
Oracle® Hyperion Data Relationship Management, Fusion
Edition
Oracle® Hyperion Data Relationship Steward
Oracle® Hyperion Data Relationship Management for Oracle Hyperion Enterprise
Planning Suite
Oracle® Hyperion Data Relationship Management for Oracle Hyperion Financial
Close Suite
Oracle® Hyperion Data Relationship Management for Customer Hub
Oracle® Hyperion Data Relationship Management Read Only Access

Administrator’s Guide

RELEASE 11.1.2.1

Data Relationship Management Administrator’s Guide, 11.1.2.1

Copyright © 1999, 2011, Oracle and/or its affiliates. All rights reserved.

Authors: EPM Information Development Team

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to
change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS:
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers
are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and
adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to
the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal
injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.

This software and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with
respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Contents

Documentation Accessibility . 7

Chapter 1. Release Overview . 9

New Feature Terms . 10

Changes to Existing Feature Terms . 10

Obsolete Terms . 11

Chapter 2. Managing Users . 13

User Permissions . 13

Version Permissions . 14

Request Permissions . 14

Query Permissions . 15

Compare Permissions . 15

Import Permissions . 16

Blender Permissions . 16

Export Permissions . 17

Script Permissions . 17

Audit Permissions . 17

Application Permissions . 18

Access Permissions . 18

User Roles . 18

Creating Users . 22

User Authentication . 23

Modifying Users . 23

Changing Passwords . 24

Locking Out Users . 24

Unlocking Users . 24

Changing User Roles and Assignments . 25

Deleting Users . 25

Viewing User Login Status . 25

Chapter 3. Managing Node Access Groups . 27

Creating Node Access Groups . 28

Contents iii

Editing Node Access Groups . 29

Deleting Node Access Groups . 29

Assigning Node Access Group Security . 29

Chapter 4. Managing Property Categories . 31

Property Categories . 31

Creating Property Categories . 32

Editing Property Categories . 32

Deleting Property Categories . 33

Chapter 5. Managing Property Definitions . 35

Creating Properties . 36

Data Types . 38

Working with Formulas . 40

Creating Derived Properties with Formulas . 40

Functions . 42

Special Characters . 43

Literals . 43

Format String Parameter . 43

Date-Time Format Strings . 45

Function Definitions . 46

Editing Property Definitions . 77

Deleting Properties . 78

Chapter 6. Managing Validations . 79

Validation Classes . 79

Validation Levels . 81

Creating Validations . 82

Assigning Validations . 83

Editing Validations . 83

Deleting Validations . 83

Chapter 7. Managing Node Types . 85

Defining Node Types . 85

Editing Node Types . 86

Deleting Node Types . 86

Working with Node Glyphs . 86

Chapter 8. Working with System Preferences . 89

System Preferences . 89

Setting Up Change Approval . 94

iv Contents

Local Security for Global Properties . 95

Configuring System Preferences . 95

Chapter 9. Working with External Connections . 97

Defining External Connections . 97

Editing External Connections . 98

Deleting External Connections . 98

Chapter 10. Migrating Data Relationship Management Metadata . 99

Opening the Migration Utility . 100

Extracting Metadata . 100

Loading Metadata . 101

Comparing Metadata . 102

Viewing Metadata . 103

Generating Reports . 104

Index . 105

Contents v

vi Contents

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible, with
good usability, to the disabled community. To that end, our documentation includes features
that make information available to users of assistive technology. This documentation is available
in HTML format, and contains markup to facilitate access by the disabled community.
Accessibility standards will continue to evolve over time, and Oracle is actively engaged with
other market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For more information, visit the Oracle
Accessibility Program Web site at http://www.oracle.com/accessibility/.

Access to Oracle Support for Hearing-Impaired
Customers
Oracle customers have access to electronic support through My Oracle Support or by calling
Oracle Support at 1.800.223.1711. Hearing-impaired customers in the U.S. who wish to speak
to an Oracle Support representative may use a telecommunications relay service (TRS).
Information about the TRS is available at http://www.fcc.gov/cgb/consumerfacts/trs.html/, and
a list of telephone numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.
International hearing-impaired customers should use the TRS at +1.605.224.1837. An Oracle
Support engineer will respond to technical issues according to the standard service request
process.

7

http://www.oracle.com/accessibility/
http://www.fcc.gov/cgb/consumerfacts/trs.html/
http://www.fcc.gov/cgb/dro/trsphonebk.html

8 Documentation Accessibility

1
Release Overview

In This Chapter

New Feature Terms... .10

Changes to Existing Feature Terms10

Obsolete Terms... .11

In the 11.1.2 release of Oracle Hyperion Data Relationship Management, Fusion Edition, a new
user interface was introduced. This user interface replaces the Data Relationship Management
Win32 client and the ActiveX Web Publishing client.

The new user interface:

l Provides one user experience for all Data Relationship Management user types

l Offers Web accessibility to all Data Relationship Management Win32 features except the
Console

l Allows user-authenticated and anonymous access (previously provided by Web Publishing)

l Simplifies the presentation of data and access to features for less-technical users

l Provides a task-driven approach to user interaction vs. a tool-driven approach

l Minimizes any degradation in richness of features due to Web accessibility

l Supports internationalization of the product

l Eliminates the need for additional client installation to access the Data Relationship
Management user interface

l Minimizes the need for training new users or retraining existing users

For more information on user interface differences, see:

l New Feature Terms

l Changes to Existing Feature Terms

l Obsolete Terms

l “User Experience Differences” in Oracle Hyperion Data Relationship Management User's
Guide

9

New Feature Terms

Term Definition

Application An instance of Data Relationship Management. The user interface can access multiple applications.

As Sibling An Add/Insert/Move/Put action allows placement of a node as a sibling to another node.

Clipboard Copy nodes here to work with them across multiple hierarchy windows.

Connection External locations relative to the server that can be read from and written to.

Object Access User metadata objects can now be:

l User – Personal objects that are only available to an individual user to view and run. All user roles have the ability
to create and manage objects of this access level.

l Standard – Public objects that are available to all users to view and run. Only Data Manager role users have the
ability to create and manage objects of this access level.

l System – Restricted objects that are only available to Application Administrator role users to view and run. Only
those users have the ability to create and manage objects of this access level.

Server File A type of connection used to access a network file system or an FTP directory.

Shortcuts Context-sensitive links that navigate the user to another task group retaining the current selection.

Use Fast Deletes During an export, enables a bulk deletion on a target database table.

User Roles Permission-based roles that control user access to product features. Roles:

l Anonymous User

l Workflow User

l Interactive User

l Data Creator

l Data Manager

l Access Manager

l Application Administrator

Version and
Hierarchy Owner

The Owner has full management privileges to a version/hierarchy. A user with the permission to create a version or
hierarchy is assigned as the Version Owner or Hierarchy Owner.

Changes to Existing Feature Terms

Term Description of Change

Action Script Formerly the Automator interface or an Automator script.

Controlled Property For a hierarchy, formerly assigning a controlling hierarchy to a property

Download Formerly Save to File or Print

Hierarchy Group Formerly a System Category, which is used for grouping hierarchies

10 Release Overview

Term Description of Change

Locate Formerly the Synchronize By Name feature

Load Status Formerly represented as bold-faced print for an open/closed version

Match Formerly the Synchronize By Property feature

Paste Properties Properties can be pasted for any node that is taken and copied to the clipboard.

Put Extended to support reordering children in addition to Insert and Move

Search Formerly the Find Node feature

Take/Copy Properties Includes the former Take and Copy Properties features

Validation (Batch) Formerly Verification (and Verify)

Obsolete Terms

Term Comment

Abbrev Replaced by Name. Except for the Abbrev() formula function.

Automator Replaced by Action Script

Export Preview Replaced by Download

System Category Replaced by Hierarchy Group

User Types

l User

l Functional Administrator

l Security Administrator

l System Administrator

Replaced by User Roles and Permissions

Verification (and Verify) Replaced by Batch Validation (and Validate)

Web Publishing Replaced by Anonymous Access

Obsolete Terms 11

12 Release Overview

2
Managing Users

In This Chapter

User Permissions... .13

User Roles18

Creating Users.. .22

User Authentication23

Modifying Users .. .23

Deleting Users .. .25

Viewing User Login Status... .25

User Permissions
Data Relationship Management uses three levels of permissions to control user access to product
features and data. Some higher-level permissions also include lower-level permissions. If a user
is granted higher-level permission, then all lower-level permissions are also granted. For
example, if a user is granted a Level 1 permission, they are also granted all Level 2 and 3
permissions below it.

User Permissions 13

Version Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage Versions – User has
access to Version and Hierarchy
menu options

Browse Versions – Users have access to any
version that they are granted rights to in Node
Access Groups

NA

Create Versions – Users can manage (update/
delete) any version of which they are the owner.
User has access to Version menu options.

Note: The user who creates a version is the
owner until a user with Manage Versions
permission changes the owner.

NA

Manage Hierarchies – Users have access to
Hierarchy menu options.

Browse Hierarchies – Users have access to any
hierarchy that they are granted rights to in Node
Access Groups. Users have access to Node menu
options if they have Edit node access or greater.

Create Hierarchies – Users can manage (update/
delete) any hierarchy of which they are the owner.
Users have access to Hierarchy menu options. Users
can disable node types for any hierarchy of which they
are the owner.

Note: The user who creates a hierarchy is the owner
until a user with Manage Hierarchies permission
changes the owner.

Request Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage Requests – Users can delete any request
in the system that has not already been
committed.

Create Requests – Users can query any request in the system
and can manage (update/delete) any request of which they are
the owner.

NA

14 Managing Users

Query Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage System Queries – Users have access
to system queries and to Query menu options.
Users have restricted access to Version,
Hierarchy, Node, and Property selectors based
on Node Access Group assignments and
Property Category security.

Manage User Queries – Users have access to view
and run User and Standard queries. Users do not
have access to Query menu options for Standard
Queries. Users have restricted access to Version,
Hierarchy, Node, and Property selectors based on
Node Access Group assignments and Property
Category security.

Run Query – Users can view and run
any Standard query. Users have
restricted access to Version,
Hierarchy, Node, and Property
selectors based on Node Access
Group assignments and Property
Category security. Users have
access to Node menu options if
they have Edit node access or
greater.

Manage Standard Queries – Users have access to
Query menu options for Standard queries. Users
have restricted access to Version, Hierarchy, Node,
and Property selectors based on Node Access
Group assignments and Property Category security.

NA

Compare Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage System Compares – Users have
access to system compares and Compare
menu options. Users have restricted access
to Version, Hierarchy, Node, and Property
selectors based on Node Access Group
assignments and Property Category security.

Manage User Compares – Users have access to
view and run User and Standard compares. Users
do not have access to Compare menu options for
Standard Compares. Users have restricted access
to Version, Hierarchy, Node, and Property selectors
based on Node Access Group assignments and
Property Category security.

Run Compare – Users can view and
run any Standard compare. Users
have restricted access to Version,
Hierarchy, Node, and Property
selectors based on Node Access
Group assignments and Property
Category security. Users have
access to Node menu options if they
have Edit node access or greater.

Manage Standard Compares – Users have access
to Compare menu options for Standard compares.
Users have restricted access to Version, Hierarchy,
Node, and Property selectors based on Node
Access Group assignments and Property Category
security.

NA

User Permissions 15

Import Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage System Imports – Users have access
to system imports and Import menu options.
Users have restricted access to Property
selector based on Property Category security.

Manage User Imports – Users have access to view and
run User and Standard imports. Users do not have
access to Import menu options for Standard Imports.
Users have restricted access to Property selector based
on Property Category security.

Run Import – Users can view
and run any Standard import.
Users have restricted access
to Property selector based on
Property Category security.

Manage Standard Imports – Users have access to
Import menu options for Standard imports. Users have
restricted access to Property selector based on Property
Category security.

NA

Blender Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage System Blenders – Users have access to
system blenders and Blender menu options. Users
have restricted access to Version, Hierarchy, Node,
and Property selectors based on Node Access Group
assignments and Property Category security.

Manage User Blenders – Users have access to
view and run User and Standard blenders. Users
do not have access to Blender menu options for
Standard Blenders.

Run Blender – Users can view
and run any Standard blender.
Users have restricted access to
Version, Hierarchy, Node, and
Property selectors based on
Node Access Group
assignments and Property
Category security.

Manage Standard Blenders – Users have
access to Blender menu options for Standard
blenders. Users have restricted access to
Version, Hierarchy, Node, and Property selectors
based on Node Access Group assignments and
Property Category security.

NA

16 Managing Users

Export Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage System Exports – Users have access
to system exports and Export menu options.
Users have restricted access to Version,
Hierarchy, Node, and Property selectors based
on Node Access Group assignments and
Property Category security.

Manage User Exports – Users have access to view and
run User and Standard exports and books. Users do not
have access to Export menu options for Standard exports
and books. Users have restricted access to Version,
Hierarchy, Node, and Property selectors based on Node
Access Group assignments and Property Category
security

Run Export – Users can view
and run any Standard
exports. Users have restricted
access to Version, Hierarchy,
Node, and Property selectors
based on Node Access Group
assignments and Property
Category security.

Manage Standard Exports – Users have access to
Export menu options for Standard exports and books.
Users have restricted access to Version, Hierarchy,
Node, and Property selectors based on Node Access
Group assignments and Property Category security.

NA

Script Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Run Action Script – Users can run action scripts. Users have restricted access to Version,
Hierarchy, Node, and Property selectors based on Node Access Group assignments and
Property Category security.

NA NA

Audit Permissions

Permission Level 1 Permission Level
2

Permission Level
3

Audit User Transactions – Users can query any transactions that they performed. Transactions
can include data and metadata changes and logged actions such as Login and running
asynchronous operations. Users have restricted access to Version, Hierarchy, Node, and Property
selectors based on Node Access Group assignments and Property Category security.

NA NA

Permission Level 1 Permission
Level 2

Permission
Level 3

Audit Data Transactions – Users can query any transactions for data objects they have access to in
Permissions or Node Access Groups. Transactions can include transactions performed by the user
and changes made by other users. For node-level transactions, users can query transactions for a
node and all of its descendants (Include Child Nodes option), assuming the user also has read access
to all descendants. Users have restricted access to Version, Hierarchy, Node, and Property selectors
based on Node Access Group assignments and Property Category security.

NA NA

User Permissions 17

Permission Level 1 Permission Level 2 Permission Level 3

Audit System Transactions – Users can query any transactions that they performed.
Transactions can include data and metadata changes and logged actions such as Login and
running asynchronous operations.

NA NA

Application Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage Application Manage Categories Browse Categories – Users have access to any property category that they are granted
rights to in Property Category security.

Manage Properties Browse Properties – Users have access to all properties for the property categories that
they are granted rights to in Property Category security.

Manage Property Lists – User can manage lists of values and lookup tables for property
definitions.

Manage Validations NA

Manage Node Types NA

Manage Preferences NA

Access Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage Access Manage Users – Users cannot edit or delete their own user profile. NA

Manage Roles – Users cannot edit their own role assignment. NA

Manage Access Groups – Users cannot edit their own Node Access Group assignment. NA

Manage Property Access – Users cannot edit their own Property Category assignment. NA

User Roles
Data Relationship Management permissions are assigned to users using Roles. Each user role is
associated with a set of permissions that provide access to product features or data. A user can
be assigned one or more roles which grants them the combined permissions from all roles. If a
user is assigned two roles that have conflicting levels of access, the user is granted the higher level
of access.

Data Relationship Management provides the following user roles with assigned permissions
marked:

18 Managing Users

Permissions User Roles

Level 1 Level 2 Level 3 Access
Manager

Anonymous
User

Application
Administrator

Data
Creator

Data
Manager

Interactive
User

Workflow
User

Manage
Versions

 X

 Browse
Versions

 X X X X X

 Create
Versions

 X

 Manage
Hierarchies

 X

 Browse
Hierarchies

 X X X X X

 Create
Hierarchies

 X

Manage
Requests

 X

 Create
Requests

 X X

Manage
System
Queries

 X

 Manage
User
Queries

 X X X

 Run Query X X

 Manage
Standard
Queries

 X

Manage
System
Compares

 X

 Manage
User
Compares

 X X X

 Run
Compare

 X X

 Manage
Standard
Compares

 X

User Roles 19

Permissions User Roles

Level 1 Level 2 Level 3 Access
Manager

Anonymous
User

Application
Administrator

Data
Creator

Data
Manager

Interactive
User

Workflow
User

Manage
System
Imports

 X

 Manage
User
Imports

 X

 Run Import

 Manage
Standard
Imports

 X

Manage
System
Blenders

 X

 Manage
User
Blenders

 X

 Run
Blender

 Manage
Standard
Blenders

 X

Manage
System
Exports

 X

 Manage
User
Exports

 X X X

 Run Export X X

 Manage
Standard
Exports

 X

Run Action
Script

 X X X X

Audit User
Transactions

 X X X X X X

Audit Data
Transactions

 X X X X

20 Managing Users

Permissions User Roles

Level 1 Level 2 Level 3 Access
Manager

Anonymous
User

Application
Administrator

Data
Creator

Data
Manager

Interactive
User

Workflow
User

Audit
System
Transactions

 X X

Manage
Application

 X

 Manage
Categories

 Browse
Categories

X X X X X X X

 Manage
Properties

 Browse
Properties

X X X X X X X

 Manage
Property
Lists

 X

 Manage
Validations

 Manage
Node Types

 Manage
Preferences

Manage
Access

 Manage
Users

 X

 Manage
Roles

 X

 Manage
Access
Groups

 X

 Manage
Property
Access

 X

User Roles 21

Creating Users
When you create users, you define a unique name and assign one or more roles. If a user is not
assigned the Data Manager role, node access groups and property categories can be assigned to
the user to control their access to data.

ä To create users:

1 On the Home page, select Administer.

2 From New, select User.

3 Enter a unique user name and the full name of the user.

Note: Department and Phone are optional.

4 Optional: Select from the following options:

l Password does not expire – PasswordDuration system preference setting is ignored.

l Login session does not expire – IdleTime system preference setting is ignored.

Note: If this option is selected, the maximum allowable idle time is 24 hours. After 24
hours of idle time, the login session expires.

l User is exempt from lockout measures – lockout restrictions are disregarded for this user.

5 On the Roles tab, select roles from the Available list to assign to the user. Use the arrows to move roles
to the Selected list.

6 On the Node Access Groups tab, select groups from the Available list to assign to the user. Use the
arrows to move the groups to the Selected list.

7 On the Property Categories tab. select categories from the Available list to assign to the user. Use the
arrows to move the categories to the Selected list

8 For each category in the selected list, do the following:

a. Click in the Action column and set the user's access (Read or Edit) to the category.

b. Select in the Action column to save the change.

9 Click .

The Change Password dialog box is displayed.

10 Enter a password for the user.

11 Re-enter the password.

12 Optional: Select User must change password at next login to require the user to change their password
the next time they log in.

13 Click OK.

22 Managing Users

User Authentication
Data Relationship Management supports users that are natively authenticated by the application
using stored password information or users that are authenticated by an external user directory.
Each Data Relationship Management application is configured to support one or both types of
users.

You set up application authentication on the Authentication Settings tab of the Data
Relationship Management Console. For more information, see the Oracle Hyperion Data
Relationship Management Installation Guide.

Values defined for the following system preferences determine the characteristics of user
passwords and when passwords expire for internal authenticated users:

l PasswordPolicyEnabled – If enabled, the password must contain three of the following
elements:

m Uppercase letters

m Lowercase letters

m Numbers

m Special characters

l PasswordMaxLength – Determines the maximum character length for passwords.

l PasswordMinLength – Determines the minimum character length for passwords.

l PasswordDuration – Determines the number of days a password is valid.

l PasswordWarningPeriod – Indicates how many days before (-) or after (+) the password
expiration date to warn users to change their password before no longer allowing them to
log in. A negative value, for example -3, indicates the user is warned at login during the 3
days prior to password expiration. A positive value, for example 5, indicates the user is
warned at login during the 5 days after their password has expired. After the five-day period,
the user cannot login without changing the password.

Note: Changes to the PasswordDuration and PasswordWarningPeriod values do not affect
users until the next password change. For example, if PasswordDuration is set to 30
days and the password for User1 was changed 26 days ago, the password expires in 4
days. If you change the PasswordDuration value to 60 days, the password for User1
still expires in 4 days. After the user changes the password, the new password expires
in 60 days.

Modifying Users
You can change a user's password, lockout or unlock a user, or change role, group, or category
assignments.

User Authentication 23

Changing Passwords

ä To change a user password:

1 On the Home page, select Administer.

2 Under Security, expand Users.

3 Select a user and click .

4 Click .

5 Enter a new password for the user.

6 Re-enter the password.

7 Optional: Select User must change password at next login to require the user to change their password
the next time they log in.

8 Click OK.

Locking Out Users
You can lockout a user to prevent their access to a Data Relationship Management application.
When you lockout a user, you can provide a custom reason for the lockout. This reason is
displayed to the user when attempting to log into the application.

ä To lock out a user:

1 On the Home page, select Administer.

2 Under Security, expand Users.

3 Select a user and click .

4 Click .

5 Enter a reason for the lockout.

6 Click OK.

Unlocking Users
Unlocking a locked out user will enable their access to the application.

ä To unlock a user:

1 On the Home page, select Administer.

2 Under Security, expand Users.

3 Select a user and click .

4 Click .

24 Managing Users

5 Click OK.

Changing User Roles and Assignments

ä To change user roles and assignments:

1 On the Home page, select Administer.

2 Under Security, expand Users.

3 Select a user and click .

4 On the Roles tab, select roles from the Available list to assign to the user. Use the arrows to move roles
to the Selected list.

5 On the Node Access Groups tab, select groups from the Available list to assign to the user. Use the
arrows to move the groups to the Selected list.

6 On the Property Categories tab. select categories from the Available list to assign to the user. Use the
arrows to move the categories to the Selected list.

7 For each category in the selected list, do the following:

a. Click and set the user's access (Read or Edit) to the category.

b. Select to save the change.

8 Click .

Deleting Users
Users that are no longer active can be deleted from an application. When a user is deleted, all of
the user-level metadata objects associated with the user are also deleted. These metadata objects
include queries, compares, imports, blenders, exports, and books.

ä To delete a user:

1 On the Home page, select Administer.

2 Under Security, expand Users.

3 Select a user and click .

4 Click Delete this Item to confirm the deletion.

Viewing User Login Status
For each user, you can view login statistics and information:

l The date and time of the user's last valid login

l The number of invalid login attempts

Deleting Users 25

l Whether the user is locked out

l The date and time the user was locked out

l The reason for the lockout

ä To view user login status:

1 On the Home page, select Administer.

2 Under Security, expand Users.

3 Select a user and click .

4 Select the Login Status tab.

26 Managing Users

3
Managing Node Access Groups

In This Chapter

Creating Node Access Groups28

Editing Node Access Groups... .29

Deleting Node Access Groups29

Assigning Node Access Group Security .. .29

Data Relationship Management controls granular user access to hierarchy nodes and their
properties using node access groups. You can assign users to groups that are granted access to
specific nodes in a subset of hierarchies within a Data Relationship Management version. Node
access groups use inheritance to assign similar access to descendant nodes of a hierarchy node
where an access level has been explicitly assigned. This level of access can be overridden at a
lower level or can be locked to prevent overrides.

Typically, node access groups represent functional areas of an organization, and a user may
require assignment to multiple groups. If assigned access levels conflict, the highest security level
is used.

Table 1 Node Access Levels

Level Description Example Usage

Read Enables read-only access – no changes permitted View and report

LimitedInsert Enables insertion of a node for which the user has (at least) global insert
privilege.

Insert

Edit Enables property values to be edited Edit

Insert Enables nodes to be inserted, moved, or, removed Edit, insert, copy, move, remove

Inactivate Enables nodes to be inactivated and reactivated Edit, insert, move, remove, inactivate,
reactivate

Add Enables nodes to be added or deleted Edit, insert, copy, move, remove, inactivate,
reactivate, add, delete

Keep the following information in mind:

l Access levels are cumulative; assignment of the Edit access level implies that the Read Only
and LimitedInsert access levels are granted. Assignment of the Add access level implies that
all other access levels are granted.

27

l Node access group security is only applied at the hierarchy level. Node access groups do not
control access to global lists of nodes such as orphans.

l Access levels are assigned separately for limb and leaf nodes which allows you to define a
different level of access for each. This capability is useful when a user should be able to
maintain the roll-up structure of a hierarchy but not edit any properties of leaf nodes or
when a user can insert leaf nodes to an existing roll-up structure but not reorganize the
structure itself.

l Node access groups are defined only by a user with the Access Manager role.

l Node access groups use local inheritance for access assignment to related nodes. A node
access group can be defined as global in order to use global inheritance based on the level
of access assigned to a controlling hierarchy.

l Global node access groups can be created and must have a controlling hierarchy defined for
each version. This is done by assigning controlled node access groups to a hierarchy. See the
see the Oracle Hyperion Data Relationship Management User Guide for more information.

l If a node access group has access to any node in a hierarchy, the entire hierarchy is visible
to all users of the node access group. Conversely, if a node access group does not have access
to at least one node in a hierarchy, members of the group cannot open the hierarchy.

Creating Node Access Groups

ä To create a node access group:

1 On the Home page, select Administer.

2 From New, select Node Access Group.

3 Enter a name, label, and description for the group.

Note: The node access group will be assigned to the Custom namespace. The Fully Qualified
Name for the group must be unique. The Label field is filled in automatically after
entering the name. The node access group label is a user-friendly descriptor that is
displayed for all features aside of application administration. Multiple node access
groups can have the same Label for convenience purposes.

4 Optional: Select Global to make the group a global node access group.

Note: Global node access groups must have a controlling hierarchy defined in every version
where the group will be used. After a group is created, you can assign it to a single
hierarchy in each version as a controlled node access group.

5 Select users from the Available list to assign to the group. Use the arrows to move users to the
Selected list.

6 Click .

28 Managing Node Access Groups

Editing Node Access Groups

ä To edit a node access group:

1 On the Home page, select Administer.

2 Under Security, expand Node Access Groups.

3 Select a group and click .

4 Select users from the Available list to assign to the group. Use the arrows to move users to the
Selected list.

5 Click .

Deleting Node Access Groups

ä To delete a node access group:

1 On the Home page, select Administer.

2 Under Security, expand Node Access Groups.

3 Select a group and click .

4 Click Delete this Item to confirm the deletion.

Note: Deleting a node access group removes the assignment of the group from the users as
well as from any hierarchy nodes.

Assigning Node Access Group Security
Node Access Group security is applied to data by a user with the Data Manager role.

Note: Before assigning node access group security, ensure that appropriate node access groups
are created and appropriate users are assigned to the groups.

ä To set node access group security:

1 Open a version and hierarchy, and select a node.

2 From Nodes, select Assign, then Node Access.

3 In the Property Grid, select the Leaf Access or Limb Access category.

4 Assign the level of access for each node access group.

5 Click Save.

Editing Node Access Groups 29

30 Managing Node Access Groups

4
Managing Property Categories

In This Chapter

Property Categories31

Creating Property Categories... .32

Editing Property Categories32

Deleting Property Categories... .33

Property Categories
Property categories enable the grouping of Data Relationship Management properties and are
used to control the assignment of security privileges to sets of properties. Core properties
available by default are only located in a single property category. Custom properties created by
application administrators can be associated with multiple property categories.

Data Relationship Management includes the core property categories described in the following
table.

Table 2 Property Categories

Category Description

System Properties related to the basic identifying characteristics of a node, such as ID, name, and description.

The only change that can be made to this category is assigning the read-only flag for individual users. Users with read
access cannot edit values but can view them. Properties cannot be assigned to this category.

Shared Info Provides information about which nodes are primary/shared, a list of related shared nodes, and identifies whether the
primary node is missing.

This category is only displayed when Shared Nodes is enabled via system preferences.

Note: All properties in this category are read only.

Stats Properties that provide statistical information about a node such as number of children and number or siblings

Note: All properties in this category are read only.

Validation Validations assigned for the node—one property for each validation

Leaf Access Node security groups and their leaf access levels for the node—one property for each group

Limb Access Node security groups and their limb access levels for the node—one property for each group

Property Categories 31

Note: Not all property categories are visible to all users because user access can be restricted to
specific categories and the node types can be filtered. The Validation, Leaf Access, and
Limb Access categories are available only to users assigned the Data Manager role and are
only accessible when assigning validations or node access group security.

Creating Property Categories

ä To create a property category:

1 From the Home page, select Administer.

2 From New, select Property Category.

3 Enter a name and description for the property category.

4 On the Properties tab, select properties from the Available list to assign to the property category and
use the arrows to move the properties to the Selected list.

Note: You can use Ctrl+Click or Shift+Click to select multiple properties. Double-click a
property to select or de-select it.

5 Use the arrows to reorder the selected properties or click to alphabetize the selected properties.

6 On the Users tab, select users from the Available list to assign to the property category and use the
arrows to move the users to the Selected list.

7 Select the row for a user in the selected list and click in the Action column.

8 From the Access column, select Read or Edit to assign the user a level of access to the property category.

9 Click in the Action column to save the change or to discard the change.

10 Click .

Editing Property Categories

ä To edit a property category:

1 From the Home page, select Administer.

2 Select a property category and click .

3 On the Properties tab, select properties from the Available list to assign to the property category and
use the arrows to move the properties to the Selected list.

Note: You can use Ctrl+Click or Shift+Click to select multiple properties. Double-click a
property to select or de-select it.

4 Use the arrows to reorder the selected properties or click to alphabetize the selected properties.

32 Managing Property Categories

5 On the Users tab, select users from the Available list to assign to the property category and use the
arrows to move the users to the Selected list.

6 Select the row for a user in the selected list and click in the Action column.

7 From the Access column, select Read or Edit to assign the user a level of access to the property category.

8 Click in the Action column to save the change or to discard the change.

9 Click .

Deleting Property Categories

ä To delete a property category:

1 From the Home page, select Administer.

2 Under Metadata, expand Property Categories.

3 Select a property category and click .

4 Select Delete this Item to confirm the deletion.

Note: The deletion of a property category does not result in the deletion of properties
associated with the category. These properties remain available within the application.

Deleting Property Categories 33

34 Managing Property Categories

5
Managing Property Definitions

In This Chapter

Creating Properties.. .36

Working with Formulas40

Functions42

Editing Property Definitions77

Deleting Properties.. .78

Property definitions are used to manage the attributes of versions, hierarchies, and nodes in Data
Relationship Management. Properties can store a variety of different data types including text,
numeric, date, and references to other data objects. Properties can store explicit values, use
inheritance to automatically assign values to descendant nodes, or be calculated based on a
formula or lookup table. Property categories can be used to group and organize properties into
related sets to simplify their usage and control user access.

System-defined properties that are available by default are used with standard product
functionality. User-defined property definitions can be created by application administrators to
manage additional attributes that are necessary to support business or system integration
requirements.

Property definitions in Data Relationship Management can come from a variety of sources. For
example, properties can be:

l System-defined in Data Relationship Management

l User-defined properties created by an application administrator

l Loaded from application templates used with other Oracle products

l Loaded from another Data Relationship Management application or environment using the
Migration Utility

Namespaces

Namespaces are used in property definitions to avoid conflicts where properties from different
sources have similar names and need to remain separate for data integrity purposes. Property
names are differentiated using a namespace prefixing convention.

35

Table 3 Property Definition Example Using Namespaces

Field Example

Fully Qualified Name Custom.AccountType

Namespace Custom

Name AccountType

Label AccountType

There are special rules in Data Relationship Management that apply to namespaces to ensure
that conflicts do not occur:

l System-defined properties use the “Core” namespace.

l User-defined properties use the “Custom” namespace.

l Other namespaces are reserved for use by Data Relationship Management application
templates for other Oracle products.

Creating Properties

Caution! The following procedure is for creating Defined or Lookup properties. If you are
creating a Derived property, go to “Creating Derived Properties with Formulas” on
page 40.

ä To create a property definition:

1 On the Home page, select Administer.

2 From New, select Property Definition.

3 Enter a name for the property.

Note: The property is assigned to the Custom namespace. The Fully Qualified Name and
Label fields are filled in automatically after entering the name. The Fully Qualified
Name for the property must be unique. The property label is a user-friendly descriptor
that is displayed for property definitions for all features aside of application
administration. Multiple properties can have the same Label for convenience
purposes. The property Description is an optional, long descriptor that is displayed
at the bottom of the Property Editor. Multiple properties can have the same Label as
long as they are not in the same namespace.

4 Define parameters for the property:

l Data Type – See Property Data Types

l Property Level – Level of property definition:

36 Managing Property Definitions

m Local node – Property values are managed for nodes in a specific hierarchy and
accessible only at this level.

m Global node – Property values are managed for nodes in a version but also accessible
at a local node level.

m Hierarchy – Property values are managed for hierarchies but also accessible at a
local node level.

m Version – Property values are managed for versions but also accessible at a global
or local node level.

Note: If defining a global node inherited property, you must define a controlling
hierarchy for the global property. You do with on the Home page on the
Hierarchies tab by assigning controlled properties to a hierarchy.

l Property Type

m Defined – Values are defined by the user and stored.

m Lookup – Lookup based on another property and a lookup table.

m Derived – Calculated by using a Deriver class.

Note: To create a derived property, go to “Creating Derived Properties with
Formulas” on page 40.

l Default Value – Default value for the property

l Column Width – Width for fixed-width columns if the property type is Defined.

l Minimum Value/Length– Value or length for the property based on data type.

l Maximum Value/Length – Value or length for the property based on data type.

5 Select from these options:

l List – Allows property values to be selected only from a pre-defined list of values.

Note: Property values stored for a list property can be limited to only values in the list
using the EnforceListProps system preference.

Note: A list of values can be used for a defined property or a derived, overrideable
property.

l Inherited – Defines the property as Inheriting

Note: This option has no effect on the Derived property type except in the special case
where property derivers such as AncestorProp or DualAncestorProp are used and
the property is global. In these cases, although the property is not literally
inheriting values, the Inherited option should be enabled to allow the
specification of a controlling hierarchy.

l Overrideable – Allows property to be overridden in the property grid.

Creating Properties 37

Note: This option is enabled only for the Derived property type.

l Hidden – Hides the property in the property grid

6 Do any of the following:

l To assign a property to a category:

a. Select the Categories tab.

b. From the Available list, select categories and move them to the Selected list.

l To add a list of values to the property:

a. Select the List option.

b. Select the List Values tab.

c. Click Add and enter a value to the list.

d. Click Save in the Action column for the row.

Note: Use Move or Delete for each row to reorder or delete list values. Use Edit or
double-click a row to edit it and Cancel to cancel edits.

l To add a lookup table to the property:

a. Select Lookup as the property type.

b. Select the Lookup Table tab.

c. Click Add to enter a new key-value pair to the list.

d. Click Save in the Action column for the row.

Note: Use Move or Delete for each row to reorder or delete list values. Use Edit or
double-click a row to edit it and Cancel to cancel edits.

7 Click .

Data Types
Property data types are described in the following table.

Table 4 Property Data Types

Property Data Type Description

AscGroup Associated node group. Points to multiple nodes. The nodes point back to the AscGroup node and to each other.
Analogy: Fraternity.

Note: This data type should only be used with global node level properties.

Caution! Associated node properties that are loaded by an import may not correctly point to all other nodes as a
result of their not yet existing in the version based on the order in which nodes are imported.

38 Managing Property Definitions

Property Data Type Description

AscNode Associated node. Points to a single other node. The node pointed to points back to the AscNode node. Analogy:
Marriage.

Note: This data type should only be used with global node level properties.

Caution! Associated node properties that are loaded by an import may not correctly point to all other nodes as a
result of their not yet existing in the version based on the order in which nodes are imported.

AscNodes Associated node list. Points to multiple nodes. The nodes pointed to point back to the AscNodes but not each other.
Analogy: Friends.

Note: This data type should only be used with global node level properties.

Caution! Associated node properties that are loaded by an import may not correctly point to all other nodes as a
result of their not yet existing in the version based on the order in which nodes are imported.

Boolean True or False

Date Date

Note: Formatted based on the regional settings associated with the user's session.

DateTime Date and time.

Float Floating point value

Note: Formatted based on the regional settings associated with the user's session.

FormatMemo Formatted memo — retains all formatting (spaces, tabs, new lines, and so on) to the text

GlobalNode Points to a node in a version; when value is assigned it shows node name only in the value field of the property grid

Group List of comma-delimited items

Hier Points to a hierarchy

Integer Integer value

LeafNode Points to a leaf node in a hierarchy. When value is assigned it shows hierarchy name and node name in the value
field of the Property Grid.

LimbNode Points to a limb node in a hierarchy. When value is assigned it shows hierarchy name and node name in the value
field of the Property Grid.

ListGroup Check list of items. One or more items can be selected from the list.

Memo Memo field — formatting is not saved and data is merged into a single line of text

MultiNode Points to multiple nodes

Node Points to a node in a hierarchy; when value is assigned it shows hierarchy name and node name in the value field
of the property grid

NodeProps Points to the properties of a node

Property Points to a property

RangeList Defines a range of values — accepts only integer values

Creating Properties 39

Property Data Type Description

Sort Integer value that is used for sorting

SortProp Points to a Sort property

String String value

Time Time

Note: Formatted based on the regional settings associated with the user's session.

Version Points to a version

Working with Formulas
Properties based on a formula enable you to define custom logic using a native formula language
in Data Relationship Management. Formulas are composed of functions and string literals and
must follow specific syntax rules.

Creating Derived Properties with Formulas

ä To create a formula property:

1 On the Home page, select Administer.

2 From New, select Property Definition.

3 Enter a name for the property.

Note: The property is assigned to the Custom namespace. The Fully Qualified Name and
Label fields are filled in automatically after entering the name. The Fully Qualified
Name for the property must be unique. The property label is a user-friendly descriptor
that is displayed for property definitions for all features aside of application
administration. Multiple properties can have the same Label for convenience
purposes. The property Description is an optional, long descriptor that is displayed
at the bottom of the Property Editor. Multiple properties can have the same Label as
long as they are not in the same namespace.

4 Select Derived as the Property Type and Formula as the Deriver Class.

5 Click .

6 Select the Parameters tab to define additional parameters for the formula.

7 You can enter a text formula or insert functions and properties in the following ways:

l To insert a function, place your cursor in the formula and click Insert Function. A list of
functions is displayed. Expand a function to view its input parameters. Enter the
parameter values and click OK.

40 Managing Property Definitions

l To insert a property, place your cursor in the formula and click Insert Property. A list of
properties is displayed. Select a property and click OK.

l Remove Spaces – Selected by default. If selected, all spaces in the formula are removed
when the formula is evaluated and when the property is saved.

l To evaluate the formula, select an option:

m Evaluate with Selected Node – Click and select a node. The node's current
property values are used in the formula. Click Evaluate. The result is displayed at
the bottom of the formula designer.

m Evaluate with Scratch Pad – Enter property values manually. Values can also be
copied from a node and then modified for the evaluation. In the Copy From Node,

click and select a node to display its property values in the grid. Use the filter
row below the column headings to filter the list of properties. Use the Edit buttons
in the Action column to modify property values for evaluation with the formula.
Click Evaluate. The Evaluation Result is displayed at the bottom of the formula
designer.

8 To test the formula, click Evaluate.

Formula Evaluation
You can test formulas when you create or modify a property definition. The formula is evaluated
using the supplied property values to calculate the result of the formula. This process may find
logic or implementation errors in the formula that a simple syntax validation may miss. The
formula result and any formula error or status message is displayed.

Formulas are evaluated left to right, with evaluation of functions and string literals performed
as they are encountered. By this method, nested functions are evaluated before additional
parameters that are displayed to the right of the nested function. Functions can be nested
explicitly in the formula or they can be implicitly nested by retrieving the value of another
formula property. Circular references (property formulas that refer to the property itself, either
explicitly or implicitly) should be avoided in most cases. Data Relationship Management detects
and prevents harmful circular references, but they should not be used unless they are necessary
and well understood.

Formula Syntax Checks
Formula syntax is verified for the following before a formula is saved:

l Function names are correct.

l Property names are correct.

l An equal number of open and close parentheses are present.

l The actual number of parameters is at least the expected number of parameters for each
function

Working with Formulas 41

Functions such as Concat can take any number of parameters. The parameter count validation
verifies that the actual number of parameters is equal to or greater than the expected number of
parameters. Thus too many parameters do not generate an error, but too few parameters do.

The syntax validation does not evaluate the formula, therefore errors may occur if invalid
constants are entered. For example: IntToStr(ABC,3) passes the syntax validation, but
generates an error in the Data Relationship Management application. You must evaluate each
formula to avoid this type of error prior to saving.

Property Names in the Syntax Check
In order to accurately perform a syntax validation on property names, functions that require
property names are partially evaluated for those rare cases in which a property name is not a
literal but is the result of a function.

Consider these examples:

l The formula PropValue(Concat(Core.Abbrev)) is valid, but the Concat function has
to be evaluated (not just validated for syntax) to verify the property name.

l The formula PropValue(If(NodeIsLeaf(),Core.Abbrev,Custom.Label)) is valid,
but the If function has to be evaluated to verify the property name.

If the property name in question comprises only part of the formula, only the parts needed to
determine property names are evaluated. For example, in the formula
Add(PropValue(Concat(Core.,I,D)),If(NodeIsLeaf(),0,1), the only part of the
formula evaluated for the syntax validation is the Concat function and its parameters.

The fact that these formula parts are evaluated becomes significant in cases such as
PropValue(PropValue(NodeType)). For this formula, the syntax validation fails unless a
value is supplied for the Custom.NodeType property.

Functions
Function names are case-insensitive and should be immediately followed by parentheses,
regardless of whether parameters are required.

For more information see:

l “Special Characters” on page 43

l “Literals” on page 43

l “Function Definitions” on page 46

l “Format String Parameter” on page 43

l “Date-Time Format Strings” on page 45

Function parameters must be of the expected type and number. Parameters can be nested
functions or string literals. If parameters are of incorrect type, an error is reported. In the case

42 Managing Property Definitions

of too few parameters, a list index out of bounds error is reported. In the case of too many
parameters, additional parameters are ignored.

Special Characters
In certain functions for which parameter values contain special characters (for example: comma,
space, tab), use square brackets ([]). For example, FlipList(NodeList,[comma]) performs
the FlipList function on the comma-delimited list NodeList.

The following functions can take comma, space, or tab, in square brackets ([]), for the Delimiter
parameter: ArrayCount, ArrayIndex, ArrayItem, FlipList, Intersection,
ListContains, PadList, RangeListContains, and IsRangeListSubset.

The ReplaceStr function, which requires parameters for the old and new pattern, can take
comma, space, tab, crlf, cr, lf, openparen, or closeparen, in square brackets ([]), in
addition to normal text strings.

Literals
Any value that is not a valid function name followed by parentheses is considered a literal. A
literal can be a string, integer, floating-point or boolean literal. In a string literal, spaces are
treated a character. Therefore, extra spaces should not be used in formulas unless they are
necessary to derive the appropriate result. You can use the Remove Spaces option to strip spaces
from the formula prior to saving.

Format String Parameter
Format strings passed to the string formatting routines contain two types of objects — literal
characters and format specifiers. Literal characters are copied verbatim to the resulting string.
Format specifiers get a property value from the specified property and apply formatting to it.
There can be only one specifier in the format string.

Format specifiers use the following form:

“%”[“-”][width][“.”prec]type

Character Description

% Indicates start of a format specifier

[“—”] Left justification indicator (optional)

Left justifies the result by adding blanks after the value. The default is to right-justify the result by adding blanks in front of
the value.

[width] Width specifier (optional)

Sets the minimum field width for a conversion. If the resulting string is shorter than the minimum field width, it is padded
with blanks to increase the field width.

[“.” prec] Precision specifier (optional)

Functions 43

Character Description

type Conversion type character, type

Conversion characters may be specified in uppercase or lowercase. For all floating-point formats, the actual characters used
as decimal and thousand separators are obtained from the DecimalSeparator and ThousandSeparator global variables or
their TFormatSettings equivalent. Valid values for type are listed in the following table.

Type
Value

Description

d Decimal

The property value must be an integer. The value is converted to a string of decimal digits. If the format string contains a precision
specifier, it indicates that the resulting string must contain at least the specified number of digits; if the value has less digits,
the resulting string is left-padded with zeros.

u Unsigned decimal

Similar to d but no sign is output.

e Scientific

The property value must be a floating-point value. The value is converted to a string of the form “-d.ddd...E+ddd”. The resulting
string starts with a minus sign if the number is negative. One digit always precedes the decimal point. The total number of digits
in the resulting string (including the one before the decimal point) is given by the precision specifier in the format string — a
default precision of 15 is assumed if no precision specifier is present. The “E” exponent character in the resulting string is always
followed by a plus or minus sign and at least three digits.

f Fixed

The property value must be a floating-point value. The value is converted to a string of the form “-ddd.ddd...”. The resulting string
starts with a minus sign if the number is negative. The number of digits after the decimal point is given by the precision specifier
in the format string — a default of two decimal digits is assumed if no precision specifier is present.

g General

The property value must be a floating-point value. The value is converted to the shortest possible decimal string using fixed or
scientific format. The number of significant digits in the resulting string is given by the precision specifier in the format string—
a default precision of 15 is assumed if no precision specifier is present. Trailing zeros are removed from the resulting string, and
a decimal point appears only if necessary. The resulting string uses fixed point format if the number of digits to the left of the
decimal point in the value is less than or equal to the specified precision, and if the value is greater than or equal to 0.00001.
Otherwise the resulting string uses scientific format.

n Number

The property value must be a floating-point value. The value is converted to a string of the form "-d,ddd,ddd.ddd...". The "n"
format corresponds to the "f" format, except that the resulting string contains thousand separators.

m Money

The property value must be a floating-point value. The value is converted to a string that represents a currency amount. The
conversion is controlled by the CurrencyString, CurrencyFormat, NegCurrFormat, ThousandSeparator, DecimalSeparator, and
CurrencyDecimals global variables or their equivalent in a TFormatSettings data structure. If the format string contains a precision
specifier, it overrides the value given by the CurrencyDecimals global variable or its TFormatSettings equivalent.

s String

The property value must be a character, a string, or a PChar value. The string or character is inserted in place of the format
specifier. The precision specifier, if present in the format string, specifies the maximum length of the resulting string. If the
property value is a string that is longer than this maximum, the string is truncated.

44 Managing Property Definitions

Type
Value

Description

x Hexadecimal

The property value must be an integer value. The value is converted to a string of hexadecimal digits. If the format string contains
a precision specifier, it indicates that the resulting string must contain at least the specified number of digits; if the value has
fewer digits, the resulting string is left-padded with zeros.

Date-Time Format Strings
Date-time format strings specify the formatting of date-time values (such as TDateTime) when
they are converted to strings. Date-time format strings are composed from specifiers that
represent values to be inserted into the formatted string. Some specifiers (such as “d”), format
numbers or strings. Other specifiers (such as “/”), refer to locale-specific strings from global
variables. The case of the specifiers is ignored in formats, except for the “am/pm” and “a/p”
specifiers.

Specifier Display

c Date followed by time

Note: The time is not displayed if the date-time value indicates midnight precisely.

d Day as a number without a leading zero (1–31)

dd Day as a number with a leading zero (01–31)

ddd Day as an abbreviation (Sun-Sat)

dddd Day as a full name (Sunday-Saturday)

ddddd Short format of date

dddddd Long format of date

e Year in the current period/era as a number without a leading zero (Japanese, Korean, and Taiwanese locales only)

ee Year in the current period/era as a number with a leading zero (Japanese, Korean, and Taiwanese locales only)

g Period/era as an abbreviation (Japanese and Taiwanese locales only)

gg Period/era as a full name (Japanese and Taiwanese locales only)

m Month as a number without a leading zero (1–12)

Caution! If the “m” specifier immediately follows an “h” or “hh” specifier, the minute rather than the month is displayed.

mm Month as a number with a leading zero (01–12)

Caution! If the “mm” specifier immediately follows an “h” or “hh” specifier, the minute rather than the month is displayed.

mmm Month as an abbreviation (Jan-Dec)

mmmm Month as a full name (January-December)

Functions 45

Specifier Display

yy Year as a two-digit number (00–99)

yyyy Year as a four-digit number (0000–9999)

h Hour without a leading zero (0–23)

hh Hour with a leading zero (00–23)

n Minute without a leading zero (0–59)

nn Minute with a leading zero (00–59)

s Second without a leading zero (0–59)

ss Second with a leading zero (00–59)

z Millisecond without a leading zero (0–999)

zzz Millisecond with a leading zero (000–999)

t Time using the format given by the ShortTimeFormat global variable

tt Time using the format given by the LongTimeFormat global variable

am/pm Uses the 12-hour clock for the preceding “h” or “hh” specifier, and displays “am” for any hour before noon, and “pm” for any
hour after noon. The am/pm specifier can use lower, upper, or mixed case, and the result is displayed accordingly.

a/p Uses the 12-hour clock for the preceding “h” or “hh” specifier, and displays “a” for any hour before noon, and “p” for any hour
after noon. The a/p specifier can use lower, upper, or mixed case, and the result is displayed accordingly.

ampm Uses the 12-hour clock for the preceding “h” or “hh” specifier

/ Date separator character given by the regional settings

: Time separator character given by the regional settings

'xx'/“xx” Characters enclosed in single or double quotes are displayed as-is and do not affect formatting

Function Definitions
Following is an alphabetical listing of available functions used with derived formula property
definitions.

Abbrev

Description

Returns the Abbrev (name) of the current node.

Syntax

Abbrev(): String

46 Managing Property Definitions

Example

Abbrev()

Return value is the name of the node.

Add

Description

Adds two specified integer values and returns the result.

Syntax

Add(Int1, Int2: Integer): Integer

Example

Add(1,4)

Return value is 5

AddedBy

Description

Returns the username from the AddedBy property on the Stats category.

Syntax

AddedBy(): String

AddedOn

Description

Returns the Added On Date/Time in the server's regional format converted from the internal
format of yyyy/mm/dd hh:mm:ss am/pm and is used with the Creation Date node property.

Syntax

AddedOn(): Date/Time

AddFloat

Description

Adds two specified float values and returns the result.

Functions 47

Syntax

AddFloat(Float1, Float2: Float): Float

Example

AddFloat(2.14,3.75)

The return value is 5.89.

AncestorProp

Description

Returns a property of the first ancestor where Prop = x

Syntax

AncestorProp(Operator, Property, Value, FromTop, ReturnProp

And

Description

Returns True if both Boolean expressions specified evaluate to True.

Syntax

And(Expression1, Expression2,...ExpressionN: Boolean): Boolean

Example

And(1,T,True)

Return value is True

ArrayCount

Description

Returns the number of items in the list.

Syntax

ArrayCount(List: String, Delimiter:String): Integer

Example

ArrayCount(Diet Cola, Orange Cola, Root Beer, Cola)

Return value is 4

48 Managing Property Definitions

ArrayIndex

Description

Returns the position of the first occurrence of the specified item within the list.

Returns 0 if the item is not found.

Syntax

ArrayIndex(Item: String, List: String, Delimiter: String): Integer

Example

ArrayIndex(Cola,Diet Cola,Orange Cola,Root Beer,Cola)

Return value is 4

ArrayItem

Description

Returns the item in the list at the specified index position. Using a negative index value returns
the last item in the list.

Syntax

ArrayItem(List: String, Delimiter:String, Index: Integer): String

Example

ArrayItem(Diet Cola,Orange Cola,Root Beer,Cola,4)

Return value is Cola

AscNodeProp

Description

Goes to the node pointed to by the specified node property and returns the specified property.

Syntax

AscNodeProp(LookupProp, ReturnProp

BoolToStr

Description

Converts a specified Boolean value to the string “True” or “False” and returns the result.

Functions 49

Syntax

BoolToStr(Expression: Boolean): String

Example

BoolToStr(1)

Return value is True

Changed

Description

Returns True if the node's Changed flag has been set and is used with the Node Changed node
property.

Syntax

Changed()

ChangedBy

Description

Returns the Changed By username and is used with the Last Updated By node property.

Syntax

ChangedBy(): String

ChangedOn

Description

Returns the Changed On Date/Time in the server's regional format converted from the internal
format of yyyy/mm/dd hh:mm:ss am/pm and is used with the Last Update Date node property.

Syntax

ChangedOn(): Date/Time

Children

Description

Returns a comma-delimited list of children.

Syntax

Children()

50 Managing Property Definitions

Concat

Description

Concatenates two or more specified strings into one and returns the result.

Syntax

Concat(Item1, Item2, ... ItemN: String): String

Example

Concat(Abbrev,-,Descr())

If current node name is 100 and current node description is Colas, then return value is 100–
Colas.

ConcatWithDelimiter

Description

Concatenates two or more delimited strings into one and returns the result.

Syntax

ConcatWithDelimiter(;, True, Item1, Item2, Item3, Item4)

Example

ConcatWithDelimiter(;,1,Item1,Item2,Item3,Item4)

Return value is Item1; Item2; Item3; Item4

DefaultProp

Description

Returns the default value for the property.

Syntax

DefaultProp(Property)

Descr

Description

Returns the description of the current node.

Syntax

Descr(): String

Functions 51

Example

If current node description is Colas, then return value is Colas.

Divide

Description

Divides two specified integer values and returns the result.

Syntax

Divide(Int1,Int2: Integer): Integer

Example

Divide(200,10)

Return value is 20.

DivideFloat

Description

Divides the two specified floats and returns the result.

Syntax

Divide(Float1, Float2: Float): Float

Example

DivideFloat(2.535,1.5)

The return value is 1.69.

DualAncestorProp

Description

Traverses up the local or controlling hierarchy until it finds a node where the specified properties
equal the specified values and then returns the specified return property.

Syntax

DualAncestorProp(Equiv1, Prop1, CompareVal1, Equiv2, Prop2, CompareVal2, FromTop,
ReturnProp)

52 Managing Property Definitions

Equals

Description

Returns True if two specified values are equal. The type of comparison must be specified; valid
types are string, integer, floating-point, Boolean, and date.

Syntax

Equals(ParamType, String1, String2: String): Boolean

Example

Equals(integer,01,1)

Return value is True.

FlipList

Description

Returns a string representing the reverse of the specified list.

Syntax

FlipList(List, Delimiter:String): String

Example

FlipList(DietCola;Orange Soda;Root Beer;Lemonade,;)

Return value is Lemonade;Root Beer;Orange Soda;Diet Cola.

FloatToStr

Description

Returns a string representing the specified floating-point value.

Syntax

FloatToStr(AFloat: Float): String

Example

FloatToStr(1.001)

Return value is 1.001.

Functions 53

Format

Description

Invokes Format function using a specified format string, parameter type-identifier and
parameter value of the specified type. This function is limited to one value parameter. The format
string used is described in the format string section.

Syntax

Format(AFormat, ParamType, FormatParam: String): String

Example

Format('%8.2f',Float,123.456)

Return value is 123.46

FormattedDate

Description

Formats the value of a date property based on a format string.

Syntax

FormattedDate(Property, Format string)

GreaterThan

Description

Returns True if the first of two specified integer values is greater than the second. Parameter type
is optional and specifies the parameter types for the values to be compared. Valid parameter
types are string, integer, float, and date. The default parameter types is integer.

Syntax

GreaterThan(Value1, Value2, ParamType: String): Boolean

Example

GreaterThan(1,2)

The return value is False.

54 Managing Property Definitions

GreaterThanOrEqual

Description

Returns True if the first of two specified integer values is greater than or equal to the second.
Parameter type is optional and specifies the parameter types for the values to be compared. Valid
parameter types are string, integer, float, and date. The default parameter type is integer.

Syntax

GreaterThanOrEqual(Value1, Value2, ParamType: String): Boolean

Example

GreaterThanOrEqual(2,2)

The return value is True.

HasChildWith

Description

Returns True if the specified expression is True for any child.

Syntax

HasChildWith(Expression1: Boolean): Boolean

Example

HasChildWith(GreaterThan(ID(),200))

If the current node has any children with an ID greater than 200, then return value is True.

HasParentNode

Description

Returns True if the current local node has a parent node. Returns False for the top node of a
hierarchy.

Syntax

HasParentNode(): Boolean

Example

HasParentNode()

If the node is a child of the top node of a hierarchy or any descendant node, then the return
value is True.

Functions 55

HasSiblingWith

Description

Returns True if the specified expression is True for any sibling. Formula using this function must
be in a local property.

Syntax

HasSiblingWith(Expression1: Boolean): Boolean

Example

HasSiblingWith(PropValue(Leaf))

If any of the children are leaves, then the return value is True.

HierNodePropValue

Description

Returns the value of the specified property of the specified node in the specified hierarchy.

Syntax

HierNodePropValue(HierAbbrev,NodeAbbrev,PropAbbrev: String): String

Example

HierNodePropValue(Assets,1000,Description)

If the description for node 1000 in the Assets hierarchy is “Banking”, then the return value is
Banking.

ID

Description

Returns the integer ID of the current node.

Syntax

ID(): Integer

Example

ID()

If the current node ID is 2000, then the return value is 2000.

56 Managing Property Definitions

If

Description

If the specified expression evaluates to True, this function returns the value of the ResultIfTrue
parameter, otherwise it returns the value of the ResultIfFalse parameter.

Syntax

If(Expression: Boolean; ResultIfTrue, ResultIfFalse: String): String

Example

If(Equals(String,Descr(),),Abbrev(),Concat(Abbrev,-,Descr()))

If the node name is Colas and the current node description is blank, then the return value is
Colas.

If the node name is 100 and the current node descriptions is Colas, then the return value is 100–
Colas.

InternalPrefix

Description

Returns the non-numeric prefix of a node name.

Syntax

InternalPrefix()

Intersection

Description

Returns the set of items common to both List1 and List2. The ordering of the results is based on
how the items appear in the first list.

Syntax

Intersection(List1: String, List2: String, Delimiter: String): String

Example

Intersection(A,B,C,D,E,C,E,F,A,)

The return value is A,C,E.

Functions 57

IntToStr

Description

Converts the specified integer to a string value and returns the result.

Syntax

IntToStr(Int: Integer): String

Example

IntToStr(12345)

The return value is 12345.

InvertedLevel

Description

Returns the maximum depth of descendants below the node.

Syntax

InvertedLevel()

IsAlpha

Description

Returns True if the specified string contains only letters A to Z (case-insensitive).

Syntax

IsAlpha(AString: String): Boolean

Example

IsAlpha(A23D)

The return value is False.

IsNumeric

Description

Returns True if the specified string contains only numbers 0 to 9. The optional parameter
AllowBlanksAsNumeric allows the function to return True for a blank string. The default for
the parameter is False.

58 Managing Property Definitions

Syntax

IsNumeric(AString: String, [AllowBlanksAsNumeric]): String

Example

IsNumeric(12345)

The return value is True.

IsRangeListSubset

Description

Returns True if the subset exists in the Range List.

Syntax

IsRangeListSubset(RangeList, SubsetRangeList: RangeList, Delimiter: String): Boolean

Example

IsRangeListSubset(ARangeList, SubsetRangeList: RangeList, Delimiter: String): Boolean

The return value is True.

Length

Description

Returns the number of characters in the specified string.

Syntax

Length(AString: String): Integer

Example

Length(Desc())

If the description for the current node is Colas, then the return value is 5.

LessThan

Description

Returns True if the first of two specified integer values is less than the second. Parameter type is
optional and specifies the parameter types for the values to be compared. Valid parameter types
are string, integer, float, and date. The default parameter type is integer.

Syntax

LessThan(Value1, Value2: Integer(Default), [ParamType: String]): Boolean

Functions 59

Example

LessThan(1,2)

The return value is True.

LessThanOrEqual

Description

Returns True if the first of two specified integer values is less than or equal to the second.
Parameter type is optional and specifies the parameter types for the values to be compared. Valid
parameter types are string, integer, float and date. The default parameter type is integer.

Syntax

LessThanOrEqual(Value1, Value2: Integer(Default), [ParamType: String]): Boolean

Example

LessThanOrEqual(3,3)

The return value is True.

ListAncestors

Description

Returns a comma-delimited list of the names of the current node’s ancestors starting from the
top node. The current node must be a local node for this function to work. To ensure that the
node is local, any formula containing this function must be part of a local derived formula
property.

Syntax

ListAncestors(): String

Example

ListAncestors()

If A, B, C, and D are children of Z, Z is a child of Y, and the current node is D, then the return
value is Z,Y.

ListChildren

Description

Returns a comma-delimited list of the names of the current node’s immediate children.

60 Managing Property Definitions

Syntax

ListChildren(): String

Example

ListChildren()

If A, B, C, and D are children of Z and the current node is Z, then the return value is A, B, C, D.

ListContains

Description

Returns a Boolean value indicating whether a value is contained in a delimited list.

Syntax

ListContains(List, Item, Delimiter: String): String

Example

ListContains(PropValue(NodeList),Colas,;)

The return value is true.

ListDescendants

Description

Returns a comma-delimited list of the names of the current node’s descendants.

Syntax

ListDescendants(): String

Example

ListDescendants()

If A, B, C, and D are children of Z, Z is a child of Y, and the current node is Y, then the return
value is Z, A, B, C, D.

ListPeers

Description

Returns a comma-delimited list of the names of the current node’s peers (siblings). The current
node must be a local node for this function to work. To ensure that the node is local, any formula
containing this function must be part of a local derived formula property.

Functions 61

Syntax

ListPeers(): String

Example

ListPeers()

If A, B, C, and D are children of Z and the current node is B, then the return value is A, C, D.

ListSiblings

Description

Returns a comma-delimited list of the names of the current node’s siblings (peers). The current
node must be a local node for this function to work. To ensure that the node is local, any formula
containing this function must be part of a local derived formula property.

Syntax

ListSiblings(): String

Example

ListSiblings()

If A, B, C, and D are children of Z and the current node is B, then the return value is A, C, D.

LowerCase

Description

Converts the specified string to lower case and returns the result.

Syntax

LowerCase(AString: String): String

Example

LowerCase(HOBBES)

The return value is hobbes.

LTrim

Description

Returns the specified string with all spaces trimmed from the left end.

Syntax

LTrim(AString: String): String

62 Managing Property Definitions

Example

LTrim(“ 101203“)

The return value is 101203.

Modulus

Description

Returns the modulus (remainder) of the division of two specified integers.

Syntax

Modulus(Int1, Int2: Integer): Integer

Example

Modulus(5,2)

The return value is 1.

Multiply

Description

Multiplies two specified integers and returns the result.

Syntax

Multiply(Int1, Int2: Integer): Integer

Example

Multiply(2,5)

The return value is 10.

MultiplyFloat

Description

Multiplies two specified floats and returns the result.

Syntax

Multiply(Float1, Float2: Float): Float

Example

MultiplyFloat(4.76,2.3)

The return value is 10.948.

Functions 63

NextSibling

Description

Returns the next sibling for the specified node.

Syntax

NextSibling(): String

Example

NextSibling()

If A, B, C, and D are children of Z and the current node is B, then the return value is C.

NodeAccessGroups

Description

Returns a comma-delimited list of node access groups for which the currently logged in user has
rights.

Syntax

NodeAccessGroups(): String

Example

NodeAccessGroups()

The return value is Accounts, Finance.

NodeExists

Description

Returns True if the specified node exists.

Syntax

NodeExists(NodeAbbrev: string): Boolean

Example

NodeExists(2000)

If node 2000 exists, then the return value is True.

64 Managing Property Definitions

NodeInHier

Description

Returns True if the specified node exists in the specified hierarchy.

Syntax

NodeInHier(NodeAbbrev, HierAbbrev: string): Boolean

Example

NodeInHier(2000,Assets)

If the node 2000 is in the Assets hierarchy, then the return value is True.

NodeIsLeaf

Description

Returns True if the current node is a leaf (that is, it can not contain children.)

Syntax

NodeIsLeaf(): Boolean

Example

NodeIsLeaf()

If the current node is a leaf, then the return value is True.

NodePropValue

Description

Returns the value of the specified property of the specified node in the current hierarchy for a
local node or in the current version for a global node.

Syntax

NodePropValue(NodeAbbrev, PropAbbrev: String): String

Example

NodePropValue(2000,Abbrev())

Return value is 2000.

Functions 65

Not

Description

Returns the Boolean opposite of the specified Boolean expression.

Syntax

Not(Expression: Boolean): Boolean

Example

Not(NodeIsLeaf())

If the node is a limb, then the return value is True.

Now

Description

Returns the current date and/ or time. The optional DateTimeType parameter can be [date,
time, or datetime].

Syntax

Now([DateTimeType: String]): DateTime

Example

Now()

Returns the current date and time, for example 3/25/2010 9:20:44 AM.

Now(Time)

Returns only the current time, for example 9:20:44 AM.

Now(Date)

Returns only the current date, for example 3/25/2010.

NumChildWith

Description

Returns the number of children where the specified expression is True.

Syntax

NumChildWith(Expression: Boolean): Integer

Example

NumChildWith(NodeIsLeaf())

66 Managing Property Definitions

If the node has two leaf children, then the return value is 2.

NumDescendantsWith

Description

Returns the number of descendants where the specified expression is True.

Syntax

NumDescendantsWith(Expression: Boolean): Integer

Example

NumDescendantsWith(NodeIsLeaf())

If the node has two children and each child has 10 leaf children, then the return value is 20.

Or

Description

Returns True if any of the specified Boolean expressions are True.

Syntax

Or(Expression1, Expression2,... ExpressionN: Boolean): Boolean

Example

Or(NodeIsLeaf(),Equals(Integer,PropValue(Level),3))

If the current node is a leaf or is at level 3 in the hierarchy, then the return value is True.

OrigPropValue

Description

Returns the value of the specified property for the originating node of the function. When using
a function such as HasChildWith, the originating node can be referenced inside that function
by using the ParentPropValue function. However, when using a function such as
HasSiblingWith or NumDescendantsWith, the OrigPropValue function must be used.

Syntax

OrigPropValue(PropAbbrev: String): String

Example

HasSiblingWith(GreaterThan(OrigPropValue(ID),ID())

Functions 67

If the current node's ID is 200 and it has any siblings with a node ID greater than 200, then the
return value is True.

PadChar

Description

Returns a specified string lengthened using a specified pad character. Padding can be on the left
or right of the original string. The resulting string is at least as long as the number of digits
specified. If the original string is longer than the number of digits specified, the result is the
original string.

Syntax

PadChar(AString, PadChar: String; PadLeft: Boolean; NewLength: Integer): String

Example

PadChar(102,0,1,6)

The return value is 000102.

PadList

Description

Returns a specified list lengthened using a specified pad character. Padding can be on the left or
right of the original list. The resulting list is at least as long as the number of digits specified. If
the original list is longer than the number of digits specified, the result is the original list.

Syntax

PadList(String, DelimChar, PadChr:String, PadLeft: Boolean, NewLength:Integer): String

Example

PadList(1;2;3;4,;,True,3)

The return value is 001;002;003,004.

ParentPropValue

Description

Returns the value of the specified property of the current node’s parent node. The current node
must be a local node for this function to work. To ensure that the node is local, any formula
containing this function must be part of a local derived formula property.

Syntax

ParentPropValue(PropAbbrev: String): String

68 Managing Property Definitions

Example

ParentPropValue(Abbrev)

If the parent node name is Colas, then the return value is Colas.

Pos

Description

Searches for a specified substring within the specified string and returns an integer value that is
the position of the first character of the substring within the string. Pos is case-sensitive. If the
sub string is not found, Pos returns zero.

Syntax

Pos(ASubString, AString: String): Integer

Example

Pos(D,ABCDEFG)

The return value is 4.

PreviousSibling

Description

Returns the previous sibling for the current node.

Syntax

PreviousSibling(): String

Example

PreviousSibling()

If A, B, C, and D are children of Z and the current node is B, then the return value is A.

PropControllingHier

Description

Returns the name of the controlling hierarchy of the specified property in the current version.

Syntax

PropControllingHier(PropAbbrev: String): String

Example

PropControllingHier(TimeBalance)

Functions 69

The return value is Accounts.

PropDefaultValue

Description

Returns the default value of the specified property. This value is retrieved from the property
definition.

Syntax

PropDefaultValue(PropAbbrev: String): String

Example

PropDefaultValue(Currency)

The return value is USD.

PropertyCategories

Description

Returns a comma-delimited list of property categories for which the currently logged in user
has rights. AccessType parameter is used to return property categories to which the user has
ReadOnly access, ReadWrite access or Both.

Syntax

PropertyCategories(AccessType: String) :String

Example

PropertyCategories(Both)

The return value is System, All, Essbase, Enterprise, HFM, Planning.

PropMaxValue

Description

Returns the maximum value of the specified property. This value is retrieved from the property
definition.

Syntax

PropMaxValue(PropAbbrev: String): Integer

Example

PropMaxValue(Volume)

70 Managing Property Definitions

The return value is 10.

PropMinValue

Description

Returns the minimum value of the specified property. This value is retrieved from the property
definition.

Syntax

PropMinValue(PropAbbrev: String): Integer

Example

PropMinValue(Volume)

The return value is 1.

PropValue

Description

Returns the value of the specified property of the current node.

Syntax

PropValue(PropAbbrev: String): String

Example

PropValue(Volume)

The return value is 2.

RangeListContains

Description

Returns True if the Range List contains the specified value.

Syntax

RangeListContains(RangeList: String, Value: Integer, Delimiter: String): Boolean

The RangeList parameter looks like this: 1-10,101-10000,9999999-10000000000

Example

RangeListContains(PropValue(MyRangeList),1,[Comma])

Functions 71

If the property 'MyRangeList' has a value of 1-10, 101-10000, then the return value is True
because 1 is contained in the specified range. However,
RangeListContains(PropValue(MyRangeList),11,[Comma]) returns False because 11 is not
contained in the specified range.

Note: If you change MyRangeList to "1-5,6-10,101-1000", Data Relationship Management
replaces this value with "1-10,101-1000" because it checks the validity of the RangeList
and combines ranges with contiguous boundaries.

ReplacementAbbrev

Description

If the current node is inactive, this function returns the Abbrev (name) of the current node’s
replacement node. The replacement node is the merge node when using the optional Merge
functionality.

Syntax

ReplacementAbbrev(): String

Example

ReplacementAbbrev()

ReplacePropValue

Description

If the current node is inactive, this function returns the value of the specified property of the
current node’s replacement node. The replacement node is the merge node when using the
optional Merge functionality.

Syntax

ReplacePropValue(PropAbbrev: String): String

Example

ReplacePropValue(Description)

ReplaceStr

Description

Returns the string with instance(s) of the old pattern replaced by the new pattern.

Syntax

ReplaceStr(AString,OldPattern,NewPattern: String,ReplaceAll: Boolean): String

72 Managing Property Definitions

Example

ReplaceStr(A1;A2;A3,A,B,True)

The return value is B1;B2;B3.

RTrim

Description

Returns the specified string with all spaces trimmed from the right end.

Syntax

RTrim(AString: String): String

Example

RTrim(“100 “))

The return value is 100.

StripPadChar

Description

Returns the result of stripping a specified pad character from the beginning of a specified string.
The function can strip all instances of the specified character by specifying 0 (zero) as the strip
count, or a specific number of characters to strip using a non-zero integer. If the original string
contains fewer pad characters than are specified for stripping, this function does not strip non-
pad characters.

Syntax

StripPadChar(AString, PadChar: String, StripCount: Integer): String

Example

StripPadChar(0003333,0,6)

The return value is 3333.

StrToBool

Description

Returns a Boolean value based on the specified string.

l If the specified string starts with a Y, T, or 1 (one), regardless of case or following characters,
the function returns True.

Functions 73

l If the specified string starts with N, F, or 0 (zero), regardless of case or following characters,
the function returns False.

l If the specified string does not represent a valid boolean value, an error is returned.

Syntax

StrToBool(AString: String): Boolean

Example

StrToBool(0)

The return value is False.

StrToFloat

Description

Returns the floating-point value of the specified string.

Note: A space or empty string is treated as a 0 (zero).

If the specified string does not represent a floating point number, an error is returned.

Syntax

StrToFloat(AString: String): Float

Example

StrToFloat(11.101)

The return value is 11.101.

StrToInt

Description

Returns the integer value of the specified string.

Note: A space or empty string is treated as a 0 (zero).

If the specified string does not represent an integer number, an error is returned.

Syntax

StrToInt(AString: String): Integer

74 Managing Property Definitions

Example

StrToInt(101)

The return value is 101.

Stuff

Description

Returns string with the specified characters replaced by the specified string.

Syntax

Stuff(APropertyName, ACharsToReplace, AReplacement: String): String

Example

Stuff(Abbrev(),GEO,RIO)

If Abbrev is GEO101, then the return value is RIO101.

SubString

Description

Returns a portion of the specified string, starting at the specified index and containing the
specified number of characters.

Syntax

SubString(AString: String, Index, Count: Integer): String

Example

SubString(Colas,1,2)

The return value is Co.

Subtract

Description

Returns the result of subtracting the second specified integer from the first.

Syntax

Subtract(Minuend,Subtrahend: Integer): Integer

Example

Subtract(10,2)

Functions 75

The return value is 8.

SubtractFloat

Description

Returns the result of subtracting the second specified Float from the first.

Syntax

SubtractFloat(Minuend,Subtrahend: Float): Float

Example

SubtractFloat(8.09,3.76)

The return value is 4.33.

Trim

Description

Returns the specified string with all spaces trimmed from both ends.

Syntax

Trim(AString: String): String

Example

Trim(“ 101 “)

The return value is 101.

UpperCase

Description

Returns the specified string converted to all upper case.

Syntax

UpperCase(AString: String): String

Example

UpperCase(smaller)

The return value is SMALLER.

76 Managing Property Definitions

UserName

Description

Returns the user name for the currently logged in user.

Syntax

UserName(): String

Example

UserName()

Return value is the user name.

XOr

Description

Returns True if one and only one of the two specified Boolean expressions evaluates to True.

Syntax

Xor(Expression1, Expression2: Boolean): Boolean

Example

XOr(NodeIsLeaf(),Equals(Integer,PropValue(Level),3))

If the node is a leaf, or is at level 3 in the hierarchy but not both, then the return value is True.

Editing Property Definitions

ä To edit a property definition:

1 On the Home page, select Administer.

2 Under Metadata, expand Property Definitions.

3 Expand Core or Custom depending on the type of property definition.

4 Double-click a property.

5 Make changes to any of these parameters:

l Label

l Description

l Hidden

l Data Type

l Default Value

Editing Property Definitions 77

l Lookup Property

l Column Width

l Minimum and Maximum Value/Length

See “Creating Properties” on page 36 for more information.

6 Click .

Deleting Properties

ä To delete a property:

1 From the Home page, select Administer.

2 Under Metadata, expand Property Definitions.

3 Select a property and click .

4 Select Delete Property Definition to confirm the deletion.

Caution! The deletion of a property definition will also result in the deletion of all values
stored for the property as well as the removal of the property from all metadata
objects where it was being used.

78 Managing Property Definitions

6
Managing Validations

In This Chapter

Validation Classes79

Validation Levels .. .81

Creating Validations82

Assigning Validations83

Editing Validations83

Deleting Validations83

Validations enable business rules to be enforced on versions, hierarchies, nodes, and properties.
Validations can be run in either real time or batch, or both modes. Real-time validations are run
at the time of modification and prevent changes from being saved if the action would violate the
rules being enforced. Batch validations can be explicitly run before or after edits are made to
identify data conditions that are invalid and need to be addressed.

Validation Classes
Validation classes allow different types of business rules to be enforced. Some validation classes
can be used generically while other classes are used for specific purposes. Validations can be
created from a set of existing validation classes. Many business rules on nodes can be enforced
with a validation class that uses a query for its logic. This enables validations to leverage queries
that have been created for analysis purposes to also manage data integrity. Rules for versions
and hierarchies or special cases for nodes can be accomplished using other validation classes. A
few of the validation classes are used for product testing purposes only and should not be used
in a production environment.

Table 5 Validation Classes

Validation Class Level Description Parameters

Automatic hierarchy fail Hierarchy Automatically fails at hierarchy level for testing purposes none

Automatic node fail Global Node Automatically fails nodes at the version level for testing purposes none

Automatic version fail Version Automatically fails at the version level for testing purposes none

Date range check Node Verifies that the From Date is earlier than or equal to the To Date From Date Property,
To Date Property

Validation Classes 79

Validation Class Level Description Parameters

Fails If Prop = TRUE in
hierarchy

Node Verifies that the specified boolean property has no True values in
the specified hierarchy

Property, Hierarchy

Finds branches where
property is not set

Node Verifies that the specified property is set at least once on a specified
branch

Property

Global property query
validation

Global Node Verifies using predefined query and expected result Property query name,
Failure value

Hierarchy contains a
reference of a node when
bool property is true

Node Hierarchy contains a reference to the node when a Boolean
property is True, or if the node is a leaf node and a third Boolean
property is True.

Hierarchy name,
Boolean property for
all nodes, Boolean
property for leaf nodes

Hierarchy contains all
where Prop = TRUE

Global Node Verifies that the specified hierarchy contains all nodes where the
specified property is True

Hierarchy, Property

Hierarchy contains all
where Prop = value

Global Node Verifies that the specified hierarchy contains all nodes for which
the specified property has the specified value

Hierarchy, Property,
Value

Invalid name length Node Verifies that the node name is not equal to a specified length. Length

Limbs without any children Node Verifies that all limb nodes have children none

Local property query
validation

Node Verifies using predefined query and expected result

Only a local property query can be used.

Property query name,
Failure value

Maximum # of nodes in a
hierarchy

Hierarchy Verifies that the number of nodes in the hierarchy does not exceed
specified limit

Maximum number of
nodes

Maximum # of nodes in a
version

Version Verifies that the number of nodes in the version does not exceed
specified limit

Maximum number of
nodes

Maximum child nodes Version Verifies that the number of children per node do not exceed
specified limit

Maximum number of
children

Merge node equivalency
validation

Merge Verifies that the affected node and merge node have the same
value for the specified property

Global node property

Merge node property
overridden validation

Merge Verifies that if the affected node property value is set (overridden),
the merge node property value is set for the specified property
(Property values need not be the same)

Property

No default values allowed Node Verifies that no default values are used for the specified property Property

No TRUE value on a branch Node Verifies that the specified boolean property is set to True at least
once on a specified branch

Property

Node fail random Node Automatically fails the specified percentage of nodes for testing
purposes

Failure percentage

Property equals value Node Fails for all nodes for which the specified property equals the
specified value

Property, Value

80 Managing Validations

Validation Class Level Description Parameters

Property equivalency when
a third boolean prop is true

Node Property equivalency when a third boolean property is True. Boolean property to
evaluate, First
Property, Second
Property

Property length check Node Verifies that the specified property is at least minimum length and
no more than maximum length

Property, Minimum
Length, Maximum
Length

Property set only once per
branch

Node Verifies that the specified property is set only once per branch Property

Remove property validation Remove Prevents the removal of a node if the property or properties
specified (in the prop1, prop2 and prop3 parameters) are equal
to the specified values (in the value1, value2, value3 parameters).

Property1, Property2,
Property3, Value1,
Value2, Value3

Required fields Node Verifies that, for all nodes for which the specified property has a
specified value, each property in the required list has a value:

l If the Reject Default Records flag is True, each property in
required list must have a value other than the default

l If the Reject Default Records flag is False, then default values
are acceptable

Property, Value,
Reject Default
Records, Required
Properties

Single TRUE value on a
branch

Node Verifies that the specified boolean property is set to True only once
per branch

Property

Unique 2 properties within
a version

Global Node Verifies that specified properties have no duplicate values within a
version (If the Include Defaults flag is False, nodes with the default
value are not included)

First property, Second
property, Include
Defaults

Unique property value
within a branch

Node Verifies that the specified property has unique value within a branch Property

Unique property value
within a hierarchy

Node Verifies that the specified property has no duplicate values within
a hierarchy (If the Include Defaults flag is False, nodes with the
default value are not included)

Property, Include
Defaults

Unique property value
within a version

Global Node Verifies that the specified property has no duplicate values within
a version (If the Include Defaults flag is False, nodes with the
default value are not included)

Property, Include
Defaults

Validation Levels
The validation level defines the scope of a business rule. For node validations, the level can also
include the type of action that needs to be performed in order for the validation to run.

Table 6 Validation Levels

Level Definition Example

Node Reviews node relationships and properties to ensure criteria are met. Use to determine whether a node level string
property value has a valid length.

Validation Levels 81

Level Definition Example

Hierarchy Reviews properties in a hierarchy to ensure criteria are met. Can be
assigned and run at the hierarchy or version levels.

Use to ensure that a hierarchy has no more than
10,000 nodes

Version Reviews the properties of a version. Use to ensure that a version contains no more
than 100,000 nodes

Global node Assigned at a version level. Validates every node in the version regardless
of hierarchy, including orphans. Only properties defined as global are
reviewed.

Use to ensure that all nodes within a version
have a unique property value.

Merge Runs when an operation requiring a merge (for example, a delete or an
inactivate) is performed. Assigned at the version level.

Use to ensure that a leaf node is merged only
into another leaf node.

Move A validation triggered when an attempt is made to move a node.
Assigned at the hierarchy level.

Use to prevent moving of cost centers within a
hierarchy.

Remove Similar to the Move level. Runs when an attempt is made to remove or
delete a node from a hierarchy. Can be used to prevent specified types
of nodes from being deleted. Can be assigned and run at the hierarchy
or version level.

Use to prevent the deletion of cost center nodes
from a hierarchy

Creating Validations

ä To create a validation:

1 On the Home page, select Administer.

2 From New, select Validation.

3 Enter a name for the validation.

Note: The validation will be assigned to the Custom namespace. The Fully Qualified Name
for the validation must be unique. The Label field is filled in automatically after
entering the name. The validation label is a user-friendly descriptor that is displayed
for validations for all features aside of application administration. Multiple
validations can have the same Label as long as they are not in the same namespace.

4 Enter the message to display to the user if the validation fails.

5 Select a validation class. See Validation Classes.

Note: The valid levels are populated depending on the class selected.

6 For classes that can be run in real time at the node level, select a level that includes a type of action.

7 Select from the following options for the validation:

l RealTime – Runs when a change is made

l Batch – Runs when explicitly requested

l Inherited – Runs for selected node and its descendants

82 Managing Validations

Note: Depending on the validation class you select, some of these options may not be
available or parameters are displayed for which you may need to edit values.

8 Define the parameters for the selected validation class.

9 Click .

Assigning Validations
After you create validations, you can assign them to versions, hierarchies, and nodes. Multiple
validations can be assigned at the same time.

Note: When assigned at the version level, validations are inherited by all hierarchies and nodes
within the version. When assigned at the hierarchy level, validations are inherited by all
nodes within the hierarchy.

For information on assigning validations, see the Oracle Hyperion Data Relationship Management
User's Guide.

Editing Validations

ä To edit a validation:

1 On the Home page, select Administer.

2 Under Metadata, expand Validations.

3 Select a validation and click .

4 Make changes to the validation.

Note: The Class, Level, and Mode of Operation parameters cannot be modified after a
validation has been saved.

5 Click Save.

Deleting Validations
When you delete a validations, all validation assignments to versions, hierarchies, and nodes are
also deleted.

ä To delete a validation:

1 From the Home page, select Administer.

2 Under Metadata, expand Validations.

Assigning Validations 83

3 Select a validation and click .

4 Select Delete this Item to confirm the deletion.

84 Managing Validations

7
Managing Node Types

In This Chapter

Defining Node Types... .85

Editing Node Types86

Deleting Node Types... .86

Working with Node Glyphs86

Node types enable hierarchy nodes to be viewed and managed differently based on their
relationships and attribution. Nodes of a specific node type share the same characteristics:

l Properties

l Validations

l Glyph

A hierarchy can have nodes of different node types and the same node can be of different node
types in different hierarchies. Examples of node type usage include GL accounts, cost centers,
consolidation entities, product groups, forecast points, and so on.

To categorize nodes by node type:

1. Determine the node types that are necessary to categorize nodes within a hierarchy.

2. Identify properties that are relevant (or not relevant) to each node type.

3. Identify validations that are relevant (or not relevant) to each node type.

4. Optionally, assign a glyph to each node type.

Defining Node Types

ä To define a node type:

1 On the Home page, select Administer.

2 From New, select Node Type.

3 Enter a name and description for the node type.

4 Optional: Select a glyph to use for the node type

Defining Node Types 85

5 On the Properties tab, select properties from the Available list to associate with the node type. Use the
arrows to move properties to the Selected list.

6 On the Validations tab, select validations from the Available list to associate with the node type. Use
the arrows to move validations to the Selected list.

7 Click Save.

Editing Node Types

ä To edit a node type:

1 On the Home page, select Administer.

2 Under Metadata, expand Node Types.

3 Select a node type and click .

4 Do any of the following:

l Edit the description.

l Change the glyph to use for the node type

l Add or remove properties

l Add or remove validations

5 Click Save.

Deleting Node Types

ä To delete a node type:

1 On the Home page, select Administer.

2 Under Metadata, expand Node Types.

3 Select a node type and click .

4 Click Delete this Item to confirm the deletion.

Working with Node Glyphs
Glyphs are images that are associated to node types and are displayed as the icon for a node in
the Data Relationship Management user interface. You can create new glyphs and modify
existing glyphs. You can also delete glyphs that you no longer want to use. Glyphs must be
provided in a PNG format.

ä To add a node glyph:

1 On the Home page, select Administer.

86 Managing Node Types

2 From New, select Glyph.

3 Enter a name for the glyph and add a description.

4 Click Browse and select the PNG file.

5 Click Upload.

6 Click Save.

ä To modify a node glyph:

1 On the Home page, select Administer.

2 Under Metadata, expand Glyphs.

3 Select a glyph and click .

4 Click Browse a select the different PNG file.

5 Click Upload.

6 Click Save.

ä To delete a glyph:

1 On the Home page, select Administer.

2 Under Metadata, expand Glyphs.

3 Select a glyph and click .

4 Click Delete this Item to confirm the deletion.

Working with Node Glyphs 87

88 Managing Node Types

8
Working with System

Preferences

In This Chapter

System Preferences... .89

Configuring System Preferences95

System Preferences enable administrative users to edit settings that control the behavior of Data
Relationship Management.

System Preferences
The following table describes Data Relationship Management system preferences.

Table 7 System Preferences

System Preference Type Description

AllowAsOf Boolean True forces capture of core actions and creates a baseline version to allow the creation
of As-Of versions. If this preference is set to False, As-Of versions cannot be created.

Default value is True.

Note: A change to this preference requires a restart of the Data Relationship
Management application.

AllowNextIDGeneration Boolean True enables automatic Next ID generation.

Default value is False.

AllowNextIDKeyCreation Role List of roles allowed to create a new key in NextID feature.

Default values are Interactive User, Data Creator, Data Manager.

AllowPru Boolean True enables the pruning option which allows a non-admin user to remove a node that
has children. If False, a non-admin user cannot remove a node that has children.

Default value is True.

AllowRelaxedMove Boolean When a node is moved, True allows the new parent to take precedence over any conflicting
parental relationships for the node in other hierarchies.

Default value is False.

AllwSpac Boolean True allows spaces in node names.

Default is True.

System Preferences 89

System Preference Type Description

ApprovalGroups String Comma-delimited list of approval groups.

ApprovalGroupTrackProperties String Delimited list of approval properties tracked by groups.

ApprovalPropertyByApprovalGroup String Global boolean approval property by approval group.

AuthMethod String User authentication method:

l Internal – Users are only authenticated within Data Relationship Management.

l CSS (External) – Users are only authenticated externally. Requires access to Shared
Services.

l Mixed – Users are authenticated internally or externally based on a setting for each
individual user.

Default value is Internal.

Note: A change to this preference requires a restart of the Data Relationship
Management application.

CopyLcl Boolean True copies local values when a node is copied.

Default value is True.

DefaultCurrentVersion Version Default current version. This preference can be set using the Make Default option for
versions.

DefaultPreviousVersion Version Default previous version. This preference can be set using the Make Default option for
versions.

DefaultPropCopyMode String Default property copy mode.

Valid values are Overridden, Selected, and ForceAll.

Default value is Overridden.

EnablePropCopyOptions Role List of roles allowed access to the property copy options.

Default values are Interactive User, Data Creator, Data Manager.

EnforceListProps Boolean True allows updates to a List Property with values from the pre-defined list only.

Default value is True.

FiltrChr String Set of characters for the Replace function on the Output Option screen of exports.

FindByProperties Property List of properties available to search with when browsing a hierarchy.

Note: The properties displayed are those to which a user has access. Also, the properties
displayed may not be applicable to all hierarchies.

FindWildCardAppend Boolean True appends an asterisk (*) to the Find criteria when Exact Match is not selected.

Default value is False.

FindWildCardPrepend Boolean True prepends an asterisk (*) to the Find criteria when Exact Match is not selected.

Default value is False.

90 Working with System Preferences

System Preference Type Description

GlobalPropLocalOverride Property List of properties to exclude from local checks on global properties. These are used when
GlobalPropLocalSecurity is enabled.

Note: A change to this preference requires a restart of the Data Relationship
Management application.

GlobalPropLocalSecurity Boolean True enforces local security on global properties. Changes to global properties are checked
against local security (node access levels) for the user for all hierarchies where the node
exists.

Default value is False.

Note: A change to this preference requires a restart of the Data Relationship
Management application.

HierSep String Hierarchy and node separator character.

Default value is tilde (~).

IdleTime Integer Number of minutes to session time out on the application server.

Default value is 60.

Note: A change to this preference requires a restart of the Data Relationship
Management application.

Inactivate Role List of user roles allowed to inactivate nodes.

Default value is all roles.

InactiveChanges Role List of roles allowed to change inactive nodes.

Default values are Data Manager, Application Administrator, Access Manager.

InvDescr String List of invalid characters for node description property.

InvName String List of invalid characters for node name.

LeafEdit Role List of roles allowed to change the Leaf property.

Default values are Data Manager, Data Creator, Application Administrator, Access
Manager.

LockoutInactivity Integer Maximum number of days of inactivity before a user is locked out.

Default value is 30; zero indicates no maximum.

LockoutInvalidLogins Integer Maximum number of invalid logins before a user is locked out.

Default value is 6; zero indicates no maximum.

System Preferences 91

System Preference Type Description

LossLevel String Loss level to capture.

Valid values are:

l Defined

l All

Default value is Defined. Selecting All can significantly impact system performance for
removed or deleted nodes with many property values.

Note: A change to this preference requires a restart of the Data Relationship
Management application.

MaxDescr Integer Maximum number of characters for node description. Valid values are 12 to 255.

Default value is 80.

MaxLeaf Integer Maximum number of characters for the leaf name. Valid values are 3 to 20.

Default value is 255.

MaxLimb Integer Maximum number of characters for the limb name. Valid values are 3 to 20.

Default value is 255.

PasswordDuration Integer Number of days that a user password is valid. Valid values are 1 to 9999.

Default value is 30.

PasswordMaxLength Integer Maximum number of characters for user password. Valid values are 0 to 255. Zero
indicates no minimum.

Default value is zero.

PasswordMinLength Integer Minimum number of characters for user password. Valid values are 0 to 9999. Zero
indicates no minimum.

Default value is 6.

PasswordPolicyEnabled Boolean True requires the password to contain three of the following elements:

l Uppercase letters

l Lowercase letters

l Numbers

l Special characters

Default value is True.

PasswordWarningPeriod Integer Positive or negative number to indicate how many days before (-) or after (+) the password
expiration date to warn users to change their password before no longer allowing them
to log in. Valid values are -30 to 30.

Default value is 1.

RenameLeaf Role List of roles allowed to rename leaf nodes.

Default values are Data Manager, Application Administrator, Access Manager.

92 Working with System Preferences

System Preference Type Description

RenameLimb Role List of roles allowed to rename limb nodes.

Default value is all roles.

ReqMerge Boolean True requires merge for inactivates or deletes when UseMerge is enabled.

Default value is False.

SharedNodeDelimiter String Specifies the delimiter between the node name and the shared node suffix.

Default value is colon (:).

Note: A change to this preference requires a restart of the Data Relationship
Management application.

SharedNodeIdentifier String Specifies the identifier to be used after the shared node delimiter.

Default value is Shared.

Note: A change to this preference requires a restart of the Data Relationship
Management application.

SharedNodeMaintenanceEnabled Boolean True enables shared nodes.

Default value is False.

Note: A change to this preference requires a restart of the Data Relationship
Management application.

SharedNodeNamingType String Specifies the alternate name for shared nodes. Valid values are: Suffix or Prefix.

Default is Suffix

Note: A change to this preference requires a restart of the Data Relationship
Management application.

SharedNodeSequenceLength Integer Specifies the length of the uniqueness key when using numeric sequence type.

Default value is 3.

Note: A change to this preference requires a restart of the Data Relationship
Management application.

SharedNodeSequenceSeparator String Specifies the separator character to be placed after the shared node identifier.

Default value is dash (-).

Note: A change to this preference requires a restart of the Data Relationship
Management application.

SharedNodeSequenceType String Specifies the type of uniqueness key. Valid values are Numeric or Ancestors.

Default is Numeric.

Note: A change to this preference requires a restart of the Data Relationship
Management application.

SortLimbsFirst Boolean True controls the sorting of limb nodes first followed by leaf nodes. If False, limb and leaf
nodes can be sorted together. This preference affects hierarchy exports, display, and node
lists.

Default value is True.

System Preferences 93

System Preference Type Description

TopNodeParentString String Used in Import and Export to denote parent value for a top node.

Default value is None.

TransactionLevels String List of transaction levels to capture. Turning on As-Of or specifying result or loss actions
forces core actions to be captured.

Valid values are:

l Logged Action

l Core Action

l Result Action

l Loss Action

Default values are Logged Action, Core Action, Result Action, Loss Action.

Note: A change to this preference requires a restart of the Data Relationship
Management application.

UpName Boolean True uses uppercase always for the node name

Default value is False

UseChangeApproval Boolean True enables change approval.

Default value is False.

UseMerge Boolean True enables use of Merge methodology for inactivated and deleted nodes.

Note: If ReqMerge is True, then the system requires a merge node to be specified. If
ReqMerge is False, then a merge node is optional unless the node approved property is
True. The node approved property is set to True when a version is finalized or when it is
specifically set to True by a user with appropriate access.

Default value is False.

ValSec Boolean True checks node access group security to determine whether a user can run batch
validations for a node.

Default value is False.

WarnHL Integer Maximum number of nodes to be displayed for lists such as Descendants, Children, Query
Results, and so on. Minimum value is 1000. If set to a value less than 1000, then 1000
nodes are displayed.

Default value is 5000.

Setting Up Change Approval
The change approval system in Data Relationship Management enables you to define approval
groups and tie them to an approval flag that is triggered by a set of properties or special actions.
This allows normal users to make changes and approvers to run a query and then set the approval
flag as needed.

The systems preferences that determine the behavior of the change approval in Data Relationship
Management are:

94 Working with System Preferences

l UseChangeApproval – Set to True to turns on use of change approval.

l ApprovalGroups – A comma-delimited list of the names for the approval groups used in
the system.

l ApprovalGroupTrackProperties – If UseChangeApproval is True, defines properties that
are tracked that will trigger a change of the approval flag to False for this group. The format
is xxx[a,b,c],yyy[d,e,f]... where xxx and yyy are sales groups defined in the ApprovalGroups
preference and a,b,c,d,e,f are property names. For example, Sales[Custom.SalesGroup,
{NodeMove}],Treasury[Custom.AccountDescription,{NodeAdd}].

Special actions that can be included in the property list are:

m {NodeAdd} – Triggers the Approval Needed mechanism on an added node.

m {NodeInactivate} – Triggers the Approval Needed mechanism on an inactivated node.

m {NodeReactivate} – Triggers the Approval Needed mechanism on a reactivated node.

m {NodeInsert} – Triggers the Approval Needed mechanism on an inserted node.

m {NodeRemove} – Triggers the Approval Needed mechanism on a removed node.

m {NodeMove} – Triggers the Approval Needed mechanism on a moved node.

l ApprovalPropertyByApprovalGroup – If UseChangeApproval is True, defines the global,
boolean property to set to False if any of the trigger properties are changed or the special
actions are used. The format is xxx:bbbb,yyy:cccc…where xxx and yyy are sales groups
defined in the ApprovalGroups preference and bbbb and cccc are the names for the global,
boolean properties to be used to store the approval flag for the groups, for example,
Sales:Custom.SalesApprovedFlag,Treasury:Custom.TreasuryApprovedFlag.

Local Security for Global Properties
You use two system preferences — GlobalPropLocalSecurity and GlobalPropLocalOverride —
to control local security on global properties.

Configuring System Preferences

ä To configure System Preferences:

1 On the Home page, select Administer.

2 Under Metadata, expand System Preferences.

3 Select a system preference and click .

4 Modify the value and click Save.

Configuring System Preferences 95

96 Working with System Preferences

9
Working with External

Connections

In This Chapter

Defining External Connections97

Editing External Connections... .98

Deleting External Connections98

Application administrators can define and configure common connections to external file
systems and databases. Imports, exports and books can share connections to minimize
maintenance of connectivity information. External connections enable the application server to
directly access, read, or write data to these network resources.

Note: You must set up external resources before defining external connections.

Defining External Connections

ä To define an external connection:

1 On the Home page, select Administer.

2 From New, select External Connection.

3 Enter a name and description.

4 From Object Access, select Standard or System.

5 Select a connection type: Server File, FTP, or Database Table.

6 Do the following:

l If you selected Server File, enter a UNC path to the server.

Note: The Windows user account used by the Data Relationship Management
application server is automatically used for Server File connections. The default
Windows user account used for the Oracle DRM Server Processes Windows
service is Local System account. The account used for the service must be able to
access the UNC path for proper Server File connectivity. Additionally, the UNC
path must have the appropriate permissions for the service account to read and
write files.

l If you selected FTP, enter the following information:

Defining External Connections 97

m Host Server

m User ID

m User Password

l If you selected Database Table, do the following:

m Select the Data Access Provider: Oracle, SqlServer, or OleDb

m Enter Connection String

m Enter User ID

m Enter User Password

m Click and then select tables from the Available list. Use the arrows to move
tables to the Selected list.

7 Click Test Connection.

Note: For Database connection, click Refresh to get the list of tables.

Editing External Connections

ä To edit an external connection:

1 On the Home page, select Administer.

2 Under Metadata, expand External Connections.

3 Select an external connection and click .

4 Make changes as required.

5 Click Save.

Deleting External Connections
When you delete an external connection, all import and export profiles using the connection
are affected.

ä To delete an external connections:

1 From the Home page, select Administer.

2 Under Metadata, expand External Connections.

3 Select an external connection and click .

4 Select Delete this Item to confirm the deletion.

98 Working with External Connections

10
Migrating Data Relationship

Management Metadata

In This Chapter

Opening the Migration Utility. 100

Extracting Metadata ... 100

Loading Metadata... 101

Comparing Metadata ... 102

Viewing Metadata ... 103

Generating Reports .. 104

The Data Relationship Management Migration Utility provides application administrators the
ability to move metadata object types between Data Relationship Management applications.

In the Migration Utility, you can:

l Extract metadata object types from a Data Relationship Management application to an XML
file and generate an HTML report from the results

l Load metadata from an XML file into a Data Relationship Management application

l Compare metadata differences between two sources, create an XML file with the differences,
and generate an HTML report from the results

l View metadata in an XML file and generate an HTML report from the file

You can extract load, compare, and view the following types of metadata:

l Property Definitions

l Property Categories

l Validations

l Node Types

l Glyphs

l Node Access Groups

l Hierarchy Groups

l Queries (Standard and System)

l Compares (Standard and System)

l Exports (Standard and System)

l Export Books (Standard and System)

99

l Imports (Standard and System)

l Blenders (Standard and System)

l System Preferences

l External Connections

Opening the Migration Utility
By default, the Migration Utility is installed to:

MIDDLEWARE_HOME\EPMSystem11R1\products\DataRelationshipManagement

\client

ä To open the Migration Utility, double click Data Relationship Management Migration
Utility.

Extracting Metadata
You can select the types of metadata to extract from a Data Relationship Management
application. You extract the information into an XML file which you can then view, load into
another Data Relationship Management application, compare to another XML file, or compare
to another Data Relationship Management application. You can also use this file for backup,
storage, and auditing purposes.

You can generate a report from the information in the XML file that is created.

ä To extract metadata from a Data Relationship Management application:

1 On the Main Menu, click Extract.

2 Enter Data Relationship Management connection information and click Log In.

3 Select the object types or objects to extract and click Next.

Note: Click the plus sign in the hierarchy tree to see objects. Select the checkbox for an object
type to select the object type and all of its objects, or select the checkbox for the objects
that you want to extract. Click on an object name to display the object type definition
in a new window.

4 Optional: Click Find to search for a metadata object type or object.

Note: Any object type containing the text entered is returned. To navigate to a particular
object in the results, click the Jump To link.

5 Review the summary information.

100 Migrating Data Relationship Management Metadata

Note: The Migration Utility performs additional checks for object types that have
dependencies. For example, an export may depend on property definitions or a
property definition may reference another property definition. If there are
dependencies missing in the summary, you may select specific dependencies to
include. You can include all excluded dependencies or exclude all dependencies.

Note: Increasing the page size allows you to define the number of object types to view on a
page.

6 Optional: Enter metadata details for this extract.

You can enter the following information:

l Title – Maximum of 255 characters

l Purpose – Formatted memo

l Usage – Formatted memo

l Application Version – Maximum of 20 characters

l File Version – Maximum of 20 characters

7 Click Run Extract.

8 Do any of the following:

l Click Download the Metadata File to open or save the XML file.

l Click View the Metadata File to view the XML file details.

l Click Load the Metadata File to load the XML file into a Data Relationship Management
application. For more information, see “Loading Metadata” on page 101.

l Click Generate Reports for the Metadata File to generate a report from the XML file.
For more information, see “Generating Reports” on page 104.

Loading Metadata
Only files with the Data Relationship Management XML format can be loaded into a Data
Relationship Management application. A log file is created after a load is performed and displays
the following severities of data: audit, information, warning, and error message.

ä To load metadata from an XML file into a Data Relationship Management application:

1 On the Main Menu, click Load.

2 Click Browse, select the XML file that you want to load, and click Upload.

3 Review the uploaded file information and click Next.

4 Enter Data Relationship Management connection information and click Log In.

5 Select the object types or objects to load and click Next.

Loading Metadata 101

Note: Click the plus sign in the hierarchy tree to see objects. Select the checkbox for an object
type to select the object type and all of its objects, or select the checkbox for the objects
that you want to load. Click on an object name to display the object type definition
in a new window.

6 Review the summary information and click Next.

Note: Page size allows you to define the number of object types to view on a page.

7 Optional: Select Continue Load After Error for the load to continue even if errors are encountered.

8 Click Run Load.

9 Review the load results.

You can change the view of the log file by selecting the severity of detail to display: audit,
information, warning, and error. To save the log file, click Download.

Note: The log items can be sorted by any column using the column header links.

Comparing Metadata
You can compare two metadata sources. You can compare metadata differences between two
Data Relationship Management applications, between two XML files, or between a Data
Relationship Management application and an XML file. You can generate an XML file containing
the differences between the two metadata sources. The results can be used to restore data, undo
unauthorized changes, or find wrong object type configurations.

You can generate a report from the information in the XML file that is created.

ä To compare metadata:

1 On the Main Menu, click Difference.

2 From the Source #1 drop-down list, select the type of source: Server Connection or XML File.

3 Do one of the following:

l If you selected Server Connection, enter Data Relationship Management connection
information and click Log In.

l If you selected XML File, click Browse and select the XML file that you want to use in
the comparison and click Upload.

4 If you uploaded a file, review the uploaded file information and click Next. Otherwise, skip to the next
step.

5 Repeat steps 2–4 for Source #2.

6 Click Next.

7 Select the object types to include in a difference file by using the following actions:

l Select a filter

l Click > to select a object type from Source #1.

102 Migrating Data Relationship Management Metadata

l Click < to select a object type from Source #2.

l Click X to deselect a object type.

l Click the left column header to select all objects from Source #1 based on the selected
filter.

l Click the right column header to select all objects from Source #2 based on the selected
filter.

l Click the center column header to deselect all objects based on selected filter.

l Click the page links at the top of the compare results to switch to a different page.

Note: Page size allows you to define the number of object types to view on a page.

8 Click Create Difference File.

9 Do any of the following:

l Click Download the Metadata Difference File to open or save the XML file.

l Click View the Metadata Difference File to view the XML file details.

l Click Load the Metadata Difference File to load the file into an Oracle Hyperion Data
Relationship Management, Fusion Edition application. For more information, see
“Loading Metadata” on page 101.

l Click Generate Reports for the Metadata File to generate a report from the XML file.
For more information, see “Generating Reports” on page 104.

Viewing Metadata
You can view a metadata file and generate a report from the information in it.

ä To view metadata in an XML file:

1 On the Main Menu, click View File.

2 Click Browse and select the XML file that you want to view and click Upload.

3 Review the uploaded file information and click Next.

4 Click the plus signs in the hierarchy tree to view metadata objects.

5 Optional: Click Find to search for an item in the file.

Note: Any object type containing the text is returned. To navigate to a particular object in
the results, click the Jump To link.

6 Optional: Click the Reports tab to generate an HTML report from the file.

Viewing Metadata 103

Generating Reports
You can generate an HTML report from an XML file generated after an extract, from a difference
report, and from a metadata file that you are viewing.

ä To generate an HTML report:

1 Do one of the following:

l After extracting metadata or creating a difference report, click Generate Reports for the
Metadata File.

l After viewing a metadata file, click Reports.

2 Do one of the following:

l Click View Report to display the report.

l Click Download Report to save the report.

104 Migrating Data Relationship Management Metadata

Index

A
Abbrev function, 46
Add function, 47
AddedBy function, 47
AddedOn function, 47
AddFloat function, 47
adding node glyphs, 86
AncestorProp function, 48
And function, 48
ArrayCount function, 48
ArrayIndex function, 49
ArrayItem function, 49
AscNodeProp function, 49
assigning validations, 83

B
BoolToStr function, 49

C
Changed function, 50
ChangedBy function, 50
ChangedOn function, 50
Children function, 50
Concat function, 51
ConcatWithDelimiter function, 51
configuring system preferences, 95
creating

node access groups, 28
properties, 36
property categories, 32
users, 22
validations, 82

D
DefaultProp function, 51
defining

external connections, 97
node types, 85

deleting
external connections, 98
node access groups, 29
node glyphs, 86
node types, 86
properties, 78
property categories, 33
users, 25
validations, 83

derived properties with formulas
creating, 40

Descr function, 51
Divide function, 52
DivideFloat function, 52
DualAncestorProp function, 52

E
editing

external connections, 98
node access groups, 29
node types, 86
property categories, 32
property definitions, 77
validations, 83

Equals function, 53
external connections

defining, 97
deleting, 98
editing, 98

F
FlipList function, 53
FloatToStr function, 53
Format function, 54
FormattedDate function, 54

A B C D E F G H I L M N O P R S T U V X

Index 105

formula evaluation, 41
formula functions, 42

Abbrev, 46
Add, 47
AddedBy, 47
AddedOn, 47
AddFloat, 47
AncestorProp, 48
And, 48
ArrayCount, 48
ArrayIndex, 49
ArrayItem, 49
AscNodeProp, 49
BoolToStr, 49
Changed, 50
ChangedBy, 50
ChangedOn, 50
Children, 50
Concat, 51
ConcatWithDelimiter, 51
DefaultProp, 51
Descr, 51
Divide, 52
DivideFloat, 52
DualAncestorProp, 52
Equals, 53
FlipList, 53
FloatToStr, 53
Format, 54
FormattedDate, 54
GreaterThan, 54
GreaterThanOrEqual, 55
HasChildWith, 55
HasParentNode, 55
HasSiblingWith, 56
HierNodePropValue, 56
ID, 56
If, 57
InternalPrefix, 57
Intersection, 57
IntToStr, 58
InvertedLevel, 58
IsAlpha, 58
IsNumeric, 58
IsRangeListSubset, 59
Length, 59
LessThan, 59

LessThanOrEqual, 60
ListAncestors, 60
ListChildren, 60
ListContains, 61
ListDescendants, 61
ListPeers, 61
ListSiblings, 62
LowerCase, 62
LTrim, 62
Modulus, 63
Multiply, 63
MultiplyFloat, 63
NextSibling, 64
NodeAccessGroups, 64
NodeExists, 64
NodeInHier, 65
NodeIsLeaf, 65
NodePropValue, 65
Not, 66
Now, 66
NumChildWith, 66
NumDescendantsWith, 67
Or, 67
OrigPropValue, 67
PadChar, 68
PadList, 68
ParentPropValue, 68
Pos, 69
PreviousSibling, 69
PropControllingHier, 69
PropDefaultValue, 70
PropertyCategories, 70
PropMaxValue, 70
PropMinValue, 71
PropValue, 71
RangeListContains, 71
ReplacementAbbrev, 72
ReplacePropValue, 72
ReplaceStr, 72
RTrim, 73
StripPadChar, 73
StrToBool, 73
StrToFloat, 74
StrToInt, 74
Stuff, 75
SubString, 75
Subtract, 75

A B C D E F G H I L M N O P R S T U V X

106 Index

SubtractFloat, 76
Trim, 76
UpperCase, 76
UserName, 77
XOr, 77

formula syntax checks, 41

G
GreaterThan function, 54
GreaterThanOrEqual function, 55

H
HasChildWith function, 55
HasParentNode function, 55
HasSiblingWith function, 56
HierNodePropValue function, 56

I
ID function, 56
If function, 57
InternalPrefix function, 57
Intersection function, 57
IntToStr function, 58
InvertedLevel function, 58
IsAlpha function, 58
IsNumeric function, 58
IsRangeListSubset function, 59

L
Length function, 59
LessThan function, 59
LessThanOrEqual function, 60
ListAncestors function, 60
ListChildren function, 60
ListContains function, 61
ListDescendants function, 61
ListPeers function, 61
ListSiblings function, 62
locking out users, 24
LowerCase function, 62
LTrim function, 62

M
Modulus function, 63
Multiply function, 63

MultiplyFloat function, 63

N
NextSibling function, 64
node access groups

creating, 28
deleting, 29
editing, 29
security, 29

node glyphs
adding and deleting, 86

node types
defining, 85
deleting, 86
editing, 86

NodeAccessGroups function, 64
NodeExists function, 64
NodeInHier function, 65
NodeIsLeaf function, 65
NodePropValue function, 65
Not function, 66
Now function, 66
NumChildWith function, 66
NumDescendantsWith function, 67

O
Or function, 67
OrigPropValue function, 67

P
PadChar function, 68
PadList function, 68
ParentPropValue function, 68
passwords

changing user, 24
Pos function, 69
PreviousSibling function, 69
PropControllingHier function, 69
PropDefaultValue function, 70
properties

categories, 31
creating, 36
data types, 38
deleting, 78

property categories, 31
creating, 32

A B C D E F G H I L M N O P R S T U V X

Index 107

deleting, 33
editing, 32

property data types, 38
property definitions

editing, 77
PropertyCategories function, 70
PropMaxValue function, 70
PropMinValue function, 71
PropValue function, 71

R
RangeListContains function, 71
ReplacementAbbrev function, 72
ReplacePropValue function, 72
ReplaceStr function, 72
RTrim function, 73

S
StripPadChar function, 73
StrToBool function, 73
StrToFloat function, 74
StrToInt function, 74
Stuff function, 75
SubString function, 75
Subtract function, 75
SubtractFloat function, 76
system preferences

configuring, 95
defined, 89

T
Trim function, 76

U
unlocking users, 24
UpperCase function, 76
user authentication, 23
user roles

defined, 18
UserName function, 77
users

authenticating, 23
changing passwords, 24
changing roles, 25
creating, 22

deleting, 25
locking out, 24
roles, 18
unlocking, 24
viewing login status, 25

V
validation classes, 79
validation levels, 81
validations

assigning, 83
creating, 82
deleting, 83
editing, 83

X
XOr function, 77

A B C D E F G H I L M N O P R S T U V X

108 Index

	Contents
	Documentation Accessibility
	Release Overview
	New Feature Terms
	Changes to Existing Feature Terms
	Obsolete Terms

	Managing Users
	User Permissions
	Version Permissions
	Request Permissions
	Query Permissions
	Compare Permissions
	Import Permissions
	Blender Permissions
	Export Permissions
	Script Permissions
	Audit Permissions
	Application Permissions
	Access Permissions

	User Roles
	Creating Users
	User Authentication
	Modifying Users
	Changing Passwords
	Locking Out Users
	Unlocking Users
	Changing User Roles and Assignments

	Deleting Users
	Viewing User Login Status

	Managing Node Access Groups
	Creating Node Access Groups
	Editing Node Access Groups
	Deleting Node Access Groups
	Assigning Node Access Group Security

	Managing Property Categories
	Property Categories
	Creating Property Categories
	Editing Property Categories
	Deleting Property Categories

	Managing Property Definitions
	Creating Properties
	Data Types

	Working with Formulas
	Creating Derived Properties with Formulas

	Functions
	Special Characters
	Literals
	Format String Parameter
	Date-Time Format Strings
	Function Definitions

	Editing Property Definitions
	Deleting Properties

	Managing Validations
	Validation Classes
	Validation Levels
	Creating Validations
	Assigning Validations
	Editing Validations
	Deleting Validations

	Managing Node Types
	Defining Node Types
	Editing Node Types
	Deleting Node Types
	Working with Node Glyphs

	Working with System Preferences
	System Preferences
	Setting Up Change Approval
	Local Security for Global Properties

	Configuring System Preferences

	Working with External Connections
	Defining External Connections
	Editing External Connections
	Deleting External Connections

	Migrating Data Relationship Management Metadata
	Opening the Migration Utility
	Extracting Metadata
	Loading Metadata
	Comparing Metadata
	Viewing Metadata
	Generating Reports

	Index

