

[image: Oracle Corporation]

Oracle® Communications Services Gatekeeper

Communication Service Guide

Release 5.1

E37526-01

June 2013

Oracle Communications Services Gatekeeper Communication Service Guide, Release 5.1

E37526-01

Copyright © 2011, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Contents

Preface

	Audience
	Documentation Accessibility
	Related Documents

1 About Communication Services

	Introduction
	How They Work
	Typical Application-Initiated Traffic Flow
	Typical Network-Triggered Traffic Flow
	Common Features
	Connectivity to SIP Network Infrastructure

2 Quality of Service

	Overview of the Services Gatekeeper QoS
	An Example End to End QoS Solution

	Application Interfaces
	Events and Statistics
	Event Data Records
	Alarms

	Specifications for the QoS Communication Service
	Managing the QoS Communication Service
	General Configuration Workflow for the QoS Communication Service
	Managing QoS Templates
	Load a QoS Template
	Retrieve an Existing QoS Template
	List Match Rules for a QoS Template
	Delete a QoS Template

	Reference: Attributes and Operations for QoS
	Attribute: DestinationHost
	Attribute: DestinationPort
	Attribute: DestinationRealm
	Attribute: OriginHost
	Attribute: OriginPort
	Attribute: OriginRealm
	Attribute: Connected
	Operation: connect()
	Operation: disconnect()
	Operation: loadQoSRequestTemplate()
	Operation: retrieveQoSRequestTemplate()
	Operation: listQoSRequestTemplateMatchRule()
	Operation: deleteQoSRequestTemplate()

3 Services Gatekeeper OAuth 2.0 Authorization and Resource Servers

	Using OAuth 2.0 with Services Gatekeeper

4 Application Subscription Management

	Overview of the Application Subscription Management Service
	Application Interfaces
	Support for OAuth Authentication
	Events and Statistics
	Event Data Records

	Managing Application Subscription Management
	Properties for Application Subscription Management
	Configuration Workflow for Application Subscription Management
	Deploying Application Subscription Management Packages
	Creating an Application Subscription Management plug-in Instance
	Editing Application Subscription Management Attributes
	Loading Application Subscription Configuration Files
	Retrieving Application Subscription Configuration Files
	Retrieving Application Subscription Lists
	Configure Application OAuth Scope
	Connecting to an SMSC

	Handling Traffic from Applications without Subscriptions

	Reference: Attributes and Operations for Application Subscription Management
	Attribute: ActiveStatus
	Attribute: ConnectDelayValue
	Attribute: SmscAddress
	Attribute: SmscPort
	Attribute: LocalAddress
	Attribute: LocalPort
	Attribute: BindType
	Attribute: NumberTransmitterConnections
	Attribute: NumberReceiverConnections
	Attribute: NumberTransceiverConnections
	Attribute: EsmeSystemId
	Attribute: EsmePassword
	Attribute: EsmeSystemType
	Attribute: SmppVersion
	Attribute: EsmeTon
	Attribute: EsmeNpi
	Attribute: EsmeAddressRange
	Attribute: RequestTimerValue
	Attribute: EnquireLinkTimerValue
	Attribute: RetryTimesBeforeReconnect
	Attribute: RetryTimesBeforeGiveUp
	Attribute: WindowingSize
	Attribute: WindowingMaxQueueSize
	Attribute: WindowingMaxWaitTime
	Attribute: DeliverSmRespCommandStatus
	Attribute: MessageIdInHexFormat
	Operation: loadAppSubscriptionsXml
	Operation: retrieveAppSubscriptionsXml
	Operation: retrieveAppSubscriptionsList
	Operation: connect

5 Parlay X 2.1 Audio Call/SIP

	Overview of the Parlay X 2.1 Audio Call / SIP Communication Service
	Audio Call/SIP Plug-in Application Requests
	Audio Call/SIP Plug-in Call Flow

	Application Interfaces
	Events and Statistics
	Event Data Records
	Charging Data Records
	Statistics
	Alarms

	Managing Parlay X 2.1 Audio Call / SIP
	Properties for Parlay X 2.1 Audio Call/SIP
	Configuration Workflow for Parlay X 2.1 Audio Call/SIP

	Reference: Attributes for Parlay X 2.1 Audio Call/SIP
	Attribute: FromAddress
	Attribute: MediaServerFactoryJNDI
	Attribute: RetentionDuration
	Attribute: RouteURI

6 Parlay X 2.1 Call Notification/SIP

	Overview of the Parlay X 2.1 Call Notification/SIP Communication Service
	Simple monitoring
	Monitoring and rerouting

	Application Interfaces
	Events and Statistics
	Event Data Records
	Charging Data Records
	Statistics

	Managing Parlay X 2.1 Call Notification/SIP
	Properties for Parlay X 2.1 Call Notification/SIP
	Configuration Workflow for Parlay X 2.1 Call Notification/SIP

	Reference: Operations for Parlay X 2.1 Call Notification/SIP
	Operation: getCallDirectionSubscription
	Operation: getNotificationSubscription
	Operation: listCallDirectionSubscriptions
	Operation: listNotificationSubscriptions
	Operation: removeAllCallDirectionSubscriptions
	Operation: removeAllNotificationSubscriptions
	Operation: removeCallDirectionSubscription
	Operation: removeNotificationSubscription

7 Parlay X 2.1 Multimedia Messaging/MM7

	Overview of the Parlay X 2.1 Multimedia Messaging/MM7 Communication Service
	Processing Application-initiated Requests
	Send Receipts
	Delivery Receipts

	Processing Network-triggered Requests
	Retrieving Offline MMS Messages

	Polling Functionality
	Short Code Translation

	Application Interfaces
	Events and Statistics
	Event Data Records
	Charging Data Records
	Statistics
	Alarms

	Tunneled Parameters for Parlay X 2.1 MM7 Rel 6.8.0
	ChargedParty
	ChargedPartyCD
	timeStamp
	expiryDate
	allowAdaptation
	DeliveryCondition
	UAProf
	StatusText

	Managing Parlay X 2.1 Multimedia Messaging/MM7
	Properties for Parlay X 2.1 Multimedia Messaging/MM7
	Configuration Workflow for Parlay X 2.1 MultiMedia Messaging/MM7
	Provisioning Workflow for Parlay X 2.1 MultiMedia Messaging/MM7

	Reference: Attributes and Operations for Parlay X 2.1 MultiMedia Messaging/MM7
	Attribute: DefaultPriority
	Attribute: HTTPBasicAuthentication
	Attribute: HTTPBasicAuthenticationUsername
	Attribute: HTTPBasicAuthenticationPassword
	Attribute: Mm7relayserverAddress
	Attribute: MM7Version
	Attribute: VasId
	Attribute: VaspId
	Attribute: RequestDeliveryReportFlag
	Attribute: ServiceCode
	Attribute: XSDVersion
	Operation: enableReceiveMms
	Operation: getOfflineNotificationInfo
	Operation: getOnlineNotificationInfo
	Operation: listOfflineNotificationInfo
	Operation: listOnlineNotificationInfo
	Operation: removeOfflineNotificationInfo
	Operation: removeOnlineNotificationInfo
	Operation: startMessageNotification

8 Parlay X 2.1 Multimedia Messaging/SMTP, POP3, and IMAP

	Overview of the Parlay X 2.1 Multimedia Messaging/SMTP, POP3, and IMAP Communication Service
	Processing Application-Initiated Requests
	Send Requests
	Send Receipts
	Delivery Receipts
	Retry Requests

	Processing Network-triggered Requests
	Retrieving Offline Messages

	Application Interfaces
	Events and Statistics
	Event Data Records
	Charging Data Records
	Alarms

	Managing Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP
	Properties for Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP
	Configuration Workflow for Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP
	Provisioning Workflow for Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP

	Reference: Attributes and Operations for Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP
	Attribute: smtpUserName
	Attribute: smtpPassWord
	Attribute: smtpHost
	Attribute: smtpPort
	Attribute: smtpAuth
	Attribute: smtpSSLRequired
	Attribute: smtpStartTLS
	Attribute: smtpRetryNumber
	Attribute: smtpRetryInterval
	Attribute: smtpInitConnectionNumber
	Attribute: smtpMaxConnectionNumber
	Attribute: smtpReconnectInterval
	Attribute: smtpNoopInterval
	Attribute: smtpSizeLimit
	Attribute: receiveProtocol
	Attribute: pop3Host
	Attribute: pop3Port
	Attribute: pop3SSLRequired
	Attribute: pop3PollingInterval
	Attribute: imapHost
	Attribute: imapPort
	Attribute: imapSSLRequired
	Attribute: imapPollingInterval
	Attribute: debug
	Operation: activeImapConfig
	Operation: activeSmtpConfig
	Operation: enableReceiveEmail
	Operation: listImapProcess
	Operation: listPop3Process
	Operation: listSmtpConnection
	Operation: startMessageNotification
	Operation: getOfflineNotificationInfo
	Operation: getOnlineNotificationInfo
	Operation: listOfflineNotificationInfo
	Operation: listOnlineNotificationInfo
	Operation: removeOfflineNotificationInfo
	Operation: removeOnlineNotificationInfo

9 Parlay X 2.1 Presence/SIP

	Overview of the Parlay X 2.1 Presence/SIP Communication Service
	Client as Presence Consumer
	Client as Presence Supplier

	Application Interfaces
	Events and Statistics
	Event Data Records
	Charging Data Records
	Statistics
	Alarms

	Tunneled Parameters for Parlay X 2.1 Presence / SIP
	expireskey
	passidkey

	Managing Parlay X 2.1 Presence/SIP
	URI Cache
	Subscriptions Cache
	Notifications Cache
	Properties for Parlay X 2.1 Presence/SIP
	Configuration Workflow for Parlay X 2.1 Presence/SIP
	Provisioning Workflow for Parlay X 2.1 Presence/SIP
	Management Operations for Parlay X 2.1 Presence/SIP

	Reference: Attributes and Operations for Parlay X 2.1 Presence/SIP
	Attribute: DefaultNotificationCount
	Attribute: DefaultNotificationDuration
	Attribute: NotificationCleanupTimerValue
	Attribute: PresenceServerAddress
	Attribute: PresenceXDMSAddress
	Attribute: PresenceXDMSPresrulesPostfix
	Attribute: PresenceXDMSPresrulesPrefix
	Attribute: PresenceXDMSProviderClassName
	Attribute: SubscriptionCleanupTimerValue
	Attribute: SubscribeExpiryValue
	Operation: clearCache
	Operation: getApplicationInstance
	Operation: getApplicationInstanceSIPURI
	Operation: listNotificationsCache
	Operation: listSubscriptionsCache
	Operation: listURImappingCache
	Operation: removeApplicationInstanceFromCache
	Operation: removeNotification
	Operation: removeSubscription
	Operation: setApplicationInstanceSIPURI
	Operation: updateSubscriptionToBeconfirmed

10 Parlay X 2.1 Short Messaging/SMPP

	Overview of the Parlay X 2.1 Short Messaging/SMPP Communication Service
	Split and Submit Messaging
	Processing Application-Initiated Requests
	Send Receipts
	Delivery Receipts

	Processing Network-Triggered Requests
	Connection Handling and Provisioning
	Multiple Connections and Multiple Plug-in Instances
	Windowing
	Segments
	Short Code Translation
	Load Balancing, High Availability, and Failover
	Character Set Encoding
	Standard and Extended GSM Alphabets
	Other Alphabets
	Overriding the DefaultDataCoding Attribute

	Application Interfaces
	Events and Statistics
	Event Data
	Charging Data Records
	Statistics
	Alarms

	Tunneled Parameters for Parlay X 2.1 Short Messaging / SMPP
	sms.protocol.id
	source_port
	destination_port
	data_coding
	esm_class
	sms.service.type
	sms.replace.if.present
	com.bea.wlcp.wlng.plugin.sms.OriginatingAddressType
	com.bea.wlcp.wlng.plugin.sms.DestinationAddressType.n
	com.bea.wlcp.wlng.plugin.sms.RequestDeliveryReportFlag
	com.bea.wlcp.wlng.plugin.sms.DataCoding
	com.bea.wlcp.wlng.plugin.sms.Priority
	originating_address
	smpp_billing_id
	dest_addr_subunit
	dest_bearer_type
	service_type
	ussd_service_operation
	its_session_info
	smpp_optional_int_tlv_param_tags
	smpp_optional_int_tlv_param_values
	smpp_optional_octet_tlv_param_tags
	smpp_optional_octet_tlv_param_values
	com.bea.wlcp.wlng.plugin.sms.smpp.schedule_delivery_time
	sms.validity.period

	Managing Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary SMS/SMPP
	Properties for Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary SMS/SMPP
	Configuration Workflow for Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary SMS/SMPP
	Management Operations in the SMPP Server Service

	Reference: Attributes and Operations for Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary SMS/SMPP
	Attribute: ActiveStatus (read-only)
	Attribute: BindType
	Attribute: DataSm
	Attribute: DefaultDataCoding
	Attribute: DeliverSmRespCommandStatus
	Attribute: DestinationAddressNpi
	Attribute: DestinationAddressTon
	Attribute: EnquireLinkTimerValue
	Attribute: EsmeAddressRange
	Attribute: EsmeNpi
	Attribute: EsmePassword
	Attribute: EsmeSystemId
	Attribute: EsmeSystemType
	Attribute: EsmeTon
	Attribute: ForwardXParams
	Attribute: LocalAddress
	Attribute: LocalPort
	Attribute: MaxKeywordLimit
	Attribute: MessageIdInHexFormat
	Attribute: MessagingMode
	Attribute: MobileCountryCode
	Attribute: MobileNetworkCode
	Attribute: ModuleId (read-only)
	Attribute: NumberReceiverConnections
	Attribute: NumberTransceiverConnections
	Attribute: NumberTransmitterConnections
	Attribute: OriginatingAddressNpi
	Attribute: OriginatingAddressTon
	Attribute: ReceiveSegmentsWaitTime
	Attribute: ReceiveSmsIgnoreMissingSegments
	Attribute: RequestDeliveryReports
	Attribute: RequestTimerValue
	Attribute: RetryTimesBeforeGiveUp
	Attribute: RetryTimesBeforeReconnect
	Attribute: SMSCDefaultAlphabet
	Attribute: SegmentsLimit
	Attribute: SequenceNumberRangeEndId
	Attribute: SequenceNumberRangeStartId
	Attribute: SmppVersion
	Attribute: SmscAddress
	Attribute: SmscGroupId
	Attribute: SmscGroupIdEnabled
	Attribute: SmscPort
	Attribute: UseMessagePayload
	Attribute: UserTextMaxLength
	Attribute: WindowingMaxQueueSize
	Attribute: WindowingMaxWaitTime
	Attribute: WindowingSize
	Operation: addOriginatingAddressTypeMapping
	Operation: addDestinationAddressTypeMapping
	Operation: countOfflineNotificationCache
	Operation: countOnlineNotificationCache
	Operation: countSmsCache
	Operation: enableReceiveSms
	Operation: getOfflineNotificationInfo
	Operation: getOnlineNotificationInfo
	Operation: listDestinationAddressTypeMappings
	Operation: listOnlineBinaryNotificationInfo
	Operation: listOfflineNotificationInfo
	Operation: listOnlineNotificationInfo
	Operation: listOriginatingAddressTypeMappings
	Operation: removeOfflineNotificationInfo
	Operation: removeOnlineNotificationInfo
	Operation: removeOriginatingAddressTypeMapping
	Operation: removeDestinationAddressTypeMapping
	Operation: startSmsNotification
	Operation: translateDestinationAddressNpi
	Operation: translateDestinationAddressTon
	Operation: translateOriginatingAddressNpi
	Operation: translateOriginatingAddressTon

11 Parlay X 2.1 Terminal Location/MLP

	Overview of the Parlay X 2.1 Terminal Location/MLP Communication Service
	Processing Direct Queries/Application-initiated Requests
	Processing Notifications/Network-triggered Requests

	Application Interfaces
	Events and Statistics
	Event Data Records
	Charging Data Records
	Statistics
	Alarms

	Tunneled Parameters for Parlay X 2.1 Terminal Location /MLP
	terminal_location.name_area
	com.wlcp.wlng.terminal_location.start_time / com.wlcp.wlng.terminal_location.stop_time
	terminal_location.polygon.point.n

	Managing Parlay X 2.1 Terminal Location/MLP
	Properties for Parlay X 2.1 Terminal Location/MLP
	Configuration Workflow for Parlay X 2.1 Terminal Location/MLP

	Reference: Attributes for Parlay X 2.1 Terminal Location/MLP
	Attribute: CharacterEncoding
	Attribute: CleanupInterval
	Attribute: DecimalDegreesToDMSH
	Attribute: MaxDuration
	Attribute: MlpAltitudeSupported
	Attribute: MlpLocationEstimates
	Attribute: MlpVersionSupported
	Attribute: MlpPushAddr
	Attribute: MlpRequestType
	Attribute: MlpServerUrl
	Attribute: MlpSrsName
	Attribute: MsidType
	Attribute: Password
	Attribute: Requestor
	Attribute: RequestTimeout
	Attribute: ServiceId
	Attribute: Username
	Attribute: XMLDoctypeTagUsage

12 Parlay X 2.1 Third Party Call/INAP-SS7

	Overview of the Parlay X 2.1 Third Party Call/INAP-SS7 Communication Service
	How It Works
	Call Setup
	Call Duration

	Application Interfaces
	Events and Statistics
	Event Data Records
	Charging Data Records
	Statistics
	Alarms

	Managing Parlay X 2.1 Third Party Call/INAP-SS7
	Properties for Parlay X 2.1 Third Party Call/INAP-SS7
	Configuration Workflow for Parlay X 2.1 Third Party Call/INAP/SS7

	Reference: Attributes and Operations for Parlay X 2.1 Third Party Call/INAP
	Attribute: InapBindTimeout
	Attribute: InapUserId
	Attribute: LocalSpc
	Attribute: LocalSsn
	Attribute: NoAnswerTimeout
	Attribute: RemoteSpc
	Attribute: RemoteSsn
	Attribute: SccpPriority
	Attribute: SccpQualityOfService
	Attribute: Ss7Host
	Attribute: Ss7PortNumber
	Attribute: TSCFTimeout

	INAP-SS7 Configuration Dependencies
	INAP API Configuration File
	Common Parts Configuration File
	Back-end Configuration File

13 Parlay X 2.1 Third Party Call/SIP

	Overview of the Parlay X 2.1 Third Party Call/SIP Communication Service
	How It Works
	Call Setup
	Call Duration

	Application Interfaces
	Events and Statistics
	Event Data Records
	Charging Data Records
	Statistics
	Alarms

	Managing Parlay X 2.1 Third Party Call/SIP
	Properties for Parlay X 2.1 Third Party Call/SIP
	Configuration Workflow for Parlay X 2.1 Third Party Call/SIP

	Reference: Attributes for Parlay X 2.1 Third Party Call/SIP
	Attribute: ChargingAllowed
	Attribute: ControllerURI
	Attribute: ISCRouteURI
	Attribute: MaximumCallLength
	Attribute: StatusRetentionTime

14 Parlay X 2.1 Terminal Status/MAP

	Overview of the Parlay X 2.1 Terminal Status/MAP Communication Service
	Status Request for a Single Terminal
	Status Requests for Multiple Terminals
	Terminal Status Change Request: Network-Triggered
	Terminal Status Change Request: Plug-in-Triggered

	Application Interfaces
	Events and Statistics
	Event Data Records
	Charging Data Records
	Statistics
	Alarms

	Managing Parlay X 2.1 Terminal Status/MAP
	Properties for Parlay X 2.1 Terminal Status/MAP
	Configuration Workflow for Parlay X 2.1 Terminal Status/MAP
	Setting Up Network Selection Routes and Network Selections

	Reference: Attributes and Operations for Parlay X 2.1 Terminal Status/MAP, and SLA Usage Restrictions
	Attribute: AllowATM
	Attribute: ATITimeout
	Attribute: CpUserId
	Attribute: GroupRequestTimeout
	Attribute: GsmSCFGT
	Attribute: JCPQueueSize
	Attribute: LocalSpc
	Attribute: LocalSsn
	Attribute: NoOfPluginInstances
	Attribute: PluginInstanceId
	Attribute: Ss7PortNumber
	Attribute: Ss7Host
	Attribute: Ss7Instances
	Operation: addNetworkSelection
	Operation: addNetworkSelectionRoute
	Operation: bindToStack
	Operation: getNetworkSelection
	Operation: getNetworkSelectionRoute
	Operation: listAllNetworkSelectionRoutes
	Operation: listNetworkSelectionRoutes
	Operation: listNetworkSelections
	Operation: removeNetworkSelection
	Operation: removeNetworkSelectionRoute
	Operation: removeNotifications
	SLA Usage Restriction: BusyAvailable
	SLA Usage Restriction: MaximumNotificationAddresses
	SLA Usage Restriction: MaximumNotificationFrequency
	SLA Usage Restriction: MaximumNotificationDuration
	SLA Usage Restriction: MaximumCount
	SLA Usage Restriction: UnlimitedCountAllowed

15 Parlay X 3.0 Audio Call/Parlay 3.3 UI-MPCC

	Overview of the Parlay X 3.0 Audio Call/Parlay 3.3 UI-MPCC Communication Service
	How It Works

	Application Interfaces
	Events and Statistics
	Event Data Records
	Charging Data Records
	Statistics
	Alarms

	Tunneled Parameters for Parlay X 3.0 Audio Call/Parlay 3.3 UI-MPCC
	ac.parlay.sendInfoReq.repeatIndicator

	Managing Parlay X 3.0 Audio Call/Parlay 3.3 UI-MPCC
	Properties for Parlay X 3.0 Audio Call/Parlay 3.3 UI-MPCC
	Configuration Workflow for Parlay X 3.0 Audio Call/Parlay 3.3 UI-MPCC

	Reference: Attributes for Parlay X 3.0 Audio Call/Parlay 3.3 UI-MPCC
	Attribute: ChargingAllowed
	Attribute: CollectInterCharTimeout
	Attribute: CollectStartTimeout
	Attribute: EndSequence
	Attribute: Language
	Attribute: MaxDigits
	Attribute: MinDigits
	Attribute: RepeatIndicator
	Attribute: ResponseRequested
	Attribute: RetensionTime
	Attribute: ShutdownTimerInterval

16 Parlay X 3.0 Call Notification/Parlay 3.3 MPCC

	Overview of the Parlay X 3.0 Call Notification/Parlay 3.3 MPCC Communication Service
	How It Works
	Monitoring
	Monitoring and rerouting

	Application Interfaces
	Events and Statistics
	Event Data Records
	Charging Data Records
	Statistics
	Alarms

	Managing Parlay X 3.0 Call Notification/Parlay 3.3 MPCC
	Properties for Parlay X 3.0 Call Notification/Parlay 3.3 MPCC
	Configuration Workflow for Parlay X 3.0 Call Notification/Parlay 3.3 MPCC

	Reference: Operations for Parlay X 3.0 Call Notification/Parlay 3.3 MPCC
	Operation: deleteMediaNotification
	Operation: deleteNotification
	Operation: getMediaNotification
	Operation: getNotification
	Operation: listMediaNotifications
	Operation: listNotifications

17 Parlay X 3.0 Device Capabilities/LDAPv3

	Overview of the Parlay X 3.0 Device Capabilities/LDAPv3 Communication Service
	Application Interfaces
	Events and Statistics
	Event Data Records
	Charging Data Records
	Statistics

	Managing Parlay X 3.0 Device Capabilities/LDAPv3
	Properties for Parlay X 3.0 Device Capabilities/LDAPv3 Plug-in
	Configuration Workflow for Device Capabilities/LDAPv3 Plug-in
	Creating an LDAP-to-XML Mapping File

	Reference: Attributes and Operations for Device Capabilities/LDAPv3
	Attribute: AuthDN
	Attribute: AuthPassword
	Attribute: BaseDN
	Attribute: ConnTimeout
	Attribute: DeviceIdAttributeName
	Attribute: DeviceNameAttributeName
	Attribute: DeviceProfileURLAttributeName
	Attribute: Host
	Attribute: LDAPConnectionStatus
	Attribute: MaxConnections
	Attribute: MinConnections
	Attribute: Port
	Attribute: recoverTimerInterval
	Attribute: Schema
	Operation: apply
	Operation: updateSchemaURL

18 Parlay X 3.0 Payment/Diameter

	Overview of the Parlay X 3.0 Payment Communication Service
	Amount Charging
	Volume Based Charging
	Processing Direct Queries/Application-initiated Requests
	Processing Notifications/Network-triggered Requests
	Validating Reservation Requests

	Application Interfaces
	Changing the List of Diameter AVPs for Your Implementation
	About the AVP Template Files
	Adding New AVPs for Diameter Payment in Template Files
	Adding Diameter AVPs to a Template File During Runtime

	Events and Statistics
	Event Data Records
	Statistics

	Tunneled Parameters for Parlay X 3.0 Payment / Diameter
	session-id

	Managing Parlay X 3.0 Payment /Diameter
	Properties for Parlay X 3.0 Payment/Diameter
	Configuration Workflow for Parlay X 3.0 Payment/Diameter
	Provisioning Workflow for Parlay X 3.0 Payment/Diameter

	Reference: Attributes and Operations for Parlay X 3.0 Payment/Diameter
	Attribute: ChargingChannel
	Attribute: Connected (read-only)
	Attribute: DestinationAddresses
	Attribute: DestinationRealm
	Attribute: Domain
	Attribute: OriginHost
	Attribute: OriginPort
	Attribute: OriginRealm
	Attribute: QueryEnabled
	Attribute: ServiceContext
	Attribute: SplitChargeEnabled
	Operation: connect
	Operation: disconnect

19 Parlay X 3.0 Third Party Call/Parlay 3.3 MPCC

	Overview of the Parlay X 3.0 Third Party Call/Parlay 3.3 MPCC Communication Service
	How It Works

	Application Interfaces
	Events and Statistics
	Event Data Records
	Charging Data Records
	Statistics
	Alarms

	Tunneled Parameters for Parlay X 3.0 Third Party Call / Parlay 3.3 MPCC
	tpc.parlay.makecallsession.first.party.anonymous
	tpc.parlay.makecallsession.second.party.anonymous
	tpc.parlay.addcallparticipant.anonymous
	tpc.parlay.transfercallparticipant.anonymous
	tpc.parlay.makecallsession.first.party.media.attach.explicitly
	tpc.parlay.makecallsession.second.party.media.attach.explicitly
	tpc.parlay.addcallparticipant.media.attach.explicitly
	tpc.parlay.transfercallparticipant.media.attach.explicitly
	tpc.parlay.maximum.duration
	tpc.parlay.makecallsession.first.party.prefix
	tpc.parlay.makecallsession.second.party.prefix
	tpc.parlay.addcallparticipant.prefix
	tpc.parlay.transfercallparticipant.prefix
	tpc.parlay.makecallsession.first.party.callappgenericinfo
	tpc.parlay.makecallsession.second.party.callappgenericinfo
	tpc.parlay.addcallparticipant.callappgenericinfo
	tpc.parlay.transfercallparticipant.callappgenericinfo

	Managing Parlay X 3.0 Third Party Call/Parlay 3.3 MPCC
	Properties for Parlay X 3.0 Third Party Call/Parlay 3.3 MPCC
	Configuration Workflow for Parlay X 3.0 Third Party Call/Parlay 3.3 MPCC
	Management Operations for Parlay X 3.0 Third Party Call/Parlay 3.3 MPCC

	Reference: Attributes and Operations for Parlay X 3.0 Third Party Call/Parlay 3.3 MPCC
	Attribute: CallGetInfoReqConfig (read-only)
	Attribute: CallingParticipantNameMandantory
	Attribute: ChangeMediaAllowed
	Attribute: ChargingAllowed
	Attribute: LegGetInfoReqConfig (read-only)
	Attribute: MaximumDurationEnforced
	Attribute: MultiMediaSupported
	Attribute: MaximumParticipants
	Attribute: StatusRetentionTime
	Operation: configCallGetInfoReq
	Operation: configLegGetInfoReq
	Operation: getCallLegs
	Operation: getCallSessionInfo
	Operation: getCallLegSessionInfo
	Operation: listCallSessionIds
	Operation: countPendingCallSession

20 Parlay X 3.0 Address List Management Interface

	Overview of the Parlay X 3.0 Address List Management Interface
	Address List Management Architecture
	Group URI Format
	Managing Groups
	Controlling Group Access
	Managing and Querying Group Members
	Managing and Querying Group Attributes
	Managing and Querying Group Member Attributes

	Application Interfaces
	Events and Statistics
	Event Data Records
	Alarms

	Managing Parlay X 3.0 Address List Management Architecture
	Properties for Parlay X 3.0 Address List Management Architecture
	Configuration Workflow for Parlay X 3.0 Address List Management Architecture

	Reference: Attributes and Operations for Parlay X 3.0 Address List Management Architecture
	Attribute: GroupNameMaxLength
	Attribute: GroupSize
	Operation: createGroup()
	Operation: queryGroups()
	Operation: deleteGroup()
	Operation: setAccess()
	Operation: queryAccess()
	Operation: addMember()
	Operation: addMembers()
	Operation: queryMembers()
	Operation: deleteMember()
	Operation: deleteMembers()
	Operation: addGroupAttribute()
	Operation: queryGroupAttribute()
	Operation: deleteGroupAttribute()
	Operation: addGroupMemberAttribute()
	Operation: queryGroupMemberAttributes()
	Operation: deleteGroupMemberAttribute()
	Operation: addMemberAttribute()
	Operation: queryMemberAttributes()
	Operation: deleteMemberAttribute()

21 REST Services

	Overview of REST Services

22 Extended Web Services Binary SMS/SMPP

	Overview of the EWS Binary SMS/SMPP
	Send Receipts
	Delivery Receipts
	Connection Handling and Provisioning

	Application Interfaces
	Events and Statistics
	Event Data
	Charging Data Records
	Statistics
	Alarms

	Managing EWS Binary SMS/SMPP

23 Extended Web Services Subscriber Profile/LDAPv3

	Overview of the EWS Subscriber Profile/LDAPv3 Communication Service
	Application Interfaces
	Events and Statistics
	Event Data Records
	Charging Data Records
	Statistics
	Alarms

	Managing EWS Subscriber Profile/LDAPv3
	Properties for EWS Subscriber Profile/LDAPv3
	LDAP Server Schema
	Configuration Workflow for EWS Subscriber Profile/LDAPv3
	Management Operations for EWS Subscriber Profile/LDAPv3
	Provisioning for EWS Subscriber Profile/LDAPv3

	Reference: Attributes and Operations for EWS Subscriber Profile/LDAPv3
	Attribute: AuthDN
	Attribute: AuthPassword
	Attribute: BaseDN
	Attribute: ConnTimeout
	Attribute: Host
	Attribute: LDAPConnectionStatus
	Attribute: MaxConnections
	Attribute: MinConnections
	Attribute: Port
	Attribute: RecoverTimerInterval
	Attribute: Schema
	Operation: updateLDAPSettings
	Operation: updateSchemaURL

24 Extended Web Services WAP Push/PAP

	Overview of the EWS WAP Push/PAP Communication Service
	Push Access Protocol (PAP) 2.0

	Application Interfaces
	Events and Statistics
	Charging Data Records
	Event Data Records
	Statistics
	Alarms

	Managing the EWS WAP Push/PAP Communication Service
	Properties for EWS WAP Push/PAP
	WAP User Address Scheme
	Configuration Workflow for EWS WAP Push/PAP

	Reference: Attributes for WAP Push/PAP
	Attribute: BasicAuthentication
	Attribute: BAPassword
	Attribute: BAUser
	Attribute: PPGNotificationURL
	Attribute: PPGURL
	Attribute: ResultNotificationEndpoint

25 Native MM7

	Overview of the Native MM7 Communication Service
	Status Reports
	Delivery Reports
	Read-Reply Report

	Network-triggered Multimedia Messages

	Application Interfaces
	Events and Statistics
	Event Data Records
	Charging Data Records
	Statistics
	Alarms

	Managing Native MM7
	Properties for Native MM7
	Configuration Workflow for Native MM7
	Provisioning Workflow for Native MM7

	Reference: Attributes and Operations for Native MM7
	Attribute: HTTPBasicAuthentication
	Attribute: HTTPBasicAuthenticationUsername
	Attribute: HTTPBasicAuthenticationPassword
	Attribute: Mm7RelayServerAddress
	Attribute: XSDVersion
	Operation: addVASIDMapping
	Operation: addVASPIDMapping
	Operation: enableReceiveMmsNotification
	Operation: enableStatusReporting
	Operation: getReceiveMmsNotificationForAddress
	Operation: getReceiveMmsNotificationMatches
	Operation: listAllVASIDMapping
	Operation: listAllVASPIDMapping
	Operation: listReceiveMmsNotifications
	Operation: listStatusReportingNotifications
	Operation: listVASIDMapping
	Operation: listVASPIDMapping
	Operation: removeReceiveMmsNotification
	Operation: removeStatusReporting
	Operation: removeVASIDMapping
	Operation: removeVASPIDMapping

26 Native SMPP

	Overview of the Native SMPP Communication Service
	SMPP Server Service
	Connection Handling and Provisioning
	About Creating Connections
	About Connection Error Handling
	About Session Handling

	Authentication
	Connection Pooling
	Server Connection Pools
	Client Connection Pools

	Timeouts
	SMPP Server Service Timers
	Plug-in Instance Timers

	Windowing
	Connection-Based Routing
	Enable Connection-Based Routing
	Limitations

	Short Code Translation
	USSD Support
	its_session_info
	service_type
	ussd_service_operation

	Billing Identification
	smpp_billing_id

	Load Balancing, High Availability and Fail-Over

	Application Interfaces
	Events and Statistics
	Event Data Records
	Charging Data Records
	Statistics
	Alarms

	Managing Native SMPP
	Properties for SMPP Server Service
	Properties for Native SMPP Plug-in
	Configuration Workflow for Native SMPP Communication Service
	Provisioning Workflow for Native SMPP Communication Service
	System Properties for SMPP Server Service
	System Property: oracle.ocsg.protocol.smpp.serverservice.max_threads
	System Property: oracle.ocsg.protocol.smpp.serverservice.min_threads
	System Property: wlng.legacy.smpp.PDUManipulationAllowed
	System Property: wlng.smpp.max_payload_size

	Reference: Attributes and Operations for SMPP Server Service
	Attribute: ConnectionBasedRouting
	Attribute: EnquireLinkMaxFailureTimes
	Attribute: EnquireLinkTimerValue
	Attribute: InactivityTimerValue
	Attribute: InitiationTimerValue
	Attribute: LooseBinding
	Attribute: OfflineMO
	Attribute: RequestTimerValue
	Attribute: ServerAddress
	Attribute: ServerPort
	Attribute: SmscSystemId
	Operation: addApplicationSpecificSettings
	Operation: closeClientConnection
	Operation: closeServerConnection
	Operation: closeServerPort
	Operation: deleteApplicationSpecificSettings
	Operation: listApplicationSpecificSettings
	Operation: listClientConnections
	Operation: listClusterServerConnectionsForMOJumping
	Operation: listPluginInstances
	Operation: listServerConnections
	Operation: listServerPorts
	Operation: resetClientConnection
	Operation: resetServerPort
	Operation: updateAllServerPorts

	Reference: Attributes and Operations for Native SMPP Plug-in
	Attribute: BindType
	Attribute: DeliverSmRespCommandStatus
	Attribute: EnableDeleteAfterCancel
	Attribute: EnableDeleteAfterNotify
	Attribute: EnableDeleteAfterQuery
	Attribute: EnquireLinkTimerValue
	Attribute: EsmeAddressRange
	Attribute: EsmeNpi
	Attribute: EsmePassword
	Attribute: EsmeSystemId
	Attribute: EsmeSystemType
	Attribute: EsmeTon
	Attribute: LocalAddress
	Attribute: LocalPort
	Attribute: MessageIdInHexFormat
	Attribute: NumberReceiverConnections
	Attribute: NumberTransceiverConnections
	Attribute: NumberTransmitterConnections
	Attribute: RequestTimerValue
	Attribute: RetryTimesBeforeGiveUp
	Attribute: RetryTimesBeforeReconnect
	Attribute: SmscAddress
	Attribute: SmppVersion
	Attribute: SmscPort
	Attribute: WindowingMaxQueueSize
	Attribute: WindowingMaxWaitTime
	Attribute: WindowingSize

27 Native UCP

	Overview of the Native UCP Communication Service
	Connection and Credential Handling
	Credentials
	Multiple Connections
	Connection Pooling

	Windowing and Transaction Numbers
	Behavior When the Window is Exceeded
	Behavior When TRNs Are Not Released

	Authentication
	Availability and Retry
	Application-Initiated traffic
	Network-Initiated traffic
	Client-Side Retry Handling

	Heartbeat Support
	Server-Side Heartbeat Support
	Client-Side Heartbeat Support

	Storage Provider

	Application Interfaces
	Events and Statistics
	Event Data Records
	About UCP_trn/UCP_mappedTrn
	About UCP_oadc

	Charging Data Records
	Statistics
	Alarms

	Managing Native UCP
	Properties for Native UCP Protocol Server Service
	Properties for Native UCP Managed Plug-in
	Properties for Native UCP Plug-in Instance
	Configuration Workflow for Native UCP Communication Service
	Provisioning Workflow for Native UCP Communication Service
	Reconfiguring Native UCP Listen Ports
	Reference: Attributes and Operations for Native UCP Protocol Server Service
	Attribute: MaxReconnectAttempts
	Attribute: TimeBetweenReconnectAttempts
	Attribute: UCPProtocol (read-only)
	Operation: closeClientSideConnection
	Operation: closeServerSideConnection
	Operation: dumpClientSideConnectionsInfo
	Operation: dumpOngoingClientConnectionsRetryInfo
	Operation: dumpServerSideConnectionsInfo
	Operation: listUCPServersString
	Operation: restartPorts
	Operation: stopOngoingClientConnectionRetry

	Reference: Attributes and Operations for Native UCP Managed Plug-in
	Attribute: listenAddress
	Attribute: listenPort
	Operation:reRegisterWorkManager

	Reference: Attributes and Operations for Native UCP Plug-in Instance
	Attribute: OpenSessionTimeout

A Events, Alarms, and Charging

	Events
	Event handling in the Access Tier
	Event handling in the Network Tier

	Alarms
	Management integration
	OSS
	SNMP

	Charging Data Records

Preface

This book is a detailed reference for the communications services used in Oracle Communications Services Gatekeeper.

Audience

This document is for system administrators who install and maintain Oracle Communications Services Gatekeeper, as well as managers, support engineers, application developers, sales, and marketing.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see the following documents in the Oracle Communications Services Gatekeeper documentation set:

	
Oracle Communications Services Gatekeeper Accounts and SLAs Guide

	
Oracle Communications Services Gatekeeper Alarm Handling Guide

	
Oracle Communications Services Gatekeeper Application Developer's Guide

	
Oracle Communications Services Gatekeeper Concepts Guide

	
Oracle Communications Services Gatekeeper Installation Guide

	
Oracle Communications Services Gatekeeper Licensing Guide

	
Oracle Communications Services Gatekeeper Partner Relationship Management Guide

	
Oracle Communications Services Gatekeeper Platform Development Studio Developer's Guide

	
Oracle Communications Services Gatekeeper Platform Test Environment Guide

	
Oracle Communications Services Gatekeeper RESTful Application Developer's Guide

	
Oracle Communications Services Gatekeeper SDK User's Guide

	
Oracle Communications Services Gatekeeper Statement of Compliance

	
Oracle Communications Services Gatekeeper System Administrator's Guide

	
Oracle Communications Services Gatekeeper System Backup and Restore Guide

1 About Communication Services

This chapter presents a high level introduction to Oracle Communications Services Gatekeeper communication services.

Introduction

All application service request data flows through Services Gatekeeper communication services. A communication service consists of a service type, such as Multimedia Messaging, Terminal Location, and so on, an application-facing interface (also called a "north" interface), and a network-facing interface (also called "south" interface).

How They Work

Communication services are separated into two functional layers: the service facade and the service enabler. The service facade contains the application-facing interfaces and manages interactions with applications. The service enabler contains the mechanisms necessary for communicating with the underlying network nodes.

Application-initiated requests (also called mobile terminated, or MT requests) enter through the service facade. A facade comprises a set of application-facing interfaces of a particular type. Services Gatekeeper supplies facades for traditional SOAP Web Services interfaces, RESTful interfaces, and, in three cases (MM7, SMPP, and UCP) native telephony interfaces. There is also a facade specifically designed to work with the Oracle Service Bus, for SOA-style installations.

After the requests have been processed by the service facade, they are sent to the service enabler by using Remote Method Invocation (RMI). The service enabler layer manages service authorization and policy enforcement, charging, and traffic throttling and shaping. The enabler translates the request into a form appropriate for the underlying network node.

Although the operator may choose instead to run in a sessionless mode, by default Services Gatekeeper requires that applications (except those using native telephony interfaces) acquire a Services Gatekeeper session before sending request traffic. Applications do this using the Session Manager interface appropriate for their facade type. The Session Manager returns a session ID, which the application adds to the header of all its requests. Services Gatekeeper can use the session ID to keep track of all the traffic that an application sends for the duration of the session. Sessions allow correlation among sequences of operations. They are not used for authentication

Network-triggered (also called mobile originated, or MO) traffic enables applications to receive data from the telecom network. To do so, the application must first send a request to Services Gatekeeper, or have the operator perform the equivalent task using operation, administration, and maintenance (OAM) operations, to register a description of the types of data it is interested in – delivery notifications, incoming messages, etc. – and any criteria that the data must be meet to be acceptable. For example, an application might specify that it is only interested in receiving incoming SMS messages that are addressed to the 12345 short code and that begin with the string blue.

Typical Application-Initiated Traffic Flow

The following steps describe the application-initiated traffic flow. Steps 1-3 are optional.

	
An application establishes a session using the Session Management Web Service in the facade layer.

	
A session is established, and the session ID is returned to the application. After the application has been established, it may access multiple communication services across the cluster transparently.

	
The session is valid until the application terminates it or an operator-established time period has elapsed.

	
A request for a particular operation, usually transported over Secure Sockets Layer (SSL), enters at the application-facing interface in the facade layer, either directly from the application, or, if the particular installation uses an Oracle Service Bus, from the Oracle Service Bus. The application-facing interface is implemented as a SOAP-based Web Service or a RESTful Web Service. Requests using the RESTful requests are authenticated with HTTP basic or OAuth 2.0 authentication using a user name and password. SOAP-based Web Service requests are authenticated using WebLogic Server WS-Security, which supports plain text or digest passwords, X.509 certificates, or SAML tokens.

All requests are authenticated in this manner, whether or not the application uses the session mode.

In addition, SOAP-based requests may be further secured through encryption using the W3C's standard XML encryption and through digital signatures using the W3C XML digital signature standard. The particular security requirements of the installation are specified in the WS-Policy section of the operator-published WSDL file.

For information about W3C's standard XML encryption, see

http://www.w3.org/TR/xmlenc-core/

For information about W3C XML digital signature standard, see

http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/

It is possible to use the appropriate standard Parlay X 2.1 or 3.0 WSDL to create SOAP-based requests, but the developer would then be required to ascertain the appropriate security type from the operator and insert the information manually.

	
The request is serialized and passed on to the service enabler over RMI.

From this point on, requests that enter the communication service using the SOAP Service Facade and those using the RESTful Service Facade use the same service enablers. SLA construction, CDRs, EDRs, alarms, and so forth are same for the SOAP-based requests as they are for the RESTful requests of the same type.

The entrance point for the service enabler marks the beginning of the application-initiated transaction.

	
The request is sent to the Plug-in Manager.

	
The Plug-in Manager invokes the Interceptor Stack to evaluate the request. The Interceptor Stack is a flexible set of chained evaluation steps that:

	
Validates the request

	
Enforces a range of policy decisions based on SLAs and possibly additional rules

	
Performs any necessary data manipulation

	
Routes the request to an appropriate protocol translation module (a network plug-in): Routing can be done on a wide variety of parameters.

If a request fails because of an unavailable module, an interceptor retries the request using one of the remaining eligible modules.

	
The request is sent to the network plug-in to be translated into the protocol suitable for the underlying network node. All state information required by the underlying network node is stored within the network plug-in.

	
The request is passed to the network.

	
When the network node acknowledges the request, charging data about the completed request is recorded.

	
The transaction commits.

Typical Network-Triggered Traffic Flow

To receive network-triggered traffic, an application must indicate to Services Gatekeeper that it is interested in receiving traffic from the network. It does this by registering for (or subscribing to) notifications, either by sending a request to Services Gatekeeper or by having the operator set up the notification using OAM operations.

For example, the application could send Services Gatekeeper a request to begin receiving SMS messages from the network, indicating that it is only interested in messages that are sent to the address 12345 and that begin with the string blue. SOAP-based requests indicate the URL of the Web Service that the application has implemented to receive these notifications back from Services Gatekeeper. RESTful requests indicate the channel to which the notifications should be published.

The registration for notifications is stored in the appropriate network plug-in, which in most cases passes it on to the underlying network node. In certain cases the Services Gatekeeper operator must do this manually. When a matching SMS message reaches the plug-in from the network, the plug-in sends the message to the Plug-in Manager, which invokes the Interceptor Stack for evaluation. Then, using RMI, the final interceptor passes the notification, along with the appropriate location from the registration, to the facade layer, which sends it on either to the application, the channel, or to the Oracle Service Bus.

Installations that include multiple facade layers (for example, both RESTful and SOA) can be set up to use the same service enabler layer. Special configuration is required in such installations to route network-triggered traffic to the appropriate facade layer. See “Managing and Configuring the Tier Routing Manager” in Oracle Communications Services Gatekeeper System Administrator's Guide for more information.

Common Features

The following functionality is common to all communication services:

	
Service level agreements related to policy enforcement

	
Service level agreements related to network protection

	
Traffic security

	
Events, alarms, and charging

	
Statistics and transaction units

For information about service level agreements, see Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

For information about traffic security for SOAP-based interfaces to the communication services, see Oracle Fusion Middleware Securing Oracle WebLogic Server at:

http://download.oracle.com/docs/cd/E15523_01/web.1111/e13707/toc.htm

RESTFul Web Services to the communications services use either HTTP basic or OAuth 2.0 authentication with a user name and password. SSL is required. For information about basic HTTP authentication, see HTTP Authentication: Basic and Digest Access Authentication at:

http://www.ietf.org/rfc/rfc2617.txt

OAuth 2.0 is a draft open source Web authorization protocol developed by the Internet Engineering Task Force (IETF). For detailed specifications and more information see:

http://tools.ietf.org/wg/oauth/

For information about Services Gatekeeper support for OAuth 2.0 authentication, see "Services Gatekeeper OAuth 2.0 Authorization and Resource Servers".

For general information about events, alarms, and charging, see Appendix A, "Events, Alarms, and Charging."

For information about statistics, see the "Statistics" sections in the individual chapters in this guide.

Connectivity to SIP Network Infrastructure

For communication services that access Session Initiation Protocol (SIP) networks, Services Gatekeeper connects applications to SIP-based functionality by using Oracle Converged Application Server. Converged Application Server is collocated with Services Gatekeeper in the network tier.

2 Quality of Service

This chapter describes the Services Gatekeeper Quality of Service (QoS) interface in detail. Information on the QoS RESTful interface can be found in the Oracle Communications Services Gatekeeper RESTful Developer's Guide, another document in this set.

Overview of the Services Gatekeeper QoS

The Services Gatekeeper QoS feature provides applications with a RESTful interface that allows them to control the quality of a subscriber connection. Among the connection quality aspects that the QoS feature can control include limiting and boosting subscriber connection bandwidth, as well as tuning connection latency. The QoS RESTful interface allows the application to initiate the following operations:

	
Apply a QoS policy

	
Apply a QoS policy based upon a pre-defined template

	
Modify an existing QoS policy

	
Remove an existing QoS policy

	
Register and unregister for QoS-related events

	
Query a QoS policy

While the Services Gatekeeper QoS feature enables an application to control QoS, actually executing the applied QoS policy and applying quality changes to a subscriber connection requires a separate Policy and Charging Rule Function (PCRF), such as Oracle Communications Policy Controller, working in conjunction with a Policy and Charging Enforcement Function (PCEF), solutions which are provided by various third parties.

	
Note:

Services Gatekeeper applies a QoS plan to a subscriber ID and a framed IP address. Applying QoS plans to individual data streams for a particular subscriber ID is not supported.

An Example End to End QoS Solution

While Services Gatekeeper can apply and remove QoS plans, it provides no capability for actually enforcing QoS changes; instead it works in conjunction with PCRF and PCEF servers. Figure 2-1 illustrates a typical end to end QoS solution:

Figure 2-1 An Example End to End QoS Solution

[image: Surrounding text describes Figure 2-1 .]

In Figure 2-1:

	
A subscriber's mobile device is registered with the Gateway GPRS Support Node (GGSN) or the PCEF.

	
The GGSN or PCEF requests a default QoS plan from the PCRF.

	
Once the QoS plan is returned from the PCRF, the GGSNor PCEF executes that plan and connects the subscriber's device to the Internet.

	
A subscriber application sends a RESTful request to Services Gatekeeper for a change in QoS.

	
Services Gatekeeper sends the QoS request to the PCRF using the Rx protocol.

	
The PCRF pushes the new QoS plan to the PCEF using the Gx protocol, and the PCEF executes that plan.

	
The PCRF interfaces with BRM or another billing management system to charge the subscriber appropriately.

Application Interfaces

For information about the RESTful-based interface for the QoS communication service, see the discussion of QoS interfaces in the Oracle Communications Services Gatekeeper RESTful Application Developer's Guide another document in this set.

Events and Statistics

The QoS communication service generates Event Data Records (EDRs) and alarms, to assist system administrators and developers in monitoring the service.

For general information, see Appendix A, "Events, Alarms, and Charging."

Event Data Records

Table 2-1 lists IDs of the EDRs created by the QoS communication service.

Table 2-1 Event Types Generated by the QoS Communication Service

	EDR ID	Method Called
	
91801

	
ApplyQoSFeatureResponse and applyQoSFeature

	
91802

	
QoSStatus and getQoSStatus

	
91803

	
ActualProperties and modifyQoSFeature

	
91804

	
removeQoSFeature

	
91805

	
QoSFeatureExpiration

	
91806

	
startQoSNotification

	
91807

	
stopQoSNotification

	
91808

	
sendInitAAR

	
91809

	
sendModifyAAR

	
91810

	
sendSTR

	
91811

	
handleRxRAR

	
91812

	
applicationQoSNotification_NotifyQoSEvent

	
91813

	
Application Tier: ApplyQoSFeatureResponse and applyQoSFeature

	
91814

	
Application Tier: QoSStatus and getQoSStatus

	
91815

	
Application Tier: ActualProperties and modifyQoSFeature

	
91816

	
Application Tier: removeQoSFeature

	
91817

	
Application Tier: startQoSNotification

	
91818

	
Application Tier: stopQoSNotification

	
91819

	
applyTemplateBasedQoS

	
91820

	
modifyTemplateBasedQoS

	
91821

	
Application Tier: applyTemplateBasedQos

Alarms

For the list of QoS-related alarms, see Oracle Communications Services Gatekeeper Alarm Handling Guide.

Specifications for the QoS Communication Service

Table 2-2 lists the technical specifications for the QoS communication service.

Table 2-2 Elements of the QoS Communication Service

	Element	Description
	
Managed object in Administration Console

	
domain_name then OCSG then AdminServer then Communication Services then Plugin_qos_diametern where n is the number of the particular plug-in instance.

	
MBean

	
Domain=com.bea.wlcp.wlng

Deployment Name=wlng_nt_qos#5.1.0.0

InstanceName=Plugin_qos_diametern where n is the number of the particular plug-in instance

Type=oracle.ocsg.plugin.qos.diameter.management.QoSMBean

	
Network protocol plug-in service ID

	
Plugin_qos_diameter

	
Network protocol plug-in instance ID

	
Plugin_qos_diamtern where n is the number of the particular plug-in instance

	
Supported address scheme

	
tel

	
Application-facing interface

	
RESTful

	
Network-facing interface

	
Diameter Rx

	
Service type

	
QoS RESTful management interface

	
Deployment artifacts

	
wlng_at_qos_rest.ear, wlng_nt_qos_rest.ear, com.bea.wlcp.wlng.plugin.qos.diameter.store_5.1.0.0.jar, and RestfulQoSClient.jar (PTE)

Managing the QoS Communication Service

This section describes properties and workflows for the QoS communication service plug-in instance.

General Configuration Workflow for the QoS Communication Service

The following procedure provides an outline to configure the QoS plug-in using the Administration Console or an MBean browser.

	
Select wlng then PluginManager then createPluginInstance.

	
Set PluginServiceId to Plugin_qos_diameter and PluginInstanceId to Plugin_qos_diametern where n is an integer that is not already in use by an existing QoS plug-in instance.

	
Select wlng then PluginManager then addRoute.

	
Set PluginInstanceId to the id you configured in step 2 and enter an appropriate value for AddressExpression depending upon your Services Gatekeeper configuration.

	
Select the MBean wlng_nt_qos#5.1.0.0 and select the plug-in instance you created in step 2.

	
Select wlng_nt_qos#5.1.0.0 then select the plug-in you created in step 2. Expand QoSMBean and configure the plug-in instance attributes:

	
Attribute: DestinationHost

	
Attribute: DestinationPort

	
Attribute: DestinationRealm

	
Attribute: OriginHost

	
Attribute: OriginPort

	
Attribute: OriginRealm

	
Note:

DestinationHost and DestinationPort should be the correct values for your PCRF.

	
Ensure that your PCRF is listening on the DestinationPort configured for the QoS plug-in.

Managing QoS Templates

Using the Administration Console or an MBean browser such as the Platform Test Environment, you can perform the following operations on QoS templates:

	
Load a QoS Template

	
Retrieve an Existing QoS Template

	
List Match Rules for a QoS Template

	
Delete a QoS Template

The creation of QoS templates and the usage of the QoS RESTful interface is covered in detail in the Oracle Communications Services Gatekeeper RESTful Application Developer's Guide, another document in this document set.

Load a QoS Template

For more information creating QoS templates, see "Template-based Apply QoS" in the Oracle Communications Services Gatekeeper RESTful Application Developer's Guide, another document in this document set. Once you have created a QoS template, to load it, do the following.

	
Select the MBean wlng_nt_qos#5.1.0.0 and select the plug-in instance you wish to configure.

	
Expand QoSMBean and select loadQoSRequestTemplate.

	
In the MatchRule text box, enter a regular expression that matches the end user identifiers you want associated with the QoS template.

	
In the Content text box, paste in the contents of a valid QoS template.

	
Execute the MBean operation.

The QoS template is loaded and available for use. See "Operation: loadQoSRequestTemplate()" for more details.

Retrieve an Existing QoS Template

To retrieve an existing QoS template, do the following.

	
Select the MBean wlng_nt_qos#5.1.0.0 and select the plug-in instance you wish to configure.

	
Expand QoSMBean and select retrieveQoSRequestTemplate.

	
In the MatchRule text box, enter a regular expression that matches the end user identifiers you have associated with a QoS template. If you are not sure which MatchRules are defined, you can use the listQoSRequestTemplateMatchRules operation.

	
Execute the MBean operation.

The QoS template is returned in the Output text box. See "Operation: retrieveQoSRequestTemplate()" for more details.

List Match Rules for a QoS Template

To list match rules for a QoS template, do the following.

	
Select the MBean wlng_nt_qos#5.1.0.0 and select the plug-in instance you wish to configure.

	
Expand QoSMBean and select listQoSRequestTemplateMatchRules.

	
Execute the MBean operation.

The MatchRules configured for the plug-in are returned in the Output text box. See "Operation: listQoSRequestTemplateMatchRule()" for more details.

Delete a QoS Template

To delete a QoS template, do the following.

	
Select the MBean wlng_nt_qos#5.1.0.0 and select the plug-in instance you wish to configure using the Administration Console or an MBean browser.

	
Expand QoSMBean and select deleteQoSRequestTemplate.

	
In the MatchRule text box, enter a regular expression that matches the end user identifiers associated with the QoS template you want to delete.

	
Execute the MBean operation.

The QoS template is deleted. See "Operation: deleteQoSRequestTemplate()" for more details.

Reference: Attributes and Operations for QoS

This section describes the attributes and operations for the configuration and maintenance of the QoS communication service:

	
Attribute: DestinationHost

	
Attribute: DestinationPort

	
Attribute: DestinationRealm

	
Attribute: OriginHost

	
Attribute: OriginPort

	
Attribute: OriginRealm

	
Attribute: Connected

	
Operation: connect()

	
Operation: disconnect()

	
Operation: loadQoSRequestTemplate()

	
Operation: retrieveQoSRequestTemplate()

	
Operation: listQoSRequestTemplateMatchRule()

	
Operation: deleteQoSRequestTemplate()

Attribute: DestinationHost

Scope: Shared

Unit: Not applicable

Format: String

The host name of the PCRF diameter server.

Valid values are either a host name or a regular expression matching a host name. The default value is host.destination.com.

Attribute: DestinationPort

Scope: Shared

Unit: Not applicable

Format: Integer

Port number of the PCRF diameter server.

Valid values are 0–65535. The default value is 3588.

Attribute: DestinationRealm

Scope: Shared

Unit: Not applicable

Format: String

Diameter destination realm used for requests.

Valid values are either a realm or a regular expression matching a realm. The default value is destination.com.

Attribute: OriginHost

Scope: Local

Unit: Not applicable

Format: String

Host name of the machine running the QoS plug-in.

Valid values are either a host name or a regular expression matching a host name. The default value is host.origin.com.

Attribute: OriginPort

Scope: Local

Unit: Not applicable

Format: Integer

Port number of the machine running the QoS plug-in.

Valid values are 0–65535. A value of 0 indicates a random port and should be used when upgrading the plug-in. The default value is 0.

Attribute: OriginRealm

Scope: Local

Unit: Not applicable

Format: String

Diameter originating realm used for requests.

Valid values are either a realm or a regular expression matching a realm. The default value is origin.com.

Attribute: Connected

Scope: Local

Unit: Not applicable

Format: Boolean

Boolean value indicating whether the plug-in is connected.

Valid values are true or false. The default value false.

Operation: connect()

Scope: Local

Connects the QoS plug-in to the PCRF diameter server. If the plug-in is already connected, it will first be disconnected and then reconnected using the current parameters.

Signature:

connect()

Operation: disconnect()

Scope: Local

Disconnects the QoS plug-in from the PCRF diameter server. If the plug-in is not currently connected, no action is taken.

Signature:

disconnect()

Operation: loadQoSRequestTemplate()

Scope: Shared

This operation loads a QoS template for use with the template-based QoS interfaces.

The MatchRule parameter is a regular expression that determines to which subscriber IDs the QoS template will apply. For example a MatchRule value of tel:1234* will match any subscriber whose ID begins with tel:1234.

The Content parameter takes a template formatted according to the XSD found in the xsd subdirectory in the plugin_qos_diameter.jar file which itself is contained within the wlng_nt_qos.ear archive located in Middleware_Home/ocsg_5.1/applications directory.

For more information on QoS templates, see the section “Template-based Apply QoS” in the Oracle Communications Services Gatekeeper RESTful Application Developer's Guide, another document in this document set.

Signature:

loadQoSRequestTemplate(MatchRule: String, Content: XML)

Table 2-3 lists the parameters that the loadQoSRequestTemplate operation accepts.

Table 2-3 loadQoSRequestTemplate Parameters

	Parameter	Description
	
MatchRule

	
Literal or regular expression matching one or more subscriber IDs.

	
Content

	
A valid QoS template.

Operation: retrieveQoSRequestTemplate()

Scope: Local

This operation retrieves a QoS template associated with a particular subscriber ID or a range of subscriber IDs defined by the MatchRule parameter.

The MatchRule parameter is a regular expression that determines to which subscriber IDs the QoS template is applied. For example a MatchRule value of tel:1234* will match any subscriber whose ID begins with tel:1234.

Signature:

retrieveQoSRequestTemplate(MatchRule: String)

Table 2-4 lists the parameters that the retrieveQoSRequestTemplate operation accepts.

Table 2-4 retrieveQoSRequestTemplate Parameters

	Parameter	Description
	
MatchRule

	
Literal or regular expression matching one or more subscriber IDs.

Operation: listQoSRequestTemplateMatchRule()

Scope: Local

This operation lists all of the match rules that have been defined for the plug-in.

Signature:

listQoSRequestTemplateMatchRule()

Operation: deleteQoSRequestTemplate()

Scope: Shared

This operation deletes a QoS template associated with a particular subscriber ID or a range of subscriber IDs defined by the MatchRule parameter.

The MatchRule parameter is a regular expression that determines to which subscriber IDs the QoS template is applied. For example a MatchRule value of tel:1234* will match any subscriber whose ID begins with tel:1234.

Signature:

deleteQoSRequestTemplate(MatchRule: String)

Table 2-5 lists the operations that the deleteQoSRequestTemplate operation accepts.

Table 2-5 retrieveQoSRequestTemplate Parameters

	Parameter	Description
	
MatchRule

	
Literal or regular expression matching one or more subscriber IDs.

3 Services Gatekeeper OAuth 2.0 Authorization and Resource Servers

This chapter provides an overview of the OAuth 2.0 specification and explains where to find information on how to use it with communication services to protect third-party resources.

Using OAuth 2.0 with Services Gatekeeper

Services Gatekeeper provides OAuth 2.0 Authorization and Token endpoints allowing third-party applications secure access to subscriber resources (communications services). For example, your subscribers may want to share photos on an online auction Web site, but not expose their own security credentials to do so. In cases like this, you configure OAuth 2.0 to allow them access.

Authorized applications possessing valid tokens can interact with Services Gatekeeper communication services to perform various functions, including sending messages, charging and terminal location queries. See the discussion on OAuth endpoints in the Oracle Communications Services Gatekeeper OAuth Guide, for more information on the Authorization and Token endpoints.

OAuth 2.0 modules are deployed by default during installation.

A basic Authentication server is also provided in Services Gatekeeper for use with OAuth 2.0.

For complete details on how to use OAuth 2.0 to secure resources, see Oracle Communications Services Gatekeeper OAuth Guide, another document in this set.

4 Application Subscription Management

This chapter describes the use of Application Subscription Management in Oracle Communications Services Gatekeeper.

Overview of the Application Subscription Management Service

Services Gatekeeper supports Open Mobile Alliance (OMA) General Service Subscription Management (GSSM) functionality including subscription management, subscription profile access and subscription validation with Application Subscription Management.

Application Subscription Management includes both a communication service and a RESTful interface for managing and querying service subscription status. Application Subscription Management grants or restricts application access to a subscriber's communication service(s) depending on subscription status.

For information on the OMA GSSM specification see:

http://technical.openmobilealliance.org/Technical/release_program/gssm_v1_0.aspx

For information on using the Application Subscription Management communication service, including configuring subscriptions using SMPP, see the chapter on Application Subscription Management in Oracle Communications Services Gatekeeper Communication Service Guide.

Application Interfaces

Services Gatekeeper provides a RESTful interface for Application Subscription Management in addition to the Mbean interface accessible from the Administration Console or Platform Test Environment (PTE).

For more information on using the RESTful interface, see the chapter on Application Subscription Management in Oracle Communications Services Gatekeeper RESTful Application Developer's Guide.

Support for OAuth Authentication

Services Gatekeeper supports OAuth authentication in Application Subscription Management. Services Gatekeeper generates and stores an OAuth token for subscription requests using OAuth. Subsequent application access requests for subscriber services usage require a valid OAuth accessToken. The Services Gatekeeper OAuth Interceptor uses the provided accessToken to confirm a subscriber's identity before permitting subscriber services usage.

See "Configure Application OAuth Scope", for information on enabling OAuth accessTokens in Application Subscription Management.

For information about Services Gatekeeper OAuth support, see Oracle Communications Services Gatekeeper OAuth Guide.

Events and Statistics

The Application Subscription Management communication service generates Event Data records (EDRs) to assist system administrators and developers in monitoring the service.

Event Data Records

Table 4-1 lists the EDRs generated by Application Subscription Management operations.

Table 4-1 Application Subscription Management Class EDRs

	EDR ID	Description
	
409001

	
An application created a subscription using createSubscription.

	
409002

	
An application deleted a subscription using deleteSubscription.

	
409003

	
An application confirmed a subscription using confirmSubscription.

	
409004

	
A subscriber list of application subscriptions was generated using listSubscriptionsBySubscriberAddress.

	
409005

	
An application subscription list was generated using listSubscriptionsByApplicationName.

	
409006

	
An application subscription was retrieved using getSubscriptionById.

	
409007

	
An application subscription response was sent.

	
409008

	
An application subscription request was created using createSubscription from SMPP.

	
409009

	
An application subscription was suspended.

	
409010

	
An application subscription was unsuspended.

	
409101

	
createSubscription was called in the Access Tier.

	
409102

	
deleteSubscription was called in the Access Tier.

	
409103

	
confirmSubscription was called in the Access Tier.

	
409104

	
listSubscriptionsBySubscriberAddress was called in the Access Tier.

	
409105

	
listSubscriptionsByApplicationName was called in the Access Tier.

	
409106

	
getSubscriptionById was called in the Access Tier.

	
409107

	
notifySubscription callback in the Access Tier.

	
409110

	
suspend was called in the Access Tier.

	
409111

	
unsuspend was called in the Access Tier.

Managing Application Subscription Management

This section describes the properties and workflow for setting up the Application Subscription Management plug-in instance.

The Application Subscription Management plug-in supports loading an XML configuration file that includes subscription management settings for managed applications. Additional operations are provided for retrieving configuration, listing subscriptions and connecting to an SMSC.

Properties for Application Subscription Management

Table 4-2 lists the technical specifications for the communication service.

Table 4-2 Properties for Application Subscription Management

	Property	Description
	
Managed object in Administration Console

	
domain_name- OCSG > server_name > Communication Services > Plugin_app_subscription

	
MBean

	
Domain=com.bea.wlcp.wlng

Name=wlng_nt _app_subscription

InstanceName=Plugin_app_subscription

Type=oracle.ocsg.plug-in.subscription.management.SubscriptionPluginMbean

	
Network protocol plug-in service ID

	
Plugin_app_subscription

	
Network protocol plug-in instance ID

	
The ID is assigned when the plug-in instance is created. See the chapter on managing and configuring the plug-in manager in Oracle Communications Services Gatekeeper System Administrator's Guide.

	
Service type

	
AppSubscription

	
Interfaces with the network nodes using:

	
SMPP Esme System Type and Version

	
Deployment artifacts:

	
wlng_nt_app_subscription.ear and wlng_at_app_subscription_rest.ear

Configuration Workflow for Application Subscription Management

The Services Gatekeeper installation includes two optional packages used with Application Subscription Management. By default, these packages are not installed. You must install and deploy the following packages before configuring Application Subscription Management:

	
wlng_at_app_subscription_rest.ear

	
wlng_nt_app_subscription.ear

You must create and configure a plug-in instance after installing the packages. The following lists the steps for configuring the plug-in:

	
Deploy the Application Subscription Management plug-in ear packages. See "Deploying Application Subscription Management Packages", for more information.

	
Create an Application Subscription Management plug-in instance. See "Creating an Application Subscription Management plug-in Instance", for more information.

	
Configure the Application Subscription Management plug-in attributes. See "Editing Application Subscription Management Attributes", for more information.

	
Load and retrieve application subscription configurations. See "Loading Application Subscription Configuration Files" and "Retrieving Application Subscription Configuration Files", for more information.

	
Retrieve application subscription lists. See "Retrieving Application Subscription Lists", for more information.

	
Configure application OAuth scope if necessary. See "Configure Application OAuth Scope", for more information.

	
Connect to an SMSC. See "Connecting to an SMSC", for more information.

Deploying Application Subscription Management Packages

To deploy the necessary packages:

	
Log into the Administration Console.

	
Click Deployments under Domain Structure.

	
Click Install.

	
If needed, enter the path to the applications directory in Path. The default location for the applications directory is Oracle_Home/ocsg_5.1/applications.

	
Select wlng_at_app_subscription_rest.ear.

	
Click Next.

	
Select Install this deployment as an application.

	
Click Next.

	
Select any optional settings that are needed in your environment. For more information on deployment settings, see the chapter on the deployment model in Oracle Communications Services Gatekeeper System Administrator's Guide.

	
Click Next.

	
Review your deployment choices and click Finish.

	
Repeat steps 1 through 11 for the wlng_nt_app_subscription.ear application file.

Creating an Application Subscription Management plug-in Instance

You must create one or more instances of the Application Subscription Management plug-in to manage subscription requests. Create an instance of the Application Subscription Management plug-in as follows:

	
Log into the Administration Console.

	
Expand OCSG in the Domain Structure pane.

	
Click on the name of the administration or managed server you want to create the Application Subscription Management plug-in instance on.

	
Expand the Container Services node in the Oracle Communications Services Gatekeeper pane.

	
Select PluginManager.

	
Click the Operations tab.

	
In the Select An Option pull down menu select createPluginInstsance.

	
Enter Plugin_app_subscription in the PluginServiceId field.

	
Enter a unique name in the PluginInstanceId field.

	
Click Invoke.

	
Add a route to the ASM plug-in using the pluginManager Mbean.

The Platform Test Environment MBean interface can also be used to create and manage Application Subscription Management plugins. For information on using the Platform Test Environment, see Oracle Communications Services Gatekeeper Platform Test Environment Guide.

Editing Application Subscription Management Attributes

Each instance of the Application Subscription Management plug-in can be configured with its own attributes. For example, you can configure an instance of the plug-in for each type of short message service center (SMSC) used in your environment.

To configure the Application Subscription Management plug-in attributes listed in "Reference: Attributes and Operations for Application Subscription Management":

	
Log into the Administration Console.

	
Expand the OCSG node in Domain Structure.

	
Select the administration or managed server where you created the Application Subscription Management plug-in.

	
Expand Communication Services in Oracle Communications Services Gatekeeper.

	
Select the Application Subscription Management plug-in instance to configure.

	
Click Attributes.

	
Select the checkboxes of the attributes you wish to change.

	
Enter the new values for the attribute(s).

	
Click Update Attributes.

Loading Application Subscription Configuration Files

Create and manage subscription configurations for application services using the loadAppSubscriptionsXml operation. You use this operation with an XML configuration file containing subscription parameters described in "Operation: loadAppSubscriptionsXml".

Example 4-1 shows a sample subscription management XML configuration file used to load application subscription data into Services Gatekeeper.

Example 4-1 Sample Subscription Management XML Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<subscriptions xmlns="http://oracle/ocsg/appSubscription/types" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <!-- SP code -->
 <subscription serviceNumber="tel:1234">
 <application appInstanceId="domain_user" applicationName="Oracle News"
 endpoint="http://www.oracle.com" expirePeriod="36000000" subscriptionChannel="ALL">
 <metaInfo key="key1" value="value1"/>
 <metaInfo key="key2" value="value2"/>
 <subscribeInfo text="Subscribe 123" notification="You have subscribed Oracle News successfully"/>
 <unsubscribeInfo text="Un-Subscribe 123" notification="You have unsubscribed Oracle News successfully"/>
 <suspendInfo text="Suspend 123" notification="You have suspended Oracle News successfully"/>
 <unsuspendInfo text="Un-Suspend 123" notification="You have unsuspended Oracle News successfully"/>
 <resourceId>createoutboundMessage</resourceId>
 </application>

 <application appInstanceId="domain_user_1" applicationName="Oracle Jokes"
 endpoint="http://www.oracle.com" expirePeriod="36000000" subscriptionChannel="WEB_RESTFUL">
 <subscribeInfo text="Subscribe 456" notification="You have subscribed Oracle Jokes successfully"/>
 <unsubscribeInfo text="Un-Subscribe 456" notification="You have unsubscribed Oracle Jokes successfully"/>
 <suspendInfo text="Suspend 456" notification="You have suspended Oracle Jokes successfully"/>
 <unsuspendInfo text="Un-Suspend 456" notification="You have unsuspended Oracle Jokes successfully"/>
 <resourceId>createoutboundMessage</resourceId>
 </application>
 </subscription>

 <!--App code-->
 <subscription serviceNumber="tel:5678">
 <application appInstanceId="domain_user_2" applicationName="Google Weather"
 endpoint="http://www.google.com" expirePeriod="36000000" subscriptionChannel="SMS">
 <subscribeInfo text="Subscribe" notification="You have subscribed Google Weather successfully"/>
 <unsubscribeInfo text="Un-Subscribe" notification="You have unsubscribed Google Weather successfully"/>
 <suspendInfo text="Suspend" notification="You have suspended Oracle Jokes successfully"/>
 <unsuspendInfo text="Un-Suspend" notification="You have unsuspended Oracle Jokes successfully"/>
 <resourceId>createoutboundMessage</resourceId>
 </application>
 </subscription>

</subscriptions>

Load the new or update an existing application subscription configuration using the following procedure:

	
Log into the Administration Console.

	
Expand OCSG under Domain Structure.

	
Click on the name of the administration or managed server you want to create the application subscription configuration on.

	
Expand Communication Services.

	
Select the Application Subscription Management plug-in instance you want to configure.

	
Click Operations.

	
In the Select An Operation pull down menu select loadAppSubscriptionsXml.

	
Copy and paste your XML configuration file contents in the xml field.

	
Click Invoke.

Retrieving Application Subscription Configuration Files

Retrieve the current application subscription configuration in a plug-in instance using the following procedure:

	
Log into the Administration Console.

	
Expand OCSG under Domain Structure.

	
Click on the name of the administration or managed server from where you want to retrieve the subscription configuration.

	
Expand Communication Services.

	
Select the Application Subscription Management plug-in instance you want to retrieve the subscription configuration from.

	
Click Operations.

	
In the Select An Operation pull down menu select retrieveAppSubscriptionsXml.

	
Click Invoke.

Retrieving Application Subscription Lists

Retrieve a list of application subscriptions in Services Gatekeeper using the following procedure:

	
Log into the Administration Console.

	
Expand OCSG under Domain Structure.

	
Click on the name of the administration or managed server from where you want to retrieve the subscription list.

	
Expand Communication Services.

	
Select the Application Subscription Management plug-in instance you want to retrieve the subscription list from.

	
Click Operations.

	
In the Select An Option pull down menu, select retrieveAppSubscriptionsList.

	
Click Invoke.

Configure Application OAuth Scope

You must configure application scope when using OAuth authentication with Application Subscription Management. Configure the application's resourceId as an OAuth scopeId in Services Gatekeeper using the loadAppSubscriptionResourceXml operation in the OAuthResourceMbean.

	
Log into the Administration Console.

	
Expand OCSG under Domain Structure.

	
Click the name of the administration or managed server where the OAuth container service is hosted.

	
Expand Container Services.

	
Expand OAuthService.

	
Select OAuthResourceMBean.

	
Click Operations.

	
In the Select an Option pull down menu, select loadAppSubscriptionResourceXml.

	
Enter the XML string as shown in Example 4-2. Set the resource id to the same value used when loading the application subscription configuration. See "Loading Application Subscription Configuration Files", for more information. Set the interfaceName, methodName and tokenExpirePeriod as required. See Oracle Communications Services Gatekeeper OAuth Guide, for more information on the loadAppSubscriptionResourceXml operation.

Example 4-2 loadAppSubscriptionResourceXml Sample XML Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<resources xmlns="http://oracle/ocsg/oauth2/management/xml" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <!-- amountTransaction -->
 <resource id="OneAPIMMS" name="mms"
 interfaceName="oracle.ocsg.parlayrest.plugin.MmsPlugin" methodName="sendMessage"
 tokenExpirePeriod="3600">
 </resource>
</resources>

Connecting to an SMSC

Application Subscription Management plug-in instances must connect to an SMSC to accept and confirm subscription requests by SMS. Connect each plug-in instance to its SMSC using the following procedure:

	
Log into the Administration Console.

	
Expand OCSG under Domain Structure.

	
Click on the name of the administration or managed server where the Application Subscription Management plug-in to connect to an SMSC is hosted.

	
Expand Communication Services.

	
Select the Application Subscription Management plug-in instance you want to connect to an SMSC. The plug-in Attributes tab contains the SMSC connection information. See "Editing Application Subscription Management Attributes", for more information on configuring SMSC connection attributes.

	
Click Operations.

	
In the Select An Operation pull down menu select connect.

	
Click Invoke.

	
Click Attributes and check the ActiveStatus value. A true value indicates successful connection to the configured SMSC.

Handling Traffic from Applications without Subscriptions

Application Subscription Management checks for a valid subscription before allowing an application to use a subscriber communication service. However, some applications may not use subscriptions to manage message delivery. For example, a service provider may use an application in Services Gatekeeper to send a subscriber a text message about an emergency or pending service outage.

Services Gatekeeper only validates subscription status for applications configured in the Application Subscription Management XML file. Messages originating from applications not configured in the XML file bypass subscription validation and are sent through the normal delivery pathway. See "Loading Application Subscription Configuration Files", for information on the Application Subscription Management configuration file.

Reference: Attributes and Operations for Application Subscription Management

This section describes the attributes and operations for configuration and maintenance.

Attributes list

	
Attribute: ActiveStatus

	
Attribute: ConnectDelayValue

	
Attribute: SmscAddress

	
Attribute: SmscPort

	
Attribute: LocalAddress

	
Attribute: LocalPort

	
Attribute: BindType

	
Attribute: NumberTransmitterConnections

	
Attribute: NumberReceiverConnections

	
Attribute: NumberTransceiverConnections

	
Attribute: EsmeSystemId

	
Attribute: EsmePassword

	
Attribute: EsmeSystemType

	
Attribute: SmppVersion

	
Attribute: EsmeTon

	
Attribute: EsmeNpi

	
Attribute: EsmeAddressRange

	
Attribute: RequestTimerValue

	
Attribute: EnquireLinkTimerValue

	
Attribute: RetryTimesBeforeReconnect

	
Attribute: RetryTimesBeforeGiveUp

	
Attribute: WindowingSize

	
Attribute: WindowingMaxQueueSize

	
Attribute: WindowingMaxWaitTime

	
Attribute: DeliverSmRespCommandStatus

	
Attribute: MessageIdInHexFormat

	
Operation: loadAppSubscriptionsXml

	
Operation: retrieveAppSubscriptionsXml

	
Operation: retrieveAppSubscriptionsList

	
Operation: connect

Attribute: ActiveStatus

Scope: LocalUnit: Not applicableFormat: Boolean

Specifies the SMSC connection status for this plug-in.

Attribute: ConnectDelayValue

Scope: ClusterUnit: Not applicableFormat: Integer

Attribute exposed for management.

Attribute: SmscAddress

Scope: ClusterUnit: Not applicableFormat: String

The hostname or IP address of the SMSC.

Attribute: SmscPort

Scope: ClusterUnit: Not applicableFormat: String

The port number on the SMSC host to connect to.

Attribute: LocalAddress

Scope: localUnit: Not applicableFormat: String

The local machine name or IP address.

Attribute: LocalPort

Scope: localUnit: Not applicableFormat: String

The start port which the SMPP SMSC should bind to.

Attribute: BindType

Scope: ClusterUnit: Not applicableFormat: Integer

Specifies how the plug-in connects to the SMSC.

Attribute: NumberTransmitterConnections

Scope: ClusterUnit: Not applicableFormat: Integer

Number of transmitter connections used towards the SMSC when BindType is 0 or 2.

Attribute: NumberReceiverConnections

Scope: ClusterUnit: Not applicableFormat: Integer

Number of receiver connections used towards the SMSC when BindType is 0 or 3.

Attribute: NumberTransceiverConnections

Scope: ClusterUnit: Not applicableFormat: Integer

Number of transceiver connections used towards the SMSC when BindType is 1.

Attribute: EsmeSystemId

Scope: ClusterUnit: Not applicableFormat: String

The system ID that the plug-in uses when binding to the SMSC.

Attribute: EsmePassword

Scope: ClusterUnit: Not applicableFormat: String

The password that the plug-in uses when binding to the SMSC.

Attribute: EsmeSystemType

Scope: ClusterUnit: Not applicableFormat: String

The system type that the plug-in uses when binding to the SMSC.

Attribute: SmppVersion

Scope: ClusterUnit: Not applicableFormat: String

The SMPP version supported by this plug-in.

Attribute: EsmeTon

Scope: ClusterUnit: Not applicableFormat: Integer

The ESME type of number (TON) used for the address parameter in a bind operation.

Attribute: EsmeNpi

Scope: ClusterUnit: Not applicableFormat: Integer

The ESME numbering plan indicator (NPI) used for the address parameter in a bind operation.

Attribute: EsmeAddressRange

Scope: ClusterUnit: Not applicableFormat: String

The address range that the plug-in uses when binding to the SMSC.

Attribute: RequestTimerValue

Scope: ClusterUnit: Not applicableFormat: Integer

The maximum time, in seconds, between the submission of a request to the SMSC and the receipt of the corresponding response before the connection is terminated.

Attribute: EnquireLinkTimerValue

Scope: ClusterUnit: Not applicableFormat: Integer

The minimum interval between ENQUIRE_LINK requests to the SMSC, in seconds.

Attribute: RetryTimesBeforeReconnect

Scope: ClusterUnit: Not applicableFormat: Integer

The maximum number of failed heartbeats before reconnecting to the SMSC.

Attribute: RetryTimesBeforeGiveUp

Scope: ClusterUnit: Not applicableFormat: Integer

The maximum number of times to try to reconnect to the SMSC before giving up.

Attribute: WindowingSize

Scope: ClusterUnit: Not applicableFormat: Integer

The number of simultaneous outstanding requests to the SMSC allowed.

Attribute: WindowingMaxQueueSize

Scope: ClusterUnit: Not applicableFormat: Integer

The number of requests allowed to wait in the windowing queue.

Attribute: WindowingMaxWaitTime

Scope: ClusterUnit: Not applicableFormat: Integer

The maximum amount of time, in seconds, that each request can wait in the windowing queue.

Attribute: DeliverSmRespCommandStatus

Scope: ClusterUnit: Not applicableFormat: Integer

The command status of the DELIVER_SM_RESP used when an application cannot be reached.

Attribute: MessageIdInHexFormat

Scope: ClusterUnit: Not applicableFormat: Boolean

Specifies the messageId format used in submitSMResp, submitMultiResp, and dataSMResp operations. True indicates hex format and false indicates decimal format.

Operation: loadAppSubscriptionsXml

Scope: Cluster

Loads application subscriptions configuration XML content.

Signature:

loadAppSubscriptionsXml(String)

Table 4-3 Subscription Management Configuration File Elements

	Element Name	Unique	Description	Required
	
serviceNumber

	
Y

	
The target telephone number if subscribed by SMS. The number can be a service provider number, or an application number.When using a service provider number, multiple application registrations share the same number, but must use different subscription short message text.

	
Y

	
appInstanceId

	
Y

	
The application's instance ID.

	
Y

	
applicationName

	
Y

	
The application's name.

	
Y

	
endpoint

	
N

	
The application's endpoint where Services Gatekeeper sends subscription notifications.

	
Y

	
reqLimit

	
N

	
The maximum request time limit.

	
N

	
expirePeriod

	
N

	
The number of seconds a subscription is valid.

	
Y

	
subscriptionChannel

	
N

	
The subscription channel. Supported values are ALL, WEB_RESTFUL or SMS.

	
N

	
metaInfo.key

	
N

	
The new added EDR attribute key.

	
N

	
metaInfo.value

	
N

	
The new added EDR attribute value.

	
N

	
subscribeInfo.text

	
N

	
A regular expression describing accepted SMS subscribe request format.

	
Y

	
subscribeInfo.notification

	
N

	
The notification SMS text after subscription confirmation.

	
Y

	
unsubscribeInfo.text

	
N

	
A regular expression describing accepted SMS unsubscribe request format.

	
Y

	
unsubscribeInfo.notification

	
N

	
The notification SMS text after unsubscription confirmation.

	
Y

	
suspendInfo.text

	
N

	
A regular expression describing accepted SMS suspendInfo request format.

	
Y

	
suspendInfo.notification

	
N

	
The notification SMS text after a subscription suspension.

	
Y

	
unsespendInfo.text

	
N

	
A regular expression describing accepted SMS unsuspendInfo request format.

	
Y

	
unsuspendInfo.notification

	
N

	
The notification SMS text after a subscription unsuspension.

	
Y

	
resourceId

	
N

	
The value mapped to the OAuth scopeId.

	
N

Operation: retrieveAppSubscriptionsXml

Scope: Cluster

Retrieves currently configured application subscriptions XML content.

Signature:

retrieveAppSubscriptionsXml()

Operation: retrieveAppSubscriptionsList

Scope: Cluster

Retrieves a list of current application subscriptions.

Signature:

retrieveAppSubscriptionsList()

Operation: connect

Scope: Cluster

Connects the Application Subscription Management plug-in instance to the configured SMSC.

Signature:

connect()

5 Parlay X 2.1 Audio Call/SIP

This chapter describes the Parlay X 2.1 Audio Call/Session Initiation Protocol (SIP) communication service in detail.

Overview of the Parlay X 2.1 Audio Call / SIP Communication Service

The Parlay X 2.1 Audio Call/SIP communication service exposes the Parlay X 2.1 Audio Call 2.1 application interfaces.

The communication service connects to a SIP-IMS network using Oracle Converged Application Server. Converged Application Server is collocated with Services Gatekeeper in the network tier.

For the exact version of the standards that the communication service supports for the application-facing interfaces and the network protocols, see the appendix on standards and specifications in Oracle Communications Services Gatekeeper Concepts Guide.

Using this communication service, an application can:

	
Set up a Parlay X 2.1 call between a terminal device and a media server to play an audio file (such as WAV).

	
Get the status for a Parlay X 2.1 Audio call (played, playing, pending, or error).

	
Explicitly end any of these audio calls.

The Audio Call communication service can be used by applications to start an audio call using the Parlay X 2.1 Part 11 protocol.

The audio message content to be played must be defined in an audio file format stored at a URL available to the network. Services Gatekeeper does not actually render the message. This is the responsibility of equipment that must be present on the target telecom network.

Audio Call/SIP Plug-in Application Requests

The Audio Call/SIP plug-in uses these requests that applications send to play or manage audio calls:

	
PlayAudioMessage: The application sends the URI of an audio file and the address of the terminal to the network. This request then returns a call correlator to the application and plays the audio file to the terminal.

	
EndMessage: The application send in the correlator of a PlayAudioMessage request to end that call immediately.

	
GetMessageStatus: The application sends in the correlator of a PlayAudioMessage request to get the status of that call. This method returns the status of the call (played, playing, pending, or error.

Audio Call/SIP Plug-in Call Flow

This is a sample Audio Call/SIP call flow:

	
The application sends a Parlay X 2.1 PlayAudioCall request to the terminal address with a SIP INVITE message.

This message does not contain a Session Description Protocol (SDP).

	
The terminal returns a SIP 200 OK message to the application containing a valid SDP.

	
The application's media server controller then processes the SDP and sends an ACK message back to the terminal address.

Application Interfaces

For information about the SOAP-based interface for the Parlay X 2.1 Audio Call/SIP communication service, see the discussion of Parlay X 2.1 Interfaces in Oracle Communications Services Gatekeeper Application Developer's Guide.

For information about the RESTful Audio Call interface, see the discussion of Audio Call in Oracle Communications Services Gatekeeper RESTful Application Developer's Guide.

The RESTful Service Short Messaging interfaces provide RESTful access to the same functionality as the SOAP-based interfaces. The internal representations are identical, and for the purposes of creating SLAs, reading CDRs, and so on, they are the same.

Events and Statistics

The Parlay X 2.1 Audio Call/SIP communication service generates Event Data Records (EDRs), Charging Data Records (CDRs), alarms, and statistics to assist system administrators and developers in monitoring the service.

For general information, see Appendix A, "Events, Alarms, and Charging."

Event Data Records

Table 5-1 lists the IDs of the EDRs created by the Parlay X 2.1 Audio Call/SIP communication service. This does not include EDRs created when exceptions are thrown.

Table 5-1 Event Types Generated by Parlay X 2.1 Audio Call/SIP

	EDR ID	Method Called
	
1000

	
PlayTextMessage

	
	
	
1003

	
GetMessageStatus

	
1004

	
EndMessage

Charging Data Records

Audio Call/SIP-specific CDRs are generated under the following conditions:

	
When callConnected is sent from the network to Services Gatekeeper, indicating that the audio message has connected to the terminal. The CDR number is 405001; the class is oracle.ocsg.plugin.audio_call.sip.south.call.AudioCallCdrContext.

	
When callReleased is sent from the network to Services Gatekeeper, indicating that the audio message has completed playing. The CDR number is 405002; the class is oracle.ocsg.plugin.audio_call.sip.south.call.AudioCallCdrContext.

Statistics

Table 5-2 maps methods invoked from either the application or the network to the transaction types collected by the Services Gatekeeper statistics counters.

Table 5-2 Methods and Transaction Types for Parlay X 2.1 Audio CalI/SIP

	Method	Transaction Type
	
	
	
PlayAudioMessage

	
TRANSACTION_TYPE_CALL_CONTROL_SERVICE_INITIATED

Alarms

For the list of alarms, see Oracle Communications Services Gatekeeper Alarm Handling Guide.

Managing Parlay X 2.1 Audio Call / SIP

This section describes the properties and workflow for setting up the Parlay X 2.1 Audio Call/SIP plug-in instance.

The Parlay 2.1 Audio Call/SIP plug-in supports sending an audio file to a single terminal.

The Audio Call/SIP plug-in is usable with high availability systems only if your media server supports clustering. See your media server documentation for details.

This plug-in service does not support multiple instantiation using the Plug-in Manager. You can create only one instance by using the Plug-in Manager. The plug-in instance is not automatically created when the plug-in service is started.

Properties for Parlay X 2.1 Audio Call/SIP

Table 5-3 lists the technical specifications for the communication service.

Table 5-3 Properties for Parlay X 2.1 Audio CalI/SIP

	Property	Description
	
Managed object in Administration Console

	
domain_name > OCSG > server_name > Communication Services > plugin_instance_id

	
MBean

	
Domain=wlng_nt_audio_call_px21#5.1

Name=wlng_nt

InstanceName=Audio_Call_sip

Type=Plugin_px21_audio_call_sip.AudioCallMBean

	
Network protocol plug-in service ID

	
Plugin_px21_audio_call_sip

	
Network protocol plug-in instance ID

	
The ID is assigned when the plug-in instance is created. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide.

	
Supported Address Schemes

	
tel, sip

	
Application-facing interfaces

	
com.bea.wlcp.wlng.px21.plugin.AudioCallPlugin

	
Service type

	
AudioCall

	
Exposes to the service communication layer a Java representation of:

	
Parlay X 2.1 Part 11: Audio Call

	
Interfaces with the network nodes using:

	
RFC 3261.

http://www.ietf.org/rfc/rfc3261.txt

	
Deployment artifacts

	
Application-facing: wlng_at_audio_call_px21.ear

Network-facing: wlng_nt_audio_call_px21.ear

Configuration Workflow for Parlay X 2.1 Audio Call/SIP

Following is an outline for configuring the plug-in using the Administration Console or an MBean browser.

	
Using the Administration Console or an MBean browser, select the MBean listed in the "Properties for Parlay X 2.1 Audio Call/SIP" section.

	
Configure the behavior of the plug-in instance. See "Reference: Attributes for Parlay X 2.1 Audio Call/SIP" for more information.

	
If required, create and load a node SLA. For details see “Defining Global Node and Service Provider Group Node SLAs” and “Managing SLAs” in the Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

It is not necessary to set up routing rules to the plug-in instance.

Reference: Attributes for Parlay X 2.1 Audio Call/SIP

This section describes the attributes for configuration and maintenance:

	
Attribute: FromAddress

Attribute: MediaServerFactoryJNDI

	
Attribute: RetentionDuration

	
Attribute: RouteURI

Attribute: FromAddress

Scope: Cluster

Unit: URI

The URI of the connecting subscriber

Attribute: MediaServerFactoryJNDI

Scope: Cluster

Format: Integer

Unit type: Seconds

Default Value: 900

Valid Range: 1–3600

The JNDI used by the media server driver instance

Attribute: RetentionDuration

Scope: Cluster

Format: String

Default Value: null, for the default instance

Time period to retain the audio call status before deleting it

Attribute: RouteURI

Scope: Cluster

Unit: URI

The network location of the terminal accepting the audio call

6 Parlay X 2.1 Call Notification/SIP

This chapter describes the Parlay X 2.1 Call Notification/Session Initiation Protocol (SIP) communication service in detail.

Overview of the Parlay X 2.1 Call Notification/SIP Communication Service

The Parlay X 2.1 Call Notification/SIP communication service exposes the Parlay X 2.1 Call Notification application interfaces.

The communication service connects to a SIP-IMS network using Oracle Converged Application Server. Converged Application Server is collocated with Services Gatekeeper in the network tier. The SIP servlet running on Converged Application Serve acts as both as a SIP User Agent and a SIP Proxy. Depending on which Parlay X operation and state of the call, the SIP servlet acts either as a proxy or as the calling party.

For the exact version of the standards that the communication service supports for the application-facing interfaces and the network protocols, see the appendix on standards and specifications in Oracle Communications Services Gatekeeper Concepts Guide.

Using this communication service, an application can:

	
Set up and tear down notifications on call events for a specified combination of caller and callee.

	
Receive additional notifications on call events related to the notification in question.

	
Affect a call during call setup.

This communication service is not used to set up new calls. It is used only to reroute or terminate calls that are already in progress.

For an application to receive notifications about call setup attempts from the network, it must register its interest in these notifications by setting up a subscription in Services Gatekeeper. A subscription, or a notification, is defined by a set of addresses and a set of criteria. The criteria define the events in which the application is interested. The addresses may be translated by some mechanism in the telecom network prior to reaching Services Gatekeeper.

Two types of notifications exist:

	
Simple monitoring

	
Monitoring and rerouting

Simple monitoring

An application can register to be notified about the following events as the call between the caller and the callee is set up:

	
Callee is busy.

	
Callee is not reachable.

	
Callee does not answer.

	
Call is in progress.

	
Call setup in progress.

Monitoring and rerouting

In addition to monitoring the state of call setup, an application can also choose to make certain changes to the call under certain conditions. An application can:

	
Intercept a call setup attempt between the caller and the callee and reroute the call (to a C-party) without making an attempt to connect with the callee (B-party). An example might be a general technical support number that is routed to the appropriate call center based on time of day.

In addition, if one of the monitored events occurs (busy, not reachable, does not answer), an application can:

	
Let further processing of the call be handled by the network.

	
End the call.

	
Reroute the call to another callee (C-party).

Requests (registration for notifications) using the Call Notification communication service flow only in one direction: from the application to Services Gatekeeper.

The communication service manages only the signalling aspect of a call. The media or audio channel is managed by the underlying telecom network. Only parties residing on the same network can be controlled unless:

	
The network plug-in connects to a media gateway controller.

	
One of the participants is connected to a signalling gateway so that, from a signalling point of view, all parties reside on the same network.

Application Interfaces

For information about the SOAP-based interface for the Parlay X 2.1 Call Notification/SIP communication service, see the discussion of Parlay X 2.1 Interfaces in Oracle Communications Services Gatekeeper Application Developer's Guide.

For information about the RESTful Call Notification interface, see the discussion of Call Notification in Oracle Communications Services Gatekeeper RESTful Application Developer's Guide.

The RESTful Service Call Notification interfaces provide RESTful access to the same functionality as the SOAP-based interfaces. The internal representations are identical, and for the purposes of creating SLAs, reading CDRs, and so on, they are the same.

Events and Statistics

The Parlay X 2.1 Call Notification/SIP communication service generates Event Data Records (EDRs), Charging Data Records (CDRs), alarms, and statistics to assist system administrators and developers in monitoring the service.

For general information, see Appendix A, "Events, Alarms, and Charging."

Event Data Records

Table 6-1 lists IDs of the EDRs created by the Parlay X 2.1 Call Notification/SIP communication service. This list does not include EDRs created when exceptions are thrown.

Table 6-1 Event Types Generated by Parlay X 2.1 Call Notification/SIP

	EDR ID	Method Called
	
3000

	
startCallNotification

	
3001

	
stopCallNotification

	
3002

	
startCallDirectionNotification

	
3003

	
stopCallDirectionNotification

	
8014

	
notifyBusy

	
8015

	
notifyCalledNumber

	
8016

	
notifyNoAnswer

	
8017

	
notifyNotReachable

	
8018

	
handleBusy

	
8019

	
handleCalledNumber

	
8020

	
handleNoAnswer

	
8021

	
handleNotReachable

Charging Data Records

Call Notification/SIP - specific CDRs are generated under the following conditions:

	
After a notifyBusy, notifyCalledNumber, notifyNoAnswer, notifyAnswer, or notifyNotReachable is sent from the network.

	
After a handleBusy, handleCalledNumber, handleNoAnswer, or handleNotReachable is called.

Statistics

Table 6-2 maps methods invoked from either the application or the network to the transaction types collected by the Services Gatekeeper statistics counters.

Table 6-2 Methods and Transaction Types for Parlay X 2.1 Call Notification/SIP

	Method	Transaction Type
	
notifyBusy

	
TRANSACTION_TYPE_CALL_CONTROL_NETWORK_INITIATED

	
notifyNotReachable

	
TRANSACTION_TYPE_CALL_CONTROL_NETWORK_INITIATED

	
notifyNoAnswer

	
TRANSACTION_TYPE_CALL_CONTROL_NETWORK_INITIATED

	
notifyCalledNumber

	
TRANSACTION_TYPE_CALL_CONTROL_NETWORK_INITIATED

	
handleBusy

	
TRANSACTION_TYPE_CALL_CONTROL_NETWORK_INITIATED

	
handleNotReachable

	
TRANSACTION_TYPE_CALL_CONTROL_NETWORK_INITIATED

	
handleNoAnswer

	
TRANSACTION_TYPE_CALL_CONTROL_NETWORK_INITIATED

	
handleCalledNumber

	
TRANSACTION_TYPE_CALL_CONTROL_NETWORK_INITIATED

Managing Parlay X 2.1 Call Notification/SIP

This section describes the properties and workflow the Parlay X 2.1 Call Notification/SIP plug-in instance.

Parlay X 2.1 Call Notification/SIP uses two parts for SIP connectivity: a part that executes as a network protocol plug-in instance in the Services Gatekeeper container and a part that executes as a SIP application in the SIP Server container. The two parts execute in different containers and must be configured in both.

This plug-in service does not support multiple instantiation using the Plug-in Manager. There is a one to one mapping between plug-in service and plug-in instance. The plug-in instance is created when the plug-in service is started.

Properties for Parlay X 2.1 Call Notification/SIP

Table 6-3 lists the technical specifications for the communication service.

Table 6-3 Properties for Parlay X 2.1 Call Notification/SIP

	Property	Description
	
Managed object in Administration Console

	
domain_name- OCSG > server_name > Communication Services > Plugin_px21_call_notification_sip

	
MBean

	
Domain=com.bea.wlcp.wlng

Name=wlng_nt

InstanceName=Plugin_px21_call_notification_sip

Type=com.bea.wlcp.wlng.plugin.callnotification.sip.management.CallNotificationMBean

	
Network protocol plug-in service ID

	
Plugin_px21_call_notification_sip

	
Supported Address Scheme

	
sip

	
Application-facing interfaces

	
com.bea.wlcp.wlng.px21.plugin.CallNotificationManagerPlugin

om.bea.wlcp.wlng.px21.plugin.CallDirectionManagerPlugin

com.bea.wlcp.wlng.px21.callback.CallNotificationCallback

	
Service type

	
CallNotification

	
Exposes to the service communication layer a Java representation of:

	
Parlay X 2.1 Part 3: Call Notification

	
Interfaces with the network nodes using:

	
SIP: Session Initiation Protocol, RFC 3261

	
Deployment artifacts:

NT EAR

wlng_nt_call_notification_px21.ear

	
px21_call_notification_service.jar, Plugin_px21_call_notification_sip.jar, and px21_call_notification_sip.war

	
Deployment artifacts:

AT EAR: Normal

wlng_at_call_notification_px21.ear

	
px21_call_notification.war, px21_call_notification_callback.jar, and rest_call_notification.war

	
Deployment artifacts:

AT EAR: SOAP Only

wlng_at_call_notification_px21_soap.ear

	
px21_call_notification.war and px21_call_notification_callback.jar

Configuration Workflow for Parlay X 2.1 Call Notification/SIP

Following is an outline for configuring the plug-in using the Administration Console or an MBean browser.

	
Set up the routing rules to the plug-in instance. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the plug-in instance ID and address schemes listed in the "Properties for Parlay X 2.1 Call Notification/SIP" section.

	
If desired, create and load a node SLA. For details see “Defining Global Node and Service Provider Group Node SLAs” and “Managing SLAs” in the Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

	
Provision the service provider accounts and application accounts. For information, see Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

Reference: Operations for Parlay X 2.1 Call Notification/SIP

This section describes operations for configuration and maintenance:

	
Operation: getCallDirectionSubscription

	
Operation: getNotificationSubscription

	
Operation: listCallDirectionSubscriptions

	
Operation: listNotificationSubscriptions

	
Operation: removeAllCallDirectionSubscriptions

	
Operation: removeAllNotificationSubscriptions

	
Operation: removeCallDirectionSubscription

	
Operation: removeNotificationSubscription

Operation: getCallDirectionSubscription

Scope: Cluster

Displays call direction subscription information.

Signature:

getCallDirectionSubscription(Correlator: String)

Table 6-4 lists the parameters that the getCallDirectionSubscription operation accepts.

Table 6-4 getCallDirectionSubscription Parameters

	Parameter	Description
	
Correlator

	
ID for the subscription. Assigned by an application when the subscription was started.

Operation: getNotificationSubscription

Scope: Cluster

Displays call notification subscription information.

Signature:

getNotificationSubscription(Correlator: String)

Table 6-5 lists the parameters that the getNotificationSubscription operation accepts.

Table 6-5 getNotificationDirectionSubscription Parameters

	Parameter	Description
	
Correlator

	
ID for the subscription. Assigned by an application when the subscription was started.

Operation: listCallDirectionSubscriptions

Scope: Cluster

Displays a list of correlators for call direction subscriptions.

Signature:

listCallDirectionSubscriptions(Offset: int, Length: int)

Table 6-6 listCallDirectionSubscriptions Parameters

	Parameter	Description
	
Offset

	
Start of offset.

	
Length

	
Number of entries returned.

Operation: listNotificationSubscriptions

Scope: Cluster

Displays a list of correlators for call notification subscriptions.

Signature:

listNotificationSubscriptions(Offset: int, Length: int)

Table 6-7 listNotificationSubscriptions Parameters

	Parameter	Description
	
Offset

	
Start of offset.

	
Length

	
Number of entries returned.

Operation: removeAllCallDirectionSubscriptions

Scope: Cluster

Removes all call direction subscriptions.

Signature:

removeAllCallDirectionSubscriptions()

Operation: removeAllNotificationSubscriptions

Scope: Cluster

Removes all call notification subscriptions.

Signature:

removeAllNotificationSubscriptions()

Operation: removeCallDirectionSubscription

Scope: Cluster

Removes a call direction subscription.

Signature:

removeCallDirectionSubscription(Correlator: String)

Table 6-8 removeCallDirectionSubscription Parameters

	Parameter	Description
	
Correlator

	
ID for the subscription. Assigned by an application when the subscription was started.

Operation: removeNotificationSubscription

Scope: Cluster

Removes a call notification subscription.

Signature:

removeNotificationSubscription(Correlator: String)

Table 6-9 removeNotificationSubscription Parameters

	Parameter	Description
	
Correlator

	
ID for the subscription. Assigned by an application when the subscription was started.

7 Parlay X 2.1 Multimedia Messaging/MM7

This chapter describes the Parlay X 2.1 Multimedia Messaging/MM7 communication service in detail.

Overview of the Parlay X 2.1 Multimedia Messaging/MM7 Communication Service

The Parlay X 2.1 Multimedia Messaging/MM7 communication service exposes the Parlay X 2.1 Multimedia Messaging set of application interfaces.

The communication service acts as a Value Added Service (VAS) application connecting to an MMS relay server using the MM7 protocol.

For the exact version of the standards that the communication service supports for the application-facing interfaces and the network protocols, see the appendix on standards and specifications in Oracle Communications Services Gatekeeper Concepts Guide.

Using a Multimedia Messaging communication service, an application can:

	
Send multimedia messages to one or many destination addresses. The payload in these multimedia messages can be any type that can be specified using MIME, including multipart messages.

	
Sign up to be notified that delivery receipts for sent multimedia messages have been received from the network.

	
Receive delivery receipts on sent multimedia messages that have arrived from the network.

	
Explicitly query Services Gatekeeper for delivery receipts on sent multimedia messages.

	
Sign up to be notified if specified multimedia messages for the application have been received from the network.

	
Receive notifications that specified multimedia messages for the application have arrived from the network. These notifications do not include the message payload, but they do provide a message ID.

	
Explicitly poll Services Gatekeeper for multimedia messages sent to the application that have arrived from the network and been stored in Services Gatekeeper.

Requests can flow in two directions. They can be application-initiated or network-triggered,

Processing Application-initiated Requests

After an application has sent a multimedia message to one or more destination addresses, two different types of response can be returned:

	
Send Receipts

	
Delivery Receipts

Send Receipts

Send receipts are acknowledgements that the network node has received the multimedia message from the application by means of Services Gatekeeper. Although a single multimedia message may be sent to multiple destination addresses, normally only one send receipt is returned to the application. The receipt is returned synchronously in the response message to the sendMessage operation.

Delivery Receipts

Delivery receipts contain the delivery status of the multimedia message. They report whether the multimedia message has actually been delivered to the mobile terminal by the network. There is one delivery receipt per destination address, with one of three possible outcomes:

	
Successful.

	
Unsuccessful: The multimedia message could not be delivered before it expired.

	
Unsupported: Delivery notification for this address is not supported. This can occur if the originating network supports delivery receipts but is unable to acquire the appropriate information for one or more destination addresses. This status is reported for each address for which this is the case.

Because actual delivery of the multimedia message may take several hours, or even days (if, for example, the mobile terminal is turned off at the time the multimedia message is sent), delivery receipts are returned asynchronously. Applications can either choose to have delivery receipts delivered to them automatically by supplying Services Gatekeeper with a callback interface or they can chose to poll Services Gatekeeper.

If the application supplies a callback interface, there are two possible outcomes:

	
Services Gatekeeper sends the delivery receipt and the application receives and acknowledges it.

	
Services Gatekeeper sends the delivery receipt but the application does not acknowledge reception. In this case, Services Gatekeeper stores the delivery receipt in temporary in-memory storage. The application can poll Services Gatekeeper for these receipts. Each stored delivery receipt is time stamped and, after a configurable time period, is removed.

If the application chooses not to supply a callback interface, Services Gatekeeper stores the delivery receipt in temporary in-memory storage. The application can poll Services Gatekeeper for these receipts. Each stored delivery receipt is time stamped and, after a configurable time period, removed.

Processing Network-triggered Requests

Two types of traffic destined for an application can arrive at Services Gatekeeper from the network:

	
Delivery receipts for application-initiated sent multimedia messages; see “Delivery Receipts”.

	
Mobile-originated multimedia messages destined for the application

For an application to receive multimedia messages from the network, it must indicate its interest in these messages by registering for online notification in Services Gatekeeper. A notification is defined by a service activation number, which is the destination address of the multimedia message. The service activation number may be translated by some mechanism, such as short codes, in the telecom network. Use "Operation: startMessageNotification" to register for online notification of network-triggered MMS messages from the Administration console. An application can also use the following operations to register for online notifications:

	
ParlayX 2.1 StartMessageNotification; see the 3GPP TS 29.199-05 Parlay X Web Services Part 5: Multimedia Messaging specification

	
REST Start Message Notification; see Oracle Communications Services Gatekeeper RESTful Application Developer's Guide

	
OneAPI Subscribe to MMS Delivery Notification; see Oracle Communications Services Gatekeeper OneApi Application Developer's Guide

An application can also register to receive multimedia messages offline. Services Gatekeeper stores the messages and delivers them when the application requests them. Use "Operation: enableReceiveMms" to provision offline notification of network-triggered MMS messages.

Additional criteria can be tied to the service activation number, such as the start of the first plain/text part in the multimedia message payload or the subject of the multimedia message. For the message to be accepted by Services Gatekeeper, both the service activation number and any additional criteria must match the notification.

Mobile-originated messages to applications are routed based on the criteria that are specified when the notifications are created. The behavior for matching criteria is as follows:

	
If the subject of the message is not null, the subject is used for criteria matching the specified criteria.

	
If the subject of the message is null, the first word of first text attachment is used for matching the criteria.

	
If the criteria is not null, messages with no subject and no text attachment are not delivered to the application.

	
If the criteria is null, all messages are considered a match and delivered to the application.

Each registered notification must be unique, and notification attempts with overlapping criteria are rejected. The application can either retrieve received multimedia messages from Services Gatekeeper or include a callback interface when setting up the original notification.

Following are the possible scenarios for receipt and handling of multimedia messages.

	
The application has registered for online notification. Services Gatekeeper sends the message to the application, and the application receives the message and acknowledges receiving it.

If the MMS message is pure text, the text is included in the notification sent to the application.

If the MMS message is not pure text, the notification sent to the application includes a reference to the multimedia attachments. The application uses that reference to retrieve the attachments.

	
The application has registered for online notification. Services Gatekeeper sends the multimedia message to the application, but the application does not acknowledge receiving it.

Offline notification has been provisioned.

Services Gatekeeper stores the multimedia message. The application retrieves the message as described in "Retrieving Offline MMS Messages".

	
The application has registered for online notification. Offline notification has not been provisioned.

Services Gatekeeper sends the multimedia message to the application, but the application does not acknowledge receiving it. Services Gatekeeper returns an error to the network. It is the responsibility of the network to handle any further processing of the multimedia message.

	
The application has not registered for online notification. Offline notification has been provisioned. Services Gatekeeper stores the multimedia message.

The application retrieves the message as described in "Retrieving Offline MMS Messages".

	
The application has not registered an online subscription, and offline notification has not been provisioned.

Services Gatekeeper returns an error to the network. It is the responsibility of the network to handle any further processing of the multimedia message.

Retrieving Offline MMS Messages

A ParlayX application fetches newly-arrived MMS messages with the getReceivedMessages operation. The response from this method is an array of MessageReference objects, one for each newly-arrived MMS message.

If an MMS message is pure text, the text message is included in the MessageReference object. If an MMS message is not pure text, the MessageReference object includes the reference to the multimedia attachments. The application then uses the reference to retrieve the attachment using the getMessage operation. See the 3GPP TS 29.199-05 Parlay X Web Services Part 5: Multimedia Messaging specification for descriptions of this operation.

The process is similar for REST applications. For information about getting MMS messages from a REST application, see the descriptions of the Get Received Messages and Get Message operations in the "Multimedia Messaging" chapter of the Oracle Communications Services Gatekeeper RESTful Application Developer's Guide.

For information about getting MMS messages from a OneAPI application, see the description of the Retrieve Messages Sent to Web Application operation in the "OneAPI Multimedia Messaging" chapter of the Oracle Communications Services Gatekeeper OneAPI Application Developer's Guide.

Table 7-1 shows the MessageReference structure defined by the 3GPP TS 29.199-05 Parlay X Web Services Part 5: Multimedia Messaging specification. Elements related to this discussion are shown in boldface in Table 7-1

Table 7-1 ParlayX Message Reference Structure

	Element name	Element type	Optional	Description
	
messageIdentifier

	
xsd:string

	
Yes

	
If present, contains a reference to a message stored in the ParlayX gateway. If the message is pure text, this parameter is not present.

	
messageService

ActivationNumber

	
xsd:string

	
No

	
Number associated with the invoked Message service, i.e. the destination address used by the terminal to send the message.

	
senderAddress

	
xsd:anyURI

	
No

	
Indicates message sender address.

	
subject

	
xsd:string

	
Yes

	
If present, indicates the subject of the received message. This parameter will not be used for SMS services.

	
priority

	
MessagePriority

	
No

	
The priority of the message: default is Normal.

	
message

	
xsd:string

	
Yes

	
If present, then the messageIdentifier is not present and this parameter contains the whole message. The type of the message is always pure ASCII text in this case. The message will not be stored in the Parlay X gateway.

	
dateTime

	
xsd:dateTime

	
Yes

	
Time when message was received by operator

Example 7-1 shows the message and messageIdentifer in the REST Notification Data Object.

Example 7-1 REST Notification Data Object

{"notifyMessageReception": {
 "correlator": "String",
 "message": {
 "messageServiceActivationNumber": "String",
 "priority": "Default|Low|Normal|High",
 "senderAddress": "URI",
 "dateTime": "Calendar",
 "message": "String" --> if message is pure text it can be found here
 "messageIdentifier": "String", --> if not pure text the reference is found here
 "subject": "String"
 }
}}

Each stored multimedia message is time stamped and, after a configurable time period, removed.

The OneAPI response to a request for the full MMS message including attachments is a multipart/form-data response in which the JSON message text and metadata are separated from the multimedia attachments by a separator that has the form

====12345====

The resourceURL in the response is the link to the message. The application uses this value to retrieve the entire message, including the attachments. Example 7-2 shows the structure of a response.

Example 7-2 OneAPI Response Body for Retrieving Full MMS messages

"inboundMessage": [
{ "dateTime": "dateTime",
"destinationAddress": "String",
"messageId": "String", --> server-geenerated message identifier
"inboundMMSMessage": "String", --> subject of the message
"resourceURL": "URL", --> link to the full message and attachments
"senderAddress": "String"},

====Content Divider====

Attachment(s)

Polling Functionality

The polling capability for retrieving offline notifications must be provisioned in advance.

To configure the polling capability:

	
Set the RequestDeliveryReportFlag attribute to non-zero. See "Attribute: RequestDeliveryReportFlag" for information about valid values.

	
Use the enableReceiveMms operation to allow applications to poll for mobile-originated messages. See "Operation: enableReceiveMms" for more information.

Short Code Translation

Messaging-capable networks use short codes and message prefixes to help route traffic and to make access to certain features easier for the end user. Instead of having to use the entire address, users can enter a short code that is mapped to the full address in the network. The Parlay X 2.1 Multimedia Messaging/MM7 communication service supports short codes and message prefixes, which allow the same short code to be mapped to multiple addresses based on the prefix to the enclosed message.

Application Interfaces

For information about the SOAP-based interface for the Parlay X 2.1 MultiMedia Messaging/MM7 communication service, see the discussion of Parlay X 2.1 Interfaces in Oracle Communications Services Gatekeeper Application Developer's Guide.

For information about the RESTful Call Notification interface, see the discussion of Multimedia Messaging in Oracle Communications Services Gatekeeper RESTful Application Developer's Guide.

The RESTful Service Multimedia Messaging interfaces provide RESTful access to the same functionality as the SOAP-based interfaces. The internal representations are identical, and for the purposes of creating SLAs, reading CDRs, and so on, they are the same

Events and Statistics

The Parlay X 2.1 Multimedia Messaging/MM7 communication service generates Event Data records (EDRs), Charging Data Records (CDRs), alarms, and statistics to assist system administrators and developers in monitoring the service.

For general information, see Appendix A, "Events, Alarms, and Charging."

Event Data Records

Table 7-2 lists the IDs of the EDRs created by the Parlay X 2.1 Multimedia Messaging/MM7 communication service.

Table 7-2 Event Types Generated by Parlay X 2.1 Multimedia Messaging/MM7

	EDR ID	Description
	
8100

	
An MO message has arrived from the network.

	
8101

	
An MO delivery receipt has arrived from the network.

	
8102

	
The application has requested that a notification be started.

	
8103

	
The application has requested that a notification be stopped.

	
8104

	
The application has polled for a list of received messages.

	
8106

	
The application has polled for actual messages, returned as attachments.

Charging Data Records

Multimedia Messaging/MM7-specific CDRs are generated under the following conditions:

	
After a sendMessage request has entered the network plug-in from the application.

	
After a notifyMessageDeliveryReceipt request has entered the network plug-in from the network.

	
After a notifyMessageReception request has been delivered to the application.

	
When there is an error.

Statistics

Table 7-3 maps methods invoked from either the application or the network to the transaction types collected by the Services Gatekeeper statistics counters.

Table 7-3 Methods and Transaction Types for Parlay X 2.1 Multimedia Messaging/MM7

	Method	Transaction Type
	
sendMessage

	
TRANSACTION_TYPE_MESSAGING_MMS_SEND

	
deliver

	
TRANSACTION_TYPE_MESSAGING_MMS_RECEIVE

	
deliveryReport

	
TRANSACTION_TYPE_MESSAGING_MMS_RECEIVE

Alarms

For the list of alarms, see Oracle Communications Services Gatekeeper Alarm Handling Guide.

Tunneled Parameters for Parlay X 2.1 MM7 Rel 6.8.0

This section lists, by parameter key, the parameters that can be tunneled or defined in the <requestContext> element of an SLA.

ChargedParty

	Description
	
Specifies the party to be charged for a multimedia message submitted by the Value-Added Service Provider (VASP).

If defined, the ChargedParty xparameter is forwarded in the SOAP header in the north-bound interface.

Validated by the plug-in.

	Format
	
String

	Value
	
Valid values: Sender, Recipient, Both, Neither

ChargedPartyCD

	Description
	
Specifies the address of the third party expected to pay for the multimedia message.

If defined, the ChargedPartyID xparameter is forwarded in the SOAP header in the north-bound interface.

	Format
	
String

timeStamp

	Description
	
Specifies date and time that the multimedia message was submitted.

	Format
	
Date/Time

expiryDate

	Description
	
Specifies the desired time for the expiration of the multimedia message.

	Format
	
Date/Time

allowAdaptation

	Description
	
Specifies if VASP allows adaptation of the content.

Set to true to allow adaptation, false to prohibit it.

	Format
	
Boolean

DeliveryCondition

	Description
	
In the event of a single "Delivery Condition", if the condition is met, the multimedia message is delivered to the recipient MMS User Agent. Otherwise the message is discarded.

Validated by the plug-in.

	Format
	
Positive Integer

UAProf

	Description
	
Specifies the UserAgent Name or URL to the UAProfile RDF.

Used for transferring user agent capabilities from R/S to VASP.

If not null, this parameter is forwarded to the application.

	Format
	
String

StatusText

	Description
	
Human-readable description of the numerical code that indicates the general type of an error.

If not null, this parameter is forwarded to the application.

	Format
	
String

Managing Parlay X 2.1 Multimedia Messaging/MM7

This section describes the properties and workflow for Parlay X 2.1 Multimedia Messaging/MM7 plug-in instances.

Properties for Parlay X 2.1 Multimedia Messaging/MM7

Table 7-4 lists the technical specifications for the communication service.

Table 7-4 Properties for Multimedia Messaging/MM7

	Property	Description
	
Managed object in Administration Console

	
domain_name > OCSG > server_name > Communication Services > plug-in_instance_id

	
MBean

	
Domain=com.bea.wlcp.wlng

Name=wlng_nt

InstanceName=same as the network protocol instance_id assigned when the plug-in instance is created

Type=com.bea.wlcp.wlng.plugin.multimediamessaging.mm7.management.MessagingManagementMBean

	
Network protocol plug-in service ID

	
Plugin_px21_multimedia_messaging_mm7

	
Network protocol plug-in instance ID

	
The ID is assigned when the plug-in instance is created. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide.

	
Supported Address Scheme

	
tel, mailto, short

	
Application-facing interfaces

	
com.bea.wlcp.wlng.px21.plugin.MessageNotificationManagerPlugin

com.bea.wlcp.wlng.px21.plugin.ReceiveMessagePlugin

com.bea.wlcp.wlng.px21.plugin.SendMessagePlugin

com.bea.wlcp.wlng.px21.callback.MessageNotificationCallback

	
Service type

	
MultimediaMessaging

	
Exposes to the service communication layer a Java representation of:

	
Parlay X 3.0 Part 5: Multimedia Messaging

	
Interfaces with the network nodes using:

	
MM7

	
Deployment artifact:

NT EAR

wlng_nt_multimedia_messaging_px21.ear

	
Plugin_px21_multimedia_messaging_mm7.jar, px21_multimedia_messaging_service.jar, multimedia_messaging_mm7_rel5mm712.war, and multimedia_messaging_mm7_rel5mm715.war

	
Deployment artifact:

AT EAR: Normal

wlng_at_multimedia_messaging_px21.ear

	
px21_multimedia_messaging_callback.jar, px21_multimedia_messaging.war and rest_multimedia_messaging.war

	
Deployment artifact:

AT EAR: SOAP Only

wlng_at_multimedia_messaging_px21_soap.ear

	
px21_multimedia_messaging_callback.jar and px21_multimedia_messaging.war

Configuration Workflow for Parlay X 2.1 MultiMedia Messaging/MM7

Following is an outline for configuring the plug-in using the Administration Console or an MBean browser.

	
Create one or more instances of the plug-in service. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the plug-in service ID listed in the "Properties for Parlay X 2.1 Multimedia Messaging/MM7" section.

	
Select the MBean for the plug-in instance. The MBean display name is the same as the plug-in instance ID given when the plug-in instance was created.

	
Configure the behavior of the plug-in instance using the following attributes:

	
Attribute: HTTPBasicAuthentication

If you are using HTTP basic authentication, also define:

	
Attribute: HTTPBasicAuthenticationUsername

	
Attribute: HTTPBasicAuthenticationPassword

	
Attribute: DefaultPriority

	
Attribute: MM7Version

	
Attribute: Mm7relayserverAddress

	
Attribute: VaspId

	
Attribute: VasId

	
Attribute: RequestDeliveryReportFlag

	
Attribute: XSDVersion

	
Specify heartbeat behavior. See "Configuring Heartbeats" in Oracle Communications Services Gatekeeper System Administrator's Guide.

	
Set up the routing rules to the plug-in instance. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the plug-in instance ID and address schemes listed in the "Properties for Parlay X 2.1 Multimedia Messaging/MM7" section.

	
Provide the administrator of the MM7 server with the URL to which the MM7 server should deliver mobile originated messages and delivery reports. The default URL is

http://IP_Address_of_NT_server:port/context-root/plug-in_instance_ID

If you are using the REL-5-MM7-1-2 XSD, the default context-root is mmm-mm7.

If you are using the REL-5-MM7-1-5 XSD, the default context-root is mmm-mm7-rel5mm7-1-5.

If you are using the REL-6-MM7-1-4 XSDm the default context-root is mmm-mm7-rel6mm7-1-4.

	
If required, create and load a node SLA. For details see “Defining Global Node and Service Provider Group Node SLAs” and “Managing SLAs” in the Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

	
Provision the service provider accounts and application accounts.

Provisioning Workflow for Parlay X 2.1 MultiMedia Messaging/MM7

The following steps outline the provisioning workflow for the communication service.

	
Use "Operation: enableReceiveMms" to register offline notifications. This specifies that mobile-originated messages should not result in notifications to an application but should instead be stored in Services Gatekeeper for polling.

Use the following operations to manage the offline registrations:

	
Operation: listOfflineNotificationInfo

	
Operation: getOfflineNotificationInfo

	
Operation: removeOfflineNotificationInfo

	
Use "Operation: startMessageNotification" to register online notifications. This is to manage registrations for mobile-originated messages on behalf of an application.

Use the following operations to manage the online registrations:

	
Operation: listOnlineNotificationInfo

	
Operation: getOnlineNotificationInfo

	
Operation: removeOnlineNotificationInfo

Reference: Attributes and Operations for Parlay X 2.1 MultiMedia Messaging/MM7

This section describes the attributes and operations for configuration and maintenance:

	
Attribute: DefaultPriority

	
Attribute: HTTPBasicAuthentication

	
Attribute: HTTPBasicAuthenticationUsername

	
Attribute: HTTPBasicAuthenticationPassword

	
Attribute: Mm7relayserverAddress

	
Attribute: MM7Version

	
Attribute: RequestDeliveryReportFlag

	
Attribute: ServiceCode

	
Attribute: VasId

	
Attribute: VaspId

	
Attribute: XSDVersion

	
Operation: enableReceiveMms

	
Operation: getOfflineNotificationInfo

	
Operation: getOnlineNotificationInfo

	
Operation: listOfflineNotificationInfo

	
Operation: listOnlineNotificationInfo

	
Operation: removeOfflineNotificationInfo

	
Operation: removeOnlineNotificationInfo

	
Operation: startMessageNotification

Attribute: DefaultPriority

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the default priority for sent MMS messages. Enter one the following:

	
normal

	
high

	
low

Attribute: HTTPBasicAuthentication

Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies if HTTP basic authentication will be used for authentication with the MM7 server.

Set to true to use HTTP basic authentication, otherwise false.

If true, "Attribute: HTTPBasicAuthenticationUsername" and "Attribute: HTTPBasicAuthenticationPassword" must be specified.

Attribute: HTTPBasicAuthenticationUsername

Scope: Cluster

Unit: Not applicable

Format: String

The user name to use for HTTP basic authentication towards the MM7 server.

Attribute: HTTPBasicAuthenticationPassword

Scope: Cluster

Unit: Not applicable

Format: String

The password to use for HTTP basic authentication towards the MM7 server.

Attribute: Mm7relayserverAddress

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the address to the MM7 Relay Server. The address is an HTTP url.

Attribute: MM7Version

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the version of the MM7 protocol to be used. Applicable versions are:

	
5.3.0

	
6.8.0

Attribute: VasId

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the Value Added Service (VAS) ID to be used for the plug-in instance when connecting to the MMSC.

Attribute: VaspId

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the Value Added Service Provider (VASP) ID to be used for the plug-in instance when connecting to the MMSC.

Attribute: RequestDeliveryReportFlag

Scope: Cluster

Unit: Not applicable

Format: Integer

Specifies how the plug-in instance requests and handles delivery reports for sent messages. Enter one of the following:

	
0: Delivery notifications are not processed, which means that no polling functionality is available to the applications using the communication service.

	
1: Delivery notifications are processed if the application provided a receiptRequest in the SendMessage requests or the application provided a tunnelled parameter with ID com.bea.wlcp.wlng.plugin.multimediamessaging.RequestDeliveryReportFlag with the value true in the SOAP header of the SendMessage request.

	
2: Delivery notifications are always processed.

Attribute: ServiceCode

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the service used for billing purposes.

Attribute: XSDVersion

Scope: Server

Unit: Not applicable

Format: String

The MM7 xsd version that should be used for requests towards the MMSC.

Enter one of the following:

	
REL-5-MM7-1-0 to use an altered version of the REL-5-MM7-1-0.xsd. The altered version allows use of delivery notifications when the MMC-S requires this version of the xsd. This is a requirement when connecting to, among others, Comverse MMSCs.

	
REL-5-MM7-1-2 to use REL-5-MM7-1-2.xsd

	
REL-5-MM7-1-5 to use REL-5-MM7-1-5.xsd

	
REL-6-MM7-1-4 to use REL-6-MM7-1-4.xsd

Operation: enableReceiveMms

Scope: Cluster

Adds an offline notification for applications that will poll for mobile originated messages. Mobile-originated messages matching this notification will not result in a callback to an application. Instead the application has to use the correlator returned by this method and poll for new messages.

Returns the correlator uniquely identifying the new notification.

Signature:

enableReceiveMms(shortcode: String, criteria: String, appInstanceID: String)

Table 7-5 lists the parameters that the enableRecieveMms operation accepts.

Table 7-5 enableReceiveMms Parameters

	Parameter	Description
	
shortcode

	
The destination address or service activation number of the Multimedia message.

Prefixed with the URI, for example tel:

	
criteria

	
The first word in the text in the subject field of the MMS message to match. Exact matches only.

	
appInstanceID

	
The application instance ID associated with the notification.

Operation: getOfflineNotificationInfo

Scope: Cluster

Displays information about a notification registered offline. See "Operation: enableReceiveMms" for more information.

Signature:

getOfflineNotificationInfo(correlator: String)

Table 7-6 lists the parameters that the getOfflineNotificationInfo operation accepts.

Table 7-6 getOfflineNotificationInfo Parameters

	Parameter	Description
	
correlator

	
Correlator identifying the notification.

Operation: getOnlineNotificationInfo

Scope: Cluster

Displays information about a notification registered by an application or by "Operation: startMessageNotification".

Signature:

getOnlineNotificationInfo(correlator: String)

Table 7-7 lists the parameters that the getOnlineNotificationInfo operation accepts.

Table 7-7 getOnlineNotificationInfo Parameters

	Parameter	Description
	
correlator

	
Correlator identifying the notification.

Operation: listOfflineNotificationInfo

Scope: Cluster

Displays a list of all notifications registered offline by Operation: enableReceiveMms.

Signature:

listOfflineNotificationInfo()

Operation: listOnlineNotificationInfo

Scope: Cluster

Displays a list of all notifications registered online by the application or by "Operation: startMessageNotification".

Signature:

listOnlineNotificationInfo()

Operation: removeOfflineNotificationInfo

Scope: Cluster

Removes a notification registered offline using "Operation: enableReceiveMms".

Signature:

removeOfflineNotificationInfo(Registration Identifier: String)

Table 7-8 lists the parameters that the removeOfflineNotificationInfo operation accepts.

Table 7-8 removeOfflineNotificationInfo Parameters

	Parameter	Description
	
Registration Identifier

	
ID of the notification.

Operation: removeOnlineNotificationInfo

Scope: Cluster

Removes a notification registered by an application or on behalf of an application by "Operation: startMessageNotification".

Signature:

removeOnlineNotificationInfo(Registration Identifier: String)

Table 7-9 lists the parameters that the removeOnlineNotificationInfo operation accepts.

Table 7-9 removeOnlineNotificationInfo Parameters

	Parameter	Description
	
Correlator

	
ID of the notification.

Operation: startMessageNotification

Scope: Cluster

Creates an online notification on behalf of an application. Produces the same results as if an application registered for notifications using the startMessageNotification operation in the Parlay X 2.1 Multimedia Messaging MessageNotificationManager interface.

This operation can be used, for example, if the application is not allowed to register for notifications by restrictions defined in its SLA. Returns a correlator that uniquely identifies the notification.

Signature:

startMessageNotification(endpoint: String, shortcode: String, criteria: String, appInstanceID: String)

Table 7-10 lists the parameters that the startMessageNotification operation accepts.

Table 7-10 startMessageNotification Parameters

	Parameter	Description
	
endpoint

	
Notification endpoint implemented by the application. This endpoint implements the Parlay X 2.1 Multimedia MessagingMessageNotification interface.

Format: URL

	
shortcode

	
Destination address for the MMS message. Must have the prefix tel:; for example, tel:1234

	
criteria

	
The first word in the text in the subject field of the MMS message to match. Exact matches only.

	
appInstanceID

	
ID of the application instance for the application.

8 Parlay X 2.1 Multimedia Messaging/SMTP, POP3, and IMAP

This chapter describes the Parlay X 2.1 Multimedia Messaging/SMTP, POP3, and IMAP protocols in Oracle Communications Services Gatekeeper.

Overview of the Parlay X 2.1 Multimedia Messaging/SMTP, POP3, and IMAP Communication Service

The Parlay X 2.1 Multimedia Messaging/SMTP, POP3, and IMAP communication service exposes the Parlay X 2.1 Multimedia Messaging set of application interfaces.

The communication service acts as a Value Added Service (VAS) application connecting to an email server using the SMTP, POP3, and IMAP protocols. It provides the capability of applying policy such as throttling and black listing to manage and regulate the flow of email.

For the exact version of the standards that the communication service supports for the application-facing interfaces and the network protocols, see the appendix on standards and specifications in Concepts Guide.

Using this communication service, an application can:

	
Send emails to one or more destination addresses. The attachments in these emails can be of any type that can be specified using MIME.

	
Sign up to be notified that delivery receipts for sent emails have been delivered to the email server.

	
Receive delivery receipts on sent or retrying emails.

	
Explicitly query Services Gatekeeper for delivery receipts on sent emails.

	
Sign up to be notified when specified emails for the application have been received from the email server.

	
Receive notifications that specified emails for the application have been received from the email server. These notifications provide a message ID, but do not include the message payload.

	
Explicitly poll Services Gatekeeper for emails sent to the application that have arrived from the email server and been stored in Services Gatekeeper.

Requests can flow in two directions. They can be application-initiated or network-triggered.

Processing Application-Initiated Requests

Application-initiated requests can be:

	
Send Requests

	
Send Receipts

	
Delivery Receipts

	
Retry Requests

Send Requests

When an application sends a request using Parlay X 2.1 Multimedia Messaging protocol to Services Gatekeeper, if the sender address and destination addresses start with the schema email:, Services Gatekeeper transforms the request to an email and uses SMTP protocol to send the request to an email server.

	
Routing mechanism

For this communication service, each plug-in instance connects to an email server by SMTP. Routing should be based on sender address but not destination address. In PluginManager MBean, when adding a route for the email plug-in instance, the value should use ^.* to match all addresses, for example, ^.*@oracle.com$. This means that the plug-in instance connects to oracle email server and all the requests with a sender address that matches the regular expression should be routed to this plug-in instance.

	
SMTP connections management

Each email plug-in instance creates an SMTP connection pool. The connections in the pool connect to SMTP server separately. Each connection can be in IDLE, BUSY, or DISCONNECT status and should send heartbeat to maintain itself. If disconnected, it should reconnect to SMTP server. When a plug-in instance receives a new request, it should select a connection in IDLE status from the pool, and set it to BUSY status. If the connection fails, enlarge the pool until it reaches the maximum connection number. If it still fails, the plug-in instance sends the request to the retry manager.

	
Email subject, body and attachments

When transforming the Parlay X 2.1 Multimedia Messaging request to an email message, set subject in email with the subject value in the original request. For email body and attachments, since there are only attachments in the original request, add an X-Parameter ContentInFirstAttachment to indicate whether there is an email body or not. If this X-Parameter is set to "true," or is absent, then the first attachment contains the email body and other attachments are handled as regular attachments. If this X-Parameter is set to "false," then all attachments are handled as regular attachments and the email body is blank.

	
Multiple destination addresses

For a request with multiple destination addresses, since Services Gatekeeper cannot use the common routing mechanism as mentioned above, the plug-in instance should be responsible for splitting single email into multiple emails and sending it to each address.

Send Receipts

For this communication service, send receipts are acknowledgements that Services Gatekeeper has received the request from the application by means. The result values in the send receipts are UUIDs (Universally Unique Identifiers) created by Services Gatekeeper used to correlate subsequent delivery receipts at a later time. Although a single email message may be sent to multiple destination addresses, only one send receipt is returned to the application. The receipt is returned synchronously in the response message to the sendMessage operation.

Delivery Receipts

Delivery receipts contain the final delivery status of the email message. They report whether the email message has actually been delivered to the delivery recipient by the network. There is one delivery receipt per destination address, with one of four possible outcomes:

	
DeliveryUncertain (the initial status)

	
DeliveredToNetwork

	
MessageWaiting (retry status)

	
DeliveryImpossible (message could not be delivered since the retry limit was exceeded)

Applications can either choose to have delivery receipts delivered to them automatically by supplying Services Gatekeeper with a callback interface or they can choose to poll Services Gatekeeper.

When Services Gatekeeper receives a request from an application, it creates an UUID and returns that UUID in the send receipts to application. It stores the delivery receipt for each destination address with initial status in temporary in-memory storage with the UUID and callback interface (if any).

After Services Gatekeeper sends an email successfully or fails to do so, it updates the delivery receipt in the in-memory store, if a callback interface exists, and sends the delivery receipt to notify the application.

If the application does not supply a callback interface, the application can poll Services Gatekeeper with the UUID for these stored delivery receipts.

DeliveredToNetwork and DeliveryImpossible are final delivery statuses. The stored delivery receipt should be removed if the status for all the destination addresses belonging to one UUID is a final status and are delivered to application callback interface or have been polled by application.

Each stored delivery receipt is time stamped. After a configurable time period, the stored delivery receipt is removed.

Retry Requests

When Services Gatekeeper sends an email which temporarily fails for any reason (such as no connection), it stores the request in storage, updates the status to MessageWaiting for this request, and sends a delivery receipt to the application (if a callback interface was provided).

After a configurable time interval, Services Gatekeeper retrieves the failed request from the store and attempts to resend the request. The number of retry attempts are also configurable.

If retry attempt for the send request succeeds, Services Gatekeeper updates the status to DeliveredToNetwork for this request and sends a delivery receipt.

If the number of retry attempts are exhausted and the send request has not succeeded, Services Gatekeeper updates the status to DeliveryImpossible for this request and creates a delivery receipt indicating the failure.

Processing Network-triggered Requests

For an application to receive emails from the network, it must indicate its interest in these messages by registering for online notification in Services Gatekeeper. A notification is defined by a service activation number, which is the destination address of the email. An application can use the following operations to register for online notification:

	
ParlayX 2.1 StartMessageNotification. See Parlay X Web Services Part 5: Multimedia Messaging specification

	
Use Operation: startMessageNotification to register for online notification from the Administration console.

An application can also register to receive email messages offline. Services Gatekeeper stores the messages and delivers them when the application requests them. Use Operation: enableReceiveEmail from the Administration console to provision offline notification of network-triggered email messages.

Extensions to ParlayX 2.1 interface include:

	
X-Parameter "Password" to indicate the credential of the email service activation number. The value should be encrypted by AES (Advanced Encryption Standard) or 3DES (Triple Data Encryption Standard) algorithm.

	
X-Parameter "SizeLimit" to indicate the maximum total size (in kilobyte) of an email message attachment accepted by Services Gatekeeper.

	
Each registered notification must be unique, and notification attempts with overlapping service activation number are rejected.

When Services Gatekeeper receives an online/offline notification request, it starts a POP3 or IMAP process according to the configuration. When using POP3, Services Gatekeeper uses the polling mechanism and retrieves emails from email server using a configurable interval. When using IMAP, Services Gatekeeper attempts to utilize IDLE mechanism (whereby when new emails arrive it is notified by email server and retrieves the email). If the email server does not support the IDLE mechanism, then Services Gatekeeper falls back to the polling solution.

When using POP3 or IMAP3 protocols, Services Gatekeeper handles emails it receives in the following ways:

	
The application has registered for online notification. Services Gatekeeper sends the message to the application, and the application receives the message and acknowledges receiving it.

If the email only has pure text body without attachments, the text is included in the notification sent to the application.

If the email message is not pure text, the notification sent to the application includes a reference to the attachments stored in storage. The application uses that reference to retrieve the attachments.

	
Offline notification has been provisioned. Services Gatekeeper stores the email. The application retrieves the message as described in Retrieving Offline Messages.

Retrieving Offline Messages

A ParlayX application fetches newly-arrived email messages with the getReceivedMessages operation. The response from this method is an array of MessageReference objects, one for each newly-arrived email message.

If an email message is pure text, the text message is included in the MessageReference object. If an email message is not pure text, the MessageReference object includes the reference to the attachments. The application then uses the reference to retrieve the attachment using the getMessage operation. See the Parlay X Web Services Part 5: Multimedia Messaging specification for descriptions of this operation.

Application Interfaces

For information about the SOAP-based interface for the Parlay X 2.1 MultiMedia Messaging/MM7 communication service, see the discussion of Parlay X 2.1 Interfaces in Application Developer's Guide.

For information about the RESTful interface, see the discussion of Multimedia Messaging in RESTful Application Developer's Guide.

The RESTful Service interfaces provide RESTful access to the same functionality as the SOAP-based interfaces. The internal representations are identical, and for the purposes of creating SLAs, reading CDRs, and so on, they are the same

This communication service uses a plug-in which enables applications to send email using Simple Mail Transfer Protocol (SMTP) and receive email using Post Office Protocol (POP) version 3 and Internet Message Access Protocol (IMAP).

See Statement of Compliance for details on the SMTP, POP and IMAP interfaces supported.

Events and Statistics

The Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP communication service generates Event Data Records (EDRs), Charging Data Records (CDRs) and alarms to assist system administrators and developers in monitoring the service.

For general information, see Appendix A, "Events, Alarms, and Charging."

Event Data Records

Table 8-1 lists the IDs of the EDRs created by the Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP communication service. It does not include EDRs created when exceptions are thrown.

Table 8-1 Event Types Generated by Email Communication Service

	EDR ID	Method Called
	
8107

	
SendMessage

	
8108

	
getMessageDeliveryStatus

	
8102

	
startMessageNotification

	
8103

	
stopMessageNotification

	
8104

	
getReceivedMessages

	
8106

	
getMessage

	
8110

	
notifyMessageDeliveryReceipt

	
8111

	
notifyMessageReception

	
8120

	
submit email to email server

	
8121

	
delivery receipt for email

	
8122

	
receive email from email server

Charging Data Records

MultiMedia Messaging/SMTP, POP3, and IMAP CDRs are generated under the following conditions:

	
When an email has been sent from Services Gatekeeper to the email server

	
When an email received from the email server.

Alarms

For the list of alarms, see Alarm Handling Guide.

Managing Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP

This section describes the properties and workflow for Parlay X 2.1 Multimedia Messaging/SMTP, POP3, and IMAP plug-in instances.

Properties for Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP

Table 8-2 lists the technical specifications for the communication service.

Table 8-2 Properties for MultiMedia Messaging/SMTP, POP3, and IMAP

	Property	Description
	
Managed object in Administration Console

	
sendMessagedomain_name > OCSG > server_name > Communication Services > plug-in_instance_id

	
MBean

	
Domain=com.bea.wlcp.wlng

Name=wlng_nt

InstanceName=same as the network protocol instance_id assigned when the plug-in instance is created

Type=oracle.ocsg.plugin.multimediamessaging.email.management.EmailManagementMBean

	
Network protocol plug-in service ID

	
Plugin_px21_multimedia_messaging_email

	
Network protocol plug-in instance ID

	
The ID is assigned when the plug-in instance is created. See the description for managing and configuring the Plug-in Manager in System Administrator's Guide.

	
Supported Address Scheme

	
email

	
Application-facing interfaces

	
com.bea.wlcp.wlng.px21.plugin.MessageNotificationManagerPlugin

com.bea.wlcp.wlng.px21.plugin.ReceiveMessagePlugin

com.bea.wlcp.wlng.px21.plugin.SendMessagePlugin

com.bea.wlcp.wlng.px21.callback.MessageNotificationCallback

	
Service type

	
MultimediaMessaging-ParlayRestMms

	
Exposes to the service communication layer a java representation of:

	
Parlay X 2.1 Part 5: Multimedia Messaging

	
Protocols used for interfaces with the network nodes

	
SMTP, POP3, and SMTP

	
Deployment artifact:

NT.EAR

wlng_nt_multimedia_messaging_px21.ear

	
Plugin_px21_multimedia_messaging_mm7.jar

Plugin_px21_multimedia_messaging_email.jar

px21_multimedia_messaging_service.jar

multimedia_messaging_mm7_rel5mm712.war

multimedia_messaging_mm7_rel5mm715.war

	
Deployment artifact:

AT EAR: Normal

wlng_at_multimedia_messaging_px21.ear

	
px21_multimedia_messaging_callback.jar

px21_multimedia_messaging.war

rest_multimedia_messaging.war

Configuration Workflow for Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP

Use the following procedure to configure the plug-in instance using the Administration Console or an MBean browser:

	
Create one or more instances of the plug-in service. See the section on Managing and Configuring the Plug-in Manager in System Administrator's Guide.

Use the plug-in service ID listed in Properties for Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP.

	
Select the MBean for the plug-in instance. The MBean display name is the same as the plug-in instance ID given when the plug-in instance was created.

	
Configure the behavior of the plug-in instance using attributes related to the SMTP/POP3/IMAP protocols according to email server information.

	
Set up the routing rules to the plug-in instance. See the section on Managing and Configuring the Plug-in Manager in System Administrator's Guide.

Use the plug-in instance ID and address schemes listed in Properties for Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP.

	
If required, create and load a node SLA. For details see the section on Defining Global Node and Service Provider Group Node SLAs and Managing SLAs in the Accounts and SLAs Guide.

	
Provision the service provider accounts and application accounts.

Provisioning Workflow for Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP

The following steps outline the provisioning workflow for the communication service.

	
Use Operation: activeSmtpConfig to connect to email server by SMTP protocol after you configure or update SMTP-related attributes. Use Operation: listSmtpConnection to monitor the status of each connection in the connection pool.

	
Use Operation: enableReceiveEmail to register offline notifications. This specifies that received emails should not result in notifications to an application but should instead be stored in Services Gatekeeper for polling.

Use the following operations to manage the offline registrations:

	
Operation: listOfflineNotificationInfo

	
Operation: getOfflineNotificationInfo

	
Operation: removeOfflineNotificationInfo

	
Use Operation: startMessageNotification to register online notifications. This is to manage registrations for received emails on behalf of an application.

Use the following operations to manage the online registrations:

	
Operation: listOnlineNotificationInfo

	
Operation: getOnlineNotificationInfo

	
Operation: removeOnlineNotificationInfo

Reference: Attributes and Operations for Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP

This section describes the attributes and operations for configuration and maintenance:

	
Attribute: smtpUserName

	
Attribute: smtpPassWord

	
Attribute: smtpHost

	
Attribute: smtpPort

	
Attribute: smtpAuth

	
Attribute: smtpSSLRequired

	
Attribute: smtpStartTLS

	
Attribute: smtpRetryNumber

	
Attribute: smtpRetryInterval

	
Attribute: smtpInitConnectionNumber

	
Attribute: smtpMaxConnectionNumber

	
Attribute: smtpReconnectInterval

	
Attribute: smtpNoopInterval

	
Attribute: receiveProtocol

	
Attribute: pop3Host

	
Attribute: pop3Port

	
Attribute: pop3SSLRequired

	
Attribute: pop3PollingInterval

	
Attribute: imapHost

	
Attribute: imapPort

	
Attribute: imapSSLRequired

	
Attribute: imapPollingInterval

	
Attribute: debug

	
"Operation: activeImapConfig"

	
Operation: activeSmtpConfig

	
Operation: enableReceiveEmail

	
Operation: listImapProcess

	
Operation: listPop3Process

	
Operation: listSmtpConnection

	
Operation: startMessageNotification

	
Operation: getOfflineNotificationInfo

	
Operation: getOnlineNotificationInfo

	
Operation: listOfflineNotificationInfo

	
Operation: listOnlineNotificationInfo

	
Operation: removeOfflineNotificationInfo

	
Operation: removeOnlineNotificationInfo

Attribute: smtpUserName

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the user name for the SMTP server.

Attribute: smtpPassWord

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the password for the SMTP server.

Attribute: smtpHost

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the address for the SMTP server.

Attribute: smtpPort

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the port for the SMTP server.

Attribute: smtpAuth

Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies if the SMTP server needs authentication.

Set to true to use authentication, otherwise false.

Attribute: smtpSSLRequired

Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies if the SMTP server requires SSL.

Set to true to require SSL, otherwise false.

Attribute: smtpStartTLS

Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies if the SMTP server requires TLS.

Set to true to require TLS, otherwise false.

Attribute: smtpRetryNumber

Scope: Cluster

Unit: Not applicable

Format: Integer

Specifies number of retries.

Enter the number of retries. Default is 3.

Attribute: smtpRetryInterval

Scope: Cluster

Unit: Seconds

Format: Integer

Specifies the number of seconds between the retries for a request.

Enter the number of seconds. Default is 300.

Attribute: smtpInitConnectionNumber

Scope: Cluster

Unit: Not applicable

Format: Integer

Specifies the SMTP initial connection number.

Enter the initial connection number. Default is 1.

Attribute: smtpMaxConnectionNumber

Scope: Cluster

Unit: Not applicable

Format: Integer

Specifies the maximum number of SMTP connections.

Enter the maximum connection number. Default is 16.

Attribute: smtpReconnectInterval

Scope: Cluster

Unit: Seconds

Format: Integer

Specifies the number of seconds between the reconnection attempts.

Enter the number of seconds. Default is 60.

Attribute: smtpNoopInterval

Scope: Cluster

Unit: Seconds

Format: Integer

Specifies the number of seconds in the heartbeat interval.

Enter the number of seconds. Default is 300.

Attribute: smtpSizeLimit

Scope: Cluster

Unit: Not applicable

Format: Integer

Specifies the number of seconds in the heartbeat interval.

Enter the number of seconds. Default is 300.

Attribute: receiveProtocol

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the protocol used to receive email.

Enter POP3 or IMAP. Default is IMAP.

Attribute: pop3Host

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the address to the POP3 Server.

Attribute: pop3Port

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the port for the POP3 Server.

Attribute: pop3SSLRequired

Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies if the POP3 server requires SSL.

Set to true to require SSL, otherwise false.

Attribute: pop3PollingInterval

Scope: Cluster

Unit: Seconds

Format: Integer

Specifies the number of seconds in the polling interval for POP3 server.

Enter the number of seconds. Default is 120.

Attribute: imapHost

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the address to the IMAP Server.

Attribute: imapPort

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the port for the IMAP Server.

Attribute: imapSSLRequired

Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies if the IMAP server requires SSL.

Set to true to require SSL, otherwise false.

Attribute: imapPollingInterval

Scope: Cluster

Unit: Seconds

Format: Integer

Specifies the number of seconds in the polling interval for IMAP server.

Enter the number of seconds. Default is 120.

Attribute: debug

Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies whether to print debug information for SMTP/IMAP/POP3.

Set to true to require the debug information, otherwise false.

Operation: activeImapConfig

Scope: Local

Makes the modification to IMAP take effect.

Signature:

activeImapConfig()

Operation: activeSmtpConfig

Scope: Local

Makes the modification to SMTP-related attributes take effect. This method should be invoked after the following attributes are modified:

	
smtpUserName

	
smtpPassWord

	
smtpHost

	
smtpPort

	
smtpAuth

	
smtpSSLRequired

	
smtpStartTLS

Signature:

activeSMTPConfig()

Operation: enableReceiveEmail

Scope: Cluster

Adds an offline notification for applications that poll for email messages. Email messages matching the short code will not result in a callback to an application. Instead, the message is stored in Services Gatekeeper. This method returns the correlator uniquely identifying the new notification. The application has to use the correlator returned by this method to poll for email messages.

Signature:

enableReceiveEmail(shortcode: String, password: String, criteria: String, appInstGroupID: String, sizeLimit int)

Table 8-3 enableReceiveEmail Parameters

	Parameter	Description
	
shortcode

	
Destination address or the activation for the email account start with email:, for example, email: abc@mycompany.com

	
password

	
The credential for the email account indicated by the shortcode.

	
criteria

	
The text to match against to identify the application which is to receive the notification. (Not used in this service)

	
appInstGroupID

	
The application instance group ID associated with this notification

	
sizeLimit

	
The maximum kilobytes of total size of all attachments application can accept.

Operation: listImapProcess

Scope: Local

Lists the IMAP processes running in this server

Signature:

listImapProcess()

Operation: listPop3Process

Scope: Local

Lists the POP3 processes running in this server

Signature:

listPop3Process()

Operation: listSmtpConnection

Scope: Local

Lists the status of the SMTP connections in this server

Signature:

listSmtpConnections()

Operation: startMessageNotification

Scope: Cluster

Adds an online notification for applications that for some reason cannot (or are not allowed) call the startMessageNotification method. Returns the correlator uniquely identifying the new notification.

Signature:

startMessageNotification(shortcode: String, password: String, criteria: String, appInstGroupID: String, sizeLimit int)

Table 8-4 startMessageNotification Parameters

	Parameter	Description
	
endpoint

	
End point for the notification.

	
shortcode

	
Destination address or the activation for the email account starting with email:, for example, email:abc@mycompany.com

	
password

	
The credential for the email account indicated by the shortcode.

	
criteria

	
The text to match against to identify the application which is to receive the notification. Not used in this service.

	
appInstGroupID

	
The application instance group ID associated with this notification

	
sizeLimit

	
The maximum kilobytes of total size of all attachments application can accept.

Operation: getOfflineNotificationInfo

Scope: Cluster

Retrieves the notification associated with the specified correlator returned by Operation: enableReceiveEmail.

Signature:

getOfflineNotification(Correlator: String)

Operation: getOnlineNotificationInfo

Scope: Cluster

Retrieves the notification associated with the specified correlator returned by Operation: startMessageNotification and the online notification started through an application interface.

Signature:

getOnlineNotification(Correlator: String)

Operation: listOfflineNotificationInfo

Scope: Cluster

Displays a list of all notifications registered offline by Operation: enableReceiveEmail.

Signature:

listOfflineNotificationInfo()

Operation: listOnlineNotificationInfo

Scope: Cluster

Displays a list of all notifications registered by Operation: startMessageNotification.

Signature:

listOnlineNotificationInfo()

Operation: removeOfflineNotificationInfo

Scope: Cluster

Removes a notification registered offline using Operation: enableReceiveEmail.

Signature:

removeOfflineNotificationInfo(Registration Identifier: String)

Table 8-5 removeOfflineNotificationInfo Parameters

	Parameter	Description
	
Registration Identifier

	
ID of the notification.

Operation: removeOnlineNotificationInfo

Scope: Cluster

Removes a notification registered by an application or on behalf of an application by Operation: startMessageNotification.

Signature:

removeOnlineNotificationInfo(Registration Identifier: String)

Table 8-6 removeOnlineNotificationInfo Parameters

	Parameter	Description
	
Correlator

	
ID of the notification.

9 Parlay X 2.1 Presence/SIP

This chapter describes the Parlay X 2.1 Presence/SIP communication service in detail.

Overview of the Parlay X 2.1 Presence/SIP Communication Service

The Parlay X 2.1 Presence/SIP communication service exposes both the watcher aspect and the presentity aspect of the Parlay X 2.1 Presence set of application interfaces.

The communication service connects to a SIP-IMS network using Oracle Converged Application Server. Converged Application Server is collocated with Services Gatekeeper in the network tier.

For the exact version of the standards that the communication service supports for the application-facing interfaces and the network protocols, see the appendix on standards and specifications in Oracle Communications Services Gatekeeper Concepts Guide.

The Parlay X 2.1 Presence/SIP communication service supports the Rich Presence Information Data (RPID) parser with the Open Mobile Alliance (OMA) extensions.

Presence information is a collection of data on an end user's status, such as current activity, environment, available communication means, and contact addressees. Using the presence functionality, an application can function as a client in two modes: as a watcher or as a presentity. A watcher is a client that is interested in consuming presence information. A presentity is a client that allows its presence information to be delivered to watchers.

Client as Presence Consumer

An application acting as a watcher can:

	
Subscribe to obtain presence data.

Each subscription requires authorization by the presentity. The authorization is returned asynchronously via the notification interface.

	
Choose to acquire presence information when a subscription has been established using:

	
Direct synchronous polling. This is only effective for a single presentity. Groups are not supported.

	
Specific notifications. These can be used for a single presentity. The watcher sets a notification trigger based on certain user presence attribute changes.

Possible attribute types include:

	
Activity (User's status: Available, Busy, At Lunch, and so on.)

	
Place (User's current location: Home, In a Public Place, and so on.)

	
Privacy (Degree of privacy the user has: Surrounded by Others, Alone and Can Talk Openly, and so on.)

	
Sphere (User's personal status: In his Work Capacity; In his Personal Capacity)

	
Communication means (Type of communication client preferred: Phone, Email, SMS, and so on.)

	
Other (name-value pair for arbitrary information)

Non-attribute notification parameters can include:

	
Maximum frequency of notifications

	
Duration of time during which notifications should occur

	
Maximum number of notifications

	
Whether status should be checked immediately after notification setup

	
End notifications. In this case, the subscription to the presentity is retained, but the specific notification is ended.

	
Receive information that:

	
The initial conditions of the notification setup have been met (count or duration) and this specific setup has been ended.

	
The subscription itself has ended.

Client as Presence Supplier

An application acting as a presentity can:

	
Publish present information.

	
Get a list of new watchers who have asked to subscribe to the client's presence information.

	
Approve new watchers and update the subscriptions of current watchers.

	
Get a list of currently subscribed watchers.

	
Block the subscription of a currently subscribed watcher.

The presentity functionality requires a presence server in the underlying network. To approve new watchers and update the subscriptions of current watchers, there must also be a data manipulation server (DMS) in the underlying network. The block functionality is supported in two modes, one using a DMS and one not.

Application Interfaces

For information about the SOAP-based interface for the Parlay X 2.1 Presence communication service, the discussion of Parlay X 2.1 Interfaces in Oracle Communications Services Gatekeeper Application Developer's Guide.

For information about the RESTful Presence interface, see the discussion of Presence in Oracle Communications Services Gatekeeper RESTful Application Developer's Guide.

The RESTful Service Call Notification interfaces provide RESTful access to the same functionality as the SOAP-based interfaces. The internal representations are identical, and for the purposes of creating SLAs and reading CDRs, and so on, they are the same.

Events and Statistics

The Parlay X 2.1 Presence/SIP communication service generates Event Data Records (EDRs), Charging Data Records (CDRs), alarms, and statistics to assist system administrators and developers in monitoring the service

For general information, see Appendix A, "Events, Alarms, and Charging."

Event Data Records

Table 9-1 lists IDs of the EDRs created by the Presence/SIP communication service. This list does not include EDRs created when exceptions are thrown.

Table 9-1 Event Types Generated by Parlay X 2.1 Presence/SIP

	EDR ID	Method Called
	
2000

	
notifyReceived

	
2001

	
makeNotifySubscriptionCallback (includes Endpoint, string)

	
2002

	
makeSubscriptionEndedCallback (includes Endpoint, string)

	
2003

	
makeStatusChangedCallback (includes Endpoint, string)

	
2004

	
makeStatusEndCallback (includes Endpoint, string)

	
2005

	
subscribePresence (processes from application)

	
2006

	
getUserPresence

	
2007

	
startPresenceNotification

	
2008

	
endPresenceNotification

	
2009

	
publish

	
2010

	
blockSubscription

	
2011

	
getMyWatchers

	
2012

	
getOpenSubscriptions

	
2013

	
updateSubscriptionAuthorization

	
2015

	
onRequest (Watcher Info Notify)

Charging Data Records

Presence/SIP-specific CDRs are generated under the following conditions:

	
After the result of a poll for presence is successfully returned to the application.

	
After a notification for presence information is successfully sent to the application.

A Presence CDR contains an additional_info field for a notification call. This field contains the endpoint.

Statistics

Table 9-2 maps methods invoked from either the application or the network to the transaction types collected by the Services Gatekeeper statistics counters.

Table 9-2 Methods and Transaction Types for Parlay X 2.1 Presence/SIP

	Method	Transaction Type
	
getUserPresence

	
TRANSACTION_TYPE_PRESENCE_SERVICE_INITIATED

	
makeStatusChangedCallback

	
TRANSACTION_TYPE_PRESENCE_NETWORK_INITIATED

Alarms

For the list of alarms, see Oracle Communications Services Gatekeeper Alarm Handling Guide.

Tunneled Parameters for Parlay X 2.1 Presence / SIP

This section lists the parameters that can be tunneled.

expireskey

	Description
	
This value is used to cancel a subscription to a user presence. The parameter is configured in the SIP plug-in.

If set, this value replaces the default SubscribeExpiryValue configured in the Presence MBean.

Can be set using parameter tunneling.

	Format
	
String

	Example
	

<xparams> <param key="expireskey" value="1210"/> </xparams>

passidkey

	Description
	
This value is used among trusted intermediaries to assert the identity of a user sending a SIP message as it was identified by authentication.

Can be set using parameter tunneling.

	Format
	
String

	Example
	

<xparams> <param key="passidkey" value="sip:leffe@keffo.com"/> </xparams>

Managing Parlay X 2.1 Presence/SIP

This section describes the properties and workflow for the Parlay X 2.1 Presence/SIP plug-in instance. It also describes the caches used by the plug-in instance.

Parlay X 2.1 Presence/SIP uses two parts for SIP connectivity: a part that executes as a network protocol plug-in instance in the Services Gatekeeper container and a part that executes as a SIP application in the SIP Server container.

This plug-in service does not support multiple instantiation using the Plug-in Manager. There is a one to one mapping between plug-in service and plug-in instance. The plug-in instance is created when the plug-in service is started.

URI Cache

In Parlay X 2.1 Presence, the SIP URI of the user (the presentity in Presence Supplier cases, the watcher in Presence Consumer cases) is not passed as an argument. Instead, Services Gatekeeper maps the user URI to the application instance ID of the user application. The URI mapping is configured as a part of the service provider and application provisioning workflow and is then stored in the URI cache.

For requests that originate from an application, the URI is fetched from this cache before being put into the from header in the SIP requests. For application-terminating requests, the to header URI passed in the SIP NOTIFY requests is used to look up the account user name and application instance ID.

In the case of the Presence Supplier interface, the application can override the default mapping by including a tunneled parameter in the header of its request.

Subscriptions Cache

Every subscription, pending or not, is stored in the subscriptions cache during the subscription's lifetime. It is added when an application invokes the subscribePresence operation on the application-facing interface. It is removed when the subscription is terminated.

Notifications Cache

All registered notifications are cached. The entries are created when an application invokes startPresenceNotification on the application-facing interface. They are removed when endPresenceNotification is called, the end criteria are reached, or the subscription is ended.

Properties for Parlay X 2.1 Presence/SIP

Table 9-3 lists the technical specifications for the communication service.

Table 9-3 Properties for Parlay X 2.1 Presence/SIP

	Property	Description
	
Managed object in Administration Console

	
domain_name > OCSG > server_name > Communication Services > Plugin_px21_presence_sip

	
MBean

	
Domain=com.bea.wlcp.wlng

Name=wlng_nt

InstanceName=Plugin_px21_presence_sip

Type=com.bea.wlcp.wlng.plugin.presence.sip.management.PresenceMBean

	
Network protocol plug-in service ID

	
Plugin_px21_presence_sip

	
Network protocol plug-in instance ID

	
Plugin_px21_presence_sip

	
Supported Address Scheme

	
sip

	
Application-facing interfaces

	
com.bea.wlcp.wlng.px21.plugin.PresenceConsumerPlugin

com.bea.wlcp.wlng.px21.plugin.PresenceSupplierPlugin

com.bea.wlcp.wlng.px21.callback.PresenceNotificationCallback

	
Service type

	
Presence

	
Exposes to the service communication layer a Java representation of:

	
Parlay X 2.1 Part 14: Presence

	
Interfaces with the network nodes using:

	
SIP: Session Initiation Protocol, RFC 3261.

	
Deployment artifact:

NT EAR

wlng_nt_presence_px21.ear

	
Plugin_px21_presence_sip.jar, px21_presence_service.jar, and px21_presence_sip.jar

	
Deployment artifact:

AT EAR: Normal

wlng_at_presence_px21.ear

	
px21_presence.war, px21_presence_callback.jar, and rest_presence.war

	
Deployment artifact:

AT EAR: SOAP Only

wlng_at_presence_px21_soap.ear

	
px21_presence.war and px21_presence_callback.jar

Configuration Workflow for Parlay X 2.1 Presence/SIP

Following is an outline for configuring the plug-in using the Administration Console or an MBean browser.

	
Select the MBean described in "Properties for Parlay X 2.1 Presence/SIP".

	
Configure the attributes of the network protocol plug-in instance:

	
Attribute: DefaultNotificationCount

	
Attribute: DefaultNotificationDuration

	
Attribute: NotificationCleanupTimerValue

	
Attribute: NotificationCleanupTimerValue

	
Configure connection information to the SIP server:

	
Attribute: SubscriptionCleanupTimerValue

	
Set up the routing rules to the plug-in instance. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the plug-in instance ID and address schemes listed in the "Properties for Parlay X 2.1 Presence/SIP"section.

	
If required, create and load a node SLA. For details see “Defining Global Node and Service Provider Group Node SLAs” and “Managing SLAs” in the Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

	
Provision the service provider accounts and application accounts. For information, see Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

Provisioning Workflow for Parlay X 2.1 Presence/SIP

For every application, use "Operation: setApplicationInstanceSIPURI" to define a mapping between a SIP URI and application instance ID.

Use "Operation: getApplicationInstanceSIPURI" to display the mapping.

If an application is deleted, use "Operation: removeApplicationInstanceFromCache" remove the data for the application.

Management Operations for Parlay X 2.1 Presence/SIP

	
Operation: clearCache

	
Operation: listNotificationsCache

	
Operation: listSubscriptionsCache

	
Operation: listURImappingCache

	
Operation: updateSubscriptionToBeconfirmed

Reference: Attributes and Operations for Parlay X 2.1 Presence/SIP

This section describes the attributes and operations for configuration and maintenance:

	
Attribute: DefaultNotificationCount

	
Attribute: DefaultNotificationDuration

	
Attribute: NotificationCleanupTimerValue

	
Attribute: PresenceServerAddress

	
Attribute: PresenceXDMSAddress

	
Attribute: PresenceXDMSPresrulesPostfix

	
Attribute: PresenceXDMSPresrulesPrefix

	
Attribute: PresenceXDMSProviderClassName

	
Attribute: SubscriptionCleanupTimerValue

	
Attribute: SubscribeExpiryValue

	
Operation: clearCache

	
Operation: getApplicationInstance

	
Operation: getApplicationInstanceSIPURI

	
Operation: listNotificationsCache

	
Operation: listSubscriptionsCache

	
Operation: listURImappingCache

	
Operation: removeApplicationInstanceFromCache

	
Operation: removeNotification

	
Operation: removeSubscription

	
Operation: setApplicationInstanceSIPURI

	
Operation: updateSubscriptionToBeconfirmed

Attribute: DefaultNotificationCount

Scope: Cluster

Unit: Not applicable

Format: Integer

Specifies the default notification count value. This value is used if none is provided in the startPresenceNotification requests from the application.

Attribute: DefaultNotificationDuration

Scope: Cluster

Unit: Seconds

Format: Integer

Specifies the value of the default notification duration. This value is used if none is provided in the startPresenceNotification request from the application.

Example values:

	
86400 seconds is 1 day

	
604800 seconds is 1 week

Attribute: NotificationCleanupTimerValue

Scope: Cluster

Unit: Seconds

Format: Integer

Specifies the value of the timer used for checking on and cleaning up old notifications.

Each time the timer expires, it initiates a check for old notifications. If an old notification is found during the check, it is removed internally and a statusEnd callback is made to the application.

Attribute: PresenceServerAddress

Scope: Cluster

Unit: Not applicable

Format: String formatted as a SIP URI

Specifies the address to which the subscribe messages are sent. It can be the IP address of the Presence server or another IMS node that proxies the request.

Attribute: PresenceXDMSAddress

Scope: Cluster

Unit: Not applicable

Format: String formatted as a SIP URI

Specifies the XCAP root URI of the XDM server.

Attribute: PresenceXDMSPresrulesPostfix

Scope: Cluster

Unit: Not applicable

Format: String formatted as a partial path

Specifies the last-part of the XCAP Document selector for Presence rules. This part is after the XCAP User Identifier(XUI). Generally the selector URI should be the string of the following type: [XCAP_ROOT]/[AUID]/users/[XUI]/[document_name]

Example:

/presrules

Attribute: PresenceXDMSPresrulesPrefix

Scope: Cluster

Unit: Not applicable

Format: String formatted as a path

The pre-part of the XCAP Document selector for presence rules. This part is before the XCAP User Identifier(XUI). Generally the selector URI should be the string of the following type: [XCAP_ROOT]/[AUID]/users/[XUI]/[document_name]

Example:

/services/pres-rules/users/

Attribute: PresenceXDMSProviderClassName

Scope: Cluster

Unit: Not applicable

Format: Class name as string

The class name of XDM Server provider. This is a pluggable function to allow third party vendors of XDMS to customize their own XCAP client. This class must implement the "com.bea.wlcp.wlng.plugin.presence.sip.south.xcap.XCAPClient" interface.

Attribute: SubscriptionCleanupTimerValue

Scope: Cluster

Unit: Seconds

Format: Integer

Specifies the value of the timer used for checking on and cleaning up old subscriptions.

Each time the timer expires, it initiates a check for old subscriptions. If an old subscription is found during the check, it is removed and a callback made to the application.

Attribute: SubscribeExpiryValue

Scope: Cluster

Unit: Seconds

Format: Integer

Specifies the maximum lifetime of a subscription.

This value might not be accepted by the Presence Server. The Presence server may override this expiry value and give the suggested value to be used in the first NOTIFY sent to the plug-in instance. In that case, the lifetime for the presence subscription will be according to the value received from the Presence Server.

Operation: clearCache

Scope: Cluster

Clears one or all caches used by this plug-in instance.

	
Note:

Use this method with care.

Signature:

clearCache(cacheToClear: String)

Table 9-4 clearCache Parameters

	Parameter	Description
	
cacheToClear

	
Name of the cache to clear. Valid options:

	
NOTIFICATIONS - clears the notifications cache

	
SUBSCRIPTIONS - clears the subscriptions cache

	
URIMAPPINGS - clears the URI mappings cache

	
ALL - clears all caches.

Operation: getApplicationInstance

Scope: Cluster

Displays the application instance ID associated with a SIP URI. The application instance identifies an application.

Signature:

getApplicationInstance(Uri: String)

Table 9-5 getApplicationInstance Parameters

	Parameter	Description
	
Uri

	
The SIP URI.

Operation: getApplicationInstanceSIPURI

Scope: Cluster

Displays the SIP URI associated with an application instance. The application instance is used by an application.

Signature:

getApplicationInstanceSIPURI(ApplicationInstanceID: String)

Table 9-6 getApplicationInstanceSIPURI Parameters

	Parameter	Description
	
ApplicationInstanceID

	
ID of the application instance.

Operation: listNotificationsCache

Scope: Cluster

Displays the cache where notification information is stored. Used for troubleshooting.

	
Note:

Use with caution: lists data from all entries in the notification cache.

Signature:

listNotificationsCache()

Operation: listSubscriptionsCache

Scope: Cluster

Displays the cache where subscription information is stored. Used for troubleshooting.

	
Note:

Use with caution: lists data from all entries in the subscriptions cache.

Signature:

listSubscriptionsCache()

Operation: listURImappingCache

Scope: Cluster

Displays the cache where URI mappings information is stored. Used for troubleshooting.

	
Note:

Use with caution: lists data from all entries in the URI mappings cache.

Signature:

listURImappingCache()

Operation: removeApplicationInstanceFromCache

Scope: Cluster

Removes entries that are associated with an application instance from the URI mappings cache. If an application instance has been removed, the associated entries in the cache must be removed, too.

Signature:

removeApplicationInstanceFromCache(ApplicationInstance: String)

Table 9-7 removeApplicationInstanceFromCache Parameters

	Parameter	Description
	
ApplicationInstance

	
ID of the application instance.

Operation: removeNotification

Scope: Cluster

Removes a notification. The application will not be notified that the notification has been removed.

Signature:

removeNotification(ApplicationInstanceID: String, Presentity: String)

Table 9-8 removeNotification Parameters

	Parameter	Description
	
ApplicationInstanceID

	
ID of the application instance.

	
Presentity

	
ID of the presentity.

Operation: removeSubscription

Scope: Cluster

Removes a subscription and notifications. The application will not be notified that the subscription has been removed.

Signature:

removeSubscription(ApplicationInstanceID: String, Presentity: String)

Table 9-9 removeSubscription Parameters

	Parameter	Description
	
ApplicationInstanceID

	
ID of the application instance.

	
Presentity

	
ID of the presentity.

Operation: setApplicationInstanceSIPURI

Scope: Cluster

Associates a SIP URI with an application instance. See "URI Cache".

Signature:

setApplicationInstanceSIPURI(applicationInstanceID: String, URI: String)

Table 9-10 setApplicationInstanceSIPURI Parameters

	Parameter	Description
	
applicationInstanceID

	
ID of the application instance.

	
URI

	
SIP URI.

For example:

sip:name@somedomain.org

Operation: updateSubscriptionToBeconfirmed

Scope: Cluster

Updates the xml rule in XDMS to status: confirm.

Forces a blocked subscription to be pending or confirmed.

Signature:

updateSubscriptionToBeconfirmed(presentity: String, watcher: String)

Table 9-11 updateSubscriptionToBeconfirmed Parameters

	Parameter	Description
	
Presentity

	
ID of the application instance.

	
Watcher

	
SIP URI.

For example:

sip:name@somedomain.org

10 Parlay X 2.1 Short Messaging/SMPP

This chapter describes the Parlay X 2.1 Short Messaging/Short Message Peer to Peer (SMPP) communication service in detail.

Overview of the Parlay X 2.1 Short Messaging/SMPP Communication Service

The Parlay X 2.1 Short Messaging/SMPP communication service exposes the Parlay X 2.1 Short Messaging set of application interfaces.

The communication service acts as an External Short Message Entity (ESME) that connects to a Short Messaging Service Center (SMSC) over TCP/IP.

For the exact version of the standards that the communication service supports for the application-facing interfaces and the network protocols, see the appendix on standards and specifications in Oracle Communications Services Gatekeeper Concepts Guide.

Services Gatekeeper provides support for the billing identification identifier, smpp_billing_id, defined in SMPP Specification 5.1, through the use of a tunneled parameter. It also supports the ussd_service_operation, which was added as an optional parameter to the DELIVER_SM operation as a tunneled parameter in SMPP Specification 5.1. See "smpp_billing_id" and "ussd_service_operation" for information about these parameters.

Using a Short Messaging communication service, an application can:

	
Send short messages to one or many destination addresses. The payload in these short messages can be text, logos, or ringtones. With Split and Submit messaging, short messages addressed to many recipients can be split into multiple individually-addressed messages.

Logos must be in either Smart Messaging or Enhanced Messaging Service (EMS) format. The image is not scaled. Ringtones must be in either Smart Messaging or EMS (iMelody) format.

	
Request to be notified that delivery receipts for sent short messages have been received from the network.

	
Receive delivery receipts on sent short messages that have arrived from the network.

	
Explicitly query Services Gatekeeper for delivery receipts on sent short messages.

	
Subscribe to be notified if specified short messages for the application have been received from the network.

	
Receive notifications that specified short messages for the application have arrived from the network. These notifications include the short message payload.

	
Explicitly poll Services Gatekeeper for short messages sent to the application that have arrived from the network and been stored in Services Gatekeeper.

Requests can flow in two directions: from the application to the network (called application-initiated or mobile-terminated) and from the network to the application (called network-triggered or mobile-originated). Both of these scenarios are covered in the following sections.

Split and Submit Messaging

Bulk SMS messages addressed to multiple recipients can be split into a number of individually addressed SMS messages with Split and Submit Messaging regardless of the capabilities of the SMSC.

Split and Submit Messaging:

	
works with SMSCs that do not support the SUBMIT_MULTI PDU

	
supports sending to more than 254 addresses (the limit of SUBMIT_MULTI)

	
frees applications from splitting messages, improving their performance.

Delivery receipts are returned on a per-message basis, one for each individual recipient.

Processing Application-Initiated Requests

After an application has sent a short message to one or more destination addresses, two different types of responses can be returned:

	
Send Receipts

	
Delivery Receipts

Send Receipts

Send receipts are acknowledgements that the network node has received the short message from the application by means of Services Gatekeeper. Although a single short message may be sent to multiple destination addresses, Services Gatekeeper normally returns only one send receipt to the application. The receipt is returned synchronously in the response message to the sendSms operation.

Delivery Receipts

Delivery receipts contain the delivery status of the short message; that is, whether the short message has actually been delivered by the network to the mobile terminal. There is one delivery receipt per destination address, with one of three possible outcomes:

	
Successful: In the case of concatenated short messages, this is returned only when all the parts have been successfully delivered.

	
Unsuccessful: The short message could not be delivered before it expired.

	
Unsupported: Delivery notification for this address is not supported. This can occur if the originating network supports delivery receipts but is unable to acquire the appropriate information for one or more destination addresses. This status is reported for each address for which this is the case.

Because actual delivery of the short message may take several hours, or even days (if, for example, the mobile terminal is turned off at the time the short message is sent), delivery receipts are returned asynchronously. Applications can choose either to have delivery receipts delivered to them automatically by supplying Services Gatekeeper with a callback interface or they can poll Services Gatekeeper.

If the application supplies a callback interface, there are two possible outcomes:

	
Services Gatekeeper sends the delivery receipt and the application receives and acknowledges it.

	
Services Gatekeeper sends the delivery receipt but the application does not acknowledge reception. In this case, Services Gatekeeper stores the delivery receipt. The application can poll Services Gatekeeper for these receipts. Each stored delivery receipt is time stamped and, after a configurable time period, is removed.

If the application chooses not to supply a callback interface, Services Gatekeeper stores the delivery receipt. The application can poll Services Gatekeeper for these receipts. Each stored delivery receipt is time stamped and, after a configurable time period, is removed.

To correlate a sent message with a delivery receipt from the network node, Services Gatekeeper stores the information about the message for a period of time. This information has a life span. If the delivery receipt does not arrive prior to the expiration of the message, a cancel request for the message is sent to the SMSC.

Processing Network-Triggered Requests

Two types of traffic destined for an application can arrive at Services Gatekeeper from the network. They are:

	
Delivery receipts for application-initiated sent short messages

	
Mobile-originated short messages destined for the application

For an application to receive online notification of short messages from the network, it must indicate its interest in these messages by registering for online notification in Services Gatekeeper. A notification is defined by a service activation number, which is the destination address to which the mobile sender directs the short message. This is usually a short code. Use "Operation: startSmsNotification" to register for online notification of network-triggered SMS messages from the Administration console. An application can also use the following operations to register for online notifications:

	
ParlayX 2.1 StartSmsNotification; see Parlay X 2.1 Web Services Part 4: Short Messaging specification

	
REST Start Sms Notification; see Services Gatekeeper RESTful Application Developer's Guide

	
OneAPI Subscribe to SMS Delivery Notification; see Oracle Communications Services Gatekeeper OneApi Application Developer's Guide

An application can also be registered to receive short messages offline. Services Gatekeeper stores the messages and delivers them when the application requests them. Use "Operation: enableReceiveSms" to provision offline notification of network-triggered SMS messages.

Additional criteria can be tied to the service activation number, such as the first word of the text in the short message payload. For Services Gatekeeper to accept a message, both the service activation number and the additional criteria must match the details in the notification. Each registered notification must be unique, and notification attempts with overlapping criteria are rejected. The application can either request received short messages from Services Gatekeeper or include a callback interface when setting up the original notification.

Following are the possible scenarios for receipt and handling of short messages.

	
The application has registered for online notification. Services Gatekeeper sends the short message to the application, and the application receives and acknowledges it.

In this case Services Gatekeeper acknowledges receiving the short message to the network

	
The application has registered for online notification. Services Gatekeeper sends the short message to the application, but the application does not acknowledge receiving it.

Offline notification has been provisioned and a registration identifier has been established, so Services Gatekeeper stores the short message and acknowledges receiving the short message to the network.

	
The application has registered for online notification. Services Gatekeeper sends the short message to the application, but the application does not acknowledge receiving it.

Offline notification has not been provisioned. Services Gatekeeper returns an error to the network. It is the responsibility of the network to handle any further processing of the short message

	
The application has not registered for online notification.

Offline notification has been provisioned. Services Gatekeeper stores the short message and acknowledges receiving the short message to the network.

	
The application has not registered for online notification.

Offline notification has not been provisioned. Services Gatekeeper acknowledges receiving the short message to the network with an error. It is the responsibility of the network to handle any further processing of the short message.

Each stored short message is time stamped and, after a configurable time period, removed from storage.

A SOAP application retrieves stored messages with the getReceivedSms operation; see the Parlay X 2.1 Web Services Part 4: Short Messaging specification for more information about this operation. A REST application retrieves them with the Get Received Sms operation; see the Oracle Communications Services Gatekeeper RESTful Application Developer's Guide for information about this operation.

Connection Handling and Provisioning

The Parlay X 2.1 Short Messaging/SMPP communication service uses the Services Gatekeeper SMPP Server Service to establish and manage southbound connections between Services Gatekeeper and SMSCs. The SMPP Server Service is deployed as an Oracle WebLogic Server service.

See "System Properties for SMPP Server Service" and "Reference: Attributes and Operations for SMPP Server Service" for information about configuration options pertaining to these client connections.

The client connection ID is created on the plug-in's successful bind with the SMSC. The connection ID changes on a successful rebind.

When a client connection is successfully established, the connection is verified periodically by using ENQUIRE_LINK requests (heartbeats). If the ENQUIRE_LINK requests fail a configurable number of times, Services Gatekeeper attempts to reconnect with the SMSC. If the reconnect attempts fail a configurable number of times, the client connection is closed and removed.

The plug-in instance MBean provides the following configurable timers for southbound connections between Services Gatekeeper and SMSCs:

	
Connection timer: This timer sets the heartbeat interval that Services Gatekeeper uses to request the connection status on the client connection. If the ENQUIRE_LINK requests fail, Services Gatekeeper closes the connection and attempts to reconnect. See "Attribute: EnquireLinkTimerValue" for more information.

	
Transaction timer: This timer establishes the interval between an SMPP request to the SMSC and the corresponding SMPP response. If the interval is reached, Services Gatekeeper does not resend the request. In this case, Services Gatekeeper removes the transaction information and discards the PDU response. See "Attribute: RequestTimerValue" for more information.

Multiple Connections and Multiple Plug-in Instances

A Parlay X 2.1 Short Messaging/SMPP plug-in can bind to an SMSC as an ESME transmitter/receiver or transceiver. If more than one account in the SMSC is used, create one plug-in instance for each account. If more than one SMSC is used, create a plug-in instance for each account in each of the SMSCs.

If plug-in instances have the same bind type, they can share a connection to the SMSC. If they have different bind types, each must have its own client connection.

Each plug-in instance executes on all network tier servers. Shared storage is used, so network-triggered messages and delivery notifications can be accepted by all network tier servers and match them with all application subscriptions, thus creating a configuration with high availability.

Windowing

To maximize throughput, the Parlay X 2.1 Short Messaging/SMPP communication service supports windowing on the network-facing interfaces. Windowing provides a way to specify the amount of data that can be transmitted without receiving an acknowledgment.

Windowing for requests to the SMSC is configured in the plug-in.

Requests wait in a windowing queue until they can be submitted. Two attributes apply to the windowing queue. The WindowingMaxQueueSize attribute sets the size of the queue, specifying the maximum number of requests that can wait in the queue at one time. The WindowingMaxWaitTime attribute specifies the maximum amount of time that a single request can wait in the windowing queue.

The WindowingSize attribute sets the number of unacknowledged requests that can be sent simultaneously.

A request moves from the windowing queue to the window. From the window it is submitted for processing. A submitted request remains in the window until its response is received. When the response is received, the request is released and another request can be moved from the windowing queue to the window.

If any one of these three windowing parameters is set to a value less than zero, windowing is turned off. If all of these three parameters are greater than zero, windowing is turned on.

For descriptions of these attributes see:

	
Attribute: WindowingMaxQueueSize

	
Attribute: WindowingMaxWaitTime

	
Attribute: WindowingSize

If the windowing request queue is full or the timer has expired, the request is not sent and an error code is returned to the plug-in instance.

Segments

If an SMS message is larger than the maximum payload size, the message content is concatenated into segments before it is delivered to the application.

The maximum payload size defaults to the standard set by the Parlay X 2.1 Short Messaging specification. You can set the maximum payload size using the wlng.smpp.max_payload_size system property on the command line when starting Services Gatekeeper.

For configuration attributes regarding segments, see:

	
Attribute: ReceiveSegmentsWaitTime

	
Attribute: ReceiveSmsIgnoreMissingSegments

Short Code Translation

Messaging-capable networks use short codes and message prefixes to help route traffic and to make access to certain features easier for the end user. Instead of having to use the entire address, users can enter a short code that is mapped to the full address in the network. The Parlay X 2.1 Short Messaging/ SMPP communication service supports short codes and message prefixes, which allow the same short code to be mapped to different applications based on the prefix to the enclosed message.

Load Balancing, High Availability, and Failover

To optimize system utilization, applications should load-balance application-triggered requests among all application tier servers.

When there are multiple connections to the SMSC within a single plug-in instance, the SMPP Server Service selects one of the connections to the SMSC.

A prerequisite for high-availability for the Parlay X 2.1 Short Messaging/SMPP communication service is redundant network tier servers, redundant network interface cards in each network tier server, and a redundant set of SMPP servers to connect to. High availability between Services Gatekeeper and the network is achieved by using at least two different plug-in instances per network tier server and having the plug-in instances connect to different SMPP servers.

High availability behavior is as follows:

	
The SMPP server runs in every network node. If one network node is unavailable, mobile-terminated requests are automatically routed to a healthy node. Related delivery reports are routed from the healthy network node that handled the request to the application.

	
If the application tier is unavailable, mobile-originated messages are routed to a healthy application tier node.

	
In a Services Gatekeeper cluster, if the server becomes unavailable after sending a SUBMIT_SM request to and receiving the SUBMIT_SM_RESP from the SMSC, the SMSC routes the subsequent delivery receipt to another server. This other server retrieves the message information from cluster-level storage and processes it.

	
In a Services Gatekeeper cluster, if a server becomes unavailable after sending a SUBMIT_SM request to and receiving the SUBMIT_SM_RESP from an application, the application routes the subsequent cancel, query, or replace request to another server. This other server retrieves the message information from cluster-level storage and processes it.

Character Set Encoding

The SMPP protocol expects the sender name value in ASCII characters. The use of non-ASCII characters can cause the request to become garbled or even to be removed at the SMSC.

The maximum size of an SMS message is 140 bytes, regardless of the type of data coding used. If the content exceeds 140 bytes, Service Gatekeeper sends it as multiple SMS messages.

Standard and Extended GSM Alphabets

The standard GSM 03.38 alphabet uses 7 bits per character, allowing for 128 different characters with hexadecimal values 0x00 to 0x7F.

If all the characters in an SMS message are from the standard GSM alphabet, it is possible to send 160 of these 7-bit encoded characters in one SMS message of 140 bytes. This is because 140 bytes equals 1120 bits and if each character uses 7-bits, 160 (1120/7) characters fit into the message.

See "Attribute: DefaultDataCoding" for the default alphabet settings and payload size that Oracle recommends.

There is also an extended GSM alphabet that defines an additional 10 characters along with the original 128. These characters are sent as two 7-bit encoded characters, starting with the 7-bit encoded escape character (0x1B) from the standard alphabet. For example, if a message contains the character { from the extended alphabet, this character is encoded as 1B 28 where 1B is the escape character and 28 is the { extended character.

Each extended character requires two 7-bit encoded characters (escape character + extended character). Therefore, an SMS message containing a combination of characters from the standard GSM alphabet and characters from the extended GSM alphabet will hold fewer than 160 characters. The exact number depends on the particular mix of standard and extended characters.

For a list of the characters defined in the GSM standard and extended alphabets see:

http://www.csoft.co.uk/sms/character_sets/gsm.htm

To indicate that only SMS messages in which all the characters are from the standard or extended GSM alphabet, the DefaultDataCoding attribute should be set to 0. This is the default. setting. If the DefaultDataCoding attribute is set to 0 and the SMS message contains characters that are not in the standard or extended GSM alphabets, Services Gatekeeper rejects the message and throws an exception. If your SMSC sends 8-bit SMSs, set the DefaultDataCoding attribute to 1, which allows a maximum of 140 characters in an SMS.

Other Alphabets

It is possible to send characters that are not in the standard or extended GSM alphabets if the DefaultDataCoding attribute is configured appropriately.

In addition to the standard and extended GSM alphabets (called the “SMSC Default Alphabet” in the SMPP v3.4 specification), two other common character sets are the IA5/ASCII character set and the UCS2 character set.

In the IA5/ASCII alphabet, the characters are 8-bit encoded, in other words one byte per character, so it is possible to send 140 of these 8-bit encoded characters in one SMS message that uses this coding scheme. If you are using the IA5/ASCII alphabet, set the DefaultDataCoding attribute for the plug-in to 1.

Characters in the UCS2 alphabet are 16-bit encoded, requiring two bytes per character, so it is possible to send only 70 of these characters in a single SMS message. If you are using the UCS2 alphabet, set the DefaultDataCoding attribute for the plug-in to 8.

For a complete list of supported character set values, see the “data_coding” section in the SMPP v3.4 specification.

Overriding the DefaultDataCoding Attribute

You can override the DefaultDataCoding attribute in requests using an xparameter or an SLA setting. This makes it possible, for example, to use the standard 7-bit GMS alphabet as the default but to send specific SMS messages using a different character set.

Use the data_coding xparameter for parameter tunneling in the header of the request or the com.bea.wlcp.wlng.plugin.sms.DataCoding parameter for defining the coding scheme in the <requestContext> element of an SLA.

For example, although the DefaultDataCoding parameter may be set to 0 for a plug-in instance, the following SOAP header sets the data coding scheme for its SMS message to 8, stipulating that the UCS2 character set should be used for encoding the SMS message in this particular request:

<soapenv: Header>
. . .
 <xparams>
 <param key="data_coding" value="8" />
 <xparams>
. . .
</soapenv:Header>

In the next example, the <requestContext> element in an SLA sets the data coding scheme to 1, stipulating that the IA5/ASCII character set should be used for encoding SMS messages initiated by the application associated with this particular SLA:

<requestContext>
 <contextAttribute>
 <attributeName>ccom.bea.wlcp.wlng.plugin.sms.DataCoding</attributeName>
 <attributeValue>1</attributeValue>
 </contextAttribute>
</requestContext>

Application Interfaces

For information about the SOAP-based interface for the Parlay X 2.1 Short Messaging/SMPP communication service, see the discussion of Parlay X 2.1 Interfaces in Oracle Communications Services Gatekeeper Application Developer's Guide.

For information about the RESTful Short Messaging interface, see the discussion of Short Messaging in Oracle Communications Services Gatekeeper RESTful Application Developer's Guide.

The RESTful Service Short Messaging interfaces provide RESTful access to the same functionality as the SOAP-based interfaces. The internal representations are identical, and for the purposes of creating SLAs, reading CDRs, and so on, they are the same.

Events and Statistics

The Parlay X 2.1 Short Messaging/SMPP communication service generates Event Data Records (EDRs), Charging Data Records (CDRs), alarms, and statistics to assist system administrators and developers in monitoring the service.

For general information, see Appendix A, "Events, Alarms, and Charging."

Event Data

Table 10-1 lists the IDs of the EDRs created by the Parlay X 2.1 Short Messaging/SMPP communication service. This list does not include EDRs created when exceptions are thrown.

Table 10-1 Event Types Generated by Parlay X 2.1 Short Messaging/SMPP

	EDR ID	Method Called
	
6000

	
notifySmsDeliveryReceipt

	
6001

	
notifiySmsReception

	
7000

	
sendSms

	
7001

	
sendSmsLogo

	
7002

	
sendSmsRingtone

	
7003

	
startSmsNotification

	
7004

	
stopSmsNotification

	
7011

	
getSmsDeliveryStatus

	
7012

	
getReceivedSms

See Table 26-2, "Event Types Generated by the SMPP Server Service" for the list of EDRs generated by the SMPP Server Service.

Charging Data Records

Short Messaging/SMPP-specific CDRs are generated under the following conditions:

	
After a sendSms request is sent from Services Gatekeeper to the network.

	
After a reportNotification request is sent from the network to Services Gatekeeper, indicating that a delivery receipt has been returned for the application.

	
When a mobile-originated message has been successfully delivered to the application.

Statistics

Table 10-2 maps methods invoked from either the application or the network to the transaction types collected by the Services Gatekeeper statistics counters.

Table 10-2 Methods and Transaction Types for Parlay X 2.1 Short Messaging/SMPP

	Method	Transaction Type
	
sendSms

	
TRANSACTION_TYPE_MESSAGING_SEND

	
sendSmsLogo

	
TRANSACTION_TYPE_MESSAGING_SEND

	
sendSmsRingtone

	
TRANSACTION_TYPE_MESSAGING_SEND

	
receivedMobileOriginatedSMS

	
TRANSACTION_TYPE_MESSAGING_RECEIVE

Alarms

For the list of alarms, see Oracle Communications Services Gatekeeper Alarm Handling Guide.

Tunneled Parameters for Parlay X 2.1 Short Messaging / SMPP

This section lists the parameters that can be tunneled or defined in the <requestContext> element of an SLA.

The dest_bearer_type, service_type, ussd_service_operation, its_session_info parameters are used to support Unstructured Supplementary Service Data (USSD).

sms.protocol.id

	Description
	
This parameter defines the mandatory SMPP protocol_id parameter.

It is valid for application-initiated requests only.

This parameter can be set using SLAs or parameter tunneling. An SLA setting overrides a tunneled parameter.

This parameter key name can be configured in the wlng.sms.protocol.id system property. The default is sms.protocol.id.

	Format
	
Integer

	Value
	
Value range is 0–65535.

source_port

	Description
	
This parameter defines the optional SMPP source_port parameter.

It is valid for application-initiated requests.

It is valid for network-triggered requests if the forwarding parameter is enabled. See "Attribute: ForwardXParams" for more information.

This parameter can be set using parameter tunneling.

	Format
	
Integer

	Value
	
Value range is 0–65535.

destination_port

	Description
	
This parameter defines the optional SMPP destination_port parameter.

It is valid for application-initiated requests.

It is valid for network-triggered requests if the forwarding parameter is enabled. See "Attribute: ForwardXParams" for more information.

This parameter can be set using parameter tunneling.

	Format
	
Integer

	Value
	
Value range is 0–65535.

data_coding

	Description
	
This parameter defines the mandatory SMPP data_coding parameter.

Overrides the DefaultDataCoding configuration attribute. See "Attribute: DefaultDataCoding" for more information.

It is valid for application-initiated requests.

It is valid for network-triggered requests if the forwarding parameter is enabled. See "Attribute: ForwardXParams" for more information.

This parameter can be set using parameter tunneling.

	Format
	
Signed Decimal

	Value
	
Value range is -128 – +127. Some values are restricted. See the SMPP specification for details.

esm_class

	Description
	
This parameter defines the mandatory SMPP esm_class parameter.

It is valid for application-initiated requests only.

This parameter can be set using parameter tunneling.

	Format
	
Signed Decimal

	Value
	
Value range is -128 – +127. Some values are restricted. See the SMPP specification for details.

sms.service.type

	Description
	
This parameter defines the mandatory SMPP service_type parameter.

It is valid for application-initiated requests only.

This parameter can be set using SLAs or parameter tunneling. An SLA setting overrides a tunneled parameter.

This parameter name can be configured in the wlng.sms.service.type system property. The default is sms.service.type.

	Format
	
String enumeration

	Value
	
Valid values are CMT, CPT, VMN, VMA, WAP, USSD, and an empty string (""). See the SMPP specification for details.

sms.replace.if.present

	Description
	
This parameter defines the mandatory SMPP replace_if_present_flag parameter.

It is valid for application-initiated requests only.

This parameter can be set using SLAs or parameter tunneling. An SLA setting overrides a tunneled parameter.

This parameter key name can be configured in the wlng.sms.replace.if.present system property. The default is “sms.replace.if.present”.

	Format
	
Integer

	Value
	
Value values are 0 and 1. See the SMPP specification for details.

com.bea.wlcp.wlng.plugin.sms.OriginatingAddressType

	Description
	
This parameter defines a mapping ID.

The ID is used for looking up an SMPP ESME Type Of Number (TON) and an SMPP ESME Numbering Plan Indicator (NPI). The TON and NPI are configured using OAM.

This parameter is valid for application-initiated requests only.

This parameter can be set using SLAs or parameter tunneling. An SLA setting overrides a tunneled parameter.

	Format
	
String

com.bea.wlcp.wlng.plugin.sms.DestinationAddressType.n

	Description
	
This parameter defines a mapping ID.

The ID is used for looking up an SMPP ESME Type Of Number (TON) and an SMPP ESME Numbering Plan Indicator (NPI). The TON and NPI are configured using OAM.

The n is the number of the destination address. Valid values are 0 to one less than the number of destination addresses. An example of this parameter name would be:

com.bea.wlcp.wlng.plugin.sms.DestinationAddressType.2

This parameter is valid for application-initiated requests only.

This parameter can be set using SLAs or parameter tunneling. An SLA setting overrides a tunneled parameter.

	Format
	
String

com.bea.wlcp.wlng.plugin.sms.RequestDeliveryReportFlag

	Description
	
This parameter defines the mandatory SMPP registered_delivery parameter.

It specifies whether delivery reports are requested for application-initiated requests.

It is valid for application-initiated requests only.

This parameter can be set using SLAs or parameter tunneling. An SLA setting overrides a tunneled parameter.

	Format
	
Boolean

	Value
	
If true, delivery reports are requested and the SMPP registered_delivery parameter is set to 0x01.

If false, delivery reports are not requested and the SMPP registered_delivery parameter is set to 0x00.

com.bea.wlcp.wlng.plugin.sms.DataCoding

	Description
	
This parameter defines the mandatory SMPP data_coding parameter.

The plug-in uses it for encoding the message string.

It is valid for application-initiated requests only.

This parameter can be set using SLAs.

	Format
	
Integer

	Value
	
Value range is 0–255. Some values are restricted. See the SMPP specification for details.

com.bea.wlcp.wlng.plugin.sms.Priority

	Description
	
This parameter defines the mandatory SMPP priority_flag parameter.

It is valid for application-initiated requests only.

This parameter can be set using SLAs.

	Format
	
String

	Value
	
Valid values are:

	
HIGH; Sets priority_flag to 3.

	
LOW; Sets priority_flag to 0.

	
DEFAULT; Sets priority_flag to 0.

	
UNDEFINED; Sets priority_flag to 0.

originating_address

	Description
	
This parameter defines the originating address of the SMS in the delivery receipt.

When this parameter is used, the SmsMBean's Boolean forwardXParam attribute must be set to true to make the parameter appear in the SOAP header. By default, forwardXParam is false. See "Attribute: ForwardXParams" for more information.

This parameter can be set using parameter tunneling.

	Format
	
String

smpp_billing_id

	Description
	
This parameter defines the billing information according to the format in the SMPP Specification 5.1, section 4.8.4.3 titled "billing_identification".

The parameter works with SMPP 5.1 SMSCs, but with not with SMPP 3.4 SMSCs.

The parameter is intended for use with Parlay X 2.1 SMPP.

	Format
	
Hexadecimal String

Table 10-3 describes the format.

Table 10-3 Format for smpp_bliing_id Value

	Field	Size (octets)	Type	Description
	
parameter tag

	
2

	
Integer

	
0x060B

	
length

	
2

	
Integer

	
Length of value part in octets

	
value

	
1 - 1024

	
Octet String

	
Bits 7......0

0XXXXXXX (Reserved)1XXXXXXX (Vendor Specific)

The first octet represents the Billing Format tag and indicates the format of the billing information contained in the remaining octets.

If the value is not sent as a hexadecimal string, it is ignored and a warning is logged.

Here is sample code for encoding the string.

private String getHexEncodedString(String normalString) {
 byte[] bHexStr = normalString.getBytes();
 String retVal = "";
..String sOctet = null;
 for (int i = 0; i < bHexStr.length; i++) {
 sOctet = Integer.toHexString((int) (bHexStr[i] & 0xFF));
 if (sOctet.length() == 1) {
 sOctet = "0" + sOctet;
 }
 retVal = retVal.concat(sOctet);
 }
 return retVal.toUpperCase(); }

dest_addr_subunit

	Description
	
This parameter defines the dest_addr_subunit field in the following SMPP operations:

	
SUBMIT_SM

	
SUBMIT_MULTI

	
DATA_SM

It can be set using parameter tunneling.

	Format
	
Signed Decimal

The decimal value is automatically converted to a hexadecimal string before it is passed to the SMPP dest_addr_subunit field.

	Value
	
Value range is -128 – +127.

	Example
	

<xparams> <param key="dest_addr_subunit" value="1"/> </xparams>

dest_bearer_type

	Description
	
This parameter is used to request the desired bearer for delivery of the message to the destination address.

If the receiving system (the SMSC) does not support the indicated bearer type, it may return a response PDU reporting a failure.

See section 5.3.2.5 of the Short Message Peer to Peer Protocol Specification v3.4 here: http://docs.nimta.com/SMPP_v3_4_Issue1_2.pdf for the formal definition of the parameter and section 4.7.1 for its specification as an optional parameter for the DATA_SM operation.

This parameter can be set using parameter tunneling.

	Format
	
Unsigned Byte [0–255]

	Value
	
Valid values are:

	
0x00 = Unknown

	
0x01 = SMS

	
0x02 = Circuit Switched Data (CSD)

	
0x03 = Packet Data

	
0x04 = USSD

	
0x05 = CDPD

	
0x06 = DataTAC

	
0x07 = FLEX/ReFLEX

	
0x08 = Cell Broadcast (cellcast)

	
9 to 255 Reserved

service_type

	Description
	
This parameter indicates the SMS application service associated with the message. Allows the ESME to use enhanced messaging services such as replace_if_present and to control the teleservice used on the air interface (for example, ANSI-136/TDMA and IS-95/CDMA).

It is used to support tunneling USSD (3G TS 23.090 version 3.0.0) messages through the SMPP protocol.

See section 5.2.11 of the Short Message Peer to Peer Protocol Specification v3.4 here: http://docs.nimta.com/SMPP_v3_4_Issue1_2.pdf for the formal definition of the parameter and the appropriate subsections of section 4 for its specification as a mandatory parameter for SUBMIT_SM, SUBMIT_MULTI, DELIVER_SM, DATA_SM, and CANCEL_SM.

This parameter can be set using parameter tunneling.

	Format
	
Octet string

	Value
	
The predefined generic service type value for USSD is USSD.

ussd_service_operation

	Description
	
This parameter defines the USSD service operation that is required when SMPP is used as an interface to a (GSM) USSD system.

It is used to support tunneling USSD (3G TS 23.090 version 3.0.0) messages through the SMPP protocol.

It is used as an optional parameter to the SMPP SUBMIT_SM operation.

This parameter is defined in section 5.3.2.44 of the Short Message Peer to Peer Protocol Specification v3.4.

It was added to the DELIVER_SM operation in the SMPP 5.1 specification. See Short Message Peer to Peer Protocol Specification Version 5.1.

This parameter can be set using parameter tunneling.

	Format
	
Unsigned byte [0–255]

	Value
	
Valid values are:

	
0 = PSSD indication

	
1 = PSSR indication

	
2 = USSR request

	
3 = USSN request

	
4 to 15 Reserved

	
16 = PSSD response

	
17 = PSSR response

	
18 = USSR confirm

	
19 = USSN confirm

	
20 to 31 Reserved

	
32 to 255 Reserved for vendor-specific USSD operations

its_session_info

	Description
	
This is a required parameter for the CDMA Interactive Teleservice as defined by the Korean PCS carriers [KORITS]. Contains control information for the interactive session between an MS and an ESME.

See section 5.3.2.43 of the Short Message Peer to Peer Protocol Specification v3.4 for the formal definition of the parameter and the appropriate subsections of section 4 for its specification as an optional parameter for SUBMIT_SM, DELIVER_SM, and DATA_SM.

This parameter is also supported for native SMPP.

This parameter can be set using parameter tunneling.

	Format
	
Unsigned Short (2 bytes) [0–65535] as an octet string

Following is a description of the octet string.

Bits 7...............0

SSSS SSSS (octet 1)

NNNN NNNE (octet 2)

Octet 1 contains the session number (0–255) encoded in binary. The session number remains constant for each session.

Octet 2 encodes the sequence number of the dialog unit (as assigned by the ESME) within the session in bits [7. . . 1].

Bit 0 of octet 2 is the End of Session Indicator, indicating that the message is the end of the conversation session. Valid values for the End of Session Indicator are:

	
0 = End of Session Indicator inactive

	
1 = End of Session Indicator active

smpp_optional_int_tlv_param_tags

	Description
	
An application or interceptor uses this parameter to pass integer data to a plug-in in TagLengthValue (TLV) data units. A TLV data unit consists of a tag/value pair. This parameter passes a list of comma-separated items that are the tag parts of the data units.

See smpp_optional_octet_tlv_param_tags for sending data that is not of type integer.

The smpp_optional_int_tlv_param_tags list must have the same number of entries as its corresponding smpp_optional_int_tlv_param_values list. See smpp_optional_int_tlv_param_values.

Within a TLV data unit, the sizes of the tag and length fields are each 2 bytes. The value of length field is always "0x00, 0x04", because integer data is always encoded in 4 bytes.

An example of code to tunnel TLV integer data is:

injectXParam(TLV_OPTIONAL_INT_PARAM_TAGS, "5121,5124");
injectXParam(TLV_OPTIONAL_INT_PARAM_VALUES, "999,1234");

This parameter can be set using parameter tunneling.

	Format
	
The tag identifiers must be in decimal format. For example, set a tag with the hexadecimal value 0x1401 as 5121.

smpp_optional_int_tlv_param_values

	Description
	
An application or interceptor uses this parameter to pass integer data to a plug-in in TagLengthValue (TLV) data units. A TLV data unit consists of a tag/value pair. This parameter passes a list of comma-separated items that are the value parts of the data units.

See smpp_optional_octet_tlv_param_values for sending data that is not of type integer.

The smpp_optional_int_tlv_param_values list must have the same number of entries as its corresponding smpp_optional_int_tlv_param_tags list. See smpp_optional_int_tlv_param_tags.

Within a TLV data unit, the sizes of the tag and length fields are each 2 bytes. The value of length field is always "0x00, 0x04", because integer data is always encoded in 4 bytes.

An example of code that tunnels TLV integer data is:

injectXParam(TLV_OPTIONAL_INT_PARAM_TAGS, "5121,5124");
injectXParam(TLV_OPTIONAL_INT_PARAM_VALUES, "999,1234");

This parameter can be set using parameter tunneling.

smpp_optional_octet_tlv_param_tags

	Description
	
An application or interceptor uses this general-purpose parameter to pass any type of data to a plug-in in TagLengthValue (TLV) data units. A TLV data unit consists of a tag/value pair. This parameter passes a list of comma-separated items that are the tag parts of the data units.

See smpp_optional_int_tlv_param_tags for sending integer data.

The smpp_optional_octet_tlv_param_tags list must have the same number of entries as its corresponding smpp_optional_octet_tlv_param_values list. See smpp_optional_octet_tlv_param_values.

Within a TLV data unit, the sizes of the tag and length fields are each 2 bytes. The value of length field is the size of the actual data in the value field in the corresponding smpp_optional_octet_tlv_param_values parameter.

An example of code that tunnels TLV octet data is:

injectXParam(TLV_OPTIONAL_OCTET_PARAM_TAGS, "5121,5124", rctx);
injectXParam(TLV_OPTIONAL_OCTET_PARAM_VALUES, "03e7,04d2", rctx);
private void injectXParam(String name, String value, RequestContext rctx){
 rctx.putXParam(name, value);

This parameter can be set using parameter tunneling.

	Format
	
The tag identifiers must be in decimal format. For example, set a tag with the hexadecimal value 0x1401 as 5121.

smpp_optional_octet_tlv_param_values

	Description
	
An application or interceptor uses this general-purpose parameter to pass any type of data to a plug-in in TagLengthValue (TLV) data units. A TLV data unit consists of a tag/value pair. This parameter passes a list of comma-separated items that are the value parts of the data units.

See smpp_optional_int_tlv_param_values for sending integer data.

The smpp_optional_octet_tlv_param_values list must have the same number of entries as its corresponding smpp_optional_octet_tlv_param_tags list. See smpp_optional_octet_tlv_param_tags.

Within a TLV data unit, the sizes of the tag and length fields are each 2 bytes. The value of length field is the size of the actual data in the value field.

An example of code that tunnels TLV octet data is:

injectXParam(TLV_OPTIONAL_OCTET_PARAM_TAGS, "5121,5124", rctx);
injectXParam(TLV_OPTIONAL_OCTET_PARAM_VALUES, "03e7,04d2", rctx);
private void injectXParam(String name, String value, RequestContext rctx){
 rctx.putXParam(name, value);

This parameter can be set using parameter tunneling.

	Format
	
The tag identifiers must be in decimal format. For example, set a tag with the hexadecimal value 0x1401 as 5121.

com.bea.wlcp.wlng.plugin.sms.smpp.schedule_delivery_time

	Description
	
This parameter specifies the scheduled time at which the message delivery should be first attempted.It defines either the absolute date and time or relative time from the current SMSC time at which delivery of this message will be attempted by the SMSC.

The PDU parameter is schedule_delivery_time.

	Format
	
ASCII string specified as YYMMDDhhmmsstnnp where:

	
YY: last two digits of the year, from 00 to 99.

	
MM: month from 1 to 12.

	
DD: day from 01 to 31.

	
hh: hour from 00 to 23.

	
ss: second from 00 to 59.

	
t: tenths of a second from 0 to 9.

	
nn: time differential in 15 minute increments between the local time (as expressed in the first 13 octets) and Universal Time Coordinated (UTC) from 00 to 48.

	
p +: local time is in 15 minute increments advanced in relation to UTC.

	
p -: local time is in 15 minute increments retarded in relation to UTC.

	
p R: local time is relative to the current SMSC time.

sms.validity.period

	Description
	
The validity_period parameter indicates the SMSC expiration time, after which the message should be discarded if not delivered to the destination. It can be defined in absolute time format or relative time format.

The PDU parameter is validity_period.

	Format
	
ASCII string specified as YYMMDDhhmmsstnnp where:

	
YY: last two digits of the year, from 00 to 99.

	
MM: month from 1 to 12.

	
DD: day from 01 to 31.

	
hh: hour from 00 to 23.

	
ss: second from 00 to 59.

	
t: tenths of a second from 0 to 9.

	
nn: time differential in 15 minute increments between the local time (as expressed in the first 13 octets) and Universal Time Coordinated (UTC) from 00 to 48.

	
p +: local time is in 15 minute increments advanced in relation to UTC.

	
p -: local time is in 15 minute increments retarded in relation to UTC.

	
p R: local time is relative to the current SMSC time.

Managing Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary SMS/SMPP

This section describes the properties and workflow for setting up Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary SMS/SMPP network protocol plug-in instances. These plug-in instances share the same configuration options.

The Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary SMS/SMPP communication services rely on an SMPP Server Service for connecting to the Small Message Service Center (SMSC).

The SMPP Server Service is also used by the Native SMPP Communication Service. See "Native SMPP" for information on managing client connections using SMPP Server Service.Configuration facilities for the SMPP Server Service are described in detail in the following sections of "Native SMPP":

	
Properties for SMPP Server Service

	
Reference: Attributes and Operations for SMPP Server Service

Properties for Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary SMS/SMPP

Table 10-4 lists the technical specifications for the communication service.

Table 10-4 Properties for Parlay X 2.1 Short Messaging/SMPP and EWS Binary SMS/SMPP

	Property	Description
	
Managed object in Administration Console

	
domain_name > OCSG > server_name > Communication Services > plugin_instance_id

	
MBean

	
Domain=com.bea.wlcp.wlng

Name=wlng_nt

InstanceName=same as the network protocol instance_id assigned when the plug-in instance is created

Type=oracle.ocsg.sms.smpp.management.SmsMBean

	
Network protocol plug-in service ID

	
Plugin_px21_short_messaging_smpp

	
Network protocol plug-in instance ID

	
The ID is assigned when the plug-in instance is created. See "Managing and Configuring the Plug-in Manager" in System Administrator's Guide.

	
Supported Address Scheme

	
tel

	
Service type

	
Sms

	
Exposes to the service communication layer a Java representation of:

	
Parlay X 2.1 Short Messaging/SMPP:

	
Parlay X 2.1 Part 4: Short Messaging

Extended Web Services Binary SMS/SMPP:

	
Extended Web Services Binary SMS

	
Interfaces with the network nodes using:

	
SMPP 3.4

	
Deployment artifacts

	
wlng_nt_sms_px21.ear and wlng_at_sms_px21.ear

Configuration Workflow for Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary SMS/SMPP

Following is an outline for configuring the plug-in using the Administration Console or an MBean browser.

	
Create one or more instances of the plug-in service. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the plug-in service ID as listed in the "Properties for Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary SMS/SMPP" section.

	
Using the Administration Console or an MBean browser, select the MBean for the plug-in instance. The MBean display name is the same as the plug-in instance ID given when the plug-in instance was created.

	
Configure the behavior of the plug-in instance. See "Reference: Attributes and Operations for Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary SMS/SMPP" for the list of attributes and operations.

	
If desired, configure the supportBulkRequest attribute to manage Split and Submit Messaging. See "Attribute: supportBulkRequest" in Oracle Communications Services Gatekeeper System Administrator's Guide.

	
If the plug-in uses short code mappings, configure the Short Code Mapper. For more information. See "Managing and Configuring Shortcode Mappings" in Oracle Communications Services Gatekeeper System Administrator's Guide.

	
Set up the routing rules to the plug-in instance. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the plug-in instance ID and address schemes listed in the "Properties for Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary SMS/SMPP" section.

	
If required, create and load a node SLA. For details see “Defining Global Node and Service Provider Group Node SLAs” and “Managing SLAs” in the Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

	
Provision the service provider accounts and application accounts. For information, see Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

Management Operations in the SMPP Server Service

The Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary SMS/SMPP communication services use the SMPP Server Service to establish and manage client connections with the SMSC.

The SMPP Server Service establishes a client connection to the SMSC when the plug-in instance is activated or when the administrator resets the client connection by using the resetClientConnection SMPP Server Service operation.

The following Server Service operations, described in "Native SMPP" are used to manage client connections:

	
Operation: closeClientConnection

	
Operation: listClientConnections

	
Operation: listPluginInstances

	
Operation: resetClientConnection

Reference: Attributes and Operations for Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary SMS/SMPP

This section describes the attributes and operations for configuration and maintenance:

	
Attribute: ActiveStatus (read-only)

	
Attribute: BindType

	
Attribute: DataSm

	
Attribute: DefaultDataCoding

	
Attribute: DeliverSmRespCommandStatus

	
Attribute: DestinationAddressNpi

	
Attribute: DestinationAddressTon

	
Attribute: EnquireLinkTimerValue

	
Attribute: EsmeAddressRange

	
Attribute: EsmeNpi

	
Attribute: EsmePassword

	
Attribute: EsmeSystemId

	
Attribute: EsmeSystemType

	
Attribute: EsmeTon

	
Attribute: ForwardXParams

	
Attribute: LocalAddress

	
Attribute: LocalPort

	
Attribute: MaxKeywordLimit

	
Attribute: MessageIdInHexFormat

	
Attribute: MessagingMode

	
Attribute: MobileCountryCode

	
Attribute: MobileNetworkCode

	
Attribute: ModuleId (read-only)

	
Attribute: NumberReceiverConnections

	
Attribute: NumberTransceiverConnections

	
Attribute: NumberTransmitterConnections

	
Attribute: OriginatingAddressNpi

	
Attribute: OriginatingAddressTon

	
Attribute: ReceiveSegmentsWaitTime

	
Attribute: ReceiveSmsIgnoreMissingSegments

	
Attribute: RequestDeliveryReports

	
Attribute: RequestTimerValue

	
Attribute: RetryTimesBeforeGiveUp

	
Attribute: RetryTimesBeforeReconnect

	
Attribute: SMSCDefaultAlphabet

	
Attribute: SegmentsLimit

	
Attribute: SequenceNumberRangeEndId

	
Attribute: SequenceNumberRangeStartId

	
Attribute: SmppVersion

	
Attribute: SmscAddress

	
Attribute: SmscGroupId

	
Attribute: SmscGroupIdEnabled

	
Attribute: SmscPort

	
Attribute: UseMessagePayload

	
Attribute: UserTextMaxLength

	
Attribute: WindowingMaxQueueSize

	
Attribute: WindowingMaxWaitTime

	
Attribute: WindowingSize

	
Operation: addOriginatingAddressTypeMapping

	
Operation: addDestinationAddressTypeMapping

	
Operation: countOfflineNotificationCache

	
Operation: countOnlineNotificationCache

	
Operation: countSmsCache

	
Operation: enableReceiveSms

	
Operation: getOfflineNotificationInfo

	
Operation: getOnlineNotificationInfo

	
Operation: listOnlineBinaryNotificationInfo

	
Operation: getOfflineNotificationInfo

	
Operation: listOnlineNotificationInfo

	
Operation: listOriginatingAddressTypeMappings

	
Operation: listDestinationAddressTypeMappings

	
Operation: removeOfflineNotificationInfo

	
Operation: removeOnlineNotificationInfo

	
Operation: removeOriginatingAddressTypeMapping

	
Operation: removeDestinationAddressTypeMapping

	
Operation: startSmsNotification

	
Operation: translateDestinationAddressNpi

	
Operation: translateDestinationAddressTon

	
Operation: translateOriginatingAddressNpi

	
Operation: translateOriginatingAddressTon

Attribute: ActiveStatus (read-only)

Scope: Server

Unit: Not applicable

Format: Boolean

Read-only attribute reporting the active status of the plug-in:

	
true if the plug-in is currently active

	
false if the plug-in is currently inactive

Attribute: BindType

Scope: Server

Unit: Not applicable

Format: Integer

Specifies how the plug-in binds to the SMSC

Use:

	
0 to bind as transmitter and receiver

	
1 to bind as transceiver

	
2 to bind as transmitter only

	
3 to bind as receiver only

The default is 0.

Attribute: DataSm

Scope: Server

Unit: Not applicable

Format: Boolean

Set to true to use the DATA_SM operation when sending binary data.

The default is false.

Attribute: DefaultDataCoding

Scope: Server

Unit: Not applicable

Format: Integer

Specifies the default data coding to use when sending SMS messages. This value will be used if a data coding is not provided by the application-facing interface.

See the data_coding parameter in the SMPP specification for all the valid values.

Use:

	
0 for SMSC Default Alphabet

	
1 for ASCII

	
8 for USC2

The default is 0.

See "Character Set Encoding" for more information about data coding and calculating how many characters fit into a 140-byte SMS message.

See "data_coding" and "com.bea.wlcp.wlng.plugin.sms.DataCoding" for information about overriding the default data coding scheme.

Attribute: DeliverSmRespCommandStatus

Scope: Server

Unit: Not applicable

Format: Integer

Specifies the command status of the DELIVER_SM_RESP operation to send to the SMSC if a delivery notification or mobile-originated message can not be delivered to the requesting application and there is no matching offline notification.

Attribute: DestinationAddressNpi

Scope: Server

Unit: Not applicable

Format: Integer

ESME Numbering Plan Indicator (NPI). Used as a default for the destination address.

Use:

	
0 for Unknown

	
1 for ISDN (E163/E164)

	
3 for Data (X.121)

	
4 for Telex (F.69)

	
6 for Land Mobile (E.212)

	
8 for National

	
9 for Private

	
10 for ERMES

	
14 for Internet (IP)

	
18 for WAP Client ID

Attribute: DestinationAddressTon

Scope: Server

Unit: Not applicable

Format: Integer

ESME Type Of Number (TON). Used as a default for the destination address.

Use:

	
0 for Unknown

	
1 for International

	
2 for National

	
3 for Network

	
4 for Subscriber

	
5 for Alphanumeric

	
6 for Abbreviated

	
7 Reserved

Attribute: EnquireLinkTimerValue

Scope: Server

Unit: Seconds

Format: Integer

Minimum interval between ENQUIRE_LINK requests to the SMSC.

The default is 60 seconds.

The plug-in instance performs ENQUIRE_LINK requests (heartbeats) to the SMSC to verify that the connection is alive.

The setting is applied as follows:

	
If the plug-in has received traffic subsequent to the last scheduled time, no ENQUIRE_LINK request is made and a new timer (EnquireLinkTimerValue) is scheduled.

	
If no response is received, the plug-in unbinds and attempts to re-bind.

	
If the plug-in has outstanding requests that prevent it from sending ENQUIRE_LINK requests, it unbinds. This typically occurs if the SMSC is unresponsive while the plug-in is filling the window with unacknowledged SUBMIT_SM requests.

To turn off sending ENQUIRE_LINK requests, set the EnquireLinkTimerValue to 0.

Attribute: EsmeAddressRange

Scope: Server

Unit: Not applicable

Format: String formatted as a regular expression.

Address range of the SMS messages to be sent to the plug-in instance by the SMSC. The address range is specified as a UNIX regular expression.

Attribute: EsmeNpi

Scope: Server

Unit: Not applicable

Format: Integer

ESME Numbering Plan Indicator (NPI).

Used for the destination address and as a default for the originating address. Also used for both destination address and originating address during the BIND operation.

Use:

	
0 for Unknown

	
1 for ISDN (E163/E164)

	
3 for Data (X.121)

	
4 for Telex (F.69)

	
6 for Land Mobile (E.212)

	
8 for National

	
9 for Private

	
10 for ERMES

	
14 for Internet (IP)

	
18 for WAP Client ID

Attribute: EsmePassword

Scope: Server

Unit: Not applicable

Format: String

Password used by the plug-in instance when connecting to the SMSC as an ESME.

Attribute: EsmeSystemId

Scope: Server

Unit: Not applicable

Format: String

System ID used by the plug-in instance when connecting to the SMSC as an ESME.

Attribute: EsmeSystemType

Scope: Server

Unit: Not applicable

Format: String

System type used by the plug-in instance when connecting to the SMSC as an ESME.

The default is mess_gateway.

Attribute: EsmeTon

Scope: Server

Unit: Not applicable

Format: Integer

ESME Type Of Number (TON).

Used for destination address and as a default for originating address. Also used for both destination address and originating address during the BIND operation. Use:

	
0 for Unknown

	
1 for International

	
2 for National

	
3 for Network

	
4 for Subscriber

	
5 for Alphanumeric

	
6 for Abbreviated

	
7 Reserved

Attribute: ForwardXParams

Scope: Server

Unit: Not applicable

Format: Boolean

Specifies if tunneled parameters are forwarded to applications for network-triggered requests.

Use:

	
true to enable forwarding.

	
false to disable forwarding.

The default is false.

Attribute: LocalAddress

Scope: Server

Unit: Not applicable

Format: String

Local server address used by the plug-in to connect to the SMSC. The address can be expressed as an IP address or host name. The address or host name must resolve to a local address.

The default is "".

Attribute: LocalPort

Scope: Server

Unit: Not applicable

Format: Integer [1–65535]

Local port used by the plug-in to connect to the SMSC.

The default is 3000.

Attribute: MaxKeywordLimit

Scope: Server

Unit: Not applicable

Format: Integer

Maximum number of keywords that can be used to match in a short message to determine whether the application receives a notification.

The text is matched in two steps:

	
The entire string is compared against the incoming short message for an exact match.

	
If no match is found, the plug-in matches the short message one word at a time against the criteria string, up to the number set in the this attribute.

Attribute: MessageIdInHexFormat

Scope: Cluster

Unit: Not applicable

Format: Boolean

Describes the format of the message_id in SUBMIT_SM_RESP, SUBMIT_MULTI_RESP, and DATA_SM_RESP operations.

If true, the message_id is in hexadecimal format; if false, it is in decimal format.

The default is false.

Attribute: MessagingMode

Scope: Server

Unit: Not applicable

Format: Integer

ESM_CLASS Messaging Mode for packets.

	
2 for Forward mode. Used for the DATA_SM operation.

	
3 for Store and Forward mode.

Attribute: MobileCountryCode

Scope: Server

Unit: Not applicable

Format: Integer

Mobile country code for sending operator logos.

Attribute: MobileNetworkCode

Scope: Server

Unit: Not applicable

Format: Integer

Mobile network code for sending operator logos.

Attribute: ModuleId (read-only)

Scope: Server

Unit: Not applicable

Format: String

Read-only module identifier assigned to the plug-in instance when it is created.

Attribute: NumberReceiverConnections

Scope: Server

Unit: Not applicable

Format: Integer

Number of receiver connections used to connect to the SMSC. Used when the bind type is 0 or 3. See "Attribute: BindType".

The connections are established when the plug-in instance is activated.

The default is 1.

Attribute: NumberTransceiverConnections

Scope: Server

Unit: Not applicable

Format: Integer

Number of transceiver connections used to connect to the SMSC. Used when the bind type is 1. See "Attribute: BindType" for more information.

The connections are established when the plug-in instance is activated.

The default is 1.

Attribute: NumberTransmitterConnections

Scope: Server

Unit: Not applicable

Format: Integer

Number of transmitter connections used to connect to the SMSC. Used when the bind type is 0 or 2. See "Attribute: BindType" for more information.

The connections are established when the plug-in instance is activated.

The default is 1.

Attribute: OriginatingAddressNpi

Scope: Server

Unit: Not applicable

Format: Integer

ESME Numbering Plan Indicator (NPI).

Used as a default for the originating address.

Use:

	
0 for Unknown

	
1 for ISDN (E163/E164)

	
3 for Data (X.121)

	
4 for Telex (F.69)

	
6 for Land Mobile (E.212)

	
8 for National

	
9 for Private

	
10 for ERMES

	
14 for Internet (IP)

	
18 for WAP Client ID

Attribute: OriginatingAddressTon

Scope: Server

Unit: Not applicable

Format: Integer

ESME Type Of Number (TON).

Used as a default for originating address.

Use:

	
0 for Unknown

	
1 for International

	
2 for National

	
3 for Network

	
4 for Subscriber

	
5 for Alphanumeric

	
6 for Abbreviated

	
7 Reserved

Attribute: ReceiveSegmentsWaitTime

Scope: Server

Unit: Seconds

Format: Integer

Maximum time to wait for the arrival of the subsequent segments of a concatenated short message from the SMSC after the arrival of the first segment.

Attribute: ReceiveSmsIgnoreMissingSegments

Scope: Server

Unit: Not applicable

Format: Boolean

Specifies if the plug-in instance will deliver network-triggered short messages with missing message segments to applications.

Use:

	
true if the plug-in assembles received segments and delivers the incomplete message to the application.

	
false if the plug-in does not deliver messages to the application unless all segments are received.

Attribute: RequestDeliveryReports

Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies if the default behavior of the plug-in instance is to request delivery reports.

Use:

	
true if delivery reports should be requested.

	
false if delivery reports should not be requested.

The default is true.

If delivery requests are not requested, applications will, by default, not have the ability to poll for delivery status. However, it is possible to override the default setting in the service provider SLA or in an application SLA.

Attribute: RequestTimerValue

Scope: Server

Unit: Seconds

Format: Integer

Maximum time between the submission of a request to the SMSC and the receipt of the corresponding response, before the connection is terminated.

The default is 20 seconds.

Attribute: RetryTimesBeforeGiveUp

Scope: Server

Unit: Not applicable

Format: Integer

Maximum number of times for the plug-in to try to reconnect to the SMPP Server Service.

The default is 30.

Attribute: RetryTimesBeforeReconnect

Scope: Server

Unit: Not applicable

Format: Integer

Maximum number of times for the plug-in to try to connect to the SMPP Server Service before attempting to reconnect.

The default is 3.

Attribute: SMSCDefaultAlphabet

Scope: Server

Unit: Not applicable

Format: Integer

SMSC default alphabet. This is the default character encoding scheme used by the SMSC when encoding short messages. The plug-in instance needs to use the same character encoding scheme for the characters to be decoded correctly. All encoding schemes supported by Java are possible.

Use:

	
ASCII for American Standard Code for Information Interchange.

	
Cp1252 for Windows Latin-1.

	
ISO8859_1 for ISO 8859-1, Latin alphabet No. 1.

	
GSM_DEFAULT for the default GSM character set.

If the default character set used by the SMSC is GSM 7- bit, set this attribute to GSM_DEFAULT.

If the SMSC has a limit of 160 characters per SMS message, set the wlng.smpp.max_payload_size system property to 140.

Attribute: SegmentsLimit

Scope: Server

Unit: Not applicable

Format: Integer

Maximum number of SMPP segments an application is allowed to send when using the Extended Web Services Binary SMS interface.

Attribute: SequenceNumberRangeEndId

Scope: Server

Unit: Not applicable

Format: Integer

End ID of the sequence number range. Sequential numbers generated for plug-in instances cannot exceed this value.

Attribute: SequenceNumberRangeStartId

Scope: Server

Unit: Not applicable

Format: Integer

Start ID of the sequence number range. Sequential numbers for plug-in instances begin with this value.

Attribute: SmppVersion

Scope: Server

Unit: Not applicable

Format: String

Version of the SMPP protocol used by the plug-in.

Attribute: SmscAddress

Scope: Server

Unit: Not applicable

Format: String

SMSC address as an IP-address or a host name.

The setting is not applied until the plug-in service is restarted or "Operation: resetClientConnection" is performed.

Attribute: SmscGroupId

Scope: Server

Unit: Not applicable

Format: String

Used when Services Gatekeeper is connected to a clustered SMSC with multiple network interfaces. It ensures that delivery reports are handled correctly in this scenario.

Set the SmscGroupId to a common value for all Px21 SMPP plug-in instances that connect to the same logical SMSC.

The default is an empty string.

The SmscGroupIdEnabled attribute must be set to true if this parameter is used. See Attribute: SmscGroupIdEnabled for more information.

Attribute: SmscGroupIdEnabled

Scope: Server

Unit: Not applicable

Format: Boolean

The SmscGroupId and SmscGroupIdEnabled attributes are used when multiple ParlayX 2.1 SMPP plug-in instances connect to different network interfaces that are part of a single logical SMSC. The common SmscGroupId ensures that a delivery report for a message that was sent in through SMSC_NetworkInterface_1 can be sent out through SMSC_NetworkInterface_2.

Set this attribute to true when Attribute: SmscGroupId is used.

The default is false.

Attribute: SmscPort

Scope: Server

Unit: Not applicable

Format: Integer

Port used by the SMSC.

The setting is applied until the plug-in service is restarted or the resetClientConnection operation is performed in the SMPP Server Service. See "Operation: resetClientConnection" for more information.

Attribute: UseMessagePayload

Scope: Server

Unit: Not applicable

Format: Boolean

If true, the message is carried in the optional message_payload field in the SMPP PDU.

Current behavior predicates that only segmented messages such as ringtones, logos, and long SMS messages that have a UDH are carried in the message_payload field.

If this attribute is false, both segmented and unsegmented messages are sent in the short_message field.

The short message data can be inserted in either the short_message or message_payload fields, but not both simultaneously.

The default is true.

Attribute: UserTextMaxLength

Scope: Server

Unit: Not applicable

Format: Integer

Maximum number of characters allowed in a short message.

The default is 1600.

Attribute: WindowingMaxQueueSize

Scope: Server

Unit: Not applicable

Format: Integer

Maximum number of mobile-terminated requests to the SMSC allowed in the windowing queue.

The default is 100.

If any one of the three windowing attributes (WindowingMaxQueueSize, WindowingMaxWaitTime, or WindowingSize) is set to a value less than zero, windowing is turned off. If all of these three attributes have values greater than zero, windowing is turned on.

See "Windowing" for general information about windowing.

Attribute: WindowingMaxWaitTime

Scope: Server

Unit: Seconds

Format: Integer

Maximum time that a mobile-terminated request to the SMSC is allowed to wait in the windowing queue.

Valid only when the WindowingSize is enforced. See "Attribute: WindowingSize" for more information.

The default is 15 seconds.

If any one of the three windowing attributes (WindowingMaxQueueSize, WindowingMaxWaitTime, or WindowingSize) is set to a value less than zero, windowing is turned off. If all of these three attributes have values greater than zero, windowing is turned on.

See "Windowing" for general information about windowing.

Attribute: WindowingSize

Scope: Server

Unit: Not applicable

Format: Integer

Maximum number of simultaneous unacknowledged mobile-terminated requests to the SMSC enforced for each connection.

This setting applies only to requests sent from the plug-in to the SMSC, not to requests from the SMSC to the plug-in.

A value of -1 indicates that the number of unacknowledged operations is not restricted. Other valid values must be greater than 0 (zero).

The default is 5.

If any one of the three windowing attributes (WindowingMaxQueueSize, WindowingMaxWaitTime, or WindowingSize) is set to a value less than zero, windowing is turned off. If all of these three attributes have values greater than zero, windowing is turned on.

See "Windowing" for general information about windowing.

Operation: addOriginatingAddressTypeMapping

Scope: Cluster

If the tunneled parameter com.bea.wlcp.wlng.plugin.sms.OriginatingAddressType is available in a request, the value of the parameter is extracted and matched against the originating address type mapping list. The matching is with the type parameter.

Signature:

addOriginatingAddressTypeMapping(type: String, ton: int, npi: int)

Table 10-5 addOriginatingAddressTypeMapping Parameters

	Parameter	Description
	
type

	
Specifies the originating address type to be mapped.

	
ton

	
Specifies the ESME Type Of Number (TON). Use:

	
0 for Unknown

	
1 for International

	
2 for National

	
3 for Network

	
4 for Subscriber

	
5 for Alphanumeric

	
6 for Abbreviated

	
npi

	
Specifies the ESME Numbering Plan Indicator (NPI). Use:

	
0 for Unknown

	
1 for ISDN (E163/E164)

	
3 for Data (X.121)

	
4 for Telex (F.69)

	
6 for Land Mobile (E.212)

	
8 for National

	
9 for Private

	
10 for ERMES

	
14 for Internet (IP)

	
18 for WAP Client ID

Operation: addDestinationAddressTypeMapping

Scope: Cluster

If the tunneled parameter com.bea.wlcp.wlng.plugin.sms.DestinationAddressType is available in a request, the value of the parameter is extracted and matched against the destination address type mapping list. The matching is with the type parameter.

Signature:

addDestinationAddressTypeMapping(type: String, ton: int, npi: int)

Table 10-6 addDestinationAddressTypeMapping Parameters

	Parameter	Description
	
type

	
Specifies the destination address type to be mapped.

	
ton

	
Specifies the ESME Type Of Number (TON). Use:

	
0 for Unknown

	
1 for International

	
2 for National

	
3 for Network

	
4 for Subscriber

	
5 for Alphanumeric

	
6 for Abbreviated

	
npi

	
Specifies the ESME Numbering Plan Indicator (NPI). Use:

	
0 for Unknown

	
1 for ISDN (E163/E164)

	
3 for Data (X.121)

	
4 for Telex (F.69)

	
6 for Land Mobile (E.212)

	
8 for National

	
9 for Private

	
10 for ERMES

	
14 for Internet (IP)

	
18 for WAP Client ID

Operation: countOfflineNotificationCache

Scope: Cluster

Displays the number of entries in the offline notification cache.

Signature:

countOfflineNotificationCache()

Operation: countOnlineNotificationCache

Scope: Cluster

Displays the number of entries in the online notification cache.

Signature:

countOnlineNotificationCache()

Operation: countSmsCache

Scope: Cluster

Displays the sum of short messages in the cache for mobile-originated messages and mobile-terminated short messages. There are separate caches (stores) for mobile-originated and mobile-terminated short messages. This method returns the sum of both caches.

Signature:

countSmsCache()

Operation: enableReceiveSms

Scope: Cluster

Adds an offline notification for applications that poll for mobile-originated short messages. Those mobile-originated short messages that match the criteria will not result in a notification callback to an application. Instead the message is stored in Services Gatekeeper. The application must use the correlator returned by this method to poll for short messages.

Signature:

enableReceiveSms(shortcode: String, criteria: String, appInstanceID: String)

Table 10-7 enableReceiveSms Parameters

	Parameter	Description
	
shortcode

	
Destination address of the short message.

Prefixed with the URI; for example, tel:

	
criteria

	
Text to match against to determine if the application should receive the notification.

	
appInstanceID

	
ID of the application instance associated with the notification.

Operation: getOfflineNotificationInfo

Scope: Cluster

Displays information about a notification registered offline. See "Operation: enableReceiveSms" for more information.

Signature:

getOfflineNotificationInfo(correlator: String)

Table 10-8 getOfflineNotificationInfo Parameters

	Parameter	Description
	
correlator

	
Correlator identifying the notification.

Operation: getOnlineNotificationInfo

Scope: Cluster

Displays information about a notification registered online by an application.

Signature:

getOnlineNotificationInfo(correlator: String)

Table 10-9 getOnlineNotificationInfo Parameters

	Parameter	Description
	
correlator

	
Correlator identifying the notification.

Operation: listDestinationAddressTypeMappings

Scope: Cluster

Displays a list of all destination address type mappings.

Signature:

listDestinationAddressTypeMappings()

Operation: listOnlineBinaryNotificationInfo

Scope: Cluster

Lists all online notifications for binary SMS messages.

These are notifications added using StartBinarySmsNotification.

Operation: listOfflineNotificationInfo

Scope: Cluster

Displays a list of all notifications registered offline.

Signature:

listOfflineNotificationInfo()

Operation: listOnlineNotificationInfo

Scope: Cluster

Displays a list of all notifications registered by an application.

Signature:

listOnlineNotificationInfo()

Operation: listOriginatingAddressTypeMappings

Scope: Cluster

Displays a list of all originating address type mappings.

Signature:

listOriginatingAddressTypeMappings()

Operation: removeOfflineNotificationInfo

Scope: Cluster

Removes a notification registered off-line.

Signature:

removeOfflineNotificationInfo(correlator: String)

Table 10-10 removeOfflineNotificationInfo Parameters

	Parameter	Description
	
correlator

	
Correlator identifying the notification.

Operation: removeOnlineNotificationInfo

Scope: Cluster

Removes a notification registered by an application.

Signature:

removeOnlineNotificationInfo(correlator: String)

Table 10-11 removeOnlineNotificationInfo Parameters

	Parameter	Description
	
correlator

	
Correlator identifying the notification.

Operation: removeOriginatingAddressTypeMapping

Scope: Cluster

Removes an existing TON or NPI address type mapping for a specified originating address type.

Signature:

removeOriginatingAddressTypeMapping(type: String)

Table 10-12 removeOriginatingAddressTypeMapping Parameters

	Parameter	Description
	
type

	
Originating address type for the mapping. See "Operation: addOriginatingAddressTypeMapping" and "Operation: listOriginatingAddressTypeMappings" for more information.

Operation: removeDestinationAddressTypeMapping

Scope: Cluster

Removes an existing TON or NPI address type mapping for a specified destination address type.

Signature:

removeDestinationAddressTypeMapping(type: String)

Table 10-13 removeDestinationAddressTypeMapping Parameters

	Parameter	Description
	
type

	
Destination address type for the mapping. See "Operation: addDestinationAddressTypeMapping" and "Operation: listDestinationAddressTypeMappings" for more information.

Operation: startSmsNotification

Scope: Cluster

Registers a notification for mobile-originated short messages on behalf of an application. Has the same result as if the application used the startSmsNotification operation in the Parlay X 2.1 SmsNotificationManager interface.

The text in the criteria parameter is matched in two steps to determine the target application:

	
The entire string is compared with the incoming short message for an exact match.

	
If an exact match is not found, the message is matched one word at a time from left to right up to the number of words set by the MaxKeywordLimit attribute. See "Attribute: MaxKeywordLimit" for more information.

Services Gatekeeper rejects overlapping criteria. For example, if the text "FUNNY JOKE" and "FUNNY JOKE 5439" are both specified as the criteria text for the same shortcode, an exception will be raised when the notification is started.

An exact match takes precedence over a partial match. For example, if Application1 sets its criteria to "FUNNY JOKE" and Application2 sets its criteria to "JOKE", both for the same short code, a message with the content "FUNNY JOKE" will trigger a notification to Application1 but not to Application2.

Signature:

startSmsNotification(endpoint: String, shortcode: String, criteria: String, appInstanceID: String)

Table 10-14 startSmsNotification Parameters

	Parameter	Description
	
endpoint

	
Notification endpoint implemented by the application. This endpoint implements the Parlay X 2.1 SmsNotification interface.

Format: URL

	
shortcode

	
Destination address or service activation number for the short message.

	
criteria

	
Text in the payload of the short message to match to determine if the application receives the notification.

	
appInstanceID

	
ID of the application instance associated with this notification.

Operation: translateDestinationAddressNpi

Scope: Cluster

Gets the ESME Numbering Plan Indicator (NPI) of the destination address mapping added for the specified type.

Signature:

translateDestinationAddressNpi(type: String)

Table 10-15 translateDestinationAddressNpi Parameters

	Parameter	Description
	
type

	
Type for used for the mapping. See "Operation: addOriginatingAddressTypeMapping" for more information.

Operation: translateDestinationAddressTon

Scope: Cluster

Gets the ESME Type of Number (TON) of the destination address mapping added for the specified type.

Signature:

translateDestinationAddressTon(type: String)

Table 10-16 translateDestinationAddressTon Parameters

	Parameter	Description
	
type

	
Type for used for the mapping. See "Operation: addDestinationAddressTypeMapping" for more information.

Operation: translateOriginatingAddressNpi

Scope: Cluster

Gets the ESME Numbering Plan Indicator (NPI) of the originating address mapping added for the specified type.

Signature:

translateOriginalAddressNpi(type: String)

Table 10-17 translateOriginatingAddressNpi Parameters

	Parameter	Description
	
type

	
Type for used for the mapping. See "Operation: addOriginatingAddressTypeMapping" for more information.

Operation: translateOriginatingAddressTon

Scope: Cluster

Gets the ESME Type of Number (TON) of the originating address mapping added for the specified type.

Signature:

translateOriginalAddressTon(type: String)

Table 10-18 translateOriginatingAddressTon Parameters

	Parameter	Description
	
type

	
Type for used for the mapping. See "Operation: addOriginatingAddressTypeMapping"for more information.

11 Parlay X 2.1 Terminal Location/MLP

This chapter describes the Parlay X 2.1 Terminal Location/Mobile Location Protocol (MLP) communication service in detail.

Overview of the Parlay X 2.1 Terminal Location/MLP Communication Service

The Parlay X 2.1 Terminal Location/MLP communication service exposes the Parlay X 2.1 Terminal Location application interfaces.

The communication service acts as an LCS -MLS client to a location server using MLP over HTTP.

For the exact version of the standards that the communication service supports for the application-facing interfaces and the network protocols, see the appendix on standards and specifications in Oracle Communications Services Gatekeeper Concepts Guide.

Services Gatekeeper connects to the location server using HTTP. It always acts as a single LCS/MLS client to the location server. It can be configured to act in Standard Location or Emergency Location Immediate mode on the node level.

Using the Terminal Location communication service, an application can:

	
Ask for the location of one or many terminals by polling.

	
Ask for the distance between a specified terminal and a specified position.

	
Sign up to be notified when a terminal enters or leaves a specified geographical area.

	
Receive notifications when the terminal enters or leaves the specified geographical area.

	
Sign up to be notified periodically about the location of a terminal.

	
Receive periodic location notifications about the location of a terminal.

The application can specify a number of parameters concerning the nature of the notification. These include:

	
Requested accuracy

	
Accepted accuracy

	
Accepted response time

	
Maximum age of location data

	
Tolerance, which expresses the priority of response time versus accuracy

	
Minimum frequency of notifications

	
Duration of notifications

	
Maximum number of notifications

The nature of the information available as well as the accuracy of the location provided, the response times, and the frequency of notification are all dependent on the specifics of the protocol and network node used. Not all networks or protocols support all operations.

Processing Direct Queries/Application-initiated Requests

If an application directly queries Services Gatekeeper for the location of a terminal or group of terminals, Services Gatekeeper sends the request to the network node. The location information is sent back synchronously in the response to the request.

Processing Notifications/Network-triggered Requests

If an application registers for periodic or geographically-defined notifications, information for the application (which may or may not include the location data for one or more terminals) arrives at Services Gatekeeper from the network. The notification is passed on to the application. If the application acknowledges the reception of the notification, Services Gatekeeper acknowledges the reception of the notification to the network. If the application does not acknowledge the reception of the notification, Services Gatekeeper does not acknowledge the reception of the notification to the network.

Application Interfaces

For information about the SOAP-based interface for the Parlay X 2.1 Terminal Location/MLP communication service, see the discussion of Parlay X 2.1 Interfaces in Oracle Communications Services Gatekeeper Application Developer's Guide.

For information about the RESTful Audio Call interface, see the discussion of Terminal Location in Oracle Communications Services Gatekeeper RESTful Application Developer's Guide.

The RESTful Service Short Messaging interfaces provide RESTful access to the same functionality as the SOAP-based interfaces. The internal representations are identical, and for the purposes of creating SLAs, reading CDRs, and so on, they are the same.

Events and Statistics

The Parlay X 2.1 Terminal Location/MLP communication service generates Event Data Records (EDRs), Charging Data Records (CDRs), alarms, and statistics to assist system administrators and developers in monitoring the service.

For general information, see Appendix A, "Events, Alarms, and Charging."

Event Data Records

Table 11-1 lists IDs of the EDRs created by the Parlay X 2.1 Terminal Location/MLP communication service.

Table 11-1 Event Types Generated by Parlay X 2.1 Terminal Location/MLP

	EDR ID	Method Called
	
9001

	
getLocation

	
9002

	
getTerminalDistance

	
9003

	
getLocationForGroup

	
9004

	
sendLocationRequest

	
9011

	
LocationEnd

	
9012

	
LocationError

	
9013

	
LocationNotification

Charging Data Records

Terminal Location/MLP - specific CDRs occur under the following conditions:

	
When the response to a polling request (of whatever type) is successfully delivered to the application.

	
When a notification is received from the network.

	
When an error occurs.

Statistics

Table 11-2 maps methods invoked from either the application or the network to the transaction types collected by the Services Gatekeeper statistics counters.

Method names for network-initiated requests are specified by the internal Services Gatekeeper name, which is not necessarily the same as the message from the network.

Table 11-2 Transaction Types for Parlay X 2.1 Terminal Location/MLP

	Method	Transaction type
	
getLocation

	
TRANSACTION_TYPE_USER_LOCATION

	
getLocationForGroup

	
TRANSACTION_TYPE_USER_LOCATION

	
getLocationDistance

	
TRANSACTION_TYPE_USER_LOCATION

	
locationNotification

	
TRANSACTION_TYPE_USER_LOCATION

Alarms

For the list of alarms, see Oracle Communications Services Gatekeeper Alarm Handling Guide.

Tunneled Parameters for Parlay X 2.1 Terminal Location /MLP

This section lists the parameters that can be tunneled.

terminal_location.name_area

	Description
	
Defines the MLP <name_area> element.

Complements the existing Parlay X 2.1 functionality for startGeographicalNotification with support for named areas. The startGeographicalNotification operation is defined in theTerminalLocationNotificationManager interface.

Valid for application-initiated requests only.

When this parameter key is used to define the area, the latitude, longitude, and radius parameters provided by an application are not used.

Can be set using parameter tunneling

	Format
	
String

	Example
	

<param key=" terminal_location.name_area" value="Sausalito" />

com.wlcp.wlng.terminal_location.start_time / com.wlcp.wlng.terminal_location.stop_time

	Description
	
Defines the <start_time> and <stop_time> MLP elements.

Complements the existing Parlay X 2.1 functionality for startGeographicalNotification with support for explicit start and stop times.

Valid for application-initiated requests only.

The utc_off attribute is used in both elements.

	Format
	
String

The time is expressed in UTC format: yyyy-MM-ddThh:mm:ss[+|-]HH:MM using the definitions in Table 11-3.

Table 11-3 Format for terminal_location.start_time and stop_time Values

	Element	Meaning
	
yyyy

	
year

	
MM

	
month

	
dd

	
day

	
T

	
a constant

	
hh

	
hours

	
mm

	
minutes

	
ss

	
seconds

	
[+|-]

	
Positive or negative GMT offset. Use either + or -.

	
HH

	
GMT offset in hours

	
MM

	
GMT offset in minutes

	Example
	

<param key=" com.wlcp.wlng.terminal_location.start_time" value="2008-09-26T16:15:00T+08:00" />
<param key=" com.wlcp.wlng.terminal_location. stop _time" value="2008-09-26T19:15:00T+08:00" />

terminal_location.polygon.point.n

	Description
	
This parameter represents a set of keys in which the prefix is terminal_location.polygon.point. and the suffix n is a number in the range of 1–15.

Defines the MLP <x> and <y> elements within the <coord> element. The <coord> elements are contained by the <LinearRing>. The <LinearRing> element is contained by the <outerBoundaryIs> and <polygon> elements.

Can be set using parameter tunneling.

	Format
	
Each terminal_location.polygon.point key value is expressed in the format x:y where:

	
x corresponds to the <x> element

	
y corresponds to the <y> element

x and y are expressed as decimal degrees.

	Example
	

<xparams>
 <param key="com.wlcp.wlng.terminal_location.polygon.point.1" value="6.999:43.564" />
 <param key="com.wlcp.wlng.terminal_location.polygon.point.2" value="7.027:43.564" />
 <param key="com.wlcp.wlng.terminal_location.polygon.point.3" value="7.027:43.564" />
 <param key="com.wlcp.wlng.terminal_location.polygon.point.4" value="6.999:43.564" />
</xparams>

Managing Parlay X 2.1 Terminal Location/MLP

This section describes the properties and workflow for the Parlay X 2.1 Terminal Location/MLP plug-in instance.

Properties for Parlay X 2.1 Terminal Location/MLP

Table 11-4 lists the technical specifications for the communication service.

Table 11-4 Properties for Parlay X 2.1 Terminal Location/MLP

	Property	Description
	
Managed object in Administration Console

	
domain_name > OCSG > server_name > Communication Services > plugin_instance_id

	
MBean

	
Domain=com.bea.wlcp.wlng

Name=wlng_nt

InstanceName=same as the network protocol instance_id assigned when the plug-in instance is created

Type=com.bea.wlcp.wlng.plugin.terminallocation.mlp.management.TerminalLocationMLPMBean

	
Network protocol plug-in service ID

	
Plugin_px21_terminal_location_mlp

	
Network protocol plug-in instance ID

	
The ID is assigned when the plug-in instance is created. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide.

	
Supported Address Scheme

	
tel

	
Application-facing interfaces

	
com.bea.wlcp.wlng.px21.plugin.TerminalLocationPlugin

com.bea.wlcp.wlng.px21.plugin.TerminalLocationNotificationManagerPlugin

com.bea.wlcp.wlng.px21.callback.TerminalLocationNotificationCallback

	
Service type

	
TerminalLocation

	
Exposes to the service communication layer a Java representation of:

	
Parlay X 2.1 Part 9: Terminal Location

	
Interfaces with the network nodes using:

	
MLP 3.0/3.2

	
Deployment artifact:

NT EAR

wlng_nt_terminal_location_px21.ear

	
Plugin_px21_terminal_location_mlp.jar, px21_terminal_location_service.jar, and terminal_location_mlp.war

	
Deployment artifact:

AT EAR: Normal

wlng_at_terminal_location_px21.ear

	
px21_terminal_location.war, px21_terminal_location_callback.jar, and rest_terminal_location.war

	
Deployment artifact:

AT EAR: SOAP Only

wlng_at_terminal_location_px21_soap.ear

	
px21_terminal_location.war and px21_terminal_location_callback.jar

Configuration Workflow for Parlay X 2.1 Terminal Location/MLP

Following is an outline for configuring the plug-in using the Administration Console or an MBean browser.

	
Create one or more instances of the plug-in service. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the plug-in service ID listed in the "Properties for Parlay X 2.1 Terminal Location/MLP"section.

	
Using the Administration Console or an MBean browser, select the MBean for the plug-in instance. The MBean display name is the same as the plug-in instance ID given when the plug-in instance was created.

	
Configure the attributes of the plug-in instance:

	
Attribute: CharacterEncoding

	
Attribute: CleanupInterval

	
Attribute: DecimalDegreesToDMSH

	
Attribute: MaxDuration

	
Attribute: MlpVersionSupported

	
Attribute: MlpLocationEstimates

	
Attribute: MlpPushAddr

	
Attribute: MlpRequestType

	
Attribute: MlpServerUrl

	
Attribute: MlpSrsName

	
Attribute: MlpVersionSupported

	
Attribute: MsidType

	
Attribute: Password

	
Attribute: Requestor

	
Attribute: RequestTimeout

	
Attribute: ServiceId

	
Attribute: Username

	
Attribute: XMLDoctypeTagUsage

	
Specify heartbeat behavior. See "Configuring Heartbeats" in Oracle Communications Services Gatekeeper System Administrator's Guide.

	
Set up the routing rules to the plug-in instance. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the plug-in instance ID and address schemes listed in the "Properties for Parlay X 2.1 Terminal Location/MLP"section.

	
If required, create and load a node SLA. For details see “Defining Global Node and Service Provider Group Node SLAs” and “Managing SLAs” in the Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

	
Provision the service provider accounts and application accounts. For information, see Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

Reference: Attributes for Parlay X 2.1 Terminal Location/MLP

This section describes the attributes for configuration and maintenance:

	
Attribute: CharacterEncoding

	
Attribute: CleanupInterval

	
Attribute: DecimalDegreesToDMSH

	
Attribute: MaxDuration

	
Attribute: MlpAltitudeSupported

	
Attribute: MlpLocationEstimates

	
Attribute: MlpPushAddr

	
Attribute: MlpRequestType

	
Attribute: MlpServerUrl

	
Attribute: MlpSrsName

	
Attribute: MlpVersionSupported

	
Attribute: MsidType

	
Attribute: Password

	
Attribute: Requestor

	
Attribute: RequestTimeout

	
Attribute: ServiceId

	
Attribute: Username

	
Attribute: XMLDoctypeTagUsage

Attribute: CharacterEncoding

Scope: Cluster

Unit: Not applicable

Format: String

Indicates the type of Unicode character encoding accepted by the MLP node. The values are not case sensitive. A typical value is UTF-8.

Attribute: CleanupInterval

Scope: Cluster

Unit: Seconds

Format: Integer [0–3600]

Specifies the time interval at which periodic notification expiration checks are performed.

Attribute: DecimalDegreesToDMSH

Scope: Cluster

Unit: Not applicable

Format: Boolean.

Specifies if the coordinates provided by an application, in the form of decimal degrees, should be converted to Degrees Minutes Seconds Hemisphere (DMSH) format.

Enter:

	
true to convert to DMSH

	
false to use decimal degrees

Attribute: MaxDuration

Scope: Cluster

Unit: Seconds

Format: Integer

Specifies the maximum duration for a periodic location request.

Rejects startPeriodicNotification and startGeographicalNotification requests on the TerminalLocationNotificationManager interface if the duration is larger than this value.

If the duration is not provided in the request, this value is used.

Attribute: MlpAltitudeSupported

Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies if the MLP server supports altitude requests. When set to true, the <alt_acc> element is included in requests towards the MLP server.

Only applicable when the plug-in instance operates in MLP 3.2 mode. See "Attribute: MlpVersionSupported" for more information.

Attribute: MlpLocationEstimates

Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies if the MLP server is allowed to estimate locations. Use true if estimates are allowed, otherwise false.

Defines the value of the loc_estimates attribute in MLP.

Attribute: MlpVersionSupported

Scope: Cluster

Unit: Not applicable

Format: String

Specifies which version of MLP to use.

Valid values are:

	
3.0.0

	
3.2.0

Attribute: MlpPushAddr

Scope: Server

Unit: Not applicable

Format: URL

Specifies the callback URL to which the MLP server delivers location reports, periodic or triggered. This is the URL at which the plug-in instance listens for location reports. The format for the URL is:

http://ipaddressOfNTMachine:portOfWLS/tl-mlp/mlp_client

For example:

http://172.16.0.0:8001/tl-mlp/mlp_client

Attribute: MlpRequestType

Scope: Cluster

Unit: Not applicable

Format: String

Specifies which type of location request to use towards the MLP server.

Defines the DTD to be used for constructing the request towards the MLP server.

Valid values are:

	
eme_lir for EME_LIR (Emergency location request)

	
slir for SLIR (Standard location request)

Attribute: MlpServerUrl

Scope: Cluster

Unit: Not applicable

Format: URL

Specifies the MLP server's URL.

Attribute: MlpSrsName

Scope: Cluster

Unit: Not applicable

Format: String

Specifies requested MLP srsName attribute.

Normally, this is www.epsg.org#4326.

Attribute: MsidType

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the MSID type of the subscriber's Mobile Station ID (MSID).

Valid values are "MSISDN" and "MDN". The default is "MSISDN".

Attribute: Password

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the password used when Services Gatekeeper connects to the MLP server. The password is provided by the MLP server administrator.

Attribute: Requestor

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the requestor ID. If set to an empty string, the <requestorid> element will not be used in the MLP request. The requestor ID is provided by the MLP server administrator.

Attribute: RequestTimeout

Scope: Cluster

Unit: Seconds

Format: Integer [0–3600]

Specifies the HTTP time-out for MLP requests.

Attribute: ServiceId

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the Services Gatekeeper service ID. If set to an empty string, the <serviceid> element will not be used in the MLP request. The service ID is provided by the MLP server administrator.

Attribute: Username

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the Services Gatekeeper user ID used for connecting to the MLP server. The user ID is provided by the MLP administrator.

Attribute: XMLDoctypeTagUsage

Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies if the XML tag !DOCTYPE should be included in requests towards the MLP node. Valid values are:

	
true - include the tag

	
false - do not include the tag

12 Parlay X 2.1 Third Party Call/INAP-SS7

This chapter describes the Parlay X 2.1 Third Party Call/Intelligent Network Application Part (INAP)-Signaling System #7 (SS7) communication service in detail.

Overview of the Parlay X 2.1 Third Party Call/INAP-SS7 Communication Service

The Parlay X 2.1 Third Party Call/INAP-SS7 communication service exposes the Parlay X 2.1 Third Party Call application interfaces.

The communication service uses the Tieto-SS7 stack to connect to an SS7 network. It acts as a Service Control Function (SCF) communicating with a Service Switching Function (SSF) in the SS7 network.

For the exact version of the standards that the communication service supports for the application-facing interfaces and the network protocols, see the appendix on standards and specifications in Oracle Communications Services Gatekeeper Concepts Guide.

Using a Parlay X 2.1 Third Party Call/ INAP- SS7 communication service, an application can:

	
Set up a call between two parties.

For example, an application could set up a call between an investor and a broker if a particular stock reaches a predetermined price. Or a computer user could set up a call between himself and someone in the address book with a mouse click.

	
Query Services Gatekeeper for the status of a previously set up call.

	
Cancel a call as it is about to be set up.

	
Terminate an ongoing call it created.

How It Works

In the Parlay X 2.1 Third Party Call model, a call has two distinct stages:

	
Call Setup

	
Call Duration

Call Setup

There are two parties involved in Third Party Call calls: the A-party (the caller) and the B-party (the callee). When a call is set up using the Parlay X 2.1 Third Party Call /INAP-SS7 communication service, Services Gatekeeper attempts to set up a call leg to the A-party. When the caller goes off-hook (answers), Services Gatekeeper attempts to set up a call leg to the B-party. When the callee goes off-hook, the two call legs are connected using the underlying telecom network. This ends the call setup phase.

The application can cancel the call during this phase.

Call Duration

While the call is underway, the audio channel that connects the caller and the callee is completely managed by the telecom network. During this phase of the call, the application can only query as to the status of the call. A call can be terminated in two ways, either using the application-facing interface or having the caller or callee hang up.

Requests using this communication service flow only in one direction, from the application to the network. Therefore this communication service supports only application-initiated functionality.

The Parlay X 2.1 Third Party Call /INAP - SS7 communication service manages only the signalling, or controlling, aspect of a call. The media or audio channel is managed by the telecom network. Only parties residing on the same network can be controlled, unless:

	
The network plug-in connects to a media gateway controller.

	
One of the participants is connected to a signalling gateway so that, from a signalling point of view, all parties reside on the same network.

Application Interfaces

For information about the SOAP-based interface for the Parlay X 2.1 Third Party Call communication service, see the discussion of Parlay X 2.1 Interfaces in Oracle Communications Services Gatekeeper Application Developer's Guide.

For information about the RESTful Third Party Call interface, see the discussion of Third Party Call in Oracle Communications Services Gatekeeper RESTful Application Developer's Guide.

The RESTful Service Call Notification interfaces provide RESTful access to the same functionality as the SOAP-based interfaces. The internal representations are identical, and for the purposes of creating SLAs and reading CDRs, and so on., they are the same.

Events and Statistics

The Parlay X 2.1 Third Party Call /INAP-SS7 communication service generates Event Data Records (EDRs), Charging Data Records (CDRs), alarms, and statistics to assist system administrators and developers in monitoring the service.

For general information, see Appendix A, "Events, Alarms, and Charging."

Event Data Records

Table 12-1 lists the IDs of the EDRs created by the Third Party Call/INAP-SS7 communication service. This does not include EDRs created when exceptions are thrown.

Table 12-1 Event Types Generated by Parlay X 2.1 Third Party Call/INAP-SS7

	ED RID	Method Called
	
8022

	
makeCall

	
8023

	
getCallInformation

	
8024

	
endCall

	
8025

	
cancelCallRequest

	
8026

	
callConnected

	
8027

	
callReleasedNotification

Charging Data Records

Third Party Call /INAP-SS7 -specific CDRs are generated under the following conditions:

	
When Services Gatekeeper receives an event from the network indicating that the second call leg has been connected and the associated phone has started to ring. This CDR is not dependent on whether the call is answered.

	
When call information has been successfully delivered to the application.

	
When the call is ended by the application.

	
When the call request is canceled by the application.

	
When the network notifies Services Gatekeeper that the call is connected. This occurs when the second participant has answered the call.

	
When the network notifies Services Gatekeeper that a call participant has disconnected.

Statistics

Table 12-2 maps methods invoked from either the application or the network to the transaction types collected by the Services Gatekeeper statistics counter:

Table 12-2 Methods and Transaction Types for Parlay X 2.1 Third Party Call/INAP-SS7

	Method	Transaction Type
	
makeCall

	
TRANSACTION_TYPE_CALL_CONTROL_SERVICE_INITIATED

Alarms

For the list of alarms, see Oracle Communications Services Gatekeeper Alarm Handling Guide.

Managing Parlay X 2.1 Third Party Call/INAP-SS7

This section describes the properties and workflow for setting up a Parlay X 2.1 Third Party Call/INAP-SS7 plug-in instance.

To configure SS7 connectivity, you must relate the settings in the management interface for the plug-in instance to a subset of the settings in the Stack-in-a-Box configuration files. See "INAP-SS7 Configuration Dependencies" for details.

Configuration and management of other parts of Stack-in-a-Box are outside the scope of this description. Refer to the TietoEnator SS7 product documentation.

This plug-in service does not support multiple instantiation using the Plug-in Manager. There is a one to one mapping between plug-in service and plug-in instance. The plug-in instance is created when the plug-in service is started.

Properties for Parlay X 2.1 Third Party Call/INAP-SS7

Table 12-3 lists the technical specifications for the communication service.

Table 12-3 Properties for Parlay X 2.1 Third Party call/INAP-SS7

	Property	Description
	
Managed object in Administration Console

	
domain_name > OCSG > server_name > Communication Services > Plugin_third_party_call_inap

	
MBean

	
Domain=com.bea.wlcp.wlng

Name=wlng_nt

InstanceName=Plugin_third_party_call_inap

Type=com.bea.wlcp.wlng.plugin.tpc.inap.management.InapTpcMBean

	
Network protocol plug-in service ID

	
Plugin_third_party_call_inap

	
Network protocol plug-in instance ID

	
Plugin_px21_third_party_call_inap

	
Supported Address Scheme

	
tel

	
Application-facing interface

	
com.bea.wlcp.wlng.px21.plugin.ThirdPartyCallPlugin

	
Service type

	
ThirdPartyCall

	
Exposes to the service communication layer a Java representation of:

	
Parlay X 2.1 Part 2: Third Party Call

	
Interfaces with the network nodes using:

	
ETSI 94 INAP CS1, ETS 300 374-1

	
Deployment artifact:

NT EAR

wlng_nt_third_party_call_px21.ear

	
Plugin_px21_third_party_call_inap.jar. px21_third_party_call_service.jar

	
AT EAR: Normal

Deployment artifact:

wlng_at_third_party_call_px21.ear

	
px21_third_party_call.war and rest_third_party_call.war

	
AT EAR: SOAP Only

Deployment artifact:

wlng_at_third_party_call_px21_soap.ear

	
px21_third_party_call.war

Configuration Workflow for Parlay X 2.1 Third Party Call/INAP/SS7

Following is an outline for configuring the plug-in using the Administration Console or an MBean browser.

	
Make sure the SS7 stack is configured and running. You must define an INAP user for each plug-in instance.

	
Configure connection information for the connection to the SS7 stack:

	
Attribute: LocalSpc

	
Attribute: LocalSsn

	
Attribute: RemoteSpc

	
Attribute: RemoteSsn

	
Attribute: TSCFTimeout

	
Attribute: NoAnswerTimeout

	
Attribute: SccpPriority

	
Attribute: SccpQualityOfService

	
Attribute: InapUserId

	
Attribute: Ss7Host

	
Attribute: Ss7PortNumber

	
Attribute: InapBindTimeout

	
Note:

When any of these attributes are changed, the "INAP API Configuration File" is overwritten. The plug-in service must be restarted for the change to take effect.

	
Set up the routing rules to the plug-in instance. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the plug-in instance ID and address schemes listed in the "Properties for Parlay X 2.1 Third Party Call/INAP-SS7" section.

	
If required, create and load a node SLA. For details see “Defining Global Node and Service Provider Group Node SLAs” and “Managing SLAs” in the Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

	
Provision the service provider accounts and application accounts. For information, see Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

Reference: Attributes and Operations for Parlay X 2.1 Third Party Call/INAP

Following is a list of attributes and operations for configuration and maintenance:

	
Attribute: InapBindTimeout

	
Attribute: InapUserId

	
Attribute: LocalSpc

	
Attribute: LocalSsn

	
Attribute: NoAnswerTimeout

	
Attribute: RemoteSpc

	
Attribute: RemoteSsn

	
Attribute: TSCFTimeout

	
Attribute: SccpPriority

	
Attribute: SccpQualityOfService

	
Attribute: Ss7Host

	
Attribute: Ss7PortNumber

Attribute: InapBindTimeout

Scope: Server

Unit: Milliseconds

Format: Integer

Specifies the stack bind timeout value.

Attribute: InapUserId

Scope: Server

Unit: Not applicable

Format: String

Specifies the user ID used by the INAP plug-in when connecting to the SS7 stack. Must be defined in the common parts configuration file. See "Common Parts Configuration File" for more information.

Attribute: LocalSpc

Scope: Server

Unit: Not applicable

Format: Integer [0–16383] or [0–16777215], depending on the standard used.

Specifies the local SCCP Signaling Point Code (SPC) served by the local SS7 stack. This is the SS7 network address for the plug-in instance. Used as the originating SPC by the plug-in instance.

Must be correlated with the property SCCP Local SPC in the back-end configuration file for the SS7 stack.

Attribute: LocalSsn

Scope: Server

Unit: Not applicable

Format: Integer [2–254]

Specifies the local SCCP Sub System Number to which the plug-in instance will bind itself.

Must be correlated with the property SCCP Local SSN in the back-end configuration file for the SS7 stack.

Attribute: NoAnswerTimeout

Scope: Server

Unit: Seconds

Format: Integer [0–2047]

Specifies the time-out value for an INAP noAnswer event. Used towards the signaling network in INAP DpSpecificCriteria when arming the noAnswer event.

Attribute: RemoteSpc

Scope: Server

Unit: Not applicable

Format: Integer [0–16383] or [0–16777215], depending on the standard used.

Specifies the remote SCCP Signaling Point Code (SPC). Used in the destination address.

Must be correlated with the property SCCP Remote SPC in the back-end configuration file for the SS7 stack.

Attribute: RemoteSsn

Scope: Server

Unit: Not applicable

Format: Integer [2–254]

Specifies the remote SCCP Signaling Subsystem Number (SSN). Used in the destination address.

Must be correlated with the property SCCP Remote SSN in the back-end configuration file for the SS7 stack.

Attribute: SccpPriority

Scope: Server

Unit: Not applicable

Format: Integer [0–3]

Specifies the SCCP priority indicator. 0 is the lowest priority and 3 is the highest priority.

Attribute: SccpQualityOfService

Scope: Server

Unit: Not applicable

Format: Integer [0–3]

Specifies the SCCP quality of service indicator.

Attribute: Ss7Host

Scope: Server

Unit: Not applicable

Format: String

Specifies the host name or IP address of the SS7 stack. Separate the host names or IP addresses with a comma (,) if the stack is running in HA mode. If you are using HA mode, use this attribute to define the port number (for example, 192.168.0.19:99) and do not use "Attribute: Ss7PortNumber" to specify the port number.

Attribute: Ss7PortNumber

Scope: Server

Unit: Not applicable

Format: Integer

Specifies the port number to use in connecting to the stack.

Attribute: TSCFTimeout

Scope: Server

Unit: Seconds

Format: Integer

Specifies the timeout value for the T(SCF) timer. Used for supervising call establishment.

This attribute specifies how long the plug-in instance should wait for a response from an SCP after sending a request. If the time-out value is exceeded, the TCAP dialog is aborted.

INAP-SS7 Configuration Dependencies

There is a set of dependencies and settings that must be correlated between the configuration files and the configuration settings in the plug-in instance. The following files have touch-points:

	
INAP API configuration file (Plugin_px21_third_party_call_inap.properties). See "INAP API Configuration File" for more information.

	
SS7 back-end configuration file (itu_ss7.cfg). See "Back-end Configuration File" for more information.

	
Common parts configuration file (cp.cnf). See "Common Parts Configuration File" for more information.

The specific settings are explained in the sections describing the settings in the management interface for the plug-in instance and the description of the files. Figure 12-1 presents an overview of the dependencies.

Figure 12-1 Plug-in Property to SS7 Configuration File Dependencies

[image: Description of Figure 12-1 follows]

INAP API Configuration File

The INAP API configuration file is a configuration file for the TietoEnator JAIN INAP API library used by the plug-in instance.

This file provides the API with information on where to connect, how to bind to the stack, and values for some parameters that are not exposed in the API. If any of the properties are not set, default values are used.

Table 12-4 describes the properties that are related to the interface between the plug-in instance and the stack. See the documentation for the stack for a full description of all settings.

The file is named Plugin_px21_third_party_call_inap.properties. In default installations, it is located in Domain_Home on the file system of the host where the plug-in instance is running. The file is created and updated whenever an attribute is updated using the MBean for the Parlay x 2.1 Third Party Call/INAP plug-in. The plug-in service needs to be restarted for the changes to take effect.

Any changes to the MBean attributes cause the file to be overwritten, and hence any modifications to it are lost.

Table 12-4 INAP API Properties

	Property	Comments
	
priority

	
SCCP Message priority.

	
quality-of-service

	
SCCP QoS.

	
inap-user-id

	
The common parts module ID used by the plug-in instance. See "Common Parts Configuration File".

Either INAPUP or any of the USERxx IDs should be used by the plug-in instance.

The numeric identifier of the ID should be used, not the ID itself (as used in the common parts configuration file).

The module ID numeric values can be found in /opt/ss7/ss7_ITU/include/portss7.h in an installed stack.

USER01 has decimal value 40, USER02 41, and so on.

	
ss7host

	
The host name or IP address of the host running the SS7 back-end. This is the address to which the SS7_BASE module ID is bound in the common parts configuration file. See "Common Parts Configuration File".

If several SS7 back-ends are used, either in high-availability mode or horizontally distributed mode, enter the host name (or IP address) for the servers in a comma-separated list.

	
port-number

	
The port number to which the SS7_BASE module ID is bound in the common parts configuration file.

	
bind-timeout

	
Time to wait for bind response before a bind operation is considered a failure.

Unit: milliseconds.

	
heartbeat-interval

	
Heartbeat interval between the INAP API and the common parts module.

Must correspond to the MSGHBRATE and MSGHBLOST properties defined in the common parts configuration file. See "Common Parts Configuration File".

Note: This property is not generated from the settings in the MBean of the Parlay X 2.1 Third Party Call/INAP plug-in. The absence of the property means that no heartbeats are sent. If heartbeats are used, this property must be added manually in the configuration file. If used, the recommended value is MSGHBRATE times MSGHBLOST. Any changes to the MBean attributes cause the file to be overwritten, and hence this setting is lost.

Unit: milliseconds.

Example 12-1 Example INAP JAIN API Configuration file

local-ssn: 254
priority: 0
quality-of-service: 0
trace-level: 0
inap-user-id: 40
ss7host: 192.168.20.1,192.168.20.2
port-number: 7001
bind-timeout: 5000

Common Parts Configuration File

The SS7 common parts configuration file specifies the inter-process communication for the SS7 stack, including users of the stack. The plug-in instance acts as a user of the stack through the INAP API. Table 12-5 describes the dependencies on the plug-in instance. All other settings are related to the stack itself. See the documentation for the stack for a description of these settings.

The file is located on the file system of the host running the back-end part of the SS7 stack. In default installations this is in /opt/ss7/ss7_ITU/etc/cp.cnf.

Table 12-5 Common Parts Configuration File Properties with Dependencies on Plug-in Instance Settings

	Property	Comments
	
MSGIPA

	
There must be one MSGIPA entry per plug-in instance.

First, choose a Message Port owner ID (MP OwnerID). Use one of the following:

	
INAPUP

	
USER01

	
USER02

	
USER03

	
USER04

	
USER05

	
USER06

	
USER07

	
USER08

	
USER09

	
USER10

MP OwnerID should correspond to inap-user-id specified in "Attribute: InapUserId".

The IP-address (or host name) with TCP port number must correspond to the host where the plug-in instance is deployed.

Make sure there is a MSGINTERACT entry per MP OwnerID.

Instances of MP OwnerIDs are not supported.

Example:

MSGIPA=USER01,192.168.20.2:6701 10.10.10.11:6701

	
MSGHBLOST

	
Must correspond to "Attribute: LocalSpc".

	
MSGHBRATE

	
Must correspond to heartbeat-interval in the "INAP API Configuration File".

Back-end Configuration File

The back-end configuration file contains the configuration of the SS7 back-end stack layers. Each stack layer has a dedicated section in this file, and it is where, for example, SS7 network routing and protocol timers are configured. Table 12-6 describes the dependencies between the plug-in instance and the stack. All other settings are related to the stack itself. See the documentation for the stack for a description of these settings.

The file is located on the file system of the host running the back-end part of the SS7 stack. In default installations, this is in /opt/ss7/ss7_ITU/etc/ss7_itu.cnf.

Table 12-6 Back-end Configuration File Properties With Dependencies on Plug-in Instance Settings

	Property	Comments
	
INAP-T (bind)

	
Must correspond to Attribute: InapBindTimeout.

	
SCCP-LOCAL SPC

	
Must correspond to Attribute: LocalSpc.

	
SCCP-LOCAL SSN

	
Must correspond to Attribute: LocalSsn.

	
SCCP-REMOTE SPC

	
Must correspond to Attribute: RemoteSpc.

	
SCCP-REMOTE SSN

	
Must correspond to Attribute: RemoteSsn.

13 Parlay X 2.1 Third Party Call/SIP

This chapter describes the Parlay X 2.1 Third Party Call/Session Initiation Protocol (SIP) communication service in detail.

Overview of the Parlay X 2.1 Third Party Call/SIP Communication Service

The Parlay X 2.1 Third Party Call/SIP communication service exposes the Parlay X 2.1 Third Party Call application interfaces.

The communication service connects to a SIP-IMS network using Oracle Converged Application Server. Converged Application Server is collocated with Services Gatekeeper in the network tier. In this relationship, Services Gatekeeper acts as a Back-to-Back User Agent for all calls.

For the exact version of the standards that the communication service supports for the application-facing interfaces and the network protocols, see the appendix on standards and specification in Oracle Communications Services Gatekeeper Concepts Guide.

Using a Third Party Call Parlay X 2.1 communication service, an application can:

	
Set up a call between two parties.

For example, an application could set up a call between an investor and a broker if a particular stock reaches a predetermined price. Or a computer user could set up a call between himself and someone in the address book with a mouse click.

	
Query Services Gatekeeper for the status of a previously set up call.

	
Cancel a call as it is about to be set up.

	
Terminate an ongoing call it created.

How It Works

In the Parlay X 2.1 Third Party Call model, a call has two distinct stages:

	
Call Setup

	
Call Duration

Call Setup

There are two parties involved in Third Party Call calls: the A-party (the caller) and the B-party (the callee). When a call is set up using a Third Party Call communication service, Services Gatekeeper attempts to set up a call leg to the A-party. When the caller goes off-hook (answers), Services Gatekeeper attempts to set up a call leg to the B-party. When the callee goes off-hook, the two call legs are connected using the underlying telecom network. This ends the call setup phase.

The application can cancel the call during this phase.

Call Duration

While the call is underway, the audio channel that connects the caller and the callee is completely managed by the telecom network. During this phase of the call, the application can only query for the status of the call. A call can be terminated in two ways, either using the application-facing interface, or having the caller or callee hang up.

Requests using a Parlay X 2.1 Third Party Call communication service flow only in one direction, from the application to the network. Therefore this communication service supports only application-initiated functionality.

The Parlay X 2.1 Third Party Call /SIP communication service manages only the signalling, or controlling, aspect of a call. The media or audio channel is managed by the telecom network. Only parties residing on the same network can be controlled, unless:

	
The network plug-in connects to a media gateway controller.

	
One of the participants is connected to a signalling gateway so that, from a signalling point of view, all parties reside on the same network.

Application Interfaces

For information about the SOAP-based interface for the Parlay X 2.1 Third Party Call communication service, see the discussion of Parlay X 2.1 Interface in Oracle Communications Services Gatekeeper Application Developer's Guide.

For information about the RESTful Third Party Call interface, see the discussion of Third Party Call in Oracle Communications Services Gatekeeper RESTful Application Developer's Guide.

The RESTful Service Call Notification interfaces provide RESTful access to the same functionality as the SOAP-based interfaces. The internal representations are identical, and for the purposes of creating SLAs and reading CDRs, and so on, they are the same.

Events and Statistics

The Parlay X 2.1 Third Party Call/SIP communication service generates Event Data Records (EDRs), Charging Data Records (CDRs), alarms, and statistics to assist system administrators and developers in monitoring the service.

For general information, see Appendix A, "Events, Alarms, and Charging."

Event Data Records

Table 13-1 lists the IDs of the EDRs created by the Parlay X 2.1 Third Party Call/ SIP communication service. This does not include EDRs created when exceptions are thrown.

Table 13-1 Event Types Generated by Parlay X 2.1 Third Party Call/SIP

	EDR ID	Method Called
	
8022

	
makeCall

	
8023

	
getCallInformation

	
8024

	
endCall

	
8025

	
cancelCallRequest

Charging Data Records

Parlay X 2.1 Third Party Call-specific CDRs are generated under the following conditions:

	
When Services Gatekeeper has received an event from the network stating that the second call leg has been connected and the associated phone has started to ring. This CDR is not dependent on whether the call is answered.

	
When call information has been successfully delivered to the application.

	
When the call is ended by the application.

	
When the call request is canceled by the application.

Statistics

Table 13-2 maps methods invoked from either the application or the network to the transaction types collected by the Services Gatekeeper statistics counter:

Table 13-2 Methods and Transaction Types for Parlay X 2.1 Third Party Call /SIP

	Method	Transaction Type
	
makeCall

	
TRANSACTION_TYPE_CALL_CONTROL_SERVICE_INITIATED

Alarms

For the list of alarms, see Oracle Communications Services Gatekeeper Alarm Handling Guide.

Managing Parlay X 2.1 Third Party Call/SIP

This section describes the properties and workflow for setting up a Parlay X 2.1 Third Party Call/SIP protocol translation module.

Parlay X 2.1 Third Party Call/SIP uses two parts for SIP connectivity: a part that executes as a network protocol plug-in instance in Services Gatekeeper container and a part that executes as a SIP application in the SIP Server container.

This plug-in service does not support multiple instantiation using the Plug-in Manager. There is a one to one mapping between plug-in service and plug-in instance. The plug-in instance is created when the plug-in service is started.

Properties for Parlay X 2.1 Third Party Call/SIP

Table 13-3 lists the technical specifications for the communication service.

Table 13-3 Properties for Parlay X 2.1 Third Party Call/SIP

	Property	Description
	
Managed object in Administration Console

	
domain_name > OCSG > server_name > Communication Services > Plugin_third_party_call_sip

	
MBean

	
Domain=com.bea.wlcp.wlng

Name=wlng_nt

InstanceName=Plugin_px21_third_party_call_sip

Type=com.bea.wlcp.wlng.plugin.tpc.sip.management.TPCMBean

	
Network protocol plug-in service ID

	
Plugin_px21_third_party_call_sip

	
Network protocol plug-in instance ID

	
Plugin_px21_third_party_call_sip

	
Supported Address Scheme

	
sip, tel

	
Application-facing interface

	
com.bea.wlcp.wlng.px21.plugin.ThirdPartyCallPlugin

	
Service type

	
ThirdPartyCall

	
Exposes to the service communication layer a Java representation of:

	
Parlay X 2.1 Part 2: Third Party Call

	
Interfaces with the network nodes using:

	
SIP: Session Initiation Protocol, RFC 3261

	
Deployment artifacts

	
px21_third_party_call_service.jar, Plugin_px21_third_party_call_sip.jar and Plugin_px21_third_party_call_sip.war, packaged in wlng_nt_third_party_call_px21.ear

px21_third_party_call.war, packaged in wlng_at_third_party_call_px21.ear

This Plug-in service does not support multiple instantiation using the Plug-in Manager. There is a one-to-one mapping between plug-in service and plug-in instance. The plug-in instance is created when the plug-in service is started.

Configuration Workflow for Parlay X 2.1 Third Party Call/SIP

Following is an outline for configuring the plug-in using the Administration Console or an MBean browser.

	
Select the MBean listed in the "Properties for Parlay X 2.1 Third Party Call/SIP" section.

	
Configure behavior of the network protocol plug-in instance:

	
Attribute: ChargingAllowed

	
Attribute: ControllerURI

	
Attribute: ISCRouteURI

	
Attribute: MaximumCallLength

	
Attribute: StatusRetentionTime

	
Set up the routing rules to the plug-in instance. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the plug-in instance ID and address schemes listed in the "Properties for Parlay X 2.1 Third Party Call/SIP" section.

	
If required, create and load a node SLA. For details see “Defining Global Node and Service Provider Group Node SLAs” and “Managing SLAs” in the Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

	
Provision service provider accounts and application accounts. For information, see Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

Reference: Attributes for Parlay X 2.1 Third Party Call/SIP

Following is a list of attributes for configuration and maintenance:

	
Attribute: ChargingAllowed

	
Attribute: ControllerURI

	
Attribute: ISCRouteURI

	
Attribute: MaximumCallLength

	
Attribute: StatusRetentionTime

Attribute: ChargingAllowed

Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies if charging is allowed, meaning that the charging parameter is allowed to be present in a request from an application.

Attribute: ControllerURI

Scope: Cluster

Unit: Not applicable

Format: String in URI format

Specifies the Controller SIP URI that is used to establish the third party call. If this value is set, a call appears to the callee to come from this URI. By default, the value is None, where no controller URI is used to establish the call. In this case, the call appears to the callee to come from the caller

Attribute: ISCRouteURI

Scope: Cluster

Unit: Not applicable

Format: String in URI format

Specifies the URI of the IMS service control route.

Attribute: MaximumCallLength

Scope: Cluster

Unit: Minutes

Format: Integer

Specifies for maximum length allowed for a call. If this time expires, the call is terminated.

Attribute: StatusRetentionTime

Scope: Cluster

Unit: Minutes

Format: Integer

Specifies how long to retain status information about a call after it has been terminated.

14 Parlay X 2.1 Terminal Status/MAP

This chapter describes the Parlay X 2.1 Terminal Status/Mobile Application Part (MAP) communication service in detail.

Overview of the Parlay X 2.1 Terminal Status/MAP Communication Service

The Parlay X 2.1 Terminal Status/MAP communication service exposes the Parlay X 2.1 Terminal Status set of application interfaces.

The communication service uses the TietoEnator-SS7 stack to connect to an SS7 network. The communication service acts as an MAP application client for the SS7 network.

For the exact version of the standards that the communication service supports for the application-facing interfaces and the network protocols, see the appendix on standards and specifications in Oracle Communications Services Gatekeeper Concepts Guide.

Using the Parlay X 2.1 Terminal Status/MAP communication service, an application can:

	
Obtain the status (reachable, unreachable, or busy) of a single terminal or group of terminals as often as you specify, within a time period you specify.

	
Return the status of a terminal or group of terminals only if the status changes. The terminal statuses are checked as frequently as you specify, for a time period you specify.

By default, the Parlay X 2.1 Terminal Status/MAP communication service directs the network to probe for the terminal status (network-triggered). You also have the choice of using the plug-in itself to do the probing (plug-in-triggered). Network-triggered is the default because it supports high-availability features and is generally more efficient. However if for some reason your network cannot support ATM operations, you can switch to plug-in-triggered.

The communication service receives requests from applications, opens a transaction, translates the requests into the SS7/MAP protocol and queries the network. The network then returns the status to the plug-in, which passes the status back to the application inside the transaction.

To receive current terminal statuses for multiple terminals in the same transaction, an application sends the addresses of the terminals to the communication service. The communication service then opens a transaction and sends a separate query to the network for each terminal address. The plug-in collects replies as they come in and returns them to the application inside a transaction.

To receive notification if a terminal status changes, an application sends the address of the terminal to the plug-in. The plug-in checks the status of the terminal periodically during the configured time period on a schedule defined by the frequency, duration, and count timer metrics to startNotification. See the Parlay X 2.1 Part 8 web site at:

http://www.etsi.org/deliver/etsi_es/202300_202399/20239108/01.02.01_60/es_20239108v010201p.pdf

or RESTful interface in the discussion of Terminal Status in the Restful Application Developer's Guide for details.

The Terminal Status/MAP plug-in takes these parameters as input:

	
The terminal address or addresses.

	
The request frequency (number of seconds, minutes, or hours).

	
The total number of requests.

	
A true/false value for the checkImmediate parameter.

If checkImmediate=true the plug-in checks the status of the terminal or terminals immediately and thereafter as often as you specified. If checkImmediate=false the plug-in checks for status at the end of the first time period.

By default the plug-in uses anyTimeModification to perform the network-triggered probe for a status change. If you change this to plug-in-triggered notification, the plug-in uses anyTimeInterrogation to probe for the status. If your network does not support anyTimeModification, use plug-in triggered notification.

The plug-in retains connection and identification information so it can query other nodes if the one it first contacts is unresponsive. This strategy also allows multiple applications to query the same terminal status. The plug-in confirms that all interested applications have ended their queries before ending the transaction.

If your network supports high-availability features, network-triggered probing can take advantage of them. The Parlay X 2.1 Terminal Status/MAP communication service can automatically query different network nodes if one is unresponsive and confirm that no other applications have an open status change query operation.

Status Request for a Single Terminal

An application queries Services Gatekeeper for the status of a terminal by sending the terminal's address in a getStatus operation. The communication service translates the request into a SS7/MAP anyTimeInterrogation operation and passes it to the network node. The network node returns the status (reachable, unreachable, or busy) to the requesting application synchronously.

Status Requests for Multiple Terminals

An application queries Services Gatekeeper for the status of a group of terminals by sending the terminal addresses in a getStatus operation. The communication service translates the request into an SS7/MAP anyTimeInterrogation operation and forwards it to the network node. The node returns the statuses for each terminal (reachable, unreachable, or busy) separately. The plug-in collects the results and returns them to the requesting application synchronously with a single message. Unreachable terminals are given a status of NotRetrieved.

Terminal Status Change Request: Network-Triggered

As long as your network supports anyTimeModification (ATM) calls, use network-triggered poll status operations to direct your network to do the probing. The AllowATM attribute controls this choice. If AllowATM=true, the Terminal Server/MAP plug-in passes the startNotification terminal addresses and timer metrics through for your network to interpret.

If the terminal status changes during the time period, the network sends a NoteMMEvent call to the plug-in, which passes that information to the application using statusNotification and closes the transaction.

If the status does not change during the time period, the plug-in sends an endNotification back to the application and closes the transaction.

Requesting status for nested groups of terminals is not supported.

Terminal Status Change Request: Plug-in-Triggered

If your network cannot support ATM operations, you can set AllowATM=false and direct the plug-in to probe for terminal status changes. In this case, an application sends a terminal status change request and timer metrics to the Terminal Status/MAP plug-in using startNotification operation. The plug-in creates a transaction and starts querying the network for the terminal status with anyTimeInterrogation as directed by the timer metrics. If the terminal status changes during the time period, the communication service returns that information to the application using statusNotification and closes the transaction. If the status does not change during the time period, it sends a statusEnd message back to the application and closes the transaction. The application can also end the transaction itself by sending an endNotification.

Requesting status for nested groups of terminals is not supported.

This implementation creates a connection between the plug-in and a specific node. If that node crashes, the transaction never completes.

Application Interfaces

For information about the SOAP-based interface for the Parlay X 2.1 Terminal Status communication service, see the discussion of Parlay X 2.1 Interfaces in Oracle Communications Services Gatekeeper Application Developer's Guide.

For information about the RESTful Call Notification interface, see the discussion of Terminal Status in Oracle Communications Services Gatekeeper RESTful Application Developer's Guide.

The RESTful Service Call Notification interfaces provide RESTful access to the same functionality as the SOAP-based interfaces. The internal representations are identical, and for the purposes of creating SLAs and reading CDRs, and so on., they are the same.

Events and Statistics

The Parlay X 2.1 Terminal Status/MAP communication service generates Event Data Records (EDRs), Charging Data Records (CDRs), alarms, and statistics to assist system administrators and developers in monitoring the service.

For general information, see Appendix A, "Events, Alarms, and Charging."

Event Data Records

Table 14-1 lists the IDs of the EDRs created by the Parlay X 2.1 Terminal Status/MAP communication service.

Table 14-1 Event Types Generated by Parlay X 2.1Terminal Status/MAP

	EDR ID	Method Called
	
4001

	
getStatus()

	
4000

	
getStatusForGroup()

	
4002

	
startNotification()

	
4003

	
endNotification()

	
4011

	
generate()

	
4015

	
statusNotification()

	
4016

	
statusError()

	
4017

	
statusEnd()

Charging Data Records

Terminal Status/MAP-specific CDRs are generated under the following conditions:

	
With the results of a getStatus or getStatusForGroup operation

	
When a notification is received from the network

	
If you requested a terminal status change notification, the terminal's present status is sent periodically.

Statistics

Table 14-2 maps methods invoked from either the application or the network to the transaction types collected by the Services Gatekeeper statistics counters.

Table 14-2 Methods and Transaction Types for Parlay X 2.1 Terminal Status/MAP

	Method	Transaction type
	
getStatus()

	
TRANSACTION_TYPE_USER_STATUS

	
getStatusForGroup()

	
TRANSACTION_TYPE_USER_STATUS

	
startNotification()

	
TRANSACTION_TYPE_USER_STATUS

	
endNotification()

	
TRANSACTION_TYPE_USER_STATUS

	
generate()

	
TRANSACTION_TYPE_USER_STATUS

	
statusNotification()

	
TRANSACTION_TYPE_USER_STATUS

	
statusError()

	
TRANSACTION_TYPE_USER_STATUS

	
statusEnd()

	
TRANSACTION_TYPE_USER_STATUS

Alarms

For the list of alarms, see Oracle Communications Services Gatekeeper Alarm Handling Guide.

Managing Parlay X 2.1 Terminal Status/MAP

This section describes the properties and workflow for the Parlay X 2.1 Terminal Status plug-in instance.

This plug-in service does not support multiple instantiation using the Plug-in Manager. You can create only one instance by using the Plug-in Manager. The plug-in instance is not automatically created when the plug-in service is started.

Properties for Parlay X 2.1 Terminal Status/MAP

Table 14-3 lists the technical specifications for the communication service.

Table 14-3 Properties for Parlay X 2.1 Terminal Status/MAP

	Property	Description
	
Managed object in Administration Console

	
domain_name > OCSG > server_name > Communication Services > plugin_instance_id

	
MBean

	
Domain=com.bea.wlcp.wlng

Name=wlng_nt

InstanceName=same as the network protocol instance_id assigned when the plug-in instance is created

Type=com.bea.wlcp.wlng.plugin.ts.map.management.MapTsMBean

	
Network protocol plug-in service ID

	
Plugin_px21_terminal_status_map

	
Network protocol plug-in instance ID

	
The ID assigned when the plug-in instance is created. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide.

	
Supported Address Scheme

	
tel

	
Application-facing interfaces

	
com.bea.wlcp.wlng.px21.plugin.TerminalStatusPlugin

com.bea.wlcp.wlng.px21.plugin.TerminalStatusNotificationManagerPlugin

com.bea.wlcp.wlng.px21.callback.TerminalStatusNotificationCallback

	
Service type

	
TerminalStatus

	
Exposes to the service communication layer a Java representation of:

	
Parlay X 2.1 Part 8: Terminal Status/MAP

	
Interfaces with the network nodes using:

	
3GPP TS 29.002 V4.18.0 (2007-09)

	
Deployment artifacts:

NT EAR

wlng_nt_terminal_status_px21.ear

	
px21_terminal_status.war, px21_terminal_status_callback.jar, and rest_terminal_location.war

	
AT EAR: Normal

wlng_at_terminal_status_px21.ear

	
px21_terminal_status.war, px21_terminal_status_callback.jar, and rest_terminal_location.war

	
AT EAR: SOAP Only

wlng_at_terminal_status_px21.ear

	
px21_terminal_status.war and px21_terminal_status_callback.jar

Configuration Workflow for Parlay X 2.1 Terminal Status/MAP

Following is an outline for configuring the plug-in using the Administration Console or an MBean browser.

	
Create one or more instances of the plug-in service. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the plug-in service ID listed in the "Properties for Parlay X 2.1 Terminal Status/MAP" section.

	
Select the MBean for the plug-in instance. The MBean display name is the same as the plug-in instance ID assigned when the plug-in instance was created.

	
Configure the attributes of the plug-in instance:

	
Attribute: AllowATM

	
Attribute: ATITimeout

	
Attribute: CpUserId

	
Attribute: GroupRequestTimeout

	
Attribute: GsmSCFGT

	
Attribute: LocalSpc

	
Attribute: LocalSsn

	
Attribute: NoOfPluginInstances

	
Attribute: Ss7Host

	
Attribute: Ss7Instances

	
Attribute: Ss7PortNumber

	
Specify heartbeat behavior. See "Configuring Heartbeats" in System Administrator's Guide.

	
Set up the routing rules to the plug-in instance. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the plug-in instance ID and address schemes listed in the "Properties for Parlay X 2.1 Terminal Status/MAP" section.

	
Set up at least one network selection and one network selection route to direct Terminal Server Status requests to the correct SSN using "Operation: addNetworkSelection" and "Operation: addNetworkSelectionRoute" operations. See "Setting Up Network Selection Routes and Network Selections" for more information.

	
(Optional) Create and load a node SLA with Terminal Status usage restrictions. These usage restrictions are supported:

	
SLA Usage Restriction: BusyAvailable

	
SLA Usage Restriction: MaximumCount

	
SLA Usage Restriction: MaximumNotificationAddresses

	
SLA Usage Restriction: MaximumNotificationDuration

	
SLA Usage Restriction: MaximumNotificationFrequency

	
SLA Usage Restriction: UnlimitedCountAllowed

For details see “Defining Global Node and Service Provider Group Node SLAs” and “Managing SLAs” in the Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

Setting Up Network Selection Routes and Network Selections

The Parlay X 2.1 Terminal Status/MAP plug-in matches each terminal status request with the correct SSN (HLR) node using network selections and network selection routes. You create these network selections and network selection routes using these operations:

	
Operation: addNetworkSelection

	
Operation: addNetworkSelectionRoute

Figure 14-1 illustrates how the plug-in routes terminal status requests with the correct SSN.

Figure 14-1 Terminal Status/MAP Request-to-Node Flow

[image: Description of Figure 14-1 follows]

The addNetworkSelectionRoute operation offers the option of associating one or more regular expressions, or the string default, with each of your service providers. When a request arrives, the plug-in attempts to match the address against all network service route regular expressions. If it finds a match, it then the passes the request to the network service with the matching network selection ID. The network service then matches the network selection ID with an SSN and passes the terminal status request to that SSN. If the network service route could not match the address with a regular expression, it passes the request to the default network selection ID if one is defined.

The plug-in does not do any overlap testing of the regular expressions you create in network service routes.

The addNetworkSelection operation specifies an SSN to use for a terminal status request for a network selection ID. It also specifies details about the type and format of the request.

At least one network selection and network selection route must be defined for the plug-in to function. Typically you set up at least one pair per service provider.

After network selections and network selection routes are set up, manage them with these operations:

	
Operation: addNetworkSelection

	
Operation: addNetworkSelectionRoute

	
Operation: listAllNetworkSelectionRoutes

	
Operation: listNetworkSelectionRoutes

	
Operation: listNetworkSelections

	
Operation: removeNetworkSelection

	
Operation: removeNetworkSelectionRoute

Reference: Attributes and Operations for Parlay X 2.1 Terminal Status/MAP, and SLA Usage Restrictions

This section describes the attributes, operations, and SLA usage restrictions for configuration and maintenance:

	
Attribute: AllowATM

	
Attribute: ATITimeout

	
Attribute: CpUserId

	
Attribute: GroupRequestTimeout

	
Attribute: GsmSCFGT

	
Attribute: JCPQueueSize

	
Attribute: LocalSpc

	
Attribute: LocalSpc

	
Attribute: NoOfPluginInstances

	
Attribute: PluginInstanceId

	
Attribute: Ss7Host

	
Attribute: Ss7Instances

	
Attribute: Ss7Instances

	
Operation: addNetworkSelection

	
Operation: addNetworkSelectionRoute

	
Operation: bindToStack

	
Operation: getNetworkSelection

	
Operation: addNetworkSelectionRoute

	
Operation: listAllNetworkSelectionRoutes

	
Operation: listNetworkSelectionRoutes

	
Operation: listNetworkSelections

	
Operation: removeNetworkSelection

	
Operation: removeNetworkSelectionRoute

	
Operation: removeNotifications

	
SLA Usage Restriction: BusyAvailable

	
SLA Usage Restriction: MaximumCount

	
SLA Usage Restriction: MaximumNotificationAddresses

	
SLA Usage Restriction: MaximumNotificationDuration

	
SLA Usage Restriction: MaximumNotificationFrequency

	
SLA Usage Restriction: UnlimitedCountAllowed

Attribute: AllowATM

Scope: Cluster

Unit: Not applicable

Format: Boolean

Determines whether the StatusNotification interface uses AnyTimeModification (instead of the default AnyTimeInterrogation) to set up the terminal status notification. The default value is true.

Attribute: ATITimeout

Scope: Cluster

Unit: Milliseconds

Format: Integer

The timeout period used by each AnyTimeInterrogation call. The default value is 5000.

Attribute: CpUserId

Scope: Cluster

Unit: Not applicable

Format: String

The CommonParts user ID that you map to a CommonParts User ID instance in the SS7 stack configuration file. The default value is USER01.

Attribute: GroupRequestTimeout

Scope: Cluster

Unit: Seconds

Format: Integer

Specifies a time limit for the getStatusForGroup and startNotification (with AnyTimeInterrogation) interfaces. If all addresses are not processed within this time period, the Terminal Status/MAP plug-in aborts the query process, reports any retrieved terminal statuses, and marks the rest as NotRetrieved. The default value is 30.

Attribute: GsmSCFGT

Scope: Local

Unit: Not applicable

Format: Integer

The local global title, used in originating addresses.

Attribute: JCPQueueSize

Scope: Cluster

Unit: Number of JCP queue messages

Format: Integer

Sets the JCP (TE stack attribute) message queue size. This queue stores the most recent MAP primitive messages in the JCP attribute of the TE stack, which the JTCAP provider then retrieves. A large queue size allows you to store more messages which helps ensure that none are abandoned before the JTCP provider can retrieve them. A large queue size is useful during high workload periods, but it also requires more memory. The default value is 90.

Attribute: LocalSpc

Scope: Local

Unit: Not applicable

Format: Integer [0–16383] or [0–16777215], depending on the standard used.

The SS7 network address for the plug-in instance (the local SCCP Signaling Point Code (SPC) served by the local SS7 stack). The Terminal Status/MAP plug-in uses this as the originating SPC.

You must correlate this value with the property SCCP Local SSN in the SS7 stack back-end configuration file.

Attribute: LocalSsn

Scope: Local

Unit: Not applicable

Format: Integer [2–254]

The local SCCP Sub System Number to bind to this plug-in instance.

You must correlate this value with the property SCCP Local SSN in the SS7 stack back-end configuration file.

Attribute: NoOfPluginInstances

Scope: Local

Unit: Not applicable

Format: Integer

Total number of Terminal Status plug-in instances that use the Attribute: LocalSsn. The default value is 1.

Attribute: PluginInstanceId

Scope: Local

Unit: Not applicable

Format: Integer

Must be 0 or less than the value for Attribute: NoOfPluginInstances. Used to create a unique dialogue reference for every plug-in instance using a different LocalSsn. The SS7 stack uses this unique reference to identify the correct Terminal Status/MAP plug-in to reply to. The default value is 0.

Attribute: Ss7PortNumber

Scope: Cluster

Unit: Not applicable

Format: Integer

Specifies the SS7 port number for the Terminal Status/MAP plug-in instance to use. The default value is 7001.

Attribute: Ss7Host

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the SS7 host IP address for the Terminal Status/MAP plug-in instance to use. The default value is 127.0.0.1.

Attribute: Ss7Instances

Scope: Cluster

Unit: Not applicable

Format: String

The SS7 BackEnd for the Terminal Status/MAP plug-in instance to use, encoded as a comma-separated byte array, for example, 1, 2, 3. Set this value to 0 if you only use one active BackEnd. The default value is 0.

Operation: addNetworkSelection

Scope: Local

Adds a network selection.

Maps a service provider to an SSN (that presumably has terminal status information). This operation associates a network section ID with a specific SSN, and includes terminal status format details.

The values specified in this operation depend on the SSN configuration and the MAP message's target node. Network selection determines how MAP messages are encoded for a specific address, for example whether it uses GT+SSN or SPC+SSN. Network selection also specifies how ApplicationContext and DialogueAS appear in the ATI message. NetworkSelectionRoutes is then used to determine which network selection to use for a specific address.

This operation throws an exception if any parameter values are outside of their valid ranges, or if there is a problem adding the configuration to the database.

See Setting Up Network Selection Routes and Network Selections for more information.

Signature:

addNetworkSelection(NetworkSelectionId: String, MAPVersion: String, MAPApplicationContext: String, MAPApplicationHandlingContext: String, MAPApplicationReportingContext: String, MAPDialogueAS: String, SSN: Integer, DPC: Integer, GTI: Integer, TT: Integer, Na: Integer, Np: Integer)

Table 14-4 addNetworkSelection Parameters

	Parameter	Data Type	Description
	
NetworkSelectionId

	
String

	
Identifies each service provider this operation is creating a network selection for. Used by addNetworkSelectionRoute to map a terminal addresses with a service provider. This operation then specifies an SSN to query for the address. To avoid confusion, use a separate string than the Services Gatekeeper service provider ID.

	
MAPVersion

	
String

	
Identifies the MAP version that the PDU uses. Currently only 3GPP TS 29.002 V4.18.0 (2007-09) is supported.

	
MAPApplicationContext

	
String

	
The application context name to use, encoded as a comma separated byte array, for example: 4, 0, 0, 1, 0, 29, 3.

Where:

	
4: ccitt/identified-organization

	
0: etsi

	
0: mobileDomain

	
1: gsm-Network

	
0: map-acany

	
29: TimeInfoEnquiry 29;

	
3: version3

	
MAPApplicatonHandlingContext

	
String

	
Application context name of ATM message to use, encoded as a comma separated byte array, for example: 4, 0, 0, 1, 0, 43, 3

Where:

4 ccitt/identified-organization

0 etsi

0 mobileDomain

1 gsm-Network

0 map-ac

43 anyTimeInfoHandling

3 version3

	
MAPApplicationReportingContext

	
String

	
Application context name of ATM message to use, encoded as a comma separated byte array, for example: 4, 0, 0, 1, 0, 42, 3

Where:

	
4 ccitt/identified-organization

	
0 etsi

	
0 mobileDomain

	
1 gsm-Network

	
0 map-ac

	
43 mm-EventReporting

	
3 version3

	
MAPDialogueAS

	
String

	
The object identifier to use for DialogueAS, encoded as a comma separated byte array, for example: 4, 0, 0, 1, 1, 1, 1

Where:

4: ccitt/identified-organization

0: etsi

0: mobileDomain

1: gsm-Network

1: as-Id

1: map-DialoguePDU

1: version1

	
SSN

	
Integer

	
The destination SSN.

	
DPC

	
Integer

	
(Optional) The destination SPC. A value of -1 directs this operation to use GT+SSN instead of SPC+SSN in the destination address.

	
GTI

	
Integer

	
The global title indicator. Controls how the SCCP address for both called and calling addresses is built. Suitable values would be something like (international E.164 number): GTI=4 TT=1 NP=1 NA=4.

Can be one of these values:

0: GT included

1: GT includes nature of address indicator only

2: GT includes translation type only

3: GT includes translation type, numbering plan, and encoding scheme

4: GT includes translation type, numbering plan, encoding scheme, and nature of address indication

	
TT

	
Integer

	
The translation type that directs the message to the appropriate GT translation function. Must be in the range 0-254.

	
Na

	
Integer

	
Nature of Address indicator (GSMSCF-Address).

Can be one of:

0: unknown

1: international number

2: national significant number

3: network specific number

4: subscriber number

5: reserved

6: abbreviated number

7: reserved for extension

	
Np

	
Integer

	
Address Numbering Plan indicator (GSMSCF-Address).

Can be one of:

0: unknown

1: ISDN/Telephony Numbering Plan (Rec ITU-T E.164)

2: spare

3: data numbering plan (ITU-T Rec X.121)

4: telex numbering plan (ITU-T Rec F.69)

5: spare

6: land mobile numbering plan (ITU-T Rec E.212)

7: spare

8: national numbering plan

9: private numbering plan

15: reserved for extension

Operation: addNetworkSelectionRoute

Scope: Local

Maps a terminal address with a service provider ID. The plug-in uses the service provider ID to determine the SSN to probe for terminal status information.

Each network selection route needs to be associated with a network selection (using addNetworkSelection) that maps a service provider with the SSN with terminal status information. The plug-in is only active if at least one NetworkSelectionRoute / NetworkSelection pair is configured.

	
Note:

The network selection ID string and your Services Gateway service provider ID identify the same service providers, but these are used for different purposes. To avoid confusion use different values for these strings.

When the terminal status request enters the plug-in, its MSISDN address(es) are matched against the regular expressions of the network selection routes. If a match is found, the request is sent to the SSN specified by the network selection. If the network selection route uses the default expression, all requests are sent to the default SSN.

Wildcards are allowed in the regular expression. For example, the value ^46730.* matches all MSISDN addresses that start with 46730. However this plug-in does not check for wildcard overlapping.

An exception is thrown if no corresponding network selection exists for the network selection route, if another route already exists for the service provider ID, or if there is a problem adding the route to the database.

See "Setting Up Network Selection Routes and Network Selections" for more information.

Signature:

addNetworkSelectionRoute(NetworkSelectionId: String, Expression: String)

Table 14-5 addNetworkSelectionRoute Parameters

	Parameter	Data Type	Description
	
NetworkSelectionId

	
String

	
Identifies each service provider this operation is creating a network selection route for. To avoid confusion, use a different string than the Services Gatekeeper service provider ID.

	
Expression

	
String

	
[default | msisdn_address] The routing expression. A unique regular expression to match against the target MSISDN address or the string default (use the default route if no match exists). For example ^46730.*,

There is no overlap control for the regular expressions.

Operation: bindToStack

Scope: Local

Binds the Terminal Server/MAP plug-in to the SS7 stack. This operation is required if the configuration has changed. If bindToStack is successful, the Terminal Status/MAP plug-in not yet connected; it has only started to connect and bind to the stack. Use the Bound parameter to confirm whether the stack is actually bound. This is operation is performed implicitly at startup, but must be manually invoked if any connection attributes were changed.

Signature:

bindToStack()

Operation: getNetworkSelection

Scope: Local

Retrieves the configured values for a specific network selection and the network selection route it maps to.

Signature:

getNetworkSelection(NetworkSelectionId: String)

Table 14-6 getNetworkSelection Parameters

	Parameter	Data Type	Description
	
NetworkSelectionId

	
String

	
Identifies the service provider this operation is retrieving a network selection for.

Operation: getNetworkSelectionRoute

Scope: Local

Retrieves the network selection route and the network selections it maps to.

Signature:

getNetworkSelectionRoute(Expression: String)

Table 14-7 getNetworkSelectionRoute Parameters

	Parameter	Data Type	Description
	
Expression

	
String

	
A unique regular expression to match against the target MSISDN address, or the string DEFAULT (use the default route if no match exists). For example ^46730.*,

Note that there is no overlap control for the regular expressions.

Operation: listAllNetworkSelectionRoutes

Scope: Local

List all the configured NetworkSelectionRoutes and the NetworkSelection IDs each is mapped to.

Signature:

listAllNetworkSelectionRoutes()

Operation: listNetworkSelectionRoutes

Scope: Local

Lists all network selection routes mapped to a specific network selection.

Signature:

listNetworkSelectionRoutes(NetworkSelectionId: String)

Table 14-8 listNetworkSelectionRoutes Parameters

	Parameter	Data Type	Description
	
NetworkSelectionId

	
String

	
Identifies the service provider this operation is listing network selection routes for.

Operation: listNetworkSelections

Scope: Local

Lists all network selections, their configured values, and their corresponding network selection routes.

Signature:

listNetworkSelections()

Operation: removeNetworkSelection

Scope: Local

Removes a network selection. Returns the removed network selection or null if it cannot be removed.

Signature:

removeNetworkSelection(NetworkSelectionId: String)

Table 14-9 removeNetworkSelection Parameters

	Parameter	Data Type	Description
	
NetworkSelectionId

	
String

	
Identifies the service provider this operation is removing a network selection for.

Operation: removeNetworkSelectionRoute

Scope: Local

Removes the specified network selection route. Returns the removed network selection, or null if the network selection could not be removed.

Signature:

removeNetworkSelectionRoute(NetworkSelectionId: String)

Table 14-10 removeNetworkSelectionRoute Parameters

	Parameter	Data Type	Description
	
NetworkSelectionId

	
String

	
Identifies the service provider that this operation is removing a network selection route for.

Operation: removeNotifications

Scope: Local

Explicitly removes notifications from the database. After a server crash old (inactive) notifications are removed implicitly.

Signature:

removeNotifications(IncludeActiveNotifications: Boolean)

Table 14-11 removeNotifications Parameters

	Parameter	Data Type	Description
	
IncludeActiveNotifications

	
Boolean

	
true: Removes all current notifications

false: Removes only inactive notifications.

SLA Usage Restriction: BusyAvailable

Determines whether the Terminal Status/MAP plug-in treats a status of busy as a terminal status or terminal status change trigger.

Data type: Boolean

Allowed values: true and false

Default Value: true

Attribute name:

oracle.ocsg.plugin.terminal_status.map.policy.BusyAvailable

SLA Usage Restriction: MaximumNotificationAddresses

Specifies the maximum number of terminal addresses that a single Terminal Status/MAP plug-in request can contain.

Data type: Integer

Allowed Values: 1 ~ 2147483647 (2^31-1)

Default Value: 2147483647

Attribute name:

oracle.ocsg.plugin.terminal_status.map.policy.MaximumNotificationAddresses

SLA Usage Restriction: MaximumNotificationFrequency

Sets the maximum number of seconds allowed between Terminal Status/MAP plug-in requests.

Data type: Integer (represents seconds)

Allowed Values: 1~2147483647 (2^31-1)

Default Value: 2147483647

Attribute name:

oracle.ocsg.plugin.terminal_status.map.policy.MaximumNotificationFrequency

SLA Usage Restriction: MaximumNotificationDuration

Sets the maximum time limit that a Terminal Status/MAP plug-in request can last. Cannot be used with SLA Usage Restriction: UnlimitedCountAllowed.

Data type: Integer (represents seconds)

Default Value: 600

Attribute name:

oracle.ocsg.plugin.terminal_status.map.policy.MaximumNotificationDuration

SLA Usage Restriction: MaximumCount

Specifies the maximum number of notifications that a single Terminal Status/MAP plug-in request can return. Cannot be used with SLA Usage Restriction: UnlimitedCountAllowed.

Data type: Integer

Allowed Values: 1~2147483647 (2^31-1)

Default Value: 2147483647

Attribute name:

oracle.ocsg.plugin.terminal_status.map.policy.MaximumCount

SLA Usage Restriction: UnlimitedCountAllowed

Directs the Terminal Server/MAP plug-in to allow an unlimited number of notifications for each request. If this attribute is set to true, neither SLA Usage Restriction: MaximumNotificationDuration nor SLA Usage Restriction: MaximumCount should also be specified.

Data type: Boolean

Allowed Values: true and false

Default Value: false

Attribute name:

oracle.ocsg.plugin.terminal_status.map.policy.UnlimitedCountAllowed

15 Parlay X 3.0 Audio Call/Parlay 3.3 UI-MPCC

This chapter describes the Parlay X 3.0 Audio Call/Parlay 3.3 User Interaction and MultiParty Call Control communication service in detail.

Overview of the Parlay X 3.0 Audio Call/Parlay 3.3 UI-MPCC Communication Service

The Parlay X 3.0 Audio Call/Parlay 3.3 UI-MPCC communication service exposes the Parlay X 3.0 Audio Call set of application interfaces.

The communication service acts as an Open Services Architecture (OSA) Parlay application to an internal Services Gatekeeper OSA/Parlay Gateway. It uses this gateway to access the Call User Interaction and MultiParty Call Control SCSs. For information about the gateway, see "Managing OSA/Parlay Gateway Connections using Parlay_Access" in Oracle Communications Services Gatekeeper System Administrator's Guide.

For the exact version of the standards that the communication service supports for the application-facing interfaces and the network protocols, see the appendix on standards and specifications in Oracle Communications Services Gatekeeper Concepts Guide.

Using the Parlay X 3.0 Audio Call/Parlay 3.3 UI-MPCC communication service, an application can:

	
Play audio to one or more call participants in an existing call session set up by the communication service.

	
Find out if the audio is currently being played or has not yet started to play.

	
Explicitly end playing of the audio.

	
Collect digits from call participants in response to an audio message that has been played to them and, in conjunction with the Parlay X 3.0 Call Notification/MPCC communication service, return the information to the application.

	
Interrupt an ongoing interaction, such as on-hold music.

How It Works

The Parlay X 3.0 Audio Call/Parlay 3.3 UI-MPCC communication service can be used by applications to play audio messages to one or more call participants in an existing call. The existing call is identified by the Call Session Identifier returned to the application at the time the call session is set up. If desired, applications can receive digits collected from those participants in response to the audio message using a notification set up using the communication service.

The audio message content to be played must be defined in a binary format such as WAV stored at a URL available to the network and rendered by an audio player. Services Gatekeeper does not actually render the message. This is the responsibility of equipment that must be present on the target telecom network, such as Interactive Voice Response (IVR) systems.

Application Interfaces

For information about the SOAP-based interface for the Parlay X 3.0 Audio Call communication service, see the discussion of Parlay X 3.0 Interfaces in Oracle Communications Services Gatekeeper Application Developer's Guide.

Events and Statistics

The Parlay X 3.0 Audio Call/Parlay 3.3 UI-MPCC communication service generates Event Data Records (EDRs), Charging Data Records (CDRs), alarms, and statistics to assist system administrators and developers in monitoring the service.

For general information, see Appendix A, "Events, Alarms, and Charging."

Event Data Records

Table 15-1 lists the IDs of the EDRs created by the Parlay X 3.0 Audio Call/Parlay 3.3 UI-MPCC communication service. This does not include EDRs created when exceptions are thrown.

Table 15-1 Event Types Generated by Parlay X 3.0 Audio Call/Parlay 3.3 UI-MPCC

	EDR ID	Method Called
	
11100

	
playAudioMessage

	
11101

	
getMessageStatus

	
11102

	
endMessage

	
11103

	
startPlayAndCollectInteraction

	
11104

	
stopMediaInteraction

	
11105

	
sendInfoRes

	
11106

	
SendInfoErr

	
11107

	
sendInfoAndCollectRes

	
11108

	
SendInfoAndCollectErr

	
11109

	
attachMediaRes

	
111010

	
attachMediaErr

	
111011

	
detachMediaRes

	
111012

	
detachMediaErr

	
111013

	
abortActionRes

	
111014

	
abortActionErr

Charging Data Records

Audio Call/Parlay 3.3 UI-MPCC-specific CDRs are generated under the following conditions:

	
When sendInfoRes is sent from the network to Services Gatekeeper, indicating that the audio message has completed playing, if this is not the result of an explicit request to stop from the application.

	
When sendInfoAndCollectRes is sent from the network to Services Gatekeeper, indicating that the audio message has completed playing and the call participant's response has been collected in the form of digits.

Statistics

Table 15-2 maps methods invoked from either the application or the network to the transaction types collected by the Services Gatekeeper statistics counters.

Table 15-2 Methods and Transaction Types for Parlay X 3.0 Audio Call/Parlay 3.3 UI-MPCC

	Method	Transaction type
	
startPlayAndCollectInteractions

	
TRANSACTION_TYPE_CALL_CONTROL_SERVICE_INITIATED

	
playAudioMessage

	
TRANSACTION_TYPE_CALL_CONTROL_SERVICE_INITIATED

Alarms

For the list of alarms, see Alarm Handling Guide.

Tunneled Parameters for Parlay X 3.0 Audio Call/Parlay 3.3 UI-MPCC

This section lists the parameters that can be tunneled or defined in the <requestContext> element of an SLA.

ac.parlay.sendInfoReq.repeatIndicator

	Description
	
Specifies how many times an audio announcement is played to a call participant.

This setting overrides the value set in the OAM RepeatIndicator attribute.

Can be set using SLAs or parameter tunneling. An SLA setting overrides a tunneled parameter.

	Format
	
String with a non-negative integer value

	Value
	
A value of zero (0) indicates either that the announcement will be repeated until the call or call leg is released, either by an application or the network, or that the announcement will be ended by an application.

A positive value specifies the exact number of times that the announcements will be played.

Managing Parlay X 3.0 Audio Call/Parlay 3.3 UI-MPCC

This section describes the properties and workflow for the Parlay X 3.0 Audio Call/Parlay MultiParty Call Control and Call User Interaction plug-in instance.

Most of the configuration is done in the Open Services Architecture (OSA) Access module, but with configuration parameters for Parlay MultiParty Call Control. See "Managing OSA/Parlay Gateway Connections using Parlay_Access" in Oracle Communications Services Gatekeeper System Administrator's Guide.

This plug-in service is requires Orbacus, which is not installed by default. For information about installing Orbacus, see Oracle Communications Services Gatekeeper Installation Guide.

This plug-in service does not support multiple instantiation using the Plug-in Manager. There is a one-to-one mapping between plug-in service and plug-in instance. The plug-in instance is created when the plug-in service is started.

Properties for Parlay X 3.0 Audio Call/Parlay 3.3 UI-MPCC

Table 15-3 lists the technical specifications for the communication service.

Table 15-3 Properties for Parlay X 3.0 Audio Call/Parlay 3.3 UI-MPCC

	Property	Description
	
Managed object in Administration Console

	
domain_name > OCSG > server_name > Communication Services > Plugin_px30_audio_call_parlay_mpcc_cui

	
MBean

	
Domain=com.bea.wlcp.wlng

Name=wlng_nt

InstanceName=Plugin_px30_audio_call_parlay_sip

Type=com.bea.wlcp.wlng.plugin.ac.parlay.management.AudioCallManagementMBean

	
Network protocol plug-in service ID

	
Plugin_px30_audio_call_parlay_mpcc_cui

	
Network protocol plug-in instance ID

	
Plugin_px30_audio_call_parlay_mpcc_cui

	
Supported Address Scheme

	
tel

	
Application-facing interfaces

	
com.bea.wlcp.wlng.px30.plugin.AudioCallPlayMediaPlugin

com.bea.wlcp.wlng.px30.plugin.AudioCallCaptureMediaPlugin

	
Service type

	
AudioCall

	
Exposes to the service communication layer a Java representation of:

	
Parlay X 3.0 Part 11: Audio Call

	
Interfaces with the network nodes using:

	
Open Service Access (OSA); Application Programming Interface (API); Part 4: Call Control SCF; Subpart 7: MultiParty Call Control Service

Open Service Access (OSA); Application Programming Interface (API); Part 5: User Interaction SCF

	
Deployment artifacts

	
osa_access.jar, Plugin_px30_audio_call_parlay_mpcc_cui.jar, and px30_audio_call_service.jar, packaged in wlng_nt_audio_call_px30.ear

px30_audio_call.war, packaged in wlng_at_audio_call_px30.ear

Configuration Workflow for Parlay X 3.0 Audio Call/Parlay 3.3 UI-MPCC

Following is an outline for configuring the plug-in using the Administration Console or an MBean browser.

	
Select the MBean listed in the "Properties for Parlay X 3.0 Audio Call/Parlay 3.3 UI-MPCC" section.

	
Configure the behavior of the plug-in instance using the MBean attributes. See "Reference: Attributes for Parlay X 3.0 Audio Call/Parlay 3.3 UI-MPCC" for a list of the attributes and their settings.

	
Obtain the following information from your OSA Gateway administrator and configure the MultiParty Call Control part of the protocol translator (Parlay_Access service) accordingly:

	
OSA/Parlay SCS type to be used in the lookup (service discovery) phase when requesting the MultiParty Call Control service (OSA/Parlay SCS) from the OSA/Parlay Gateway. Typically this is P_MULTI_PARTY_CALL_CONTROL.

	
OSA/Parlay service properties to be used in the look up (service discovery) phase. This information is used to request a service (OSA/Parlay SCS) from the OSA/Parlay Gateway. These properties are specific to the OSA Gateway implementation.

	
Authentication type used by the OSA/Parlay Framework.

	
Encryption method used for the connection with the OSA Gateway.

	
The signing algorithm used when signing the service level agreement with the OSA/Parlay Framework.

	
Set up the OSA Client and the OSA Client Mappings for the MultiParty Call Control part of the plug-in instance. For information on how to do this, see "Creating an OSA client" and "Mapping the OSA client to an OSA Gateway and an OSA/Parlay SCS" in "Managing OSA/Parlay Gateway Connections using Parlay_Access" in Oracle Communications Services Gatekeeper System Administrator's Guide.

	
Gather the following information from your OSA Gateway administrator and configure the Call User Interaction part of the protocol translator (OSA Access service) accordingly:

	
OSA/Parlay SCS type to be used in the lookup (service discovery) phase when requesting the Generic User interaction service (OSA/Parlay SCS) from the OSA/Parlay Gateway. Typically this is P_USER_INTERACTION.

	
OSA/Parlay service properties to be used in the lookup (service discovery) phase when requesting a service (OSA/Parlay SCS) from the OSA/Parlay Gateway. This depends on the OSA Gateway implementation.

	
Authentication type used by the OSA/Parlay Framework.

	
Encryption method used for the connection with the OSA Gateway.

	
Signing algorithm used when signing the service level agreement with the OSA/Parlay Framework.

	
Set up the OSA Client and the OSA Client Mappings for the Generic User Interaction part of the plug-in instance. For information on how to do this, see "Creating an OSA client" and "Mapping the OSA client to an OSA Gateway and an OSA/Parlay SCS" in "Managing OSA/Parlay Gateway Connections using Parlay_Access" in Oracle Communications Services Gatekeeper System Administrator's Guide.

	
If required, create and load a node SLA. For details see “Defining Global Node and Service Provider Group Node SLAs” and “Managing SLAs” in the Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

It is not necessary to set up routing rules to the plug-in instance.

Reference: Attributes for Parlay X 3.0 Audio Call/Parlay 3.3 UI-MPCC

This section lists the attributes for configuration and maintenance.

	
Attribute: CollectStartTimeout

	
Attribute: CollectInterCharTimeout

	
Attribute: Language

	
Attribute: ChargingAllowed

	
Attribute: RepeatIndicator

	
Attribute: ResponseRequested

	
Attribute: RetensionTime

	
Attribute: ShutdownTimerInterval

	
Attribute: MaxDigits

	
Attribute: MinDigits

	
Attribute: EndSequence

Attribute: ChargingAllowed

Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies whether charging is allowed.

	
true if an application is allowed to specify charging information when playing a message (Parlay X operation playAudioMessage).

	
false if not.

Attribute: CollectInterCharTimeout

Scope: Cluster

Unit: Seconds

The inter-character timeout when collecting user input. Also known as the value for the inter-character timeout timer.

This value corresponds to the TpUICollectCriteria.InterCharTimeOut parameter in sendInfoAndCollectReq requests to the Generic User Interaction SCS.

Attribute: CollectStartTimeout

Scope: Cluster

Unit: Seconds

The start timeout period for collecting user input. Specifies how much time is allowed for the user to enter the first character.

The value corresponds to the TpUICollectCriteria.StartTimeout parameter in sendInfoAndCollectReq requests to the Generic User Interaction SCS.

Attribute: EndSequence

Scope: Server

Unit: Not applicable

Format: String

The digit to be used for ending collection of data of various lengths from a call participant.

The value corresponds to the TpUICollectCriteria.EndSequence parameter in sendInfoAndCollectReq requests to the Generic User Interaction SCS.

Attribute: Language

Scope: Cluster

Unit: Not applicable

Format: String according to valid language strings as defined in ISO 639.

The language of the message to be played for the call participant.

Attribute: MaxDigits

Scope: Server

Unit: Not applicable

Format: Positive integer

The maximum number of digits that can be collected from the call participant.

The value corresponds to the TpUICollectCriteria.MaxLength parameter in sendInfoAndCollectReq requests to the Generic User Interaction SCS.

Valid range is 1–65535.

Attribute: MinDigits

Scope: Server

Unit: Not applicable

Format: Positive integer

The minimum number of digits that can be collected from the call participant.

The value corresponds to the TpUICollectCriteria.MinLength parameter in sendInfoAndCollectReq requests to the Generic User Interaction SCS.

Valid range is 1–65535.

Attribute: RepeatIndicator

Scope: Cluster

Unit: Not applicable

Format: Integer

The number of times a message should be played to the call participant.

The value corresponds to the repeatIndicator parameter in sendInfoReq requests to the Generic User Interaction SCS.

Attribute: ResponseRequested

Scope: Cluster

Unit: Not applicable

Format: Integer [1,2,4]

Specifies whether a response is required from the Generic User Interaction SCS, and what, if any, action the service should take.

The value corresponds to the responseRequested parameter in sendInfoReq requests to the Generic User Interaction SCS.

The valid values are:

	
1 for P_UI_RESPONSE_REQUIRED

	
2 for P_UI_LAST_ANNOUNCEMENT_IN_A_ROW

	
4 for P_UI_FINAL_REQUEST

Attribute: RetensionTime

Scope: Cluster

Unit: Seconds

Format: Integer

The time interval for which status information is retained after a message is played or an error occurs.

Attribute: ShutdownTimerInterval

Scope: Server

Unit: Seconds

Format: Integer

The time interval to wait for call sessions to end before terminating. Used for performing a graceful shutdown.

16 Parlay X 3.0 Call Notification/Parlay 3.3 MPCC

This chapter describes the Parlay X 3.0 Call Notification/Parlay 3.3 Multi-Party Call Control (MPCC) communication service in detail.

Overview of the Parlay X 3.0 Call Notification/Parlay 3.3 MPCC Communication Service

Parlay X 3.0 Call Notification/Parlay 3.3 MPCC communication service exposes the Parlay X 3.0 Call Notification set of application interfaces.

The communication service acts as an Open Services Architecture (OSA) Parlay application to an internal Services Gatekeeper OSA/Parlay Gateway. It uses this gateway to access the MultiParty Call Control SCS. For information about the gateway, see "Managing OSA/Parlay Gateway Connections using Parlay_Access" in Oracle Communications Services Gatekeeper System Administrator's Guide.

For the exact version of the standards that the communication service supports for the application-facing interfaces and the network protocols, see the appendix on standards and specifications in Oracle Communications Services Gatekeeper Concepts Guide.

Using the Parlay X 3.0 Call Notification/Parlay 3.3 MPCC communication service, an application can:

	
Set up and tear down notifications on call events for a given combination of caller and callee.

	
Receive notifications on call events related to established notifications.

	
Interact with the functionality of other communication services, including Audio Call to play audio to call participants or to collect data from them or Third Party Call to reroute the call or to set up additional call legs.

	
End the call.

The operations made available by this communication service are concerned only with monitoring (and, in some cases, making certain changes to) calls during the setup phase. By itself, this communication service is not used to set up new calls, only to reroute or terminate calls already in progress.

How It Works

For an application to receive notifications about call setup attempts from the network, it must register its interest in these notifications by setting up a subscription in Services Gatekeeper. A subscription, or a notification, is defined by a set of addresses and a set of criteria. The criteria define the events in which the application is interested.

The addresses may be translated by some mechanism in the telecom network prior to reaching Oracle Communications Services Gatekeeper

Two types of notifications exist:

	
Monitoring

	
Monitoring and rerouting

Monitoring

An application can register to be notified about the following events as the call between the caller and the callee is set up:

	
The callee is busy.

	
The callee is not reachable.

	
The callee does not answer.

	
The caller is attempting to call the callee.

	
The callee has answered the call.

	
Note:

These notifications may include a Call Session Identifier identifying the call session in the network, if available, to allow interactions with other Parlay X Web Services, such as Third Party Call and Audio Call. These interactions tend to be asynchronous.

	
A call participant has interacted with a play-and-collect-media event. The notification contains the results of the interaction, including the digits collected.

	
A call participant has interacted with a play-and-record-media event. The notification contains the results of the interaction, including the location of the recorded information.

Setting up a notification for a play and record media event is supported, but setting up the play and record interaction is not supported in the Parlay X 3.0 Audio Call/Parlay 3.3 MPCC communication service in this version.

Monitoring and rerouting

In addition to monitoring the state of call setup, an application can also choose to make certain changes to the call under certain conditions, in a synchronous manner. In the case of certain monitored events (busy, not reachable, no answer, call attempt), an application can specify how to handle them, including:

	
Continue to let the call be managed by the network in the normal manner, by, for example, playing a busy tone.

	
End the call.

	
Intercept the call setup attempt between the caller and the callee and reroute the call to another callee (C-party) without making an attempt to connect with the callee (B-party). An example might be a general technical support number that is routed to the appropriate call center based on time of day.

If the call is rerouted, the media type is always negotiated by the underlying network. The MediaInfo parameter is not currently used by the communication service.

Because this communication service handles traffic in two directions (from the application to the network and from the network to the application) its functionality has some aspects of both the application-initiated and the network-triggered types. The communication service itself manages only the signalling, or controlling, aspect of the call. The call itself, the media, or audio, channel, is completely handled by the underlying telecom network.

Because the communication service manages only the signalling aspect of the call, only parties residing on the same network can be controlled, unless:

	
The network plug-in connects to a media gateway controller.

	
One of the participants is connected to a signalling gateway so that, from a signalling point of view, all parties reside on the same network.

Application Interfaces

For information about the SOAP-based interface for the Parlay X 3.0 Call Notification communication service, the discussion of Parlay X 3.0 Interfaces in Oracle Communications Services Gatekeeper Application Developer's Guide.

Events and Statistics

The Parlay X 3.0 Call Notification/Parlay 3.3 MPCC communication service generates Event Data Records (EDRs), Charging Data Records (CDRs), alarms, and statistics to assist system administrators and developers in monitoring the service.

For general information, see Appendix A, "Events, Alarms, and Charging."

Event Data Records

Table 16-1 lists IDs of the EDRs created by the Parlay X 3.0 Call Notification/Parlay 3.3 MPCC communication service. This does not include EDRs created when exceptions are thrown.

Table 16-1 Event Types Generated by Parlay X 3.0 Call Notification/Parlay 3.3 MPCC

	EDR ID	Method Called
	
11000

	
startCallDirectionNotification

	
11001

	
stopCallDirectionNotification

	
11002

	
startCallNotification

	
11003

	
stopCallNotification

	
11004

	
startPlayAndCollectNotification

	
11006

	
stopMediaInteractionNotification

	
11007

	
reportNotification

	
11008

	
deleteNotification

	
11009

	
createNotification

	
11011

	
sendInfoAndCollectRes

Charging Data Records

Parlay X 3.0 Call Notification/Parlay 3.3 MPCC-specific CDRs are generated under the following conditions:

	
After a reportNotification is sent from the Parlay gateway to Services Gatekeeper, indicating that a call event defined by the notification has occurred and (in appropriate cases) needs to be handled

	
After a sendInfoandCollectRes has been sent from the Parlay gateway to Services Gatekeeper, indicating that a call participant has interacted with a play-and-collect operation; the response includes the digits collected.

Statistics

Table 16-2 maps methods invoked from either the application or the network to the transaction types collected by the Services Gatekeeper statistics counters.

Table 16-2 Methods and Transaction Types for Parlay X 3.0 Call Notification/Parlay 3.3 MPCC

	Method	Transaction Type
	
reportNotification

(both CallNotification and CallDirection)

	
TRANSACTION_TYPE_CALL_CONTROL_NETWORK_INITIATED

	
sendInfoAndCollectRes

(callNotification only)

	
TRANSACTION_TYPE_CALL_CONTROL_NETWORK_INITIATED

Alarms

For the list of alarms, see Oracle Communications Services Gatekeeper Alarm Handling Guide.

Managing Parlay X 3.0 Call Notification/Parlay 3.3 MPCC

This section describes the properties and workflow for the Parlay X 2.1 Call Notification/Parlay 3.3 MPCC plug-in instance.

Most of the configuration is done in the OSA Access module, but with configuration parameters for Parlay MultiParty Call Control. See "Managing OSA/Parlay Gateway Connections using Parlay_Access" in Oracle Communications Services Gatekeeper System Administrator's Guide.

Two different types of notifications are managed:

	
Regular notifications, started by an application invoking startCallNotification or startCallDirectionNotification

	
Media notifications, started by an application invoking startPlayAndCollectNotification

This plug-in service is requires Orbacus, which is not installed by default. For information about installing Orbacus, see Oracle Communications Services Gatekeeper Installation Guide.This plug-in service does not support multiple instantiation using the Plug-in Manager. There is a one-to-one mapping between plug-in service and plug-in instance. The plug-in instance is created when the plug-in service is started.

Properties for Parlay X 3.0 Call Notification/Parlay 3.3 MPCC

Table 16-3 lists the technical specifications for the communication service.

Table 16-3 Properties for Parlay X 3.0 Call Notification/Parlay 3.3 MPCC

	Property	Description
	
Managed object in Administration Console

	
domain_name > OCSG > server_name > Communication Services->Plugin_px30_call_notification_parlay_mpcc

	
MBean

	
Domain=com.bea.wlcp.wlng

Name=wlng_nt

InstanceName=Plugin_px30_cn_parlay

Type=com.bea.wlcp.wlng.px30.plugin.callnotification.parlay.management.mbean.CallNotificationMBean

	
Network protocol plug-in service ID

	
Plugin_px30_call_notification_parlay_mpcc

	
Network protocol plug-in instance ID

	
Plugin_px30_call_notification_parlay_mpcc

	
Supported Address Scheme

	
tel

	
Application-facing interfaces

	
com.bea.wlcp.wlng.px30.plugin.CallNotificationManagerPlugin

com.bea.wlcp.wlng.px30.plugin.CallDirectionManagerPlugin

com.bea.wlcp.wlng.px30.callback.CallDirectionCallback

com.bea.wlcp.wlng.px30.callback.CallNotificationCallback

	
Service type

	
CallNotification

	
Exposes to the service communication layer a Java representation of:

	
Parlay X 3.0 Part 3: Call Notification

	
Interfaces with the network nodes using:

	
Open Service Access (OSA); Application Programming Interface (API); Part 4: Call Control SCF; Subpart 7: MultiParty Call Control Service

	
Deployment artifacts

	
px30_callnotification_parlay.jar, packaged in wlng_nt_call_notification_px30.ear

px30_call_notification.war and px30_call_notification_callback.jar, packaged in wlng_at_call_notification_px30.ear

This plug-in service does not support multiple instantiation using the Plug-in Manager. There is a one-to-one mapping between plug-in service and plug-in instance. The plug-in instance is created when the plug-in service is started.

Configuration Workflow for Parlay X 3.0 Call Notification/Parlay 3.3 MPCC

Following is an outline for configuring the plug-in using the Administration Console or an MBean browser.

	
Using the Administration Console or an MBean browser, select the MBean listed in the "Properties for Parlay X 3.0 Call Notification/Parlay 3.3 MPCC" section.

	
Gather information about the OSA/Parlay Gateway and configure the protocol translator accordingly. The following information needs to be obtained from the OSA/Parlay Gateway administrator and configured in the Parlay Access service:

	
OSA/Parlay SCS type to be used in the look up (service discovery) phase when requesting the MultiParty Call Control service (OSA/Parlay SCS) from the OSA/Parlay Gateway. Typically this is P_MULTI_PARTY_CALL_CONTROL.

	
OSA/Parlay service properties to be used in the look up (service discovery) phase when requesting a service (OSA/Parlay SCS) from the OSA/Parlay Gateway. This depends on the OSA Gateway implementation.

	
Authentication type used by the OSA/Parlay Framework.

	
Encryption method used for the connection with the OSA Gateway.

	
Signing algorithm used when signing the service level agreement (SLA) with the OSA/Parlay Framework.

	
Set up the OSA/Parlay Client and the OSA/Parlay Client Mappings. See "Managing OSA/Parlay Gateway Connections using Parlay_Access" in Oracle Communications Services Gatekeeper System Administrator's Guide.

	
Set up the routing rules to the plug-in instance. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the plug-in instance ID and address schemes listed in the "Properties for Parlay X 3.0 Call Notification/Parlay 3.3 MPCC" section.

	
If desired, create and load a node SLA. For details see “Defining Global Node and Service Provider Group Node SLAs” and “Managing SLAs” in the Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

	
Provision the service provider accounts and application accounts. For information, see Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

Reference: Operations for Parlay X 3.0 Call Notification/Parlay 3.3 MPCC

This section describes operations for configuration and maintenance:

	
Operation: deleteMediaNotification

	
Operation: deleteNotification

	
Operation: getMediaNotification

	
Operation: getNotification

	
Operation: listNotifications

	
Operation: listMediaNotifications

Operation: deleteMediaNotification

Scope: Cluster

Deletes a media notification.

Signature:

deleteMediaNotification(correlator: String)

Table 16-4 deleteMediaNotification Parameters

	Parameter	Description
	
correlator

	
ID for the subscription. Given by an application when the subscription was started.

Operation: deleteNotification

Scope: Cluster

Deletes a notification from the storage and removes it from OSA Gateway.

Signature:

deleteNotification(correlator: String)

Table 16-5 deleteNotification Parameters

	Parameter	Description
	
correlator

	
ID for the subscription. Given by an application when the subscription is started.

Operation: getMediaNotification

Scope: Cluster

Displays information about a media notification. The information includes:

	
Parlay X correlator

	
Parlay X callSessionIdentifier

	
needNotify This is an internal field. If true, the plug-in instance needs to invoke the Call Notification callback method sendInfoAndCollectRes.

	
Parlay IpAppUICallRef (CORBA IOR)

	
Parlay X endPoint to where the notification is sent

	
Data about the owner of the notification:

	
Service provider account ID

	
Application account ID

	
Application instance ID

	
notifMode, used to distinguish which kind of media notification the notification belongs to. This is the Parlay X operation that created the notification:

	
1 = The notification was created using startPlayAndCollectInteraction.

	
2 = The notification was created using startPlayAndRecordInteraction.

Signature:

getMediaNotification(correlator: String)

Table 16-6 getMediaNotification Parameters

	Parameter	Description
	
correlator

	
ID for the subscription. Given by an application when the subscription is started.

Operation: getNotification

Scope: Cluster

Displays information about a notification. The information includes:

	
Parlay X Correlator

	
Parlay X Endpoint where notifications are sent

	
List of Parlay notification IDs associated with the Parlay X notification. There is one for each called party address for which notifications should be triggered supplied in the Parlay X operations startCallNotification or startCallDirectionNotification.

	
Data about the owner of the notification:

	
Service provider account ID

	
Application account ID

	
Application instance ID

Signature:

getNotification(correlator: String)

Table 16-7 getNotification Parameters

	Parameter	Description
	
correlator

	
ID of the notification. Given by an application when the notification is started.

Operation: listMediaNotifications

Scope: Cluster

Displays all active media notifications. These are notifications that have been registered by an application using:

	
startPlayAndCollectNotification

	
startPlayAndRecordNotification

Returns a list of correlators that uniquely identify each notification.

Signature:

listMediaNotifications()

Operation: listNotifications

Scope: Cluster

Displays all active call notifications. These are notifications registered by an application using:

	
startCallDirectionNotification

	
startCallNotification

Returns a list of correlators that uniquely identify each notification.

Signature:

listNotifications()

17 Parlay X 3.0 Device Capabilities/LDAPv3

This chapter describes the Parlay X 3.0 Device Capabilities/Lightweight Directory Access Protocol version 3 (LDAPv3) communication service in detail.

Overview of the Parlay X 3.0 Device Capabilities/LDAPv3 Communication Service

The Device Capabilities/LDAPv3 communication service exposes the Parlay X 3.0 Device Capabilities and Configuration set of application interfaces.

The communication service acts as an LDAP client to a directory service, connecting to the directory service using the LDAPv3.

For the exact version of the standards that the communication service supports for the application-facing interfaces and the network protocols, see the appendix on standards and specifications in Oracle Communications Services Gatekeeper Concepts Guide.

The Parlay X 3.0 Device Capabilities/LDAPv3 communication service sends requests to any LDAPv3-compliant directory server with a device's address (usually a phone number), and in return receives one of the following device identifiers:

	
The device's unique device ID, device or model name, and a link to the User Agent Profile XML file.

	
The device's equipment identifier (for example, its IMEI)

Application Interfaces

For information about the SOAP-based interface for the Parlay X 3.0 Device Capabilities communication service, see the discussion of Parlay X 3.0 Interfaces in Oracle Communications Services Gatekeeper Application Developer's Guide.

For information about the RESTful Call Notification interface, see the discussion of Device Capabilities in Oracle Communications Services Gatekeeper RESTful Application Developer's Guide.

The RESTful Service Call Notification interfaces provide RESTful access to the same functionality as the SOAP-based interfaces. The internal representations are identical, and for the purposes of creating SLAs and reading CDRs, and so on, they are the same.

Events and Statistics

The Parlay X 3.0 Device Capabilities/LDAPv3 communication service generates Event Data Records (EDRs), alarms, and statistics to assist system administrators and developers in monitoring the service.

For general information, see Appendix A, "Events, Alarms, and Charging."

Event Data Records

Table 17-1 lists the IDs of the EDRs created by the Device Capabilities/LDAPv3 communication service. This list does not include EDRs created when exceptions are thrown.

Table 17-1 EDRs Generated by Parlay X 3.0 Device Capabilities/LDAPv3

	EDR ID	Method Called
	
403001

	
getCapabilities

	
403002

	
getDeviceId

Charging Data Records

The Device Capabilities/LDAPv3 communication service does not generate any CDRs by default.

Statistics

Table 17-2 maps methods invoked from either the application or the network to the transaction types collected by the Services Gatekeeper statistics counters.

Table 17-2 Methods and Transaction Types for Parlay X 3.0 Device Capabilities/LDAPv3

	Method	Transaction Type
	
getCapabilities

	
TRANSACTION_TYPE_OTHER

	
getDeviceId

	
TRANSACTION_TYPE_OTHER

Managing Parlay X 3.0 Device Capabilities/LDAPv3

This section describes the properties and workflow for the Parlay X 3.0 Device Capabilities/LDAPv3 plug-in instance.

It also includes a description of how to create an LDAP-to-XML mapping file.

Properties for Parlay X 3.0 Device Capabilities/LDAPv3 Plug-in

Table 17-3 lists the technical specifications for the communication service.

Table 17-3 Properties for Parlay X 3.0 Device Capabilities/LDAPv3

	Property	Description
	
Managed object in Administration Console

	
domain_name > OCSG > server_name > Communication Services > plug-in_instance_id

	
MBean

	
Domain=oracle.ocsg.plugin.dc.ldap.management

Name=wlng_nt_device_capabilities_px30

InstanceName=Device_cap

Type=oracle.ocsg.plugin.dc.ldap.management.DeviceCapabilitiesLdapMBean

	
Network protocol plug-in service ID

	
Plugin_px30_decvice_capabilities_ldap

	
Network protocol plug-in instance ID

	
The ID is assigned when the plug-in instance is created. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide.

	
Supported Address Formats

	
tel, id, imsi, ipv4

	
Application-facing interface

	
com.bea.wlcp.wlng.px30.plugin.DeviceCapabilitiesPlugin

	
Service type

	
DeviceCapabilities

	
Exposes to the service communication layer a Java representation of:

	
Device Capabilities/LDAP

	
Interfaces with the network nodes using:

	
LDAP

	
Deployment artifact

NT EAR

wlng_nt_device_capabilities_px30.ear

	
px30_device_capabilities.jar and Plugin_px30_device_capabilities_ldap.jar.

	
Deployment artifact

AT EAR: SOAP Only wlng_at_device_capabilities_px30_soap.ear

	
Ipx30_device_capabilities.war

	
Deployment artifact

AT EAR:

wlng_at_device_capabilities_px30.ear

	
px30_device_capabilities.jar and Plugin_px30_device_capabilities_ldap.jar

Configuration Workflow for Device Capabilities/LDAPv3 Plug-in

Following is an outline for configuring the plug-in using the Administration Console or an MBean browser.

	
Create one or more instances of the plug-in service. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the plug-in service ID as listed in the "Properties for Parlay X 3.0 Device Capabilities/LDAPv3 Plug-in" section.

	
Using the Administration Console or an MBean browser, select the MBean for the plug-in instance. The MBean display name is the same as the plug-in instance ID given when the plug-in instance was created.

	
Define the characteristics of the LDAP server to connect to using these attributes:

	
Attribute: Port

	
Attribute: BaseDN

	
Attribute: AuthDN

	
Attribute: AuthPassword

	
Using "Attribute: Schema", define the XML schema.

See "Creating an LDAP-to-XML Mapping File" for a description of the schema and "Configuration Workflow for Device Capabilities/LDAPv3 Plug-in" for a description of the mappings.

	
Define the connection pool characteristics for the connection:

	
Attribute: MinConnections

	
Attribute: MaxConnections

	
Attribute: ConnTimeout

	
Set up the routing rules to the plug-in instance. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the plug-in instance ID and address schemes listed in the "Properties for Parlay X 3.0 Device Capabilities/LDAPv3 Plug-in" section.

	
If required, create and load a node SLA. For details, see “Defining Global Node and Service Provider Group Node SLAs” and “Managing SLAs” in Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

	
Provision the service provider and application accounts. For information, see Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

Creating an LDAP-to-XML Mapping File

You can create multiple Device Capabilities/LDAPv3 plug-in instances, each with a different LDAP configuration. Each plug-in instance could point to a different LDAP tree or even a different LDAP server.

Each Device Capabilities/LDAPv3 plug-in instance routes requests to an LDAP stack (LDAPJDK 4.1). The LDAP library (physical connection) is specified using the instanceId field. The LDAP stack is included as a library in the network tier EAR package.

The LDAP library must have the device capabilities (Name, agentProfileRef, and deviceId (IMEI)) stored as attributes in a single LDAP entry indexed by address. You can redirect a plug-in to a different LDAPv3 library by specifying a new Distinguished Name (DN) and schema as long as the device capabilities are all available from a single LDAP entry.

An XSD schema that you create maps the URI format (for example, tel: or imsi:) to an associated query string; this file does not affect the LDAP database.

You need to map the Device Capabilities communication service SOAP request data to an LDAP query string that matches the subscriber information in your LDAP directory. You do this by defining an XML file to map the data and an XSD schema to validate the XML.

Example 17-1 shows a sample LDAP query XSD schema for the sample XML data shown in Example 17-2. This XML file maps the tel:1234 address to msisdn=1234,domainName=msisdnD. The resulting LDAP query for this example is:

(&(msisdn=1234)(objectClass=*))

in domainName=msisdnD,%Base DN%.

The Base DN is configured using Attribute: BaseDN.

Example 17-1 LDAP Query XSD

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="LdapConfig">
<xs:complexType>
<xs:sequence>
<xs:element name="Keys" type="KeySet" minOccurs="1" maxOccurs="unbounded"/>
<xs:element name="LdapObject" type="LdapObject" minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:complexType name="KeyObject">
<xs:sequence>
<xs:element name="uriScheme" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="addressKeyName" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="objectKeyName" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="objectKeyValue" type="xs:string" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="optional"/>
</xs:complexType>

<xs:complexType name="KeySet">
<xs:sequence>
<xs:element name="Key" type="KeyObject" minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="LdapObject">
<xs:sequence>
<xs:element name="ObjectKeySet" type="xs:string" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required"/>
<xs:attribute name="keyName" type="xs:string" use="required"/>
<xs:attribute name="keyValue" type="xs:string" use="required"/>
</xs:complexType>
</xs:schema>

Example 17-2 shows sample XML data that matches the LDAP query XSD file in Example 17-1.

Example 17-2 Sample XML Data

<?xml version="1.0" encoding="UTF-8"?>
<LdapConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation='sp_config.xsd'>
 <Keys id="sample">
 <Key>
 <uriScheme>tel</uriScheme>
 <addressKeyName>msisdn</addressKeyName>
 <objectKeyName>domainName</objectKeyName>
 <objectKeyValue>msisdnD</objectKeyValue>
 </Key>
 </Keys>
 </LdapConfig>

You need to create your own LDAP query XSD file to map your LDAP SOAP request elements to your LDAP database elements. The LDAP query XSD file must define the following objects based on their elements, listed in Table 17-4:

	
LdapObject: A KeySet holder.

	
KeySet: A collection of KeyObjects. Sets of keys are used because there may be several ways to reach a certain node in the tree. One LDAP plug-in instance can be configured with several KeySets and can provide the link between the search key in the Extended Web Services interface and the LDAP tree.

	
KeyObject: An entry point to the LDAP tree that provides the link between the search key in the Extended Web Services interface and the LDAP tree.

Table 17-4 LDAP Server Schema

	Object	Element	Description
	
LdapObject

	
ObjectKeySet

	
Defines the KeySet through which it can be reached. Refers to the ID attribute of a defined KeySet.

	
LdapObject

	
id

	
The identity of the LdapObject. Can be referenced from other LdapObjects through the ParentObjectId field.

	
LdapObject

	
keyName

	
The name of the key through which the LdapObject can be reached.

	
LdapObject

	
keyValue

	
The value of the key through which the LdapObject can be reached.

	
KeyObject

	
uriScheme

	
Defines the URI scheme of the address for which this key applies.

	
KeyObject

	
addressKeyName

	
Defines the key name with which the address value is associated.

	
KeyObject

	
objectKeyName

	
Provides the possibility of defining the addressing key of a possible tree node above the node that is reached by the address key (that is, like the domain object in the 3DS directory information tree).

	
KeyObject

	
objectKeyValue

	
See objectKeyName. Defines the value of the key.

	
KeyObject

	
id

	
The identity of the key. Used only for descriptive purposes.

	
KeySet

	
Key

	
All keys in the KeySet

	
KeySet

	
id

	
The identity of the KeySet. Used when associating an LdapObject with a KeySet.

Reference: Attributes and Operations for Device Capabilities/LDAPv3

This section describes the attributes and operations for configuration and maintenance:

	
Attribute: AuthDN

	
Attribute: AuthPassword

	
Attribute: BaseDN

	
Attribute: ConnTimeout

	
Attribute: DeviceIdAttributeName

	
Attribute: DeviceNameAttributeName

	
Attribute: DeviceProfileURLAttributeName

	
Attribute: Host

	
Attribute: LDAPConnectionStatus

	
Attribute: MaxConnections

	
Attribute: MinConnections

	
Attribute: Port

	
Attribute: Schema

	
Operation: apply

	
Operation: updateSchemaURL

Attribute: AuthDN

Scope: Cluster

Format: String

Specifies a Distinguished Name (DN) in the LDAP server.

Use "Operation: apply" to make changes to this attribute take effect.

Example:

cn=admin,o=acompany,c=uk

Attribute: AuthPassword

Scope: Cluster

Format: String

Specifies the password associated with theAttribute: AuthDN.

Use "Operation: apply" to make changes to this attribute take effect.

Attribute: BaseDN

Scope: Cluster

Format: String

Specifies the base Distinguished Name (DN) for the LDAP database in use.

Use "Operation: apply" to make changes to this attribute take effect.

Example:

o=acompany,c=uk

Attribute: ConnTimeout

Scope: Cluster

Unit: Seconds

Format: Integer

Specifies the maximum time to wait for an LDAP connection to be established. If the related timer expires, a retry is performed. See "Attribute: recoverTimerInterval" for more information.

Use "Operation: apply" to make changes to this attribute take effect.

Attribute: DeviceIdAttributeName

Scope: Cluster

Format: String

Specifies the DeviceId of the target LDAP entry.

Use "Operation: apply" to make changes to this attribute take effect.

Attribute: DeviceNameAttributeName

Scope: Cluster

Format: String

Specifies the DeviceName of the target LDAP entry.

Use "Operation: apply" to make changes to this attribute take effect.

Attribute: DeviceProfileURLAttributeName

Scope: Cluster

Format: String

Specifies the DeviceProfileURL of the target LDAP entry.

Use "Operation: apply" to make changes to this attribute take effect.

Attribute: Host

Scope: Cluster

Format: String

Specifies the host name or IP address of the LDAP server to connect to.

Use "Operation: apply" to make changes to this attribute take effect.

Examples:

myldapserver.mycompany.org
192.168.0.14

Attribute: LDAPConnectionStatus

Read-only.

Scope: Local

Unit: Not applicable

Values: active, update_pending, or deactive. Table 17-5 describes each of these values and their implications.

Format: String

Table 17-5 LDAP Server Connection Status

	Status	Description
	
active

	
The connection is active. The plug-in instance accepts requests.

	
update_pending

	
The connection is temporarily unavailable due to an update of the configuration settings. The plug-in instance does not accept requests.

	
deactive

	
The connection is inactive. The plug-in instance does not accept requests.

Reasons for this entering this state include:

	
Missing or incorrect configuration

	
LDAP server is unreachable

	
Internal errors

Use Operation: apply to make changes to this attribute take effect.

Attribute: MaxConnections

Scope: Cluster

Unit: Not applicable

Format: Integer

Specifies the maximum number of connections in the LDAP connection pool.

Use "Operation: apply" to make changes to this attribute take effect.

Attribute: MinConnections

Scope: Cluster

Unit: Not applicable

Format: Integer

Specifies the minimum number of connections to establish using connections from the LDAP connection pool.

Use "Operation: apply" to make changes to this attribute take effect.

Attribute: Port

Scope: Cluster

Unit: Not applicable

Format: Integer

Specifies the port number of the LDAP server to connect to.

Use "Operation: apply" to make changes to this attribute take effect.

Attribute: recoverTimerInterval

Scope: Cluster

Format: Integer

Unit: Seconds

Default Value: 300

Specifies the time to wait before performing an LDAP connection retry after an LDAP connection error. Should be at least twice the time defined in the ConnTimeout attribute. See "Attribute: ConnTimeout" for more information.

Use "Operation: apply" to make changes to this attribute take effect.

Attribute: Schema

Scope: Cluster

Unit: Not applicable

Format: String

The LDAP schema to use.

Use "Operation: apply" to make changes to this attribute take effect.

Operation: apply

Scope: Cluster

Applies attribute changes.

Signature:

apply()

Operation: updateSchemaURL

Scope: Cluster

Format: String

Updates the schema URL to use when performing lookups in the LDAP database.

During the update, the LDAP connection is temporarily unavailable and the connection status is update_pending. See Table 17-5, "LDAP Server Connection Status" for more information.

Signature:

pdateSchemaURL(SchemaURL:String)

Table 17-6 explains that the schemaURL parameter is the LDAP database schema URL to use.

Table 17-6 updateSchemaURL Parameters

	Parameter	Description
	
SchemaURL

	
The LDAP database schema URL.

Examples:

Windows: file:///d:/ldap/schema.xml

UNIX: file://ldap/schema.xml

18 Parlay X 3.0 Payment/Diameter

This chapter describes the Parlay X 3.0 Payment/Diameter communication service in detail.

Overview of the Parlay X 3.0 Payment Communication Service

The Parlay X 3.0 Payment/Diameter communication service exposes the Parlay X 3.0 Payment set of application interfaces.

The communication service acts as a credit control client to a credit control server using the Diameter protocol.

For the exact version of the standards that the communication service supports for the application-facing interfaces and the network protocols, see the discussion on standards and specifications in Oracle Communications Service Broker Concepts Guide.

Using a Payment communication service, an application can:

	
Charge and refund accounts directly.

	
Operate on reservations, which includes:

	
Make reservations.

	
Charge reservations.

	
Release reservations.

	
Charge multiple accounts concurrently.

This communication service uses templates that you use to change the list of Diameter AVPs that Services Gatekeeper sends to a Diameter server. See "Changing the List of Diameter AVPs for Your Implementation" for details on creating templates.

All charging is done on accounts. Accounts can be charged using units of charge (specified as a given currency or a charging code) or by volume of (specified by time or data). See "Amount Charging" and "Volume Based Charging" for details.

Amount Charging

A reservation expires after a given time. An expiration mechanism provided by the Storage Service is used. If the store entry expires, the reservation is cancelled.

Some Diameter servers, for example Oracle Billing and Revenue Management, mandate that a refund operation be correlated with a previous charge operation. The Payment interface does not provide any correlation between charge operations and refund operations. The session-id tunneled parameter has been added in order to correlate these requests. When an application calls chargeAmount, the tunneled parameter session-id is returned in the SOAP header. An application should use this session-id in subsequent refundAmount requests to correlate the two requests. If the application does not provided the tunneled parameter, it is the responsibility of the Diameter server to either accept or deny the request. If the request is denied, the application receives a ServiceException. See "session-id" for more information.

Volume Based Charging

Volume-based charging is similar to amount charging. However volume base charging maps to these Diameter AVPs instead of CC-Money:

	
CC-Time (in seconds)

	
CC-Total-Octets (in bytes)

	
CC-Input-Octets (in bytes)

	
CC-Output-Octets (in bytes)

	
CC-Service-Specific-Units

These AVPs all accept either bytes or seconds (as integers) as input. If your AVPs use something different, you also need to convert the data.

The rating parameters to use are unit, contract, service, or operation and they all map to the Service-Parameter-Info AVP.

Diameter servers frequently require a specific list of AVPs, or custom AVPs to process correctly, so you will probably have to modify the list of AVPs that Services Gatekeeper sends. You do this using a template file. See "Changing the List of Diameter AVPs for Your Implementation" for instructions.

Credit-control clients may need to request the price (or an estimate) of the service event in advance, and these clients should be able to handle situations where this amount may not be known.

Clients requesting cost information must:

	
Set the CC-Request-Type AVP to EVENT_REQUEST

	
Include a Requested-Action AVP set to PRICE_ENQUIRY, and

	
Include the requested service event information in the Service-Identifier AVP in the CCR message

Processing Direct Queries/Application-initiated Requests

If an application makes a request to interact directly with an account, Services Gatekeeper sends the request to the network node capable of handling the request. The request does not return until the targeted account has been updated.

Processing Notifications/Network-triggered Requests

There are no notifications or other network-triggered requests for this communications service.

Validating Reservation Requests

The communication service supports the Granted-Service-Unit Diameter AVP that Services Gatekeeper sends to the network.

This support enables the plug-in to validate whether the number of units granted is equal to the number of reserved units requested.

After the Credit Control Answer (CCA) has been received, the plug-in checks the CCA for the Granted-Service-Unit AVP. If this AVP exists, the plug-in compares the number of granted units to the number of reserved units that were requested in the RSU of the Credit Control Request (CCR).

If the Granted-Service-Unit AVP does not exist, the plug-in assumes that the full reservation was granted.

If the Granted-Service-Unit value is less than the number of requested units, the plug-in performs the following actions:

	
Raises the RESERVATION_NOT_GRANTED_ERROR exception (error id=”000005”) to notify the client that the reservation failed.

	
Releases the reservation by sending a termination Credit Control Request (CCR). This CCR may or may not contain the Used-Service-Unit (USU) field, depending on whether the client has called chargeReservation since the last reservation.

Application Interfaces

For information about the SOAP-based interface for the Parlay X 3.0 Payment communication service, see the discussion of Parlay X 3.0 Interfaces in Oracle Communications Services Gatekeeper Application Developer's Guide.

For information about the RESTful Call Notification interface, see the discussion of Payment in Oracle Communications Services Gatekeeper RESTful Application Developer's Guide.

The RESTful Service Call Notification interfaces provide RESTful access to the same functionality as the SOAP-based interfaces. The internal representations are identical, and for the purposes of creating SLAs and reading CDRs, and so on., they are the same.

Changing the List of Diameter AVPs for Your Implementation

Diameter servers vary quite a bit in their messaging requirements. You probably need to change the list of AVPs that Services Gatekeeper sends to a Diameter server to make it acceptable to that server.

There are three ways to add AVPs to your implementation:

	
By adding new AVP definitions to AVP template files that you create, than loading the template files into Services Gatekeeper. This is the best method for major changes to your AVP list, and is probably most appropriate for the changes you make for the initial configuration of Services Gatekeeper. You must stop and restart Gatekeeper to make the changes take effect. See "About the AVP Template Files" for information on creating template files, and "Adding New AVPs for Diameter Payment in Template Files" for details on loading new AVPs into Services Gatekeeper.

	
By adding new AVP definitions to the default AVP template file. You add AVPs to the default template file and restart Services Gatekeeper. This is probably the best method for initial testing of Services Gatekeeper. You only alter one file, but you still need to restart Services Gatekeeper. Follow the instructions in "Adding New AVPs for Diameter Payment in Template Files" but instead of creating template files just make changes to defaultavptemplate.xml file provided.

	
By using JMX operations to add new AVP definitions during runtime. This allows you to make changes to existing AVP template files without interrupting traffic or having to stop and restart Services Gatekeeper. This is most appropriate for changes to a running implementation. See "Adding Diameter AVPs to a Template File During Runtime" for details.

Changes to template files also require XSD changes.

About the AVP Template Files

You can create separate templates for each of these operations:

	
com.bea.wlcp.wlng.px30.plugin.VolumeChargingPlugin. chargeVolume

	
com.bea.wlcp.wlng.px30.plugin.VolumeChargingPlugin. chargeSplitVolume

	
com.bea.wlcp.wlng.px30.plugin.VolumeChargingPlugin. getAmount

	
com.bea.wlcp.wlng.px30.plugin.VolumeChargingPlugin. refundVolume

	
com.bea.wlcp.wlng.px30.plugin.ReserveVolumeChargingPlugin. getAmount

	
com.bea.wlcp.wlng.px30.plugin.ReserveVolumeChargingPlugin. reserveVolume

	
com.bea.wlcp.wlng.px30.plugin.ReserveVolumeChargingPlugin. reserveAdditionalVolume

	
com.bea.wlcp.wlng.px30.plugin.ReserveVolumeChargingPlugin. releaseReservation

Each template can have three separate variations, one each for each of the time or octet data format, and a third if you use a custom data format. For example, the chargeVolume operation can have these templates:

	
com.bea.wlcp.wlng.px30.plugin.VolumeChargingPlugin.chargeVolumeTime

	
com.bea.wlcp.wlng.px30.plugin.VolumeChargingPlugin.chargeVolumeTime

	
com.bea.wlcp.wlng.px30.plugin.VolumeChargingPlugin.chargeVolumeCustom

Adding New AVPs for Diameter Payment in Template Files

If your implementation requires multiple template files, follow the steps in this section to add them.

You must know the name, code number, and data type of each AVP to add before starting this procedure.

	
Tip:

For testing or for minor AVP additions you can simply edit and use the example template file (defaultavptemplate.xml) instead of creating new template files.

To add new AVPs to your Services Gatekeeper implementation:

	
Navigate to OCSB_home\ocsg_5.1\applications.

	
Unpackage the Plugin_px30_payment_diameter.ear file.

	
Unpackage the Plugin_px30_payment_diameter.jar file.

	
Navigate to the /xml directory you just unpacked.

	
Add an avpAttributeDefinitions element for each new AVP to the avp-attribute.xml file.

	
Make a copy of the defaultavptemplate.xml template file to work on. See "About the AVP Template Files" for details on what to name template files.

	
Create a new avpTemplate element in your new template file for each new AVP.

	
Repeat step 6 and 7 for each template file you are creating.

	
Navigate to the xsd directory (../xsd).

	
Add an element for each new AVP to the diameterAvp.xsd file.

An example XSD file paymentConfig.xsd is provided.

	
Update the Plugin_px30_payment_diameter.jar file to save your changes.

	
Update the wlng_nt_payment_px30.ear file to make your changes take effect.

	
Restart Services Gatekeeper.

Adding Diameter AVPs to a Template File During Runtime

The instructions in this section allow you to add AVPs to existing template files. Before you follow the instructions in this section you must decide on a template file to change. See "About the AVP Template Files" for details on the template files.

To add AVPs without interrupting traffic or having to restart Services Gatekeeper using JMX operations:

	
Navigate to OCSB_home\ocsg_5.1\applications.

	
Unpackage the Plugin_px30_payment_diameter.ear file.

	
Unpackage the Plugin_px30_payment_diameter.jar file.

	
Navigate to the /xml directory you just unpacked.

	
Add your AVP changes to the defaultavpTemplate.xml file.

	
Open Service Gatekeeper in the Platform Test Environment (PTE) or anther MBean browser.

	
Navigate to navigate to wlng, then AccountService then ServiceLevelAgreementMBean, then to the setupCustomSlaXSDDefinition operation.

	
In the SlaType: field enter payment_diameter_avp.

	
In the FileContent: field select the Load the contents of a file icon.

Select the xml/paymentConfig.xsd file to add.

	
Click Record to make your changes take effect.

	
Navigate to wlng, AccountService, then ServiceLevelAgreementMBean.

	
Select one of these operations:

	
loadGlobalSlaByType

	
loadServiceProviderGroupSlaByType

	
loadApplicationGroupSlaByType

	
In the SlaType: field enter payment_diameter_avp.

	
In the FileContent: field, enter defaultavptemplate.xml.

	
Click Record to make your changes take effect.

Events and Statistics

The Parlay X 3.0 Payment/Diameter communication service generates Event Data Records (EDRs), Charging Data Records (CDRs), alarms, and statistics to assist system administrators and developers in monitoring the service.

For general information, see Appendix A, "Events, Alarms, and Charging."

Event Data Records

Table 18-1 lists Event Data Record (EDR) IDs created by the Payment/Diameter communication service.

Table 18-1 Event Types Generated by Parlay X 3.0 Payment/Diameter

	EDR ID	Interface	Method Called
	
15001

	
com.bea.wlcp.wlng.plugin.payment.diameter.north.AmountChargingPluginNorth

	
chargeAmount

	
15002

	
com.bea.wlcp.wlng.plugin.payment.diameter.north.AmountChargingPluginNorth

	
refundAmount

	
15003

	
com.bea.wlcp.wlng.plugin.payment.diameter.north.AmountChargingPluginNorth

	
chargeSplitAmount

	
15004

	
com.bea.wlcp.wlng.plugin.payment.diameter.north.ReserveAmountChargingPluginNorth

	
reserveAmount

	
15005

	
com.bea.wlcp.wlng.plugin.payment.diameter.north.ReserveAmountChargingPluginNorth

	
reserveAdditionalAmount

	
15006

	
com.bea.wlcp.wlng.plugin.payment.diameter.north.ReserveAmountChargingPluginNorth

	
chargeReservation

	
15007

	
com.bea.wlcp.wlng.plugin.payment.diameter.north.ReserveAmountChargingPluginNorth

	
releaseReservation

	
15013

	
oracle.ocsg.plugin.payment.north.VolumeChargingPluginNorth

	
chargeVolume

	
15014

	
oracle.ocsg.plugin.payment.north.VolumeChargingPluginNorth

	
chargeSplitVolume

	
15015

	
oracle.ocsg.plugin.payment.north.VolumeChargingPluginNorth

	
getAmount

	
15016

	
oracle.ocsg.plugin.payment.north.VolumeChargingPluginNorth

	
refundVolume

	
15017

	
oracle.ocsg.plugin.payment.north.ReserveVolumeChargingPluginNorth

	
getAmount

	
15018

	
oracle.ocsg.plugin.payment.north.ReserveVolumeChargingPluginNorth

	
reserveVolume

	
15019

	
oracle.ocsg.plugin.payment.north.ReserveVolumeChargingPluginNorth

	
reserveAdditionalVolume

	
15020

	
oracle.ocsg.plugin.payment.north.ReserveVolumeChargingPluginNorth

	
chargeReservation

	
15021

	
oracle.ocsg.plugin.payment.north.ReserveVolumeChargingPluginNorth

	
releaseReservation

Statistics

Table 18-2 maps methods invoked from either the application or the network to the transaction types collected by the Services Gatekeeper statistics counter.

Table 18-2 Methods and Transaction Types for Parlay X 3.0 Payment/Diameter

	Method	Interface	Transaction type
	
chargeAmount

	
com.bea.wlcp.wlng.px30.plugin.AmountChargingPlugin

	
TRANSACTION_TYPE_CHARGING_DIRECT

	
chargeSplitAmount

	
com.bea.wlcp.wlng.px30.plugin.AmountChargingPlugin

	
TRANSACTION_TYPE_CHARGING_DIRECT

	
refundAmount

	
com.bea.wlcp.wlng.px30.plugin.AmountChargingPlugin

	
TRANSACTION_TYPE_CHARGING_DIRECT

	
reserveAmount

	
com.bea.wlcp.wlng.px30.plugin.ReserveAmountChargingPlugin

	
TRANSACTION_TYPE_CHARGING_RESERVED

	
reserveAdditionalAmount

	
com.bea.wlcp.wlng.px30.plugin.ReserveAmountChargingPlugin

	
TRANSACTION_TYPE_CHARGING_RESERVED

	
chargeReservation

	
com.bea.wlcp.wlng.px30.plugin.ReserveAmountChargingPlugin

	
TRANSACTION_TYPE_CHARGING_RESERVED

	
chargeVolume

	
com.bea.wlcp.wlng.px30.plugin.VolumeChargingPlugin

	
TRANSACTION_TYPE_CHARGING_DIRECT

	
chargeSplitVolume

	
com.bea.wlcp.wlng.px30.plugin.VolumeChargingPlugin

	
TRANSACTION_TYPE_CHARGING_DIRECT

	
refundVolume

	
com.bea.wlcp.wlng.px30.plugin.VolumeChargingPlugin

	
TRANSACTION_TYPE_CHARGING_DIRECT

	
reserveVolume

	
com.bea.wlcp.wlng.px30.plugin.ReserveVolumeChargingPlugin

	
TRANSACTION_TYPE_CHARGING_RESERVED_STRING

	
reserveAdditionalVolume

	
com.bea.wlcp.wlng.px30.plugin.ReserveVolumeChargingPlugin

	
TRANSACTION_TYPE_CHARGING_RESERVED_STRING

	
chargeReservation

	
com.bea.wlcp.wlng.px30.plugin.ReserveVolumeChargingPlugin

	
TRANSACTION_TYPE_CHARGING_RESERVED_STRING

Tunneled Parameters for Parlay X 3.0 Payment / Diameter

This section lists the parameters that can be tunneled.

session-id

	Description
	
Correlates a refundAmount operation with a chargeAmount operation.

Some billing systems, including Oracle Billing and Revenue Management, allow refund operations only on previously charged amounts. Parlay X does not have the ability to correlate charge and refund operations. This parameter provides that functionality.

The key and the value are available in the return message from a chargeAmount operation. It is the responsibility of the application to provide the key and the value in subsequent refundAmount operations to correlate the two.

If no session-id is provided in the request to the Diameter node, the Diameter node can either accept or deny the request. If the node denies the request, a ServiceException is sent back to the application.

	Format
	
String

	Example
	
This is an example in a SOAP header:

<xparams> <param key=" session-id value="12233187769"/> </xparams>

Managing Parlay X 3.0 Payment /Diameter

This section describes the properties and workflow for the Parlay X 3.0 Payment/Diameter plug-in instance.

Properties for Parlay X 3.0 Payment/Diameter

Table 18-3 lists the technical specifications for the communication service.

Table 18-3 Properties for Parlay X 3.0 Payment/Diameter

	Property	Description
	
Managed object in Administration Console

	
domain_name, then OCSG, then server_name, then Communication Services, then plugin_instance_id

	
MBean

	
Domain=com.bea.wlcp.wlng

Name=wlng_nt

InstanceName=same as the network protocol instance_id assigned when the plug-in instance is created

Type=com.bea.wlcp.wlng.plugin.payment.diameter.management.PaymentMBean

	
Network protocol plug-in service ID

	
Plugin_px30_payment_diameter

	
Network protocol plug-in instance ID

	
The ID is assigned when the plug-in instance is created. See “Managing and Configuring the Plug-in Manager” in System Administrator's Guide.

	
Supported Address Scheme

	
tel

	
Application-facing interfaces

	
com.bea.wlcp.wlng.px30.plugin.AmountChargingPlugin

com.bea.wlcp.wlng.px30.plugin.ReserveAmountChargingPlugin

	
Service type

	
Payment

	
Exposes to the service communication layer a Java representation of:

	
Parlay X 3.0 Part 6: Payment

	
Interfaces with the network nodes using:

	
Diameter

RFC3588 and RFC 4006

	
Deployment artifact

NT EAR

wlng_nt_payment_px30.ear

	
Plugin_px30_payment_diameter.jar and px30_payment_service.jar

	
Deployment artifact

AT EAR: Normal

wlng_at_payment_px30.ear

	
rest_payment.war and px30_payment.war

	
Deployment artifact

AT EAR: SOAP Only

wlng_at_payment_px30_soap.ear

	
px30_payment.war

Configuration Workflow for Parlay X 3.0 Payment/Diameter

Following is an outline for configuring the plug-in using the Administration Console or an MBean browser.

	
Create one or more instances of the plug-in service. See “Managing and Configuring the Plug-in Manager” in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the plug-in service ID as listed in the "Properties for Parlay X 3.0 Payment/Diameter" section.

	
Add any additional or custom AVPs that your Diameter server requires. See "Changing the List of Diameter AVPs for Your Implementation" for instructions.

	
Using the Administration Console or an MBean browser, select the MBean for the plug-in instance. The MBean display name is the same as the plug-in instance ID given when the plug-in instance was created.

	
Configure the behavior of the plug-in instance:

	
Attribute: ChargingChannel

	
Attribute: Connected (read-only)

	
Attribute: DestinationAddresses

	
Attribute: DestinationRealm

	
Attribute: Domain

	
Attribute: OriginHost

	
Attribute: OriginPort

	
Attribute: OriginRealm

	
Attribute: QueryEnabled

	
Attribute: ServiceContext

	
Attribute: SplitChargeEnabled

	
Use "Operation: connect" to connect to the Diameter server.

	
Set up the routing rules to the plug-in instance. See “Managing and Configuring the Plug-in Manager” in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the plug-in instance ID and address schemes listed in the "Properties for Parlay X 3.0 Payment/Diameter" section.

	
If required, create and load a node SLA. For details see “Defining Global Node and Service Provider Group Node SLAs” and “Managing SLAs” in the Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

	
Provision the service provider accounts and application accounts. For information, see Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

Provisioning Workflow for Parlay X 3.0 Payment/Diameter

The Parlay X 3.0 Payment/Diameter plug-in instance can be explicitly connected to the Diameter server. It does not connect to the server by default. The service has a connection status that will be preserved after service redeployment and server restart.

Use:

	
Operation: connect

	
Operation: disconnect

Use "Attribute: SplitChargeEnabled" after any changes to the configuration attributes. Changes does not take affect until this operation is invoked.

Reference: Attributes and Operations for Parlay X 3.0 Payment/Diameter

This section describes the attributes and operations for configuration and maintenance:

	
Attribute: ChargingChannel

	
Attribute: Connected (read-only)

	
Attribute: DestinationAddresses

	
Attribute: DestinationRealm

	
Attribute: Domain

	
Attribute: OriginHost

	
Attribute: OriginPort

	
Attribute: OriginRealm

	
Attribute: QueryEnabled

	
Attribute: ServiceContext

	
Attribute: SplitChargeEnabled

	
Operation: connect

	
Operation: disconnect

Attribute: ChargingChannel

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the OneAPI charging channels. Channels are specified as a comma delimited list.

Example:

WAP, WEB, SMS

Attribute: Connected (read-only)

Scope: Server

Unit: Not applicable

Format: Boolean

Displays the status of the connection to the Diameter server.

Displays:

	
true, if connected.

	
false, if not connected.

Attribute: DestinationAddresses

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the Diameter server's Host addresses. Addresses are specified in a comma delimited list.

Example:

host.destination1.com:3588,host.destination2.com:3588

Attribute: DestinationRealm

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the Destination-Realm AVP in Diameter requests.

Example:

destination.com

Attribute: Domain

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the Service-Context ID AVP.

The default is oracle.com.

Attribute: OriginHost

Scope: Server

Unit: Not applicable

Format: String

Specifies the Origin-Host AVP in Diameter requests.

Example:

host.oracle.com

Attribute: OriginPort

Scope: Server

Unit: Not applicable

Format: Integer

Specifies the local originator port to be used for the connection to the Diameter server.

Example:

7002

Attribute: OriginRealm

Scope: Server

Unit: Not applicable

Format: String

Specifies the Origin-Realm AVP in Diameter requests.

Example:

oracle.com

Attribute: QueryEnabled

Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies whether OneAPI queries are enabled or disabled.

Attribute: ServiceContext

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the value of the Service-Context-Id AVP in Diameter requests. Used to override the oracle.com suffix in the ServiceContextId value to work with third-party charging applications. If set to NULL (empty string), the ParlayX request charge.code is used.

Example:

SCAP_V.2.0@xyz.com

Attribute: SplitChargeEnabled

Scope: Cluster

Unit: Not applicable

Format: Boolean

Controls whether Volume Split Charging is enabled or disabled.

Operation: connect

Scope: Server

Connects to the Diameter server.

Once connected, the plug-in will try to reconnect to the Diameter server if the server is restarted or the plug-in is redeployed.

Signature:

connect()

Operation: disconnect

Scope: Cluster

Disconnects from the Diameter server.

Once disconnected, the plug-in will not try to reconnect to the Diameter server if the server is restarted or the plug-in is redeployed.

Signature:

disconnect()

19 Parlay X 3.0 Third Party Call/Parlay 3.3 MPCC

This chapter describes the Parlay X 3.0 Third Party Call/Parlay 3.3 Multi-Party Call Control (MPCC) communication service in detail.

Overview of the Parlay X 3.0 Third Party Call/Parlay 3.3 MPCC Communication Service

The Parlay X 3.0 Third Party Call/Parlay 3.3 MPCC communication service exposes the Parlay X 3.0 Third Party Call set of application interfaces.

The communication service acts as an Open Services Architecture (OSA) Parlay application to an internal Services Gatekeeper OSA/Parlay Gateway. It uses this gateway to access the MultiParty Call Control SCS. For information about the gateway, see "Managing OSA/Parlay Gateway Connections using Parlay_Access" in Oracle Communications Services Gatekeeper Oracle Communications Services Gatekeeper System Administrator's Guide.

For the exact version of the standards this communication service supports, see the appendix on standards and specifications in Oracle Communications Services Gatekeeper Concepts Guide.

Using the Parlay X 3.0 Third Party Call/Parlay 3.3 MPCC communication service, an application can:

	
Set up a uniquely identified call between one or more participants.

	
Add further participants to an established call.

	
Delete participants from an established call.

	
Transfer participants to other established calls.

	
Indicate charging information to be associated with the call session.

	
Indicate information on any media to be used in association with the call.

	
Interact with the functionality of other communication services, such as Audio Call to play audio to call participants or Call Notification to respond to previously established notifications.

	
Query Services Gatekeeper for the status of an established call or particular call participants.

	
Terminate an ongoing call it created.

How It Works

The Parlay X 3.0 Third Party Call communication service can be used by applications that need to set up calls to one or more participants, as, for example, in establishing a conference call. It can also be used to set up calls that also use the capabilities of other communication services (Audio Call or Call Notification).

The application first sets up the call session using the makeCallSession operation, passing in the address of at least one (the A-party) participant. In the most common case, the address of a second participant, the B-party, is also passed in.

Services Gatekeeper sends a request to establish the first call leg to the network and returns a unique identifier (callSessionIdentifier) to the application synchronously. This identifier allows the application to perform further administrative tasks on the call and provides any other communication services (Audio Call or Call Notification) access to the call at any point during the call session.

The call session identifier is returned to the application before the A-party goes off hook (answers). To receive information on the ongoing status of the call session, the application polls Services Gatekeeper, using the identifier and the getCallSessionInformation operation.

While the call is underway, the application can add additional parties, delete one or more parties, or transfer parties to and from other established call sessions, using the identifier returned during the call setup phase.

A call is terminated either by the application-facing interface or when the call participants hang up.

The Parlay X 3.0 Third Party Call/Parlay 3.3 MPCC communication service can use the same call session identifier to access the functionality of the Parlay X 3.0 Audio Call/Parlay 3.3 UI-MPCC communication service to play media to one or more call participants. It can access the functionality of the Parlay X 3.0 Call Notification/Parlay 3.3 MPCC communication service for third party call service, such as rerouting a "busy" address to a second predefined one.

Requests using the Parlay X 3.0 Third Party Call/Parlay 3.3 MPCC communication service flow only in one direction, from the application to the network. By itself this communication service supports only application-initiated functionality. Mobile-originated scenarios can be supported when this communication service is used in concert with Call Notification.

The Parlay X 3.0 Third Party Call/Parlay 3.3 MPCC communication service manages only the signalling, or controlling, aspect of a call. The call itself takes place in the underlying telecom network. Only parties residing on the same network can be controlled, unless:

	
The network plug-in connects to a media gateway controller.

	
One of the participants is connected to a signalling gateway so that, from a signalling point of view, all parties reside on the same network.

Application Interfaces

For information about the SOAP-based interface for the Parlay X 3.0 Third Party Call communication service, see the discussion of Parlay X 3.0 Interfaces in Oracle Communications Services Gatekeeper Application Developer's Guide.

Events and Statistics

The Parlay X 3.0 Third Party Call/Parlay 3.3 MPCC communication service generates Event Data Records (EDRs), Charging Data Records (CDRs), alarms, and statistics to assist system administrators and developers in monitoring the service.

For general information, see Appendix A, "Events, Alarms, and Charging."

Event Data Records

Table 19-1 listsIDs of the EDRs created by the Parlay X 3.0 Third Party Call/Parlay 3.3 MPCC communication service. This does not include EDRs created when exceptions are thrown.

Table 19-1 Event Types Generated by Parlay X 3.0 Third Party Call/Parlay 3.3 MPCC

	EDR ID	Method Called
	
10000

	
addCallParticipant

	
10001

	
deleteCallParticipant

	
10002

	
endCallSession

	
10003

	
getCallParticipantInformation

	
10004

	
getCallSessionInformation

	
10005

	
makeCallSession

	
10006

	
transferCallParticipant

	
10007

	
eventReportRes

	
10008

	
eventReportErr

	
10009

	
callLegEnded

	
10010

	
callEnded

	
10011

	
createAndRouteCallLegErr

	
10012

	
getInfoRes

	
10013

	
getInfoErr

Charging Data Records

Parlay X 3.0 Third Party Call/Parlay 3.3 MPCC-specific CDRs are generated under the following conditions:

	
After Services Gatekeeper has created the first call leg of a call session. This is not dependent on whether the participant has answered.

	
After a call participant has been added to a call session, deleted from a session, or transferred to or from another session.

	
When call information or call participant information has been successfully delivered to the application.

	
When the call is ended by the application.

Statistics

Table 19-2 maps methods invoked from either the application or the network to the transaction types collected by the Services Gatekeeper statistics counters.

Table 19-2 Methods and Transaction Types for Parlay X 3.0 Third Party Call /Parlay 3.3 MPCC

	Method	Transaction type
	
makeCallSession

	
TRANSACTION_TYPE_CALL_CONTROL_SERVICE_INITIATED

	
transferCallParticipant

	
TRANSACTION_TYPE_CALL_CONTROL_SERVICE_INITIATED

	
addCallParticipant

	
TRANSACTION_TYPE_CALL_CONTROL_SERVICE_INITIATED

Alarms

For the list of alarms, see Oracle Communications Services Gatekeeper Alarm Handling Guide.

Tunneled Parameters for Parlay X 3.0 Third Party Call / Parlay 3.3 MPCC

This section lists, by parameter key, the parameters that can be tunneled or defined in the <requestContext> element of an SLA.

tpc.parlay.makecallsession.first.party.anonymous

	Description
	
Anonymous call flag.

Specifies whether the originating address is presented to the first participant in a call.

When an application invokes the Parlay X 3.0 Third Party Call makeCallSession operation, this triggers a set of invocations of the routeReq operation in the Parlay 3.3. MPCC IpCallLeg interface.

This setting affects the value of the Presentation data element in the originatingAddress parameter on the first invocation of routeReq.

Can be set using SLAs or parameter tunneling. An SLA setting overrides a tunneled parameter.

	Format
	
Boolean

	Value
	
If true, the Presentation data element is set to P_ADDRESS_PRESENTATION_RESTRICTED.

If false, the Presentation data element is set to P_ADDRESS_PRESENTATION_ALLOWED.

tpc.parlay.makecallsession.second.party.anonymous

	Description
	
Anonymous call flag.

Specifies whether the originating address is presented to the second participant in a call.

When an application invokes the Parlay X 3.0 Third Party Call makeCallSession operation, this triggers a set of invocations of the routeReq operation in the Parlay 3.3. MPCC IpCallLeg interface.

This setting affects the value of the Presentation data element in the originatingAddress parameter on the second invocation of routeReq.

Can be set using SLAs or parameter tunneling. An SLA setting overrides a tunneled parameter.

	Format
	
Boolean

	Value
	
If true, the Presentation data element is set to P_ADDRESS_PRESENTATION_RESTRICTED.

If false, the Presentation data element is set to P_ADDRESS_PRESENTATION_ALLOWED.

tpc.parlay.addcallparticipant.anonymous

	Description
	
Anonymous call flag.

Specifies whether the originating address is presented when a participant is added to an existing call.

When an application invokes the Parlay X 3.0 Third Party Call addCallParticipant operation, this triggers an invocation of the routeReq operation in the Parlay 3.3. MPCC IpCallLeg interface.

This setting affects the value of the Presentation data element in the originatingAddress parameter on the invocation of routeReq.

Can be set using SLAs or parameter tunneling. An SLA setting overrides a tunneled parameter.

	Format
	
Boolean

	Value
	
If true, the Presentation data element is set to P_ADDRESS_PRESENTATION_RESTRICTED.

If false, the Presentation data element is set to P_ADDRESS_PRESENTATION_ALLOWED.

tpc.parlay.transfercallparticipant.anonymous

	Description
	
Anonymous call flag.

Specifies whether the originating address is presented when a participant is transferred from one call session to another.

When an application invokes the Parlay X 3.0 Third Party Call transferCallParticipant operation, this triggers an invocation of the routeReq operation in the Parlay 3.3. MPCC IpCallLeg interface.

This setting affects the value of the Presentation data element in the originatingAddress parameter on the invocation of routeReq.

Can be set using SLAs or parameter tunneling. An SLA setting overrides a tunneled parameter.

	Format
	
Boolean

	Value
	
If true, the Presentation data element is set to P_ADDRESS_PRESENTATION_RESTRICTED.

If false, the Presentation data element is set to P_ADDRESS_PRESENTATION_ALLOWED.

tpc.parlay.makecallsession.first.party.media.attach.explicitly

	Description
	
Media attach flag.

Specifies whether the media is attached explicitly when a call is set up to the first participant.

When an application invokes the Parlay X 3.0 Third Party Call makeCallSession operation, this triggers a set of invocations of the routeReq operation in the Parlay 3.3. MPCC IpCallLeg interface.

This setting affects the value of the connectionProperties parameter on the first invocation of routeReq.

Can be set using SLAs or parameter tunneling. An SLA setting overrides a tunneled parameter.

	Format
	
Boolean

	Value
	
If true, the AttachMechanism data element is set to P_CALLLEG_ATTACH_EXPLICITLY. The attachMediaReq operation in the Parlay 3.3. MPCC interface IpCallLeg is also invoked.

If false, the AttachMechanism data element is set to P_CALLLEG_ATTACH_IMPLICITLY.

tpc.parlay.makecallsession.second.party.media.attach.explicitly

	Description
	
Media attach flag.

Specifies whether the media is attached explicitly when a call is set up to the second participant.

When an application invokes the Parlay X 3.0 Third Party Call makeCallSession operation, this triggers a set of invocations of the routeReq operation in the Parlay 3.3. MPCC IpCallLeg interface.

This setting affects the value of the connectionProperties parameter on the second invocation of routeReq.

Can be set using SLAs or parameter tunneling. An SLA setting overrides a tunneled parameter.

	Format
	
Boolean

	Value
	
If true, the AttachMechanism data element is set to P_CALLLEG_ATTACH_EXPLICITLY. The attachMediaReq operation in the Parlay 3.3. MPCC interface IpCallLeg is also invoked.

If false, the AttachMechanism data element is set to P_CALLLEG_ATTACH_IMPLICITLY.

tpc.parlay.addcallparticipant.media.attach.explicitly

	Description
	
Media attach flag.

Specifies whether the media is attached explicitly when a participant is added to an existing call.

When an application invokes the Parlay X 3.0 Third Party Call addCallParticipant operation, this triggers an invocation of the routeReq operation in the Parlay 3.3. MPCC IpCallLeg interface.

This setting affects the value of the connectionProperties parameter on the second invocation of routeReq.

Can be set using SLAs or parameter tunneling. An SLA setting overrides a tunneled parameter.

	Format
	
Boolean

	Value
	
If true, the AttachMechanism data element is set to P_CALLLEG_ATTACH_EXPLICITLY. The attachMediaReq operation in the Parlay 3.3. MPCC interface IpCallLeg is also invoked.

If false, the AttachMechanism data element is set to P_CALLLEG_ATTACH_IMPLICITLY.

tpc.parlay.transfercallparticipant.media.attach.explicitly

	Description
	
Media attach flag.

Specifies whether the media is attached explicitly when a participant is transferred from one call session to another.

When an application invokes the Parlay X 3.0 Third Party Call transferCallParticipant operation, this triggers an invocation of the routeReq operation in the Parlay 3.3. MPCC IpCallLeg interface.

This setting affects the value of the connectionProperties parameter on the second invocation of routeReq.

Can be set using SLAs or parameter tunneling. An SLA setting overrides a tunneled parameter.

	Format
	
Boolean

	Value
	
If true, the AttachMechanism data element is set to P_CALLLEG_ATTACH_EXPLICITLY. The attachMediaReq operation in the Parlay 3.3. MPCC interface IpCallLeg is also invoked.

If false, the AttachMechanism data element is set to P_CALLLEG_ATTACH_IMPLICITLY.

tpc.parlay.maximum.duration

	Description
	
Specifies the maximum duration of a call, in milliseconds.

Specifies whether the media is attached explicitly when a participant is transferred from one call session to another.

When a call has been in progress for the amount of time set by this parameter, the release operation in the Parlay 3.3. MPCC IpMultiPartyCall interface is invoked.

Can be set using SLAs or parameter tunneling. An SLA setting overrides a tunneled parameter.

	Format
	
String with Long value

tpc.parlay.makecallsession.first.party.prefix

	Description
	
Prefix to call participant address.

Adds this string as a prefix to the address specified as the first call participant when an application invokes the Parlay X 3.0 Third Party Call makeCallSession operation.

Can be set using SLAs or parameter tunneling. An SLA setting overrides a tunneled parameter.

	Format
	
String

	Value
	
Valid values are the digits 0– 9.

tpc.parlay.makecallsession.second.party.prefix

	Description
	
Prefix to call participant address.

Adds this string as a prefix to the address specified as the second call participant when an application invokes the Parlay X 3.0 Third Party Call makeCallSession operation.

Can be set using SLAs or parameter tunneling. An SLA setting overrides a tunneled parameter.

	Format
	
String

	Value
	
Valid values are the digits 0– 9.

tpc.parlay.addcallparticipant.prefix

	Description
	
Prefix to call participant address.

Adds this string as a prefix to the address specified as the call participant when an application invokes the Parlay X 3.0 Third Party Call addCallParticipant operation.

Can be set using SLAs or parameter tunneling. An SLA setting overrides a tunneled parameter.

	Format
	
String

	Value
	
Valid values are the digits 0– 9.

tpc.parlay.transfercallparticipant.prefix

	Description
	
Prefix to call participant address.

Adds this string as a prefix to the address specified as the call participant when an application invokes the Parlay X 3.0 Third Party Call transferCallParticipant operation.

Can be set using SLAs or parameter tunneling. An SLA setting overrides a tunneled parameter.

	Format
	
String

	Value
	
Valid values are the digits 0– 9.

tpc.parlay.makecallsession.first.party.callappgenericinfo

	Description
	
Call forwarding indicator.

Specifies the maximum number of allowed call forwarding hops for the address specified as the first call participant when an application invokes the Parlay X 3.0 Third Party Call makeCallSession operation.When an application invokes the Parlay X 3.0 Third Party Call makeCallSession operation, this triggers an invocation of the routeReq operation in the Parlay 3.3. MPCC IpCallLeg interface.This setting affects the value of the P_CALL_APP_GENERIC_INFO element in the appInfo parameter of the routeReq operation.

Can be set using SLAs or parameter tunneling. An SLA setting overrides a tunneled parameter.

	Format
	
String

	Value
	
The string must be formatted as follows:

redirectionCounter = n

where n is the number of allowed call hops.Value range for n is 1–5.

	Example
	
This example allows two hops:

redirectionCounter=2

tpc.parlay.makecallsession.second.party.callappgenericinfo

	Description
	
Call forwarding indicator.

Specifies the maximum number of allowed call forwarding hops for the address specified as the second call participant when an application invokes the Parlay X 3.0 Third Party Call makeCallSession operation.When an application invokes the Parlay X 3.0 Third Party Call makeCallSession operation, this triggers an invocation of the routeReq operation in the Parlay 3.3. MPCC IpCallLeg interface.This setting affects the value of the P_CALL_APP_GENERIC_INFO element in the appInfo parameter of the routeReq operation.

Can be set using SLAs or parameter tunneling. An SLA setting overrides a tunneled parameter.

	Format
	
String

	Value
	
The string must be formatted as follows:

redirectionCounter = n

where n is the number of allowed call hops.Value range for n is 1–5.

	Example
	
This example allows two hops:

redirectionCounter=2

tpc.parlay.addcallparticipant.callappgenericinfo

	Description
	
Call forwarding indicator.

Specifies the maximum number of allowed call forwarding hops for the call participant when an application invokes the Parlay X 3.0 Third Party Call addCallParticipant operation.When an application invokes the Parlay X 3.0 Third Party Call addCallParticipant operation, this triggers an invocation of the routeReq operation in the Parlay 3.3. MPCC IpCallLeg interface.This setting affects the value of the P_CALL_APP_GENERIC_INFO element in the appInfo parameter of the routeReq operation.

Can be set using SLAs or parameter tunneling. An SLA setting overrides a tunneled parameter.

	Format
	
String

	Value
	
The string must be formatted as follows:

redirectionCounter = n

where n is the number of allowed call hops.Value range for n is 1–5.

	Example
	
This example allows two hops:

redirectionCounter=2

tpc.parlay.transfercallparticipant.callappgenericinfo

	Description
	
Call forwarding indicator.

Specifies the maximum number of allowed call forwarding hops for the call participant when an application invokes the Parlay X 3.0 Third Party Call transferCallParticipant operation.When an application invokes the Parlay X 3.0 Third Party Call transferCallParticipant operation, this triggers an invocation of the routeReq operation in the Parlay 3.3. MPCC IpCallLeg interface.This setting affects the value of the P_CALL_APP_GENERIC_INFO element in the appInfo parameter of the routeReq operation.

Can be set using SLAs or parameter tunneling. An SLA setting overrides a tunneled parameter.

	Format
	
String

	Value
	
The string must be formatted as follows:

redirectionCounter = n

where n is the number of allowed call hops.Value range for n is 1–5.

	Example
	
This example allows two hops:

redirectionCounter=2

Managing Parlay X 3.0 Third Party Call/Parlay 3.3 MPCC

This section describes the properties and workflow for the Parlay X 3.0 Third Party Call/Parlay 3.3 MPCC plug-in instance.

This plug-in service is requires Orbacus, which is not installed by default. For information about installing Orbacus, see Oracle Communications Services Gatekeeper Installation Guide.

This plug-in service does not support multiple instantiation using the Plug-in Manager. There is a one-to-one mapping between plug-in service and plug-in instance. The plug-in instance is created when the plug-in service is started.

Properties for Parlay X 3.0 Third Party Call/Parlay 3.3 MPCC

Table 19-3 lists the technical specifications for the communication service.

Table 19-3 Properties for Parlay X 3.0 Third Party Call/Parlay 3.3 MPCC

	Property	Description
	
Managed object in Administration Console

	
domain_name > OCSG > server_name > Communication Services > Plugin_px30_third_party_call_parlay_mpcc

	
MBean

	
Domain=com.bea.wlcp.wlng

Name=wlng_nt

InstanceName=Plugin_px30_third_party_call_parlay_mpcc

Type=com.bea.wlcp.wlng.plugin.tpc.parlay.management.ThirdPartyCallMBean

	
Network protocol plug-in service ID

	
Plugin_px30_third_party_call_parlay_mpcc

	
Network protocol plug-in instance ID

	
Plugin_px30_third_party_call_parlay_mpcc

	
Supported Address Scheme

	
tel

	
Application-facing interface

	
com.bea.wlcp.wlng.px30.plugin.ThirdPartyCallPlugin

	
Service type

	
ThirdPartyCall

	
Exposes to the service communication layer a Java representation of:

	
Parlay X 3.0 Part 2: Third Party Call

	
Interfaces with the network nodes using:

	
Open Service Access (OSA); Application Programming Interface (API); Part 4: Call Control SCF; Subpart 7: MultiParty Call Control Service

	
Deployment artifacts

	
Plugin_px30_third_party_call_parlay_mpcc.jar, packaged in wlng_nt_third_party_call_px30.ear

px30_third_party_call.war, packaged in wlng_at_third_party_call_px30.ear

This plug-in service does not support multiple instantiation using the Plug-in Manager. There is a one-to-one mapping between the plug-in service and the plug-in instance. The plug-in instance is created when the plug-in service is started.

Configuration Workflow for Parlay X 3.0 Third Party Call/Parlay 3.3 MPCC

Following is an outline for configuring the plug-in using the Administration Console or an MBean browser.

	
Select the MBean detailed in "Properties for Parlay X 3.0 Third Party Call/Parlay 3.3 MPCC".

	
Configure the attributes of the plug-in instance:

	
Attribute: CallingParticipantNameMandantory

	
Attribute: MaximumDurationEnforced

	
Attribute: MultiMediaSupported

	
Attribute: ChargingAllowed

	
Attribute: StatusRetentionTime

	
Attribute: ChangeMediaAllowed

	
Attribute: MaximumParticipants

	
Operation: configCallGetInfoReq

	
Operation: configLegGetInfoReq

	
Gather information about the OSA Gateway and configure the plug-in instance accordingly. The following information needs to be obtained from the OSA Gateway administrator and configured in the OSA Access service:

	
OSA/Parlay SCS type to be used in the lookup (service discovery) phase when requesting the service (OSA/Parlay SCS) from the OSA/Parlay Gateway. Typically this is P_MULTI_PARTY_CALL_CONTROL.

	
OSA/Parlay service properties to be used in the lookup (service discovery) phase when requesting a service (OSA/Parlay SCS) from the OSA/Parlay Gateway. This depends on the OSA Gateway implementation.

	
Authentication type used by the OSA/Parlay Framework.

	
Encryption method used for the connection with the OSA Gateway.

	
Signing algorithm used when signing the Service Level Agreement (SLA) with the OSA/Parlay Framework.

	
Set up the OSA Client and the OSA Client Mappings. See "Creating an OSA Client" and "Mapping the OSA client to an OSA Gateway and an OSA/Parlay SCS" in "Managing OSA/Parlay Gateway Connections using Parlay_Access" in Oracle Communications Services Gatekeeper System Administrator's Guide.

	
Set up the routing rules to the plug-in instance. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the plug-in instance ID and address schemes detailed in the "Properties for Parlay X 3.0 Third Party Call/Parlay 3.3 MPCC" section.

	
If required, create and load a node SLA. For details see "Defining Global Node and Service Provider Group Node SLAs" and "Managing SLAs" in the Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

	
Provision the service provider accounts and application accounts. For information, see Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

Management Operations for Parlay X 3.0 Third Party Call/Parlay 3.3 MPCC

The following operations are related to management:

	
Operation: getCallLegs

	
Operation: getCallSessionInfo

	
Operation: getCallLegSessionInfo

	
Operation: listCallSessionIds

	
Operation: countPendingCallSession

Reference: Attributes and Operations for Parlay X 3.0 Third Party Call/Parlay 3.3 MPCC

This section describes the attributes and operations for configuration and maintenance:

	
Attribute: CallGetInfoReqConfig (read-only)

	
Attribute: CallingParticipantNameMandantory

	
Attribute: ChangeMediaAllowed

	
Attribute: ChargingAllowed

	
Attribute: LegGetInfoReqConfig (read-only)

	
Attribute: MaximumDurationEnforced

	
Attribute: MaximumParticipants

	
Attribute: MultiMediaSupported

	
Attribute: StatusRetentionTime

	
Operation: configCallGetInfoReq

	
Operation: configLegGetInfoReq

	
Operation: getCallLegs

	
Operation: getCallSessionInfo

	
Operation: getCallLegSessionInfo

	
Operation: listCallSessionIds

	
Operation: countPendingCallSession

Attribute: CallGetInfoReqConfig (read-only)

Scope: Cluster

Unit: Not applicable

Format: String

Indicates the current configuration for the getInfoReq operation in the IpMultiPartyCall interface. The information includes:

	
Supported: Boolean that indicates if the operation is supported.

	
PCallInfoTimes: Boolean that indicates if the P_CALL_INFO_TIMES tag is present in the operation.

	
PCallInfoReleaseCause: Boolean that indicates if the P_CALL_INFO_RELEASE_CAUSE tag is present in the operation.

Use "Operation: configCallGetInfoReq" to change these settings.

Attribute: CallingParticipantNameMandantory

Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies if the callingParticipantName parameter in the makeCallSession operation should be used as the original address.

If callingParticipantName is required, it must be in the form of a string that can be translated to a URI; for example: tel:123456.

Enter:

	
true if callingParticipantName should be used as the originating address.

	
false otherwise.

Attribute: ChangeMediaAllowed

Scope: Server

Unit: Not applicable

Format: Boolean

Specifies if an end user (a call participant) is allowed to change the media used in the call.

	
true if an end user is allowed to change media for an existing call session.

For an end user to change the media type for a given call session the following conditions are required:

	
This attribute must be true.

	
The application must have allowed the end user to change media when the call session was established by the makeCallSession operation.

	
"Attribute: MultiMediaSupported" must also be true.

	
false if an end user is not allowed to change media for an existing call session.

Attribute: ChargingAllowed

Scope: Server

Unit: Not applicable

Format: Boolean

Specifies whether charging is allowed.

	
true if an application is allowed to specify charging information when creating a call session by the makeCallSession operation.

	
false otherwise.

Attribute: LegGetInfoReqConfig (read-only)

Scope: Cluster

Unit: Not applicable

Format: String

Indicates the current configuration for the getInfoReq operation in the IpCallLeg interface. The information includes:

	
Supported: Boolean that indicates if the operation is supported.

	
PCallLegInfoTimes: Boolean that indicates if the P_CALL_LEG_INFO_TIMES tag is present in the operation.

	
PCallLegInfoReleaseCause: Boolean that indicates if the P_CALL_LEG_INFO_RELEASE_CAUSE tag is present in the operation.

	
PCallLegInfoAddress: Boolean that indicates if the P_CALL_LEG_INFO_ADDRESS tag is present in the operation.

	
PCallLegInfoAppInfo: Boolean that indicates if the P_CALL_LEG_INFO_APPINFO tag is present in the operation.

Use "Operation: configLegGetInfoReq" to change these settings.

Attribute: MaximumDurationEnforced

Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies if a call whose duration exceeds the maximum value will be terminated.

Enter:

	
true to terminate the call.

	
false to allow the call to continue.

Attribute: MultiMediaSupported

Scope: Cluster

Unit: Not applicable

Format: Boolean

Indicates if multimedia is supported.

	
true if multimedia is supported.

	
false if multimedia is not supported.

Attribute: MaximumParticipants

Scope: Server

Unit: Not applicable

Format: Integer

Specifies the maximum number of participants in a call.

Valid values are 2–65535.

Attribute: StatusRetentionTime

Scope: Server

Unit: Seconds

Format: Integer

Specifies the length of time information about a call is stored after the call is terminated.

Valid values are 0–65535.

Operation: configCallGetInfoReq

Scope: Cluster

Configures the parameters in the getInfoReq operation in the IpMultiPartyCall interface.

Signature:

configCallGetInfoReq(Supported: Boolean, PCallInfoTimes: Boolean, PCallInfoReleaseCause: Boolean)

Table 19-4 configCallGetInfoReq Parameters

	Parameter	Description
	
Supported

	
Specifies if the operation is supported by the OSA/Parlay Gateway.

	
PCallInfoTimes

	
Specifies if the P_CALL_INFO_TIMES tag should be present in TpCallInfoType.

Use:

	
true to add it to TpCallInfoType.

	
false otherwise.

	
PCallInfoReleaseCause

	
Specifies if the P_CALL_INFO_RELEASE_CAUSE tag should be present in TpCallInfoType.

Use:

	
true to add it to TpCallInfoType.

	
false otherwise.

Operation: configLegGetInfoReq

Scope: Cluster

Configures the parameters in the getInfoReq operation in the IpCallLeg interface.

Signature:

configLegGetInfoReq(Supported : Boolean, PCallLegInfoTimes : Boolean, PCallLegInfoReleaseCause : Boolean, PCallLegInfoAddress : Boolean, PCallLegInfoAppInfo : Boolean)

Table 19-5 configLegGetInfoReq Parameters

	Parameter	Description
	
Supported

	
Specifies if the operation is supported by the OSA/Parlay Gateway.

	
PCallLegInfoTimes

	
Specifies if the P_CALL_LEG_INFO_TIMES tag should be present in TpCallLegInfoType.

Use:

	
true to add it to TpCallLegInfoType.

	
false otherwise.

	
PCallLegInfoReleaseCause

	
Specifies if the P_CALL_LEG_INFO_RELEASE_CAUSE tag should be present in TpCallLegInfoType.

Use:

	
true to add it to TpCallLegInfoType.

	
false otherwise.

	
PCallLegInfoAddress

	
Specifies if the P_CALL_LEG_INFO_ADDRESS tag should be present in TpCallLegInfoType.

Use:

	
true to add it to TpCallLegInfoTyp.e

	
false otherwise.

	
PCallLegInfoAppInfo

	
Specifies if the P_CALL_LEG_INFO_APPINFO tag should be present in TpCallLegInfoType.

Use:

	
true to add it to TpCallLegInfoType.

	
false otherwise.

Operation: getCallLegs

Scope: Cluster

Displays a list of IDs for all call legs in a call session.

Signature:

getCallLegs(CallSessionId: String)

Table 19-6 getCallLegs Parameters

	Parameter	Description
	
CallSessionId

	
ID of the call session to list call legs for

Operation: getCallSessionInfo

Scope: Cluster

Displays information about a call session. This includes:

	
callSessionId: The ID of the call session.

	
callStatus: The current status of the call. The status is one of:

	
Established, during call duration.

	
Terminated, when the call has terminated but information is still present in the internal storage: see "Attribute: StatusRetentionTime" for more information.

	
Expired, when the call is terminated and information is no longer available.

	
originalAddress: The originator (a-party) of the call.

	
appInstGrpId: The application instance ID associated with the application that created the call session.

	
callRef: The CORBA reference to the call object in the Parlay Gateway (IpMultiPartyCall).

	
srcPlugin: the type of plug-in instance that initiated the call. The type is one of:

	
ThirdPartyCall

	
CallNotification

	
CallDirection

Signature:

getCallSessionInfo(CallSessionId: String)

Table 19-7 getCallSessionInfo Parameters

	Parameter	Description
	
CallSessionId

	
ID of the call session to get information about.

Operation: getCallLegSessionInfo

Scope: Cluster

Displays information about a call leg in a call session.

	
id: The CORBA reference to the call leg object in the Parlay Gateway (IpCallLeg).

	
callSessionId: The ID of the call session.

	
callParticipantIdentifier: The URI identifying the terminal associated with the call leg.

	
callParticipantStatus: The status of the call participant. The status is one of:

	
Initial, during call setup.

	
Connected, during call duration.

	
Terminated, the participant has left the call.

	
callParticipantStartTime: The time the call participant was connected to the call.

	
callParticipantEndTime: The time the call participant was disconnected from the call.

	
callParticipantDuration: The duration of the call for the participant. Given in seconds.

	
callParticipantTerminationCause: The cause of the participant leaving the call. One of:

	
Noanswer, no answer from the participant.

	
Busy, the participant was busy (off-hook)

	
Hangup, the participant went on-hook.

	
Notreachable, could not reach the participant.

	
Aborted, the call was terminated for a reason other than Hangup.

	
appInstGrpId: the application instance associated with the application that created the call session.

	
callRef: The CORBA reference to the call object in the Parlay Gateway (IpMultiPartyCall).

	
srcPlugin: The type of plug-in instance that initiated the call. The type is one of:

	
ThirdPartyCall

	
CallNotification

	
CallDirection

Signature:

getCallLegSessionInfo(CallLegSessionId: String)

Table 19-8 getCallLegSessionInfo Parameters

	Parameter	Description
	
CallLegSessionId

	
ID of the call leg session to get information about.

Operation: listCallSessionIds

Scope: Cluster

Displays a list of IDs for ongoing call sessions. These are the Parlay X 3.0 call session IDs.

Signature:

listCallSessionIds()

Operation: countPendingCallSession

Scope: Server

Displays the number of ongoing call sessions for this plug-in instance.

Signature:

countPendingCallSession()

20 Parlay X 3.0 Address List Management Interface

This chapter describes the Parlay X 3.0 Address List Management interface in detail.

Overview of the Parlay X 3.0 Address List Management Interface

Use the Services Gatekeeper Address List Management plug-in interface to create and manage groups of resource owners and to associate them with group Uniform Resource Identifiers (URIs). Group URIs can be used to authenticate requests on behalf of group members.

The Address List Management plug-in is exposed northbound through SOAP or REST using the using the Parlay X 3.0 Part 13 Address List Management interface. It allows applications to create, read, update, and delete group URIs, and to manage group URI membership. The plug-in also exposes an internal API which allows other communication services to identify and expand group URIs using the Parlay X 3.0 SOAP interface. Group URIs can be used in place of individual URIs by the both OneAPI and ParlayX MMS, SMS and Terminal Location communication services.

Group URIs are required by the SMS, MMS, and Location APIs that require authorization from multiple resource owners. For example, a parent, who is the primary subscriber in a family plan, would like to track family members using a location-based application which makes use of the Address List Management plug-in. The parent authorizes location tracking on behalf of family members. The application creates a group owner which issues an authorization grant on behalf of the resource owner members that are part of the group URI. It passes multiple resource owner addresses to the getGroupLocation method of the Location API to retrieve location information.

Address List Management Architecture

Address List Management interface SOAP requests are received at the Services Gatekeeper Access tier and passed to the Network tier. They are translated into EJB requests and passed to the Address List plug-in. The plug-in uses store services to access the Services Gatekeeper database when handling requests.

The Address List Management interface is grouped into the following functions:

	
GroupManagement

	
Group

	
Member

Group URI Format

Group URIs are consistent with the style defined in RFC 2396 and are in the following format:

scheme:dept1234@mydivision.mycompany.myserviceprovider.com

Additional examples include:

sip:salesteam@sales.acme.anytelco.com

mailto:fieldservice@somecity.anytelco.com

group:mailroom@mybuilding.acme.anytelco.com

Managing Groups

Create, query and delete address list groups using the following GroupManagement API calls:

	
createGroup

	
queryGroups

	
deleteGroup

Controlling Group Access

Set and query group access attributes, which assign group management permissions to group members, using the following GroupManagement API calls:

	
setAccess

	
queryAccess

Managing and Querying Group Members

Manage group members using the following Group API calls:

	
addMember

	
addMembers

	
queryMembers

	
deleteMember

	
deleteMembers

Manage individual group member attributes using the following Member API calls:

	
addMemberAttribute

	
queryMemberAttributes

	
deleteMemberAttributes

Managing and Querying Group Attributes

Group attributes apply to the address list group itself. Add, query, and delete group attributes using the following Group API calls:

	
addGroupAttribute

	
queryGroupAttributes

	
deleteGroupAttribute

Managing and Querying Group Member Attributes

Group member attributes apply to individual members of a group. Add, query, and delete group member attributes using the following Group API calls:

	
addGroupMemberAttribute

	
queryGroupMemberAttributes

	
deleteGroupMemberAttribute

Application Interfaces

For information about the SOAP-based interface for the Parlay X 3.0 Third Party Call communication service, see the discussion of Parlay X 3.0 Interfaces in Oracle Communications Services Gatekeeper Application Developer's Guide.

Events and Statistics

The Parlay X 3.0 Address List Management Architecture generates Event Data Records (EDRs), Charging Data Records (CDRs), alarms, and statistics to assist system administrators and developers in monitoring the service.

For general information, see Appendix A, "Events, Alarms, and Charging."

Event Data Records

Table 20-1 lists IDs of the EDRs created by the Parlay X 3.0 Address List Management Architecture. This does not include EDRs created when exceptions are thrown.

Table 20-1 Event Types Generated by Parlay X 3.0 Address List Management Architecture

	EDR ID	Method Called
	
28001

	
createGroup

	
28002

	
deleteGroup

	
28003

	
queryGroups

	
28004

	
setAccess

	
28005

	
queryAccess

	
28006

	
addGroupAttribute

	
28007

	
addGroupMemberAttribute

	
28008

	
addMember

	
28009

	
addMembers

	
28010

	
deleteGroupAttribute

	
28011

	
deleteGroupMemberAttribute

	
28012

	
deleteMember

	
28013

	
deleteMembers

	
28014

	
queryGroupAttributes

	
28015

	
queryGroupMemberAttributes

	
28016

	
queryMembers

	
28017

	
addMemberAttribute

	
28018

	
deleteMemberAttribute

	
28019

	
queryMemberAttributes

Alarms

For the list of alarms, see Oracle Communications Services Gatekeeper Alarm Handling Guide.

Managing Parlay X 3.0 Address List Management Architecture

This section describes properties and workflows for the Parlay X 3.0Address List Management Architecture plug-in instance.

Properties for Parlay X 3.0 Address List Management Architecture

Table 20-2 lists the technical specifications for the communication service.

Table 20-2 Properties for Parlay X 3.0 Address List Management Architecture

	Property	Description
	
Managed object in Administration Console

	
domain_name > OCSG > server_name > Communication Services > Plugin_px30_address_list#5.1

	
MBean

	
Domain=com.bea.wlcp.wlng

Name=wlng_nt

InstanceName=Plugin_px30_address_list

Type=oracle.ocsg.plugin.al.px30.management.GroupMBeanImpl

	
Network protocol plug-in service ID

	
Plugin_px30_address_list

	
Network protocol plug-in instance ID

	
Plugin_px30_address_list

	
Supported Address Scheme

	
tel

	
Application-facing interface

	
com.bea.wlcp.wlng.px30.plugin.ThirdPartyCallPlugin

	
Service type

	
AddressList

	
Exposes to the service communication layer a Java representation of:

	
Parlay X 3.0 Part 13: Address List

	
Interfaces with the network nodes using:

	
Open Service Access (OSA); Application Programming Interface (API); Part 4: Call Control SCF; Subpart 7: MultiParty Call Control Service

	
Deployment artifacts

	
Plugin_px30_address_list.jar, packaged in wlng_at_address_list_px30.ear

Plugin_px30_address_list.jar, packaged in wlng_nt_address_list_px30.ear

This plug-in service does not support multiple instantiation using the Plug-in Manager. There is a one-to-one mapping between the plug-in service and the plug-in instance. The plug-in instance is created when the plug-in service is started.

Configuration Workflow for Parlay X 3.0 Address List Management Architecture

The following procedure provides an outline to configure the Address List Management plug-in using the Administration Console or an MBean browser.

	
Select the MBean detailed in "Properties for Parlay X 3.0 Address List Management Architecture".

	
Configure the plug-in instance attributes:

	
Attribute: GroupNameMaxLength

	
Attribute: GroupSize

	
Gather information about the OSA Gateway and configure the plug-in instance accordingly. The following information needs to be obtained from the OSA Gateway administrator and configured in the OSA Access service:

	
OSA/Parlay SCS type to be used in the lookup (service discovery) phase when requesting the service (OSA/Parlay SCS) from the OSA/Parlay Gateway. Typically this is P_MULTI_PARTY_CALL_CONTROL.

	
OSA/Parlay service properties to be used in the lookup (service discovery) phase when requesting a service (OSA/Parlay SCS) from the OSA/Parlay Gateway. This depends on the OSA Gateway implementation.

	
Authentication type used by the OSA/Parlay Framework.

	
Encryption method used for the connection with the OSA Gateway.

	
Signing algorithm used when signing the Service Level Agreement (SLA) with the OSA/Parlay Framework.

	
Set up the OSA Client and the OSA Client Mappings. See "Creating an OSA Client" and "Mapping the OSA client to an OSA Gateway and an OSA/Parlay SCS" in "Managing OSA/Parlay Gateway Connections using Parlay_Access" in Oracle Communications Services Gatekeeper System Administrator's Guide.

	
Set up the routing rules to the plug-in instance. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the plug-in instance ID and address schemes detailed in the "Properties for Parlay X 3.0 Address List Management Architecture" section.

	
If required, create and load a node SLA. For details see "Defining Global Node and Service Provider Group Node SLAs" and "Managing SLAs" in the Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

	
Provision the service provider accounts and application accounts. For information, see Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

Reference: Attributes and Operations for Parlay X 3.0 Address List Management Architecture

This section describes the attributes and operations for configuration and maintenance:

	
Attribute: GroupNameMaxLength

	
Attribute: GroupSize

	
Operation: createGroup()

	
Operation: queryGroups()

	
Operation: deleteGroup()

	
Operation: setAccess()

	
Operation: queryAccess()

	
Operation: addMember()

	
Operation: addMembers()

	
Operation: queryMembers()

	
Operation: deleteMember()

	
Operation: deleteMembers()

	
Operation: addGroupAttribute()

	
Operation: queryGroupAttribute()

	
Operation: deleteGroupAttribute()

	
Operation: addGroupMemberAttribute()

	
Operation: queryGroupMemberAttributes()

	
Operation: deleteGroupMemberAttribute()

	
Operation: addMemberAttribute()

	
Operation: queryMemberAttributes()

	
Operation: deleteMemberAttribute()

Attribute: GroupNameMaxLength

Scope: Cluster

Unit: Not applicable

Format: Integer

Indicates the maximum length of an address list group name.

Valid values are 0–255. The default value is 100.

Attribute: GroupSize

Scope: Cluster

Unit: Not applicable

Format: Integer

Indicates the maximum number of members in an address list group.

Valid values are 0–65535. The default value is 50.

Operation: createGroup()

Scope: Cluster

Creates an Address List Management group.

Signature:

createGroup(name: String, domain: String)

Table 20-3 createGroup Parameters

	Parameter	Description
	
name

	
Name of the Address List Management group to create.

	
domain

	
Domain the group should be created under.

Operation: queryGroups()

Scope: Cluster

Queries an Address List Management group to return details about a particular group attribute, which is specified by attributeName.

Signature:

queryGroups(group: String, member: String, attributeName, String)

Table 20-4 queryGroups Parameters

	Parameter	Description
	
group

	
Name of the Address List Management group.

	
member

	
Member of the Address List Management group.

	
attributeName

	
Attribute for which details will be returned.

Operation: deleteGroup()

Scope: Cluster

Deletes the specified Address List Management group.

Signature:

deleteGroup(group: String)

Table 20-5 deleteGroup Parameters

	Parameter	Description
	
group

	
Name of the Address List Management group to be deleted.

Operation: setAccess()

Scope: Cluster

Sets access permissions for a member of an Address List Management group. The access permissions control which group management functions the specified member is allowed to perform on the specified group.

Signature:

setAccess(group: String, requester: String, addPermission: Boolean, adminPermission: Boolean, deletePermission: Boolean, queryPermissions: Boolean)

Table 20-6 setAccess Parameters

	Parameter	Description
	
group

	
Name of the Address List Management group.

	
requester

	
Member of the Address List Management group for which you want to set permissions.

	
addPermission

	
If true, sets the permission for the requester to be able to add members to the group.

	
adminPermission

	
If true, sets the permission for the requester to be able to modify the access permissions of members to the group.

	
deletePermission

	
If true, sets the permission for the requester to be able to delete members from the group.

	
queryPermission

	
If true, sets the permission for the requester to be able to query the group and member attributes.

Operation: queryAccess()

Scope: Cluster

Queries the access permissions set for the group member passed in the requester parameter.

Return:

Returns the list of access permissions for the group member passed in the requester parameter.

Signature:

Function(correlator: String)

Table 20-7 queryAccess Parameters

	Parameter	Description
	
group

	
Name of the Address List Management group.

	
requester

	
Member of the Address List Management group.

Operation: addMember()

Scope: Cluster

Adds a single member to an Address List Management group.

Signature:

addMember(group: String, member: String)

Table 20-8 addMember Parameters

	Parameter	Description
	
group

	
Name of the Address List Management group to which to add the member.

	
member

	
Member to add to the group.

Operation: addMembers()

Scope: Cluster

Adds multiple members to an Address List Management group.

Signature:

addMember(group: String, member1: String, [member2: String,...memberN: String])

Table 20-9 addMembers Parameters

	Parameter	Description
	
group

	
Name of the Address List Management group to which to add the members.

	
member[1...unbounded]

	
Member(s) to add to the group.

Operation: queryMembers()

Scope: Cluster

Queries an Address List Management group to obtain a list of its members.

Signature:

queryMembers(group: String)

Table 20-10 queryMembers Parameters

	Parameter	Description
	
group

	
Name of the Address List Management group from which to retrieve a list of members.

Operation: deleteMember()

Scope: Cluster

Deletes a single member from an Address List Management group.

Signature:

deleteMember(group: String, member: String)

Table 20-11 deleteMember Parameters

	Parameter	Description
	
group

	
Name of the Address List Management group from which to delete the member.

	
member

	
Member to delete from the group.

Operation: deleteMembers()

Scope: Cluster

Deletes multiple members from an Address List Management group.

Signature:

addMember(group: String, member1: String, [member2: String, memberN: String])

Table 20-12 deleteMembers Parameters

	Parameter	Description
	
group

	
Name of the Address List Management group from which to delete member

	
members[1...unbounded]

	
Member(s) to remove from the group.

Operation: addGroupAttribute()

Scope: Cluster

Adds an attribute to an Address List Management group.

Signature:

addGroupAttribute(group: String, name: String, type: String, value: String, status: Enum)

Table 20-13 addGroupAttribute Parameters

	Parameter	Description
	
group

	
Name of the Address List Management group.

	
name

	
Name of the attribute to be added.

	
type

	
Data type of the attribute to be added.

	
value

	
Value of the attribute.

	
status

	
Attribute status: Valid, Unknown, or Denied.

Operation: queryGroupAttribute()

Scope: Cluster

Queries an Address List Management group for the value associated with the passed attribute name. The attribute's value and status are returned.

Signature:

queryGroupAttribute(group: String,attributeName: String))

Table 20-14 queryGroupAttribute Parameters

	Parameter	Description
	
group

	
Name of the Address List Management group.

	
attributeName

	
Name of the attribute to be queried.

Operation: deleteGroupAttribute()

Scope: Cluster

Deletes an attribute from an Address List Management group.

Signature:

deleteGroupAttribute(group: String, attributeName: String))

Table 20-15 deleteGroupAttribute Parameters

	Parameter	Description
	
group

	
Name of the Address List Management group.

	
attributeName

	
Name of the attribute to be deleted.

Operation: addGroupMemberAttribute()

Scope: Cluster

Adds an attribute to a member of a particular Address List Management group.

Signature:

addGroupMemberAttribute(group: String, member: String, name: String, type: String, value: String, status: Enum)

Table 20-16 addGroupMemberAttribute Parameters

	Parameter	Description
	
group

	
Name of the Address List Management group.

	
member

	
Name of the member to which the attribute is to be added.

	
name

	
Name of the attribute to be added.

	
type

	
Data type of the attribute to be added.

	
value

	
Value of the attribute.

	
status

	
Attribute status: Valid, Unknown, or Denied.

Operation: queryGroupMemberAttributes()

Scope: Cluster

Queries a member of an Address List Management group for list of attributes attached to the member. To retrieve the value of a particular attribute, use queryMemberAttribute().

Signature:

queryGroupMemberAttributes(group: String, member: String))

Table 20-17 queryGroupMemberAttributes Parameters

	Parameter	Description
	
group

	
Name of the Address List Management group.

	
member

	
Name of the member from which to retrieve attributes.

Operation: deleteGroupMemberAttribute()

Scope: Cluster

Deletes an attribute from a member of a particular Address List Management group.

Signature:

deleteGroupMemberAttribute(group: String, member: String, attributeName: String))

Table 20-18 deleteGroupMemberAttribute Parameters

	Parameter	Description
	
group

	
Name of the Address List Management group.

	
member

	
Name of the member from which to delete an attribute.

	
attributeName

	
Name of the attribute to be deleted.

Operation: addMemberAttribute()

Scope: Cluster

Adds an attribute to a member outside of the context of a particular Address List Management group.

Signature:

addMemberAttribute(group: String, member: String, name: String, type: String, value: String, status: Enum)

Table 20-19 addMemberAttribute Parameters

	Parameter	Description
	
member

	
Name of the member to which the attribute is to be added.

	
name

	
Name of the attribute to be added.

	
type

	
Data type of the attribute to be added.

	
value

	
Value of the attribute.

	
status

	
Attribute status: Valid, Unknown, or Denied.

Operation: queryMemberAttributes()

Scope: Cluster

Queries a list of attributes for a member and retrieves their values.

Signature:

queryMemberAttributes(member: String, attributeName1: String, [attributeName2: String, attributeNameN: String]))

Table 20-20 queryMemberAttributes Parameters

	Parameter	Description
	
member

	
Name of the member from which to retrieve attributes.

	
attributeNames[1...unbounded]

	
Names of the attributes to be retrieved.

Operation: deleteMemberAttribute()

Scope: Cluster

Deletes an attribute from a member.

Signature:

deleteMemberAttribute(member: String, attributeName: String))

Table 20-21 deleteMemberAttribute Parameters

	Parameter	Description
	
member

	
Name of the member from which to delete an attribute.

	
attributeName

	
Name of the attribute to be deleted.

21 REST Services

This chapter describes how Oracle Communications Services Gatekeeper can be used with existing RESTFul Application Services.

Overview of REST Services

Service providers may have existing third-party or proprietary applications or platforms that communicate using REST web services. Services Gatekeeper functionality can be integrated with existing applications that support REST interfaces by creating a RESTFul communication service.

Services Gatekeeper supports two types of RESTFul communication services. A REST2REST service exposes an existing REST API allowing communication between RESTFul interfaces. A REST Exposure or empty service is an application bound, network-facing service used when RESTFul requests are sent to a custom network implementation for translation and processing.

Services Gatekeeper mediates traffic between users and existing REST infrastructure allowing the application of service level agreements, policy enforcement, security, alarms and statistics for more control over communication services.

For more information on using REST services, see the Oracle Communications Services Gatekeeper RESTful Application Developer's Guide.

You can also use the Eclipse Wizard to generate REST2REST and REST Exposure Communication Services. For more information, see Oracle Communications Services Gatekeeper Platform Development Studio Developer's Guide.

22 Extended Web Services Binary SMS/SMPP

This chapter describes the Extended Web Services (EWS) Binary SMS/Short Message Peer to Peer (SMPP) Communication Service in detail.

Overview of the EWS Binary SMS/SMPP

The EWS Binary SMS/SMPP communication service allows applications to send and receive generic binary object attachment, such as vCards. It exposes the Oracle Extended Web Services Binary SMS interface.

The communication service acts as an External Short Message Entity (ESME) that connects to a Short Messaging Service Center (SMSC) over TCP/IP.

For the exact version of the standards that the communication service supports for the application-facing interfaces and the network protocols, see the appendix on standards and specifications in Oracle Communications Services Gatekeeper Concepts Guide.

Using the EWS Binary SMS/SMPP communication service an application can:

	
Send short messages with binary attachments to one or more destination addresses.

	
Subscribe and unsubscribe for network-triggered binary short messages with binary attachments.

	
Receive network-triggered short messages with binary attachments.

The actual message element is made up of an array of UDH and message parts, encoded in Base64. See "3rd Generation Partnership Project; Technical Specification Group Terminals; Technical realization of the short message service (SMS); (Release 6) 3GPP 23.040 Version 6.5.0" at:

http://www.3gpp.org/ftp/Specs/html-info/23040.htm

The send message operation gives an application the flexibility to manipulate the SMPP UDH and message data. The UDH and message data elements are each optional, but both cannot be null at the same time; otherwise no data would be sent at all. The overall binaryMessage element is required. The contents of the UDH and the message can be of any binary data, although any byte array should be less than 140 bytes due to SMPP limitations, and the number of BinaryMessage arrays should be less than the SegmentsLimit specified in OAM. The default value is 1024. see "Attribute: SegmentsLimit".

The notification operation gives the application access to an array of SMPP UDHs, the SMPP DCS, the protocol identifier according to 3GPP 23.040 Version 6.5.0, and other data such as sender address, destination address and timestamp of the message.

SMPP expects the sender name value to be in ASCII characters. The use of non-ASCII characters may cause the request to become garbled or even be removed at the SMSCS

Services Gatekeeper provides support for the billing identification identifier, smpp_billing_id, defined in SMPP Specification 5.1, through the use of a tunneled parameter. It also supports the ussd_service_operation, which was added as an optional parameter to the deliverSM operation as a tunneled parameter in SMPP v 5.1. See the descriptions of the smpp_billing_id and ussd_service_operation tunneled parameters in "Parlay X 2.1 Short Messaging/SMPP" for more information.

Send Receipts

Send receipts are acknowledgements that the network node has received the short message from the application by Services Gatekeeper. Although a single short message may be sent to multiple destination addresses, normally only one send receipt is returned to the application by Services Gatekeeper. The receipt is returned synchronously in the response message to the sendBinarySms operation.

Delivery Receipts

Delivery receipt notifications can be set up using the sendBinarySms operation, but the actual asynchronous delivery of receipts is accomplished using the Parlay X 2.1 Short Messaging interface. See "Delivery Receipts" in "Parlay X 2.1 Short Messaging/SMPP" for information on delivery receipts.

Connection Handling and Provisioning

The EWS Binary SMS/SMPP communication service uses the Services Gatekeeper SMPP Server Service to establish and manage southbound connections between Services Gatekeeper and Short Message Service Centers (SMSCs). The SMPP Server Service is deployed as an Oracle WebLogic Server Service.

The SMPP Server Service provides these services for the Parlay X 2.1 Short Messaging and Native SMPP plug-ins as well as for EWS Binary SMS/SMPP.

For information about configuration options pertaining to these client connections, see the "System Properties for SMPP Server Service" and "Reference: Attributes and Operations for SMPP Server Service" sections.

The client connection ID is created on the plug-in's successful bind with the SMSC. The connection ID changes on a successful rebind.

For information about connection handling and provisioning, multiple connections and multiple plug-in instances, windowing, and load balancing/high availability, see the applicable sections in "Parlay X 2.1 Short Messaging/SMPP".

Application Interfaces

For information about the application interface for the EWS Binary SMS/SMPP communication service, see the discussion of Extended Web Services Binary SMS in Oracle Communications Services Gatekeeper Application Developer's Guide.

For information about the RESTful Call Notification interface, see the discussion of Binary Short Messaging in Oracle Communications Services Gatekeeper RESTful Application Developer's Guide.

The RESTful Service Call Notification interfaces provide RESTful access to the same functionality as the application interfaces. The internal representations are identical, and for the purposes of creating SLAs and reading CDRs, and so on, they are the same.

Events and Statistics

For general information, see Appendix A, "Events, Alarms, and Charging."

The Extended Web Services Binary SMS/SMPP communication service generates Event Data Records (EDRs), Charging Data Records (CDRs), alarms, and statistics to assist system administrators and developers in monitoring the service.

Event Data

Table 22-1 lists the IDs of the EDRs created by the EWS Binary SMS/SMPP communication service. This list does not include EDRs created when exceptions are thrown.

Table 22-1 Event Types Generated by EWS Binary SMS /SMPP

	EDRID	Method Called
	
7101

	
sendBinarySms

	
7201

	
startBinarySmsNotification

	
7202

	
stopBinarySmsNotification

	
7204

	
notifyBinarySmsDeliveryReceipt

	
7205

	
notifyBinarySmsReception

For the list of EDRs generated by the SMPP Server Service, see Table 26-2, "Event Types Generated by the SMPP Server Service".

Charging Data Records

EWS Binary SMS/SMPP-specific CDRs are generated under the following conditions:

	
After a mobile-terminated sendBinarySms request is sent from Services Gatekeeper to the network.

	
After a a network-triggered binary SMS message has been successfully delivered to the application.

Statistics

Table 22-2 maps methods invoked from either the application or the network to the transaction types collected by the Services Gatekeeper statistics counters.

Table 22-2 Methods and Transaction Types for EWS Binary SMS/SMPP

	Method	Transaction type
	
sendBinarySMS

	
TRANSACTION_TYPE_MESSAGING_SEND

	
receivedMobileOriginatedBinarySMS

	
TRANSACTION_TYPE_MESSAGING_RECEIVE

Alarms

For the list of alarms, see Oracle Communications Services Gatekeeper Alarm Handling Guide.

Managing EWS Binary SMS/SMPP

The properties, workflow, tunneled parameters and management operations for the EWS Binary SMS/SMPP communication service are identical to those provided for the Parlay X 2.1 Short Messaging/SMPP communication service.

For details, see:

	
Managing Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary SMS/SMPP

	
Properties for Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary SMS/SMPP

	
Configuration Workflow for Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary SMS/SMPP

	
Management Operations in the SMPP Server Service

	
Reference: Attributes and Operations for Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary SMS/SMPP

	
Tunneled Parameters for Parlay X 2.1 Short Messaging / SMPP

23 Extended Web Services Subscriber Profile/LDAPv3

This chapter describes the Extended Web Services (EWS) Subscriber Profile/Lightweight Directory Access Protocol (LDAPv3) communication service in detail.

Overview of the EWS Subscriber Profile/LDAPv3 Communication Service

The EWS Subscriber Profile/LDAPv3 communication service exposes Oracle's Extended Web Services Subscriber Profile application interface.

The communication service acts as an LDAP client to a directory service, connecting to the directory service using LDAPv3.

For the exact version of the standards that the communication service supports for the application-facing interfaces and the network protocols, see the appendix on standards and specifications in Oracle Communications Services Gatekeeper Concepts Guide.

Using the EWS Subscriber Profile/LDAPv3 communication service, an application can:

	
Retrieve the specific value for a particular property belonging to a subscriber profile stored in an LDAP data source.

	
Retrieve an entire subscriber profile from an LDAP data source, subject to SLA filtering.

Application Interfaces

For information about the application interface for the Extended Web Services Subscriber Profile communication service, see the discussion of Extended Web Services Subscriber Profile in Oracle Communications Services Gatekeeper Application Developer's Guide.

For information about the RESTful Call Notification interface, see the discussion of Subscriber Profile in Oracle Communications Services Gatekeeper RESTful Application Developer's Guide.

The RESTful Service Call Notification interfaces provide RESTful access to the same functionality as the SOAP-based interfaces. The internal representations are identical, and for the purposes of creating SLAs and reading CDRs, and so on, they are the same.

Events and Statistics

The EWS Subscriber Profile/LDAPv3 communication service generates Event Data Records (EDRs), Charging Data Records (CDRs), alarms, and statistics to assist system administrators and developers in monitoring the service

For general information, see Appendix A, "Events, Alarms, and Charging."

Event Data Records

Table 23-1 lists IDs of the EDRS created by the EWS Subscriber Profile/LDAPv3 communication service. This list does not include EDRs created when exceptions are thrown

Table 23-1 Event Types Generated by EWS Subscriber Profile/LDAPv3

	EDR ID	Method Called
	
13001

	
get

	
13002

	
getProfile

Charging Data Records

EWS Subscriber Profile/LDAPv3-specific CDRs are generated under the following conditions:

	
After Services Gatekeeper has returned a full or partial subscriber profile to an application based on one or more attributes requested by that application.

	
After Services Gatekeeper has returned a subscriber profile to an application based on the ID of the profile.

Statistics

Table 23-2 maps methods invoked from either the application or the network to the transaction types collected by the Services Gatekeeper statistics counters.

Table 23-2 Methods and Transaction Types for EWS Subscriber Profile/LDAPv3

	Method	Transaction Type
	
get

	
TRANSACTION_TYPE_SUBSCRIBER_PROFILE

	
getProfile

	
TRANSACTION_TYPE_SUBSCRIBER_PROFILE

Alarms

For the list of alarms, see Oracle Communications Services Gatekeeper Alarm Handling Guide.

Managing EWS Subscriber Profile/LDAPv3

This section describes the properties and workflow for the EWS Subscriber Profile/LDAPv3 plug-in instance.

It includes an LDAP server schema to use in constructing LDAP queries.

A connection pool is used for connections to the LDAP server. The connection pool is shared among all plug-in instances, and any configuration settings related to this pool or schema updates are broadcast to all plug-in instances in the cluster.

Use "Operation: updateLDAPSettings" to force configuration changes to take effect.

Properties for EWS Subscriber Profile/LDAPv3

Table 23-3 lists the technical specifications for the communication service.

Table 23-3 Properties for EWS Subscriber Profile/LDAPv3

	Property	Description
	
Managed object in Administration Console

	
domain_name > OCSG > server_name > Communication Services > plugin_instance_id

	
MBean

	
Domain=com.bea.wlcp.wlng

Name=wlng_nt

InstanceName=same as the network protocol instance_id assigned when the plug-in instance is created.

Type=com.bea.wlcp.wlng.plugin.subscriberprofile.ldap.managedplugin.management.SubscriberProfileMBean

	
Network protocol plug-in service ID

	
Plugin_ews_subscriber_profile_ldap

	
Network protocol plug-in instance ID

	
The ID is assigned when the plug-in instance is created. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide.

	
Supported Address Scheme

	
tel, id, imsi, ipv4

	
Application-facing interface

	
com.bea.wlcp.wlng.ews.plugin.SubscriberProfilePlugin

	
Service type

	
SubscriberProfile

	
Exposes to the service communication layer a Java representation of:

	
Extended Web Services Subscriber Profile

	
Interfaces with the network nodes using:

	
LDAP

	
Deployment artifact

NT EAR

wlng_nt_subscriber_profile_ews.ear

	
ews_subscriber_profile_service.jar and Plugin_ews_subscriber_profile_ldap.jar

	
Deployment artifact

AT EAR: Normal

wlng_at_subscriber_profile_ews.ear

	
ews_subscriber_profile.war and rest_subscriber_profile.war

	
Deployment artifact

AT EAR: SOAP Only

wlng_at_subscriber_profile_ews_soap.ear

	
ews_subscriber_profile.war

LDAP Server Schema

All subscriber-profile-related operations are handed off to network nodes that accept LDAP queries according to LDAPv3. The decision concerning which node in the LDAP directory should be used to perform the query is decided at run time based on configuration settings. The data that is handed back to the application that initiated the Subscriber Profile query is filtered using the result filter mechanism in the service provider group and application group SLAs. For more information, see <resultRestrictions> in "Defining Service Provider Group and Application Group SLAs" in the Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

A schema is used for constructing queries. See Example 23-1.

Example 23-1 LDAP Query schema XSD

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="LdapConfig">
<xs:complexType>
<xs:sequence>
<xs:element name="Keys" type="KeySet" minOccurs="1" maxOccurs="unbounded"/>
<xs:element name="LdapObject" type="LdapObject" minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:complexType name="KeyObject">
<xs:sequence>
<xs:element name="uriScheme" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="addressKeyName" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="objectKeyName" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="objectKeyValue" type="xs:string" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="optional"/>
</xs:complexType>

<xs:complexType name="KeySet">
<xs:sequence>
<xs:element name="Key" type="KeyObject" minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="LdapObject">
<xs:sequence>
<xs:element name="ObjectKeySet" type="xs:string" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required"/>
<xs:attribute name="keyName" type="xs:string" use="required"/>
<xs:attribute name="keyValue" type="xs:string" use="required"/>
</xs:complexType>
</xs:schema>

The LDAP server schema describes the following elements:

	
LdapObject: Holder of a KeySet

	
KeySet: Defines a collection of KeyObjects. Sets of keys are used because there may be several ways to reach a certain node in the tree. One LDAP plug-in instance can be configured with several KeySets and can provide the link between the search key in the Extended Web Services interface and the LDAP tree.

	
KeyObject: Defines an entry point to the LDAP tree and provides the link between the search key in the Extended Web Services interface and the LDAP tree.

Table 23-4 describes the schema objects in detail.

Table 23-4 LDAP Server Schema

	Object	Element	Description
	
LdapObject

	
ObjectKeySet

	
Defines the KeySet through which it can be reached. Refers to theID attribute of a defined KeySet.

	
LdapObject

	
id

	
The identity of the LdapObject. Can be referenced from other LdapObjects through the ParentObjectId field.

	
LdapObject

	
keyName

	
The name of the key through which the LdapObject can be reached.

	
LdapObject

	
keyValue

	
The value of the key through which the LdapObject can be reached.

	
KeyObject

	
uriScheme

	
Defines the URI scheme of the address for which this key applies.

	
KeyObject

	
addressKeyName

	
Defines the key name with which the address value is associated.

	
KeyObject

	
objectKeyName

	
Provides the possibility of defining the addressing key of a possible tree node above the node that is reached by the address key (that is, like the domain object in the 3DS directory information tree).

	
KeyObject

	
objectKeyValue

	
See objectKeyName. Defines the value of the key.

	
KeyObject

	
id

	
The identity of the key. Used only for descriptive purposes.

	
KeySet

	
Key

	
All keys in the KeySet

	
KeySet

	
id

	
The identity of the KeySet. Used when associating an LdapObject with a KeySet.

Example 23-2 shows a directory information tree built using the schema described in Table 23-4.

Example 23-2 Example of LDAP server schema

<?xml version="1.0" encoding="UTF-8"?>
<LdapConfig xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:noNamespaceSchemaLocation='sp_config.xsd'>
<Keys id="myKeys">
<Key id="misidnKey">
<uriScheme>tel</uriScheme>
<addressKeyName>msisdn</addressKeyName>
<objectKeyName>domainName</objectKeyName>
<objectKeyValue>msisdnD</objectKeyValue>
</Key>
<Key id="imsiKey">
<uriScheme>imsi</uriScheme>
<addressKeyName>imsi</addressKeyName>
<objectKeyName>domainName</objectKeyName>
<objectKeyValue>imsiD</objectKeyValue>
</Key>
<Key id="subscriberIdKey">
<uriScheme>id</uriScheme>
<addressKeyName>id</addressKeyName>
<objectKeyName>domainName</objectKeyName>
<objectKeyValue>subsD</objectKeyValue>
</Key>
<Key id="ipv4Key">
<uriScheme>ipv4</uriScheme>
<addressKeyName>ipv4Addr</addressKeyName>
<objectKeyName>domainName</objectKeyName>
<objectKeyValue>ipv4D</objectKeyValue>
</Key>
</Keys>
<LdapObject id="mySchema" keyName="serviceName" keyValue="mySchema">
<ObjectKeySet>myKeys</ObjectKeySet>
</LdapObject>
</LdapConfig>

Configuration Workflow for EWS Subscriber Profile/LDAPv3

Following is an outline for configuring the plug-in using the Administration Console or an MBean browser.

	
Create one or more instances of the plug-in service. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the plug-in service ID as listed in the "Properties for EWS Subscriber Profile/LDAPv3" section.

	
Select the MBean for the plug-in instance. The MBean display name is the same as the plug-in instance ID given when the plug-in instance was created.

	
Define the characteristics of the LDAP server to connect to:

	
Attribute: Port

	
Attribute: AuthDN

	
Attribute: BaseDN

	
Attribute: AuthPassword

	
Using either "Attribute: Schema" or "Operation: updateSchemaURL", define the schema.

See "LDAP Server Schema" for a description of the schema and "Configuration Workflow for EWS Subscriber Profile/LDAPv3" for a description of the mappings.

	
Define the connection pool characteristics for the connection:

	
Attribute: MinConnections

	
Attribute: MaxConnections

	
Attribute: ConnTimeout

	
Attribute: RecoverTimerInterval

	
Set up the routing rules to the plug-in instance. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the plug-in instance ID and address schemes listed in the "Properties for EWS Subscriber Profile/LDAPv3" section.

	
If required, create and load a node SLA. For details see "Defining Global Node and Service Provider Group Node SLAs" and "Managing SLAs" in the Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

	
Provision the service provider accounts and application accounts. For information, see Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

Management Operations for EWS Subscriber Profile/LDAPv3

There are no specific management operations, except for "Operation: updateLDAPSettings", used to update the LDAP connection pool after changing any of the following attributes:

	
Attribute: MinConnections

	
Attribute: MaxConnections

	
Attribute: ConnTimeout

	
Attribute: RecoverTimerInterval

Provisioning for EWS Subscriber Profile/LDAPv3

If the results from the LDAP query should be filtered, use the service provider group and application group SLAs. See <resultRestriction> in "Defining Service Provider Group and Application Group SLAs" in the Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

Reference: Attributes and Operations for EWS Subscriber Profile/LDAPv3

This section describes the attributes and operations for configuration and maintenance:

	
Attribute: AuthDN

	
Attribute: AuthPassword

	
Attribute: BaseDN

	
Attribute: ConnTimeout

	
Attribute: Host

	
Attribute: LDAPConnectionStatus

	
Attribute: MaxConnections

	
Attribute: MinConnections

	
Attribute: RecoverTimerInterval

	
Attribute: Port

	
Attribute: Schema

	
Operation: updateLDAPSettings

	
Operation: updateSchemaURL

Attribute: AuthDN

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the authentication Distinguished Name (DN) for the LDAP server.

Example:

cn=admin,o=acompany,c=uk

Attribute: AuthPassword

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the password associated with "Attribute: AuthDN".

Attribute: BaseDN

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the base Distinguished Name (DN) for the LDAP database in use.

Example:

o=acompany,c=uk

Attribute: ConnTimeout

Scope: Cluster

Unit: Seconds

Specifies the maximum time to wait for an LDAP connection to be established. If the related timer expires, a retry is performed. See "Attribute: RecoverTimerInterval" for more information.

Any change to this setting must be followed by "Operation: updateLDAPSettings".

Attribute: Host

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the host name or IP address of the LDAP server to connect to.

Examples:

myldapserver.mycompany.org
192.168.0.14

Attribute: LDAPConnectionStatus

Read-only.

Scope: Cluster

Unit: Not applicable

Format: String enumeration listed in Table 23-5.

Table 23-5 Status of the connection to the LDAP server

	Status	Description
	
active

	
The connection is active. The plug-in instance accepts requests.

	
update_pending

	
The connection is temporarily unavailable due to an update of the configuration settings. The plug-in instance does not accept requests.

	
deactive

	
The connection is inactive. The plug-in instance does not accept requests.

Reasons for this entering this state include:

	
Missing or incorrect configuration

	
LDAP server is unreachable

	
Internal errors

Attribute: MaxConnections

Scope: Cluster

Unit: Not applicable

Format: Integer

Specifies the maximum number of connections in the LDAP connection pool.

Any change to this setting must be followed by "Operation: updateLDAPSettings".

Attribute: MinConnections

Scope: Cluster

Unit: Not applicable

Format: Integer

Specifies the minimum number of connections to establish using connections from the LDAP connection pool.

Any change to this setting must be followed by "Operation: updateLDAPSettings".

Attribute: Port

Scope: Cluster

Unit: Not applicable

Format: Integer

Specifies the port number of the LDAP server to connect to.

Attribute: RecoverTimerInterval

Scope: Cluster

Unit: Seconds

Format: Integer

Specifies the time to wait before performing an LDAP connection retry after an LDAP connection error. Should be at least twice the time defined in "Attribute: ConnTimeout".

Any change to this setting must be followed by "Operation: updateLDAPSettings".

Attribute: Schema

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the LDAP schema to use.

Operation: updateLDAPSettings

Scope: Cluster

Refreshes the LDAP connection pool to use the new configuration.

During the update, the LDAP connection is temporarily unavailable and the connection status is update_pending. See Table 23-5, "Status of the connection to the LDAP server" for status values.

Signature:

updateLDAPSettings()

Operation: updateSchemaURL

Scope: Cluster

Updates the schema to use when performing lookups in the LDAP database.

During the update, the LDAP connection is temporarily unavailable and the connection status is update_pending. See Table 23-5, "Status of the connection to the LDAP server" for status values.

Signature:

updateSchemaURL(SchemaURL:String)

Table 23-6 updateSchemaURL Parameters

	Parameter	Description
	
SchemaURL

	
URL to the LDAP database schema.

Examples:

file:///d:/ldap/schema.xml (Windows systems)

file://ldap/schema.xml (UNIX systems)

24 Extended Web Services WAP Push/PAP

This chapter describes the Extended Web Services (EWS) WAP Push/Push Access Protocol (PAP) communication service in detail.

Overview of the EWS WAP Push/PAP Communication Service

The EWS WAP Push/PAP communication service exposes the Oracle Extended Web Services WAP Push interface.

The communication service connects to a Push Proxy Gateway (PPG) using Push Access Protocol (PAP) 2.0. See "Push Access Protocol (PAP) 2.0" for information about this network protocol.

For the exact version of the standards that the communication service supports for the application-facing interfaces and the network protocols, see the appendix on standards and specifications in Oracle Communications Services Gatekeeper Concepts Guide.

Using the EWS WAP Push/PAP communication service, an application can:

	
Send a WAP Push message to a single or multiple (bulk) destinations.

	
Send a replacement WAP Push message.

	
Ask to be notified asynchronously of the status of WAP Push messages that have been sent. The possible values returned include:

	
Rejected: The message was not accepted.

	
Pending: The message is in process.

	
Delivered: The message was successfully delivered to the end-user.

	
Undeliverable: The message could not be delivered because of a problem.

	
Expired: The message reached the maximum age allowed by server policy or could not be delivered by the time specified in the push submission.

	
Aborted: The mobile device aborted the message.

	
Timeout: The delivery process timed out.

	
Cancelled: The message was cancelled through the cancel operation.

	
Unknown: The server does not know the state of the message.

	
Send a result notification message. This occurs only if the initial push submission was accepted for processing. One result notification message is sent per destination address.

Push Access Protocol (PAP) 2.0

EWS WAP Push/PAP supports a subset of the PAP 2.0 operations. These include:

	
push-message: Submits a message to be delivered. This operation is also used to send a replacement message.

	
push-response: The response to the push-message operation. This response includes a code specifying the immediate status of the message submission, of the following general types:

	
1xxx Success: The action was successfully received, understood, and accepted

	
2xxx Client Error: The request contains bad syntax or cannot be fulfilled

	
3xxx Server Error: The server failed to fulfil an apparently valid request

	
4xxx: Service Failure: The service could not be performed. The operation may be retried

	
resultnotification-message: Specifies the final outcome of a specific message for a specific recipient. Sent only if the initial request includes the URL to which this notification is to be delivered. Includes both textual indication of state and a status code including the following general types:

	
1xxx Success: The action was successfully received, understood, and accepted

	
2xxx Client Error: The request contains bad syntax or cannot be fulfilled

	
3xxx Server Error: The telecom network node failed to fulfil an apparently valid request

	
4xxx: Service Failure: The service could not be performed. The operation may be retried

	
5xxx: Mobile Device Abort: The mobile device aborted the operation.

	
resultnotification-response: The response to the result notification. This response includes a code specifying the status of the notification

	
1xxx Success: The action was successfully received, understood, and accepted

	
2xxx Client Error: The request contains bad syntax or cannot be fulfilled

	
badmessage-response: A response indicating that request is unrecognizable or is of a protocol version that is not supported. This response contains either a 3002 code (Version not supported) or a 2000 code (Bad Request). In the case of Bad Request, a fragment of the unrecognizable message is included in the response

See the appendix on standards and specifications in Oracle Communications Services Gatekeeper Concepts Guide for the exact version of the protocol standard Services Gatekeeper supports.

Application Interfaces

For information about the application interface for the Extended Web Services WAP Push communication service, see the discussion of Extended Web Services WAP Push in Oracle Communications Services Gatekeeper Application Developer's Guide.

For information about the RESTful Call Notification interface, see the discussion of WAP Push in Oracle Communications Services Gatekeeper RESTful Application Developer's Guide.

The RESTful Service Call Notification interfaces provide RESTful access to the same functionality as the SOAP-based interfaces. The internal representations are identical, and for the purposes of creating SLAs and reading CDRs, and so on, they are the same.

Events and Statistics

The EWS WAP Push/PAP communication service generates Event Data Records (EDRs), Charging Data Records (CDRs), alarms, and statistics to assist system administrators and developers in monitoring the service

For general information, see Appendix A, "Events, Alarms, and Charging."

Charging Data Records

EWS WAP Push/PAP-specific CDRs are generated under the following conditions:

	
When the sendPushMessage response returns from the network.

	
When a sendResultNotificationMessage response returns from the application.

Event Data Records

Table 24-1 lists the IDs of the EDRs created by the EWS WAP Push communication service.

Table 24-1 Event Types Generated by EWS WAP Push/PAP

	EDRID	Method Called
	
14001

	
sendPushMessage

	
14002

	
sendResultNotificationMessage

Statistics

Table 24-2 maps methods invoked from either the application or the network to the transaction types collected by the Services Gatekeeper statistics counters.

Table 24-2 Methods and Transaction Types for EWS WAP Push/PAP

	Method	Transaction type
	
sendPushMessage

	
TRANSACTION_TYPE_MESSAGE_SENDER_SEND

	
sendResultNotificationMessage

	
TRANSACTION_TYPE_MESSAGE_SENDER_NOTIFY

Alarms

For the list of alarms, see Oracle Communications Services Gatekeeper Alarm Handling Guide.

Managing the EWS WAP Push/PAP Communication Service

This section describes the properties and workflow for the EWS WAP Push/PAP plug-in instance.

Properties for EWS WAP Push/PAP

Table 24-3 lists the technical specifications for the communication service.

Table 24-3 Properties for EWS WAP Push/PAP

	Property	Description
	
Managed object in Administration Console

	
domain_name > OCSG > server_name > Communication Services > plugin_instance_id

	
MBean

	
Domain=com.bea.wlcp.wlng

Name=wlng_nt

InstanceName=same as the network protocol instance_id assigned when the plug-in instance is created

Type=com.bea.wlcp.wlng.plugin.pushmessage.pap.management.PushMessagePAPMBean

	
Network protocol plug-in service ID

	
Plugin_ews_push_message_pap

	
Network protocol plug-in instance ID

	
The ID is assigned when the plug-in instance is created. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide.

	
Supported Address Scheme

	
tel, wapuser

See "WAP User Address Scheme" for information on the wapuser address scheme.

	
Application-facing interface

	
com.bea.wlcp.wlng.ews.plugin.PushMessagePlugin

com.bea.wlcp.wlng.ews.callback.PushMessageNotificationCallback

	
Service type

	
PushMessage

	
Exposes to the service communication layer a Java representation of:

	
Extended Web Services WAP Push

	
Interfaces with the network nodes using:

	
Push Access Protocol (PAP), 2.0. WAP-247-PAP-20010429-a

	
Deployment artifact:

NT EAR

wlng_nt_push_message_ews.ear

	
ews_push_message_service.jar, Plugin_ews_push_message_pap.jar, and ews_push_message_pap.war

	
Deployment artifact:

AT EAR: Normal

wlng_at_push_message_ews.ear

	
ews_push_message.war, ews_push_message_callback.jar, and rest_push_message.war

	
Deployment artifact:

AT EAR: SOAP Only

wlng_at_push_message_ews_soap.ear

	
ews_push_message.war and ews_push_message_callback.jar

WAP User Address Scheme

The wapuser address scheme supports the client address formats defined in the Wireless Application Protocol Push Proxy Gateway Service Specification.

To use the wapuser address scheme, the application should set the WAPPUSH and TYPE values in the destinationAddress. For example, given the address:

WAPPUSH=+155519990730

TYPE=PLMN@ppg.carrier.com

set the destinationAddress to:

WAPPUSH=+155519990730/TYPE=PLMN@ppg.carrier.com

Given the address:

WAPPUSH=john.doe%40wapforum.org

TYPE=USER@ppg.carrier.com

set the destinationAddress to:

WAPPUSH=john.doe%40wapforum.org/ TYPE=USER@ppg.carrier.com

Configuration Workflow for EWS WAP Push/PAP

Following is an outline for configuring the plug-in using the Administration Console.

	
Create one or more instances of the plug-in service. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the plug-in service ID as listed in the "Properties for EWS WAP Push/PAP" section.

	
Using the Administration Console or an MBean browser, select the MBean for the plug-in instance. The MBean display name is the same as the plug-in instance ID assigned when the plug-in instance was created.

	
Define the characteristics of the PPG server to connect to:

Attribute: PPGNotificationURL

Attribute: PPGURL

	
Specify heartbeat behavior. See "Configuring Heartbeats" in Oracle Communications Services Gatekeeper System Administrator's Guide.

	
Set up the routing rules to the plug-in instance. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the plug-in instance ID and address schemes listed in the "Properties for EWS WAP Push/PAP" section.

	
If required, create and load a node SLA. For details see "Defining Global Node and Service Provider Group Node SLAs" and "Managing SLAs" in the Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

	
Provision the service provider accounts and application accounts. For information, see Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

Reference: Attributes for WAP Push/PAP

This section describes the attributes for configuration and maintenance:

	
Attribute: BasicAuthentication

	
Attribute: BAPassword

	
Attribute: BAUser

	
Attribute: PPGNotificationURL

	
Attribute: PPGURL

	
Attribute: ResultNotificationEndpoint

Attribute: BasicAuthentication

Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies whether basic authentication is used.

Attribute: BAPassword

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the password used for basic authentication.

Attribute: BAUser

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the user used for basic authentication.

Attribute: PPGNotificationURL

Scope: Server

Unit: Not applicable

Format: String

Specifies the URL of the plug-in instance. Used by the Push Proxy Gateway (PPG) to send notifications of results to the plug-in instance.

Attribute: PPGURL

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the URL of the Push Proxy Gateway (PPG) the plug-in instance uses.

Attribute: ResultNotificationEndpoint

Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies whether delivery reports are sent to the application. Set to true if delivery reports are sent, false if they are not.

25 Native MM7

This chapter describes the Native MM7 communication service in detail.

Overview of the Native MM7 Communication Service

The Native MM7 communication service exposes the 3GPP MM7 standard interfaces.

From the point of view of an application, the communication service acts as an MMS relay server. From the point of view of the network, it acts as an MMS VAS application.

For the exact version of the standards that the communication service supports for the application-facing interfaces and the network protocols, see the appendix on standards and specifications in Oracle Communications Services Gatekeeper Concepts Guide.

Using the Native MM7 communication service, an application can:

	
Send a multimedia message to one or many destination addresses.

The payload in these multimedia messages can be any type that can be specified using Multipurpose Internet Mail Extensions (MIME), including multipart messages. If a subscription for notifications has been previously set up, the request can also specify that a delivery report or a read report should be returned later in relation to this message.

	
Receive delivery reports on sent multimedia messages that have arrived from the network.

	
Receive read-reply reports on sent multimedia messages that have arrived from the network.

	
Receive multimedia messages from the network.

Requests can flow in two directions using the Native MM7 communication service: from the application to the network and from the network to the application.

Status Reports

There are two types of status reports that can be returned to the application from the network via Services Gatekeeper. Both are returned asynchronously, using callback information provided when the notification is set up. If the network sends a report but no notification has been set up, Services Gatekeeper sends the network an error code indicating permanent failure.

	
Delivery Reports

	
Read-Reply Report

Delivery Reports

Delivery reports are acknowledgements that the network node has handled the message from the application that was submitted. The report indicates the status of the message: for example, Forwarded, Expired, or Rejected. There is one delivery report per destination address. If a connection error occurs within Services Gatekeeper or between Services Gatekeeper and the application, an error code is returned to the network, which resends the message.

Read-Reply Report

Read-reply reports contain the final delivery status of the multimedia message. The final delivery status reports whether the message has actually been delivered by the network to the mobile terminal. It also includes the status of the message at that terminal; for example, Read or Deleted without being read.

Because a recipient can request that read-reply reports not be generated, lack of a read-reply report does not necessarily mean that the message has not been rendered on the recipient's terminal.

There is one read-reply report per destination address. If a connection error occurs within Services Gatekeeper or between Services Gatekeeper and the application, an error code is returned to the network, which resends the message.

Network-triggered Multimedia Messages

For an application to receive multimedia messages from the network, it must register its interest in these messages by setting up a subscription. A subscription, or notification, is defined by a destination address. For the message to be accepted by Services Gatekeeper, the destination address must match the subscription. Each registered subscription must be unique, and subscription attempts with overlapping criteria are rejected. If a message with several destination addresses arrives, Services Gatekeeper iterates through the list until it reaches a match or until the list is exhausted.

Application Interfaces

For information about the application interface for the Native MM7 communication service, see the discussion of Native Interfaces in Oracle Communications Services Gatekeeper Application Developer's Guide.

Events and Statistics

The Native MM7 communication service generates Event Data Records (EDRs), Charging Data Records (CDRs), alarms, and statistics to assist system administrators and developers in monitoring the service

For general information, see Appendix A, "Events, Alarms, and Charging."

Event Data Records

Table 25-1 lists the IDs of the EDRs created by the Native MM7 communication service.

Table 25-1 Event Types Generated by Native MM7

	EDR ID	Description
	
401000

	
An application-initiated message has entered the plug-in.

	
401001

	
An application-initiated message has exited the plug-in.

	
401002

	
A network-triggered message sent via v.1.0 has entered the plug-in.

	
401003

	
A network-triggered message has exited the plug-in. It is formatted according to v. 1.2.

	
401004

	
A delivery report using v. 1.0 has entered the plug-in.

	
401005

	
A delivery report has exited the plug-in. It is formatted according to v 1.2

	
401006

	
A read-reply report using v. 1.0 has entered the plug-in.

	
401007

	
A read-reply report has exited the plug-in. It is formatted according to v. 1.2

Charging Data Records

Native MM7 -specific CDRs are generated under the following conditions:

	
After an MMS message has been successfully sent from the application to the network.

	
After an MMS message has been successfully sent from the network to the application.

	
After a delivery report has been successfully delivered to the application.

	
After a read-reply report has been successfully delivered to the application.

Statistics

Table 25-2 maps methods invoked from either the application or the network to the transaction types collected by the Services Gatekeeper statistics counters.

Table 25-2 Methods and Transaction Types for Native MM7

	Method	Transaction type
	
submit

	
TRANSACTION_TYPE_MESSAGING_MMS_SEND

	
deliver

	
TRANSACTION_TYPE_MESSAGING_MMS_RECEIVE

Alarms

For the list of alarms, see Oracle Communications Services Gatekeeper Alarm Handling Guide.

Managing Native MM7

This section describes the properties and workflow for the Native MM7 communication service.

Properties for Native MM7

Table 25-3 lists the technical specifications for the communication service.

Table 25-3 Properties for Native MM7

	Property	Description
	
Managed object in Administration Console

	
domain_name > OCSG > server_name > Communication Services > plugin_instance_id

	
MBean

	
Domain=com.bea.wlcp.wlng

Name=wlng_nt

InstanceName=same as the network protocol instance_id assigned when the plug-in instance is created

Type=com.bea.wlcp.wlng.plugin.mm7.management.Mm7MBean

	
Network protocol plug-in service ID

	
Plugin_multimedia_messaging_mm7

	
Network protocol plug-in instance ID

	
The ID is assigned when the plug-in instance is created. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide.

	
Supported Address Scheme

	
tel, mailto, short

	
Application-facing interfaces

	
com.bea.wlcp.wlng.mm7.plugin.MmsPlugin

com.bea.wlcp.wlng.mm7.callback.MmsVaspCallback

	
Service type

	
Mm7

	
Exposes to the service communication layer a Java representation of:

	
3GPP TS 23.140 V5.3.0 (REL-5-MM7-1-2.xsd)

	
Interfaces with the network nodes using:

	
MM7 (REL-5-MM7-1-0 or REL-5-MM7-1-2)

	
Deployment artifacts

	
Plugin_multimedia_messaging_mm7.jar, mm7_service.jar, 1_0_mm7_vasp.war, 1_2_mm7_vasp.war packaged in wlng_nt_multimedia_messaging_mm7.ear

mm7.war, mm7_callback_client.jar, packaged in wlng_at_multimedia_messaging_mm7.ear

Configuration Workflow for Native MM7

Following is an outline for configuring the plug-in using the Administration Console or an MBean browser.

	
Create one or more instances of the plug-in service. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the plug-in service ID as listed in the "Properties for Native MM7" section.

	
Using the Administration Console or an MBean browser, select the MBean for the plug-in instance. The MBean display name is the same as the plug-in instance ID assigned when the plug-in instance was created.

	
Configure the behavior of the plug-in instance:

	
Attribute: Mm7RelayServerAddress

	
Attribute: HTTPBasicAuthentication. If using HTTP basic authentication also define:

	
Attribute: HTTPBasicAuthenticationUsername

	
Attribute: HTTPBasicAuthenticationPassword

	
Attribute: XSDVersion

	
Specify heartbeat behavior. See "Configuring Heartbeats" in Oracle Communications Services Gatekeeper System Administrator's Guide.

	
Set up the routing rules to the plug-in instance. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the plug-in instance ID and address schemes listed in the "Properties for Native MM7" section.

	
Provide the administrator of the MM7 server with the URL to which the MM7 server should deliver mobile-originated messages and delivery reports:

	
For REL-5-MM7-1-0 the default URL is:

http://IP_Address_of_NT_ Server:port/1_0_mm7_vasp/mms_vasp

	
For REL-5-MM7-1-2 the default URL is:

http://IP_Address_of_NT Server:port/1_2_mm7_vasp/mms_vasp

	
If required, create and load a node SLA. For details see "Defining Global Node and Service Provider Group Node SLAs" and "Managing SLAs" in the Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

	
Provision the service provider accounts and application accounts. For information, see Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

Provisioning Workflow for Native MM7

Following is an outline for provisioning Native MM7.

	
Register offline notifications. This means that mobile-originated messages should not result in notifications to an application, but instead be stored in Services Gatekeeper for polling. Use "Operation: addVASPIDMapping" to register offline notifications. Use the following operations to manage the offline registrations:

	
Operation: listAllVASIDMapping

	
Operation: addVASPIDMapping

	
Operation: removeReceiveMmsNotification

	
Register online notifications. This means that registrations for mobile-originated messages are managed on behalf of an application. Use "Operation: listVASIDMapping" to register online notifications. Use the following operations to manage the online registrations:

	
Operation: listAllVASPIDMapping

	
Operation: enableReceiveMmsNotification

	
Operation: removeStatusReporting

Reference: Attributes and Operations for Native MM7

This section describes the attributes and operations for configuration and maintenance:

	
Attribute: HTTPBasicAuthentication

	
Attribute: HTTPBasicAuthenticationUsername

	
Attribute: HTTPBasicAuthenticationPassword

	
Attribute: Mm7RelayServerAddress

	
Attribute: XSDVersion

	
Operation: addVASIDMapping

	
Operation: addVASPIDMapping

	
Operation: enableReceiveMmsNotification

	
Operation: listAllVASIDMapping

	
Operation: listAllVASPIDMapping

	
Operation: removeReceiveMmsNotification

	
Operation: removeStatusReporting

	
Operation: removeVASIDMapping

	
Operation: removeVASPIDMapping

Attribute: HTTPBasicAuthentication

Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies if HTTP basic authentication shall be used for authentication with the MM7 server.

Set to true if HTTP basic authentication shall be used, otherwise false.

If true, "Attribute: HTTPBasicAuthenticationUsername" and "Attribute: HTTPBasicAuthenticationPassword" must be specified.

Attribute: HTTPBasicAuthenticationUsername

Scope: Cluster

Unit: Not applicable

Format: String

The user name to use for HTTP basic authentication towards the MM7 server. This is equivalent to the Application Instance ID.

Attribute: HTTPBasicAuthenticationPassword

Scope: Cluster

Unit: Not applicable

Format: String

The password to use for HTTP basic authentication towards the MM7 server.

Attribute: Mm7RelayServerAddress

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the address of the MM7 Relay Server. The address is an HTTP URL.

Attribute: XSDVersion

Scope: Cluster

Unit: Not applicable

Format: String [REL-5-MM7-1-0, REL-5-MM7-1-2]

Specifies the xsd version that should be used for requests towards the MMSC.

Enter one of the following:

	
REL-5-MM7-1-0 to use an altered version of the REL-5-MM7-1-0.xsd. The altered version allows the use of delivery notifications when the MMC-S requires this version of the xsd. This is a requirement when connecting to, among others, Comverse MMSCs.

	
REL-5-MM7-1-2 to use REL-5-MM7-1-2.xsd.

Operation: addVASIDMapping

Scope: Cluster

Adds the service provider VAS ID and the Services Gatekeeper VAS ID mapping for use with the submit request.

Signature:

addVASIDMapping(spVasID: String, wlngVasID: String)

Table 25-4 addVASIDMapping Parameters

	Parameter	Description
	
spVasID

	
The service provider's VAS ID.

	
wlngVasID

	
The VAS ID that is to be sent to the MMSC.

Operation: addVASPIDMapping

Scope: Cluster

Adds the service provider VASP ID and the Oracle Communications Services Gatekeeper VASP ID mapping for use with the SubmitReq operation.

Signature:

addVASPIDMapping(spVaspID: String, wlngVaspID: String)

Table 25-5 addVASPIDMapping Parameters

	Parameter	Description
	
spVaspID

	
The service provider's VASP ID.

	
wlngVaspID

	
The VASP ID that is to be sent to the MMSC.

Operation: enableReceiveMmsNotification

Scope: Cluster

Sets up delivery notification for network-triggered message delivery. Messages matching this configuration result in a callback to the application by the DeliverReq operation.

Signature:

enableReceiveMmsNotification(Address: String, appInstGroupID: String, applicationURI: String)

Table 25-6 enableReceiveMmsNotification Parameters

	Parameter	Description
	
Address

	
The destination address of the MMS message

	
appInstGroupID

	
The application instance group ID associated with this notification

	
applicationURI

	
The URI where the application can be reached

Operation: enableStatusReporting

Scope: Cluster

Sets up status report notification for delivery status and read-reply status for application-initiated messages.

Signature:

enableStatusReporting(appInstGroupID: String, applicationURI: String)

Table 25-7 enableStatusReporting Parameters

	Parameter	Description
	
appInstGroupID

	
The application instance group ID associated with this notification

	
applicationURI

	
The URI where the application can be reached

Operation: getReceiveMmsNotificationForAddress

Scope: Cluster

Checks to see if a notification is already set up for this exact address. If no entry is returned, the address can be used to set up a new notification

Signature:

getReceiveMmsNotificationForAddress(Address: String)

Table 25-8 getReceiveMmsNotificationForAddress Parameters

	Parameter	Description
	
Address

	
The destination address of the MMS message

Operation: getReceiveMmsNotificationMatches

Scope: Cluster

Searches existing configurations for Receive Mms notifications for an address pattern, using regular expressions. If there are no matching configurations, null is returned. This can be used to find out which application is registered for notifications for a specific address.

This operation returns at most 1 match. If there are multiple entries, only the first will be returned, although in normal operation overlapping entries should not be possible

Signature:

getReceiveMmsNotificationMatches(Address: String)

Table 25-9 getReceiveMmsNotificationMatches Parameters

	Parameter	Description
	
Address

	
The destination address pattern of the MMS: for example, 1234 or .@oracle.com

Operation: listAllVASIDMapping

Scope: Cluster

Lists all VAS ID mappings

Signature:

listAllVASIDMapping()

Operation: listAllVASPIDMapping

Scope: Cluster

Lists all VASP ID mappings

Signature:

listAllVASPIDMapping()

Operation: listReceiveMmsNotifications

Scope: Cluster

Lists all established delivery notifications

Signature:

listReceiveMmsNotifications()

Operation: listStatusReportingNotifications

Scope: Cluster

Lists all established status report notifications

Signature:

listStatusReportingNotifications()

Operation: listVASIDMapping

Scope: Cluster

Lists the VAS ID mapping that corresponds to the specified spVasID

Signature:

listVASIDMapping(spVasID: String)

Table 25-10 listVASIDMapping Parameters

	Parameter	Description
	
spVasID

	
The service provider VAS ID to be matched.

Operation: listVASPIDMapping

Scope: Cluster

Lists the VASP ID mapping that corresponds to the specified spVaspID

Signature:

listVASPIDMapping(spVaspID: String)

Table 25-11 listVASPIDMapping Parameters

	Parameter	Description
	
spVaspID

	
The service provider VASP ID to be matched.

Operation: removeReceiveMmsNotification

Scope: Cluster

Removes an existing delivery notification

Signature:

removeReceiveMmsNotification(address: String)

Table 25-12 removeReceiveMmsNotification Parameters

	Parameter	Description
	
address

	
The destination address of the MMS message

Operation: removeStatusReporting

Scope: Cluster

Removes an existing status report notification.

Signature:

removeStatusReporting(applicationInstanceGroupID: String)

Table 25-13 removeStatusReporting Parameters

	Parameter	Description
	
applicationInstanceGroupID

	
The application instance group ID associated with the notification.

Operation: removeVASIDMapping

Scope: Cluster

Removes an established VAS ID mapping.

Signature:

removeVASIDMapping(spVasID: String)

Table 25-14 removeVASIDMapping Parameters

	Parameter	Description
	
spVasID

	
The service provider VAS ID whose mapping is to be removed

Operation: removeVASPIDMapping

Scope: Cluster

Removes an established VASP ID mapping.

Signature:

removeVASIPDMapping(spVasID: String)

Table 25-15 removeVASPIDMapping Parameters

	Parameter	Description
	
spVaspID

	
The service provider VASP ID whose mapping is to be removed

26 Native SMPP

This chapter describes the Native SMPP communication service in detail.

Overview of the Native SMPP Communication Service

The Native SMPP communication service exposes the SMPP v. 3.4 standard interfaces.

The communication service acts as an External Short Message Entity (ESME) that connects to a Short Messaging Service Center (SMSC) over TCP/IP.

For the exact version of the standards that the communication service supports for the application-facing interfaces and the network protocols, see the appendix on standards and specifications in Oracle Communications Services Gatekeeper Concepts Guide.

The Native SMPP communication service access the network using the following network protocols:

	
SMPP v 3.4

	
SMPP v 5.1

SMPP v5.1 supports the billing identification parameter and ussd service_operation as optional parameters to Deliver_SM. See "smpp_billing_id" and "ussd_service_operation" for more information.

Using the Native SMPP communication service, an application can:

	
Send a short message to one or many destination addresses.

	
Cancel a previously sent message that has not yet been delivered.

	
Replace a previously sent message that has not yet been delivered.

	
Query the delivery status of a previously sent message.

	
Receive short messages arrived from the network.

	
Receive the delivery status of a previously sent message.

Requests flow in two directions: from the application to the network and from the network to the application.

All Native SMPP components are deployed in the network tier.

SMPP Server Service

The core module of the Native SMPP communication service is an SMPP Server Service deployed as an Oracle WebLogic Server Service. It provides connection services for the Native SMPP and Parlay X 2.1 Short Messaging plug-ins. The SMPP Server Service:

	
Receives SMPP data from the socket.

	
Constructs the SMPP protocol data unit (PDU).

	
Associates the current PDU with the correct application instance.

	
Invokes the plug-in.

	
Manages connections between Services Gatekeeper and applications.

	
Manages connections between Services Gatekeeper and Short Message Service Centers (SMSCs).

Because the SMPP Server Service is deployed in the network tier, applications using the Native SMPP Native communication service must be able to connect directly to the network tier. Firewalls must be configured to allow connection to the ports defined for the SMPP Server Service.

Connection Handling and Provisioning

Plug-in instances establish connections to Services Gatekeeper using facilities provided by the SMPP Server Service.

The connection ID with the application is created on a successful bind with the application. The connection ID with the SMSC is created on a successful bind with the SMSC. The connection ID changes on a successful rebind.

About Creating Connections

You use the connectionId and plugininstanceId parameters to establish connections. The connection-related operations accept values for both of these parameters. This is how they interact:

	
If the value for the connectionId parameter is matched then that connection is reset. In this case any value entered for connectionId is ignored.

	
If connectionId has no value or no value that matches the fields sent, and the value for plugininstanceid does match, then all connections for plugininstanceId are reset.

	
When resetting a single connection using connectionId, any configuration settings are ignored.

	
When resetting all connection for a plug-in using plugininstanceId configuration changes take effect.

connectionId uses this syntax:

plugin_instance_id#plugin_version

For example:

Plugin_px21_short_messaging_smpp_myinstance#5.0.0.1

Use the "Operation: listClientConnections" operation to list the plug-in instances.

About Connection Error Handling

Error handling for establishing connections is as follows:

	
If at least one plug-in instance successfully binds to the SMSC, Services Gatekeeper sends a successful bind response to the application and establishes a client connection. All client connections that failed to bind attempt to reconnect periodically.

While a client connection is attempting to reconnect with the SMSC, its corresponding server connection continues to receive requests from the application. The plug-in will not be able to process these requests. In this case, the server connection sends an error response to the application. The requests are not stored and not re-sent to the SMSC.

	
If all of the plug-in instances fail to bind, Services Gatekeeper sends a failure bind response to the application and closes and removes the server connection.

	
When a client connection is successfully established, the connection is verified periodically using ENQUIRE_LINK requests (heartbeats). If the ENQUIRE_LINK requests fail a configurable number of times, Services Gatekeeper attempts to reconnect with the SMSC. If the reconnect attempts fail a configurable number of times, the client connection is closed and removed. See "Attribute: EnquireLinkMaxFailureTimes" and "Attribute: RetryTimesBeforeGiveUp".

About Session Handling

Applications can bind to Services Gatekeeper as a transmitter, a receiver, or a transceiver. An application can establish several parallel sessions by issuing multiple bind operations.

The number of concurrent connections is provisioned for each Native SMPP plug-in, if connection-based routing is not enabled. See "Attribute: BindType", "Attribute: NumberReceiverConnections", "Attribute: NumberTransceiverConnections", and "Attribute: NumberTransmitterConnections".

The SMPP Server Service should be provisioned with the following data about the application instance:

	
The port number to bind to.

	
The maximum number of concurrent sessions allowed.

	
Whether subsequent operations should be allowed to target a previously sent short message.

	
Whether network-triggered short messages and delivery reports should be forwarded to the application.

	
The address range that, when matched with the destination address of a network-triggered short message, forwards the message to the application.

See "Operation: addApplicationSpecificSettings" for details about configuring these settings.

Authentication

Authentication credentials are configured in the Native SMPP plug-in instance MBean. See "Reference: Attributes and Operations for Native SMPP Plug-in"for more information.

Applications use an application instance ID as the ESME system_id and the related password when binding to Services Gatekeeper.

Connection Pooling

The SMPP Server Service maintains server and client connection pools.

Server Connection Pools

The SMPP Server Service maintains a server connection pool for application-facing (northbound) connections. The pool is created when the SMPP Server Service is started.

The plug-in obtains connections from this pool to send messages to the application.

The server connections are used to:

	
Invoke the plug-in.

	
Send messages to and receive messages from the application.

	
Manage the application-facing SMPP timers.

	
Manage windowing toward the application.

	
Cache transaction mapping information for transactions between Services Gatekeeper and the application.

Client Connection Pools

The SMPP Server Service maintains a client connection pool for network-facing (southbound) connections.

The plug-in sends BIND and UNBIND requests to the client pool and obtains a client connection ID from the pool to perform SMPP transactions.

The client connections are used to:

	
Invoke the plug-in.

	
Send messages to and receive messages from the SMSC.

	
Manage the network-facing SMPP timers.

	
Manage windowing toward the SMSC.

	
Cache transaction mapping information between Services Gatekeeper and the SMSC.

Timeouts

You can configure timers for both application-facing and network-facing connections. Some of the timers for application-facing and network-facing connections have the same names, but they are configured in different MBeans.

SMPP Server Service Timers

The SMPP Server Service provides the following configurable timers for connections between Services Gatekeeper and applications:

	
Initiation timer: This timer ensures that when an application initiates a connection, the BIND occurs within a specified period after the connection is established to Services Gatekeeper. See "Attribute: InitiationTimerValue" for more information.

	
Inactivity timer: This timer establishes a period of inactivity after which, if no SMPP messages are exchanged with the application, Services Gatekeeper closes the connection. See "Attribute: InactivityTimerValue" for more information.

	
Connection timer: This timer sets the heartbeat interval that Services Gatekeeper uses to request the connection status on the server connection. If the ENQUIRE_LINK requests fail, Services Gatekeeper closes the connection and attempts to reconnect. See "Attribute: EnquireLinkTimerValue" in "Reference: Attributes and Operations for SMPP Server Service" for more information.

	
Transaction timer: This timer establishes the interval between an SMPP request to the application and the corresponding SMPP response. If the interval is reached, Services Gatekeeper does not re-send the request. In this case, Services Gatekeeper removes the transaction information and discards the PDU response. See "Attribute: RequestTimerValue" in "Reference: Attributes and Operations for SMPP Server Service" for more information.

You can disable any of these timers by setting their values to 0.

Plug-in Instance Timers

The plug-in instance MBean provides the following configurable timers for connections between Services Gatekeeper and SMSCs:

	
Connection timer: This timer sets the heartbeat interval that Services Gatekeeper uses to request the connection status on the client connection. If the ENQUIRE_LINK requests fail, Services Gatekeeper closes the connection and attempts to reconnect. See "Attribute: EnquireLinkTimerValue" in "Reference: Attributes and Operations for Native SMPP Plug-in" for more information.

	
Transaction timer: This timer establishes the interval between an SMPP request to the SMSC and the corresponding SMPP response. If the interval is reached, Services Gatekeeper does not re-send the request. In this case, Services Gatekeeper removes the transaction information and discards the PDU response. See the "Attribute: RequestTimerValue" in "Reference: Attributes and Operations for Native SMPP Plug-in" for more information.

Windowing

To maximize throughput, Native SMPP supports windowing on both the application-facing and network-facing interfaces. Windowing provides a way to specify the amount of data that can be transmitted without receiving an acknowledgment.

Requests wait in a windowing queue until they can be submitted. Two values apply to the windowing queue. The windowing maximum queue size is the size of the queue, specifying the maximum number of requests that can wait in the queue at one time. The windowing maximum wait time value specifies the maximum amount of time that a single request can wait in the windowing queue.

The windowing size value is the number of unacknowledged requests that can be sent simultaneously.

Windowing for mobile-originated requests toward the application is configured in the following parameters in the SMPP Server Service's addApplicationSpecificSettings operation:

	
windowingSize

	
windowingMaxQueueSize

	
windowingMaxWaitTime

See "Operation: addApplicationSpecificSettings" for more information.

Windowing for mobile-terminated requests toward the SMSC is configured in the following plug-in instance MBean attributes:

	
Attribute: WindowingSize

	
Attribute: WindowingMaxQueueSize

	
Attribute: WindowingMaxWaitTime

A request moves from the windowing queue to the window. From the window it is submitted for processing. A submitted request remains in the window until its response is received. When the response is received, the request is released and another request can be moved from the windowing queue to the window.

If any one of these three windowing parameters is set to a value less than zero, windowing is turned off. If all of these three parameters are greater than zero, windowing is turned on.

In both directions, if the windowing request queue is full or the timer has expired, the request is not sent and an error code is returned to the plug-in instance.

Connection-Based Routing

Connection-based routing lets network operators configure geo-redundant sites to allow applications to send mobile-originated (MO), mobile-terminated (MT,) and delivery receipt (DR) traffic to and from any of the redundant sites. For example, a DR can be sent to a site other than the one through which the original message was submitted.

Enable Connection-Based Routing

To use this feature, set the ConnectionBaseRouting attribute in the SMPP Server Service to true. By default this attribute is false. See "Attribute: ConnectionBasedRouting" for more information.

When connection-based routing is enabled, messages from the network are routed to the application that caused or that could have caused the connection in the plug-in to be established to the SMSC. This works both for delivering a short message with a new message and delivering a short message containing a delivery receipt. This means that DELIVER_SM with a new message is not routed based on the destination address, and DELIVER_SM containing a delivery receipt is not routed based on the message identifier.

Limitations

The following are some limitations and issues pertaining to connection-based routing:

	
If an application is configured to support subsequent operations (CANCEL_SM, QUERY_SM and REPLACE_SM), those requests must be sent to the same geographic site as the original submit requests. They will not be accepted if sent to the other site. When Services Gatekeeper checks the subsequent operations, it returns an error response if it cannot find the original SUBMIT_SM request in the store.

	
If subsequent operations are enabled and a submit request is sent through site 1 but delivery receipt arrives on site 2, the data stored about the message in the database on site 1 is not deleted until the information is considered to be too old. The consequence is that an application can continue sending subsequent operations related to the message through site 1 even after the message was delivered.

	
If connection-based routing is enabled, the NumberReceiverConnections, NumberTransceiverConnections, and NumberTransmitterConnections attributes in the plug-in instance are ignored, because connections to the SMSC cannot be shared among different application instances.

Short Code Translation

The Native SMPP communication service does not offer short code translations.

USSD Support

Native SMPP provides Unstructured Supplementary Services Data (USSD) through the its_session_info, service_type, and ussd_service_operation optional parameters.

its_session_info

Required parameter for the CDMA Interactive Teleservice as defined by the Korean PCS carriers [KORITS]. Contains control information for the interactive session between an MS and an ESME.

See Section 5.3.2.43 of the Short Message Peer to Peer Protocol Specification v3.4 for the formal definition of the parameter and the appropriate subsections of Section 4 for its specification as an optional parameter for SUBMIT_SM, DELIVER_SM, and DATA_SM.

	Format
	
Octet String

Following is a description of the octet string.

Bits 7...............0

SSSS SSSS (octet 1)

NNNN NNNE (octet 2)

Octet 1 contains the session number (0 -255) encoded in binary. The session number remains constant for each session.

The sequence number of the dialog unit (as assigned by the ESME) within the session is encoded in bits [7. . . 1] of octet 2.

The End of Session Indicator indicates the message is the end of the conversation session and is encoded in bit 0 of octet 2 as follows:

	
0 = End of Session Indicator inactive

	
1 = End of Session Indicator active

service_type

Indicates the SMS application service associated with the message. Allows the ESME to use enhanced messaging services such as “replace_if_present” (generic) and to control the teleservice used on the air interface (for example, ANSI-136/TDMA, IS-95/CDMA).

Used to support USSD (Unstructured Supplementary Service Data 3G TS 23.090 version 3.0.0) messages through the SMPP protocol.

See Section 5.2.11 of the Short Message Peer to Peer Protocol Specification v3.4. for the formal definition of the parameter and the appropriate subsections of Section 4 for its specification as a mandatory parameter for SUBMIT_SM, SUBMIT_MULTI, DELIVER_SM, DATA_SM, and CANCEL_SM.

	Format
	
Octet String

	Value
	
The pre-defined generic service type value for USSD is USSD.

ussd_service_operation

Defines the USSD service operation that is required when SMPP is used as an interface to a (GSM) USSD system.

Used to support tunneling USSD (Unstructured Supplementary Service Data 3G TS 23.090 version 3.0.0) messages through the SMPP protocol.

Used as an optional parameter to SMPP SUBMIT_SM.

Defined in section Section 5.3.2.44 of the Short Message Peer to Peer Protocol Specification v3.4.

Added to DELIVER_SM in the SMPP 5.1 specification. See Short Message Peer to Peer Protocol Specification Version 5.1.

	Format
	
Octet String

	Value
	
Valid values are:

	
0 = PSSD indication

	
1 = PSSR indication

	
2 = USSR request

	
3 = USSN request

	
4 to 15 Reserved

	
16 = PSSD response

	
17 = PSSR response

	
18 = USSR confirm

	
19 = USSN confirm

	
20 to 31 Reserved

	
32 to 255 Reserved for vendor-specific USSD operations

Billing Identification

The native SMPP communication service supports the billing_identification parameter in the format in the SMPP Specification 5.1 through an optional parameter named smpp_billing_id.

The parameter works with SMPP 5.1 SMSCs, but with not with SMPP 3.4 SMSCs.

smpp_billing_id

Defines the billing information according to the format in the SMPP Specification 5.1, section 4.8.4.3 titled "billing_identification".

	Format
	
Hexadecimal string

Table 26-1 describes the format.

Table 26-1 Format for smpp_bliing_id Value

	Field	Size (octets)	Type	Description
	
parameter tag

	
2

	
Integer

	
0x060B

	
length

	
2

	
Integer

	
Length of value part in octets

	
value

	
1 - 1024

	
Octet String

	
Bits 7......0

0XXXXXXX (Reserved)1XXXXXXX (Vendor Specific)

The first octet represents the Billing Format tag and indicates the format of the billing information contained in the remaining octets.

If the value is not sent as a hexadecimal string, it is ignored and a warning is logged.

Here is sample code for encoding the string.

private String getHexEncodedString(String normalString) {
 byte[] bHexStr = normalString.getBytes();
 String retVal = "";
..String sOctet = null;
 for (int i = 0; i < bHexStr.length; i++) {
 sOctet = Integer.toHexString((int) (bHexStr[i] & 0xFF));
 if (sOctet.length() == 1) {
 sOctet = "0" + sOctet;
 }
 retVal = retVal.concat(sOctet);
 }
 return retVal.toUpperCase(); }

Load Balancing, High Availability and Fail-Over

To optimize system utilization, applications should load-balance application-triggered requests among all network tier servers.

The SMSC should load-balance network-triggered requests among all network tier servers.

Load balancing is supported only among plug-in instances that are located in same network tier server and share same large account. When a request is sent to a plug-in instance, the plug-in instances use the SMPP Server Service in the same server to forward the request to the applications. When a request is sent to the SMPP Server Service, the SMPP Server Service uses a plug-in instance in the same server to process the request.

High availability and fail-over is supported between Services Gatekeeper and the SMSC. High availability between the application and Services Gatekeeper must be handled by each application.

A prerequisite for high-availability for the Native SMPP communication service is redundant network tier servers, redundant network interface cards in each network tier server, and a redundant set of SMPP servers to connect to. High availability between Services Gatekeeper and the network is achieved by using at least two different plug-in instances per network tier server and having the plug-in instances connect to different SMPP servers.

Between SMPP applications and Services Gatekeeper, the applications handle high availability and fail-over for application-initiated requests by binding to two or more network tier servers. For network-triggered requests, the same requirement that the applications bind to two or more network tier servers applies.

High availability behavior is as follows:

	
In a Services Gatekeeper cluster, if the server becomes unavailable after sending a Submit SM request to and receiving the SUBMIT_SM_RESP from the SMSC, the SMSC routes the subsequent delivery receipt to another server. This other server retrieves the message information from cluster-level storage and processes it.

	
In a Services Gatekeeper cluster, if a server becomes unavailable after sending a SUBMIT_ SM request to and receiving the SUBMIT_SM_RESP from an application, the application routes the subsequent CANCEL_SM, QUERY_SM or REPLACE_SM request to another server. This other server retrieves the message information from cluster-level storage and processes it.

	
In a geo-redundant configuration, all sites are connected to the SMSC. If a site becomes unavailable after sending a SUBMIT_ SM request to and receiving the SUBMIT_SM_RESP from the SMSC, the SMSC routes the subsequent delivery receipt to another site. This other site uses connection-based routing to process the delivery receipt.

	
In a geo-redundant configuration, if an application is configured to support subsequent operations (CANCEL_SM, QUERY_SM, and REPLACE_SM) through the subsequentOperationsAllowed parameter to the addApplicationSpecificSettings operation, those requests must be sent to the same geographic site from which the original submit requests were sent. They will not be accepted if they are sent to another site.

	
In a geo-redundant configuration, if an application is configured to support subsequent operations and a submit request is sent through site 1 but delivery receipt arrives on site 2, the data stored about the message in the database on site 1 is not deleted until the information is considered to be too old. The consequence is that an application can continue sending subsequent operations related to the message through site 1 even after the message was delivered.

The Native SMPP communication service can be provisioned for applications to share the same large account in the SMPP server, so that they share the same bind. However, his configuration is not recommended since it impacts high availability for network-triggered requests. When there is only one bind between Services Gatekeeper and the SMPP server, and more than one application is listening for network-triggered messages, the Native SMPP communication service must listen to incoming messages on behalf of all the applications. The bind between the plug-in and the network node is performed on all network tier servers, so network-triggered messages can be sent to any of these servers. If the network-triggered request ends up in a server that the application has not bound to, the communication service does not try to look up a server that the application has bound to. Instead, it does not see an active bind and treats the request as undeliverable to the application. Because it is common for SMPP servers to load-balance between binds, it is very likely that 50% or more of the requests will fail in this setup. The only way to ensure high availability in this scenario is to mandate that all applications bind to all network tier servers.

Application Interfaces

For information about the application interface for the Native SMPP communication service, see the discussion of Native Interfaces in Oracle Communications Services Gatekeeper Application Developer's Guide.

Events and Statistics

The Native SMPP communication service generates Event Data Records (EDRs), Charging Data Records (CDRs), alarms, and statistics to assist system administrators and developers in monitoring the service

For general information, see Appendix A, "Events, Alarms, and Charging."

Event Data Records

Table 26-2 lists IDs of the EDRs created by the SMPP Server Service.

Table 26-2 Event Types Generated by the SMPP Server Service

	EDR ID	Description
	
400000

	
Entering the NorthChannelProcessor recvBind method.

	
400001

	
Entering the NorthChannelProcessor recvUnbind method.

	
400002

	
Entering the NorthChannelProcessor recvSubmitSM method.

	
400003

	
Leaving the NorthChannelProcessor sendSubmitSMResp method.

	
400004

	
Entering the NorthChannelProcessor recvSubmitMulti method.

	
400005

	
Leaving the NorthChannelProcessor sendSubmitMultiResp method.

	
400006

	
Entering the NorthChannelProcessor recvQuerySM method.

	
400007

	
Leaving the NorthChannelProcessor sendQuerySMResp method.

	
400008

	
Entering the NorthChannelProcessor recvCancelSM method.

	
400009

	
Leaving the NorthChannelProcessor sendCancelSMResp method.

	
400010

	
Entering the NorthChannelProcessor recvReplaceSM method.

	
400011

	
Leaving the NorthChannelProcessor sendReplaceSMResp method.

	
400020

	
Leaving the SouthChannelProcessor sendBind method.

	
400021

	
Leaving the SouthChannelProcessor sendUnbind method.

	
400022

	
Leaving the SouthChannelProcessor sendSubmitSM method.

	
400023

	
Entering the SouthChannelProcessor recvSubmitSMResp method.

	
400024

	
Leaving the SouthChannelProcessor sendSubmitMulti method.

	
400025

	
Entering the SouthChannelProcessor recvSubmitMultiResp method.

	
400026

	
Leaving the SouthChannelProcessor sendQuerySM method.

	
400027

	
Entering the SouthChannelProcessor recvQuerySMResp method.

	
400028

	
Leaving the SouthChannelProcessor sendCancelSM method.

	
400029

	
Entering the SouthChannelProcessor recvCancelSMResp method.

	
400030

	
Leaving the SouthChannelProcessor sendReplaceSM method.

	
400031

	
Entering the SouthChannelProcessor recvReplaceSMResp method.

	
400051

	
Entering the NorthChannelProcessor recvUnbindResp method.

	
400054

	
Entering the NorthChannelProcessor recvGenericNack method.

	
400055

	
Entering the NorthChannelProcessor sendBindResp method.

	
400056

	
Leaving the NorthChannelProcessor sendUnbind method.

	
400057

	
Leaving the NorthChannelProcessor sendUnbindResp method.

	
400060

	
Leaving the NorthChannelProcessor sendGenericNack method.

	
400061

	
Entering the SouthChannelProcessor recvBindResp method.

	
400062

	
Entering the SouthChannelProcessor recvUnbind method.

	
400063

	
Entering the SouthChannelProcessor recvUnbindResp method.

	
400066

	
Entering the SouthChannelProcessor recvGenericNack method.

	
400067

	
Leaving the SouthChannelProcessor sendUnbindResp method.

	
400070

	
Leaving the SouthChannelProcessor sendGenericNack method.

	
400100

	
Leaving the NorthChannelProcessor sendDeliverSM method.

	
400101

	
Entering the NorthChannelProcessor recvDeliverSMResp method.

	
400108

	
Entering the SouthChannelProcessor recvDeliverSM method.

	
400109

	
Leaving the SouthChannelProcessor sendDeliverSMResp method.

The Native SMPP plug-in instance does not exchange events directly with the application or the SMSC, so it does not generate any EDRs.

Charging Data Records

Native SMPP plug-in-specific CDRs are generated under the following conditions:

	
After a successful MT SUBMIT_SM_RESP operation from the application to the network.

	
After a successful MT SUBMIT_MULTI_RESP operation from the application to the network.

	
After a successful MO DELIVER_SM_RESPONSE operation from the network to the application.

Statistics

Table 26-3 maps methods invoked from either the application or the network to the transaction types collected by the Services Gatekeeper statistics counters.

Table 26-3 Methods and Transaction Types for Native SMPP

	Method	Transaction type
	
submitSm

	
TRANSACTION_TYPE_MESSAGING_SEND

	
submitSmMulti

	
TRANSACTION_TYPE_MESSAGING_SEND

	
receiveMoReq

	
TRANSACTION_TYPE_MESSAGING_RECEIVE

Alarms

For the list of alarms, see Oracle Communications Services Gatekeeper Alarm Handling Guide.

Managing Native SMPP

This section describes the properties and workflow for the Native SMPP communication service.

Properties for SMPP Server Service

Table 26-4 lists the technical specifications for the SMPP Server Service.

Table 26-4 SMPP Server Service Properties

	Property	Description
	
Managed object in Administration Console

	
domain_name > OCSG > server_name > Container Services > SMPPService

	
MBean

	
Domain=com.bea.wlcp.wlng

Name=wlng

InstanceName=SMPPService

Type=oracle.ocsg.protocol.smpp.management.SMPPServiceMBean

	
Exposes this interface to applications

	
Short Message Peer to Peer, Protocol Specification v3.4

	
Deployment artifacts

	
oracle.ocsg.protocol.smpp_api_5.0.0.0.jar, oracle.ocsg.protocol.smpp_5.0.0.0.jar

Properties for Native SMPP Plug-in

Table 26-5 lists the technical specifications for the Native SMPP plug-in.

Table 26-5 Native SMPP Plug-in Properties

	Property	Description
	
Managed object in Administration Console

	
domain_name > OCSG > server_name > Communication Services > Plugin_sms_smpp#5.0

	
MBean

	
Domain=com.bea.wlcp.wlng

Name=wlng_nt

InstanceName=same as the network protocol instance_id assigned when the plug-in instance is created

Type=oracle.ocsg.plugin.nativesmpp.management.NativeSMPPPluginMBean

	
Deployment name

	
wlng_nt_native_smpp_sms#5.0

	
Network protocol plug-in service ID

	
Plugin_sms_smpp

	
Network protocol plug-in instance ID

	
The ID is assigned when the plug-in instance is created. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide.

	
Exposes to the service communication layer a Java representation of:

	
SMPP v3.4, depends on common SMPP server service

Short Message Peer to Peer Protocol Specification v3.4

	
Interfaces with the network nodes using:

	
SMPP v3.4, depends on common SMPP server service4

Short Message Peer to Peer Protocol Specification v3.4

	
Service Type

	
SMPP

	
Application-facing interfaces

	
oracle.ocsg.protocol.smpp.plugin.SMPPPluginNorth

oracle.ocsg.protocol.smpp.service.SMPPServiceNorth

	
Network-facing interfaces

	
oracle.ocsg.protocol.smpp.plugin.SMPPPluginSouth

oracle.ocsg.protocol.smpp.service.SMPPServiceSouth

	
Supported Address Scheme

	
tel

	
Deployment artifact

	
wlng_nt_native_smpp_sms.ear

Configuration Workflow for Native SMPP Communication Service

Following is an outline for configuring the plug-in using the Administration Console or an MBean browser.

	
Navigate to Container Services and then SMPPService.

	
Configure the behavior of the SMPP Server Service.

See "Reference: Attributes and Operations for SMPP Server Service" for descriptions of the configuration options.

	
Using "Operation: updateAllServerPorts", apply the configuration settings for the Native SMPP Service.

	
Create one or more instances of the plug-in service. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the network protocol plug-in service ID as described in the "Properties for Native SMPP Plug-in" section.

	
Using the console or an MBean browser, select the MBean for the plug-in instance that you want to configure. The MBean display name is the same as the plug-in instance ID assigned when the plug-in instance was created.

	
Configure the behavior of the plug-in instance. See "Reference: Attributes and Operations for Native SMPP Plug-in" for the list of attributes that you can set.

	
Apply the configuration settings for the Native SMPP plug-in instance by restarting the plug-in or using "Operation: resetClientConnection".

	
Set up the routing rules to the plug-in instance. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the plug-in instance ID and address schemes listed in the "Properties for Native SMPP Plug-in" section.

	
If required, create and load a node SLA. For details see "Defining Global Node and Service Provider Group Node SLAs" and "Managing SLAs" in the Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

	
Provision the service provider accounts and application accounts. For information, see Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

Provisioning Workflow for Native SMPP Communication Service

Following is an outline of tasks for provisioning the communication service.

	
To register application instances to use the Native SMPP communication service, use "Operation: addApplicationSpecificSettings" in the MBean for the SMPP Server Service. Use the following operations to manage the account settings:

	
Operation: addApplicationSpecificSettings

	
Operation: deleteApplicationSpecificSettings

	
Using "Operation: updateAllServerPorts", apply the provisioning settings.

System Properties for SMPP Server Service

The SMPP Server Service has some system properties that cannot be modified at runtime. Set these properties on the Java command line when you start Services Gatekeeper.

These system properties are applicable to both Native SMPP and Parlay X SMS/SMPP plug-ins.

System Property: oracle.ocsg.protocol.smpp.serverservice.max_threads

Format: Integer

Maximum number of threads available to server connections.

The default is 32.

System Property: oracle.ocsg.protocol.smpp.serverservice.min_threads

Format: Integer

Minimum number of threads available to client and server connections. Each client connection uses one thread. Each server port uses one thread.

The default is 2.

System Property: wlng.legacy.smpp.PDUManipulationAllowed

Format: Boolean

Specifies whether an interceptor can modify a parameter passed between the SMPP Server Service and a plug-in.

Set to true to allow parameter modification, false to prohibit it.

The default is true.

System Property: wlng.smpp.max_payload_size

Format: Integer

Specifies the maximum number of characters in an SMS message.

The default is the maximum defined by the Parlay X 2.1 SMS specification: 160 GSM 7-bit characters or 70 Unicode characters.

Reference: Attributes and Operations for SMPP Server Service

The attributes listed in this section are used only by the Native SMPP communication service.

All of the operations are used by the Native SMPP communication service, but only the following four are used by the Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary SMS/SMPP communication services:

	
Operation: closeClientConnection

	
Operation: listClientConnections

	
Operation: listPluginInstances

	
Operation: resetClientConnection

This section describes the attributes and operations for configuration and maintenance.

	
Attribute: ConnectionBasedRouting

	
Attribute: EnquireLinkMaxFailureTimes

	
Attribute: EnquireLinkTimerValue

	
Attribute: InactivityTimerValue

	
Attribute: InitiationTimerValue

	
Attribute: LooseBinding

	
Attribute: OfflineMO

	
Attribute: RequestTimerValue

	
Attribute: ServerAddress

	
Attribute: ServerPort

	
Attribute: SmscSystemId

	
Operation: addApplicationSpecificSettings

	
Operation: closeClientConnection

	
Operation: closeServerConnection

	
Operation: closeServerPort

	
Operation: deleteApplicationSpecificSettings

	
Operation: listApplicationSpecificSettings

	
Operation: listClientConnections

	
Operation: listClusterServerConnectionsForMOJumping

	
Operation: listPluginInstances

	
Operation: listServerConnections

	
Operation: listServerPorts

	
Operation: resetClientConnection

	
Operation: resetServerPort

	
Operation: updateAllServerPorts

Attribute: ConnectionBasedRouting

Scope: Cluster

Unit: Not applicable

Format: Boolean

Enables and disables connection-based routing for Native SMPP plug-ins.

Connection-based routing lets operators configure geo-redundant sites to allow applications to send MO, MT, and DR traffic to and from either of the sites.

Set to true to enable, false to disable. The default is false.

For more information, see "Connection-Based Routing".

This attribute can be modified only when there are no active connections between SMPP applications and the SMPP Server Service.

Attribute: EnquireLinkMaxFailureTimes

Scope: Cluster

Unit: Not applicable

Format: Integer

Maximum number of failed ENQUIRE_LINK requests to the application before the connection with the application is closed.

Attribute: EnquireLinkTimerValue

Scope: Cluster

Unit: Seconds

Format: Integer

Minimum interval between the submission of ENQUIRE_LINK requests (heartbeats) to an application.

To disable the sending of ENQUIRE_LINK requests, set this value to 0 (zero).

Attribute: InactivityTimerValue

Scope: Cluster

Unit: Seconds

Format: Integer

Maximum period of inactivity for an application before the connection with the application is closed.

Use 0 (zero) for no timeout.

Attribute: InitiationTimerValue

Scope: Cluster

Unit: Seconds

Format: Integer

Maximum time between establishment a connection to the application and the BIND request.

If the timeout value is reached, the server connection is closed.

Use 0 (zero) for no timeout.

Attribute: LooseBinding

Scope: Server

Unit: Not applicable

Format: Boolean

Controls behavior on application BIND and UNBIND.

If true, the following applies:

	
As long as there are transmitting-capable connections (TX, TRX) from applications, TX and TRX connections will be kept open to SMSCs.

	
As long as there are receiving-capable connections (RX, TRX) from applications, RX and TRX connections will be kept open to SMSCs.

If false, the binding rules are more restrictive:

	
As long as there are TX connections from applications, TX connections will be kept open to SMSCs.

	
As long as there are RX connections from applications, RX connections will be kept open to SMSCs.

	
As long as there are TRX connections from applications, TRX connections will be kept open to SMSCs.

This attribute value cannot be changed while there is an active connection with an application.

The default is true.

Attribute: OfflineMO

Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies whether the JMS-based routing functionality for network-triggered messages is enabled. If true, a message from the network to an NT server that does not have an active bind to the appropriate application can be placed in a JMS queue from which another server that does have an active bind can fetch it and send it to the application.

The default is false.

The time that the message stays alive in the JMS queue is configurable. The default value is 3600000 milliseconds. To change this value, in the administrative console:

	
Select Services ->Messaging->JMS Modules.

	
Click WLNGJMSResource. The Settings page opens.

	
On the Configuration tab, click LegacySMSConnectionFactory. The Settings for LegacySMSConnectionFactory page opens

	
On the Configuration tab, select the Default Delivery sub-tab.

	
Make your changes to the Default Time-to-Live attribute.

	
Click Save.

	
Click the Activate Changes button in the Change Center.

This attribute is not applicable if ConnectionBasedRouting is true.

Attribute: RequestTimerValue

Scope: Cluster

Unit: Seconds

Format: Integer

Maximum time between the submission of a request to an application and the receipt of the corresponding response, before the connection is closed.

Set to 0 (zero) for no timeout.

Attribute: ServerAddress

Scope: Server

Unit: Not applicable

Format: String

Default host name or IP address that applications use to connect to the SMPP Server Service.

Multiple addresses are supported as a comma-separated list of IP addresses.

Attribute: ServerPort

Scope: Server

Unit: Not applicable

Format: Integer [1024–65535]

Default port that applications use to connect to the SMPP Server Service.

Updating this attribute takes effect immediately if the old port and the new port are not in use. In this case, the SMPP Server Service closes the old port and opens the new port.

If the old port is in use when this attribute is set, it is closed after the last application instance that used it is removed by the deleteApplicationSpecificSettings operation. See "Operation: deleteApplicationSpecificSettings" for more information.

When a new application instance is added with the addApplicationSpecificSettings operation, if the acceptPort parameter to that operation is a negative value, all traffic from the application uses the new port. See "Operation: addApplicationSpecificSettings" for more information.

Attribute: SmscSystemId

Scope: Cluster

Unit: Not applicable

Format: String; maximum 16 characters

SMSC system ID. Sent to an ESME client upon a successful BIND.

Operation: addApplicationSpecificSettings

Scope: Cluster

Specifies connection details for an application with the specified applicationInstanceId.

Required for an application instance to access the SMPP Server Service.

This operation takes effect immediately after it is invoked. The SMPP Server Service closes the old port, if it is not in use, and opens the new port, if it is not in use.

See "Windowing" for more information about the windowingSize, windowingMaxQueueSize, and windowingMaxWaitTime parameters.

Signature:

addApplicationSpecificSettings(applicationInstanceId: int, acceptPort: int, maxSession: int, subsequentOperationsAllowed: boolean, notificationEnabled: boolean, addressRange: String, windowingSize: int, windowingMaxQueueSize: int, windowingMaxWaitTime: int)

Table 26-6 addApplicationSpecificSettings Parameters

	Parameter	Description
	
applicationInstanceId

	
ID of the application instance for which the settings are valid.

	
acceptPort

	
Port to which the application is allowed to bind. A negative value allows binding to the port specified as the ServerPort. See "Attribute: ServerPort" for more information.

	
maxSession

	
Maximum number of concurrent sessions the application is allowed to establish.

A negative value allows an unlimited number of concurrent sessions.

	
subsequentOperationsAllowed

	
Specifies if the application is allowed to perform the following operations on a previously-sent short message:

	
QUERY_SM

	
REPLACE_SM

	
CANCEL_SM

Enter:

	
true to allow

	
false to deny

Setting this attribute to false reduces the resource utilization by the SMPP Server Service since it does not need to track each request in its store.

See "Connection-Based Routing" for details about how subsequent operations are handled in geo-redundant configurations.

	
notificationEnabled

	
Specifies if the application is allowed to receive network-triggered messages. If allowed, the application can send the BIND_TRANSCEIVER and BIND_RECEIVER operations.

Enter:

	
true to allow

	
false to deny

	
addressRange

	
If the notificationEnabled parameter is true, specifies the address range for listening for network-triggered short messages. Only messages that are sent to this address range are forwarded to the application.

The address range is expressed as a regular expression. When used for binding a receiver or transceiver, the address range in the bind operation must be in the specified range. Otherwise the bind is rejected. See Appendix A in SMPP Protocol Specification v3.4.

This setting is valid only if the application is allowed to receive network-triggered messages.

Example:

^1234

	
windowingSize

	
Maximum number of concurrent mobile-originated requests.

	
windowingMaxQueueSize

	
Maximum number of mobile-originated requests allowed to wait in the windowing queue.

	
windowingMaxWaitTime

	
Maximum time in seconds that each mobile-originated request is allowed to wait in the windowing queue.

Operation: closeClientConnection

Scope: Server

Closes the specified client connection between the communication service and the SMSC.

If the connectionId parameter is matched, closes just the client connection.

If the pluginInstanceId parameter is matched, closes all connections related to the plug-in instance.

See "Connection Handling and Provisioning" for more information on these parameters.

Signature:

closeClientConnection(connectionId: String, pluginInstanceId: String)

Table 26-7 closeClientConnection Parameters

	Parameter	Description
	
connectionId

	
Id of connection to be closed. Created by a previous BIND.

	
pluginInstanceId

	
Id of plug-in instance for which related connections are to be closed.

Operation: closeServerConnection

Scope: Server

Closes the specified server connections between the communication service and the application.

If the connectionId parameter is matched, closes the connection.

If the appInstanceId parameter is matched, closes all connections related to the application instance.

If the port parameter is matched, closes all connections to that port.

Signature:

closeServerConnection(connectionId: string, appInstanceId: string, port: int)

Table 26-8 closeServerConnection Parameters

	Parameter	Description
	
connectionId

	
Id of connection to be closed. Created by a previous BIND operation.

	
appInstanceId

	
Id of application instance for which related connections are to be closed.

	
port

	
Port for which connections are to be closed.

Operation: closeServerPort

Scope: Server

Closes the specified server port on which the SMPP Server Service is listening. Closes all server and client connections on the specified port.

Signature:

closeServerPort(port: int)

Table 26-9 closeServerPort Parameters

	Parameter	Description
	
port

	
Port to close.

Operation: deleteApplicationSpecificSettings

Scope: Cluster

Deletes application-specific settings for an application with the specified applicationInstanceId.

The application will no longer be able to access the SMPP Server Service.

Signature:

deleteApplicationSpecificSettings(applicationInstanceId: String)

Table 26-10 deleteApplicationSpecificSettings Parameters

	Parameter	Description
	
applicationInstanceId

	
ID of the application instance for which to delete settings

Operation: listApplicationSpecificSettings

Scope: Cluster

Displays all application-specific settings.

Signature:

listApplicationSpecificSettings()

Operation: listClientConnections

Scope: Server

Displays description and status of all client connections. These are connections between the communication service and the SMSC.

Signature:

listClientConnections()

Operation: listClusterServerConnectionsForMOJumping

Scope: Cluster

Displays the description and status for cluster server connections for which the MO jumping is enabled.

For information about MO jumping, see "Attribute: OfflineMO" for more information.

Signature:

listClusterServerConnectionsForMOJumping()

Operation: listPluginInstances

Scope: Server

Displays description and status for all registered plug-in instances.

listPluginInstances()

Operation: listServerConnections

Scope: Server

Displays description and status of each server connection.

Signature:

listServerConnections()

Operation: listServerPorts

Scope: Server

Displays description and status of each server port.

Signature:

listServerPorts()

Operation: resetClientConnection

Scope: Server

Closes and restarts the specified client connection between the communication service and the SMSC.

If the connectionId parameter is matched, resets the connection.

If the pluginInstanceId parameter is matched, resets all connections related to the plug-in.

See "Connection Handling and Provisioning" for more information on how the connectionId and pluginInstanceId interact.

Signature:

resetClientConnection(connectionId: String, pluginInstanceId: String)

Table 26-11 resetClientConnection Parameters

	Parameter	Description
	
connectionId

	
Id of the connection to be reset. Created by a previous BIND operation.

	
pluginInstanceId

	
Id of the plug-in instance for which related connections are to be reset.

Operation: resetServerPort

Scope: Server

Closes and restarts the specified application-facing server port on which the SMPP Server Service is listening. This operation resets all server and client connections on the specified port.

Signature:

resetServerPort(port: int)

Table 26-12 resetServerPort Parameters

	Parameter	Description
	
port

	
Port to reset.

Operation: updateAllServerPorts

Scope: Server

Closes and restarts all server ports all local server ports in the current configuration.

Signature:

updateAllServerPorts()

Reference: Attributes and Operations for Native SMPP Plug-in

This section describes the attributes and operations for configuration and maintenance:

	
Attribute: BindType

	
Attribute: DeliverSmRespCommandStatus

	
Attribute: EnableDeleteAfterCancel

	
Attribute: EnableDeleteAfterNotify

	
Attribute: EnableDeleteAfterQuery

	
Attribute: EnquireLinkTimerValue

	
Attribute: EsmeAddressRange

	
Attribute: EsmeNpi

	
Attribute: EsmePassword

	
Attribute: EsmeSystemId

	
Attribute: EsmeSystemType

	
Attribute: EsmeTon

	
Attribute: LocalAddress

	
Attribute: LocalPort

	
Attribute: MessageIdInHexFormat

	
Attribute: NumberReceiverConnections

	
Attribute: NumberTransceiverConnections

	
Attribute: NumberTransmitterConnections

	
Attribute: RequestTimerValue

	
Attribute: RetryTimesBeforeGiveUp

	
Attribute: RetryTimesBeforeReconnect

	
Attribute: SmscAddress

	
Attribute: SmppVersion

	
Attribute: SmscPort

	
Attribute: WindowingMaxQueueSize

	
Attribute: WindowingMaxWaitTime

	
Attribute: WindowingSize

Attribute: BindType

Scope: Server

Unit: Not applicable

Format: Integer

Specifies how the plug-in binds to the SMSC.

Use:

	
1 to bind as Transceiver

	
2 to bind as Transmitter

	
3 to bind as Receiver

The setting is not applied until the plug-in is restarted or the SMPP Server Service "Operation: resetClientConnection" is performed.

Attribute: DeliverSmRespCommandStatus

Scope: Cluster

Unit: Not applicable

Format: Integer

Error code to used in the command_status field when the application is unavailable. See section 5.1.3 command_status in SMPP Protocol Specification v3.4.

Specifies how the plug-in responds to an SMSC if a network-triggered short message cannot be delivered to an application that subscribed for notifications on incoming short messages.

The default is ESME_RINVDSTADR.

The setting is not applied until the plug-in is restarted or the SMPP Server Service "Operation: resetClientConnection" is performed.

Table 26-13 lists the possible values for DeliverSmRespCommandStatus.

Table 26-13 DeliverSmRespCommandStatus Response Codes

	Error Code	Definition	Possible Scenario
	
1

	
Invalid Message Length

	
Failed to decode the short message in deliverSm (MOAT).

	
6

	
Invalid priority flag

	
The priority flag is less than 0 or greater than 3.

	
8

	
System Error

	
An internal Services Gatekeeper error has occurred, for example, a storage exception.

	
10

	
Invalid Source Address

	
An invalid source address in deliverSm, for example, an empty address.

	
11

	
Invalid Address

	
Services Gatekeeper received a delivery receipt with an unknown address or a MOAT from an address without any registration.

	
12

	
Invalid Message ID

	
The messageId in deliverSm is null or unknown.

	
67

	
Invalid esm_class field data

	
Invalid esm_class field data in deliverSm, for example, -1.

Attribute: EnableDeleteAfterCancel

Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies whether to delete SMPP session information from storage after receipt of a CANCEL_SM_RESP.

The default is true.

Attribute: EnableDeleteAfterNotify

Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies whether to delete SMPP session information from storage after receipt of the delivery report with the final message state.

The default is true.

Attribute: EnableDeleteAfterQuery

Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies whether to delete SMPP session information from storage after the receipt of the query response with the final message state.

The default is false.

Attribute: EnquireLinkTimerValue

Scope: Cluster

Unit: Seconds

Format: Integer

Minimum interval between ENQUIRE_LINK requests to the SMSC.

The default is 60.

To disable the sending of ENQUIRE_LINK requests, set this value to 0 (zero).

Attribute: EsmeAddressRange

Scope: Server

Unit: Not applicable

Format: String formatted as a regular expression.

ESME address range. This is the address range of the SMS messages to be sent to the plug-in instance by the SMSC.

The default is ^.*$.

The setting is not applied until the plug-in is restarted or the SMPP Server Service "Operation: resetClientConnection" is performed.

Attribute: EsmeNpi

Scope: Server

Unit: Not applicable

Format: Integer

The ESME Numbering Plan Indicator (NPI) used in a BIND request.

Used for destination address and as a default for originating address. Also used for both destination address and originating address during bind operation. Use:

	
0 for Unknown

	
1 for ISDN (E163/E164)

	
3 for Data (X.121)

	
4 for Telex (F.69)

	
6 for Land Mobile (E.212)

	
8 for National

	
9 for Private

	
10 for ERMES

	
14 for Internet (IP)

	
18 for WAP Client ID

The default is 0.

The setting is not applied until the plug-in is restarted or the SMPP Server Service "Operation: resetClientConnection" is performed.

Attribute: EsmePassword

Scope: Cluster

Unit: Not applicable

Format: String

Password used by the plug-in instance for connecting to the SMSC as an ESME.

Attribute: EsmeSystemId

Scope: Cluster

Unit: Not applicable

Format: String

System ID used by the plug-in instance when connecting to the SMSC as an ESME.

The default is OCSG.

The setting is not applied until the plug-in is restarted or the SMPP Server Service "Operation: resetClientConnection" is performed.

Attribute: EsmeSystemType

Scope: Cluster

Unit: Not applicable

Format: String

System type used by the plug-in instance for connecting to the SMSC as an ESME.

The default is mess_gateway.

The setting is not applied until the plug-in is restarted or the SMPP Server Service "Operation: resetClientConnection" is performed.

Attribute: EsmeTon

Scope: Cluster

Unit: Not applicable

Format: Integer

ESME Type Of Number (TON).

Used for destination address and as a default for originating address. Also used for both destination address and originating address in a BIND request. Use:

	
0 for Unknown

	
1 for International

	
2 for National

	
3 for Network

	
4 for Subscriber

	
5 for Alphanumeric

	
6 for Abbreviated

	
7 Reserved

The default is 0.

The setting is not applied until the plug-in is restarted or the SMPP Server Service "Operation: resetClientConnection" is performed.

Attribute: LocalAddress

Scope: Server

Unit: Not applicable

Format: String

Local server address used by the plug-in to connect to the SMSC. The address can be expressed as an IP address or host name. The address or host name must resolve to a local address.

Enter "" to use the default address of the server.

The setting is not applied until the plug-in is restarted or the SMPP Server Service "Operation: resetClientConnection" is performed.

Attribute: LocalPort

Scope: Server

Unit: Not applicable

Format: Integer [1 - (65535 - number of connections)]

Local port used by the plug-in to connect to the SMSC.

The default is 3000.

The setting is not applied until the plug-in is restarted or the SMPP Server Service "Operation: resetClientConnection" is performed.

Attribute: MessageIdInHexFormat

Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies the message_id format used in SUBMIT_SM_RESP, SUBMIT_MULTI_RESP, DATA_SM_RESP operations.

If true, the format is hexadecimal; if false, it is decimal.

The default is false.

Attribute: NumberReceiverConnections

Scope: Cluster

Unit: Not applicable

Format: Integer

Number of connections used to connect to the SMSC if the bind type is 3.

The default is 1.

See "Attribute: BindType" for more information.

The connections are established with the first successful BIND between the application and Services Gatekeeper, if connection-based routing is disabled.

If connection-based routing is enabled, connections to the SMSC cannot be shared among different application instances, so this attribute is ignored.

Attribute: NumberTransceiverConnections

Scope: Cluster

Unit: Not applicable

Format: Integer

Number of connections used to connect to the SMSC if the bind type is 1.

The default is 1.

See "Attribute: BindType" for more information.

The connections are established with the first successful BIND between the application and Services Gatekeeper, if connection-based routing is disabled.

If connection-based routing is enabled, connections to the SMSC cannot be shared among different application instances, so this attribute is ignored.

Attribute: NumberTransmitterConnections

Scope: Cluster

Unit: Not applicable

Format: Integer

Number of connections used to connect to the SMSC if the bind type is or 2.

The default is 1.

See "Attribute: BindType" for more information.

The connections are established with the first successful BIND between the application and Services Gatekeeper, if connection-based routing is disabled.

If connection-based routing is enabled, connections to the SMSC cannot be shared among different application instances, so this attribute is ignored.

Attribute: RequestTimerValue

Scope: Cluster

Unit: Seconds

Format: Integer

Maximum time between the submission of a request to the SMSC and the receipt of the corresponding response before the connection is terminated.

The default is 20.

Set to 0 (zero) for no timeout.

Attribute: RetryTimesBeforeGiveUp

Scope: Cluster

Unit: Not applicable

Format: Integer

Maximum number of times for the plug-in to try to reconnect to the server service.

The default is 30.

The setting is not applied until the plug-in is restarted or the SMPP Server Service "Operation: resetClientConnection" is performed.

Attribute: RetryTimesBeforeReconnect

Scope: Cluster

Unit: Not applicable

Format: Integer

Maximum number of times for the plug-in to try to connect to the server service before attempting to reconnect.

The default is 3.

The setting is not applied until the plug-in is restarted or the SMPP Server Service "Operation: resetClientConnection" is performed.

Attribute: SmscAddress

Scope: Cluster

Unit: Not applicable

Format: String

SMSC address as an IP address or host name.

The setting is not applied until the plug-in is restarted or the SMPP Server Service "Operation: resetClientConnection" is performed.

Attribute: SmppVersion

Scope: Cluster

Unit: Not applicable

Format: String

SMPP version of the communication service used between Services Gatekeeper and the SMSC.

Valid values are 3.4 and 5.1.

3.4 is the fully-supported version.

5.1 is provided to support the billing identification parameter and the ussd_service_operation parameter for the DELIVER_SM operation. See "USSD Support" and "Billing Identification" for information about these parameters

The default is 3.4.

Attribute: SmscPort

Scope: Cluster

Unit: Not applicable

Format: Integer

Listening port used by the SMSC

The default is 5016.

The setting is not applied until the plug-in is restarted or the SMPP Server Service "Operation: resetClientConnection" is performed.

Attribute: WindowingMaxQueueSize

Scope: Cluster

Unit: Not applicable

Format: Integer

Maximum number of mobile-terminated requests to the SMSC allowed in the windowing queue.

The default is 100.

If any one of the three windowing attributes (WindowingMaxQueueSize, WindowingMaxWaitTime, or WindowingSize) is set to a value less than zero, windowing is turned off. If all of these three attributes have values greater than zero, windowing is turned on.

See "Windowing" for general information about windowing.

Attribute: WindowingMaxWaitTime

Scope: Cluster

Unit: Seconds

Format: Integer

Maximum time that a mobile-terminated request to the SMSC is allowed to wait in the windowing queue.

The default is 15.

If any one of the three windowing attributes (WindowingMaxQueueSize, WindowingMaxWaitTime, or WindowingSize) is set to a value less than zero, windowing is turned off. If all of these three attributes have values greater than zero, windowing is turned on.

See "Windowing" for general information about windowing.

Attribute: WindowingSize

Scope: Cluster

Unit: Not applicable

Format: Integer

Maximum number of simultaneous unacknowledged mobile-terminated requests to the SMSC enforced for each connection.

The default is 5.

If any one of the three windowing attributes (WindowingMaxQueueSize, WindowingMaxWaitTime, or WindowingSize) is set to a value less than zero, windowing is turned off. If all of these three attributes have values greater than zero, windowing is turned on.

See "Windowing" for general information about windowing.

27 Native UCP

This chapter describes the Native UCP communication service.

Overview of the Native UCP Communication Service

The Native UCP communication service exposes the UCP Short Message Service Center EMI-UCP standard interfaces.

The communication service acts as a Short Message Terminal (SMT) that connects to a Short Messaging Service Center (SMSC) over TCP/IP.

For the exact version of the standards that the communication service supports for the application-facing interfaces and the network protocols, see the appendix on standards and specifications in Oracle Communications Services Gatekeeper Concepts Guide.

The Native UCP service can:

	
Connect to a specified SMSC address.

	
Open a session with the SMSC.

	
Send acknowledgments to the SMSC.

	
Send acknowledgments to the application.

	
Send a mobile-terminated SMS message to destination addresses.

	
Deliver a mobile-originated SMS message.

	
Deliver a delivery notification associated with a previously sent mobile-terminated SMS message.

All Native UCP components are deployed in the network tier.

The core module of the Native UCP communication service is a Native UCP Protocol Server Service deployed as an Oracle WebLogic Server Service. The Native UCP Protocol Server Service:

	
Receives UCP data from the socket.

	
Constructs the UCP protocol data unit (PDU).

	
Associates the current PDU with the correct application instance.

	
Invokes the plug-in.

There is also a Native UCP managed plug-in module, as well as the Native UCP plug-in instances.

In addition, Native UCP uses the Connection Information Manager service to create and manage a credential map to support each plug-in instance. See "Managing and Configuring Connection Information" in the Oracle Communication Services Gatekeeper System Administrator's Guide for information about the Connection Information Manager.

The entire Native UCP Service is deployed in the network tier, so applications using it must connect directly to the network tier. The network and any firewall should be configured to allow connection to the ports defined for the Native UCP Service.

There is no failover between network tier servers. Redundant SMSCs and redundant network cards are required to support high-availability features.

To optimize system utilization, the application and the SMSC should load balance the requests among all network tier servers.

Hitless upgrade is not supported for the Native UCP communication service. To upgrade you must restart the server.

Connection and Credential Handling

Plug-in instances establish connections to Services Gatekeeper using facilities provided by the Protocol Server Service. They also use the Protocol Server Service to open a session and to send requests to the SMSC. The Protocol Server Service creates a new socket connection for each session management operation of subtype "open session" that is sent.

The Native UCP Protocol Server Service uses the Connection Information Manager´s getConnectInfo operation to get the connection information for a particular plug-in instance. When a plug-in instance sends a Native UCP PDU to the Protocol Server Service passing its plug-in instance ID, a connection ID is returned. This connection ID identifies the SMSC connection on which the request was sent.

A server-side connection connects an application to Services Gatekeeper, which is the server in this context.

A client-side connection connects an SMSC to Services Gatekeeper, which is a client in this context.

Native UCP has no unbind operation. There are no receiver, transceiver, or transmitter connection types. If a connection is lost, the Protocol Server Service automatically closes one connection to the SMSC for the current application instance. See Multiple Connections for more information.

Credentials

The Protocol Server Service performs network credential mappings based on a credential map set up in the Connection Information Manager.

A user/password combination is associated with a credential ID that is stored in the Connection Information Manager. See the Connection Information Manager´s createOrUpdateUserPasswordCredentialEntry operation. The credential ID is associated with a plug-in instance and an application instance in an entry in the Connection Information Manager's credential map. See the Connection Information Manager's createOrUpdateCredentialMap operation.

For detailed information on how to configure the connection information and the credential map, see the "Managing and Configuring Connection Information" chapter in Oracle Communications Services Gatekeeper System Administrator's Guide, another document in the set.

Windowing and Transaction Numbers

To maximize throughput, Native UCP supports windowing on both the application-facing and network-facing interfaces. This provides a way to specify the amount of data that can be transmitted to and from the network without receiving an acknowledgment.

On the server side, Native UCP creates a transaction number (TRN) allocation table using default values. These are used by server-side connections sending deliver_short_message and deliver_notification requests to an application.

On the client side, Native UCP creates a transaction number allocation table using values configured in the Connection Information Manager. Configure the client-side windowing behavior by setting the parameters listed in Table 27-1 using the Connection Information Manager´s addXParamToCredentialEntry operation. For information about this operation, see the "Managing and Configuring Connection Information" chapter Oracle Communication Services Gatekeeper System Administrator's Guide.

Table 27-1 UCP Windowing Parameters in ConnectionInfoManager

	Parameter	Description	Default
	
windowSize

	
Maximum number of unacknowledged transactions allowed between a plug-in instance and an SMSC

	
100

	
maxWaitAcquireTimeout

	
Maximum time in milliseconds that a request can wait while trying to allocate a transaction number

	
3000

	
allocationTimeout

	
Maximum time in milliseconds that an allocated transaction number can be held while the plug-in or the SMSC is waiting for an acknowledgment

	
5000

	
maxQueueSize

	
Maximum number of threads that can wait for a transaction number to be allocated

	
5

Behavior When the Window is Exceeded

If Services Gatekeeper tries to allocate a TRN when all the TRNs have been allocated and none is old enough to be cleaned up and maxWaitAcquireTimeout has expired, an exception is thrown causing Services Gatekeeper to respond with a NACK.

Behavior When TRNs Are Not Released

When a TRN is allocated, values that have already been allocated are checked to see whether they have expired. Entries older than allocationTimeout are cleaned and automatically released. An error is logged, but no alarm is generated. No NACK is triggered for a request that was originally associated with the expired TRN.

Multiple Connections

An application instance can establish multiple TCP connections to Services Gatekeeper. Multiple application instances, those with different application instance names, cannot share a connection to the SMSC.

If one connection between an application instance and an SMSC is dropped, Services Gatekeeper does not automatically close associated application instance connections as long as there are other SMSC connections available for that same application instance. If all connections to the SMSC for a particular application instance are dropped, Services Gatekeeper terminates all of that application instance's connections.

Connection Pooling

When an application instance sends an open session operation on a new connection, the Protocol Server Service tries to establish a connection to the underlying SMSCs and then to open the session. It does not automatically establish connection pools to the underlying SMSCs. It establishes additional connections only when an application instance establishes multiple connections with Services Gatekeeper.

Because an application may establish multiple connections, a request sent from the Protocol Server Service to a plug-in includes a server-side connection identifier. This identifier is then included when the plug-in uses the Protocol Server Service to send acknowledgments back to the application. Acknowledgments must be sent on the same connection as the corresponding request. Delivery reports can be sent on a different connection.

Windowing and Transaction Numbers

To maximize throughput, Native UCP supports windowing on both the application-facing and network-facing interfaces. This provides a way to specify the amount of data that can be transmitted to and from the network without receiving an acknowledgment.

On the server side, Native UCP creates a transaction number (TRN) allocation table using default values. These are used by server-side connections sending deliver_short_message and deliver_notification requests to an application.

On the client side, Native UCP creates a transaction number allocation table using values configured in the Connection Information Manager. Configure the client-side windowing behavior by setting the parameters listed in Table 27-2 using the Connection Information Manager´s addXParamToCredentialEntry operation. For information about this operation, see the "Managing and Configuring Connection Information" chapter in Oracle Communications Services Gatekeeper System Administrator's Guide.

Table 27-2 UCP Windowing Parameters in ConnectionInfoManager

	Parameter	Description	Default
	
windowSize

	
Maximum number of unacknowledged transactions allowed between a plug-in instance and an SMSC

	
100

	
maxWaitAcquireTimeout

	
Maximum time in milliseconds that a request can wait while trying to allocate a transaction number

	
3000

	
allocationTimeout

	
Maximum time in milliseconds that an allocated transaction number can be held while the plug-in or the SMSC is waiting for an acknowledgment

	
5000

	
maxQueueSize

	
Maximum number of threads that can wait for a transaction number to be allocated

	
5

Behavior When the Window is Exceeded

If Services Gatekeeper tries to allocate a TRN when all the TRNs have been allocated and none is old enough to be cleaned up and maxWaitAcquireTimeout has expired, an exception is thrown causing Services Gatekeeper to respond with a NACK.

Behavior When TRNs Are Not Released

When a TRN is allocated, values that have already been allocated are checked to see whether they have expired. Entries older than allocationTimeout are cleaned and automatically released. An error is logged, but no alarm is generated. No NACK is triggered for a request that was originally associated with the expired TRN.

Authentication

Applications are authenticated on receipt of the openSession PDU, after which the connection is associated with the authenticated identity.

Subsequent requests on the connection trigger an identity assertion associating the request with the identity that was authenticated with the receipt of the open session PDU. A consequence of this behavior is that an application can continue to send messages after the password has been changed. To force a new authentication, close the connection.

Table 27-3 describes the mapping between the Native UCP authentication parameters and the Services Gatekeeper parameters.

Table 27-3 Authentication Parameters

	Native UCP Parameter	Services Gatekeeper ConnectionInfoManager Credential Parameter
	
originating address (OAdC)

	
application instance name

	
password

	
password

The password is stored in the Connection Information Manager. No password information is stored by the Protocol Server Service or by the plug-in.

Availability and Retry

The availability and retry behavior of the Protocol Server Service is as follows.

Application-Initiated traffic

If there is no acknowledgment from the network, the UCP Protocol Server Service does not start any timers per request, does not perform any retries, and does not report an acknowledgment back to the application.

The only exception to this behavior is when the wait on an openSession request exceeds the configured Native UCP OpenSessionTimeout maximum. See "Attribute: OpenSessionTimeout" for more information.

If the Protocol Server Service receives an exception when calling the submit_short_message operation, it sends a NACK to the application.

Network-Initiated traffic

If the underlying SMSC does not receive an acknowledgment from Services Gatekeeper, the SMSC should resend the request.

If a message is sent to an application but no acknowledgment is returned from the application, the UCP Protocol Server Service does not start any per request timers, does not perform any retries, and does not send back an acknowledgment to the application.

If the Protocol Server Service receives an exception when calling the deliver_short_message or deliver_notification operation, it sends a NACK to the SMSC.

Delivery reports do not have to be sent on the same server that sent the original delivery request, even in a geo-redundant setup. In a clustered configuration, if the server that submits an SMS fails, another server can handle the delivery report for that SMS.

Client-Side Retry Handling

Native UCP automatically tries to re-establish a dropped connection when an initial openSession attempt or an established session fails. The number of retries attempted is configured by the maxReconnectAttempts attribute and the number of milliseconds between retries by the timeBetweenReconnectAttempts attribute.

The retry behavior is as follows:

	
Initial openSession failure: When an application sends the initial open session request, Services Gatekeeper sends one open session request to each SMSC that matches the current configuration in terms of plug-ins, routes, SLAs, and so on. If one of the SMSCs responds with an ACK, Services Gatekeeper returns an ACK to the application.

For all SMSCs that Services Gatekeeper cannot connect to or receive an acknowledgment from, it tries to re-establish a connection. Specifically, retry is triggered in the following cases:

	
Services Gatekeeper receives a NACK in response to the open session request.

	
The socket to the SMSC cannot be set up.

	
The socket is closed before the acknowledgment is received.

	
The timeout period, configured by the OpenSessionTimeout attribute, expires before an acknowledgment is received.

	
Established session failure: If the client-side connection is dropped and the Services Gatekeeper application instance associated with the dropped connection still has other working connections, Services Gatekeeper sends an open session request to each SMSC that matches the current configuration, following the same procedure as described above for an initial openSession failure.

Use the dumpOngoingClientConnectionsRetryInfo and stopOngoingClientConnectionRetry operations to manage connections that are in the retry state.

Heartbeat Support

Native UCP provides heartbeat support by sending UCP operation "31" (SMT alert) requests at regular intervals. This prevents firewalls and the SMSC from closing an idle connection.

Server-Side Heartbeat Support

Heartbeat support for Native UCP server-side connections has the following characteristics:

	
In response to a UCP operation type "31"(SMT Alert), the corresponding acknowledgment is sent.

	
There are no timeouts associated with heartbeats.

	
Services Gatekeeper does not close any connections because of missing heartbeat requests.

	
Heartbeats received on server-side connections are not forwarded to client-side connections.

	
There are no configuration attributes associated with server-side heartbeat functions.

Client-Side Heartbeat Support

Heartbeat support for Native UCP client-side connections has the following characteristics:

	
Heartbeats are not enabled by default for a client-side connection.

	
Heartbeats are enabled by setting the heartbeatInterval parameter in the Connection Information Manager. This parameter defines the interval, in milliseconds, between UCP operation type 31 requests. The value is configured with the addXParamToCredentialEntry operation. For information about this operation, see "Managing and Configuring Connection Information" in Oracle Communications Services Gatekeeper System Administrator's Guide.

	
Services Gatekeeper does not close any client-side connections because of missing acknowledgments on heartbeat requests.

	
Received client-side heartbeat acknowledgments are not forwarded to server-side connections.

Storage Provider

The Native UCP Protocol Server Service and the Native UCP plug-in use the default Services Gatekeeper store.

Application Interfaces

For information about the application interface for the Native UCP communication service, see the discussion of Native Interfaces in Oracle Communications Services Gatekeeper Application Developer's Guide.

Events and Statistics

The Native UCP communication service generates Event Data Records (EDRs), Charging Data Records (CDRs), alarms, and statistics to assist system administrators and developers in monitoring the service

For general information, see Appendix A, "Events, Alarms, and Charging."

Event Data Records

Table 27-4 lists IDs of the EDRs created by the Native UCP communication service.

When there are multiple SMSCs, it is possible that EDR data generated for open session requests may contain the wrong data for some of the EDRs because EDR data is stored in the current context.

Table 27-4 Event Types Generated by Native UCP

	EDR ID	Description
	
402001

	
application-initiated openSession to the SMSC

	
402002

	
application-initiated submitSM to the SMSC

	
402003

	
application-initiated ACK to the SMSC

	
402004

	
application-initiated NACK to the SMSC

	
402010

	
network-triggered deliverSM to the application

	
402011

	
network-triggered deliveryNotification to the application

	
402012

	
network-triggered ACK to the application

	
402013

	
network-triggered NACK to the application

Table 27-5 describes Native UCP-specific fields included in the Native UCP EDRs.

Table 27-5 Native UCP-Specific EDR Fields

	EDR Parameter	Description
	
UCP_isOperation

	
true if EDR is for an operation, false if for an acknowledgment

	
UCP_opType

	
UCP operation type; for example, 51 for a submit_short_message request

	
UCP_trn

	
UCP transaction number; see "About UCP_trn/UCP_mappedTrn"

	
UCP_mappedTrn

	
mapped transaction number; see "About UCP_trn/UCP_mappedTrn"

	
UCP_sourceConnID

	
source connection ID; for the connection that received the PDU

	
UCP_outgoingConnID

	
outgoing connection ID for the connection on which the PDU was sent

	
UCP_adc

	
AdC parameter in the UCP PDU

	
UCP_oadc

	
OAdC parameter in the UCP PDU; see "About UCP_oadc"

	
UCP_scts

	
Service Center Timestamp (SCTS) parameter in the UCP PDU

About UCP_trn/UCP_mappedTrn

Transaction numbers must be mapped in the following cases:

	
When sending a submit_short_message operation (51) to the SMSC and receiving the corresponding acknowledgment

	
When sending a deliver_notification operation (53) to the application and receiving the corresponding acknowledgment

	
When sending a deliver_short_message operation (52) to the application and receiving the corresponding acknowledgment

A UCP_mappedTrn is required in the following circumstances because pooled connections create the possibility of sending conflicting or overlapping transaction numbers were they not mapped:

	
When a submit_short_message request is sent:

	
UCP_trn holds the original transaction number as received by the application.

	
UCP_mappedTrn holds the transaction number that was used in the request to the SMSC.

	
When the acknowledgment for the submit_short_message request is received:

	
UCP_trn holds the original transaction number, which is then used to forward the acknowledgment to the application.

	
UCP_mappedTrn holds the transaction number that was included in the acknowledgment from the SMSC.

About UCP_oadc

The UCP_oadc parameter used in a deliver_notification operation (53) identifies the recipient of a message that was previously sent by the submit_short_message operation (51).

The UCP_oadc parameter normally contains the large account/originator number.

Charging Data Records

The Native UCP communication service generates charging data records (CDRs) under the following conditions:

	
After a mobile-originated SMS UCP PDU has been processed by the plug-in.

	
After a mobile-terminated SMS UCP PDU has been processed by the plug-in.

	
When an ACK is received.

The CDR includes the service center timestamp (SCTS). The ACK is correlated with submit_short_message using the connection identifiers and the transaction number (TRN).

	
When a delivery report for a mobile-terminated SMS message is received.

The CDR includes the SCTS for correlation with submit (and submit ACK) using SCTS and AdC and OAdC parameters.

Statistics

Table 27-6 maps methods invoked from either the application or the network to the transaction types collected by the Services Gatekeeper statistics counter.

Table 27-6 Methods and Transaction Types for Native UCP

	Method	Transaction Type
	
submit_short_message

	
TRANSACTION_TYPE_MESSAGING_SEND

	
deliver_short_message

	
TRANSACTION_TYPE_MESSAGING_RECEIVE

Alarms

For the list of alarms, see Oracle Communications Services Gatekeeper Alarm Handling Guide.

Managing Native UCP

This section describes the properties and workflow for the Native UCP communication service.

Native UCP relies upon facilities in Services Gatekeeper Connection Information Manager to create and store connection and credential information for a UCP plug-in instance. See "Managing and Configuring Connection Information" in Oracle Communications Services Gatekeeper System Administrator's Guide.

Plug-in instances are associated with application instances and authentication credentials through the createOrUpdateCredentialMap operation in the Connection Information Manager.

There can be only one application instance per large account.

The work manager is registered when the managed plug-in is started. Settings in the Native UCP managed plug-in provide the IP address and port where the plug-in registers its work manager. These settings apply to all the Native UCP plug-in instances. If these settings are changed, a restart is required.

Properties for Native UCP Protocol Server Service

Table 27-7 lists the technical specifications for the UCP protocol server service.

Table 27-7 Native UCP Protocol Server Service Properties

	Property	Description
	
Managed object in Administration Console

	
domain_name > OCSG > server_name > Container Services > UCPService

	
MBean

	
Domain=com.bea.wlcp.wlng

Name=wlng

InstanceName=UCPService

Type=oracle.ocsg.protocol.ucp.management.UCPServerMBean

	
Exposes this interface to applications

	
EMI-UCP 5.1

	
Deployment artifacts

	
oracle.ocsg.protocol.ucp_5.1.0.0.jar, oracle.ocsg.protocol.ucp_api_5.1.0.0.jar

Properties for Native UCP Managed Plug-in

Table 27-8 lists the technical specifications for the Native UCP managed plug-in.

Table 27-8 Native UCP Managed Plug-in Properties

	Property	Description
	
Managed object in Administration Console

	
domain_name > OCSG > server_name > Communication Services > oracle.ocsg.native_ucp_sms

	
MBean

	
Domain=com.bea.wlcp.wlng

AppName=native_ucp_sms#5.1.0

InstanceName = oracle.ocsg.native_ucp_sms

Type = oracle.ocsg.plugin.nativefacade.ucp.management.NativeUCPManagedPluginMBean

	
Supported Network Interface

	
UCP v5.1

	
Supported Application Interface

	
UCP v5.1

	
Deployment artifact

	
wlng_nt_native_ucp_sms.ear

Properties for Native UCP Plug-in Instance

Table 27-9 lists the technical specifications for the plug-in instance.

Table 27-9 Native UCP Plug-in Instance Properties

	Property	Description
	
Managed object in Administration Console

	
domain_name > OCSG > server_name > Communication Services > plugin_instance_id

	
MBean

	
Domain=com.bea.wlcp.wlng

AppName=native_ucp_sms#5.1.0

Instance Name=same as the network protocol instance_id assigned when the plug-in instance is created

Type=oracle.ocsg.plugin.nativefacade.ucp.management.NativeUCPPluginMBean

	
Supported network interface

	
UCP v5.1

	
Supported application interface

	
UCP v5.1

	
Supported character sets

	
7-bit GSM charset + Unicode (16-bit UCS2)

	
Supported address scheme

	
tel

	
Deployment artifact

	
wlng_nt_native_ucp_sms.ear

Configuration Workflow for Native UCP Communication Service

Following is an outline for configuring the plug-in using the Administration Console or an MBean browser.

	
Configure the listen address and the listen port in the Native UCP managed plug-in MBean. These values are used by all the Native UCP plug-in instances.

	
Attribute: listenAddress

	
Attribute: listenPort

See Reconfiguring Native UCP Listen Ports if you need to change these values.

	
[Optional] Configure the Native UCP address routing interceptor if there is a possibility of multiple SMSCs owning the same address. This ensures that messages sent to the same address are sent to the same SMSC. It also ensures that all message segments for a concatenated SMS message are sent to the same SMSC.

This interceptor is not enabled by default.

To enable it, edit the interceptor chain to include the NativeUCPAddressRouting class:

	
Open the config.xml file that is bundled in the interceptors.ear file in the Services Gatekeeper installation.

This is the file in which the interceptor chain is defined.

	
Locate the RoundRobinPluginList routing interceptor in the file. The line for the RoundRobinPluginList interceptor looks like this:

<interceptor class="com.bea.wlcp.wlng.interceptor.RoundRobinPluginList" index="1000"/>

	
Add the NativeUCPAddressRouting class interceptor immediately before the RoundRobinPluginList routing interceptor. The line for the NativeUCPAddressRouting interceptor looks like this:

<interceptor class="com.bea.wlcp.wlng.interceptor.NativeUCPAddressRouting" index="950"/>

The resulting interceptor chain should look like this:

 ...
 <interceptor class="com.bea.wlcp.wlng.interceptor.FilterPluginListUsingCustomMatch" index="800"/>
 <interceptor class="com.bea.wlcp.wlng.interceptor.RemoveOptional" index="900"/>
 <interceptor class="com.bea.wlcp.wlng.interceptor.NativeUCPAddressRouting" index="950"/>
 <interceptor class="com.bea.wlcp.wlng.interceptor.RoundRobinPluginList" index="1000"/>
 <interceptor class="com.bea.wlcp.wlng.interceptor.InvokeServiceCorrelation" index="1100"/>
 ...

The interceptor verifies that the request it is intercepting is a Native UCP request before it modifies the plug-in list. If it is not a Native UCP request, the list is not modified.

Provisioning Workflow for Native UCP Communication Service

Perform steps 1 through 5 in the Connection Information Manager. The operations and attributes used in these steps are described in "Managing and Configuring Connection Information" in Oracle Communications Services Gatekeeper System Administrator's Guide.

	
Create one or more Native UCP plug-in instances. See "Managing and Configuring the Plug-in Manager" in Oracle Communications Services Gatekeeper System Administrator's Guide. Use the plug-in service ID described in the "Properties for Native UCP Plug-in Instance" section.

	
Set up the network connection mapping for the plug-in instance using the Connection Information Manager.

	
createOrUpdateLocalHostAddress

	
createOrUpdateRemoteHostAddress

	
createOrUpdateListenAddress

	
Set up the network credential mapping. This associates a user and password with a credential ID. Use the following operation:

	
createOrUpdateUserPasswordCredentialEntry

	
Create or update the credential map for the plug-in instance. This entry associates the credential ID with the application instance ID and the plug-in instance ID. Use the following operation:

	
createOrUpdateCredentialMap

	
Add any connection-specific parameters needed to support windowing and heartbeats. See "Windowing and Transaction Numbers" and "Heartbeat Support" for more information. Use the following operation:

	
addXParamToCredentialEntry

	
Configure the retry behavior for the Native UCP Protocol Server Service.

	
Attribute: MaxReconnectAttempts

	
Attribute: TimeBetweenReconnectAttempts

	
Configure the timeout limit for the plug-in instance.

	
Attribute: OpenSessionTimeout

	
If required, create and load a node SLA. For details see "Defining Global Node and Service Provider Group Node SLAs" and "Managing SLAs" in the Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

	
Provision the service provider accounts and application accounts. For information, see Oracle Communications Services Gatekeeper Accounts and SLAs Guide.

Reconfiguring Native UCP Listen Ports

The listen port and address is used by the Native UCP plug-in upon startup to register a work manager in the UCP Protocol Server Service.

To reconfigure the listen port and listen address:

	
In the Connection Information Manager, create the new listen address and port using the createOrUpdateListenAddress operation.

	
Remove the old listen address and port using the Connection Information Manager's removeListenAddress operation.

	
View the new listen address configuration using the Connection Information Manager's getAllListenAddress operation.

	
In the Native UCP Managed Plug-in, change the listenAddress and listenPort attributes to match the new values that you just configured in the Connection Information Manager. See "Attribute: listenAddress" and "Attribute: listenPort" for more information.

	
Register the work manager at the new port using the reRegisterWorkManager operation. See "Operation:reRegisterWorkManager" for more information.

Services Gatekeeper cannot accept new server-side connections on the new ports until you restart the ports using the restartPorts operation. See "Operation: restartPorts" for more information.

	
Using "Operation: listUCPServersString", in the Native UCP Protocol Server Service, view the currently running listen ports.

	
Using "Operation: restartPorts", close and restart all current listening ports. This closes all server-side and client-side connections.

	
Using "Operation: listUCPServersString", verify that Native UCP is listening on the new ports.

	
Using "Operation: dumpServerSideConnectionsInfo", verify that applications are reconnecting on the new listen ports.

	
Using "Operation: dumpClientSideConnectionsInfo", verify that connections to the SMSCs have been re-established.

Reference: Attributes and Operations for Native UCP Protocol Server Service

This section describes the attributes and operations for configuration and maintenance:

	
Attribute: MaxReconnectAttempts

	
Attribute: TimeBetweenReconnectAttempts

	
Attribute: UCPProtocol (read-only)

	
Operation: closeClientSideConnection

	
Operation: closeServerSideConnection

	
Operation: dumpClientSideConnectionsInfo

	
Operation: dumpOngoingClientConnectionsRetryInfo

	
Operation: dumpServerSideConnectionsInfo

	
Operation: listUCPServersString

	
Operation: restartPorts

	
Operation: stopOngoingClientConnectionRetry

Attribute: MaxReconnectAttempts

Scope: Cluster

Unit: Not applicable

Format: Integer

Specifies the maximum number of reconnect retries permitted.

Table 27-10 MaxReconnectAttempts Values

	Value	Meaning
	
-1

	
retry forever; no maximum

	
0

	
no retries

	
< 0

	
maximum number of retries

	
-1

	
retry forever; no maximum

See "Attribute: TimeBetweenReconnectAttempts" and "Client-Side Retry Handling" for information about how dropped connections are handled.

Attribute: TimeBetweenReconnectAttempts

Scope: Cluster

Unit: Milliseconds

Format: Integer

Specifies the time, in milliseconds, between reconnect attempts.

See "Attribute: TimeBetweenReconnectAttempts" and "Client-Side Retry Handling" for information about how dropped connections are handled.

Attribute: UCPProtocol (read-only)

Scope: Cluster

Unit: Not applicable

Format: String

Specifies the UCP protocol string.

This value must match a protocol string defined for a listen address in the Connection Information Manager.

Operation: closeClientSideConnection

Scope: Server

Closes a client-side connection between Services Gatekeeper (the client in this relationship) and an SMSC.

After this method is used to close a client-side connection, no retries are attempted on the closed connection.

Does not implicitly close any server-side connections.

Use "Operation: dumpClientSideConnectionsInfo" to see information about the open client-side connections

Signature:

closeClientSideConnection(pluginInstanceID: String, ocsgUser: String, connectionID: String)

Table 27-11 closeClientSideConnection Parameters

	Parameter	Description
	
pluginInstanceID

	
Instance ID of the connected plug-in instance

	
ocsgUser

	
User name used to connect

	
connectionID

	
Connection ID the request was sent on

	
pluginInstanceID

	
Instance ID of the connected plug-in instance

Operation: closeServerSideConnection

Scope: Server

Closes a server-side connection between an application and Services Gatekeeper (the server in this relationship).

Does not implicitly close any client-side connections

Use "Operation: dumpServerSideConnectionsInfo" to see information about the open server-side connections.

Signature:

closeServerSideConnection(pluginInstanceID: String, ocsgUser: String, connectionID: String)

Table 27-12 closeServerSideConnection Parameters

	Parameter	Description
	
pluginInstanceID

	
Instance ID of the connected plug-in instance

	
ocsgUser

	
User name used to connect

	
connectionID

	
Connection ID the request was sent on

	
pluginInstanceID

	
Instance ID of the connected plug-in instance

Operation: dumpClientSideConnectionsInfo

Scope: Server

Lists information for all the current client-side connections. These are the connections between Services Gatekeeper and SMSCs.

Dumped information includes pluginInstanceID, ocsgUser, and connectionID for all current connections.

Signature:

dumpClientSideConnectionInfo()

Operation: dumpOngoingClientConnectionsRetryInfo

Scope: Server

Lists current client-side connections that are experiencing periodic retry attempts.

The following sample output shows a dump for a connection that has already performed seven retries and is configured to perform an infinite number of retries (Attribute: MaxReconnectAttempts = -1), with 60 seconds between retry attempts (Attribute: TimeBetweenReconnectAttempts= 60000):

<pluginInstance id="native_ucp_sms_plugin_2">
<user name="1234567">
<connection max_retries="-1" current_retries="7" retry_interval="60000" id="c_localhost:9887_tmp_8237645"/>
</user>
</pluginInstance>

Signature:

dumpOngoingClientConnectionsRetryInfo()

Operation: dumpServerSideConnectionsInfo

Scope: Server

Lists information for all the current server-side connections. These are the connections between Services Gatekeeper and applications.

Dumped information includes pluginInstanceID, ocsgUser, and connectionID for all current connections.

Signature:

dumpServerSideConnectionInfo()

Operation: listUCPServersString

Scope: Server

Lists the currently running UCP servers as a comma-separated list of strings in the format host:port.

Signature:

listUCPServersString()

Operation: restartPorts

Scope: Server

Restarts the Native UCP listen ports.

This operation must be performed if users of the Native UCP Protocol Server Service have reregistered their work managers at new ports. See "Operation:reRegisterWorkManager" for more information.

The new ports must have been configured in the Connection Information Manager MBean for the UCP protocol. See the createOrUpdateListenAddress and removeListenAddress operations in "Managing and Configuring Connection Information" in Oracle Communications Services Gatekeeper System Administrator's Guide.

This operation abruptly terminates all ongoing traffic and closes all server-side and client-side connections.

Signature:

restartPorts()

Operation: stopOngoingClientConnectionRetry

Scope: Server

Stops ongoing retry attempts for the specified connection.

Use "Operation: dumpOngoingClientConnectionsRetryInfo" to see information about the current client-side connections that are in the retry state.

See "Client-Side Retry Handling" for more information.

Signature:

stopOngoingClientConnectionRetry(pluginInstanceID: String, ocsgUser: String, connectionID: String)

Table 27-13 stopOngoingClientConnectionRetry Parameters

	Parameter	Description
	
pluginInstanceID

	
Instance ID of the plug-in instance that is trying to reconnect

	
ocsgUser

	
User name used to connect

	
connectionID

	
Connection ID the request was sent on

	
pluginInstanceID

	
Instance ID of the plug-in instance that is trying to reconnect

Reference: Attributes and Operations for Native UCP Managed Plug-in

This section describes the attributes and operations for configuration and maintenance:

	
Attribute: listenAddress

	
Attribute: listenPort

	
Operation:reRegisterWorkManager

Attribute: listenAddress

Scope: Cluster

Unit: Not applicable

Format: String

The listen address, along with the listen port, is used by the plug-in on startup to register a work manager in the UCP Protocol Server Service.

The default address is localhost.

The listen port/listen address must match a port address combination previously configured for the UCP protocol in the Connection Information Manager. See "Managing and Configuring Connection Information" in Oracle Communications Services Gatekeeper System Administrator's Guide.

Attribute: listenPort

Scope: Cluster

Unit: Not applicable

Format: Integer

The listen port, along with the listen address, is used by the plug-in on startup to register a work manager in the UCP Protocol Server Service.

The default port is 5075.

The listen port/listen address must match a port address combination previously configured for the UCP protocol in the Connection Information Manager. See "Managing and Configuring Connection Information" in Oracle Communications Services Gatekeeper System Administrator's Guide.

Operation:reRegisterWorkManager

Scope: Server

Reregisters the work manager in the Native UCP Protocol Server Service.

The work manager is automatically registered during activation of the plug-in. If the listen port and address values are changed, the work manager must be reregistered with the UCP Protocol Server Service.

If you reregister the work manager, you must also restart the ports. See "Operation: restartPorts" for more information.

Signature:

reRegisterWorkManager()

Reference: Attributes and Operations for Native UCP Plug-in Instance

Following is a list of attributes for configuration and maintenance:

	
Attribute: OpenSessionTimeout

Attribute: OpenSessionTimeout

Scope: Cluster

Unit: Milliseconds

Format: Integer

Maximum time to wait for an acknowledgment on an open session request.

If the configured timeout expires, the plug-in returns a NACK response.

The default is 5000.

A Events, Alarms, and Charging

This appendix describes the features common to the handling of events, alarms, and charging in Oracle Communications Services Gatekeeper.

Events

Events are handled differently in the access tier and the network tier.

Event handling in the Access Tier

The access tier runs in the WebLogic Server's Web Services Container, so events or alarms that are raised there can be monitored through standard JMX mechanisms or by using the WebLogic Diagnostics Framework.

For more information on how this works, see "Designing Manageable Applications" in Oracle Fusion Middleware Developing Manageable Applications With JMX for Oracle WebLogic Server at:

http://download.oracle.com/docs/cd/E15523_01/web.1111/e13729/designapp.htm

and Oracle Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server at:

http://download.oracle.com/docs/cd/E15523_01/web.1111/e13714/toc.htm

Event handling in the Network Tier

In the network tier, much of the functionality comes from the interaction between communication services and the Services Gatekeeper Container Services. To capture this specialized level of information, and other pertinent information about the status of the tier, Services Gatekeeper has developed specific mechanisms to record the data.

In standard communication services, all status information generated by the network tier - events, alarms, charging data, and usage statistics - begins as an event, which is fired whenever designated methods are called or exceptions are thrown. These events are then sent to the EDR Service.

In the EDR Service, events are processed through XML-based filters, which provide the criteria by which the events are classified into types. The filters can also be used to transform the data in the original event, including adding other useful information. When the information has been processed by the filters, it is delivered to type-specific listeners. There are three types of filters that are all found in the wlng-edr.xml file. They produce three distinct types of data: Event Data Records (EDRs), Charging Data Records (CDRs), and Alarms. All three of these filters can be customized as desired, using the Administrative Console. These filters can also deliver desired event-based information to external JMS-based listeners. Such listeners are set up as standard JMS topic subscribers and can be anywhere on the network. See Oracle Communications Services Gatekeeper System Administrator's Guide for more information on setting up these filters.

Each EDR always includes the data in Table A-1.

Table A-1 EDR Data

	Element	Represents
	
ServiceName

	
The service type (SMS, Call Handling, etc.) that produced the event

	
ServerName

	
The name of the WLS host

	
Timestamp

	
The time at which the event was triggered (in milliseconds from midnight 1 January 1970)

	
ContainerTransactionID

	
The transaction ID from WebLogic Server, if available. This identifies the thread on which the request is executed

	
Class

	
The name of the class that logged the event

	
Method

	
The name of the method that logged the event

	
Source

	
The kind of event. There are two possible values for this field:

	
Method: the event was fired in relation to a method call

	
Exception: the event was fired in relation to an exception being thrown

In addition, most events include the data in Table A-2.

Table A-2 Event Data

	Element	Represents
	
Direction

	
The direction in which the request is traveling. There are two possible values for this field:

	
South: traveling toward the network node

	
North: traveling toward the application

	
Position

	
The position of the EDR relative to the method that logged the EDR. There are two possible values for this field:

	
Before: the event occurred before the method

	
After: the event occurred after the method

	
Interface

	
The interface at which the EDR is logged. There are three possible values for this field:

	
North: the event was logged at the north plug-in interface

	
South: the event was logged at the south plug-in interface

	
Other: the event was logged someplace other than the north or south interfaces

	
State

	
Indicates where the EDR was dispatched:

	
ENTER_AT: upon entering the AT layer, southbound

	
ENTER_NT: upon entering the NT layer, southbound

	
ENTER_NET: upon entering the network layer, southbound

	
EXIT_AT: upon exiting the AT layer, northbound

	
EXIT_NT: upon exiting the NT layer, northbound

	
EXIT_NET: upon exiting the network layer, northbound

	
Exception

	
The name of the exception that triggered the EDR

	
SessionId

	
The application's session identifier

	
ServiceProviderId

	
The service provider account identifier

	
ApplicationId

	
The application account identifier

	
AppInstanceId

	
Current application instance ID. If current traffic is Oauth enabled and the EDR is triggered by AT, the value is "OAuth_User".

	
TransactionId

	
Transaction Id. Correlates completed traffic among all three EDR states

	
Facade

	
The facade, either "REST" or "SOAP"

	
OrigAddress

	
The originating address with scheme. For example: tel:12123334444

	
DestAddress

	
The destination address. If this is a send list, the first address will be listed here. Additional addresses are stored in the AdditionalInfo field.

	
AdditionalInfo

	
Variable information depending on the communication service. Stored as “key=value\n” pairs.

	
PluginID

	
The unique ID of the plug-in instance

	
URL

	
The URL of the current web service

	
WebAppName

	
Name of the current web application

	
HttpMethod

	
HTTP request method. For example "POST", or "GET".

	
RequestContext

	
Attributes in the request context map. (Name/Value pairs)

	
InterceptorChain

	
List of all of the interceptors that are triggered

	
SubscriberId

	
Subscriber identifier (using route address)

Alarms

Network tier alarms are those events that are of immediate interest to the operator. They are EDRs that are defined via filters created in the internal configuration file. While each alarm begins as an EDR, not all the information available in the EDR is stored when the alarm is written to the database (although that information can be retrieved using an external listener). Each alarm entry in the database includes the information described in Table A-3.

Table A-3 Alarm Data

	Element	Represents
	
alarm_id

	
A unique sequential identifier

	
source

	
The name of the software module that raised the alarm and the IP address of the server in which the module runs. This is not the same as the Source field in the event

	
timestamp

	
The time at which the event was triggered (in milliseconds from midnight 1 January 1970)

	
severity

	
The importance of the alarm. There are four possible values for this field:

	
4 for warning

	
3 for minor

	
2 for major

	
1 for critical

	
identifier

	
The alarm type

	
alarm_info

	
Information provided by the module that raised the alarm

	
additional_info

	
This field includes:

	
Service Provider ID

	
Application ID

	
Application Instance ID

	
Plug-in instance ID

	
Other information depending on context

Management integration

Services Gatekeeper supports integration of its alarm and event mechanisms with external management tools.

OSS

An Operation Support System (OSS) can integrate with Services Gatekeeper alarm and event services through the creation of external JMS listeners. Integration can be managed by OAM scripts through the use of JMX-based tools.

SNMP

Services Gatekeeper supports the sending of alarms as SNMP traps to SNMP managers. The alarms sent to the SNMP managers can be filtered on alarm severity.

Charging Data Records

CDRs originate as filtered EDRs. While each CDR begins as an EDR, not all the information available in the EDR is stored when the CDR is written to the database, although that information can be retrieved using an external listener. Each CDR entry in the database includes the information described in Table A-4.

Table A-4 CDR Data

	Element	Represents
	
transaction_id

	
The Services Gatekeeper transaction sequence number

	
service_name

	
The communication service whose use is being tracked

	
service_provider

	
The Service Provider ID

	
application_id

	
The Application ID

	
application_instance_id

	
The user name of the Application Account. This is a string that is equivalent to the 2.2 value: Application Instance Group ID

	
container_transaction_id

	
The transaction ID from WebLogic Server, if available. This identifies the thread on which the request is executed

	
server_name

	
The name of the server in which the CDR was generated

	
timestamp

	
The time at which the event was triggered (in milliseconds from midnight 1 January 1970)

	
service_correlation_ID

	
An identifier that allows the usage of multiple service types to be correlated into a single charging unit

	
charging_session_id

	
An ID correlating related transactions within a service capability module that belong to one charging session. For example, a call containing three call legs will produce three separate transactions within the same session

In installations where sessions are not used, this field contains only a placeholder value.

	
start_of_usage

	
The date and time the request began to use the services of the underlying network

	
connect_time

	
The date and time the destination party responded. Used for Call Control traffic only

	
end_of_usage

	
The date and time the request stopped using the services of the underlying network

	
duration_of_usage

	
The total time the request used the services of the underlying network

	
amount_of_usage

	
The used amount. Used when charging is not time dependent, as in, for example, flat rate services

	
originating_party

	
The originating party's address

	
destination_party

	
The destination party's address. This is the first address in the case of send lists, with all additional addresses placed in the additional_info field.

	
charging_info

	
A service code added by the application or by policy service

	
additional_info

	
If the communication service supports send lists, all destination addresses other than the first, under the destinationParty key. In addition any other information provided by the communication service

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Alpha and Beta Draft Documentation Notice

If this document is in preproduction status:

This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.

[image: Oracle Logo]

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Communications
Services Gatekeeper
Communication Service
Guide, Release 5.1

OEBPS/img/com_tsmap.gif
Torminal Status
Request
Address

Torminal Status/MAP.
Plugin

Network Service

Rogular Expression | secalc
Network Selocton ID

Network Selection D
SN Information

ssN

OEBPS/img/qos-overview.gif
HTTP

Subscriber

<
1
‘
R

REST

Internet
Application

0CSG

PCRF

BRM

OEBPS/img/com_tpcinap_mappings.gif
Management Interface Back-end configuration file
Atcribute: localopc g SCCB-1OCAL CPC

Accrituce: remoredpc = SCCP-REUOTE SRC

Accrituce: remoresan <= SCCP-RENOIE SN

ccrituce: localssn B SCCP-1OTAL Sl

Accrituce: InapBindlinsout g g TIAP-T (bind)

ccribuce: oozt

tcribute: Sovort

Common Parts configuration file

B uccrea (sncry for oo_BAcE)

OEBPS/dcommon/oracle.gif

