration properties.

• Create getters and setters for any filter properties you add.

• Define a no-argument constructor (protected access modifier optional, but recommended).

• Optionally, implement the beforeQueryStateAdd(QueryState state) method to check the current query
state before the function is added.

Deploying a custom QueryFunction class
Before you can use your new QueryFunction, you must deploy it to Studio.

The directory that you created for the new QueryFilter or QueryConfig contains an ant build file.

The ant deploy task places a .jar file containing the custom QueryFunction into the endeca-
portal/tomcat-<version>/lib/ext directory.

Note: If you are not using the default portal bundle, put the new QueryFunction.jar into the
container's global classpath.

To deploy the new QueryFunction:

1. Run the ant build.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.4.0 • November 2012



Working with QueryFunction Classes 26

2. Restart Studio.

The portal picks up the new class.

After you deploy your custom QueryFunction, you can use it in any component.

Adding the custom QueryFunction .jar file to your Eclipse
build path
If you are using Eclipse as your IDE, you need to add the new .jar file to the build path of your custom
component.

To add the new .jar file to your Eclipse build path:

1. Right-click the project, then select Build Path>Configure Build Path.

2. Click the Libraries tab.

3. Click Add Variable.

4. Select DF_GLOBAL_LIB.

You should have added this variable when you set up the SDK.

5. Click Extend.

6. Open the ext/ directory.

7. Select the .jar file containing your custom QueryFunction.

8. Click OK.

After adding the .jar file to the build path, you can import the class, and use your custom QueryFilter or
QueryConfig to modify your QueryState.

Obtaining query results
The Results class is used to represent results of queries.

You must add the relevant QueryConfigs to a component in order to specify the types of results it needs.

QueryState query = getDataSource(request).getQueryState();
query.addFunction(new NavConfig());
QueryResults results = getDataSource(request).execute(query);

Version 2.4.0 • November 2012

You can then get the underlying API results and do whatever manipulation is required by your component.

Results discoveryResults = results.getDiscoveryServiceResults();

Before executing, you can also make other local modifications to your query state by adding filters or
configurations to your query:

QueryState query = getDataSource(request).getQueryState();
query.addFunction(new ResultsConfig());
query.addFunction(new RecordFilter("Region:Midwest"));
QueryResults results = getDataSource(request).execute(query);

When you need to update a data source's state to update all of the associated components, you must use
QueryState instances.

Oracle® Endeca Information Discovery: Studio Developer's Guide



Working with QueryFunction Classes 27

DataSource ds = getDataSource(request);
QueryState query = ds.getQueryState();
query.addOperation(new RecordFilter("Region:Midwest"));
ds.setQueryState(query);

Version 2.4.0 • November 2012Oracle® Endeca Information Discovery: Studio Developer's Guide



Index

adding jars for custom QueryFunctions 26C
configuring classpath variables 9

class summary importing the Component SDK project 11
Security Manager 1
State Manager 4

Qcomponents
QueryFunction classesadding to WebLogic .ear file 12

adding jars to the Eclipse build path 26building and testing 11
creating custom 24creating 10
deploying custom 25development overview 10
implementing custom 25removing from WebLogic .ear file 12

QueryFunctionsComponent SDK
provided filter classes 14about 8
provided QueryConfig functions 18configuring 9

configuring Eclipse for 9
downloading 9 S
Ext JS license requirement 8

Security Managermodifying build enhancements to 12
about 1software requirements 8
class summary 1
creating 2D implementing 3
using 3data sources, obtaining results from 26

State Managerdata source state, managing 4
class summary 4
creating 5E implementing 5

Eclipse using 7

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.4.0 • November 2012


	Copyright and disclaimer
	Table of Contents
	Preface
	About this guide
	Who should use this guide
	Contacting Oracle Customer Support

	Chapter 1: Security Extensions to Studio
	Security Manager class summary
	Creating a new Security Manager
	Implementing a new Security Manager
	Using the Security Manager

	Chapter 2: Managing Data Source State in Studio
	About the State Manager interface
	Creating a new State Manager
	Implementing a State Manager
	Using the State Manager

	Chapter 3: Installing and Using the Component SDK
	Software and licensing requirements for component development
	Downloading and configuring the Component SDK
	Configuring Eclipse for component development
	Developing a new component
	Creating a new component
	Importing the project in Eclipse
	Building and testing your new component
	Adding and removing components from the WebLogic .ear file

	Modifying the build enhancements to the Component SDK

	Chapter 4: Working with QueryFunction Classes
	Provided QueryFunction filter classes
	Provided QueryConfig functions
	Creating a custom QueryFunction class
	Implementing a custom QueryFunction class
	Deploying a custom QueryFunction class
	Adding the custom QueryFunction .jar file to your Eclipse build path
	Obtaining query results

	Index

