
Oracle® Essbase

Technical Reference

RELEASE 11.1.2.1

Essbase Technical Reference, 11.1.2.1

Copyright © 1996, 2011, Oracle and/or its affiliates. All rights reserved.

Authors: EPM Information Development Team

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to
change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS:
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers
are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and
adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to
the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal
injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.

This software and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with
respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Contents

Documentation Accessibility . 15

Chapter 1. Oracle Essbase Technical Reference Overview . 17

About the Oracle Essbase Technical Reference . 17

What You Should Know Before You Start . 17

Sample Applications . 17

Syntax Conventions . 18

About Aggregate Storage Databases . 19

Chapter 2. Calculation Functions . 21

Calculation Functions Overview . 21

Generations and Levels . 21

Abbreviations . 22

Function Syntax . 22

Function Parameters . 23

Calculation Operators . 24

Mathematical Operators . 24

Conditional and Logical Operators . 25

Cross-Dimensional Operators . 25

Operation Results on #MISSING Values and Zero (0) Values . 25

Calculation Function Categories . 27

Boolean Functions . 27

Relationship Functions . 28

Mathematical Functions . 29

Member Set Functions . 30

Range and Financial Functions . 33

Allocation Functions . 35

Forecasting Functions . 35

Statistical Functions . 36

Date & Time Function . 36

Miscellaneous Functions . 37

Custom-defined Functions . 37

Contents iii

Calculation Function Reference . 37

Custom-Defined Calculation Functions . 234

Java Code Examples . 234

MaxL Registration Scripts . 264

Custom-Defined Macros . 292

Custom-Defined Macro Input Parameters . 292

Using Argument Values in Macro Definitions . 294

Directives Used in Custom-Defined Macros . 295

Macro Reference . 295

Chapter 3. Calculation Commands . 303

Calculation Commands Overview . 303

Calculation Operators . 303

Mathematical Operators . 304

Conditional and Logical Operators . 304

Cross-Dimensional Operator . 305

Calculation Command Groups . 305

Conditional Commands . 305

Control Flow Commands . 306

Data Declaration Commands . 306

Functional Commands . 306

Member Formulas . 307

Calculation Command Reference . 308

Chapter 4. Essbase.cfg Configuration Settings . 369

Configuration File Overview . 369

Configuring Essbase.cfg . 369

Essbase.cfg Setting Categorical List . 370

Backup and Recovery Configuration Settings . 371

Calculation Configuration Settings . 371

Data Import and Export Configuration Settings . 372

Hybrid Analysis Configuration Settings . 372

Failover Clustering Configuration Settings . 372

Logging and Error Handling Configuration Settings . 373

Memory Management Configuration Settings . 374

Miscellaneous Configuration Settings . 374

Partitioning Configuration Settings . 374

Ports and Connections Configuration Settings . 375

Query Management Configuration Settings . 375

Security File Configuration Settings . 376

iv Contents

SSL Configuration Settings . 376

Aggregate Storage and Block Storage Settings Comparison . 376

Configuration Settings Reference . 380

AGENTDELAY . 382

AGENTDESC . 383

AGENTDISPLAYMESSAGELEVEL . 383

AGENTLEASEEXPIRATIONTIME . 384

AGENTLEASEMAXRETRYCOUNT . 385

AGENTLEASERENEWALTIME . 385

AGENTLOGMESSAGELEVEL . 386

AGENTPORT . 387

AGENTSECUREPORT . 388

AGENTTHREADS . 388

AGGRESSIVEBLKOPTIMIZATION . 389

AGTMAXLOGFILESIZE . 390

AGTSVRCONNECTIONS . 391

APPMAXLOGFILESIZE . 392

APSRESOLVER . 392

ASOLOADBUFFERWAIT . 393

ASOSAMPLESIZEPERCENT . 394

AUTHENTICATIONMODULE . 395

CALCCACHE . 396

CALCCACHEHIGH . 397

CALCCACHEDEFAULT . 398

CALCCACHELOW . 399

CALCLIMITFORMULARECURSION . 400

CALCLOCKBLOCK . 401

CALCMODE . 402

CALCNOTICE . 403

CALCOPTFRMLBOTTOMUP . 404

CALCREUSEDYNCALCBLOCKS . 405

CALCPARALLEL . 406

CALCTASKDIMS . 407

CCTRACK . 408

CLEARLOGFILE . 410

CLIENTPREFERREDMODE . 411

CRASHDUMP . 411

DATACACHESIZE . 412

DATAERRORLIMIT . 413

Contents v

DATAEXPORTENABLEBATCHINSERT . 414

DATAFILECACHESIZE . 415

DEFAULTLOGLOCATION . 415

DELAYEDRECOVERY . 416

DELIMITEDMSG . 417

DELIMITER . 417

DEXPSQLROWSIZE . 418

DIMBUILDERRORLIMIT . 419

DIMBUILDSTATSINTERVAL . 420

DIRECTIO . 420

DISABLEREPLMISSINGDATA . 421

DISKVOLUMES . 422

DISPLAYMESSAGELEVEL . 423

DLSINGLETHREADPERSTAGE . 424

DLTHREADSPREPARE . 426

DLTHREADSWRITE . 427

DYNCALCCACHEBLKRELEASE . 429

DYNCALCCACHEBLKTIMEOUT . 430

DYNCALCCACHECOMPRBLKBUFSIZE . 432

DYNCALCCACHEMAXSIZE . 433

DYNCALCCACHEONLY . 435

DYNCALCCACHEWAITFORBLK . 436

ENABLE_DIAG_TRANSPARENT_PARTITION . 438

ENABLECLEARMODE . 439

ENABLESECUREMODE . 440

ENABLESWITCHTOBACKUPFILE . 440

ESSBASEFAILOVERTRACELEVEL . 441

ESSBASESERVERHOSTNAME . 442

EXCEPTIONLOGOVERWRITE . 442

EXCLUSIVECALC . 444

EXPORTTHREADS . 444

FAILOVERMODE . 445

FILELOCKINGMODE . 446

FORCEALLDENSECALCON2PASSACCOUNTS . 446

FORCEGRIDEXPANSION . 447

GRIDEXPANSION . 448

GRIDEXPANSIONMESSAGES . 448

HAENABLE . 449

HAMAXNUMCONNECTION . 449

vi Contents

HAMAXNUMSQLQUERY . 450

HAMAXQUERYROWS . 451

HAMAXQUERYTIME . 452

HAMEMORYCACHESIZE . 453

HARAGGEDHIERARCHY . 454

HARETRIEVENUMROW . 455

HASOURCEDSNOS390 . 456

HISLEVELDRILLTHROUGH . 457

IBHFIXTHRESHOLD . 457

IDMIGRATION . 459

IMPLIED_SHARE . 459

INCRESTRUC . 460

INDEXCACHESIZE . 463

JVMMODULELOCATION . 463

LOCKTIMEOUT . 464

LOGINFAILUREMESSAGEDETAILED . 465

LOGMESSAGELEVEL . 465

LROONSHAREDMBR . 466

MAXERRORMBRVERIFYREPORT . 467

MAXFORMULACACHESIZE . 467

MAXLOGINS . 468

MAX_REQUEST_GRID_SIZE . 468

MAX_RESPONSE_GRID_SIZE . 469

MDXFORMULARECURSIONLIMIT . 470

MEMSCALINGFACTOR . 471

MULTIPLEBITMAPMEMCHECK . 472

NETBINDRETRYDELAY . 473

NETDELAY . 473

NETRETRYCOUNT . 474

NETSSLHANDSHAKETIMEOUT . 474

NETTCPCONNECTRETRYCOUNT . 475

NOMSGLOGGINGONDATAERRORLIMIT . 476

NUMBEROFSECFILEBACKUPS . 476

NUMERICPRECISION . 477

OUTLINECHANGELOG . 478

OUTLINECHANGELOGFILESIZE . 479

PARCALCMULTIPLEBITMAPMEMOPT . 479

PERSISTUSERATLOGIN . 480

PIPEBUFFERSIZE . 480

Contents vii

PORTINC . 481

PORTUSAGELOGINTERVAL . 482

PRELOADALIASNAMESPACE . 483

PRELOADMEMBERNAMESPACE . 483

PRELOADUDANAMESPACE . 484

QRYGOVEXECBLK . 485

QRYGOVEXECTIME . 486

REPLAYSECURITYOPTION . 488

REPLICATIONASSUMEIDENTICALOUTLINE . 489

RTDEPCALCOPTIMIZE . 490

SECFILEBACKUPINTERVAL . 490

SECURITYFILECOMPACTIONPERCENT . 491

SERVERLEASEEXPIRATIONTIME . 492

SERVERLEASEMAXRETRYCOUNT . 492

SERVERLEASERENEWALTIME . 493

SERVERPORTBEGIN . 493

SERVERPORTEND . 494

SERVERTHREADS . 496

SILENTOTLQUERY . 497

SPLITARCHIVEFILE . 497

SQLFETCHERRORPOPUP . 498

SSAUDIT . 499

SSAUDITR . 500

SSINVALIDTEXTDETECTION . 501

SSLCIPHERSUITES . 502

SSLOGUNKNOWN . 503

SSOPTIMIZEDGRIDPROCESSING . 503

SSPROCROWLIMIT . 504

SUPNA . 505

TARGETASOOPT . 506

TARGETTIMESERIESOPT . 507

TIMINGMESSAGES . 507

TRANSACTIONLOGDATALOADARCHIVE . 508

TRANSACTIONLOGLOCATION . 510

TRIGMAXMEMSIZE . 511

UNICODEAGENTLOG . 512

UPDATECALC . 513

VLBREPORT . 514

WALLETPATH . 515

viii Contents

XOLAPENABLEHEURISTICS . 516

XOLAPMAXNUMCONNECTION . 516

XOLAPSCHEMAVERIFICATION . 517

XOLAPSQLIDLEPERIOD . 518

Chapter 5. ESSCMD Commands . 519

ESSCMD Overview . 519

ESSCMD Getting Started . 519

Starting ESSCMD . 520

Canceling ESSCMD Operations . 520

Quitting ESSCMD . 520

ESSCMD Syntax Guidelines . 520

Quotation Marks in ESSCMD . 521

ESSCMD Semicolon Statement Terminator . 521

Referencing Files . 521

ESSCMD Batch Processing . 522

Writing Script Files . 523

Running Script Files . 523

Handling Command Errors in a Script File . 523

Sample Script Files . 524

Writing Batch Files . 525

Handling Command Errors in Batch Files . 525

ESSCMD Interactive Mode . 526

Logging On to Essbase Server . 527

Entering Commands . 527

Canceling Operations . 528

ESSCMD Command Groups . 528

Using ESSCMD . 528

Application and Database Administration . 529

User and Group Security . 529

Security Filters and Locks . 530

Database Objects . 530

Outline and Attribute Information . 531

Dimension Building . 531

Data Loading, Clearing, and Exporting . 531

Calculating . 531

Reporting . 532

Partitioning . 532

Outline Synchronization . 532

Contents ix

Error and Log Handling . 533

Currency Conversion Information . 533

Location Aliases . 533

Substitution Variables . 533

Aliases . 534

Integrity, Performance . 534

Backing Up . 534

ESSCMD Command Reference . 534

Chapter 6. MaxL . 623

Overview of MaxL and MDX . 623

How to Read MaxL Railroad Diagrams . 624

Anatomy of MaxL Statements . 624

Railroad Diagram Symbols . 624

Sample Railroad Diagram . 625

MaxL Data Definition Language (DDL) . 626

MaxL Statements . 626

Performance Statistics in MaxL . 627

Listed By Verbs . 633

Listed by Objects . 636

MaxL Statement Reference . 642

MaxL Definitions . 767

MaxL Syntax Notes . 768

Numbers in MaxL Syntax . 769

Terminals . 769

Privileges and Roles . 813

Quoting and Special Characters Rules for MaxL Language . 816

MaxL Shell Commands . 818

Overview of MaxL Shell . 819

MaxL Shell Invocation . 819

MaxL Shell Syntax Rules and Variables . 828

MaxL Shell and Unicode . 833

MaxL Shell Command Reference . 833

MaxL Perl Module . 841

Installation Help . 841

Functions . 843

Perl Scripting Examples . 845

ESSCMD Script Conversion . 848

ESSCMD Script Utility Usage . 848

x Contents

Things to Note About the ESSCMD Script Utility . 848

ESSCMD to MaxL Mapping . 849

Reserved Words List . 855

MaxL Statements (Aggregate Storage) . 864

Outline Paging Dimension Statistics . 904

Aggregate Storage Runtime Statistics . 905

MaxL Statements for Data Mining . 907

Data Mining Algorithms . 907

Data Mining Transformations . 907

Mining Models . 907

Mining Results . 908

Mining Task Templates . 908

Mining Sessions . 908

Data Mining Statements Listed by Verbs . 908

Data Mining Statements Listed by Objects . 909

Data Mining Statements . 910

MaxL Use Cases . 920

Creating an Aggregate Storage Sample Using MaxL . 920

Loading Data Using Buffers . 921

Using Aggregate Storage Data Load Buffers . 923

Specifying Port Numbers in Partition Host Names . 923

Using Host Name Aliases When Partitioning . 924

Partitioning and SSL . 925

Forcing Deletion of Partitions . 925

Metadata Filtering . 926

Examples of Triggers . 927

Chapter 7. MDX . 931

Overview of MDX . 931

MDX Query Format . 932

MDX Syntax and Grammar Rules . 932

Understanding BNF Notation . 933

MDX Grammar Rules . 934

MDX Syntax for Specifying Duplicate Member Names and Aliases 947

MDX Axis Specifications . 949

MDX Slicer Specification . 952

MDX Cube Specification . 952

MDX Set Specification . 953

MDX With Section . 954

Contents xi

MDX Dimension Specification . 958

MDX Layer Specification . 959

MDX Member Specification . 960

MDX Hierarchy Specification . 961

MDX Tuple Specification . 961

MDX Create Set / Delete Set . 962

MDX Operators . 963

About MDX Properties . 964

MDX Intrinsic Properties . 965

MDX Custom Properties . 965

MDX Optimization Properties . 966

Querying for Member Properties in MDX . 968

The Value Type of MDX Properties . 969

MDX NULL Property Values . 969

MDX Comments . 970

MDX Query Limits . 971

Aggregate Storage and MDX Outline Formulas . 973

MDX Functions . 989

MDX Functions that Return a Member . 990

MDX Functions that Return a Set . 991

MDX Functions that Return a Tuple . 993

MDX Functions that Return a Number . 993

MDX Functions that Return a Dimension . 995

MDX Functions that Return a Layer . 995

MDX Functions that Return a Boolean . 995

MDX Functions that Return a Date . 996

MDX Functions that Return a String . 996

MDX Function Reference . 997

Chapter 8. Query Logging Configuration . 1161

Query Logging Overview . 1161

Query Logging Settings Procedure . 1161

Query Log Settings File Syntax . 1162

Query Logging Sample File . 1165

Query Logging Sample Output . 1165

Chapter 9. Report Writer Commands . 1169

Report Writer Overview . 1169

Report Writer Syntax . 1170

Report Delimiters . 1170

xii Contents

Syntax Guidelines . 1170

Referencing Static Members . 1171

Report Writer Command Groups . 1171

Report Layout Commands . 1172

Data Range Commands . 1172

Data Ordering Commands . 1172

Member Selection and Sorting Commands . 1172

Format Commands . 1173

Column or Row Calculation Commands . 1176

Member Names and Aliases . 1176

Examples of Report Scripts . 1177

Sample 1: Creating a Different Format for Each Page . 1178

Sample 2: Handling Missing Values . 1179

Sample 3: Nesting Columns . 1181

Sample 4: Grouping Rows . 1182

Sample 5: Reporting on Different Combinations of Data . 1186

Sample 6: Formatting Different Combinations of Data . 1187

Sample 7: Using Aliases . 1189

Sample 8: Creating Custom Headings and % Characters . 1190

Sample 9: Creating Custom Page Headings . 1193

Sample 10: Using Formulas . 1195

Sample 11: Placing Two-Page Layouts on the Same Page . 1196

Sample 12: Formatting for Data Export . 1198

Sample 13: Creating Asymmetric Columns . 1199

Sample 14: Calculating Columns . 1200

Sample 15: Calculating Rows . 1202

Sample 16: Sorting by Top or Bottom Data Values . 1207

Sample 17: Restricting Rows . 1209

Sample 18: Ordering Data Values . 1210

Sample 19: Narrowing Member Selection Criteria . 1211

Sample 20: Using Attributes in Member Selection . 1212

Sample 21: Using the WITHATTR Command in Member Selection 1213

Report Writer Command Reference . 1214

Chapter 10. Essbase Unicode File Utility . 1377

Essbase Unicode File Utility Overview . 1377

Types of Encoding Indicators . 1378

Determining Whether to Use UTF-8 or Non-Unicode Text Files 1378

When to Use the Essbase Unicode File Utility . 1379

Contents xiii

Essbase Unicode File Utility Syntax . 1379

Index . 1383

xiv Contents

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible, with
good usability, to the disabled community. To that end, our documentation includes features
that make information available to users of assistive technology. This documentation is available
in HTML format, and contains markup to facilitate access by the disabled community.
Accessibility standards will continue to evolve over time, and Oracle is actively engaged with
other market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For more information, visit the Oracle
Accessibility Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an otherwise empty
line; however, some screen readers may not always read a line of text that consists solely of a
bracket or brace.

Accessibility of Links to External Web Sites in
Documentation
This documentation may contain links to Web sites of other companies or organizations that
Oracle does not own or control. Oracle neither evaluates nor makes any representations
regarding the accessibility of these Web sites.

Access to Oracle Support for Hearing-Impaired
Customers
Oracle customers have access to electronic support through My Oracle Support or by calling
Oracle Support at 1.800.223.1711. Hearing-impaired customers in the U.S. who wish to speak
to an Oracle Support representative may use a telecommunications relay service (TRS).
Information about the TRS is available at http://www.fcc.gov/cgb/consumerfacts/trs.html/, and
a list of telephone numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.
International hearing-impaired customers should use the TRS at +1.605.224.1837. An Oracle
Support engineer will respond to technical issues according to the standard service request
process.

15

http://www.oracle.com/accessibility/
http://www.fcc.gov/cgb/consumerfacts/trs.html/
http://www.fcc.gov/cgb/dro/trsphonebk.html

16 Documentation Accessibility

1
Oracle Essbase Technical

Reference Overview

In This Chapter

About the Oracle Essbase Technical Reference .17

About Aggregate Storage Databases... .19

About the Oracle Essbase Technical Reference
The Oracle Essbase Technical Reference describes commands, functions, and configuration
aspects of Oracle Essbase. This reference is intended for advanced users who need detailed
information and examples about Essbase elements.

For other information about Essbase, see the Oracle Essbase Database Administrator's Guide.

l “What You Should Know Before You Start” on page 17

l “Sample Applications” on page 17

l “Syntax Conventions” on page 18

What You Should Know Before You Start
To use this document, you need the following:

l A working knowledge of the operating system your server uses and the ones your clients use.

l An understanding of Essbase concepts and features.

l An understanding of the typical database administration requirements and tasks, including
calculation, reporting, security, and maintenance.

Sample Applications
This document provides examples based on the Sample and Demo applications provided with
Essbase. The Sample application contains three databases: Basic, Interntl, and Xchgrate. The
Demo application contains one database: Basic. If, when you connect to the Essbase Server, any
of the following problems occur, contact your administrator.

l You cannot find the Sample or Demo application

l You don't have adequate access to the Sample or Demo application

l You don't see any data in the Sample or Demo databases

About the Oracle Essbase Technical Reference 17

Syntax Conventions
This document uses several formatting styles to indicate actions you should take or types of
information you need.

Syntax Purpose Example

UPPERCASE Command or function names in syntax. BEGINARCHIVE

italic Terms, such as parameters, that you replace with a value ESSGETSTRING (hCtx, pString);

\directorypath\filename

The dimList argument...

" " Double quotation marks enclose text parameters or single parameters
that include a space

"appName"

SETDEFAULTCALC "CALC ALL";

! Report Writer: The report output character (bang) signals the start of
report processing; this character must be on its own line

... // commands
<DESC MARKET
!

() Parentheses are used in a couple of ways:

l To enclose function parameters

l To show the order of execution of the enclosed operations

ESSGETSTRING (hCtx, pString);

(a + b) * c

// Comment markers in report scripts. Double slashes (//) indicate text
from // to end of line should be ignored in processing.

// Get results

/* ... */ Comment markers in calculation scripts. The /* ... */ comment markers
indicate the enclosed text should be ignored in processing.

/*Get results*/

; Statement terminator EXIT;

[] Brackets enclose optional parameters in syntax . Used with OR symbol
| if there is more than one optional parameter. Do not type brackets or
the OR symbol |.

INDENT [offset]

[, numeric]

[, "text"]

Indicates an optional numeric (no quotes) or character (quoted)
parameter and the comma which must precede the optional parameter.
Do not type the brackets.

[, year]

[, "columnName"]

{} Braces group statements for processing, enclose alternatives, one of
which you must choose

Report Writer: Enclose report formatting commands

HELP { ? | commandName }{ SUPFORMATS }

| Syntax: OR. Separates alternatives from which you choose only one. Do
not type the OR symbol.

SET AGGMISSG ON | OFF

< Report Writer: Angle bracket precedes layout and member selection
commands.

<PAGE

@ Essbase calculation functions: Precedes many function names @ABS

18 Oracle Essbase Technical Reference Overview

Syntax Purpose Example

-> Essbase calculation functions: Cross-dimensional operator (a hyphen
followed by a greater-than sign) points to data values of specific member
combinations -> (cross-dimensional operator)

Price -> West = AVGRANGE

About Aggregate Storage Databases
This topic explains how the elements discussed in the Oracle Essbase Technical Reference apply
to aggregate storage databases.

Consider using the aggregate storage storage model if the following is true for your database:

l The database is sparse and has many dimensions, and/or the dimensions have many levels
of members.

l The database is used primarily for read-only purposes, with few or no data updates.

l The outline contains no formulas except in the dimension tagged as Accounts.

l Calculation of the database is frequent, is based mainly on summation of the data, and does
not rely on calculation scripts.

Note the applicability of the following elements for aggregate storage databases:

l MDX—Used for querying on block storage and aggregate storage databases. Additionally,
MDX numeric-value expressions can be used for developing formulas on aggregate storage
outlines. For more information, see “Aggregate Storage and MDX Outline Formulas” on
page 973.

l Calculation commands—Not supported in enterprise analytics databases, because
calculation scripts are not relevant to aggregate storage storage.

l Calculation functions—Not supported in enterprise analytics databases. Instead, MDX
formulas can be written using MDX numeric-value expressions. Only the Accounts
dimension can have formulas in aggregate storage databases.

l Report Writer commands—All Report Writer commands (except <SPARSE) are supported
for aggregate storage databases.

l MaxL statements—Some MaxL grammar is applicable to aggregate storage mode, and some
MaxL grammar is not relevant. To learn which statements are supported in aggregate storage
application and database operations, see “MaxL Statements (Aggregate Storage)” on page
864.

l ESSBASE.CFG configuration settings—Some ESSBASE.CFG configuration settings are
applicable to aggregate storage mode, and some are not. To learn which settings are
supported in aggregate storage mode, see “Aggregate Storage and Block Storage Settings
Comparison” on page 376.

For more information about aggregate storage storage, see the Oracle Essbase Database
Administrator's Guide.

About Aggregate Storage Databases 19

20 Oracle Essbase Technical Reference Overview

2
Calculation Functions

In This Chapter

Calculation Functions Overview... .21

Function Syntax .. .22

Function Parameters.. .23

Calculation Operators .. .24

Operation Results on #MISSING Values and Zero (0) Values25

Calculation Function Categories27

Calculation Function Reference... .37

Custom-Defined Calculation Functions ... 234

Custom-Defined Macros... 292

Calculation Functions Overview
Essbase provides a suite of functions and calculation operators to facilitate the definition and
application of complex member formulas. Both the Outline Editor and the Calculation Script
Editor provide dialog boxes containing functions and operators that you can paste into member
formulas and calc scripts. For more information, see the Oracle Essbase Database Administrator's
Guide.

The topics for individual functions in this section provide examples that are based on an
application and database provided with the Essbase Server software, called Sample Basic. If you
do not have access to Sample Basic, contact your administrator.

Generations and Levels
Many Essbase functions identify a member in the database by its position in the database outline.
The outline structure represents a hierarchical tree; every dimension represents a subsection of
the database tree. Generations and levels provide position references for all database members
within the tree. Position references are required because many applications must be able to
determine the location of members within the database structure.

The terms "generation" and "level" denote the distance from either the "root" or the "leaves" of
the dimension. Thus, you can determine the location of any member within a database tree. You
can also specify relationships between groups of related members.

Calculation Functions Overview 21

Generations specify the distance of members from the root of their dimension. All members in
a database that are the same number of branches from their root have the same generation
number. The dimension is generation 1, its children are generation 2, and so on.

Levels measure the number of branches between a member and the lowest member below it,
that is, the number of branches between a member and the "leaf" of its hierarchy within the
database structure. Level 0 specifies the bottom-most members of a dimension and thus provides
ready access to the raw data stored in a database. Leaf members are level 0, then their parents
are level 1, and so on up the hierarchy.

You might note that when all sibling members have the same generation number but not
necessarily the same level number.

For example, the members in this hierarchy:

Dim1
 m11
 m111
 m112
 m12
 m121
 m122
 m13

have the following generation and level numbers:

Dim1 Gen 1, Level 2
 m11 Gen 2, Level 1
 m111 Gen 3, Level 0
 m112 Gen 3, Level 0
 m12 Gen 2, Level 1
 m121 Gen 3, Level 0
 m122 Gen 3, Level 0
 m13 Gen 2, Level 0

Abbreviations
Function abbreviations are not supported. Use the full function name to obtain expected
behavior.

Function Syntax
The individual topics for each function include the required syntax for that function. Function
names appear in bold; required parameters appear in italics; and optional parameters appear in
brackets [] and italics. Individual topics also discuss the defaults that are used when optional
parameters are not specified. For detailed descriptions of each function, along with examples of
usage, please refer to the individual topic.

For information about how Essbase checks for and responds to syntax errors in formulas and
calculation scripts, or for information on how to use semicolons in formulas and calculation
scripts, see the Oracle Essbase Database Administrator's Guide.

22 Calculation Functions

Function Parameters
The following table provides a brief description of some of the common parameters used in
various functions.

Note: Member names that are also keywords, such as IF, THEN, ELSE, and RETURN, must be
enclosed in quotation marks. It is recommended practice to always enclose member
names in quotation marks.

Parameter Description

attDimName A single attribute dimension name specification.

@WITHATTR(Ounces,"<",16)

attMbrName A single attribute member name specification.

@ATTRIBUTE(Can)
@ATTRIBUTEVAL(Ounces)
@WITHATTR("Pkg Type","= =",Can)

dimName A single dimension name specification.

@CURLEV(Accounts)
@CURGEN(Year)
@PARENT(Measures,Sales)

expList A comma-delimited list of member names, variable names, functions, and numeric expressions, all of which return numeric
values.

@MAX(Jan,Feb,100,Apr-May)
@MIN(Oct:Dec)
@COUNT(SKIPNONE,@RANGE(Sales,@CHILDREN(Product)))

expression Any mathematical or numeric expression that is valid within Essbase and that, when calculated, returns a numeric value.
This definition of expression also includes parameters such as numDigits, generation, and level, and other similar
parameters for the financial group of functions, such as rateMbrConst and lifeMbrConst.

@ABS(Actual-Budget)
@ROUND(Sales / 10.0 + 100)

genLevName Generation or level name specification.

@DESCENDANTS(Market,Regions)
@RELATIVE(Qtr1,Month)

genLevNum An integer value that defines the number of a generation or level. A positive integer defines a generation number. A value
of 0 or a negative integer defines a level number.

@ANCESTORS(Sales,-2)
@SANCESTVAL(Product,2,Sales)

mbrList A comma-delimited list of members.

@ISMBR(New_York,Boston,Chicago)

Function Parameters 23

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or member combination.
This definition also includes similar parameters, such as balanceMbrName, costMbr, and cashflowMbr, for the financial
group of functions.

@GEN(Actual)
@CHILDREN(Product)
@MAXRANGE(@ANCESTORS(Qtr4),Jan:Dec)

For functions that expect a single member name (for example, @DESCENDANTS and @CHILDREN), if a member combination
is provided, Essbase uses the first member in the combination. For example, if mbrName is Utah->Sales, Essbase uses
Utah.

n A positive or negative integer value.

@NEXT(2,Jan:Dec)
@SHIFT(3)

rangeList A valid member name, a comma-delimited list of member names, member set functions, and range functions from the
same dimension. If rangeList is optional and is not specified, Essbase uses the level 0 members from the dimension tagged
as Time. If no dimension is tagged as Time and this parameter is omitted, Essbase reports a syntax error. This definition
of rangeList also includes mbrList.

@ACCUM(Q189:Q491)
@MAXRANGE(Sales,@CHILDREN(Qtr1))

tag Any valid account tag defined in the current database including First, Last, Average, Expense, and Two-Pass.

@ISACCTYPE("EXPENSE")

To ensure that the tag is resolved as a string rather than a member name, it is recommended to enclose it in quotation
marks.

Calculation Operators
Calculation operators (mathematical, conditional and logical, and cross-dimensional) define
equations for member formulas and calc scripts.

Mathematical Operators
Mathematical operators perform common arithmetic operations.

Operator Description

+ Adds.

- Subtracts.

* Multiplies.

/ Divides.

% Evaluates percentage. For example, Member1%Member2 evaluates Member1 as a percentage of Member2.

24 Calculation Functions

Operator Description

() Controls the order of calculations and nests equations and formulas.

Conditional and Logical Operators
Conditional operators build logical condition into calculations.

Operator Description

IF | ELSE | ELSEIF | ENDIF Tests conditions and calculates a formula based on the success or failure of the test.

> Data value is greater than.

>= Data value is greater than or equal to.

< Data value is less than.

<= Data value is less than or equal to.

= = Data value is equal to.

< > or != Data value is not equal to.

AND Logical AND linking operator for multiple value tests. Result is TRUE if both conditions are TRUE. Otherwise
the result is FALSE.*

OR Logical OR linking operator for multiple value tests. Result is TRUE if either condition is TRUE. Otherwise the
result is FALSE.*

NOT Logical NOT operator. Result is TRUE if condition is FALSE. Result is FALSE if condition is TRUE.*

* The logical constants TRUE and FALSE are interpreted as 1 (TRUE) and 0 (FALSE) where
appropriate.

Cross-Dimensional Operators
The cross-dimensional operator (->) points to data values of specific member combinations.

The cross-dimensional operator is created with a hyphen (-) and a right angle bracket (>),
with no space between them

Operation Results on #MISSING Values and Zero (0)
Values
If a data value does not exist for a unique combination of members, Essbase gives the
combination a value of #MISSING. A #MISSING value is different from a zero (0) value.
Therefore, Essbase treats #MISSING values differently from 0 values.

Operation Results on #MISSING Values and Zero (0) Values 25

The following tables shows how Essbase calculates #MISSING values. In this table, X represents
any number.

Calculation/Operation Result

X + #MISSING X

X – #MISSING

#MISSING – X

X

-X

X * #MISSING #MISSING

X / #MISSING

#MISSING / X

X / 0

#MISSING

#MISSING

#MISSING

X % #MISSING

#MISSING % X

X % 0

#MISSING

#MISSING

#MISSING

X == #MISSING False, unless X is #MISSING

X != #MISSING

X <> #MISSING

True, unless X is #MISSING

True, unless X is #MISSING

(X <= #MISSING) (X <=0)

(X >= #MISSING) (X >=0) or (X == #MISSING)

(X > #MISSING) (X > 0)

(X < #MISSING) (X < 0)

X AND #MISSING:

1 AND #MISSING*

0 AND #MISSING

#MISSING AND #MISSING

#MISSING

0

#MISSING

X OR #MISSING:

1 OR #MISSING1

0 OR #MISSING

#MISSING OR #MISSING

1

#MISSING

#MISSING

IF (#MISSING) IF (0)

f (#MISSING) #MISSING for any Essbase function of one variable

f (X) #MISSING for any X not in the domain of f, and any Essbase function of more than one variable (except
where specifically noted)

11 represents any nonzero value.

26 Calculation Functions

For information on how Essbase aggregates #MISSING values, see the Oracle Essbase Database
Administrator's Guide.

Calculation Function Categories
This section lists all of the Essbase calculation functions, grouped by function type.

l “Conditional and Logical Operators” on page 25

l “Boolean Functions” on page 27

l “Relationship Functions” on page 28

l “Calculation Operators” on page 24

l “Mathematical Functions” on page 29

l “Member Set Functions” on page 30

l “Range and Financial Functions” on page 33

l “Allocation Functions” on page 35

l “Forecasting Functions” on page 35

l “Statistical Functions” on page 36

l “Date & Time Function” on page 36

l “Miscellaneous Functions” on page 37

l “Custom-defined Functions” on page 37

Boolean Functions
A Boolean function returns TRUE or FALSE (1 or 0, respectively). Boolean functions are
generally used in conjunction with the IF command to provide a conditional test. Because they
generate a numeric value, however, Boolean functions can also be used as part of a member
formula.

Boolean functions are useful because they can determine which formula to apply based on
characteristics of the current member combination. For example, you may want to restrict a
calculation to those members in a dimension that contain input data. In this case, you preface
the calculation with an IF test that is based on @ISLEV (dimName, 0).

If one of the function parameters is a cross-dimensional member; for example, @@ISMBR (Sales-
>Budget), all parts of the cross-dimensional member must match all parts of the current cell to
return a value of TRUE.

In the following quick-reference table, "the current member" means the member that is currently
being calculated by the function. Words in italics, such as member, loosely indicate information
you supply to the function. For details, see the individual function topics.

Calculation Function Categories 27

Function Condition Tested

@ISACCTYPE Whether the current member has a particular accounts tag.

@ISANCEST Whether the current member is an ancestor of member.

@ISCHILD Whether the current member is a child of member.

@ISDESC Whether the current member is a descendant of member.

@ISGEN Whether the current member of dimension is in generation.

@ISIANCEST Whether the current member is the same member or an ancestor of member.

@ISICHILD Whether the current member is the same member or a child of member.

@ISIDESC Whether the current member is the same member or a descendant of member.

@ISIPARENT Whether the current member is the same member or the parent of member.

@ISISIBLING Whether the current member is the same member or a sibling of member.

@ISLEV Whether the current member of dimension is in level.

@ISMBR Whether the current member is member, or is found in member list, or is found in a range returned by another function.

@ISPARENT Whether the current member is the parent of member.

@ISSAMEGEN Whether the current member is in the same generation as member.

@ISSAMELEV Whether the current member is in the same level as member.

@ISSIBLING Whether the current member is a sibling of member.

@ISUDA Whether the current member of dimension has a particular user-defined attribute string.

Relationship Functions
Relationship functions look up specific values within the database based on current cell location
and a series of parameters. You can use these functions to refer to another value in a data series.
Relationship functions have an implicit current member argument; that is, these functions are
dependent on the current member's position.

In the following quick-reference table, words in italics loosely represent information you supply
to the function. For details, see the individual function topics.

Function Return Value

@ANCESTVAL Ancestor values of a specified one-dimensional member combination.

@ATTRIBUTEBVAL Associated attribute value from a Boolean attribute dimension.

@ATTRIBUTESVAL Associated attribute value from a text attribute dimension.

28 Calculation Functions

Function Return Value

@ATTRIBUTEVAL Associated attribute value from a numeric or date attribute dimension.

@CURGEN Generation number of the current member in dimension.

@CURLEV Level number of the current member in dimension.

@GEN Generation number of member.

@LEV Level number of member.

@MDANCESTVAL Ancestor values for any number of multidimensional member combinations.

@MDPARENTVAL Parent values for any number of multidimensional member combinations.

@PARENTVAL Parent values for member in dimension.

@SANCESTVAL Ancestor values for shared members at a certain depth under root member.

@SPARENTVAL Parent values for shared members under root member.

@XREF Values from a different database than the one being calculated.

@XWRITE Writes values to a different database than the one being calculated.

Mathematical Functions
These functions perform specific mathematical calculations. Mathematical functions define and
return values that are based on selected member expressions. These functions cover many basic
statistical functions and return numeric results that are based on supplied member values.
Advanced statistical functions are included in the statistical functions category.

In the following quick-reference table, words in italics loosely represent information you supply
to the function. For details, see the individual function topics.

Function Return Value

@ABS Absolute value of expression.

@AVG Average of all values in expList.

@EXP e (base of natural logarithms) raised to the power of expression.

@FACTORIAL Factorial of expression.

@INT Next lowest integer value of expression.

@LN e (base of natural logarithms) of expression.

@LOG Any base logarithm of expression.

@LOG10 Base-10 logarithm of expression.

Calculation Function Categories 29

Function Return Value

@MAX Maximum value found in cells of expression list.

@MAXS Maximum value found in cells of expression list, optionally skipping empty values.

@MIN Minimum value found in cells of expression list.

@MINS Minimum value found in cells of expression list, optionally skipping empty values.

@MOD Modulus of a division operation between two members.

@POWER Expression raised to power.

@REMAINDER Remainder value of expression.

@ROUND Expression rounded to numDigits.

@SUM Sum of values found in cells of expression list.

@TRUNCATE Expression with fractional part removed, returning an integer.

@VAR Variance between two members.

@VARPER Percent variance between two members.

Member Set Functions
Member set functions return a list of members. This list is based on the member specified and
the function used. You can use operators to specify Generation and Level Range Operators for
Member Set Functions with member set functions.

When a member set function is called as part of a formula, the list of members is generated
before the calculation begins. The list never varies because it is based on the specified member
and is independent of the current member.

If a member set function (for example, @CHILDREN or @SIBLINGS) is used to specify the list
of members to calculate in a calculation script, Essbase bypasses the calculation of any Dynamic
Calc or Dynamic Calc and Store members in the resulting list.

Only the @ATTRIBUTE and @WITHATTR functions can use attribute members or members
of the Attribute Calculations dimension as parameters in member set functions.

You can use cross-dimension expressions such as ("1998":"2001" -> @Levmbrs (Year, 0)). The
cross-dimensional operator is associative (x -> y) -> z=x -> (y -> z), but not commutative
because x -> y = y -> x is a set, but the order of elements is different.

Function Return Value

@ALLANCESTORS All ancestors of member, including ancestors of shared member.

@ANCEST Ancestor at distance from the current member or an explicitly specified member.

@ANCESTORS All ancestors of member, or those ancestors up to a specified distance.

30 Calculation Functions

Function Return Value

@ATTRIBUTE All base members associated with attribute member name.

@BETWEEN All members whose name string value fall between, and are inclusive of, two specified string tokens.

@CHILDREN Children of member.

@CURRMBR Member currently being calculated in the specified dimension.

@DESCENDANTS All descendants of member, or those descendants down to a specified distance.

@EQUAL Member names that match the specified token name.

@EXPAND Expands a member search by calling a member set function for each member in a member list.

@GENMBRS Members of dimension that are at generation.

@IALLANCESTORS Member and ancestors of member, including ancestors of shared member.

@IANCESTORS Member, and either all member ancestors or those ancestors up to a specified distance.

@ICHILDREN Member and its children.

@IDESCENDANTS Member, and either all member descendants or those descendants down to a specified distance.

@ILANCESTORS Members of the specified list of members, and either all ancestors of the specified list of members or those
ancestors up to a specified distance.

@ILDESCENDANTS Members of the specified list of members, and either all descendants of the specified list of members or those
descendants down to a specified distance.

@ILSIBLINGS Member and its left siblings.

@IRSIBLINGS Member and its right siblings.

@IRDESCENDANTS Member and all its descendants, or those descendants down to a specified distance, including descendants of
shared member.

@ISIBLINGS Member and its siblings.

@LANCESTORS All ancestors of the specified list of members, or those ancestors up to a specified distance.

@LDESCENDANTS All descendants of the specified list of members, or those descendants down to a specified distance.

@LEVMBRS Members of dimension that are at level.

@LIST A single list compiled from arguments, and can be used for functions requiring an expression list, a member
list, or a range list.

@LSIBLINGS Left siblings of member.

@MATCH Members that match a pattern search performed over a generation, a level, or a member and its descendants.

@MBRCOMPARE Member names that match the comparison criteria.

@MBRPARENT Parent of the specified member.

Calculation Function Categories 31

Function Return Value

@MEMBER Member with name string.

@MERGE Merged list from two lists.

@NEXTSIBLING Next, or right-most, sibling of member.

@NOTEQUAL Member names that do not match the specified token name.

@PARENT Parent of the current member being calculated in dimension, optionally crossed with another member.

@PREVSIBLING Previous, or left-most, sibling of member.

@RANGE Member list that crosses a member from one dimension with a range from another dimension.

@RDESCENDANTS All descendants of member, or those down to a specified distance, including descendants of shared member.

@RELATIVE All members that are at distance from member.

@REMOVE List1, with anything that is also in list2 removed.

@RSIBLINGS Right siblings of member.

@SHIFTSIBLING Sibling at specified distance from member.

@SIBLINGS Siblings of member.

@UDA Members of dimension that have UDA.

@WITHATTR Base members from dimension that are associated with an attribute meeting a condition.

@XRANGE Range of members between (and inclusive of) two members at the same level.

Generation and Level Range Operators for Member Set Functions

The operators : and :: can be used with member set functions, which return a list of members.
The : operator returns level-based ranges and the :: operator returns generation-based ranges.
For example, Jan:Dec and Jan::Dec both return all members between and inclusive of Jan and
Dec.

The difference is that Jan:Dec returns all members at the same level and Jan::Dec returns all
members at the same generation.

For example, if we have the outline:

 Q1 - Jan
 Feb
 Mar
 Q2 - Apr
 May
 Jun
 Q3
 Q4 - Oct
 Nov
 Dec

32 Calculation Functions

The function @MOVAVG(Sales, 3, Jan:Dec) computes @MOVAVG(Sales, 3, Jan, Feb, Mar, Apr,
May, Jun, Q3, Oct, Nov, Dec).

The function @MOVAVG(Sales, 3, Jan::Dec) computes @MOVAVG(Sales, 3, Jan, Feb, Mar,
Apr, May, Jun, Oct, Nov, Dec).

Range and Financial Functions
Range functions take a range of members as an argument. Rather than return a single value,
these functions calculate a series of values internally based on the range specified.

Financial functions execute specialized financial calculations.

Function Return Value

@ACCUM The sum of values of a specified member across a range

@AVGRANGE The average of values of a specified member across a range

@COMPOUND The compound interest of values of a specified member across a range, calculated at a specified rate

@COMPOUNDGROWTH A series of values that represent the compound growth of the specified member across a range of members,
calculated at a specified rate

@CURRMBRRANGE A range of members that is based on the relative position of the member combination Essbase is currently
calculating

@DECLINE Depreciation of a member over a specified period, calculated using the declining balance method

@DISCOUNT Discounted values of a specified member, calculated at a specified rate, across a range of values from the
time dimension

@GROWTH A series of values that represents the linear growth of the specified value

@INTEREST A series of values that represent the linear growth of a specified member, calculated at a specified rate, across
a range of members from the time dimension

@IRR The internal rate of return on a cash flow calculated across the time dimension or a specified range of members

@MAXRANGE The maximum value of a member across a range of members

@MAXSRANGE The maximum value of a member across a range of members, with the ability to skip zero and #MISSING values

@MDSHIFT The next or nth member in a range of members, retaining all other members identical to the current member
across multiple dimensions

@MINRANGE The minimum value of a member across a range of members

@MINSRANGE The minimum value of a member across a range of members, with the ability to skip zero and #MISSING values

@NEXT The next or nth member in a range of members

@NEXTS The next or nth member in a range of members, with the option to skip #MISSING, zero, or both values

@NPV The Net Present Value of an investment based on a series of payments and income values

Calculation Function Categories 33

Function Return Value

@PTD The period-to-date values of members in the time dimension

@PRIOR A list of the previous or nth previous members in a range of members

@PRIORS A list of the previous or nth previous members in a range of members, with the option to skip #MISSING, zero,
or both values

@RANGE A member list that crosses the specified member from one dimension with the specified member range from
another dimension

@SHIFT

@SHIFTPLUS

@SHIFTMINUS

A list of the next or nth members in a range of members, retaining all other members identical to the current
member and in the specified dimension

@SLN Depreciation amounts, across a range period, that an asset in the current period may be depreciated,
calculated using the straight-line depreciation method

@SUMRANGE A list of summarized values of all specified members across a range of members

@SYD Depreciation amounts, across a range of periods, of an asset in the current period, calculated using the sum
of the year's digits depreciation method

@XRANGE A list of a range of members between specified members at the same level

Range List Parameters

Some range and forecasting functions recognize the optional parameter rangeList or
XrangeList as the last parameter. rangeList is a range of members from one dimension;
XrangeList is a range of members from one or more dimensions.

If rangeList or XrangeList is not given, the level 0 (leaf) members from the dimension tagged as
Time become the default range. If no dimension is tagged as Time and the last parameter is not
given, Essbase reports a syntax error.

The following table provides examples of valid values for rangeList or XrangeList.

Example Description

Mar99 A single member

Mar99, Apr99, May99 A comma-delimited list of members.

Jan99:Dec99 A level range.

A level range includes all members on the same level between and including the members
defining the range.

Q1_99::Q4_2000 A generation range.

A generation range includes the members defining the range and all members that are within
the range and of the same generation.

Q1_99::Q4_2000, FY98, FY99, FY2000 A generation range and a comma-delimited list

34 Calculation Functions

Example Description

@SIBLINGS(Dept01), Dept65:Dept73,
Total_Dept

A member set function and one or more range lists

The following table provides examples of valid values for XrangeList.

Example Description

Jan->Actual->Sales, Dec->Actual->Sales A comma-delimited list of members from one or more dimensions.

Actual->Jan, @XRANGE(Actual->December, Budget->Mar); A comma-delimited list and a range.

@XRANGE(Jan->Actual,Dec->Budget); A @XRANGE function.

@CHILDREN("Colas"),@CHILDREN("West") A member set function as part of a range list.

Financial functions never return a value; rather, they internally calculate a series of values based
on the range specified and write the results to a range of cells. Thus, you cannot apply any
operator directly to the function.

Allocation Functions
These functions allocate values that are input at the parent level. The values are allocated across
child members in one or more dimensions, based on specified criteria. These functions
consolidate the common tasks that are required to perform allocations in Essbase.

Function Allocation Type

@ALLOCATE Allocates values to lower-level members in one level.

@MDALLOCATE Allocates values to lower-level members in multiple dimensions.

Forecasting Functions
Forecasting functions manipulate data for the purpose of smoothing, interpolating, or
calculating future values. Forecasting functions are often used in planning, analysis, and
modeling applications. Some forecasting functions recognize the optional Range List
Parameters rangeList or XrangeList).

Function Data Manipulation

@MOVAVG Applies a moving average to a data set, replacing each term in the list with a trailing average. This function modifies the
data set for smoothing purposes.

@MOVMAX Applies a moving maximum to a data set, replacing each term in the list with a trailing maximum. This function modifies
the data set for smoothing purposes.

Calculation Function Categories 35

Function Data Manipulation

@MOVMED Applies a moving median to a data set, replacing each term in the list with a trailing median. This function modifies the
data set for smoothing purposes.

@MOVMIN Applies a moving minimum to a data set, replacing each term in the list with a trailing minimum. This function modifies
the data set for smoothing purposes.

@MOVSUM Applies a moving sum to a data set. This function modifies the data set for smoothing purposes.

@MOVSUMX Applies a moving sum to a data set, enabling specification of values for trailing members. This function modifies the data
set for smoothing purposes.

@SPLINE Applies a smoothing spline to a set of data points. A spline is a mathematical curve that is used to smooth or interpolate
data.

@TREND Calculates future values, basing the calculation on curve-fitting to historical values

Statistical Functions
Statistical functions calculate advanced statistical values, such as correlation or variance. These
functions are often used in sales and marketing applications.

Function Return Value

@CORRELATION The correlation coefficient between two parallel data sets

@COUNT The number of data values in the specified data set

@MEDIAN The median (middle value) of the specified data set

@MODE The mode (the most frequently occurring value) in the specified data set

@RANK The rank (position in the sorted data set) of the specified members or the specified value among the values in the
specified data set.

@STDEV The standard deviation of the specified data set

@STDEVP The standard deviation of the specified data set, calculated over the entire population

@STDEVRANGE The standard deviation of all values of the specified member across the specified data set. The specified mbrName
is crossed with a range list to obtain the sample across which the standard deviation is calculated.

@VARIANCE The statistical variance of the specified data set (expList), based upon a sample of a population

@VARIANCEP The statistical variance of the specified data set (expList), based upon the entire population

Date & Time Function
The date function, @TODATE, converts date strings to numbers that can be used in calculation
formulas.

36 Calculation Functions

Miscellaneous Functions
l @CALCMODE—This function enables you to specify whether a formula is calculated in cell

mode or block mode and whether a formula is calculated bottom-up or top-down

l @CONCATENATE, @SUBSTRING, and @NAME—These functions enable manipulation of
character strings.

l @RETURN—This function enables termination of a calculation, with a custom error message.

Custom-defined Functions
This custom-defined group is a category of functions that you develop for calculation operations
that are not enabled by the built-in Essbase functions. Custom-defined functions are written in
the Java programming language and registered on the server. The Essbase calculator framework
calls custom-defined functions as external functions. For more details, see Create Macro and
Create Function in MaxL.

Calculation Function Reference
Consult the Contents pane for a categorical list of calculation functions.

@ABS @ISANCEST @MOVSUMX

@ACCUM @ISATTRIBUTE @NAME

@ALLANCESTORS @ISCHILD @NEXT

@ALIAS @ISDESC @NEXTS

@ALLOCATE @ISGEN @NEXTSIBLING

@ANCEST @ISIANCEST @NOTEQUAL

@ANCESTORS @ISIBLINGS @NPV

@ANCESTVAL @ISICHILD @PARENT

@ATTRIBUTE @ISIDESC @PARENTVAL

@ATTRIBUTEBVAL @ISIPARENT @POWER

@ATTRIBUTESVAL @ISISIBLING @PREVSIBLING

@ATTRIBUTEVAL @ISLEV @PRIOR

@AVG @ISMBR @PRIORS

@AVGRANGE @ISMBRWITHATTR @PTD

@BETWEEN @ISPARENT @RANGE

@CALCMODE @ISSAMEGEN @RANK

Calculation Function Reference 37

@ABS @ISANCEST @MOVSUMX

@CHILDREN @ISSAMELEV @RDESCENDANTS

@COMPOUND @ISSIBLING @RELATIVE

@COMPOUNDGROWTH @ISUDA @REMAINDER

@CONCATENATE @LANCESTORS @REMOVE

@CORRELATION @LDESCENDANTS @RETURN

@COUNT @LEV @ROUND

@CURGEN @LEVMBRS @RSIBLINGS

@CURLEV @LIKE @SANCESTVAL

@CURRMBR @LIST @SHARE

@CURRMBRRANGE @LN @SHIFT

@DATEDIFF @LOG @SHIFTMINUS

@DATEPART @LOG10 @SHIFTPLUS

@DATEROLL @LSIBLINGS @SHIFTSIBLING

@DECLINE @MATCH @SIBLINGS

@DESCENDANTS @MAX @SLN

@DISCOUNT @MAXRANGE @SPARENTVAL

@ENUMVALUE @MAXS @SPLINE

@EQUAL @MAXSRANGE @STDEV

@EXP @MBRCOMPARE @STDEVP

@EXPAND @MBRPARENT @STDEVRANGE

@FACTORIAL @MDALLOCATE @SUBSTRING

@FORMATDATE @MDANCESTVAL @SUM

@GEN @MDPARENTVAL @SUMRANGE

@GENMBRS @MDSHIFT @SYD

@GROWTH @MEDIAN @TODATE

@IALLANCESTORS @MEMBER @TODATEEX

@IANCESTORS @MERGE @TODAY

@ICHILDREN @MIN @TREND

@IDESCENDANTS @MINRANGE @TRUNCATE

38 Calculation Functions

@ABS @ISANCEST @MOVSUMX

@ILANCESTORS @MINS @UDA

@ILDESCENDANTS @MINSRANGE @VAR

@ILSIBLINGS @MOD @VARPER

@INT @MODE @VARIANCE

@INTEREST @MOVAVG @VARIANCEP

@IRDESCENDANTS @MOVMAX @WITHATTR

@IRR @MOVMED @XRANGE

@IRSIBLINGS @MOVMIN @XREF

@ISACCTYPE @MOVSUM @XWRITE

@ABS
Returns the absolute value of expression. The absolute value of a number is that number less its
sign. A negative number becomes positive, while a positive number remains positive.

Syntax

@ABS (expression)

Parameter Description

expression Member name or mathematical expression that generates a numeric value.

Example

The following example is based on the Demo Basic database. In this example, Variance needs to
be presented as a positive number. The @ABS function is used because otherwise some
combinations of Actual - Budget would return negative values.

Variance=@ABS(Actual-Budget);

This example produces the following report:

Sales VCR San_Francisco
 Jan Feb Mar
 === === ===
Actual 1,323 1,290 1,234
Budget 1,200 1,100 1,100
Variance 123 190 134

See Also

l @INT

l @REMAINDER

l @ROUND

l @TRUNCATE

Calculation Function Reference 39

@ACCUM
Accumulates the values of mbrName within rangeList, up to the current member in the
dimension of which rangeList is a part.

Syntax

@ACCUM (mbrName [, rangeList])

Parameter Description

mbrName Any valid single member name or member combination (or a function that returns a single member or
member combination) whose value is to be accumulated.

rangeList Optional comma-delimited list of members, member set functions, or range functions, across which the
accumulation occurs. If rangeList is not specified, Essbase uses the level 0 members from the dimension
tagged as Time.

Notes

l Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

l @ACCUM accepts the @ATTRIBUTE member set function as a member range.

l If you use an Essbase member set function to generate a member list for the rangeList
parameter (for example, @SIBLINGS), to ensure correct results, consider the order in which
Essbase sorts the generated member list. For more information, see the Oracle Essbase
Technical Reference topic for the member set function you are using.

l You cannot apply an operator (for example divide or multiply) to @Accum. For example,
the formula Budget=@ACCUM(Actual, Jan:Feb)/2 is not valid.

Example

In this example, Accum Asset is calculated using the following formula:

"Accum Asset" = @ACCUM(Asset, FY1997:FY2002);

This example produces the following report. This report shows that the values for Asset are
accumulated starting with FY1997 and the yearly accumulation value is placed in Accum Asset
for FY1997 through FY2002:

 FY1997 FY1998 FY1999 FY2000 FY2001 FY2002
 ======= ======= ======= ======= ======= =======
Asset 9,000 0 1,000 0 2 ,500 1,500
Residual 750 0 0 0 #MISSING #MISSING
Life 5 0 3 0 #MISSING #MISSING
Accum Asset #MISSING #MISSING 1,000 1,000 3,500 5,000

The value of Accum Asset is #MISSING for FY1997 because that is the starting year. The value
of Accum Asset is #MISSING for FY1998 because there was no accumulation that year. For
FY1999, the value of the asset grew by 1,000, so Accum Asset has a value of 1000.

40 Calculation Functions

@ALLANCESTORS
Returns all ancestors of the specified member, including ancestors of any occurrences of the
specified member as a shared member. This function excludes the specified member.

Syntax

@ALLANCESTORS (mbrName)

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

Notes

l Essbase sorts the generated list of members in ascending order of the member number in
the outline. Using Sample Basic as an example, if you specify 100-20 for mbrName, 100,
Diet, and Product are returned (in that order). However, the order in which shared ancestors
are returned is not guaranteed. This order is important to consider when you use the
@ALLANCESTORS member set function with certain forecasting and statistical functions.

l You can use @ALLANCESTORS as a parameter of another function, where that parameter
is a list of members.

Example

The following example is based on the Sample Basic database. Sample Basic has a shared level
of diet drinks, which includes 100-20 (Diet Cola). So 100-20 (Diet Cola) is a descendant of 100
(Colas) and is a shared member descendant of Diet:

100
 100-10
 100-20
 …
Diet
 100-20 (Shared Member)
 …

The following calculation script increases by 5% the Budget->Sales values of all ancestors of
100-20, including Diet.

FIX(Budget,@ALLANCESTORS("100-20"))
Sales = Sales * 1.05;
ENDFIX

This example produces the following report. This report shows that the Budget->Sales values
for 100, Diet, and Product (the ancestors of 100-20) have been increased by 5%. The original
values were 8980, 8260, and 28480, respectively.

 Jan
 Actual Budget
 Sales Sales
 ===== =====
Market 100-10 4860 5200
 100-20 2372 2610
 100-30 1082 1170

Calculation Function Reference 41

 100 8314 9429 *
 100-20 2372 2610
 200-20 3122 3090
 300-30 2960 2560
 Diet 8454 8673 *
 Product 31538 30954 *

See Also

l @IALLANCESTORS

l @LANCESTORS

l @ILANCESTORS

@ALIAS
Takes a string as an argument and returns an alias name to the function that calls @ALIAS.

Syntax

@ALIAS (function_name)

Notes

Because functions that take strings as arguments may not function correctly if the string matches
a member alias, use the function @ALIAS to pass member alias names as strings, for example
when passing alias names as strings to functions such as @ISUDA, @UDA, @CONCATENATE,
@SUBSTRING, @MATCH, or @NAME.

Example

For example, if the value "US$" is both an alias and a user-defined attribute, pass the string using
@ALIAS:

IF(@ISUDA(@ALIAS("US$")))
...
ENDIF

@ALLOCATE
Allocates values from a member, from a cross-dimensional member, or from a value across a
member list. The allocation is based on a variety of criteria.

This function allocates values that are input at an upper level to lower-level members. The
allocation is based upon a specified share or spread of another variable. For example, you can
allocate values loaded to a parent member to all of that member's children. You can specify a
rounding parameter for allocated values and account for rounding errors.

Syntax

@ALLOCATE (amount, allocationRange, basisMbr, [roundMbr],method [, methodParams] [,
round [, numDigits][, roundErr]])

42 Calculation Functions

Parameter Description

amount A value, member, or cross-dimensional member that contains the value to be allocated into
allocationRange. The value may also be a constant.

l If amount is a member, the member must be from the dimension to which allocationRange
belongs.

l If amount is a cross-dimensional member, at least one of its members must be from the dimension
to which allocationRange belongs.

l If no member or cross-dimensional member is from the dimension to which allocationRange
belongs, a warning message is displayed.

If the amount parameter is a loaded value, it cannot be a Dynamic Calc member.

allocationRange A comma-delimited list of members, member set functions, or range functions, into which value(s)
from amount are allocated. allocationRange should be from only one level (for example,
@CHILDREN(Total Expenses) rather than from multiple levels (for example,
@DESCENDANTS(Product)).

basisMbr A value, member, or cross-dimensional member that contains the values that provide the basis for
the allocation. The method you specify determines how the basis data is used.

roundMbr Optional. The member or cross-dimensional member to which rounding errors are added. The
member (or at least one member of a cross-dimensional member) must be included in
allocationRange.

Calculation Function Reference 43

Parameter Description

method The expression that determines how values are allocated. One of the following:

l share:

Uses basisMbr to calculate a percentage share. The percentage share is calculated by dividing the
value in basisMbr for the current member in allocationRange by the sum across the
allocationRange for that basis member:

amount * (@CURRMBR()->basisMbr/@SUM(allocationRange-> basisMbr)

l spread:

Spreads amount across allocationRange:

 amount * (1/@COUNT(SKIP, allocationRange))

SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH: Values to be ignored during calculation
of the spread. You must specify a SKIP parameter only for spread.

m SKIPNONE: Includes all cells.

m SKIPMISSING: Excludes all #MISSING values in basisMbr, and stores #MISSING for
values in allocationRange for which the basisMbr is missing.

m SKIPZERO: Excludes all zero (0) values in basisMbr, and stores #MISSING for values in
allocationRange for which the basisMbr is zero.

m SKIPBOTH: Excludes all zero (0) values and all #MISSING values, and stores
#MISSING for values in allocationRange for which the basisMbr is zero (0) or
#MISSING.

l percent: Takes a percentage value from basisMbr for each member in allocationRange and applies
the percentage value to amount:

amount * (@CURRMBR()->basisMbr * .01)

l add: Takes the value from basisMbr for each member of allocationRange and adds the value to
amount:

amount + @CURRMBR()->basisMbr

l subtract: Takes the value from basisMbr for each member of allocationRange and subtracts the
value from amount:

amount - @CURRMBR()->basisMbr

l multiply: Takes the value from basisMbr for each member of allocationRange and multiplies the
value by amount:

amount * @CURRMBR()->basisMbr

l divide: Takes the value from basisMbr for each member of allocationRange and divides the value
by amount:

amount/@CURRMBR()->basisMbr

round Optional. One of the following:

l noRound: No rounding. noRound is the default.

l roundAmt: Indicates that you want to round the allocated values. If you specify roundAmt, you
also must specify numDigits to indicate the number of decimal places to round to.

44 Calculation Functions

Parameter Description

numDigits An integer that represents the number of decimal places to round to. You must specify numDigits if
you specify roundAmt.

l If numDigits is 0, the allocated values are rounded to the nearest integer. The default value for
numDigits is 0.

l If numDigits is greater than 0, the allocated values are rounded to the specified number of decimal
places.

l If numDigits is a negative value, the allocated values are rounded to a power of 10.

If you specify roundAmt, you also can specify a roundErr parameter.

roundErr Optional. An expression that specifies where rounding errors should be placed. You must specify
roundAmt in order to specify roundErr. If you do not specify roundErr, rounding errors are discarded.

To specify roundErr, choose from one of the following:

l errorsToHigh: Adds rounding errors to the member with the highest allocated value. If allocated
values are identical, adds rounding errors to the first value in allocationRange. (For this option,
Essbase does not distinguish between #MI and zero values.)

l errorsToLow: Adds rounding errors to the member with the lowest allocated value. If allocated
values are identical, adds rounding errors to the first value in allocationRange. #MISSING is
treated as the lowest value in a list; if multiple values are #MISSING, rounding errors are added
to the first #MISSING value in the list.

l errorsToMbr: Adds rounding errors to the specified roundMbr, which must be included in
allocationRange.

Notes

l When you use @ALLOCATE in a calculation script, use it within a FIX statement; for
example, FIX on the member to which the allocation amount is loaded. Although FIX is not
required, using it may improve calculation performance.

l If you use @ALLOCATE in a member formula, your formula should look like this:

Member Name = @ALLOCATE (...)

This is because allocation functions never return a value; rather, they calculate a series of
values internally based on the range specified.

l For an example that explains the use of rounding error processing with the @ALLOCATE
function, see the Oracle Essbase Database Administrator's Guide.

Example

Consider the following example from the Sample Basic database. The example assumes that the
Scenario dimension contains an additional member, PY Actual, for the prior year's actual
expenses. Data values of 7000 and 8000 are loaded into Budget->Total Expenses for Jan and Feb,
respectively. (For this example, assume that Total Expenses is not a Dynamic Calc member.)

You need to allocate values to each expense category (to each child of Total Expenses). The
allocation for each of child of Total Expenses is based on the child's share of actual expenses for
the prior year (PY Actual).:

FIX("Total Expenses")
Budget = @ALLOCATE(Budget->"Total Expenses",@CHILDREN("Total Expenses"),

Calculation Function Reference 45

"PY Actual",,share);
ENDFIX

This example produces the following report:

 Product Market
 PY Actual Budget
 Jan Feb Jan Feb
 === === === ===
Marketing 5223 5289 3908.60 4493.63
Payroll 4056 4056 3035.28 3446.05
Misc 75 71 56.13 60.32
 Total Expenses 9354 9416 7000 8000

See Also

l @MDALLOCATE

@ANCEST
Returns the ancestor at the specified generation or level of the current member being calculated
in the specified dimension. If you specify the optional mbrName, that ancestor is combined with
the specified member.

This member set function can be used as a parameter of another function, where that parameter
is a member or list of members.

Syntax

@ANCEST (dimName, genLevNum [, mbrName])

Parameter Description

dimName Single dimension name specification.

genLevNum An integer value that defines the generation or level number from which the ancestor value is returned.
A positive integer defines a generation number. A value of 0 or a negative integer defines a level number.

mbrName Optional. Any valid single member name or member combination, or a function that returns a single
member or member combination, that is crossed with the ancestor returned.

Notes

l You cannot use the @ANCEST function in a FIX statement.

l You can use the @ANCEST function on both the left-hand and right-hand sides of a formula.
If you use this function on the left-hand side of a formula in a calculation script, associate
it with a member. For example:

Sales(@ANCEST(Product) = 5;);

l In some cases, the @ANCEST function is equivalent to the @ANCESTVAL function, except
in terms of calculation performance. For example, the following two formulas are equivalent:

Sales = @ANCEST(Product,2);

Sales = @ANCESTVAL(Product,2);

46 Calculation Functions

In this case, using the latter formula results in better calculation performance. In general,
use @ANCEST as a member rather than as an implied value of a cell. For example:

Sales = @AVG(SKIPMISSING, @ISIBLINGS(@ANCEST(Product,2)));

l The time required for retrieval and calculation may be significantly longer if this function
is in a formula attached to a member tagged as Dynamic Calc or Dynamic Calc and Store.

Example

In the Sample Basic database:

Function Generated List

@ANCEST(Product,2,Sales) Colas->Sales, if the current member of
 Product being calculated is Diet Cola.

@ANCEST(Measures,3,East) Total Expenses->East, if the current member of
 Measures being calculated is Payroll.

See Also

l @PARENT

l @CHILDREN

l @ANCESTORS

l @DESCENDANTS

l @SIBLINGS

@ANCESTORS
Returns all ancestors of the specified member (mbrName) or those up to a specified generation
or level. You can use this member set function as a parameter of another function, where that
parameter is a list of members.

Syntax

@ANCESTORS (mbrName [, genLevNum | genLevName])

Parameter Description

mbrName Any valid single member name or member combination (or a function that returns a single member or
member combination).

genLevNum Optional. An integer value that defines the absolute generation or level number up to which to select the
members. A positive integer defines a generation number. A value of 0 or a negative integer defines a
level number.

genLevName Optional. Level name or generation name up to which to select the members.

Notes

l The generated list of members is sorted starting with the nearest ancestor of the member,
followed by the next nearest ancestor of the member, and so on. Using Sample Basic as an
example, if you specify @ANCESTORS(200-30), Essbase returns 200, Product (in that order).

Calculation Function Reference 47

This order is important to consider when you use the @ANCESTORS member set function
with certain forecasting and statistical functions.

Example

In the Sample Basic database:

@ANCESTORS("New York")

returns East, Market (in that order).

@ANCESTORS(Qtr4)

returns Year.

@ANCESTORS("100-10",1)

returns 100, Product (in that order).

@ANCESTORS(Sales,-2)

returns Margin, Profit (in that order).

See Also

l @IANCESTORS

l @LANCESTORS

l @ILANCESTORS

l @ISANCEST

l @CHILDREN

l @DESCENDANTS

l @SIBLINGS

@ANCESTVAL
Returns the ancestor values of a specified member combination.

Syntax

@ANCESTVAL (dimName, genLevNum [, mbrName])

Parameter Description

dimName A single dimension name that defines the focus dimension of ancestor values.

genLevNum Integer value that defines the generation or level number from which the ancestor values are to be returned.
A positive integer defines a generation reference. A negative number or value of 0 defines a level reference.

mbrName Optional. Any valid single member name or member combination (or a function that returns a single
member or member combination).

Example

In this example, SKU Share is derived by taking Sales in each SKU as a percentage of its product
family. Families are at generation 2; therefore, each descendant of family is calculated as a

48 Calculation Functions

percentage its respective ancestor. Consolidated results must be calculated for Sales by Product
before the SKU Share calculation occurs.

"SKU Share" = Sales % @ANCESTVAL(Product,2,Sales);

This example produces the following report:

 Sales SKU Share
 ===== =========
SKU101 510 26.0
SKU102 520 26.5
 Group01 1030 52.5
SKU120 430 21.9
SKU123 500 25.5
 Group02 930 47.4
 Family1 1960 100.00

See Also

l @MDANCESTVAL

l @SANCESTVAL

l @PARENTVAL

@ATTRIBUTE
Lists all base members that are associated with the specified attribute member (attmbrName).
This member set function can be used as a parameter of another function, where that parameter
is a member or list of members.

Syntax

@ATTRIBUTE (attMbrName)

Parameter Description

attMbrName Single attribute member name.

Notes

When @ATTRIBUTE is used with a non-level 0 member of an attribute dimension, Essbase
returns all base members that are associated with the children of the attribute member. For
example, in the Sample Basic database, @ATTRIBUTE(Large) returns all base members that fall
into one of the population ranges for the attribute parent Large.

If you specify the name of a Boolean attribute dimension (for example, Caffeinated), Essbase
returns all base members that are associated with either Caffeinated member (for example, True
or False). To return only one, specify the member name (for example,
@ATTRIBUTE(Caffeinated_True)).

You may have duplicate Boolean, date, and numeric attribute member names in your outline.
For example, 12 can be the attribute value for the size (in ounces) of a product as well as the
value for the number of packing units for a product. To distinguish duplicate member names,
specify the full attribute member name (for example, @ATTRIBUTE(Ounces_12)).

Calculation Function Reference 49

The generated list of members is sorted in ascending order from the database outline. This order
is important to consider when you use the @ATTRIBUTE member set function with certain
forecasting and statistical functions.

Example

In the Sample Basic database,

@ATTRIBUTE(Can);

returns all base members with the Can attribute: Cola, Diet Cola, and Diet Cream.

Consider the following two calculation scripts, which are based on the Sample Basic database:

/* To increase the marketing budget for markets with large populations */
FIX (@ATTRIBUTE(Large))
Marketing = Marketing * 1.1;
ENDFIX

/* To calculate the average sales of bottled products */
"Bottle Sales" = @AVG(SKIPBOTH,@ATTRIBUTE(Bottle));

See Also

l @WITHATTR

l @ATTRIBUTEVAL

@ATTRIBUTEBVAL
Returns, for the current member being calculated, the associated attribute value from the
specified Boolean attribute dimension.

Syntax

@ATTRIBUTEBVAL (attDimName)

Parameter Description

attDimName The name of a Boolean attribute dimension.

Notes

l The @ATTRIBUTEBVAL function works only with Boolean attribute dimensions. To return
values from numeric or date attribute dimensions, use this @ATTRIBUTEVAL function. To
return values from text attribute dimensions, use the @ATTRIBUTESVAL function. For more
information on types of attributes, see the Oracle Essbase Database Administrator's Guide.

l If no attribute is associated with the member being calculated or if the attribute associated
with the member is a text, numeric, or date attribute, @ATTRIBUTEBVAL returns
#MISSING.

l Only level 0 members of attribute dimensions can be associated as attributes of members of
a base dimension.

Example

This example is based on the Sample Basic database.

50 Calculation Functions

The Product dimension is associated with the Caffeinated Boolean attribute dimension, as shown
in the following example:

Product {Caffeinated}
 100
 100-10 {Caffeinated:True}
 100-20 {Caffeinated:True}
 100-30 {Caffeinated:False}
 200
 200-10 {Caffeinated:True}
 200-20 {Caffeinated:True}
 200-30 {Caffeinated:False}
 200-40 {Caffeinated:False}
Caffeinated Attribute {Type: Boolean}
 True
 False

For the current member of the base dimension Product, the function
@ATTRIBUTEBVAL(Caffeinated) returns the associated attribute value from the Boolean
attribute dimension, Caffeinated. The following table shows the value that would be returned.

Current Member Return Value

100-10 True

100-20 True

100-30 False

100 #MISSING

200-10 True

200-20 True

200-30 False

200-40 False

200 #MISSING

Product #MISSING

For any any member that does not have an associated attribute, #MISSING is returned. Only
one value is returned at a time.

See Also

l @ATTRIBUTEVAL

l @ATTRIBUTESVAL

@ATTRIBUTESVAL
Returns, for the current member being calculated, the associated attribute value from the
specified text attribute dimension.

Calculation Function Reference 51

Syntax

@ATTRIBUTESVAL (attDimName)

Parameter Description

attDimName The name of a text attribute dimension.

Notes

l The @ATTRIBUTESVAL function works only with text attribute dimensions. To return
values from numeric or date attribute dimensions, use the @ATTRIBUTEVAL function. To
return values from Boolean attribute dimensions, use the @ATTRIBUTEBVAL function. For
more information on types of attributes, see the Oracle Essbase Database Administrator's
Guide.

l If no attribute is associated with the member being calculated or if the attribute associated
with the member is a numeric, Boolean, or date attribute, @ATTRIBUTESVAL returns an
empty string.

l Only level 0 members of attribute dimensions can be associated as attributes of members of
a base dimension.

Example

This example is based on the Sample Basic database.

The Product dimension is associated with the Pkg Type text attribute dimension, as shown in
the following example:

Product {Pkg Type}
 100
 100-10 {Pkg Type:Can}
 100-20 {Pkg Type:Can}
 100-30 {Pkg Type:Bottle}
 200
 200-10 {Pkg Type:Bottle}
 200-20 {Pkg Type:Bottle}
 200-30 {Pkg Type:Bottle}
 200-40 {Pkg Type:Bottle}
Pkg Type Attribute {Type: Text}
 Bottle
 Can

For the current member of the base dimension, Product, the function

@ATTRIBUTESVAL("Pkg Type")

returns the associated attribute value from the text attribute dimension, Pkg Type. The following
table shows the value that would be returned:

Current Member Return Value

100-10 Can

100-20 Can

52 Calculation Functions

Current Member Return Value

100-30 Bottle

100 (empty string)

200-10 Bottle

200-20 Bottle

200-30 Bottle

200-40 Bottle

200 (empty string)

Product (empty string)

For any member that does not have an associated attribute, an empty string is returned.

See Also

l @ATTRIBUTEVAL

l @ATTRIBUTEBVAL

@ATTRIBUTEVAL
Returns, for the current member being calculated, the associated attribute value from the
specified numeric or date attribute dimension.

Syntax

@ATTRIBUTEVAL (attDimName)

Parameter Description

attDimName Single dimension specification for a numeric or date attribute dimension.

Notes

l The @ATTRIBUTEVAL function works only with numeric and date attribute dimensions.
To return values from text attribute dimensions, use the @ATTRIBUTESVAL function. To
return values from Boolean attribute dimensions, use the @ATTRIBUTEBVAL function.
For more information on types of attributes, see the Oracle Essbase Database Administrator's
Guide.

l Only level 0 members of attribute dimensions can be associated as attributes of members of
a base dimension.

l If there is no attribute associated with the member being calculated, or if the attribute
associated with the member is a text attribute, @ATTRIBUTEVAL returns #MISSING.

l When the @ATTRIBUTEVAL function is used with a date attribute dimension, Essbase
converts the date string to the number of seconds elapsed since midnight, January 1, 1970.

Calculation Function Reference 53

Example

Example 1

The following example is based on the Sample Basic database:

"Profit Per Ounce" = Profit/@ATTRIBUTEVAL(@NAME(Ounces));

In this formula, for the current member being calculated, @ATTRIBUTEVAL returns the
associated attribute from the Ounces numeric attribute dimension. For example, if the member
being calculated is Cola and if the Ounces attribute value associated with Cola is 12,
@ATTRIBUTEVAL returns 12. The value returned is then divided into Profit to yield Profit Per
Ounce.

Note: The @NAME function is required to process the string “Ounces” before passing it to the
@ATTRIBUTEVAL function.

This example produces the following report:

 Actual Year West
 Profit Profit Per Ounce
 ======== ================
Cola 4593 382.75

Example 2

The following MaxL execute calculation statement applies a formula to members that are
16 Oz products:

execute calculation
'Misc
 (IF
 (@ATTRIBUTEVAL(Ounces) == 16)
 Misc = .5;
 ENDIF;
);'
on sample.basic;

See Also

l @ATTRIBUTEBVAL

l @ATTRIBUTESVAL

l @NAME

l @TODATE

@AVG
Returns the average of all values in expList.

Syntax

@AVG (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, expList)

54 Calculation Functions

Parameter Description

SKIPNONE Includes all cells specified in the average operation regardless of their content.

SKIPMISSING Excludes all values that are #MISSING in the average operation.

SKIPZERO Excludes values of zero from the average calculation.

SKIPBOTH Excludes all values of zero or #MISSING from the average calculation.

expList Comma-delimited list of member names, variable names, functions, or numeric expressions. expList
provides a list of numeric values across which the average is calculated.

Example

The following example is based on the Sample Basic database. The calculation averages the values
for the individual states making up the western region and places the results in West:

FIX(Sales)
West=@AVG(SKIPNONE,California:Nevada);
ENDFIX

This example produces the following report:

 Sales Jan Actual
 Cola Diet Cola Caffeine Free Cola
 ==== ========= ==================
California 678 118 145
Oregon 160 140 150
Washington 130 190 #MI
Utah 130 190 170
Nevada 76 62 #MI
 West 234.8 140 155

See Also

l @AVGRANGE

@AVGRANGE
Returns the average value of the specified member (mbrName) across the specified range
(XrangeList).

Syntax

@AVGRANGE (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, mbrName [, XrangeList])

Parameter Description

SKIPNONE Includes all cells specified in the average operation regardless of their content.

SKIPMISSING Excludes all values that are #MISSING in the average operation.

SKIPZERO Excludes values of zero from the average calculation.

SKIPBOTH Excludes all values of zero or #MISSING from the average calculation.

Calculation Function Reference 55

Parameter Description

mbrName Any valid single member or member combination.

XrangeList Optional. A valid member name, a comma-delimited list of member names, cross dimension members,
or a member set function or range function (including @XRANGE) that returns a list of members from
the same dimension. If XrangeList is not specified, Essbase uses the level 0 members from the dimension
tagged as time.

Notes

The @AVGRANGE function accepts the @ATTRIBUTE member set function as a member
range.

Example

The following example is based on the Sample Basic database. The calculation script determines
the average sales of Colas in the West.

FIX(Sales)
West=@AVGRANGE(SKIPNONE,Sales,@CHILDREN(West));
ENDFIX

This example produces the following report:

 Sales Colas Actual
 Jan Feb Mar
 === === ===
California 941 899 927
Oregon 450 412 395
Washington 320 362 377
Utah 490 488 476
Nevada 138 137 138
 West 467.8 459.6 462.6

See Also

l @AVG

@BETWEEN
Returns a member set of all members whose name string value fall between, and are inclusive
of, the two specified string tokens. Member names are evaluated alphanumerically.

This function can be used on unique and duplicate-name outlines.

Syntax

@BETWEEN (firstToken , secondToken, topMbrInHierarchy)

Parameter Description

firstToken First token string value with which to compare to members in the outline, starting with the
member specified in topMbr.

secondToken Second token string value with which to compare to members in the outline, starting with the
member specified in topMbr.

56 Calculation Functions

Parameter Description

topMbrInHierarchy A fully qualified name of a member in the outline on which to base the member search. The
specified member and its aliases, and all of its descendants, are included in the search.

To search the entire outline, provide an empty string ("") for this parameter. For example,
@BETWEEN("200-10","200-20", "").

Example

The following example is based on the following duplicate-name outline:

Product
 100
 100–10
 100–10–10
 100–20
 100–30
 200
 200–10
 200–20
 200–30
 300
 300–10
 300–20
 Diet
 100–10
 100–10–11
 200–10
 300–10
 Bottle
 200–10
 300–20

@BETWEEN(“200-10”, “200-20”, “Product”)

Returns the members [200].[200-10], [200].[200-20], [Diet].[200-10], and [Bottle].
[200-10].

See Also

l @EQUAL

l @EXPAND

l @LIKE

l @MBRCOMPARE

l @MBRPARENT

l @NOTEQUAL

@CALCMODE
Enables the choice of an execution mode of a formula. @CALCMODE can control two types of
modes:

l Whether a formula is calculated in block calculation or cell calculation mode when
calculating formulas that contain certain functions (in particular the @ISMBR function)

Calculation Function Reference 57

l Whether a formula assigned to a sparse member is calculated in bottom-up or top-down
mode

Understanding Block Calculation and Cell Calculation Modes

Using block calculation mode, Essbase groups the cells within a block and simultaneously
calculates the cells in each group. Block calculation mode is fast, but you must carefully consider
data dependencies within the block to ensure that the resulting data is accurate.

Using cell calculation mode, Essbase calculates each cell sequentially, following the calculation
order, which is based on the order of the dense dimensions in the outline. For more information
on calculation order, see the Oracle Essbase Database Administrator's Guide.

Understanding Bottom-Up and Top-Down Calculation Modes

Essbase uses one of two methods to do a full calculation of an outline: bottom-up calculation
(the default) or top-down calculation. If the outline contains a complex member formula,
Essbase performs a top-down calculation for that member. When a formula is compiled, if the
formula is to be calculated top-down, Essbase logs a message in the application log file.

For a bottom-up calculation, Essbase determines which existing data blocks need to be calculated
before it calculates the database. Essbase then calculates only the blocks that need to be calculated
during the full database calculation. The calculation begins with the lowest existing block number
and works up through each subsequent block until the last existing block is reached.

In contrast, a top-down calculation calculates the formula on all potential datablocks with the
member. A top-down calculation may be less efficient than a bottom-up calculation because
more blocks may be calculated than is necessary. Although a top-down calculation is less efficient
than a bottom-up calculation, in some cases top-down calculations are necessary to ensure that
calculation results are correct. See Example 4.

For more information about bottom-up and top-down calculation modes, see the Oracle Essbase
Database Administrator's Guide.

Syntax

@CALCMODE (CELL|BLOCK|TOPDOWN|BOTTOMUP)

Parameter Description

CELL Turns on the cell calculation mode

BLOCK Turns on the block calculation mode

TOPDOWN Turns on the top-down calculation mode

BOTTOMUP Turns on the bottom-up calculation mode

Notes

Cell and block modes are mutually exclusive. Top-down and bottom-up modes are mutually
exclusive. Within one @CALCMODE specification, you can specify only one option. To specify
both types of modes, perform the instruction twice; for example:

58 Calculation Functions

@CALCMODE (CELL)
@CALCMODE (TOPDOWN)

Knowing When Essbase uses Cell or Block Mode and Top-down or Bottom-up Mode

l When Essbase compiles a formula, it prints a message in the application log file explaining
the mode of execution for the formula similar to the following message:

Formula on member Profit % will be executed in CELL and TOPDOWN mode.

When Essbase determines that the formula will be executed in block and bottom-up mode,
no message is written in the application log file.

l In calculation scripts, @CALCMODE statements must be placed within parentheses and
associated with a specific database member.

l By default, for a simple formula such as A = B + C, Essbase does a bottom-up calculation.
A is calculated only if B or C exists in the database. The dependency of the formula on B and
C is known before the calculation is started.

For a complex formula such as A = B->D + C->D, Essbase performs a top-down calculation
because every possible combination of A must be examined to see whether B->D or C->D
exists.

l By default, Essbase uses cell calculation mode for formulas containing:

m @ANCEST

m @CURRMBR

m @ISMBR on a dense member

m @MDANCESTVAL

m @MDPARENTVAL

m @MDSHIFT

m @NEXT

m @PARENT

m @PARENTVAL

m @PRIOR

m @SANCESTVAL

m @SPARENTVAL

m @SHIFT

For all other formulas, Essbase uses block calculation mode by default.

You can also set CALCMODE BLOCK or CALCMODE BOTTOMUP at the Essbase server,
application, or database level using the configuration setting CALCMODE.

Understanding Data Dependency Issues With Block Calculation Mode

Data dependency occurs if the accurate calculation of one or more members depends on another
member or other on members being calculated previously. Most data dependency issues with
block calculation mode occur when a formula contains IF ELSE or IF ELSEIF conditions.

Calculation Function Reference 59

However, data dependencies can occur in other formulas; for example, when using the @PRIOR
function.

Data Dependency Issues With IF ELSE and IF ELSEIF

When Essbase uses block calculation mode to calculate a formula that contains IF ELSE or IF
ELSEIF conditions, it separates the members being calculated into two groups. The first group
contains the members that satisfy the IF condition. The second group contains the members
that satisfy the ELSE or ELSEIF conditions.

Essbase simultaneously calculates the members in the first group before simultaneously
calculating the members in the second group. See Example 1.

If a formula contains data dependencies, ensure that the following conditions are met:

l Members on which the accurate calculation of other members depends are in the first group.

l Dependent members are in the second group.

If an IF condition has multiple ELSEIF conditions, Essbase evaluates each ELSEIF condition,
placing the members that satisfy the ELSEIF condition in the first group and the members that
satisfy subsequent ELSEIF or ELSE conditions in the second group. See Example 2.

Understanding Other Data Dependency Issues

Data dependencies can occur in formulas that do not contain IF ELSE conditions. See Example
3 for an example of data dependency in a formula containing the @PRIOR function.

You can also set CALCMODE BLOCK or CALCMODE BOTTOMUP at the Essbase server,
application, or database level using the configuration setting CALCMODE.

Example

Example 1, Example 2, and Example 3 illustrate use of the BLOCK and CELL options of the
@CALCMODE function. Example 4 illustrates use of the BOTTOMUP and TOPDOWN
options.

Example 1

Consider a database with two dense dimensions, Time and Accounts. The following formula is
placed on the Budget Sales member of the Accounts dimension. Because this is a formula
containing @ISMBR applied to a dense member (Budget Sales), by default Essbase uses cell
calculation mode. Use the @CALCMODE(BLOCK) function to specify block calculation mode
for this formula.

@CALCMODE(BLOCK);
IF(@ISMBR(Feb))
 "Budget Sales"=100;
ELSE
 "Budget Sales"=Feb+10;

According to the above formula, we expect that if the member being calculated is Feb, the Budget
Sales value is 100. If the member being calculated is not Feb, the Budget Sales value is 100+10
(the value for Feb + 10).

60 Calculation Functions

Assume that we load the values 10, 20, and 30 into the Budget Sales data block for Jan, Feb and
Mar, as follows:

(axis) Jan Feb Mar

Budget Sales 10 20 30

Using block calculation mode, Essbase calculates the members satisfying the IF condition first.
In this example, Feb is the only member that satisfies the IF condition. After calculating Feb,
Essbase calculates the members Jan and Mar. In this example, the results are as expected:

(axis) Jan Feb Mar

Budget Sales 110 100 110

Example 2

Now consider the same database as in Example 1, but we place the following formula on the
Budget Sales member of the Accounts dimension. As in Example 1, because this is a formula
containing @ISMBR applied to a dense dimension member (Budget Sales), by default Essbase
uses cell calculation mode. However, we use the @CALCMODE(BLOCK) function to specify
the block calculation mode for this formula.

@CALCMODE(BLOCK);
IF(@ISMBR(Mar))
 "Budget"->"Sales"=Feb+20;
ELSEIF(@ISMBR(Jan))
 "Budget"->"Sales"=Feb+10;
ELSE
 "Budget"->"Sales"=100;
ENDIF

According to this formula, we want the Jan and Mar Budget Sales values to be calculated based
on the Feb Budget Sales value, which is 100. We want to see the following results:

(axis) Jan Feb Mar

Budget Sales 110 100 120

Assume that we load the values 10, 20, and 30 into the Budget Sales data block for Jan, Feb, and
Mar, as follows:

(axis) Jan Feb Mar

Budget Sales 10 20 30

Using block calculation mode, Essbase calculates the members satisfying the IF condition first,
followed by the members satisfying the ELSEIF condition, followed by the members satisfying
the ELSE condition. In this example, Essbase calculates the members in the following order:
Mar, Jan, Feb. The results are not what we want, because the calculation of Jan and Mar is

Calculation Function Reference 61

dependent on the calculation of Feb and Feb is calculated after Jan and Mar. The inaccurate
results are as follows:

(axis) Jan Feb Mar

Budget Sales 30 100 40

To achieve the desired results, use the @CALCMODE(CELL) function.

Example 3

The following formula calculates the members Opening Inventory and Ending Inventory using
the @PRIOR function. There is a data dependency between Opening Inventory and Ending
Inventory. The formula is placed on the Opening Inventory member. The example shows the
results for January, February, and March.

@CALCMODE(BLOCK)
"Opening Inventory"=@PRIOR("Ending Inventory")+10;
"Ending Inventory"="Opening Inventory";

Before the calculation, there is no data for these members (the data is #MISSING or #MI):

(axis) Jan Feb Mar

Opening Inventory #MI #MI #MI

Ending Inventory #MI #MI #MI

Using block calculation mode, Essbase calculates the members simultaneously, taking the
previous month's Ending Inventory #MISSING value as 0 for all member combinations and
adding 10. This is not the desired result.

(axis) Jan Feb Mar

Opening Inventory 10 10 10

Ending Inventory 10 10 10

The following formula on the Opening Inventory member causes Essbase to use cell calculation
mode (the default for formulas containing the @PRIOR function):

"Opening Inventory"=@PRIOR("Ending Inventory")+10;

"Ending Inventory"="Opening Inventory";

The results are as follows:

(axis) Jan Feb Mar

Opening Inventory 10 20 30

Ending Inventory 10 20 30

62 Calculation Functions

Example 4

Depending on the formula and the structure of the data, calculating a formula top-down versus
bottom-up may involve two issues: performance (reflecting the number of calculations that must
be made) and accuracy. This example compares calculation results to illustrate both of these
issues.

Before the calculation, assume that Actual and Budget are members of a dense dimension and
they contain the following data:

(axis) Cola New York Sales

(axis) Actual Budget

Jan #MISSING 50

Feb 200 #MISSING

Mar 400 450

The following formula is calculated bottom-up.

Budget(
 @CALCMODE(BOTTOMUP);
 Budget=Actual*1.10;
)

In a bottom-up calculation, Essbase executes formulas only from existing data blocks. Therefore,
only two values—Jan and Mar—are calculated, based on existing combinations of Budget.

(axis) Cola New York Sales (Comment)

(axis) Actual Budget

Jan #MISSING #MISSING (#MISSING*1.10)

Feb 200 #MISSING (No calculation is performed)

Mar 400 440 (400*1.10)

The following formula is calculated top-down.

Budget(
 @CALCMODE(TOPDOWN);
 Budget=Actual*1.10;
)

In a top-down calculation, Essbase materializes every potential data block that is relevant to the
calculation, and executes formulas in those blocks. Therefore, all three values—Jan, Feb, and
Mar—are calculated, based on all potential combinations of Budget. The results are:

Calculation Function Reference 63

(axis) Cola New York Sales (Comment)

(axis) Actual Budget

Jan #MISSING #MISSING (#MISSING*1.10)

Feb 200 220 (200*1.10)

Mar 400 440 (400*1.10)

See Also

l @WITHATTR

l “CALCMODE” on page 402

@CHILDREN
Returns all children of the specified member, excluding the specified member. This member set
function can be used as a parameter of another function, where that parameter is a list of
members.

Syntax

@CHILDREN (mbrName)

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

Notes

Essbase sorts the child members in ascending order. Using Sample Basic as an example, if you
specify 100 for mbrName, Essbase returns 100-10, 100-20, 100-30 (in that order). This order is
important to consider when you use the @CHILDREN member set function with certain
forecasting and statistical functions.

Example

In the Sample Basic database:

@CHILDREN(Market)

returns East, West, South, and Central (in that order).

@CHILDREN(Margin)

returns Sales and COGS (in that order).

See Also

l @ICHILDREN

l @ISCHILD

l @ANCESTORS

l @DESCENDANTS

64 Calculation Functions

l @SIBLINGS

@COMPOUND
Compiles the proceeds of a compound interest calculation. The calculation is based on the
balances of the specified member at the specified rate across the specified range.

Syntax

@COMPOUND (balanceMbr, rateMbrConst [, rangeList])

Parameter Description

balanceMbr Single member specification representing the beginning balance across a range of periods. The input
can be either one deposit or a series of deposits. If balanceMbr is a constant, then Essbase assumes
balanceMbr to be a single deposit in the first member of rangeList. This is equivalent to entering the
constant value in the first member in the rangeList followed by zeros. The function keeps track of each
deposit separately, but returns a composite value. If balanceMbr is a member, or a range, then it is
assumed to be a series of deposits.

rateMbrConst Single member specification, variable name, or numeric expression in decimal form. This represents
the interest rate per time period specified in the rangeList. If your interest is compounded monthly, this
value would be the annual interest rate divided by 12.

rangeList Optional. A valid member name, a comma-delimited list of member names, member set functions, and
range functions from the dimension tagged as Time. If rangeList is not specified, Essbase uses the level
0 members from the dimension tagged as Time. rangeList represents the range over which the interest
is compounded. The last value in the range is the total compounded interest for that range.

Notes

Financial functions never return a value; rather, they calculate a series of values internally based
on the range specified.

Example

The following example determines the compound interest of a series of deposits, based on a
credit rate of 0.0525, across a series of fiscal years:

"Compound Interest"=@COMPOUND(Deposit,"Credit Rate",FY1998:FY2001,FY2002);

This example produces the following report:

 FY1998 FY1999 FY2000 FY2001 FY2002
 ====== ====== ====== ====== ======
Credit Rate 0.0525 0.0525 0.0525 0.0525 0.0525
Compound Interest 0 105 110.5125 273.8144 288.1897
Deposit 0 2,000 0 3,000 0

See Also

l @INTEREST

Calculation Function Reference 65

@COMPOUNDGROWTH
Calculates a series of values that represents a compound growth of values (the first nonzero value
in the specified member across the specified range of members) across time.

The growth factor is calculated by multiplying the growth rate in the current time period by the
previous period's result, yielding a compounded value. You can change the growth rate from
period to period by placing a nonzero value in the current period's rateMbrConst cell.

Syntax

@COMPOUNDGROWTH (principalMbr, rateMbrConst [, rangeList])

Parameter Description

principalMbr Member specification representing the initial value to be compounded. The input line must be a single
deposit.

rateMbrConst Single member specification, variable name, or expression which provides a constant value. This value
can change across rangeList, making the new value be the new compound rate. If the value in the current
period is zero, the compound rate is equal to zero, and the principal does not change.

rangeList Optional. A valid member name, a comma-delimited list of member names, member set functions, and
range functions from the dimension tagged as Time. If rangeList is not specified, Essbase uses the level
0 members from the dimension tagged as Time.

Notes

Financial functions never return a value; rather, they calculate a series of values internally based
on the range specified.

Example

The following example determines the compound growth of Principal Amount based on Growth
Rate across a series of fiscal years.

"Compound Growth"=@COMPOUNDGROWTH("Principal Amount",
 "Growth Rate",FY1998:FY2003);

This example produces the following report:

 FY1998 FY1999 FY2000 FY2001 FY2002 FY2003
 ====== ====== ====== ====== ====== ======
Principal Amount 2,000 2,000 2,000 3,000 2,500 -500
Growth Rate 0.0525 0 0 0 0 0
Compound Growth 2,105 2,105 2,105 2,105 2,105 2,105

See Also

l @GROWTH

@CONCATENATE
Returns one character string that is the result of appending one character string (String2) to the
end of another character string (String1).

66 Calculation Functions

The @CONCATENATE function can be nested to concatenate more than two strings (See
Example 2 (@CONCATENATE)).

Syntax

@CONCATENATE (String1, String2)

Parameter Description

String1 A string or a function that returns a string

String2 A string or a function that returns a string

Notes

l To use a member name as a character string, use @NAME with the member name.

l To use the resulting character string as a member name, use @MEMBER with the
@CONCATENATE statement; for example,

@MEMBER(@CONCATENATE("2000_", QTR1));

Example

The following examples are based on the Sample Basic database:

Example 1 (@CONCATENATE)

The following function statement puts the string Item in front of the name of the member
currently being processed in the Product dimension; for example, if the current member being
calculated is 100-10, the result is Item100-10:

@CONCATENATE("Item",@NAME(@CURRMBR(Product)))

Example 2 (@CONCATENATE)

To concatenate more than two strings, you can nest multiple instances of the @CONCATENATE
function. The following function statement returns string values starting with the current
member of the Year dimension, followed by an underscore, followed by the current member of
the Measures dimension; for example, if the current members being calculated are Qtr1 and
Sales, the result is Qtr1_Sales:

@CONCATENATE(@NAME(@CURRMBR(Year)),@CONCATENATE("_",@NAME(@CURRMBR(Measures))))

See Also

l @SUBSTRING

l @MEMBER

l @NAME

@CORRELATION
Returns the correlation coefficient between two parallel data sets (expList1 and expList2). The
correlation coefficient determines the relationship between two data sets.

Calculation Function Reference 67

Syntax

@CORRELATION (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, expList1, expList2)

Parameter Description

SKIPNONE Includes all cells specified in expList1 and expList2, regardless of their content, during calculation of
the correlation coefficient.

SKIPMISSING Excludes all #MISSING values from expList1 and expList2 during calculation of the correlation
coefficient.

SKIPZERO Excludes all zero (0) values from expList1 and expList2 during calculation of the correlation coefficient.

SKIPBOTH Excludes all zero (0) values and #MISSING values from expList1 and expList2 during calculation of
the correlation coefficient.

expList1 The first list of member specifications, variable names, functions, or other numeric expressions.

expList2 The second list of member specifications, variable names, functions, or other numeric expressions.

Notes

l For complete information about using the @RANGE function, see @RANGE.

l The expList1 and expList2 parameters must have the same number of data points. If
expList1 and expList2 have different numbers of data points, @CORRELATION returns
#MISSING.

l The @CORRELATION function returns #MISSING if expList1 and expList2 (1) are empty,
(2) contain only #MISSING values, or (3) have a standard deviation of 0 (all values are
constant).

l The @CORRELATION function treats #MISSING values as zero (0) values, unless
SKIPMISSING or SKIPBOTH is specified. If a value in expList1 is #MISSING, and
SKIPMISSING is specified, the value's corresponding value in expList2 is treated as
#MISSING. (That is, both values are deleted before calculation.) SKIPZERO and SKIPBOTH
work similarly.

l The @CORRELATION function returns values from -1 to 1.

l If you use a member set function to generate a member list for this function (for example,
@SIBLINGS), to ensure correct results, consider the order in which Essbase sorts the
generated member list. For more information, see the Oracle Essbase Technical Reference
topic for the member set function you are using.

l The equation for the correlation coefficient is:

68 Calculation Functions

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Sales Correl. The calculation script calculates the
correlation coefficient for a set of members (Sales for the children of Qtr1 and Qtr2). Because
the calculation script fixes on Jun, the results are placed in Sales Correl->Jun.

This example uses the @RANGE function to generate expList1 and expList2:

FIX(June)
"Sales Correl"=@CORRELATION(SKIPNONE,
@RANGE(Sales,@CHILDREN(Qtr1)),@RANGE(Sales,@CHILDREN(Qtr2)));
ENDFIX

This example produces the following report:

 Colas Actual New York
 Sales Sales Correl
 ===== ============
Jan 678 #MI
Feb 645 #MI
Mar 675 #MI
Apr 712 #MI
May 756 #MI
Jun 890 0.200368468

See Also

l @RANGE

@COUNT
Returns the number of data values in the specified data set (expList).

Calculation Function Reference 69

Syntax

@COUNT (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, expList)

Parameter Description

SKIPNONE Includes all cells specified in expList, regardless of their content, during calculation of the count.

SKIPMISSING Excludes all #MISSING values from expList during calculation of the count.

SKIPZERO Excludes all zero (0) values from expList during calculation of the count.

SKIPBOTH Excludes all zero (0) values and #MISSING values from expList during calculation of the count.

expList Comma-delimited list of member specifications, variable names, functions, or numeric expressions.

Notes

The @COUNT function always returns an integer greater than or equal to 0.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Prod Count. This example calculates the count of
all products for which a data value exists and uses the @RANGE function to generate expList:

FIX(Product)
"Prod Count" = @COUNT(SKIPMISSING,@RANGE(Sales,@CHILDREN(Product)));
ENDFIX

This example produces the following report. Since SKIPMISSING is specified in the calculation
script, the #MI values for Diet Drinks are skipped during the product count.

 Jan New York
 Actual Budget
 ====== ======
Sales Colas 678 640
 Root Beer 551 530
 Cream Soda 663 510
 Fruit Soda 587 620
 Diet Drinks #MI #MI
 Product 2479 2300

Prod Count Product 4 4

See Also

l @RANGE

@CURGEN
Returns the generation number of the current member combination for the specified dimension.
This number represents the number of members separating the current member from the top-
most member of the dimension.

70 Calculation Functions

Syntax

@CURGEN (dimName)

Parameter Description

dimName Single dimension name specification. dimName must be the name of the top-most member of the dimension.
It cannot be another member name from within the dimension.

Notes

l If the current member of the specified dimension is an implied share member, the member
generation returned is the same generation as the stored member. For example, in Sample
Basic, Inventory, a member of the Measures dimension, is an implied share member:

Inventory
 Opening Inventory (+)
 Additions (~)
 Ending Inventory (~)

The generation value of Inventory is the same as the stored member under it, Opening
Inventory. For this example, Opening Inventory is at generation 3. When Inventory is the
current member @CURGEN(Measures) returns generation 3.

l For further discussion on levels, please refer to the Oracle Essbase Database Administrator's
Guide.

Example

Given the following database structure:

 Year
 Qtr1
 Jan, Feb, Mar
 Qtr2
 Apr, May, Jun
 Qtr3
 Jul, Aug, Sep
 Qtr4
 Oct, Nov, Dec

@CURGEN provides the following results for the members shown:

Formula Current Member Value
Position = @CURGEN(Year); Year 1
Position = @CURGEN(Year); Qtr2 2
Position = @CURGEN(Year); Oct 3

See Also

l @CURLEV

l @GEN

Calculation Function Reference 71

@CURLEV
Returns the level number of the current member combination for the specified dimension. This
number represents the number of members that separates the current member from its bottom-
most descendant.

Syntax

@CURLEV (dimName)

Parameter Description

dimName Single dimension name specification. dimName must be the name of the top-most member of the dimension.
It cannot be another member name from within the dimension.

Notes

l If the current member of the specified dimension is an implied share member, the member
level returned is the same level as the stored member. For example, in Sample Basic,
Inventory, a member of the Measures dimension, is an implied share member:

Inventory
 Opening Inventory (+)
 Additions (~)
 Ending Inventory (~)

The value of Inventory results only from the value of Opening Inventory.

When Inventory is the current member @CURLEV (Measures) returns level 0.

l For further discussion on levels, please refer to the Oracle Essbase Database Administrator's
Guide.

Example

Given the following database structure:

 Year
 Qtr1
 Jan, Feb, Mar
 Qtr2
 Apr, May, Jun
 Qtr3
 Jul, Aug, Sep
 Qtr4
 Oct, Nov, Dec

@CURLEV provides the following results for the members shown:

Formula Current Member Value
Position = @CURLEV(Year); Year 2
Position = @CURLEV(Year); Qtr3 1
Position = @CURLEV(Year); Aug 0

See Also

l @CURGEN

l @LEV

72 Calculation Functions

@CURRMBR
Returns the member that is currently being calculated in the specified dimension (dimName).
This function can be used as a parameter of another function, where that parameter is a single
member or a list of members.

Syntax

@CURRMBR (dimName)

Parameter Description

dimName A single dimension name.

Notes

l You cannot use the @CURRMBR function in a FIX statement.

l You cannot use the @CURRMBR function on the left-hand side of a formula.

l The time required for retrieval and calculation may be significantly longer if this function
is in a formula attached to a member tagged as Dynamic Calc or Dynamic Calc and Store.

Example

In the Sample Basic database,

 @CURRMBR(Year);

returns Jan if the current member of Year being calculated is Jan.

As a more complex example, consider the following formula in the context of the Sample Basic
database. Assume that the Measures dimension contains an additional member, Average Sales.

 "Average Sales"
 (IF(@ISLEV(Product,0))
 Sales;
 ELSE
 @AVGRANGE(SKIPNONE,Sales,@CHILDREN(@CURRMBR(Product)));
 ENDIF;);

This formula populates each upper-level member of the Product dimension (100, 200) at
Average Sales. To calculate Average Sales, the Sales values for the level 0 members of Product
are averaged and placed in their respective parent members. The Average Sales values for the
level 0 Product members are the same as the Sales values, as specified by the IF statement in the
calculation script.

This example produces the following report:

 Jan New York Actual
 Sales Average Sales
 ===== =============
100-10 5 5
100-20 10 10
100-30 15 15
 100 30 10
200-10 20 20

Calculation Function Reference 73

200-20 25 25
200-30 30 30
200-40 35 35
 200 110 27.5
 300 #MI #MI
 400 #MI #MI
 Diet 35 11.67
Product 140 35

See Also

l @CURRMBRRANGE

@CURRMBRRANGE
Generates a member list that is based on the relative position of the current member being
calculated.

Syntax

@CURRMBRRANGE (dimName, {GEN|LEV}, genLevNum, [startOffset], [endOffset])

Parameter Description

dimName Name of the dimension for which you want to return the range list.

GEN|LEV Defines whether the range list to be returned is based on a generation or a level within the dimension.

genLevNum Integer value that defines the absolute generation or level number of the range list to be returned.

startOffset Defines the first member in the range to be returned.

l A null value returns the first member of the specified genLevNum.

l An integer value returns the member name relative to the current member being calculated.

l A negative value specifies a member prior to the current member being calculated in the dimension.

l A value of 0 returns the name of the member currently being calculated.

l A positive value specifies a member after the current member being calculated in the dimension.

endOffset Defines the last member in the range to be returned.

l A null value returns the last member of the specified genLevNum.

l An integer value returns the member name relative to the current member being calculated.

l A negative value specifies a member prior to the current member being calculated in the dimension.

l A value of 0 returns the name of the member currently being calculated.

l A positive value specifies a member after the current member being calculated in the dimension.

Notes

l You cannot use the @CURRMBRRANGE function in a FIX statement.

l The first three parameters of this function (dimName,{GEN|LEV},genLevNum) provide a
member range list. The startOffset and endOffset parameters create a subset of this list. For
example, consider the following syntax in the context of the Sample Basic database:

@CURRMBRRANGE(Year,LEV,0,-1,1)

74 Calculation Functions

In this example, the full range list contains the level 0 members of the Year dimension (Jan,
Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec). If the current member being
calculated in the Year dimension is Jan, the startOffset and endOffset parameters reduce this
list to (Jan, Feb). Since there is no member prior to Jan in the full range list, only two members
are returned: Jan itself and the member after it, Feb. If the current member being calculated
is Feb, the subset list would include three members: Jan, Feb, Mar.

l Currently, this function can be used only within range and financial functions, such as
@AVGRANGE, @MAXRANGE, @COMPOUND, and @SHIFT.

Example

Example 1

Average Inventory is calculated by summing opening inventories from the first month of the
year to the current period plus one period, and dividing the result by the number of periods to
date plus one period. This calculation is accomplished by defining the @CURRMBRRANGE
function within the rangeList parameter of the @AVGRANGE function.

"Average Inventory" = @AVGRANGE(SKIPNONE,"Opening Inventory",
@CURRMBRRANGE(Year, LEV, 0, , 1));

This example produces the following result:

 Jan Feb Mar Apr Nov Dec
Opening Inventory 100 110 120 130 . . . 200 210
Average Inventory 105 110 115 120155 155

Since a null value is specified for startOffset, the average operations always begin at the first
member of the range list, Jan. The endOffset parameter, 1, specifies that the member after the
current member being calculated is included in each average operation. So, for Average
Inventory->Jan, the values for Jan and Feb are averaged; for <Average Inventory->Feb, the
values for Jan, Feb, and Mar are averaged; and so on. The values for Nov and Dec are the same
since there is no member after Dec in the range list.

Example 2

Inventory Turnover is calculated by summing period-to-date Sales and dividing the result by
the Average Inventory.

Turnover = @SUMRANGE(Sales,@CURRMBRRANGE(Year, LEV, 0, , 0))/"Average Inventory"

which produces the following result:

 Jan Feb Mar Apr
Average Inventory 110 116.7 122.5 126
Sales 40 44 48 52
Turnover 0.36 0.72 1.08 1.46

Example 3

Consider the following formula:

@CURRMBRRANGE(Year,LEV,@CURLEV("Year"),-1,1)

The full range list contains the members of the Year dimension at a particular level. The level is
determined by taking the level of the current member being calculated. For example, if the
current member being calculated is Jan, the full range list contains all level 0 members of Year

Calculation Function Reference 75

dimension (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec). The startOffset and
endOffset parameters reduce this list to (Jan, Feb). As there is no member prior to Jan in the full
range list, only two members are returned: Jan and Feb. If the current member being calculated
is Feb, the subset list includes three members: Jan, Feb, Mar.

Note: The usage demonstrated by this example would require RTDEPCALCOPTIMIZE to be
set to FALSE.

See Also

l RTDEPCALCOPTIMIZE

l @CURGEN

l @CURLEV

@DATEDIFF
Returns the difference (number) between two input dates in terms of the specified date-parts,
following a standard Gregorian calendar.

Syntax

@DATEDIFF (date1, date2, date_part)

Parameter Description

date1 A number representing the input date between January 1, 1970 and Dec 31, 2037. The number is the number
of seconds elapsed since midnight, January 1, 1970. To retrieve this number, use any of the following
functions: @TODAY, @TODATEEX, @DATEROLL.

Date-time attribute properties of a member can also be used to retrieve this number. For example,
@AttributeVal("Intro Date"); returns the product introduction date for the current product
in context.

date2 A second input date. See date1.

date_part Defined using the following rule:

date_part_ex ::= DP_YEAR | DP_QUARTER |DP_MONTH | DP_WEEK | DP_DAY |
DP_DAYOFYEAR | DP_WEEKDAY

Defined time components as per the standard calendar:

l DP_YEAR - Year of the input date.

l DP_QUARTER - Quarter of the input date.

l DP_MONTH - Month of the input date.

l DP_WEEK - Week of the input date.

l DP_DAY - Day of the input date.

Notes

Based on the input date_part, the difference between the two input dates is counted in terms of
time component specified.

76 Calculation Functions

Example: For input dates June 14, 2005 and Oct 10, 2006,

l DP_YEAR returns the difference in the year component. (2006 - 2005 = 1)

l DP_QUARTER returns the distance between the quarters capturing the input dates.
(Quarter 4, 2006 - Quarter 2, 2005 = 6)

l DP_MONTH returns the distance between the months capturing the input dates. (Oct 2006
- June 2005 = 16)

l DP_WEEK returns the distance between the weeks capturing the input dates. Each Standard
calendar week is defined to start on Sunday and it spans 7 days. (Oct 10, 2006 - June 14,
2005 = 69)

l DP_DAY returns the difference between the input dates in terms of days. (483 days)

Example

Assume the outline has two date type members, MyDate1 and MyDate2.

Profit=@DateDiff(MyDate1, MyDate2, DP_WEEK);
Profit=@DatePart(MyDate1, DP_YEAR);
MyDate2=@DateRoll(MyDate1, DP_MONTH), 10);

See Also

l @DATEPART

l @DATEROLL

l @FORMATDATE

l @TODATEEX

l @TODAY

@DATEPART
This function returns the Year/Quarter/Month/Week/Day/DayOfYear/Weekday as a number,
given the input date and a date part, following the standard Gregorian calendar.

Syntax

@DATEPART (date, date_part_ex)

Parameter Description

date A number representing the input date between January 1, 1970 and Dec 31, 2037. The number is the
number of seconds elapsed since midnight, January 1, 1970. To retrieve this number, use any of the
following functions: @TODAY, @TODATEEX, @DATEROLL.

Date-time attribute properties of a member can also be used to retrieve this number. For example,
@AttributeVal("Intro Date"); returns the product introduction date for the current product
in context.

Calculation Function Reference 77

Parameter Description

date_part_ex Defined using the following rule:

date_part_ex ::= DP_YEAR | DP_QUARTER |DP_MONTH | DP_WEEK | DP_DAY |
DP_DAYOFYEAR | DP_WEEKDAY

Defined time components as per the standard calendar:

l DP_YEAR - Year of the input date.

l DP_QUARTER - Quarter of the input date.

l DP_MONTH - Month of the input date.

l DP_WEEK - Week of the input date.

l DP_DAY - Day of the input date.

Notes

Based on the requested time component, the output is as follows:

l DP_YEAR returns the year of the input date in yyyy format.

l DP_QUARTER returns the quarter of the year (1 to 4) for the input date.

l DP_MONTH returns the month of the year (1 to 12) for the input date.

l DP_WEEK returns the week of the year for the input date (1 to 54).

l DP_WEEKDAY returns the week day of the input date. (1 - Sunday, 2 - Monday, ... 6 -
Saturday).

l DP_DAYOFYEAR returns the day of the year numbering (1 to 366).

l DP_DAY returns the day of the month (1 to 31).

Example: For June 14, 2005,

DP_YEAR returns 2005 (the year member, in yyyy format).

DP_QUARTER returns 2 (Second quarter of the year)

DP_MONTH returns 6 (Sixth month of the year)

DP_WEEK returns 24 (24th week of the year)

DP_WEEKDAY returns 4 (for Wednesday. Sunday = 1)

DP_DAYOFYEAR returns 165 (165th day of the year)

DP_DAY returns 14 (14th day of the month)

Example

Assume the outline has two date type members, MyDate1 and MyDate2.

Profit=@DateDiff(MyDate1, MyDate2, DP_WEEK);
Profit=@DatePart(MyDate1, DP_YEAR);
MyDate2=@DateRoll(MyDate1, DP_MONTH), 10);

78 Calculation Functions

See Also

l @DATEDIFF

l @DATEROLL

l @FORMATDATE

l @TODATEEX

l @TODAY

@DATEROLL
To the given date, rolls (adds or subtracts) a number of specific time intervals, returning another
date. This function assumes a standard Gregorian calendar.

Syntax

@DATEROLL (date, date_part, number)

Parameter Description

date A number representing the date between January 1, 1970 and Dec 31, 2037. The number is the number of
seconds elapsed since midnight, January 1, 1970. To retrieve this number, use either of the following
functions: @TODAY, @TODATEEX.

Date-time attribute properties of a member can also be used to retrieve this number. For example,
@AttributeVal("Intro Date"); returns the product introduction date for the current product
in context.

date_part Defined using the following rule:

date_part_ex ::= DP_YEAR | DP_QUARTER |DP_MONTH | DP_WEEK | DP_DAY |
DP_DAYOFYEAR | DP_WEEKDAY

Defined time components as per the standard calendar:

l DP_YEAR - Year of the input date.

l DP_QUARTER - Quarter of the input date.

l DP_MONTH - Month of the input date.

l DP_WEEK - Week of the input date.

l DP_DAY - Day of the input date.

number Number of time intervals to add or subtract.

Notes

Based on input date_part and dateroll number, the date is moved forward or backward in time.

Example: For input date June 14, 2005 and input dateroll number 5,

l DP_YEAR adds 5 years to the input date. (June 14, 2010)

l DP_QUARTER adds 5 quarters to the input date. (June 14, 2005 + 5 quarters = June 14,
2005 + 15 months = Sept 14, 2006)

l DP_MONTH adds 5 months to the input date (June 14, 2005 + 5 months = Nov 14, 2005)

l DP_WEEK adds 5 weeks to the input date (June 14, 2005 + 5 weeks = June 14, 2005 + 35
days = July 19, 2005)

Calculation Function Reference 79

l DP_DAY adds 5 days to the input date. (June 14, 2005 + 5 days = June 19, 2005)

Example

Assume the outline has two date type members, MyDate1 and MyDate2.

Profit=@DateDiff(MyDate1, MyDate2, DP_WEEK);
Profit=@DatePart(MyDate1, DP_YEAR);
MyDate2=@DateRoll(MyDate1, DP_MONTH, 10);

See Also

l @DATEDIFF

l @DATEPART

l @FORMATDATE

l @TODATEEX

l @TODAY

@DECLINE
Calculates the depreciation of an asset for the specified period using the declining balance
method. The factor by which the declining balance depreciates the assets is specified using
factorMbrConst. For example, to calculate a double declining balance, set factorMbrConst to 2.

Syntax

@DECLINE (costMbr, salvageMbrConst, lifeMbrConst, factorMbrConst [, rangeList])

Parameter Description

costMbr Single member specification representing the starting values of the assets. More than one asset can
be input and depreciated across the specified range. The function calculates each asset separately.

salvageMbrConst Single member specification, variable name, or numeric expression that provides a constant value.
This value represents the value of the asset at the end of the depreciation.

lifeMbrConst Single member specification, variable name, or numeric expression that provides a constant value.
The value represents the number of periods over which the asset is depreciated.

factorMbrConst Single member specification, variable name, or numeric expression that provides a constant value.
The value represents the factor by which the asset is depreciated.

rangeList Optional. A valid member name, a comma-delimited list of member names, member set functions,
and range functions from the dimension tagged as Time. If rangeList is not specified, Essbase uses
the level 0 members from the dimension tagged as Time. The range represents the periods over which
the function is calculated. More than one asset can be depreciated.

Notes

Financial functions never return a value; rather, they calculate a series of values internally based
on the range specified.

Example

The following example calculates the depreciation of Asset for the specified series of fiscal years.

80 Calculation Functions

"Decline Dep" = @DECLINE(Asset,Residual,Life,2,FY2000:FY2001,FY2002,FY2003);

This example produces the following report:

 FY2000 FY2001 FY2002 FY2003
 ====== ====== ====== ======
Asset 9,000 0 0 0
Residual 750 0 0 0
Life 5 0 0 0
Decline Dep 3,600 2,160 1,296 778

See Also

l @SLN

l @GROWTH

@DESCENDANTS
Returns all descendants of the specified member, or those down to the specified generation or
level. This function excludes the specified member.

Syntax

@DESCENDANTS (mbrName [, genLevNum| genLevName])

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

genLevNum Optional. An integer value that defines the absolute generation or level number down to which to select
the members. A positive integer defines a generation number. A value of 0 or a negative integer defines
a level number.

genLevName Optional. Level name or generation name down to which to select the members.

Notes

l You can use this member set function as a parameter of another function, where that
parameter is a list of members.

l Essbase sorts the generated list of members starting with the nearest descendant of the
member, followed by the next nearest descendant of the member, and so on. In the
Sample.Basic database, if you specify @DESCENDANTS(100), Essbase returns 100-10, 100-20,
100-30 (in that order). This order is important to consider when you use the
@DESCENDANTS member set function with certain forecasting and statistical functions.

l You can use @IDESCENDANTS, to include the specified member.

l You can use @RDESCENDANTS and @IRDESCENDANTS to include descendants of shared
members.

Example

In the Sample Basic database:

@DESCENDANTS(East)

Calculation Function Reference 81

returns New York, Massachusetts, Florida, Connecticut, and New Hampshire (in that order).

@DESCENDANTS(Profit)

returns Margin, Sales, COGS, Total Expenses, Marketing, Payroll, and Misc (in that order).

@DESCENDANTS(Market,2)

returns East, West, South, and Central (in that order).

@DESCENDANTS(Diet,0)

returns 100-20, 200-20, and 300-30 (in that order).

See Also

l @IDESCENDANTS

l @LDESCENDANTS

l @ILDESCENDANTS

l @RDESCENDANTS

l @IRDESCENDANTS

l @ISDESC

l @ANCESTORS

l @CHILDREN

l @SIBLINGS

@DISCOUNT
Calculates a value discounted by the specified rate, from the first period of the range to the period
in which the amount to discount is found. The answer is returned in the same period. More than
one value can be discounted simultaneously in this manner.

Syntax

@DISCOUNT (cashMbr, rateMbrConst [, rangeList])

Parameter Description

cashMbr Member specification representing the value you want to discount from the last period in rangeList to
the current period.

rateMbrConst Member specification, variable name, or numeric expression which provides a constant value. The value
represents the rate per period which cashMbr is discounted. It is a decimal value, not a percent.

rangeList Optional. A valid member name, a comma-delimited list of member names, member set functions, and
range functions. If rangeList is not specified, Essbase uses the level 0 members from the dimension tagged
as Time.

Notes

Financial functions never return a value; rather, they calculate a series of values internally based
on the range specified.

82 Calculation Functions

Example

The following example discounts the values in Cash by the rates in Credit Rate and places the
results in Discount Amount for each fiscal year.

"Discount Amount" = @DISCOUNT(Cash,"Credit Rate",FY1999:FY2002,FY2003);

This example produces the following report:

 FY1999 FY2000 FY2001 FY2002 FY2003
 ====== ====== ====== ====== ======
Cash 0.00 0.00 1000.00 1000.00 0.00
Credit Rate 0.00 0.00 0.05 0.05 0.00
Discount Amount #MI #MI 863.84 822.70 #MI

@ENUMVALUE
Returns the internal numeric value for a text value in a text list.

Syntax

@ENUMVALUE (enum_string)

Parameter Description

enum_string String of the format text_list_name.char_string_literal, where:

l text_list_name is the name of a text list, or of a member that is associated with a text list.

l char_string_literal is one of the text values represented in the text list.

Example

The following example is based on a variation of ASOSamp.Sample. Assume there is a text list
named CustSatRatings, in which text values are mapped to numeric IDs as follows: Good=1,
Average=2, Poor=3.

@ENUMVALUE(CustSatRatings, "Good");

returns 1.

@EQUAL
Returns a member set of member names that match the specified token name.

This function can be used on unique and duplicate-name outlines.

Syntax

@EQUAL (tokenName, topMbrinHierarchy)

Parameter Description

tokenName Token string value, representing the name of a member, with which to compare to members in
the outline, starting with member specified in topMbrinHierarchy. The specified token
name must not be qualified for duplicate members.

Calculation Function Reference 83

Parameter Description

topMbrinHierarchy A fully qualified name of a member in the outline on which to base the member search. The
specified member and its aliases, and all of its descendants, are included in the search.

To search the entire outline, provide an empty string ("") for this parameter. For example,
@EQUAL("100-10", "").

Example

The following examples are based on the following duplicate-name outline:

Product
 100
 100–10
 100–10–10
 100–20
 100–30
 200
 200–10
 200–20
 200–30
 300
 300–10
 300–20
 Diet
 100–10
 100–10–11
 200–10
 300–10
 Bottle
 200–10
 300–20

@EQUAL("100-10", "Product")

Returns the members [Diet].[100-10] and [100].[100-10].

@EQUAL("100-10", "Diet")

Returns the member [Diet].[100-10].

See Also

l @BETWEEN

l @EXPAND

l @LIKE

l @MBRCOMPARE

l @MBRPARENT

l @NOTEQUAL

@EXP
Returns the exponent of a specified expression; that is, the value of e (the base of natural
logarithms) raised to the power of the specified expression.

84 Calculation Functions

Syntax

@EXP (expression)

Parameter Description

expression Single member specification, variable name, function, or other numeric expression. If less than -700 or
greater than 700, Essbase returns #MISSING.

Example

The following example is based on a variation of Sample Basic:

Index = @EXP("Variance %"/100);

This example produces the following result:

 East West South Central
Variance % 10.7 10.9 3.6 3.6
Index 1.11293 1.11516 1.03666 1.03666

See Also

l @LN

@EXPAND
Expands a member search by calling a member set function for each member in a member list.
The members returned by the @EXPAND function are added to the existing member set.
Duplicate members are not removed from the member set.

This function can be used on unique and duplicate-name outlines.

Syntax

@EXPAND (mbrSetFunction, mbrList,[, genLevNum][, LAYERONLY | ALL][, topMbrinHierarchy])

Parameter Description

mbrSetFunction One of the following member set functions, which return a list of members:

l @ANCESTORS

l @IANCESTORS

l @CHILDREN

l @ICHILDREN

l @DESCENDANTS

l @IDESCENDANTS

l @EQUAL

l @MBRPARENT

l @SIBLINGS

l @ISIBLINGS

mbrList A comma-delimited list of members grouped together using @LIST or a member set function
(such as @DESCENDANTS) that returns a list of members.

Calculation Function Reference 85

Parameter Description

genLevNum Optional: This argument applies only if you specify @ANCESTORS, @IANCESTORS,
@DESCENDANTS, or @IDESCENDANTS for mbrSetFunction.

The integer value that defines the absolute generation or level number up to which to select
members. A positive integer defines a generation number. A value of 0 or a negative integer defines
a level number.

LAYERONLY Optional: This argument applies only if you specify @ANCESTORS, @IANCESTORS,
@DESCENDANTS, or @IDESCENDANTS for mbrSetFunction.

Returns only those members at the specified generation or level (genLevNum) that match the
selection criteria.

If you specify this argument, you must specify genLevNum.

ALL Optional: This argument applies only if you specify @ANCESTORS, @IANCESTORS,
@DESCENDANTS, or @IDESCENDANTS for mbrSetFunction.

Returns all of the members that match the member selection criteria, starting with the specified
top member (topMbrinHierarchy).

If you specify this argument, you must specify topMbrinHierarchy.

topMbrinHierarchy Optional: This argument applies only if you specify @EQUAL for mbrSetFunction.

A fully qualified member name on which to base the member search. The specified member and
its aliases, and all of its descendants, are included in the search.

If you specify @EQUAL for mbrSetFunction, and you do not specify
topMbrinHierarchy, Essbase searches the entire outline.

Example

The following examples are based on the following duplicate-name outline:

Product
 100
 100–10
 100–10–10
 100–20
 100–30
 200
 200–10
 200–20
 200–30
 300
 300–10
 300–20
 Diet
 100–10
 100–10–11
 200–10
 300–10
 Bottle
 200–10
 300–20

@EXPAND("@DESC", @LIST("Product"), -1, LAYERONLY)

86 Calculation Functions

Returns all of the members under the Product dimension that are at level 1, which are [100].
[100-10], [Product].[200], [Product].[300], [Diet].[100-10], and [Product].[Bottle].

@EXPAND("@EQUAL", @EXPAND("@CHILDREN", @LIST("[product].[100]", "[product].
[200]")), , ,"Product")

Essbase first executes the inner @EXPAND function—@EXPAND("@CHILDREN",

@LIST("[product].[100]", "[product].[200]"))—which expands the member
list to include all of the children of members 100 and 200 (a total of six members). Then
Essbase executes the outer @EXPAND function, which searches the Product hierarchy for
a match with any of the six members.

See Also

l @BETWEEN

l @EQUAL

l @NOTEQUAL

l @LIKE

l @MBRCOMPARE

l @MBRPARENT

@FACTORIAL
Returns the factorial of expression. The factorial of a number is equal to 1*2*3*...* number.

Syntax

@FACTORIAL (expression)

Parameter Description

expression Single member specification or numeric expression.

Notes

l expression can be no larger than 189. If expression is larger than 189, Essbase returns
#MISSING.

l If expression is negative, Essbase returns #MISSING.

Example

@FACTORIAL(1) 1
@FACTORIAL(5) 120

See Also

l @POWER

@FORMATDATE
Returns a formatted date-string.

Calculation Function Reference 87

Syntax

@FormatDate(date, date_format_string)

Parameter Description

<date> A number representing the input date between January 1, 1970 and Dec 31, 2037. The number is
the number of seconds elapsed since midnight, January 1, 1970. To retrieve this number, use any
of the following functions: @TODAY, @TODATEEX, @DATEROLL.

Date-time attribute properties of a member can also be used to retrieve this number. For example,
@AttributeVal("Intro Date"); returns the product introduction date for the current
product in context.

date_format_string One of the following literal strings (excluding ordered-list numbers and parenthetical examples)
indicating a supported date format.

1. "mon dd yyyy" (Example: mon = Aug)

2. "Month dd yyyy" (Example: Month = August)

3. "mm/dd/yy"

4. "mm/dd/yyyy"

5. "yy.mm.dd"

6. "dd/mm/yy"

7. "dd.mm.yy"

8. "dd-mm-yy"

9. "dd Month yy"

10. "dd mon yy"

11. "Month dd, yy"

12. "mon dd, yy"

13. "mm-dd-yy"

14. "yy/mm/dd"

15. "yymmdd"

16. "dd Month yyyy"

17. "dd mon yyyy"

18. "yyyy-mm-dd"

19. "yyyy/mm/dd"

20. Long format (Example: WeekDay, Mon dd, yyyy)

21. Short format (Example: m/d/yy)

Notes

l Using an invalid input date returns an error.

l Using extra whitespace not included in the internal format strings returns an error.

l This function interprets years in the range 1970 to 2029 for yy format. Therefore, if the
function is invoked using a date format mm/dd/yy for June 20, 2006, the returned date string
is "06/20/06".

88 Calculation Functions

Example

Assume the outline has a date type member MyDate1.

Profit (If(@ToDateEx("yyyy-mm-dd", @FormatDate(@Today(), "yyyy-mm-dd")) == MyDate1)
 Profit=99;
Endif;)

See Also

l @DATEDIFF

l @DATEPART

l @DATEROLL

l @TODATEEX

l @TODAY

@GEN
Returns the generation number of the specified member.

Syntax

@GEN (mbrName)

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

Example

In the Sample Basic database:

@GEN(Year)

Returns 1.

@GEN(Qtr3)

Returns 2.

See Also

l @CURGEN

l @LEV

@GENMBRS
Returns all members with the specified generation number or generation name in the specified
dimension.

Syntax

@GENMBRS (dimName,genName|genNum)

Calculation Function Reference 89

Parameter Description

dimName A single dimension name specification.

genName|genNum Generation name or generation number from dimName. A positive integer defines a generation
number.

Notes

l If you specify a name for the genName parameter, Essbase looks for a generation with that
name in the specified dimension.

l If you specify a number for the genName parameter (for example, 2), Essbase first looks for
a generation with a number string name. If no generation name exists with that numeric
name, Essbase checks to see if the parameter is a valid generation number. Check the
application event log after running the calculation to make sure that the correct members
were calculated.

l Generation 0 is not a valid generation number. In Essbase, generations begin numbering at
1.

l If you specify a temporary variable for the genName parameter, Essbase does not recognize
the value of the variable. It looks in the outline for a generation name with the same name
as the temporary variable.

l For more information about generations and defining generation names, see the Oracle
Essbase Database Administrator's Guide.

l Essbase sorts the generated list of members in ascending order. Using Sample Basic as an
example, if you specify @GENMBRS(Product,2), Essbase returns 100, 200, 300, 400, Diet
(in that order). This order is important to consider when you use the @GENMBRS member
set function with certain forecasting and statistical functions.

Example

In the Sample Basic database:

@GENMBRS(Year,Month)
@GENMBRS(Year,3)

both return the following members since generation 3 of the Year dimension is named Month:

Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, and Dec (in that order).

The following example restricts the calculation to members with the combination Budget and
one of the members of the Market dimension with a generation name of State.

FIX(Budget,@GENMBRS(Market,State))
CALC DIM (Year,Measures);
ENDFIX

See Also

l @LEVMBRS

90 Calculation Functions

@GROWTH
Calculates a series of values that represent a linear growth of the first nonzero value encountered
in principalMbr across the specified rangeList. Growth is calculated by multiplying the growth
rate in rateMbrConst by the original principalMbr. This value is then added to the previous time
period's result, yielding the new value.

Syntax

@GROWTH (principalMbr, rateMbrConst [, rangeList])

Parameter Description

principalMbr Single member specification that represents the initial value of the value to grow. The first nonzero value
encountered is the initial value. Other principalMbr values after the first are ignored.

rateMbrConst Single member specification, variable name, or numeric expression providing a constant value that
represents the decimal growth rate to be applied (for example, 10% = .1).

rangeList Optional. A valid member name, a comma-delimited list of member names, member set functions, and
range functions. If rangeList is not specified, Essbase uses the level 0 members from the dimension tagged
as Time.

Notes

Financial functions never return a value; rather, they calculate a series of values internally based
on the range specified.

Example

The following example calculates the growth of Principal Amount, using the rate found in
Growth Rate for each fiscal year. The results are placed in Growth Amount.

"Growth Amount"=@GROWTH("Principal Amount","Growth Rate",FY1998:FY2003);

This example produces the following report:

 FY1998 FY1999 FY2000 FY2001 FY2002 FY2003
 ====== ====== ====== ====== ====== ======
Principal Amount 1,000 0 2,000 0 0 0
Growth Amount 1,050 1,120 1,200 1,280 1,380 1,480
Growth Rate 0.05 0.07 0.08 0.08 0.1 0.1

See Also

l @COMPOUNDGROWTH

l @DECLINE

@IALLANCESTORS
Returns the specified member and all the ancestors of that member, including ancestors of any
occurrences of the specified member as a shared member. You can use this member set function
as a parameter of another function, where that parameter is a list of members.

Calculation Function Reference 91

Syntax

@IALLANCESTORS (mbrName)

Parameter Description

mbrName A valid single member name or member combination, or a function that returns a single member or member
combination.

Notes

Essbase sorts the generated list of members in ascending order of the member number in the
outline. Using Sample Basic as an example, if you specify 100-20 for mbrName, Essbase returns
100-20, 100, Diet, Product (in that order). However, the order in which shared ancestors are
returned is not guaranteed. This order is important to consider when you use the
@IALLANCESTORS member set function with certain forecasting and statistical functions.

Example

The following example is based on the Sample Basic database. Sample Basic has a shared level
of diet drinks, which includes 100-20 (Diet Cola). So 100-20 (Diet Cola) is a descendant of 100
(Colas) and is a shared member descendant of Diet:

100
 100-10
 100-20
 ...
Diet
 100-20 (Shared Member)
 ...

The following calculation script increases by 5% the Budget Sales values of 100-20 and all its
ancestors, including Diet:

FIX(Budget,@IALLANCESTORS("100-20"))
Sales = Sales * 1.05;
ENDFIX

This example produces the following report. This report shows that the Budget->Sales values
for 100-20, 100, Diet, and Product (100-20 and its ancestors) have been increased by 5%. The
original values were 2610, 8980, 8260, and 28480, respectively.

 Jan
 Actual Budget
 Sales Sales
 ===== =====
Market 100-10 4860 5200
 100-20 2372 2740.5 *
 100-30 1082 1170
 100 8314 9429 *
 100-20 2372 2610
 200-20 3122 3090
 300-30 2960 2560
 Diet 8454 8673 *
 Product 31538 30954 *

92 Calculation Functions

See Also

l @ALLANCESTORS

l @IANCESTORS

l @LANCESTORS

l @ILANCESTORS

@IANCESTORS
Returns the specified member and either all ancestors of the member or all ancestors up to the
specified generation or level.

Essbase sorts the generated list of members—starting with the specified member, followed by
the nearest ancestor of the member, followed by the next nearest ancestor of the member, and
so on. In the Sample.Basic database, if you specify @IANCESTORS(200-30), Essbase returns
200-30, 200, Product (in that order). When using the @IANCESTORS function with certain
forecasting and statistical functions, you must consider order.

You can use the @IANCESTORS function as a parameter of another function, where the function
requires a list of members.

Syntax

@IANCESTORS (mbrName [, genLevNum | genLevName])

Parameter Description

mbrName Valid member name or member-name combination or a function that returns one member or member
combination.

genLevNum Optional. The integer value that defines the absolute generation or level number up to which to select
members. A positive integer defines a generation number. A value of 0 or a negative integer defines a
level number.

genLevName Optional. The level or generation name up to which to select members.

Example

All examples are from the Sample.Basic database.

@IANCESTORS("New York")

Returns New York, East, Market (in that order).

@IANCESTORS(Qtr4)

Returns Qtr4, Year (in that order).

@IANCESTORS(Sales,-2)

Returns Sales, Margin, Profit (in that order). Members higher than level 2 are not returned.

@IANCESTORS("100-10",1)

Returns 100-10, 100, Product (in that order). All ancestors are returned up to generation 1.

Calculation Function Reference 93

See Also

l @ANCESTORS

l @IALLANCESTORS

l @LANCESTORS

l @ILANCESTORS

@ICHILDREN
Returns the specified member and all of its children. This member set function can be used as
a parameter of another function, where that parameter is a list of members.

Syntax

@ICHILDREN (mbrName)

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

Notes

Essbase sorts the generated list of members starting with the specified member, followed by its
children in ascending order. Using Sample Basic as an example, if you specify 100 for
mbrName, Essbase returns 100, 100-10, 100-20, 100-30 (in that order). This order is important
to consider when you use the @ICHILDREN member set function with certain forecasting and
statistical functions.

Example

In the Sample Basic database:

@ICHILDREN(Market)

Returns Market, East, West, South, and Central (in that order).

@ICHILDREN(Margin)

Returns Margin, Sales, and COGS (in that order).

See Also

l @CHILDREN

@IDESCENDANTS
Returns the specified member and either all descendants of the member or all descendants down
to the specified generation or level.

Essbase sorts the generated list of members—starting with the specified member, followed by
the nearest descendant of the member, followed by the next nearest descendant of the member,
and so on. In the Sample.Basic database, if you specify @IDESCENDANTS(100), Essbase returns

94 Calculation Functions

100, 100-10, 100-20, 100-30 (in that order). When using the @IDESCENDANTS function with
certain forecasting and statistical functions, you must consider order.

You can use the @IDESCENDANTS function as a parameter of another function, where the
function requires a list of members.

Syntax

@IDESCENDANTS (mbrName[, genLevNum | genLevName])

Parameter Description

mbrName Valid member name or member-name combination or a function that returns one member or member
combination.

genLevNum Optional. The integer value that defines the absolute generation or level number up to which to select
members. A positive integer defines a generation number. A value of 0 or a negative integer defines a
level number.

genLevName Optional. The level or generation name up to which to select members.

Example

All examples are from the Sample.Basic database.

@IDESCENDANTS(East)

Returns East, New York, Massachusetts, Florida, Connecticut, and New Hampshire (in that
order).

@IDESCENDANTS(Profit)

Returns Profit, Margin, Sales, COGS, Total Expenses, Marketing, Payroll, and Misc (in that
order).

@IDESCENDANTS(Market,2)

Returns Market, East, West, South, and Central (in that order).

@IDESCENDANTS(South,-1)

Returns South.

See Also

l @DESCENDANTS

l @IRDESCENDANTS

l @RDESCENDANTS

l @LDESCENDANTS

l @ILDESCENDANTS

l @ISDESC

l @ANCESTORS

l @CHILDREN

l @SIBLINGS

Calculation Function Reference 95

@ILANCESTORS
Returns the members of the specified member list and either all ancestors of the members or all
ancestors up to the specified generation or level.

You can use the @ILANCESTORS function as a parameter of another function, where the
function requires a list of members.

Syntax

@ILANCESTORS ((memberSetFunction) [,genLevNum])

Parameter Description

memberSetFunction A member set function that returns a list of members.

How the @ILANCESTORS function is used determines which member set functions are allowed.
Follow these guidelines:

l If the @ILANCESTORS function is used alone (not within a FIX statement), you must use
the @LIST function and specify member names. For example:

@LIST(mbr1,mbr2,...)

l If the @ILANCESTORS function is used within a FIX statement, you can use member set
functions such as @UDA and @ATTRIBUTE. For example:

@UDA(dimName,uda)

@ATTRIBUTE (attMbrName)

In this case, you can choose whether to use the @LIST function. For example, both of the
following statements are valid, and the statements return the same results.

Example using only @ATTRIBUTE:

FIX(@ILANCESTORS(@ATTRIBUTE(Caffeinated_True),@ATTRIBUTE(Ounce
s_12),"200-40"))
...
ENDFIX;

Example using @LIST and @ATTRIBUTE:

FIX(@ILANCESTORS(@LIST(@ATTRIBUTE(Caffeinated_True),@ATTRIBUTE
(Ounces_12),"200-40")))
...
ENDFIX;

Caution! All members of the specified member list must be from the same dimension.

genLevNum Optional. The integer value that defines the absolute generation or level number up to which to
select members. A positive integer defines a generation number. A value of 0 or a negative integer
defines a level number.

Example

All examples are from the Sample.Basic database.

@ILANCESTORS(@LIST(“100–10”,"200–20”))

96 Calculation Functions

Returns 100-10 (a specified member); 100 and Product (the ancestors of 100-10); 200-20 (a
specified member); and 200 (the ancestor of 200–20). The result does not contain duplicate
members.

@ILANCESTORS(@LIST(“100”,“100–10”))

Returns 100 and 100-10 (the specified members); and Product (the ancestor of 100 and 100-10).
The result does not contain duplicate members.

@ILANCESTORS(@LIST(“100”,“Product”,“200”))

Returns 100, Product, and 200 (the specified members). The result does not contain duplicate
members.

FIX(@ILANCESTORS(@UDA(Market,“New Market”)),2)
...
ENDFIX;

Returns Nevada (a member that is assigned the New Market UDA) and West (the ancestor to
generation 2 for Nevada); Louisiana (a member that is assigned the New Market UDA) and
South (the ancestor to generation 2 for Louisiana); and Colorado (a member that is assigned
the New Market UDA) and Central (the ancestor to generation 2 for Colorado).

FIX(@ILANCESTORS(@ATTRIBUTE(Caffeinated_True),@ATTRIBUTE(Ounces_12),"200-40”))
...
ENDFIX;

Returns 100-10, 100-20, 200-10, and 300-30 (caffeinated, 12-ounce drinks); and 200-40 (the
specified member), and 100, 200, 300, and Product (the ancestors of the members).

See Also

l @LANCESTORS

l @ANCESTORS

l @IANCESTORS

@ILDESCENDANTS
Returns the members of the specified member list and either all descendants of the members or
all descendents down to the specified generation or level.

You can use the @ILDESCENDANTS function as a parameter of another function, where the
function requires a list of members.

Syntax

@ILDESCENDANTS ((memberSetFunction) [,genLevNum])

Calculation Function Reference 97

Parameter Description

memberSetFunction A member set function that returns a list of members.

How the @ILDESCENDANTS function is used determines which member set functions are
allowed. Follow these guidelines:

l If the @ILDESCENDANTS function is used alone (not within a FIX statement), you must
use the @LIST function and specify member names. For example:

@LIST(mbr1,mbr2,...)

l If the @ILDESCENDANTS function is used within a FIX statement, you can use member
set functions such as @UDA and @ATTRIBUTE. For example:

@UDA(dimName,uda)

@ATTRIBUTE (attMbrName)

In this case, you can choose whether to use the @LIST function. For example, both of the
following statements are valid, and the statements return the same results.

Example using only @ATTRIBUTE:

FIX
(@ILDESCENDANTS(@ATTRIBUTE(Caffeinated_True),@ATTRIBUTE(Ounces
_12),"200-40"))
...
ENDFIX;

Example using @LIST and @ATTRIBUTE:

FIX
(@ILDESCENDANTS(@LIST(@ATTRIBUTE(Caffeinated_True),@ATTRIBUTE(
Ounces_12),"200-40")))
...
ENDFIX;

Caution! All members of the specified member list must be from the same dimension.

genLevNum Optional. The integer value that defines the absolute generation or level number up to which to
select members. A positive integer defines a generation number. A value of 0 or a negative integer
defines a level number.

Example

All examples are from the Sample.Basic database.

@ILDESCENDANTS(@LIST(“100”,"200”,"300”))

Returns 100 (a specified member); 100-10, 100-20, 100-30 (the descendants of 100); 200 (a
specified member); and 200-10, 200-20, 200-30, and 200-40 (the descendants of 200); 300 (a
specified member); and 300-10, 300-20, 300-30 (the descendants of 300).

@ILDESCENDANTS(@LIST(“Market”),-1)

Returns Market (the specified member); and East, West, South, and Central (the descendants
of Market to level 1).

FIX
(@ILDESCENDANTS(@UDA(Market,"Major Market”)))

98 Calculation Functions

...
ENDFIX;

Returns East (a specified member); New York, Massachusetts, Florida, Connecticut, and New
Hampshire (the descendants of East); Central (a specified member); Illinois, Ohio, Wisconsin,
Missouri, Iowa, and Colorado (the descendants of Central); California and Texas (specified
members, which do not have descendants).

FIX
(@ILDESCENDANTS(@ATTRIBUTE(Caffeinated_True)@ATTRIBUTE(Ounces_12),"200–40”))
...
ENDFIX;

Returns 100-10, 100-20, 200-10, 300-30 (caffeinated, 12-ounce drinks); and 200-40 (a specified
member). None of these members have descendants.

See Also

l @LDESCENDANTS

l @IDESCENDANTS

l @RDESCENDANTS

l @IRDESCENDANTS

l @ISDESC

l @ANCESTORS

l @LANCESTORS

l @ILANCESTORS

l @CHILDREN

l @SIBLINGS

l @SHIFTSIBLING

@ILSIBLINGS
Returns the specified member and its left siblings.

Syntax

@ILSIBLINGS (mbrName)

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

Notes

This function returns the specified member and all of the left siblings of the member. Left siblings
are children that share the same parent as the member and that precede the member in the
database outline.

This member set function can be used as a parameter of another function, where that parameter
is a list of members.

Calculation Function Reference 99

Essbase sorts the generated list of members starting with the left siblings of the member (that is,
siblings appearing above the member in the database outline) in ascending order. Using Sample
Basic as an example, if you specify 200-30 for mbrName, Essbase returns 200-10, 200-20, 200-30
(in that order). This order is important to consider when you use the @ILSIBLINGS member
set function with certain forecasting and statistical functions.

Example

In the Sample Basic database:

@ILSIBLINGS(Florida)

Returns New York, Massachusetts, and Florida (in that order). New York and Massachusetts
appear above Florida in the Sample Basic outline.

@ILSIBLINGS(Qtr3)

Returns Qtr1, Qtr2, and Qtr3 (in that order). Qtr1 and Qtr2 appear above Qtr3 in the Sample
Basic outline.

See Also

l @LSIBLINGS

@INT
Returns the next lowest integer value of expression.

Syntax

@INT (expression)

Parameter Description

expression Member specification or mathematical expression that generates a numeric value.

Example

The following example is based on the Sample Basic database. Assume that the Profit % member
is not tagged as Dynamic Calc.

The following formula rounds the values for West down to the nearest integer.

West=@INT(@SUM(@CHILDREN(West)));

This example produces the following report:

 Profit %
 Cola Actual
 Jan Feb Mar
 === === ===
California 38.64 37.98 38.37
Oregon 17.50 16.13 16.11
Washington 29.23 30.90 32.00
Utah 23.08 23.08 20.97
Nevada -3.95 -6.76 -5.33
 West 104 101 102

100 Calculation Functions

See Also

l @ABS

l @REMAINDER

l @ROUND

l @TRUNCATE

@INTEREST
Calculates the simple interest in balanceMbr at the rate specified by creditrateMbrConst if the
value specified by balanceMbr is positive, or at the rate specified by borrowrateMbrConst if
balanceMbr is negative. The interest is calculated for each time period specified by rangeList.

Syntax

@INTEREST (balanceMbr, creditrateMbrConst, borrowrateMbrConst

 [, rangeList])

Parameter Description

balanceMbr Single member specification representing the balance at the time the interest is calculated.

creditrateMbrConst Single member specification, variable name, or numeric expression providing a constant value.
The value must be a decimal number that corresponds to a percentage. The value represents the
per-period interest rate.

borrowrateMbrConst Single member specification, variable name, or numeric expression providing a constant value.
The value must be a decimal number corresponding to a percentage value. The value represents
the per-period interest rate.

rangeList Optional. A valid member name, a comma-delimited list of member names, member set
functions, and range functions from the dimension tagged as Time. If rangeList is not specified,
Essbase uses the level 0 members from the dimension tagged as Time.

Notes

Financial functions never return a value; rather, they calculate a series of values internally based
on the range specified.

Example

This example calculates the interest for Balance, using Credit Rate for positive balances and using
Borrow Rate for negative balances. The results are placed in Interest Amount for each fiscal year.

"Interest Amount" = @INTEREST(Balance,"Credit Rate","Borrow Rate",
FY1998:FY2001,FY2002,FY2003);

This example produces the following report:

 FY1998 FY1999 FY2000 FY2001 FY2002 FY2003
 ====== ====== ====== ====== ====== ======

Balance 2000.00 3000.00 -1000.00 3000.00 9000.00 -6000.00
Credit Rate 0.065 0.065 0.065 0.065 0.065 0.065

Calculation Function Reference 101

Borrow Rate 0.1125 0.1125 0.1125 0.1125 0.1125 0.1125
Interest Amount 130.00 195.00 -112.50 195.00 585.00 -675.00

See Also

l @COMPOUND

@IRDESCENDANTS
Returns the specified member and all its descendants, or all descendants down to a specified
generation or level, including descendants of any occurrences of the specified member as a shared
member.

You can use this member set function as a parameter of another function, where that parameter
is a list of members. In the absence of shared members, @IRDESCENDANTS and
@IDESCENDANTS have identical behavior.

Syntax

@IRDESCENDANTS (mbrName[, genLevNum | genLevName])

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination

genLevNum Optional. An integer value that defines the absolute generation or level number down to which to select
the members. A positive integer defines a generation number. A value of 0 or a negative integer defines
a level number.

genLevName Optional. Level name or generation name down to which to select the members.

Notes

l The order of members in the result list is important to consider when you use the
@IRDESCENDANTS member set function with certain forecasting and statistical functions.
Essbase generates the list of members in the following sequence: If a shared member is
encountered, the above steps are repeated on the member being shared.

1. The specified member

2. The nearest descendant of the member

3. The next nearest descendant of the member, and so on

l You can use @RDESCENDANTS to exclude the specified member and include descendants of
shared members.

l You can use @IDESCENDANTS to include the specified member and exclude descendants of
shared members.

l You can use @DESCENDANTS to exclude the specified member and descendants of shared
members.

Example

Example 1

102 Calculation Functions

Assume a variation of the Sample Basic database such that the Product dimension includes the
following members:

Product
 100
 100-10
 100-20
 100-30
 200
 200-10
 200-20
 200-30
 200-40
 Diet
 100 (Shared Member)
 200 (Shared Member)

Diet has two children "100" and "200" instead of "100-10", "200-20" and "300-30". The members
"100" and "200" are shared members.

@IRDESCENDANTS(Diet)

Returns the members: Diet, 100, 100-10, 100-20, 100-30, 200, 200-10, 200-20, 200-30, 200-40
(in that order).

Example 2

@IRDESCENDANTS(East)

Returns East, New York, Massachusetts, Florida, Connecticut, and New Hampshire (in that
order) and is exactly the same as @IDESCENDANTS(East).

See Also

l @RDESCENDANTS

l @IDESCENDANTS

l @DESCENDANTS

l @ISDESC

l @ICHILDREN

l @ISIBLINGS

l @IANCESTORS

@IRR
Calculates the Internal Rate of Return on a cash flow that must contain at least one investment
(negative) and one income (positive) value.

Syntax

@IRR (cashflowMbr, discountFlag[, rangeList])

Parameter Description

cashflowMbr Single member specification.

Calculation Function Reference 103

Parameter Description

discountFlag Member specification, variable name, or numeric expression providing a constant value of either 1 or 0.
discountFlag indicates whether the function should discount from the first period. 1 means do not
discount from the first period.

rangeList Optional. A valid member name, a comma-delimited list of member names, member set functions, and
range functions. If rangeList is not specified, Essbase uses the level 0 members from the dimension tagged
as Time.

Notes

l Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

l Essbase returns #MISSING from calculator function @IRR if all cash flows are zero.

l @IRR provides an initial guess of 0.07. This cannot be changed, in contrast to similar
functions in Excel. Because results depend in part on the initial guess, any difference in the
initial guess may result in a different result. Even if both Excel and Essbase start with the
same initial guess, results may differ. This is because there may be more than one solution
to an equation, and the algorithm stops looking when it finds a valid solution. Which
solution is found first may differ based on the algorithm. Although leading or trailing zeros
do not matter in a mathematical context, the algorithm may behave differently and find a
different root because of the presence of leading or trailing zeros. If you need identical
solutions regardless of the presence of leading or trailing zeros, you may wish to create a
custom-defined function to handle these issues.

Example

This example calculates the Internal Rate of Return (Return) on a cash flow (Cash).

Return = @IRR(Cash,0,FY1998:FY2000,FY2001:FY2003);

This example produces the following report:

 FY1998 FY1999 FY2000 FY2001 FY2002 FY2003
 ====== ====== ====== ====== ====== ======
Cash (1,000) 500 600 500 #MISSING #MISSING
Rate 0 0 0 0 #MISSING #MISSING
Return 0 0 0 0 0 0

@IRSIBLINGS
Returns the specified member and its right siblings.

Syntax

@IRSIBLINGS (mbrName)

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

104 Calculation Functions

Notes

This function returns the specified member and all of the right siblings of the specified member.
Right siblings are children that share the same parent as the member and that follow the member
in the database outline.

This member set function can be used as a parameter of another function, where that parameter
is a list of members.

Essbase sorts the generated list of members starting with the specified member, followed by the
right siblings of the member (that is, siblings appearing below the member in the database
outline) in ascending order. Using Sample Basic as an example, if you specify 200-20 for
mbrName, Essbase returns 200-20, 200-30, 200-40 (in that order). This order is important to
consider when you use the @IRSIBLINGS member set function with certain forecasting and
statistical functions.

Example

In the Sample Basic database:

@IRSIBLINGS(Florida)

Returns Florida, Connecticut, and New Hampshire (in that order). Connecticut and New
Hampshire appear below Florida in the Sample Basic outline.

@IRSIBLINGS(Qtr3)

Returns Qtr3 and Qtr4 (in that order). Qtr4 appears below Qtr3 in the Sample Basic outline.

See Also

l @RSIBLINGS

@ISACCTYPE
Returns TRUE if the current member has the associated accounts tag.

Syntax

@ISACCTYPE (tag)

Parameter Description

tag Valid account tag defined in the current database. Any of these values may be used: First, Last, Average,
Expense, and Twopass. To ensure that the tag is resolved as a string rather than a member name, it is
recommended to enclose it in quotation marks.

Example

The following example is based on the Sample Basic database. For members with the Expense
accounts tag, the formula uses the @ABS function to calculate Budget as the absolute value of
Budget.

IF (@ISACCTYPE("Expense"))
 Budget = @ABS(Budget);
ENDIF;

Calculation Function Reference 105

@ISANCEST
Returns TRUE if the current member is an ancestor of the specified member. This function
excludes the specified member.

Syntax

@ISANCEST (mbrName)

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

Example

In the Sample Basic database:

@ISANCEST(California)

Returns TRUE for Market, West

@ISANCEST(West)

Returns FALSE for California, West, East

See Also

l @ISIANCEST

@ISATTRIBUTE
Returns TRUE if the current member under calculation matches the attribute or varying
attribute name specified in attmbrName.

Syntax

@ISATTRIBUTE (attMbrName)

Parameter Description

attMbrName Single attribute member name or member combination.

Notes

l This function provides the same functionality as @IsMbr (@Attribute(attMbrName)), but
is faster.

l You may have duplicate Boolean, date, and numeric attribute member names in your
outline. For example, 12 can be the attribute value for the size (in ounces) of a product as
well as the value for the number of packing units for a product. To distinguish duplicate
member names, specify the full attribute member name (for example,
@ISATTRIBUTE(Ounces_12)).

106 Calculation Functions

Example

Consider the following calculation script, based on the Sample Basic database:

/* To increase the marketing budget for markets with large populations */
Marketing (
 IF (@ISATTRIBUTE(Large))
 Marketing = Marketing * 1.1;
 ENDIF
);

See Also

l @ISMBRWITHATTR

l SET SCAPERSPECTIVE

@ISCHILD
Returns TRUE if the current member is a child of the specified member. This function excludes
the specified member.

Syntax

@ISCHILD (mbrName)

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

Example

In the Sample Basic database:

@ISCHILD(East)

Returns TRUE for New York, Florida, Connecticut

@ISCHILD(Margin)

Returns FALSE for Measures, Profit, Margin

See Also

l @ISICHILD

@ISDESC
Returns TRUE if the current member is a descendant of the specified member. This function
excludes the specified member.

Syntax

@ISDESC (mbrName)

Calculation Function Reference 107

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

Example

In the Sample Basic database:

@ISDESC(Market)

Returns TRUE for West, California, Oregon, Washington, Utah, Nevada

@ISDESC(Profit)

Returns FALSE for Measures, Profit, Profit %

@ISGEN
Returns TRUE if the current member of the specified dimension is in the specified generation.

Syntax

@ISGEN (dimName, genName | genNum)

Parameter Description

dimName The name of a dimension.

genName or genNum Generation name specification, or a non-negative number that defines the number of a
generation.

Example

In the Sample Basic database:

@ISGEN(Measures,3)

Returns TRUE if the current member is Margin, Total Inventory, or Margin %, because these
members are all in generation 3 of the Measures dimension.

@ISGEN(Market,2)

Returns FALSE if the current member is New York or Market, because these members are not
in generation 2 of the Market dimension.

See Also

l @ISSAMEGEN

l @ISLEV

@ISIANCEST
Returns TRUE if the current member is the specified member or an ancestor of the specified
member. This function includes the specified member.

108 Calculation Functions

Syntax

@ISIANCEST (mbrName)

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

Example

In the Sample Basic database:

@ISIANCEST(California)

Returns TRUE for Market, West, and California. California is the specified member, and West
and Market are ancestors of California.

@ISIANCEST(Qtr1)

Returns FALSE for Jan, Feb, Mar, Qtr2. None of these members is the specified member (Qtr1)
or an ancestor of Qtr1.

See Also

l @ISANCEST

@ISIBLINGS
Returns the specified member and all siblings of that member. This member set function can be
used as a parameter of another function, where that parameter is a list of members.

Syntax

@ISIBLINGS (mbrName)

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

Notes

Essbase sorts the generated list of members in ascending order. Using Sample Basic as an
example, if you specify 200-30 for mbrName, Essbase returns 200-10, 200-20, 200-30, 200-40
(in that order). This order is important to consider when you use the @ISIBLINGS member set
function with certain forecasting and statistical functions.

Example

In the Sample Basic database:

@ISIBLINGS(California)

returns California, Oregon, Washington, Utah, and Nevada (in that order), because these
members are siblings of California.

Calculation Function Reference 109

@ISIBLINGS(Qtr2)

returns Qtr1, Qtr2, Qtr3, and Qtr4 (in that order), because these members are siblings of Qtr2.

See Also

l @SIBLINGS

l @SHIFTSIBLING

l @NEXTSIBLING

l @PREVSIBLING

@ISICHILD
Returns TRUE if the current member is the specified member or a child of the specified member.

Syntax

@ISICHILD (mbrName)

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

Example

In the Sample Basic database:

@ISICHILD(South)

Returns TRUE for Texas, Oklahoma, Louisiana, New Mexico, South

@ISICHILD(Profit)

Returns FALSE for Measures, Sales

See Also

l @ISCHILD

@ISIDESC
Returns TRUE if the current member is the specified member or a descendant of the specified
member.

Syntax

@ISIDESC (mbrName)

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

110 Calculation Functions

Example

In the Sample Basic database:

@ISIDESC(South)

Returns TRUE for Texas, Oklahoma, Louisiana, New Mexico, South

@ISIDESC(West)

Returns FALSE for Market, East, South, and Central

See Also

l @ISDESC

@ISIPARENT
Returns TRUE if the current member is the specified member or the parent of the specified
member.

Syntax

@ISIPARENT (mbrName)

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

Example

In the Sample Basic database:

@ISIPARENT(Qtr1)

Returns TRUE for Year, Qtr1.

@ISIPARENT(Margin)

Returns FALSE for Measures, Sales.

See Also

l @ISPARENT

@ISISIBLING
Returns TRUE if the current member is the specified member or a sibling of the specified
member.

Syntax

@ISISIBLING (mbrName)

Calculation Function Reference 111

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

Example

In the Sample Basic database:

@ISISIBLING(Qtr2)

Returns TRUE for Qtr1, Qtr2, Qtr3, and Qtr4.

@ISISIBLING(Actual)

Returns FALSE for Scenario.

See Also

l @ISSIBLING

@ISLEV
Returns TRUE if the current member of the specified dimension is in the specified level.

Syntax

@ISLEV (dimName, levName | levNum)

Parameter Description

dimName Name of a dimension.

levName | levNum A level name or an integer value that defines the number of a level. A value of 0 or a negative integer
defines a level number.

Example

In the Sample Basic database:

@ISLEV(Market,0)

Returns TRUE if the current member of Market is New York, California, Texas, or Illinois.

@ISLEV(Year,1)

Returns FALSE if the current member of Year is Jan, Feb, or Mar.

See Also

l @ISSAMELEV

l @ISGEN

@ISMBR
Returns TRUE if the current member matches any one of the specified members.

112 Calculation Functions

Syntax

@ISMBR (mbrName | rangeList | mbrList)

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

rangeList A valid member name, a comma-delimited list of member names, member set functions, and range
functions.

mbrList A comma-delimited list of members.

Notes

If a cross-dimensional (->) member is included, that term evaluates as TRUE only if all the
components of the cross-dimensional member match the current member list.

If any term returns TRUE, the @ISMBR function returns TRUE.

Example

In the Sample Basic database:

@ISMBR("New York":"New Hampshire")

Returns TRUE for Florida.

@ISMBR(@CHILDREN(Qtr1))

Returns FALSE for Qtr2, Year.

@ISMBRWITHATTR
Returns TRUE if the current member belongs to the list of base members that are associated
with an attribute that satisfies the conditions you specify.

Syntax

@ISMBRWITHATTR (dimName, "operator", value)

Parameter Description

dimName Single varying attribute dimension name.

operator Operator specification, which must be enclosed in quotation marks ("").

value A value that, in combination with the operator, defines the condition that must be met. The value can be a
varying attribute member specification, a constant, or a date-format function (that is, @TODATE).

Notes

l This function provides the same functionality as @IsMbr(@WithAttr()), but is faster.

l This function is a superset of the @ISATTRIBUTE function. The following two formulas
return the same member set:

Calculation Function Reference 113

@ISATTRIBUTE(Bottle)
@ISMBRWITHATTR("Pkg Type","==",Bottle)

However, the following formula can be performed only with @ISMBRWITHATTR (not
with @ISATTRIBUTE) because you specify a condition:

@ISMBRWITHATTR(Ounces,">","16")

l If you specify a date attribute with the @ISMBRWITHATTR function, you must use the
@TODATE function in the string parameter to convert the date string to a number. For
more information, see the topic for the @TODATE function.

l The following operators are supported:

Operator Description

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

= = Equal to

<> or != Not equal to

IN In

When using Boolean attributes with @ISMBRWITHATTR, use only the actual Boolean attribute
member name, or use 1 (for True or Yes) or 0 (for False or No). You cannot use True/Yes and
False/No interchangeably.

See Also

l @WITHATTR

l @ISATTRIBUTE

l SET SCAPERSPECTIVE

l @ATTRIBUTE

l @ATTRIBUTEVAL

l @TODATE

@ISPARENT
Returns TRUE if the current member is the parent of the specified member. This function
excludes the specified member.

Syntax

@ISPARENT (mbrName)

114 Calculation Functions

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

Example

In the Sample Basic database:

@ISPARENT("New York")

Returns TRUE for East.

@ISPARENT(Profit)

Returns FALSE for Margin.

See Also

l @ISIPARENT

@ISSAMEGEN
Returns TRUE if the current member is the same generation as the specified member.

Syntax

@ISSAMEGEN (mbrName)

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

Example

In the Sample Basic database:

@ISSAMEGEN(West)

Returns TRUE for East.

@ISSAMEGEN(West)

Returns FALSE for California.

See Also

l @ISGEN

l @GEN

l @ISSAMELEV

@ISSAMELEV
Returns TRUE if the current member is the same level as the specified member.

Calculation Function Reference 115

Syntax

@ISSAMELEV (mbrName)

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

Example

In the Sample Basic database:

@ISSAMELEV(Sales)

Returns FALSE for Total Expenses.

@ISSAMELEV(Jan)

Returns TRUE for Apr, Jul, Oct.

See Also

l @ISLEV

l @LEV

l @ISSAMEGEN

@ISSIBLING
Returns TRUE if the current member is a sibling of the specified member. This function excludes
the specified member.

Syntax

@ISSIBLING (mbrName)

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

Example

In the Sample Basic database:

@ISSIBLING("New York")

Returns TRUE for Florida, New Hampshire.

@ISSIBLING(Sales)

Returns FALSE for Margin.

See Also

l @ISISIBLING

116 Calculation Functions

@ISUDA
Returns TRUE if the specified user-defined attribute (UDA) exists for the current member of
the specified dimension at the time of the calculation.

Syntax

@ISUDA (dimName,UDAStr)

Parameter Description

dimName Dimension name specification that contains the member you are checking.

UDAStr user-defined attribute (UDA) name string.

Notes

l Essbase checks to see if the UDA is defined for the current member of the specified dimension
at calculation time. It returns TRUE if the UDA is defined, FALSE if not.

l For more information about UDAs, see the Oracle Essbase Database Administrator's Guide.

Example

The following example is based on the Sample Basic database. The Market dimension has
members that indicate a geographic location. Some members represent major markets. The
example below calculates the database and stores a budget amount for the upcoming year based
on the actual amount from this year. A different sales growth rate is applied to major markets
than to small markets.

FIX (Budget)
 Sales (IF(@ISUDA(Market,"Major Market"))
 Sales = Sales->Actual * 1.2;
 ELSE
 Sales = Sales->Actual * 1.1;
 ENDIF;);
ENDFIX

The preceding example tests to see if the current member of Market has a UDA called "Major
Market". If it does, the Budget -> Sales value is set to 120% of Actual -> Sales. If it does not, the
Budget -> Sales value is set to 110% of Actual -> Sales.

See Also

l @UDA

@LANCESTORS
Returns all ancestors of the members in the specified member list or all ancestors up to a specified
generation or level. This function excludes the specified members.

You can use the @LANCESTORS function as a parameter of another function, where the
function requires a list of members.

Calculation Function Reference 117

Syntax

@LANCESTORS ((memberSetFunction) [,genLevNum])

Parameter Description

memberSetFunction A member set function that returns a list of members.

How the @LANCESTORS function is used determines which member set functions are allowed.
Follow these guidelines:

l If the @LANCESTORS function is used alone (not within a FIX statement), you must use
the @LIST function and specify member names. For example:

@LIST(mbr1,mbr2,...)

l If the @LANCESTORS function is used within a FIX statement, you can use member set
functions such as @UDA and @ATTRIBUTE. For example:

@UDA(dimName,uda)

@ATTRIBUTE (attMbrName)

In this case, you can choose whether to use the @LIST function. For example, both of the
following statements are valid, and the statements return the same results.

Example using only @ATTRIBUTE:

FIX(@LANCESTORS(@ATTRIBUTE(Caffeinated_True),@ATTRIBUTE(Ounces
_12),"200-40"))
...
ENDFIX;

Example using @LIST and @ATTRIBUTE:

FIX(@LANCESTORS(@LIST(@ATTRIBUTE(Caffeinated_True),@ATTRIBUTE(
Ounces_12),"200-40")))
...
ENDFIX;

Caution! All members of the specified member list must be from the same dimension.

genLevNum Optional. The integer value that defines the absolute generation or level number up to which to
select members. A positive integer defines a generation number. A value of 0 or a negative integer
defines a level number.

Example

All examples are from the Sample.Basic database.

@LANCESTORS(@LIST("100–10”,"200–20”),2)

Returns 100 (the ancestor of 100-10); and 200 (the ancestor of 200-20). Excludes Product because
it is at generation 1.

@LANCESTORS(@LIST(“100”,“100–10”))

Returns Product (the ancestor of 100); and 100 (the ancestor of 100-10). The result does not
contain duplicate members.

@LANCESTORS(@LIST(“100”,“Product”,“200”))

Returns Product (the ancestor of 100 and 200). The result does not contain duplicate members.

118 Calculation Functions

FIX(@LANCESTORS(@UDA(Market,“New Market”)),2)
...
ENDFIX;

Returns West, South, and Central (the ancestors, to generation 2, for the members in the Market
dimension that are associated with the New Market attribute).

FIX(@LANCESTORS(@ATTRIBUTE(Caffeinated_True),@ATTRIBUTE(Ounces_12),"200–40”))
...
ENDFIX;

Returns 100, 200, 300, and Product (the ancestors of 100-10, 100-20, 200-10, 300-30—
caffeinated, 12-ounce drinks, and 200-40).

See Also

l @ILANCESTORS

l @ANCESTORS

l @IANCESTORS

@LDESCENDANTS
Returns all descendants of the members in the specified member list or all descendents down to
the specified generation or level. This function excludes the specified members.

You can use the @LDESCENDANTS function as a parameter of another function, where the
function requires a list of members.

Syntax

@LDESCENDANTS ((memberSetFunction) [,genLevNum])

Calculation Function Reference 119

Parameter Description

memberSetFunction A member set function that returns a list of members.

How the @LDESCENDANTS function is used determines which member set functions are
allowed. Follow these guidelines:

l If the @LDESCENDANTS function is used alone (not within a FIX statement), you must
use the @LIST function and specify member names. For example:

@LIST(mbr1,mbr2,...)

l If the @LDESCENDANTS function is used within a FIX statement, you can use member set
functions such as @UDA and @ATTRIBUTE. For example:

@UDA(dimName,uda)

@ATTRIBUTE (attMbrName)

In this case, you can choose whether to use the @LIST function. For example, both of the
following statements are valid, and the statements return the same results.

Example using only @ATTRIBUTE:

FIX
(@LDESCENDANTS(@ATTRIBUTE(Caffeinated_True),@ATTRIBUTE(Ounces_
12),"200-40"))
...
ENDFIX;

Example using @LIST and @ATTRIBUTE:

FIX
(@LDESCENDANTS(@LIST(@ATTRIBUTE(Caffeinated_True),@ATTRIBUTE(O
unces_12),"200-40")))
...
ENDFIX;

Caution! All members of the specified member list must be from the same dimension.

genLevNum Optional. The integer value that defines the absolute generation or level number up to which to
select members. A positive integer defines a generation number. A value of 0 or a negative integer
defines a level number.

Example

All examples are from the Sample.Basic database.

@LDESCENDANTS(@LIST("100”,"200”,"300”))

Returns 100-10, 100-20, 100-30 (the descendants of 100); 200-10, 200-20, 200-30, 200-40 (the
descendants of 200); and 300-10, 300-20, 300-30 (the descendants of 300).

@LDESCENDANTS(@LIST(“Market”),-1)

Returns East, West, South, and Central (the descendants of the specified member Market to level
1).

FIX
(@LDESCENDANTS(@UDA(Market,"Major Market”)))
...
ENDFIX;

120 Calculation Functions

Returns New York, Massachusetts, Florida, Connecticut, and New Hampshire (the descendants
of the specified member East); and Illinois, Ohio, Wisconsin, Missouri, Iowa, and Colorado (the
descendants of the specified member Central). California and Texas (specified members) are
excluded because they do not have descendants.

FIX
(@LDESCENDANTS(@ATTRIBUTE(Caffeinated_True),@ATTRIBUTE(Ounces_12),"200–40”))
...
ENDFIX;

Returns an empty list as none of the specified members (100-10, 100-20, 200-10, 300-30, which
are caffeinated, 12-ounce drinks, and 200-40) have descendants.

See Also

l @ILDESCENDANTS

l @IDESCENDANTS

l @DESCENDANTS

@LEV
Returns the level number of the specified member.

Syntax

@LEV(mbrName)

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

Example

In the Sample Basic database:

Function Level Returned

@LEV(Margin) 1

@LEV("New York") 0

See Also

l @CURLEV

l @GEN

@LEVMBRS
Returns all members with the specified level number or level name in the specified dimension.

Syntax

@LEVMBRS (dimName, levName|levNum)

Calculation Function Reference 121

Parameter Description

dimName Dimension name specification.

levName|levNum A level name or an integer value that defines the number of a level. The integer value must be 0 or
a positive integer.

Notes

l If you specify a name for the levName parameter, Essbase looks for a level with that name
in the specified dimension.

l If you specify a number for the levName parameter (for example, 2), Essbase first looks for
a level with a number string name. If no level name exists with that name, Essbase checks to
see if the parameter is a valid level number.

l If you specify a temporary variable for the levName parameter, Essbase does not recognize
the value of the variable. It looks in the outline for a level name with the same name as the
temporary variable.

l For more information about levels and defining level names, see the Oracle Essbase Database
Administrator's Guide.

l Essbase sorts the generated list of members in ascending order. Using Sample Basic as an
example, if you specify @LEVMBRS(Product,1), Essbase returns 100, 200, 300, 400, Diet
(in that order). This order is important to consider when you use the @LEVMBRS member
set function with certain forecasting and statistical functions.

l If you use a negative number for the level number, no syntax error is noted, but the
calculation will fail with an error message.

Example

In the Sample Basic database:

@LEVMBRS(Measures,"Profit and Loss")
@LEVMBRS(Measures,0)

both return the following members if level 0 of the Measures dimension is named Profit and
Loss:

Sales, COGS, Marketing, Payroll, Misc, Opening Inventory, Additions, Ending Inventory,
Margin %, Profit %, and Profit per Ounce (in that order).

@LEVMBRS(Scenario,0)

Returns Actual, Budget, Variance, and Variance %.

The following example restricts the calculation to members with the combination Budget and
one of the members of the Market dimension with a level name of "State".

FIX (Budget,@LEVMBRS(Market,State))
 CALC DIM (Year,Measures);
ENDFIX

See Also

l @GENMBRS

122 Calculation Functions

@LIKE
Returns a member set of member names that match the specified pattern.

This function can be used on unique and duplicate-name outlines.

Syntax

@LIKE(pattern, topMbrinHierarchy, [escChar])

Parameter Description

pattern The character pattern with which to compare to members in the outline, including a single
wildcard character:

l %: The percentage sign allows matching to a string of any length (including zero length).

l _: The underscore allows matching on a single character in a member name.

topMbrinHierarchy A fully qualified member name on which to base the member search. The specified member and
its aliases, and all of its descendants, are included in the search.

To search the entire outline, provide an empty string ("") for this parameter. For example,
@LIKE("100%", "").

escChar Optional: A one-byte-length escape character to use if the wildcard character exists in member
names.

If you do not specify an escape character, a backslash (\) is assumed.

Example

The following examples are based on the following duplicate-name outline:

Product
 100
 100–10
 100–10–10
 100–20
 100–30
 200
 200–10
 200–20
 200–30
 300
 300–10
 300–20
 Diet
 100–10
 100–10–11
 200–10
 300–10
 Bottle
 200–10
 300–20

@LIKE(“100%”, “Product”)

Returns members 100, 100-10, 100-20, and 100-30.

@LIKE(“30_”, “Product”)

Calculation Function Reference 123

Returns member 300.

@LIKE(“200_”, “Product”, “\”)

If member 200 has children named 200_10 (note the underscore, _), 200-20 (note the dash,
-), 200_30 and 200-40, returns those members whose name contains an underscore: 200_10
and 200_30.

See Also

l @BETWEEN

l @EQUAL

l @EXPAND

l @MBRCOMPARE

l @MBRPARENT

l @NOTEQUAL

@LIST
Creates and distinguishes lists that are processed by functions that require list arguments. @LIST
can be used to create expLists, member lists, or rangeLists. @LIST treats a collection of parameters
as one entity.

Syntax

@LIST (argument1, argument2, ..., argumentN)

Parameter Description

argument1,
argument2, ...,
argumentN

The list of arguments that are collected and treated as one argument so they can be processed by
the parent function. Arguments can be member names, member combinations, member set
functions, range functions, and numeric expressions.

Notes

@LIST does not check for or eliminate duplicates.

Example

The following example is based on the Sample Basic database. Assume that the Year dimension
contains an additional member, Sales Correl. @LIST is used with the @CORRELATION function
to determine the sales relationship between a product's two peak periods (Jan through Mar and
Apr through May):

FIX(Sales)
"Sales Correl" = @CORRELATION(SKIPNONE,
 @LIST(Jan,Feb,Mar),@LIST(Apr,May,Jun));
ENDFIX

This example produces the following report:

 Colas Actual New York
 Sales
 =====
Jan 678

124 Calculation Functions

Feb 645
Mar 675
Apr 712
May 756
Jun 890

Sales Correl 0.200368468

@LN
Returns the natural logarithm (base e) of the specified expression.

Syntax

@LN (expression)

Parameter Description

expression Single member specification, member combination, or other numeric expression. If less than or equal to
0, Essbase returns #MISSING.

Example

The following example is based on a variation of Sample Basic:

LN_Sales = @LN(Sales);

This example produces the following result:

 Cola East
 Jan Feb Mar Nov Dec
Sales 100 110 120 . . . 0 210
LN_Sales 4.65052 4.70048 4.78749 . . . #MISSING 5.34710

See Also

l @LOG10

l @LOG

l @EXP

@LOG
Returns the result of a logarithm calculation where you can specify both the base to use and the
expression to calculate.

Syntax

@LOG (expression [, base])

Parameter Description

expression Single member specification, variable name, function, or other numeric expression. If less than or equal to
0, Essbase returns #MISSING.

Calculation Function Reference 125

Parameter Description

base Optional. Single member specification, member combination, or numeric expression.

l If the base value is #MISSING, less than or equal to 0, or close to 1, Essbase returns #MISSING.

l If the base is omitted, Essbase calculates the base-10 logarithm of the specified expression. @LOG(Sales)
is equivalent to @LOG10(Sales).

Notes

The @LOG function returns the logarithm of expression calculated using the specified base.
@LOG (x,b) is equivalent to logb(x).

Example

The following example is based on a variation of Sample Basic:

LOG2_Sales = @LOG(Sales,2);

This example produces the following result:

 Cola East
 Jan Feb Mar Nov Dec
Sales 100 #MISSING 120 . . . 0 210
LOG2_Sales 6.64386 #MISSING 6.90689 . . . #MISSING 7.71425

See Also

l @LN

l @LOG10

@LOG10
Returns the base-10 logarithm of the specified expression.

Syntax

@LOG10 (expression)

Parameter Description

expression Single member specification, variable name, function, or other numeric expression. If less than or equal to
0, Essbase returns #MISSING.

Example

The following example is based on a variation of Sample Basic:

LOG10_Sales = @LOG10(Sales);

This example produces the following result:

 Product Actual
 East West South Central
Sales 87398 132931 50846 129680
LOG10_Sales 4.94150 5.12363 4.70626 5.11287

126 Calculation Functions

See Also

l @LOG

l @LN

@LSIBLINGS
Returns the left siblings of the specified member.

Syntax

@LSIBLINGS(mbrName)

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

Notes

This function returns the left siblings of the specified member. Left siblings are children that
share the same parent as the member and that precede the member in the database outline. This
function excludes the specified member.

This member set function can be used as a parameter of another function, where that parameter
is a list of members.

Essbase sorts the generated list of left siblings in descending order. Using Sample Basic as an
example, if you specify 200-30 for mbrName, Essbase returns 200-20, 200-10 (in that order).
This order is important to consider when you use the @LSIBLINGS member set function with
certain forecasting and statistical functions.

Example

In the Sample Basic database:

@LSIBLINGS(Qtr4)

Returns Qtr3, Qtr2, and Qtr1 (in that order). These members appear above Qtr4 in the Sample
Basic outline.

@LSIBLINGS(Utah)

Returns Washington, Oregon, and California (in that order). These members appear above Utah
in the Sample Basic outline.

See Also

l @ILSIBLINGS

l @RSIBLINGS

l @NEXTSIBLING

l @PREVSIBLING

l @SHIFTSIBLING

Calculation Function Reference 127

@MATCH
Performs wildcard member selections.

Syntax

@MATCH (mbrName|genName|levName, "pattern")

Parameter Description

mbrName The default or user-defined name of the member on which to base the search. Essbase searches the member
names and alias names of the specified member and its descendants.

genName The default or user-defined name of the generation to search. Essbase searches all member names and
member alias names in the generation.

levName The default or user-defined name of the level to search. Essbase searches all member names and member
alias names in the level.

"pattern" The character pattern to search for, including a wildcard character (* or ?).

? substitutes one occurrence of any character. You can use ? anywhere in the pattern.

* substitutes any number of characters. You can use * only at the end of the pattern.

To include spaces in the character pattern, enclose the pattern in double quotation marks ("").

Notes

This function performs a trailing-wildcard member selection. Essbase searches for member
names and alias names that match the pattern you specify and returns the member and alias
names it finds.

If the members names in the database you are searching are case-sensitive, the search is case-
sensitive. Otherwise, the search is not case-sensitive. To define database member names as case-
sensitive, use Outline Editor in Oracle Essbase Administration Services. See the Oracle Essbase
Administration Services Online Help.

You can use more than one @MATCH function in a calculation script.

If Essbase does not find any members that match the chosen character pattern, it returns no
member names and continues with the other calculation commands in the calculation script.

Example

In the Sample Basic database:

@MATCH(Product,"???-10")

Returns 100-10, 200-10, 300-10, and 400-10

@MATCH(Year,"J*")

Returns Jan, Jun, Jul

@MATCH(Product,"C*")

Returns 100 (Colas), 100-10 (Cola), 100-30 (Caffeine Free Cola), 300 (Cream Soda)

128 Calculation Functions

@MAX
Returns the maximum value among the results of the expressions in the specified member list.

Syntax

@MAX (expList)

Parameter Description

expList Comma-delimited list of members, variable names, functions, and numeric expressions, all of which return
numeric values.

Notes

Depending on the values in the list, @MAX may return a zero(0) or #MISSING value. For full
control over skipping or inclusion of zero(0) and #MISSING values, it is recommended to use
the @MAXS function instead of the @MAX function.

Example

This example is based on the Sample Basic database:

Qtr1 = @MAX(Jan:Mar);

This example produces the following report:

 Colas New York Actual
 Jan Feb Mar Qtr1
 === === === ====
Sales 678 645 675 678

See Also

l @MAXS

l @MAXSRANGE

l @MINS

@MAXRANGE
Returns the maximum value of the specified member across the specified range of members.

Syntax

@MAXRANGE (mbrName [,XrangeList])

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

XrangeList A valid member name, a comma-delimited list of member names, cross-dimension members, or a member
set function or range function (including @XRANGE) that returns a list of members from the same
dimension. If XrangeList is not specified, Essbase uses the level 0 members from the dimension tagged as
time.

Calculation Function Reference 129

Notes

Depending on the values in the list, @MAXRANGE may return a zero(0) or #MISSING value.
For full control over skipping or inclusion of zero(0) and #MISSING values, it is recommended
to use @MAXSRANGE instead of @MAXRANGE.

Example

In the Sample Basic database:

Qtr1 = @MAXRANGE(Sales,@CHILDREN(Qtr1));

produces the following report:

 Colas New York Actual
 Jan Feb Mar Qtr1
 === === === ====
Sales 678 645 675 678

See Also

l @MAXSRANGE

l @MAXS

l @MINSRANGE

@MAXS
Returns the maximum value among the results of the expressions in the specified member list,
with options to skip missing or zero values (in contrast with the @MAX function, which cannot
ignore these values).

Syntax

@MAXS (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, expList)

Parameter Description

SKIPNONE Includes all cells specified in expList in the operation, regardless of their content

SKIPMISSING Ignores all #MISSING values

SKIPZERO Ignores all 0 values

SKIPBOTH Ignores all 0 and #MISSING values

expList Comma-delimited list of members, variable names, functions, or numeric expressions, all of which
return numeric values

Notes

l @MAXS (SKIPMISSING, expList) is equivalent to @MAX (expList).

l Because #MISSING values are greater than negative data values and less than positive data
values, if the data being calculated includes only negative and #MISSING values, @MAXS
returns #MISSING.

130 Calculation Functions

l If the data being calculated includes only negative, 0, and #MISSING values, @MAXS may
return either #MISSING or 0 values in an unpredictable manner.

Example

For both examples, assume a database similar to Sample Basic. The Measures dimension includes
two members: COGS (cost of goods sold) and OtherInc_Exp (miscellaneous income and
expenses). The data can include 0 and #MISSING values.

Example 1

Qtr1_Max = @MAXS(SKIPBOTH, Jan:Mar);

This example ignores #MISSING and 0 values for all members of the Measures dimension. This
example produces the following results:

 Jan Feb Mar Qtr1_Max
 ======== ======== ======== ========
COGS #MISSING 1500 2300 2300
OtherInc_Exp -500 -350 0 -350

Example 2

Qtr1_Max = @MAXS(SKIPNONE, Jan:Mar);

This example includes #MISSING and 0 values in the calculation, for all members of the Measures
dimension. This example produces the following results:

 Jan Feb Mar Qtr1_Max
 ======== ======== ======== ========
COGS #MISSING 1500 2300 2300
OtherInc_Exp -500 -350 0 0

See Also

l @MAXSRANGE

l @MAX

l @MINS

@MAXSRANGE
Returns the maximum value of the specified member across the specified range of members,
with options to skip missing or zero values (in contrast with the @MAXRANGE function, which
cannot ignore these values).

Syntax

@MAXSRANGE (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, mbrName [,XrangeList])

Parameter Description

SKIPNONE Includes all cells specified in expList in the operation, regardless of their content

SKIPMISSING Ignores all #MISSING values

Calculation Function Reference 131

Parameter Description

SKIPZERO Ignores all 0 values

SKIPBOTH Ignores all 0 and #MISSING values

mbrName Any valid single member name or member combination, or a function that returns a single member
or member combination

XrangeList A valid member name, a comma-delimited list of member names, cross-dimension members, or a
member set function or range function (including @XRANGE) that returns a list of members from the
same dimension. If XrangeList is not specified, Essbase uses the level 0 members from the dimension
tagged as time.

Notes

l @MAXSRANGE (SKIPNONE, mbrName, XrangeList) is equivalent to @MAXRANGE
mbrName, (XrangeList).

l #MISSING values are considered to be greater than negative data values and less than positive
data values. If the data being calculated includes only negative and #MISSING values,
@MAXSRANGE returns #MISSING.

l For all members, @MAXSRANGE returns the value calculated for the specified member and
range list.

Example

For both examples, assume a database similar to Sample Basic. The Measures dimension includes
two members: COGS (cost of goods sold) and OtherInc_Exp (miscellaneous income and
expenses). The data can include 0 and #MISSING values. For both members of the Measures
dimension, the result is the same--the maximum value for the OtherInc_Exp member across
the specified range.

Example 1

Qtr1_Max = @MAXSRANGE (SKIPBOTH, OtherInc_Exp, @CHILDREN(Qtr1));

This example ignores #MISSING and 0 values and produces the following results:

 Jan Feb Mar Qtr1_Max
 ======== ======== ======== ========
OtherInc_Exp -500 #MISSING -250 -250
COGS 0 1500 2300 -250

Example 2

Qtr1_Max = @MAXSRANGE (SKIPNONE, OtherInc_Exp, @CHILDREN(Qtr1));

Using the same data as Example 1, Example 2 demonstrates what happens if you do not skip 0
and #MISSING values in the data. Example 2 produces the following report:

 Jan Feb Mar Qtr1_Max
 ======== ======== ======== ========
OtherInc_Exp -500 #MISSING -250 #MISSING
COGS 0 1500 2300 #MISSING

132 Calculation Functions

See Also

l @MAXS

l @MINSRANGE

l @MAXRANGE

@MBRCOMPARE
Returns a member set of member names that match the comparison criteria. Member names
are evaluated alphanumerically.

This function can be used on unique and duplicate-name outlines.

Syntax

@MBRCOMPARE (compOperator, tokenString, topMbrinHierarchy, cdfName)

Parameter Description

compOperator One of the following strings: < (less than), <= (less than or equal to), > (greater than), >= (greater
than or equal to), == (equals), != (not equal to), or CDF (for a custom-defined function).

Note: Using the == (equal to) comparison operator is the same as using the @EQUAL function.
Using the != (not equal to) comparison operator is the same as using the @NOTEQUAL
function.

tokenString Token string value with which to compare to members in the outline, starting with the member
specified in topMbrinHierarchy.

topMbrinHierarchy A fully qualified name of a member in the outline on which to base the member search. The
specified member and its aliases, and all of its descendants, are included in the search.

Note: Although aliases of the specified member are included in the search, only outline member
names (not aliases) are used when comparing member names.

To search the entire outline, provide an empty string ("") for this parameter. For example,
@MBRCOMPARE("<=" , "100-10", "").

cdfName Optional: This argument applies only if CDF is specified for compOperator.

Name of a custom-defined function.

The custom-defined function must take the tokenString and topMbrinHierarchy
arguments and return a Boolean value. (When compiling @MBRCOMPARE, Essbase rejects
custom-defined functions that do not meet these requirements.) If the function returns a value
of TRUE, the member is added to the member set returned by @MBRCOMPARE.

Notes

The following example of a custom-defined function returns results similar to using the >=
(greater than or equal to) comparison operator:

package com.hyperion.essbase.cdf.comparecdf;

class MyCDF {

Calculation Function Reference 133

public static boolean JavaNameCompare(String baseStr,
 String newStr)
{
try {
 System.out.println ("\n COMPARING MEMBER NAMES \n ");
 // Compare the two strings.
 int result = newStr.compareToIgnoreCase(baseStr);
 if (result < 0)
 return false;
 else if (result == 0)
 return true;
 else
 return true;
}
catch (Exception e) {
 System.out.println ("Comparison function failed !!. Exception \n ");
 return false;
}
}

You must register the custom-defined function before you can use it in the @MBRCOMPARE
function.

ä To register the custom-defined function:

1 Compile the custom-defined function into a JAR file. For example:

CompareCDF.jar

2 Copy the JAR file to the following directory:

$ARBORPATH/java/udf

3 To grant access to the JAR file, add the following statement to the end of the udf.policy file, which
is located in the $ARBORPATH/java directory:

grant codeBase "file:${essbase.java.home}/../java/udf/ CompareCDF.jar" {
permission java.security.AllPermission;
};

4 To register the custom-defined function, use the following MaxL statement:

CREATE OR REPLACE FUNCTION '@JAVACOMPARE'
AS com.hyperion.essbase.cdf.comparecdf.MyCDF.JavaNameCompare(String,
String)'
SPEC '@ CUSTOMCOMPARE (Str1, Str2)'
COMMENT 'Compares Strings returns boolean flag';

Example

The following examples are based on the following duplicate-name outline:

Product
 100
 100–10
 100–10–10
 100–20
 100–30
 200
 200–10

134 Calculation Functions

 200–20
 200–30
 300
 300–10
 300–20
 Diet
 100–10
 100–10–11
 200–10
 300–10
 Bottle
 200–10
 300–20

@MBRCOMPARE("<=", "100-10", "Product")

Returns the members 100, [100].[100-10], and [Diet].[100-10].

@MBRCOMPARE("==", "100-10", "Product")

Returns the members [Diet].[100-10] and [100].[100-10].

@MBRCOMPARE (“CDF”,"100-20", “100”, @JAVACOMPRE)

Uses the @JAVACOMPARE custom-defined function to return a member set.

See Also

l @BETWEEN

l @EQUAL

l @EXPAND

l @LIKE

l @MBRPARENT

l @NOTEQUAL

@MBRPARENT
Returns the parent of the specified member.

This function can be used on unique and duplicate-name outlines.

Syntax

@MBRPARENT (mbrName)

Parameter Description

mbrName Name of a member in the outline.

Example

The following examples are based on the following duplicate-name outline:

Product
 100
 100–10
 100–10–10

Calculation Function Reference 135

 100–20
 100–30
 200
 200–10
 200–20
 200–30
 300
 300–10
 300–20
 Diet
 100–10
 100–10–11
 200–10
 300–10
 Bottle
 200–10
 300–20

@MBRPARENT ("100-10", "Product")

Returns the member 200.

@MBRPARENT("100-10-11")

Returns the member [Diet].[100-10].

See Also

l @BETWEEN

l @EQUAL

l @EXPAND

l @LIKE

l @MBRCOMPARE

l @NOTEQUAL

@MDALLOCATE
Allocates values from a member, from a cross-dimensional member, or from a value across
multiple dimensions. The allocation is based on a variety of criteria.

This function allocates values that are input at an upper level to lower-level members in multiple
dimensions. The allocation is based upon a specified share or spread of another variable. You
can specify a rounding parameter for allocated values and account for rounding errors.

Syntax

@MDALLOCATE (amount, Ndim, allocationRange1 ... allocationRangeN,basisMbr, [roundMbr],
method [, methodParams]

 [, round [, numDigits][, roundErr]])

136 Calculation Functions

Parameter Description

amount A value, member, or cross-dimensional member that contains the value to be allocated into each
allocationRange. The value may also be a constant.

l If amount is a member, the member must be from a dimension to which an
allocationRange belongs.

l If amount is a cross-dimensional member, the member must include a member from every
dimension of every allocationRange.

l If a member or cross-dimensional member is not from an allocationRange dimension, Essbase
displays a warning message.

If the amount parameter is a loaded value, it cannot be a Dynamic Calc member.

Ndim The number of dimensions across which values are allocated.

allocationRange1 ...
allocationRangeN

Comma-delimited lists of members, member set functions, or range functions from the multiple
dimensions into which values from amount are allocated.

basisMbr A value, member, or cross-dimensional member that contains the values that are used as the basis
for the allocation. The method you specify determines how the basis data is used.

roundMbr Optional. The member or cross-dimensional member to which rounding errors are added. This
member (or at least one member of a cross-dimensional member) must be included in an
allocationRange.

Calculation Function Reference 137

Parameter Description

method The expression that determines how values are allocated. One of the following:

l share: Uses basisMbr to calculate a percentage share. The percentage share is calculated by
dividing the value in basisMbr for the current member in allocationRange by the sum across
the allocationRange for that basis member:

amount * (@CURRMBR()->basisMbr/@SUM(allocationRange->basisMbr))

l spread: Spreads amount across allocationRange:

amount * (1/@COUNT(SKIP,allocationRange))

l SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH: Values to be ignored during
calculation of the spread. You must specify a SKIP parameter only for spread.

m SKIPNONE: Includes all cells.

m SKIPMISSING: Excludes all #MISSING values in basisMbr, and stores #MISSING for
values in allocationRange for which the basisMbr is missing.

m SKIPZERO: Excludes all zero (0) values in basisMbr, and stores #MISSING for values
in allocationRange for which the basisMbr is zero.

m SKIPBOTH: Excludes all zero (0) values and all #MISSING values, and stores
#MISSING for values in allocationRange for which the basisMbr is zero (0) or
#MISSING.

l percent: Takes a percentage value from basisMbr for each member in allocationRange and
applies the percentage value to amount:

amount * (@CURRMBR()->basisMbr * .01).

l add: Takes the value from basisMbr for each member of allocationRange and adds the value
to amount:

amount + @CURRMBR()->basisMbr

l subtract: Takes the value from basisMbr for each member of allocationRange and subtracts
the value from amount:

amount - @CURRMBR()->basisMbr

l multiply: Takes the value from basisMbr for each member of allocationRange and multiplies
the value by amount:

amount * @CURRMBR()->basisMbr

l divide: Takes the value from basisMbr for each member of allocationRange and divides the
value by amount:

amount/@CURRMBR()->basisMbr

round Optional. One of the following:

l noRound: No rounding. noRound is the default.

l roundAmt: Indicates that you want to round the allocated values. If you specify roundAmt,
you also must specify numDigits to indicate the number of decimal places to round to.

138 Calculation Functions

Parameter Description

numDigits An integer that represents the number of decimal places to round to. You must specify
numDigits if you specify roundAmt.

l If numDigits is 0, the allocated values are rounded to the nearest integer. The default value
for numDigits is 0.

l If numDigits is greater than 0, the allocated values are rounded to the specified number of
decimal places.

l If numDigits is a negative value, the allocated values are rounded to a power of 10.

If you specify roundAmt, you also can specify a roundErr parameter.

roundErr Optional. An expression that specifies where rounding errors should be placed. You must specify
roundAmt in order to specify roundErr. If you do not specify roundErr, Essbase discards rounding
errors.

To specify roundErr, choose from one of the following:

l errorsToHigh: Adds rounding errors to the member with the highest allocated value. If
allocated values are identical, adds rounding errors to the first value in allocationRange.

l errorsToLow: Adds rounding errors to the member with the lowest allocated value. If allocated
values are identical, adds rounding errors to the first value in allocationRange. #MISSING
is treated as the lowest value in a list; if multiple values are #MISSING, rounding errors are
added to the first #MISSING value in the list.

l errorsToMbr: Adds rounding errors to the specified roundMbr, which must be included in
allocationRange.

Notes

l When you use @MDALLOCATE in a calculation script, use it within a FIX statement; for
example, FIX on the member to which the allocation amount is loaded. Although FIX is not
required, using it may decrease calculation time.

l For a more complex example using the @MDALLOCATE function, see the Oracle Essbase
Database Administrator's Guide.

l If you have very large allocationRange lists, Essbase may return error messages during the
calculation. If you receive error messages, you may need to raise the number for
CALCLOCKBLOCK DEFAULT or use CALCLOCKBLOCK HIGH in your calculation
script.

Example

Consider the following example from the Sample Basic database. A data value of 500 is loaded
to Budget->Total Expenses->East for Jan and Colas. (For this example, assume that Total
Expenses is not a Dynamic Calc member.)

You need to allocate the amount across each expense category for each child of East. The
allocation for each child of East is based on the child's share of Total Expenses->Actual:

FIX("Total Expenses")
Budget = @MDALLOCATE(Budget->"Total Expenses"->East,2,
 @CHILDREN(East),@CHILDREN("Total Expenses"),Actual,,share);
ENDFIX

This example produces the following report:

Calculation Function Reference 139

 Jan Colas
 Marketing Payroll Misc Total Expenses
 ========= ======= ==== ==============
Actual New York 94 51 0 145
 Massachusetts 23 31 1 55
 Florida 53 54 0 107
 Connecticut 40 31 0 71
 New Hampshire 27 53 2 82
 East 237 220 3 460
Budget New York 102.174 55.435 0 #MI
 Massachusetts 25 33.696 1.087 #MI
 Florida 57.609 58.696 0 #MI
 Connecticut 43.478 33.696 0 #MI
 New Hampshire 29.348 57.609 2.173 #MI
 East #MI #MI #MI 500

See Also

l @ALLOCATE

@MDANCESTVAL
Returns ancestor-level data from multiple dimensions based on the current member being
calculated.

Syntax

@MDANCESTVAL (dimCount, dimName1, genLevNum1. . . dimNameX, genLevNumX [,mbrName])

Parameter Description

dimCount Integer value that defines the number of dimensions from which ancestor values are being returned.

dimName1, . . .
dimNameX

Defines the dimension names from which the ancestor values are to be returned. You must specify
a genLevNum for every dimName.

genLevNum, . . .
genLevNumX

Integer value that defines the absolute generation or level number from which the ancestor values
are to be returned. A positive integer defines a generation reference. A negative number or value
of 0 defines a level reference. You must specify a dimName for every genLevNum.

mbrName Optional. Any valid single member name or member combination, or a function that returns a
single member or member combination, from which the ancestor values are to be returned.

Example

Marketing expenses are captured at the Product Family and Region level in a product planning
application. The Marketing Expense data must be allocated down to each Product code and State
level based on Sales contribution. Data is captured as follows:

 Sales Marketing
 ===== =========
New York 100-10 300 N/A
 100-20 200 N/A
 100 500 N/A
Boston 100-10 100 N/A
 100-20 400 N/A
 100 500 N/A

140 Calculation Functions

East 100-10 400 N/A
 100-20 600 N/A
 100 1000 200

The Marketing Expense value of 200 at East and Product code 100 is allocated down to each
Product code and State with the following formula:

Marketing = (Sales / @MDANCESTVAL(2, Market, 2, Product, 2, Sales)) * @MDANCESTVAL(2,
Market, 2, Product, 2, Marketing);

which produces the following result:

 Sales Marketing
 ===== =========
New York 100-10 300 60
 100-20 200 40
 100 500 100
Boston 100-10 100 20
 100-20 400 80
 100 500 100
East 100-10 400 80
 100-20 600 120
 100 1000 200

The Marketing expenses can then be reconsolidated across Products and Markets.

See Also

l @ANCESTVAL

l @SANCESTVAL

l @MDPARENTVAL

@MDPARENTVAL
Returns parent-level data from multiple dimensions based on the current member being
calculated.

Syntax

@MDPARENTVAL (numDim, dimName1, . . . dimNameX [,mbrName])

Parameter Description

numDim Integer value that defines the number of dimensions from which parent values are being returned.

dimName1, . . .
dimNameX

Defines the dimension names from which the parent values are to be returned.

mbrName Any valid single member name or member combination, or a function that returns a single
member or member combination, from which the parent values are to be returned.

Example

Marketing expenses are captured at the Product Family and Region level in a product planning
application. The Marketing Expense data must be allocated down to each Product code and State
level based on Sales contribution.

Calculation Function Reference 141

Data is captured as follows:

 Sales Marketing
 ===== =========
New York 100-10 300 N/A
 100-20 200 N/A
 100 500 N/A
Boston 100-10 100 N/A
 100-20 400 N/A
 100 500 N/A
East 100-10 400 N/A
 100-20 600 N/A
 100 1000 200

The Marketing Expense value of 200 at East and Product code 100 is allocated down to each
Product code and State with the following formula:

Marketing = (Sales / @MDPARENTVAL(2, Market, Product, Sales)) * @MDPARENTVAL(2, Market,
Product, Marketing);

which produces the following result:

 Sales Marketing
 ===== =========
New York 100-10 300 60
 100-20 200 40
 100 500 N/A
Boston 100-10 100 20
 100-20 400 80
 100 500 N/A
East 100-10 400 N/A
 100-20 600 N/A
 100 1000 N/A

The Marketing expenses can then be reconsolidated across Products and Markets.

See Also

l @PARENTVAL

l @SPARENTVAL

l @MDANCESTVAL

@MDSHIFT
Shifts a series of data values across multiple dimension ranges.

Syntax

@MDSHIFT (mbrName, shiftCnt1, dimName1, [range1|(range1)], . . . shiftCntX, dimNameX,
[rangeX|(rangeX)])

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single
member or member combination, from which the values are to be shifted.

shiftCnt1...shiftCntX Integer that defines the number of member positions to shift.

142 Calculation Functions

Parameter Description

dimName1, . . .
dimNameX

Defines the dimension names in which the shift is to occur.

range1|(range1) . . .
rangeX|(rangeX)

Optional. A valid member name, a comma-delimited list of member names, member set
functions, and range functions. If rangeList is not specified, Essbase uses the level 0 members
from the dimension specified with the dimName parameter. If the range list is comma
delimited, then the list must be enclosed in parentheses.

Example

The Budget figures for Ending Inventory need to be calculated by taking Prior Year->Opening
Inventory results as a starting point:

 Jan Feb Mar
 === === ===
Prior Year Opening Inventory 110 120 130 . .
Budget Ending Inventory N/A N/A N/A . .

The following calculation script assumes that the Scenario dimension is as follows:

Scenario
 Prior Year
 Budget

FIX (Budget)
"Ending Inventory" = @MDSHIFT("Opening Inventory", 1, Year, , -1, Scenario,);
ENDFIX

In this example, range1 is not specified, so Essbase defaults to the level 0 members of the Year
dimension, which was specified as the dimName1 parameter. Since range2 is also not specified,
Essbase defaults to the level 0 members of the Scenario dimension, which was specified as the
dimName2 parameter. This example produces the following result:

 Jan Feb Mar
 === === ===
Prior Year Opening Inventory 110 120 130 . .
Budget Ending Inventory 120 130 140 . .

See Also

l @SHIFT

@MEDIAN
Returns the median (the middle number) of the specified data set (expList). Half the numbers
in the data set are larger than the median, and half are smaller.

Syntax

@MEDIAN (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, expList)

Calculation Function Reference 143

Parameter Description

SKIPNONE Includes all cells specified in expList, regardless of their content, during calculation of the median.

SKIPMISSING Excludes all #MISSING values from expList during calculation of the median.

SKIPZERO Excludes all zero (0) values from expList during calculation of the median.

SKIPBOTH Excludes all zero (0) values and #MISSING values from expList during calculation of the median.

expList Comma-delimited list of member specifications, variable names, functions, or numeric expressions.
expList provides a list of numeric values across which the median is calculated.

Notes

l If the member you are calculating and expList are not in the same dimension, use the
@RANGE function to cross the member with the list of members (for example, to cross Sales
with the children of 100).

l @MEDIAN sorts expList in ascending order before calculating the median.

l When expList contains an even number of values, the @MEDIAN function calculates the
average of the two middle numbers.

l @MEDIAN treats #MISSING values as 0 unless SKIPMISSING or SKIPBOTH is specified.

l When you use @MEDIAN in a calculation script, use it within a FIX statement. Although
FIX is not required, using it may improve calculation performance.

l When you use @MEDIAN across a large range in a sparse dimension, you may need to
increase the size of the calculator cache. For more information on the calculator cache, see
the Oracle Essbase Database Administrator's Guide.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Median. This example calculates the median sales
values for all products and uses the @RANGE function to generate expList:

FIX (Product)
Median = @MEDIAN(SKIPBOTH,@RANGE(Sales,@CHILDREN(Product)));
ENDFIX

This example produces the following report:

 Jan New York
 Actual Budget
 ====== ======
Sales Colas 678 640
 Root Beer 551 530
 Cream Soda 663 510
 Fruit Soda 587 620
 Diet Drinks #MI #MI
 Product 2479 2300

Median Product 625 575

144 Calculation Functions

Because SKIPBOTH is specified in the calculation script, the #MI values for Diet Drinks are
skipped. The remaining four products create an even-numbered data set. So, to calculate
Median->Product->Actual, the two middle numbers in the set (587 and 663) are averaged to
create the median (625). To calculate Median->Product->Budget, the two middle numbers in
the set (530 and 620) are averaged to create the median (575).

See Also

l @RANGE

@MEMBER
Returns the member with the name that is provided as a character string.

Syntax

@MEMBER (String)

Parameter Description

String A string (enclosed in double quotation marks) or a function that returns a string

Example

Typically, the @MEMBER function is used in combination with string functions that are used
to manipulate character strings to form the name of a member. In the following example, the
member name QTR1 is appended to the character string 2000_ to form the string 2000_QTR1.
The @MEMBER function returns the member 2000_QTR1 and QTD is set to the value of this
member.

QTD=@MEMBER(@CONCATENATE("2000_", QTR1));

See Also

l @CONCATENATE

l @SUBSTRING

@MERGE
Merges two member lists that are processed by another function. Duplicates (values found in
both lists) are included only once in the merged list.

Syntax

@MERGE (list1, list2)

Parameter Description

list1 The first list of member specifications to be merged.

list2 The second list of member specifications to be merged.

Calculation Function Reference 145

Notes

l Duplicate values are included only once in the merged list.

l @MERGE can merge only two lists at a time. You can nest @MERGE functions to merge
more than two lists.

Example

Example 1

In the Sample Basic database,

@MERGE(@CHILDREN(Colas),@CHILDREN("Diet Drinks"));

returns Cola, Diet Cola, Caffeine Free Cola, Diet Root Beer, and Diet Cream Soda.

Diet Cola appears only once in the merged list, even though it is a child of both Colas and Diet
Drinks.

Example 2

In this example, the @MERGE function is used with the @ISMBR function to increase the
marketing budget for major markets and for western markets.

Budget
(IF (@ISMBR(@MERGE(@UDA(Market,"Major Market"),
 @DESCENDANTS(West))))
Marketing = Marketing * 1.1;
ENDIF;);

This example produces the following report, which shows only the major markets in the East
and all western markets:

 Product Year Budget
 Marketing
 =========
New York 6039
Massachusetts 1276
Florida 2530

California 7260
Oregon 2090
Washington 2772
Utah 1837
Nevada 4521

The values prior to running the calculation script were:

New York 5490
Massachusetts 1160
Florida 2300

California 6600
Oregon 1900
Washington 2520
Utah 1670
Nevada 4110

146 Calculation Functions

See Also

l @LIST

l @RANGE

l @REMOVE

@MIN
Returns the minimum value among the results of the expressions in expList.

Syntax

@MIN (expList)

Parameter Description

expList Comma-delimited list of members, variable names, functions, and numeric expressions, all of which return
numeric values.

Notes

Depending on the values in the list, @MIN may return a zero(0) or #MISSING value. For full
control over skipping or inclusion of zero(0) and #MISSING values, it is recommended to use
the @MINS function instead of the @MIN function.

Example

In the Sample Basic database:

Qtr1 = @MIN(Jan:Mar);

produces the following report:

 Colas New York Actual
 Jan Feb Mar Qtr1
 === === === ====
Sales 678 645 675 645

See Also

l @MINS

l @MINRANGE

l @MAX

@MINRANGE
Returns the minimum value of mbrName across XrangeList.

Syntax

@MINRANGE (mbrName [,XrangeList])

Calculation Function Reference 147

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

XrangeList Optional. A valid member name, a comma-delimited list of member names, cross dimension members, or
a member set function or range function (including @XRANGE) that returns a list of members from the
same dimension. If XrangeList is not specified, Essbase uses the level 0 members from the dimension tagged
as time.

Notes

Depending on the values in the list, @MINRANGE may return a zero(0) or #MISSING value.
For full control over skipping or inclusion of zero(0) and #MISSING values, it is recommended
to use the @MINSRANGE function instead of the @MINRANGE function.

Example

In the Sample Basic database:

Qtr1 = @MINRANGE(Sales,Jan:Mar);

produces the following report:

 Colas New York Actual
 Jan Feb Mar Qtr1
 === === === ====
Sales 678 645 675 645

See Also

l @MINSRANGE

l @MIN

l @MAXSRANGE

@MINS
Returns the minimum value across the results of the expressions in expList, with options to skip
missing or zero values.

Syntax

@MINS (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, expList)

Parameter Description

SKIPNONE Includes in the operation all cells specified in expList regardless of their content

SKIPMISSING Ignores all #MISSING values

SKIPZERO Ignores all 0 values

SKIPBOTH Ignores all 0 and #MISSING values

expList Comma-delimited list of member names, variable names, functions, or numeric expressions. expList
provides a list of numeric values for which Essbase determines the minimum value.

148 Calculation Functions

Notes

l @MINS enables skipping of #MISSING and 0 values, in contrast with @MIN, which always
includes these values.

l @MINS (SKIPNONE, expList) is equivalent to @MIN (expList).

l Because #MISSING values are less than positive data values and more than negative data
values, if the data being calculated includes only positive and #MISSING values, @MINS
returns #MISSING.

l If the data being calculated includes only negative, 0, and #MISSING values,@MINS may
return either #MISSING or 0 values in an unpredictable manner.

Example

For both examples, assume a database similar to Sample Basic. The Measures dimension includes
two members: COGS (cost of goods sold) and OtherInc_Exp (miscellaneous income and
expenses). The data can include 0 and #MISSING values.

Example 1

Qtr1_Min = @MINS(SKIPBOTH, Jan:Mar);

This example ignores #MISSING and 0 values for all members of the Measures dimension. This
example produces the following results:

 Jan Feb Mar Qtr1_Min
 ======== ======== ======== ========
COGS #MISSING 1500 2300 1500
OtherInc_Exp -500 -350 0 -500

Example 2

Qtr1_Min = @MINS(SKIPNONE, Jan:Mar);

For all members of the Measures dimension, this example includes #MISSING and 0 values and
produces the following results:

 Jan Feb Mar Qtr1_Min
 ======== ======== ======== ========
COGS #MISSING 1500 2300 #MISSING
OtherInc_Exp -500 -350 0 -500

See Also

l @MINSRANGE

l @MAXS

l @MIN

@MINSRANGE
Returns the minimum value of mbrName across XrangeList, with options to skip missing or zero
values.

Calculation Function Reference 149

Syntax

@MINSRANGE (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, mbrName [,XrangeList])

Parameter Description

SKIPNONE Includes in the operation all specified cells regardless of their content

SKIPMISSING Ignores all #MISSING values

SKIPZERO Ignores all 0 values

SKIPBOTH Ignores all 0 and #MISSING values

mbrName Any valid single member name or member combination, or a function that returns a single member
or member combination

XrangeList Optional. A valid member name, a comma-delimited list of member names, cross dimension members,
or a member set function or range function (including @XRANGE) that returns a list of members from
the same dimension. If XrangeList is not specified, Essbase uses the level 0 members from the dimension
tagged as time.

Notes

l @MINSRANGE enables skipping of #MISSING and 0 values, in contrast with the
@MINRANGE function, which always includes these values in the calculation.

l @MINSRANGE (SKIPNONE, mbrName, rangeList) is equivalent to @MINRANGE
(mbrName, rangeList).

l #MISSING values are considered to be less than positive data values and more than negative
data values. If the data being calculated includes only positive and #MISSING values,
@MINSRANGE returns #MISSING.

l For all members, @MINSRANGE returns the value calculated for the specified member and
range list.

Example

For both examples, assume a database similar to Sample Basic. The Measures dimension includes
two members: COGS (cost of goods sold) and OtherInc_Exp (miscellaneous income and
expenses). The data can include 0 and #MISSING values. For both members of the Measures
dimension, the result is the same--the minimum value for the OtherInc_Exp member across the
specified range.

Example 1

Qtr1_Min = @MINSRANGE(SKIPBOTH, OtherInc_Exp, Jan:Mar);

This example ignores the 0 value for Mar and produces the following results:

 Jan Feb Mar Qtr1_Min
 ======== ======== ======== ========
COGS #MISSING 1500 2300 350
OtherInc_Exp 500 350 0 350

150 Calculation Functions

Example 2

Qtr1_Min = @MINS(SKIPNONE, OtherInc_Exp, Jan:Mar);

This example does not ignore the 0 value in the calculation. This example produces the following
results:

 Jan Feb Mar Qtr1_Min
 ======== ======== ======== ========
COGS #MISSING 1500 2300 0
OtherInc_Exp 500 350 0 0

See Also

l @MINS

l @MINRANGE

l @MAXSRANGE

@MOD
Calculates the modulus of a division operation.

Syntax

@MOD (mbrName1, mbrName2)

Parameter Description

mbrName1 and mbrName2 Members from the same dimension whose modulus is to be calculated.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Factor. The modulus between Profit % and Margin
% is calculated with the following formula:

Factor = @MOD("Margin %", "Profit %");

This example produces the following report:

 Market Product Scenario
 Margin % Profit % Factor
 ======== ======== ======
Jan 55.10 25.44 4.22
Feb 55.39 26.03 3.34
Mar 55.27 25.87 3.53

@MODE
Returns the mode (the most frequently occurring value) in the specified data set (expList).

Syntax

@MODE (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, expList)

Calculation Function Reference 151

Parameter Description

SKIPNONE Includes all cells specified in expList, regardless of their content, during calculation of the mode.

SKIPMISSING Excludes all #MISSING values from expList during calculation of the mode.

SKIPZERO Excludes all zero (0) values from expList during calculation of the mode.

SKIPBOTH Excludes all zero (0) values and #MISSING values from expList during calculation of the mode.

expList Comma-delimited list of member specifications, variable names, functions, or numeric expressions.
expList provides a list of numeric values across which the mode is calculated.

Notes

l When two or more values in expList occur at the same frequency, Essbase sorts the list of
values in ascending order and chooses the lowest value that occurs with the most frequency
as the mode. For example, if expList contains [2,1,2,2,2,3,3,3,3], Essbase sorts the list as
[1,2,2,2,2,3,3,3,3] and chooses the value [2] as the mode.

l If expList contains no duplicate values, the @MODE function returns the smallest value in
the list as the mode. For example, if expList contains [2,4,7,10,14], @MODE returns 2 as the
mode.

l If #MISSING is the mode of expList, @MODE returns #MISSING unless SKIPMISSING or
SKIPBOTH is specified. If you specify SKIPMISSING or SKIPBOTH and all values in
expList are #MISSING, @MODE returns #MISSING. If you specify SKIPZERO or SKIPBOTH
and all values in expList are 0, @MODE returns #MISSING.

l When you use @MODE in a calculation script, use it within a FIX statement. Although FIX
is not required, using it may improve calculation performance.

l When you use @MODE across a large range in a sparse dimension, you may need to increase
the size of the calculator cache. For more information on the calculator cache, see the Oracle
Essbase Database Administrator's Guide.

Example

The following example calculates the mode of the units sold for the Central region and uses the
@RANGE function to generate expList:

FIX (Central)
"Mode" = @MODE(SKIPMISSING,
 @RANGE(Sales,@CHILDREN(Central)));
ENDFIX

This example produces the following report:

 Colas Actual Jan
 Units Sold
 ==========
Units Sold Illinois 3
 Ohio 2
 Wisconsin 3
 Missouri #MI
 Iowa 0
 Colorado 6

152 Calculation Functions

 Central 14

Mode Central 3

See Also

l @RANGE

@MOVAVG
Applies a moving n-term average (mean) to an input data set. Each term in the set is replaced
by a trailing mean of n terms, and the first terms (the n-1 terms) are copies of the input data.
@MOVAVG modifies a data set for smoothing purposes.

Syntax

@MOVAVG (mbrName [, n [, XrangeList]])

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

n Optional. A positive integer value that represents the number of values to average. The default is 3.

XrangeList Optional. A valid member name, a comma-delimited list of member names, cross dimension members, or
a member set function or range function (including @XRANGE that returns a list of members from the
same dimension. If XrangeList is not specified, Essbase uses the level 0 members from the dimension tagged
as time.

Notes

l The @MOVAVG function calculates a trailing, rather than a centered, average. For example:

 Trailing Average Centered Average
 1 2 3 1 2 3
 2 2

l While calculating the moving average, the @MOVAVG function skips #MISSING values and
decreases the denominator accordingly. For example, if one value out of three is
#MISSING, Essbase adds the remaining two values and divides the sum by two.

l If you use a member set function to generate a member list for the XrangeList parameter
(for example, @SIBLINGS), to ensure correct results, consider the order in which Essbase
sorts the generated member list. For more information, see the Oracle Essbase Technical
Reference topic for the member set function you are using.

l When you use @MOVAVG in a calculation script, use it within a FIX statement. Although
FIX is not required, using it may improve calculation performance.

l For periods where the width is undefined, the value is the same as for the source member.
For example, you can't compute the moving average over the last three months for Jan and
Feb because it doesn't exist. When this happens, Essbase simply copies the value for Jan and
Feb for the moving average.

Calculation Function Reference 153

l When you use @MOVAVG across a large range in a sparse dimension, you may need to
increase the size of the calculator cache. For more information on the calculator cache, see
the Oracle Essbase Database Administrator's Guide.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Mov Avg.

"Mov Avg" = @MOVAVG(Sales,3,Jan:Jun);

In this example, the @MOVAVG function smooths sales data for the first six months of the year
(Jan through Jun). The results of @MOVAVG can be used with the @TREND function to forecast
average sales data for a holiday season (for example, October - December).

This example produces the following report:

 Colas New York Actual
 Sales Mov Avg
 ===== =======
Jan 678 678
Feb 645 645
Mar 675 666
Apr 712 677.3
May 756 714.3
Jun 890 786

In this example, Essbase averages three values at a time for the moving average. The first two
values (Jan,Feb) for Mov Avg and the first two values for Sales are the same. The value for Mar
represents the trailing average of Jan, Feb, and Mar. The value for Apr represents the trailing
average of Feb, Mar, and Apr. The remaining values represent the trailing average for each group
of three values.

See Also

l @MOVMAX

l @MOVMED

l @MOVMIN

l @MOVSUM

l @MOVSUMX

l @TREND

@MOVMAX
Applies a moving n-term maximum (highest number) to an input data set. Each term in the set
is replaced by a trailing maximum of n terms, and the first terms (the n-1 terms) are copies of
the input data. @MOVMAX modifies a data set for smoothing purposes.

Syntax

@MOVMAX (mbrName [, n [, XrangeList]])

154 Calculation Functions

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

n Optional. A positive integer value that represents the number of values that are used to calculate the moving
maximum. The default is 3.

XrangeList Optional. A valid member name, a comma-delimited list of member names, member set functions, and
range functions. If XrangeList is not specified, Essbase uses the level 0 members from the dimension tagged
as Time.

Notes

l The @MOVMAX function calculates a trailing, rather than a centered, maximum. For
example:

 Trailing Maximum Centered Maximum
 1 2 3 1 2 3
 3 3

l While calculating the moving maximum, @MOVMAX skips #MISSING values. For example,
if one value out of four is #MISSING, @MOVMAX calculates the maximum of the remaining
three values.

l If you use an Essbase member set function to generate a member list for the XrangeList
parameter (for example, @SIBLINGS), to ensure correct results, consider the order in which
Essbase sorts the generated member list. For more information, see the Oracle Essbase
Technical Reference topic for the member set function you are using.

l When you use @MOVMAX in a calculation script, use it within a FIX statement. Although
FIX is not required, using it may improve calculation performance.

l When you use @MOVMAX across a large range in a sparse dimension, you may need to
increase the size of the calculator cache. For more information on the calculator cache, see
the Oracle Essbase Database Administrator's Guide.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Mov Max.

"Mov Max" = @MOVMAX(Sales,3,Jan:Jun);

In this example, the @MOVMAX function smooths sales data for the first six months of the year
(Jan through Jun). The results of @MOVMAX can be used with the @TREND function to forecast
maximum sales data for a holiday season (for example, October - December).

This example produces the following report:

 Root Beer New York Actual
 Sales Mov Max
 ===== =======
Jan 551 551
Feb 641 641
Mar 586 641
Apr 630 641

Calculation Function Reference 155

May 612 630
Jun 747 747

In this example, Essbase uses three values at a time to calculate the moving maximum. The first
two values (Jan,Feb) for Mov Max and the first two values for Sales are the same. The value for
Mar represents the trailing maximum of Jan, Feb, and Mar. The value for Apr represents the
trailing maximum of Feb, Mar, and Apr. The remaining values represent the trailing maximum
for each group of three values.

See Also

l @MOVAVG

l @MOVMED

l @MOVMIN

l @MOVSUM

l @MOVSUMX

l @TREND

@MOVMED
Applies a moving n-term median (middle number) to an input data set. Each term in the list is
replaced by a trailing median of n terms, and the first terms (the n-1 terms) are copies of the
input data. @MOVMED modifies a data set for smoothing purposes.

Syntax

@MOVMED (mbrName [, n [, XrangeList]])

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

n Optional. A positive integer value that represents the number of values that are used to calculate the moving
median. The default is 3.

XrangeList Optional. A valid member name, a comma-delimited list of member names, cross dimension members, or
a member set function or range function (including @XRANGE) that returns a list of members from the
same dimension. If XrangeList is not specified, Essbase uses the level 0 members from the dimension tagged
as time.

Notes

l While calculating the moving median, the @MOVMED function skips #MISSING values.
For example, if one value out of four is #MISSING, @MOVMED calculates the median of
the remaining three values.

l The @MOVMED function calculates a trailing, rather than a centered, median. For example:

 Trailing Median Centered Median
 1 2 3 1 2 3
 2 2

l If the group of values being used to calculate the median contains an even number of values,
the @MOVMED function averages the two numbers in the middle.

156 Calculation Functions

l If you use an Essbase member set function to generate a member list for the XrangeList
parameter (for example, @SIBLINGS), to ensure correct results, consider the order in which
Essbase sorts the generated member list. For more information, see the Oracle Essbase
Technical Reference topic for the member set function you are using.

l When you use @MOVMED in a calculation script, use it within a FIX statement. Although
FIX is not required, using it may improve calculation performance.

l When you use @MOVMED across a large range in a sparse dimension, you may need to
increase the size of the calculator cache. For more information on the calculator cache, see
the Oracle Essbase Database Administrator's Guide.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Mov Med.

"Mov Med" = @MOVMED(Sales,3,Jan:Jun);

In this example, the @MOVMED function smooths sales data for the first six months of the year
(Jan through Jun). The results of @MOVMED could be used with the @TREND function to
forecast sales data for a holiday season (for example, October - December).

This example produces the following report:

 Colas New York Actual
 Sales Mov Med
 ===== =======
Jan 678 678
Feb 645 645
Mar 675 675
Apr 712 675
May 756 712
Jun 890 756

In this example, Essbase uses three values at a time to calculate the moving median. The first
two values (Jan,Feb) for Mov Med are the same as the first two values for Sales. The value for
Mar represents the trailing median of Jan, Feb, and Mar. The value for Apr represents the trailing
median of Feb, Mar, and Apr. The remaining values represent the trailing median of each group
of three values.

See Also

l @MOVAVG

l @MOVMAX

l @MOVMIN

l @MOVSUM

l @MOVSUMX

l @TREND

Calculation Function Reference 157

@MOVMIN
Applies a moving n-term minimum (lowest number) to an input data set. Each term in the list
is replaced by a trailing minimum of n terms, and the first terms (the n-1 terms) are copies of
the input data. @MOVMIN modifies a data set for smoothing purposes.

Syntax

@MOVMIN (mbrName [, n [, XrangeList]])

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

n Optional. A positive integer value that represents the number of values that are used to calculate the moving
minimum. The default is 3.

XrangeList Optional. A valid member name, a comma-delimited list of member names, cross dimension members, or
a member set function or range function (including @XRANGE) that returns a list of members from the
same dimension. If XrangeList is not specified, Essbase uses the level 0 members from the dimension tagged
as time.

Notes

l While calculating the moving minimum, the @MOVMIN function skips #MISSING values.
For example, if one value out of four is #MISSING, @MOVMIN calculates the minimum of
the remaining three values.

l The @MOVMIN function calculates a trailing, rather than a centered, minimum. For
example:

Trailing Minimum Centered Minimum
 1 2 3 1 2 3
 1 1

l If you use a member set function to generate a member list for the XrangeList parameter
(for example, @SIBLINGS), to ensure correct results, consider the order in which Essbase
sorts the generated member list. For more information, see the Oracle Essbase Technical
Reference topic for the member set function you are using.

l When you use @MOVMIN in a calculation script, use it within a FIX statement. Although
FIX is not required, using it may improve calculation performance.

l When you use @MOVMIN across a large range in a sparse dimension, you may need to
increase the size of the calculator cache. For more information on the calculator cache, see
the Oracle Essbase Database Administrator's Guide.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Mov Min.

"Mov Min" = @MOVMIN(Sales,3,Jan:Jun);

158 Calculation Functions

In this example, the @MOVMIN function smooths sales data for the first six months of the year
(Jan through Jun). The results of @MOVMIN can be used with the @TREND function to forecast
minimum sales data for the holiday season (for example, October - December).

This example produces the following report:

 Colas New York Actual
 Sales Mov Min
 ===== =======
Jan 678 678
Feb 645 645
Mar 675 645
Apr 712 645
May 756 675
Jun 890 712

In this example, Essbase uses three values at a time to calculate the moving minimum. The first
two values (Jan,Feb) for Mov Min and the first two values for Sales are the same. The value for
Mar represents the trailing minimum of Jan, Feb, and Mar. The value for Apr represents the
trailing mimimum of Feb, Mar, and Apr. The remaining values represent the trailing minimum
for each group of three values.

See Also

l @MOVAVG

l @MOVMAX

l @MOVMED

l @MOVSUM

l @MOVSUMX

l @TREND

@MOVSUM
Applies a moving sum to the specified number of values in an input data set. @MOVSUM
modifies a data set for smoothing purposes.

Syntax

@MOVSUM (mbrName [, n [, XrangeList]])

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

n Optional. A positive integer value that represents the number of values to sum. The default is 3.

XrangeList Optional. A valid member name, a comma-delimited list of member names, cross dimension members, or
a member set function or range function (including @XRANGE) that returns a list of members from the
same dimension. If XrangeList is not specified, Essbase uses the level 0 members from the dimension tagged
as time.

Calculation Function Reference 159

Notes

l For example, if you specify 3 members of the Time dimension in the Sample Basic database,
@MOVSUM at Mar is the sum of the values for Jan, Feb, and Mar; @MOVSUM at Apr is
the sum of the values for Feb, Mar, and Apr. However, Jan and Feb have no @MOVSUM
value, and are called trailing members. Trailing members are copies of the input values. If
you wish to assign different values to trailing members, use @MOVSUMX instead.

l The @MOVSUM function calculates a trailing, rather than a centered, sum. This example
illustrates the difference:

 Trailing Sum Centered Sum
 1 2 3 1 2 3
 6 6

l While calculating the moving sum, @MOVSUM skips #MISSING values. For example, if
one value out of three is #MISSING, Essbase adds the remaining two values.

l If you use an Essbase member set function to generate a member list for the XrangeList
parameter (for example, @SIBLINGS), to ensure correct results, consider the order in which
Essbase sorts the generated member list. For more information, see the Oracle Essbase
Technical Reference topic for the member set function that you are using.

l When you use @MOVSUM in a calculation script, use it within a FIX statement. Although
FIX is not required, using it may improve calculation performance.

l When you use @MOVSUM across a large range in a sparse dimension, you may need to
increase the size of the calculator cache. For more information on the calculator cache, see
the Oracle Essbase Database Administrator's Guide.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Mov Sum.

"Mov Sum" = @MOVSUM(Sales,3,Jan:Jun);

In this example, @MOVSUM smooths sales data for the first six months of the year (Jan through
Jun). The results of @MOVSUM can be used with the @TREND function to forecast average
sales data for a holiday season (for example, October through December).

This example produces the following report:

 Colas New York Actual
 Sales Mov Sum
 ===== =======
Jan 678 678
Feb 645 645
Mar 675 1998
Apr 712 2032
May 756 2143
Jun 890 2358

See Also

l @MOVAVG

l @MOVMAX

l @MOVMED

160 Calculation Functions

l @MOVMIN

l @MOVSUMX

l @TREND

@MOVSUMX
Applies a moving sum to the specified number of values in an input data set. @MOVSUMX
modifies a data set for smoothing purposes.

Unlike @MOVSUM, @MOVSUMX allows you to specify the values assigned to trailing
members. For example, if you specify three members of the Time dimension in the Sample Basic
database, @MOVSUMX at Mar is the sum of the values for Jan, Feb, and Mar; @MOVSUMX
at Apr is the sum of the values for Feb, Mar, and Apr. However, Jan and Feb have no
@MOVSUMX value, and are called trailing members.

Syntax

@MOVSUMX (COPYFORWARD | TRAILMISSING | TRAILSUM, mbrName [,n[,Xrangelist]])

Parameter Description

COPYFORWARD Copies the input value into the trailing members. This behavior is the same as the @MOVSUM
function.

TRAILMISSING Sets the value of the trailing members to #MISSING.

TRAILSUM Sums the trailing values.

mbrName Any valid single member name or member combination, or a function that returns a single member
or member combination.

n Optional. A positive integer value that represents the number of values that are used to calculate
the moving maximum. The default is 3.

XrangeList Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list of
members from the same dimension. If XrangeList is not specified, Essbase uses the level 0 members
from the dimension tagged as time.

Notes

l The @MOVSUMX function calculates a trailing, rather than a centered, sum. This example
illustrates the difference:

 Trailing Sum Centered Sum
 1 2 3 1 2 3
 6 6

l While calculating the moving sum, @MOVSUMX skips #MISSING values. For example, if
one value out of three is #MISSING, Essbase adds the remaining two values.

l If you use a member set function to generate a member list for the XrangeList parameter
(for example, @SIBLINGS), to ensure correct results, consider the order in which Essbase
sorts the generated member list. For more information, see the Oracle Essbase Technical
Reference topic for the member set function that you are using.

Calculation Function Reference 161

l When you use @MOVSUMX in a calculation script, use it within a FIX statement. Although
FIX is not required, using it may improve calculation performance.

l When you use @MOVSUMX across a large range in a sparse dimension, you may need to
increase the size of the calculator cache. For more information on the calculator cache, see
the Oracle Essbase Database Administrator's Guide.

Example

The following examples are based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, "Last 3 Months of Sales," and that the original Sales
values are as shown.

Last 3 Months of Sales = @MOVSUMX (COPYFORWARD,Sales,3,Jan:Aug);

or:

Last 3 Months of Sales = @MOVSUMX (TRAILMISSING,Sales,3,Jan:Aug);

or:

Last 3 Months of Sales = @MOVSUMX (TRAILSUM,Sales,3,Jan:Aug);

These examples produce the following reports:

Sales

===========
Jan 100
Feb 150
Mar 200
Apr 250
May 300
Jun 350
Jul 400
Aug 450

Last 3 Months of Sales
COPYFORWARD
======================
 100
 150
 450
 600
 750
 900
 1050
 1200

Last 3 Months of Sales
TRAILMISSING
======================
 #MISSING
 #MISSING
 450
 600
 750
 900

162 Calculation Functions

 1050
 1200

Last 3 Months of Sales
TRAILSUM
======================
 100
 250
 450
 600
 750
 900
 1050
 1200

See Also

l @MOVAVG

l @MOVMAX

l @MOVMED

l @MOVMIN

l @MOVSUM

l @TREND

@NAME
Passes the enclosed string, or list of member or dimension names, as a list of strings to another
function.

Syntax

@NAME (mbrName)

Parameter Description

mbrName A list of member names, dimension names, or strings.

Notes

Essbase does not support strings in functions. It treats strings as values or an array of values. The
@NAME function processes strings.

Example

Example 1

The following example is based on the Sample Basic database. A user-defined function is used
to retrieve the price from the table below. The user defined function (J_GetPrice) takes two
string parameters, time and product name, to return the price for each product.

MonthName ProductId Price

Jan 100-10 1.90

Calculation Function Reference 163

MonthName ProductId Price

Feb 100-10 1.95

Mar 100-10 1.98

Jan 100-20 1.95

Feb 100-20 2.00

Mar 100-20 2.05

Price = @J_GetPrice(@NAME(@CURRMBR(Product)),@NAME(@CURRMBR(Year)));

The following report illustrates the above example:

 Price Actual Market
 Jan Feb Mar
 === === ===
 100-10 1.90 1.95 1.98
 100-20 1.95 2.00 2.05

Example 2

The following example is based on the Sample Basic database:

"Profit Per Ounce" = Profit/@ATTRIBUTEVAL(@NAME(Ounces));

The @NAME function processes the string “Ounces” before passing it to the @ATTRIBUTEVAL
function. This example produces the following report:

 Actual Year West
 Profit Profit Per Ounce
 ======== ================
Cola 4593 382.75

See Also

l @CURRMBR

@NEXT
Returns the nth cell value in the sequence rangeList from mbrName, retaining all other members
identical to the current member. @NEXT cannot operate outside the given range.

Syntax

@NEXT (mbrName [, n, rangeList])

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

n Optional signed integer. If you do not specify n, then the default is set to 1, which provides the next member
in the range. Using a negative value for n has the same effect as using the matching positive value in the
@PRIOR function.

164 Calculation Functions

Parameter Description

rangeList Optional. A valid member name, a comma-delimited list of member names, member set functions, and
range functions. If rangeList is not specified, Essbase uses the level 0 members from the dimension tagged
as Time.

Example

In this example, Next Cash for each month is derived by taking the Cash value for the following
month. Since n is not specified, the default is 1, which provides the next member in the range.
Since rangeList is not specified, the level 0 members from the dimension tagged as Time are used
(Jan,Feb,Mar, ...).

"Next Cash" = @NEXT(Cash);

This example produces the following report:

 Jan Feb Mar Apr May Jun
 === === === === === ===
Cash 100 90 120 110 150 100
Next Cash 90 120 110 150 100 #MI

See Also

l @PRIOR

l @SHIFT

l @SHIFTMINUS

l @SHIFTPLUS

@NEXTS
Returns the nth cell value in the sequence rangeList from the mbrName. Provides the option to
skip #MISSING, zero, or both #MISSING and zero values. Works within a designated range and
retains all other members identical to the current member.

Syntax

@NEXTS (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH mbrName[,n,rangeList])

Parameter Description

SKIPNONE Includes all cells specified in the rangeList operation, regardless of their content.

SKIPMISSING Ignores all #MISSING values in the rangeList operation.

SKIPZERO Ignores all 0 in the rangeList operation.

SKIPBOTH Ignores all #MISSING and 0 values in the rangeList operation.

mbrName Any valid single member name or member combination, or a function that returns a single member
or member combination.

n Optional signed integer. Using a negative value for n has the same effect as using the matching positive
value in @PRIORS. If you do not specify n, then a default value of 1 is assumed, which returns the next
prior member from the lowest level of the dimension set as Time in the database outline.

Calculation Function Reference 165

Parameter Description

rangeList Optional. A valid member, a comma-delimited list of member names, member set functions, and range
functions. If rangeList is not specified, Essbase uses the level 0 members from the dimension set as Time.

Example

In this example, Next Cash for each month is derived by taking the Cash value for the following
month and ignoring both #MISSING and zero values. Because n is not specified, the default is
1, which provides the next member in the range. Also, because rangeList is not specified, the level
0 members from the dimension set as Time are used (Jan,Feb,Mar, ...).

"Next Cash" = @NEXTS(SKIPBOTH, Cash);

The following report illustrates the above example:

 Jan Feb Mar Apr May Jun
 === === === === === ===
Cash 1100 #MI 1000 1300 0 1400
Next Cash 1000 1000 1300 1400 1400 #MI

See Also

l @NEXT

@NEXTSIBLING
Returns the next sibling (the sibling to the immediate right) of the specified member. This
function excludes the specified member. If the specified member is the last sibling, Essbase
returns an empty string.

This function returns the next sibling as a string. To pass the @NEXTSIBLING function as a
parameter of another function, where the function requires a list of members, you must wrap
the output of @NEXTSIBLING with the @MEMBER function.

Syntax

@NEXTSIBLING (mbrName)

Parameter Description

mbrName Valid member name or member-name combination or a function that returns one member or member
combination.

Example

All examples are from the Sample.Basic database.

@NEXTSIBLING(“100–20”)

Returns 100-30 (the next sibling of 100-20).

@NEXTSIBLING(“200”)

Returns 300 (the next sibling of 200). The @NEXTSIBLING and the @SHIFTSIBLING
(“200”,1) function return the same results.

166 Calculation Functions

@MEMBER(@NEXTSIBLING(“100-20”))

Returns 100-30 (the next sibling of 100-20).

@CHILDREN(@MEMBER(@NEXTSIBLING("East")))

Returns all children of West.

See Also

l @PREVSIBLING

l @SHIFTSIBLING

@NOTEQUAL
Returns a member set of member names that do not match the specified token name.

This function can be used on unique and duplicate-name outlines.

Syntax

@NOTEQUAL (tokenName, topMbrinHierarchy)

Parameter Description

tokenName Token string value, representing the name of a member, with which to compare to members in
the outline, starting with member specified in topMbrinHierarchy. The specified token
name must not be qualified for duplicate members.

topMbrinHierarchy A fully qualified name of a member in the outline on which to base the member search. The
specified member and its aliases, and all of its descendants, are included in the search.

To search the entire outline, provide an empty string ("") for this parameter. For example,
@NOTEQUAL("300-30", "").

Example

The following examples are based on the following duplicate-name outline:

Product
 100
 100–10
 100–10–10
 100–20
 100–30
 200
 200–10
 200–20
 200–30
 300
 300–10
 300–20
 Diet
 100–10
 100–10–11
 200–10
 300–10
 Bottle

Calculation Function Reference 167

 200–10
 300–20

@NOTEQUAL("200-10", "Product")

Returns all of the members under the Product dimension, except for the members [Bottle].
[200-10], [Diet].[200-10], and [200].[200-10].

@NOTEQUAL("200-10", "Diet")

Returns the members Diet, [Diet].[100-10], [Diet].[100-10].[100-10-10], and [Diet].
[300-10].

See Also

l @BETWEEN

l @EQUAL

l @EXPAND

l @LIKE

l @MBRCOMPARE

l @MBRPARENT

@NPV
Calculates the Net Present Value of an investment based on the series of payments (negative
values) and income (positive values).

Syntax

@NPV (cashflowMbr, rateMbrConst, discountFlag [, rangeList])

Parameter Description

cashflowMbr Member specification providing a series of numeric values.

rateMbrConst Single member specification, variable name, or numeric expression, providing a constant value.

discountFlag Single member specification, variable name, or numeric expression set to 0 or 1 to indicate whether the
function should discount from the first period. 1 means do not discount from the first period.

rangeList Optional. A valid member name, a comma-delimited list of member names, member set functions, and
range functions from the dimension tagged as Time. If rangeList is not specified, Essbase uses the level
0 members from the dimension tagged as Time.

Notes

Financial functions never return a value; rather, they calculate a series of values internally based
on the range specified.

Example

In this example, Value is calculated with the following formula:

Value = @NPV(Cash, Rate, 0, FY1990:FY1994, FY1995:FY2000);

This example produces the following report:

168 Calculation Functions

 FY1990 FY1991 FY1992 FY1993 FY1994 FY1995
 ====== ====== ====== ====== ====== ======
Cash (1,000) 500 600 500 #MISSING #MISSING
Rate 0 0 0 0 #MISSING #MISSING
Value 296 296 296 296 296 296

See Also

l @PTD

@PARENT
Returns the parent of the current member being calculated in the specified dimension. If you
specify the optional mbrName, that parent is combined with the specified member.

This member set function can be used as a parameter of another function, where that parameter
is a member or list of members.

Syntax

@PARENT (dimName [, mbrName])

Parameter Description

dimName Single dimension name specification.

mbrName Optional. Any valid single member name or member combination, or a function that returns a single
member or member combination, that is combined with the parent returned.

Notes

l You cannot use the @PARENT function in a FIX statement.

l You can use the @PARENT function on both the left and right sides of a formula. If you use
this function on the left side of a formula in a calculation script, associate it with a member.
For example:

Sales(@PARENT(Product) = 5;);

l In some cases, the @PARENT function is equivalent to the @PARENTVAL function, except
in terms of calculation performance. For example, the following two formulas are equivalent:

Sales = @PARENT(Profit);
Sales = @PARENTVAL(Profit);

In this case, using the latter formula results in better calculation performance. In general,
use @PARENT as a member rather than as an implied value of a cell. For example:

Sales = @AVG(SKIPMISSING, @ISIBLINGS(@PARENT("100")));

l The time required for retrieval and calculation may be significantly longer if this function
is in a formula attached to a member tagged as Dynamic Calc or Dynamic Calc and Store.

l If you are using the @PARENT function within @XREF: the @XREF function requires the
@NAME function to be used around @PARENT. For example:

COGS=@XREF(Sample, @NAME(@PARENT(Product)),Sales);

Calculation Function Reference 169

Example

In the Sample Basic database:

@PARENT(Market,Sales)

returns Central->Sales, if the current member of Market being calculated is Colorado.

@PARENT(Measures)

returns Profit, if the current member of Measures being calculated is Margin.

See Also

l @ANCEST

l @CHILDREN

l @ANCESTORS

l @DESCENDANTS

l @SIBLINGS

@PARENTVAL
Returns the parent values of the member being calculated in the specified dimension.

Syntax

@PARENTVAL (dimName [, mbrName])

Parameter Description

dimName Single dimension name specification that defines the focus dimension of parent values.

mbrName Optional. Any valid single member name or member combination, or a function that returns a single
member or member combination.

Example

This example is based on the Sample Basic database. The formula calculates Market Share for
each state by taking each state's Sales value as a percentage of Sales for East (its parent) as a whole.
Market Share->East is calculated as East's percentage of its parent, Market.

"Market Share" = Sales % @PARENTVAL(Market,Sales);

This example produces the following report:

 Cola Actual Jan
 Sales Market Share
 ===== ============
New York 678 37.42
Massachusetts 494 27.26
Florida 210 11.59
Connecticut 310 17.11
New Hampshire 120 6.62
 East 1812 37.29

Market 4860 100

170 Calculation Functions

Adding the "Market Share" member and formula to the outline would produce the same result
as above.

See Also

l @MDPARENTVAL

l @SPARENTVAL

l @ANCESTVAL

@POWER
Returns the value of the specified member or expression raised to power.

Syntax

@POWER (expression, power)

Parameter Description

expression Single member specification, variable name, function, or other numeric expression.

power Single member specification, variable name, function, or other numeric expression.

Notes

l If expression is negative, and if power is not an integer, Essbase returns #MISSING.

l If the value calculated by @POWER is an infinite number, Essbase returns #MISSING.

Example

Usage Return Value

@POWER(14,3) 2744

@POWER(2,8) 256

See Also

l @FACTORIAL

@PREVSIBLING
Returns the previous sibling (the sibling to the immediate left) of the specified member. This
function excludes the specified member. If the specified member is the first sibling, Essbase
returns an empty string.

Calculation Function Reference 171

This function returns the next sibling as a string. To pass the @PREVSIBLING function as a
parameter of another function, where the function requires a list of members, you must wrap
the output of @PREVSIBLING with the @MEMBER function.

Syntax

@PREVSIBLING(mbrName)

Parameter Description

mbrName Valid member name or member-name combination or a function that returns one member or member
combination.

Example

All examples are from the Sample.Basic database.

@PREVSIBLING(“100–20”)

Returns 100-10 (the previous sibling of 100-20). The @PREVSIBLING(“100–20”) function and
the @SHIFTSIBLING(“100-20”,-1 function return the same results.

Returns 100 (the previous sibling of 200).

@PREVSIBLING(“100–10”)

Returns an empty list as 100-10 does not have a previous sibling.

@CHILDREN(@MEMBER(@PREVSIBLING("East")))

Returns an empty list as there is no previous sibling of East at the same level.

See Also

l @NEXTSIBLING

l @SHIFTSIBLING

@PRIOR
Returns the nth previous cell member from mbrName in rangeList. All other dimensions assume
the same members as the current member. @PRIOR works only within the designated range,
and with level 0 members.

Syntax

@PRIOR (mbrName [, n, rangeList])

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

n Optional signed integer. Using a negative value for n has the same effect as using the matching positive value
in the @NEXT function. If you do not specify n, then a default value of 1 is assumed, which returns the next
prior member from the lowest level of the dimension tagged as Time in the database outline.

172 Calculation Functions

Parameter Description

rangeList Optional. A valid member name, a comma-delimited list of member names, member set functions, and
range functions. If rangeList is not specified, Essbase uses the level 0 members from the dimension tagged
as Time.

Example

In this example, Prev Inventory for each month is derived by taking the Inventory value from
the previous month. Since n is not specified, the default is 1, which provides the next prior
member in the range. Since rangeList is not specified, the level 0 members from the dimension
tagged as Time are used (Jan,Feb,Mar,...).

"Prev Inventory" = @PRIOR(Inventory);

This example produces the following report:

 Jan Feb Mar Apr May Jun
 === === === === === ===
Inventory 1100 1200 1000 1300 1300 1400
Prev Inventory #MI 1100 1200 1000 1300 1300

See Also

l @NEXT

l @SHIFT

l @SHIFTMINUS

l @SHIFTPLUS

@PRIORS
Returns the nth previous cell member from mbrName in the rangeList. @PRIORS provides
options to skip #MISSING, zero, or both #MISSING and zero values. All other dimensions assume
the same members as the current member. @PRIORS works within the designated range.

Syntax

@PRIORS(SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH mbrName[,n, rangeList])

Parameter Description

SKIPNONE Includes all cells specified in the rangeList operation regardless of their content.

SKIPMISSING Ignores all #MISSING values in the rangeList operation.

SKIPZERO Ignores all zero values in the rangeList operation.

SKIPBOTH Ignores all #MISSING and zero values in the rangeList .

mbrName Any valid single member name or member combination, or a function that returns a single member
or member combination.

Calculation Function Reference 173

Parameter Description

n Optional signed integer. Using a negative value for n has the same effect as using the matching positive
value in the @NEXTS function. If you do not specify n, then a default value of 1 is assumed, which
returns the next prior member from the lowest level of the dimension set as Time in the database
outline.

rangeList Optional. A valid member, a comma-delimited list of member names, member set functions, and range
functions. If rangeList is not specified, Essbase uses the level 0 members from the dimension set as Time.

Example

In this example, Prev Inventory for each month is derived by taking the Inventory value from
the previous month and ignoring #MISSING and zero values. Because n is not specified, the
default is 1, which provides the next prior member in the range. Also, because rangeList is not
specified, the level 0 members from the dimension are set as Time used as (Jan,Feb,Mar,...).

"Prev Inventory" = @PRIORS(SKIPBOTH,Inventory);

The following report illustrates this example:

 Jan Feb Mar Apr May Jun
 === === === === === ===
 Inventory 1100 #MI 1000 1300 0 1400
 Prev Inventory #MI 1100 1100 1000 1300 1300

See Also

l @PRIOR

@PTD
Calculates the period-to-date values of members in the dimension tagged as Time. By default,
data is summed unless Accounts are tagged as "First" or "Last".

Syntax

@PTD (timePeriodList)

Parameter Description

timePeriodList Range of members from the dimension tagged as Time.

Notes

l Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

l You can use the @PTD function only if the outline contains a dimension tagged as Accounts.

Example

In this example, assume that the Year dimension in the Sample Basic database outline contains
two additional members, YTD and QTD. Using a calculation script, the YTD and QTD members
are calculated as follows:

174 Calculation Functions

YTD = @PTD(Jan:May);
QTD = @PTD(Apr:May);

In this example Opening Inventory is tagged with a time balance of First, and Ending Inventory
is tagged with a time balance of Last.

This example produces the following report:

 Product Market Scenario

 Sales Opening Inventory Ending Inventory
 ===== ================= ================
Jan 31538 117405 116434
Feb 32069 116434 115558
Mar 32213 115558 119143
 Qtr1 95820 117405 119143
Apr 32917 119143 125883
May 33674 125883 136145
Jun 35088 136145 143458
 Qtr2 101679 119143 143458
QTD 66591 245026 262028
YTD 162411 362431 381171

See Also

l @NPV

@RANGE
Returns a member list that crosses the specified member from one dimension (mbrName) with
the specified member range from another dimension (rangeList). @RANGE can be combined
with non-range functions, such as @AVG, which replaces an existing range function, such as
@AVGRANGE.

Syntax

@RANGE (mbrName [, rangeList])

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

rangeList Optional. A valid member name, a comma-delimited list of member names, member set functions, and
range functions. If rangeList is not specified, Essbase uses the level 0 members from the dimension tagged
as Time.

Notes

Calculator function @RANGE and the cross-dimensional operator (->) cannot be used inside
a FIX/ENDFIX statement.

Calculation Function Reference 175

Example

Example 1

The following example is based on the Sample Basic database. The @RANGE function is used
with the @AVG function to determine the average sales for Colas in the West.

FIX(Sales)
West=@AVG(SKIPBOTH,@RANGE(Sales,@CHILDREN(West)));
ENDFIX

Since the calculation script fixes on Sales, only the Sales value for West are the average of the
values for western states; COGS values for West are the sum of the western states. This example
produces the following report:

 Colas
 Sales COGS
 Actual Actual

 Qtr3 Qtr4 Qtr3 Qtr4
 ==== ==== ==== ====
California 3401 2767 2070 1701
Oregon 932 1051 382 434
Washington 1426 1203 590 498
Utah 1168 1294 520 575
Nevada 496 440 222 197
 West 1484.6 1351 3784 3405

Example 2

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Prod Count. The @RANGE function is used with
the @COUNT function to calculate the count of all products for which a data value exists:

"Prod Count" = @COUNT(SKIPMISSING,@RANGE(Sales,@CHILDREN(Product)));

This example produces the following report. Since SKIPMISSING is specified in the formula,
the #MI value for Sales->Diet Drinks is not counted as a data value:

 Jan New York Actual
 Sales Prod Count
 ===== ==========
Colas 678 #MI
Root Beer 551 #MI
Cream Soda 663 #MI
Fruit Soda 587 #MI
Diet Drinks #MI #MI
 Product 2479 4

See Also

l @LIST

l @MERGE

l @REMOVE

176 Calculation Functions

@RANK
Returns the rank of the specified members or the specified value among the values in the specified
data set. The rank of a value is equivalent to its position (its rank) in the sorted data set.

Syntax

@RANK (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, value, expList)

Parameter Description

SKIPNONE Includes all cells specified in expList, regardless of their content, during calculation of the rank.

SKIPMISSING Excludes all #MISSING values from expList during calculation of the rank.

SKIPZERO Excludes all zero (0) values from expList during calculation of the rank.

SKIPBOTH Excludes all zero (0) values and #MISSING values from expList during calculation of the rank.

value (1) The member or member combination for which the rank is calculated, or (2) a constant value for
which the rank is calculated.

expList Comma-delimited list of member specifications, variable names, functions, or numeric expressions.
expList provides a list of numeric values across which the rank is calculated.

Notes

l After SKIP processing, the @RANK function sorts the data set in descending order (for
example, 15341, 9650, 6556, 4255, 1989). The rank of a value identifies its position in the
sorted data set (for example, 15341 is ranked 1; 1989 is ranked 5)

l An input value of #MISSING returns #MISSING. #MISSING is also returned if, after SKIP
processing, there are no values to compare.

l The @RANK function assigns the same rank to duplicate values; however, the presence of
duplicate values affects the rank numbers. For example, if a list of values contains [2,2,4,5],
Essbase first sorts the list [5,4,2,2] and then ranks: [5] has a rank of 1, [4] has a rank of 2,
and [2] has a rank of 3. In this case, no value has a rank of 4.

l If value is a constant value and that value is not included in expList, Essbase inserts the
constant value in the list and then ranks it accordingly. For example, if a list of values contains
[2,4,6,13], and you want to rank a value of [3] in this list, Essbase:

1. Sorts the list in descending order [13,6,4,2]

2. Inserts [3] in the list [13,6,4,3,2]

3. Ranks [3] in the list: in this case, [3] has a rank of 4.

l When you use @RANK in a calculation script, use it within a FIX statement. Although using
FIX is not required, it may improve calculation performance.

l When you use @RANK across a large range in a sparse dimension, you may need to increase
the size of the calculator cache. For more information on the calculator cache, see the Oracle
Essbase Database Administrator's Guide.

Calculation Function Reference 177

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Sales Rank. Essbase ranks the sales values for a set
of products:

"Sales Rank" = @RANK(SKIPBOTH,Sales,
@RANGE(Sales,@LEVMBRS(Product,1)));

This example produces the following report. Since SKIPBOTH is specified in the formula, the
#MI value for Sales->Diet Drinks is not included in the ranked list:

 New York Actual Jan
 Sales Sales Rank
 ===== ==========
Colas 678 1
Root Beer 551 4
Cream Soda 663 2
Fruit Soda 587 3
Diet Drinks #MI #MI

@RDESCENDANTS
Returns all descendants of the specified member, or those down to the specified generation or
level, including shared members. This function excludes the specified member.

You can use this member set function as a parameter of another function, where that parameter
is a list of members.

In the absence of shared members, @RDESCENDANTS and @DESCENDANTS return the same
result.

Syntax

@RDESCENDANTS (mbrName [, genLevNum| genLevName])

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination

genLevNum Optional. An integer value that defines the absolute generation or level number down to which to select
the members. A positive integer defines a generation number. A value of 0 or a negative integer defines
a level number.

genLevName Optional. Level name or generation name down to which to select the members.

Notes

l The order of members in the result list is important to consider when you use the
@RDESCENDANTS member set function with certain forecasting and statistical functions.
Essbase generates the list of members in the following sequence: If a shared member is
encountered, the above steps are repeated on the member being shared.

1. The specified member

2. The nearest descendant of the member

178 Calculation Functions

3. The next nearest descendant of the member, and so on.

l You can use @IRDESCENDANTS to include the specified member in the member list.

Example

Example 1

Assume a variation of the Sample Basic database such that the Product dimension includes the
following members:

Product
 100
 100-10
 100-20
 100-30
 200
 200-10
 200-20
 200-30
 200-40
 Diet
 100 (Shared Member)
 200 (Shared Member)

Diet has two children "100" and "200". The members "100" and "200" are shared members.

@RDESCENDANTS(Diet)

returns the members: 100, 100-10, 100-20, 100-30, 200, 200-10, 200-20, 200-30, 200-40 (in that
order).

Example 2

@RDESCENDANTS(Profit)

returns Margin, Sales, COGS, Total Expenses, Marketing, Payroll, and Misc (in that order) and
is identical to @DESCENDANTS(Profit).

See Also

l @DESCENDANTS

l @IRDESCENDANTS

l @IDESCENDANTS

l @ISDESC

l @ANCESTORS

l @CHILDREN

l @SIBLINGS

@RELATIVE
Returns all members at the specified generation or level that are above or below the specified
member in the database outline.

Calculation Function Reference 179

Syntax

@RELATIVE (mbrName, genLevNum | genLevName)

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

genLevNum An integer value that defines the number of a generation or level. A positive integer defines a generation
number. A value of 0 or a negative integer defines a level number.

genLevName Generation or level name specification.

Notes

This function returns all members at the specified generation or level that are above or below
the specified member in the database outline.

Essbase sorts the generated list of members in ascending order. Using Sample Basic as an
example, @RELATIVE(200,0), returns 200-10, 200-20, 200-30, 200-40 (in that order). This
order is important to consider when you use the @RELATIVE member set function with certain
forecasting and statistical functions.

Example

In the Sample Basic database:

@RELATIVE(Qtr1,3)
@RELATIVE(Qtr1,0)

both return the three members that are at generation 3 (or level 0) and that are below Qtr1 in
the Sample Basic outline: Jan, Feb, and Mar (in that order).

@RELATIVE(Profit,-1)

returns the two members that are at level 1 and that are below Profit: Margin and Total Expenses
(in that order).

@REMAINDER
Returns the remainder value of expression.

Syntax

@REMAINDER (expression)

Parameter Description

expression Single member specification, variable name, or other numeric expression.

Example

Margin = @REMAINDER("Margin %");

This example produces the following report:

180 Calculation Functions

 Product Market
 Margin % Margin
 Jan Feb Mar Jan Feb Mar
 === === === === === ===
Scenario 55.10 55.39 55.27 0.10 0.39 0.27

See Also

l @TRUNCATE

@REMOVE
Removes values or members in one list from another list.

Syntax

@REMOVE (list1, list2)

Parameter Description

list1 A list of member specifications, from which the members specified in list2 are removed.

list2 A list of member specifications to be removed from list1.

Example

Example 1

In the Sample Basic database,

@REMOVE(@CHILDREN(East),@LIST("New York",Connecticut))

returns Massachusetts, Florida, New Hampshire.

Example 2

The following example is based on the Sample Basic database. Assume that the Market dimension
contains an additional member, Non-West.

A special analysis requires a sum of the actual sales values of a particular product family for non-
western states. In this example, the @REMOVE function is used with the @SUMRANGE
function to perform this analysis. The @LIST function is used to group the last two arguments
of the @REMOVE function (the children of West plus two additional members, Texas and New
Mexico).

FIX(Sales)
"Non-West"=@SUMRANGE(Sales,@REMOVE(@LEVMBRS(Market,0),
 @LIST(@CHILDREN(West),Texas,"New Mexico")));
ENDFIX

This example produces the following report:

 Jan Colas Actual
 Sales
 =====
Non-West 5114

Calculation Function Reference 181

New York 678
Massachusetts 494
Florida 410
Connecticut 310
New Hampshire 213
 East 2105

California 941
Oregon 450
Washington 320
Utah 490
Nevada 138
 West 2339

Texas 642
Oklahoma 180
Louisiana 166
New Mexico 219
 South 1207

Illinois 579
Ohio 430
Wisconsin 490
Missouri 360
Iowa 161
Colorado 643
 Central 2663

See Also

l @LIST

l @MERGE

l @RANGE

@RETURN
Exits the calculation immediately under specified logical conditions. You can use the IF... ELSEIF
calculation command block to specify the logical error conditions, and use the @RETURN
function to exit the calculation with customized error messages and levels.

Syntax

@RETURN ("ErrorMessage", [,INFO|ERROR|WARNING])

Parameter Description

ErrorMessage An error message string, or any expression that returns a string.

182 Calculation Functions

Parameter Description

INFO|ERROR|
WARNING

An error message priority setting, where INFO, ERROR, and WARNING are priority levels:

l INFO—The message indicated in theErrorMessage string is sent back to the client and the
application log as an informational type message. This is the default.

l ERROR—The message indicated in theErrorMessage string is sent back to the client and the
application log as an error type message.

l WARNING—The message indicated in theErrorMessage string is sent back to the client and
the application log as a warning type message.

Notes

l The calculation script will stop executing when this function is called.

l This function can only be used in calculation scripts; it cannot be used in member formulas.

Example

The following example stops the calculation and returns a custom warning message if maximum
values specified in the IF statement are empty:

FIX("Actual")
. "Profit"(
 IF(("Marketing" < 0) OR ("Payroll" < 0) OR ("Misc" < 0))
 @RETURN(@CONCATENATE(
 @CONCATENATE("The violation of data integrity : Market [",
@NAME(@CURRMBR("Market"))),
 "] has a negative expenses. Calculations are interrupted")

 , WARNING);
 ELSE
 "Profit" = ("Margin" - "Total Expenses")*0.9;

 ENDIF
)
ENDFIX

@ROUND
Rounds expression to numDigits.

Syntax

@ROUND (expression,numDigits)

Parameter Description

expression Single member specification, variable name, or other numeric expression.

Calculation Function Reference 183

Parameter Description

numDigits Single member specification, variable name, or other numeric expression that provides an integer value. If
numDigits is 0 or a positive number, expression is rounded to the number of decimal places specified by
numDigits. If numDigits is a negative value, expression is rounded to the nearest 10 to the power of the
absolute value of numDigits. For example:

@ROUND 1234, -2) = 1200

The default value for numDigits is 0.

Example

The following example is based on the Sample Basic database:

SET UPDATECALC OFF;
Profit = @ROUND("Profit_%", 1);

This example produces the following report:

 Market Product
 Profit_% Profit
 Jan Feb Mar Jan Feb Mar
 === === === === === ===
Scenario 21.37 19.09 18.46 21.4 19.1 18.5

See Also

l @ABS

l @INT

l @TRUNCATE

l @REMAINDER

@RSIBLINGS
Returns the right siblings of the specified member.

Syntax

@RSIBLINGS (mbrName)

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

Notes

This function returns all of the right siblings of the specified member. Right siblings are children
that share the same parent as the member and that follow the member in the database outline.
This function excludes the specified member.

This member set function can be used as a parameter of another function, where that parameter
is a list of members.

Essbase sorts the right siblings in ascending order. Using Sample Basic as an example, if you
specify 200-10 for mbrName, Essbase returns 200-20, 200-30, 200-40 (in that order). This order

184 Calculation Functions

is important to consider when you use the @RSIBLINGS member set function with certain
forecasting and statistical functions.

Example

In the Sample Basic database:

@RSIBLINGS(Florida)

returns Connecticut and New Hampshire (in that order). These members appear below Florida
in the Sample Basic outline.

@RSIBLINGS(Sales)

returns COGS because this member appears below Sales in the Sample Basic outline.

See Also

l @IRSIBLINGS

l @LSIBLINGS

l @NEXTSIBLING

l @PREVSIBLING

l @SHIFTSIBLING

@SANCESTVAL
Returns ancestor-level data based on the shared ancestor value of the current member being
calculated.

Syntax

@SANCESTVAL (rootMbr,genLevNum [, mbrName])

Parameter Description

rootMbr Defines a member that is used to search for the nearest occurrence of an ancestor of a shared member.

genLevNum Integer value that defines the absolute generation or level number from which the ancestor values are to
be returned. A positive integer defines a generation reference. A negative number or value of 0 defines a
level reference.

mbrName Optional. Any valid single member name or member combination, or a function that returns a single
member or member combination, for which the ancestor values are to be returned.

Notes

l You cannot use the @SANCESTVAL function in a FIX statement.

l The time required for retrieval and calculation may be significantly longer if this function
is in a formula attached to a member tagged as Dynamic Calc or Dynamic Calc and Store.

Example

Marketing expenses are captured at the Product Category levels in a product planning
application. The Product categories are defined as ancestors that contain shared members as

Calculation Function Reference 185

children. The Marketing Expense data must be allocated down to each Product code based on
Sales contribution.

The following Product hierarchy is defined:

Product
 100
 100-10
 100-20
 200
 200-10
 200-20
 Diet ~
 100-10 SHARED
 200-10 SHARED
 Caffeine Free ~
 100-20 SHARED
 200-20 SHARED

 Sales Marketing
 ===== =========
100-10 300 0
100-20 200 0
100 500 0
200-10 100 0
200-30 400 0
200 900 0
100-10 300 0
200-10 100 0
Diet 400 50
100-20 200 0
200-30 400 0
Caffeine Free 600 40

The Marketing Expense value is allocated down to each Product code with the following formula:

Marketing = (Sales / @SANCESTVAL(Product, 2, Sales)) * @SANCESTVAL(Product, 2,
Marketing);

which produces the following result:

 Sales Marketing
 ===== =========
100-10 300 37.5
100-20 200 13.3
100 500 #MI
200-10 100 12.5
200-30 400 26.7
200 900 #MI
100-10 300 37.5
200-10 100 12.5
Diet 400 50
100-20 200 13.3
200-30 400 26.7
Caffeine Free 600 40

The Marketing expenses can then be reconsolidated across Products and Markets.

186 Calculation Functions

See Also

l @ANCESTVAL

l @MDANCESTVAL

l @SPARENTVAL

@SHARE
Checks each member from rangeList to see if it has a shared member and returns a list of the
shared members it has found.

Syntax

@SHARE (rangeList)

Parameter Description

rangeList A comma-delimited list of members, functions that return members, and ranges of members. All the
members in rangeList must be from the same dimension.

Notes

Other member-set functions return actual members, not the shared members. You can use
@SHARE within the memberList, rangeList, expList or list parameters of other functions to
provide shared members instead.

Example

The following examples are based on Sample Basic.

To remove all shared members from the Product dimension:

@REMOVE(@DESCENDANT(Product),@SHARE(@DESCENDENT((Product)))

To remove a specific member from the Product dimension, you can use @SHARE specifying
the shared member to be removed:

@REMOVE(@DESCENDANT(Product),@SHARE("100-20"))

See Also

l @REMOVE

@SHIFT
Returns either the prior or next nth cell value in the sequence rangeList from mbrName, retaining
all other members identical to the current member.

The direction of @SHIFT is wholly based on n, with positive n values producing an effect
equivalent to @NEXT and negative values of n producing an equivalent effect to @PRIOR.

Syntax

@SHIFT (mbrName [,n, rangeList])

Calculation Function Reference 187

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

n Optional signed integer. Using a negative value for n has the same effect as using a positive value in the
@PRIOR function. n must be a numeric value, not a reference, such as a member name.

rangeList Optional. A valid member name, a comma-delimited list of member names, member set functions, and
range functions. If rangeList is not specified, Essbase uses the level 0 members from the dimension tagged
as Time.

Notes

@SHIFT is provided as a more appropriate, self-documenting name than @NEXT or @PRIOR
when the value for n is a variable and may change from positive to negative, depending on the
database state when the call occurs (that is, when the usage is likely to be NEXT and/or PRIOR).

Example

In this example, Prev Asset for each month is derived by taking the Asset value from the previous
month because -1 is specified as the n parameter. Next Avl Asset for each month is derived by
taking the Asset value from two months following the current month because 2 is specified as
the n parameter. Since rangeList is not specified for either formula, the level 0 members from
the dimension tagged as Time are used.

"Prev Asset" = @SHIFT(Asset,-1);
"Next Avl Asset" = @SHIFT(Asset,2);

This example produces the following report:

 Jan Feb Mar Apr May Jun
 === === === === === ===
Asset 100 110 105 120 115 125
Prev Asset #MI 100 110 105 120 115
Next Avl Asset 105 120 115 125 #MI #MI

See Also

l @MDSHIFT

l @NEXT

l @PRIOR

l @SHIFTPLUS

l @SHIFTMINUS

@SHIFTMINUS
Can be used in place of the @SHIFT() function, the @PRIOR() function, or the @NEXT()
function to improve performance if the formula meets the following criteria:

l The formula is being executed in CELL mode.

l The formula has one of the following patterns:

X = Y - @SHIFT(mbrName [,n, rangeList])

188 Calculation Functions

or:

X = Y - @PRIOR(mbrName [,n, rangeList])

or:

X = Y - @NEXT(mbrName [,n, rangeList])

If these criteria are met, consider rewriting your formula using @SHIFTMINUS() instead.
@SHIFTMINUS() runs the formula in block mode, improving performance.

Syntax

@SHIFTMINUS (mbrName1, mbrName2 [,n, rangeList])

Parameter Description

mbrName1mbrName2 Any valid single member name or member combination, or a function that returns a single
member or member combination.

n Optional signed integer. n must be a numeric value, not a reference, such as a member name.
If you are using @SHIFTPLUS to replace the @NEXT function, use 1 as the value for n. If you
are using @SHIFTPLUS to replace the @PRIOR function, use -1 as the value for n. Default
value is +1.

rangeList Optional. A valid member name, a comma-delimited list of member names, member set
functions, and range functions. If rangeList is not specified, Essbase uses the level 0 members
from the dimension tagged as time.

Example

The following example shows a formula using @SHIFT().

Sales = Loss - @SHIFT(Sales, 1);

Here is the formula using @SHIFTMINUS() to improve performance:

@SHIFTMINUS (Loss, Sales, 1)

See Also

l @SHIFT

l @SHIFTPLUS

l @PRIOR

l @NEXT

@SHIFTPLUS
Can be used in place of the @SHIFT() function, the @PRIOR() function, or the @NEXT()
function to improve performance if the formula meets the following criteria:

l The formula is being executed in CELL mode.

l The formula has one of the following patterns:

X = Y + @SHIFT(mbrName [,n, rangeList])

or:

Calculation Function Reference 189

X = Y + @PRIOR(mbrName [,n, rangeList])

or:

X = Y + @NEXT(mbrName [,n, rangeList])

If these criteria are met, consider rewriting your formula using @SHIFTPLUS() instead.
@SHIFTPLUS() runs the formula in block mode, improving performance.

Syntax

@SHIFTPLUS (mbrName1, mbrName2 [,n, rangeList])

Parameter Description

mbrName1mbrName2 Any valid single member name or member combination, or a function that returns a single
member or member combination.

n Optional signed integer. n must be a numeric value, not a reference, such as a member name.
If you are using @SHIFTPLUS to replace the @NEXT function, use 1 as the value for n. If you
are using @SHIFTPLUS to replace the @PRIOR function, use -1 as the value for n. Default
value is +1.

rangeList Optional. A valid member name, a comma-delimited list of member names, member set
functions, and range functions. If rangeList is not specified, Essbase uses the level 0 members
from the dimension tagged as time.

Example

The following example shows a formula using @SHIFT().

Sales = Loss + @SHIFT(Sales, 1);

Here is the formula using @SHIFTPLUS() to improve performance:

@SHIFTPLUS (Loss, Sales, 1);

See Also

l @SHIFT

l @SHIFTMINUS

l @PRIOR

l @NEXT

@SHIFTSIBLING
Returns the specified member or the nth sibling of the member. @SHIFTSIBLING traverses
members that are at the same level and of the same parent. If the specified relative position moves
beyond the first or last sibling, Essbase returns an empty string.

This function returns the next sibling as a string. To pass the @SHIFTSIBLING function as a
parameter of another function, where the function requires a list of members, you must wrap
the output of @SHIFTSIBLING with the @MEMBER function.

Syntax

@SHIFTSIBLING (mbrName [,relativePosition])

190 Calculation Functions

Parameter Description

mbrName Valid member name or member-name combination or a function that returns one member or member
combination.

relativePosition Optional. The integer that defines the position relative to the specified member. Valid values:

l 0 (Default) Returns the specified member.

l < 0 (negative integer): Returns the previous sibling.

l > 0 (positive integer): Returns the next sibling.

Example

All examples are from the Sample.Basic database.

@SHIFTSIBLING(“100–20”,0)

Returns 100-20 (the specified member).

@SHIFTSIBLING(“200”,1)

Returns 300 (the next sibling of 200). The @SHIFTSIBLING(“200”,1) function and the
@NEXTSIBLING(“200”) function return the same results.

Returns 400 (the second-next sibling of 200).

@SHIFTSIBLING(“100–20”,–1)

Returns 100-10 (the previous sibling of 100-20). The @SHIFTSIBLING(“100–20”,–1)
function and the @PREVSIBLING(“100–20”) function return the same results.

@SHIFTSIBLING(“100–10”,9)

Returns an empty string, as 100-10 does not have a ninth sibling.

@CHILDREN(@MEMBER(@SHIFTSIBLING("East")))

Returns all children of East. Because no shift position is specified, the default shift position is 0,
which means the current member.

See Also

l @PREVSIBLING

l @NEXTSIBLING

@SIBLINGS
Returns all siblings of the specified member.

Syntax

@SIBLINGS (mbrName)

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

Calculation Function Reference 191

Notes

This function returns all siblings of the specified member. This function excludes the specified
member.

This function can be used as a parameter of another function, where that parameter is a list of
members.

Essbase sorts the generated list of members as follows:

1. Left siblings of the member (siblings appearing above the member in the database outline)
in descending order

2. Right siblings of the member (siblings appearing below the member in the database outline)
in ascending order

Using Sample Basic as an example, if you specify 200-30 for mbrName, Essbase returns 200-20,
200-10, 200-40 (in that order). This order is important to consider when you use the @SIBLINGS
member set function with certain forecasting and statistical functions.

Example

In the Sample Basic database:

@SIBLINGS (Washington)

Returns Oregon, California, Utah, and Nevada (in that order).

@SIBLINGS(East)

Returns West, South, and Central (in that order).

See Also

l @ISIBLINGS

l @ISISIBLING

l @ISSIBLING

l @LSIBLINGS

l @RSIBLINGS

l @SHIFTSIBLING

l @NEXTSIBLING

l @PREVSIBLING

@SLN
Calculates the periodic amount that an asset in the current period may be depreciated, calculated
across a range of periods. The depreciation method used is straight-line depreciation:

cost - salvage value / life

The SLN method assumes that the asset depreciates by the same amount each period.

More than one asset may be depreciated over the range. The value is depreciated from its entry
period to the last period in the range. The resulting value represents the sum of all the per-period
depreciation values of each asset being depreciated.

192 Calculation Functions

Syntax

@SLN (costMbr, salvageMbrConst, lifeMbrConst [, rangeList])

Parameter Description

costMbr Single member specification representing an input asset for the current period.

salvageMbrConst Single member specification, variable name, or numeric expression, providing a constant numeric
value. This value represents the value of the asset in the current period at the end of the useful life
of the asset.

lifeMbrConst Single member specification, variable name, or numeric expression representing the useful life of
the asset.

rangeList Optional. A valid member name, a comma-delimited list of member names, member set functions,
and range functions from the dimension tagged as Time. rangeList represents the range over which
the function accepts input and returns depreciation values. If rangeList is not specified, Essbase uses
the level 0 members from the dimension tagged as Time.

Notes

Financial functions never return a value; rather, they calculate a series of values internally based
on the range specified.

Example

In this example, the depreciation for each year is calculated by taking into account the initial
asset (Asset), the salvage value of the asset (Residual), and the life of the asset (Life).

"SLN Dep" = @SLN(Asset,Residual,Life,FY1991:FY1995);

This example produces the following report:

 FY1991 FY1992 FY1993 FY1994 FY1995 FY1996
 ====== ====== ====== ====== ====== ======
Asset 9,000 0 1,000 0 0 0
Residual 750.00 0.00 0.00 0.00 0 0
Life 5.00 #MI 5.00 0.00 0.00 0
SLN Dep 1650 1650 1850 1850 1850 0

See Also

l @DECLINE

l @SYD

@SPARENTVAL
Returns parent-level data based on the shared parent value of the current member being
calculated.

Syntax

@SPARENTVAL (RootMbr [, mbrName])

Calculation Function Reference 193

Parameter Description

RootMbr Defines a member that is used to search for the nearest occurrence of a parent of a shared member.

mbrName Optional. Any valid single member name or member combination, or a function that returns a single
member or member combination, from which the parent values are returned.

Notes

l You cannot use the @SPARENTVAL function in a FIX statement.

l The time required for retrieval and calculation may be significantly longer if this function
is in a formula attached to a member tagged as Dynamic Calc or Dynamic Calc and Store.

Example

Marketing expenses are captured at the Product Category levels in a product planning
application. The Product categories are defined as parents that contain shared members as
children. The Marketing Expense data must be allocated down to each Product code based on
Sales contribution.

The following Product hierarchy is defined:

Product
100
 100-10
 100-20
200
 200-10
 200-20
Diet ~
 100-10 SHARED
 200-10 SHAREDCaffeine Free ~
 100-20 SHARED
 200-20 SHARED

 Sales Marketing
 ===== =========
100-10 300 0
100-20 200 0
100 500 0
200-10 100 0
200-30 400 0
200 900 0
100-10 300 0
200-10 100 0
Diet 400 50
100-20 200 0
200-30 400 0
Caffeine Free 600 40

The Marketing Expense value is allocated down to each Product code with the following formula:

Marketing = (Sales / @SPARENTVAL(Product, Sales)) * @SPARENTVAL(Product, Marketing);

which produces the following result:

 Sales Marketing
 ===== =========

194 Calculation Functions

100-10 300 37.5
100-20 200 13.3
100 500 #Missing
200-10 100 12.5
200-30 400 26.7
200 900 #Missing
100-10 300 37.5
200-10 100 12.5
Diet 400 #Missing
100-20 200 13.3
200-30 400 26.7
Caffeine Free 600 #Missing

The Marketing expenses can then be reconsolidated across Products and Markets.

See Also

l @PARENTVAL

l @MDPARENTVAL

l @SANCESTVAL

@SPLINE
Applies a smoothing spline to a set of data points. A spline is a mathematical curve that smoothes
or interpolates data.

Syntax

@SPLINE (YmbrName [, s [, XmbrName [, XrangeList]]])

Parameter Description

YmbrName A valid single member name that contains the dependent variable values used (when crossed with
rangeList) to construct the spline.

s Optional. A zero (0) or positive value that determines the smoothness parameter. The default value is 1.0.

XmbrName Optional. A valid single member name that contains the independent variable values used (when crossed
with rangeList) to construct the spline. The default independent variable values are 0,1,2,3, and so on.

XrangeList Optional. A valid member name, a comma-delimited list of member names, cross dimension members,
or a member set function or range function (including @XRANGE) that returns a list of members from
the same dimension. If XrangeList is not specified, Essbase uses the level 0 members from the dimension
tagged as time.

Notes

l XrangeList must contain at least two values.

l If XrangeList contains gaps in the data (for example: Jan, Feb, Mar, Jun, Jul), be sure to
specify XmbrName (for example: 0,1,2,5,6) so that correct results are returned.

l The @SPLINE function skips #MISSING values in YmbrName and XmbrName; in the result,
Essbase replaces the #MISSING values of YmbrName with the spline values.

l The @SPLINE function calculates a smoothing cubic spline for (n > 0).

Calculation Function Reference 195

l Setting the smoothness parameter (s) to 0 produces an interpolating spline, that is, a spline
that fits the initial data exactly. Increasing s results in a smoother spline but a less exact
approximation of the initial data.

l The @SPLINE function can be used with the @TREND function to forecast future values
that are based on the values smoothed with @SPLINE.

l If you use an Essbase member set function to generate a member list for the XrangeList
parameter (for example, @SIBLINGS), to ensure correct results, consider the order in which
Essbase sorts the generated member list. For more information, see the Oracle Essbase
Technical Reference topic for the member set function you are using.

l When you use @SPLINE in a calculation script, use it within a FIX statement. Although
using FIX is not required, it may improve calculation performance.

l When you use @SPLINE across a large range in a sparse dimension, you may need to increase
the size of the calculator cache. For more information on the calculator cache, see the Oracle
Essbase Database Administrator's Guide.

l View the Algorithm for the smoothing spline.

Algorithm

196 Calculation Functions

Calculation Function Reference 197

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Sales Spline. The formula calculates the spline of
Sales values for Jan through Jun, based on a smoothness parameter of 2.

"Sales Spline" = @SPLINE(Sales,2,,Jan:Jun);

This example produces the following report:

 Colas Actual New York
 Sales Sales Spline
 ===== ============
Jan 645 632.8941564
Feb 675 675.8247101
Mar 712 724.7394598
Apr 756 784.2860765
May 890 852.4398456
Jun 912 919.8157517

198 Calculation Functions

See Also

l @TREND

@STDEV
Calculates the standard deviation of the specified data set (expList). The calculation is based
upon a sample of a population. Standard deviation is a measure of how widely values are
dispersed from their mean (average).

This function assumes that expList represents a sample of a population. If you want expList to
represent the entire population, use @STDEVP. For large samples, the functions return similar
values.

@STDEV is calculated using the "nonbiased" or "n-1" method.

@STDEV uses the following formula:

Syntax

@STDEV (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, expList)

Parameter Description

SKIPNONE Includes all cells specified in expList, regardless of their content, during calculation of the standard
deviation.

SKIPMISSING Excludes all #MISSING values from expList during calculation of the standard deviation.

SKIPZERO Excludes all zero (0) values from expList during calculation of the standard deviation.

SKIPBOTH Excludes all zero (0) values and #MISSING values from expList during calculation of the standard
deviation.

expList Comma-delimited list of member specifications, variable names, functions, or numeric expressions.
expList provides a list of numeric values across which the standard deviation is calculated.

Notes

The @STDEV function replaces the @STDDEV function. The only difference between the
functions is the SKIP parameter in the @STDEV function. Although the old @STDDEV function
is supported for migration purposes, you can no longer select it in the Calculation Script Editor
or Formula Editor.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Std Deviation. This example calculates the standard
deviation (based on a sample of a population) of the sales values for all products and uses the
@RANGE function to generate expList.

Calculation Function Reference 199

FIX (Product)
"Std Deviation" = @STDEV(SKIPBOTH,@RANGE(Sales,@CHILDREN(Product)));
ENDFIX

This example produces the following report:

 Jan New York
 Actual Budget
 ====== ======
Sales Colas 678 640
 Root Beer 551 530
 Cream Soda 663 510
 Fruit Soda 587 620
 Diet Drinks #MI #MI
 Product 2479 2300

Std Deviation Product 60.73 64.55

See Also

l @RANGE

l @STDEVP

l @STDEVRANGE

@STDEVP
Calculates the standard deviation of the specified data set (expList).

Syntax

@STDEVP (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, expList)

Parameter Description

SKIPNONE Includes all cells specified in expList, regardless of their content, during calculation of the standard
deviation.

SKIPMISSING Excludes all #MISSING values from expList during calculation of the standard deviation.

SKIPZERO Excludes all zero (0) values from expList during calculation of the standard deviation.

SKIPBOTH Excludes all zero (0) values and #MISSING values from expList during calculation of the standard
deviation.

expList Comma-delimited list of member specifications, variable names, functions, or numeric expressions.
expList provides a list of numeric values across which the standard deviation is calculated.

Notes

@STDEVP calculates the standard deviation of the specified data set (expList). The calculation
is based upon the entire population. Standard deviation is a measure of how widely values are
dispersed from their mean (average).

This function assumes that expList represents the entire population. If you want expList to
represent a sample of a population, use @STDEV. For large samples, the functions return similar
values.

200 Calculation Functions

@STDEVP is calculated using the "biased" or "n" method.

@STDEVP uses the following formula:

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Std Deviation. This example calculates the standard
deviation (based on the entire population) of the sales values for all products and uses the
@RANGE function to generate expList.

FIX (Product)
"Std Deviation" = @STDEVP(SKIPBOTH,@RANGE(Sales,@CHILDREN(Product)));
ENDFIX

This example produces the following report:

 Jan New York
 Actual Budget
 ====== ======

Sales Colas 678 640
 Root Beer 551 530
 Cream Soda 663 510
 Fruit Soda 587 620
 Diet Drinks #MI #MI
 Product 2479 2300

Std Deviation Product 52.59 55.90

See Also

l @RANGE

l @STDEV

l @STDEVRANGE

@STDEVRANGE
Calculates the standard deviation of all values of the specified member (mbrName) across the
specified data set (XrangeList). The calculation is based upon a sample of a population. Standard
deviation is a measure of how widely values are dispersed from their mean (average).

This function is calculated using the "unbiased" or "n-1" method. See @STDEV for the formula
used.

Syntax

@STDEVRANGE (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, mbrName [, XrangeList])

Calculation Function Reference 201

Parameter Description

SKIPNONE Includes all cells specified in expList, regardless of their content, during calculation of the standard
deviation.

SKIPMISSING Excludes all #MISSING values from expList during calculation of the standard deviation.

SKIPZERO Excludes all zero (0) values from expList during calculation of the standard deviation.

SKIPBOTH Excludes all zero (0) values and #MISSING values from expList during calculation of the standard
deviation.

mbrName Any valid single member name or member combination, or a function that returns a single member
or member combination.

XrangeList Optional. A valid member name, a comma-delimited list of member names, cross dimension members,
or a member set function or range function (including @XRANGE) that returns a list of members from
the same dimension. If XrangeList is not specified, Essbase uses the level 0 members from the dimension
tagged as time.

Notes

The @STDEVRANGE function replaces the @STDDEVRANGE function. The only difference
between the functions is the SKIP parameter in the @STDEVRANGE function. Although the
old @STDDEVRANGE function is supported for migration purposes, you can no longer select
it in the Calculation Script Editor or Formula Editor.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Std Deviation. This example calculates the standard
deviation (based on a sample of a population) of the sales values for all products.

FIX (Product)
"Std Deviation" = @STDEVRANGE(SKIPBOTH,Sales,@CHILDREN(Product));
ENDFIX

This example produces the following report:

 Jan New York
 Actual Budget
 ====== ======
Sales Colas 678 640
 Root Beer 551 530
 Cream Soda 663 510
 Fruit Soda 587 620
 Diet Drinks #MI #MI
 Product 2479 2300

Std Deviation Product 60.73 64.55

See Also

l @STDEV

l @STDEVP

202 Calculation Functions

@SUBSTRING
Returns the requested string of characters from an existing source string. The source string can
be a text string or a member name, or it can result from a specified function that returns a text
string or a single member name.

Syntax

@SUBSTRING (String, StartPosition [, EndPosition])

Parameter Description

String A string or a function that returns a string or a single member name (For example, @ATTRIBUTESVAL,
@CONCATENATE, and @NAME return strings.)

StartPosition Beginning character position within String to include in the substring. An integer greater than or equal
to 0, where 0 corresponds to the first character in String, 1 corresponds to the second character, and so
on.

EndPosition Optional. An integer greater than or equal to 1, where 1 corresponds to the first character in String, 2
corresponds to the second character, and so on. If EndPosition is not specified or is less than
StartPosition, Essbase returns all remaining characters from the source string. Note that this is a different
numbering scheme that the start position uses.

Example

The following examples are based on the Sample Basic database:

Function Statement Result

@SUBSTRING ("100-10",1) "00-10"

@SUBSTRING ("200-21",0,2) "20"

@SUBSTRING (@Name(@Parent(Jan)),3)

(The parent of Jan is Qtr1.)

"1"

See Also

l @CONCATENATE

l @MEMBER

@SUM
Returns the summation of all the values in expList.

Syntax

@SUM (expList)

Parameter Description

expList Comma-delimited list of member specifications, variable names, or numeric expressions, all of which
provide numeric values.

Calculation Function Reference 203

Example

In the Sample Basic database:

FIX("Total Expenses")
West=@SUM(West,East);
ENDFIX

Since the calculation script fixes on Total Expenses, the value for Total Expenses->West is equal
to the sum of the value for East and the values for the states making up the West. For Sales, West
and East are simply the sum of the states making up each region (that is, Sales->West is not equal
to the sum of East and West). This example produces the following report:

 Product Qtr1 Actual
 Sales Total Expenses
 ===== ==============
New York 7705 2068
Massachusetts 3660 892
Florida 4132 1313
Connecticut 3472 1087
New Hampshire 1652 801
 East 20621 6161
California 11056 2742
Oregon 5058 1587
Washington 4835 1621
Utah 4209 1544
Nevada 6516 2193
 West 31674 15848

See Also

l @SUMRANGE

@SUMRANGE
Returns the summation of all the values of the specified member (mbrName) across the specified
range (XrangeList).

Syntax

@SUMRANGE (mbrName [,XrangeList])

Parameter Description

mbrName Any valid single member name, or a function that returns a single member.

Note: Member name cannot be a cross-dimensional member combination.

XrangeList Optional. A valid member name, a comma-delimited list of member names, cross dimension members, or
a member set function or range function (including @XRANGE) that returns a list of members from the
same dimension. If XrangeList is not specified, Essbase uses the level 0 members from the dimension tagged
as time.

204 Calculation Functions

Example

The following example is based on the Sample Basic database. Assume that the Year dimension
contains an additional member, Partial Year. The formula for Partial Year sums the values for
New York across the range of Jan through Jun. The calculation script fixes on Sales, so this
formula is applied only to Sales values.

FIX(Sales)
"Partial Year"=@SUMRANGE("New York",Jan:Jun);
ENDFIX
This example produces the following report:

 Actual New York Colas
 Sales
 =====
Jan 678
Feb 645
Mar 675
Apr 712
May 756
Jun 890
Partial Year 4356

See Also

l @SUM

@SYD
Calculates the periodic amount (usually annual) that an asset in the current period may be
depreciated, across a range of periods. The depreciation method used is sum of the year's digits.

The SYD method assumes that depreciation amounts are higher at the earlier stages of the asset's
life. Thus, rangeList can be used to specify a period to calculate.

More than one asset may be depreciated over the range. The value is depreciated from its entry
period to the last period in the range. The resulting value represents the sum of all per-period
depreciation values of each asset.

Syntax

@SYD (costMbr, salvageMbrConst, lifeMbrConst [, rangeList])

Parameter Description

costMbr Single member specification representing an input asset for the current period.

salvageMbrConst Single member specification, variable name, or numeric expression, providing a constant numeric
value. This value is the value of the asset in the current period after the useful life of the asset.

lifeMbrConst Single member specification, variable name, or numeric expression representing the useful life of
the asset.

Calculation Function Reference 205

Parameter Description

rangeList Optional. A valid member name, a comma-delimited list of member names, member set functions,
and range functions from the dimension tagged as Time. rangeList represents the range over which
the function accepts input and returns depreciation values. If rangeList is not specified, Essbase uses
the level 0 members from the dimension tagged as Time.

Notes

Financial functions never return a value; rather, they calculate a series of values internally based
on the range specified.

Example

In this example, the depreciation for each year is calculated by taking into account the initial
asset (Asset), the salvage value of the asset (Residual), and the life of the asset (Life).

"SYD Dep"=@SYD(Asset,Residual,Life,FY1999:FY2002,FY2003);

This example produces the following report:

 FY1999 FY2000 FY2001 FY2002 FY2003
 ====== ====== ====== ====== ======
Asset 9,000 0 1,000 0 0
Residual 750.00 0.00 0.00 0.00 0
Life 5.00 #MISSING 3.00 0.00 0.00
SYD Dep 2750 2200 2150 1433 717

See Also

l @DECLINE

l @SLN

@TODATE
Converts date strings to numbers that can be used in calculation formulas. @TODATE converts
date strings into the number of seconds elapsed since midnight, January 1, 1970.

Syntax

@TODATE (formatString, dateString)

Parameter Description

formatString The format of the date string, either "mm-dd-yyyy" or "dd-mm-yyyy" (must be in lower case).

dateString The date string.

Notes

l If you specify a date that is earlier than 01-01-1970, this function returns an error.

l The latest date supported by this function is 12-31-2037.

Example

The following example is based on the Sample Basic database.

206 Calculation Functions

Marketing
(IF (@ATTRIBUTEVAL("Intro Date") >
 @TODATE("mm-dd-yyyy","06-30-1996"))
Marketing - (Marketing * .1);
ENDIF;);

This formula searches for members with an Intro Date attribute member that is later than
6-30-96 and decreases Marketing for those members by 10 percent. In order to process the
formula, Essbase converts the date strings to numbers before it calculates.

This example produces the following report:

 Actual Jan Massachusetts
 Marketing
Intro Date_12-10-1996 200-30 9
 200-40 9
Intro Date_10-01-1996 400-10 9
 400-20 9
Intro Date_07-26-1996 200-20 9
Intro Date_06-26-1996 300-10 9
 300-20 9
 300-30 9
Intro Date_04-01-1996 100-20 10
 100-30 10
Intro Date_03-25-1996 100-10 10
Intro Date_09-27-1995 200-10 10

See Also

l @ATTRIBUTE

l @ATTRIBUTEVAL

l @WITHATTR

@TODATEEX
Returns the numeric date value from input date-string according to the date-format specified.
The date returned is the number of seconds elapsed since midnight, January 1, 1970.

If the date or the date format strings are invalid, an error is returned.

Syntax

@TODATEEX(date_format_string, string)

Calculation Function Reference 207

Parameter Description

date_format_string One of the following literal strings (excluding ordered-list numbers and parenthetical examples)
indicating a supported date format.

1. "mon dd yyyy" (Example: mon = Aug)

2. "Month dd yyyy" (Example: Month = August)

3. "mm/dd/yy"

4. "mm/dd/yyyy"

5. "yy.mm.dd"

6. "dd/mm/yy"

7. "dd.mm.yy"

8. "dd-mm-yy"

9. "dd Month yy"

10. "dd mon yy"

11. "Month dd, yy"

12. "mon dd, yy"

13. "mm-dd-yy"

14. "yy/mm/dd"

15. "yymmdd"

16. "dd Month yyyy"

17. "dd mon yyyy"

18. "yyyy-mm-dd"

19. "yyyy/mm/dd"

20. Long format (Example: WeekDay, Mon dd, yyyy)

21. Short format (Example: m/d/yy)

208 Calculation Functions

Parameter Description

string A date string following the rules of internal-date-format. The following examples correspond to
the above listed internal date formats.

1. Jan 15 2006

2. January 15 2006

3. 01/15/06

4. 01/15/2006

5. 06.01.06

6. 15/01/06

7. 15.01.06

8. 15-01-06

9. 15 January 06

10. 15 Jan 06

11. January 15 06

12. Jan 15 06

13. 01-15-06

14. 06/01/15

15. 060115

16. 15 January 2006

17. 15 Jan 2006

18. 2006-01-15

19. 2006/01/15

20. Sunday, January 15, 2006

21. 1/8/06 (m/d/yy)

Notes

l This function is case-sensitive. For example, using apr instead of Apr returns an error.

l Using extra whitespace not included in the internal format strings returns an error.

l Trailing characters after the date format has been satisfied are ignored. If you erroneously
use a date string of 06/20/2006 with date format mm/dd/yy, the trailing 06 is ignored and
the date is interpreted as June 20, 2020.

l Long Format (Weekday, Mon dd, yyyy) is not verified for a day-of-week match to the given
date.

For example: For date string Sunday, March 13, 2007 with date format Long Format,
the input date string is parsed correctly for March 13, 2007, although March 13, 2007
does not fall on Sunday.

l If you specify a date that is earlier than 01-01-1970, this function returns an error.

l The latest date supported by this function is 12-31-2037.

l When the yy format is used, this function interprets years in the range 1970 to 2029.

Calculation Function Reference 209

See Also

l @DATEDIFF

l @DATEPART

l @DATEROLL

l @FORMATDATE

l @TODAY

@TODAY
Returns a number representing the current date on the Essbase computer. The number is the
number of seconds elapsed since midnight, January 1, 1970.

Syntax

@TODAY()

Notes

The date returned can be used as input to other functions listed in the See Also section.

See Also

l @DATEDIFF

l @DATEPART

l @DATEROLL

l @FORMATDATE

l @TODATEEX

@TREND
Calculates future values based on curve-fitting to historical values. The @TREND procedure
considers a number of observations; constructs a mathematical model of the process based on
these observations (that is, fits a curve); and predicts values for a future observation. You can
use weights to assign credibility coefficients to particular observations, report errors of the curve
fitting, choose the forecasting method to be used (for example, linear regression), and specify
certain data filters.

Syntax

@TREND (Ylist, [Xlist], [weightList], [errorList], [XforecastList], YforecastList,
method[, method parameters] [, Xfilter1 [, parameters]] [, XfilterN [, parameters]] [,
Yfilter1 [, parameters]] [, YfilterN [, parameters]])

Parameter Description

Ylist An expression list that contains known observations; for example, sales figures over a period of time.

Xlist Optional. An expression list that contains underlying variable values. For example, for each sales figure
in Ylist, Xlist may contain a value for associated time periods. If you do not specify Xlist, the default
variable values are 1,2,3, and so on, up to the number of values in Ylist.

210 Calculation Functions

Parameter Description

weightList Optional. An expression list that contains weights for the data points in Ylist, for the linear regression
method only. If values in weightList are #MISSING, the default is 1. Weights for methods other than
linear regression are ignored. Negative weights are replaced with their absolute values.

errorList Optional. Member list that represents the differences between the data points in Ylist and the data points
on the line or curve (as specified for method).

XforecastList Optional. Expression list that contains the underlying variable values for which the forecasting is sought.
If you do not specify XforecastList, the values are assumed to be as follows: {(last value in Xlist + 1), (last
value in Xlist + 2), ...}up to (last value in Xlist + the number of values in YforecastList)

If you forecast consecutively from where Ylist stops, you do not need to specify XforecastList. If you
want to move the forecasting period forward, specify the new period with XforecastList.

YforecastList A member list into which the forecast values are placed.

method A choice among LR (linear regression), SES (single exponential smoothing), DES (double exponential
smoothing), and TES (triple exponential smoothing). Method parameters must be numeric values, not
member names. Method parameters may be any of the following:

l LR[,t]: standard linear regression with possible weights assigned to each data point and an optional
seasonal adjustment period [t], where [t] is the length of the period. In general, the weights are
equal to 1 by default. You might want to increase the weight if the corresponding observation is
important, or decrease the weight if the corresponding observation is an outlier or is unreliable.

l SES[,c]: single exponential smoothing with parameter c (default c=0.2). This method uses its own
weight system, using the single parameter c. Increasing this parameter gives more weight to early
observations than to later ones.

l DES[[,c1],c2]: double exponential smoothing (Holt's method) with optional parameters c1, c2
(default c1=0.2, c2=0.3). This is a two-parameter weight system and a linear subsequent
approximation scheme. The first parameter controls weight distribution for the intercept; the
second parameter controls weight distribution for the slope of the line fit.

l TES[[[[,T],c1],c2],c3]: triple exponential smoothing (Holt-Winters method) with optional
parameters c1, c2, c3, T (default c1=0.2, c2=0.05, c3=0.1, T=1). This is a three-parameter weight
system and a linear model with a multiplicative seasonal component.

Xfilter1 ...
XfilterN

Optional. Use one or more of the following filter methods to scale Xlist:

l XLOG[,c]: logarithmic change with shift c (x' = log(x+c)) (default c=1

l XEXP[,c]: exponential change with shift c (x' = exp(x+c)) (default c=0).

l XPOW[,c]: power change with power c (x' = x^c) (default c=2).

Yfilter1 ...
YfilterN

Optional. Use one or more of the following filter methods to scale Ylist:

l YLOG[,c]: logarithmic change with shift c (y' = log(y+c)) (default c=1)

l YEXP[,c]: exponential change with shift c (y' = exp(y+c)) (default c=0).

l YPOW[,c]: power change with power c (y' = y^c) (default c=2).

Notes

l The @TREND function can be used only in calculation scripts, not in outline formulas.

l In a calculation script, you must associate the @TREND formula with a member.

l Ylist, Xlist, weightList, and errorList should contain the same number of values.

l XforecastList and YforecastList should contain the same number of values.

Calculation Function Reference 211

l The method and filter parameters must be numbers only; functions and member names are
not allowed.

l @TREND ignores #MISSING values during calculation of the trend.

l When you use the LR method with seasonal adjustments or when you use the TES method,
Essbase places strict requirements on the input data. With these methods, input data cannot
contain #MISSING values. Also, if you specify Xlist, the data must be equidistant, with the
interval (step) being a whole fraction of the period, T (for example, T/5, T/2). The
XforecastList parameters should also contain multiples of the interval.

l For another example using the @TREND function with more options used, see the Oracle
Essbase Database Administrator's Guide.

l If you use a member set function to generate a member list for this function, (for example,
@SIBLINGS), to ensure correct results, consider the order in which Essbase sorts the
generated member list. For more information, see the Oracle Essbase Technical Reference
topic for the member set function you are using.

l The following algorithms are used to calculate @TREND:

Algorithm for Linear Regression

212 Calculation Functions

Algorithm for Double Exponential Smoothing (DES)

Calculation Function Reference 213

Algorithm for Linear Regression with Seasonal Adjustment

214 Calculation Functions

Calculation Function Reference 215

Algorithm for Single Exponential Smoothing (SES)

216 Calculation Functions

Algorithm for Triple Exponential Smoothing (TES)

Calculation Function Reference 217

218 Calculation Functions

Example

The following example is based on the Sample Basic database. It forecasts sales data for May
through December, based on the trend of the same sales data from January through April. The
method used is linear regression with no seasonal adjustment.

Sales(@TREND(Jan:Apr,,,,,May:Dec,LR););

This example produces the following report:

 Actual Sales West
 Colas
 =====
Jan 2339
Feb 2298
Mar 2313
Apr 2332
May 2319
Jun 2318.4
Jul 2317.8
Aug 2317.2
Sep 2316.6
Oct 2316
Nov 2315.4
Dec 2314.8
 Year 27817.2

See Also

l @LIST

Calculation Function Reference 219

@TRUNCATE
Removes the fractional part of expression, returning the integer.

Syntax

@TRUNCATE (expression)

Parameter Description

expression Single member specification, function, variable name, or other numeric expression, which returns a
numeric value.

Example

In the following example, Total Sales is calculated by (1) taking the sum of the values for Direct
Sales and Other Sales and (2) truncating the summed values.

"Total Sales" = @TRUNCATE(@SUM("Direct Sales":"Other Sales"));

This example produces the following report:

 Colas New York Actual
 Jan Feb Mar
 === === ===
Direct Sales 678.557 645.874 675.299
Other Sales 411.299 389.554 423.547
Total Sales 1089 1035 1098

See Also

l @REMAINDER

l @ROUND

@UDA
Returns members based on a common attribute, which you have defined as a user-defined
attribute (UDA) on the Essbase Server.

Syntax

@UDA (dimName, uda)

Parameter Description

dimName Name of the dimension with which the uda is associated.

uda Name of the user-defined attribute as it appears in the database outline.

Notes

You must type the UDA string exactly as it appears in the database outline.

Example

In the Sample Basic database:

220 Calculation Functions

@UDA(Market, "New Mkt")

Returns a list of members with the UDA of New Mkt.

See Also

l @ISUDA

@VAR
Calculates the variance (difference) between two members. The variance calculation recognizes
the difference between accounts that are tagged in the database outline as "Expense" or "No
Expense" and calculates the variance accordingly.

Syntax

@VAR (mbrName1, mbrName2)

Parameter Description

mbrName1andmbrName2 Members from the same dimension whose variance results are to be calculated. The
variance is derived by subtracting mbrName2 values from mbrName1, unless an account is
tagged as "Expense", in which case mbrName1 values are subtracted from mbrName2.

Example

The following example is based on the Sample Basic database. The variance between Actual and
Budget is calculated as follows:

Variance = @VAR(Actual,Budget);

Sales is defined as "No Expense", whereas COGS is tagged as "Expense". This example produces
the following report:

 Year Product Market
 Sales COGS
 ===== ====
Actual 400855 179336
Budget 373080 158940
Variance 27775 (20396)

See Also

l @VARPER

l @VARIANCE

l @VARIANCEP

@VARPER
Calculates the percent variance (difference) between two members. The variance calculation
recognizes the difference between accounts that are tagged in the database outline as "Expense"
or "No Expense" and calculates the variance accordingly.

Calculation Function Reference 221

Syntax

@VARPER (mbrName1, mbrName2)

Parameter Description

mbrName1andmbrName2 Members from the same dimension whose variance results are to be calculated. The percent
variance is derived by taking the percent variance of mbrName2 values from mbrName1,
unless an account is tagged as "Expense", in which case mbrName1 values are taken as a
percent variance of mbrName2.

Example

The following example is based on the Sample Basic database. The percent variance between
Actual and Budget is calculated as follows:

Variance = @VARPER(Actual,Budget);

In this example Sales is defined as "No Expense", whereas COGS is tagged as "Expense". This
example produces the following report:

 Year Product Market
 Sales COGS
 ===== ====
Actual 400855 179336
Budget 373080 158940
Variance % 7.4 (12.8)

See Also

l @VAR

l @VARIANCE

l @VARIANCEP

@VARIANCE
Calculates the statistical variance of the specified data set (expList). The calculation is based upon
a sample of a population. Variance is a measure of the dispersion of a set of data points around
their mean (average) value.

Syntax

@VARIANCE (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, expList)

Parameter Description

SKIPNONE Includes all cells specified in expList, regardless of their content, during calculation of the variance.

SKIPMISSING Excludes all #MISSING values from expList during calculation of the variance.

SKIPZERO Excludes all zero (0) values from expList during calculation of the variance.

SKIPBOTH Excludes all zero (0) values and #MISSING values from expList during calculation of the variance.

expList Comma-delimited list of member specifications, variable names, functions, or numeric expressions.
expList provides a list of numeric values across which the variance is calculated.

222 Calculation Functions

Notes

l @VARIANCE is different from @VAR, which calculates the variance (difference) between
two members.

l @VARIANCE assumes that expList represents a sample of the population. If you want
expList to represent the entire population, use @VARIANCEP.

l @VARIANCE is calculated with the "unbiased" or "n-1" method.

l @VARIANCE uses the following formula:

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Sales Var. This example uses the @RANGE function
to generate expList, and calculates the variance of the sales values for a product family.

FIX (Product)
"Sales Var" = @VARIANCE(SKIPBOTH,@RANGE(Sales,@CHILDREN(Product)));
ENDFIX

This example produces the following report:

 Jan New York

 Actual Budget
 ====== ======

Sales Colas 678 640
 Root Beer 551 530
 Cream Soda 663 510
 Fruit Soda 587 620
 Diet Drinks #MI #MI
 Product 2479 2300

Sales Var Product 3687.58 4166.67

See Also

l @VARIANCEP

@VARIANCEP
The @VARIANCEP() function calculates the statistical variance of the specified data set
(expList). The calculation is based upon the entire population. Variance is a measure of the
dispersion of a set of data points around their mean (average) value.

Syntax

@VARIANCEP (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, expList)

Calculation Function Reference 223

Parameter Description

SKIPNONE Includes all cells specified in expList, regardless of their content, during calculation of the variance.

SKIPMISSING Excludes all #MISSING values from expList during calculation of the variance.

SKIPZERO Excludes all zero (0) values from expList during calculation of the variance.

SKIPBOTH Excludes all zero (0) values and #MISSING values from expList during calculation of the variance.

expList Comma-delimited list of member specifications, variable names, functions, or numeric expressions.
expList provides a list of numeric values across which the variance is calculated.

Notes

l @VARIANCEP is different from @VARPER, which calculates the percent variance
(difference) between two members.

l @VARIANCEP assumes that expList represents the entire population. If you want expList
to represent a sample of the population, use @VARIANCE.

l @VARIANCEP is calculated using the "biased" or "n" method.

l @VARIANCEP uses the following formula:

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Sales Var. This example uses the @RANGE function
to generate expList and calculates the variance of the sales values for a product family.

FIX (Product)
"Sales Var" = @VARIANCEP(SKIPBOTH,@RANGE(Sales,@CHILDREN(Product)));
ENDFIX

This example produces the following report:

 Jan New York
 Actual Budget
 ====== ======
 Sales Colas 678 640
 Root Beer 551 530
 Cream Soda 663 510
 Fruit Soda 587 620
 Diet Drinks #MI #MI
 Product 2479 2300

 Sales Var Product 2765.69 3125

See Also

l @VARIANCE

224 Calculation Functions

@WITHATTR
Returns all base members that are associated with an attribute or varying attribute that satisfies
the conditions you specify. You can use operators such as >, <, =, and IN to specify conditions
that must be met. @WITHATTR can be used as a parameter of another function, where that
parameter is a list of members.

Syntax

@WITHATTR (dimName, "operator", value)

Parameter Description

dimName Single attribute dimension name or varying attribute dimension name.

operator Operator specification, which must be enclosed in quotation marks ("").

value A value that, in combination with the operator, defines the condition that must be met. The value can be
an attribute member specification, a constant, or a date-format function (that is, @TODATE).

Notes

l A varying attribute cannot be included in a FIX command if no perspective is specified in
the calculation script.

l The @WITHATTR function is a superset of the @ATTRIBUTE function. The following two
formulas return the same member set:

@ATTRIBUTE(Bottle)
@WITHATTR("Pkg Type","==",Bottle)

However, the following formula can be performed only with @WITHATTR (not with
@ATTRIBUTE) because you specify a condition:

@WITHATTR(Ounces,">","16")

l If you specify a date attribute with the @WITHATTR function, you must use the @TODATE
function in the string parameter to convert the date string to a number. For more
information, see the topic for the @TODATE function.

l The following operators are supported:

Operator Description

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

= = Equal to

<> or != Not equal to

IN In

Calculation Function Reference 225

l The IN operator returns the base members that are associated with a subcategory of
attributes in the attribute dimension. For example, in the Sample Basic database,
@WITHATTR(Population,"IN",Medium) returns the base members that are associated
with all attributes under the Medium parent member in the Population dimension.

l When using Boolean attributes with @WITHATTR, use only the actual Boolean attribute
member name, or use 1 (for True or Yes) or 0 (for False or No). You cannot use True/Yes
and False/No interchangeably.

l An operator may work differently with different attribute types. For example:

m Text—@WITHATTR(Flavors,"<",Orange) returns base members with attributes
that precede Orange in the alphabet; for example, Apple, Cranberry, Mango, and Oat,
but not Peach or Strawberry.

m Boolean—@WITHATTR(Caffeinated,"<",True) returns all base members that have
Caffeinated set to False (or No). It does not return base members that do not have
Caffeinated set to True (or Yes) or do not have a Caffeinated attribute at all. The behavior
is similar for a formula like @WITHATTR(Caffeinated,"<>",True), which
returns only base members with Caffeinated set to False.

m Date—@WITHATTR("Intro Date","<",@TODATE("mm-dd-

yyyy","07-26-2002")) returns all base members with date attributes that are
before July 26, 2002.

Example

The following table shows examples, based on the Sample Basic database, for each type of
operator:

Operator Example Result

> @WITHATTR(Population,">","18000000") Returns New York, California, and Texas

>= @WITHATTR(Population,">=",10000000) where 10,000,000 is not a numeric
attribute member, but a constant

Returns New York, Florida, California, Texas,
Illinois, and Ohio

< @WITHATTR(Ounces,"<","16") Returns Cola, Diet Cola, Old Fashioned,
Sasparilla, and Diet Cream

<= @WITHATTR("Intro Date","<=",@TODATE("mm-dd-yyyy", "04-01-2002")) Returns Cola, Diet Cola, Caffeine Free Cola,
and Old Fashioned

= = @WITHATTR("Pkg Type","= =",Can) Returns Cola, Diet Cola, and Diet Cream

<> or != @WITHATTR(Caffeinated,"<>",True) Returns Caffeine Free Cola, Sasparilla, Birch
Beer, Grape, Orange Strawberry

IN @WITHATTR("Population","IN",Medium) Returns Massachusetts, Florida, Illinois, and
Ohio

The following two examples show @WITHATTR used in a calculation script, based on the
Sample Basic database:

/* To increase by 10% the price of products that are greater than
or equal to 20 ounces */

226 Calculation Functions

FIX (@WITHATTR(Ounces,">=","20"))
Price = Price * 1.1;
ENDFIX

/* To increase by 10% the marketing budget for products brought
to market after a certain date */

FIX (@WITHATTR("Intro Date",">",
@TODATE("mm-dd-yyyy","06-26-1996")));
Marketing = Marketing * 1.1;
ENDFIX

See Also

l @ATTRIBUTE

l @ATTRIBUTEVAL

l @TODATE

l SET SCAPERSPECTIVE

@XRANGE
Returns the range of members between (and inclusive of) two specified single or cross-
dimensional members at the same level.

For example, when you work with the Time and Scenario dimensions, you can use @XRANGE
to return a member set combination of Time and Scenario instead of creating a dimension that
combines the two (which creates many more individual members than necessary).

@XRANGE is a member set function. Member set functions return a list of members. @XRANGE
can appear anywhere in a formula where a range can normally appear.

Syntax

@XRANGE (mbrName1, mbrName2)

Parameter Description

mbrName1 Any valid member name, member combination, or function that returns a single member.

mbrName2 Any valid member name, member combination, or function that returns a single member. If mbrName1
is a cross-dimensional member (such as Actual->Jan), then mbrName2 must be also, and the dimension
order must match the order used in mbrName1.

Notes

l @XRANGE can be used only in these functions: @AVGRANGE, @SUMRANGE,
@MINRANGE, @MINSRANGE, @MAXRANGE, @MAXSRANGE, @STDDEVRANGE,
@MOVSUM, @MOVAVG, @MOVMIN, @MOVMAX, @MOVMED, @SPLINE.

l The two arguments to @XRANGE can be either both single members or both cross-
dimensional members. For example, @XRANGE(Actual->Jan, Budget) is invalid because

Calculation Function Reference 227

a single member and a cross dimensional member are used together. Both
@XRANGE(Actual->Jan, Budget->Feb) and @XRANGE(Jan, Mar) are valid.

l The dimension order of members must match for both arguments. For example,
@XRANGE(Actual->Jun, Jul->Budget) is invalid because the two member components
are in different orders. @XRANGE(Actual->Jun, Budget->Jul) is valid.

l Although the syntax is correct, a function such as @XRANGE (Dec, Mar) is meaningless
because it results in an empty set.

l The member components of each argument must be from the same level. For example,
@XRANGE(Actual->Jun, Budget->Qtr1) is invalid because Jun and Qtr1 are not from
the same level.

Example

The following examples are based on the Sample Basic database.

Example 1

Here is a very simple example using simple members to return the range between Jan and Mar.

@XRANGE(Jan, Mar)

This example returns the following members:

Jan
Feb
Mar

Example 2

Here is a very simple example using cross dimensional members to return the range between
Actual, Jan and Budget, Mar:

@XRANGE (Actual->Jan, Budget->Mar)

This example returns the following members:

Actual, Jan
Actual, Feb
Actual, Mar
Actual, Apr
Actual, May
Actual, Jun
Actual, Jul
Actual, Aug
Actual, Sep
Actual, Oct
Actual, Nov
Actual, Dec
Budget, Jan
Budget, Feb
Budget, Mar

228 Calculation Functions

Example 3

This example is not based on the Sample Basic database. It is based on database that contains a
dimension called Year that contains members for each year, from 2001 to 2003.

The following formula computes the average sales for all months between Mar of 2000 and Jan
of 2001.

SalesAvg= @MOVAVG(Sales, 3, @XRANGE("2001"->Mar, "2003"->Jan));

This example returns the following members:

 Colas New York Actual
 Sales SalesAvg
 ===== ========
2000
 Mar 678 678
 Apr 645 645
 May 675 666
 Jun 712 677.3
 Jul 756 714.3
 Aug 890 786
 Sep 924 856.7
 Oct 914 909.3
 Nov 912 916.7
 Dec 723 849.7
2001
 Jan 647 760.7

See Also

l @AVGRANGE

l @SUMRANGE

l @MINRANGE

l @MINSRANGE

l @MAXRANGE

l @MAXSRANGE

l @STDEVRANGE

l @MOVSUM

l @MOVAVG

l @MOVMIN

l @MOVMAX

l @MOVMED

l @SPLINE

@XREF
Enables a database calculation to incorporate values from another Essbase database.

The following terminology is used to describe the @XREF function:

l Data target: the database on which the current calculation is running (that is, the database
on which the @XREF call originates).

Calculation Function Reference 229

l Data source: the database that is queried by the @XREF function. This database may be
remote (that is, on a different machine than the data target).

l Point of view: the member combination currently being calculated on the data target (that
is, the member combination that identifies the left hand side of a calculation).

The @XREF function retrieves values from a data source to be used in a calculation on a data
target. @XREF does not impose member and dimension mapping restrictions, which means that
the data source and data target outlines can be different.

As arguments, this function takes a location alias, an implied list of members that represents the
current point of view, and an optional list of members to qualify the @XREF query on the data
source. The second argument (the members making up the current point of view) is implied;
that is, these members are not specified as an @XREF parameter. An @XREF query that omits
the third argument indicates that a given data point in the data target will be set to the same data
point in the data source.

Syntax

@XREF (locationAlias [, mbrList])

Parameter Description

locationAlias A location alias for the data source. A location alias is a descriptor that identifies the data source. The
location alias must be set on the database on which the calculation script will be run. The location alias
is set by the database administrator and specifies a server, application, database, username, and password
for the data source.

mbrList Optional. A comma-delimited list of member names that qualify the @XREF query. The members you
specify for mbrList are sent to the data source in addition to the members in the current point of view in
the data target. The data source then constructs a member combination, using in order of precedence:

l The members specified in mbrList

l The members in the current point of view

l The top member in any unspecified dimensions in the data source

The mbrList parameter (1) modifies the point of view on the data target or (2) defines a specific point of
view on the data source. For example, the following formula modifies the point of view on the data target:

2003(2003->Jan->Inventory = @XREF(sourceDB,Dec);)

If the cube on the data source (sourceDB) contains data only from 2002, this formula sets Inventory
for Jan in 2003 to the Inventory value for Dec from 2002.

The following formula defines a specific point of view on the data target:

Jan = @XREF(sourceDB,January);

Assume that the data target contains the member Jan, while the data source (sourceDB) contains the
member January. This formula simply maps the member in the data target (Jan) with its corresponding
member in the data source (January), and pulls January from sourceDB.

See Notes for more information about the mbrList parameter.

Notes

l An error is returned if the members supplied in mbrList do not exist in the data source.

230 Calculation Functions

l The number of data cells queried on the data source must match the number of data cells
expected on the data target.

l The member list cannot contain functions that return more than one member. For example,
the following formula is not valid:

West = @XREF(SourceDb, @LEVMBRS(Market,0));

l The member list cannot contain ranges. For example, the following formula is not valid:

West = @XREF(SourceDb, Jan:Mar);

l mbrList can contain attribute members. For example, if the data source classifies products
based on a color attribute, the following formula would calculate the sum of the sales of all
red products and would assign the result to member RedThings:

RedThings = @XREF(SourceDb, Sales, Red);

l mbrList can contain attribute operators. For example, the following formula calculates
RedThings as the average sales of all red products:

RedThings = @XREF(SourceDb, Sales, Red, Average);

For more information on attributes, see the Oracle Essbase Database Administrator's Guide.

l Using this function in a calculation script disables parallel calculation.

l @XREF can query all types of members. For example, members retrieved from a data source
can be Dynamic Calc members as well as attribute members. Keep in mind that all
performance considerations that apply to dynamic and attribute calculations also apply to
@XREF queries that depend on dynamic and attribute members. For more information, see
the Oracle Essbase Database Administrator's Guide.

l Over the course of an @XREF calculation, data in the source database may change. @XREF
does not incorporate changes made after the beginning of the calculation.

l @XREF is a top-down formula. For more information on top-down formulas, see the Oracle
Essbase Database Administrator's Guide.

l For a member that does not exist in either the data source or the data target, @XREF returns
the value of the top dimension, not the value #M1.

l If you are using the @PARENT function within @XREF: the @XREF function requires the
@NAME function to be used around @PARENT. For example:

COGS=@XREF(Sample, @NAME(@PARENT(Product)),Sales);

Example

For this example, consider the following two databases:

Main Database

Year
 Qtr1
 Qtr2
Measures
 Sales
 Units
Product
 100
 100-10

Calculation Function Reference 231

 100-20
Market
 East
 West
Scenario
 Budget
 Forecast

Inflation Rates Database

Year
 Qtr1
 Qtr2
Assumptions
 Inflation
 Deflation = Inflation * .5 (Dynamic Calc)
Country
 US
 Canada
 Europe

The following formula is associated with the Main Database:

Units = Units * @XREF(InflatDB,Inflation,US);

Where InflatDB is the location alias for the Inflation Rates Database and Inflation is the
member for which a data value is retrieved from InflatDB.

In this example, Essbase calculates the following member combinations:

Units->Qtr1->100-10->East->Budget = Units->Qtr1->100-10->East->Budget * Inflation-
>Qtr1->US

Units->Qtr2->100-10->East->Budget = Units->Qtr2->100-10->East->Budget *Inflation-
>Qtr2->US and so on.

See Also

l @XWRITE

@XWRITE
Enables a database calculation to write values to another Essbase database, or to the same
database.

The following terminology is used to describe the @XWRITE function:

l Data source: the database on which the current calculation is running (that is, the database
on which the @XWRITE call originates).

l Data target: the database that is updated by the @XWRITE function. This database may be
remote (that is, on a different machine than the data source).

l Point of view: the member combination currently being calculated on the data source.

The @XWRITE function writes to data blocks, either in the same database or in a remote
database, while calculating a block in the current database. @XWRITE does not impose member

232 Calculation Functions

and dimension mapping restrictions, which means that the data source and data target outlines
can be different.

As arguments, this function takes a location alias, an implied list of members that represents the
current point of view, and an optional list of members to qualify @XWRITE on the data target.
The second argument (the members making up the current point of view) is implied; that is,
these members are not specified as an @XWRITE parameter. An @XWRITE that omits the third
argument indicates that a given data point in the data source will be set to the same data point
in the data target.

Syntax

@XWRITE (expression, locationAlias [, mbrList])

Parameter Description

expression A single member specification, variable name, or other numeric expression corresponding to the value
to be stored.

locationAlias A location alias for the data target. The location alias must be set on the database on which the calculation
script will be run. The location alias is set by the database administrator and specifies a server, application,
database, username, and password for the data target.

The same location alias can be used by both @XREF and @XWRITE. For @XREF, it represents the data
source, and for @XWRITE it represents the data target.

For @XWRITE only, a reserved keyword @LOOPBACK can be used to write to the same database.

mbrList Optional. A comma-delimited list of member names that qualify the @XWRITE operation. The members
you specify for mbrList, in addition to the members in the current point of view in the data source,
determine what is written to the data target. The data target is written to using the following calculation
logic (in order of precedence):

l The members specified in mbrList

l The members in the current point of view

l The top member in any unspecified dimensions in the data target

Therefore, the remote member list is calculated and written using members from current point of view,
overridden with members from the mbrList specified to @XWRITE, and if some dimensions are still
absent at the data target, the top most dimension of the data target is used.

See Notes for more information about the mbrList parameter.

Notes

l This function is applicable only to block storage databases.

l An error is returned if the members supplied in mbrList do not exist in the data target.

l The member list cannot contain functions that return more than one member. For example
@LEVMBRS(Market,0).

l The member list cannot contain ranges.

l The member list cannot contain attribute members or attribute operators.

l Using this function in a calculation script disables parallel calculation.

l @XWRITE is a top-down formula. For more information on top-down formulas, see the
Oracle Essbase Database Administrator's Guide.

Calculation Function Reference 233

l If you are using the @PARENT function within @XWRITE, the @XWRITE function requires
the @NAME function to be used around @PARENT.

l @XWRITE to dynamic calc cells is not recommended; the data is calculated in memory, but
not written.

l @XWRITE can be used in calculation scripts as well as outline member formulas.

Example

The following Sample Basic formula writes the 100-30 values into 100-20 on the same database.

FIX (East, Actual, Budget, Sales)
"100-30" (
@XWRITE("100-30", @loopback, "100-20");
)
ENDFIX

The following Sample Basic formula writes the 100-30 values into 100-20 on a remote database,
Sample2 Basic, using the location alias "sam2basic" defined from Sample Basic to Sample2 Basic.

FIX (East, Actual, Budget, Sales)
"100-30" (
@XWRITE("100-30", sam2basic, "100-20");
)
ENDFIX

See Also

l @XREF

Custom-Defined Calculation Functions
To get you started in creating custom-defined functions for the Essbase calculator, a set of
example statistical functions is provided with this release. These examples are compiled and
included in the essbase.jar file, located in the ESSBASEPATH\java\ directory.

For information about creating custom-defined functions, see the MaxL DDL Create
Function statement. For more information about custom-defined functions, see the Oracle
Essbase Database Administrator's Guide.

l “Java Code Examples” on page 234

l “MaxL Registration Scripts” on page 264

Java Code Examples
The Java code for examples of custom-defined functions is provided in the file
statisti.jav, copied below. For more information about the classes, methods, and constants
in the statisti.jav file, see the Oracle Essbase Statistics Java Package.

The code contained in the statisti.jav file is implemented in the ESSBASEPATH\java
\essbase.jar file. The examples in the statisti.jav file use constants which are defined

234 Calculation Functions

in the essbase.jar file. To use the constants defined in these examples, you must import the
Calculator class constants defined in the essbase.jar file.

l “register.mxl Sample Code” on page 264

l “drop.mxl Sample Code” on page 277

l “reglobal.mxl Sample Code” on page 279

Statisti.jav

package com.hyperion.essbase.calculator;

/**
 * This class provides a set of simple statistical routines. Some of them
 * are present native in Essbase as well and some are not.
 * Contains:
 *
 * min, max
 * sum, weighted sum
 * product, weighted product
 * average, weighted average
 * geometric mean, weighted geometric mean
 * harmonic mean, weighted harmonic mean
 * variance (var and varp), weighted variance
 * standard deviation (stdev and stdevp), weighted standard deviation
 * covariance, weighted covariance
 * correlation, weighted correlation
 * skewness, weighted skewness
 * kurtosis, weighted kurtosis
 * rank, mode, median, percentile, quartile
 *
 */
public final class Statistics implements CalculatorConstants {

/**
 * Computes minimum value of given sequence. Missing values are ignored
 * @param data data array
 * @return minimum value in the array
 */
public static double min (double [] data) {
 int i, n = data.length;

 if (n == 0)
 return MISSG;

 double min = data [0];
 boolean flag = (min == MISSG);

 for (i=1; i<n; i++) {
 double d = data [i];
 if (d != MISSG) {
 if (flag) {
 min = d;
 flag = false;
 }
 else if (d < min) {

Custom-Defined Calculation Functions 235

 min = d;
 }
 }
 }

 return min;
}

/**
 * Computes maximum value of given sequence. Missing values are ignored.
 * @param data data array
 * @return maximum value in the array
 */
public static double max (double [] data) {
 int i, n = data.length;

 if (n == 0)
 return MISSG;

 double max = data [0];
 boolean flag = (max == MISSG);

 for (i=1; i<n; i++) {
 double d = data [i];
 if (d != MISSG) {
 if (flag) {
 max = d;
 flag = false;
 }
 else if (d > max) {
 max = d;
 }
 }
 }
 return max;
}

/**
 * Computes sum of a given sequence. Missing values are ignored (treated as 0)
 * @param data data array
 * @return sum of the data
 */
public static double sum (double [] data) {
 int i, n = data.length;

 double sum = MISSG;
 for (i=0; i<n; i++) {
 double d = data [i];
 if (d != MISSG) {
 sum = Calculator.add (sum, d);
 }
 }
 return sum;
}

/**
 * Computes weighted sum of a given sequence.

236 Calculation Functions

 * Missing values are ignored (treated as 0)
 * @param data data array
 * @param weights weights
 * @return weighted sum of the data
 */
public static double sum (double [] data, double [] weights) {
 int i, n = data.length;

 double sum = MISSG;

 for (i=0; i<n; i++) {
 double d = data [i], w = weights [i];
 if (d != MISSG && w != MISSG) {
 sum = Calculator.add (sum, d * w);
 }
 }
 return sum;
}

/**
 * Computes product of a given sequence. Missing values are ignored (treated as 0)
 * @param data data array
 * @return product of the data
 */
public static double product (double [] data) {
 int i, n = data.length;

 if (n == 0)
 return MISSG;

 double product = 1.;
 boolean flag = false;
 for (i=0; i<n; i++) {
 double d = data [i];
 if (d != MISSG) {
 flag = true;
 product = product * d;
 }
 }

 if (!flag)
 return MISSG;

 return product;
}

/**
 * Computes weighted product of a given sequence.
 * Missing values are ignored (treated as 0)
 * @param data data array
 * @param weights weights
 * @return weighted product of the data
 */
public static double product (double [] data, double [] weights) {
 int i, n = data.length;

 if (n == 0)

Custom-Defined Calculation Functions 237

 return MISSG;

 double product = 1.;
 boolean flag = false;

 for (i=0; i<n; i++) {
 double d = data [i], w = weights [i];
 if (d != MISSG && w != MISSG) {
 d = Calculator.pow (d, w);
 if (d != MISSG) {
 flag = true;
 product = product * d;
 }
 }
 }
 if (!flag)
 return MISSG;

 return product;
}

/**
 * Computes count of non-missing values in a given sequence.
 * @param data data array
 * @return count of the non-missing data
 */
public static int count (double [] data) {
 int i, n = data.length;

 int count = 0;

 for (i=0; i<n; i++) {
 double d = data [i];
 if (d != MISSG) {
 count ++;
 }
 }
 return count;
}

/**
 * Computes count of a given sequence (with prescribed skip directive).
 * @param skip skip instruction; possible values are
 *
 * SKIPNONE - nothing skipped
 * SKIPZERO - zeros skipped
 * SKIPMISSG - missing values skipped
 * SKIPBOTH - skip both zeros and missing values
 * (defined in CalculatorConstants interface)
 * @param data data array
 * @return count of the data
 */
public static int count (int skip, double [] data) {
 int i, n = data.length;
 if (skip == SKIPNONE)
 return n;

238 Calculation Functions

 if (skip == SKIPMISSG)
 return count (data);
 boolean bZero = false, bMissg = false;

 bZero = (skip == SKIPZERO) || (skip == SKIPBOTH);
 bMissg = (skip == SKIPBOTH);

 int count = 0;

 for (i=0; i<n; i++) {
 double d = data [i];
 if ((bMissg && d == MISSG) || (bZero && d == 0.))
 continue;
 count ++;
 }
 return count;
}

/**
 * Computes the average value of a given sequence. Missing values are ignored.
 * @param data data array
 * @return average of the data
 */
public static double avg (double [] data) {
 int i, n = data.length;

 double sum = MISSG;
 int count = 0;

 for (i=0; i<n; i++) {
 double d = data [i];
 if (d != MISSG) {
 sum = Calculator.add (sum, d);
 count ++;
 }
 }

 if (count == 0)
 return MISSG;

 return sum / count;
}

/**
 * Computes the average value of a given sequence (with prescribed skip directive).
 * @param skip skip instruction; possible values are
 *
 * SKIPNONE - nothing skipped
 * SKIPZERO - zeros skipped
 * SKIPMISSG - missing values skipped
 * SKIPBOTH - skip both zeros and missing values
 * (defined in CalculatorConstants interface)
 * @param data data array
 * @return average of the data
 */
public static double avg (int skip, double [] data) {
 int i, n = data.length;

Custom-Defined Calculation Functions 239

 boolean bZero = false, bMissg = false;

 if (skip == SKIPMISSG)
 return avg (data);

 bZero = (skip == SKIPZERO) || (skip == SKIPBOTH);
 bMissg = (skip == SKIPBOTH);

 double sum = MISSG;
 int count = 0;

 for (i=0; i<n; i++) {
 double d = data [i];
 if ((bMissg && d == MISSG) || (bZero && d == 0.))
 continue;
 sum = Calculator.add (sum, d);
 count ++;
 }

 if (count == 0)
 return MISSG;

 return sum / count;
}

/**
 * Computes weighted average of a given sequence. Missing values are ignored
 * @param data data array
 * @param weights weights
 * @return weighted average of the data
 */
public static double avg (double [] data, double [] weights) {
 int i, n = data.length;

 double sum = MISSG;
 double weight = MISSG;

 for (i=0; i<n; i++) {
 double d = data [i], w = weights [i];
 if (d != MISSG && w != MISSG) {
 sum = Calculator.add (sum, d * w);
 weight = Calculator.add (weight, w);
 }
 }

 if (sum == MISSG || weight == MISSG || weight == 0.)
 return MISSG;

 return sum / weight;
}

/**
 * Computes weighted average value of a given sequence
 * (with prescribed skip directive).
 * @param skip skip instruction; possible values are
 *
 * SKIPNONE - nothing skipped

240 Calculation Functions

 * SKIPZERO - zeros skipped
 * SKIPMISSG - missing values skipped
 * SKIPBOTH - skip both zeros and missing values
 * (defined in CalculatorConstants interface)
 * @param data data array
 * @param weights weights
 * @return weighted average of the data
 */
public static double avg (int skip, double [] data, double [] weights) {
 int i, n = data.length;
 boolean bZero = false, bMissg = false;

 if (skip == SKIPMISSG)
 return avg (data, weights);

 bZero = (skip == SKIPZERO) || (skip == SKIPBOTH);
 bMissg = (skip == SKIPBOTH);

 double sum = MISSG;
 double weight = MISSG;

 for (i=0; i<n; i++) {
 double d = data [i], w = weights [i];
 if ((bMissg && d == MISSG) || (bZero && d == 0.))
 continue;

 if (w != MISSG)
 sum = Calculator.add (sum, d * w);
 weight = Calculator.add (weight, w);
 }

 if (sum == MISSG || weight == MISSG || weight == 0.)
 return MISSG;

 return sum / weight;
}

/**
 * Computes the geometric average value of a given sequence.
 * Missing values are ignored.
 * @param data data array
 * @return average of the data
 */
public static double geomean (double [] data) {
 int i, n = data.length;

 if (n == 0)
 return MISSG;

 double product = 1.;
 int count = 0;

 for (i=0; i<n; i++) {
 double d = data [i];
 if (d != MISSG) {
 product = product * d;
 count ++;

Custom-Defined Calculation Functions 241

 }
 }

 if (count == 0)
 return MISSG;

 return Math.pow (product, 1. / (double) count);
}

/**
 * Computes weighted geometric average of a given sequence.
 * Missing values are ignored
 * @param data data array
 * @param weights weights
 * @return weighted average of the data
 */
public static double geomean (double [] data, double [] weights) {
 int i, n = data.length;

 double product = 1.;
 double weight = MISSG;

 for (i=0; i<n; i++) {
 double d = data [i], w = weights [i];
 if (d != MISSG && w != MISSG) {
 product = product * Math.pow (d, w);
 weight = Calculator.add (weight, w);
 }
 }

 if (weight == MISSG || weight == 0.)
 return MISSG;

 return Math.pow (product, 1. / weight);
}

/**
 * Computes harmonic mean of a given sequence.
 * Missing values are ignored.
 * @param data data array
 * @return harmonic mean of the data
 */
public static double harmean (double [] data) {
 int i, n = data.length;

 if (n == 0)
 return MISSG;

 double sum = MISSG;
 int count = 0;

 for (i=0; i<n; i++) {
 double d = data [i];
 if (d != MISSG) {
 if (d == 0.)
 return MISSG;
 sum = sum + 1. / d;

242 Calculation Functions

 count ++;
 }
 }

 if (count == 0 || sum == 0.)
 return MISSG;

 return count / sum;
}

/**
 * Computes weighted harmonic mean of a given sequence.
 * Missing values are ignored
 * @param data data array
 * @param weights weights
 * @return weighted harmonic mean of the data
 */
public static double harmean (double [] data, double [] weights) {
 int i, n = data.length;

 double sum = MISSG;
 double weight = MISSG;

 for (i=0; i<n; i++) {
 double d = data [i], w = weights [i];
 if (d != MISSG && w != MISSG) {
 if (d == 0.)
 return MISSG;
 sum = Calculator.add (sum, w / d);
 weight = Calculator.add (weight, w);
 }
 }

 if (sum == MISSG || sum == 0. || weight == MISSG)
 return MISSG;

 return weight / sum;
}

/**
 * Computes variance of a given sequence. Missing values are ignored
 * @param data data array
 * @return variance of the data
 */
public static double var (double [] data) {
 int i, n = data.length;

 double d, sum = MISSG, avg = MISSG;
 int count = 0;

 for (i=0; i<n; i++) {
 d = data [i];
 if (d != MISSG) {
 sum = Calculator.add (sum, d);
 count ++;
 }
 }

Custom-Defined Calculation Functions 243

 if (count < 2)
 return MISSG;

 avg = sum / count;
 sum = 0.;
 for (i=0; i<n; i++) {
 d = data [i];
 if (d != MISSG) {
 d = d - avg;
 d = d * d;
 sum = sum + d;
 }
 }

 return (sum / (count - 1));
}

/**
 * Computes standard deviation of a given sequence. Missing values are ignored
 * @param data data array
 * @return stdev of the data
 */
public static double stdev (double [] data) {
 return Calculator.sqrt (var (data));
}

/**
 * Computes variance of a given sequence (with prescribed skip directive).
 * @param skip skip instruction; possible values are
 *
 * SKIPNONE - nothing skipped
 * SKIPZERO - zeros skipped
 * SKIPMISSG - missing values skipped
 * SKIPBOTH - skip both zeros and missing values
 * (defined in CalculatorConstants interface)
 * @param data data array
 * @return variance of the data
 */
public static double var (int skip, double [] data) {
 int i, n = data.length;
 boolean bZero = false, bMissg = false;

 if (skip == SKIPMISSG)
 return var (data);

 bZero = (skip == SKIPZERO) || (skip == SKIPBOTH);
 bMissg = (skip == SKIPBOTH);

 double d, sum = MISSG, avg = MISSG;
 int count = 0;

 for (i=0; i<n; i++) {
 d = data [i];
 if ((bMissg && d == MISSG) || (bZero && d == 0.))
 continue;
 sum = Calculator.add (sum, d);

244 Calculation Functions

 count ++;
 }

 if (count < 2)
 return MISSG;

 avg = sum / count;
 sum = 0.;
 for (i=0; i<n; i++) {
 d = data [i];
 if ((bMissg && d == MISSG) || (bZero && d == 0.))
 continue;
 if (d == MISSG)
 d = - avg;
 else
 d = d - avg;
 d = d * d;
 sum = sum + d;
 }

 return (sum / (count - 1));
}

/**
 * Computes standard deviation of a given sequence
 * (with prescribed skip directive).
 * @param skip skip instruction; possible values are
 *
 * SKIPNONE - nothing skipped
 * SKIPZERO - zeros skipped
 * SKIPMISSG - missing values skipped
 * SKIPBOTH - skip both zeros and missing values
 * (defined in CalculatorConstants interface)
 * @param data data array
 * @return standard deviation of the data
 */
public static double stdev (int skip, double [] data) {
 return Calculator.sqrt (var (skip, data));
}

/**
 * Computes weighted variance of a given sequence. Missing values are ignored
 * @param data data array
 * @param weights weights
 * @return weighted variance of the data
 */
public static double var (double [] data, double [] weights) {
 int i, n = data.length;

 double d, sum = MISSG, avg = MISSG;
 double w, weight = MISSG;

 for (i=0; i<n; i++) {
 d = data [i];
 w = weights [i];
 if (d != MISSG && w != MISSG) {
 sum = Calculator.add (sum, d * w);

Custom-Defined Calculation Functions 245

 weight = Calculator.add (weight, w);
 }
 }

 if (sum == MISSG || weight == MISSG || weight == 0. || weight == 1.)
 return MISSG;

 avg = sum / weight;
 sum = 0.;
 for (i=0; i<n; i++) {
 d = data [i];
 w = weights [i];
 if (d == MISSG || w == MISSG)
 continue;
 d = d - avg;
 d = d * d * w;
 sum = sum + d;
 }
 return (sum / (weight - 1.));
}

/**
 * Computes weighted standard deviation of a given sequence.
 * Missing values are ignored
 * @param data data array
 * @param weights weights
 * @return weighted standard deviation of the data
 * (without taking missing values into account)
 */
public static double stdev (double [] data, double [] weights) {
 return Calculator.sqrt (var (data, weights));
}

/**
 * Computes weighted variance of a given sequence
 * (with prescribed skip directive).
 * @param skip skip instruction; possible values are
 *
 * SKIPNONE - nothing skipped
 * SKIPZERO - zeros skipped
 * SKIPMISSG - missing values skipped
 * SKIPBOTH - skip both zeros and missing values
 * (defined in CalculatorConstants interface)
 * @param data data array
 * @param weights weights
 * @return weighted variance of the data
 */
public static double var (int skip, double [] data, double [] weights) {
 int i, n = data.length;
 boolean bZero = false, bMissg = false;

 if (skip == SKIPMISSG)
 return var (data, weights);

 bZero = (skip == SKIPZERO) || (skip == SKIPBOTH);
 bMissg = (skip == SKIPBOTH);

246 Calculation Functions

 double sum = MISSG, avg = MISSG;
 double weight = MISSG;

 for (i=0; i<n; i++) {
 double d = data [i], w = weights [i];
 if ((bMissg && d == MISSG) || (bZero && d == 0.))
 continue;

 if (d != MISSG && w != MISSG)
 sum = Calculator.add (sum, d * w);
 weight = Calculator.add (weight, w);
 }

 if (sum == MISSG || weight == MISSG || weight == 0. || weight == 1.)
 return MISSG;

 avg = sum / weight;
 sum = 0.;
 for (i=0; i<n; i++) {
 double d = data [i], w = weights [i];
 if ((bMissg && d == MISSG) || (bZero && d == 0.))
 continue;

 if (w != MISSG) {
 if (d == MISSG)
 d = -avg;
 else
 d = d - avg;
 d = d * d * w;
 sum = sum + d;
 }
 }
 return Math.sqrt (sum / (weight - 1));
}

/**
 * Computes weighted standard deviation of a given sequence
 * (with prescribed skip directive).
 * @param skip skip instruction; possible values are
 *
 * SKIPNONE - nothing skipped
 * SKIPZERO - zeros skipped
 * SKIPMISSG - missing values skipped
 * SKIPBOTH - skip both zeros and missing values
 * (defined in CalculatorConstants interface)
 * @param data data array
 * @param weights weights
 * @return weighted standard deviation of the data
 */
public static double stdev (int skip, double [] data, double [] weights) {
 return Calculator.sqrt (var (skip, data, weights));
}

/**
 * Computes variancep of a given sequence. Missing values are ignored
 * @param data data array
 * @return variancep of the data

Custom-Defined Calculation Functions 247

 */
public static double varp (double [] data) {
 int i, n = data.length;

 double sum = MISSG, avg = MISSG;
 int count = 0;

 for (i=0; i<n; i++) {
 double d = data [i];
 if (d != MISSG) {
 sum = Calculator.add (sum, d);
 count ++;
 }
 }

 if (count == 0)
 return MISSG;

 avg = sum / count;
 sum = 0.;
 for (i=0; i<n; i++) {
 double d = data [i];
 if (d != MISSG) {
 d = d - avg;
 d = d * d;
 sum = sum + d;
 }
 }
 return (sum / count);
}

/**
 * Computes stdevp of a given sequence. Missing values are ignored
 * @param data data array
 * @return stdevp of the data
 */
public static double stdevp (double [] data) {
 return Calculator.sqrt (varp (data));
}

/**
 * Computes variancep of a given sequence
 * (with prescribed skip directive).
 * @param skip skip instruction; possible values are
 *
 * SKIPNONE - nothing skipped
 * SKIPZERO - zeros skipped
 * SKIPMISSG - missing values skipped
 * SKIPBOTH - skip both zeros and missing values
 * (defined in CalculatorConstants interface)
 * @param data data array
 * @return variancep of the data
 */
public static double varp (int skip, double [] data) {
 int i, n = data.length;
 boolean bZero = false, bMissg = false;

248 Calculation Functions

 if (skip == SKIPMISSG)
 return varp (data);

 bZero = (skip == SKIPZERO) || (skip == SKIPBOTH);
 bMissg = (skip == SKIPBOTH);

 double sum = MISSG, avg = MISSG;
 int count = 0;

 for (i=0; i<n; i++) {
 double d = data [i];
 if ((bMissg && d == MISSG) || (bZero && d == 0.))
 continue;
 sum = Calculator.add (sum, d);
 count ++;
 }

 if (count == 0)
 return MISSG;

 avg = sum / count;
 sum = 0.;
 for (i=0; i<n; i++) {
 double d = data [i];
 if ((bMissg && d == MISSG) || (bZero && d == 0.))
 continue;
 if (d == MISSG)
 d = - avg;
 else
 d = d - avg;
 d = d * d;
 sum = sum + d;
 }
 return (sum / count);
}

/**
 * Computes stdevp of a given sequence
 * (with prescribed skip directive).
 * @param skip skip instruction; possible values are
 *
 * SKIPNONE - nothing skipped
 * SKIPZERO - zeros skipped
 * SKIPMISSG - missing values skipped
 * SKIPBOTH - skip both zeros and missing values
 * (defined in CalculatorConstants interface)
 * @param data data array
 * @return stdevp of the data
 */
public static double stdevp (int skip, double [] data) {
 return Calculator.sqrt (varp (skip, data));
}

/**
 * Computes weighted varp of a given sequence. Missing values are ignored
 * @param data data array
 * @param weights weights

Custom-Defined Calculation Functions 249

 * @return weighted varp of the data
 */
public static double varp (double [] data, double [] weights) {
 int i, n = data.length;

 double sum = MISSG, avg = MISSG;
 double weight = MISSG;

 for (i=0; i<n; i++) {
 double d = data [i], w = weights [i];
 if (d != MISSG && w != MISSG) {
 sum = Calculator.add (sum, d * w);
 weight = Calculator.add (weight, w);
 }
 }

 if (sum == MISSG || weight == MISSG || weight == 0.)
 return MISSG;

 avg = sum / weight;
 sum = 0.;
 for (i=0; i<n; i++) {
 double d = data [i], w = weights [i];
 if (d == MISSG || w == MISSG)
 continue;
 d = d - avg;
 d = d * d * w;
 sum = sum + d;
 }

 return (sum / weight);
}

/**
 * Computes weighted standard deviation of a given sequence.
 * Missing values are ignored
 * @param data data array
 * @param weights weights
 * @return weighted standard deviation of the data
 */
public static double stdevp (double [] data, double [] weights) {
 return Calculator.sqrt (varp (data, weights));
}

/**
 * Computes weighted varp of a given sequence
 * (with prescribed skip directive).
 * @param skip skip instruction; possible values are
 *
 * SKIPNONE - nothing skipped
 * SKIPZERO - zeros skipped
 * SKIPMISSG - missing values skipped
 * SKIPBOTH - skip both zeros and missing values
 * (defined in CalculatorConstants interface)
 * @param data data array
 * @param weights weights
 * @return weighted varp of the data

250 Calculation Functions

 */
public static double varp (int skip, double [] data, double [] weights) {
 int i, n = data.length;
 boolean bZero = false, bMissg = false;

 if (skip == SKIPMISSG)
 return varp (data, weights);

 bZero = (skip == SKIPZERO) || (skip == SKIPBOTH);
 bMissg = (skip == SKIPBOTH);

 double sum = MISSG, avg = MISSG;
 double weight = MISSG;

 for (i=0; i<n; i++) {
 double d = data [i], w = weights [i];
 if ((bMissg && d == MISSG) || (bZero && d == 0.))
 continue;

 if (d != MISSG && w != MISSG)
 sum = Calculator.add (sum, d * w);
 weight = Calculator.add (weight, w);
 }

 if (sum == MISSG || weight == MISSG || weight == 0.)
 return MISSG;

 avg = sum / weight;
 sum = 0.;
 for (i=0; i<n; i++) {
 double d = data [i], w = weights [i];
 if ((bMissg && d == MISSG) || (bZero && d == 0.))
 continue;

 if (w != MISSG) {
 if (d == MISSG)
 d = -avg;
 else
 d = d - avg;
 d = d * d * w;
 sum = sum + d;
 }
 }

 return (sum / weight);
}

/**
 * Computes weighted stdevp value of a given sequence
 * (with prescribed skip directive).
 * @param skip skip instruction; possible values are
 *
 * SKIPNONE - nothing skipped
 * SKIPZERO - zeros skipped
 * SKIPMISSG - missing values skipped
 * SKIPBOTH - skip both zeros and missing values
 * (defined in CalculatorConstants interface)

Custom-Defined Calculation Functions 251

 * @param data data array
 * @param weights weights
 * @return weighted stdevp of the data
 */
public static double stdevp (int skip, double [] data, double [] weights) {
 return Calculator.sqrt (varp (skip, data, weights));
}

/**
 * Computes covariance between two sequences.
 * If a missing value is encountered in either of the sequences,
 * the corresponding position is skipped in both of them.
 * @param x first array
 * @param y second array
 * @return covariance
 */
public static double covariance (double [] x, double [] y) {
 int i, n = x.length;

 if (n == 0)
 return MISSG;

 double d1, d2, avg1 = MISSG, avg2 = MISSG;
 int count = 0;

 for (i=0; i<n; i++) {
 d1 = x [i];
 d2 = y [i];
 if (d1 != MISSG && d2 != MISSG) {
 avg1 = Calculator.add (avg1, d1);
 avg2 = Calculator.add (avg2, d2);
 count ++;
 }
 }

 if (count < 1)
 return MISSG;

 avg1 = avg1 / count;
 avg2 = avg2 / count;

 double covar = 0.;
 for (i=0; i<n; i++) {
 d1 = x [i];
 d2 = y [i];
 if (d1 != MISSG && d2 != MISSG) {
 d1 = d1 - avg1;
 d2 = d2 - avg2;
 covar = covar + d1 * d2;
 }
 }
 return covar / count;
}

/**
 * Computes weighted covariance between two sequences
 * If a missing value is encountered in either of the sequences,

252 Calculation Functions

 * the corresponding position is skipped in both of them.
 * @param x first array
 * @param y second array
 * @return correlation
 */
public static double covariance (double [] x, double [] y, double [] weights) {
 int i, n = x.length;

 if (n == 0)
 return MISSG;

 double d1, d2, avg1 = MISSG, avg2 = MISSG;
 double w, weight = MISSG;

 for (i=0; i<n; i++) {
 d1 = x [i];
 d2 = y [i];
 w = weights [i];
 if (d1 != MISSG && d2 != MISSG && w != MISSG) {
 avg1 = Calculator.add (avg1, d1 * w);
 avg2 = Calculator.add (avg2, d2 * w);
 weight = Calculator.add (weight, w);
 }
 }

 if (avg1 == MISSG || weight == MISSG || weight == 0.)
 return MISSG;

 avg1 = avg1 / weight;
 avg2 = avg2 / weight;

 double covar = 0.;
 for (i=0; i<n; i++) {
 d1 = x [i];
 d2 = y [i];
 w = weights [i];
 if (d1 != MISSG && d2 != MISSG && w != MISSG) {
 d1 = d1 - avg1;
 d2 = d2 - avg2;
 covar = covar + w * d1 * d2;
 }
 }
 return covar / weight;
}

/**
 * Computes correlation between two sequences
 * If a missing value is encountered in either of the sequences,
 * the corresponding position is skipped in both of them.
 * @param x first array
 * @param y second array
 * @return correlation
 */
public static double correlation (double [] x, double [] y) {
 int i, n = x.length;

 if (n == 0)

Custom-Defined Calculation Functions 253

 return MISSG;

 double d1, d2, avg1 = MISSG, avg2 = MISSG;
 int count = 0;

 for (i=0; i<n; i++) {
 d1 = x [i];
 d2 = y [i];
 if (d1 != MISSG && d2 != MISSG) {
 avg1 = Calculator.add (avg1, d1);
 avg2 = Calculator.add (avg2, d2);
 count ++;
 }
 }

 if (count < 2)
 return MISSG;

 avg1 = avg1 / count;
 avg2 = avg2 / count;

 double stdev1 = 0.;
 double stdev2 = 0.;
 double covar = 0.;
 for (i=0; i<n; i++) {
 d1 = x [i];
 d2 = y [i];
 if (d1 != MISSG && d2 != MISSG) {
 d1 = d1 - avg1;
 d2 = d2 - avg2;
 covar = covar + d1 * d2;
 stdev1 = stdev1 + d1 * d1;
 stdev2 = stdev2 + d2 * d2;
 }
 }

 stdev1 = Math.sqrt (stdev1 / (count - 1));
 stdev2 = Math.sqrt (stdev2 / (count - 1));
 covar = covar / count;

 return covar / (stdev1 * stdev2);
}

/**
 * Computes weighted correlation between two sequences
 * If a missing value is encountered in either of the sequences,
 * the corresponding position is skipped in both of them.
 * @param x first array
 * @param y second array
 * @return correlation
 */
public static double correlation (double [] x, double [] y, double [] weights) {
 int i, n = x.length;

 if (n == 0)
 return MISSG;

254 Calculation Functions

 double d1, d2, avg1 = MISSG, avg2 = MISSG;
 double w, weight = MISSG;

 for (i=0; i<n; i++) {
 d1 = x [i];
 d2 = y [i];
 w = weights [i];
 if (d1 != MISSG && d2 != MISSG && w != MISSG) {
 avg1 = Calculator.add (avg1, d1 * w);
 avg2 = Calculator.add (avg2, d2 * w);
 weight = Calculator.add (weight, w);
 }
 }

 if (avg1 == MISSG || weight == MISSG || weight == 0. || weight == 1.)
 return MISSG;

 avg1 = avg1 / weight;
 avg2 = avg2 / weight;

 double stdev1 = 0.;
 double stdev2 = 0.;
 double covar = 0.;
 for (i=0; i<n; i++) {
 d1 = x [i];
 d2 = y [i];
 w = weights [i];
 if (d1 != MISSG && d2 != MISSG && w != MISSG) {
 d1 = d1 - avg1;
 d2 = d2 - avg2;
 covar = covar + w * d1 * d2;
 stdev1 = stdev1 + w * d1 * d1;
 stdev2 = stdev2 + w * d2 * d2;
 }
 }

 stdev1 = Math.sqrt (stdev1 / (weight - 1.));
 stdev2 = Math.sqrt (stdev2 / (weight - 1.));
 covar = covar / weight;

 return covar / (stdev1 * stdev2);
}

/**
 * Computes skewness of a sequence. Missing values are skipped
 * @param data data array
 * @return scewness of the sequence
 */
public static double skew (double [] data) {
 int i, n = data.length;

 if (n == 0)
 return MISSG;

 double d, avg = MISSG;
 int count = 0;

Custom-Defined Calculation Functions 255

 for (i=0; i<n; i++) {
 d = data [i];
 if (d != MISSG) {
 avg = Calculator.add (avg, d);
 count ++;
 }
 }

 if (count < 3)
 return MISSG;

 avg = avg / count;

 double stdev = 0.;
 for (i=0; i<n; i++) {
 d = data [i];
 if (d != MISSG) {
 d = d - avg;
 stdev = stdev + d * d;
 }
 }

 stdev = Math.sqrt (stdev / (count - 1));

 if (stdev == 0.)
 return MISSG;
 double skew = 0.;
 for (i=0; i<n; i++) {
 d = data [i];
 if (d != MISSG) {
 d = d - avg;
 d = d / stdev;
 skew = skew + d * d * d;
 }
 }

 return skew * count / ((count - 1) * (count - 2));
}

/**
 * Computes weighted skewness of a sequence. Missing values are ignored
 * @param data data array
 * @return skewness of the sequence
 */
public static double skew (double [] data, double [] weights) {
 int i, n = data.length;

 if (n == 0)
 return MISSG;

 double d, avg = MISSG;
 double w, weight = MISSG;

 for (i=0; i<n; i++) {
 d = data [i];
 w = weights [i];
 if (d != MISSG && w != MISSG) {

256 Calculation Functions

 avg = Calculator.add (avg, w * d);
 weight = Calculator.add (weight, w);
 }
 }

 if (avg == MISSG || weight == MISSG || weight == 0. || weight == 1. || weight == 2.)
 return MISSG;

 avg = avg / weight;

 double stdev = 0.;
 for (i=0; i<n; i++) {
 d = data [i];
 w = weights [i];
 if (d != MISSG && w != MISSG) {
 d = d - avg;
 stdev = stdev + w * d * d;
 }
 }

 stdev = Math.sqrt (stdev / (weight - 1));

 if (stdev == 0.)
 return MISSG;
 double skew = 0.;
 for (i=0; i<n; i++) {
 d = data [i];
 w = weights [i];
 if (d != MISSG && w != MISSG) {
 d = d - avg;
 d = d / stdev;
 skew = skew + w * d * d * d;
 }
 }

 return skew * weight / ((weight - 1.) * (weight - 2.));
}

/**
 * Computes kurtosis of a sequence. Missing values are skipped
 * @param data data array
 * @return kurtosis of the sequence
 */
public static double kurt (double [] data) {
 int i, n = data.length;

 if (n == 0)
 return MISSG;

 double d, avg = MISSG;
 int count = 0;

 for (i=0; i<n; i++) {
 d = data [i];
 if (d != MISSG) {
 avg = Calculator.add (avg, d);
 count ++;

Custom-Defined Calculation Functions 257

 }
 }

 if (count < 4)
 return MISSG;

 avg = avg / count;

 double stdev = 0.;
 for (i=0; i<n; i++) {
 d = data [i];
 if (d != MISSG) {
 d = d - avg;
 stdev = stdev + d * d;
 }
 }

 stdev = Math.sqrt (stdev / (count - 1));

 if (stdev == 0.)
 return MISSG;

 double kurt = 0.;
 for (i=0; i<n; i++) {
 d = data [i];
 if (d != MISSG) {
 d = d - avg;
 d = d / stdev;
 kurt = kurt + d * d * d * d;
 }
 }

 kurt = kurt * count * (count + 1) / (count - 1) - 3 * (count - 1) * (count - 1);
 return kurt / ((count - 2) * (count - 3));
}

/**
 * Computes weighted kurtosis of a sequence. Missing values are ignored
 * @param x data array
 * @return kurtosis of the sequence
 */
public static double kurt (double [] data, double [] weights) {
 int i, n = data.length;

 if (n == 0)
 return MISSG;

 double d, avg = MISSG;
 double w, weight = MISSG;

 for (i=0; i<n; i++) {
 d = data [i];
 w = weights [i];
 if (d != MISSG && w != MISSG) {
 avg = Calculator.add (avg, w * d);
 weight = Calculator.add (weight, w);
 }

258 Calculation Functions

 }

 if (avg == MISSG || weight == MISSG || weight == 0. ||
 weight == 1. || weight == 2. || weight == 3.)
 return MISSG;

 avg = avg / weight;

 double stdev = 0.;
 for (i=0; i<n; i++) {
 d = data [i];
 w = weights [i];
 if (d != MISSG && w != MISSG) {
 d = d - avg;
 stdev = stdev + w * d * d;
 }
 }

 stdev = Math.sqrt (stdev / (weight - 1));

 if (stdev == 0.)
 return MISSG;

 double kurt = 0.;
 for (i=0; i<n; i++) {
 d = data [i];
 w = weights [i];
 if (d != MISSG && w != MISSG) {
 d = d - avg;
 d = d / stdev;
 kurt = kurt + w * d * d * d * d;
 }
 }

 kurt = kurt * weight * (weight + 1.) / (weight - 1.) -
 3 * (weight - 1.) * (weight - 1.);
 return kurt / ((weight - 2.) * (weight - 3.));
}

/**
 * Computes rank of a value relative to a given sequence.
 * Missing elements in the sequence are ignored. Rank is 1-based.
 * Missing value is not ranked.
 * @param value value to be ranked
 * @param data array of data
 * @return rank in the sequence as a double
 */
public static double rank (double value, double [] data) {
 int i = 0, n = data.length;
 double d;
 int rank;

 if (value == MISSG)
 return MISSG;

 double [] ddd = new double [n];

Custom-Defined Calculation Functions 259

 int j = 0;
 for (i=0; i<n; i++) {
 d = data [i];
 if (d != MISSG) {
 ddd [j] = d;
 j ++;
 }
 }
 n = j;
 if (n == 0)
 return MISSG;

 if (n == 1) {
 if (ddd [0] > value)
 return 2.;
 else
 return 1.;
 }

 Calculator.sort (ddd, 0, n-1);

 rank = 1;
 while (ddd [n - rank] > value) {
 rank++;
 if (rank > n)
 break;
 }
 return (double) rank;
}

/**
 * Computes mode of a sequence. Missing values are ignored
 * @param data array of data
 * @return mode of the sequence
 */
public static double mode (double [] data) {
 int i, j, n = data.length, maxFreq, freq;
 double d, mode;
 double [] ddd = new double [n];

 j = 0;
 for (i=0; i<n; i++) {
 if (data [i] != MISSG) {
 ddd [j] = data [i];
 j ++;
 }
 }
 n = j;
 if (n == 0)
 return MISSG;

 if (n == 1)
 return ddd [0];

 Calculator.sort (ddd, 0, n-1);

 mode = ddd [0];

260 Calculation Functions

 maxFreq = 1;
 while (i < n-1) {
 freq = 1;
 d = ddd [i];
 i++;
 while (ddd [i] == d) {
 freq++;
 i++;
 if (i >= n)
 break;
 }
 if (freq > maxFreq) {
 maxFreq = freq;
 mode = d;
 }
 }
 return mode;
}

/**
 * Computes median of a sequence. Missing values are ignored
 * @param data data array
 * @result median of the sequence
 */
public static double median (double [] data) {
 int i, j, n = data.length;
 int midIndex;
 double median;
 double [] ddd = new double [n];

 j = 0;
 for (i=0; i<n; i++) {
 if (data [i] != MISSG) {
 ddd [j] = data [i];
 j ++;
 }
 }
 n = j;

 if (n == 0)
 return MISSG;

 Calculator.sort (ddd, 0, n - 1);

 midIndex = n / 2;
 if (n % 2 == 0) {
 /* Average of the two middle numbers */
 median = (ddd [midIndex] + ddd [midIndex - 1]) / 2;
 }
 else {
 median = ddd [midIndex];
 }
 return median;
}

/**
 * Computes percentile of a sequence. Missing values are ignored

Custom-Defined Calculation Functions 261

 * @param percent percent value
 * @param data double array
 * @result percentile of the sequence
 */
public static double percentile (double percent, double [] data) {
 int i, j, n = data.length;
 int midIndex;
 double median, temp;
 double [] ddd = new double [n];

 j = 0;
 for (i=0; i<n; i++) {
 if (data [i] != MISSG) {
 ddd [j] = data [i];
 j ++;
 }
 }
 n = j;

 if (n == 0)
 return MISSG;

 Calculator.sort (ddd, 0, n-1);

 if (percent == 0.)
 return ddd [0];

 if (percent == 1.)
 return ddd [n-1];

 temp = percent * (double) n;
 median = Math.floor (temp);
 midIndex = (int) median;

 if (median != temp) {
 temp -= median;
 median = ddd [midIndex-1];
 median += (ddd [midIndex] - median) * temp;
 }
 else {
 median = ddd [midIndex];
 }
 return median;
}

/**
 * Computes percentile of a part of a sequence. Missing values are ignored
 * @param percent percent value
 * @param size size to use
 * @param data data array
 * @result percentile of the subsequence
 */
public static double percentile (double percent, int size, double [] data) {
 int i, j, n = data.length;
 if (n > size)
 n = size;
 int midIndex;

262 Calculation Functions

 double median, temp;
 double [] ddd = new double [n];

 j = 0;
 for (i=0; i<n; i++) {
 if (data [i] != MISSG) {
 ddd [j] = data [i];
 j++;
 }
 }

 n = j;

 if (n == 0)
 return MISSG;

 Calculator.sort (ddd, 0, n-1);

 if (percent == 0.)
 return ddd [0];

 if (percent == 1.)
 return ddd [n-1];

 temp = percent * (double) n;
 median = Math.floor (temp);
 midIndex = (int) median;

 if (median != temp) {
 temp -= median;
 median = ddd [midIndex-1];
 median += (ddd [midIndex] - median) * temp;
 }
 else {
 median = ddd [midIndex];
 }
 return median;
}

/**
 * Computes quartile of a sequence. Missing values are ignored
 * @param quart indicates which value to return
 * Possible values are:
 *
 * 0 - return minimum
 * 1 - return 25% percentile
 * 2 - return median
 * 3 - return 75% percentile
 * 4 - return maximum
 *
 * @param data double array
 * @result quartile of the sequence
 */
public static double quartile (int quart, double [] data) {
 switch (quart) {
 case 0:
 return min (data);

Custom-Defined Calculation Functions 263

 case 1:
 return percentile (0.25, data);
 case 2:
 return median (data);
 case 3:
 return percentile (0.75, data);
 case 4:
 return max (data);
 default:
 return MISSG;
 }
}

}

MaxL Registration Scripts
Sample scripts for registering and dropping the example custom-defined functions are provided
in the following files, located in the following directory of this documentation: samples\cdf
\examples:

l register.mxl—To register the functions locally in an application (see register.mxl Sample
Code).

l drop.mxl—To drop the functions (if they were registered locally) (see drop.mxl Sample
Code).

l reglobal.mxlTo register the functions globally (see reglobal.mxl Sample Code).

The sample files can be viewed or modified in any text editor. For more information about
registering custom-defined functions, see the Oracle Essbase Database Administrator's Guide.

register.mxl Sample Code
/* <maxl version="11.1.1" encoding="UTF-8"/> */

/**
 * This script registers methods of the class Statistics as custom-defined functions
 * for a specified application
 * Usage: Log in to MaxL Shell, then call: msh register.mxl appname
 */

//**
 * Register function average
 */
CREATE MACRO $1.'@JAVG'(GROUP)
AS '@_JAVG(@@S)'
SPEC '@JAVG(expList)'
COMMENT 'Computes the average of non-missing values in a data set (expList)';

CREATE FUNCTION $1.'@_JAVG'
AS 'com.hyperion.essbase.calculator.Statistics.avg(double [])';

264 Calculation Functions

/**
 * Register function weighted average
 */
CREATE FUNCTION $1.'@JAVGW'
AS 'com.hyperion.essbase.calculator.Statistics.avg(double [],double [])'
SPEC '@JAVGW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted average of non-missing values in a data set (expList)';

/**
 * Register functions average and weighted average with a skip instruction.
 * These functions will be used through macros, so no spec/comment specified.
 * Since these functions will not be used directly, the names start with '@_'.
 */
CREATE FUNCTION $1.'@_JAVGS'
AS 'com.hyperion.essbase.calculator.Statistics.avg(int,double [])';
CREATE FUNCTION $1.'@_JAVGWS'
AS 'com.hyperion.essbase.calculator.Statistics.avg(int,double [],double [])';

/**
 * Register macro for average with a skip instruction
 */
CREATE MACRO $1.'@JAVGS'(SINGLE,GROUP)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JAVGS (0, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JAVGS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JAVGS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JAVGS (3, @@2)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JAVGS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the average value of a data set (expList) with skip instructions';

/**
 * Register macro for weighted average with a skip instruction
 */
CREATE MACRO $1.'@JAVGWS'(SINGLE,SINGLE,SINGLE)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JAVGWS (0, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)

Custom-Defined Calculation Functions 265

 @_JAVGWS (1, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JAVGWS (2, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JAVGS (3, @@2, @@3)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JAVGWS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, @LIST(expList),
@LIST(weightExpList))'
COMMENT 'Computes the weighted average value of a data set (expList) with skip
instructions';

/**
 * Register function correlation
 */
CREATE FUNCTION $1.'@JCORR'
AS 'com.hyperion.essbase.calculator.Statistics.correlation(double [],double [])'
SPEC '@JCORR(@LIST(expList1), @LIST(expList2))'
COMMENT 'Computes the correlation coefficient between two data sets (expList1 and
expList2)';

/**
 * Register function weighted correlation
 */
CREATE FUNCTION $1.'@JCORRW'
AS 'com.hyperion.essbase.calculator.Statistics.correlation(double [],double [],double
[])'
SPEC '@JCORRW(@LIST(expList1), @LIST(expList2), @LIST(weightExpList))'
COMMENT 'Computes the weighted correlation coefficient between two data sets (expList1
and expList2)';

/**
 * Register function count
 */
CREATE MACRO $1.'@JCOUNT'(GROUP)
AS '@_JCOUNT(@@S)'
SPEC '@JCOUNT(expList)'
COMMENT 'Computes the count of non-missing elements in a data set (expList)';

CREATE FUNCTION $1.'@_JCOUNT'
AS 'com.hyperion.essbase.calculator.Statistics.count(double [])';

/**
 * Register function count with a skip instruction.
 * This function will be used through macros, so no spec/comment specified.
 * Since this function will not be used directly, the name starts with '@_'.
 */
CREATE FUNCTION $1.'@_JCOUNTS'

266 Calculation Functions

AS 'com.hyperion.essbase.calculator.Statistics.count(int,double [])';

/**
 * Register macro for count with a skip instruction
 */
CREATE MACRO $1.'@JCOUNTS'(SINGLE,GROUP)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JCOUNTS (0, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JCOUNTS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JCOUNTS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JCOUNTS (3, @@2)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JCOUNTS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the number of elements of a data set (expList) with skip
instructions';

/**
 * Register function covariance
 */
CREATE FUNCTION $1.'@JCOVAR'
AS 'com.hyperion.essbase.calculator.Statistics.covariance(double [],double [])'
SPEC '@JCOVAR(@LIST(expList1), @LIST(expList2))'
COMMENT 'Computes the covariance between two data sets (expList1 and expList2)';

/**
 * Register function weighted covariance
 */
CREATE FUNCTION $1.'@JCOVARW'
AS 'com.hyperion.essbase.calculator.Statistics.covariance(double [],double [],double
[])'
SPEC '@JCOVARW(@LIST(expList1), @LIST(expList2), @LIST(weightExpList))'
COMMENT 'Computes the weighted covariance between two data sets (expList1 and
expList2)';

/**
 * Register function geometric mean
 */
CREATE MACRO $1.'@JGEOMEAN'(GROUP)
AS '@_JGEOMEAN(@@S)'
SPEC '@JGEOMEAN(expList)'
COMMENT 'Computes the geometric mean of a data set (expList)';

Custom-Defined Calculation Functions 267

CREATE FUNCTION $1.'@_JGEOMEAN'
AS 'com.hyperion.essbase.calculator.Statistics.geomean(double [])';

/**
 * Register function weighted geometric mean
 */
CREATE FUNCTION $1.'@JGEOMEANW'
AS 'com.hyperion.essbase.calculator.Statistics.geomean(double [],double [])'
SPEC '@JGEOMEANW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted geometric mean of a data set (expList)';

/**
 * Register function harmonic mean
 */
CREATE MACRO $1.'@JHARMEAN'(GROUP)
AS '@_JHARMEAN(@@S)'
SPEC '@JHARMEAN(expList)'
COMMENT 'Computes the harmonic mean of a data set (expList)';

CREATE FUNCTION $1.'@_JHARMEAN'
AS 'com.hyperion.essbase.calculator.Statistics.harmean(double [])';

/**
 * Register function weighted harmonic mean
 */
CREATE FUNCTION $1.'@JHARMEANW'
AS 'com.hyperion.essbase.calculator.Statistics.harmean(double [],double [])'
SPEC '@JHARMEANW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted harmonic mean of a data set (expList)';

/**
 * Register function kurtosis
 */
CREATE MACRO $1.'@JKURT'(GROUP)
AS '@_JKURT(@@S)'
SPEC '@JKURT(expList)'
COMMENT 'Computes the kurtosis of a data set (expList)';

CREATE FUNCTION $1.'@_JKURT'
AS 'com.hyperion.essbase.calculator.Statistics.kurt(double [])';

/**
 * Register function weighted kurtosis
 */
CREATE FUNCTION $1.'@JKURTW'
AS 'com.hyperion.essbase.calculator.Statistics.kurt(double [],double [])'
SPEC '@JKURTW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted kurtosis of a data set (expList)';

/**
 * Register function max
 * There is only one function with this name, so no need to specify the signature
 */

268 Calculation Functions

CREATE MACRO $1.'@JMAX'(GROUP)
AS '@_JMAX(@@S)'
SPEC '@JMAX(expList)'
COMMENT 'Computes the maximum of a data set (expList)';

CREATE FUNCTION $1.'@_JMAX'
AS 'com.hyperion.essbase.calculator.Statistics.max';

/**
 * Register function median
 * There is only one function with this name, so no need to specify the signature
 */
CREATE MACRO $1.'@JMEDIAN'(GROUP)
AS '@_JMEDIAN(@@S)'
SPEC '@JMEDIAN(expList)'
COMMENT 'Computes the median of a data set (expList)';

CREATE FUNCTION $1.'@_JMEDIAN'
AS 'com.hyperion.essbase.calculator.Statistics.median';

/**
 * Register function min
 * There is only one function with this name, so no need to specify the signature
 */
CREATE MACRO $1.'@JMIN'(GROUP)
AS '@_JMIN(@@S)'
SPEC '@JMIN(expList)'
COMMENT 'Computes the minimum of a data set (expList)';

CREATE FUNCTION $1.'@_JMIN'
AS 'com.hyperion.essbase.calculator.Statistics.min';

/**
 * Register function mode
 * There is only one function with this name, so no need to specify the signature
 */
CREATE MACRO $1.'@JMODE'(GROUP)
AS '@_JMODE(@@S)'
SPEC '@JMODE(expList)'
COMMENT 'Computes the mode of a data set (expList)';

CREATE FUNCTION $1.'@_JMODE'
AS 'com.hyperion.essbase.calculator.Statistics.mode';

/**
 * Register function percentile
 */
CREATE MACRO $1.'@JPTILE'(SINGLE, GROUP)
AS '@_JPTILE(@@1, @@SH1)'
SPEC '@JPTILE(percent,expList)'
COMMENT 'Computes the specified (percent) percentile of a data set (expList)';

CREATE FUNCTION $1.'@_JPTILE'
AS 'com.hyperion.essbase.calculator.Statistics.percentile(double,double [])';

/**
 * Register function product

Custom-Defined Calculation Functions 269

 */
CREATE MACRO $1.'@JPROD'(GROUP)
AS '@_JPROD(@@S)'
SPEC '@JPROD(expList)'
COMMENT 'Computes the product of non-missing values in a data set (expList)';

CREATE FUNCTION $1.'@_JPROD'
AS 'com.hyperion.essbase.calculator.Statistics.product(double [])';

/**
 * Register function weighted product
 */
CREATE FUNCTION $1.'@JPRODW'
AS 'com.hyperion.essbase.calculator.Statistics.product(double [],double [])'
SPEC '@JPRODW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted product of non-missing values in a data set (expList)';

/**
 * Register function quartile
 * There is only one function with this name, so no need to specify the signature
 */
CREATE MACRO $1.'@JQTILE'(SINGLE, GROUP)
AS '@_JQTILE(@@1, @@SH1)'
SPEC '@JQTILE(quart,expList)'
COMMENT 'Computes the specified (quart) quartile of a data set (expList)';

CREATE FUNCTION $1.'@_JQTILE'
AS 'com.hyperion.essbase.calculator.Statistics.quartile';

/**
 * Register function rank
 * There is only one function with this name, so no need to specify the signature
 */
CREATE MACRO $1.'@JRANK'(SINGLE, GROUP)
AS '@_JRANK(@@1, @@SH1)'
SPEC '@JRANK(value,expList)'
COMMENT 'Computes the rank of a value in a data set (expList)';

CREATE FUNCTION $1.'@_JRANK'
AS 'com.hyperion.essbase.calculator.Statistics.rank';

/**
 * Register function skewness
 */
CREATE MACRO $1.'@JSKEW'(GROUP)
AS '@_JSKEW(@@S)'
SPEC '@JSKEW(expList)'
COMMENT 'Computes the skewness of a data set (expList)';

CREATE FUNCTION $1.'@JSKEW'
AS 'com.hyperion.essbase.calculator.Statistics.skew(double [])';

/**
 * Register function weighted skewness

270 Calculation Functions

 */
CREATE FUNCTION $1.'@JSKEWW'
AS 'com.hyperion.essbase.calculator.Statistics.skew(double [],double [])'
SPEC '@JSKEWW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted skewness of a data set (expList)';

/**
 * Register function stdev
 */
CREATE FUNCTION $1.'@JSTDEV'(GROUP)
AS '@_JSTDEV(@@S)'
SPEC '@JSTDEV(expList)'
COMMENT 'Computes the standard deviation of non-missing values in a data set (expList)';

CREATE FUNCTION $1.'@_JSTDEV'
AS 'com.hyperion.essbase.calculator.Statistics.stdev(double [])';

/**
 * Register function weighted stdev
 */
CREATE FUNCTION $1.'@JSTDEVW'
AS 'com.hyperion.essbase.calculator.Statistics.stdev(double [],double [])'
SPEC '@JSTDEVW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted standard deviation of non-missing values in a data set
(expList)';

/**
 * Register functions stdev and weighted stdev with a skip instruction.
 * These functions will be used through macros, so no spec/comment specified.
 * Since these functions will not be used directly, the names start with '@_'.
 */
CREATE FUNCTION $1.'@_JSTDEVS'
AS 'com.hyperion.essbase.calculator.Statistics.stdev(int,double [])';
CREATE FUNCTION $1.'@_JSTDEVWS'
AS 'com.hyperion.essbase.calculator.Statistics.stdev(int,double [],double [])';

/**
 * Register macro for stdev with a skip instruction
 */
CREATE MACRO $1.'@JSTDEVS'(SINGLE,GROUP)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JSTDEVS (0, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JSTDEVS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JSTDEVS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JSTDEVS (3, @@2)
 @@ELSE

Custom-Defined Calculation Functions 271

 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JSTDEVS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the standard deviation value of a data set (expList) with skip
instructions';

/**
 * Register macro for weighted standard deviation with a skip instruction
 */
CREATE MACRO $1.'@JSTDEVWS'(SINGLE,SINGLE,SINGLE)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JSTDEVWS (0, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JSTDEVWS (1, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JSTDEVWS (2, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JSTDEVS (3, @@2, @@3)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JSTDEVWS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList, weightExpList)'
COMMENT 'Computes the weighted standard deviation value of a data set (expList) with
skip instructions';

/**
 * Register function stdevp
 */
CREATE MACRO $1.'@JSTDEVP'(GROUP)
AS '@_JSTDEVP(@@S)'
SPEC '@JSTDEVP(expList)'
COMMENT 'Computes the standard deviation(p) of non-missing values in a data set
(expList)';

CREATE FUNCTION $1.'@JSTDEVP'
AS 'com.hyperion.essbase.calculator.Statistics.stdevp(double [])';

/**
 * Register function weighted stdevp
 */
CREATE FUNCTION $1.'@JSTDEVPW'
AS 'com.hyperion.essbase.calculator.Statistics.stdevp(double [],double [])'
SPEC '@JSTDEVPW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted standard deviation(p) of non-missing values in a data set

272 Calculation Functions

(expList)';

/**
 * Register functions stdevp and weighted stdevp with a skip instruction.
 * These functions will be used through macros, so no spec/comment specified.
 * Since these functions will not be used directly, the names start with '@_'.
 */
CREATE FUNCTION $1.'@_JSTDEVPS'
AS 'com.hyperion.essbase.calculator.Statistics.stdevp(int,double [])';
CREATE FUNCTION $1.'@_JSTDEVPWS'
AS 'com.hyperion.essbase.calculator.Statistics.stdevp(int,double [],double [])';

/**
 * Register macro for stdevp with a skip instruction
 */
CREATE MACRO $1.'@JSTDEVPS'(SINGLE,GROUP)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JSTDEVPS (0, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JSTDEVPS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JSTDEVPS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JSTDEVPS (3, @@2)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JSTDEVPS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the standard deviation(p) value of a data set (expList) with skip
instructions';

/**
 * Register macro for weighted stdevp with a skip instruction
 */
CREATE MACRO $1.'@JSTDEVPWS'(SINGLE,SINGLE,SINGLE)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JSTDEVPWS (0, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JSTDEVPWS (1, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JSTDEVPWS (2, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JSTDEVPS (3, @@2, @@3)

Custom-Defined Calculation Functions 273

 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JSTDEVPWS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList, weightExpList)'
COMMENT 'Computes the weighted standard deviation(p) value of a data set (expList) with
skip instructions';

/**
 * Register function sum
 */
CREATE MACRO $1.'@JSUM'(GROUP)
AS '@_JSUM(@@S)'
SPEC '@JSUM(expList)'
COMMENT 'Computes the sum of a data set (expList)';

CREATE FUNCTION $1.'@_JSUM'
AS 'com.hyperion.essbase.calculator.Statistics.sum(double [])';

/**
 * Register function weighted SUM
 */
CREATE FUNCTION $1.'@JSUMW'
AS 'com.hyperion.essbase.calculator.Statistics.sum(double [],double [])'
SPEC '@JSUMW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted sum of a data set (expList)';

/**
 * Register function var
 */
CREATE MACRO $1.'@JVAR'(GROUP)
AS '@_JVAR(@@S)'
SPEC '@JVAR(expList)'
COMMENT 'Computes the variance of non-missing values in a data set (expList)';

CREATE FUNCTION $1.'@_JVAR'
AS 'com.hyperion.essbase.calculator.Statistics.var(double [])';

/**
 * Register function weighted var
 */
CREATE FUNCTION $1.'@JVARW'
AS 'com.hyperion.essbase.calculator.Statistics.var(double [],double [])'
SPEC '@JVARW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted variance of non-missing values in a data set (expList)';

/**
 * Register functions var and weighted var with a skip instruction.
 * These functions will be used through macros, so no spec/comment specified.
 * Since these functions will not be used directly, the names start with '@_'.
 */

274 Calculation Functions

CREATE FUNCTION $1.'@_JVARS'
AS 'com.hyperion.essbase.calculator.Statistics.var(int,double [])';
CREATE FUNCTION $1.'@_JVARWS'
AS 'com.hyperion.essbase.calculator.Statistics.var(int,double [],double [])';

/**
 * Register macro for var with a skip instruction
 */
CREATE MACRO $1.'@JVARS'(SINGLE,GROUP)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JVARS (0, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JVARS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JVARS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JVARS (3, @@2)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JVARS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the variance value of a data set (expList) with skip instructions';

/**
 * Register macro for weighted variance with a skip instruction
 */
CREATE MACRO $1.'@JVARWS'(SINGLE,SINGLE,SINGLE)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JVARWS (0, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JVARWS (1, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JVARWS (2, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JVARS (3, @@2, @@3)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JVARWS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList, weightExpList)'
COMMENT 'Computes the weighted variance value of a data set (expList) with skip
instructions';

Custom-Defined Calculation Functions 275

/**
 * Register function varp
 */
CREATE MACRO $1.'@JVARP'(GROUP)
AS '@_JVARP(@@S)'
SPEC '@JVARP(expList)'
COMMENT 'Computes the variance(p) of non-missing values in a data set (expList)';

CREATE FUNCTION $1.'@_JVARP'
AS 'com.hyperion.essbase.calculator.Statistics.varp(double [])';

/**
 * Register function weighted varp
 */
CREATE FUNCTION $1.'@JVARPW'
AS 'com.hyperion.essbase.calculator.Statistics.varp(double [],double [])'
SPEC '@JVARPW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted variance(p) of non-missing values in a data set
(expList)';

/**
 * Register functions varp and weighted varp with a skip instruction.
 * These functions will be used through macros, so no spec/comment specified.
 * Since these functions will not be used directly, the names start with '@_'.
 */
CREATE FUNCTION $1.'@_JVARPS'
AS 'com.hyperion.essbase.calculator.Statistics.varp(int,double [])';
CREATE FUNCTION $1.'@_JVARPWS'
AS 'com.hyperion.essbase.calculator.Statistics.varp(int,double [],double [])';

/**
 * Register macro for varp with a skip instruction
 */
CREATE MACRO $1.'@JVARPS'(SINGLE,GROUP)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JVARPS (0, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JVARPS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JVARPS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JVARPS (3, @@2)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JVARPS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList)'

276 Calculation Functions

COMMENT 'Computes the variance(p) value of a data set (expList) with skip instructions';

/**
 * Register macro for weighted varp with a skip instruction
 */
CREATE MACRO $1.'@JVARPWS'(SINGLE,SINGLE,SINGLE)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JVARPWS (0, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JVARPWS (1, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JVARPWS (2, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JVARPS (3, @@2, @@3)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JVARPWS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList, weightExpList)'
COMMENT 'Computes the weighted variance(p) value of a data set (expList) with skip
instructions';

drop.mxl Sample Code
/* <maxl version="7.0.0" encoding="UTF-8"/> */

/**
 * This script deregisters methods of the class Statistics as custom-defined functions
 * for a specified application
 * Usage: Log in to MaxL Shell, then call: msh drop.mxl appname
 *
 */

/**
 * Deregister all functions
 */
DROP FUNCTION $1.'@JAVG';
DROP FUNCTION $1.'@JAVGW';
DROP FUNCTION $1.'@_JAVGS';
DROP FUNCTION $1.'@_JAVGWS';
DROP MACRO $1.'@JAVGS';
DROP MACRO $1.'@JAVGWS';

DROP FUNCTION $1.'@JCORR';
DROP FUNCTION $1.'@JCORRW';

DROP FUNCTION $1.'@JCOUNT';
DROP FUNCTION $1.'@_JCOUNTS';
DROP MACRO $1.'@JCOUNTS';

Custom-Defined Calculation Functions 277

DROP FUNCTION $1.'@JCOVAR';
DROP FUNCTION $1.'@JCOVARW';

DROP FUNCTION $1.'@JGEOMEAN';
DROP FUNCTION $1.'@JGEOMEANW';

DROP FUNCTION $1.'@JHARMEAN';
DROP FUNCTION $1.'@JHARMEANW';

DROP FUNCTION $1.'@JKURT';
DROP FUNCTION $1.'@JKURTW';

DROP FUNCTION $1.'@JMAX';

DROP FUNCTION $1.'@JMEDIAN';

DROP FUNCTION $1.'@JMIN';

DROP FUNCTION $1.'@JMODE';

DROP FUNCTION $1.'@JPTILE';

DROP FUNCTION $1.'@JPROD';
DROP FUNCTION $1.'@JPRODW';

DROP FUNCTION $1.'@JQTILE';

DROP FUNCTION $1.'@JRANK';

DROP FUNCTION $1.'@JSKEW';
DROP FUNCTION $1.'@JSKEWW';

DROP FUNCTION $1.'@JSTDEV';
DROP FUNCTION $1.'@JSTDEVW';
DROP FUNCTION $1.'@_JSTDEVS';
DROP FUNCTION $1.'@_JSTDEVWS';
DROP MACRO $1.'@JSTDEVS';
DROP MACRO $1.'@JSTDEVWS';

DROP FUNCTION $1.'@JSTDEVP';
DROP FUNCTION $1.'@JSTDEVPW';
DROP FUNCTION $1.'@_JSTDEVPS';
DROP FUNCTION $1.'@_JSTDEVPWS';
DROP MACRO $1.'@JSTDEVPS';
DROP MACRO $1.'@JSTDEVPWS';

DROP FUNCTION $1.'@JSUM';
DROP FUNCTION $1.'@JSUMW';

DROP FUNCTION $1.'@JVAR';
DROP FUNCTION $1.'@JVARW';
DROP FUNCTION $1.'@_JVARS';
DROP FUNCTION $1.'@_JVARWS';
DROP MACRO $1.'@JVARS';
DROP MACRO $1.'@JVARWS';

278 Calculation Functions

DROP FUNCTION $1.'@JVARP';
DROP FUNCTION $1.'@JVARPW';
DROP FUNCTION $1.'@_JVARPS';
DROP FUNCTION $1.'@_JVARPWS';
DROP MACRO $1.'@JVARPS';
DROP MACRO $1.'@JVARPWS';

/**
 * Restart the application
 */
ALTER SYSTEM UNLOAD APPLICATION $1;
ALTER SYSTEM LOAD APPLICATION $1;

reglobal.mxl Sample Code
/* <maxl version="11.1.1" encoding="UTF-8"/> */

/**
 * This script registers methods of the class Statistics as global custom-defined
functions
 * Usage: Log in to MaxL Shell, then call: msh reglobal.mxl
 *
 */

/**
 * Register function average
 */
CREATE MACRO '@JAVG'(GROUP)
AS '@_JAVG(@@S)'
SPEC '@JAVG(expList)'
COMMENT 'Computes the average of non-missing values in a data set (expList)';

CREATE FUNCTION '@_JAVG'
AS 'com.hyperion.essbase.calculator.Statistics.avg(double [])';

/**
 * Register function weighted average
 */
CREATE FUNCTION '@JAVGW'
AS 'com.hyperion.essbase.calculator.Statistics.avg(double [],double [])'
SPEC '@JAVGW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted average of non-missing values in a data set (expList)';

/**
 * Register functions average and weighted average with a skip instruction.
 * These functions will be used through macros, so no spec/comment specified.
 * Since these functions will not be used directly, the names start with '@_'.
 */
CREATE FUNCTION '@_JAVGS'
AS 'com.hyperion.essbase.calculator.Statistics.avg(int,double [])';
CREATE FUNCTION '@_JAVGWS'
AS 'com.hyperion.essbase.calculator.Statistics.avg(int,double [],double [])';

Custom-Defined Calculation Functions 279

/**
 * Register macro for average with a skip instruction
 */
CREATE MACRO '@JAVGS'(SINGLE,GROUP)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JAVGS (0, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JAVGS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JAVGS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JAVGS (3, @@2)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JAVGS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the average value of a data set (expList) with skip instructions';

/**
 * Register macro for weighted average with a skip instruction
 */
CREATE MACRO '@JAVGWS'(SINGLE,SINGLE,SINGLE)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JAVGWS (0, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JAVGWS (1, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JAVGWS (2, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JAVGS (3, @@2, @@3)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JAVGWS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, @LIST(expList),
@LIST(weightExpList))'
COMMENT 'Computes the weighted average value of a data set (expList) with skip
instructions';

/**
 * Register function correlation
 */

280 Calculation Functions

CREATE FUNCTION '@JCORR'
AS 'com.hyperion.essbase.calculator.Statistics.correlation(double [],double [])'
SPEC '@JCORR(@LIST(expList1), @LIST(expList2))'
COMMENT 'Computes the correlation coefficient between two data sets (expList1 and
expList2)';

/**
 * Register function weighted correlation
 */
CREATE FUNCTION '@JCORRW'
AS 'com.hyperion.essbase.calculator.Statistics.correlation(double [],double [],double
[])'
SPEC '@JCORRW(@LIST(expList1), @LIST(expList2), @LIST(weightExpList))'
COMMENT 'Computes the weighted correlation coefficient between two data sets (expList1
and expList2)';

/**
 * Register function count
 */
CREATE MACRO '@JCOUNT'(GROUP)
AS '@_JCOUNT(@@S)'
SPEC '@JCOUNT(expList)'
COMMENT 'Computes the count of non-missing elements in a data set (expList)';

CREATE FUNCTION '@_JCOUNT'
AS 'com.hyperion.essbase.calculator.Statistics.count(double [])';

/**
 * Register function count with a skip instruction.
 * This function will be used through macros, so no spec/comment specified.
 * Since this function will not be used directly, the name starts with '@_'.
 */
CREATE FUNCTION '@_JCOUNTS'
AS 'com.hyperion.essbase.calculator.Statistics.count(int,double [])';

/**
 * Register macro for count with a skip instruction
 */
CREATE MACRO '@JCOUNTS'(SINGLE,GROUP)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JCOUNTS (0, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JCOUNTS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JCOUNTS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JCOUNTS (3, @@2)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF

Custom-Defined Calculation Functions 281

 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JCOUNTS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the number of elements of a data set (expList) with skip
instructions';

/**
 * Register function covariance
 */
CREATE FUNCTION '@JCOVAR'
AS 'com.hyperion.essbase.calculator.Statistics.covariance(double [],double [])'
SPEC '@JCOVAR(@LIST(expList1), @LIST(expList2))'
COMMENT 'Computes the covariance between two data sets (expList1 and expList2)';

/**
 * Register function weighted covariance
 */
CREATE FUNCTION '@JCOVARW'
AS 'com.hyperion.essbase.calculator.Statistics.covariance(double [],double [],double
[])'
SPEC '@JCOVARW(@LIST(expList1), @LIST(expList2), @LIST(weightExpList))'
COMMENT 'Computes the weighted covariance between two data sets (expList1 and
expList2)';

/**
 * Register function geometric mean
 */
CREATE MACRO '@JGEOMEAN'(GROUP)
AS '@_JGEOMEAN(@@S)'
SPEC '@JGEOMEAN(expList)'
COMMENT 'Computes the geometric mean of a data set (expList)';

CREATE FUNCTION '@_JGEOMEAN'
AS 'com.hyperion.essbase.calculator.Statistics.geomean(double [])';

/**
 * Register function weighted geometric mean
 */
CREATE FUNCTION '@JGEOMEANW'
AS 'com.hyperion.essbase.calculator.Statistics.geomean(double [],double [])'
SPEC '@JGEOMEANW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted geometric mean of a data set (expList)';

/**
 * Register function harmonic mean
 */
CREATE MACRO '@JHARMEAN'(GROUP)
AS '@_JHARMEAN(@@S)'
SPEC '@JHARMEAN(expList)'
COMMENT 'Computes the harmonic mean of a data set (expList)';

CREATE FUNCTION '@_JHARMEAN'

282 Calculation Functions

AS 'com.hyperion.essbase.calculator.Statistics.harmean(double [])';

/**
 * Register function weighted harmonic mean
 */
CREATE FUNCTION '@JHARMEANW'
AS 'com.hyperion.essbase.calculator.Statistics.harmean(double [],double [])'
SPEC '@JHARMEANW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted harmonic mean of a data set (expList)';

/**
 * Register function kurtosis
 */
CREATE MACRO '@JKURT'(GROUP)
AS '@_JKURT(@@S)'
SPEC '@JKURT(expList)'
COMMENT 'Computes the kurtosis of a data set (expList)';

CREATE FUNCTION '@_JKURT'
AS 'com.hyperion.essbase.calculator.Statistics.kurt(double [])';

/**
 * Register function weighted kurtosis
 */
CREATE FUNCTION '@JKURTW'
AS 'com.hyperion.essbase.calculator.Statistics.kurt(double [],double [])'
SPEC '@JKURTW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted kurtosis of a data set (expList)';

/**
 * Register function max
 * There is only one function with this name, so no need to specify the signature
 */
CREATE MACRO '@JMAX'(GROUP)
AS '@_JMAX(@@S)'
SPEC '@JMAX(expList)'
COMMENT 'Computes the maximum of a data set (expList)';

CREATE FUNCTION '@_JMAX'
AS 'com.hyperion.essbase.calculator.Statistics.max';

/**
 * Register function median
 * There is only one function with this name, so no need to specify the signature
 */
CREATE MACRO '@JMEDIAN'(GROUP)
AS '@_JMEDIAN(@@S)'
SPEC '@JMEDIAN(expList)'
COMMENT 'Computes the median of a data set (expList)';

CREATE FUNCTION '@_JMEDIAN'
AS 'com.hyperion.essbase.calculator.Statistics.median';

/**
 * Register function min

Custom-Defined Calculation Functions 283

 * There is only one function with this name, so no need to specify the signature
 */
CREATE MACRO '@JMIN'(GROUP)
AS '@_JMIN(@@S)'
SPEC '@JMIN(expList)'
COMMENT 'Computes the minimum of a data set (expList)';

CREATE FUNCTION '@_JMIN'
AS 'com.hyperion.essbase.calculator.Statistics.min';

/**
 * Register function mode
 * There is only one function with this name, so no need to specify the signature
 */
CREATE MACRO '@JMODE'(GROUP)
AS '@_JMODE(@@S)'
SPEC '@JMODE(expList)'
COMMENT 'Computes the mode of a data set (expList)';

CREATE FUNCTION '@_JMODE'
AS 'com.hyperion.essbase.calculator.Statistics.mode';

/**
 * Register function percentile
 */
CREATE MACRO '@JPTILE'(SINGLE, GROUP)
AS '@_JPTILE(@@1, @@SH1)'
SPEC '@JPTILE(percent,expList)'
COMMENT 'Computes the specified (percent) percentile of a data set (expList)';

CREATE FUNCTION '@_JPTILE'
AS 'com.hyperion.essbase.calculator.Statistics.percentile(double,double [])';

/**
 * Register function product
 */
CREATE MACRO '@JPROD'(GROUP)
AS '@_JPROD(@@S)'
SPEC '@JPROD(expList)'
COMMENT 'Computes the product of non-missing values in a data set (expList)';

CREATE FUNCTION '@_JPROD'
AS 'com.hyperion.essbase.calculator.Statistics.product(double [])';

/**
 * Register function weighted product
 */
CREATE FUNCTION '@JPRODW'
AS 'com.hyperion.essbase.calculator.Statistics.product(double [],double [])'
SPEC '@JPRODW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted product of non-missing values in a data set (expList)';

/**
 * Register function quartile
 * There is only one function with this name, so no need to specify the signature
 */

284 Calculation Functions

CREATE MACRO '@JQTILE'(SINGLE, GROUP)
AS '@_JQTILE(@@1, @@SH1)'
SPEC '@JQTILE(quart,expList)'
COMMENT 'Computes the specified (quart) quartile of a data set (expList)';

CREATE FUNCTION '@_JQTILE'
AS 'com.hyperion.essbase.calculator.Statistics.quartile';

/**
 * Register function rank
 * There is only one function with this name, so no need to specify the signature
 */
CREATE MACRO '@JRANK'(SINGLE, GROUP)
AS '@_JRANK(@@1, @@SH1)'
SPEC '@JRANK(value,expList)'
COMMENT 'Computes the rank of a value in a data set (expList)';

CREATE FUNCTION '@_JRANK'
AS 'com.hyperion.essbase.calculator.Statistics.rank';

/**
 * Register function skewness
 */
CREATE MACRO '@JSKEW'(GROUP)
AS '@_JSKEW(@@S)'
SPEC '@JSKEW(expList)'
COMMENT 'Computes the skewness of a data set (expList)';

CREATE FUNCTION '@JSKEW'
AS 'com.hyperion.essbase.calculator.Statistics.skew(double [])';

/**
 * Register function weighted skewness
 */
CREATE FUNCTION '@JSKEWW'
AS 'com.hyperion.essbase.calculator.Statistics.skew(double [],double [])'
SPEC '@JSKEWW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted skewness of a data set (expList)';

/**
 * Register function stdev
 */
CREATE FUNCTION '@JSTDEV'(GROUP)
AS '@_JSTDEV(@@S)'
SPEC '@JSTDEV(expList)'
COMMENT 'Computes the standard deviation of non-missing values in a data set (expList)';

CREATE FUNCTION '@_JSTDEV'
AS 'com.hyperion.essbase.calculator.Statistics.stdev(double [])';

/**
 * Register function weighted stdev
 */

Custom-Defined Calculation Functions 285

CREATE FUNCTION '@JSTDEVW'
AS 'com.hyperion.essbase.calculator.Statistics.stdev(double [],double [])'
SPEC '@JSTDEVW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted standard deviation of non-missing values in a data set
(expList)';

/**
 * Register functions stdev and weighted stdev with a skip instruction.
 * These functions will be used through macros, so no spec/comment specified.
 * Since these functions will not be used directly, the names start with '@_'.
 */
CREATE FUNCTION '@_JSTDEVS'
AS 'com.hyperion.essbase.calculator.Statistics.stdev(int,double [])';
CREATE FUNCTION '@_JSTDEVWS'
AS 'com.hyperion.essbase.calculator.Statistics.stdev(int,double [],double [])';

/**
 * Register macro for stdev with a skip instruction
 */
CREATE MACRO '@JSTDEVS'(SINGLE,GROUP)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JSTDEVS (0, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JSTDEVS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JSTDEVS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JSTDEVS (3, @@2)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JSTDEVS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the standard deviation value of a data set (expList) with skip
instructions';

/**
 * Register macro for weighted standard deviation with a skip instruction
 */
CREATE MACRO '@JSTDEVWS'(SINGLE,SINGLE,SINGLE)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JSTDEVWS (0, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JSTDEVWS (1, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)

286 Calculation Functions

 @_JSTDEVWS (2, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JSTDEVS (3, @@2, @@3)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JSTDEVWS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList, weightExpList)'
COMMENT 'Computes the weighted standard deviation value of a data set (expList) with
skip instructions';

/**
 * Register function stdevp
 */
CREATE MACRO '@JSTDEVP'(GROUP)
AS '@_JSTDEVP(@@S)'
SPEC '@JSTDEVP(expList)'
COMMENT 'Computes the standard deviation(p) of non-missing values in a data set
(expList)';

CREATE FUNCTION '@JSTDEVP'
AS 'com.hyperion.essbase.calculator.Statistics.stdevp(double [])';

/**
 * Register function weighted stdevp
 */
CREATE FUNCTION '@JSTDEVPW'
AS 'com.hyperion.essbase.calculator.Statistics.stdevp(double [],double [])'
SPEC '@JSTDEVPW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted standard deviation(p) of non-missing values in a data set
(expList)';

/**
 * Register functions stdevp and weighted stdevp with a skip instruction.
 * These functions will be used through macros, so no spec/comment specified.
 * Since these functions will not be used directly, the names start with '@_'.
 */
CREATE FUNCTION '@_JSTDEVPS'
AS 'com.hyperion.essbase.calculator.Statistics.stdevp(int,double [])';
CREATE FUNCTION '@_JSTDEVPWS'
AS 'com.hyperion.essbase.calculator.Statistics.stdevp(int,double [],double [])';

/**
 * Register macro for stdevp with a skip instruction
 */
CREATE MACRO '@JSTDEVPS'(SINGLE,GROUP)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JSTDEVPS (0, @@2)
 @@ELSE

Custom-Defined Calculation Functions 287

 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JSTDEVPS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JSTDEVPS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JSTDEVPS (3, @@2)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JSTDEVPS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the standard deviation(p) value of a data set (expList) with skip
instructions';

/**
 * Register macro for weighted stdevp with a skip instruction
 */
CREATE MACRO '@JSTDEVPWS'(SINGLE,SINGLE,SINGLE)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JSTDEVPWS (0, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JSTDEVPWS (1, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JSTDEVPWS (2, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JSTDEVPS (3, @@2, @@3)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JSTDEVPWS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList, weightExpList)'
COMMENT 'Computes the weighted standard deviation(p) value of a data set (expList) with
skip instructions';

/**
 * Register function sum
 */
CREATE MACRO '@JSUM'(GROUP)
AS '@_JSUM(@@S)'
SPEC '@JSUM(expList)'
COMMENT 'Computes the sum of a data set (expList)';

CREATE FUNCTION '@_JSUM'
AS 'com.hyperion.essbase.calculator.Statistics.sum(double [])';

288 Calculation Functions

/**
 * Register function weighted SUM
 */
CREATE FUNCTION '@JSUMW'
AS 'com.hyperion.essbase.calculator.Statistics.sum(double [],double [])'
SPEC '@JSUMW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted sum of a data set (expList)';

/**
 * Register function var
 */
CREATE MACRO '@JVAR'(GROUP)
AS '@_JVAR(@@S)'
SPEC '@JVAR(expList)'
COMMENT 'Computes the variance of non-missing values in a data set (expList)';

CREATE FUNCTION '@_JVAR'
AS 'com.hyperion.essbase.calculator.Statistics.var(double [])';

/**
 * Register function weighted var
 */
CREATE FUNCTION '@JVARW'
AS 'com.hyperion.essbase.calculator.Statistics.var(double [],double [])'
SPEC '@JVARW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted variance of non-missing values in a data set (expList)';

/**
 * Register functions var and weighted var with a skip instruction.
 * These functions will be used through macros, so no spec/comment specified.
 * Since these functions will not be used directly, the names start with '@_'.
 */
CREATE FUNCTION '@_JVARS'
AS 'com.hyperion.essbase.calculator.Statistics.var(int,double [])';
CREATE FUNCTION '@_JVARWS'
AS 'com.hyperion.essbase.calculator.Statistics.var(int,double [],double [])';

/**
 * Register macro for var with a skip instruction
 */
CREATE MACRO '@JVARS'(SINGLE,GROUP)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JVARS (0, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JVARS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JVARS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JVARS (3, @@2)

Custom-Defined Calculation Functions 289

 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JVARS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the variance value of a data set (expList) with skip instructions';

/**
 * Register macro for weighted variance with a skip instruction
 */
CREATE MACRO '@JVARWS'(SINGLE,SINGLE,SINGLE)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JVARWS (0, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JVARWS (1, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JVARWS (2, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JVARS (3, @@2, @@3)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JVARWS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList, weightExpList)'
COMMENT 'Computes the weighted variance value of a data set (expList) with skip
instructions';

/**
 * Register function varp
 */
CREATE MACRO '@JVARP'(GROUP)
AS '@_JVARP(@@S)'
SPEC '@JVARP(expList)'
COMMENT 'Computes the variance(p) of non-missing values in a data set (expList)';

CREATE FUNCTION '@_JVARP'
AS 'com.hyperion.essbase.calculator.Statistics.varp(double [])';

/**
 * Register function weighted varp
 */
CREATE FUNCTION '@JVARPW'
AS 'com.hyperion.essbase.calculator.Statistics.varp(double [],double [])'
SPEC '@JVARPW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted variance(p) of non-missing values in a data set
(expList)';

290 Calculation Functions

/**
 * Register functions varp and weighted varp with a skip instruction.
 * These functions will be used through macros, so no spec/comment specified.
 * Since these functions will not be used directly, the names start with '@_'.
 */
CREATE FUNCTION '@_JVARPS'
AS 'com.hyperion.essbase.calculator.Statistics.varp(int,double [])';
CREATE FUNCTION '@_JVARPWS'
AS 'com.hyperion.essbase.calculator.Statistics.varp(int,double [],double [])';

/**
 * Register macro for varp with a skip instruction
 */
CREATE MACRO '@JVARPS'(SINGLE,GROUP)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JVARPS (0, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JVARPS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JVARPS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JVARPS (3, @@2)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JVARPS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the variance(p) value of a data set (expList) with skip instructions';

/**
 * Register macro for weighted varp with a skip instruction
 */
CREATE MACRO '@JVARPWS'(SINGLE,SINGLE,SINGLE)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JVARPWS (0, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JVARPWS (1, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JVARPWS (2, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JVARPS (3, @@2, @@3)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF

Custom-Defined Calculation Functions 291

 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JVARPWS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList, weightExpList)'
COMMENT 'Computes the weighted variance(p) value of a data set (expList) with skip
instructions';

Custom-Defined Macros
Custom-defined macros enable you to combine Essbase calculation functions into a single
function, called a macro. Custom-defined macros can also include special directives, variables,
and other macros. After you create macros, they can be used in formulas and calculation scripts
just like native Essbase calculation functions.

Note: Custom-defined macros cannot include calculation commands.

Topics that discuss custom-defined macros:

l “Custom-Defined Macro Input Parameters” on page 292

l “Using Argument Values in Macro Definitions” on page 294

l “Directives Used in Custom-Defined Macros” on page 295

l “Macro Reference” on page 295

For information about creating custom-defined macros, see the MaxL DDL Create Macro
statement. For more information about custom-defined macros, see the Oracle Essbase Database
Administrator's Guide.

Custom-Defined Macro Input Parameters
When creating a macro, you can define how many and what kind of arguments are passed into
the macro. Specifying the argument set (also known as the signature) for a macro is optional,
but specifying it can make the macro easier to use and prevent usage errors.

The argument set is specified as part of the macro name when you create a macro with the
Create Macro MaxL statement. In the following macro name, the argument set is enclosed in
parentheses:

@SUMRANGE(single, group)

The preceding macro signature indicates that this macro requires two arguments: single, which
represents one input parameter, and group, which represents a list of input parameters. These
macro arguments do not represent a specific data type (such as a boolean, double, or string);
instead, they only indicate how many arguments are accepted by the macro.

Arguments are specified in a comma-delimited list (argument1, argument2, ... argumentX) as
part of the macro name when the macro is created. Arguments can be specified using the
following keywords, which tell the macro processor how to check the arguments for a macro:

292 Calculation Functions

Argument Description

SINGLE A single argument

GROUP A list of arguments. Any argument following GROUP is ignored.

OPTIONAL A single argument that is not required

OPTIONAL_GROUP A list of arguments that is not required. Any argument following OPTIONAL_GROUP is ignored.

ANY No checking of arguments. Any argument following ANY is ignored.

In the macro presented previously, the following sets of arguments are valid:

@SUMRANGE(Profit, @CHILDREN(East))
@SUMRANGE(Profit, "New York", "New Jersey", Connecticut)
@SUMRANGE(Sales, @DESCENDANTS(Product))

The following table shows examples of how the macro processor interprets arguments for macros
with different signatures given different input parameters. The definition of the example macro
is:

create macro SUM3(argument1, argument2, argument3) as '(@@1 + @@2 + @@3)';

Macro with Signature of
SUM3(signature)

Result when given input of
SUM3(X,Y)

Result when given input of
SUM3(X,Y,Z)

Result when given input of
SUM3(X,Y,Z,T)

SUM3(SINGLE, SINGLE, SINGLE) Error (wrong number of
arguments)

X+Y+Z Error (wrong number of arguments)

SUM3(SINGLE, SINGLE, GROUP) Error (wrong number of
arguments)

X+Y+Z X+Y+@LIST(Z,T)

SUM3(SINGLE, SINGLE,
OPTIONAL_GROUP)

X+Y+@_NULL X+Y+Z X+Y+@LIST(Z,T)

SUM3(SINGLE, SINGLE,
OPTIONAL)

X+Y+@_NULL X+Y+Z Error (wrong number of arguments)

SUM3(SINGLE, SINGLE, ANY) X+Y+@_NULL X+Y+Z X+Y+Z

SUM3(SINGLE, ANY) X+Y+ X+Y+Z X+Y+Z

SUM3(SINGLE, GROUP) X+Y+ X+@LIST(Y,Z)+ X+@LIST(Y,Z,T)+

SUM3(ANY) X+Y+ X+Y+Z X+Y+Z

As noted previously, specification of arguments in the macro name only restricts the number of
arguments that are accepted by the macro and does not restrict the data types that may be passed
into the macro. Arguments in the Essbase calculator language can represent any of the following
data types:

Custom-Defined Macros 293

Data Type Description

Number A single, double precision, floating point type number, which can have a special value, #MISSING, or an array of these
numbers

Boolean A single three-valued variable with the possible values, TRUE, FALSE, and #MISSING, or an array of these variables

Member A single database outline member, cross-member combination, or an array of members

String A string variable type, or an array of these strings

When developing macros, you should consider the types of data that can be passed into macros
to avoid errors in calculation.

Using Argument Values in Macro Definitions
Specifying an argument set for a custom-defined macro is only part of creating a macro. You
must use the argument values in the macro expansion, which defines what functions the macro
performs. Two types of argument variables can be used in a macro definition: numbered
argument variables and argument variable shortcuts.

Using Numbered Argument Variables

In a macro definition, argument variables can be referenced by the order in which they appear
in the macro signature. Consider the following example macro signature with three argument
variables:

SUM3(single, single, group)

To use the input from this function in the macro definition, you reference the arguments using
the argument variables @@1 for the first input parameter, @@2 for the second input parameter,
and @@3 for the third input parameter. Thus, using the macro in the preceding example and
providing the following input,

SUM3("New York", "New Jersey", @CHILDREN(Products));

results in the macro variables being set to the following values:

@@1 = "New York"@@2 = "New Jersey"@@3 = @CHILDREN(Products)

Use of the optional argument in the macro signature has no effect on which macro variable
represents which incoming argument; for example, the input,

Macro signature: SUM3(single, optional, group)
Macro input: SUM3("New York", , @CHILDREN(Products));

results in the macro variables being set to the following values:

@@1 = "New York"@@2 = @_NULL@@3 = @CHILDREN(Products)

Using Argument Variable Shortcuts

You can represent sets of arguments with the variable shortcuts @@S and @@SHx. These shortcuts
enable you to specify a set of arguments with one variable, rather than listing a set of numbered

294 Calculation Functions

variables. Using input from the preceding example, the @@S variable would be set to the following
value:

@@S = "New York", @_NULL, @CHILDREN(Products)

Argument variables and shortcuts for custom-defined macros can be used in any order within
a macro definition and can be repeated in a macro.

Directives Used in Custom-Defined Macros
Custom-defined macros can include calculation functions, but cannot include calculation
commands.

In addition to the calculation functions, custom-defined macros can include special directives
that are available only for macros. These directives are categorized as follows:

Variable handling

l “@@x” on page 295

l “@@S” on page 296

l “@@SHx” on page 297

Error handling

l “@@ERROR” on page 297

l “@@Lx” on page 298

Conditionals

l “@@IFSTRCMP” on page 299

l “@@ELSE” on page 300

l “@@ENDIF” on page 301

Macro Reference
The following topics describe the directives.

@@x
The @@x statement is a variable representing an input argument for a macro. The number x is
the number of the argument in the signature of the macro. So, @@1 represents the first input
argument, @@2 represents the second input argument, and so on.

Syntax

@@x

Where x is the number of an argument in the signature of the macro.

Custom-Defined Macros 295

Notes

l Each @@x input argument variable can be used multiple times within a macro expansion.

l The @@x argument variable can also be used with the @@S and @@SHx argument variables
within a macro expansion.

l The meaning of @@x argument variables does not change if an optional variable is not
provided; for example, given the following macro signature,

create macro Sample.'@ADD'(single, optional, single) as '(@@1 + @@2 + @@3)';

and the following input parameters,

@ADD("New York", , Connecticut);

the argument variables would be set to these values:

@@1 = "New York"
@@2 = @_NULL
@@3 = Connecticut

Example

The following example shows a create statement for a macro with three input arguments that
are added.

create macro Sample.'@SUM3'(single, single, single) as '(@@1 + @@2 + @@3)';

See Also

l “@@S” on page 296

l “@@SHx” on page 297

@@S
The @@S statement is a variable representing all input arguments for a macro.

Syntax

@@S

Notes

l The @@S input argument variable can be used multiple times within a macro expansion.

l The @@S input argument variable can also be used with the @@x and @@SHx argument
variables within a macro expansion.

Example

The following example shows a macro that divides the sum of all arguments by the sum of the
first two arguments.

create macro Sample.'@DIVIDE'(single, single, optional_group)
 as '@SUM(@@S)/(@@1 + @@2)';

296 Calculation Functions

See Also

l “@@x” on page 295

l “@@SHx” on page 297

@@SHx
The @@SHx statement represents a subset of all arguments starting with position x and including
the rest of the arguments for the macro.

Syntax

@@Sx

Where x is the number of an argument in the signature of the macro, with 0 representing the
first position, 1 representing the second position, and so on.

Notes

l The @@SHx argument variable can be used multiple times within a macro expansion.

l The @@SHx argument variable can be used with the @@x and @@S argument variables
within a macro expansion.

Example

The following example shows a macro that multiplies the first arguments together and adds
them to the sum of the remaining arguments.

create macro Sample.'@MULTANDSUM'(single, single, any)
 as '(@@1 * @@2) + @SUM(@@SH2)';

See Also

l “@@x” on page 295

l “@@S” on page 296

@@ERROR
The @@ERROR command forces the macro processor to stop and report an error.

Syntax

@@ERROR(lineNumber , errorCode)

Where:

l lineNumber is a number representing a line in the calculation script or formula where the
macro is used

l errorCode is an error code for the error

Custom-Defined Macros 297

Notes

The @@Lx command can be used as the first parameter of an @@ERROR statement to identify
a line number in a calculation script or formula where the macro is used.

Example

The following example function checks the first input argument for valid values (SKIPNONE,
SKIPMISSING, SKIPZERO, SKIPBOTH). If none of these values is found, the macro returns
an error, specifying a line number in a calculation script or formula where the macro is used.

@@IFSTRCMP (@@1, SKIPNONE)
 @_JAVGS (0, @@2)
@@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JAVGS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JAVGS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JAVGS (3, @@2)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
@@ENDIF

See Also

l “@@Lx” on page 298

l “@@IFSTRCMP” on page 299

@@Lx
The @@Lx command returns a number representing the line in a calculation script or formula
where a macro argument occurs, or the line where the macro name occurs.

Syntax

@@Lx

Where x is a number specifying a macro input argument number (1 , 2, ... n), or the macro
name, if zero (0) is specified.

Notes

The @@Lx command can be used only as the first parameter of an @@ERROR statement to
identify a line number for an error in a calculation script or formula.

298 Calculation Functions

Example

The following example macro checks the first input argument for valid values (SKIPNONE,
SKIPMISSING, SKIPZERO, SKIPBOTH). If none of these values is found, the macro returns
an error, specifying a line number in a calculation script or formula where the macro is used.
The line number is specified using the @@L1 statement, which returns 2, the number of the line
in the calculation script or formula where the first parameter of the macro occurs.

Calculation script using macro @AVGS
1: "Average_Revenue" = @AVGS(
2: SKIPNONE,
3: @CHILDREN(YrlyRevenue)
4:);

@AVGS macro definition:

@@IFSTRCMP (@@1, SKIPNONE)
 @_JAVGS (0, @@2)
@@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JAVGS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JAVGS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JAVGS (3, @@2)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
@@ENDIF

See Also

“@@ERROR” on page 297

@@IFSTRCMP
The @@IFSTRCMP command compares a macro input parameter to a string. If the input
parameters match, the macro statements following the command are processed. Otherwise, the
statements following @@ELSE are processed.

Syntax

@@IFSTRCMP(@@x , token) statement @@ELSE... [statement]
@@ENDIF

Where:

l @@x is a variable representing a macro argument

l token is a string to be compared to the macro argument

Custom-Defined Macros 299

l statementis operations to be performed depending on the results of the test

Notes

The @@IFSTRCMP statement block must use the @@ELSE statement as part of its decision
syntax. You do not have to include a statement after @@ELSE.

Example

@@IFSTRCMP (@@2, @_NULL)
 @@1
@@ELSE
 (@@1 + @@2)
@@ENDIF

This test checks to see if the second macro argument is blank. If it is, then only the first argument
is used. If the second argument is not blank, then the two arguments are added.

See Also

l “@@ELSE” on page 300

l “@@ENDIF” on page 301

@@ELSE
The @@ELSE command designates a conditional action to be performed in an @@IFSTRCMP
statement. All actions placed after the @@ELSE in an @@IFSTRCMP statement are performed
only if the strings compared in the @@IFSTRCMP statement do not match.

Syntax

@@ELSE...statement [...statement] @@ENDIF

Where statementis operations to be performed depending on the results of the test.

Notes

l The @@ELSE statement can only be used in conjunction with an @@IFSTRCMP statement.

l All @@IFSTRCMP statements must be ended with @@ENDIF statements.

Example

@@IFSTRCMP (@@2, @_NULL)
 @@1
@@ELSE
 (@@1 + @@2)
@@ENDIF

This test checks to see if the second macro argument is blank. If it is, then only the first argument
is used. If the second argument is not blank, then the two arguments are added.

300 Calculation Functions

See Also

l “@@IFSTRCMP” on page 299

l “@@ENDIF” on page 301

@@ENDIF
The @@ENDIF command marks the end of an @@IFSTRCMP command sequence. The
@@ENDIF command can be used only in conjunction with the @@IFSTRCMP statement.

Syntax

@@ENDIF

Notes

l You must supply an @@ENDIF statement for every @@IFSTRCMP statement in your
macro. If you do not supply the required @@ENDIF statements, your formula or calculation
script does not verify.

l If you are using an IF statement nested within another IF statement, end each IF with an
ENDIF, as in the following example:

@@IFSTRCMP (@@1, SKIPNONE)
 @_JAVGS (0, @@2)
@@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JAVGS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JAVGS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JAVGS (3, @@2)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
@@ENDIF

l All @@IFSTRCMP statements must be ended with @@ENDIF statements.

Example

@@IFSTRCMP (@@2, @_NULL)
 @@1
@@ELSE
 (@@1 + @@2)
@@ENDIF

This test checks to see if the second macro argument is blank. If it is, then only the first argument
is used. If the second argument is not blank, then the two arguments are added.

Custom-Defined Macros 301

See Also

l “@@IFSTRCMP” on page 299

l “@@ELSE” on page 300

302 Calculation Functions

3
Calculation Commands

In This Chapter

Calculation Commands Overview... 303

Calculation Operators .. 303

Calculation Command Groups... 305

Calculation Command Reference... 308

Calculation Commands Overview
You use calculation scripts to create calculations that differ from those defined in the database
outline. Calculation scripts enable development of custom operations to supplement the built-
in calculation of the database outline.

Calculation commands are the elements of calculation scripts that instruct Essbase in the
calculation rules to be used. You create calculation scripts using the Calculation Script Editor.
Within the Calculation Script Editor, a dialog box is available that allows you to paste functions
while you develop formulas. For more information, see the Oracle Essbase Administration Services
Online Help.

When a database is created, a default calculation script is set to "calculate all", which means that
it will calculate all dimensions based on the database outline's hierarchical relationships and
formulas.

You can override this default script by using a custom script. You can use the custom script(s)
temporarily or permanently, without altering the default script. In the custom script, you can
refer to calculation rules defined in the database outline or you can specify custom formulas,
calculation formats, and calculation orders.

A calculation script contains a series of calculation commands. The order of the commands
defines the execution order of the calculation.

Calculation Operators
Calculation operators (mathematical, conditional and logical, and cross-dimensional) define
equations for member formulas and calc scripts.

l “Mathematical Operators” on page 304

l “Conditional and Logical Operators” on page 304

Calculation Commands Overview 303

l “Cross-Dimensional Operator” on page 305

Mathematical Operators
Mathematical operators perform common arithmetic operations.

Operator Description

+ Adds

- Subtracts

* Multiplies

/ Divides

% Evaluates percentage, for example:

Member1%Member2 evaluates Member1 as a percentage of Member2.

() Controls the order of calculations and nests equations and formulas

Conditional and Logical Operators
Conditional operators build logical condition into calculations.

Operator Description

IF | ELSE | ELSEIF | ENDIF Tests conditions and calculates a formula based on the success or failure of the test

> Data value is greater than

>= Data value is greater than or equal to

< Data value is less than

<= Data value is less than or equal to

= = If data value is equal to

< > or != Data value is not equal to

AND Logical AND linking operator for multiple value tests. Result is TRUE if both conditions are TRUE. Otherwise
the result is FALSE.1

OR Logical OR linking operator for multiple value tests. Result is TRUE if either condition is TRUE. Otherwise the
result is FALSE.2

NOT Logical NOT operator. Result is TRUE if condition is FALSE. Result is FALSE if condition is TRUE.3

1The logical constants TRUE and FALSE are interpreted as 1 (TRUE) and 0 (FALSE) where appropriate.
2The logical constants TRUE and FALSE are interpreted as 1 (TRUE) and 0 (FALSE) where appropriate.
3The logical constants TRUE and FALSE are interpreted as 1 (TRUE) and 0 (FALSE) where appropriate.

304 Calculation Commands

Cross-Dimensional Operator
The cross-dimensional operator points to data values of specific member combinations. It is
created with a hyphen (-) and a right angle bracket (>), with no space between them: ->

Calculation Command Groups
This section lists calculation commands grouped by type:

l “Conditional Commands” on page 305

l “Control Flow Commands” on page 306

l “Data Declaration Commands” on page 306

l “Functional Commands” on page 306

l “Member Formulas” on page 307

Conditional Commands
Conditional commands control the flow of events in formulas. You can control which formulas
are executed within a calculation, test conditions, and calculate a formula based on the result of
the test.

l IF

l ENDIF

l ELSE

l ELSEIF

When you use an IF statement as part of a member formula in a calc script, you need to:

l Associate it with a single member

l Enclose it in parentheses

For example:

Profit (IF (Sales > 100)
 Profit = (Sales - COGS) * 2;
ELSE
 Profit = (Sales - COGS) * 1.5;
ENDIF;);

Essbase cycles through the database, performing the following calculations:

1. The IF statement checks to see if the value of Sales for the current member combination is
greater than 100.

2. If Sales is greater than 100, Essbase subtracts the value in COGS from the value in Sales,
multiplies it by 2, and places the result in Profit.

Calculation Command Groups 305

3. If Sales is less than, or equal to 100, Essbase subtracts the value in COGS from the value in
Sales, multiplies it by 1.5, and places the result in Profit.

The entire IF fixend.htm ENDIF statement is enclosed in parentheses and associated with the
Profit member, Profit (IF(fixend.htm)fixend.htm).

Control Flow Commands
Control Flow commands are used to iterate a set of commands or to restrict the commands'
effect to a subset (partition) database. They control the flow of a calculation script. The FIX…
ENDFIX and EXCLUDE…ENDEXCLUDE commands restrict calculations to specified members. The
LOOP...ENDLOOP command enables repetition.

Data Declaration Commands
These commands are used to declare and set the initial values of temporary variables. The values
stored in a variable are not returned in queries, because they only exist while the calculation
script is being processed. If you want to report these values, you need to create members within
the database outline, or assign the values from the variables into existing members.

l ARRAY

l VAR

Functional Commands
Functional commands are used to perform operations such as calculation, data copying,
exporting data, clearing data, and Currency Conversion.

l AGG

l CALC ALL

l CALC AVERAGE

l CALC DIM

l CALC FIRST

l CALC LAST

l CALC TWOPASS

l CCONV

l CLEARBLOCK

l CLEARCCTRACK

l CLEARDATA

l DATACOPY

l DATAEXPORT

306 Calculation Commands

l DATAEXPORTCOND

l DATAIMPORTBIN

l SET DATAEXPORTOPTIONS

l SET DATAIMPORTIGNORETIMESTAMP

l SET AGGMISSG

l SET CACHE

l SET CCTRACKCALC

l SET CLEARUPDATESTATUS

l SET FRMLBOTTOMUP

l SET FRMLRTDYNAMIC

l SET LOCKBLOCK

l SET MSG

l SET NOTICE

l SET REMOTECALC

l SET UPDATECALC

l SET UPTOLOCAL

Member Formulas
Member Formulas are used to calculate the default outline format on a custom formula within
the script. As with formulas in the database outline, a formula in a calculation script defines
mathematical relationships between database members. For example, the following expressions
are valid within a calculation script:

"Profit_%";

Specifying a member name with a formula defined in the outline calculates the member using
its formula.

Expenses = Payroll + Marketing;

The above formula expresses a simple mathematical relationship, which is used in place of the
database outline formula on the Expenses member.

Interdependent Member Formulas

Essbase optimizes calculation performance by calculating formulas for a range of members in
the same dimension. However, some formulas require values from members of the same
dimension. A good example is that of cash flow, in which the opening inventory is dependent
on the closing inventory from the previous month.

For examples of interdependent formulas, see the Oracle Essbase Database Administrator's
Guide.

Calculation Command Groups 307

When you use an interdependent formula in a calc script, the same rules apply as for the IF
statement. You need to:

l Associate the formula with a single member

l Enclose the formula in parentheses

If you place the following interdependent formula in a calc script, you construct it as follows:

"Opening Inventory" (IF(NOT @ISMBR (Jan))"Opening Inventory" =
@PRIOR("Ending Inventory"));
ENDIF;
"Ending Inventory" = "Opening Inventory" - Sales + Additions;)

The entire formula is enclosed in parentheses and associated with the Opening Inventory
member, "Opening Inventory" (IF(fixend.htm)…).

Calculation Command Reference
Consult the Contents pane for a categorical list of calculation commands.

& DATAIMPORTBIN SET CREATEBLOCKONEQ

AGG ELSE SET DATAEXPORTOPTIONS

ARRAY ELSEIF SET DATAIMPORTIGNORETIMESTAMP

CALC ALL ENDIF SET EMPTYMEMBERSETS

CALC AVERAGE EXCLUDE…ENDEXCLUDE SET FRMLBOTTOMUP

CALC DIM FIX…ENDFIX SET FRMLRTDYNAMIC

CALC FIRST IF SET LOCKBLOCK

CALC LAST LOOP...ENDLOOP SET MSG

CALC TWOPASS SET AGGMISSG SET NOTICE

CCONV SET CACHE SET REMOTECALC

CLEARBLOCK SET CALCPARALLEL SET SCAPERSPECTIVE

CLEARCCTRACK SET CALCTASKDIMS SET UPDATECALC

CLEARDATA SET CCTRACKCALC SET UPTOLOCAL

DATACOPY SET CLEARUPDATESTATUS VAR

DATAEXPORT SET COPYMISSINGBLOCK

DATAEXPORTCOND SET CREATENONMISSINGBLK

308 Calculation Commands

&
Prefaces a substitution variable in a calculation script.

Syntax

&variableName;

Parameter Description

variableName The name of the substitution variable set on the database.

Notes

Essbase treats strings beginning with & as substitution variables, replacing them with values
before parsing the calculation script.

Example

&CurQtr;

becomes

Qtr1;

if substitution variable &CurQtr has the value "Qtr1".

AGG
Consolidates database values. This command ignores all member formulas, consolidating only
parent/child relationships.

The AGG command performs a limited set of high-speed consolidations. Although AGG is faster
than the CALC commands when calculating sparse dimensions, it cannot calculate formulas; it
can only perform aggregations based on the database structure. AGG aggregates a list of sparse
dimensions based on the hierarchy defined in the database outline. If a member has a formula,
it is ignored, and the result does not match the relationship defined by the database outline.

If you want to aggregate a dimension that contains formulas:

1. Calculate any members that are "leaf" members (that is, level 0).

2. Aggregate the dimension, using the AGG command.

3. Calculate all other members with formulas that have not been calculated yet.

Syntax

AGG (dimList);

Parameter Description

dimList Name of a dimension or comma-separated list of dimensions.

Notes

l AGG only works with sparse dimensions.

Calculation Command Reference 309

l When a dimension contains fewer than six consolidation levels, AGG is typically faster than
CALC. Conversely, the CALC command is usually faster on dimensions with six or more
levels.

l AGG follows the rules for any defined FIX command.

Example

AGG(Market);
AGG(Product,Market,Scenario);

See Also

l CALC ALL

l CALC DIM

l SET AGGMISSG

ARRAY
Declares one-dimensional array variables.

Syntax

ARRAY arrayVariableName [dimName] = { constList};

Parameter Description

arrayVariableName Comma-delimited list of one or more array variable names.

dimName Dimension whose size determines the size of the array variable. Surround dimName with brackets
[].

constList Optional list of data values used to initialize the array variable(s). If no initialization is performed,
the array variables are set to #MISSING. The order of the values corresponds to the order of the
members in the dimension used to define the array.

Notes

l Typically, arrays are used to temporarily store variables as part of a member formula. The
variables cease to exist after the calculation script ends. The size of the array variable is
determined by the corresponding dimension (e.g., if dimension Period has 12 members,
ARRAY Discount[Period] has 12 members). To create multiple arrays simultaneously,
separate the array declarations in the ARRAY command with commas, as shown in the
Example.

l You can calculate data for an array directly as part of a member formula. As the member
formula is processed, each value in the array is assigned as its member is evaluated in the
calculation.

l Do not use quotation marks (") in variables; for example:

ARRAY "discount"

Example

ARRAY discount[Scenario];

310 Calculation Commands

yields an array of 4 entries, with the values 1 through 4 entered in those four entries.

ARRAY discount[Scenario] = {1, 2, 3, 4};
ARRAY discount[Scenario], tmpProduct[Product];

yields two arrays:

1. discount, corresponding to Scenario and containing four members

2. tmpProduct, corresponding to Product and containing nine members

See Also

l VAR

CALC ALL
Calculates and aggregates the entire database based on the database outline.

Syntax

CALC ALL [EXCEPT DIM (dimList) | MBR (mbrList)];

Parameter Description

EXCEPT Defines an exception list of dimensions or members to be excluded from calculation.

DIM Single-dimension specification.

dimList Optional comma-delimited list of dimensions.

MBR Single-member specification.

mbrList Optional comma-delimited list of members, member set functions, or range functions.

Notes

The order in which dimensions are processed depends on their characteristics in the outline.
For more information, see "Defining Calculation Order" in the Oracle Essbase Database
Administrator's Guide.

Example

CALC ALL;
CALC ALL EXCEPT DIM(Product);

See Also

l CALC DIM

l SET UPDATECALC

l SET FRMLBOTTOMUP

CALC AVERAGE
Calculates members tagged as time balance Average or Average Non-Missing. All other member
calculations are ignored.

Calculation Command Reference 311

Syntax

CALC AVERAGE;

Notes

This command calculates based on the Accounts dimension; it does not do a Time Series
calculation on the Time dimension.

Example

CALC AVERAGE;

See Also

l CALC FIRST

l CALC LAST

CALC DIM
Calculates formulas and aggregations for each member of the specified dimensions.

Syntax

CALC DIM (dimList);

Parameter Description

dimList Dimension or comma-delimited list of dimensions to be calculated.

Notes

The order in which dimensions are calculated depends on whether they are dense or sparse.
Dense dimensions are calculated first, in the order of dimList. The sparse dimensions are then
calculated in a similar order.

Example

CALC DIM(Accounts);

CALC DIM(Dense1,Sparse1,Sparse2,Dense2);

In the above example, the calculation order is: Dense1, Dense2, Sparse1, Sparse2. If your
dimensions need to be calculated in a particular order, use separate CALC DIM commands:

CALC DIM(Dense1);
CALC DIM(Sparse1);
CALC DIM(Sparse2);
CALC DIM(Dense2);

See Also

l CALC ALL

l SET UPDATECALC

l SET CLEARUPDATESTATUS

312 Calculation Commands

CALC FIRST
Calculates all members tagged in the database outline as time balance First.

Note: Only members tagged as time balance First are calculated using this command. Other
members are ignored.

Syntax

CALC FIRST;

Notes

This command calculates based on the Accounts dimension; it does not do a Time Series
calculation on the Time dimension.

Example

CALC FIRST;

See Also

l CALC AVERAGE

l CALC LAST

CALC LAST
Calculates all members tagged in the database outline as time balance Last.

Note: Only members tagged as time balance Last are calculated using this command. Other
members are ignored.

Syntax

CALC LAST;

Notes

This command calculates based on the Accounts dimension; it does not do a Time Series
calculation on the Time dimension.

Example

CALC LAST;

See Also

l CALC AVERAGE

l CALC FIRST

Calculation Command Reference 313

CALC TWOPASS
Calculates all members tagged in the database outline as two-pass. These members must be on
a dimension tagged as Accounts.

Syntax

CALC TWOPASS;

Notes

Member formulas are applied at each consolidated level of the database. All non two-pass
members are ignored during this process.

Example

CALC TWOPASS;

CCONV
Calculates currency conversions. This command is available only if your company has purchased
the Currency Conversion option.

Syntax

CCONV currExchMbr | TOLOCALRATE curType;

Parameter Description

currExchMbr Currency name containing the required exchange rate. This is a member from the currency database.

TOLOCALRATE Converts a converted currency back to the original, local rate.

curType Currency type. This is a member from the CurType dimension in the currency database.

Notes

You convert data values from a local to a common, converted currency using the CCONV
currExchMbr command. For example, you might convert data from a European currency into
US$. You can then convert the data values back to the local currency using the CCONV
TOLOCALRATE curType command.

Note: The CCTRACK setting in the essbase.cfg file must be set to TRUE (the default) to
enable the CCONV TOLOCALRATE command.

You can convert all or part of the main database using the rates defined in the currency database.
You can keep both the local and converted values in the main database, or you can overwrite
the local values with the converted values.

If you want to overwrite local values with converted values:

You do not need to create a CURPARTITION dimension in the main database. Use the CCONV
command in a calculation script to convert all the data in the database.

314 Calculation Commands

Note: You cannot use the FIX command if the CCTRACK setting is set to TRUE (the default)
in the essbase.cfg file and you are not using a CURPARTITION dimension.

If you want to keep both local and converted values:

In the main database, define the members that store the local and converted values. You do this
by creating a CURPARTITION dimension. The CURPARTITION dimension has two partitions,
one for local values and one for converted values.

ä To convert data:

1 Use the DATACOPY command to copy data from the local to the converted partition.

2 Use the FIX command to calculate only the converted partition and use the CCONV command to convert
the data.

3 Use the CALC command to recalculate the database.

To convert currencies, you must create a currency database and define specific dimensions in
the main database. For more information, see the Oracle Essbase Database Administrator's
Guide.

Example

CCONV YEN;

converts the data values from local currency values to Japanese Yen using the YEN exchange
rate from the currency database.

CCONV TOLOCALRATE "Act xchg";

converts the data values back to the local currencies using the Act xchg currency type from the
currency database.

CCONV Actual->US$;

converts the data values from local currencies to US$ using the Actual, US$ exchange rate from
the currency database.

FIX (Act)
 CCONV TOLOCALRATE "Act xchg";
ENDFIX

converts the data in the Act currency partition back to the local currencies using the Act xchg
currency type from the currency database.

DATACOPY Act TO Actual;
FIX (Actual)
 CCONV "Act xchg"->US$;
ENDFIX
CALC ALL;

Calculation Command Reference 315

copies Actual data values from the local currency partition to the converted currency partition.
Fixes on the Actual data (in the converted partition) and converts it using the Act xchg, US$ rate
from the currency database. Recalculates the database.

See Also

l SET UPTOLOCAL

l SET CCTRACKCALC

l CLEARCCTRACK

l “CCTRACK” on page 408

CLEARBLOCK
Sets cell values to #MISSING, and if all the cells are empty or #MISSING, removes the block. This
command is useful when you need to clear old data values across blocks before loading new
values.

CLEARBLOCK helps optimize database calculation speed. For example, if an initial calculation
creates numerous consolidated level blocks, subsequent recalculations take longer, because
Essbase must pass through the additional blocks. CLEARBLOCK clears blocks before a
calculation occurs.

Another example: if a database to be copied contains a lot of empty blocks, copying the database
also copies the empty blocks, resulting in a many more empty blocks. Using CLEARBBLK
EMPTY first makes the copy process more efficient.

If you use CLEARBLOCK within a FIX command, Essbase clears only the cells within the fixed
range, and not the entire block.

Syntax

CLEARBLOCK ALL | UPPER | NONINPUT | DYNAMIC | EMPTY;

Parameter Description

ALL Clears and removes all blocks.

UPPER Clears consolidated level blocks.

NONINPUT Clears blocks containing derived values. Applies to blocks that are completely created by a calculation
operation. Cannot be a block into which any values were loaded.

DYNAMIC Clears blocks containing values derived from Dynamic Calc and Store member combinations.

EMPTY Removes empty blocks (blocks where all values are #MISSING).

Notes

l If you regularly enter data values directly into a consolidated level, the UPPER option
overwrites your data. In this case, you should use the NONINPUT option, which only clears
blocks containing calculated values.

316 Calculation Commands

l If you use CLEARBLOCK EMPTY, the resulting, smaller database can be processed more
efficiently; however, the CLEARBLOCK EMPTY process itself can take some time,
depending on the size and density of the database.

l If CLEARBLOCK is used within a FIX command on a dense dimension, the FIX statement
is ignored and all blocks are scanned for missing cells.

Example

CLEARBLOCK ALL;
CLEARBLOCK UPPER;
CLEARBLOCK NONINPUT;
CLEARBLOCK DYNAMIC;
CLEARBLOCK EMPTY;

See Also

l CLEARDATA

CLEARCCTRACK
Clears the internal exchange rate tables created by the “CCTRACK” on page 408 setting.

Syntax

CLEARCCTRACK;

Notes

Use this command after a data load, to reset the exchange rate tables before rerunning a currency
conversion. You can use this command inside a FIX statement to clear the exchange rates for a
currency partition.

Example

CLEARDATA Actual;
FIX(Actual)
CLEARCCTRACK;
ENDFIX

Clears the Actual data, fixes on the Actual data (in the converted partition) and clears the internal
exchange rate tables for the Actual data.

See Also

l “CCTRACK” on page 408
l SET CCTRACKCALC

l CCONV

l SET UPTOLOCAL

CLEARDATA
Clears data values from the database and sets them to #MISSING.

Calculation Command Reference 317

This command is useful when you need to clear existing data values before loading new values
into a database. CLEARDATA can only clear a section of a database. It cannot clear the entire
database. To clear the entire database:

l Use the following MaxL statement:

alter database <dbs-name> reset; or

l Use Administration Services. Oracle Essbase Administration Services Online Help

CLEARDATA does not clear blocks, even if all data values in a block are #MISSING. Use
CLEARBLOCK if you wish to clear blocks from the database, which can improve performance.

Syntax

CLEARDATA mbrName;

Parameter Description

mbrName Any valid single member name or member combination, or a function that returns a single member or
member combination.

Notes

CLEARDATA does not work if placed in an IF statement.

Example

CLEARDATA Budget;

clears all Budget data.

CLEARDATA Budget->Colas;

clears only Budget data for the Colas product family.

See Also

l CLEARBLOCK

DATACOPY
Copies a range of data cells to another range within the database.

This command is useful when you must maintain an original set of data values and perform
changes on the copied data set.

DATACOPY is commonly used as part of the Currency Conversion process. DATACOPY is also
useful when you need to define multiple iterations of plan data.

To reduce typing, if any dimension(s) represented by the members in mbrName1 are not
represented in mbrName2, then by default the same member or members from mbrName1 are
assumed to exist in mbrName2 to complete the range. The reverse is not true. Any dimension
explicitly represented in mbrName2 MUST be represented by another member of the same
dimension in mbrName1.

318 Calculation Commands

The ranges specified by both mbrName1 and mbrName2 must be of the same size. The same
dimensions represented by the members that make up mbrName1 must also be present in
mbrName2.

Syntax

DATACOPY mbrName1 TO mbrName2;

Parameter Description

mbrName1 and mbrName2 Any valid single member name or member combination.

Notes

l The size of the copied dimensions must be equal to the destination (TO) size.

l DATACOPY follows the rules for any defined FIX command.

l To prevent creation of #MISSING blocks, add the following calculation command to your
script:

SET COPYMISSINGBLOCK OFF;

Example

DATACOPY Plan TO Revised_Plan;

See Also

l SET COPYMISSINGBLOCK

DATAEXPORT
Writes data to a text file, binary file, or as direct input to a relational file using ODBC.

Syntax

For a text output file:

DATAEXPORT "File" "delimiter" "fileName" "missingChar"

For a binary output file:

DATAEXPORT "Binfile" "fileName"

For direct export to a relational database using ODBC:

DATAEXPORT "DSN" "dsnName" "tableName" "userName" "password"

Parameter Description

"File""Binfile""DSN" Required keyword for the type of output file. Specify the appropriate keyword, then use the
associated syntax.

"delimiter" Required for "File" exports

The character that separates fields; for example, ","

Do not use with "Binfile" or "DSN" exports

Calculation Command Reference 319

Parameter Description

"fileName" Required for "File" and "Binfile" exports

Full path name for the export file.

Do not use with "DSN" exports.

"missingChar" Optional for output type "File"

l A text string to represent missing data values. Maximum length: 128 characters.

l "NULL" to skip the field, resulting in consecutive delimiters (such as ,,).

l Default value: #MI

Do not use with "Binfile" or "DSN" exports, or in combination with the SET
DATAEXPORTRELATIONALFILE command.

"dsnName" Required for output type "DSN"

The DSN name used to communicate with the SQL database. A substitution variable can be used.

Do not use with output type "File" or "Binfile."

"tableName" Required for "DSN" exports

Name of the table where the exported data is to be inserted. The table must exist, and table and
column names cannot contain spaces.

Do not use with "File" or "Binfile" exports.

"userName" Required for "DSN" exports

The user name that is used when communicating with the database. A substitution variable can
be used.

Do not use with "File" or "Binfile" exports.

"password" Required for "DSN" exports

The password that is used when communicating with the database. A substitution variable can
be used.

Do not use with "File" or "Binfile" exports.

Notes

l In general, specify SET commands within the calculation script to specify various options,
and then use FIX…ENDFIX to refine data to be exported, including the DATAEXPORT
command within the FIX…ENDFIX command set. Without FIX…ENDFIX, the entire
database is exported.

l If outputting a file, and fileName:

m Does not include a path, the file is written in the application directory.

m Includes a path, Essbase interprets the path in context to the server. Export files cannot
be written to a client.

l When using DATAEXPORT "DSN" to export data for direct insertion to a relational
database:

m You can use the “DATAEXPORTENABLEBATCHINSERT” on page 414 configuration
setting to enable the batch insert method, which is faster than the default row-insert

320 Calculation Commands

method. With batch insert, Essbase determines the batch size, but you can use the
“DEXPSQLROWSIZE” on page 418 configuration setting to specify the number of rows
(from 2 to 1000) to be batch inserted. Essbase inserts the rows when the specified batch
size is reached.

m The table to which the data is to be written must exist prior to data export

m Table and column names cannot contain spaces.

Note: 64-bit Essbase does not support using the DATAEXPORT batch-insert method to
export data directly into a SQL data source.

l The export process does not begin if users are logged into the database. After the export
process begins, the database is in read-only mode. Users can read the data but they cannot
change it. After the export process is finished, Essbase returns the database to read-write
mode and users can make changes to the data.

l Use the DATAIMPORTBIN command to import a previously exported binary export file.

Description

The DATAEXPORT calculation command writes data into a text or binary output file, or
connects directly to an existing relational database wherein the selected exported data is inserted.

Whereas both the MaxL Export Data statement and the ESSCMD EXPORT command can
export all, level 0, or input data from the entire database as text data, the DATAEXPORT
calculation command also enables you to:

l Use FIX…ENDFIX or EXCLUDE…ENDEXCLUDE calculations to select a slice of the database and
use a DATAEXPORTCOND command to select data based on data values.

l Use parameters to qualify the type and destination of the export data.

l Use options provided by the SET DATAEXPORTOPTIONS command to refine export content,
format, or process.

l Use the SET DATAIMPORTIGNORETIMESTAMP command to manage the import
requirement for a matching outline timestamp.

Using Report Writer to create an "export" file also provides extensive flexibility in selecting and
formatting the data; however, using DATAEXPORT outputs the data more quickly. For
information about using Report Writer to export data, see the Oracle Essbase Database
Administrator's Guide.

Example

Text Output File Example 1

SET DATAEXPORTOPTIONS
 {
 DataExportLevel "LEVEL0";
 };
DATAEXPORTCOND ("Sales">=1000);
FIX ("100-10","New York","Actual","Sales");

Calculation Command Reference 321

DATAEXPORT "File" "," "b:\exports\jan.txt" "#MI";
ENDFIX;

Specifies a level 0 data export level, limits output to data only with 1000 or greater Sales, fixes
the data slice, then exports to a text file located at b:\exports\jan.txt, using comma (,)
delimiters and specifying #MI for missing data values.

Text Output File Example 2

SET DATAEXPORTOPTIONS
 {
 DataExportLevel "LEVEL0";
 DataExportRelationalFile ON;
 };
DATAEXPORTCOND ("Sales">=1000);
FIX ("100-10","New York","Actual","Sales");
DATAEXPORT "File" "," "b:\exports\jan.txt";
ENDFIX;

Specifies the same export content as Example 1; however, the output file is formatted for input
to a relational database. Notice the missingChar parameter is intentionally excluded.

Binary Example 1: Export

SET DATAEXPORTOPTIONS
 {
 DataExportLevel "ALL";
 };
FIX ("New York");
DATAEXPORT "BinFile" "b:\backup\newyork.bin";
ENDFIX;

Exports all New York blocks. Binary exports can be fixed only on sparse dimensions. Essbase
uses the same bitmap compression technique to create the file as is used by Essbase Kernel.

Binary Example 2: Import

SET DATAIMPORTIGNORETIMESTAMP OFF;
DATAIMPORTBIN "b:\backup\newyork.bin"

Imports the previously exported file. The timestamp must match. The data is imported to the
database on which the calculation script is executed. Because only data was exported, to recreate
a database after using DATAIMPORT to read in the data, you must recalculate the data.

Direct Input to Relational Database Example

SET DATAEXPORTOPTIONS
 {
 DataExportLevel "ALL";
 };
FIX("100-10","New York","Actual","Sales");
 DATAEXPORT "DSN" "cur_sale" "newyork" "admin" "password";
ENDFIX;

Inserts the selected records directly to the table named newyork. By default, Essbase inserts
exported data row-by-row. If the “DATAEXPORTENABLEBATCHINSERT” on page 414

322 Calculation Commands

configuration setting is set to TRUE in essbase.cfg, records are batch inserted. To control
the number of rows that are batch inserted at a time, use the “DEXPSQLROWSIZE” on page
418 configuration setting in conjunction with “DATAEXPORTENABLEBATCHINSERT” on
page 414 set to TRUE.

See Also

l FIX…ENDFIX

l SET Commands

l “DATAEXPORTENABLEBATCHINSERT” on page 414
l “DEXPSQLROWSIZE” on page 418
l SET DATAEXPORTOPTIONS

l SET DATAIMPORTIGNORETIMESTAMP

l DATAEXPORTCOND

l DATAIMPORTBIN

DATAEXPORTCOND
Specifies value conditions that select export records to be included or marked as "#NoValue" in
the export output file.

Syntax

DATAEXPORTCOND "conditionExpression" ReplaceAll;

Parameter Description

conditionExpression One or more conditions separated by a logical AND or OR. Each condition specifies a member
name the value of which is equal to (=), greater than (>), greater than or equal (>=). less than
(<), or less than or equal (<=) to a specified value or the value of another member; for example,
"Sales" > 500 AND "Ending Inventory" < 0.

The condition list is processed from left to right. Thus the result of cond1 is calculated first, then
the operator (AND or OR) is calculated against cond2, and so on. While processing conditions,
if a resultant condition is found to be false, the entire record is omitted from the output file

ReplaceAll The keyword that indicates whether exported records are to be excluded from the initial export
set of records, or included but marked as "#NoValue". The intial export set of records is
determined by the region defined by the FIX command and SET commands that apply to the
data export.

l When ReplaceAll is not specified, only those records within the initial export set are exported
that meet the specified conditions.

l When ReplaceAll is specified, all records within the initial export set are exported, but the
AND and OR specifications are ignored. All fields that do not satisfy any of the specified
conditions are marked as #NoValue.

Notes

Use DATAEXPORTCOND to specify conditions that identify records to be exported based on
field values. Whether a condition can specify a member compared to a numeric value or
compared to another member depends the member being a row or column element of the
output. In order to represent multidimensional data within a two-dimension file, the members
of one dense dimension become columns. The combinations of the members of the other dense

Calculation Command Reference 323

dimensions and the sparse dimensions create rows. (You can use the DataExportColHeader
option of the SET DATAEXPORTOPTIONS calculation command to specify which dimension
defines the columns.)

l If a condition is placed on a "column" member, the value of the specified member can be
compared to a specific value (for example, Sales > 500) or to the value of another member
of the same export record (for example, Sales < Cost).

l If a condition is placed on a "row" member, the value of the specified member can be
compared only to a specific value (for example, Cost < 500).

Example

Not Using ReplaceAll

SET DATAEXPORTOPTIONS
 {
 DataExportLevel "ALL";
 };
DATAEXPORTCOND (Actual >= 2 AND Sales > 2000 OR COGS > 600);
FIX("100-10","East");
 DATAEXPORT "File" "," "E:\temp\2222.txt";
ENDFIX;

Sets the contents of the initial export file through the DataExportLevel option of the SET
DATAEXPORTOPTIONS command and FIX…ENDFIX command. The DATAEXPORTCOND
command specifies the records to be included when the Actual value is greater than or equal to
2 and Sales are greater than 2000, or when the Actual value is greater than or equal to 2 and
COGS is greater than 600. The conditions are specified on the column Actual, the column Sales,
and the column COGS. The exported data includes only records that meet the conditions.
Sample output:

"Sales","COGS","Marketing","Payroll","Misc","Opening Inventory","Additions","Ending
Inventory"
"100-10","East"
"Jun","Actual",2205,675,227,177,2,3775,2028,3598
"Jul","Actual",2248,684,231,175,2,3598,1643,2993
"Sep","Actual",2012,633,212,175,4,2389,1521,1898
"Jun","Budget",2070,620,180,120,#Mi,2790,1700,2420
"Jul","Budget",2120,620,180,120,#Mi,2420,1400,1700
"Aug","Budget",2120,620,180,120,#Mi,1700,1400,980

Using ReplaceAll

SET DATAEXPORTOPTIONS
 {
 DataExportLevel "ALL";
 };
DATAEXPORTCOND (Actual >= 2 AND Sales > 2000 OR COGS > 600;
FIX("100-10","East");
 DATAEXPORT "File" "," "E:\temp\2222.txt" ReplaceAll;
ENDFIX;

Using the same conditions as the prior example, but including "ReplaceAll" in the
DATAEXPORT command, the exported data includes all records specified by the FIX command.
#NoValue is inserted for fields that do not meet the specified conditions. Sample output:

324 Calculation Commands

"Sales","COGS","Marketing","Payroll","Misc","Opening Inventory","Additions","Ending
Inventory" "100-10","East" "Jan","Actual",#NoValue,#NoValue,199,175,2,4643,1422,4253
"Feb","Actual",#NoValue,#NoValue,196,175,3,4253,1413,3912
"Mar","Actual",#NoValue,#NoValue,199,175,3,3912,1640,3747
"Apr","Actual",#NoValue,606,204,177,3,3747,1824,3701
"May","Actual",#NoValue,622,210,177,4,3701,2023,3775
"Jun","Actual",2205,675,227,177,2,3775,2028,3598
"Jul","Actual",2248,684,231,175,2,3598,1643,2993
"Aug","Actual",2245,684,231,175,#NoValue,2993,1641,2389
"Sep","Actual",2012,633,212,175,4,2389,1521,1898
"Oct","Actual",#NoValue,#NoValue,196,175,3,1898,1535,1677
"Nov","Actual",#NoValue,#NoValue,192,175,#NoValue,1677,1584,1553
"Dec","Actual",#NoValue,#NoValue,200,175,2,1553,1438,1150
"Jan","Budget",#NoValue,#NoValue,160,120,#Mi,4490,1100,3900
"Feb","Budget",#NoValue,#NoValue,160,120,#Mi,3900,1200,3460
"Mar","Budget",#NoValue,#NoValue,160,120,#Mi,3460,1400,3170
"Apr","Budget",#NoValue,#NoValue,150,120,#Mi,3170,1500,2920
"May","Budget",#NoValue,#NoValue,160,120,#Mi,2920,1700,2790
"Jun","Budget",2070,620,180,120,#Mi,2790,1700,2420
"Jul","Budget",2120,620,180,120,#Mi,2420,1400,1700
"Aug","Budget",2120,620,180,120,#Mi,1700,1400,980
"Sep","Budget",#NoValue,#NoValue,150,120,#Mi,980,1300,390
"Oct","Budget",#NoValue,#NoValue,110,70,#Mi,390,1180,110
"Nov","Budget",#NoValue,#NoValue,150,120,#Mi,110,1460,60
"Dec","Budget",#NoValue,#NoValue,150,120,#Mi,60,1300,-260

See Also

l DATAEXPORT

l FIX…ENDFIX

l SET Commands

l SET DATAEXPORTOPTIONS

DATAIMPORTBIN
Imports the binary output file previously exported with the DATAEXPORT "Binfile" calculation
command.

You can use DATAIMPORTBIN to import previously exported binary files. For example, you
can use DATAEXPORT "Binfile" and DATAIMPORTBIN as a method for data backup and
recovery.

Syntax

DATAIMPORTBIN fileName;

Parameter Description

fileName Full path name for the binary input file to be imported.

Notes

l The outline timestamp is included with the export file created by DATAEXPORT. By default,
the DATAIMPORTBIN process checks the timestamp. Use the SET

Calculation Command Reference 325

DATAIMPORTIGNORETIMESTAMP calculation command with DATAIMPORT to
bypass checking the timestamp. See SET DATAIMPORTIGNORETIMESTAMP for details.

l Use DATAIMPORTBIN only with files created by DATAEXPORT "Binfile".

Example

DATAIMPORTBIN e:\january\sales.bin;

Specifies the binary file e:\january\sales.bin is to be imported to the database for which
the calculation script is being run.

See Also

l DATAEXPORT

l SET DATAIMPORTIGNORETIMESTAMP

ELSE
The ELSE command designates a conditional action to be performed in an IF statement. All
actions placed after the ELSE in an IF statement are performed only if the test in the IF statement
generates a value of FALSE.

Syntax

ELSE statement ; [...statement;] ENDIF;

Parameter Description

statement Those operations that are to be performed in the event that the IF test including the ELSE command produces
a FALSE, or 0, result.

Notes

l The ELSE command can only be used in conjunction with an IF command.

l You do not need to end ELSE statements with ENDIF statements. Only IF statements should
be ended with ENDIF statements.

Example

The following example is based on the Sample Basic database. This calculation script tests to see
if the current member in the Market dimension is a descendant of West or East. If so, Essbase
multiplies the value for Marketing by 1.5. If the current member is not a descendant of West or
East, Essbase multiplies the value for Marketing by 1.1.

Marketing
(IF (@ISMBR(@DESCENDANTS(West))
 OR
 (@ISMBR(@DESCENDANTS(East)))
Marketing = Marketing * 1.5;
ELSE
Marketing = Marketing * 1.1;
ENDIF;

326 Calculation Commands

See Also

l ELSEIF

l ENDIF

l IF

ELSEIF
Designates a conditional test and conditions that are performed if the preceding IF test generates
a value of FALSE. For this reason, multiple ELSEIF commands are allowed following a single IF.

Syntax

ELSEIF(condition) statement ; [...statement ;]
ELSEIF | ELSE | ENDIF

Parameter Description

condition Formula or function that returns a Boolean value of TRUE (a nonzero value) or FALSE (a zero value).

statement Those operations that are to be performed in the event that the IF test (including the ELSE command)
produces a FALSE, or 0, result.

Notes

l The ELSEIF command must be used in conjunction with an IF command.

l You do not need to end ELSEIF statements with ENDIF statements. Only IF statements
should be ended with ENDIF statements. For example:

 IF (condition)
 statement;
 IF (condition)
 statement;
 ELSEIF (condition)
 statement;
 ENDIF;
 statement;
 ENDIF;

Example

The following example is based on the Sample Basic database. This calculation script tests to see
if the current member in the Market dimension is a descendant of West or East. If so, Essbase
multiplies the value for Marketing by 1.5. The calculation script then tests to see if the current
member is a descendant of South. If so, Essbase multiplies the value for Marketing by .9. If the
current member is not a descendant of West, East, or South, Essbase multiplies the value for
Marketing by 1.1.

IF (@ISMBR(@DESCENDANTS(West))
 OR
 @ISMBR(@DESCENDANTS(East))
)
 Marketing = Marketing * 1.5;
ELSEIF(@ISMBR(@DESCENDANTS(South))
)

Calculation Command Reference 327

 Marketing = Marketing * .9;
ELSE
 Marketing = Marketing * 1.1;
ENDIF;

See Also

l ELSE

l ENDIF

l IF

ENDIF
Marks the end of an IF command sequence. The ENDIF command can be used only in
conjunction with IF or IF ... ELSEIF statements.

Syntax

ENDIF;

Notes

l You must supply an ENDIF statement for every IF statement in your formula or calculation
script. If you do not supply the required ENDIF statements, your formula or calculation
script does not verify.

l If you are using an IF statement nested within another IF statement, end each IF with an
ENDIF. For example:

"Opening Inventory"
 (IF (@ISMBR(Budget))
 IF (@ISMBR(Jan))
 "Opening Inventory" = Jan;
 ELSE
 "Opening Inventory" = @PRIOR("Ending Inventory");
 ENDIF;
 ENDIF;)

l You do not need to end ELSE or ELSEIF statements with ENDIF statements.

l Although ending ENDIF statements with a semicolon is not required, it is good practice to
follow each ENDIF statement in your formula or calculation script with a semicolon.

l IF, ELSE, ELSEIF, and ENDIF must all be used within a database outline formula, or must
be associated with a member in the database outline when used in a calculation script. For
more information, see the Oracle Essbase Database Administrator's Guide.

Example

The following example is based on the Sample Basic database. This calculation script tests to see
if the current member in the Market dimension is a descendant of West or East. If so, Essbase
multiplies the value for Marketing by 1.5. The calculation script then tests to see if the current
member is a descendant of South. If so, Essbase multiplies the value for Marketing by .9. If the
current member is not a descendant of West, East, or South, Essbase multiplies the value for
Marketing by 1.1.

328 Calculation Commands

IF (@ISMBR(@DESCENDANTS(West))
 OR
 @ISMBR(@DESCENDANTS(East))
)
 Marketing = Marketing * 1.5;
ELSEIF(@ISMBR(@DESCENDANTS(South))
)
 Marketing = Marketing * .9;
ELSE
 Marketing = Marketing * 1.1;
ENDIF;

See Also

l ELSE

l ELSEIF

l IF

EXCLUDE…ENDEXCLUDE
The EXCLUDE command allows you to define a fixed range of members which are not affected
by the associated commands. The ENDEXCLUDE command ends an EXCLUDE command
block.

As shown in the example, you call ENDEXCLUDE after all of the commands in the EXCLUDE
command block have been called, and before the next element of the calculation script.

Specifying members that should not be calculated in an EXCLUDE..ENDEXCLUDE command
may be simpler than specifying a complex combination of member names in a FIX…ENDFIX
command.

Syntax

EXCLUDE (Mbrs)
COMMANDS ;
ENDEXCLUDE

Parameter Description

Mbrs A member name or list of members from any number of database dimensions. Mbrs can also contain:

l AND/OR operators. Use the AND operator when all conditions must be met. Use the OR operator
when one condition of several must be met.

l Member set functions, which are used to build member lists based on other members.

COMMANDS The commands to be executed for the duration of the EXCLUDE.

Notes

l Use EXCLUDE…ENDEXCLUDE commands only within calculation scripts, not in outline
member formulas.

l You can include EXCLUDE commands within FIX command blocks.

Calculation Command Reference 329

l If a FIX command within an EXCLUDE command block specifies cells already specified by
the EXCLUDE statement, those cells are not calculated, and a warning message is posted to
the application log file.

l An EXCLUDE command block cannot include CALC ALL, CLEARDATA, and DATACOPY
commands.

l AND and OR operators have the same precedence and are evaluated from left to right. Use
parentheses to group the expressions. For example: A OR B AND C is the same as ((A OR
B) AND C). However, subexpressions (for example, (A OR (B AND C)) are evaluated
before the whole expression, producing a different result.

l Inside EXCLUDE command blocks, the AND operator represents the intersection of two
sets; the OR operator represents the union of two sets. In formulas, these operators are
Boolean operators. Using the AND or OR operators on members that are from different
dimensions, returns:

m AND: An empty set. The EXCLUDE statement is ignored and the calculation continues
with a warning message.

m OR: The union of two members sets. EXCLUDE (Jan OR Market) is identical to FIX
(Jan, Market).

l NOT operators are not supported in EXCLUDE command blocks. Use the @REMOVE
function.

l You do not need to follow ENDEXCLUDE with a semicolon.

l Use the @ATTRIBUTE and @WITHATTR functions to specify attributes within EXCLUDE
command blocks; for example EXCLUDE(@ATTRIBUTE(Can)). FIX(Can) is not supported.

l You cannot use EXCLUDE on a dimension if it is a subset of a dimension that you calculate
within the EXCLUDE command block. For example you could not use Market "New Mkt"
in an EXCLUDE statement if you calculate all of Market within the command block.

l Dynamic Calc members are ignored in an EXCLUDE statement. If the only member in an
EXCLUDE statement is a Dynamic Calc member, an error message is displayed stating that
the EXCLUDE statement cannot contain a Dynamic Calc member.

l If the EXCLUDE command is issued from a calculation script and produces an empty set,
that part of the calculation is ignored, and the calculation continues to the next statement.
The application log entry for the calculation shows that the EXCLUDE statement evaluated
to an empty set (Calculating […] with fixed members []).

For example, consider the following statement in a Sample Basic calculation script:

 EXCLUDE (@children(Jan))
 CALC DIM (Accounts, Product, Market)
 ENDEXCLUDE

Since @children(Jan) is empty (Jan is a level 0 member), the EXCLUDE parameter is ignored;
the calculation operates on the entire database.

Similarly, if a region defining a partition or a security filter evaluates to an empty set, Essbase
behaves as if the region definition or security filter does not exist.

330 Calculation Commands

l Calculator function @RANGE and the cross-dimensional operator (->) cannot be used
inside an EXCLUDE Mbrs parameter).

Example

The following example excludes calculations on the children of Qtr4, enabling calculation of
other quarters in the Year dimension.

EXCLUDE (@CHILDREN(Qtr4))
CALC DIM (Year)
ENDEXCLUDE

See Also

l FIX…ENDFIX

l LOOP...ENDLOOP

FIX…ENDFIX
The FIX…ENDFIX command block restricts database calculations to a subset of the database.
All commands nested between the FIX and ENDFIX statements are restricted to the specified
database subset.

This command is useful because it allows you to calculate separate portions of the database using
different formulas, if necessary. It also allows you to calculate the sub-section much faster than
you would otherwise.

The ENDFIX command ends a FIX command block. As shown in the example, you call ENDFIX
after all of the commands in the FIX command block have been called, and before the next
element of the calculation script.

Syntax

FIX (fixMbrs)
COMMANDS ;
ENDFIX

Parameter Description

fixMbrs A member name or list of members from any number of database dimensions. fixMbrs can also contain:

l AND/OR operators. Use the AND operator when all conditions must be met. Use the OR operator
when one condition of several must be met.

l Member set functions, which are used to build member lists based on other members.

COMMANDS The commands you want to be executed for the duration of the FIX.

Notes

l You can use SET EMPTYMEMBERSETS to stop the calculation within a FIX command if the
FIX evaluates to an empty member set.

l FIX commands can be nested within other FIX command blocks. For an example of an
incorrect use of nested FIX commands, see “Using the FIX Command” in the Oracle Essbase
Database Administrator's Guide.

Calculation Command Reference 331

l FIX statements can only be used in calculation scripts, not in outline member formulas. Use
an IF command instead of a FIX statement in member formulas. For example:

Jan(
IF (Sales)
Actual=5;
ENDIF;)

l AND/OR operators have the same precedence; Essbase evaluates them from left to right.
Use parentheses to group the expressions. For example: A OR B AND C is the same as
((A OR B) AND C). However, if you use (A OR (B AND C)), Essbase evaluates the sub-
expression in parentheses (B AND C) before the whole expression, producing a different
result.

l Inside FIX statements, the AND operator represents the intersection of two sets; the OR
operator represents the union of two sets. In formulas, these operators are Boolean
operators. Using the AND or OR operators on members that are from different dimensions,
returns:

m AND: An empty set. The FIX statement is ignored and the calculation continues with a
warning message.

m OR: The union of two members sets. FIX (Jan OR Market) is identical to FIX (Jan,
Market).

l In FIX statements, members from the same dimension are always acted on as OR unless you
specify otherwise.

l NOT operators are not supported in FIX statements. Use the @REMOVE function with FIX
statements.

l You do not need to follow ENDFIX with a semicolon.

l You can specify attributes in FIX statements using the @ATTRIBUTE and @WITHATTR
functions; for example FIX(@ATTRIBUTE(Can)). You must use these functions;
FIX(Can) is not supported.

l You cannot use a FIX statement on a dimension if it is a subset of a dimension that you
calculate within the FIX statement. For example you could not use Market "New Mkt" in a
FIX statement if you calculate all of Market within the FIX statement.

l Dynamic Calc members are ignored in a FIX statement. If the only member in a FIX
statement is a Dynamic Calc member, an error message is displayed stating that the FIX
statement cannot contain a Dynamic Calc member.

l If the FIX command is issued from a calculation script and produces an empty set, that part
of the calculation is ignored, and the calculation continues to the next statement. The
application log entry for the calculation shows that the FIX statement evaluated to an empty
set (Calculating […] with fixed members []).

For example, using Sample Basic, assume this statement is in a calculation script:

 FIX (@children(Jan))
 CALC DIM (Accounts, Product, Market)
 ENDFIX

Since @children(Jan) is empty, the FIX is ignored; the calculation issues a warning and
operates on the entire database.

332 Calculation Commands

Similarly, if a region defining a partition or a security filter evaluates to an empty set, Essbase
issues a warning and behaves as if the region definition or security filter did not exist.

l The calculator function @RANGE and the cross-dimensional operator (->) cannot be used
inside a FIX fixMbrs parameter.

l Using an EXCLUDE…ENDEXCLUDE command to specifying members that should not
be calculated may be simpler than specifying a complex combination of member names in
a FIX…ENDFIX command.

Example

FIX (Budget)
 CALC DIM (Year, Measures, Product, Market);
ENDFIX
FIX (Budget, Jan, Feb, Mar, @DESCENDANTS(Profit))
 CALC DIM (Product, Market);
ENDFIX

The following example fixes on the children of East and the Market dimension members with
the UDA "New Mkt".

FIX (@CHILDREN(East) OR @UDA(Market, "New Mkt"))

The following example fixes on the children of East with the UDA "New Mkt" and Market
dimension members with the UDA "Big Mkt".

FIX((@CHILDREN(East) AND @UDA(Market, "New Mkt")) OR @UDA(Market,"Big Mkt"))

See Also

l EXCLUDE…ENDEXCLUDE

l LOOP...ENDLOOP

l SET EMPTYMEMBERSETS

IF
Performs conditional tests within a formula. Using the IF statement, you can define a Boolean
test, as well as formulas to be calculated if the test returns either a TRUE or FALSE value.

Syntax

IF(condition) statement ; [...statement ;] [ELSEIF...statement | ELSE...statement]
 ENDIF;

Parameter Description

condition Formula or function that returns a Boolean value of TRUE (a nonzero value) or FALSE (a zero value).

statement Operations to be performed depending on the results of the test.

Calculation Command Reference 333

Notes

l The IF statement block can also use the ELSE and ELSEIF statements as part of its decision
syntax.

l For information about using ENDIF statements and semicolons with IF, ELSE, and ELSEIF
statements, see ENDIF.

l In calculation scripts, IF statements must be placed within parentheses and associated with
a specific database member. They must also be closed with ENDIF statements. For more
information, see the Oracle Essbase Database Administrator's Guide.

l You can specify attributes in IF statements using the @ATTRIBUTE and @WITHATTR
functions; for example IF (@ISMBR(@ATTRIBUTE(Can))) You must use these
functions; IF(@ISMBR(Can)) is not supported.

Example

Example 1

IF(
 @ISMBR(@DESCENDANTS(Europe))
OR @ISMBR(@DESCENDANTS(Asia))
)
 Taxes = "Gross Margin" * "Foreign Tax Rate";
ELSE
 Taxes = "Gross Margin" * "Domestic Tax Rate";
ENDIF;

This test checks to see if the current cell includes a member that is a descendant of either the
Europe or Asia members. If it does, the formula calculates the taxes for the member based on
the foreign tax rate. If the current cell does not include a member from one of those groups,
then the domestic tax rate is used for the tax calculation.

Example 2

When you use an IF statement as part of a member formula in a calculation script, you need to
perform both of the following tasks:

l Associate the IF statement with a single member

l Enclose the IF statement in parentheses

A sample IF statement is illustrated in the following example:

Profit
(IF (Sales > 100)
 Profit = (Sales - COGS) * 2;
ELSE
 Profit = (Sales - COGS) * 1.5;
ENDIF;)

Essbase cycles through the database and performs the following calculations:

1. The IF statement checks to see if the value of Sales for the current member combination is
greater than 100.

334 Calculation Commands

2. If Sales is greater than 100, Essbase subtracts the value in COGS from the value in Sales,
multiplies the difference by 2, and places the result in Profit.

3. If Sales is less than or equal to 100, Essbase subtracts the value in COGS from the value in
Sales, multiplies the difference by 1.5, and places the result in Profit.

The whole of the IF ... ENDIF statement is enclosed in parentheses and associated with the Profit
member, Profit (IF(...)...).

See Also

l ELSE

l ELSEIF

l ENDIF

LOOP...ENDLOOP
The LOOP...ENDLOOP command block specifies the number of times to iterate calculations.
All commands between the LOOP and ENDLOOP statements are performed the number of
times that you specify.

Syntax

LOOP (integer, [break])COMMANDS ;
ENDLOOP

Parameter Description

integer The integer constant that indicates the number of times to execute the commands contained in the loop
block.

break Optional parameter used to break the iterative process of a loop. break must be the name of a temporary
variable (VAR). Setting the value of the variable to 1 during the execution of the loop causes the loop
to break at the beginning of its next iteration.

COMMANDS Those commands that you want to be executed for the duration of the LOOP.

Notes

LOOP is a block command that defines a block of commands for repeated execution. As with
the FIX command, you can nest LOOP statements if necessary.

The ENDLOOP command ends a LOOP command block. It terminates the LOOP block and
occurs after the commands in the LOOP block, but before any other commands.

Example

In this example, the LOOP command finds a solution for Profit and Commission. This operation
is done as a loop because Profit and Commission are interdependent: Profit is needed to evaluate
Commission, and Commission is needed to calculate Profit. This example thus provides a model
for solving simultaneous formulas.

FIX("New York",Camera,Actual,Mar)
 LOOP(30)
 Commission = Profit * .15;

Calculation Command Reference 335

 Profit = Margin - "Total Expenses" - Commission;
 ENDLOOP;
ENDFIX

See Also

l FIX…ENDFIX

SET Commands
SET commands in a calculation script are procedural. The first occurrence of a SET command
in a calculation script stays in effect until the next occurrence of the same SET command.

Example

In the following example, Essbase displays messages at the DETAIL level when calculating the
Year dimension. However, when calculating the Measures dimension, Essbase displays messages
at the SUMMARY level.

SET MSG DETAIL;CALC DIM(Year);
SET MSG SUMMARY;CALC DIM(Measures);

In the following example, Essbase calculates member combinations for Qtr1 with the SET
AGGMISSG setting turned on. Essbase then does a second calculation pass through the database
and calculates member combinations for East with the AGGMISSG setting turned off. For more
information on calculation passes, see the Oracle Essbase Database Administrator's Guide.

SET AGGMISSG ON;Qtr1;
SET AGGMISSG OFF;East;

SET AGGMISSG
Specifies whether Essbase consolidates #MISSING values in the database.

The default behavior of SET AGGMISSG is determined by the global setting for the database,
as described in the Oracle Essbase Database Administrator's Guide.

Syntax

SET AGGMISSG ON | OFF ;

Notes

SET AGGMISSG commands apply to calculating sparse dimensions.

Example

SET AGGMISSG OFF;
CALC ALL;
CALC PERCENTS;

See Also

l SET Commands

336 Calculation Commands

SET CACHE
Specifies the size of the calculator cache.

Syntax

SET CACHE HIGH | DEFAULT | LOW | OFF | ALL;

Parameter Description

HIGH,
DEFAULT, and
LOW

Levels defining the size of the calculator cache. You set the values of HIGH, DEFAULT and LOW in
the essbase.cfg file. If you do not set the value of DEFAULT in the essbase.cfg file, Essbase
uses a default value of 200,000 bytes. The maximum calculator cache size that you can specify is
200,000,000 bytes.

OFF Essbase does not use a calculator cache.

ALL Essbase uses a calculator cache, even when you do not calculate at least one full sparse dimension.

Notes

Essbase uses the calculator cache to create and track data blocks during calculation. Using the
calculator cache significantly improves your calculation performance. The size of the
performance improvement depends on the configuration of your database.

You can choose one of three levels. The size of the calculator cache at each level is defined using
the CALCCACHE {HIGH | DEFAULT | LOW} settings in the essbase.cfg file.

The level you choose depends on the amount of memory your system has available and the
configuration of your database.

For detailed information on setting the size of your calculator cache, see the Oracle Essbase
Database Administrator's Guide.

You can specify whether, by default, Essbase uses a calculator cache using the CALCCACHE
TRUE | FALSE setting in the essbase.cfg file. By default, CALCCACHE is set to TRUE.

Essbase uses the calculator cache providing that:

l Your database has at least two sparse dimensions.

l You calculate at least one, full sparse dimension (unless you specify the CALCCACHE ALL
option).

You can use this command more than once within a calculation script.

You can display the calculator cache setting using the SET MSG command.

Example

If the essbase.cfg file contains the following settings:

CALCCACHEHIGH 1000000
CALCCACHEDEFAULT 300000
CALCCACHELOW 200000

then:

Calculation Command Reference 337

SET CACHE HIGH;

sets a calculator cache of up to 1,000,000 bytes for the duration of the calculation script.

SET CACHE DEFAULT;

sets a calculator cache of up to 300,000 bytes for the duration of the calculation script.

SET CACHE LOW;

sets a calculator cache of up to 200,000 bytes for the duration of the calculation script.

SET CACHE ALL;
SET CACHE LOW;

sets a calculator cache of 200,000 bytes to be used even when you do not calculate at least one,
full sparse dimension.

SET CACHE OFF;

means that Essbase does not use a calculator cache.

See Also

l “CALCCACHE” on page 396
l “CALCCACHEHIGH” on page 397
l SET MSG

l SET Commands

SET CALCPARALLEL
Enables parallel calculation in place of the default serial calculation.

Essbase analyzes each pass of a calculation to determine whether parallel calculation is possible.
If it is not, Essbase uses serial calculation even if CALCPARALLEL is set.

Syntax

SET CALCPARALLEL n;

Parameter Description

n A required parameter, an integer from 1-4 on 32-bit platforms or from 1-8 on 64-bit platforms, specifying
the number of threads to be made available for parallel calculation. The default value specifies serial
calculation: no parallel calculation takes place. Values 1-4 (1-8 on 64-bit) specifies parallel calculation with
1-4 (or 1-8) threads. Values of 0 specify serial calculation. Values less than 0 return an error. Values greater
than 4 are interpreted as 4.

Note: Values less than 0 treated differently than they are by the “CALCPARALLEL” on page 406
configuration file setting.

338 Calculation Commands

Notes

l A number of features are affected by parallel calculation. See the Oracle Essbase Database
Administrator's Guide for a list of these effects and for detailed information about how
Essbase performs parallel calculation.

l If your outline generates many empty tasks, thus reducing opportunities for parallel
calculation, consider setting the CALCTASKDIMS configuration setting to increase the
number of tasks and to decrease the size of each task identified for parallel calculation. See
the Oracle Essbase Database Administrator's Guide for more information about what kind
of outlines or calculation scripts generate many empty tasks.

l Consider setting the value of CALCPARALLEL to one less than the number of available
processors. This saves one processor for use either by the operating system or by the Essbase
process that writes out dirty blocks from the calculator cache.

l You can use SET CALCPARALLEL in a calculation script to override a CALCPARALLEL
entry in the configuration file.

Example

SET CALCPARALLEL 3;

Enables up to three threads to be used to perform calculation tasks at the same time.

See Also

l SET CALCTASKDIMS

l “CALCTASKDIMS” on page 407
l “CALCPARALLEL” on page 406
l SET Commands

SET CALCTASKDIMS
Specifies the number of sparse dimensions included in the identification of tasks for parallel
calculation.

Syntax

SET CALCTASKDIMS n;

Calculation Command Reference 339

Parameter Description

n A required parameter, an integer specifying the number of sparse dimensions to be included when Essbase
identifies tasks that can be performed at the same time.

The default value, 1, indicates that only the last sparse dimension in the outline will be used to identify tasks.
A value of 2, for example, indicates that the last and second-to-last sparse dimensions in the outline are used.

Because each unique combination of members from the selected sparse dimensions is a potential task, the
potential number of parallel tasks is the product of the number of members of the selected dimensions. The
maximum value is the number of sparse dimensions in the outline.

Essbase issues an error if the value is less than 1. A value greater than the number of sparse dimensions in
the outline is interpreted as the largest valid value.

Using the calculator bitmap cache can affect this value. See the Oracle Essbase Database Administrator's
Guide discussion of parallel calculation for more information.

Note: Values less than 0 are treated differently than they are by the “CALCTASKDIMS” on page 407
configuration setting.

Notes

l A number of features are affected by parallel calculation. See the Oracle Essbase Database
Administrator's Guide for a list of these effects and for detailed information about how
Essbase performs parallel calculation.

l Use this configuration setting only if your outline generates many empty tasks, thus reducing
opportunities for parallel calculation.

l If you do not notice an improvement in performance after raising the value of
CALCTASKDIMS, consider returning it to its default value of 1. Sometimes using more task
dimensions can generate such a large number of tasks that performance may decrease instead
of increase, because the overhead of generating and managing the tasks is too great.

l You can use SET CALCTASKDIMS to override a CALCTASKDIMS entry in the
configuration file. For example you might want to set all applications to use a single
dimension for parallel calculation, but issue a calculation script command against a single
application or database to use two dimensions.

Example

SET CALCTASKDIMS 2;

specifies that the last two sparse dimensions in the outline will be used to identify potential tasks
to be performed at the same time during a calculation pass.

See Also

l SET CALCPARALLEL

l the section called “CALCTASKDIMS”
l the section called “CALCPARALLEL”
l SET Commands

340 Calculation Commands

SET CCTRACKCALC
Specifies whether Essbase checks the flags set by the “CCTRACK” on page 408 setting to
determine if the currency data has already been converted.

By default CCTRACK is turned on. Essbase tracks which currency partitions have been converted
and which have not. The tracking is done at the currency partition level: a database with two
partitions would have two flags that could be either "converted" or "unconverted." Essbase does
not store a flag for member combinations within a partition.

When you load or clear data in a currency partition, Essbase does not reset the CCTRACK flag
to "uncoverted". You can use the SET CCTRACKCALC OFF command to force the conversion
of the reloaded data, ignoring the CCTRACK flag.

Syntax

SET CCTRACKCALC ON | OFF;

Parameter Description

ON Uses the flags set by the CCTRACK setting to determine whether the data needs to be converted. The default
value is ON.

OFF Always converts the data, regardless of whether CCTRACK has flagged the data as already-converted. Note
that during the conversion CCTRACK is still active and tracks the exchange rates used during the conversion.

Notes

The SET CCTRACKCALC command is valid only when CCTRACK is set to TRUE (the default).

Example

SET CCTRACKCALC OFF;
FIX(Actual)
CCONV "XchR"->US$;
ENDFIX
CALC ALL;

Fixes on the the Actual currency partition and forces the conversion of the Actual data regardless
of whether Essbase has flagged the data as already being converted, converting the data using
the XchR, US$ rate from the currency database. Recalculates the database.

See Also

l “CCTRACK” on page 408
l CLEARCCTRACK

l CCONV

l SET UPTOLOCAL

SET CLEARUPDATESTATUS
Specifies when Essbase marks data blocks as clean. This clean status is used during Intelligent
Calculation.

Calculation Command Reference 341

Syntax

SET CLEARUPDATESTATUS AFTER | ONLY | OFF;

Parameter Description

AFTER Essbase marks calculated data blocks as clean, even if you are calculating a subset of your database.

ONLY Essbase marks the specified data blocks as clean but does not actually calculate the data blocks. This does
the same as AFTER, but disables calculation.

OFF Essbase does not mark the calculated data blocks as clean. Data blocks are not marked as clean, even on a
default calculation (CALC ALL;) of your database. The existing clean or dirty status of the calculated data
blocks remains unchanged.

Notes

SET CLEARUPDATESTATUS specifies when Essbase marks data blocks as clean.

The data blocks in your database have a calculation status of either clean or dirty. When Essbase
does a full calculation of your database, it marks the calculated data blocks as clean. When a data
block is clean, Essbase will not recalculate the data block on subsequent calculations, provided
that Intelligent Calculation is turned on.

To ensure the accuracy of your calculation results, consider carefully the effect of the
SET CLEARUPDATESTATUS AFTER command on your calculation. .

If you do not use SET CLEARUPDATESTATUS, Essbase does not mark calculated data blocks
as clean when you calculate a subset of your database. Essbase marks data blocks as clean only
on a full calculation (CALC ALL;) or when Essbase calculates all members in a single calculation
pass through your database.

If you calculate a subset of your database, you may want to use the
SET CLEARUPDATESTATUS AFTER command to ensure that the calculated blocks are marked
as clean. However, consider carefully the effect of this command on your calculation to ensure
that your calculation results are correct.

Warnings

When you use the SET CLEARUPDATESTATUS command to mark calculated data blocks as
clean, consider carefully the following questions:

Which data blocks are calculated?

Only calculated data blocks will be marked as clean.

Are concurrent calculations going to affect the same data blocks?

Do not use the SET CLEARUPDATESTATUS AFTER command with concurrent calculations
unless you are certain that the different calculations will not need to calculate the same data
block or blocks. If concurrent calculations attempt to calculate the same data blocks, with
Intelligent Calculation turned on, Essbase may not recalculate the data blocks, because they are
already marked as clean.

Are the same data blocks to be recalculated on a second calculation pass through the database?

342 Calculation Commands

If you calculate data blocks on a first calculation pass through your database, Essbase marks
them as clean. If you then attempt to calculate the same data blocks on a subsequent pass with
Intelligent Calculation turned on, Essbase does not recalculate the data blocks, because they are
already marked as clean.

Example

The following examples are based on the Sample Basic database. They assume that Intelligent
Calculation is turned on (the default). For information on turning Intelligent Calculation on
and off, see the SET UPDATECALC command.

Example 1

SET CLEARUPDATESTATUS AFTER;
FIX ("New York")
CALC DIM(Product);
ENDFIX

New York is a member on the sparse Market dimension. Essbase searches for dirty parent data
blocks for New York (for example "New York"->Colas in which Colas is a parent member).
It calculates these dirty blocks based on the Product dimension and marks them as clean. Essbase
does not mark the child, Input blocks as clean, because they are not calculated.

Example 2

SET CLEARUPDATESTATUS ONLY;
CALC ALL;

Essbase searches for all the dirty blocks in the database and marks them as clean. It does not
calculate the blocks, even though a CALC ALL; command is used.

Example 3

SET CLEARUPDATESTATUS ONLY;
FIX ("New York")
CALC DIM(Product);
ENDFIX

New York is a member on the sparse Market dimension. Essbase searches for dirty parent data
blocks for New York (for example "New York"->Colas in which Colas is a parent member). It
marks them as clean. It does not calculate the data blocks. It does not mark the child blocks as
clean because they are not calculated. For example, if

"New York"->100-10

is dirty, it remains dirty.

Example 4

SET CLEARUPDATESTATUS OFF;
CALC ALL;
CALC TWOPASS;

Essbase calculates all the dirty data blocks in the database. The calculated data blocks remain
dirty; Essbase does not mark them as clean. Essbase then calculates those members tagged as

Calculation Command Reference 343

Two-Pass on the dimension tagged as Accounts. Again, it does not mark the calculated data
blocks as clean.

See Also

l SET UPDATECALC

l “UPDATECALC” on page 513
l SET Commands

SET COPYMISSINGBLOCK
Sets whether the DATACOPY calculation command creates #MISSING blocks during the copy
of data from a dense dimension.

This setting does not apply to aggregate storage databases.

SET COPYMISSINGBLOCK allows DATACOPY to avoid creating #MISSING blocks during
the copy of data from a dense dimension.

Using DATACOPY on a dense dimension can create blocks populated with #MISSING. This is
done deliberately in some instances, because most batch calculations operate only on existing
data blocks. Therefore, DATACOPY can be used to ensure that all necessary data blocks are
created prior to batch calculation.

But if the creation of #MISSING blocks is not required, you may want to avoid the increase in
database size, and the possibly slower performance that results when, for example, a default
calculation visits every #MISSING block.

Syntax

SET COPYMISSINGBLOCK ON | OFF

Parameter Description

ON This is the default value. Allows missing blocks to be created during a data copy.

OFF Suppresses the creation of missing blocks during a data copy.

Notes

l Existing #MISSING blocks are not removed.

l A message is added to the Essbase Server log to indicate the number of data blocks being
copied from the source data blocks. The number of #MISSING blocks skipped, if any, is also
reported in the log.

Example

SET COPYMISSINGBLOCK OFF;

The following log message indicates that SET COPYMISSINGBLOCK is OFF:

[Fri May 31 10:35:03 2002]Local/Test6/Test6/essexer/Info(1012574)
Datacopy command copied [1] source data blocks to [0] target data blocks

344 Calculation Commands

[Fri May 31 10:35:03 2002]Local/Test6/Test6/essexer/Info(1012576)
Datacopy command skipped creating [1] target data blocks with CopyMissingBlock OFF

See Also

l DATACOPY

SET CREATENONMISSINGBLK
Controls whether potential blocks are created in memory for calculation purposes, and whether
#MISSING blocks are stored. It affects the results of calculations on sparse and dense dimensions.

By default, Essbase applies dense-member formulas only to existing data blocks. SET
CREATENONMISSINGBLK ON enables Essbase to create potential blocks in memory where
the dense-member formulas are performed. Of these potential blocks, Essbase writes to the
database only blocks that contain values; blocks resulting in only #MISSING are not written to
the database.

The creation of #MISSING blocks resulting from sparse-member formulas is governed by the
Create Block on Equations setting. (See SET CREATEBLOCKONEQ.) The SET
CREATENONMISSINGBLK ON command ensures that only non-empty blocks are created,
regardless of the Create Block on Equations setting.

In order to create new blocks, setting SET CREATENONMISSINGBLK to ON requires Essbase
to anticipate the blocks that will be created. Working with potential blocks can affect calculation
performance. Consider the following situations carefully:

l When SET CREATENONMISSINGBLK is ON, all sparse-member formulas are executed
in top-down mode. Dense member formulas are flagged for top-down calculation when
they contain the following:

m Sparse members

m Constants (for example, Sales = 100,000)

m The @VAR function

m The @XREF function

l If Essbase encounters the @CALCMODE(BOTTOMUP) in a member formula, it ignores
the @CALCMODE command. A message about the member is written in the application
log saying that the command is being ignored.

l If a batch calculation contains top-down formulas and SET CREATENONMISSINGBLK is
ON, Intelligent Calculation is turned off. Within the scope of the calculation script, all blocks
are calculated, regardless if they are marked clean or dirty.

l To reduce the number of blocks to be calculated, use this command within FIX/ENDFIX
regions. As a warning, when the potential number of blocks exceeds 20 million, Essbase
writes an entry to the application log showing the number of blocks to be calculated and
recommending using FIX/ENDFIX.

l You can use multiple SET CREATENONMISSINGBLK commands in a calc script, each
affecting calculations that follow. However, consider that each time SET

Calculation Command Reference 345

CREATENONMISSINGBLK is encountered within a set of FIX and ENDFIX statements,
the calculator cycles through the database, potentially affecting calculation performance.

Syntax

SET CREATENONMISSINGBLK ON|OFF;

Parameter Description

ON Calculations are performed on potential blocks as well as existing blocks. If the result of the calculation is
not #MISSING, the block is stored. The Create Blocks on Equations setting is ignored.

OFF Calculations are performed only on existing blocks. This is the default setting.

Notes

l SET CREATENONMISSINGBLK affects only creation of new blocks. If existing blocks
become #MISSING after formula execution, they are not deleted.

l The value set by SET CREATENONMISSINGBLK stays in effect until the next SET
CREATENONMISSINGBLK is processed, or the calculation script terminates.

l When the calculation script includes both SET CREATENONMISSINGBLK ON and SET
MSG DETAIL, any non-stored #MISSING block is indicated in the application log.

l If SET MSG is set to SUMMARY, when SET CREATENONMISSINGBLK is set to ON,
Essbase writes an entry to the application log stating that Create Non #MISSING Blocks is
enabled.

l If SET MSG is set to SUMMARY, and SET CREATENONMISSINGBLK is set to ON, at the
end of the calculation, Essbase writes an entry to the application log showing the total
number of #MISSING blocks that were not created.

Example

The following example is based on a variation of Sample Basic. Assume that the Scenario
dimension, of which Actual is a member, is sparse. "Jan Rolling YTD Est" is a member of the
dense time dimension, Year.

FIX (Budget)
 SET MSG DETAIL;
 SET CREATENONMISSINGBLK ON;
 "Jan Rolling YTD Est"= (Jan->Actual+Feb+Mar+Apr+May+Jun+Jul+Aug+Sep+Oct+Nov+Dec);
ENDFIX

See Also

l SET CREATEBLOCKONEQ

SET CREATEBLOCKONEQ
Controls, within a calculation script, whether new blocks are created when a calculation formula
assigns anything other than a constant to a member of a sparse dimension. SET
CREATEBLOCKONEQ overrides the Create Block on Equation setting for the database.

346 Calculation Commands

Syntax

SET CREATEBLOCKONEQ ON|OFF;

Parameter Description

ON When a formula assigns a non-constant value to a sparse dimension member for which no block exists,
Essbase creates a block.

OFF When a formula assigns a non-constant value to a sparse dimension member for which no block exists,
Essbase does not create a block.

Notes

If calculations result in a value for a sparse dimension member for which no block exists, Essbase
creates a block. Sometimes, new blocks are not desired; for example, when they contain no other
values. In large databases, creation and processing of unneeded blocks can increase processing
time and storage requirements.

The Create Blocks on Equation setting is designed for situations when blocks would be created
as a result of assigning something other than a constant to a member of a sparse dimension. For
example, when Create Blocks on Equation is ON and West is assigned a value where it did not
have a value before, new blocks are created. When this setting is OFF, blocks are not created.

Create Blocks on Equation setting is a database property. Its initial value is OFF; no blocks are
created when something other than a constant is assigned to a sparse dimension member. Use
Administration Services or MaxL to turn the setting ON at the database-level. For more
information about enabling Create Blocks on Equation, see the MaxL documentation in the
Oracle Essbase Technical Reference or the Oracle Essbase Administration Services Online Help.

For more specific control, you can use the SET CREATEBLOCKONEQ calculation command
within a calculation script to control creation of blocks at the time the command is encountered
in the script. Use of SET CREATEBLOCKONEQ has the following characteristics:

l When Essbase encounters SET CREATEBLOCKONEQ within a calculation script, the
database-level setting is ignored.

l You can use multiple SET CREATEBLOCKONEQ commands in the calculation script to
define the Create Blocks on Equation setting value for the calculations following each
command.

l The value set by the SET CREATEBLOCKONEQ command stays in effect until the next
SET CREATEBLOCKONEQ command is processed or the calculation script is finished.

l The Create Blocks on Equation setting is overridden by SET CREATENONMISSINGBLK
ON (see SET CREATENONMISSINGBLK).

l The SET CREATEBLOCKONEQ command does not change the database-level Create
Blocks on Equation property.

l If no SET CREATEBLOCKONEQ command is encountered, Essbase uses the database-level
setting to determine whether to create blocks.

When the Create Blocks on Equation setting is ON, Essbase uses the top-down calculation
method to calculate each sparse member.

Calculation Command Reference 347

The Create Blocks on Equation setting is not consulted when Essbase assigns constants to
members of sparse dimensions. The following table shows examples of sparse member
calculations where constants or non-constants are assigned to them.

Assigned Value Sparse Member Formula Example New Block Created?

Constant West = 350 Yes

Non-constant West = California + 120 Yes, if the Create Blocks on Equation setting is ON. Otherwise, no.

Non-constant West = California * 1.05 Yes, if the Create Blocks on Equation setting is ON. Otherwise, no.

For a tip on controlling creation of blocks when you work with non-constants and sparse
dimensions, in the Oracle Essbase Database Administrator's Guide check for information about
improving performance for non-constants assigned to members in sparse dimensions.

Example

The following example is based on Sample.Basic. West and East are members of the sparse
Markets dimension.

FIX (Colas);
SET CREATEBLOCKONEQ OFF
West = California + 120;
SET CREATEBLOCKONEQ ON
East = "New York" + 100;
ENDFIX

Because of the preceding SET CREATEBLOCKONEQ OFF command, Essbase does not create
blocks for new values of West. Because the setting has been reversed to ON in the next command,
Essbase creates blocks for new values of East.

See Also

l SET CREATENONMISSINGBLK

SET DATAEXPORTOPTIONS
Specifies options for data export operations.

Syntax

SET DATAEXPORTOPTIONS
 {
 DataExportLevel ALL | LEVEL0 | INPUT;
 DataExportDynamicCalc ON | OFF;
 DataExportNonExistingBlocks ON | OFF;
 DataExportDecimal n;
 DataExportPrecision n;
 DataExportColFormat ON | OFF;
 DataExportColHeader dimensionName;
 DataExportDimHeader ON | OFF;
 DataExportRelationalFile ON | OFF;
 DataExportOverwriteFile ON | OFF;

348 Calculation Commands

 DataExportDryRun ON | OFF;
 };

Notes

Each SET DATAEXPORTOPTIONS command specifies a set of option values that are in place
until the next SET DATAEXPORTOPTIONS command is encountered. At that time, option
values are reset to default and newly specified option values are set.

The option list must start with a left brace ({) and end with a right brace followed by a semicolon
(};). Each option ends with a semicolon (;). The options can be listed in any order. When an
option is not specified, the default value is assumed.

The options are described here in three categories:

l Content Options

l Output Format Options

l Processing Options

Content Options

DataExportLevel ALL | LEVEL0 | INPUT

l All—(Default) All data, including consolidation and calculation results.

l Level 0—Data from level 0 data blocks only (blocks containing only level 0 sparse member
combinations).

l Input—Input blocks only (blocks containing data from a previous data load or spreadsheet
Lock & Send). This option excludes dynamically calculated data. See also the
DataExportDynamicCalc option.

Description

Specifies the amount of data to export.

DataExportDynamicCalc ON | OFF

l ON—(Default) Dynamically calculated values are included in the export.

l OFF—No dynamically calculated values are included in the report.

Description

Specifies whether a text data export excludes dynamically calculated data.

Notes:

l Text data exports only. If DataExportDynamicCalc ON is encountered with a binary export
(DATAEXPORT BINFILE …) it is ignored. No dynamically calculated data is exported.

l The DataExportDynamicCalc option does not apply to attribute values.

l If DataExportLevel INPUT is also specified and the FIX statement range includes sparse
Dynamic Calc members, the FIX statement is ignored.

DataExportNonExistingBlocks ON | OFF

Calculation Command Reference 349

l ON—Data from all possible data blocks, including all combinations in sparse dimensions,
are exported.

l OFF—(Default) Only data from existing data blocks is exported.

Description

Specifies whether to export data from all possible data blocks. For large outlines with a large
number of members in sparse dimensions, the number of potential data blocks can be very high.
Exporting Dynamic Calc members from all possible blocks can significantly impact
performance.

DataExportPrecision n

n(Optional, default 16)—A value that specifies the number of positions in exported numeric
data. If n < 0, 16-position precision is used.

Description

Specifies that the DATAEXPORT calculation command will output numeric data with emphasis
on precision (accuracy). Depending on the size of a data value and number of decimal positions,
some numeric fields may be written in exponential format; for example, 678123e+008. You may
consider using DataExportPrecision for export files intended as backup or when data ranges
from very large to very small values. The output files typically are smaller and data values more
accurate. For output data to be read by people or some external programs, you may consider
specifying the DataExportDecimal option instead.

Notes:

l By default, Essbase supports 16 positions for numeric data, including decimal positions.

l The DataExportDecimal option has precedence over the DataExportPrecision option.

Example

SET DATAEXPORTOPTIONS
 {
 DataExportPrecision 6;
 DataExportLevel "ALL";
 DataExportColHeader "Measures";
 DataExportDynamicCalc ON;
 };
 DATAEXPORT "File" "," "output1.out";

Initial Data Load Values

"Sales" "COGS" "Margin" "Marketing" "Payroll" "Misc" "Total Expenses" "Profit" "Opening
Inventory" "Additions" "Ending Inventory" "Margin %" "Profit %"
"100-10" "New York"
"Jan" "Actual" 678123456.0 271123456.0 407123456.0 941234567890123456.0 51123456.0 0
145123456.0 262123456.0 2101123456.0 644123456.0 2067123456.0 60123456.029 38123456.6430
"Feb" "Actual" 645123 258123 3871234 9012345 5112345 112345678 14212345 24512345
2067123456 61912345 20411234 601234 37123456.98
"Mar" "Actual" 675 270 405 94 51 1 146 259 2041 742 2108 60 38.37037037037037
"Qtr1" "Actual" 1998 799 1199 278 153 2 433 766 2101 2005 2108 60.01001001001001 38.
33833833833834

350 Calculation Commands

Exported Data Format

"Sales","COGS","Margin","Marketing","Payroll","Misc","Total Expenses","Profit","Opening
Inventory","Additions","Ending Inventory","Margin %","Profit %","Profit per
Ounce","100-10","New York"
"Jan","Actual",6.78123e+008,2.71123e+008,4.07e+008,9.41235e+017,5.11235e+007,0,9.41235e
+017,-9.41235e+017,2.10112e+009,6.44123e+008,2.06712e+009,60.0186,-1.388e+011,-7.84362e
+016
"Feb","Actual",645123,258123,387000,9.01235e+006,5.11235e+006,1.12346e+008,1.2647e
+008,-1.26083e+008,2.06712e+009,6.19123e+007,2.04112e+007,59.9886,-19544.1,-1.05069e+007
"Mar","Actual",675,270,405,94,51,1,146,259,2041,742,2108,60,38.3704,21.5833

DataExportDecimal n

Where n is a value between 0 and 16.

If no value is provided, the number of decimal positions of the data to be exported is used, up
to 16 positions, or a value determined by the DataExportPrecision option if that is specified.

Description

Specifies that the DATAEXPORT calculation command will output numeric data with emphasis
on legibility; output data is in straight text format. Regardless of the number of decimal positions
in the data, the specified number is output. It is possible the data can lose accuracy, particularly
if the data ranges from very large values to very small values, above and below the decimal point.

Notes:

l By default, Essbase supports 16 positions for numeric data, including decimal positions.

l If both the DataExportDecimal option and the DataExportPrecision option are specified,
the DataExportPrecision option is ignored.

Example

SET DATAEXPORTOPTIONS
 {DataExportDecimal 4;
 DataExportLevel "ALL";
 DataExportColHeader "Measures";
 DataExportDynamicCalc ON;
 };
 DATAEXPORT "File" "," "output1.out";

Initial Data Load Values

"Sales" "COGS" "Margin" "Marketing" "Payroll" "Misc" "Total Expenses" "Profit" "Opening
Inventory" "Additions" "Ending Inventory" "Margin %" "Profit %"
"100-10" "New York"
"Jan" "Actual" 678123456.0 271123456.0 407123456.0 941234567890123456.0 51123456.0 0
145123456.0 262123456.0 2101123456.0 644123456.0 2067123456.0 60123456.029 38123456.6430
"Feb" "Actual" 645123 258123 3871234 9012345 5112345 112345678 14212345 24512345
2067123456 61912345 20411234 601234 37123456.98
"Mar" "Actual" 675 270 405 94 51 1 146 259 2041 742 2108 60 38.37037037037037
"Qtr1" "Actual" 1998 799 1199 278 153 2 433 766 2101 2005 2108 60.01001001001001 38.
33833833833834

Exported Data Format

Calculation Command Reference 351

"Sales","COGS","Margin","Marketing","Payroll","Misc","Total Expenses","Profit","Opening
Inventory","Additions","Ending Inventory","Margin %","Profit %","Profit per Ounce"
"100-10","New York"
"Jan","Actual",678123456.0000,271123456.0000,407000000.0000,941234567890123520.0000,
51123456.0000,0.0000,941234567941246980.0000,-941234567534246910.0000,2101123456.0000,
644123456.0000,2067123456.0000,60.0186,-138799883591.4395,-78436213961187248.0000
"Feb","Actual",645123.0000,258123.0000,387000.0000,9012345.0000,5112345.0000,112345678.
0000,126470368.0000,-126083368.0000,2067123456.0000,61912345.0000,20411234.0000,59.
9886,-19544.0820,-10506947.3333
"Mar","Actual",675.0000,270.0000,405.0000,94.0000,51.0000,1.0000,146.0000,259.0000,2041.
0000,742.0000,2108.0000,60.0000,38.3704,21.5833

Output Format Options

DataExportColFormat ON | OFF

l ON—The data is output in columnar format.

l OFF—Default. The data is output in non-columnar format.

Description

Specifies if data is output in columnar format. Columnar format displays a member name from
every dimension; names can be repeated from row to row, enabling use by applications other
than Essbase tools. In non-columnar format, sparse members identifying a data block are
included only once for the block. Non-columnar export files are smaller, enabling faster loading
to an Essbase database.

Notes

l Do not use the DataExportColFormat option in combination with the
DataExportRelationalFile option, which already assumes columnar format for files destined
as input files to relational databases.

Example

SET DATAEXPORTOPTIONS
 {
 DATAEXPORTCOLFORMAT ON;
 };
 FIX("100-10", Sales, COGS, Jan, Feb, Mar, Actual, Budget)
 DATAEXPORT "File" "," "d:\temp\test2.txt" ;
ENDFIX;

DataExportColHeader dimensionName

Description

Specifies the name of the dense dimension that is the column header (the focus) around which
other data is referenced in the export file. Use the DataExportColHeader option only when you
export data to a text file. For example, if from Sample Basic the Year dimension is specified, the
output data starts with data associated with the first member of the Year dimension: Year. After
all data for Year is output, it continues with the second member: Qtr1, and so on.

Notes

352 Calculation Commands

l MaxL, ESSCMD, and Essbase exports do not provide a similar capability. With these
methods, Essbase determines the focal point of the output data.

Exporting through Report Writer enables you to specify the header in the report script.

Example

SET DATAEXPORTOPTIONS {DATAEXPORTCOLHEADER Scenario;};

Specifies Scenario as the page header in the export file. The Scenario dimension contains three
members: Scenario, Actual, and Budget. All Scenario data is shown first, followed by all Actual
data, then all Budget data.

DataExportDimHeader ON | OFF

l ON—The header record is included.

l OFF—Default. The header record is not included.

Description

Use the DataExportDimHeader option to insert the optional header record at the beginning of
the export data file. The header record contains all dimension names in the order as they are
used in the file. Specifying this command always writes the data in "column format".

Example

SET DATAEXPORTOPTIONS
 {
 DATAEXPORTLEVEL "ALL";
 DATAEXPORTDIMHEADER ON;
 };
FIX("100-10", "New York", "Actual")
 DATAEXPORT "File" "," "E:\temp\2222.txt" ;
ENDFIX;

Specifying the DataExporttDimHeader ON option while exporting Sample Basic writes the data
in column format, with common members repeated in each row. The data begins with a
dimension header, as shown in the first two rows of the example file below:

"Product","Market","Year","Scenario","Measures"
"Sales","COGS","Marketing","Payroll","Misc","Opening Inventory","Additions","Ending
Inventory"
"100-10","New York","Jan","Actual",678,271,94,51,0,2101,644,2067
"100-10","New York","Feb","Actual",645,258,90,51,1,2067,619,2041
"100-10","New York","Mar","Actual",675,270,94,51,1,2041,742,2108
"100-10","New York","Apr","Actual",712,284,99,53,0,2108,854,2250
"100-10","New York","May","Actual",756,302,105,53,1,2250,982,2476
"100-10","New York","Jun","Actual",890,356,124,53,0,2476,1068,2654
"100-10","New York","Jul","Actual",912,364,127,51,0,2654,875,2617
"100-10","New York","Aug","Actual",910,364,127,51,0,2617,873,2580
"100-10","New York","Sep","Actual",790,316,110,51,1,2580,758,2548
"100-10","New York","Oct","Actual",650,260,91,51,1,2548,682,2580
"100-10","New York","Nov","Actual",623,249,87,51,0,2580,685,2642
"100-10","New York","Dec","Actual",699,279,97,51,1,2642,671,2614

DataExportRelationalFile ON | OFF

Calculation Command Reference 353

l ON—The output text export file is formatted for import to a relational database.

m Data is in column format; sparse member names are repeated. (The
DataExportColFormat option is ignored.)

m The first record in the export file is data; no column heading or dimension header is
included, even if specified. (The DataExportColHeader and DataExportDimHeader
options are ignored.)

m Missing and invalid data is skipped, resulting in consecutive delimiters (commas) in the
output. The optional "missing_char" parameter for DATAEXPORT is ignored

l OFF—Default. The data is not explicitly formatted for use as input to a relational database.

Description

Using the DataExportRelationalFile option with DATAEXPORT enables you to format the text
export file to be used directly as an input file for a relational database.

Example

SET DATAEXPORTOPTIONS {
 DataExportLevel "ALL";
 DataExportRelationalFile ON;
};

FIX (Jan)
 DATAEXPORT "File" "," c:\monthly\jan.txt
ENDFIX;

Processing Options

DataExportOverwriteFile ON | OFF

l ON—The existing file with the same name and location is replaced.

l OFF—Default. If a file with the same name and location already exists, no file is output.

Description

Manages whether an existing file with the same name and location is replaced.

DataExportDryRun ON | OFF

l ON—DATAEXPORT and associated commands are run, without exporting data.

l OFF—Default. Data is exported

Description

Enables running the calculation script data export commands to see information about the coded
export, without exporting the data. When the DataExportDryRun option value is ON, the
following information is written to the output file specified in the DATAEXPORT command:

l Summary of data export settings

l Info, Warning, and Error messages

l Exact number of blocks to be exported

354 Calculation Commands

l Estimated time, excluding I/O time.

Notes

l The DataExportDryRun option does not work with exports to relational databases.

l If you modify the script for reuse for the actual export, besides removing the
DataExportDryRun option from the script you may want to change the name of the export
file.

Example

SET DATAEXPORTOPTIONS
 {
 DataExportLevel "ALL";
 DataExportColHeader "Measures";
 DataExportColFormat ON;
 DataExportDimHeader ON;
 DataExportDynamicCalc OFF;
 DataExportDecimal 0;
 DataExportDryRun ON;
 DataExportOverwriteFile ON;
 };

FIX("Qtr1")
 DATAEXPORT "File" "," "E:\temp\log.txt" ;
ENDFIX;

Creates the file "E:\temp\log.txt" containing the following information:

 <EXPORT_OPTIONS>
 <DELIMITER>
 ,
 </DELIMITER>
 <MISSING_VALUE>
 #Mi
 </MISSING_VALUE>
 <EXPORT_LEVEL>
 ALL
 </EXPORT_LEVEL>
 <DYNAMIC_CALC_EXPORT>
 OFF
 </DYNAMIC_CALC_EXPORT>
 <COLUMN HEADER>
 Measures
 </COLUMN HEADER>
 <COLUMN_FORMAT>
 ON
 </COLUMN_FORMAT>
 <DIMENSION_HEADER_WRITE>
 ON
 </DIMENSION_HEADER_WRITE>
 <FILE_OVERWRITE>
 ON
 </FILE_OVERWRITE>
 <DECIMAL_POINT>
 0N

Calculation Command Reference 355

 </DECIMAL_POINT>
 <PRECISION POINT>
 16
 </PRECISION_POINT>
 <RELATIONAL_EXPORT>
 OFF
 </RELATIONAL_EXPORT>
 </EXPORT_OPTIONS>
 <MESSAGE>
 <INFO>
 DataExport Warning: FIX statement contains Dynamic Calc member [Qtr1]. No
Dynamic Calc members are exported with the DataExportDynamicCalc option set to OFF.
 </INFO>
 <INFO>
 Data Export Completed. Total blocks: [332]. Elapsed time: [3.846] secs.
 </INFO>
 </MESSAGE

See Also

l DATAEXPORT

l FIX…ENDFIX

l SET Commands

SET DATAIMPORTIGNORETIMESTAMP
Specifies whether to ignore the outline timestamp captured at the time the data was exported.

Syntax

SET DATAIMPORTIGNORETIMESTAMP ON|OFF;

Parameter Description

ON Ignore the outline timestamp.

OFF Default. Check the outline timestamp.

Notes

The DATAEXPORT "Binfile" command captures the outline timestamp when it creates a binary
export file. By default, when the file is imported, Essbase checks the import file timestamp against
the existing outine timestamp to ensure the correct import file is read. You can use SET
DATAIMPORTIGNORETIMESTAMP to bypass checking the timestamp.

Caution! Bypassing the check enables potentially importing the wrong file.

Example

SET DATAIMPORTIGNORETIMESTAMP ON;
DATAIMPORTBIN e:january\basic.bin

356 Calculation Commands

Specifies to ignore comparing the outline timestamp with the timestamp on the import tile, and
to import the binary export file to the database on which the calculation script is running.

See Also

l DATAEXPORT

l DATAIMPORTBIN

l SET Commands

SET EMPTYMEMBERSETS
EMPTYMEMBERSETS stops the calculation within a FIX…ENDFIX command if the FIX
evaluates to an empty member set.

Syntax

SET EMPTYMEMBERSETS ON|OFF

Parameter Description

ON Calculation within FIX command stops if FIX evaluates to an empty member set.

OFF Entire database is calculated, even if FIX evaluates to an empty member set.

Notes

If EMPTYMEMBERSETS is ON, and a FIX command evaluates to a empty member set, the
calculation within the FIX command stops and the following information message is displayed:
"FIX statement evaluates to an empty set. Please refer to SET EMPTYMEMBERSETS command."
The calculation resumes after the FIX command. If a calculation script contains nested FIX
commands, the nested FIX commands are not evaluated.

Example

The following calculation script does not calculate Calc Dim(Year) within the FIX command.
100-10 has no children and therefore the FIX statement evaluates to an empty member set.

SET EMPTYMEMBERSETS ON;
...
FIX(@CHILDREN("100-10"))
 Calc Dim(Year);
ENDFIX
...

The following calculation script has nested FIX commands. Calc Dim(Product) is not calculated
because FIX(@CHILDREN("100-10")) evaluates to empty member set. Calc Dim(Year) is not
calculated even though the nested FIX("New York") does not evaluate to an empty member set.

SET EMPTYMEMBERSETS ON;
...
FIX(@CHILDREN("100-10"))
 FIX("New York")
 Calc Dim(Year);
 ENDFIX
Calc Dim (Product);

Calculation Command Reference 357

ENDFIX
...

SET FRMLBOTTOMUP
Optimizes the calculation of complex formulas on sparse dimensions in large database outlines.
This command tells Essbase to perform a bottom-up calculation on formulas that would
otherwise require a top-down calculation.

You might want to turn on this setting when using the CALC ALL and CALC DIM commands to
calculate the database.

Syntax

SET FRMLBOTTOMUP ON|OFF;

Parameter Description

ON Turns on the bottom-up sparse formula calculation method.

OFF Turns off the bottom-up sparse formula calculation method. The default setting is OFF. You can change
this setting by using CALCOPTFRMLBOTTOMUP TRUE in the essbase.cfg file.

Notes

l For information on complex formulas and top-down calculations, see the Oracle Essbase
Database Administrator's Guide.

l Forcing a bottom-up calculation on a formula may produce results that are inconsistent
with a top-down calculation if:

m The formula contains complex functions (for example, range functions)

m The formula's dependencies are not straightforward

l Before using the SET FRMLBOTTOMUP command in a production environment, be sure
to check the validity of calculation results produced when the command is enabled (set to
ON).

Example

SET FRMLBOTTOMUP ON;

See Also

l the section called “CALCOPTFRMLBOTTOMUP”
l SET Commands

SET FRMLRTDYNAMIC
Enables you to turn off calculation of all dense Dynamic Calc members during batch calculation
if runtime dependent functions are included in formulas on stored members. (The preprocessing
phase of a calculation script cannot determine if an outline contains dense Dynamic Calc
members.)

358 Calculation Commands

This command improves batch calculation performance by removing the overhead of
calculating all Dynamic Calc members.

The SET FRMLRTDYNAMIC command can be applied to an entire calculation script segment,
as shown in the example below.

Syntax

SET FRMLRTDYNAMIC ON | OFF;

Parameter Description

ON Calculation of Dynamic Calc members is performed. The default value is ON.

OFF Calculation of Dynamic Calc members is not performed.

Notes

l Runtime-dependent functions include:

m @ANCEST

m @SANCEST

m @PARENT

m @SPARENT

m @CURRMBR

l If a stored member formula includes a runtime-dependent function on a Dynamic Calc
member, it may get #MISSING as the result instead of the expected value after executing the
formula on the Dynamic Calc member.

Example

The following example turns off all dense Dynamic Calc members:

SET FRMLRTDYNAMIC OFF;
FIX(@LEVMBRS(Product, 0)))
"Avg Sales" = @AVGRANGE(SKIPNONE,Sales,@CHIDREN(@CURRMBR(Product)));
ENDFIX
CALC ALL;

SET LOCKBLOCK
Specifies the maximum number of blocks that Essbase can get addressability to concurrently
when calculating a sparse member formula.

You can choose one of three levels. The number of blocks that Essbase can get addressability to
at each level is defined using the CALCLOCKBLOCK setting in the essbase.cfg file.

Syntax

SET LOCKBLOCK HIGH | DEFAULT | LOW;

Calculation Command Reference 359

Parameter Description

HIGH, DEFAULT, and
LOW

Levels defining the number of blocks that Essbase can get addressability to concurrently.

Notes

When a block is calculated, Essbase locks (gets addressability to) the block along with the blocks
containing its children. Essbase calculates the block and then releases it along with the blocks
containing its children.

By default, Essbase allows up to 100 blocks to be locked (addressable) concurrently when
calculating a block. This is sufficient for most database calculations.

However, you may want to set a number higher than 100 if you are consolidating very large
numbers of children in a formula calculation. This setting ensures that Essbase can get
addressability to all the required blocks when calculating a data block and that performance will
not be impaired.

For more information on data blocks, see the Oracle Essbase Database Administrator's Guide.

Example

If the essbase.cfg file contains the following settings:

CALCLOCKBLOCKHIGH 500
CALCLOCKBLOCKDEFAULT 200
CALCLOCKBLOCKLOW 50

then:

SET LOCKBLOCK HIGH;

means that Essbase can get addressability to up to 500 data blocks when calculating one block.

SET LOCKBLOCK DEFAULT;

means that Essbase can get addressability to up to 200 data blocks when calculating one block.

SET LOCKBLOCK LOW;

means that Essbase can get addressability to up to 50 data blocks when calculating one block.

See Also

l the section called “CALCLOCKBLOCK”
l SET Commands

SET MSG
Sets the level of messaging you want returned about calculations, and enables simulated
calculations.

The SET MSG command applies only to the calculation script in which it is used.

Syntax

SET MSG SUMMARY | DETAIL | ERROR | INFO | NONE | ONLY;

360 Calculation Commands

Parameter Description

SUMMARY Displays calculation settings and provides statistics on the number of:

l Data blocks created, read, and written

l Data cells calculated

DETAIL Provides the same information as SUMMARY. In addition, it displays a detailed information message
every time Essbase calculates a data block.

ERROR Displays only error messages.

INFO Displays information and error messages.

NONE Displays no messages during the life of the calculation script. However, because error messages may
contain vital information, they are still displayed.

ONLY Instructs Essbase to perform a simulated calculation only. You may disregard any error message during
validation that indicates Essbase does not recognize a command.

Note: When you use this parameter, Essbase generates some empty upper-level blocks. Make sure to
clear upper-level blocks (or non-input blocks if you load data into upper level blocks in your
model) at the end of the simulation/command.

We recommend using SET MSG ONLY with the calculation script commands SET NOTICE HIGH and
CALC ALL. For more information, see the Oracle Essbase Database Administrator's Guide sections on
optimizing calculations.

SET MSG ONLY does not generate a completion notice.

Notes

SET MSG SUMMARY and SET MSG DETAIL tell you:

l The status of calculation settings (for example, whether completion notice messages are
enabled)

l The total number of data blocks created

l The number of data blocks read and written on sparse calculations

l The number of data blocks read and written on dense calculations

l The number of data cells calculated on sparse calculations

l The number of data cells calculated on dense calculations

In addition, the SET MSG DETAIL command provides an information message every time
Essbase calculates a data block. It is useful for testing your database's consolidation path. Because
it causes a high processing overhead, it should be used during test calculations only.

SET MSG SUMMARY causes a processing overhead of approximately 1% to 5%, depending on
the database size.

Example

SET MSG ERROR;

Calculation Command Reference 361

Displays only the error messages.

SET MSG SUMMARY;

Produces the following sample output:

[Tue Apr 4 05:11:16 1995] local/Sample/Basic/Qatest/Info(1012672)
Calculator Information Message:

Maximum Number of Lock Blocks: [100] Blocks

Completion Notice Messages: [Disabled]

Calculations On Updated Blocks Only: [Enabled]

Clear Update Status After Full Calculations: [Enabled]

Calculator Cache With Multiple Bitmaps For: [Market]

[Tue Apr 4 05:11:19 1995] local/Sample/Basic/Qatest/Info(1012672)
Calculator Information Message:

Total Block Created: [0.0000e+00] Blocks

Sparse Calculations: [4.3000e+01] Writes and [4.3000e+01] Reads

Dense Calculations: [4.3200e+02] Writes and [4.3200e+02] Reads

Sparse Calculations: [1.7200e+02] Cells

Dense Calculations: [4.3200e+02] Cells

SET MSG DETAIL;

Produces the following sample output:

[Thu Mar 30 16:27:26 1995] local/Sample/Basic/Qatest/Info(1012669)
Calculator Information Message:

Maximum Number of Lock Blocks: [100] Blocks

Completion Notice Messages: [Disabled]

Calculations On Updated Blocks Only: [Enabled]

Clear Update Status After Partial Calculations: [Disabled]

Calculator Cache With Multiple Bitmaps For: [Market]

 [Thu Mar 30 16:27:26 1995] local/Sample/Basic/Qatest/Info(1012669)
Calculator Information Message: Executing Block - [100], [East]

[Thu Mar 30 16:27:26 1995] local/Sample/Basic/Qatest/Info(1012669)

Calculator Information Message: Executing Block - [Product], [East]

[Thu Mar 30 16:27:26 1995] local/Sample/Basic/Qatest/Info(1012669)

362 Calculation Commands

Calculator Information Message: Executing Block - [100], [Market]

[Thu Mar 30 16:27:26 1995] local/Sample/Basic/Qatest/Info(1012669)

Calculator Information Message: Executing Block - [Product], [Market]

[Thu Mar 30 16:27:26 1995] local/Sample/Basic/Qatest/Info(1012669)
Calculator Information Message:

Total Block Created: [0.0000e+00] Blocks

Sparse Calculations: [4.0000e+00] Writes and [2.2000e+01] Reads

Dense Calculations: [0.0000e+00] Writes and [0.0000e+00] Reads

Sparse Calculations: [3.8080e+03] Cells

Dense Calculations: [0.0000e+00] Cells

See Also

l CLEARBLOCK

l SET NOTICE

l SET Commands

SET NOTICE
Monitors the progress of your calculation by providing completion notices at intervals during
the calculation. The number of notices depends on the level you specify.

Syntax

SET NOTICE HIGH | DEFAULT | LOW;

Parameter Description

HIGH,
DEFAULT,
and LOW

Levels defining the frequency and number of completion notices.

You can set the values of HIGH, DEFAULT, and LOW using the CALCNOTICE setting in the
essbase.cfg file. If you do not set the value of DEFAULT in the essbase.cfg file, Essbase uses
a default value of 10, which provides 10 completion messages at 10% intervals during the calculation.

Notes

l You can specify the number of notices for each level using the CALCNOTICE setting in the
essbase.cfg file.

l The interval between notices is approximate. Essbase measures the interval by taking the
number of data blocks already calculated as a percentage of the total number of possible
data blocks in your database. For example, if there are 10,000 possible blocks and you specify
5 notices, Essbase notifies you when the calculation approximately reaches block 2000, 4000,
6000, 8,000 and 10,000. However, if only the blocks 1,000 - 4,000 exist, then Essbase displays
only two notices.

Calculation Command Reference 363

l For partial calculations and calculations with multiple passes through your database, the
interval between completion notices is very approximate.

l Completion notices do not significantly reduce the calculation performance, except when
used with a very small database.

Example

If the essbase.cfg file contains the following settings:

CALCNOTICEHIGH 50
CALCNOTICEDEFAULT 20
CALCNOTICELOW 5

then:

SET NOTICE HIGH;

displays 50 completion notices at 2% intervals.

SET NOTICE DEFAULT;

displays 20 completion notices at 5% intervals.

SET NOTICE LOW;

displays 5 completion notices at 20% intervals.

SET NOTICE LOW;

might produce the following sample output:

[Thu Apr 6 10:09:19 1995] Local/Sample/Basic/Qatest/Info(1012669)
Calculating [Measures(All members) Year(All members) Scenario(All members) Product(All
members) Market(All members)]

[Thu Apr 6 10:09:19 1995] Local/Sample/Basic/Qatest/Info(1012672)
Calculator Information Message:
Maximum Number of Lock Blocks: [100] Blocks
Completion Notice For Every: [10.000%] Of Blocks
Calculations On Updated Blocks Only: [Disabled]
Clear Update Status After Full Calculations: [Enabled]
Calculator Cache With Multiple Bitmaps For: [Market]

[Thu Apr 6 10:09:21 1995] Local/Sample/Basic/Qatest/Info(1012672)
Calculator Information Message: Completion Notice For Block Number [49]

[Thu Apr 6 10:09:22 1995] Local/Sample/Basic/Qatest/Info(1012672)
Calculator Information Message: Completion Notice For Block Number [97]

[Thu Apr 6 10:09:24 1995] Local/Sample/Basic/Qatest/Info(1012672)
Calculator Information Message: Completion Notice For Block Number [145]

[Thu Apr 6 10:09:25 1995] Local/Sample/Basic/Qatest/Info(1012672)
Calculator Information Message: Completion Notice For Block Number [193]

[Thu Apr 6 10:09:27 1995] Local/Sample/Basic/Qatest/Info(1012672)
Calculator Information Message: Completion Notice For Block Number [241]

364 Calculation Commands

See Also

l the section called “CALCNOTICE”
l SET MSG

l SET Commands

SET REMOTECALC
For applications with transparent partitions, turns remote calculation to the source on or off.

Syntax

SET REMOTECALC ON | OFF;

Parameter Description

ON Default. Essbase connects to the source partition enabling remote calculations.

OFF Essbase does not connect to the source partition. Use this option only when absolutely sure the calculation
script does not involve access to remote data.

Notes

l When you are working with transparent partitions and are sure that a calculation script does
not include remote values in the calculations, you can use SET REMOTECALC OFF to
improve calculation performance.

l Performance improvement is visible only when batch calculation is run on the target
application.

Example

SET REMOTECALC ON;

SET REMOTECALC OFF;

See Also

l SET Commands

SET SCAPERSPECTIVE
Sets the perspective for varying attribute calculations.

Syntax

SET SCAPERSPECTIVE (mbrName1) [, (mbrName2)] ... [,(mbrNamen)]) on Attribute_Dimension
| OFF ;

Parameter Description

mbrName1 [,...] on
Attribute_Dimension

Any valid single member name, or list of member names, on the specified varying
attribute dimension.

OFF Turn off the perspective setting for the calculation block.

Calculation Command Reference 365

Notes

l For use only in applications enabled with varying attributes.

l Only one independent member from each independent dimension is supported.

Example

Once the perspective is specified using this command, @WITHATTR can be used on a varying
attribute inside a FIX statement. In the following example, the SET SCAPERSPECTIVE
statements indicate that for attribute dimensions TYPE and TITLE, the subsequent FIX
statement with @WithATTR will use their attribute association as defined at time FY03 and Jan.

set SCAPerspective ((FY03), (Jan)) on TYPE;
set SCAPerspective ((FY03), (Jan)) on TITLE;

FIX (@WithAttr (TYPE, "==", Contractor), @withattr (Title, "==", Senior_QA_Engineer),
Local, "HSP_Historical", "BU Version_1", Target, Local, FY03)
HSP_INPUTVALUE = 100;
ENDFIX;

See Also

l @ISATTRIBUTE

l @ISMBRWITHATTR

l @WITHATTR

SET UPDATECALC
Turns Intelligent Calculation on or off.

Syntax

SET UPDATECALC ON | OFF;

Parameter Description

ON Essbase calculates only blocks marked as dirty (see Description). Dirty blocks include updated blocks and
their dependent parents (see Notes). The default setting is ON. You can change this default using the
UPDATECALC TRUE | FALSE setting in the essbase.cfg file.

OFF Essbase calculates all data blocks, regardless of whether they have been updated.

Notes

l Using Intelligent Calculation, Essbase calculates only dirty blocks, such as updated data
blocks and their dependent parents. Therefore, the calculation is very efficient.

l All data blocks in the database are marked as either clean or dirty. If a data block is clean,
then Essbase knows that the block does not need to be recalculated.

l By default, all data blocks are marked as clean after a full calculation of the database but not
after a partial calculation of the database. If required, you can change this default behavior
using the SET CLEARUPDATESTATUS command in your calculation script.

366 Calculation Commands

l There are several possible reasons blocks might be marked as dirty. See the Oracle Essbase
Database Administrator's Guide for information on Intelligent Calculation and clean and
dirty blocks.

Example

SET UPDATECALC ON;

SET UPDATECALC OFF;

See Also

l SET CLEARUPDATESTATUS

l “UPDATECALC” on page 513
l SET Commands

SET UPTOLOCAL
Restricts consolidations to those parents with the same defined currency. The default is OFF.

For example, all cities in Switzerland use the Swiss franc (CHF) as the unit of currency. Therefore,
all children of Switzerland, such as the cities Geneva, Zurich, and Lucerne, consolidate to
Switzerland. Consolidation stops at this level, however, because Europe also contains countries
that use other currencies. The following database outline example illustrates this situation:

If you want to consolidate values above this level, you must use CCONV to convert the values to
a master rate before consolidating.

Syntax

SET UPTOLOCAL ON | OFF ;

Notes

SET UPTOLOCAL ON has no effect on databases with no currency definitions.

Example

SET UPTOLOCAL ON;

SET UPTOLOCAL OFF;

Calculation Command Reference 367

See Also

l CCONV

l SET CCTRACKCALC

l CLEARCCTRACK

l “CCTRACK” on page 408

VAR
Declares a temporary variable that contains a single value.

Note: You can also use a single VAR command to declare multiple variables by supplying a
comma-delimited list of variable names.

Syntax

VAR varName [= value] ;

Parameter Description

varName Name of the temporary variable.

value Optional parameter that declares the data value.

Notes

l The name of the variable cannot duplicate a database member name.

l If a value is not declared, it is set to #MISSING.

l VAR commands can only be assigned values within a member calculation or when VAR is
declared.

Example

VAR Target = 1200;

VAR Break1, Break2, Break3;

See Also

l ARRAY

368 Calculation Commands

4
Essbase.cfg Configuration

Settings

In This Chapter

Configuration File Overview ... 369

Configuring Essbase.cfg .. 369

Essbase.cfg Setting Categorical List . 370

Aggregate Storage and Block Storage Settings Comparison ... 376

Configuration Settings Reference... 380

Configuration File Overview
With the essbase.cfg configuration file, you can customize your Essbase Server configuration.
Settings specified in the essbase.cfg file usually apply to the entire Essbase Server. These
settings override the Essbase defaults and apply to all databases within all applications on the
Essbase Server.

You can create one essbase.cfg file for server settings, and another for client settings. Assume
settings are for the server unless otherwise noted.

Configuring Essbase.cfg
A default essbase.cfg file exists in the Essbase bin directory.

ä To edit the essbase.cfg configuration file:

1 Open the file with a text editor.

2 Enter each setting on a separate line in the file. Semicolon terminators are not required.

3 Save the file as essbase.cfg in the bin directory.

4 After editing the configuration file, perform the proper action to have the configuration file reread:

l If the setting applies to the server, stop and restart Essbase Server.

l If the setting applies to a specific application, stop the application (if it is running) and
restart it.

l If the setting applies only to a database, restart the application.

Configuration File Overview 369

Notes

l Oracle recommends that you make there are no duplicate settings in the essbase.cfg file.

l You can override many essbase.cfg values using:

m MaxL statements

m Administration Services dialogs

m ESSCMD commands

l When you use MaxL or Administration Services to change essbase.cfg values, many
values are effective immediately. See the Oracle Essbase Database Administrator's Guide for
details.

l Some essbase.cfg settings affect performance. Before you override Essbase defaults, see
information about performance optimization and storage settings in the Oracle Essbase
Database Administrator's Guide

l essbase.cfg settings apply to all databases unless the values are noted as database- or
application-specific.

l Essbase uses the keywords and their unparsed values "as is." No syntax check is performed.

l You can use an essbase.cfg file on the client to override Essbase default network settings.
Only the following settings can be used in an essbase.cfg client file:

m “AGENTPORT” on page 387

m “APSRESOLVER” on page 392

m “NETDELAY” on page 473

m “NETRETRYCOUNT” on page 474

m “PORTINC” on page 481

m “SERVERPORTBEGIN” on page 493

m “SERVERPORTEND” on page 494

All other configuration settings are intended for the server essbase.cfg file only.

Example

The following is an example of essbase.cfg server file entries:

SSPROCROWLIMIT 20000
LOCKTIMEOUT 1200

See the Oracle Essbase Database Administrator's Guide.

Essbase.cfg Setting Categorical List
This section lists all of the Essbase.CFG settings, grouped categorically. Some may appear in
more than one category.

l Backup and Recovery Configuration Settings

370 Essbase.cfg Configuration Settings

l Calculation Configuration Settings

l Data Import and Export Configuration Settings

l Hybrid Analysis Configuration Settings

l Failover Clustering Configuration Settings

l Logging and Error Handling Configuration Settings

l Memory Management Configuration Settings

l Miscellaneous Configuration Settings

l Partitioning Configuration Settings

l Ports and Connections Configuration Settings

l Query Management Configuration Settings

l “Security File Configuration Settings” on page 376

Backup and Recovery Configuration Settings
l “TRANSACTIONLOGDATALOADARCHIVE” on page 508

l “TRANSACTIONLOGLOCATION” on page 510

Calculation Configuration Settings
l “AGGRESSIVEBLKOPTIMIZATION” on page 389

l “CALCCACHE” on page 396

l “CALCCACHEHIGH” on page 397

l “CALCCACHEDEFAULT” on page 398

l “CALCCACHELOW” on page 399

l “CALCLIMITFORMULARECURSION” on page 400

l “CALCLOCKBLOCK” on page 401

l “CALCMODE” on page 402

l “CALCNOTICE” on page 403

l “CALCOPTFRMLBOTTOMUP” on page 404

l “CALCPARALLEL” on page 406

l “CALCREUSEDYNCALCBLOCKS” on page 405

l “CALCTASKDIMS” on page 407

l “CCTRACK” on page 408

l “DYNCALCCACHEBLKRELEASE” on page 429

l “DYNCALCCACHEBLKTIMEOUT” on page 430

l “DYNCALCCACHECOMPRBLKBUFSIZE” on page 432

Essbase.cfg Setting Categorical List 371

l “DYNCALCCACHEMAXSIZE” on page 433

l “DYNCALCCACHEONLY” on page 435

l “DYNCALCCACHEWAITFORBLK” on page 436

l “EXCLUSIVECALC” on page 444

l “FORCEALLDENSECALCON2PASSACCOUNTS” on page 446

l “MULTIPLEBITMAPMEMCHECK” on page 472

l “PARCALCMULTIPLEBITMAPMEMOPT” on page 479

l “RTDEPCALCOPTIMIZE” on page 490

l “UPDATECALC” on page 513

Data Import and Export Configuration Settings
l “DATAEXPORTENABLEBATCHINSERT” on page 414

l “DEXPSQLROWSIZE” on page 418

l “DLSINGLETHREADPERSTAGE” on page 424

l “DLTHREADSPREPARE” on page 426

l “DLTHREADSWRITE” on page 427

l “EXPORTTHREADS” on page 444

Hybrid Analysis Configuration Settings
l “HAENABLE” on page 449

l “HAMAXNUMCONNECTION” on page 449

l “HAMAXNUMSQLQUERY” on page 450

l “HAMAXQUERYROWS” on page 451

l “HAMAXQUERYTIME” on page 452

l “HAMEMORYCACHESIZE” on page 453

l “HARAGGEDHIERARCHY” on page 454

l “HARETRIEVENUMROW” on page 455

l “HASOURCEDSNOS390” on page 456

Failover Clustering Configuration Settings
l “AGENTLEASEEXPIRATIONTIME” on page 384

l “AGENTLEASEMAXRETRYCOUNT” on page 385

l “AGENTLEASERENEWALTIME” on page 385

l “APSRESOLVER” on page 392

372 Essbase.cfg Configuration Settings

l “FAILOVERMODE” on page 445

l “ESSBASEFAILOVERTRACELEVEL” on page 441

l “SERVERLEASEEXPIRATIONTIME” on page 492

l “SERVERLEASEMAXRETRYCOUNT” on page 492

l “SERVERLEASERENEWALTIME” on page 493

Logging and Error Handling Configuration Settings
l “AGENTDISPLAYMESSAGELEVEL” on page 383

l “AGENTLOGMESSAGELEVEL” on page 386

l “AGTMAXLOGFILESIZE” on page 390

l “APPMAXLOGFILESIZE” on page 392

l “CALCNOTICE” on page 403

l “CLEARLOGFILE” on page 410

l “CRASHDUMP” on page 411

l “DATAERRORLIMIT” on page 413

l “DELIMITEDMSG” on page 417

l “DELIMITER” on page 417

l “DISPLAYMESSAGELEVEL” on page 423

l “EXCEPTIONLOGOVERWRITE” on page 442

l “ESSBASEFAILOVERTRACELEVEL” on page 441

l “GRIDEXPANSIONMESSAGES” on page 448

l “IBHFIXTHRESHOLD” on page 457

l “LOGINFAILUREMESSAGEDETAILED” on page 465

l “LOGMESSAGELEVEL” on page 465

l “NOMSGLOGGINGONDATAERRORLIMIT” on page 476

l “OUTLINECHANGELOG” on page 478

l “OUTLINECHANGELOGFILESIZE” on page 479

l “SILENTOTLQUERY” on page 497

l “SQLFETCHERRORPOPUP” on page 498

l “TIMINGMESSAGES” on page 507

l “SSINVALIDTEXTDETECTION” on page 501

l “UNICODEAGENTLOG” on page 512

Essbase.cfg Setting Categorical List 373

Memory Management Configuration Settings
l “ASOLOADBUFFERWAIT” on page 393

l “DATACACHESIZE” on page 412

l “DATAFILECACHESIZE” on page 415

l “DYNCALCCACHEMAXSIZE” on page 433

l “HAMEMORYCACHESIZE” on page 453

l “INDEXCACHESIZE” on page 463

l “MEMSCALINGFACTOR” on page 471

l “MAXFORMULACACHESIZE” on page 467

l “MULTIPLEBITMAPMEMCHECK” on page 472

l “PARCALCMULTIPLEBITMAPMEMOPT” on page 479

l “PRELOADALIASNAMESPACE” on page 483

l “PRELOADMEMBERNAMESPACE” on page 483

l “PRELOADUDANAMESPACE” on page 484

l “SSOPTIMIZEDGRIDPROCESSING” on page 503

l “SSPROCROWLIMIT” on page 504

l “TRIGMAXMEMSIZE” on page 511

l “VLBREPORT” on page 514

Miscellaneous Configuration Settings
l “AUTHENTICATIONMODULE” on page 395

l “DELAYEDRECOVERY” on page 416

l “DIRECTIO” on page 420

l “DISABLEREPLMISSINGDATA” on page 421

l “DISKVOLUMES” on page 422

l “INCRESTRUC” on page 460

l “JVMMODULELOCATION” on page 463

l “LROONSHAREDMBR” on page 466

l “NUMERICPRECISION” on page 477

l “TARGETTIMESERIESOPT” on page 507

Partitioning Configuration Settings
l “ENABLE_DIAG_TRANSPARENT_PARTITION” on page 438

l “MAX_REQUEST_GRID_SIZE” on page 468

374 Essbase.cfg Configuration Settings

l “MAX_RESPONSE_GRID_SIZE” on page 469

l “REPLICATIONASSUMEIDENTICALOUTLINE” on page 489

Ports and Connections Configuration Settings
l “AGENTDELAY” on page 382

l “AGENTDESC” on page 383

l “AGENTPORT” on page 387

l “AGENTTHREADS” on page 388

l “AGTSVRCONNECTIONS” on page 391

l “APSRESOLVER” on page 392

l “MAXLOGINS” on page 468

l “NETBINDRETRYDELAY” on page 473

l “NETDELAY” on page 473

l “NETRETRYCOUNT” on page 474

l “NETTCPCONNECTRETRYCOUNT” on page 475

l “PIPEBUFFERSIZE” on page 480

l “PORTINC” on page 481

l “PORTUSAGELOGINTERVAL” on page 482

l “SERVERPORTBEGIN” on page 493

l “SERVERPORTEND” on page 494

l “SERVERTHREADS” on page 496

See Also

“SSL Configuration Settings” on page 376

Query Management Configuration Settings
l “FORCEGRIDEXPANSION” on page 447

l “GRIDEXPANSION” on page 448

l “GRIDEXPANSIONMESSAGES” on page 448

l “HAMAXNUMSQLQUERY” on page 450

l “HAMAXQUERYROWS” on page 451

l “HAMAXQUERYTIME” on page 452

l “LOCKTIMEOUT” on page 464

l “PRELOADUDANAMESPACE” on page 484

l “QRYGOVEXECBLK” on page 485

Essbase.cfg Setting Categorical List 375

l “QRYGOVEXECTIME” on page 486

l “SSAUDIT” on page 499

l “SSAUDITR” on page 500

l “SSLCIPHERSUITES” on page 502

l “SSLOGUNKNOWN” on page 503

l “SSOPTIMIZEDGRIDPROCESSING” on page 503

l “SSPROCROWLIMIT” on page 504

l “SUPNA” on page 505

l “TARGETASOOPT” on page 506

l “WALLETPATH” on page 515

See also Chapter 8, “Query Logging Configuration,” which you can enable by means of a separate
configuration file.

Security File Configuration Settings
l “ENABLESWITCHTOBACKUPFILE” on page 440

l “NUMBEROFSECFILEBACKUPS” on page 476

l “SECFILEBACKUPINTERVAL” on page 490

l “SECURITYFILECOMPACTIONPERCENT” on page 491

SSL Configuration Settings
l “AGENTSECUREPORT” on page 388

l “CLIENTPREFERREDMODE” on page 411

l “ENABLECLEARMODE” on page 439

l “ENABLESECUREMODE” on page 440

l “NETSSLHANDSHAKETIMEOUT” on page 474

l “SSLCIPHERSUITES” on page 502

l “WALLETPATH” on page 515

See the Oracle Hyperion Enterprise Performance Management System Security Administration
Guide.

Aggregate Storage and Block Storage Settings
Comparison
The following settings apply only to aggregate storage databases.

376 Essbase.cfg Configuration Settings

l “ASOLOADBUFFERWAIT” on page 393

l “ASOSAMPLESIZEPERCENT” on page 394

l “MAX_REQUEST_GRID_SIZE” on page 468

l “MAX_RESPONSE_GRID_SIZE” on page 469

l “PRELOADALIASNAMESPACE” on page 483

l “PRELOADMEMBERNAMESPACE” on page 483

l “REPLICATIONASSUMEIDENTICALOUTLINE” on page 489

The following settings apply to aggregate storage databases and to block storage databases.

“AGENTDELAY” on page 382

“AGENTDISPLAYMESSAGELEVEL” on page 383

“AGENTLEASEEXPIRATIONTIME” on page 384

“AGENTLEASEMAXRETRYCOUNT” on page 385

“AGENTLEASERENEWALTIME” on page 385

“AGENTLOGMESSAGELEVEL” on page 386

“AGENTPORT” on page 387

“AGENTTHREADS” on page 388

“AGTSVRCONNECTIONS” on page 391

“AUTHENTICATIONMODULE” on page 395

“CALCLIMITFORMULARECURSION” on page 400

“CALCPARALLEL” on page 406

“CLEARLOGFILE” on page 410

“CRASHDUMP” on page 411

“DATAERRORLIMIT” on page 413

“DELIMITEDMSG” on page 417

“DELIMITER” on page 417

“DISPLAYMESSAGELEVEL” on page 423

“DLSINGLETHREADPERSTAGE” on page 424

“DLTHREADSPREPARE” on page 426

“ENABLE_DIAG_TRANSPARENT_PARTITION” on page 438

“ENABLESWITCHTOBACKUPFILE” on page 440

“EXCEPTIONLOGOVERWRITE” on page 442

“FAILOVERMODE” on page 445

“FORCEGRIDEXPANSION” on page 447

Aggregate Storage and Block Storage Settings Comparison 377

“GRIDEXPANSION” on page 448

“GRIDEXPANSIONMESSAGES” on page 448

“HAENABLE” on page 449

“HAMAXNUMCONNECTION” on page 449

“HAMAXNUMSQLQUERY” on page 450

“HAMAXQUERYROWS” on page 451

“HAMAXQUERYTIME” on page 452

“HAMEMORYCACHESIZE” on page 453

“HARAGGEDHIERARCHY” on page 454

“HARETRIEVENUMROW” on page 455

“HASOURCEDSNOS390” on page 456

“JVMMODULELOCATION” on page 463

“LOGINFAILUREMESSAGEDETAILED” on page 465

“LOGMESSAGELEVEL” on page 465

“MAXLOGINS” on page 468

“NETBINDRETRYDELAY” on page 473

“NETDELAY” on page 473

“NETRETRYCOUNT” on page 474

“NOMSGLOGGINGONDATAERRORLIMIT” on page 476

“NUMERICPRECISION” on page 477

“NUMBEROFSECFILEBACKUPS” on page 476

“OUTLINECHANGELOG” on page 478

“OUTLINECHANGELOGFILESIZE” on page 479

“PIPEBUFFERSIZE” on page 480

“PORTINC” on page 481

“PORTUSAGELOGINTERVAL” on page 482

“PRELOADUDANAMESPACE” on page 484

“QRYGOVEXECTIME” on page 486

“SECFILEBACKUPINTERVAL” on page 490

“SECURITYFILECOMPACTIONPERCENT” on page 491

“SERVERLEASEEXPIRATIONTIME” on page 492

“SERVERLEASEMAXRETRYCOUNT” on page 492

“SERVERLEASERENEWALTIME” on page 493

378 Essbase.cfg Configuration Settings

“SERVERPORTBEGIN” on page 493

“SERVERPORTEND” on page 494

“SERVERTHREADS” on page 496

“SILENTOTLQUERY” on page 497

“SQLFETCHERRORPOPUP” on page 498

“SSAUDITR” on page 500

“SSLOGUNKNOWN” on page 503

“SSOPTIMIZEDGRIDPROCESSING” on page 503

“SSPROCROWLIMIT” on page 504

“SUPNA” on page 505

“TARGETTIMESERIESOPT” on page 507

“TIMINGMESSAGES” on page 507

“TRANSACTIONLOGDATALOADARCHIVE” on page 508

“TRANSACTIONLOGLOCATION” on page 510

“TRIGMAXMEMSIZE” on page 511

“UNICODEAGENTLOG” on page 512

The following settings apply only to block storage databases.

“AGGRESSIVEBLKOPTIMIZATION” on page 389

“CALCCACHE” on page 396

“CALCCACHEHIGH” on page 397

“CALCCACHEDEFAULT” on page 398

“CALCCACHELOW” on page 399

“CALCLIMITFORMULARECURSION” on page 400

“CALCLOCKBLOCK” on page 401

“CALCMODE” on page 402

“CALCNOTICE” on page 403

“CALCOPTFRMLBOTTOMUP” on page 404

“CALCREUSEDYNCALCBLOCKS” on page 405

“CALCTASKDIMS” on page 407

“CCTRACK” on page 408

“DATACACHESIZE” on page 412

“DATAEXPORTENABLEBATCHINSERT” on page 414

“DATAFILECACHESIZE” on page 415

Aggregate Storage and Block Storage Settings Comparison 379

“DELAYEDRECOVERY” on page 416

“DEXPSQLROWSIZE” on page 418

“DIRECTIO” on page 420

“DISKVOLUMES” on page 422

“DLTHREADSWRITE” on page 427

“DYNCALCCACHEBLKRELEASE” on page 429

“DYNCALCCACHEBLKTIMEOUT” on page 430

“DYNCALCCACHECOMPRBLKBUFSIZE” on page 432

“DYNCALCCACHEMAXSIZE” on page 433

“DYNCALCCACHEONLY” on page 435

“DYNCALCCACHEWAITFORBLK” on page 436

“EXCLUSIVECALC” on page 444

“FORCEALLDENSECALCON2PASSACCOUNTS” on page 446

“EXPORTTHREADS” on page 444

“IBHFIXTHRESHOLD” on page 457

“INCRESTRUC” on page 460

“INDEXCACHESIZE” on page 463

“LOCKTIMEOUT” on page 464

“LROONSHAREDMBR” on page 466

“MULTIPLEBITMAPMEMCHECK” on page 472

“PARCALCMULTIPLEBITMAPMEMOPT” on page 479

“QRYGOVEXECBLK” on page 485

“SSAUDIT” on page 499

“UPDATECALC” on page 513

“VLBREPORT” on page 514

Configuration Settings Reference
Consult the Contents pane for a categorical list of configuration settings.

AGENTDELAY DYNCALCCACHEBLKTIMEOUT NOMSGLOGGINGONDATAERRORLIMIT

AGENTDESC DYNCALCCACHECOMPRBLKBUFSIZE NUMBEROFSECFILEBACKUPS

AGENTDISPLAYMESSAGELEVEL DYNCALCCACHEMAXSIZE NUMERICPRECISION

AGENTLEASEEXPIRATIONTIME DYNCALCCACHEONLY OUTLINECHANGELOG

380 Essbase.cfg Configuration Settings

AGENTDELAY DYNCALCCACHEBLKTIMEOUT NOMSGLOGGINGONDATAERRORLIMIT

AGENTLEASEMAXRETRYCOUNT DYNCALCCACHEWAITFORBLK OUTLINECHANGELOGFILESIZE

AGENTLEASERENEWALTIME ENABLE_DIAG_TRANSPARENT_PARTITION PARCALCMULTIPLEBITMAPMEMOPT

AGENTLOGMESSAGELEVEL ENABLECLEARMODE PERSISTUSERATLOGIN

AGENTPORT ENABLESECUREMODE PIPEBUFFERSIZE

AGENTSECUREPORT ENABLESWITCHTOBACKUPFILE PORTINC

AGENTTHREADS ESSBASEFAILOVERTRACELEVEL PORTUSAGELOGINTERVAL

AGGRESSIVEBLKOPTIMIZATION ESSBASESERVERHOSTNAME PRELOADALIASNAMESPACE

AGTMAXLOGFILESIZE EXCEPTIONLOGOVERWRITE PRELOADMEMBERNAMESPACE

AGTSVRCONNECTIONS EXCLUSIVECALC PRELOADUDANAMESPACE

APPMAXLOGFILESIZE EXPORTTHREADS QRYGOVEXECBLK

APSRESOLVER FAILOVERMODE QRYGOVEXECTIME

ASOLOADBUFFERWAIT FILELOCKINGMODE REPLAYSECURITYOPTION

ASOSAMPLESIZEPERCENT FORCEALLDENSECALCON2PASSACCOUNTS REPLICATIONASSUMEIDENTICALOUTLINE

AUTHENTICATIONMODULE FORCEGRIDEXPANSION RTDEPCALCOPTIMIZE

CALCCACHE GRIDEXPANSION SECFILEBACKUPINTERVAL

CALCCACHEHIGH GRIDEXPANSIONMESSAGES SECURITYFILECOMPACTIONPERCENT

CALCCACHEDEFAULT HAENABLE SERVERLEASEEXPIRATIONTIME

CALCCACHELOW HAMAXNUMCONNECTION SERVERLEASEMAXRETRYCOUNT

CALCLIMITFORMULARECURSION HAMAXNUMSQLQUERY SERVERLEASERENEWALTIME

CALCLOCKBLOCK HAMAXQUERYROWS SERVERPORTBEGIN

CALCMODE HAMAXQUERYTIME SERVERPORTEND

CALCNOTICE HAMEMORYCACHESIZE SERVERTHREADS

CALCOPTFRMLBOTTOMUP HARAGGEDHIERARCHY SILENTOTLQUERY

CALCREUSEDYNCALCBLOCKS HARETRIEVENUMROW SPLITARCHIVEFILE

CALCPARALLEL HASOURCEDSNOS390 SQLFETCHERRORPOPUP

CALCTASKDIMS HISLEVELDRILLTHROUGH SSAUDIT

CCTRACK IBHFIXTHRESHOLD SSAUDITR

CLEARLOGFILE IDMIGRATION SSINVALIDTEXTDETECTION

CLIENTPREFERREDMODE IMPLIED_SHARE SSLCIPHERSUITES

Configuration Settings Reference 381

AGENTDELAY DYNCALCCACHEBLKTIMEOUT NOMSGLOGGINGONDATAERRORLIMIT

CRASHDUMP INCRESTRUC SSLOGUNKNOWN

DATACACHESIZE INDEXCACHESIZE SSOPTIMIZEDGRIDPROCESSING

DATAERRORLIMIT JVMMODULELOCATION SSPROCROWLIMIT

DATAEXPORTENABLEBATCHINSERT LOCKTIMEOUT SUPNA

DATAFILECACHESIZE LOGINFAILUREMESSAGEDETAILED TARGETASOOPT

DEFAULTLOGLOCATION LOGMESSAGELEVEL TARGETTIMESERIESOPT

DELAYEDRECOVERY LROONSHAREDMBR TIMINGMESSAGES

DELIMITEDMSG MAXERRORMBRVERIFYREPORT TRANSACTIONLOGDATALOADARCHIVE

DELIMITER MAXFORMULACACHESIZE TRANSACTIONLOGLOCATION

DEXPSQLROWSIZE MAXLOGINS TRIGMAXMEMSIZE

DIMBUILDERRORLIMIT MAX_REQUEST_GRID_SIZE UNICODEAGENTLOG

DIMBUILDSTATSINTERVAL MAX_RESPONSE_GRID_SIZE UPDATECALC

DIRECTIO MDXFORMULARECURSIONLIMIT VLBREPORT

DISABLEREPLMISSINGDATA MEMSCALINGFACTOR WALLETPATH

DISKVOLUMES MULTIPLEBITMAPMEMCHECK XOLAPENABLEHEURISTICS

DISPLAYMESSAGELEVEL NETBINDRETRYDELAY XOLAPMAXNUMCONNECTION

DLSINGLETHREADPERSTAGE NETDELAY XOLAPSCHEMAVERIFICATION

DLTHREADSPREPARE NETRETRYCOUNT XOLAPSQLIDLEPERIOD

DLTHREADSWRITE NETSSLHANDSHAKETIMEOUT

DYNCALCCACHEBLKRELEASE NETTCPCONNECTRETRYCOUNT

AGENTDELAY
Specifies the number of seconds an Agent thread waits to perform a specific action.

Syntax

AGENTDELAY n

Where n is the number of seconds an Agent thread waits before performing a specific action.
n must be an integer and must be 5 or higher. The default value is 20.

382 Essbase.cfg Configuration Settings

Description

AGENTDELAY specifies the number of seconds an Agent thread waits for a resource to become
available so it can perform a specific action. If the resource is still unavailable when the specified
value for AGENTDELAY is completely used, the agent times out and does not complete the
transaction.

Notes

The higher the value of AGENTTHREADS, the more contention for resources there is, and
therefore the higher the AGENTDELAY value needs to be.

Example

AGENTDELAY 60

See Also

“AGENTTHREADS” on page 388

“AGTSVRCONNECTIONS” on page 391

AGENTDESC
When the Configuration Utility is used to register an Essbase Server Agent as a Windows service,
the text entered in the Service Name Identifier field is stored as AGENTDESC in the Essbase
configuration file (essbase.cfg).

Syntax

AGENTDESC description

Where description is the unique description provided for an Essbase Agent Windows service
when it was registered through the Configuration Utility.

See Also

“AGENTPORT” on page 387

“SERVERPORTBEGIN” on page 493

“SERVERPORTEND” on page 494

“PORTINC” on page 481

AGENTDISPLAYMESSAGELEVEL
Sets the message types that will be displayed in the Essbase Server console. Only the console is
affected. To set the level of messages written to the Essbase Server log, use
AGENTLOGMESSAGELEVEL.

Configuration Settings Reference 383

Syntax

AGENTDISPLAYMESSAGELEVEL INFO | WARNING | ERROR

Where INFO, WARNING, ERROR are levels:

l INFO—When specified, all three types of messages are displayed in the Essbase Server
console. This is the default.

l WARNING—When specified, only Warning and Error messages are displayed in the
Essbase Server console.

l ERROR—When specified, only error messages are displayed in the Essbase Server console.
No Warning or Info messages are displayed.

Description

AGENTDISPLAYMESSAGELEVEL enables the level of messages displayed in the Essbase Server
console to be specified.

Notes

This setting affects only the messages displayed in the Essbase Server console. To control the
messages written to the Essbase Server log, use “AGENTLOGMESSAGELEVEL” on page 386.
To set the same level for both the console and the log, use both settings.

Example

AGENTDISPLAYMESSAGELEVEL WARNING

Sets the message level at Warning. Only Warning and Error messages are displayed in the
Essbase Server console.

See Also

SETMSGLEVEL

“AGENTLOGMESSAGELEVEL” on page 386

AGENTLEASEEXPIRATIONTIME
Sets the maximum amount of time that Essbase Agent can own a lease before the lease is
terminated.

Syntax

AGENTLEASEEXPIRATIONTIME n

Where n is an integer specifying the number of seconds before a lease expires. The default value
is 20.

Example

AGENTLEASEEXPIRATIONTIME 20

384 Essbase.cfg Configuration Settings

See Also

“AGENTLEASEMAXRETRYCOUNT” on page 385

“AGENTLEASERENEWALTIME” on page 385

“SERVERLEASEEXPIRATIONTIME” on page 492

“SERVERLEASEMAXRETRYCOUNT” on page 492

“SERVERLEASERENEWALTIME” on page 493

AGENTLEASEMAXRETRYCOUNT
Specifies the number of times that Essbase Agent attempts to acquire or renew a lease. If the
attempts are unsuccessful, the agent terminates itself.

Syntax

AGENTLEASEMAXRETRYCOUNT n

Where n is an integer. The default value is 5.

Example

AGENTLEASEMAXRETRYCOUNT 5

See Also

“AGENTLEASEEXPIRATIONTIME” on page 384

“AGENTLEASERENEWALTIME” on page 385

“SERVERLEASEEXPIRATIONTIME” on page 492

“SERVERLEASEMAXRETRYCOUNT” on page 492

“SERVERLEASERENEWALTIME” on page 493

AGENTLEASERENEWALTIME
Specifies the time interval, in seconds, after which Essbase Agent attempts to renew a lease. This
value must be less than the value of AGENTLEASEEXPIRATIONTIME.

Syntax

AGENTLEASERENEWALTIME n

Where n is an integer specifying the number of seconds to reestablish ownership after a lease
expires. The default value is 10.

Example

AGENTLEASERENEWALTIME 10

Configuration Settings Reference 385

See Also

“AGENTLEASEEXPIRATIONTIME” on page 384

“AGENTLEASEMAXRETRYCOUNT” on page 385

“SERVERLEASEEXPIRATIONTIME” on page 492

“SERVERLEASEMAXRETRYCOUNT” on page 492

“SERVERLEASERENEWALTIME” on page 493

AGENTLOGMESSAGELEVEL
Sets the message types that will be written to the Essbase Server log, essbase.log.

Syntax

AGENTLOGMESSAGELEVEL INFO | WARNING | ERROR | DEBUG

Where INFO, WARNING, ERROR, and DEBUG are levels:

l INFO—Info, Warning, and Error messages are written to the Essbase Server log. This is the
default setting.

l WARNING—Only Warning and Error messages are written to the Essbase Server log.

l ERROR—Only Error messages are written to the Essbase Server log. No Warning or Info
messages are written to the .

l DEBUG—OPMN ping messages (Received OPMN Ping Request and Sent the
Response to OPMN Ping) are included in the Essbase Server log.

Description

AGENTLOGMESSAGELEVEL enables the level of messages written to the Essbase Server log to
be specified.

Notes

To control the messages displayed in the Agent console, use
“AGENTDISPLAYMESSAGELEVEL” on page 383. To set the same level for both the console
and the log, use both settings.

Example

AGENTLOGMESSAGELEVEL WARNING

Sets the message level at Warning. Only Warning and Error messages are written to the
Essbase Server log.

See Also

SETMSGLEVEL

“AGENTDISPLAYMESSAGELEVEL” on page 383

386 Essbase.cfg Configuration Settings

AGENTPORT
Specifies the port that the Agent uses.

Syntax

AGENTPORT n

Where n is the port number for the Agent. This port number should not be in use by any other
process. The default value is 1423.

Description

AGENTPORT specifies the port that the Agent uses.

You may wish to change the default for many reasons. These are two common reasons:

l The first server port, 1423, is inappropriate for your site.

l You may wish to install a second Agent on a single computer to facilitate testing. Use
AGENTPORT and the related configuration settings to assign the second Agent to a different
port than the first. Use AGENTPORT with SERVERPORTBEGIN, SERVERPORTEND, and
PORTINC.

Caution! Do not use more than one Agent per computer in production systems.

Notes

l The setting is needed only in the server configuration file.

l You must perform other steps to enable multiple agents on one computer. Please see the
Oracle Essbase Database Administrator's Guide for instructions.

Example

AGENTPORT 1478
SERVERPORTBEGIN 32470
SERVERPORTEND 32600
PORTINC 5

This example produces these results:

l AGENTPORT sets the port that the Agent will use at 1478.

l SERVERPORTBEGIN sets the value that the first server process will try to use for a port at
32470.

l SERVERPORTEND sets the highest port number value this installation can use.

l PORTINC controls the increment value used for each port. In this example, if the first server
process used port number 32470, then the next process would use 32475.

See Also

“SERVERPORTBEGIN” on page 493

“SERVERPORTEND” on page 494

Configuration Settings Reference 387

“PORTINC” on page 481

“PORTUSAGELOGINTERVAL” on page 482

AGENTSECUREPORT
Specifies the port that the agent uses for secure communication using Secure Socket Layer (SSL).

Syntax

AGENTSECUREPORT n

Where n is the port number for the agent. This port number should not be in use by any other
process. The default value is 6423.

Description

AGENTSECUREPORT specifies the port that the agent uses for secure communication using
SSL.

Example

AGENTSECUREPORT 16001

See Also

“CLIENTPREFERREDMODE” on page 411

“ENABLECLEARMODE” on page 439

“ENABLESECUREMODE” on page 440

“NETSSLHANDSHAKETIMEOUT” on page 474

“SSLCIPHERSUITES” on page 502

“WALLETPATH” on page 515

For information on implementing SSL, see the Oracle Hyperion Enterprise Performance
Management System Security Administration Guide.

AGENTTHREADS
Specifies how many threads the Agent may spawn.

Syntax

AGENTTHREADS n

Where n is the number of threads that the Agent can spawn:

l Between 2 and 500 on 32-bit platforms

l Between 2 and 1024 on 64-bit platforms

388 Essbase.cfg Configuration Settings

The default value is 5. It is strongly recommended that you use this default value if you are
running Essbase on a 32-bit platform. See Notes below.

Description

AGENTTHREADS specifies how many threads the Agent may spawn. Some of these threads are
used in conjunction with AGTSVRCONNECTIONS to allow initial login via the Agent and to
establish the first connection to application and database, negotiated by the Agent and server.
The rest of the threads are used for other Agent tasks unrelated to AGTSVRCONNECTIONS.
Once connected, these threads are no longer used. Client requests use server threads whose
maximum number is governed by SERVERTHREAD and by the number of licensed ports
purchased.

When a connection is requested, the Agent assigns a thread to the request and releases the thread
when the connection is made.

Notes

l While the actual maximum value you can set is 500 (or 1024 on 64-bit platforms), the
maximum number of threads an operating system can handle might be much lower. It is
strongly recommended that you use the default value.

l If you want to set this parameter to a value higher than the default (5), check with your
system administrator, as higher values can significantly consume system resources.

l If you choose a number less than 2, over the maximum, or a decimal value, Essbase overrides
the value with a closely approximate value of its own.

l One thread is required for each initial connection to an application and database.

Example

AGENTTHREADS 15

See Also

“AGTSVRCONNECTIONS” on page 391

“AGENTDELAY” on page 382

AGGRESSIVEBLKOPTIMIZATION
Improves batch calculation time for block storage outlines.

This setting does not apply to aggregate storage databases.

Syntax

AGGRESSIVEBLKOPTIMIZATION TRUE | FALSE

l TRUE—Essbase uses batch calculation on smaller kernel blocks. Use only if there is no
formula dependency on dense Dynamic Calc members.

Configuration Settings Reference 389

l FALSE—Essbase does not use batch calculation on smaller kernel blocks. The default value
is FALSE.

Description

When there are dense Dynamic Calc members in the outline, a batch calculation with formulas
uses blocks that contain data cells for all dense Dynamic Calc members. Setting
AggressiveBlkOptimization to TRUE makes batch calculation work on kernel blocks (smaller
blocks) directly, which may improve performance. Use this setting only if there is no formula
dependency on dense Dynamic Calc members; otherwise, the calculation may produce incorrect
results.

Example

AGGRESSIVEBLKOPTIMIZATION TRUE

Improves calculation performance for outlines in which there is no formula dependency on
dense Dynamic Calc members.

AGTMAXLOGFILESIZE
Sets the maximum size of the Essbase Server log file.

Syntax

AGTMAXLOGFILESIZE n

Where n is the file size in bytes:

l Minimum file size is 1 MB (1048576 bytes). User-specified values less than the minimum
are not recognized and are reset to 1 MB.

l Maximum file size is 2 GB (2147483647 bytes). User-specified values greater than the
maximum are not recognized and are reset to 2 GB.

l If no value is specified, the default value of 2 GB (2147483647) is used.

Description

This parameter enables the user to specify the maximum size for the Essbase Server log file.

For the location of essbase.log, see the Oracle Essbase Database Administrator's Guide.

The current log file is always essbase.log. When maximum log file size is reached, the file is
renamed essbase.log.n (for example, essbase.log.0, essbase.log.1, and so on), and
a new essbase.log file is created.

Example

AGTMAXLOGFILESIZE 1500000

Sets the maximum Agent log file size to 1500000 bytes.

390 Essbase.cfg Configuration Settings

AGTSVRCONNECTIONS
Specifies the maximum number of the Essbase Server can spawn to allow the first connection
to an application and database, negotiated between the Agent and server.

Syntax

AGTSVRCONNECTIONS n

Where n is the number of threads that Essbase Server can spawn:

l Default value is 5

l Minimum value is 1

l Maximum value is the value set for AGENTTHREADS

Description

AGTSVRCONNECTIONS specifies the maximum number of threads that the Essbase Server
can create to connect to the Agent. Each connection uses one thread only while logging in and
connecting to an application and database. Once connected, client requests are managed by
threads whose maximum is controlled by SERVERTHREADS and by the number of licensed
ports.

You may wish to adjust this value from the default value 5 if, for example, you are expecting a
large number of users to login and select a single application in a short period of time.

The configuration parameter AGENTTHREADS controls the maximum number of threads the
agent can create, so keep the value of AGTSVRCONNECTIONS equal to or less than the value
of AGENTTHREADS to avoid wasting resources.

Notes

l For more information about the Agent, see the Oracle Essbase Database Administrator's
Guide.

l Make sure you have enough open file descriptors configured in the operating system to
accomodate whatever value you set for AGTSVRCONNECTIONS.

l If you set the value of AGTSVRCONNECTIONS to greater than the value set in
AGENTTHREADS, Essbase interprets the value as equal to the value of AGENTTHREADS.

Example

AGTSVRCONNECTIONS 7

Increases the maximum number of simultaneous connections between Agent and server,
from the default of 5 to 7.

See Also

“AGENTTHREADS” on page 388

Configuration Settings Reference 391

APPMAXLOGFILESIZE
Sets the maximum size of application log files (appname.log).

Syntax

APPMAXLOGFILESIZE n

Where n is the file size in bytes:

l Minimum file size is 1 MB (1048576 bytes). User-specified values less than the minimum
are not recognized and are reset to 1 MB.

l Maximum file size is 2 GB (2147483647 bytes). User-specified values greater than the
maximum are not recognized and are reset to 2 GB.

l If no value is specified, the default value of 2 GB 2147483647bytes) is used.

Description

This parameter enables the user to specify the maximum size for application log files.

Application log files are located in MIDDLEWARE_HOME/user_projects/epmsystem1/
diagnostics/logs/essbase/essbase_0/app/appname/appname or in ARBORPATH/
app/appname, depending on the value of the DEFAULTLOGLOCATION configuration
parameter.

The current log file is appname.log. When maximum log file size is reached, the file is renamed
appname.log.n (for example, appname.log.0, appname.log.1, and so on), and a new
appname.log file is created.

Example

APPMAXLOGFILESIZE 1500000

Sets the maximum Agent log file size to 1,500,000 bytes.

APSRESOLVER
Specifies the Oracle Hyperion Provider Services server to use for name resolution, which enables
connections to be made using logical Essbase cluster names.

Syntax

APSRESOLVER APSurl[;APSurl]

Where APSurl is the URL to a Provider Services server, in this format:

http[s]://host:port/contextRoot

Description

This configuration setting enables the use of logical Essbase cluster names instead of the Essbase
URL (for example, http[s]://host:port/aps/Essbase?ClusterName=logicalName&Secure=
yesORno) during the login process.

392 Essbase.cfg Configuration Settings

When logging in to an Essbase Server, if the server name specified is not a URL, the Essbase client
treats the name as a logical name. The Provider Services server specified in APSRESOLVER then
resolves the logical name to a physical host.

Notes

l Multiple URLs can be given, delimited by semicolons

l Use https:// for SSL

l The logical name must be of the form name:secure.

l If Provider Services cannot resolve the logical name, the name is treated as a physical name.

l On successful resolution of the logical name of a standalone Essbase Server, the mapping is
cached for 5 minutes (not configurable). Subsequent attempts to log in on the same API
handle are resolved by the cache. After 5 minutes, the cache entry is discarded and Oracle
Hyperion Provider Services is used to resolve the logical name.

l This setting applies only for server-to-server communication (Essbase and C API). For
client-to-server communication (Java API), use the essbase.properties file. See the
Oracle Hyperion Provider Services Administration Guide and the Oracle Hyperion Enterprise
Performance Management System High Availability and Disaster Recovery Guide.

Examples

http://qtfsvr1:1234/aps

http://qtfsvr1:1234/aps;http://qtfsvr2:1234/aps

https://qtfsvr1:1234/aps

https://qtfsvr1:1234/aps;http://qtfsvr2:1234/aps

ASOLOADBUFFERWAIT
Specifies the maximum amount of time (in seconds) Essbase waits for aggregate storage cache
resources to become available in order to process load buffer operations. If cache resources do
not become available within the specified amount of time, Essbase aborts the load buffer
operation.

This setting applies to the creation of aggregate storage data load buffers with the
wait_for_resources option, and applies to allocations, custom calculations, and lock and send
operations.

This setting applies only to aggregate storage databases.

Syntax

ASOLOADBUFFERWAIT [appname [dbname]] n

l appname—Optional. Specifies the application for which the wait for resources option is to
be set.

Configuration Settings Reference 393

If you specify a value for appname and do not specify a value for dbname, the setting applies
to all databases in the specified application.

To enable the setting for a specific database, you must specify an application and database.

If you do not specify an application, you cannot specify a database, and the setting applies
to all applications and databases on Essbase Server.

l dbname—Optional. Specifies the database, in the application specified by appname, for
which the wait for resources option is to be set.

If you specify a value for dbname but do not specify a value for appname, your specification
is ignored.

l n—Specifies the maximum number of seconds Essbase waits for cache resources to become
available.

The default value is 10 seconds.

For changes to the configuration file to take effect, you must restart Essbase Server.

Example

ASOLOADBUFFERWAIT ASOsamp Sample 20

Sets 20 seconds as the maximum wait time for cache resources to become available on the
ASOSamp.Sample database.

See Also

Alter Database (Aggregate Storage) MaxL statement

ASOSAMPLESIZEPERCENT
Specifies the number of cells sampled from the input-level data. The sampled data is used to
estimate the size of aggregate views. Larger sample sizes enable Essbase to make increasingly
accurate estimates of average view sizes. View selection using a larger sample size enables Essbase
to more closely meet the stop size.

Sample sizes are specified as a percentage of input-level data.

Syntax

ASOSAMPLESIZEPERCENT [appname [dbname]] n

l appname—Optional. Application for which sampled data is to be set.

If you specify a value for appname and do not specify a value for dbname, the setting applies
to all databases in the specified application.

To enable the setting for a specific database, you must specify an application and database.

If you do not specify an application, you cannot specify a database, and the setting applies
to all applications and databases on Essbase Server.

394 Essbase.cfg Configuration Settings

l dbname—Optional. Specifies the database, in the application specified by appname, for
which sampled data is to be set.

If you specify a value for dbname but do not specify a value for appname, your specification
is ignored.

l n—A value ranging from 0.0 to 100.0, representing a percentage of input-level cells that are
to be used for the aggregate storage cell sample.

To calculate the number of sample cells, multiply the number of input-level cells by the
percentage specified in n. The default, and minimum, sample size is 1 million (1,000,000)
cells.

Note: For databases that have 1 million or more cells, if the percentage specified results in
a sample size of fewer than 1 million cells, the setting is ignored and Essbase uses 1
million cells. For databases that have fewer than 1 million cells, the sample size is the
same size as the database.

Performance Impact

Estimates using larger sample sizes take longer to complete, which has a potentially significant
performance impact on view selection. A recommendation for a database of greater than 100
million input-level cells is to start with a small setting such as 1 (for 1%). Slowly increase this
setting until the preferred trade-off between view selection performance and accuracy is reached.

To gauge the accuracy of view size estimates for aggregate views that have been built, use the
following MaxL command:

query database appname.dbname list existing_views

Compare the values in the columns named size_ratio_estimate and size_ratio_actual. The
accuracy of each view size estimate differs for each aggregate view.

Example

ASOSAMPLESIZEPERCENT ASOsamp.Sample 1

AUTHENTICATIONMODULE
Enables Essbase to use the Oracle's Hyperion® Shared Services security platform for external
authentication.

When you run Oracle's Hyperion Enterprise Performance Management System Configurator,
Essbase is automatically registered with Shared Services (unless you select the option to deploy
Essbase in standalone mode) and this setting is automatically added to essbase.cfg.

Syntax

AUTHENTICATIONMODULE CSS

Notes

l You must restart Essbase Server to initialize the changes.

Configuration Settings Reference 395

l Shared Services must be running before you restart Essbase Server, so that Essbase can find
the URL to Shared Services.

CALCCACHE
Specifies whether Essbase uses a calculator cache when calculating the database.

This setting does not apply to aggregate storage databases.

Syntax

CALCCACHE TRUE | FALSE

l TRUE—Essbase uses a calculator cache when calculating the database. The default is TRUE.

l FALSE—Essbase does not use a calculator cache when calculating the database.

Description

Essbase uses the calculator cache to create and track data blocks during calculation. Using the
calculator cache significantly improves your calculation performance. The size of the
performance improvement depends on your database configuration.

If required during a calculation, you can override this default setting using the SET CACHE
command in a calculation script.

You can specify the size of the calculator cache using the SETCACHE command in a calculation
script and the CALCCACHE {HIGH | DEFAULT | LOW} settings in the essbase.cfg file.

When the CALCCACHE setting is set to TRUE, Essbase uses the calculator cache providing that:

l Your database has at least two sparse dimensions.

l You calculate at least one full sparse dimension (unless you specify the CALCCACHE ALL
option in a calculation script).

Notes

For detailed information on setting the size of your calculator cache, see the Oracle Essbase
Database Administrator's Guide.

Example

CALCCACHE TRUE
CALCCACHE FALSE

Note: In essbase.cfg, the parameter is not followed by a semicolon; in a calculation script,
the parameter must be followed by a semicolon.

See Also

SET CACHE (calculation script)

396 Essbase.cfg Configuration Settings

CALCCACHEHIGH
Sets the high value for the calculation script SET CACHE command.

This setting does not apply to aggregate storage databases.

Syntax

CALCCACHEHIGH n

CALCCACHEHIGH is the level and n is the maximum calculator cache size, in bytes, that a user
can choose to use during calculation. The maximum calculator cache size that you can specify
is 200,000,000 bytes.

Description

Essbase uses the calculator cache to create and track data blocks during calculation. Using the
calculator cache significantly improves your calculation performance. The size of the
performance improvement depends on your database configuration.

For detailed information on setting the size of your calculator cache, see the Oracle Essbase
Database Administrator's Guide.

You can specify whether Essbase uses a calculator cache by default using the CALCCACHE
TRUE | FALSE command in the essbase.cfg file. If required during a calculation, override
this default setting using the SET CACHE command in a calculation script.

Notes

l In essbase.cfg, a setting parameter is not followed by a semicolon; in a calculation script,
a parameter must be followed by a semicolon.

l For detailed information on setting the size of your calculator cache, see the Oracle Essbase
Database Administrator's Guide.

Example

Assume the essbase.cfg file contains these settings:

CALCCACHEHIGH 1000000
CALCCACHEDEFAULT 300000
CALCCACHELOW 200000

You could use the following SET CACHE calculator commands in a calculation script:

SET CACHE HIGH;

Sets a calculator cache of 1,000,000 bytes for the duration of the calculation script.

SET CACHE DEFAULT;

Sets a calculator cache of 300,000 bytes for the duration of the calculation script.

SET CACHE LOW;

Sets a calculator cache of 200,000 bytes for the duration of the calculation script.

Configuration Settings Reference 397

See Also

“CALCCACHEDEFAULT” on page 398

“CALCCACHELOW” on page 399

SET CACHE (calculation script command)

CALCCACHEDEFAULT
Sets default value for the calculation script SET CACHE command.

This setting does not apply to aggregate storage databases.

Syntax

CALCCACHEDEFAULT n

CALCCACHEDEFAULT is the level and n is the size for the level, default in this example, the
default calculator cache size, in bytes.

If you do not set the value of DEFAULT, Essbase uses a default value of 200,000 bytes.

Description

Essbase uses the calculator cache to create and track data blocks during calculation. Using the
calculator cache significantly improves your calculation performance. The size of the
performance improvement depends on your database configuration.

For detailed information on setting the size of your calculator cache, see the Oracle Essbase
Database Administrator's Guide.

You can specify whether Essbase uses a calculator cache by default using the CALCCACHE
setting in the essbase.cfg file. If required during a calculation, override this default setting
using the SET CACHE command in a calculation script.

Notes

l In essbase.cfg, a parameter is not followed by a semicolon; in a calculation script, a
parameter must be followed by a semicolon.

l For detailed information on setting the size of your calculator cache, see the Oracle Essbase
Database Administrator's Guide.

Example

Assume the essbase.cfg file contains these settings:

CALCCACHEHIGH 1000000
CALCCACHEDEFAULT 300000
CALCCACHELOW 200000

You could then use the following SET CACHE commands in a calculation script:

SET CACHE HIGH;

398 Essbase.cfg Configuration Settings

Sets a calculator cache of 1,000,000 bytes for the duration of the calculation script.

SET CACHE DEFAULT;

Sets a calculator cache of 300,000 bytes for the duration of the calculation script.

SET CACHE LOW;

Sets a calculator cache of 200,000 bytes for the duration of the calculation script.

See Also

“CALCCACHEHIGH” on page 397

“CALCCACHELOW” on page 399

SET CACHE (calculation script command)

CALCCACHELOW
Sets the HIGH, DEFAULT, and LOW values for the calculation script SET CACHE command.

This setting does not apply to aggregate storage databases.

Syntax

CALCCACHELOW n

CALCCACHELOW is the level and n is the minimum calculator cache size, in bytes, that a user
can choose to use during calculation.

Description

Essbase uses the calculator cache to create and track data blocks during calculation. Using the
calculator cache significantly improves your calculation performance. The size of the
performance improvement depends on your database configuration.

For detailed information on setting the size of your calculator cache, see the Oracle Essbase
Database Administrator's Guide.

You can specify whether Essbase uses a calculator cache by default using the CALCCACHE
setting in the essbase.cfg file. If required during a calculation, override this default setting
using the SET CACHE command in a calculation script.

Notes

l In essbase.cfg, a parameter is not followed by a semicolon; in a calculation script, a
parameter must be followed by a semicolon.

l For detailed information on setting the size of your calculator cache, see the Oracle Essbase
Database Administrator's Guide.

Example

Assume the essbase.cfg file contains these settings:

Configuration Settings Reference 399

CALCCACHEHIGH 1000000
CALCCACHEDEFAULT 300000
CALCCACHELOW 200000

You could then use the following SET CACHE commands in a calculation script:

SET CACHE HIGH;

Sets a calculator cache of 1,000,000 bytes for the duration of the calculation script.

SET CACHE DEFAULT;

Sets a calculator cache of 300,000 bytes for the duration of the calculation script.

SET CACHE LOW;

Sets a calculator cache of 200,000 bytes for the duration of the calculation script.

See Also

“CALCCACHEHIGH” on page 397

“CALCCACHEDEFAULT” on page 398

SET CACHE (calculation script command)

CALCLIMITFORMULARECURSION
When set to true, prevents the server from going beyond 31 formula execution levels.

Syntax

CALCLIMITFORMULARECURSION TRUE | FALSE

l TRUE—Imposes a limit of 31 on the number of formula execution levels.

l FALSE—Imposes no limit on the number of formula execution levels. The default setting
is FALSE.

Description

CALCLIMITFORMULARECURSION limits the number of execution levels of Essbase
formulas. If a calculation involves formulas referencing one or more members from sparse
dimensions and there are formulas along dense dimension members, the formula execution may
be recursive (have multiple execution levels). By default, Essbase does not limit the number of
formula execution levels. However, formulas with excessive execution levels may crash the
server. Setting CALCLIMITFORMULARECURSION to TRUE prevents excessive execution
levels from crashing the Essbase Server.

If a formula reaches 31 execution levels and CALCLIMITFORMULARECURSION is set to
TRUE, Essbase stops processing that formula and writes error messages in the application log.
If a formula reaches 31 execution levels and CALCLIMITFORMULARECURSION is set to
FALSE, Essbase continues processing that formula and writes an information message in the
application log.

400 Essbase.cfg Configuration Settings

Note

l This setting does not affect formulas in MDX queries (for example, calculated members).

Example

If you added a member named "Payroll Share In Similar Markets" to Sample Basic and used the
following formula to calculate it, you would get a recursion error.

IF (@ISUDA(Market, "Major Market"))
 Payroll / @SUMRANGE(Payroll, @UDA(Market, "Major Market"));
ELSEIF (@ISUDA(Market, "Small Market"))
 Payroll / @SUMRANGE(Payroll, @UDA(Market, "Small Market"));
ENDIF;

CALCLOCKBLOCK
Sets the HIGH, DEFAULT, and LOW values for the calculation script SET LOCKBLOCK
command, which specifies the maximum number of blocks that Essbase can fix (get
addressability to) when calculating one block.

This setting does not apply to aggregate storage databases.

Syntax

CALCLOCKBLOCKHIGH | CALCLOCKBLOCKDEFAULT | CALCLOCKBLOCKLOW n

Where HIGH, DEFAULT, and LOW are levels:

l HIGH—Maximum number of blocks that a user can choose to fix concurrently when one
data block is calculated. Maximum: half the number of blocks that fit into the data cache.

l DEFAULT—Default number of blocks that can be fixed concurrently.

l LOW—Minimum number of blocks that a user can choose to fix concurrently.

l n—Integer value for each level, representing the total number of blocks that can be locked
concurrently.

Description

CALCLOCKBLOCK specifies the number of blocks that can be fixed at each level of the
SET LOCKBLOCK HIGH | DEFAULT | LOW calculation script command.

When a block is calculated, Essbase fixes (gets addressability to) the block along with the blocks
containing its children. Essbase calculates the block and then releases it along with the blocks
containing its children. By default, Essbase allows up to 100 blocks to be fixed concurrently when
calculating a block. This is sufficient for most database calculations. However, you may want to
set a number higher than 100 if you are consolidating very large numbers of children in a formula
calculation. This ensures that Essbase can fix all the required blocks when calculating a data
block and that performance will not be impaired.

Configuration Settings Reference 401

Notes

l For more information on data blocks, see the Oracle Essbase Database Administrator's
Guide.

l The maximum you can specify for CALCLOCKBLOCK is half the number of blocks that fit
into the data cache. If you specify a number great than this, Essbase defaults to a number
equal to half the number of blocks that fit into the data cache.

l You can calculate the number of blocks that fit into the data cache by dividing the data cache
size (in bytes) by the block size (in bytes). Values for the data cache size and the block size
are available in Administration Services.

Example

If the essbase.cfg file contains the following settings:

CALCLOCKBLOCKHIGH 500
CALCLOCKBLOCKDEFAULT 200
CALCLOCKBLOCKLOW 50

Then you can use the following SET LOCKBLOCK setting commands in a calculation script:

SET LOCKBLOCK HIGH;

Essbase can fix up to 500 data blocks when calculating one block.

SET LOCKBLOCK DEFAULT;

Essbase can fix up to 200 data blocks when calculating one block.

SET LOCKBLOCK LOW;

Essbase can fix up to 50 data blocks when calculating one block.

Note: In essbase.cfg, a parameter is not followed by a semicolon; in a calculation script, a
parameter must be followed by a semicolon.

See Also

SET LOCKBLOCK (calculation script command)

CALCMODE
Enables global setting of formula execution mode.

This setting does not apply to aggregate storage databases.

Syntax

CALCMODE [application_name [database_name]] [BLOCK | BOTTOMUP]

l application_name—Optional. If you specify an application, all the databases in that
application are affected by the CALCMODE setting. If you leave out the application and
database name parameters, the CALCMODE setting applies to the entire server.

402 Essbase.cfg Configuration Settings

l database_name—Optional. If you specify an application and database, the database you
specify is affected by the CALCMODE setting. If you do not specify an application with the
database, the CALCMODE setting will fail.

l BLOCK—Turns on block calculation mode.

l BOTTOMUP—Turns on bottom-up calculation mode.

Description

CALCMODE allows you to set the calculation mode at the server, application, or database level
instead if indicating it in a calculation script using @CALCMODE. For more information, see
the calculator command entry for @CALCMODE in the Oracle Essbase Technical Reference

Example

CALCMODE BLOCK

Turns on block calculation mode for all databases and applications in the server.

See Also

@CALCMODE function

CALCNOTICE
Sets the HIGH, DEFAULT, and LOW values for the SET NOTICE calculation command, which
displays completion notices about the progress of the calculation.

This setting does not apply to aggregate storage databases.

Syntax

CALCNOTICEHIGH | CALCNOTICEDEFAULT | CALCNOTICELOW n

where HIGH, DEFAULT, and LOW are levels.

l HIGH—Maximum number of completion notices that a user can choose to display.

l DEFAULT—Default number of completion notices.

l LOW—Minimum number of completion notices that a user can choose to display.

l n—Integer value for each level. It represents the number of notices to be displayed at set
intervals during the calculation.

Description

CALCNOTICE defines the values for each of the three levels of the SET NOTICE calculation
command.

SET NOTICE HIGH | DEFAULT | LOW provides completion notices during a calculation. The
frequency and number of completion notices depends on the level specified.

Configuration Settings Reference 403

The interval between notices is approximate. Essbase measures the interval by taking the number
of data blocks already calculated as a percentage of the total number of possible data blocks in
your database.

For partial calculations and calculations with multiple passes through your database, the interval
between completion notices is approximate.

Notes

l The intervals between completion notices are approximate.

l Completion notices do not significantly reduce the calculation performance, except when
used with a very small database.

Example

If you use the following settings in the essbase.cfg file:

CALCNOTICEHIGH 50
CALCNOTICEDEFAULT 20
CALCNOTICELOW 5

Then SET NOTICE commands in a script produce the following results:

SET NOTICE HIGH;

Displays 50 completion notices at 2% intervals.

SET NOTICE DEFAULT;

Displays 20 completion notices at 5% intervals.

SET NOTICE LOW;

Displays 5 completion notices at 20% intervals.

Note: In essbase.cfg, a parameter is not followed by a semicolon; in a script, a parameter
must be followed by a semicolon.

See Also

SET NOTICE (calculation command)

CALCOPTFRMLBOTTOMUP
Specifies whether Essbase optimizes the calculation of complex formulas on sparse dimensions
in large database outlines. If enabled, Essbase performs a bottom-up calculation on formulas
that would otherwise require a top-down calculation.

This setting does not apply to aggregate storage databases.

Syntax

CALCOPTFRMLBOTTOMUP TRUE | FALSE

404 Essbase.cfg Configuration Settings

l TRUE—Optimizes the calculation of formulas on sparse dimensions in large database
outlines by forcing a bottom-up calculation.

l FALSE—Does not force a bottom-up calculation for formulas on sparse dimensions in large
database outlines. The default is FALSE.

Description

This setting tells Essbase whether to optimize the calculation of formulas on sparse dimensions
in large database outlines, so that you can efficiently use CALC ALL and CALC DIM commands
to calculate the database.

You can override the CALCOPTFRMLBOTTOMUP essbase.cfg setting by using the SET
FRMLBOTTOMUP command in a calculation script.

Notes

l For information on complex formulas and top-down calculations, see the Oracle Essbase
Database Administrator's Guide.

l Forcing a bottom-up calculation on a formula may produce results that are inconsistent
with a top-down calculation if:

m The formula contains complex functions (for example, range functions)

m The formula's dependencies are not straightforward

l Before using the CALCOPTFRMLBOTTOMUP setting in a production environment, be
sure to check the validity of calculation results produced when the setting is enabled (set to
TRUE).

l The SET CREATENONMISSINGBLK calculation command can force top-down
calculations, regardless of the value of the CALCOPTFRMLBOTTOMUP setting.

Example

CALCOPTFRMLBOTTOMUP TRUE

See Also

SET FRMLBOTTOMUP (calculation command)

SET CREATENONMISSINGBLK (calculation command)

CALCREUSEDYNCALCBLOCKS
Controls whether dynamically calculated values are re-used during retrievals.

This setting does not apply to aggregate storage databases.

Syntax

CALCREUSEDYNCALCBLOCKS TRUE | FALSE

l TRUE—Default value. Dynamically calculated values are re-used.

Configuration Settings Reference 405

l FALSE—Dynamically calculated values are not re-used.

Description

By default, Essbase re-uses dynamically calculated values during retrievals. This can speed up
retrievals that involve a large number of dynamically calculated blocks that are each required to
compute several other blocks, such as when there is a large hierarchy of sparse Dynamic Calc
members. However, a large dynamic calculator cache size or a large value for the
CALCLOCKBLOCK may adversely affect the retrieval performance when this method is used.
In such cases, CalcReuseDynCalcBlocks should be set to FALSE.

Example

CALCREUSEDYNCALCBLOCKS TRUE
CALCREUSEDYNCALCBLOCKS FALSE

CALCPARALLEL
Enables parallel calculation, defining the number of processing threads.

Syntax

CALCPARALLEL [appname [dbname]] n

l appname—Optional. Specifies that parallel calculation applies to all databases on the named
application. If you specify a value for appname and do not specify a value for dbname, the
setting applies to all databases in the specified application. If you do not specify an
application, you cannot specify a database and the setting applies to all applications and
databases on the Essbase Server.

l dbname—Optional. Specifies that parallel calculation applies only to the database named.
If you specify a value for dbname but do not include appname, the parameter is ignored and
parallel calculation is enabled for all applications and databases on the Essbase Server.

l n—A required parameter that specifies the number of threads to be made available for
parallel calculation.

m For block storage on 32-bit platforms, an integer from 1-4. For block storage on 64-bit
platforms, an integer between 1-8. The default value, 1, specifies serial calculation: no
parallel calculation takes place.

m For aggregate storage, an integer from 1-8, with 2 the default value.

A value less than 1 is interpreted as the default size. A value greater than the maximum size
is interpreted as the maximum size.

You must restart Essbase Server to initialize any change to the configuration file.

Description

This setting enables parallel calculation. For block storage databases, Essbase analyzes each pass
of a calculation to determine whether parallel calculation would optimize the calculation. If it

406 Essbase.cfg Configuration Settings

would not, Essbase uses serial calculation even if CALCPARALLEL is set to a number greater
than 1.

Notes

l For detailed information about how Essbase performs parallel calculation with block storage
databases, see the Oracle Essbase Database Administrator's Guide.

l With block storage databases, if your outline generates many empty tasks, thus reducing
opportunities for parallel calculation, consider setting the CALCTASKDIMS configuration
setting to increase the number of tasks and to decrease the size of each task identified for
parallel calculation. See the Oracle Essbase Database Administrator's Guide for more
information about what kind of outlines or calculation scripts generate many empty tasks.

l If you increase the number of threads for aggregate storage databases, since the aggregate
storage cache is split up amongst the threads, consider increasing the size of aggregate storage
memory cache. For details, see the Oracle Essbase Database Administrator's Guide for
information about aggregate storage cache.

Example

CALCPARALLEL 3

Enables up to three threads to perform calculation tasks at the same time.

See Also

“CALCTASKDIMS” on page 407

SET CALCPARALLEL calculation command

SET CALCTASKDIMS calculation command

CALCTASKDIMS
Specifies the number of sparse dimensions included in the identification of tasks for parallel
calculation.

This setting does not apply to aggregate storage databases.

Syntax

CALCTASKDIMS [appname [dbname]] n

l appname—Optional. CALCTASKDIMS applies to all databases on the named application.
If you specify a value for appname and do not specify a value for dbname, the setting applies
to all databases in the specified application. If you do not specify an application, you cannot
specify a database, and the setting applies to all applications and databases on the Essbase
Server.

l dbname—Optional. Database name to which CALCTASKDIMS applies. If you specify a
value for dbname but do not include appname, the parameter is ignored and the setting
applies to all applications and databases on the Essbase Server.

Configuration Settings Reference 407

l n—Required. An integer specifying the number of sparse dimensions to be included when
Essbase identifies tasks that can be performed at the same time.

The default value, 1, indicates that only the last sparse dimension in the outline is used to
identify tasks. A value of 2, for example, indicates that the last and second-to-last sparse
dimensions in the outline are used. Because each unique combination of members from
selected sparse dimensions is a potential task, the potential number of parallel tasks is the
product of the number of members of the selected dimensions. The maximum value is the
number of sparse dimensions in the outline.

Any value less than 1 is interpreted as 1, any value greater than the number of sparse
dimensions in the outline is converted to the largest valid value.

Note: Values less than 0 treated differently than SET CALCTASKDIMS configuration setting.

You must restart Essbase Server to initialize any change to the configuration file.

Description

CALCTASKDIMS specifies how many of the sparse dimensions in an outline are used to identify
potential tasks that can be run in parallel.

Notes

l A number of features are affected by parallel calculation. See the Oracle Essbase Database
Administrator's Guide for a list of these effects and for detailed information about how
Essbase performs parallel calculation.

l Use this configuration setting only if your outline generates many empty tasks, thus reducing
opportunities for parallel calculation. See the Oracle Essbase Database Administrator's
Guide for more information about what kind of outlines or calculation scripts generate many
empty tasks.

Example

CALCTASKDIMS Sample Basic 2

Specifies that for application Sample and database Basic, the last two sparse dimensions in
an outline will be used to identify potential tasks to perform at the same time during a
calculation pass.

See Also

“CALCPARALLEL” on page 406

SET CALCPARALLEL calculation command

SET CALCTASKDIMS calculation command

CCTRACK
Controls whether exchange rates are tracked as Essbase calculates currency conversions.

408 Essbase.cfg Configuration Settings

This setting does not apply to aggregate storage databases.

Syntax

CCTRACK TRUE | FALSE

l TRUE—Exchange rates are tracked while conversions are calculated. The default value is
TRUE.

l FALSE—Turns off the tracking system.

Description

CCTRACK controls whether exchange rates are tracked while Essbase calculates currency
conversions. Tracking exchange rates has the following advantages:

l Allows conversion to occur at report time through the Spreadsheet Add-in or the Report
Writer

l Allows you to convert a converted currency back to its original, local rate using the CCONV
command

l Prevents data inacurracies due to accidental reconversion of data during a calculation.

After loading data, you can clear the tracked exchange rates for the new data using the
CLEARCCTRACK command. During a calculation, you can enable or disable CCTRACK using
the SET CCTRACKCALC calculation command.

Notes

l When CCTRACK is turned on the following restrictions apply:

m If you are using currency partitions, you cannot use a CCONV command with a FIX
statement to convert a subset of a currency partition (a calculation script attempting
such a FIX will not validate).

m If you are not using currency partitions, you must use CCONV with a FIX statement.

l Setting CCTRACK to FALSE turns off the tracking system with the following results:

l The CCONV assumes that the data is unconverted (in local currency). If you accidentally
run the CCONV command multiple times on the same data, the resulting data will be
inaccurate.

l Similarly, the currency report options assume that the data is unconverted (in local
currency). If the data has already been converted in the database, it is reconverted at report
time, resulting in inaccurate data.

l The restrictions on using the FIX…ENDFIX and DATACOPY commands in currency
conversions do not apply. For example, if you are using currency partitions, you can now
use the FIX command with the CCONV command to calculate a subset of a currency
partition. If you are not using currency partitions, you can use CCONV without a FIX
statement.

Configuration Settings Reference 409

Example

CCTRACK TRUE

See Also

CCONV (calculation command)

SET UPTOLOCAL

SET CCTRACKCALC (calculation command)

CLEARCCTRACK (calculation command)

CLEARLOGFILE
Determines whether the Essbase Server and application logs are overwritten.

Syntax

CLEARLOGFILE TRUE | FALSE

l TRUE—Overwrites the Essbase Server and application logs.

l FALSE—Appends to the existing logs. The default setting is FALSE.

Description

CLEARLOGFILE determines whether the Essbase Server log (essbase.log) is overwritten
whenever Essbase Server is restarted and whether the application log
(application_name.log) is overwritten whenever the application is restarted.

Notes

This setting affects both the application and Essbase Server logs. Essbase logs the error to the
appropriate files automatically.

Examples

Example 1

If Essbase logs an application message and this setting is in effect:

CLEARLOGFILE TRUE

Essbase logs the message in the application_name.log file in the application directory:
ARBORPATH\app\application_name, where application_name is the name of the current
application. The contents of this log are replaced with new entries each time the application is
started.

Example 2

If Essbase logs a server message and this setting is in effect:

CLEARLOGFILE FALSE

410 Essbase.cfg Configuration Settings

Essbase logs the message in the essbase.log file in the directory pointed to by ARBORPATH,
appending the existing file.

See Also

“SSLOGUNKNOWN” on page 503

CLIENTPREFERREDMODE
Enables SSL connectivity to Essbase.

Syntax

CLIENTPREFERREDMODE SECURE | CLEAR

l SECURE—Essbase communicates with clients using only SSL.

l CLEAR—Client sessions are based on the transport specified in the login API. If the secure
transport is specified, then the session uses SSL; otherwise, the session uses clear. The default
value is CLEAR.

Description

This setting determines whether Essbase allows only SSL connectivity. It applies only to clients.

Example

CLIENTPREFERREDMODE SECURE

See Also

“AGENTSECUREPORT” on page 388

“ENABLECLEARMODE” on page 439

“ENABLESECUREMODE” on page 440

“NETSSLHANDSHAKETIMEOUT” on page 474

“SSLCIPHERSUITES” on page 502

“WALLETPATH” on page 515

For information on implementing SSL, see the Oracle Hyperion Enterprise Performance
Management System Security Administration Guide.

CRASHDUMP
Sets whether Essbase saves a core dump to a file when an abnormal termination of an agent or
server process occurs. UNIX only.

Syntax

CRASHDUMP TRUE | FALSE

Configuration Settings Reference 411

l TRUE—Creates a directory containing a core file for each abnormal termination.

l FALSE—No core file is created. This is the default value.

Description

CRASHDUMP helps diagnose abnormal program terminations. For each agent crash, when
CRASHDUMP is set to TRUE, Essbase creates a file named core. It places the core file in an
ESSBASE.abc directory under ESSBASEPATH, where abc displays the date and time. For
example:

ESSBASE.Mon_Jun_3_18_16_17_2003/core

In each instance of a server crash, when CRASHDUMP is set to TRUE, Essbase creates the core
file in a directory under ARBORPATH/app/appName, where appName is the name of the
application. The name of the new directory is ESSSVR.abc, where abc displays the date and time.
For example:

/EssbaseServer/app/Sample/ESSSVR.Mon_Jun_3_18_16_17_2003/core

If the an agent or server process is automatically shut down, the core file contains a core dump
of that moment. If an agent or server process is shut down manually, the core file may be empty.

Look for the core file any time you experience abnormal Essbase program terminations. If the
file is not empty, provide it to Support and then remove it and its directory from the computer.
If the core file is empty, remove it and its directory from the computer.

In normal operations without abnormal terminations, core files are not created.

Example

CRASHDUMP TRUE

DATACACHESIZE
Defines the initial value for the data cache size for any new databases that are created after Essbase
is restarted. The data cache is a buffer in memory that holds data blocks. Essbase allocates this
memory during data load, calculation, and retrieval operations, as needed.

This setting does not apply to aggregate storage databases.

Syntax

DATACACHESIZE n

Where n is an integer expressed in bytes (B), kilobytes (K), megabytes (M), or gigabytes (G):

l Minimum value: 3 megabytes (3 M)

l Maximum value: 2 gigabytes (2 G)

l Default value: 3 megabytes (3 M)

If a value is given without a B, K, M, or G qualifier, it is assumed the value is in bytes.

412 Essbase.cfg Configuration Settings

The qualifier can be in upper or lowercase and can be entered adjacent to the value (10M) or
separated by a space (10 M).

Description

DATACACHESIZE specifies, in bytes, kilobytes, megabytes, or gigabytes, the size of the data
cache for new databases on the server. The specified value takes effect for all new databases that
are created after the server is started. To set or change the data cache size for an individual
database, use Administration Services or MaxL. For more information, see the online help or
HTML documentation for those components.

Example

DATACACHESIZE 90M

Sets the data cache size of all newly created or migrated databases as 90 megabytes.

See Also

“DATAFILECACHESIZE” on page 415

“MEMSCALINGFACTOR” on page 471

DATAERRORLIMIT
Determines the number of records that can be written to an error log during a data load
operation.

Syntax

DATAERRORLIMIT n

Where n is the number of records, per data load or dimension build, that can be written to the
error log, dataload.err. Default: 1000. Maximum: 65,000.

Description

DATAERRORLIMIT determines the number of records that can be written to the error log
during data load or dimension build operations.

After the specified number of errors have been recorded, Essbase fails the operation and issues
an error message.

Notes

l Essbase logs data load errors in EAS_HOME\client\dataload.err.

l Essbase logs dimension build errors in EAS_HOME\client\dimbuild.err.

l Messages are still written to the application log unless you set
NOMSGLOGGINGONDATAERRORLIMIT.

Configuration Settings Reference 413

Example

DATAERRORLIMIT 1000

See Also

“NOMSGLOGGINGONDATAERRORLIMIT” on page 476

DATAEXPORTENABLEBATCHINSERT
Specifies whether to use the batch-insert method, instead of the default row-insert method, when
the DATAEXPORT calculation command is used to export Essbase data for direct insertion into
a relational database.

The DATAEXPORTENABLEBATCHINSERT and DEXPSQLROWSIZE configuration settings
apply to block storage databases only.

DATAEXPORTENABLEBATCHINSERT TRUE | FALSE

l TRUE—Enables batch insert of exported data into a relational database

l FALSE—(Default) Inserts exported data row-by-row into a relational database

Description

When DATAEXPORTENABLEBATCHINSERT is set to TRUE, Essbase determines whether the
relational database and the ODBC driver permit batch insert. If they do, Essbase uses the batch-
insert method, and, thus, performance is optimized.

Essbase determines the batch size; however, you can control the number of rows (from 2 to
1000) that are inserted at one time by using the DEXPSQLROWSIZE configuration setting.

If Essbase cannot determine whether the relational database and the ODBC driver support batch
insert, it uses the row-insert method, and DEXPSQLROWSIZE (if set) is ignored.

When DATAEXPORTENABLEBATCHINSERT is set to FALSE, an INSERT command is called
for each row of exported data, and, thus, performance is slowed.

Notes

l If DATAEXPORTENABLEBATCHINSERT is set to TRUE and DEXPSQLROWSIZE is set
to 1, batch insert is disabled (as a DEXPSQLROWSIZE setting of 1 inserts one row at a time).

l When using DATAEXPORT to export data for direct insertion into a relational database:

m The table to which the data is to be written must exist prior to the data export

m Table and column names cannot contain spaces

See Also

DATAEXPORT calculation command

“DEXPSQLROWSIZE” on page 418 configuration setting

414 Essbase.cfg Configuration Settings

DATAFILECACHESIZE
Defines the initial value for the data file cache size for all new databases that are created or
migrated. The data file cache is a buffer in memory that holds data files. Essbase allocates this
memory during data load, calculation, and retrieval operations, as needed.

This setting does not apply to aggregate storage databases.

Syntax

DATAFILECACHESIZE n

Where n is an integer expressed in bytes (B), kilobytes (K), megabytes (M), or gigabytes (G)

l Minimum value: 8 megabytes (8 M)

l Maximum value: 2 gigabytes (2 G)

l Default value: 32 megabytes (32 M)

If a value is given without a B, K, M, or G qualifier, it is assumed the value is in bytes.

The qualifier can be in upper or lowercase and can be entered adjacent to the value (10M) or
separated by a space (10 M).

Description

DATAFILECACHESIZE specifies, in bytes, kilobytes, megabytes, or gigabytes, the size of the
data file cache for new databases on the server. The specified value takes effect for all new
databases that are created after the server is started. To set or change the data file cache size for
an individual database, use Administration Services or MaxL. For more information, see the
online help or HTML documentation for those components.

Notes

If this setting is added to the essbase.cfg file while Essbase is running, the effect begins after
a restart.

Example

DATAFILECACHESIZE 800M

Defines the data file cache size of all subsequently created databases as 800 megabytes.

See Also

“DATACACHESIZE” on page 412

“MEMSCALINGFACTOR” on page 471

DEFAULTLOGLOCATION
Sets the location of application log files

Configuration Settings Reference 415

Syntax

DEFAULTLOGLOCATION TRUE | FALSE

l TRUE—(the default value). The logs are written to one of three locations, based upon the
following:

m If the HYPERION_LOGHOME environment variable is set, then the log files are written to
the HYPERION_LOGHOME directory.

m If the HYPERION_LOGHOME environment variable is not set, then the log files are written
to EPM_ORACLE_INSTANCE/diagnostics/logs/essbase

m If the EPM_ORACLE_INSTANCE environment variable is not set, then the log files are
written to HYPERION_HOME/logs/essbase

l FALSE—The logs are written to one of two locations, based upon the following:

m Log files for the agent (ESSBASE) are written to $ARBORPATH/<logfilename>

m Log files for the server (ESSSVR) are written to $ARBORPATH/app/<appname>/
<logfilename>

Description

The DEFAULTLOGLOCATION setting sets the location of application files. TRUE is the default
value.

Example

DEFAULTLOGLOCATION FALSE

DELAYEDRECOVERY
Determines whether Essbase delays free space recovery after an application crashes or terminates
abnormally.

This setting does not apply to aggregate storage databases.

Syntax

DELAYEDRECOVERY [appname] TRUE | FALSE

l appname—Optional. The name of an application to which this setting should apply. If
omitted, all applications are affected.

l TRUE—Essbase delays freespace recovery

l FALSE—Essbase does not delay freespace recovery.

Description

This setting controls whether Essbase delays freespace recovery.

Database recovery takes place any time you load an application that has just crashed or
terminated abnormally. Essbase does not perform free space recovery automatically because it

416 Essbase.cfg Configuration Settings

is the most expensive part of database recovery. You must either trigger freespace recovery
explicitly or change the default setting so that Essbase will recover free space automatically.

Example

DELAYEDRECOVERY TRUE

Essbase delays freespace recovery.

See Also

Alter Database<DBS-NAME> recover freespace, which is the statement you use to explicitly
recover freespace.

DELIMITEDMSG
Separate fields when writing log files, using the default (~) character.

Syntax

DELIMITEDMSG [TRUE | FALSE]

Description

DELIMITEDMSG specifies whether Essbase Server and application logs are delimited in Essbase.
If set to TRUE, and no value for “DELIMITER” on page 417 is supplied, the default tilde (~) is
used to delimit fields. If set to FALSE, any value specified in DELIMITER is ignored, and no
special delimiter is used for logs.

Example

DELIMITEDMSG TRUE
DELIMITER *

Essbase produces logs that use the asterisk (*) symbol as a delimiter between fields in a log.

See Also

“DELIMITER” on page 417

DELIMITER
Delimits Essbase Server and application logs using one of five allowed symbols.

Syntax

DELIMITER [~ | ^ | * | : | &]

Description

DELIMITER specifies which of five symbols that Essbase will use to delimit fields in logs.
DELIMITER is ignored unless DELIMITEDMSG TRUE is also present in the configuration file.

Configuration Settings Reference 417

Example

DELIMITEDMSG TRUE
DELIMITER *

Essbase produces logs that use the asterisk (*) symbol as a delimiter between fields in a log.

See Also

“DELIMITEDMSG” on page 417

DEXPSQLROWSIZE
When the DATAEXPORT calculation command is used to export data directly into a relational
database and when the batch-insert method is used, the DEXPSQLROWSIZE configuration
setting allows you to specify the number of rows to be inserted at one time.

To enable batch insert, set the DATAEXPORTENABLEBATCHINSERT configuration setting
to TRUE. Essbase determines whether the relational database and the ODBC driver permit batch
insert. If they do, Essbase determines the batch size unless you set DEXPSQLROWSIZE. If
Essbase cannot determine whether the relational database and the ODBC driver support batch
insert, it uses the row-insert method, and DEXPSQLROWSIZE (if set) is ignored.

The DEXPSQLROWSIZE and DATAEXPORTENABLEBATCHINSERT configuration settings
apply to block storage databases only.

DEXPSQLROWSIZE [appname [dbname]] n

l appname—Optional. Specifies the application for which to set the number of rows to be
inserted at one time.

If you specify a value for appname and do not specify a value for dbname, the setting applies
to all databases in the specified application.

To enable the setting for a specific database, you must specify an application and database.

If you do not specify an application, you cannot specify a database, and the setting applies
to all applications and databases on Essbase Server.

l dbname—Optional. Specifies the database, in the application specified by appname, for
which to set the number of rows to be inserted at one time.

If you specify a value for dbname but do not specify a value for appname, your specification
is ignored, and data associated with logged transactions is archived for all applications and
databases on Essbase Server.

l n—The number of rows in the batch (from 2 to 1000).

Notes

l If DATAEXPORTENABLEBATCHINSERT is set to TRUE and DEXPSQLROWSIZE is set
to 1, batch insert is disabled (as a DEXPSQLROWSIZE setting of 1 inserts one row at a time).

l When using DATAEXPORT to export data for direct insertion into a relational database:

m The table to which the data is to be written must exist prior to the data export

418 Essbase.cfg Configuration Settings

m Table and column names cannot contain spaces

Example

DEXPSQLROWSIZE Sample Basic 300

Specifies a 300-record batch size for data exported from Sample.Basic to a relational database
using DATAEXPORT.

DEXPSQLROWSIZE Sample 500

Specifies a 500-record batch size for data exported from any database within the Sample
application to a relational database using DATAEXPORT.

See Also

DATAEXPORT

“DATAEXPORTENABLEBATCHINSERT” on page 414

DIMBUILDERRORLIMIT
Determines the number of records that can be written to an error log during a dimension build
operation.

Syntax

DIMBUILDERRORLIMIT n

Where n is the number of records, per dimension build, that can be written to the error log,
dimbuild.err. Default: 20,000. Maximum: 65,000.

Description

DIMBUILDERRORLIMIT determines the number of records that can be written to the error
log during dimension build operations.

After the specified number of errors have been recorded, Essbase no longer records any more
errors, but continues the dimension build process.

Notes

l Essbase logs dimension build errors in EAS_HOME\client\dimbuild.err.

l Essbase logs data load errors in EAS_HOME\client\dataload.err.

Example

DIMBUILDERRORLIMIT 40000

See Also

“DATAERRORLIMIT” on page 413

Configuration Settings Reference 419

DIMBUILDSTATSINTERVAL
When performing a cube deployment operation in Oracle Essbase Studio,
DIMBUILDSTATSINTERVAL specifies the number of records to process before reporting on
dimension build progress. Progress information is displayed in the Essbase application console.

Load status information is written to the Essbase log file.

The default value is 20000, meaning that dimension build progress information is updated in
the build status window after each 20000 records is processed.

Syntax

DIMBUILDSTATSINTERVAL [n]

n—Required. An integer specifying the number of records to process before updating the
dimension build progress information in the Essbase application console.

Example

DIMBUILDSTATSINTERVAL 20000

If there are 50000 records to process in the data source, and DIMBUILDSTATSINTERVAL
is defined at 20000, Essbase shows the dimension build progress in the Essbase application
console after processing 20000 records, and then 40000 records.

DIRECTIO
Sets the file access mode to direct I/O instead of the default buffered I/O. Applies only to new
databases or to databases migrated from Release 6.2 or earlier.

This setting does not apply to aggregate storage databases.

Syntax

DIRECTIO TRUE | FALSE

l TRUE—Direct I/O is used, when possible, for newly created or migrated databases.

l FALSE—This is the default. Buffered I/O is used for newly created or migrated databases.

Description

For each database, a security file setting tells Essbase whether to use buffered or direct I/O when
it accesses the database. By default, when Essbase creates a new database or migrates one from
release 6.2 or earlier, it sets this I/O access mode setting to buffered I/O. You can specify the
DIRECTIO TRUE configuration setting to change the default setting for new or migrated
databases to be direct I/O.

To alter the I/O access mode setting for a database thereafter, use Administration Services or
MaxL.

420 Essbase.cfg Configuration Settings

Notes

l Effective use of direct I/O requires a larger index cache than is needed for buffered I/O. See
the Oracle Essbase Database Administrator's Guide section on sizing caches for details.

l On operating systems and file systems that do not support direct I/O, buffered I/O is used
regardless of the setting in the security file.

Example

DIRECTIO TRUE

When Essbase is restarted, the file access mode is set to direct I/O for new databases and
databases migrated from release 6.2 or earlier.

DISABLEREPLMISSINGDATA
Instructs Essbase not to replicate #MISSING values to the target partition, thus improving
performance, potentially with less accurate data.

You can specify DISABLEREPLMISSINGDATA for individual databases, all databases within
an application, or for all applications and databases on the server.

Syntax

DISABLEREPLMISSINGDATA [appname [dbname]] TRUE | FALSE

l appname—Application name. Optional parameter for applying the TRUE or FALSE setting
to one or all databases within the application. If you specify a value for appname and do not
specify a value for dbname, the setting applies to all databases in the specified application.
If you do not specify an application, you cannot specify a database and the setting applies
to all applications and databases on the Essbase Server.

l dbname—Database name. Optional parameter for applying the TRUE or FALSE setting to
the specified database within the specified application. If you do not specify a value for
dbname, the setting applies to all databases within the specified application. If appname is
not specified, you cannot specify dbname.

l TRUE—#MISSING values are not replicated to the target for those applications and
databases specified through the apname and dbname parameters.

l FALSE—(Default value) #MISSING values are replicated to the target for those applications
and databases specified through the apname and dbname parameters.

Notes

This setting applies only to replicated partitions on block storage databases.

When #MISSING data is not replicated a warning message is logged in the application log file.

Example

Assume a partition exists from Sample1.Basic (source) to Sample2.Basic (target). To prevent
replication of #MISSING data, add the following settings to essbase.cfg.

Configuration Settings Reference 421

DISABLEREPLMISSINGDATA Sample1 Basic TRUE
DISABLEREPLMISSINGDATA Sample2 Basic TRUE

DISKVOLUMES
Defines the volumes that can be used to store multiple index and data files, and the amount of
space that those volumes can occupy.

For new files, disk volume settings become effective after the database is restarted. Previously
existing files and volumes are not affected.

This setting does not apply to aggregate storage databases.

Syntax

DISKVOLUMES [volume_name] [disk_space]...

l volume_name—The name of the directory where a hard disk is mounted.

On Windows, volume_name is a letter corresponding to a disk drive.

On UNIX, volume_name is a UNIX file path that you must specify up to the directory that
you are using for Essbase. Do not specify the /app directory; Essbase appends /app
automatically.

Note: Use only valid volume types. Do not use NFS, floppy, CD-ROM, or network drives.

If you do not specify any disk volumes, Essbase uses only the volume where the
ARBORPATH directory resides.

l disk_space—The maximum number of bytes allocated to the volume.

Specify this setting in bytes, kilobytes (K), megabytes (M) or gigabytes (G). Do not use
commas or spaces. Avoid decimals (such as 2.5G).

m The value is read as bytes.

m The maximum value is 2147483648 (231).

m If you need to specify a value over 231, you must use a qualifier (K, M, or G); for example,
2000G.

If you enter a value with a qualifier (K, M, or G), the acceptable value range per volume is
0 to 2 terabytes. Do not exceed this amount by specifying, for example, 50000G.

If you specify volume_name without specifying disk_space, all the disk space on that volume
is used, as needed.

If you do not specify volume_name, Essbase uses the volume where the ARBORPATH directory
resides.

DISKVOLUMES, with its values, can be up to 2 kilobytes long. You can specify 64 items per line;
for example, DISKVOLUMES D 5M E 2M C 5G contains 7 items.

422 Essbase.cfg Configuration Settings

Notes

l Use DISKVOLUMES only if you need backward compatibility with earlier releases, or if you
are setting up a large number of databases at the same time with the same DISKVOLUMES
value. Otherwise, to set or change disk volumes, use Administration Services or MaxL.

l You can specify disk volume names in any order.

l If you wish to use a volume in the ARBORPATH directory, you must specify ARBORPATH as
one of your parameters. Otherwise, you do not need to specify ARBORPATH.

Example

On Windows, the following command causes index and data files to be stored as follows:

DISKVOLUMES D 5M E 2M C 5G

l The first 5 megabytes on drive D

l The next 2 megabytes on drive E

l The next 5 gigabytes on drive C

On UNIX platforms the following command causes index and data files to be stored as follows::

DISKVOLUMES /vol2/essbase 5M /vol3/essbase 2M /vol1/essbase 5G

l The first 5 megabytes on volume vol2

l The next 2 megabytes on volume vol3

l The next 5 gigabytes on volume vol1

See Also

Alter Database (disk volumes)

DISPLAYMESSAGELEVEL
Sets the level of messages displayed in the application console. To set the level of messages written
to the application log, use LOGMESSAGELEVEL.

Syntax

DISPLAYMESSAGELEVEL INFO | WARNING | ERROR

Where INFO, WARNING, and ERROR are priority levels:

l INFO—All three types of messages are written to the application console. This is the default.

l WARNING—Only Warning and Error messages are written to the application console.

l ERROR—Only error messages are written to the application console. No Warning or Info
messages are written to the console.

Configuration Settings Reference 423

Notes

This setting affects only the messages displayed in the application console. To control the
messages written to the application log, use “LOGMESSAGELEVEL” on page 465. To set the
same level for both the console and the log, use both settings.

Example

DISPLAYMESSAGELEVEL WARNING

Sets the console message level to Warning. Only Warning and Error messages are displayed
in the application console.

See Also

SETMSGLEVEL

“LOGMESSAGELEVEL” on page 465

DLSINGLETHREADPERSTAGE
Instructs Essbase to load data using a single thread per processing stage, or to use the thread
values specified in the “DLTHREADSPREPARE” on page 426 and “DLTHREADSWRITE” on
page 427 configuration settings. By working with these three configuration settings you may be
able to test and improve data load performance.

You can specify DLSINGLETHREADPERSTAGE for individual databases, all databases within
an application, or for all applications and databases on the server.

Syntax

DLSINGLETHREADPERSTAGE [appname [dbname]] TRUE | FALSE

l appname—Application name. Optional parameter for applying the TRUE or FALSE setting
to one or all databases within the application. If you specify a value for appname and do not
specify a value for dbname, the setting applies to all databases in the specified application.
If you do not specify an application, you cannot specify a database and the setting applies
to all applications and databases on the Essbase Server.

l dbname—Database name. Optional parameter for applying the TRUE or FALSE setting to
the specified database within the specified application. If you do not specify a value for
dbname, the setting applies to all databases within the specified application. If appname is
not specified, you cannot specify dbname.

l TRUE—Tells Essbase not to use the values in the “DLTHREADSPREPARE” on page 426
and “DLTHREADSWRITE” on page 427 configuration settings when it performs a data
load. Consequently, it performs all data load processes in single-thread stages.

l FALSE—Tells Essbase to use the thread values specified in the configuration settings
“DLTHREADSPREPARE” on page 426 and “DLTHREADSWRITE” on page 427 as the
numbers of threads to use in the preparation and write stages of data load processing. The
default value is FALSE.

424 Essbase.cfg Configuration Settings

Description

The DLTHREADSPREPARE, “DLTHREADSWRITE” on page 427, and
“DLSINGLETHREADPERSTAGE” on page 424 settings are related to parallel data load
processing. Data load processing is divided up into stages that are performed by Essbase using
separate processing threads for each stage. By default, a single thread is used for each stage.
Taking advantage of the multithreading capabilities of the server machine, the separate single-
thread stages can be performed in parallel.

To improve data load performance by maximizing use of processor resource for your situation,
you can use these settings to enable additional multiple-thread processing within the preparation
and write stages of data load processing. For more information about parallel thread processing
in data loads, see the "Optimizing Data Loads" chapter in the Oracle Essbase Database
Administrator's Guide.

Notes

l While testing thread values for the “DLTHREADSPREPARE” on page 426 and
“DLTHREADSWRITE” on page 427 configuration settings, you can use the
DLSINGLETHREADPERSTAGE setting to quickly revert to using a single thread per stage.

l Enabling use of multiple threads during the preparation and write stages may produce little
if any benefit on a single-processor machine.

l Optimizing factors such as the content and organization of the data source can enhance
performance more than increasing the numbers of threads to be used. See the "Optimizing
Data Loads" chapter in the Oracle Essbase Database Administrator's Guide.

Examples

Example 1

DLSINGLETHREADPERSTAGE Sample Basic TRUE
DLTHREADSPREPARE Sample Basic 3
DLTHREADSWRITE Sample Basic 4

Essbase ignores any values specified by “DLTHREADSPREPARE” on page 426 and
“DLTHREADSWRITE” on page 427 while loading data to the Sample Basic application
and database. As a result, Essbase uses single threads in each stage.

Example 2

DLSINGLETHREADPERSTAGE FALSE
DLTHREADSPREPARE Sample Basic 3
DLTHREADSWRITE Sample Basic 4

Based on the first setting, Essbase uses the number of threads specified by the
“DLTHREADSPREPARE” on page 426 and “DLTHREADSWRITE” on page 427
configuration settings for all data bases on the server. The settings on the second and third
lines specify use of 3 processing threads for the preparation stages and 4 processing threads
for the write stages when loading the Sample Basic application and database. Assuming that
there are no further related settings, the default value 1 (one) is assumed for all other
applications and databases on the server.

Configuration Settings Reference 425

Example 3

DLSINGLETHREADPERSTAGE Sample FALSE
DLTHREADSWRITE Sample Basic 3
DLTHREADSWRITE Sample Interntl 4

In this example Essbase uses the number of threads specified by the
“DLTHREADSPREPARE” on page 426 and “DLTHREADSWRITE” on page 427
configuration settings for all databases within the application named Sample. To enable
usage of different numbers of threads for the write stage for the two different databases, two
“DLTHREADSWRITE” on page 427 settings are included with different thread values for
each specific database. Because no “DLTHREADSPREPARE” on page 426 setting is
specified, the preparation stage is single-threaded.

See Also

“DLTHREADSPREPARE” on page 426

“DLTHREADSWRITE” on page 427

DLTHREADSPREPARE
Specifies how many threads Essbase may use during the data load preparation stage, which
organizes the source data in memory in preparation for storing the data into blocks. Multiple
threads, processing in parallel, may improve data load performance.

You can specify DLTHREADSPREPARE for individual databases, all databases within an
application, or for all applications and databases on the server.

In order for Essbase to use the value specified for DLTHREADSPREPARE, the configuration
setting “DLSINGLETHREADPERSTAGE” on page 424 must be set to FALSE.

Syntax

DLTHREADSPREPARE [appname [dbname]] n

l appname—Application name. Optional parameter for using the specified number of threads
in one or all databases within the application. If you specify a value for appname and do not
specify a value for dbname, the setting applies to all databases in the specified application.
If you do not specify an application, you cannot specify a database and the setting applies
to all applications and databases on the Essbase Server.

l dbname—Database name. Optional parameter for using the specified number of threads
when loading the specified database within the specified application. If you do not specify
a value for dbname, the setting applies to all databases within the specified application. If
appname is not specified, you cannot specify dbname.

l n —The number of threads the data load process may produce for preparing the data to be
loaded. Specify and integer between 1 and 16 (on 32-bit platforms), or between 1 and 32
(on 64-bit platforms). The default value is 1.

If n is greater than the maximum or a negative number, the value is assumed to be 16 (on
32-bit platforms) or 32 (on 64-bit platforms).

426 Essbase.cfg Configuration Settings

Description

The DLTHREADSPREPARE, “DLTHREADSWRITE” on page 427, and
“DLSINGLETHREADPERSTAGE” on page 424 settings are related to parallel data load
processing. Data load processing is divided up into stages that are performed by Essbase using
separate processing threads for each stage. By default, a single thread is used for each stage.
Taking advantage of the multithreading capabilities of the server machine, the separate single-
thread stages can be performed in parallel.

To improve data load performance by maximizing use of processor resource for your situation,
you can use these settings to enable additional multiple-thread processing within the preparation
and write stages of data load processing. For more information about parallel thread processing
in data loads, see the "Optimizing Data Loads" chapter in the Oracle Essbase Database
Administrator's Guide.

Notes

l You can use another configuration setting, “DLTHREADSWRITE” on page 427, to specify
the number of threads for the write stage of data load processing.

l Many factors affect the possible optimal values for DLTHREADSPREPARE including the
number of processors on the machine and the number of other processes running on the
machine. If you want to set this setting to a value higher than the default (1), check with
your system administrator, as higher values can significantly consume system resources. As
a rule of thumb, do not expect performance advantages if the number of threads for this
setting is greater than the number of processors on the server machine.

l Setting the value for DLTHREADSPREPARE to be greater than 1 (one) may produce little
if any benefit on a single-processor machine.

Example

DLSINGLETHREADPERSTAGE Sample Basic FALSE
DLTHREADSPREPARE Sample Basic 3

Because “DLSINGLETHREADPERSTAGE” on page 424 is set to FALSE for the Sample Basic
application and database, Essbase uses 3 parallel threads during the preparation stage when
loading data to Sample Basic.

See Also

“DLTHREADSWRITE” on page 427

“DLSINGLETHREADPERSTAGE” on page 424

DLTHREADSWRITE
Specifies how many threads Essbase may use during the stage of the data load process that writes
blocks on the disk. Multiple threads, processing in parallel, may improve data load performance.

Since Essbase uses a single thread during the write stage of the aggregate storage data load process,
this setting does not apply to aggregate storage databases.

Configuration Settings Reference 427

Syntax

DLTHREADSWRITE [appname [dbname]] n

l appname—Application name. Optional parameter for using the specified number of threads
in one or all databases within the application. If you specify a value for appname and do not
specify a value for dbname, the setting applies to all databases in the specified application.
If you do not specify an application, you cannot specify a database and the setting applies
to all applications and databases on the Essbase Server.

l dbname—Database name. Optional parameter for applying the TRUE or FALSE setting to
a specific database within the specified application. If you do not specify a value for
dbname, the setting applies to all databases within the specified application. If appname is
not specified, you cannot specify dbname

l n —The number of threads the data load process may produce for writing data blocks to
the disk. Specify and integer between 1 and 16 (on 32-bit platforms), or between 1 and 32
(on 64-bit platforms). The default value is 1.

m If n>16 (on 32-bit platforms), or a negative number, the value is assumed to be 16.

m If n>32 (on 64-bit platforms), or a negative number, the value is assumed to be 32.

See Notes below.

Description

The DLTHREADSPREPARE, “DLTHREADSWRITE” on page 427, and
“DLSINGLETHREADPERSTAGE” on page 424 settings are related to parallel data load
processing. Data load processing is divided up into stages that are performed by Essbase using
separate processing threads for each stage. By default, a single thread is used for each stage.
Taking advantage of the multithreading capabilities of the server machine, the separate single-
thread stages can be performed in parallel.

To improve data load performance by maximizing use of processor resource for your situation,
you can use these settings to enable additional multiple-thread processing within the preparation
and write stages of data load processing.

You can specify DLTHREADSWRITE for individual databases, all databases within an
application, or for all applications and databases on the server.

In order for Essbase to use the value specified for DLTHREADSWRITE, the configuration setting
“DLSINGLETHREADPERSTAGE” on page 424 must be set to FALSE.

For more information about parallel thread processing in data loads, see the "Optimizing Data
Loads" chapter in the Oracle Essbase Database Administrator's Guide.

Notes

l You can use another configuration setting, “DLTHREADSPREPARE” on page 426, to
specify the number of threads for the preparation stage of data load processing.

l Many factors affect the possible optimal values for DLTHREADSWRITE including the
number of processors on the machine and the number of other processes running on the
machine. If you want to set this setting to a value higher than the default (1), check with

428 Essbase.cfg Configuration Settings

your system administrator, as higher values can significantly consume system resources. As
a rule of thumb, do not expect performance advantages if the number of threads for this
setting is greater than the number of processors on the server machine.

l Setting the value for DLTHREADSWRITE to be greater than 1 (one) may produce little if
any benefit on a single-processor machine.

Example

DLSINGLETHREADPERSTAGE Sample Basic FALSE
DLTHREADSWRITE Sample Basic 3

Because “DLSINGLETHREADPERSTAGE” on page 424 is set to FALSE for the Sample Basic
application and database, Essbase uses 3 parallel threads during the write stage when loading
data to Sample Basic.

See Also

“DLTHREADSPREPARE” on page 426

“DLSINGLETHREADPERSTAGE” on page 424

DYNCALCCACHEBLKRELEASE
Enables Essbase to create a temporary buffer for dynamic calculations in cases where the wait
for space in the dynamic calculator cache has exceeded the specified wait time.

This setting does not apply to aggregate storage databases.

Syntax

DYNCALCCACHEBLKRELEASE [appname [dbname]] TRUE | FALSE

l appname—If you supply an application name, the setting applies to all databases within the
application. If you do not supply an application name, the setting applies to all applications
and databases on the server.

l dbname—If you supply a database name, the setting applies only to the database. If you do
not also provide an application name, the setting applies to all applications and databases
on the server.

l TRUE—Tells Essbase to make room available in the dynamic calculator cache by
temporarily storing inactive blocks in a separate, compressed-block buffer.

l FALSE—This is the default value. Tells Essbase not to find room in the dynamic calculator
cache for a different set of blocks. Instead, if allowed by the “DYNCALCCACHEONLY” on
page 435 setting, Essbase attempts to perform calculations on these blocks in memory
outside the dynamic calculator cache

Description

Use this setting to tell Essbase to make room available in the dynamic calculator cache, if needed,
by compressing inactive blocks from that cache and attempting to temporarily store them in a
separate, compressed-block buffer.

Configuration Settings Reference 429

The dynamic calculator cache is a memory buffer that holds data blocks that are expanded to
include dynamically calculated members. Essbase allocates memory in the dynamic calculator
cache to store these blocks during retrievals or calculations that involve dynamically calculated
members.

Using the dynamic calculator cache may improve retrieval performance by reducing the number
of calls to the operating system to do memory allocations. The size of the improvement depends
on your database configuration.

Notes

The following sequence of events must occur and settings must be defined before Essbase releases
space in the dynamic calculator cache:

l The area allocated in the dynamic calculator cache has reached the maximum allowed
(specified by “DYNCALCCACHEMAXSIZE” on page 433).

l “DYNCALCCACHEWAITFORBLK” on page 436 is set as TRUE and the wait period
specified by “DYNCALCCACHEBLKTIMEOUT” on page 430 has been reached.

l DYNCALCCACHEBLKRELEASE is set to TRUE. Essbase releases an area in the dynamic
calculator cache by compressing blocks from this cache and attempting to store them
temporarily in a compressed-block buffer. The size of this buffer is defined by the
“DYNCALCCACHECOMPRBLKBUFSIZE” on page 432 configuration setting.

Example

DYNCALCCACHEBLKRELEASE TRUE

Essbase makes needed space available in the dynamic calculator cache by compressing
inactive blocks and temporarily storing them in a dynamic calculator cache compressed-
block buffer.

See Also

“DYNCALCCACHEMAXSIZE” on page 433

“DYNCALCCACHEWAITFORBLK” on page 436

“DYNCALCCACHEBLKTIMEOUT” on page 430

“DYNCALCCACHEONLY” on page 435

“DYNCALCCACHECOMPRBLKBUFSIZE” on page 432

DYNCALCCACHEBLKTIMEOUT
Specifies maximum time to wait for free space in the dynamic calculator cache.

This setting does not apply to aggregate storage databases.

Syntax

DYNCALCCACHEBLKTIMEOUT [appname [dbname]] n

430 Essbase.cfg Configuration Settings

l appname—If you supply an application name, the setting applies to all databases within the
application. If you do not supply an application name, the setting applies to all applications
and databases on the server.

l dbname—If you supply a database name, the setting applies only to the database. If you do
not also provide an application name, the setting applies to all applications and databases
on the server.

l n—A number of seconds. May or may not include a decimal point. Any number less than
0.001 will be treated as 0.001. The default value is 10 seconds.

Description

Use this setting to specify the maximum number of seconds that Essbase should wait for space
in the dynamic calculator cache in order to perform the requested calculation there. If Essbase
waits the entire number of seconds specified in this setting, it then checks the
“DYNCALCCACHEBLKRELEASE” on page 429 setting to determine what to do next:

l To make room in the dynamic calculator cache by temporarily swapping out blocks in the
dynamic calculator cache that are inactive

l If “DYNCALCCACHEONLY” on page 435 is set to FALSE, to write and calculate the blocks
in memory outside the dynamic calculator cache

The dynamic calculator cache is a memory buffer that holds data blocks that are expanded to
include dynamically calculated members. Essbase allocates memory in the dynamic calculator
cache to store these blocks during retrievals or calculations that involve dynamically calculated
members.

Using the dynamic calculator cache may improve retrieval performance by reducing the number
of calls to the operating system to do memory allocations. The size of the improvement depends
on your database configuration.

Notes

l Use the “DYNCALCCACHEBLKRELEASE” on page 429 setting to tell Essbase where to
store and calculate data blocks containing Dynamic Calc members if the wait for space in
the dynamic calculator cache has exceeded the specified wait time.

l The DYNCALCCACHEBLKTIMEOUT configuration setting is meaningful only when the
“DYNCALCCACHEWAITFORBLK” on page 436 configuration setting is set to TRUE.

Example

DYNCALCCACHEBLKTIMEOUT 20

Essbase waits up to 20 seconds for space in the dynamic calculator cache before checking
the “DYNCALCCACHEBLKRELEASE” on page 429 setting to determine the next step to
take before performing the requested calculation.

See Also

“DYNCALCCACHEMAXSIZE” on page 433

Configuration Settings Reference 431

“DYNCALCCACHEONLY” on page 435

“DYNCALCCACHEWAITFORBLK” on page 436

“DYNCALCCACHEBLKRELEASE” on page 429

“DYNCALCCACHECOMPRBLKBUFSIZE” on page 432

DYNCALCCACHECOMPRBLKBUFSIZE
Specifies the size of a temporary buffer for storing compressed blocks in order to make more
space in the dynamic calculator cache.

This setting does not apply to aggregate storage databases.

Syntax

DYNCALCCACHECOMPRBLKBUFSIZE [appname [dbname]] n

l appname—If you supply an application name, the setting applies to all databases within the
application. If you do not supply an application name, the setting applies to all applications
and databases on the server.

l dbname—If you supply a database name, the setting applies only to the database. If you do
not also provide an application name, the setting applies to all applications and databases
on the server.

l n—An integer expressed in bytes (B), kilobytes (K), megabytes (M), or gigabytes (G)

m Minimum value: 0 megabytes (0 M). If the value is 0, Essbase does not use the
compressed block buffer.

m Default value: 1 megabyte (1M, which is 1,048,576 bytes)

m If a value is given without a B, K, M, or G qualifier, it is assumed the value is in bytes.

m The qualifier can be in upper or lowercase and can be entered adjacent to the value
(10M) or separated by a space (1M)

Description

In order to make space available in the dynamic calculator cache, Essbase uses the value specified
by the DYNCALCCACHECOMPRBLKBUFSIZE configuration setting to size the dynamic
calculator cache compressed-block buffer. Essbase temporarily stores compressed blocks from
the dynamic calculator cache into this buffer under the following circumstances:

l The area allocated in the dynamic calculator cache has reached the maximum allowed
(specified by “DYNCALCCACHEMAXSIZE” on page 433) and Essbase requires additional
space for blocks to be calculated in the current query.

l “DYNCALCCACHEWAITFORBLK” on page 436 is set to TRUE and the wait period
specified by “DYNCALCCACHEBLKTIMEOUT” on page 430 has been reached.

l “DYNCALCCACHEBLKRELEASE” on page 429 is set to TRUE, indicating Essbase should
release dynamic calculator cache area.

432 Essbase.cfg Configuration Settings

The dynamic calculator cache compressed-block buffer is an area in memory where Essbase
compresses and temporarily stores blocks from the dynamic calculator cache to free space for
other blocks for other calculations. When space is again available, Essbase decompresses blocks
stored in the compressed-block buffer and returns them to the dynamic calculator cache.

The dynamic calculator cache is a memory buffer that holds data blocks that are expanded to
include dynamically calculated members. Essbase allocates memory in the dynamic calculator
cache to store these blocks during retrievals or calculations that involve dynamically calculated
members.

Using the dynamic calculator cache may improve retrieval performance by reducing the number
of calls to the operating system to do memory allocations. The size of the improvement depends
on your database configuration.

Notes

Essbase uses the temporary compressed-block buffer only when the
“DYNCALCCACHEBLKRELEASE” on page 429 configuration parameter is set to TRUE and
the DYNCALCCACHECOMPRBLKBUFSIZE setting is greater than 0.

Example

DYNCALCCACHECOMPRBLKBUFSIZE 1000000

Sets 1,000,000 (one million) bytes as the size for the dynamic calculator cache compressed-
block buffer.

See Also

“DYNCALCCACHEMAXSIZE” on page 433

“DYNCALCCACHEONLY” on page 435

“DYNCALCCACHEWAITFORBLK” on page 436

“DYNCALCCACHEBLKTIMEOUT” on page 430

“DYNCALCCACHEBLKRELEASE” on page 429

DYNCALCCACHEMAXSIZE
Specifies the maximum amount of memory allocated for the dynamic calculator cache.

This setting does not apply to aggregate storage databases.

Syntax

DYNCALCCACHEMAXSIZE [appname [dbname]] n

l appname—If you supply an application name, the setting applies to all databases within the
application. If you do not supply an application name, the setting applies to all applications
and databases on the server.

Configuration Settings Reference 433

l dbname—If you supply a database name, the setting applies only to the database. If you do
not also provide an application name, the setting applies to all applications and databases
on the server.

l n—An integer expressed in bytes (B), kilobytes (K), megabytes (M), or gigabytes (G)

m Minimum value: 0 megabytes (0 M). If the value is 0, Essbase does not use dynamic
calculator cache.

m Default value: 20 megabytes (20M, which is 20,971,520 bytes)

m If a value is given without a B, K, M, or G qualifier, it is assumed the value is in bytes.

m The qualifier can be in upper or lowercase and can be entered adjacent to the value
(10M) or separated by a space (10 M).

Description

This setting specifies, in bytes, kilobytes, megabytes, or gigabytes, the maximum amount of
memory that Essbase can allocate for the dynamic calculator cache for each database. The
specified value takes effect for all databases that are opened after the server is started.

The dynamic calculator cache is a memory buffer that holds data blocks that are expanded to
include dynamically calculated members. Essbase allocates memory in the dynamic calculator
cache to store these blocks during retrievals or calculations that involve dynamically calculated
members.

Using dynamic calculator cache may improve retrieval performance by reducing the number of
calls to the operating system to do memory allocations.

When the DYNCALCCACHEMAXSIZE setting is not equal to 0, you should also consider the
following settings that affect how Essbase uses dynamic calculator cache:

l “DYNCALCCACHEONLY” on page 435

l “DYNCALCCACHEWAITFORBLK” on page 436

l “DYNCALCCACHEBLKTIMEOUT” on page 430

l “DYNCALCCACHEBLKRELEASE” on page 429

l “DYNCALCCACHECOMPRBLKBUFSIZE” on page 432

Notes

l Use “DYNCALCCACHEWAITFORBLK” on page 436 and “DYNCALCCACHEONLY” on
page 435 to set or change how Essbase handles the situation when it has reached the
maximum dynamic calculator cache size and needs more memory in the dynamic calculator
cache to store dynamically calculated blocks.

l See the Oracle Essbase Database Administrator's Guide for more information about Dynamic
Calculator Cache and the related configuration file settings.

Example

DYNCALCCACHEMAXSIZE 30M

Sets 30 megabytes as the maximum size for the dynamic calculator cache.

434 Essbase.cfg Configuration Settings

See Also

“DYNCALCCACHEONLY” on page 435

“DYNCALCCACHEWAITFORBLK” on page 436

“DYNCALCCACHEBLKTIMEOUT” on page 430

“DYNCALCCACHEBLKRELEASE” on page 429

“DYNCALCCACHECOMPRBLKBUFSIZE” on page 432

Oracle Essbase Database Administrator's Guide

DYNCALCCACHEONLY
Specifies whether dynamic calculations can use memory outside the dynamic calculator cache
in the case that it is full.

This setting does not apply to aggregate storage databases.

Syntax

DYNCALCCACHEONLY [appname [dbname]] TRUE | FALSE

l appname—If you supply an application name, the setting applies to all databases within the
application. If you do not supply an application name, the setting applies to all applications
and databases on the server.

l dbname—If you supply a database name, the setting applies only to the database. If you do
not also provide an application name, the setting applies to all applications and databases
on the server.

l TRUE—Disallows the use of memory outside the dynamic calculator cache. If space for
blocks with dynamically calculated members cannot be obtained from the dynamic
calculator cache, Essbase generates an error message.

l FALSE—Allows the use of memory outside the dynamic calculator cache, if necessary, for
blocks containing dynamically calculated members. The default value is FALSE.

Description

When no room is available in the dynamic calculator cache, the
“DYNCALCCACHEWAITFORBLK” on page 436 and
“DYNCALCCACHECOMPRBLKBUFSIZE” on page 432 configuration settings provide options
that could result in Essbase using memory outside the dynamic calculator cache to store blocks
that contain dynamically calculated members. If you are experiencing a severe memory shortage,
you can use the DYNCALCCACHEONLY setting to disallow the use of memory outside the
dynamic calculator cache. If DYNCALCCACHEONLY is set to TRUE, instead of using memory
outside the dynamic calculator cache, Essbase generates the error message, "Allocation outside
the dynamic calculator cache is disallowed."

The dynamic calculator cache is a memory buffer that holds data blocks that are expanded to
include dynamically calculated members. Essbase allocates memory in the dynamic calculator

Configuration Settings Reference 435

cache to store these blocks during retrievals or calculations that involve dynamically calculated
members.

Using the dynamic calculator cache may improve retrieval performance by reducing the number
of calls to the operating system to do memory allocations. The size of the improvement depends
on your database configuration.

Notes

The default value of this setting is FALSE. Only set this value to TRUE for one or more of the
following circumstances:

l The operating system is not properly reclaiming memory outside the dynamic calculator
cache.

l There is a severe memory shortage

l Tighter control is required over memory usage for dynamic calculations

Example

DYNCALCCACHEONLY TRUE

Specifies that the dynamic calculator cache is the only memory area that Essbase may use to
store blocks that contain dynamically calculated blocks. If a retrieval requires space that is
not available in the dynamic calculator cache, the execution of the retrieval is aborted. The
user sees an error message that is also posted to the application log.

See Also

“DYNCALCCACHEMAXSIZE” on page 433

“DYNCALCCACHEWAITFORBLK” on page 436

“DYNCALCCACHEBLKTIMEOUT” on page 430

“DYNCALCCACHECOMPRBLKBUFSIZE” on page 432

“DYNCALCCACHEBLKRELEASE” on page 429

DYNCALCCACHEWAITFORBLK
Specifies whether Essbase should wait for memory to be freed in the dynamic calculator cache,
or use outside memory.

This setting does not apply to aggregate storage databases.

Syntax

DYNCALCCACHEWAITFORBLK [appname [dbname]] TRUE | FALSE

l appname—If you supply an application name, the setting applies to all databases within the
application. If you do not supply an application name, the setting applies to all applications
and databases on the server.

436 Essbase.cfg Configuration Settings

l dbname—If you supply a database name, the setting applies only to the database. If you do
not also provide an application name, the setting applies to all applications and databases
on the server.

l TRUE—Tells Essbase to wait for memory to be freed in the dynamic calculator cache.

l FALSE—This is the default. If allowed by the “DYNCALCCACHEONLY” on page 435
setting, tells Essbase attempt to perform calculations on these blocks in memory outside the
dynamic calculator cache.

If the “DYNCALCCACHEONLY” on page 435 setting is TRUE, tells Essbase to generate an
error message instead of using memory outside the dynamic calculator cache.

Description

Use this setting to set or change how Essbase handles the situation when it needs additional
memory to store blocks in the dynamic calculator cache for the database.

When the setting is TRUE, Essbase waits to store and calculate data blocks in the dynamic-
calculator-cache area that is currently in use by other queries.

When the setting is FALSE, if the “DYNCALCCACHEONLY” on page 435 setting is also FALSE,
instead of waiting for area in the dynamic calculator cache, Essbase attempts to store and calculate
data blocks for the current query in memory outside the dynamic calculator cache. If the
“DYNCALCCACHEONLY” on page 435 setting is TRUE, Essbase generates an error message
instead of using memory outside the dynamic calculator cache.

The dynamic calculator cache is a memory buffer that holds data blocks that are expanded to
include dynamically calculated members. Essbase allocates memory in the dynamic calculator
cache to store these blocks during retrievals or calculations that involve dynamically calculated
members.

Using the dynamic calculator cache may improve retrieval performance by reducing the number
of calls to the operating system to do memory allocations. The size of the improvement depends
on your database configuration.

Notes

Use the “DYNCALCCACHEBLKTIMEOUT” on page 430 setting to specify the maximum
number of seconds that Essbase waits for space in the dynamic calculator cache.

Example

DYNCALCCACHEONLY FALSE
DYNCALCCACHEWAITFORBLK FALSE

Essbase attempts to perform the block calculation in memory outside the dynamic calculator
cache, instead of waiting for space to become available in the dynamic calculator cache.

See Also

“DYNCALCCACHEMAXSIZE” on page 433

“DYNCALCCACHEONLY” on page 435

Configuration Settings Reference 437

“DYNCALCCACHEBLKTIMEOUT” on page 430

“DYNCALCCACHEBLKRELEASE” on page 429

“DYNCALCCACHECOMPRBLKBUFSIZE” on page 432

ENABLE_DIAG_TRANSPARENT_PARTITION
Specifies whether to log transaction response times for requests sent from a data source to a
transparent partition target. The target can be either a block storage or aggregate storage
database. Logging these diagnostic messages is helpful when troubleshooting response times that
are too slow.

Syntax

ENABLE_DIAG_TRANSPARENT_PARTITION [appname [dbname]] TRUE | FALSE

l appname—Optional. Specifies the application for which logging diagnostic messages is to
be enabled.

If you specify a value for appname and do not specify a value for dbname, the setting applies
to all databases in the specified application.

To enable the setting for a specific database, you must specify an application and database.

If you do not specify an application, you cannot specify a database, and the setting applies
to all applications and databases on Essbase Server.

l dbname—Optional. Specifies the database, in the application specified by appname, for
which logging diagnostic messages is to be enabled.

If you specify a value for dbname but do not specify a value for appname, your specification
is ignored, and logging diagnostic messages is enabled for all applications and databases on
Essbase Server.

l TRUE | FALSE—Specifies whether to enable or disable logging transaction response times
for requests to a transparent partition.

You must restart Essbase Server to initialize any change to the configuration file.

Description

When logging is enabled, Essbase writes messages to the source and target database log files
during querying.

For every partial response sent to the target from the source, Essbase logs these messages:

l In the source database log file, the following message, of type INFO, provides the size of the
response grid:

Sending response grid of size xxxxx.

l In the target database log file, the following message provides the size of the request grid
issued to the source and an estimated response time:

438 Essbase.cfg Configuration Settings

Waiting for data from source system:application:database grid size
sizeOfRequestGrid. Approximately one second is needed to fetch a grid of size one
million cells with non-missing cell density of 7% from the source.

For every partial grid received from the source, Essbase logs the following message about the
density of the grid to the target database log file:

Density of the grid xxxxxx of fetch size xxxxxx.

When an aggregate storage database is the target of a transparent partition, you can set the request
and response grid size.

Example

ENABLE_DIAG_TRANSPARENT_PARTITION ASOSamp TRUE

Enables logging of transaction response times for all databases associated with the ASOSamp
application.

See Also

“MAX_REQUEST_GRID_SIZE” on page 468 configuration setting

“MAX_RESPONSE_GRID_SIZE” on page 469 configuration setting

ENABLECLEARMODE
Determines whether Essbase allows SSL connectivity.

Syntax

ENABLECLEARMODE TRUE | FALSE

l TRUE—Essbase handles plain TCP requests. The default value is TRUE.

l FALSE—Essbase handles only SSL requests, not plain TCP requests

Description

This setting determines whether Essbase allows -SSL connectivity. It applies only to Essbase
Agent and applications.

Example

ENABLECLEARMODE FALSE

See Also

“AGENTSECUREPORT” on page 388

“CLIENTPREFERREDMODE” on page 411

“ENABLESECUREMODE” on page 440

“NETSSLHANDSHAKETIMEOUT” on page 474

Configuration Settings Reference 439

“SSLCIPHERSUITES” on page 502

“WALLETPATH” on page 515

For information on implementing SSL, see the Oracle Hyperion Enterprise Performance
Management System Security Administration Guide.

ENABLESECUREMODE
Allows -Secure Socket Layer (SSL) connectivity to Essbase.

Syntax

ENABLESECUREMODE TRUE | FALSE

l TRUE—SSL is enabled. Essbase can handle SSL requests.

l FALSE— SSL is not loaded and not used. The default value is FALSE.

Description

This setting determines whether Essbase allows -SSL connectivity. It applies only to Essbase
Agent and applications.

Example

ENABLESECUREMODE TRUE

See Also

“AGENTSECUREPORT” on page 388

“CLIENTPREFERREDMODE” on page 411

“ENABLECLEARMODE” on page 439

“NETSSLHANDSHAKETIMEOUT” on page 474

“SSLCIPHERSUITES” on page 502

“WALLETPATH” on page 515

For information on implementing SSL, see the Oracle Hyperion Enterprise Performance
Management System Security Administration Guide.

ENABLESWITCHTOBACKUPFILE
Specifies whether to load the latest, valid backup security file (essbase_timestamp.bak) at
startup if the essbase.sec file is invalid.

Syntax

ENABLESWITCHTOBACKUPFILE TRUE | FALSE

440 Essbase.cfg Configuration Settings

l TRUE—If essbase.sec is invalid at startup, Essbase cycles through the
essbase_timestamp.bak files, starting with the backup file with the latest timestamp,
until it finds a valid backup file with which to start Essbase.

l FALSE—If essbase.sec is invalid, Essbase startup is aborted and a message is written to
the essbase.log file. The Essbase administrator must restore essbase.sec by copying
the latest, valid backup file to it.

The default value is FALSE.

Note: You can configure the number of backup security files that Essbase creates and maintains,
and the interval in which Essbase creates backup security files.

Example

ENABLESWITCHTOBACKUPFILE TRUE

See Also

“NUMBEROFSECFILEBACKUPS” on page 476

“SECFILEBACKUPINTERVAL” on page 490

ESSBASEFAILOVERTRACELEVEL
Sets the trace level for messages written to the Lease Manager log files.

Syntax

ESSBASEFAILOVERTRACELEVEL USER | ADMIN

Where USER and ADMIN are priority levels:

l USER—Lease renewal messages are written to the log files whenever a new lease is acquired.
Lease ownership messages are not written to the log files. This is the default setting.

l ADMIN—Lease renewal and lease ownership messages are written to the log files every time
a lease is renewed.

Example

ESSBASEFAILOVERTRACELEVEL ADMIN

Sets the trace level to ADMIN which writes the messages Lease manager has a current
lease and Lease Manager successfully acquired/renewed its lease to the Lease
Manager log files every time a lease is renewed.

See Also

“FAILOVERMODE” on page 445

Configuration Settings Reference 441

ESSBASESERVERHOSTNAME
Specifies the computer host name to which Essbase Agent and Essbase Server bind and where
an Essbase application process runs.

Syntax

ESSBASESERVERHOSTNAME server_name

Where host_name is the name of the host where your Essbase application process runs.
ESSBASESERVERHOSTNAME uses the current server by default.

Description

ESSBASESERVERHOSTNAME identifies the host where your Essbase application process runs.
The value must be a valid host name and must map to an IP address assigned to the computer.
If ESSBASESERVERHOSTNAME is not specified in essbase.cfg, Essbase and the applications
listen on all interfaces (IP_ANY).

Notes

l You can use ESSBASESERVERHOSTNAME to restrict the network interface provide on
which Essbase and the applications listen when multiple instances are running on the same
host computer.

l For information on running multiple Essbase instances on a single computer, see:

m “AGENTPORT” on page 387

m “SERVERPORTBEGIN” on page 493

m “SERVERPORTEND” on page 494

m “PORTINC” on page 481

l The behavior of the client is not necessarily tied to this configuration setting. For example,
the MaxL client always uses localhost as the default, irrespective of this configuration setting.

l In Report Writer, you can display ESSBASESERVERHOSTNAME values on a report. For
example, you can use the *MACHINE replacement value in the Report Writer {Mask}
command to display the ESSBASESERVERHOSTNAME value as the server name.

Example

ESSBASESERVERHOSTNAME HypeR

identifies the host name "HypeR".

EXCEPTIONLOGOVERWRITE
Determines whether Essbase overwrites the existing exception log or creates a new exception
log.

442 Essbase.cfg Configuration Settings

Syntax

EXCEPTIONLOGOVERWRITE TRUE | FALSE

l TRUE—Essbase overwrites the existing exception log.

l FALSE—Essbase keeps the existing exception log and creates new logs for every exception.
The default value is FALSE.

Description

This setting determines whether Essbase overwrites existing exception log data or creates a new
log for each exception condition. The exception log name is normally log00001.xcp.

When EXCEPTIONLOGOVERWRITE is FALSE:

l Essbase creates a new log instead of overwriting the previous one.

l Subsequent logs are numbered sequentially; for example, if log00001.xcp exists, the next
log has the file name log00002.xcp, and the next has log00003.xcp, and so on.

The Essbase exception handler writes the information into the exception log on the local disk
in a text file as follows:

l If the server crashed, the log is written in the directory pointed to by ESSBASEPATH; for
example, D:\essbase

l If the application crashed and the application name is unknown, the log is written into the
APP subdirectory under the directory pointed to by ARBORPATH; for example, D:
\essbase\app.

l If the application crashed and the application name is known, but the database name is
unknown, the log is written to the appropriate application directory; for example, D:
\essbase\app\app1.

l If the application crashed and both the application and database names are known, the log
is written to the appropriate database directory; for example, D:\essbase\app
\app1\db1.

Notes

l When an exception occurs, Essbase displays and logs an error message telling users the path
to the exception log.

l Essbase logs errors to the Essbase Server log or to the application log, depending on where
the error occurs.

Example

EXCEPTIONLOGOVERWRITE FALSE

See Also

Oracle Essbase Database Administrator's Guide

Configuration Settings Reference 443

EXCLUSIVECALC
Determines whether Essbase allows concurrent calculations.

This setting does not apply to aggregate storage databases.

Syntax

EXCLUSIVECALC TRUE | FALSE

l TRUE—If a calculation operation (command or script) is running, Essbase fails any other
calculation operations.

l FALSE—This is the default. Essbase allows concurrent calculation operations.

Description

This setting determines whether Essbase runs calculations concurrently in the same database.
Essbase prevents any other calculation operations from executing on the same database.

Example

EXCLUSIVECALC TRUE

EXPORTTHREADS
Sets the the default number of threads that can be produced during parallel data export.

Syntax

EXPORTTHREADS appname dbname n

l appname—This is the name of the application. You can also use xxxxx as a wildcard to
indicate all application names.

l dbname—This is the name of the database. You can also use xxxxx as a wildcard to indicate
all database names.

l n—This integer, between 1 and 8, inclusive, sets the default for the number of export threads
that can be used to export data. This number should generally be equal to the number of
processors on your machine that you wish to commit to doing parallel export. The default
is 1.

Description

This setting enables the user to specify the number of threads that can be used to export data.
The export process is then executed in parallel, and multiple threads can retrieve data and write
to their corresponding export files concurrently. If EXPORTTHREADS is not specified, or is
not followed by its arguments, then the default value of 1 is used.

Notes

For more information about the export utility, see the Oracle Essbase Database Administrator's
Guide.

444 Essbase.cfg Configuration Settings

Example

EXPORTTHREADS sample basic 4

See Also

Export Data (MaxL)

PAREXPORT (ESSCMD)

FAILOVERMODE
Determines whether Essbase is deployed as a failover cluster.

Syntax

FAILOVERMODE TRUE | FALSE

l TRUE—Essbase runs as a failover cluster managed by Oracle Process Manager and
Notification Server.

Note that on UNIX systems, enabling FAILOVERMODE sets FILELOCKINGMODE to
NONE.

l FALSE—Essbase runs as a stand-alone server. The default value is FALSE.

Description

This setting determines whether Essbase is deployed as a failover cluster that is managed by
OPMN, or as a stand-alone server.

When FAILOVERMODE is TRUE:

l The Essbase cluster must be started and stopped using OPMN.

l The opmn.xml file must be modified to ensure that OPMN is aware of the Essbase cluster.

Example

FAILOVERMODE FALSE

See Also

Oracle Essbase Database Administrator's Guide

“AGENTLEASEEXPIRATIONTIME” on page 384

“AGENTLEASEMAXRETRYCOUNT” on page 385

“AGENTLEASERENEWALTIME” on page 385

“SERVERLEASEEXPIRATIONTIME” on page 492

“SERVERLEASEMAXRETRYCOUNT” on page 492

“SERVERLEASERENEWALTIME” on page 493

Configuration Settings Reference 445

FILELOCKINGMODE
On UNIX, provides a way for the operating system to limit file access to only one process (user).

Note: This setting does not apply to Windows systems.

Syntax

FILELOCKINGMODE Advisory | Mandatory | None

l Advisory—Locks files. All applications that follow rules (like Essbase) will honor the locks.
This is the default setting.

Note: When FAILOVERMODE is set to TRUE, setting FILELOCKINGMODE to Advisory
or Mandatory has no effect.

l Mandatory—Locks files at the kernel level. This setting provides extra security to protect
against malicious software.

l None—No files are locked. Two Essbase instances can modify the same data and potentially
corrupt it. This option is added for Failover mode where file access is not done by the
operating system, but by an application acquiring a lease (use database).

Description

FILELOCKINGMODE specifies how files are locked on UNIX systems.

Example

FILELOCKINGMODE Advisory

See Also

FAILOVERMODE

FORCEALLDENSECALCON2PASSACCOUNTS
Normally, a two-pass tagged member of a dense accounts dimension triggers a second
calculation pass on all dense cells of the data block. The false parameter value for this setting
blocks the second pass for all other than the cells for the member tagged as two-pass.

Syntax

FORCEALLDENSECALCON2PASSACCOUNTS TRUE | FALSE

l TRUE—(Default value) When a two-pass member of a dense accounts dimension is
calculated, the second calculation pass calculates all dense cells of the data block.

l FALSE—In the same situation, the FALSE setting blocks the second calculation pass for all
dense cells except those affiliated with the two-pass member.

446 Essbase.cfg Configuration Settings

Description

This setting addresses the situation where a two-pass member of a dense accounts dimension
links through @XREF to a two-pass member of a dense accounts dimension in another database
outline, and that two-pass member links back to the original outline. The additional calculations
in the second calculation pass can result in an infinite loop. The FALSE parameter value blocks
the additional calculations. If you are very cautious about data correctness, check calculation
results.

Example

FORCEALLDENSECALCON2PASSACCOUNTS FALSE

FORCEGRIDEXPANSION
When set to ON, forces the expansion of the grid when transparent partitions are queried, thus
ensuring that correct results are retrieved when most data values are displayed as #MISSING,
whether or not cells contain data.

The FORCEGRIDEXPANSION configuration setting is used with the GRIDEXPANSION
configuration setting.

Syntax

FORCEGRIDEXPANSION ON | OFF

The default value is OFF.

Description

If GRIDEXPANSION is set to ON, the grid is not expanded if all of the following conditions are
met, and, thus, incorrect results are returned:

l The client queries the target database of a transparent partition.

l The client query requests values from a dynamically calculated block.

l Cells requested from the dynamically calculated block reference dense, dynamically
calculated members.

l Dense, dynamically calculated members depend on values from one or more source
databases.

When both GRIDEXPANSION and FORCEGRIDEXPANSION are set to ON, the grid is
expanded and the correct values for cells that contain data are displayed. Query performance,
however, is slowed.

If GRIDEXPANSION is set to OFF, the FORCEGRIDEXPANSION setting is ignored.

See Also

“GRIDEXPANSION” on page 448

“GRIDEXPANSIONMESSAGES” on page 448

Configuration Settings Reference 447

GRIDEXPANSION
When set to ON, improves performance when transparent partitions are queried.

Syntax

GRIDEXPANSION ON | OFF

The default value is ON.

Description

GRIDEXPANSION improves performance of some queries. If all of the following conditions
are met, however, client queries may receive incorrect results (such as most data values displaying
as #MISSING, whether or not cells contain data):

l The client queries the target database of a transparent partition.

l The client query requests values from a dynamically calculated block.

l Cells requested from the dynamically calculated block reference dense, dynamically
calculated members.

l Dense, dynamically calculated members depend on values from one or more source
databases.

If client queries receive incorrect results, set FORCEGRIDEXPANSION to ON. (If
GRIDEXPANSION is set to OFF, the FORCEGRIDEXPANSION setting is ignored.)

See Also

“FORCEGRIDEXPANSION” on page 447

“GRIDEXPANSIONMESSAGES” on page 448

GRIDEXPANSIONMESSAGES
Sets whether grid expansion-related messages are displayed to Spreadsheet Add-in users and
written to the application log.

Syntax

GRIDEXPANSIONMESSAGES ON | OFF

l ON—Allows grid-expansion-related messages.

l OFF—This is the default value. Suppresses grid-expansion-related messages.

Description

If a Spreadsheet Add-in user retrieves data from a partition, the following message may be
displayed repeatedly and written to the application log:

Grid expansion enabled for this query

448 Essbase.cfg Configuration Settings

To prevent this message from appearing, set GRIDEXPANSIONMESSAGES to OFF.

Example

GRIDEXPANSIONMESSAGES OFF

See Also

“GRIDEXPANSION” on page 448

“FORCEGRIDEXPANSION” on page 447

HAENABLE
Sets whether members can be retrieved from a Hybrid Analysis relational source.

Syntax

HAENABLE [appname [dbname]] TRUE | FALSE

l appname—Optional. If you supply an application name, the setting applies to all databases
within the named application. If you do not supply an application name, the setting applies
to all applications and databases on the Essbase Server.

l dbname—Optional. If you supply a database name and an application name, the setting
applies only to the named database. If you do not also provide an application name, the
database is ignored and the setting applies to all applications and databases on the Essbase
Server.

l TRUE—Essbase retrieves all members of a Hybrid Analysis Relational Source through API's,
reports, or Spreadsheet Add-in. If HAENABLE is on, requests can transparently span across
the Hybrid Analysis Relational Source.

l FALSE—This is the default. Essbase turns off retrieval of members of a Hybrid Analysis
Relational Source for all clients.

Description

This setting globally turns on or off the ability to retrieve members of a Hybrid Analysis Relational
Source.

Example

HAENABLE FALSE

HAMAXNUMCONNECTION
Sets the maximum number of connections per database that Essbase can keep active against the
relational database.

Syntax

HAMAXNUMCONNECTION [appname [dbname]] n

Configuration Settings Reference 449

l appname—Optional. If you supply an application name, the setting applies to all databases
within the named application. If you do not supply an application name, the setting applies
to all applications and databases on the Essbase Server.

l dbname—Optional. If you supply a database name and an application name, the setting
applies only to the named database. If you do not also provide an application name, the
database is ignored and the setting applies to all applications and databases on the Essbase
Server.

l n—Specifies the number of connections per database that Essbase can keep connected to a
relational database. The default is 25.

Description

This setting determines the maximum number of connections per database that Essbase can
keep active against the relational database. This optimizes the overhead involved in opening a
relational database connection for every Hybrid Analysis report.

Notes

l You may need to set the value for the HAMAXNUMCONNECTION higher if, in Integration
Services Console, you set the security mode to use the Essbase user ID to connect to the
source database. Refer to the Oracle Essbase Integration Services Online Help for more
information on the security mode setting.

l This setting is interpreted as 0 (zero) for Advanced Relational Analysis (ARA) because ARA
does not support a connection pool.

Example

HAMAXNUMCONNECTION 10

HAMAXNUMSQLQUERY
Sets the maximum number of SQL queries that can be issued against the fact table(s) in the
relational database per Essbase query session.

Syntax

HAMAXNUMSQLQUERY [appname [dbname]] n

l appname—Optional. If you supply an application name, the setting applies to all databases
within the named application. If you do not supply an application name, the setting applies
to all applications and databases on the Essbase Server.

l dbname—Optional. If you supply a database name and an application name, the setting
applies only to the named database. If you do not also provide an application name, the
database is ignored and the setting applies to all applications and databases on the Essbase
Server.

l n—The value of n is the number of simultaneous SQL queries per Essbase query session.
The default is 50.

450 Essbase.cfg Configuration Settings

Description

This setting determines the maximum number of SQL queries that can be executed during an
Essbase query session from Report Writer or from the Spreadsheet Add-in extractor. If a query
cannot be split into pieces in such a way as to not violate the limits set by this command, the
query execution fails. The user has to submit a smaller version of the query, or the administrator
must raise the value of this setting. HAMAXNUMSQLQUERY does not refer to the number of
users performing queries; rather, it refers to the number of SQL queries in a complex statement.

Example

In the following example, the maximum number of SQL queries per Essbase query session is set
to 10.

HAMAXNUMSQLQUERY 10

See Also

“HAMAXQUERYROWS” on page 451

“HARETRIEVENUMROW” on page 455

“QRYGOVEXECBLK” on page 485

“QRYGOVEXECTIME” on page 486

HAMAXQUERYROWS
Sets the maximum number of rows that can be returned per SQL query issued on behalf of an
Essbase query.

Syntax

HAMAXQUERYROWS [appname [dbname]] n

l appname—Optional. If you supply an application name, the setting applies to all databases
within the named application. If you do not supply an application name, the setting applies
to all applications and databases on the Essbase Server.

l dbname—Optional. If you supply a database name and an application name, the setting
applies only to the named database. If you do not also provide an application name, the
database is ignored and the setting applies to all applications and databases on the Essbase
Server.

l n—Determines the maximum number of rows retrieved per SQL query. The default is zero,
meaning that no row limit is applied.

Description

This setting determines the maximum number of rows retrieved per SQL query issued on behalf
of an Essbase query. HAMAXQUERYROWS is a specific limit to an Essbase query. The setting
provides a way of controlling queries that retrieve too much data.

Configuration Settings Reference 451

Notes

l An important distinction exists between the purposes of HAMAXQUERYROWS and
HARETRIEVENUMROW. Whereas HAMAXQUERYROWS controls the number of total
rows to return, HARETRIEVENUMROW affects memory consumption by controlling how
many rows to process at one time.

l HAMAXQUERYROWS and HARETRIEVENUMROW should not be confused with
QRYGOVEXECBLK which sets the maximum number of blocks that a query can access
before the query is terminated.

Example

In the following example, Essbase processes up to 100,000 rows per SQL query.

HAMAXQUERYROWS 100000

See Also

“HAMAXNUMSQLQUERY” on page 450

“HARETRIEVENUMROW” on page 455

“QRYGOVEXECBLK” on page 485

“QRYGOVEXECTIME” on page 486

HAMAXQUERYTIME
Sets the maximum time limit per query for SQL queries from a Hybrid Analysis Relational
Source. When set on a Oracle datasource, this setting is ignored and a warning message is logged
in the application log file.

Syntax

HAMAXQUERYTIME [appname [dbname]] n

l appname—Optional. If you supply an application name, the setting applies to all databases
within the named application. If you do not supply an application name, the setting applies
to all applications and databases on the Essbase Server.

l dbname—Optional. If you supply a database name and an application name, the setting
applies only to the named database. If you do not also provide an application name, the
database is ignored and the setting applies to all applications and databases on the Essbase
Server.

l n—Determines the time limit per query in seconds. The default is zero, meaning that no
time limit is applied.

Description

This setting determines how much time an SQL query operation can take before it is forcefully
terminated. HAMAXQUERYTIME is a specific limit to an Essbase query that spans the Hybrid

452 Essbase.cfg Configuration Settings

Analysis Relational Source and is set in the essbase.cfg file. The value set is dependent on
how long an SQL query issued on behalf of an Essbase query can take to complete.

An important distinction exists between the purposes of HAMAXQUERYTIME and
QRYGOVEXECTIME. Note that QRYGOVEXECTIME affects the entire query, such as from
the time a user double-clicks a cell to retrieve data in Spreadsheet Add-in to the time the results
are displayed. HAMAXQUERYTIME, on the other hand, affects only a portion of the Essbase
query, such as the individual SQL queries from the Hybrid Analysis Relational Source. When a
query spans Hybrid Analysis data, QRYGOVEXECTIME is disabled for the rest of the overall
query, and the query timer controlled by HAMAXQUERYTIME takes effect.

Example

HAMAXQUERYTIME 300

See Also

“HAMAXNUMSQLQUERY” on page 450

“HARETRIEVENUMROW” on page 455

“QRYGOVEXECBLK” on page 485

“QRYGOVEXECTIME” on page 486

HAMEMORYCACHESIZE
Determines the amount of memory that is reserved to cache queried members from a Hybrid
Analysis Relational Source.

Syntax

HAMEMORYCACHESIZE [appname [dbname]] n

l appname—Optional. If you supply an application name, the setting applies to all databases
within the named application. If you do not supply an application name, the setting applies
to all applications and databases on the Essbase Server.

l dbname—Optional. If you supply a database name and an application name, the setting
applies only to the named database. If you do not also provide an application name, the
database is ignored and the setting applies to all applications and databases on the Essbase
Server.

l n—An integer expressed in bytes (B), kilobytes (K), megabytes (M), or gigabytes (G)

m Minimum value: 1048576 B (1 M). Any value less than this minimum value causes
HAMEMORYCACHESIZE to default to 1 M.

m Default value: 1 megabytes (1 M, which is 1048576 bytes)

m If a value is given without a B, K, M, or G qualifier, it is assumed the value is in bytes.

m The qualifier can be in upper or lowercase and can be entered adjacent to the value
(10M) or separated by a space (10 M).

Configuration Settings Reference 453

Description

This setting sizes the memory buffer that holds relational data during the execution of spread
sheet or report scripts that drill into Hybrid Analysis Relational Sources. When you specify the
cache size, you control the memory used to cache relational members during execution. A larger
cache size optimizes the usage of relational members during execution and increases the speed
of metadata retrieval from the metaoutline. Thus, more memory allocated to the cache means
fewer SQL queries to resolve member names, resulting in improved performance.

Notes

In order to have configuration parameters applied to the application level, the global value must
be defined first, and the application level value must be defined second (see Example 2 below).

Examples

Example 1

HAMEMORYCACHESIZE 1M

Example 2

In the following example, all databases in the application "Test" have a cache value of 1500K,
and all other applications have a cache value of 2M.

HAMEMORYCACHESIZE 2M
HAMEMORYCACHESIZE Test 1500K

In the following example, all applications and databases have a cache value of 2M because the
application cache value is overriden.

HAMEMORYCACHESIZE Test 1500K
HAMEMORYCACHESIZE 2M

This ordering is needed only for global and unspecified (untitled) applications.

HARAGGEDHIERARCHY
Enables support of null values in columns of dimension tables that are used to create dimensions
for Hybrid Analysis-enabled outlines.

Syntax

HARAGGEDHIERARCHY [appname [dbname]] TRUE | FALSE

l appname—Optional. If you supply an application name, the setting applies to all databases
within the named application. If you do not supply an application name, the setting applies
to all applications and databases on the Essbase Server.

l dbname—Optional. If you supply a database name and an application name, the setting
applies only to the named database. If you do not also provide an application name, the
database is ignored and the setting applies to all applications and databases on the Essbase
Server.

454 Essbase.cfg Configuration Settings

l TRUE—Setting the value to TRUE enables Hybrid Analysis to account for null values during
SQL generation. Note that this setting may have impact on performance because SQL
generation is not optimized well on most relational databases.

l FALSE—Setting the value to FALSE prevents Hybrid Analysis from recognizing the null
values or gaps in the ragged hierarchy. This option does not affect performance. The default
is FALSE.

Description

This setting enables support of null values in columns of dimension tables that are used to create
dimensions for Hybrid Analysis-enabled outlines. The dimension build that these dimension
tables result in the outlines are known as ragged hierarchies.

If you have null values in columns of dimension tables used to create dimensions in a Hybrid
Analysis-enabled outline, use the HARAGGEDHIERARCHY setting in essbase.cfg to enable
Hybrid Analysis to account for these null values during SQL generation.

Example

In the following example, TRUE enables Hybrid Analysis to account for null values during SQL
generation.

HARAGGEDHIERARCHY TRUE

HARETRIEVENUMROW
Sets the maximum number of rows resulting from an SQL query to process at one time.

Syntax

HARETRIEVENUMROW [appname [dbname]] n

l appname—Optional. If you supply an application name, the setting applies to all databases
within the named application. If you do not supply an application name, the setting applies
to all applications and databases on the Essbase Server.

l dbname—Optional. If you supply a database name and an application name, the setting
applies only to the named database. If you do not also provide an application name, the
database is ignored and the setting applies to all applications and databases on the Essbase
Server.

l n—The value of n specifies how many rows to process at a time. The default is 100.

Description

This setting sets the number of rows to process at a time. A low value may degrade performance
and increase query time, but reduce memory usage.

Notes

An important distinction exists between the purposes of HARETRIEVENUMROW and
HAMAXQUERYROWS. Whereas HARETRIEVENUMROW affects memory consumption by

Configuration Settings Reference 455

controlling how many rows to process at one time, HAMAXQUERYROWS controls the number
of total rows to return.

HARETRIEVENUMROW and HAMAXQUERYROWS should not be confused with
QRYGOVEXECBLK which sets the maximum number of blocks that a query can access before
the query is terminated.

Example

In the following example, an Essbase query processes rows from each SQL query in sets of 50
rows.

HARETRIEVENUMROW 50

See Also

“HAMAXNUMSQLQUERY” on page 450

“HAMAXQUERYROWS” on page 451

HASOURCEDSNOS390
Set to TRUE if the DB2 data source for Hybrid Analysis resides on an OS/390 system.

Syntax

HASOURCEDSNOS390 appname dbname TRUE | FALSE

l appname—The name of the application affected by this setting. You can also use xxxxx as
a wildcard to indicate all applications.

l dbname—The name of the database affected by this setting. You can also use xxxxx as a
wildcard to indicate all databases in the specified application (or all databases on the server,
if xxxxx is used in place of appname).

l TRUE—Essbase recognizes a DB2 database as a Hybrid Analysis source on an OS/390
system. DB2 databases on other operating systems are not recognized.

l FALSE—Reverses the effect of the TRUE setting. This is the default state.

Examples

HASOURCEDSNOS390 xxxxx xxxxx TRUE

For all databases on the server, Essbase recognizes a DB2 database as a Hybrid Analysis source
on an OS/390 system.

HASOURCEDSNOS390 Sample xxxxx TRUE

For all databases in the Sample application, Essbase recognizes a DB2 database as a Hybrid
Analysis source on an OS/390 system.

HASOURCEDSNOS390 Sample Basic TRUE

For the Basic database in the Sample application, Essbase recognizes a DB2 database as a Hybrid
Analysis source on an OS/390 system.

456 Essbase.cfg Configuration Settings

HISLEVELDRILLTHROUGH
For an intersection to be available in a drill-through report, specifies that for each member in
the intersection the generation must be equal to or greater than the generation defined in the
report and the level must be equal to or lesser than the level defined in the report.

When HISLEVELDRILLTHROUGH is set, intersections whose members do not meet this
criteria are not available for drill-through. For example, when a member is promoted in the
hierarchy while creating an outline, the parent in the source database becomes null and the
hierarchy becomes ragged. The intersection that contains the null parent is excluded in the drill-
through report.

Syntax

HISLEVELDRILLTHROUGH appname

l appname—Specifies the application for which intersections must be well formed to be
available in drill-through reports.

You must restart the application to initialize any change to the configuration file.

Example

HISLEVELDRILLTHROUGH Sample

Specifies that, in the Sample application, intersections must be well formed to be available in
drill-through reports.

IBHFIXTHRESHOLD
Controls how many invalid block-header messages are returned to the client or server log, relative
to the number of level-0 blocks written to disk.

This setting does not apply to aggregate storage databases.

Syntax

IBHFIXTHRESHOLD appName | xxxx dbName | xxxx percentage

l appname—Optional. If you supply an application name but use xxxx in place of dbName,
the setting applies to all databases within the named application. If you use xxxx in place of
appName and dbName, the setting applies to all applications and databases on the server.

l dbname—Optional. If you supply a database name and an application name, the setting
applies only to the named database. If you use xxxx in place of dbName, the setting applies
to all databases within the named application. If you supply a database name, you must also
supply an application name.

l xxxx–If used in place of appName, and dbName, specifies all databases on the Essbase Server.

If used in place of dbName, specifies all databases on the application.

l percentage—Percentage of invalid block-header errors to report, relative to the number of
level-0 blocks on disk. Once the threshold is reached, a message is sent to the client requesting

Configuration Settings Reference 457

that the user rebuild the database, and the Essbase Server shuts down. Valid values are
integers 0 to 100.

Description

You must set the server configuration setting IBHFIXTHRESHOLD in the server
essbase.cfg file and restart Essbase Server before you can find and fix invalid block-header
problems.

This setting controls how many invalid block-header messages are returned to the client or server
log, relative to the number of level 0 blocks written to disk. After the threshold is reached, no
corrective action can be performed, and a message is sent to the client suggesting that the database
be rebuilt.

If messages are written to the client or server log indicating the presence of invalid block-header
errors, but the threshold that requires the database be rebuilt is not reached, you can either
rebuild the database or you can find and fix the errors using MaxL: Alter Database DBS-
NAME validate data to local | server logfile FILE-NAME.

Notes

l If Essbase runs in uncommitted mode when it receives an invalid block-header error
message, the current transaction may stop without any rollback, meaning that some data
may have changed. Be sure to verify that all transactions that you expected to finish have
finished. If not, you may need to clean up the data or rebuild the database.

l For information about types of invalid block-header errors and how to rebuild a database,
see the Oracle Essbase Database Administrator's Guide.

Example

IBHFIXTHRESHOLD sample basic 10

Specifies that on Sample Basic, if 10% of the data blocks have invalid block-header errors, it is
time to rebuild the database.

IBHFIXTHRESHOLD sample xxxx 15

Specifies that for any database in the Sample application, if 15% of the data blocks have invalid
block-header errors, it is time to rebuild the database.

IBHFIXTHRESHOLD xxxx xxxx 5

Specifies that for any database, if 5% of the data blocks have invalid block-header errors, it is
time to rebuild the database.

See Also

Alter Database (MaxL statement)

458 Essbase.cfg Configuration Settings

IDMIGRATION
Controls whether the unique identifiers from Shared Services are added to Essbase user and
group IDs.

Syntax

IDMIGRATION CHECKANDMIGRATE | NOMIGRATION | FORCEMIGRATION

l CHECKANDMIGRATE—Default option. Checks for identity attributes that have changed
in Shared Services and updates them in Essbase security.

l NOMIGRATION—Makes no changes in Essbase security.

l FORCEMIGRATION—Updates Essbase users and groups without checking whether
identity attributes have changed.

Description

With release 9.2.0.3, a unique identity field was added to user and group IDs to ensure the IDs
across Shared Services and Essbase could be uniquely identified. By default, after installing release
9.2.0.3 (or 9.3.1 if release 9.2.0.3 was skipped), when Essbase Server is started it migrates changed
Shared Services user and group IDs to include the unique identity field. You can use the
IDMIGRATION configuration setting to skip this migration or to force migration of all user
and group IDs.

Example

IDMIGRATION NOMIGRATION

IMPLIED_SHARE
Sets the default implied shared behavior for the Essbase Server, or for the specified application.

Syntax

IMPLIED_SHARE [app_name] TRUE | FALSE

l app_name—Optional. If provided, the setting applies only to the specified application;
otherwise, the setting applies to the Essbase Server.

l TRUE—Default value. Parent is treated as an implied share because it has only one child or
because it has only one child that consolidates to the parent.

l FALSE—Never use Implied Share unless explicitly set in the outline.

Notes

l If the IMPLIED_SHARE configuration setting is absent from Essbase.cfg, the default
setting of TRUE is used.

l Application-specific settings overrides any general Essbase Server settings.

l Outlines settings (specified using the Outline Editor or through the API) override all
Essbase.cfg file settings.

Configuration Settings Reference 459

l You must stop and restart the Essbase Server for it to read any changes to
IMPLIED_SHARE settings made in the configuration file.

l The outline must be opened, saved, and then restructured for any changes in the
IMPLIED_SHARE configuration setting now read by the Essbase Server to take effect.

l For IMPLIED_SHARE configuration settings to have any effect, the outline-specific setting
must be one of these default values:

m ESS_IMPLIEDSHARE_DEFAULT—Outline setting depends on Essbase.cfg. If
returned, no IMPLIED_SHARE entry existed in Essbase.cfg at the time the outline
was saved.

m ESS_IMPLIEDSHARE_DEFAULT_ON—Outline setting depends on Essbase.cfg. If
returned, IMPLIED_SHARE was set to TRUE in Essbase.cfg at the time the outline was
saved.

m ESS_IMPLIEDSHARE_DEFAULT_OFF—Outline setting depends on Essbase.cfg. If
returned, IMPLIED_SHARE was set to FALSE in Essbase.cfg at the time the outline
was saved.

Example

IMPLIED_SHARE Sample FALSE

Never use Implied Share for application Sample unless it is explicitly set.

INCRESTRUC
Specifies whether incremental restructuring is enabled for a database. You can enable
incremental restructuring for individual databases or for all databases.

This setting does not apply to aggregate storage databases.

Syntax

INCRESTRUC [appname [dbname]] TRUE | FALSE

l appname—Application name. Optional parameter for enabling incremental restructuring
for one or all databases in an application. This parameter may be used in combination with
dbname. If you omit appname, you cannot specify dbname, and INCRESTRUC will be
enabled for all applications and databases. See Example below.

l dbname—Database name. Optional parameter for enabling incremental restructuring for
an individual database. This parameter must be used in combination with appname. If you
specify dbname, you must also specify appname. See Example below.

l TRUE—When you make certain outline or dimension changes that normally result in
immediate database restructuring, Essbase defers restructuring until the next time it accesses
the affected blocks. See Notes below.

l FALSE—Essbase immediately restructures the database whenever an outline or dimension
change calls for it. The default value is FALSE (for all databases).

460 Essbase.cfg Configuration Settings

Notes

l Use the value xxxxx to indicate "all" for any application or database argument. For
example:INCRESTRUC xxxxx Basic TRUEenables incremental restructuring for any
application with a Basic database.

l Settings for nonexistent applications or databases are ignored.

l You can issue up to ten (total) INCRESTRUC statements per application.

Description

This setting specifies whether incremental restructuring is enabled for a database. You can enable
incremental restructuring for individual databases, for all databases in an application, or for all
databases on a server.

If you make certain outline or dimension changes that normally result in immediate database
restructuring, Essbase defers restructuring until the next time the affected block is accessed, or
until a full restructure is forced (e.g., by a full calculation). For example, if you add a member
to any dimension, or delete a member from a dense dimension, Essbase defers restructuring
when you enable INCRESTRUC.

When incremental restructuring is enabled, Essbase defers restructuring if you change the
database outline or a dimension in a way that does not cause structural changes.

The following changes result in incremental (deferred) restructuring:

l Adding a member to a sparse or dense dimension

l Deleting a member from a dense dimension

l Moving a member within a dense dimension

l Adding, moving, or deleting a Dynamic Calc member

l Adding, moving, or deleting a Dynamic Calc and Store member in a dense dimension

l Adding a Dynamic Calc and Store member in a sparse dimension

l Re-defining a Dynamic Calc member as type Dynamic Calc and Store

l Re-defining a Dynamic Calc and Store member as type Dynamic Calc

l Re-defining a Dynamic Calc or Dynamic Calc and Store member as a regular member

l Re-defining a regular member as type Dynamic Calc or Dynamic Calc and Store

Restructuring for Dynamic Calc members is different from restructuring for Dynamic Calc and
Store members. In general, Dynamic Calc and Store members have a greater impact on
restructuring.

The following changes result in immediate restructuring, regardless of whether incremental
restructuring is enabled:

l Adding or deleting a dimension

l Deleting a stored member of a sparse dimension

l Moving a member in a sparse dimension

l Moving or deleting a Dynamic Calc and Store member in a sparse dimension

Configuration Settings Reference 461

l Changing dimension definition from sparse to dense, or from dense to sparse

l Changing the order of sparse dimensions

m Certain member additions or changes to sparse dimensions can also trigger immediate
restructuring.

l Changing the order of dense dimensions

If an incremental restructure has already occurred and shared members are added to the outline,
Essbase ignores the INCRESTSRUC setting and performs a full restructure.

Essbase logs outline changes in an internal file, database_name.ocl. Essbase clears the file
whenever it does a full database restructure or when you clear or reset a database.

The database_name.ocl file can grow quite large in the meantime. To clear this file, issue
VALIDATE in ESSCMD. VALIDATE causes Essbase to restructure any blocks whose restructure
was deferred, and clears the file. When you issue VALIDATE, make sure the database is not in
Read-only mode (Read-only mode is used for archiving).

If set to TRUE, INCRESTRUC affects all databases in all applications on the Essbase Server
(except databases containing LROs), unless you have specified an appname and dbname.

The settings for INCRESTRUC are applied according to their order of appearance in the
essbase.cfg file. For example:

INCRESTRUC TRUE
INCRESTRUC Sample Basic FALSE

enables incremental restructuring for all databases except Sample Basic.

If you are using Linked Reporting Objects (LROs) in a database, incremental restructuring is
automatically disabled on that database. When you have incremental restructuring enabled for
all databases in all applications (that is, you have set INCRESTRUC to TRUE), the presence of
an LRO in a database disables incremental restructuring for that database, but does not affect
the other databases on the Essbase Server.

If you add shared members to an outline, incremental restructuring is automatically turned off.
If a restructure is triggered by outline changes, it will be done.

For more information about incremental restructuring, see the Oracle Essbase Database
Administrator's Guide.

Examples

INCRESTRUC Sample Basic TRUE

Defers restructuring the Basic database in the Sample application, whenever certain outline or
dimension changes are made, until the next time Essbase accesses the affected blocks; that is, it
enables incremental restructuring for that database.

INCRESTRUC Sample TRUE

Defers restructuring for all databases in the Sample application, whenever certain outline or
dimension changes are made, until the next time Essbase accesses the affected blocks; that is, it
enables incremental restructuring for those databases.

462 Essbase.cfg Configuration Settings

INCRESTRUC TRUE

Defers restructuring all databases, whenever certain outline or dimension changes are made,
until the next time Essbase accesses the affected blocks; that is, it enables incremental
restructuring for all databases in all applications on that server.

INCRESTRUC FALSE

Immediately restructures all databases whenever an outline or dimension change calls for it; that
is, it disables incremental restructuring for all databases in all applications on that server.

INDEXCACHESIZE
Defines the initial value for the index cache size for any new databases that are created after
Essbase is restarted. The index cache is a buffer in memory that holds index pages. Essbase
allocates this memory at startup of the database.

This setting does not apply to aggregate storage databases.

Syntax

INDEXCACHESIZE n

Where n is an integer expressed in bytes (B), kilobytes (K), megabytes (M), or gigabytes (G):

l Minimum value: 1 megabyte (1 M)

l Maximum value: 2 gigabytes (2 G)

l Default value: 10 megabytes (10 M)

l If a value is given without a B, K, M, or G qualifier, it is assumed the value is in bytes.

l The qualifier can be in upper or lowercase and can be entered adjacent to the value (10M)
or separated by a space (10 M).

Description

This setting specifies, in bytes, kilobytes, megabytes, or gigabytes, the initial size of the index
cache for newly created or migrated databases on the server. The specified value takes effect for
all new databases that are created after the server is started. To set or change the index cache size
for an individual database, use Administration Services or MaxL. For more information, see the
online help or HTML documentation for those components.

Example

INDEXCACHESIZE 100M

sets the index cache size of all subsequently created databases at 100 megabytes.

JVMMODULELOCATION
Specifies a Java Virtual Machine (JVM) library to be used by Essbase. This parameter is useful
if you have more than one version of the JVM library installed on the computer running Essbase.

Configuration Settings Reference 463

Syntax

JVMMODULELOCATION pathToJVM

Where pathToJVM is a fully-qualified path and filename of a Java Virtual Machine library to be
used by Essbase.

Description

If you do not include this command in the essbase.cfg file, or if you include this command
with an incorrect path and filename, Essbase searches the PATH (library path on UNIX systems)
for a version of the JVM library and uses the first version that it finds. If you include this
command without any parameters, Java Virtual Machine functions, including custom-defined
macros and custom-defined functions in the Calculator module, are disabled in the product.

Notes

For more information about setting up the Java Virtual Machine, see the Oracle Hyperion
Enterprise Performance Management System Installation and Configuration Guide.

Example

JVMMODULELOCATION C:\Hyperion\common\JRE\Sun\1.5.0\bin\client\jvm.dll

// The following statement (with no parameters) disables JVM-dependent functions

JVMMODULELOCATION

The path name cannot include spaces. In essbase.cfg, a parameter is not followed by a
semicolon. Do not enclose the path parameter in quotation marks.

LOCKTIMEOUT
Limits the amount of time a Spreadsheet Add-in user can hold an exclusive lock.

This setting does not apply to aggregate storage databases.

Syntax

LOCKTIMEOUT n

Where n is a number of seconds. The default value is 3600 seconds (60 minutes).

Description

This setting specifies, in seconds, the maximum amount of time a spreadsheet user can hold an
exclusive lock on a block. This essbase.cfg setting applies to all applications and databases
on the Essbase Server, and is meant to specify a default value for newly created or migrated
applications. To override this default value for any specific application, specify a value in
Administration Services or MaxL.

464 Essbase.cfg Configuration Settings

Example

LOCKTIMEOUT 300

commits locked data and releases the exclusive lock after the lock has been held for 300 seconds
(five minutes).

LOGINFAILUREMESSAGEDETAILED
Provides detailed error messages on user login failure.

Syntax

LOGINFAILUREMESSAGEDETAILED

Description

When the LOGINFAILUREMESSAGEDETAILED is specified Essbase provides detailed error
messages when a user login fails. The detailed error messages differentiate between, for example,
errors caused because the user does not exist, and errors caused by an invalid password.

If you do not specify this configuration setting, Essbase provides the message "Login fails due to
invalid login credentials" on user login failure, irrespective of the cause of the login failure.

Notes

Specifying the LOGINFAILUREMESSAGEDETAILED setting has security implications as it
potentially provides information to individuals who attempt to login to the system without
authorization.

Example

LOGINFAILUREMESSAGEDETAILED

LOGMESSAGELEVEL
Sets the level of messages written to the application log.

Syntax

LOGMESSAGELEVEL INFO | WARNING | ERROR

Where INFO, WARNING, and ERROR are priority levels:

l INFO—All three types of messages are written to the application log. This is the default.

l WARNING—Only Warning and Error messages are written to the application log.

l ERROR—Only error messages are written to the application log. No Warning or Info
messages are written to the application log.

Configuration Settings Reference 465

Notes

l This setting affects only the log messages. To control the messages displayed in the console,
use “DISPLAYMESSAGELEVEL” on page 423. To set the same level for both the console
and the log, use both settings.

l For more information about the application log, see the Oracle Essbase Database
Administrator's Guide.

Example

LOGMESSAGELEVEL WARNING

sets the log message level to Warning. Only Warning and Error messages are written to the
application log.

See Also

SETMSGLEVEL

“DISPLAYMESSAGELEVEL” on page 423

LROONSHAREDMBR
Specifies whether shared members have Linked Reporting Objects that are unique from those
of their corresponding regular members.

This setting does not apply to aggregate storage databases.

Syntax

LROONSHAREDMBR TRUE | FALSE

l TRUE—LROs related to regular members are unique, and not shared by shared members.
This is the default.

l FALSE—Shared members have the same LROs as corresponding regular members.

Description

A Linked Reporting Object (LRO) is an external file, cell note, or URL that you link to a cell in
a database. Users can then retrieve the object from the spreadsheet.

With an LROONSHAREDMBR setting of TRUE, Essbase makes shared member LROs unique
from the LROs of regular members.

For example, assume the LROONSHAREDMBR option is FALSE. If you link an LRO to the data
cell related to Diet Colas (100-20) under the parent member Colas (100), the corresponding
data cell for Diet Colas (100-20) under the parent member Diet shares the same LRO.

Example

LROONSHAREDMBR FALSE

466 Essbase.cfg Configuration Settings

MAXERRORMBRVERIFYREPORT
Determines the maximum number of members on which Essbase should report errors during
outline verification.

Syntax

MAXERRORMBRVERIFYREPORT n

where n the number of members. The default is 500.

Description

MAXERRORMBRVERIFYREPORT limits the number of members upon which
Essbaseperforms error reporting during outline verification. Setting a limit helps avoid
performance overhead when a large number of members may cause outline verification errors.

Example

MAXERRORMBRVERIFYREPORT 25

MAXFORMULACACHESIZE
Applies only to aggregate storage databases. Specifies the maximum size of the aggregate storage
formula cache to be made available for calculating members with formulas.

Syntax

MAXFORMULACACHESIZE [appname [dbname]] n

l appname—Optional. To set the cache size maximum for a specific application, specifiy the
application name.

l dbname—Optional. To set the cache size maximum for a specific database, specifiy the
database name. If dbname is specified, appname must also be specified.

l n—An integer that specifies the number of kilobytes (KB) to set as the maximum cache size
to be made available for calculating members with formulas.

Description

If the amount of cache that Essbase sets aside for calculating members of aggregate storage
outlines is insufficient, the following error is generated: "ERROR - 1200601 - Not enough
memory for formula execution. Set MAXFORMULACACHESIZE configuration parameter to
[n] and try again." The error recommends a value to use with the MAXFORMULACACHESIZE
setting.

Notes

l The entire specified amount is not used unless needed.

l It is recommended that you use this setting only in response to error 1200601.

Configuration Settings Reference 467

Example

MAXFORMULACACHESIZE 2048

Sets the aggregate storage formula cache size maximum to 2048 KB for every application and
database.

MAXLOGINS
Sets a limit on the number of user sessions that can be connected to the Essbase Server at any
one time.

Syntax

MAXLOGINS n

Where n is any integer from 1000 to 1048575 is valid. The default value is 10000.

Description

This setting limits the maximum number of user sessions allowed to connect to the Essbase
Server at any one time. This number includes multiple instances of the same user.

You may wish to adjust the value of MAXLOGINS to match computer resources, or to more
closely manage concurrent ports and user sessions. A concurrent port is used for each unique
combination of client machine, Essbase Server and login name. For example, the same user with
five open Excel worksheets connected to the same Essbase Server use one port, but five sessions.

Notes

l Increasing the value of MAXLOGINS increases memory use approximately 6 bytes per user
session.

l If the setting is less than the minimum value, 1000, the value is assumed to be 1000.

Example

MAXLOGINS 50000

increases the maximum number of simultaneous logins possible, from the default of 10000 to
50000.

See Also

“SERVERTHREADS” on page 496

MAX_REQUEST_GRID_SIZE
Specifies the maximum size of the request grid. The request grid is the number of cells requested
from the target (an aggregate storage database) and sent to the data source. Limiting the size of
the request grid, which can be millions of cells, ensures a reasonable response time.

468 Essbase.cfg Configuration Settings

If you find that you must set a small request grid size, you should look into improving the design
of the application.

Syntax

MAX_REQUEST_GRID_SIZE [appname [dbname]] n

l appname—Optional. Specifies the application for which the request grid size is to be set.

If you specify a value for appname and do not specify a value for dbname, the setting applies
to all databases in the specified application.

To enable the setting for a specific database, you must specify an application and database.

If you do not specify an application, you cannot specify a database, and the setting applies
to all applications and databases on Essbase Server.

l dbname—Optional. Specifies the database, in the application specified by appname, for
which the request grid size is to be set.

If you specify a value for dbname but do not specify a value for appname, your specification
is ignored, and logging diagnostic messages is enabled for all applications and databases on
Essbase Server.

l n—Specifies the size of the request grid to be returned from the data source.

The default value is 10 million (10000000) cells.

You must restart Essbase Server to initialize any change to the configuration file.

Example

MAX_REQUEST_GRID_SIZE ASOSamp 5000000

Limits the request grid to 5 million cells for all databases associated with the ASOSamp
application.

See Also

“MAX_RESPONSE_GRID_SIZE” on page 469 configuration setting

“ENABLE_DIAG_TRANSPARENT_PARTITION” on page 438 configuration setting

MAX_RESPONSE_GRID_SIZE
Specifies the maximum size of the response grid. The response grid is the number of cells that
the target (an aggregate storage database) sends to the source.

The amount of memory required to temporarily hold the response grid in the data target is
proportional to the size of the request grid. In the case of a huge request grid with millions of
cells, the amount of memory required for the response grid to be sent in one operation could
pose problems (for example, the system could reach memory boundaries or fail to allocate
enough memory). With the MAX_RESPONSE_GRID_SIZE configuration setting, Essbase splits
the request grid into slices of data and sends multiple, smaller response grids to the source.

Configuration Settings Reference 469

Syntax

MAX_RESPONSE_GRID_SIZE [appname [dbname]] n

l appname—Optional. Specifies the application for which the response grid size is to be set.

If you specify a value for appname and do not specify a value for dbname, the setting applies
to all databases in the specified application.

To enable the setting for a specific database, you must specify an application and database.

If you do not specify an application, you cannot specify a database, and the setting applies
to all applications and databases on Essbase Server.

l dbname—Optional. Specifies the database, in the application specified by appname, for
which the response grid size is to be set.

If you specify a value for dbname but do not specify a value for appname, your specification
is ignored, and logging diagnostic messages is enabled for all applications and databases on
Essbase Server.

l n—Specifies the size of the slice of the response grid to be sent to the data target.

The default value is 1 million (1000000) cells, which requires 8 MB of memory.

You must restart Essbase Server to initialize any change to the configuration file.

Example

MAX_RESPONSE_GRID_SIZE ASOSamp 500000

Limits the response grid to a half-million cells (which requires 4 MB of memory) for all databases
associated with the ASOSamp application.

See Also

“MAX_REQUEST_GRID_SIZE” on page 468 configuration setting

“ENABLE_DIAG_TRANSPARENT_PARTITION” on page 438 configuration setting

MDXFORMULARECURSIONLIMIT
When set to false, does not prevent the Essbase Server from going beyond 31 MDX formula
execution levels.

Syntax

MDXLIMITFORMULARECURSION [appname [dbname]] TRUE | FALSE

l appname—Optional. Specifies the application for which to set or remove the limit. If you
specify a value for appname and do not specify a value for dbname, the setting applies to all
databases in the specified application. To enable the setting for a specific database, you must
specify an application and database.

470 Essbase.cfg Configuration Settings

l dbname—Optional. Specifies the database, in the application specified by appname, for
which to set the limit. If you specify a value for dbname but do not specify a value for
appname, your specification is ignored.

l TRUE—Imposes a limit of 31 on the number of MDX formula execution levels. The default
setting is TRUE.

l FALSE—Imposes no limit on the number of MDX formula execution levels.

Description

MDXLIMITFORMULARECURSION limits the number of execution levels of MDX calculated
members or formulas. MDX calculated member or formula execution may be recursive (for
example, a formula can refer to itself, or a calculated member can refer to itself). By default,
Essbase limits the number of MDX formula execution levels, because formulas with excessive
execution levels may lead to stack overflow errors and crash the server. However, setting
MDXLIMITFORMULARECURSION to FALSE prevents Essbase from imposing the limitation.
You can use this setting when you know that a recursive execution in a formula/calculated
member will eventually terminate, and you wish to have a recursion depth greater than 31.

If an MDX formula reaches 31 execution levels and MDXLIMITFORMULARECURSION is not
set, or is set to TRUE, Essbase stops processing that formula and writes error messages in the
application log. If a formula reaches 31 execution levels and
MDXLIMITFORMULARECURSION is set to FALSE, Essbase continues processing that
formula.

Caution! Before setting MDXLIMITFORMULARECURSION to FALSE, be sure that the
MDX formulas in the outline are not infinitely recursive; for example, be sure that
formulas do not depend on each other. Infinite formula recursion may crash the
server.

MEMSCALINGFACTOR
Enables you to set data cache and data file cache sizes to values greater than 4GB. Applies when
running Essbase on 64-bit platforms.

Syntax

MEMSCALINGFACTOR appname dbname n

l appname—Application name

l dbname—Database name

l n—The factor used to create data cache and data file cache settings greater than 4 GB. The
data cache and data file cache settings in Essbase clients (Administration Services, MaxL,
and API) are multiplied by an integer, n. The resulting values are the actual cache sizes used
by Essbase.

Configuration Settings Reference 471

Description

When running Essbase on 64-bit platforms, optimal data cache and data file cache settings may
be larger than 4 GB. Although you cannot specify settings larger than 4 GB in Essbase clients,
you can enable larger settings using the MEMSCALINGFACTOR configuration setting. When
MEMSCALINGFACTOR is enabled, cache settings are multiplied by the factored amount, n.
The resulting values are the actual cache sizes used by Essbase.

Notes

Both the data cache and the data file cache are scaled using the same factor.

Example

If the data cache setting is 200 MB and, in the essbase.cfg file, MEMSCALINGFACTOR is
set as follows:

MEMSCALINGFACTOR Sample Basic 32

The data cache size for Sample Basic is 200 MB x 32 = 6400 MB.

See Also

“DATACACHESIZE” on page 412

“DATAFILECACHESIZE” on page 415

MULTIPLEBITMAPMEMCHECK
Enforces the size limit for the amount of memory that is used for the calculator cache when
Essbase selects the multiple bitmap cache option.

This setting does not apply to aggregate storage databases.

Syntax

MULTIPLEBITMAPMEMCHECK TRUE | FALSE

l TRUE—The size limit is enforced.

l FALSE—The size limit is not enforced.

Description

If the setting is present and its value is TRUE, then any time the memory limit is exceeded for
the calculator cache in multiple bitmap cache mode, it will switch to single bitmap mode and
enforce the size limit that you selected.

If the setting is not present or has any other value than TRUE, then the limit is not strictly
enforced, and your server process may grow too large.

Example

MULTIPLEBITMAPMEMCHECK TRUE

472 Essbase.cfg Configuration Settings

See Also

“CALCCACHE” on page 396

“PARCALCMULTIPLEBITMAPMEMOPT” on page 479

NETBINDRETRYDELAY
Specifies the amount of time, in milliseconds, that the application server retries on a bind failure.

Syntax

NETBINDRETRYDELAY n

Where n is an integer value, expressed in milliseconds. The default value is 10 seconds. The
minimum value is 0.

Example

NETBINDRETRYDELAY 5

Causes the application server network to retry on a bind failure after 5 milliseconds.

See Also

“NETDELAY” on page 473

“NETRETRYCOUNT” on page 474

“NETTCPCONNECTRETRYCOUNT” on page 475

NETDELAY
Specifies the network request delay time.

Syntax

NETDELAY n

Where n is an integer value of 100 or above, expressed in milliseconds. The default value is 200
milliseconds.

Description

This setting defines the network request delay time in milliseconds. This is the amount of time
an unsuccessful operation waits before Essbase retries the operation.

Example

NETDELAY 500

See Also

“NETBINDRETRYDELAY” on page 473

Configuration Settings Reference 473

“NETRETRYCOUNT” on page 474

“NETTCPCONNECTRETRYCOUNT” on page 475

NETRETRYCOUNT
Specifies the number of attempts Essbase is allowed to make a network connection before failing
and reporting an error.

Syntax

NETRETRYCOUNT n

Where n is an integer value. The default value is 600 retries. The minimum value is 300.

Example

NETRETRYCOUNT 400

See Also

“NETBINDRETRYDELAY” on page 473

“NETDELAY” on page 473

“NETTCPCONNECTRETRYCOUNT” on page 475

NETSSLHANDSHAKETIMEOUT
Specifies the maximum time that Essbase Client should wait for Essbase Agent to respond to a
secure session request before timing out.

Syntax

NETSSLHANDSHAKETIMEOUT n

Where n is the number of milliseconds expressed as a positive integer. The default is 10000
milliseconds (10 seconds).

Description

Use this setting to specify the maximum number of milliseconds that Essbase clients should wait
for a response to a secure session request before timing out.

Notes

l The minimum value is 100 milliseconds; values less than the minimum are ignored.

l The SSL handshake may timeout due to network congestion, or because the connection
modes at either end are mismatched (for example, a client in Clear mode tries to connect
to the secure port of Essbase Agent by mistake).

474 Essbase.cfg Configuration Settings

Example

NETSSLHANDSHAKETIMEOUT 20000

The SSL handshake fails after 20,000 milliseconds if Essbase Agent does not respond to the
secure session request.

See Also

“AGENTSECUREPORT” on page 388

“CLIENTPREFERREDMODE” on page 411

“ENABLECLEARMODE” on page 439

“ENABLESECUREMODE” on page 440

“SSLCIPHERSUITES” on page 502

“WALLETPATH” on page 515

For information on implementing SSL, see the Oracle Hyperion Enterprise Performance
Management System Security Administration Guide.

NETTCPCONNECTRETRYCOUNT
Specifies the number of attempts a client will make to connect to a TCP/IP network before failing
and reporting an error.

Syntax

NETTCPCONNECTRETRYCOUNT n

Where n is an integer value. The default value is 3.

Notes

Some causes of connection failures are, for example, network congestion, server inaccessibility,
and network interruption.

Example

NETTCPCONNECTRETRYCOUNT 100

See Also

“NETRETRYCOUNT” on page 474

“NETDELAY” on page 473

“NETBINDRETRYDELAY” on page 473

Configuration Settings Reference 475

NOMSGLOGGINGONDATAERRORLIMIT
Prevents data load or dimension build errors from being written to the application log after the
limit described by the value of DATAERRORLIMIT is reached.

Syntax

NOMSGLOGGINGONDATAERRORLIMIT TRUE | FALSE

The default value is FALSE.

Description

This setting controls the maximum number of error messages written to the data load error log
per data load and the dimension build error log per dimension build. This configuration setting,
NOMSGLOGGINGONDATAERRORLIMIT, stops any data load or dimension build error
messages from being written to the application log after the DATAERRORLIMIT value has been
reached.

The default value for DATAERRORLIMIT is 1000, so if you do not set DATAERRORLIMIT,
only the first 1000 errors will be written to the data load error log or the dimension build error
log.

Example

DATAERRORLIMIT 50000
NOMSGLOGGINGONDATAERRORLIMIT TRUE

Sets the limit on data load or dimension build error messages written to the error log at 50,000,
and further prevents any error messages after the first 50,000 from being written to the
application log.

See Also

“DATAERRORLIMIT” on page 413

NUMBEROFSECFILEBACKUPS
Specifies the maximum number of security backup files (essbase_timestamp.bak) that
Essbase creates and maintains. When the limit is exceeded, Essbase deletes the security backup
file with the oldest timestamp and creates the latest backup file.

Syntax

NUMBEROFSECFILEBACKUPS n

n—Specifies an integer between 2 and 10.

The default value is 2.

476 Essbase.cfg Configuration Settings

Note: You can configure the interval in which Essbase creates backup security files, and whether
Essbase automatically loads a valid backup security file at startup, if the essbase.sec
file is invalid.

Example

NUMBEROFSECFILEBACKUPS 5

See Also

“ENABLESWITCHTOBACKUPFILE” on page 440

“SECFILEBACKUPINTERVAL” on page 490

NUMERICPRECISION
Sets the number of precision digits used by Report Writer for numerical comparison.

Syntax

NUMERICPRECISION n

Where n is the number of precision digits to be considered in the numerical comparison.
Acceptable values for n are -1 through 15. A value of -1 indicates a full comparison. The default
value is 4.

Description

This setting defines the number of precision digits used by Report Writer for numerical
comparison.

The numeric comparison function subtracts one value from the other, and compares the
absolute value of the result with 10- n. If 10- n is greater than the absolute value of the subtraction
result, the numbers are equal.

Notes

l A value of -1 indicates a full comparison.

l For information about Report Writer, see the Oracle Essbase Database Administrator's
Guide.

Example

Suppose we compare the values 3.289999 and 3.290000 with a numeric precision of 2:

NUMERICPRECISION 2

Is 3.289999 == 3.290000 given a numeric precision of 2?

| 3.289999 - 3.290000 | = 0.000001 (the absolute value)

10-2 = 0.01

Configuration Settings Reference 477

0.01 > 0.000001, so the numbers are equal.

See Also

RESTRICT Report Writer Command

OUTLINECHANGELOG
Controls whether Essbase keeps a history of outline modifications.

Syntax

OUTLINECHANGELOG TRUE | FALSE

l TRUE—Essbase logs outline changes into the file database_name.olg.

l FALSE—Essbase does not log outline changes. The default is FALSE.

Description

If OUTLINECHANGELOG is set to TRUE, Essbase logs all outline changes into the file
database_name.olg. Database administrators can review the outline revision history in
the .olg file and gather enough information to roll back changes if needed.

Each database contains a separate outline change log file in the same location as the database.
The file is stored in the database directory of the Essbase Server installation.

The data format of the outline change log is:

l Date and time of outline modification

l Name of the user who made the change

l Type of change the user made

l Details describing the type of change made

Notes

l During a restructure, Essbase holds outline change information in memory until all updates
have been made to the outline change log. Turning on the outline change log might affect
your restructure performance, particularly after dimension builds of several hundred or
more members.

l To set the size of the outline change log, use the “OUTLINECHANGELOGFILESIZE” on
page 479 parameter in your essbase.cfg file.

Example

OUTLINECHANGELOG TRUE

See Also

“OUTLINECHANGELOGFILESIZE” on page 479

“SILENTOTLQUERY” on page 497

478 Essbase.cfg Configuration Settings

OUTLINECHANGELOGFILESIZE
Sets the maximum file size of the outline change log.

Syntax

OUTLINECHANGELOGFILESIZE n

Where n is the number of bytes to allocate for the change log. The default is 64,000 bytes. The
minimum is 8,092 bytes. The maximum is 2 megabytes.

Description

This setting sets the maximum file size of the outline change log in bytes. When the outline
change log reaches the maximum file size, Essbase copies the contents of the file to a separate
backup file with the same name as the outline change log file (database_name.olg), but with
an . olb extension.

Notes

l The outline change log is disabled by default. To enable it, use the
“OUTLINECHANGELOG” on page 478 parameter in your essbase.cfg file.

l The outline change log file is located in the database directory of the Essbase Server
installation. It is named in the format database_name.olg.

l The default, minimum, and maximum file sizes for the backup file are the same as the file
sizes specified for the outline change log file.

l Each time the outline change log file reaches its maximum file size, Essbase clears the outline
change log and replaces the backup file with a backup of the current outline change log.

Example

OUTLINECHANGELOGFILESIZE 8092

See Also

“OUTLINECHANGELOG” on page 478

“SILENTOTLQUERY” on page 497

PARCALCMULTIPLEBITMAPMEMOPT
Optimizes memory use when using multiple bitmap mode during parallel calculation.

This setting does not apply to aggregate storage databases.

Syntax

PARCALCMULTIPLEBITMAPMEMOPT TRUE | FALSE

l TRUE—Memory usage is optimized.

l FALSE—Memory usage is not optimized.

Configuration Settings Reference 479

Description

If the setting is present and its value is TRUE, then Essbase optimizes memory usage when using
parallel calculation in calculator cache multiple bitmap mode. This setting can be used together
with, or separately from, “MULTIPLEBITMAPMEMCHECK” on page 472.

Example

PARCALCMULTIPLEBITMAPMEMOPT TRUE

See Also

“CALCCACHE” on page 396

“MULTIPLEBITMAPMEMCHECK” on page 472

PERSISTUSERATLOGIN
When a user logs on to Essbase, specifies whether to add the user to the essbase.sec security
file, if the user does not already exist in the file.

Syntax

PERSISTUSERATLOGIN TRUE | FALSE

l TRUE—Essbase adds the user to the security file, and tracks user information (such as the
time the user last logged into Essbase) and named connections.

l FALSE—The user is not added to the security file.

Example

PERSISTUSERATLOGIN TRUE

PIPEBUFFERSIZE
Sets the size of the buffer used for communication between the Spreadsheet Add-in extractor
and Report Writer.

Syntax

PIPEBUFFERSIZE n

Where n is an integer value from 2,048 to 65,534, expressed in bytes. The default value is 4K
(4,096 bytes).

Description

This setting determines the size of the buffer used for communication between the Spreadsheet
Add-in extractor and Report Writer on the network.

480 Essbase.cfg Configuration Settings

Example

PIPEBUFFERSIZE 20000

defines a 20-kilobyte buffer to store pipes.

PORTINC
Specifies the value of the increment in between port numbers used by the Essbase agent process.

Syntax

PORTINC n

Where n is the value of n specifies the increment between port numbers that the Agent used to
try and find an available port. The default value is 1.

Description

This setting specifies the increment value between ports used by the Agent when it tries to find
an available port.

You may wish to change the default for many reasons. These are two common reasons:

l The default port, 33768, is inappropriate for your site.

l You may wish to install a second Agent on a single computer to facilitate testing. see
SERVERPORTEND and the related configuration settings to assign the second Agent to a
different port than the first. Use SERVERPORTEND along with AGENTPORT,
SERVERPORTBEGIN, and PORTINC.

Caution! More than one Agent per computer should not be used in production systems.

Notes

l You must insert these settings in both the configuration file for the Essbase Server computer
and the configuration file for the client computer.

l You must perform several other steps in order to enable multiple agents on one computer.
See the Oracle Essbase Database Administrator's Guide for instructions.

Example

AGENTPORT 1478
SERVERPORTBEGIN 32470
SERVERPORTEND 32600
PORTINC 5

This example would produce these results:

l AGENTPORT sets the port that the additional Agent will use at 1478.

l SERVERPORTBEGIN sets the value that the first server process will try to use for a port at
32470.

Configuration Settings Reference 481

l SERVERPORTEND sets the highest port number value this installation can use.

l PORTINC controls the increment value used for each port. In this example, if the first server
process was able to use port number 32470, then the next process would use 32475.

See Also

“AGENTPORT” on page 387

“SERVERPORTBEGIN” on page 493

“SERVERPORTEND” on page 494

“PORTUSAGELOGINTERVAL” on page 482

PORTUSAGELOGINTERVAL
Enables Essbase Server to log, at a specified interval, the number of ports being used.

Syntax

PORTUSAGELOGINTERVAL n

Where n represents the number of minutes between each check of the number of ports in use.
The value of n can be any whole number from 1 - 60, with five as the recommended minimum
and default value. Essbase ignores any portion of a non-whole number. For example, 2.5 is
evaluated as 2 minutes. Statistics are written to the log immediately after each check.

Description

PORTUSAGELOGINTERVAL enables you to set an interval at which to log the number of ports
being used. By analyzing the information in the log, you can monitor port utilization and identify
a need for more ports before end users are unable to connect.

To enable Essbase Server to check port use statistics and write those statistics to the log:

1. Edit the server configuration file essbase.cfg to include the
PORTUSAGELOGINTERVAL setting.

2. Restart Essbase Server.

3. View the Essbase Server Log file. You will see entries similar to the following output:

[Mon Apr 22 00:48:50 2003]Local/ESSBASE0///Info(1056214)
[3] ports in use, [10] ports allowed

Examples

PORTUSAGELOGINTERVAL 10

Essbase writes the port use statistics to the Essbase Server log every 10 minutes.

PORTUSAGELOGINTERVAL

Essbase writes the port use statistics to the Essbase Server log every five minutes (the default
value).

482 Essbase.cfg Configuration Settings

PORTUSAGELOGINTERVAL 6.75

Essbase ignores the non-whole portion of the number and writes the port use statistics to the
Essbase Server log every six minutes.

See Also

“SERVERPORTBEGIN” on page 493

“SERVERPORTEND” on page 494

“PORTINC” on page 481

“AGENTPORT” on page 387

PRELOADALIASNAMESPACE
Applies only to aggregate storage databases. Determines whether the namespace for alias names
is preloaded at database startup.

Syntax

PRELOADALIASNAMESPACE TRUE | FALSE

l TRUE—The default. The namespace for alias names is preloaded at database startup.

l FALSE—The namespace for alias names is paged into memory as needed.

Description

PRELOADALIASNAMESPACE determines whether the namespace for alias names is preloaded
at database startup. Preloading the namespace may improve performance but uses additional
memory. The alias namespace is used to search for an alias by name. The search occurs during
data load, during report and spreadsheet queries, and during MDX queries.

Example

PRELOADALIASNAMESPACE FALSE

See Also

“PRELOADMEMBERNAMESPACE” on page 483

PRELOADMEMBERNAMESPACE
Applies only to aggregate storage databases. Determines whether the namespace for member
names is preloaded at database startup.

Syntax

PRELOADMEMBERNAMESPACE TRUE | FALSE

l TRUE—The default. The namespace for member names is preloaded at database startup.

Configuration Settings Reference 483

l FALSE—The namespace for member names is paged into memory as needed.

Description

PRELOADMEMBERNAMESPACE determines whether the namespace for member names is
preloaded at database startup. Preloading the namespace may improve performance but uses
additional memory. The member namespace is used to search for a member by name. The search
occurs during data load, during report and spreadsheet queries, and during MDX queries.

Example

PRELOADMEMBERNAMESPACE FALSE

See Also

“PRELOADALIASNAMESPACE” on page 483

PRELOADUDANAMESPACE
Determines whether the namespace for UDAs is preloaded at application startup.

Syntax

PRELOADUDANAMESPACE appname TRUE | FALSE

l appname—Application for which the UDA namespace is preloaded at start up.

l TRUE—Namespace for UDAs is preloaded at application startup.

l FALSE—The default. Namespace for UDAs is paged into memory, as needed.

Description

Because querying member sets by UDA can take a long time in large outlines (for example, with
one million or more members), in which many members (for example, half a million members)
are assigned to one UDA, and login time can be slow for users with filters containing UDAs,
preloading the UDA namespace may improve performance. However, preloading the UDA
namespace uses additional memory. To calculate the additional memory consumption, use these
formulas:

32-bit platforms:

Four additional bytes are used per UDA associated with a member, plus 12 bytes per distinct
UDA. The formula:

(#_of_members x #_of_UDAs_per_member x 4 bytes) + (#_of_distinct_UDAs x 12 bytes)

64-bit platforms:

Eight additional bytes are used per UDA associated with a member, plus 24 bytes per distinct
UDA. The formula:

(#_of_members x #_of_UDAs_per_member x 8 bytes) + (#_of_distinct_UDAs x 24 bytes)

484 Essbase.cfg Configuration Settings

For example, for an outline with 1,000,000 members and 500,000 distinct UDAs, in which two
UDAs are associated with each member, the additional memory needed is:

32-bit platforms:

(1,000,000 members x 2 UDAs associated to each member x 4 bytes) + (500,000 distinct
UDAs x 12 bytes) ≈ 14 MB

64-bit platforms:

(1,000,000 members x 2 UDAs associated to each member x 8 bytes) + (500,000 distinct
UDAs x 24 bytes) ≈ 28 MB

Example

PRELOADUDANAMESPACE ASOsamp TRUE

QRYGOVEXECBLK
Sets the maximum number of blocks that a query can access before the query is terminated.

This setting does not apply to aggregate storage databases.

Syntax

QRYGOVEXECBLK [appname [dbname]] n

l appname—Optional. Applies the query block limit to the application specified. If you specify
appname, you must also specify a value for n, or Essbase Server ignores QRYGOVEXECBLK.
If you do not specify an application, you cannot specify a database, and the query block limit
applies to all applications and databases on the server. If you specify a value for appname
and do not specify a value for dbname, the query time limit applies to all databases in the
specified application.

l dbname—Optional. Must be used with appname and n, or Essbase Server ignores
QRYGOVEXECBLK. If you specify dbname, appname, and n, the query block limit is applied
only to the specified database.

l n—The value of n specifies the number of blocks that Essbase Server allows a query to access
before the query is terminated. You must specify this parameter or the server ignores
QRYGOVEXECBLK. If you do not specify appname or dbname, the query block limit applies
to the entire server.

Description

QRYGOVEXECBLK specifies the maximum number of blocks that a query can retrieve before
Essbase Server terminates that query (a request for information sent to a database). You can
apply this setting to an entire server, to all the databases in a single application, or to a single
database.

When a query exceeds the block limit and is terminated, an error message is written to the
application log of the application accessed for the query.

Restarting Essbase Server after adding or changing this setting activates the new setting values.

Configuration Settings Reference 485

Use QRYGOVEXECBLK to prevent these types of queries:

l A long-running query against a database that accesses atrributes at a high level, forcing many
dynamic calculations to occur.

l A query that uses the zoom-in "Drill to bottom" option in a large dimension.

l A query that uses the zoom-in "Drill to all levels" option in a a large dimension.

Use QRYGOVEXECBLK, for example, if you have users who try to retrieve so much data in a
single query that their query appears to hang for minutes at a time. A query launched against
the database involving attribute dimensions, for example, may be larger than the user realizes.

Notes

l If you use an invalid value (such as a negative number, a letter, a word, or a special character)
for n, Essbase Server ignores QRYGOVEXECBLK.

l Query governor settings are ignored during data load and calculation. You can leave query
governor settings in the configuration file whether you are performing these operations or
querying against the data.

l If a query involves one or more Hybrid Analysis Relational Sources, QRYGOVEXECBLK is
disabled upon encountering the first relational member.

Example

QRYGOVEXECBLK Sample Basic 3

Sets three blocks as the maximum number of blocks that a query to Sample Basic can access
before being terminated. A block is created for each unique combination of sparse dimension
members. If a user issues a query that accesses four unique combinations of sparse dimensions,
Essbase Server terminates the query and writes a message to the application log.

QRYGOVEXECBLK 5

Sets five blocks as the maximum number of blocks that a query can access before being
terminated. The query time limit applies to all applications and databases on Essbase Server that
correspond to the essbase.cfg file containing this setting.

See Also

“QRYGOVEXECTIME” on page 486

“HAMAXQUERYROWS” on page 451

“HAMAXQUERYTIME” on page 452

For more information about the application log, see the Oracle Essbase Database Administrator's
Guide.

QRYGOVEXECTIME
Sets the maximum amount of time a query can use to retrieve and deliver information before
the query is terminated.

486 Essbase.cfg Configuration Settings

Syntax

QRYGOVEXECTIME [appname [dbname]] n

l appname—Optional. Applies the query time limit to the application specified. If you specify
appname, you must also specify a value for n, or Essbase Server ignores
QRYGOVEXECTIME. If you do not specify an application, then you cannot specify a
database, and the query time limit applies to all applications and databases on Essbase Server.
If you specify a value for appname and do not specify a value for dbname, the query time
limit applies to all databases in the specified application.

l dbname—Optional. Must be used with appname and n, or Essbase Server ignores
QRYGOVEXECTIME. If you specify dbname, appname, and n, the query time limit is
applied only to the specified database.

l n—Integer specifying the number of seconds that Essbase Server allows a query to run before
the query is terminated. You must specify this parameter or Essbase Server ignores
QRYGOVEXECTIME. If do not specify appname or dbname, the query time limit applies
to the entire server.

Description

QRYGOVEXECTIME specifies the maximum amount of time that a query can run before
Essbase Server terminates the query (a request for information sent to a database). You can apply
this setting to an entire server, to all the databases in a single application, or to a single database.

When a query exceeds the time limit and is terminated, an error message is written to the
application log of the application accessed for the query.

Restarting Essbase Server after adding or changing this setting activates the new setting values.

Use QRYGOVEXECTIME to prevent these types of queries:

l A long-running query against a database that accesses atrributes at a high level, forcing many
dynamic calculations to occur.

l A query that uses the "Drill to bottom" option in a large dimension.

l A query that uses the "Drill to all levels" option in a a large dimension.

Use QRYGOVEXECTIME, for example, if you have users who try to retrieve so much data in a
single query that their query appears to hang for minutes at a time.

Notes

l Because the query time setting is evaluated in 10 second increments, the query may actually
run nine seconds longer than specified before being terminated.

l If you use an invalid value (such as a negative number, a letter, a word, or a special character)
for n, the server ignores QRYGOVEXECTIME.

l Query governor settings are ignored during data load and calculation. You can leave query
governor settings in the configuration file whether you are performing these operations or
querying against the data.

Configuration Settings Reference 487

l If a query involves one or more Hybrid Analysis Relational Sources, QRYGOVEXECTIME
is disabled upon encountering the first relational member.

Example

QRYGOVEXECTIME Sample Basic 20

Sets 20 seconds as the maximum time that a query can run before being terminated. In this
example the restriction applies only to the Basic database in the Sample application.

QRYGOVEXECTIME 45

Sets 45 seconds as the maximum time that a query can run before being terminated. The query
time limit applies to all applications and databases on the server that correspond to the
essbase.cfg file containing this setting.

See Also

“QRYGOVEXECBLK” on page 485

“HAMAXQUERYROWS” on page 451

“HAMAXQUERYTIME” on page 452

For more information about the application log, see the Oracle Essbase Database Administrator's
Guide.

REPLAYSECURITYOPTION
Specifies the user security settings that are used when replaying logged transactions.

Syntax

REPLAYSECURITYOPTION n

n—An integer that specifies the user security setting. Valid values are as follows:

l 1—(Default) Specifies the security settings of the user who originally performed the
transaction. If that user no longer exists or that user's username was changed, the replay
operation will fail.

Oracle does not recommend renaming another user with the name of the original user, as
the security settings of the renamed user might not match those of the original user and the
transaction might be played with the incorrect security settings.

l 2—Specifies the security settings of the administrator performing the replay operation.

l 3—Specifies the security settings of the user who originally performed the transaction. If
that user no longer exists or that user's username was changed, the security settings of the
administrator performing the replay operation are used.

You must restart Essbase Server to initialize any change to the configuration file.

488 Essbase.cfg Configuration Settings

See Also

Alter Database MaxL statement

“TRANSACTIONLOGLOCATION” on page 510 configuration setting

“TRANSACTIONLOGDATALOADARCHIVE” on page 508 configuration setting

REPLICATIONASSUMEIDENTICALOUTLINE
Optimizes the replication of a partitioned, aggregate storage database when the aggregate storage
database is the target and a block storage database is the source, and the two outlines are identical.

The setting affects only the target aggregate storage application (not the source block storage
application) and does not apply to block storage replication.

REPLICATIONASSUMEIDENTICALOUTLINE can be enabled at the server, application, or
database level. You can also use the alter database MaxL statement with the
replication_assume_identical_outline grammar to enable replication optimization at the
database level only.

Syntax

REPLICATIONASSUMEIDENTICALOUTLINE [appname [dbname]] TRUE | FALSE

l appname—Optional. Specifies the application to be enabled for replication optimization.

If you specify a value for appname and do not specify a value for dbname, the setting applies
to all databases in the specified application.

To enable the setting for a specific database, you must specify an application and database.

If you do not specify an application, you cannot specify a database, and the setting applies
to all applications and databases on Essbase Server.

l dbname—Optional. Specifies the database, in the application specified by appname, to be
enabled for replication optimization.

If you specify a value for dbname but do not specify a value for appname, your specification
is ignored, and replication optimization is enabled for all applications and databases on
Essbase Server.

l TRUE | FALSE—Specifies whether to enable or disable replication optimization.

You must restart Essbase Server to initialize changes to the configuration file.

Example

REPLICATIONASSUMEIDENTICALOUTLINE AsoSamp.Sample TRUE

Optimizes the replication of the ASOsamp.Sample database, when it is the target of a replicated
partition and its outline is identical to the outline of the source block storage database.

See Also

alter database (aggregate storage) MaxL statement

Configuration Settings Reference 489

RTDEPCALCOPTIMIZE
Sets whether the @CURRMBRRANGE calculation function behaves as runtime dependent or
non runtime dependent.

Syntax

RTDEPCALCOPTIMIZE [appname [dbname]] TRUE | FALSE

l appname—Optional. If you supply an application name, the setting applies to all databases
within the named application. If you do not supply an application name, the setting applies
to all applications and databases on the Essbase Server.

l dbname—Optional. If you supply a database name and an application name, the setting
applies only to the named database. If you do not also provide an application name, the
database is ignored and the setting applies to all applications and databases on the Essbase
Server.

l TRUE—This is the default. @CURRMBRRANGE behaves as a non runtime dependent
formula. This, the default behavior, could result in incorrect calculation results if the
@CURGEN or @CURLEV functions are used as arguments to @CURMBRRANGE, because
Essbase would fail to generate the correct dependency list to compute @CURRMBRRANGE.

l FALSE—@CURRMBRRANGE behaves as runtime dependent formula, but only when
@CURGEN or @CURLEV are passed as an argument to @CURRMBRRANGE. Calculations
involving @CURRMBRRANGE may run slowly, as computation of runtime dependent
formulas requires more memory.

Example

RTDEPCALCOPTIMIZE FALSE

SECFILEBACKUPINTERVAL
Specifies the maximum amount of time (in seconds) that Essbase waits before creating a backup
of the essbase.sec file. Named, essbase_timestamp.bak, Essbase can create and maintain
from 2 to 10 backup security files.

Syntax

SECFILEBACKUPINTERVAL x

n—Specifies the amount of time in seconds.

The default value is 300 seconds (which is five minutes). A value of 0 means that Essbase won't
perform this check.

Note: You can configure the number of backup security files that Essbase creates and maintains,
and whether Essbase automatically loads a valid backup security file at startup, if the
essbase.sec file is invalid.

490 Essbase.cfg Configuration Settings

Example

SECFILEBACKUPINTERVAL 600

See Also

“NUMBEROFSECFILEBACKUPS” on page 476

“ENABLESWITCHTOBACKUPFILE” on page 440

SECURITYFILECOMPACTIONPERCENT
Specifies the percentage of obsolete space in the security file (essbase.cfg) that is a factor in
triggering compaction of that file.

Syntax

SECURITYFILECOMPACTIONPERCENT n

Where n is the percentage limit of obsolete space that will trigger compaction of the security file.

n is an integer between 10 and 100. The recommended value is 30.

Description

Changing or deleting the following Essbase Server security entities can cause fragmentation in
the security file (essbase.sec): filters, users, groups, applications, databases, substitution
variables, disk volumes, passwords, and other Essbase Server objects.

Essbase compacts the security file automatically each time the Agent is stopped. You can use the
SECURITYFILECOMPACTIONPERCENT configuration setting to trigger compaction of the
security file when the agent is still running and no Agent activity has occurred for the period of
time specified by the "timeout" Essbase Server property.

Notes

l The timeout period is a server property defined, per user, in Administration Services or
MaxL. Compaction based on the SECURITYFILECOMPACTIONPERCENT configuration
setting occurs only when the timeout has caused all users to be logged out.

l Once compaction is initiated through this configuration setting, if you log back in and
perform a task that requires Agent activity, the task will be delayed until compaction is
completed.

l You can force compaction using the COMPACT Agent command or the alter system MaxL
statement.

l See the appropriate documentation for details.

Example

SECURITYFILECOMPACTIONPERCENT 30

Configuration Settings Reference 491

See Also

display system security file fragmentation_percent; (MaxL)

alter system compact security file (MaxL)

COMPACT (Agent command), in the Oracle Essbase Database Administrator's Guide

SERVERLEASEEXPIRATIONTIME
Sets the maximum amount of time that Essbase Server can own a lease before the lease is
terminated.

Syntax

SERVERLEASEEXPIRATIONTIME n

Where n is an integer specifying the number of seconds before a lease expires. The default value
is 20.

Example

SERVERLEASEEXPIRATIONTIME 20

See Also

“AGENTLEASEEXPIRATIONTIME” on page 384

“AGENTLEASEMAXRETRYCOUNT” on page 385

“AGENTLEASERENEWALTIME” on page 385

“SERVERLEASEEXPIRATIONTIME” on page 492

“SERVERLEASEMAXRETRYCOUNT” on page 492

“SERVERLEASERENEWALTIME” on page 493

SERVERLEASEMAXRETRYCOUNT
Specifies the number of times that Essbase Server attempts to acquire or renew a lease. If the
attempts are unsuccessful, the server terminates itself.

Syntax

SERVERLEASEMAXRETRYCOUNT n

Where n is an integer. The default value is 5.

Example

SERVERLEASEMAXRETRYCOUNT 5

492 Essbase.cfg Configuration Settings

See Also

“AGENTLEASEEXPIRATIONTIME” on page 384

“AGENTLEASEMAXRETRYCOUNT” on page 385

“AGENTLEASERENEWALTIME” on page 385

“SERVERLEASEEXPIRATIONTIME” on page 492

“SERVERLEASEMAXRETRYCOUNT” on page 492

“SERVERLEASERENEWALTIME” on page 493

SERVERLEASERENEWALTIME
Specifies the time interval after which Essbase Server renews its lease.

Syntax

SERVERLEASERENEWALTIME n

Where n is an integer specifying the number of seconds available to reestablish ownership after
a lease expires. The default value is 10.

Example

SERVERLEASERENEWALTIME 10

See Also

“AGENTLEASEEXPIRATIONTIME” on page 384

“AGENTLEASEMAXRETRYCOUNT” on page 385

“AGENTLEASERENEWALTIME” on page 385

“SERVERLEASEEXPIRATIONTIME” on page 492

“SERVERLEASEMAXRETRYCOUNT” on page 492

SERVERPORTBEGIN
Specifies the first port number that Essbase tries to use for its first application process (ESSSVR).

Syntax

SERVERPORTBEGIN n

Where n specifies the port number that Essbase tries to use for its first application process. This
port number should not be in use by any other process. The default value is 32768.

Description

SERVERPORTBEGIN specifies the first port that Essbase tries to use for the first application
process it tries to start.

Configuration Settings Reference 493

You may want to change the default for many reasons. These are two common reasons:

l The default port, 1423, is inappropriate for your site.

l You intend to install a second Agent on a single computer to facilitate testing. Use
SERVERPORTBEGIN and the related configuration settings to assign the second Agent to
a different port than the first. Use SERVERPORTBEGIN with AGENTPORT,
SERVERPORTEND, and PORTINC.

Caution! More than one Agent per computer should not be used in production systems.

Notes

l You must perform several other steps in order to enable multiple agents on one computer.
See the Oracle Essbase Database Administrator's Guide for instructions.

l SERVERPORTBEGIN and SERVERPORTEND cannot have the same value.

Example

AGENTPORT 1478
SERVERPORTBEGIN 32470
SERVERPORTEND 32600
PORTINC 5

This example would produce these results:

l AGENTPORT sets the port that the additional Agent will use at 1478.

l SERVERPORTBEGIN sets the value that the first application process will try to use for a
port at 32470.

l SERVERPORTEND sets the highest port number value this installation can use.

l PORTINC controls the increment value used for each port. In this example, if the first
application process was able to use port number 32470, then the next process would use
32475.

See Also

“AGENTPORT” on page 387

“SERVERPORTEND” on page 494

“PORTINC” on page 481

“PORTUSAGELOGINTERVAL” on page 482

SERVERPORTEND
Specifies the highest value that Essbase tries to use for a port when it starts an application process
(ESSSVR). If the value is unavailable, the application process fails.

Syntax

SERVERPORTEND n

494 Essbase.cfg Configuration Settings

Where n specifies the highest value for a port number that Essbase tries to use for a application
process. If the port is unavailable, the application process fails. This port number should not be
in use by any other process. The default value is 33768.

Description

SERVERPORTEND specifies the highest port number that Essbase uses when trying to start an
application process.

You may want to change the default for many reasons. These are two common reasons:

l The default port, 33768, is inappropriate for your site.

l You want to install a second Agent on a single computer to facilitate testing. Use
SERVERPORTEND and the related configuration settings to assign the second Agent to a
different port than the first. Use SERVERPORTEND along with AGENTPORT,
SERVERPORTBEGIN, and PORTINC.

Caution! More than one Agent per computer should not be used in production systems.

Notes

l You must perform several other steps in order to enable multiple agents on one computer.
See the Oracle Essbase Database Administrator's Guide for instructions.

l SERVERPORTBEGIN and SERVERPORTEND cannot have the same value.

Example

AGENTPORT 1478
SERVERPORTBEGIN 32470
SERVERPORTEND 32600
PORTINC 5

This example would produce these results:

l AGENTPORT sets the port that the additional Agent will use at 1478.

l SERVERPORTBEGIN sets the value that the first application process will try to use for a
port at 32470.

l SERVERPORTEND sets the highest port number value this installation can use.

l PORTINC controls the increment value used for each port. In this example, if the first server
process was able to use port number 32470, then the next process would use 32475.

See Also

“AGENTPORT” on page 387

“SERVERPORTBEGIN” on page 493

“PORTINC” on page 481

“PORTUSAGELOGINTERVAL” on page 482

Configuration Settings Reference 495

SERVERTHREADS
Overrides the default value for the number of threads that applications may spawn.

Syntax

SERVERTHREADS [application_name] n

l application_name—Optional. If you specify an application, all the databases in that
application are affected by the SERVERTHREADS setting. If you leave out the application
name parameter, the setting applies to the entire Essbase Server.

l n—The number of threads the application may produce:

m Between 20 and 500 on 32-bit platforms.

m Between 20 and 1024 on 64-bit platforms.

Specify an integer between 20 and the maximum, inclusive. If you use the .CFG setting to
specify a number lower than 20, it is interpreted as 20. If you use the .CFG setting to specify
a number higher than the maximum, it is interpreted as 500 (on 32-bit platforms), or 1024
(on 64-bit platforms).

See Notes below.

Description

SERVERTHREADS overrides the default value for the number of threads that application
processes may spawn. The default value is defined by the number of licensed ports. Use this
setting to make the maximum number of threads higher than the default value. See Notes.

When a transaction is requested, the application assigns a thread to the transaction and releases
the thread when the transaction is complete.

Notes

l The default value of SERVERTHREADS depends on the number of available ports on the
Essbase Server. Note that one additional port is available for the system administrator, so
that for 5 licensed ports, 6 available ports are shown when you type PORTS in the Agent
window.

m 5 or fewer ports—5 default threads

m 6 to 11 ports—10 default threads

m 11 or more ports—20 default threads

l Although the actual maximum value you can set is 500 (or 1024 on 64-bit platforms), the
maximum number of threads an operating system can handle might be much lower. It is
strongly recommended that you use the default value. If you want to set this parameter to
a value higher than the default, check with your system administrator, as higher values can
significantly consume system resources.

l If your Essbase Server computer freezes while running multiple reports at the same time,
increase the value of SERVERTHREADS by one for each report you run.

496 Essbase.cfg Configuration Settings

Example

SERVERTHREADS 25

Allows all applications to spawn up to 25 threads.

SERVERTHREADS Sample 100

Allows the Sample application to spawn up to 100 threads.

See Also

“AGENTDELAY” on page 382

“AGENTTHREADS” on page 388

SILENTOTLQUERY
Controls whether Essbase keeps a history of outline queries in the application log file.

Syntax

SILENTOTLQUERY [appName [dbName]] TRUE | FALSE

l appName—Optional. If you supply an application name, the TRUE or FALSE setting applies
to all databases within the named application.

l dbName—Optional. If you supply a database name and an application name, the TRUE or
FALSE setting applies only to the named database. If you supply a database name, you must
also supply an application name.

l TRUE—Essbase does not log outline queries in the application log file.

l FALSE—Essbase logs outline queries in the application log file. The default is FALSE.

Example

SILENTOTLQUERY TRUE

See Also

“OUTLINECHANGELOG” on page 478

“OUTLINECHANGELOGFILESIZE” on page 479

SPLITARCHIVEFILE
When backing up a database to an archive file, specifies whether to split the archive file into
multiple files (with each file being no larger than 2 GB) or to create a single, large archive file
(the size of which is limited only by disk space).

Syntax

SPLITARCHIVEFILE TRUE | FALSE

Configuration Settings Reference 497

The default value is FALSE.

l TRUE—Creates multiple database archive files.

l FALSE—(Default)Creates a single database archive file.

You must restart Essbase Server to initialize any change to the configuration file.

Description

Splitting the archive file into smaller, multiple files is useful if you cannot use large files or the
file-transfer tools that you use cannot handle large files.

The first (or main) archive file that Essbase creates uses the filename that you specify (for
example, samplebasic.arc). When the main archive file reaches the 2 GB limit, Essbase creates
another archive file. In naming the other archive files, Essbase increments the main archive
filename with “_x”, where x is an integer (starting with 1). Using the samplebasic.arc
example, if three archive files are created when backing up the Sample.Basic database, the
filenames would be:

samplebasic.arc
samplebasic_1.arc
samplebasic_2.arc

All archive files are created in the directory that you specified when specifying the filename and
location of the main archive file.

If you use the default, single-file configuration, Oracle recommends saving archive files to a file
system that supports large files. For Windows, the file system must be formatted as NTFS. For
UNIX, large file support must be enabled (for example, use the ULIMIT setting to specify a
specific file size based on the size of the database or set ULIMIT to unlimited). See your operating
system documentation.

Note: When restoring a database in which the archive file is split into multiple files, Essbase
looks for multiple archive files, even if, after the backup, you subsequently set
SPLITARCHIVEFILE to FALSE for that database. Also, Essbase expects all of a database's
archive files (main and split) to be in the same directory.

See Also

Alter Database MaxL statement

Query Database MaxL statement

Oracle Hyperion Enterprise Performance Management System Backup and Recovery Guide

SQLFETCHERRORPOPUP
Controls whether an Essbase error is generated when fetching data from a SQL database during
a data load or a dimension build. The error will provide a pop-up error message in
Administration Services, and will enable error handling using IFERROR in MaxL Shell or
ESSCMD.

498 Essbase.cfg Configuration Settings

Syntax

SQLFETCHERRORPOPUP TRUE | FALSE

l TRUE—SQL imports generate error messages.

l FALSE—Default value. SQL imports do not generate error messages.

Example

SQLFETCHERRORPOPUP TRUE
SQLFETCHERRORPOPUP FALSE

SSAUDIT
Enables spreadsheet update logging, appending to existing logs after archiving.

This setting does not apply to aggregate storage databases.

Syntax

SSAUDIT appname [dbname [log_path]]

l appname—Application name.

l dbname—Optional. Database name.

l log_path—Optional. Full directory path where you want the information stored. Do not
provide a log_path value unless you have also provided a value for dbname.

Default behavior:

l If SSAUDIT (or SSAUDITR) is not specified, spreadsheet update logging is not enabled.

l If SSAUDIT (or SSAUDITR) is issued with no arguments, Essbase activates spreadsheet
logging for all databases in all applications on the Essbase Server, and puts the log in the
default directory: ARBORPATH\app\appname dbname.

Use the value xxxxx to indicate "all" for any argument.

You can issue up to ten (total) SSAUDIT and/or “SSAUDITR” on page 500 statements per
application.

Description

SSAUDIT enables Essbase to log successfully completed spreadsheet update transactions. The
resulting logs can be used as a source of input data upon recovery after archive operations or
other server interruptions.

Notes

l SSAUDIT is not available when using Free-Form reporting in Spreadsheet Add-in.

l If you have duplicate database names in different applications, do not store their error logs
in the same directory. If you do, the log for one database will be replaced by the log for any
subsequent database with the same name.

Configuration Settings Reference 499

l SSAUDIT creates two logs for each database:

m dbname.atx, which stores the update transaction records that can be used as the input
source for data load

m dbname.alg, which stores history records from every update transaction, including user
name, time stamp, and number of updated rows

l Essbase ensures that if you enable spreadsheet logging, updates do not take place without
getting logged. If Essbase cannot write to the update logs for any reason, Essbase fails the
update transaction and issues an error message.

l SSAUDIT may slow Lock and Send operations.

Example

SSAudit xxxxx xxxxx c:\sslog

enables logging for all applications and databases, storing the log in the path c:\sslog. This
example assumes that you do not have duplicate database names (see Notes).

See Also

“SSAUDITR” on page 500, which clears the log after archive.

alter database begin | end archive (MaxL)

BEGINARCHIVE (ESSCMD)

ENDARCHIVE (ESSCMD)

SSAUDITR
Enables spreadsheet update logging, clearing the logs at the end of the archiving process.

Syntax

SSAUDITR appname [dbname [log_path]]

l appname—Application name.

l dbname—Optional. Database name.

l log_path— Optional. Full directory path where you want the information stored.Do not
provide a log_path value unless you have also provided a value for dbname.

Default behavior:

l If SSAUDITR (or SSAUDIT) is not specified, spreadsheet update logging is not enabled.

l If SSAUDITR (or SSAUDIT) is issued with no arguments, Essbase activates spreadsheet
logging for all databases in all applications on the Essbase Server, and puts the log in the
default directory: ARBORPATH\app\appname dbname.

Use the value xxxxx to indicate "all" for any argument.

500 Essbase.cfg Configuration Settings

You can issue up to ten (total) SSAUDITR and/or “SSAUDIT” on page 499 statements per
application.

Description

SSAUDITR enables Essbase to log successfully completed spreadsheet update transactions. The
resulting logs can be used as a source of input data upon recovery after archive operations or
other server interruptions.

Notes

l SSAUDITR creates two logs for each database:

m dbname.atx, which stores the update transaction records that can be used as the input
source for data load

m dbname.alg, which stores history records from every update transaction, including user
name, time stamp, and number of updated rows

l Essbase ensures that if you enable spreadsheet logging, updates do not take place without
getting logged. If Essbase cannot write to the update logs for any reason, the update
transaction failes and an error message is issued.

l SSAUDITR may slow Lock and Send operations.

l The spreadsheet log file will not be cleared if the database is shut down during archive mode.
The database is expected to remain running while in archive mode.

Example

SSAuditR demo

Enables logging with refresh (clear) for all databases belonging to the Demo application. The
log is stored in the default directory.

See Also

“SSAUDIT” on page 499, which does not clear the logs after archive.

alter database begin | end archive (MaxL)

BEGINARCHIVE (ESSCMD)

ENDARCHIVE (ESSCMD)

SSINVALIDTEXTDETECTION
Controls whether an Essbase error is generated when a spreadsheet user enters invalid text data
into a cell that could possibly cause the user to misinterpret the data in the grid.

Syntax

SSINVALIDTEXTDETECTION TRUE | FALSE

Configuration Settings Reference 501

l TRUE—An error message is displayed citing the invalid text and location, and saying to
remove the text and retry.

l FALSE—Default value. No error message is displayed. The text that was entered is ignored.

Examples

SSINVALIDTEXTDETECTION TRUE

SSINVALIDTEXTDETECTION FALSE

SSLCIPHERSUITES
Defines one or more cipher suites to use for negotiating the security settings for a network
connection using the SSL network protocol.

Syntax

SSLCIPHERSUITES ciphersuite_1[ciphersuite_2,...,ciphersuite_6]

At least one cipher suite is required. A comma-delimited list of cipher suites, in order by
preference, is supported. The first cipher suite in the list has the highest priority.

Description

You can change the default cipher suite.

1. SSL_RSA_WITH_RC4_128_MD5 (default)

2. SSL_RSA_WITH_RC4_128_SHA

3. SSL_RSA_WITH_3DES_EDE_CBC_MD5

4. SSL_RSA_WITH_DES_CBC_SHA

5. SSL_RSA_WITH_AES_128_CBC_SHA

6. SSL_RSA_WITH_AES_256_CBC_SHA

Note: For the highest level of security, reverse the order in which these cipher suites are listed.

Example

SSLCIPHERSUITES SSL_RSA_WITH_AES_128_CBC_SHA,SSL_RSA_WITH_DES_CBC_SHA

See Also

“AGENTSECUREPORT” on page 388

“CLIENTPREFERREDMODE” on page 411

“ENABLECLEARMODE” on page 439

“ENABLESECUREMODE” on page 440

“NETSSLHANDSHAKETIMEOUT” on page 474

502 Essbase.cfg Configuration Settings

“WALLETPATH” on page 515

For information on implementing SSL, see the Oracle Hyperion Enterprise Performance
Management System Security Administration Guide.

SSLOGUNKNOWN
Controls whether Essbase logs error messages when it encounters an unknown member name
during a spreadsheet operation.

Syntax

SSLOGUNKNOWN TRUE | FALSE

l TRUE—Essbase displays and logs an error message for each unknown member name that
it encounters during a spreadsheet operation. The default is TRUE.

l FALSE—Essbase does not display error messages when it encounters an unknown member
name nor does it log an error for each unknown member it encounters during a Spreadsheet
operation.

Description

SSLOGUNKNOWN controls whether Essbase logs error messages when it encounters an
unknown member name during a spreadsheet operation. It enables you to get a specific list of
every unknown member name, or to repress error messages of this type.

Notes

SSLOGUNKNOWN creates an entry in the application log, application_name.log, in the
application directory.

Example

SSLOGUNKNOWN TRUE

Essbase generates and logs an error message each time it encounters any number of unknown
member names during a spreadsheet operation.

See Also

“CLEARLOGFILE” on page 410

“TIMINGMESSAGES” on page 507

SSOPTIMIZEDGRIDPROCESSING
Specifies whether optimized grid processing, which cuts the input grid into symmetric grids to
create fewer symmetric queries, is enabled for spreadsheet operations.

Configuration Settings Reference 503

Syntax

SSOPTIMIZEDGRIDPROCESSING [appname [dbname]] TRUE
| FALSE

l appname—Optional. Specifies the application for which optimized grid processing is to be
set.

If you specify a value for appname and do not specify a value for dbname, the setting applies
to all databases in the specified application.

To enable the setting for a specific database, you must specify an application and database.

If you do not specify an application, you cannot specify a database, and the setting applies
to all applications and databases on Essbase Server.

l dbname—Optional. Specifies the database, in the application specified by appname, for
which optimized grid processing is to be set.

If you specify a value for dbname but do not specify a value for appname, your specification
is ignored.

l TRUE—Enables optimized grid processing for spreadsheet operations.

l FALSE—Disables optimized grid processing for spreadsheet operations.

The default value is FALSE.

For changes to the configuration file to take effect, you must restart Essbase Server.

Example

SSOPTIMIZEDGRIDPROCESSING TRUE

Enables optimized grid processing for spreadsheet operations on all applications and
databases on Essbase Server.

SSPROCROWLIMIT
Controls the maximum number of spreadsheet rows Essbase processes on a Spreadsheet Add-
in request.

Syntax

SSPROCROWLIMIT n

Where n is an integer value between 16,384 and 500,000, inclusive. The default value is 250,000.

Description

SSPROCROWLIMIT controls the maximum number of spreadsheet rows Essbase processes on
a Spreadsheet Add-in user request. SSPROCROWLIMIT is in effect only for Spreadsheet Add-
in when the Suppress #Missing Rows option is selected The rows are counted before suppression;
that is, missing rows and rows containing zero values are included.

504 Essbase.cfg Configuration Settings

When users zoom in on one or more members, Essbase must process a larger grid containing
selected members expanded to the zoom-in level set in the options. When the Suppress #Missing
Rows option is set, Analysis Services returns only rows with at least one column containing a
non-missing value. SSPROCROWLIMIT defines the maximum size (number of rows) of the
larger grid that Essbase needs to process. This setting prevents excessive memory usage for a
single Spreadsheet Add-in operation.

When the Excel Suppress #Missing Rows option is not selected, the limit is 64000.

Notes

l SSPROCROWLIMIT applies to unprocessed rows; that is, it is the number of rows Essbase
accepts before processing. Row processing eliminates missing rows. After processing, the
number of rows that the client can retrieve depends on spreadsheet-defined limits.

l If SSPROCROWLIMIT is exceeded, Essbase issues an error message and stops processing
the request.

l If using Advanced Interpretation mode in the Spreadsheet Add-in, one cannot turn this
setting off from the spreadsheet. The setting is not used in Freeform mode.

Example

SSPROCROWLIMIT 300000

SUPNA
Controls whether the Suppress #Missing Rows option in the spreadsheet interface suppresses
the display of cells for which a user has no access (in addition to suppressing #MISSING rows).

Syntax

SUPNA ON | OFF

l ON—The Suppress #Missing Rows option in the spreadsheet interface suppresses the
display of cells for which a user has no access.

l OFF—The Suppress #Missing Rows option in the spreadsheet interface does not suppress
the display of cells for which a user has no access. The default is OFF.

Description

The Suppress #Missing Rows option in the spreadsheet interface suppresses the display of data
rows that contain only missing values. SUPNA specifies whether Essbase also suppresses the
display of cells for which a user has no access. The spreadsheet interface does not provide an
equivalent.

Example

SUPNA ON

Essbase suppresses cells for which a user has no access.

SUPNA OFF

Configuration Settings Reference 505

Essbase does not suppress cells for which a user has no access. These cells appear in the
spreadsheet as #NoAccess. Rows of missing data are suppressed.

TARGETASOOPT
Potentially optimizes large queries (from the Spreadsheet Add-in, MDX, or Report Writer) to
an aggregate storage database across a transparent partition when the source outline and target
outline are identical in the partition region definition area.

Syntax

TARGETASOOPT [appname] TRUE | FALSE

l appname—Optional. Application name. If you specify a value for appname, the setting
applies to all databases in the specified application. If you do not specify an application, the
setting applies to all applications and databases on the Essbase Server.

l FALSE—The default. Optimization is not enabled, even if queries match the required criteria
(see Description).

l TRUE—Optimization is enabled for queries that match the required criteria (see
Description).

When TARGETASOOPT is TRUE, Essbase completes the following steps:

1. When the partition is next validated, automatically determines if the partition region
definition outlines are identical on the source and target databases

2. If the partition region definition outlines are identical, the query is sent in the compact
format from the target database to the source database.

You must restart Essbase Server to initialize any change to the configuration file.

Description

TargetASOOpt enables an alternate (compact) format for sending a query (from the Spreadsheet
Add-in, MDX, or Report Writer) to an aggregate storage source database, and hence may speed
up large queries between databases that match the following cireteria:

l Databases are transparently partitioned (for example, to enable write-back for aggregate
storage databases)

l Source is an aggregate storage database

l Partitioned area definitions in the source and target are identical (for example in the Sample
Basic database, if the partition region definition is@idesc("100"), then the outline hierarchies
below Time, Market, Measures, Scenario, and 100, must be identical on the source and target
databases)

l Source outline and target outline are identical

506 Essbase.cfg Configuration Settings

Notes

l If at query time the source and target outlines have been modified after the last validation,
even if the partition region definition outlines are still identical, TARGETASOOPT is
dissabled for the query. To enable TARGETASOOPT for the query, you must revalidate the
partitions.

Example

TARGETASOOPT TRUE

See Also

“TARGETTIMESERIESOPT” on page 507

TARGETTIMESERIESOPT
Globally sets query optimization across transparent partitions for outlines that have a time
dimension with Dynamic Time Series members. If this setting is specified, queries with Dynamic
Time Series members will incur faster query times. Use this setting only if the time dimensions
on the source and target partitions are identical. If the time dimensions on the source and target
partitions are not the same, this setting may produce incorrect results. Restart Essbase to enable
this setting to take effect for the Dynamic Time Series members that have been enabled at run
time.

Syntax

TARGETTIMESERIESOPT

Example

TARGETTIMESERIESOPT

See Also

“TARGETASOOPT” on page 506

TIMINGMESSAGES
Controls whether Essbase logs the duration of each spreadsheet and report query in the
application log.

Syntax

TIMINGMESSAGES TRUE | FALSE

l TRUE—Essbase logs these items:

m The duration of all spreadsheet and report queries in the application log.

m The log also records a timestamp of the query's execution.

m Messages about dynamic calculator cache usage for each data retrieval.

Configuration Settings Reference 507

The default setting is TRUE.

l FALSE—Essbase does not log these items:

m The duration of all spreadsheet and report queries in the application log.

m The log also records a timestamp of the query's execution.

m Messages about dynamic calculator cache usage for each data retrieval.

If you have not created a .CFG file, or if you do not have this parameter specified in your .CFG
file, Essbase automatically records and logs the duration of queries in the application log. You
must set TIMINGMESSAGES to FALSE to disable this feature.

Description

TIMINGMESSAGES controls whether Essbase logs the duration of each spreadsheet and report
query in the application log. Setting TIMINGMESSAGES to FALSE disables the logging of query
durations in the application log. If the timing of queries is disabled, Essbase does not have to
communicate with the operating system to get query start and finish times. As a result, query
execution times may be improved in environments with many concurrent users. Disabling this
parameter also decreases the size of the application log.

Example

TIMINGMESSAGES TRUE

Causes Essbase to time and log the duration of queries in the application log.

For example: [Thu Mar 19 14:55:32 1998]Local/Sample/Basic/admin/
Info(1020055) Spreadsheet Extractor Elapsed Time : [0.078] seconds

TIMINGMESSAGES FALSE

disables the logging of query durations.

See Also

“SSLOGUNKNOWN” on page 503

TRANSACTIONLOGDATALOADARCHIVE
Specifies the type of data to archive when logging transactions. By default, Essbase archives only
data load and rules files for client data loads.

During transaction logging, Essbase creates archive copies of data load and rules files in the
following directory:

ARBORPATH/app/appname/dbname/Replay

These files are then used during the replay of a logged transaction.

To enable transaction logging and replay, use the TRANSACTIONLOGLOCATION
configuration setting.

508 Essbase.cfg Configuration Settings

Transaction logging and replay, used with the automated backup and restore feature, facilitates
recovery of an Essbase block storage database. Transaction logging and replay does not apply to
aggregate storage databases. See the Oracle Hyperion Enterprise Performance Management System
Backup and Recovery Guide.

Syntax

TRANSACTIONLOGDATALOADARCHIVE [appname [dbname]] [OPTION]

l appname—Optional. Specifies the application for which to archive the data and rules
associated with logged transactions.

If you specify a value for appname and do not specify a value for dbname, the setting applies
to all databases in the specified application.

To enable the setting for a specific database, you must specify an application and database.

If you do not specify an application, you cannot specify a database. If you do not specify an
application and database, the setting is global and applies to all databases on Essbase Server.

l dbname—Optional. Specifies the database, in the application specified by appname, for
which to archive the data and rules associated with logged transactions.

If you specify a value for dbname but do not specify a value for appname, your specification
is ignored.

l OPTION—Valid values are as follows:

m CLIENT: (Default) Archives data load and rules files for client data loads.

m SERVER: Archives data load and rules files on the server and SQL-server data loads.

Caution! Server data loads are replayed using the data load and rules files that are
archived on the server in the Replay directory. Do not rename these files.
Also, if the contents of the data load and rules files are changed before the
replay operation, the modified data is used during replay. Therefore, the
data in the recovered database will not be the same as the original data.

m SERVER_CLIENT: Archives server and client data.

m NONE: No data is archived.

If you select NONE and use client data, Essbase cannot replay the data load. In this case,
to recover transactions, you must manually load the client data before you replay the
remaining transactions.

If you use server or SQL data, and the data and rules files are not archived in the
Replay directory (for example, you did not use the SERVER or SERVER_CLIENT
option), Essbase replays the data that is currently in the data source, which may or may
not be the data that was originally loaded.

You must restart Essbase Server to initialize any change to the configuration file.

Example

TRANSACTIONLOGDATALOADARCHIVE SERVER_CLIENT

Configuration Settings Reference 509

Archives server and client data for all databases on Essbase Server.

See Also

“TRANSACTIONLOGLOCATION” on page 510 configuration setting

Query Database MaxL statement

Alter Database MaxL statement

TRANSACTIONLOGLOCATION
Specifies whether to enable write transaction logging and specifies an existing directory on
Essbase Server for the transaction log store.

Transaction logging and replay, used with the automated backup and restore feature, facilitates
recovery of an Essbase block storage database. Transaction logging and replay does not apply to
aggregate storage databases. See the Oracle Hyperion Enterprise Performance Management System
Backup and Recovery Guide.

Syntax

TRANSACTIONLOGLOCATION [appname [dbname]] LOGLOCATION NATIVE ENABLE | DISABLE

l appname—Optional. Specifies the application for which transaction logging and replay is
to be enabled.

If you specify a value for appname and do not specify a value for dbname, the setting applies
to all databases in the specified application.

To enable the setting for a specific database, you must specify an application and database.

If you do not specify an application, you cannot specify a database. If you do not specify an
application and database, the setting is global and applies to all databases on Essbase Server.

l dbname—Optional. Specifies the database, in the application specified by appname, for
which transaction logging and replay is to be enabled.

If you specify a value for dbname but do not specify a value for appname, your specification
is ignored.

l LOGLOCATION—Specifies the directory in which the transaction log store is written.

Oracle recommends specifying multiple log locations.

Note: Oracle recommends using a physical disk other than the disk on which the
ARBORPATH directory or disk volumes reside.

l NATIVE—Specifies a reserved field.

Note: Do not change the NATIVE value.

l ENABLE | DISABLE—Specifies whether to enable or disable transaction logging.

You must restart Essbase Server to initialize any change to the configuration file.

510 Essbase.cfg Configuration Settings

Description

You can use multiple TRANSACTIONLOGLOCATION statements to enable transaction
logging at a more global level and, at the same time, disable logging at a more granular level. In
the essbase.cfg file, the more global enabling statement must precede the more granular
disabling statement for the override to take effect.

Note: If transaction logging is enabled for an application or database that you later rename or
copy, you must enable logging for the renamed or copied application or database and you
must use the same path that is specified in the TRANSACTIONLOGLOCATION setting.

Example

TRANSACTIONLOGLOCATION Sample C:\Hyperion\trlog NATIVE ENABLE

Enables transaction logging for all databases associated with the Sample application and writes
the log store to the trlog directory.

TRANSACTIONLOGLOCATION Hyperion/trlog NATIVE ENABLE
TRANSACTIONLOGLOCATION Sample Hyperion/trlog NATIVE DISABLE

The first statement enables transaction logging for all applications and their associated databases
on Essbase Server; the second statement disables transaction logging for all databases associated
with a specific application (Sample).

TRANSACTIONLOGLOCATION Sample Hyperion/trlog/Sample NATIVE ENABLE
TRANSACTIONLOGLOCATION Sample Basic Hyperion/trlog/Sample NATIVE DISABLE

The first statement enables transaction logging at the application level (Sample); the second
statement disables transaction logging for a specific database (Basic) in the application.

See Also

“TRANSACTIONLOGDATALOADARCHIVE” on page 508 configuration setting

Query Database MaxL statement

Alter Database MaxL statement

TRIGMAXMEMSIZE
Specifies the maximum amount of memory that Essbase can allocate to the triggers feature.

Syntax

TRIGMAXMEMSIZE [application [database]] memsize

l application—Optional. Sets the available memory cache for all databases in the specified
application.

l database—Optional. Sets the available memory cache for the specified database. If you
specify a database, you must specify the application that contains it.

Configuration Settings Reference 511

l memsize—Available memory cache size (in bytes). Default: 4096 bytes. Minimum: 4096
bytes. Maximum: 8388608 bytes (8MB). Setting memsize to zero (0), or a negative value,
disables all triggers.

Description

TRIGMAXMEMSIZE specifies the maximum amount of memory available to the Essbase
triggers feature. The triggers feature lets you efficiently monitor data changes in a database. If
data breaks the rules that you have specified, Essbase logs the information in a file or sends an
email alert.

For more information about triggers, see the Oracle Essbase Database Administrator's Guide. For
information about MaxL triggers statements, see the Oracle Essbase Technical Reference.

Notes

l You must specify the memory in bytes. If you specify a size greater than the maximum of
8388608 bytes, Essbase automatically sets the size to 8388608 bytes.

Example

TRIGMAXMEMSIZE 12288

sets the maximum memory cache for the triggers feature to to 12288 bytes (12K). The setting
applies to all appliations and databases on the Essbase Server.

See Also

create trigger (MaxL statement)

display trigger (MaxL statement)

alter trigger (MaxL statement)

drop trigger (MaxL statement)

UNICODEAGENTLOG
Specifies whether the Essbase Server log (essbase.log) is written in UTF-8 encoding or
according to the locale of the system. The system locale is defined by the optional ESSLANG
variable or, if ESSLANG is not specified, by the computer operating system.

Syntax

UNICODEAGENTLOG NONUNICODE | UTF-8

l NONUNICODE—Encodes the Essbase Server log according to the locale of the system. The
default is NONUNICODE.

l UTF-8—Encodes the Essbase Server log in UTF-8.

512 Essbase.cfg Configuration Settings

Description

By default, the Essbase Server log is encoded according to the locale of the system. Unicode-
mode object names such as application and database names from different locales could be
displayed in unrecognizable characters in the Essbase Server log. To avoid this problem, if you
implement Unicode-mode applications, change the Essbase Server log to UTF-8 encoding. In
UTF-8 encoding, a UTF-8-capable viewer or editor displays the characters accurately.

Notes

l To have the Essbase Server log written in UTF-8 encoding, backup or delete
essbase.log, set UNICODEAGENTLOG to UTF-8, and restart Essbase Server. All entries
to the log will be written in UTF-8 encoding. See the Example section.

l To have the Essbase Server log written in non-Unicode encoding, backup or delete
essbase.log, change the UNICODEAGENTLOG setting to NONUNICODE (or remove
the UNICODEAGENTLOG configuration setting), and restart Essbase Server. All entries to
the log will be encoded according to the system locale.

l Any parameter value other than UTF-8 is interpreted as NONUNICODE. The case is not
important.

l For more information about the Essbase implementation of Unicode, see the Oracle Essbase
Database Administrator's Guide

Example

UNICODEAGENTLOG UTF-8

Causes the cleared Essbase Server log to be written in UTF-8 encoding when Essbase Server is
restarted.

UPDATECALC
Controls whether Intelligent Calculation is turned on or off by default.

This setting does not apply to aggregate storage databases.

Syntax

UPDATECALC TRUE | FALSE

l TRUE—Intelligent Calculation is turned on. Essbase calculates only updated blocks and
their dependent parents.

l FALSE—Intelligent Calculation is turned off. Essbase calculates all data blocks, regardless
of whether they have been updated.

Description

UPDATECALC specifies whether Intelligent Calculation is turned on or off by default.

If required during a calculation, you can override this default setting and turn Intelligent
Calculation on and off using the SET UPDATECALC command in a calculation script.

Configuration Settings Reference 513

Using Intelligent Calculation, Essbase calculates only updated data blocks and their dependent
parents. Therefore, the calculation is very efficient.

Notes

For more information on Intelligent Calculation, see the Oracle Essbase Database Administrator's
Guide

Example

UPDATECALC TRUE
UPDATECALC FALSE

In essbase.cfg, a parameter is not followed by a semicolon; in a calculation script, a parameter
must be followed by a semicolon.

See Also

SET CLEARUPDATESTATUS (calculation command)

SET UPDATECALC (calculation command)

VLBREPORT
Enables Essbase to dynamically determine the retrieval buffer size, between 100 KB and 10 MB,
for retrievals from databases without Dynamic Calc, attribute, or Dynamic Time Series
members.

This setting does not apply to aggregate storage databases.

Syntax

VLBREPORT TRUE | FALSE

l TRUE—Essbase dynamically determines the size of the retrieval buffer for outlines that
qualify.

l FALSE—Essbase does not dyamically determine the size of the retrieval buffer. The default
setting is FALSE.

Description

Retrieved data is temporarily stored in the retrieval buffer. The size of the buffer can significantly
affect retrieval performance. If you have a database which has a very large block size and you
retrieve a large percentage of cells from each block across several blocks, consider setting the
VLBREPORT option to TRUE. When this is done, Essbase dynamically determines the optimum
buffer size between 100 KB and 10 MB, overriding the current retrieval buffer size setting.

Turning on VLBREPORT optimization can improve performance for concurrent and serial
queries. Since queries can be completed faster, this optimization also enables more users to
perform their queries at the same time.

514 Essbase.cfg Configuration Settings

Notes

l The VLBREPORT configuration setting applies only to databases that contain no Dynamic
Calc, attribute, or Dynamic Time Series members.

l The retrieval buffer size is a database property which you can change using the MaxL
alter database statement, the ESSCMD SETDBSTATEITEM , or Administration
Services Console.

l For more information about setting the retrieval buffer size, see the Oracle Essbase Database
Administrator's Guide.

Example

VLBREPORT TRUE

See Also

alter database (MaxL statement)

SETDBSTATEITEM (ESSCMD)

WALLETPATH
Specifies the path to the Oracle Wallet for Essbase Agent, Server, or Client for SSL
communication.

Syntax

WALLETPATH path

Where path is a fully-qualified path that contains less than 1,024 characters. The default path is
ARBORPATH/bin/wallet.

Description

To set up Oracle Wallet, you need the Oracle public key infrastructure (PKI) command line tool,
orapki. You use the orapki utility to manage public key infrastructure elements such as wallets
and certificate revocation lists.

Notes

For information about implementing SSL and setting up Oracle Wallet, see the Oracle Hyperion
Enterprise Performance Management System Security Administration Guide.

Example

WALLETPATH /usr/local/wallet/agent

See Also

“AGENTSECUREPORT” on page 388

“CLIENTPREFERREDMODE” on page 411

Configuration Settings Reference 515

“ENABLECLEARMODE” on page 439

“ENABLESECUREMODE” on page 440

“NETSSLHANDSHAKETIMEOUT” on page 474

“SSLCIPHERSUITES” on page 502

XOLAPENABLEHEURISTICS
Governs the extent to which the SQL for an application is to be optimized.

Syntax

XOLAPENABLEHEURISTICS [appname] TRUE | FALSE

l appname (optional)—Application name. If you do not specify an application, the setting
(TRUE or FALSE) will apply to all XOLAP-enabled cubes.

l TRUE—SQL optimization is performed based upon the number of members in the levels
of an XOLAP-enabled cube.

l FALSE—SQL optimization is not performed. FALSE is the default value.

Description

The XOLAPENABLEHEURISTICS setting governs the extent to which the SQL for an
application is to be optimized. The optimization is based upon the number of members in the
levels of the XOLAP-enabled cube.

Example

XXOLAPENABLEHEURISTICS my_app TRUE

See Also

“XOLAPSQLIDLEPERIOD” on page 518

“XOLAPMAXNUMCONNECTION” on page 516

“XOLAPSCHEMAVERIFICATION” on page 517

XOLAPMAXNUMCONNECTION
Specifies the maximum number of active connections that Essbase will maintain in the Global
Connection Pool.

Syntax

XOLAPMAXNUMCONNECTION [appname] [value]

l appname (optional)—Application name. If you do not specify an application, the specified
maximum number of connections will apply to all XOLAP-enabled cubes.

516 Essbase.cfg Configuration Settings

l value—The maximum number of active connections that Essbase will maintain in the Global
Connection Pool. The default is 25 connections.

Description

The XOLAPMAXNUMCONNECTION setting specifies the maximum number of active
connections that Essbase will maintain in the Global Connection Pool. The term active
connection denotes an open connection to the RDBMS. If, during a query session, there is a need
for more connections than are available in the Global Connection Pool, then they are created
and deleted after the query session is finished.

Example

XOLAPMAXNUMCONNECTION my_app 16

See Also

“XOLAPSQLIDLEPERIOD” on page 518

“XOLAPSCHEMAVERIFICATION” on page 517

“XOLAPENABLEHEURISTICS” on page 516

XOLAPSCHEMAVERIFICATION
Determines whether the XOLAP schema supplied for an application is validated against the
underlying RDBMS.

Syntax

XOLAPSCHEMAVERIFICATION [appname] TRUE | FALSE

l appname (optional)—Application name. If you do not specify an application, the setting
(TRUE or FALSE) will apply to all XOLAP-enabled cubes.

l TRUE—SQL queries are issued to validate the relational data provided in the XML file.

l FALSE—SQL queries are not issued, and the relational data in the XML file is not validated.
FALSE is the default value.

Description

The XOLAPSCHEMAVERIFICATION setting determines whether the XOLAP schema
supplied for an application is validated against the underlying RDBMS. The validation occurs
as SQL queries are run against the relational data in the XML file.

Example

XOLAPSCHEMAVERIFICATION my_app TRUE

See Also

“XOLAPSQLIDLEPERIOD” on page 518

Configuration Settings Reference 517

“XOLAPMAXNUMCONNECTION” on page 516

“XOLAPENABLEHEURISTICS” on page 516

XOLAPSQLIDLEPERIOD
Specifies the maximum number of minutes a connection can remain idle before it is tested.

Syntax

XOLAPSQLIDLEPERIOD [appname] value

l appname (optional)—Application name. If you do not specify an application, the specified
maximum number of minutes will apply to all XOLAP-enabled cubes.

l value—The maximum number of minutes a connection can remain idle before it is
automatically tested prior to being used by an application. The default is 30 minutes.

Description

The XOLAPSQLIDLEPERIOD setting specifies the maximum number of minutes a connection
can remain idle before it is automatically tested prior to being used by an application.

Example

XOLAPSQLIDLEPERIOD my_app 20

See Also

“XOLAPMAXNUMCONNECTION” on page 516

“XOLAPSCHEMAVERIFICATION” on page 517

“XOLAPENABLEHEURISTICS” on page 516

518 Essbase.cfg Configuration Settings

5
ESSCMD Commands

In This Chapter

ESSCMD Overview ... 519

ESSCMD Getting Started ... 519

ESSCMD Syntax Guidelines ... 520

ESSCMD Batch Processing... 522

ESSCMD Interactive Mode ... 526

ESSCMD Command Groups ... 528

ESSCMD Command Reference ... 534

ESSCMD Overview
ESSCMD is a command-line interface that performs operations interactively or through a batch
or script file. You can execute Essbase operations at the command line, in either batch or
interactive mode:

l Interactive mode—Enables you to interactively enter commands at the ESSCMD command
line and receive responses. Interactive mode is convenient for short operations that require
few commands, checking for information on the fly, and error checking.; see “ESSCMD
Interactive Mode” on page 526.

l Batch-processing mode—Enables you to automate your routine Essbase maintenance and
diagnostic tasks. You can write a script or batch file and run it from the command line. Batch
processing mode is convenient if you frequently use a particular series of commands, or if
your task requires many commands; see “ESSCMD Batch Processing” on page 522.

ESSCMD operates independently of any other Essbase client interface, including Administration
Services, Spreadsheet Add-in, or custom-built application programs.

Because ESSCMD supports multiple login instances to Essbase Server, you can access multiple
databases in one session. Even when you log in to multiple databases, you use only one port on
your Essbase Server license.

ESSCMD Getting Started
Before you start ESSCMD, make sure that the following items are properly installed and running:

l Essbase Server

ESSCMD Overview 519

l Communications protocol (TCP/IP)

Starting ESSCMD
The Essbase Server installation places the ESSCMD.EXE and ESSCMD.HLP files (ESSCMD and
esscmd.hlp on UNIX platforms) in the bin directory.

ä To start ESSCMD, enter ESSCMD at the operating system command prompt.

ESSCMD runs within the operating system command prompt.

Once you start the application, a command prompt like this one appears:

:::[#]->

where # is the value of the active login instance. Each subsequent, successful login increments
this value by one. When you start ESSCMD, the instance number is zero (0).

Canceling ESSCMD Operations
When running ESSCMD, you can cancel an asynchronous operation, such as a calculation,
export, or restructure operation, by pressing and holding the Esc key until ESSCMD responds.

Quitting ESSCMD

ä To quit ESSCMD, enter EXIT at the prompt and press Enter.

ESSCMD disconnects from Essbase Server and returns to the operating system command
prompt.

ESSCMD Syntax Guidelines
There are some differences between ESSCMD's interactive and batch processing modes in the
requirements for quotation marks and the semicolon statement terminator. Use the guidelines
in this section when creating script or batch files.

Case-sensitivity varies by operating system:

l Windows is not case-sensitive. You can enter ESSCMD commands and file-names in
uppercase or lowercase letters, or in any combination of the two.

l UNIX is case-sensitive. You must enter file names in the correct case or UNIX does not
recognize them. However, you can enter ESSCMD command names and parameters in
uppercase or lowercase.

520 ESSCMD Commands

Quotation Marks in ESSCMD
Double quotation marks (" ") enclose character parameters and responses to commands.

l In interactive ESSCMD, using double quotation marks is optional. Be sure to use them when
a parameter has an embedded space; for example,

CALC "Calc All;";

l In an ESSCMD script file, always enclose all character parameters and responses to
commands in double quotation marks; for example,

LOGIN "Local" "TomT" "Password";

l You do not have to enclose numeric parameters and responses in quotation marks.

l You cannot place quotation marks within quotation marks.

ESSCMD Semicolon Statement Terminator
The ; (semicolon) statement terminator signals the end of a command; for example,

SELECT "SAMPLE" "BASIC";

l In interactive ESSCMD, pressing the Enter key signals ESSCMD that the command is
complete. The statement terminator is optional.

l In an ESSCMD script file, you should use the terminator, even though it is optional, if a
command has many parameters. This is especially important in order to signal the end of
the parameter list if some of the parameters are optional.

l If you omit some optional parameters and do not use a semicolon to end the list, ESSCMD
looks for the remaining values in the next command in the file, leading to unpredictable
results.

The SETAPPSTATE and SETDBSTATE commands are examples of commands which you should
terminate with ; to prevent any confusion in processing.

Note: All syntax examples in this documentation use quotation marks and semicolon
terminators.

Referencing Files
Some commands require that you precede object or file names with a numeric parameter, from
1 to 4, that tells ESSCMD where to look for the object or file. The parameter directs ESSCMD
to look for files in other applications, databases, or systems.

The following table lists each value for the numeric parameter (numeric), the file location to
which it applies, and the information that ESSCMD requests when you use each parameter
setting. appName is the application name and dbName is the database name.

ESSCMD Syntax Guidelines 521

Numeric File ESSCMD prompts for:

1 Local or client-based file Windows: Files in the \ARBORPATH\CLIENT\appName\dbName directory.

UNIX: Files in the $ARBORPATH/client/appName/dbName directory.

2 Remote or server-based file Windows: Files in the \ARBORPATH\APP\appName\dbName directory.

UNIX: Files in the $ARBORPATH/app/appName/dbName directory.

3 File Fully-qualified path to the file, unless file is in the current ESSCMD directory.

4 SQL table Full network and database information for the SQL table.

For example, the LOADDATA command can load a data file that resides on the client computer
or the Essbase Server computer. The command requires the numeric parameter to tell ESSCMD
where to look for the data file. This example causes ESSCMD to prompt for the fully-qualified
path name of the file to load:

LOADDATA 3

File extensions are usually optional in both interactive and batch processing modes, except when
using commands that require a numeric parameter that indicates the location of files:

l If you use file option 3 (File), you must enter the file extension in both interactive and batch
processing modes.

l If the object is in the directory from which you started ESSCMD, you do not need to enter
a path.

ESSCMD Batch Processing
If you use a series of commands frequently or you must enter many commands to complete a
task, consider script or batch file automation.

l You can run a script file containing ESSCMD commands from the operating system
command line or from an operating system batch file. A script has a .SCR extension.

l A batch file is an operating system file that calls multiple ESSCMD scripts, and may include
operating system commands. You can use a batch file to run multiple sessions of ESSCMD.
On Windows systems, batch files have .BAT extensions.

Note: On UNIX, a batch file is a shell script. A shell script usually has the file extension .sh
(Bourne or Korn shell) or .csh (C shell).

When you run a script or batch file, ESSCMD executes the commands in order until the end of
the file.

522 ESSCMD Commands

Writing Script Files
Each script must be a complete ESSCMD session, with login, application and database selection,
logout, and termination commands.

To create a script:

1. Enter ESSCMD commands in a text editor.

2. Save the file with the .SCR extension.

For example, the following script file, TEST.SCR, was created in Notepad:

LOGIN "LOCAL" "TOMT" "PASSWORD";
SELECT "SAMPLE" "BASIC";
GETDBSTATE
EXIT;

When run from the operating system command line, this script logs TomT into the Local server,
selects the Sample application and Basic database, gets database statistics, and quits ESSCMD.

Running Script Files
Enter the following command at the operating system prompt:

ESSCMD scriptFileName.SCR

Replace scriptFileName with the name of the script file. For example, type the following if the
script file is in the current directory:

ESSCMD TEST.SCR

If the script file is in another directory, include the path. For example:

ESSCMD C:\WORK\SCRIPTS\TEST.SCR (absolute path on Windows)

or

ESSCMD ..\SCRIPTS\TEST.SCR (relative path on Windows)

Handling Command Errors in a Script File
ESSCMD provides error checking and handling. You can check for errors and, if necessary,
branch to an appropriate response.

After each ESSCMD command is executed, a number is stored in an internal buffer. If the
command executes successfully, 0 is returned to the buffer; if the command is unsuccessful, the
error number is stored in the buffer. Unsuccessful execution is called non-zero status.

ESSCMD provides the following error-handling commands:

l IFERROR checks the previously executed command for a non-zero (failure) return status.
If the status is not zero, processing skips all subsequent commands and jumps to resume at
a user-specified point in the file.

l The script file can branch to an error-handling routine or the end of the file.

ESSCMD Batch Processing 523

l RESETSTATUS reverts all saved status values to 0 (zero) in preparation for more status
checking.

l GOTO forces unconditional branching to a user-specified point in the file, whether or not
an error occurred.

In this LOAD.SCR example, if a command does not execute successfully, ESSCMD branches to
the end of the file to avoid completing other operations.

LOGIN "local" "User1" "password" "Sample" "Basic";
LOADDATA 2 "calcdat";
IFERROR "Error";
CALC "Calc All;";
IFERROR "Error";
RUNREPT 2 "Myreport";
IFERROR "Error";
[possible other commands]
EXIT;

:Error

EXIT;

Note: You can use the OUTPUT command to log errors.

Sample Script Files
The following script files demonstrate common batch operations. All samples are based on the
Sample Basic database. The scripts for these examples are available in \ARBORPATH\APP
\SAMPLE\BASIC. On UNIX systems, the examples are available from /home/$ARBORPATH/
app/Sample/Basic.

Importing and Calculating a Data Sample File
Suppose you need a file that:

l Logs in to Essbase Server.

l Selects an application and database.

l Prevents other users from logging on and making changes to the database.

l Imports data from a text file.

l Calculates the database.

l Exits ESSCMD.

The following script file does the job:

LOGIN "Poplar" "TomT" "Password";
SELECT "Sample" "Basic";
DISABLELOGIN;
IMPORT 2 "ACTUALS" 4 "Y" 2 "ACTUAL" "N";
CALCDEFAULT;

524 ESSCMD Commands

ENABLELOGIN;
EXIT;

On Windows, this script file, sample1.scr, is available in \ARBORPATH\APP\SAMPLE
\BASIC. On UNIX, Sample.scr is in /$ARBORPATH/app/Sample/Basic.

Updating a SQL Script, Importing, and Calculating a Data Sample File
Suppose you need a script file that:

l Logs in to Essbase Server.

l Selects an application and database.

l Prevents other users from logging on and making changes to the database.

l Updates the outline from an SQL data source.

l Imports data from SQL.

l Calculates the database.

l Exits ESSCMD.

The following script file does the job:

LOGIN "Poplar" "TomT" "Password";
SELECT "Sample" "Basic";
DISABLELOGIN;
BUILDDIM 2 "PRODRUL" 4 "PRODTBL" 4
"
PROD.ERR
"
;
IMPORT 4 "TOMT" "PASSWORD" 2 "ACTUAL" "N";
CALCDEFAULT;
EXIT;

On Windows, this script file, sample2.scr, is available in \ARBORPATH\APP\SAMPLE
\BASIC. On UNIX, it is in the /$ARBORPATH/app/Sample/Basic directory.

Writing Batch Files
You can write a batch file that runs one or more report scripts, and includes operating system
commands. See your operating system instructions to learn the syntax for writing batch files.

Handling Command Errors in Batch Files
For the operating system batch file, you can use ESSCMD command return values to control
the flow of scripts that the batch file executes.

An ESSCMD program returns an integer value upon exiting. This value represents the status of
the last executed command. You can set up your batch file to test for this value, and if the test

ESSCMD Batch Processing 525

fails, branch to a response. For information about handling errors in script files, see Handling
Command Errors in a Script File.

For example, a batch file could contain three scripts: an ESSCMD batch file that loads data, a
calc script, and a report script. If the load batch file fails, the calculations and reporting also fail.
In this case, it would be best to stop the batch file and correct the error. If your batch file tests
for the return value of the load process, and this return value indicates failure, the batch file can
jump to the end of the file and stop or execute some other error-handling procedure, rather than
attempting to calculate data that did not load.

The following example shows a Windows operating system batch file and the contents of one of
the ESSCMD scripts it runs, LOAD.SCR. Because error-checking requirements vary, the syntax
in this example may not correspond to that of your operating system. See your operating system
documentation for error checking in batch files.

ESSCMD LOAD.SCR
If not %errorlevel%==goto Error
ESSCMD CALC.SCR
If not %errorlevel%==goto Error
ESSCMD REPORT.SCR
If not %errorlevel%==goto Error
Echo All operations completed successfully
EXIT

:Error
Echo There was a problem running the script

Sample Script: Scheduling Report Printing

Suppose you need a file that:

l Logs in to Essbase Server.

l Selects an application and database.

l Assigns reports that output to files for later printing.

l Exits ESSCMD.

The following script file does the job:

LOGIN "Poplar" "TomT" "Password";
SELECT "Sample" "Basic";
RUNREPT 2 "REP1" "REP1.OUT";
RUNREPT 2 "REP2" "REP2.OUT";
RUNREPT 2 "REP3" "REP3.OUT";
EXIT;

On Windows, SAMPLE3.SCR is available in \ARBORPATH\APP\SAMPLE\BASIC. On UNIX,
SAMPLE3.SCR is in /$ARBORPATH/app/Sample/Basic.

ESSCMD Interactive Mode
In interactive mode, you enter commands and respond to prompts. This is useful when you are
performing simple tasks that require few commands. If you are performing more complex tasks

526 ESSCMD Commands

that require many commands, consider creating a script file or batch file; see “ESSCMD Batch
Processing” on page 522.

For syntax conventions when working in interactive mode, see “ESSCMD Syntax Guidelines”
on page 520.

Logging On to Essbase Server
After starting ESSCMD, you must connect to Essbase Server so that you can enter commands.

ä To log on to Essbase Server:

1 At the ESSCMD prompt, log in to Essbase Server with the LOGIN command.

2 Enter the host name for Essbase Server. When you connect from the server console, the server name
depends on your network setup. For example, the name could be LOCAL.

3 Enter your user name.

4 Enter your password.

The ESSCMD prompt appears as follows:

local:::u
serName
[1]->

where userName is your login name.

You can enter any valid ESSCMD command (see “ESSCMD Command Reference” on page
534).

Note: To load an application into memory and select a database, use the SELECT command.

The ESSCMD prompt appears as follows:

local:appName:dbName:userName[1]->

where:

l appName is the name of the application.

l dbName is the name of the database to which you are connected.

Entering Commands

ä To enter commands in interactive mode, select one method:

l Type the command and press Enter.

ESSCMD prompts you for each of the command parameters. For example, the SELECT
command has two parameters, as shown in the command syntax:

SELECT "appName" "dbName";

ESSCMD Interactive Mode 527

If you enter only SELECT and press Enter, ESSCMD prompts you for the first parameter,
the application name (appName). After you enter the application name and press Enter,
ESSCMD prompts you for the database name (dbName).

l Type the commands and all parameters, then press Enter.

Using SELECT as the example, you would type:

SELECT "Sample" "Basic";

Whichever method you use, the interactive prompt now reflects the application and database
names. For example, the following prompt tells you that the Sample application and Basic
database are selected:

local:Sample:Basic:User[1]->

In this case, you can enter other commands without the application or database name parameters
that it normally requires.

Canceling Operations
While ESSCMD is running, you can cancel an asynchronous operation, such as a calculation,
export, or restructure operation, by pressing and holding the Esc key until ESSCMD responds.

Warning: Do not pause or suspend your system (for example, by pressing Ctrl-S) while Essbase
Server is processing a command. Pausing the system may prevent Essbase Server from correctly
completing the command.

ESSCMD Command Groups
This topics in this section list ESSCMD commands, grouped by command type.

Using ESSCMD
Use these commands to log in and out of ESSCMD, view a list of commands, pause an ESSCMD
script, and redirect command output:

l LOGIN

l LOGOUT

l LISTLOGINS

l SETLOGIN

l SLEEP

l SELECT

l EXIT

528 ESSCMD Commands

Application and Database Administration
Use these commands to perform database administration, and get information about
applications and databases:

l COPYAPP

l COPYDB

l CREATEAPP

l CREATEDB

l DELETEAPP

l DELETEDB

l GETAPPACTIVE

l GETAPPINFO

l GETAPPSTATE

l GETDBACTIVE

l GETDBINFO

l GETDBSTATE

l GETDBSTATS

l GETVERSION

l LISTAPP

l LISTDB

l LISTFILES

l LOADAPP

l LOADDB

l RENAMEAPP

l RENAMEDB

l SETAPPSTATE

l SETDBSTATE

l SETDBSTATEITEM

l SHUTDOWNSERVER

l UNLOADAPP

l UNLOADDB

User and Group Security
Use these commands to perform user and group administration:

l DISABLELOGIN

ESSCMD Command Groups 529

l ENABLELOGIN

l LOGOUTUSER

l LOGOUTALLUSERS

l CREATEUSER

l DELETEUSER

l RENAMEUSER

l LISTUSERS

l GETUSERINFO

l SETPASSWORD

l CREATEGROUP

l DELETEGROUP

l LISTGROUPS

l ADDUSER

l REMOVEUSER

l LISTGROUPUSERS

Security Filters and Locks
Use these commands to list, copy and rename security filters, and to view and remove database
locks:

l COPYFILTER

l LISTFILTERS

l LISTLOCKS

l REMOVELOCKS

l RENAMEFILTER

Database Objects
Use these commands to list database objects and their lock statuses, copy and rename database
objects, and to view and remove URLs, cell notes, or partitions linked to the database:

l LISTOBJECTS

l COPYOBJECT

l RENAMEOBJECT

l UNLOCKOBJECT

l LISTLINKEDOBJECTS

l PURGELINKEDOBJECTS

530 ESSCMD Commands

Outline and Attribute Information
Use these commands to view member information, attribute information, current attribute
naming specifications for the database, and view outline paging information:

l GETMBRINFO

l GETMEMBERS

l GETATTRINFO

l GETATTRIBUTESPECS

Dimension Building
You can build multiple dimensions incrementally, with or without automatic restructuring after
the dimension build is complete.

Use these commands to build one or more dimensions from data files or SQL sources:

l BUILDDIM

l INCBUILDDIM

l BEGININCBUILDDIM

l ENDINCBUILDDIM

Data Loading, Clearing, and Exporting
Use these commands to load data files or individual records, to clear all data from the database,
or to export and import data to and from a text file:

l LOADDATA

l UPDATE

l UPDATEFILE

l RESETDB

l EXPORT

l PAREXPORT

l IMPORT

Calculating
Use these commands to run calc scripts, execute one or more calc strings, run or change the
default calculation, and view information about calc strings associated with members:

l CALC

l CALCDEFAULT

l CALCLINE

ESSCMD Command Groups 531

l RUNCALC

l GETMBRCALC

l GETDEFAULTCALC

l SETDEFAULTCALC

l SETDEFAULTCALCFILE

Reporting
Use these commands to run report scripts and execute one or more report strings:

l RUNREPT

l REPORT

l REPORTLINE

Partitioning
To produce a text file of the distributed database's partition mapping tables, use the
PRINTPARTITIONDEFFILE command.

To replicate all data cells, or only updated data cells, in a replicated partition, use these
commands:

l GETALLREPLCELLS

l PUTALLREPLCELLS

l GETUPDATEDREPLCELLS

l PUTUPDATEDREPLCELLS

Use "GET" commands to replicate cells from source to target, when you are working from the
computer hosting the target database.

Use "PUT" commands to replicate cells from source to target, when you are working from the
computer hosting the source database.

Outline Synchronization

Outline synchronization commands utilize an outline change file (.CHG) to track changes made
on the source outline, apply those changes to the target outline, and synchronize time stamps
in the partition definition files.

Use these commands to keep the target database outline synchronized with changes made to the
source database outline:

l GETPARTITIONOTLCHANGES

l APPLYOTLCHANGEFILE

532 ESSCMD Commands

l PURGEOTLCHANGEFILE

l RESETOTLCHANGETIME

Error and Log Handling
Use these commands for conditional and unconditional error branching in ESSCMD scripts,
redirection of process information, specifying what kind of messages are displayed, and clearing
the application log file:

l RESETSTATUS

l SETMSGLEVEL

l GOTO

l IFERROR

l OUTPUT

l DELETELOG

Currency Conversion Information
Use these commands to get information about the currency database linked to the currently
selected database:

l GETCRDB

l GETCRDBINFO

l GETCRRATE

l GETCRTYPE

Location Aliases
Location aliases are names representing host-application-database-user name-password
combinations.

Use these commands to manage location aliases in a distributed Essbase environment:

l CREATELOCATION

l DELETELOCATION

l LISTLOCATIONS

Substitution Variables
Substitution variables are placeholders for information that changes regularly. Use them in calc
scripts, report scripts, and the Spreadsheet Add-in.

Use these commands to manage substitution variables:

ESSCMD Command Groups 533

l CREATEVARIABLE

l DELETEVARIABLE

l LISTVARIABLES

l UPDATEVARIABLE

Aliases
Alias tables contain a listing of member names and their alternate names, or aliases. Create alias
tables using Administration Services.

Use these commands to manage and display the contents of alias tables for a database:

l LISTALIASES

l SETALIAS

l LOADALIAS

l UNLOADALIAS

l DISPLAYALIAS

Integrity, Performance
Use these commands to get and reset performance statistics, and check for data integrity:

l GETPERFSTATS

l RESETPERFSTATS

l VALIDATE

Backing Up
Use these commands to place a database in read-only mode in preparation for archiving, and
to restore the database to read-write mode after archiving is complete:

l BEGINARCHIVE

l ENDARCHIVE

ESSCMD Command Reference
Consult the Contents pane for a categorical list of ESSCMD commands.

ADDUSER GETCRTYPE PRINTPARTITIONDEFFILE

APPLYOTLCHANGEFILE GETDBACTIVE PURGELINKEDOBJECTS

APPLYOTLCHANGEFILEEX GETDBINFO PURGEOTLCHANGEFILE

534 ESSCMD Commands

ADDUSER GETCRTYPE PRINTPARTITIONDEFFILE

BEGINARCHIVE GETDBSTATE PUTALLREPLCELLS

BEGININCBUILDDIM GETDBSTATS PUTUPDATEDREPLCELLS

BUILDDIM GETDEFAULTCALC REMOVELOCKS

CALC GETMBRCALC REMOVEUSER

CALCDEFAULT GETMBRINFO RENAMEAPP

CALCLINE GETMEMBERS RENAMEDB

COPYAPP GETPARTITIONOTLCHANGES RENAMEFILTER

COPYDB GETPARTITIONOTLCHANGESEX RENAMEOBJECT

COPYFILTER GETPERFSTATS RENAMEUSER

COPYOBJECT GETUPDATEDREPLCELLS REPORT

CREATEAPP GETUSERINFO REPORTLINE

CREATEDB GETVERSION RESETDB

CREATEGROUP GOTO RESETOTLCHANGETIME

CREATELOCATION IFERROR RESETPERFSTATS

CREATEUSER IMPORT RESETSTATUS

CREATEVARIABLE INCBUILDDIM RUNCALC

DELETEAPP LISTALIASES RUNREPT

DELETEDB LISTAPP SELECT

DELETEGROUP LISTDB SETALIAS

DELETELOCATION LISTFILES SETAPPSTATE

DELETELOG LISTFILTERS SETDBSTATE

DELETEUSER LISTGROUPS SETDBSTATEITEM

DELETEVARIABLE LISTGROUPUSERS SETDEFAULTCALC

DISABLELOGIN LISTLINKEDOBJECTS SETDEFAULTCALCFILE

DISPLAYALIAS LISTLOCATIONS SETLOGIN

ENABLELOGIN LISTLOCKS SETMSGLEVEL

ENDARCHIVE LISTLOGINS SETPASSWORD

ENDINCBUILDDIM LISTOBJECTS SHUTDOWNSERVER

ESTIMATEFULLDBSIZE LISTUSERS SLEEP

ESSCMD Command Reference 535

ADDUSER GETCRTYPE PRINTPARTITIONDEFFILE

EXIT LISTVARIABLES UNLOADALIAS

EXPORT LOADALIAS UNLOADAPP

GETALLREPLCELLS LOADAPP UNLOADDB

GETAPPACTIVE LOADDATA UNLOCKOBJECT

GETAPPINFO LOADDB UPDATE

GETAPPSTATE LOGIN UPDATEBAKFILE

GETATTRIBUTESPECS LOGOUT UPDATEFILE

GETATTRINFO LOGOUTALLUSERS UPDATEVARIABLE

GETCRDB LOGOUTUSER VALIDATE

GETCRDBINFO OUTPUT VALIDATEPARTITIONDEFFILE

GETCRRATE PAREXPORT

ADDUSER
Adds a user to a group.

Syntax

ADDUSER groupName userName

Parameter Description

groupName Name of a group.

userName Name of a user.

Example

To add TomT to MARKETING:

ADDUSER "Marketing" "TomT";

APPLYOTLCHANGEFILE
Applies the source outline changes specified in the .CHG log file to the target database's outline
you selected with the SELECT command.

If the database has multiple partitions of the same type to the same target database or from the
same source database, use APPLYOTLCHANGEFILEEX instead, and specify the data direction.

Syntax

APPLYOTLCHANGEFILE numFiles fileName

536 ESSCMD Commands

Parameter Description

numFiles A numeric value indicating the number of .CHG log files to read.

Filename The name of the .CHG log file to read. The filename must be the full path name of the desired change file
on the target database. The filename must be in quotation marks (see example below). More than one file
can be specified.

Notes

When the source database outline is modified, the GETPARTITIONOTLCHANGES command
records the outline changes to a .CHG file in the source database directory. Therefore, use
APPLYOTLCHANGEFILE after calling GETPARTITIONOTLCHANGES. Specify the full path
to the source database's .CHG file.

Example

Samppart Company, the target database, is selected. Apply outline changes from Sampeast East,
the source database.

APPLYOTLCHANGEFILE "1" "C:\Hyperion\products\Essbase\EssbaseServer\app\Sampeast\East
\ess00004.chg";

See Also

l GETPARTITIONOTLCHANGES

l APPLYOTLCHANGEFILEEX

APPLYOTLCHANGEFILEEX
Applies the source outline changes specified in the .CHG log file to the target database's outline
you selected with the SELECT command.

Syntax

APPLYOTLCHANGEFILEEX numFiles fileName dataFlowDirection

Parameter Description

numFiles A numeric value indicating the number of .CHG log files to read.

Filename The name of the .CHG log file to read. The filename must be the full path name of the desired
change file on the target database. The filename must be in quotation marks (see example below).
More than one file can be specified.

dataFlowDirection The half of the partition to which you are currently connected:

1 - Source

2 - Target

Notes

When the source database outline is modified, the GETPARTITIONOTLCHANGES command
records the outline changes to a .CHG file in the source database directory.

ESSCMD Command Reference 537

Use APPLYOTLCHANGEFILEEX after calling GETPARTITIONOTLCHANGES. Specify the
full path to the source database's .CHG file.

Example

Samppart Company, the target database, is selected. Apply outline changes from Sampeast East,
the source database.

APPLYOTLCHANGEFILE "1"
"C:\Hyperion\products\Essbase\EssbaseServer\app\Sampeast\East\ess00004.chg" "1";

See Also

l GETPARTITIONOTLCHANGES

BEGINARCHIVE
Places a database in read-only mode for archiving.

Syntax

BEGINARCHIVE App DB file

Parameter Description

App Name of the application.

DB Name of the database.

file File to contain the archive.

Notes

Changing the server mode to Read-only allows the database administrator to use an archiving
program to back up files on the server. This also prevents writing to files during backup.

The server's Read-only state persists until it is changed back to Read-write with the
ENDARCHIVE command. Unless you reset the Read-only state, it persists even after
termination of the current session.

The database files to back up are listed in the application\database directory specified by the
filename parameter. The archived data overwrites the information in the specified file, if the file
already exists. See the Oracle Essbase Database Administrator's Guide for more information about
restructuring and backup files.

Example

BEGINARCHIVE "Sample" "Sales" "June";

See Also

l ENDARCHIVE

538 ESSCMD Commands

BEGININCBUILDDIM
Prepares Essbase Services for deferred-restructure dimension building commands.

Syntax

BEGININCBUILDDIM

Notes

Deferred-restructure dimension builds have also been called incremental dimension builds. This
command works in conjunction with the ENDINCBUILDDIM command to group together
one or more INCBUILDDIM statements.

This command locks the outline file. If the outline file is already locked, this command returns
an error.

This command copies the outline file (.OTL) to a backup file name (.OTN). Subsequent
INCBUILDDIM commands operate on the .OTN file. See the Oracle Essbase Database
Administrator's Guide for more information about restructuring and backup files.

BEGININCBUILDDIM starts a programming block; ENDINCBUILDDIM ends the
programming block.

Example

To build the dimensions specified in GENREF.RUL and LEVELMUL.RUL, discard all data, and
save the new outline after the dimension builds are complete:

BEGININCBUILDDIM;
INCBUILDDIM 2 "GENREF.RUL" 2 "GENREF.TXT" 4 "ERR.OUT" 1;
INCBUILDDIM 2 "LEVELMUL.RUL" 2 "LEVELMUL.TXT" 4 "ERR.OUT" 1;
ENDINCBUILDDIM 4;

See Also

l ENDINCBUILDDIM

l INCBUILDDIM

l BUILDDIM

BUILDDIM
Dynamically builds one or more dimensions from a data file or SQL source.

Syntax

BUILDDIM location rulobjName dataLoc sourceName fileType errorLog

Parameter Description

location Location of the rules file.

1 - Local/client.

2 - Remote/server.

3 - File. Use the file is not an Essbase artifact, or if you want to specify the full path name. Otherwise,
Essbase looks in the <APPNAME>/<DBNAME> directory.

ESSCMD Command Reference 539

Parameter Description

rulobjName Name of the rules file

dataLoc Location of the data file.

1 - Local/client

2 - Remote/server

3 - File. Use if the file is not an Essbase artifact, or if you want to specify the full path name. Otherwise,
Essbase looks in the <APPNAME>/<DBNAME> directory.

4 - SQL source.

sourceName Source of the data file. If dataLoc is 1, 2, or 3, specify the data file name.

If dataLoc is 4, specify the SQL user name and password.

fileType Data file type.

1 - Excel

2 - Lotus .WK1 file (No longer supported)

3 - Lotus .WK3 file (No longer supported)

4 - Text.

5 - Lotus .WK4 file (No longer supported)

This parameter is not required if you are using an SQL source.

errorLog Name of the text file to receive error messages and rejected records.

Notes

This command builds one or more dimensions from a data file or an SQL source. Many
applications have large dimensions that are impractical to manually define and maintain. This
command makes it possible to automate the dimension-building and updating processes. See
the INCBUILDDIM command for another way to build dimensions.

The INCBUILDDIM command is identical to the BUILDDIM command, except for the
following:

l INCBUILDDIM does not automatically restructure the database after modifying the
dimensions. You can have several consecutive INCBUILDDIM, commands inside a
BEGININCBUILDDIM...ENDINCBUILDDIM block. Essbase restructures when it
encounters ENDINCBUILDDIM.

l INCBUILDDIM lets you append to, rather than overwrite, the error log.

Example

To build the dimensions as defined by the rules file, PROD.RUL:

BUILDDIM 1 "PROD" 1 "PRODUCTS" 4 "PRODERR";

To build the dimensions from an SQL table defined in the rules file, PROD.RUL:

BUILDDIM 1 "PROD" 4 "TomT" "Password" "PRODERR";

540 ESSCMD Commands

CALC
Executes one or more calculation strings.

Syntax

CALC "calcString; [calcString;]"

Parameter Description

calcString A calculation string (any valid string that is accepted by a calculation script).

Notes

In a batch file, if you include multiple calculation strings in one CALC command, place all of
the calculation string parameters in one set of quotation marks and end each command string
with a semicolon statement terminator (;). All text within the quotation marks is passed to the
calculator.

As an alternate to including multiple calculation strings in this command, place the strings in a
calculation script, then call RUNCALC to run the script.

Example

To issue the CALC ALL command:

CALC "Calc All;";

To calculate the members January and Product:

CALC "Jan; Product;";

See Also

l CALCLINE

CALCDEFAULT
Calculates using the default database calculation.

Syntax

CALCDEFAULT

Notes

This command calculates the relationships defined in the outline, or executes the default
calculation.

Example

CALCDEFAULT;

See Also

l CALC

l CALCLINE

l SETDEFAULTCALC

ESSCMD Command Reference 541

CALCLINE
Executes a single calculation string.

Syntax

CALCLINE calcString

Parameter Description

calcString A calculation string (any valid string that is accepted by a calculation script).

Notes

This command executes a single calculation string. In a batch file, place the calculation string
parameter in quotation marks and end the string with a semicolon statement terminator (;). All
text within the quotation marks is passed to the calculator. This command requires quotation
marks.

Example

To issue the CALC ALL command:

CALCLINE "Calc All;";

To calculate the members January and Product:

CALCLINE "Jan; Product;";

See Also

l CALC

COPYAPP
Copies an application.

Syntax

COPYAPP sourceApp destApp

Parameter Description

sourceApp Name of application to copy.

destApp Name of new application.

Example

COPYAPP "FINANC95" "FINANC96";

COPYDB
Copies a database.

542 ESSCMD Commands

Syntax

COPYDB sourceApp sourceDb destApp destDb

Parameter Description

sourceApp Name of the application for the database to copy.

sourceDb Name of the database to copy.

destApp Name of the application for the new database.

destDb Name of the new database.

Example

COPYDB "FINANC95" "SALES95" "FINANC96" "SALES96";

COPYFILTER
Copies a filter.

Syntax

COPYFILTER sourceApp sourceDb sourceFilter destApp destDb destFilter

Parameter Description

sourceApp Name of the application that includes the filter to copy.

sourceDb Name of the database that includes the filter to copy.

sourceFilter Name of the filter to copy.

destApp Name of the application for the new filter.

destDb Name for the database for the new filter.

destFilter Name of the filter copy.

Example

COPYFILTER "FINANC95" "SALES95" "FILTER95" "FINANC96" "SALES96" "FILTER96";

COPYOBJECT
Copies a database artifact.

Syntax

COPYOBJECT objType sourceApp sourceDb sourceObj destApp destDb destObj

ESSCMD Command Reference 543

Parameter Description

objType Type of artifact to list.

0 - Abort
1 - Outline object (not available)
2 - Calculation script
3 - Report script
4 - Rules file
5 - Alias table
6 - Structure file
7 - Backup file (not available)
8 - Worksheet of any type (not available)
9 - Text object
10 - Partition
11 - Linked Reporting Object
12 - Selection
13 - Wizard

sourceApp Name of the application that includes the artifact to copy.

sourceDb Name of the database that includes the artifact to copy.

sourceObj Name of the artifact to copy.

destApp Name of the application for the new artifact.

destDb Name of the database for the new artifact.

destObj Name of the artifact copy.

Notes

objType parameter values 6 and 7 are deprecated.

Example

COPYOBJECT "2" "FINANC95" "SALES95" "OLDOBJ" "FINANC96" "SALES96" "NEWOBJ";

CREATEAPP
Creates a new application.

Syntax

CREATEAPP appName

Parameter Description

appName Name of the application.

Example

To create an application called TBC:

CREATEAPP "TBC";

544 ESSCMD Commands

CREATEDB
Creates a database.

Syntax

CREATEDB appName dbName

Parameter Description

appName Name of the application in which to create a database.

dbName Name of the database.

Example

To create an database called FINANCE under an application named TBC:

CREATEDB "TBC" "FINANCE";

CREATEGROUP
Creates a group.

Syntax

CREATEGROUP groupName

Parameter Description

groupName Name of the group to create.

Notes

This command creates a new group.

Example

To create a group called MARKETING:

CREATEGROUP "MARKETING";

CREATELOCATION
Creates a new location alias.

Location aliases provide a shorthand way of managing login information for Essbase databases.
Location aliases are mapped to a host name, application name, database name, user name, and
password.

Syntax

CREATELOCATION alias host application database user_name password

ESSCMD Command Reference 545

Parameter Description

alias Location alias name.

host Host name.

application Application name.

database Database name.

user_name Login name.

password Password for user_name.

Notes

l You can use location aliases only with the @XREF function.

l You must have Database Manager permission to create location aliases.

Example

CREATELOCATION "ALIAS3" "LOCAL" "SAMPLE" "BASIC" "TomT" "PASSWORD";

See Also

l DELETELOCATION

l LISTLOCATIONS

CREATEUSER
Creates a new Essbase user ID.

Syntax

CREATEUSER userName password

Parameter Description

userName Name of the user.

password Password for the new user. If the string contains blanks, it must be enclosed in double quotation marks.
Leading or trailing spaces are illegal and will be trimmed off. Do not enclose the password in single quotation
marks unless you want them to be part of the password.

Example

To create a user named DANTE with the password INFERNO:

CREATEUSER "DANTE" "INFERNO";

CREATEVARIABLE
Defines a substitution variable and its corresponding string value.

546 ESSCMD Commands

Syntax

CREATEVARIABLE variableName serverName [appName [dbName]] value

Parameter Description

variableName Name of the substitution variable. Must be alphanumeric and can contain a maximum of 80 characters.
You can use underscores, but not spaces.

serverName Host name of the Essbase Server.

appName Optional. Name of the application. If omitted, empty quotes must be used in a script to take its place.
("")

dbName Optional. Name of the database. If omitted, empty quotes must be used in a script to take its place.
("")

value The string value for the variable. Must be alphanumeric and can contain a maximum of 255 characters.
It can include a null value. Do not use the & character as the leading character.

Notes

If you specify only the Essbase Server host name, the variable applies to all applications and
databases on the Essbase Server. If you specify the Essbase Server host name and the application
name, the variable applies to all databases within the specified application. If you specify the
Essbase Server host name, application name, and database name, the variable is for the specified
database.

Before you create a new variable, check the names of existing variables with the LISTVARIABLES
command. It is possible to overwrite the string value of an existing variable if you create a variable
with the same name as the existing variable.

Example

The following command in an ESSCMD script creates a substitution variable on the Sample
Basic database, on a host computer named Bamboo. The variable is named CurQtr and has a
value of Qtr1.

CREATEVARIABLE "CurQtr" "Bamboo" "Sample" "Basic" "Qtr1";

The following ESSCMD script creates a substitution variable that applies to all applications and
databases on the Essbase Server named Aspen. Application and database input is left blank
because the variable is system-wide; however, the empty quotation marks are still required as
placeholders.

login "Aspen" "fiona" "sunflower";
CREATEVARIABLE "CurQtr" "aspen" "" "" "Qtr4";

See Also

l LISTVARIABLES

l UPDATEVARIABLE

ESSCMD Command Reference 547

DELETEAPP
Deletes an application.

Syntax

DELETEAPP appName

Parameter Description

appName Name of the application to delete.

Notes

Deleting an application deletes all of its associated databases and other artifacts, along with any
additional files that reside in the application and database directories.

Example

To delete an application called TBD:

DELETEAPP "TBC";

DELETEDB
Deletes a database.

Syntax

DELETEDB appName dbName

Parameter Description

appName Name of the application containing the database to delete.

dbName Name of the database.

Notes

Deleting a database deletes all of its associated artifacts, along with any additional files that reside
in the database directory.

Example

To delete a database called BASIC from an application called TBC:

DELETEDB "TBC" "BASIC";

DELETEGROUP
Deletes a group.

Syntax

DELETEGROUP groupName

548 ESSCMD Commands

Parameter Description

groupName Name of the group to delete.

Notes

This command deletes an Essbase security group. Deleting the group does not delete users that
were in the group.

Example

To delete a group called MARKETING:

DELETEGROUP "MARKETING";

See Also

l DELETEUSER

l REMOVEUSER

DELETELOCATION
Removes a location alias from the current database.

Syntax

DELETELOCATION alias

Parameter Description

alias Name of location alias.

Notes

You must have Database Manager privilege to delete location aliases.

Example

DELETELOCATION "ALIAS3";

See Also

l CREATELOCATION

l LISTLOCATIONS

DELETELOG
Deletes accumulated entries from an application log file (appname/log) or the Essbase Server
log file (essbase.log).

Syntax

DELETELOG appName

ESSCMD Command Reference 549

Parameter Description

appName Name of application. If you omit appname, Essbase clears the Essbase Server log file.

Notes

Each application has a log file, which records all user requests and activities in all databases in
the application. The log file should be cleared regularly to prevent its becoming too large.

In addition, there is an Essbase Server log file, which records all the commands displayed in the
main Essbase Server Agent window.

Example

To clear the log file of an application called SAMPLE:

DELETELOG "SAMPLE";

To clear the Essbase Server log file:

DELETELOG ""

DELETEUSER
Deletes an Essbase user ID.

Syntax

DELETEUSER userName

Parameter Description

userName Name of the user to delete.

Notes

l Deleting the user ID deletes the user from the list of users on the Essbase Server, as well as
logging the user out of the active session.

l If you want to remove a user from a group without removing the user, use REMOVEUSER
instead.

l Do not include a group name in the DELETEUSER command line; otherwise, the group
will also be deleted.

Example

To delete a user named DANTE:

DELETEUSER "DANTE";

See Also

l DELETEGROUP

l REMOVEUSER

550 ESSCMD Commands

DELETEVARIABLE
Removes a substitution variable.

Syntax

DELETEVARIABLE variableName serverName [appName [dbName]]

Parameter Description

variableName Name of substitution variable to delete.

serverName Name of the server.

appName Optional. Name of the application.

dbName Optional. Name of the database.

Notes

If the variable was created at the server level, specify only the server name. If the variable was
created at the application level, specify the server and application. If the variable was created at
the database level, select the server, application, and database.

Example

DELETEVARIABLE "CurQtr" "Bamboo" "Sample" "Basic";

DISABLELOGIN
Prevents users from logging in to databases in an application. Administrators and application
managers for the application are not affected by this setting, but other connected users are
affected.

Syntax

DISABLELOGIN [appName]

Parameter Description

appName Optional. Required only if no application is selected.

Notes

Issue the DISABLELOGIN command to prevent users from accessing databases in an application
during maintenance. Administrators and application managers are not affected.

The DISABLELOGIN command prevents any user with a permission lower than Application
Manager from making connections to the databases that require the databases to be started. This
includes starting the databases or performing the SELECT command on the databases.

Database connections remain disabled until re-enabled by as follows:

l By the administrator, using ENABLELOGIN.

ESSCMD Command Reference 551

l By the administrator, using application settings. In Administration Services, select the Allow
Connects check box under the Security node in the Application Properties window - General
tab.

By default, connections are enabled.

Example

DISABLELOGIN;

See Also

l ENABLELOGIN

DISPLAYALIAS
Lists the alias names defined in an alias table.

Syntax

DISPLAYALIAS aliasTableName

Parameter Description

aliasTableName Name of the alias table.

Example

To display the alias names defined in an alias table called DEFAULT:

DISPLAYALIAS "DEFAULT";

ENABLELOGIN
Enables connections to databases in an application.

Syntax

ENABLELOGIN [appName]

Parameter Description

appName Optional. Required only if no application selected.

Notes

This command reverses the effect of DISABLELOGIN.

Example

ENABLELOGIN;

552 ESSCMD Commands

ENDARCHIVE
Restores the database to read-write mode after archiving is complete.

Syntax

ENDARCHIVE appName dbName

Parameter Description

appName Name of the application containing the archived database.

dbName Name of the database.

Notes

After you call BEGINARCHIVE, use ENDARCHIVE to restore the database to read-write mode.
Otherwise, the read-only state persists even after the termination of the current session. See the
Oracle Essbase Database Administrator's Guide for more information about restructuring and
backup files.

Example

ENDARCHIVE;

See Also

l BEGINARCHIVE

ENDINCBUILDDIM
Ends the programming block started by BEGININCBUILDDIM and restructures the database
after one or more deferred-restructure dimension-building (INCBUILDDIM) commands.
Deferred restructure dimension builds have also been called incremental dimension builds.

Syntax

ENDINCBUILDDIM preserve

Parameter Description

preserve Specifies whether to preserve existing data in the database. This parameter is required. Values:

1 - Preserves all existing data blocks.
2 - Preserves existing level 0 data.
3 - Preserves existing input-level data.
4 - Discards all existing data.

Notes

This command works in conjunction with the BEGININCBUILDDIM command to group
together one or more INCBUILDDIM statements.

This command restructures the database according to the dimension changes that occur as a
result of the INCBUILDDIM commands.

ESSCMD Command Reference 553

This command preserves existing data according to the preserve option.

This command unlocks the outline once restructuring is complete, and overwrites the
original .OTL file with the newly modified .OTN file. See BEGININCBUILDDIM for information.

If one or more of the INCBUILDDIM commands that precede the ENDINCBUILDDIM
command fails, ENDINCBUILDDIM still restructures the database.

WARNING: If you don't issue an ENDINCBUILDDIM command after a
BEGININCBUILDDIM command and one or more INCBUILDDIM commands, the changes
made to the .OTN file are not copied to the database outline (.OTL) file, and the data is not
restructured.

Example

To build the dimensions specified in GENREF.RUL and LEVELMUL.RUL, discard all data, and
save the new outline after the dimension builds are complete:

BEGININCBUILDDIM;
 INCBUILDDIM 2 "GENREF.RUL" 2 "GENREF.TXT" 4 "ERR.OUT" 1;
 INCBUILDDIM 2 "LEVELMUL.RUL" 2 "LEVELMUL.TXT" 4 "ERR.OUT" 1;
ENDINCBUILDDIM 4;

See Also

l BEGININCBUILDDIM

l INCBUILDDIM

ESTIMATEFULLDBSIZE
Estimates the number of blocks a full calculation (CALC ALL) of the database creates, based on
the number of blocks that exist before calculation. The database can have all data loaded, or a
random sampling of data.

Syntax

ESTIMATEFULLDBSIZE

Notes

l Use this estimate to help you plan disk space requirements.

l Outlines that contain sparse formulas or topdown formulas are not supported.

l Select an application and database before issuing this command.

Example

Assume that you have fully loaded Sample Basic. Use this command before calculation to predict
the number of blocks that would be created.

estimatefulldbsize;

Estimated count of blocks after full calculation = 335

Time elapsed to calculate this estimation = 0.02 seconds

554 ESSCMD Commands

EXIT
Terminates the current session of the ESSCMD utility.

Syntax

EXIT

Example

EXIT;

EXPORT
Writes the data values of a database to a text file.

Syntax

EXPORT exportName amount formatOption

Parameter Description

exportName Specifies the name, including the path, of the file for the exported data. If no path is specified, the file
is created in the ARBORPATH\app directory.

amount Specifies the number representing the data to export.

l 1 - All data

l 2 - Only level 0 blocks

l 3 - Only data from blocks with input data

formatOption Specifies the format of the data.

l 0 (null) - Non-columnar format. This is the default.

l 1 - Columnar format

Notes

The EXPORT command copies data in text format as an alternative to database archiving
wherein you copy the files in binary format. Text format is more easily ported to other databases,
and users can easily read it. This command exports only the data, rather than the entire database.
Because only data is exported, it is more complex to restore the database from an export file than
from a true database archive. You must reload and recalculate the data if you use an export file
to restore a database.

Some file systems do not support text files larger than 2 GB. If the exported data exceeds 2 GB,
Essbase creates multiple export files, as needed. An underscore and number is appended to the
file names of the additional files, starting with _1. For example, if exportName is
outfile.txt and three files are created, the resulting file names are outfile.txt,
outfile_1.txt, and outfile_2.txt.

The export process does not begin until all users are logged out of the database. After the export
process begins, the database is in read-only mode. After the export process is finished, Essbase
returns the database to read-write mode.

ESSCMD Command Reference 555

The EXPORT command works on both aggregate storage and block storage databases; however,
aggregate storage exports work differently from block storage exports. See Oracle Essbase
Database Administrator's Guide.

Example

To create an export file called E060693 that contains only level zero data in columnar format:

EXPORT "E060693" 2 1;

If the exported data in this example exceeds 4 GB, three files are created: E060693,
E060693_1, and E060693_2.

See Also

l PAREXPORT

l DATAEXPORT

GETALLREPLCELLS
The GETALLREPLCELLS command replicates all data cells in the replicated partition from a
source database to a target database. Use this command when you are in the data target database.

Syntax

1:

GETALLREPLCELLS sourceServerName sourceAppName sourceDbName

2:

GETALLREPLCELLS ALL

Parameter Description

sourceServer Host name of the Essbase Server data source.

sourceApp Name of the data source application.

sourceDb Name of the data source database.

ALL Updates cells for all partitions where the selected database is a data replication target.

Notes

This command gets all replicated data cells from the Essbase Server data source, application, and
database, and replicates them in the data target database you select with the SELECT command.
This is useful when the data source and data target databases need to be resynchronized.

GETALLREPLCELLS gets cells from the data source to the data target, based on a request made
from the data target; PUTALLREPLCELLS cells puts cells from the data source to the data target,
based on a request made from the data source.

Example

GETALLREPLCELLS "Aspen" "Sample" "Basic";

556 ESSCMD Commands

See Also

l GETUPDATEDREPLCELLS

l PUTALLREPLCELLS

GETAPPACTIVE
Returns the name of the currently selected application.

Syntax

GETAPPACTIVE

Example

The following example shows the command and its results:

GETAPPACTIVE;
GetAppActive:

Current active application is [sample]

See Also

l GETAPPINFO

l GETAPPSTATE

GETAPPINFO
Returns host, user, and database information for the current application.

Syntax

GETAPPINFO [appName]

Parameter Description

appName Optional. Required only if no application is selected.

Notes

This command returns the following information about the application: name, Essbase Server
host name, status, elapsed time, users connected, number of databases, and a list of all databases.

Example

GETAPPINFO;

See Also

l GETAPPACTIVE

l GETAPPSTATE

ESSCMD Command Reference 557

GETAPPSTATE
Returns information on the state of the currently selected application.

Syntax

GETAPPSTATE [appName]

Parameter Description

appName Optional. Required only if no application is selected.

Notes

This command returns information on the state of the currently selected application, as follows:

Loadable (Y/N) AutoLoad (Y/N), Access Level, Allow Connects (Y/N), Allow Commands (Y/
N), Allow Updates (Y/N), Security, Lock Timeout, LRO File Size Limit.

Example

GETAPPSTATE;

See Also

l GETAPPACTIVE

l GETAPPINFO

GETATTRIBUTESPECS
Returns the current attribute specifications for the selected application and database.

Syntax

GETATTRIBUTESPECS

Notes

This command returns the current attribute specifications for the application and database,
including attribute member name format, Attribute Calculation dimension member names,
Boolean and date member names, and numeric range specifications.

Example

GETATTRIBUTESPECS;

Returns:

 ---------Attribute Specifications--------

 Prefix/Suffix : Prefix
 Use Name of : Parent
 Delimiter : '_'
 Date Format : MM-DD-YYYY
 Bucketing Type : Upper Bound inclusive
 Default for TRUE : True
 Default for FALSE : False

558 ESSCMD Commands

 Default for Attr Calc : Attribute Calculations
 Default for Sum : Sum
 Default for Count : Count
 Default for Average : Average
 Default for Min : Min
 Default for Max : Max

The name of the attribute level 0 member 3000000, in the following dimension structure, varies
depending on the attribute member name format.

Attribute Member:

Population
 Small
 3000000

Sample Name Variations:

Settings Resulting Member name

Prefix/Suffix : Prefix

Use Name of : None

Delimiter : '_'

3000000

Prefix/Suffix : Prefix

Use Name of : Parent

Delimiter : '_'

Small_3000000

Prefix/Suffix : Prefix

Use Name of : All Ancestors

Delimiter : '^'

Population^Small^3000000

GETATTRINFO
Returns member, dimension, and name information for given attribute members:

l MbrName: Member name.

l DimName: Dimension of which the attribute is a member.

l Data Type: The attribute member type. Values: Boolean, date, numeric, text.

l Data Value: The short attribute member name, if an attribute member. This is the name
shown in the Outline Editor. For example, Data Value = 20 for the attribute member named
Ounces_20.

Syntax

GETATTRINFO mbrName

ESSCMD Command Reference 559

Parameter Description

mbrName Full attribute member name. Example:

Intro Date_07-26-1996

Notes

l The output of this command is a subset of the output for the GETMBRINFO command.

l To learn the exact format of the attribute member name, you can enter GETMEMBERS
<parent>, where <parent> is the parent of the attribute member. For example,
GETMEMBERS "Intro Date"; returns:

Intro Date_12-10-1996 Intro Date_10-01-1996 Intro Date_07-26-1996
Intro Date_06-26-1996 Intro Date_04-01-1996 Intro Date_03-25-1996
Intro Date_09-27-1995 Intro Date

Example

GETATTRINFO "Caffeinated_True";

Returns:

Member info of [caffeinated_true]

MbrName : Caffeinated_True
DimName : Caffeinated
Attribute Type : Boolean
Attribute Value : True

GETCRDB
Returns the name of the currency database linked to the currently selected database.

Syntax

GETCRDB

Example

GETCRDB;

See Also

l GETCRDBINFO

l GETCRRATE

l GETCRTYPE

GETCRDBINFO
Returns information about the currency database linked to the currently selected database.

Syntax

GETCRDBINFO

560 ESSCMD Commands

Example

GETCRDBINFO;

GETCRRATE
Returns the currency rate for currency partitions.

Syntax

GETCRRATE

Example

GETCRRATE;

See Also

l GETCRDB

l GETCRDBINFO

GETCRTYPE
Returns information about the default currency type and conversion method.

Syntax

GETCRTYPE

Example

GETCRTYPE;

See Also

l GETDBINFO

l GETDBSTATS

GETDBACTIVE
Returns the name of the currently selected database.

Syntax

GETDBACTIVE

Example

GETDBACTIVE;

GETDBINFO
Returns information on the state of the currently selected database.

ESSCMD Command Reference 561

Some settings do not take effect until the database is re-started. For information on most recently
entered settings, see GETDBSTATE.

Syntax

GETDBINFO [appName dbName]

Parameter Description

appName dbName Optional. Both required if no application and database are selected.

Notes

When working with currency databases, values viewed using GETDBSTATE and GETDBINFO
may differ from each other. The currency database may temporarily inherit attributes from its
associated database. To have the values match, issue the appropriate SETDBSTATEITEM
command.

Example

GETDBINFO;

Returns:

----- Database Information -----
Name : Basic
Application Name : Sample
Database Type : NORMAL
Status : Loaded
Elapsed Db Time : 00:01:38:31
Users Connected : 2
Blocks Locked : 0
Dimensions : 10
Data Status : Data has been modified
 since last calculation.
Data File Cache Size Setting : 33554432
Current Data File Cache Size : 8388608
Data Cache Size Setting : 3144960
Current Data Cache Size : 2096064
Index Cache Size Setting : 10485760
Current Index Cache Size : 10485760
Index Page Size Setting : 1024
Current Index Page Size : 8192
Cache Memory Locking : Enabled
Database State : Read-write
Data Compression on Disk : Yes
Data Compression Type : BitMap Compression
Retrieval Buffer Size (in K) : 10
Retrieval Sort Buffer Size (in K) : 10
Isolation Level : Uncommitted Access
Pre Image Access : No
Time Out : Never
Number of blocks modified before internal commit : 3000
Number of rows to data load before internal commit : 0
Number of disk volume definitions : 0

--Currency Info--

562 ESSCMD Commands

Currency Country Dimension Member :
Currency Time Dimension Member : Year
Currency Category Dimension Member : Measures
Currency Type Dimension Member :
Currency Partition Member :

--Request Info--

Request Type : Data Load
User Name : admin
Start Time : Mon Feb 17 11:42:59 2004
End Time : Mon Feb 17 11:43:22 2004
Request Type : Default Calculation
User Name : admin
Start Time : Mon Feb 17 12:57:45 2004
End Time : Mon Feb 17 12:57:46 2004
Request Type : Outline Update
User Name : admin
Start Time : Wed Jan 22 12:39:27 2004
End Time : Wed Jan 22 12:39:30 2004

See Also

l GETDBSTATE

GETDBSTATE
Returns the most recently entered database settings for the selected database.

For settings currently in effect, see GETDBINFO.

Syntax

GETDBSTATE [appName dbName]

Parameter Description

appName dbName Optional. Both required if no application and database are selected.

Notes

When working with currency databases, values viewed using GETDBSTATE and GETDBINFO
may differ from each other. The currency database may temporarily inherit attributes from its
associated database. To have the values match, issue the appropriate SETDBSTATEITEM
command.

Example

GETDBSTATE;

Returns:

---------Database State---------

Description:
Allow Database to Start : Yes
Start Database when Application Starts : Yes

ESSCMD Command Reference 563

Access Level : None
Data File Cache Size : 33554432
Data Cache Size : 3145728
Aggregate Missing Values : No
Perform two pass calc when [CALC ALL;] : Yes
Create blocks on equation : No
Currency DB Name : N/A
Currency Conversion Type Member : N/A
Currency Conversion Type : N/A
Index Cache Size : 1048576
Index Page Size : 8192
Cache Memory Locking : Disabled
Data Compression on Disk : Yes
Data Compression Type : BitMap Compression
Retrieval Buffer Size (in K) : 10
Retrieval Sort Buffer Size (in K) : 10
Isolation Level : Uncommitted Access
Pre Image Access : Yes
Time Out after : 20 sec.
Number of blocks modified before internal commit : 3000
Number of rows to data load before internal commit : 0
Number of disk volume definitions : 0

I/O Access Mode (pending) : Buffered
I/O Access Mode (in use) : Buffered
Direct I/O Type (in use) : N/A

See Also

l GETDBINFO

GETDBSTATS
Returns information about dimensions and data blocks for the selected database.

Syntax

GETDBSTATS

Notes

For information about how to use the Average Fragmentation Quotient, see the Oracle Essbase
Database Administrator's Guide section about monitoring performance.

Example

GETDBSTATS;

Returns:

-------Statistics of sample:basic -------

Dimension Name Type Declared Size Actual Size
===
Year DENSE 19 12
Measures DENSE 17 8
Product SPARSE 22 19
Market SPARSE 25 25

564 ESSCMD Commands

Scenario DENSE 5 2
Caffeinated SPARSE 3 3
Ounces SPARSE 5 5
Pkg Type SPARSE 3 3
Population SPARSE 15 15
Intro Date SPARSE 8 8

Number of dimensions : 10
Declared Block Size : 1615
Actual Block Size : 192
Declared Maximum Blocks : 550
Actual Maximum Blocks : 475
Number of Non Missing Leaf Blocks : 177
Number of Non Missing Non Leaf Blocks : 197
Number of Total Blocks : 374
Index Type : B+ TREE
Average Block Density : 93.75
Average Sparse Density : 78.73684
Block Compression Ratio : 0.9552239
Average Clustering Ratio : 1
Average Fragmentation Quotient : 0.01238265
Free Space is Recoverable : false
Estimated Bytes of Recoverable Free Space : 0

See Also

l GETDBACTIVE

l GETDBINFO

l GETDBSTATE

GETDEFAULTCALC
Returns the default calculation script of the currently selected database.

Syntax

GETDEFAULTCALC

Notes

The default calculation script refers to either the relations defined in the database outline (CALC
ALL) or to the set of calc strings defined as the default database calculation. This command
returns the contents of the calculation script designated as default for the database.

Example

GETDEFAULTCALC;

Returns:

Default Calc Script--
CALC ALL;

ESSCMD Command Reference 565

GETMBRCALC
Returns the calc string associated with the selected member.

Syntax

GETMBRCALC mbrName

Parameter Description

mbrName Member name

Example

GETMBRCALC "Profit %";

Returns the following:

Outline Defined Calc Equation. [Profit % Sales;]
Last Calculated Calc Equation. [Profit % Sales;]

GETMBRINFO
Returns information on a specific member.

Syntax

GETMBRINFO mbrName

Parameter Description

mbrName Member name

Notes

This command returns the following information on a specific member:

l Member name.

l Member number.

l Dimension name.

l Dimension number.

l Data-storage share information.

l Level: Steps from bottom to top.

l Generation: Steps from top to bottom.

l Unary operator (+, -, *,/,%,~) for consolidation: add, subtract, multiply, divide, percentile,
ignore.

l Member tag types, if any; for example, Accounts and Time Series tags, Two-Pass Calc tags.

l Name of the tagged currency database member (if any).

l Currency conversion. Values: Yes/No

566 ESSCMD Commands

l Member description.

l Parent member name.

l Child member name.

l Previous member name.

l Next member name.

l Attributed: Whether the member has attributes associated with it. Values: Yes, No, N/A (N/
A for attribute members).

l Attribute Type: The attribute member type. Values: Boolean, Date, Numeric, Text.

l Attribute Value: The short attribute member name, if an attribute member. This is the name
shown in the Outline Editor.

l Member has relational descendants: Applicable if Hybrid Analysis is used.

Example

GETMBRINFO "Ounces_20";

Returns:

Member info of [Ounces_20]

MbrName : Ounces_20
MbrNumber : 2
DimName : Ounces
DimNumber : 7
Status : Virtual Member (Non-stored)
Level : 0
Generation : 2
UnaryCalc : NoRollUp
MbrTagType : SkipNone
CrMbrName : N/A
CurrConvert : N/A
Description : N/A
ParentMbrName : Ounces
ChildMbrName : N/A
PrevMbrName : Ounces_32
NextMbrName : Ounces_16
Attributed : N/A
Attribute Type : Numeric(Double)
Attribute Value: 20
Member has relational descendants: No

GETMEMBERS
Returns a list of members from the currently selected database.

Syntax

GETMEMBERS [mbrString]

ESSCMD Command Reference 567

Parameter Description

mbrString Optional. Dimension or member name. If specified, returns children of named dimension or member. The
default is NULL, which returns a list of dimensions in the database.

Example

To return a list of the database dimension names:

GETMEMBERS ;

To return a list of the children of Product:

GETMEMBERS "Product";

To return a list of the children of Qtr1:

GETMEMBERS "Qtr1";

GETPARTITIONOTLCHANGES
Retrieves a list of outline changes made to the partitioned area in the source database, and writes
these changes to the .CHG file on the target database you select with the SELECT command.

If the database has multiple partitions of the same type to the same target database or from the
same source database, use GetPartitionOtlChangesEx instead, and specify the data direction.

Note: All arguments must be provided on one line.

Syntax

GETPARTITIONOTLCHANGES sourceServerName sourceAppName
 sourceDbName sourcePartitionType getAllOtlChanges
 [
 getAllDimChanges
 [getNewDim getDeletedDim getUpdatedDim getMovedDim
 getRenamedDim]
 getAllMbrChanges
 [getNewMbrs getDeletedMbrs
 getRenamedMbrs getMovedMbrs]
 getAllMbrAttribChanges
 [getChngedMbrStatus getChngedMbrAlias getChngedMbrCalcSym
 getChngedMbrAcctType getChngedMbrCurrCnvInfo
 getChngedMbrUda getChngedMbrCalcFormulas]
 getChangedLevNbr
 getChangedGenNbr
]

Parameter Description

sourceServerName Name of the data source server where the outline changes were made.

sourceAppName Name of the data source application where the outline changes were made.

sourceDbName Name of the data source database where the outline changes were made.

568 ESSCMD Commands

Parameter Description

sourcePartitionType Name of the partition type where the outline changes were made. Can be any of the
following:

1 - Replicated
2 - Linked
3 - Transparent

getAllOtlChanges Lists all changes to the database outline. Values: Y/N.

getAllDimChanges Lists all changes to the dimensions, including member names. Values: Y/N.

getNewDim Lists newly created dimensions. Values: Y/N.

getDeletedDim Lists deleted dimensions. Values: Y/N.

getUpdatedDim Lists updated dimensions. Values: Y/N.

getMovedDim Lists moved dimensions. Values: Y/N.

getRenamedDim Lists renamed dimensions. Values: Y/N.

getAllMbrChanges Lists all member changes. Values: Y/N.

getNewMbrs Lists newly created members. Values: Y/N.

getDeletedMbrs Lists deleted members. Values: Y/N.

getRenamedMbrs Lists renamed members. Values: Y/N.

getMovedMbrs Lists moved members. Values: Y/N.

getAllMbrAttribChanges Lists all changes to member attributes. Values: Y/N.

getChngedMbrStatus Lists members that have a changed status such as data storage or Dynamic Time Series
information. Values: Y/N.

getChngedMbrAlias Lists changed member aliases. Values: Y/N.

getChngedMbrCalcSym Lists changed member unary operators. Values: Y/N.

getChngedMbrAcctType Lists changed account type information for members in an Accounts dimension. Values:
Y/N.

getChngedMbrCurrCnvInfo Lists changed member currency conversion information. Values: Y/N.

getChngedMbrUda Lists changed member user-defined attributes. Values: Y/N.

getChngedMbrCalcFormulas Lists changed member calc formulas. Values: Y/N.

getChangedLevNbr Lists changed level numbers. Values: Y/N.

getChangedGenNbr Lists changed generation numbers. Values: Y/N.

Notes

This command retrieves a list of all outline changes made to the data source database, based on
the selected parameters, and writes the changes to a .CHG log file on the selected data target

ESSCMD Command Reference 569

database. Essbase creates the .CHG file, and names it with a file name representing the partition
ID.

Example

With Optional Parameters:

GETPARTITIONOTLCHANGES "BAMBOO" "SAMPLE" "BASIC"
"1" "N" "Y" "Y" "Y" "N" "Y" "Y" "N" "Y" "Y" "N" "Y" "N" "Y" "Y" "Y" "Y" "N" "Y" "Y" "Y"
"Y";

Without Optional Parameters:

GETPARTITIONOTLCHANGES "BAMBOO" "SAMPLE" "BASIC"
"1" "N" "Y" "Y" "Y" "Y";

See Also

l APPLYOTLCHANGEFILE

l GETPARTITIONOTLCHANGESEX

GETPARTITIONOTLCHANGESEX
Retrieves a list of outline changes made to the partitioned area in the source database, and writes
these changes to the .CHG file on the target database you select with the SELECT command.

Note: All arguments must be provided on one line.

Syntax

GETPARTITIONOTLCHANGESEX sourceServerName sourceAppName
 sourceDbName sourcePartitionType dataFlowDirection getAllOtlChanges
 [
 getAllDimChanges
 [getNewDim getDeletedDim getUpdatedDim getMovedDim
 getRenamedDim]
 getAllMbrChanges
 [getNewMbrs getDeletedMbrs
 getRenamedMbrs getMovedMbrs]
 getAllMbrAttribChanges
 [getChngedMbrStatus getChngedMbrAlias getChngedMbrCalcSym
 getChngedMbrAcctType getChngedMbrCurrCnvInfo
 getChngedMbrUda getChngedMbrCalcFormulas]
 getChangedLevNbr
 getChangedGenNbr]

Parameter Description

sourceServerName Name of the data source server where the outline changes were made.

sourceAppName Name of the data source application where the outline changes were made.

sourceDbName Name of the data source database where the outline changes were made.

570 ESSCMD Commands

Parameter Description

sourcePartitionType Name of the partition type where the outline changes were made. Can be any of the
following:

1 - Replicated
2 - Linked
3 - Transparent

dataFlowDirection The half of the partition to which you are currently connected:

1 - Source
2 - Target

getAllOtlChanges Lists all changes to the database outline. Values: Y/N.

getAllDimChanges Lists all changes to the dimensions, including member names. Values: Y/N.

getNewDim Lists newly created dimensions. Values: Y/N.

getDeletedDim Lists deleted dimensions. Values: Y/N.

getUpdatedDim Lists updated dimensions. Values: Y/N.

getMovedDim Lists moved dimensions. Values: Y/N.

getRenamedDim Lists renamed dimensions. Values: Y/N.

getAllMbrChanges Lists all member changes. Values: Y/N.

getNewMbrs Lists newly created members. Values: Y/N.

getDeletedMbrs Lists deleted members. Values: Y/N.

getRenamedMbrs Lists renamed members. Values: Y/N.

getMovedMbrs Lists moved members. Values: Y/N.

getAllMbrAttribChanges Lists all changes to member attributes. Values: Y/N.

getChngedMbrStatus Lists members that have a changed status such as data storage or Dynamic Time Series
information. Values: Y/N.

getChngedMbrAlias Lists changed member aliases. Values: Y/N.

getChngedMbrCalcSym Lists changed member unary operators. Values: Y/N.

getChngedMbrAcctType Lists changed account type information for members in an Accounts dimension. Values:
Y/N.

getChngedMbrCurrCnvInfo Lists changed member currency conversion information. Values: Y/N.

getChngedMbrUda Lists changed member user-defined attributes. Values: Y/N.

getChngedMbrCalcFormulas Lists changed member calc formulas. Values: Y/N.

getChangedLevNbr Lists changed level numbers. Values: Y/N.

getChangedGenNbr Lists changed generation numbers. Values: Y/N.

ESSCMD Command Reference 571

Notes

This command retrieves a list of all outline changes made to the data source database, based on
the selected parameters, and writes the changes to a .CHG log file on the selected data target
database. Essbase creates the .CHG file, and names it with a file name representing the partition
ID.

Example

With Optional Parameters:

GETPARTITIONOTLCHANGESEX "BAMBOO" "SAMPLE" "BASIC"
"1" "1" "N" "Y" "Y" "Y" "N" "Y" "Y" "N" "Y" "Y" "N" "Y" "N" "Y" "Y" "Y" "Y" "N" "Y" "Y"
"Y" "Y";

Without Optional Parameters:

GETPARTITIONOTLCHANGESEX "BAMBOO" "SAMPLE" "BASIC"
"1" "1" "N" "Y" "Y" "Y" "Y";

See Also

l APPLYOTLCHANGEFILE

GETPERFSTATS
Returns performance statistics tables.

Syntax

GETPERFSTATS

Notes

This command returns short, medium, and long performance statistics for the thread, database,
and application. The statistics appear as tables in the ESSCMD window. To gather performance
statistics, you must first enable statistics gathering using RESETPERFSTATS. You also use
RESETPERFSTATS to return to zero the statistical persistence (length) and scope (granularity).
Collecting and analyzing performance statistics can help you understand whether the databases
are in good running condition or could use modifications to improve performance.

For full description of the performance statistics output, see “Performance Statistics in MaxL”
on page 627. ESSCMD usage is deprecated.

See Also

l RESETPERFSTATS

GETUPDATEDREPLCELLS
Replicates all changed data cells in the replicated partition from a data source database to the
selected data target database. Use this command when you are in the target database.

572 ESSCMD Commands

Syntax

1:

GETUPDATEDREPLCELLS sourceServerName sourceAppName sourceDbName

2:

GETUPDATEDREPLCELLS ALL

Parameter Description

sourceServerName Name of the data source server from which cells are replicated.

sourceAppName Name of the data source application from which cells are replicated.

sourceDbName Name of the data source database from which cells are replicated.

ALL Updates cells for all partitions where the selected database is a data replication target.

Notes

This command gets all changed replicated data cells from the data source server, application,
and database, and replicates them in the data target database you select with the SELECT
command.

Essbase determines what updates are performed, based on an internal time stamp which is read
at the block level. Whenever data in the block changes, the time stamp is reset to the current
time. If data is changed that is not defined in the replication area, but is part of the data block,
the time stamp is still refreshed. Therefore, it is possible to update data in the replication area,
even though the replication data has not changed.

When a block is removed by such actions as RESETDB and you request an update of the
replication cells, Essbase performs an internal search that identifies blocks without time stamps.
Essbase then gets all cells from the replication area, instead of only changed cells, which may
cause a time delay.

GETUPDATEDREPLCELLS gets cells from the data source server to the data target server, based
on a request made from the data target server; PUTUPDATEDREPLCELLS puts cells from the
data source server to the data target server, based on a request made from the data source server.

Example

GETUPDATEDREPLCELLS "Aspen" "Sample" "Basic";

See Also

l PUTUPDATEDREPLCELLS

l GETALLREPLCELLS

GETUSERINFO
Returns information about a specified user or group.

ESSCMD Command Reference 573

Syntax

GETUSERINFO userName

Parameter Description

userName Name of the user or group.

Notes

This command returns the following information about a specified user or group:

User/Group name, Logged in (Y/N), Access Level, Last successful login, failed login attempts
since then, Login ID.

Example

GETUSERINFO "TomT";

GETVERSION
Returns the version number and patch number information on the current Essbase Server
software installation.

Syntax

GETVERSION

Example

GETVERSION;

GOTO
Skips all commands until it encounters the associated label.

Syntax

GOTO "Label"; <SKIPPED COMMANDS> :Label ; <COMMANDS OR EOF>

Parameter Description

"Label" A string of characters; not case-sensitive.

:Label Target location, preceded by a colon (:) and associated with "Label". Processing skips to this label.

Notes

This command provides unconditional branching. This means that branching occurs regardless
of the success or failure of previous commands.

Commands that follow :Label can implement error handling or stop processing. Processing
skips all subsequent commands and moves to the associated label, where it resumes. Processing
ignores even the EXIT command if it precedes :Label.

If EOF occurs before :Label is found, processing terminates.

574 ESSCMD Commands

Example

BUILDDIM 2 "NEWGENS.RUL" 2 "NEWGENS.TXT" 4 "REJREC.ERR";
 GOTO "NEWTARGET"; /* Forced branch */
 LOADDATA 2 "JANACT.TXT"; /* Skip LOADDATA */
 :NEWTARGET; /* Move here */
 EXIT; /* and exit */

IFERROR
Checks the status returned by a command and either continues processing or branches to the
associated label in response to the status.

Syntax

IFERROR "Label"; <SKIPPED COMMANDS> :Label ; <COMMANDS OR EOF>

Parameter Description

"Label" String of characters terminated by a whitespace; not case-sensitive.

:Label Target location, preceded by a colon (:), and associated with "Label". Processing skips to this label.

Notes

This command provides the functionality of error checking and conditional branching on errors.

If the previously executed command returned a nonzero status, processing skips all subsequent
commands and moves to the associated label, where it resumes. Commands that
follow :Label can implement error handling or stop processing.

Processing ignores even the EXIT command if it precedes :Label. If EOF occurs
before :Label is found, processing terminates.

Example

LOGIN "IRIS" "SYS" "PASSWORD";
 SELECT "DANI" "TEST";
 BUILDDIM 2 "NEWGENS.RUL" 2 "NEWGENS.TXT" 4 "REJREC.ERR";
 IFERROR "DIMBUILDFAILED"; /* If BUILDDIM fails */
 LOADDATA 2 "JANACT.TXT"; /* Skip LOADDATA */
 :DIMBUILDFAILED; /* Move here */
 EXIT; /* and exit */

IMPORT
Loads data values from an external source into the currently selected database.

Syntax

IMPORT numeric dataFile fileType y/n ruleLoc rulobjName y/n [ErrorFile]

For an SQL data source, the syntax is as follows:

IMPORT 4 SQLUserName SQLUserPassword Ruleloc rulobjName y/n [ErrorFile]

ESSCMD Command Reference 575

Parameter Description

numeric Location of the dataFile file. Values:

1 - Local/client data file.
2 - Remote/server data file.
3 - File.
4 - SQL source.

dataFile Name of data source file.

fileType File type of dataFile. Values:

1 - Excel file
2 - Lotus 2 file (No longer supported)
3 - Lotus 3 file (No longer supported)
4 - Text file (No longer supported)
5 - Lotus 4 file (No longer supported)

y/n Whether to use rules when importing dataFile.

ruleLoc Location of the rulobjName file. Values:

1 - Local/client rule object file
2 - Remote/server rule object file
3 - File. Use option 3 if the file is not an Essbase object, or if you want to specify the full path name.
Otherwise, Essbase looks in the <APPNAME>/<DBNAME> directory.

rulobjName Name of the rules file.

y/n Whether to abort on error.

SQLUserName User name that connects to the SQL database.

SQLUserPassword User password for the SQL database..

ErrorFile The name of the error file. This is required only if you choose not to abort on error.

Notes

l Use the LOADDATA or UPDATEFILE commands to load data without a rules file.

l Use the BUILDDIM command to build one or more dimensions in an outline.

Example

Example 1

IMPORT 2 "ACTUALS" 4 "Y" 2 "ACTUALS" "Y";

Example 2

The following UNIX example imports from an SQL data source, and specifies an error file.

import 4 "tbc" "password" 2 "sales" "N" /app1/imperror;

The following Windows example does the same as the above.

import 4 "tbc" "password" 2 "sales" "N" "c:\valscrt.ERR";

576 ESSCMD Commands

See Also

l LOADDATA

l UPDATEFILE

l BUILDDIM

INCBUILDDIM
Build one or more dimensions from a data file, without restructuring the database. This
command is designed to be used when building an outline from multiple data sources. You can
save time by deferring restructure. Deferred-restructure dimension building is also called
incremental dimension building.

Syntax

INCBUILDDIM location rulobjName dataLoc sourceName fileType errorLog appendLog

Parameter Description

location Location of the rules file. Values:

1 - Local/client-based rules file
2 - Remote/server rules file
3 - File. Use option 3 if the file is not an Essbase object, or if you want to specify the full path name.
Otherwise, Essbase looks in the <APPNAME>/<DBNAME> directory.

rulobjName Name of the rules file.

dataLoc Location of the data file. Values:

1 - Local/client data file
2 - Remote/server data file
3 - File. Use option 3 if the file is not an Essbase object, or if you want to specify the full path name.
Otherwise, Essbase looks in the <APPNAME>/<DBNAME> directory.
4 - SQL source

sourceName Source of the data file. Values:

l If dataLoc is 1 or 2, specify the data file name.

l If dataLoc is 3, specify the data file name and path.

l If dataLoc is 4, specify the SQL user name and password.

fileType Data file type. Values:

1 - Excel file
2 - Lotus .WK1 file (No longer supported)
3 - Lotus .WK3 file (No longer supported)
4 - Text file
5 - Lotus .WK4 file (No longer supported).

This parameter is not required if you are using an SQL source.

errorLog Name of text file to receive error messages and rejected records. Each INCBUILDDIM command in a
BEGININCBUILDDIM...ENDINCBUILDDIM block can specify a different error log.

ESSCMD Command Reference 577

Parameter Description

appendLog Specifies whether to append to the error log file or overwrite it. Values:

1 - Append
2 - Overwrite

verify Parameter specifying whether to verify the outline resulting from the deferred-restructure dimension
build. Values:

Y - Yes, verify the outline. This is the default.
N - No, do not verify the outline.

Notes

Use a INCDIMBUILD command for each data source and rules file to be included in the
dimension build. Use a BEGININCBUILDDIM command at the beginning of a group of
INCDIMBUILD comands. Use an ENDINCGULDDIM command at the end of the group of
INCBUILDDIM commands.

The INCBUILDDIM command changes dimensions in the .OTN file according to the specified
rules file and data file. See BEGININCBUILDDIM for information on the .OTN file.

Each rules file can build one or more dimensions. If a rules files builds multiple dimensions and
an error occurs in a record for any dimension, Essbase rejects the entire record. As a result, other
dimensions represented in that record might not build correctly. Consider designing dimension
builds with multiple rules files using INCBUILDDIM.

An example of this problem relates to the Add as Child build method. Break the rules file into
multiple rules files if both of the following circumstances apply:

l The rules and data files specify more than one Add as Child member per record.

l One of the members being added already exists in the outline as a child of any other parent.

Consider, for example, adding Mbr1 and Mbr2 as children of Par1 and Par2:

Par1 Par2
 Mbr1 Mbr2

If Mbr1 already exists in the outline as the child of some other parent than Par1, you need to
break the rules file into two separate builds. Otherwise, when Essbase sees that the member
already exists in the outline, it rejects the entire record.

By default, each step of a deferred-restructure dimension build must produce a valid outline.
You can use the verify N parameter to create an interim outline that is not valid and then update
the outline in a subsequent INCBUILDDIM command to ensure the outline is valid. To verify
the outline in a subsequent INCBUILDDIM command, remove the verify parameter or specify
a Y. Make sure that the last INCBUILDDIM command verifies the outline.

INCBUILDDIM is identical to BUILDDIM, except for the following:

l INCBUILDDIM does not automatically restructure the database after modifying the
dimensions. You can have several consecutive INCBUILDDIM commands inside a
BEGININCBUILDDIM...ENDINCBUILDDIM block. Essbase restructures when it
encounters ENDINCBUILDDIM.

578 ESSCMD Commands

l INCBUILDDIM enables you to append to, rather than overwrite, the error log.

l BUILDDIM does not enable you to bypass outline verification.

Example

Example 1

The following command builds the dimensions specified in GENREF.RUL and LEVELMUL.RUL,
discards all data, and saves the new outline after the dimension builds are complete:

BEGININCBUILDDIM;
 INCBUILDDIM 2 "GENREF.RUL" 2 "GENREF.TXT" 4 "ERR.OUT" 1 "N";
 INCBUILDDIM 2 "LEVELMUL.RUL" 2 "LEVELMUL.TXT" 4 "ERR.OUT" 1 "Y";
 ENDINCBUILDDIM 4;

Note that you can use the same rules file with multiple data files, providing the data files conform
to the formatting and rules saved in the rules file. For example:

BEGININCBUILDDIM
 INCBUILDDIM 2 "GENREF.RUL" 2 "GENREF1.TXT" 4 "ERR.OUT" 2 "N";
 INCBUILDDIM 2 "GENREF.RUL" 2 "GENREF2.TXT" 4 "ERR.OUT" 1 "N";
 INCBUILDDIM 2 "GENREF.RUL" 2 "GENREF3.TXT" 4 "ERR.OUT" 1 "Y";
 ENDINCBUILDDIM 4;

Example 2

The following Windows example imports dimensions from a server based text file, using a server
based rules file, and specifies an error file.

INCBUILDDIM 2 "Genref.rul" 2 "Genref.txt" 4 "c:\valscrt.ERR" 2;

See Also

l BUILDDIM

l BEGININCBUILDDIM

l ENDINCBUILDDIM

LISTALIASES
Returns a list of alias tables that are defined for the currently selected database.

Syntax

LISTALIASES

Example

LISTALIASES;

LISTAPP
Returns a list of applications that are defined on the Essbase Server.

ESSCMD Command Reference 579

Syntax

LISTAPP

Example

LISTAPP;

LISTDB
Returns a list of databases defined on the currently selected application.

Syntax

LISTDB

Example

LISTDB;

LISTFILES
Helps track disk space used by Essbase databases by supplying accurate index and data file
information.

Syntax

LISTFILES fileType appName dbName

Parameter Description

fileType Type of file for which to display information. Values:

1. Index files.

2. Data files.

3. Index and data files. This is the default.

appname Name of the application for which information is requested. Required only if no application is selected.

dbname Name of the database for which information is requested. Required only if no database is selected.

Notes

The LISTFILES command provides index and data file names, counts, sizes, and totals, and
indicates whether each file is presently opened by Essbase. The file size information provided by
LISTFILES is accurate, whereas the information provided by the Windows operating system for
index and data files on NTFS volumes may not be accurate.

Example

LISTFILES;

Returns:

----- Index File Information -----

580 ESSCMD Commands

Index File Count: 1

File 1:
 File Name: C:\Hyperion\products\Essbase\EssbaseServer\app\Sample\Basic
\ess00001.ind
 File Type: INDEX
 File Number: 1 of 1
 File Size: 8,024 KB (8,216,576 bytes)
 File Opened: Y

Index File Size Total: 8,024 KB (8,216,576 bytes)

----- Data File Information -----

Data File Count: 1

File 1:
 File Name: C:\Hyperion\products\Essbase\EssbaseServer\app\Sample\Basic
\ess00001.pag
 File Type: DATA
 File Number: 1 of 1
 File Size: 8,008 KB (8,200,192 bytes)
 File Opened: Y

Data File Size Total: 8,008 KB (8,200,192 bytes)

File Size Grand Total: 16,032 KB (16,416,768 bytes)

LISTFILTERS
Lists the filters in a database.

Syntax

LISTFILTERS appName dbName

Parameter Description

appName Name of the application containing the filters.

dbName Name of the database containing the filters.

Example

LISTFILTERS "FINANC95" "SALES95";

LISTGROUPS
Returns a list of user groups that are defined on the Essbase Server.

Syntax

LISTGROUPS

ESSCMD Command Reference 581

Example

LISTGROUPS;

LISTGROUPUSERS
Returns a list of users that belong to a specified group.

Syntax

LISTGROUPUSERS groupName

Parameter Description

groupName Name of the group for which to return a list of users.

Example

To return a list of all users that belong to the group called MARKETING:

LISTGROUPUSERS "MARKETING";

LISTLINKEDOBJECTS
Lists information about the objects linked to the active database for a given user name or
modification date.

Syntax

LISTLINKEDOBJECTS userName modDate

Parameter Description

userName The name of a user. If specified, Essbase returns a list of all objects last modified by the given user.

modDate A modification date. If specified, Essbase returns a list of all objects modified on or before the given date.

Notes

This command lists information about linked objects, including the object type, name, and
description, based on criteria you specify. If you specify both a user name and modification date,
objects matching both criteria are listed. If you specify no user name or date, a list of all linked
objects in the database appears.

You must select a database before using LISTLINKEDOBJECTS.

For more information on linked objects, see the Oracle Essbase Database Administrator's
Guide.

Example

To list all objects last modified by user Diana on or before July 7, 1997:

LISTLINKEDOBJECTS "Diana" "07/07/1997";

582 ESSCMD Commands

LISTLOCATIONS
Displays all location aliases defined on the current database.

Syntax

LISTLOCATIONS

Notes

This command displays the location alias parameters as defined and created with the
CREATELOCATION command. You must have at least Database Manager permission to list
location aliases.

Example

LISTLOCATIONS;

Returns:

Location Alias Server Application Database Username
--------------- ----------- -------------- ------------ ---------------
Alias4 Aspen Sample Interntl admin
Alias3 Aspen Demo Basic user1
Alias2 Aspen Samppart Company partitionuser
Alias1 Aspen Sample Basic Admin

See Also

l CREATELOCATION

l DELETELOCATION

LISTLOCKS
Returns a list of all users who have locks on blocks for the currently selected database.

Syntax

LISTLOCKS [appName dbName]

Parameter Description

appName dbName Optional. Both parameters required if no application and database are selected.

Example

LISTLOCKS;

LISTLOGINS
Returns the list of login instances in a session.

Syntax

LISTLOGINS

ESSCMD Command Reference 583

Example

The following interactive example uses LISTLOGINS to get information needed for a subsequent
SETLOGIN command. Commands typed by the user are shown in bold.

localhost:::system[1]->listlogins
ListLogins:

There are 2 Active Login Sessions.
 Login Session 1 -- localhost system
 Login Session 2 -- localhost EWhite

localhost:::system[1]->setlogin 2
SetLogin:

Switch to Login Session 2 -- localhost EWhite

LISTOBJECTS
Returns a list of objects.

Syntax

LISTOBJECTS number appName dbName

Parameter Description

number Type of object to list. Values:

0 - Abort
1 - Outline object
2 - Calculation script
3 - Report script
4 - Rules object
5 - Alias table
6 - Structure file
7 - Backup file
8 - Worksheet of any type
9 - Text object
10 - Partition
11 - Linked Reporting Object (stored)
12 - Selection
13 - Wizard

appName Name of the application containing the objects.

dbName Name of the database containing the objects.

Notes

l The list of objects returned by the LISTOBJECTS command includes object names and the
status of object locks.

l Two values for the objType parameter, 6 and 7, are retained only for backward compatibility
with Release 2.0.

584 ESSCMD Commands

l Option 11, Linked Reporting Object, lists only stored LROs; that is, files with the .LRO
extension. It does not list URLs, cell notes, or linked partitions. Use the
LISTLINKEDOBJECTS command to list these objects.

Example

To return a list of outline objects associated with the BASIC database:

LISTOBJECTS 1 "SAMPLE" "BASIC";

LISTUSERS
Returns a list of the users that are defined on the Essbase Server.

Syntax

LISTUSERS

Example

LISTUSERS;

LISTVARIABLES
Lists all existing substitution variables and their corresponding values for a specified Essbase
Server, application, or database.

Syntax

LISTVARIABLES serverName [appName [dbName]]

Parameter Description

serverName Name of the Essbase Server host computer on which the variable is defined.

appName Optional. Name of the application for which the variable is defined.

dbName Optional. Name of the database for which the variable is defined.

Example

LISTVARIABLES "Bamboo" "Sample" "Basic";

LOADALIAS
Loads an alias table to the currently selected database.

Note: See the Oracle Essbase Database Administrator's Guide for more information about alias
tables in a database.

ESSCMD Command Reference 585

Syntax

LOADALIAS aliasName fileName

Parameter Description

aliasName Name of the alias table to load.

fileName Name of the data source file that loads into the table. The source file must be located on the on the Essbase
Server computer, not a client computer. Specify the file name in either of the following ways:

l Full path to source file on the Essbase Server computer; for example,

C:\Hyperion\products\Essbase\EssbaseServer\app\Sample\Basic
\seasonal.txt

l Relative path to the app\db directory on the Essbase Server computer; for example,

 sample\basic\seasonal.txt

The data in the file must be formatted correctly. See the Oracle Essbase Database Administrator's Guide for
details.

Example

Assume that seasonal.txt is a file with the following contents:

$ALT_NAME
"400-10" Guava
"400-20" Tangerine
"400-30" Mango
$END

To load the contents of the seasonal.txt data source file into the alias table called
special_flavors, use the following command:

LOADALIAS "special_flavors" "C:\Hyperion\products\Essbase\EssbaseServer\app\Sample\Basic
\seasonal.txt";

LOADAPP
Loads an application and its respective databases into memory.

Syntax

LOADAPP appName

Parameter Description

appName Name of the application to load.

Notes

This command loads an application and databases into memory. In order for users to access
information in databases, the application or individual database must be loaded into memory.

Example

To load an application called Sample into memory:

586 ESSCMD Commands

LOADAPP "Sample";

LOADDATA
Loads data without a rules file.

Syntax

LOADDATA numeric fileName

Parameter Description

numeric Location of the data file. Values:

1 - Local/client-based rules file (file).
2 - Remote/server data file.
3 - File. Use option 3 if the file is not an Essbase object, or if you want to specify the full path name. Otherwise,
Essbase looks in the <APPNAME>/<DBNAME> directory.

Note: Essbase Servers installed on Windows computers can accept a spreadsheet file (.xls) using option 3;
Essbase Servers installed on UNIX computers cannot accept spreadsheet files.

fileName Name of the file to load.

Example

LOADDATA 2 "calcdat";

LOADDB
Loads a database into memory.

Syntax

LOADDB appName dbName

Parameter Description

appName Name of the application in which the database resides.

dbName Name of the database to load.

Notes

This command loads a database into memory. A database must be loaded into memory in order
for users to access its information.

Example

To load a database called BASIC from an application called SAMPLE:

LOADDB "SAMPLE" "BASIC";

ESSCMD Command Reference 587

LOGIN
Connects the current ESSCMD session to Essbase Server.

Syntax

LOGIN hostNode userName password [appName dbName]

Parameter Description

hostNode Host name of the Essbase Server computer.

userName User ID defined on the Essbase Server.

password User's password.

appName Optional. Name of the application to load.

dbName Optional. Name of the database to load.

Notes

l The Essbase Server must already be running before a login can occur.

l If you want to use the optional appName and dbName parameters, you must use both.

l With the optional parameters, this command is the equivalent of logging in and issuing a
SELECT appName and dbName command.

Example

To log in a user named TomT who is using ESSCMD from the Essbase Server computer:

LOGIN "LOCAL" "TOMT" "PASSWORD";

To log in a user named TomT to a remote Essbase Server on a host named BEECH:

LOGIN "BEECH" "TOMT" "PASSWORD";

LOGOUT
Logs the current ESSCMD user off from the Essbase Server.

Syntax

LOGOUT

Notes

This command logs the current ESSCMD user off from the Essbase Server, but does not exit the
ESSCMD session.

Example

LOGOUT;

588 ESSCMD Commands

LOGOUTALLUSERS
Logs off all users from the Essbase Server.

Syntax

LOGOUTALLUSERS Y|N

Parameter Description

Y|N Sets whether users are logged out.

Notes

This command logs out all users except for the user issuing the command.

Example

LOGOUTALLUSERS "Y";

See Also

l LOGOUTUSER

LOGOUTUSER
Logs a specified user off the Essbase Server.

Syntax

LOGOUTUSER userNumber

Parameter Description

userNumber Login ID number associated with a user. Issue LOGOUTUSER with no parameter to display a list of users
and user numbers.

Notes

l This command is available in interactive mode only.

l To find the user number, issue this command without a parameter. ESSCMD displays a list
of logged-in users with numbers representing their login order. You can select the user to
log off.

Example

To log the user whose user number is 1 off the Essbase Server:

LOGOUTUSER 1;

See Also

l LOGOUTALLUSERS

ESSCMD Command Reference 589

OUTPUT
Directs process information output from the ESSCMD session to a text file.

Syntax

OUTPUT outputType [outputName] | [errorName]

Parameter Description

outputType Number representing output operation. Values:

1 - Outputs all process information.
2 - Outputs only errors.
3 - Stops output of process information.
4 - Stops output of errors.

outputName Required for outputType 1 only. Name of file to receive output. Not used with other values for
outputType.

errorName Required for outputType 2 only. Name of file to receive errors. Not used with other values for
outputType.

Notes

This command directs Essbase to send messages from the ESSCMD session to the specified file
instead of to the screen.

Example

To write statistics tables returned from the GETPERFSTATS command to a text file
called "stats":

OUTPUT 1 "stats"; :Send process info from ESSCMD to file "stats"
GETPERFSTATS; :Execute this command
OUTPUT 3 "stats"; :Stop sending process info to file "stats"

Result: Essbase writes performance statistics to the file "stats" instead of to the screen.

To write errors during the session to a file called CMDERR:

OUTPUT 2 "CMDERR";

To write statistics to the output file STATINFO:

OUTPUT 1 "STATINFO";

To write only the information that the calculation ran, and not all messages:

OUTPUT 1 "CALCDEFAULT";

PAREXPORT
Starts the parallel data-export process.

The export process does not begin until all users are logged out of the database. After the export
process begins, the database is in read-only mode. Users can read the data but they cannot change

590 ESSCMD Commands

it. After the export process is finished, Essbase returns the database to read-write mode and users
can make changes to the data.

Syntax

PAREXPORT [-threads n] [-in input_filename] | [output_filename] amount formatOption

Parameter Description

-threads n Overrides the default number of export threads set in the EXPORTTHREADS setting in the
essbase.cfg file. The maximum value is 8. If n is greater than 8, Essbase assumes the value to
be 8.

-in input_filename Specifies the full path name of an input file that contains a list of export file names. The number
of files listed in the input file must match the number of export threads. Parallel export gracefully
errors out if there is a mismatch.

l If the data for any export thread exceeds 2 GB, Essbase creates additional files, none of which
exceeds 2 GB. See Note for details.

l If -in is not specified, the next value is assumed to be the value of the output_filename
parameter.

l If the listed files in the input file do not include a path, the files are created in the ARBORPATH
\app directory.

output_filename Specifies the path and root for the file names created to contain the export data. For each thread,
a number is appended to the specified output_filename. For example, if outfile_filename is
outfile and two threads are specified, the resulting file names are outfile1 and
outfile2. If the data for a thread exceeds 2 GB, that export data is divided into multiple files
with a second number appended to the file names. See Note for details. If no path is specified, the
file is created in the ARBORPATH\app directory.

amount Specifies the number representing the data to export.

l 1 - All data

l 2 - Only level 0 blocks

l 3 - Only data from blocks with input data

formatOption Specifies the format of the data.

l 0 (null) - Non-columnar format. This is the default.

l 1 - Columnar format

Notes

l With this command, users can override the default number of export threads specified in
the EXPORTTHREADS setting, and they can provide a list of export file names. During the
export process, multiple threads can retrieve data and write to their corresponding export
files concurrently.

l Parallel export creates multiple export files based on the number of export threads specified.
The database is divided as evenly as possible among the number of parallel export threads.

l If the data for an export thread exceeds 2 GB, that data is separated into multiple files. Each
file is less than 2 GB. The first file name retains the original name; Essbase appends _1, _2,
and so on, as needed, to the additional files.

ESSCMD Command Reference 591

l The PARAEXPORT command works on both aggregate storage and block storage databases,
however aggregate storage exports work differently from block storage exports. See the
Oracle Essbase Database Administrator's Guide for more information.

Example

PAREXPORT -threads 4 -in e:\data\input.txt 1 1;

Note that e:\data\input.txt is a text file that contains four file names on separate lines; that
is,

e:\data\export1.txt

e:\data\export2.txt

d:\data\export3.txt

d:\data\export4.txt

In this example, all data in the database is divided among four export threads to create four
export files. The data is exported in columnar format.

If the data intended for a file is greater than 2 but less than 4 GB, Essbase creates two files. For
example, for the data apportioned to e:\data\export2.txt, Essbase would create e:\data
\export2.txt and e:\data\export2_1.txt.

See Also

l EXPORT

l “EXPORTTHREADS” on page 444

PRINTPARTITIONDEFFILE
Produces a text file of the partition-mapping tables of the distributed database.

Syntax

PRINTPARTITIONDEFFILE location [ddbFileName] textFileName

Parameter Description

location Possible values:

1- Local/client file with a .DDB file extension that is stored in the directory pointed to by ARBORPATH.
The ddbFileName is automatically retrieved.
2- Remote/server .DDB file. The ddbFileName is automatically retrieved.
3- Local/client file not stored in the ARBORPATH, or without a .DDB file extension. The ddbFileName
is required when using this option.

ddbFileName The name of the partition mapping definition .DDB file from which to read information. This is usually
the name of the database; for example, BASIC.DDB.

If location is 1 or 2, ddbFileName is not required. If location is 3, the full path, file name, and file extension
of the file is required.

textFileName The full path, file name, and file extension of the text output file to create.

592 ESSCMD Commands

Notes

This command produces a text file of the partition-mapping tables of the distributed database.
The file contains the following information for each partition:

l Total number of partitions

l Partition host, application, database, and user

l Time the partition was last modified

l Partition definition

l Connection information

l Partition shape definition

l Partition type information

l Database map information

l Slice map information

l Region identification

l Outline change direction

Example

PRINTPARTITIONDEFFILE "2" "basic.txt";

PURGELINKEDOBJECTS
Deletes objects linked to the active database for a given user name or modification date.

Syntax

PURGELINKEDOBJECTS userName modDate

Parameter Description

userName The name of a user. If userName is specified, Essbase deletes all objects last modified by the given user.

modDate A modification date. If modDate is specified, Essbase deletes all objects modified on or before the given date.

Notes

This command deletes linked objects based on criteria you specify. A list of the objects matching
your criteria appears as they are being deleted. If you specify both a user name and modification
date, objects matching both criteria are deleted. If you specify no user name or date, all linked
objects in the database are deleted.

You must select a database before using PURGELINKEDOBJECTS. You must also have design
privilege for the database to delete any objects.

For more information on linked objects, see the Oracle Essbase Database Administrator's
Guide.

ESSCMD Command Reference 593

Example

To delete all objects last modified by user Diana on or before July 7, 2002:

PURGELINKEDOBJECTS "Diana" "07/07/2002";

PURGEOTLCHANGEFILE
Deletes outline changes that already have been applied from the .CHG log file.

Syntax

PURGEOTLCHANGEFILE serverName appName dbName partitionType direction

Parameter Description

serverName Name of the computer hosting the Essbase Server from which to delete .CHG information.

appName Name of the application from which to delete .CHG information.

dbName Name of the database from which to delete .CHG information.

partitionType Name of the partition type to which the deletions are applied:

1 - Replicated.
2 - Linked.
3 - Transparent.

direction Values:

l Source - The selected database is used as a data source for the replicated, transparent, or linked
partition.

l Target - The selected database is used as a data target for the replicated, transparent, or linked
partition.

Example

PURGEOTLCHANGEFILE "BAMBOO" "Sample" "Basic" "1" "Source";

PUTALLREPLCELLS
Replicates all data cells in a replicated partition from the data source database you selected with
the SELECT command, to a specified data target database. Use this command when you are in
the data source database.

Syntax

1:

PUTALLREPLCELLS targetServerName targetAppName targetDbName

2:

PUTALLREPLCELLS ALL

594 ESSCMD Commands

Parameter Description

targetServerName Host name of the computer where the data target resides.

targetAppName Name of the data target application to which cells are replicated.

targetDbName Name of the data target database to which cells are replicated.

ALL Updates all cells in partitions where the selected database is a data replication source.

Notes

PUTALLREPLCELLS command puts all replicated data cells from the selected data source and
replicates them to the data target database. This is useful when the data in the source and target
databases are out of synch and need to be resynchronized.

PUTALLREPLCELLS puts cells from the data source server to the data target server, based on a
request made from the data source; GETALLREPLCELLS gets cells from the data source to the
data target, based on a request made from the data target.

Example

PUTALLREPLCELLS "Aspen" "Sample" "Basic";

See Also

l GETALLREPLCELLS

l PUTUPDATEDREPLCELLS

PUTUPDATEDREPLCELLS
This command replicates all changed data cells in the replicated partition from the data source
database you selected with the SELECT command, to the specified data target database. Use this
command when you are in the data source database.

Syntax

1:

PUTUPDATEDREPLCELLS targetServerName targetAppName targetDbName

2:

PUTUPDATEDREPLCELLS ALL

Parameter Description

targetServerName Host name of the computer where the data target resides.

targetAppName Name of the data target application to which changed cells are replicated.

targetDbName Name of the data target database to which changed cells are replicated.

ALL Updates all changed cells in all partitions where the selected database is a data replication source.

ESSCMD Command Reference 595

Notes

The PUTUPDATEDREPLCELLS command takes all changed replicated data cells from the
selected data source, and replicates them in the data target database.

Essbase determines what updates are performed based on an internal time stamp which is read
at the block level. Whenever data in the block changes, Essbase updates the time stamp to the
current time. If data is changed that is not defined in the replication area, but is part of the data
block, the time stamp is still reset. Therefore, it is possible to update data in the replication area,
even though the replicated data has not changed.

When a block is removed by such actions as RESETDB, and you request an update of the
replication cells, Essbase performs an internal search that identifies blocks without time stamps.
Essbase then gets all cells from the replication area, instead of only changed cells. This may take
some time, depending on the size of the block.

PUTUPDATEDREPLCELLS puts cells from the data source server to the data target server, based
on a request made from the data source; GETUPDATEDREPLCELLS gets cells from the data
source to the data target, based on a request made from the data target.

Example

PUTUPDATEDREPLCELLS "Aspen" "Sample" "Basic";

See Also

l GETUPDATEDREPLCELLS

l PUTALLREPLCELLS

REMOVELOCKS
Removes any locks that a specified user has acquired through a spreadsheet operation.

Syntax

REMOVELOCKS userNumber

Parameter Description

userNumber Login ID of the user for whom you are removing locks.

Notes

This command removes locks acquired through a spreadsheet operation. Removing locks is
sometimes required for maintenance-related activities. Removing a user’s lock forces a logout
of that user’s session. To display the list of users who have locks, use LISTLOCKS.

Example

To remove all locks that are held by user number 1 on the currently selected database:

REMOVELOCKS 1;

596 ESSCMD Commands

REMOVEUSER
Removes a user from a group.

Groups are used to classify users with identical security requirements.

Syntax

REMOVEUSER groupName userName

Parameter Description

groupName Name of group from which to remove user.

userName Name of the user to remove.

Notes

If you want to completely delete a user from Essbase, use the DELETEUSER command. Deleting
the user ID deletes the user from the list of users on the Essbase Server, as well as logging the
user out of the active session.

Example

To remove the user DANTE from the group called INTERNTL:

REMOVEUSER "INTERNTL" "DANTE";

See Also

l DELETEGROUP

l DELETEUSER

RENAMEAPP
Renames an application.

Syntax

RENAMEAPP sourceApp newAppName

Parameter Description

sourceApp Name of existing application.

newAppName New name for application.

Example

RENAMEAPP "FINANC95" "ANNFIN95";

RENAMEDB
Renames a database.

ESSCMD Command Reference 597

Syntax

RENAMEDB sourceApp sourceDb newDbName

Parameter Description

sourceApp Name of the application that contains the database to be renamed.

sourceDb Name of the database to be renamed.

newDbName New name for the database.

Example

RENAMEDB "FINANC95" "SALES95" "95SALES";

RENAMEFILTER
Renames a filter.

Syntax

RENAMEFILTER sourceApp sourceDb sourceFltr newFltrName

Parameter Description

sourceApp Name of the application that includes the filter.

sourceDb Name of the database that includes the filter.

sourceFltr Name of the existing filter.

newFltrName New name for filter.

Example

RENAMEFILTER "FINANC95" "SALES95" "FILTER95" "95FILT";

RENAMEOBJECT
Renames an existing object.

Syntax

RENAMEOBJECT objType sourceApp sourceDb sourceObj newObjName

598 ESSCMD Commands

Parameter Description

objType Type of object to rename. Values:

0 - Abort
1 - Outline object, not available
2 - Calculation script
3 - Report script
4 - Rules object
5 - Alias table
6 - structure file
7 - Backup file, not available
8 - Worksheet of any type, not available
9 - Text object
10 - Partition
11 - Selection
12 - Wizard

sourceApp Name of the application that includes the object.

sourceDb Name of the database that includes the object.

sourceObj Name of the existing object.

newObjName New name for the object.

Notes

Two values for the objType parameter, 6 and 7, are retained only for backward compatibility
with Release 2.0.

Example

RENAMEOBJECT 2 "FINANC95" "SALES95" "OLDOBJ" "ARCHIVE";

RENAMEUSER
Renames a user.

Syntax

RENAMEUSER userName newUserName

Parameter Description

userName Name of the existing user.

newUserName New name for the user.

Notes

To rename a user, you must have at least Create/Delete User permission.

Example

RENAMEUSER "NEWUSER" "D_ROSETTI";

ESSCMD Command Reference 599

REPORT
Executes one or more report strings.

Syntax

REPORT reportString

Parameter Description

reportString One or more report strings.

Notes

When working with ESSCMD in interactive mode, use this command to enter one or more
strings from a report script. Interactive ESSCMD prompts for a string each time you press the
Enter key. When finished, end with a blank string.

When using the REPORT command in ESSCMD scripts, end each line with a backslash.

Example

Example of interactive use: To create a report based on all descendants of Qtr1, including the
Qtr1 member, and all children of Market, including the Market member, enter the text shown
in this color. In this example, ESSCMD prompts are in black. Instructions to press the Enter key
are in this color.

local:sample:basic:admin(1)->REPORT
Report:

Enter blank string to end report
Enter string ><IDESCENDANTS Qtr1(Press Enter)
Enter string ><ICHILDREN Market(Press Enter)
Enter string >!(Press Enter)
Enter string > (Press Enter)

Example of use in an ESSCMD script: To include commands in an ESSCMD script to generate
the same report, end each line with a backslash.

Report:

IDESCENDANTS Qtr1\
ICHILDREN Market\
!\
\

See Also

l REPORTLINE

REPORTLINE
Executes a single report string.

Syntax

REPORTLINE reportString

600 ESSCMD Commands

Parameter Description

reportString Report string.

Example

To create a report based on all descendants of Year:

REPORTLINE "<DESCENDANTS YEAR !";

See Also

l REPORT

RESETDB
Clears all the data and LROs from the currently selected database.

Syntax

RESETDB

Example

RESETDB;

RESETOTLCHANGETIME
Changes the time on the Essbase you selected with the SELECT command, to match the time
on another Essbase Server.

Syntax

RESETOTLCHANGETIME fromPartition toPartition

Parameter Description

serverName Name of the Essbase Server from which the time change is applied.

appName Name of the application from which the time change is applied.

dbName Name of the database from which the time change is applied.

partitionType The name of the type of partition from which the time change is applied. Values:

1 - Replicated
2 - Linked
3 - Transparent

direction Values:

Source - The selected database is used as a data source for the replicated, transparent, or linked
partition.
Target - The selected database is used as a data target for the replicated, transparent, or linked partition.

serverName Name of the Essbase Server to get the time change.

ESSCMD Command Reference 601

Parameter Description

appName Name of the application to get the time change.

dbName Name of the database to get the time change.

partitionType The name of the type of partition the time change is applied to. Values:

1 - Replicated
2 - Transparent
3 - Linked

direction Values:

l Source - The selected database is used as a data source for the replicated, transparent, or linked
partition.

l Target - The selected database is used as a data target for the replicated, transparent, or linked
partition.

Notes

The RESETOTLCHANGETIME command synchronizes the internal time stamps between two
Essbase databases that share a partition. This time stamp is used when performing
GETPARTITIONOTLCHANGES and APPLYOTLCHANGEFILE operations to synchronize
the outlines. That is, to propagate changes (made during a dimension build, for example) from
the outline in one database sharing a partition to the other.

Partitioned databases contain a time stamp indicating when the outline was last modified.
Essbase uses the time stamp when it performs GETPARTITIONOTLCHANGES and
APPLYOTLCHANGEFILE operations to synchronize the outlines. When you use
GETPARTITIONOTLCHANGES, the time is stamped in one of the databases. When you use
APPLYOTLCHANGEFILE, Essbase reads that time stamp and writes it TO the partition
definition file (AppName.ddb) of the other database. The direction in which changes are
propagated (data source to data target, or data target to data source) is set in the partition
definition

It is not necessary to use the RESETOTLCHANGETIME command when performing
GETPARTITIONOTLCHANGES and APPLYOTLCHANGEFILE operations, or as part of
regular maintenance. Instead, use it as needed, to reset the time stamp on a partitioned database.
For example, if two databases that share a partition reside on different server computers, and a
power outage affects the time stamp on one of the databases, you can use
RESETOTLCHANGETIME to re-synchronize the time stamps.

For more information, see the Oracle Essbase Database Administrator's Guide.

Example

RESETOTLCHANGETIME "BAMBOO" "SAMPLE" "BASIC" "1"
 "SOURCE" "ASPEN" "SAMPLE" "BASIC" "1" "TARGET";

See Also

l GETPARTITIONOTLCHANGES

l APPLYOTLCHANGEFILE

602 ESSCMD Commands

RESETPERFSTATS
Resets statistics gathering for a specified persistence and scope. Each of the statistics tables
available using the GETPERFSTATS ESSCMD command has a pre-defined persistence and
scope. When you issue RESETPERFSTATS without parameters, statistics-gathering is reset for
all of the tables.

Collecting and analyzing performance statistics can assist you in determining whether databases
are in good running condition, or could use modifications to improve performance.

Depending on your database and production needs, you create a statistical measurement profile
by resetting the appropriate levels of persistence (length of events to measure) and scope
(granularity of the entity to measure).

Syntax

RESETPERFSTATS persistence scope

Parameter Description

persistence
[default=long]

l disable

Turn off performance-statistics gathering.

l enable

Turn on performance-statistics gathering. You might do this when you want to tune the system,
change hardware configuration, or monitor I/O. The measurement begins for current processes
as soon as you enable it. Any subsequent queries for statistics return measurements spanning
from the time of enablement to the time of the query.

l medium

Reset tables that measure medium-length events:

m kernel I/O Statistics table

m Cache Endtrans Statistics table

m Database Synchronous I/O table

m Database Asynchronous I/O table

l long (default)

Reset tables that measure events over the course of the entire session. Long measurements rarely
need to be reset. Example: kernel Cache Statistics table.

scope
[default=all]

l db

Reset per-database statistics tables.

l server

Reset per-application statistics tables.

l all (default)

Reset all statistics tables: for threads, databases, and applications.

Notes

This command resets to zero any previously collected statistics of a persistence shorter than or
equal to the reset persistence. For example, entering RESETPERFSTATS LONG resets both long
and medium statistics tables back to zero.

ESSCMD Command Reference 603

Example

RESETPERFSTATS ENABLE;

RESETPERFSTATS MEDIUM SERVER;

See Also

l GETPERFSTATS

RESETSTATUS
Resets all saved status values to 0 (zero).

Syntax

RESETSTATUS

Notes

RESETSTATUS is used in ESSCMD error handling.

This command resets:

l All saved status values, including that of the previous command.

l The returned status values, as tested in IFERROR.

Example

RESETSTATUS;

RUNCALC
Runs a calculation script.

Syntax

RUNCALC numeric calcScript

Parameter Description

numeric Location of the calculation script data file. Values:

1 - Local/client-based calculation script.
2 - Remote/server calculation script.
3 - File. Use option 3 if the file is not an Essbase object, or if you want to specify the full path name. Otherwise,
Essbase looks in the <APPNAME>/<DBNAME> directory.

calcScript Name of the calculation script to run.

Notes

The numeric parameter indicates the location of the file named by the calcScript parameter.

Example

To execute a calculation script object named FAM100 on the Essbase Server:

604 ESSCMD Commands

RUNCALC 2 "FAM100";

RUNREPT
Runs a report script.

Syntax

RUNREPT numeric reptScript outputFile

Parameter Description

numeric Location of the report script file. Values:

1 - Local/client-based report script.
2 - Remote/server report script.
3 - File is not an Essbase object; enter a fully qualified path to the file. Use option 3 if you want to specify
the full path name. Otherwise, Essbase looks in the <APPNAME>/<DBNAME> directory.

reptScript Name of the report script to run.

outputFile Target file name for report output.

Notes

The value you enter for the numeric parameter tells Essbase where the file named reportScript
resides. Use the OUTPUT command to suppress the onscreen display of the script.

Example

To execute a report script called P&L on the Essbase Server:

RUNREPT 2 "P&L" "P&L.out";

SELECT
Selects the application and database on which to focus subsequent commands.

Syntax

SELECT appName dbName

Parameter Description

appName Name of the application containing the desired database.

dbName Name of database within the selected application.

Example

To select the database called BASIC in the application called SAMPLE:

SELECT "SAMPLE" "BASIC";

ESSCMD Command Reference 605

SETALIAS
This command sets an alias table as the primary table for reporting and any additional alias
requests.

Syntax

SETALIAS aliasName

Parameter Description

aliasName Name to set for the alias table.

Example

SETALIAS "Long Names";

SETAPPSTATE
Defines application settings.

Syntax

SETAPPSTATE ["appName"] "desc" Y/N Y/N accessLevel
 Y/N Y/N Y/N Y/N lockTimeout MaxLROFileSize;

Parameter Description

appName Name of the application. Do not include appName if the active application is selected.

desc Text string describing the application.

Y/N Sets whether the application is loadable.

Y/N Sets whether autoload occurs.

accessLevel Default access level. Values:

0 - None.
1 - Read.
2 - Write.
3 - Calculate.
4 - Application Manager or Database Manager

Y/N Sets whether connections can be made.

Y/N Sets whether commands can be issued.

Y/N Sets whether updates can occur.

Y/N Sets whether security is enabled.

lockTimeout Maximum number of seconds that locks can be placed on blocks by Spreadsheet Add-in users.

MaxLROFileSize Maximum size, in kilobytes, for a Linked Reporting Objects (LRO) file.

606 ESSCMD Commands

Notes

l Using the semicolon statement terminator (;) is optional in ESSCMD batch files. However,
it is good practice to use the terminator with this command to signal the end of the parameter
list. This is especially important if you omit some of the parameters and take their default
values. If not all parameters are present, and the ; is omitted, ESSCMD looks for the
remaining values in the next statement in the batch file, leading to unpredictable results.

l As with many other ESSCMD commands, if you issue only the SETAPPSTATE keyword in
interactive mode, ESSCMD prompts you for the other values.

Example

SETAPPSTATE "sample" "The application is ready"
 "Y" "Y" 0 "Y" "Y" "Y" "Y" "3600";

SETDBSTATE
Defines database settings. For more options, see SETDBSTATEITEM.

Syntax

SETDBSTATE ["appName"] ["dbName"] "desc" Y/N Y/N accessLevel
 dataCacheSize Y/N Y/N Y/N currDb ccType 0/1 indexCacheSize
 IndexPageSize Y/N;

Parameter Description

appName Name of the application. Do not include if the application is already selected.

dbName Name of the database; required if appName is specified.

desc Text string describing the database.

Y/N Sets whether the database is loadable.

Y/N Sets autoload on or off.

accessLevel Default access level. Values:

0 - None.
1 - Read.
2 - Write.
3 - Calculate.
4 - Database Manager.

dataCacheSize Maximum amount of memory allocated for data cache. Default: 3145728 bytes.

Y/N Sets whether to aggregate missing values.

Y/N Sets whether to perform a Two-Pass calc.

Y/N Sets whether to create blocks on equations.

currDb Links a currency database.

ESSCMD Command Reference 607

Parameter Description

ccType Specifies the default currency type member.

0/1 Sets the conversion method. Values:

0 - Division.
1 - Multiplication.

indexCacheSize Maximum amount of memory allocated for index cache. Default: 1048576 bytes.

indexPageSize Maximum amount allocated for index page. Index page size is now fixed at 8192 bytes regardless of
this setting.

Y/N Enable (Y) or disable (N) data compression on disk.

Notes

l Using the semicolon statement terminator (;) is optional in ESSCMD scripts. However, it
is good practice to use it to signal the end of the SETDBSTATE parameter list. This is
especially important if you omit some of the parameters, accepting their default values. If
not all parameters are present, and the ; is omitted, ESSCMD looks for the remaining values
in the next line, leading to unpredictable results.

l If you issue only the SETDBSTATE keyword in interactive mode, ESSCMD prompts you
for the other values.

l Load the required database before you run the SETDBSTATE command, then stop and
restart the database for this command to take effect.

Example

The following example assumes that the application and database are already selected. Settings
that you want to skip need to be represented using empty quotation marks as placeholders.

SETDBSTATE "Data has been updated" "Y" "Y" 4 "3000000"
 "N" "Y" "N" "" "" 0 "1049000" "8192" "Y";

See Also

l SETDBSTATEITEM

SETDBSTATEITEM
Defines database settings by number, providing more options than SETDBSTATE.

It is most efficient to load the required database before you run the SETDBSTATE command,
then stop and restart the database for the command to take effect.

Note: When changing sizes, valid size-entry units in ESSCMD are bytes (b), kilobytes (k),
metabytes (m), gigabytes (g), or terabytes (t). Example: 8192b, 8k, 1m, ng, nt. If no size
unit is given, the default unit is bytes (b).

608 ESSCMD Commands

Syntax

SETDBSTATEITEM [optionNumber] ["appName"] ["dbName"] ["values"]

Parameter Description

optionNumber An integer between 0 and 27, inclusive. This number corresponds to the options listed below. Enter
99 to be prompted for all options (in interactive mode).

appName Name of the application. Omit if the application is already selected using the SELECT command.

dbName Name of the database; required if appName is specified.

values Acceptable value or values; these vary from option to option. See Values for Values Parameter

Notes

l Using the semicolon statement terminator (;) is optional in ESSCMD scripts. ; however, it
is good practice to use it to signal the end of the parameter list. This is especially important
if you omit some of the parameters, accepting their default values. If not all parameters are
present, and the ; is omitted, ESSCMD looks for the remaining values in the next line, leading
to unpredictable results.

l Items 14 and 15 (Data Compression and Data Compression Type) are effective as soon as
Essbase writes blocks to disk. This command has no effect on blocks already on disk until
the next time Essbase writes them.

l Items 18, 19, and 20 (Isolation level, Pre-Image Access, and Time Out) are effective the next
time there are no active transactions in the database.

l Items 5, 12, 21, and 22 (Data Cache Size, Index Cache Size, Blocks Modified Before Internal
Commits, and Rows to Data Load Before Internal Commit) are effective when the database
is stopped and re-started.

l Item 13, Index Page Size, is no longer changeable. Input for this setting is ignored.

Values for Values Parameter

l 0. Abort—Returns you to the ESSCMD command line. Use only in interactive mode.

l 1. Description—Text string describing the database.

l 2. Allow Database to Start?—Sets whether the database is loadable. Values: Y/N.

l 3. Start Database with Application?—Sets autoload on or off. Values: Y/N.

l 4. Access Level—Values:

m 0 - None.

m 1 - Read.

m 2 - Write.

m 3 - Calculate.

m 4 - Database Manager.

l 5. Data Cache Size—The maximum size of a buffer in memory that holds data blocks for
the current operation. Default and minimum: 3145728B (3 megabytes).

ESSCMD Command Reference 609

l 6. Aggregate Missing Values?—Sets whether to aggregate missing values. Values: Y/N.

l 7. Two Pass Calc When [CALC ALL]?— Sets whether or not to perform a second calculation
on formulas tagged as "Two Pass" as part of the default calculation. Values: Y/N.

l 8. Create Blocks on Equation?—Sets whether to create blocks on equations. Values: Y/N.

l 9. Currency Database Name—Links a currency database that you specify.

l 10. Currency Conversion Type Member —Specifies the default currency conversion type
member.

l 11. Currency Conversion Type—Sets the conversion method. Values:

m 0 - Division.

m 1 - Multiplication.

l 12. Index Cache Size—Maximum size of a memory buffer that holds index pages for the
current operation. Default: 1048576 bytes (1 megabyte).

l 13. Index Page Size—This setting is no longer changeable.

l 14. Data Compression on Disk?—Enables (Y) or disables (N) data compression on disk.

l 15. Data Compression Type—Values:

m 1 - Run-Length Encoding.

m 2 - Bitmap (the default).

l 16. Retrieval Buffer Size—Specifies the size of the internal sorting buffer that holds extracted
row data cells before they are evaluated by the RESTRICT or TOP/BOTTOM Report Writer
command. Default: 10K (on 32-bit platforms), and 20K (on 64-bit platforms).

l 17. Retrieval Sort Buffer Size—Specifies the size of the internal data sorting buffer. Default:
10K (on 32-bit platforms), and 20K (on 64-bit platforms).

l 18. Isolation Level—Choose committed or uncommitted access to your database.
Committed access provides better data integrity. Uncommitted access provides consistency
with Release 4. See the Oracle Essbase Database Administrator's Guide for information about
isolation levels. Values:

m 1 - Committed access

m 2 - Uncommitted access (the default)

Depending on which type of access you specify, ESSCMD prompts you for other parameters
(or you can supply the values on the command line).

If you choose 1 (committed access), ESSCMD prompts for:

m Pre-image access (see item 19).

m Time Out (see item 20).

If you choose 2 (uncommitted access), ESSCMD prompts for:

m Number of blocks modified before internal commit (Default: 3000).

610 ESSCMD Commands

m A value of 0 means no implicit commit; Essbase commits blocks at the end of the
transaction.

m Number of rows to data load before internal commit. (Default: 0, no implicit commit;
Essbase commits blocks at the end of the transaction).

l 19. Pre Image Access?—Valid for Committed access only. Provides users Read-only access
to data blocks that are locked for the duration of another transaction. Users see the last
committed data values for those data blocks. If you choose N (No), your transaction waits
for the blocks to become available, or Essbase issues a time-out error. Values: Y/N. Default:
N (No).

l 20. Time Out—The length of time, in seconds, to wait to acquire a lock on data blocks that
are locked by another transaction. Acceptable values are:

m -1 - Indefinite wait.

m 0 - Immediate access, or no wait.

m n - A number of seconds that you specify.

l 21. Number of blocks modified before internal commit—Default: 3000. See item 18.

l 22. Number of rows to data load before internal commit—Default: 0. See item 18.

l 23. Add Disk Volume Definitions—Use if you want to allocate storage across multiple
volumes, or restrict space used on a volume. For information on disk volumes, see the Oracle
Essbase Database Administrator's Guide.

ESSCMD prompts you for the following values, unless you supply them on the command
line:

m The number of new disk volumes you want to add.

Then, for each volume:

m Volume name or drive letter (required).

m Volume size (maximum space to use on that volume). Default: Unlimited (0).
Minimum: 8 megabytes. You can specify this value in bytes (B), kilobytes (K), megabytes
(M, the default), or gigabytes (G).

m File types to be stored on this volume:

o 1 - Index files only.

o 2 - Data files only.

o 3 - Index and data files (the default).

m File size: the maximum size that each index or data file can attain before Essbase creates
a new file. Default: 2G. Minimum: 8 megabytes. You can specify this value in bytes (B),
kilobytes (K), megabytes (M, the default), or gigabytes (G).

l 24. Modify Disk Volume Information—Change the disk volume settings on an allocated
volume. This command prompts you for the number assigned to the disk volume you want
to change and then prompts you for each value for the chosen disk volume. See item 23. Use
GETDBSTATE to see a list of the currently defined disk volumes, and the number assigned
to each volume.

ESSCMD Command Reference 611

l 25. Delete Disk Volume Definition—Stop Essbase from storing additional files on an
allocated volume. This command prompts you for: Volume Definition (n), where n is the
number corresponding to the disk volume definition you want to remove.

For example, suppose you defined three volumes: first, C; then, E; then, D. Essbase considers
D the third volume - definition number 3.

Note: If you delete an application or database, Essbase does not remove the directory
containing the application or database on a disk volume. The computer's operating
system still shows the folder and file labels on the disk. However, you can reuse the
same name of the application or database that you had removed on the disk volume.

l 26. Cache Memory Locking—Enable or disable Cache Memory Locking. When enabled,
this setting locks the memory used for the index cache, data file cache, and data cache into
physical memory, improving database performance.

Values: Y/N Default: No

l 27. Data File Cache Size—

Specify the size, in bytes, for the Data File Cache. Minimum: 8388608 bytes. Default:
33554432 bytes. Recommended: Combined size of all ESS*.PAG files if possible; as large as
possible otherwise.

l 99. All Items—Prompts for each option in turn. Use only in interactive mode.

Example

The following example enables Committed access and Pre-image access, and specifies indefinite
wait time:

SETDBSTATEITEM 18 "JTEMP" "JTEMPDB" "1" "Y" "1";

The following example allocates up to 4 GB on Volume E, sets a maximum file size of 1 GB, and
specifies that data files should be stored only on E:

SETDBSTATEITEM 23 "SAMPLE" "BASIC" "1" "E" "4G" "2" "1G"

The following examples set the data cache value to 45000000 bytes. In the first example, the
SELECT command was used to select the application and database. In the second example, the
application and database are specified in the SETDBSTATEITEM command line instead.

Example 1 (SETDBSTATEITEM)

LOGIN "machinename" "admin" "password";
SELECT "Sample" "Basic";
SETDBSTATEITEM 5 45000000;
LOGOUT;
EXIT;

Example 2 (SETDBSTATEITEM)

LOGIN "machinename" "admin" "password";
SETDBSTATEITEM 5 sample basic 45000000;
LOGOUT;
EXIT;

612 ESSCMD Commands

See Also

l SELECT

SETDEFAULTCALC
Sets a calculation string as the default database calculation.

Syntax

SETDEFAULTCALC calcString

Parameter Description

calcString Calculation string to set.

Notes

l Place the default database calculation within quotation marks.

l Calculation strings require a terminating semicolon.

Example

SETDEFAULTCALC "CALC ALL;";

See Also

l SETDEFAULTCALCFILE

SETDEFAULTCALCFILE
Sets a calculation object as the default database calculation.

Syntax

SETDEFAULTCALCFILE calcobjName

Parameter Description

calcobjName Calculation object to set. Give full path name if this object is not in the CLIENT directory.

Example

SETDEFAULT "actbud";

See Also

l SETDEFAULTCALC

SETLOGIN
Sets the active login to a particular instance.

ESSCMD Command Reference 613

Syntax

SETLOGIN sesNo

Parameter Description

sesNo Login instance session number. Values:

l prev - Previous number

l next - Next session number

l sessionNo - Integer representing session

Notes

This command sets the active login to the instance represented by previous, next, or a session
number. To get session numbers, use the LISTLOGINS command.

Example

To set the ESSCMD session to login the previous login instance:

SETLOGIN PREV;

To set the ESSCMD session to login the next login instance:

SETLOGIN NEXT

To set the ESSCMD session to login instance number 2:

SETLOGIN 2

The following interactive example uses LISTLOGINS to get information needed for a subsequent
SETLOGIN command. Commands typed by the user are shown in bold.

localhost:::system[1]->listlogins
ListLogins:

There are 2 Active Login Sessions.
 Login Session 1 -- localhost system
 Login Session 2 -- localhost EWhite

localhost:::system[1]->setlogin 2
SetLogin:

Switch to Login Session 2 -- localhost EWhite

See Also

l LISTLOGINS

SETMSGLEVEL
Defines the level of messages seen in the interactive ESSCMD shell.

614 ESSCMD Commands

Syntax

SETMSGLEVEL level

Parameter Description

level Level setting for messages. Values:

1 - Make no changes
2 - Display all information messages
3 - Display only warning messages
4 - Display only error messages
5 - Display no messages

Notes

The SETMSGLEVEL command defines the level of messages seen in the interactive ESSCMD
shell. To set the level of messages seen in an ESSCMD output file, use the OUTPUT command.

Example

SETMSGLEVEL 3;

See Also

l OUTPUT

l “AGENTLOGMESSAGELEVEL” on page 386
l “Set Message Level” on page 835

SETPASSWORD
Assigns a new password to an existing user.

Syntax

SETPASSWORD userName newPassword

Parameter Description

userName Name of the existing user.

newPassword New password for the user.

Example

SETPASSWORD "D_ROSETTI" "INFERNO";

SHUTDOWNSERVER
Shuts down the Essbase Server from the terminal running the current ESSCMD session. You
must have Administrator permission to use this command.

Syntax

SHUTDOWNSERVER servername username password

ESSCMD Command Reference 615

Parameter Description

servername Host name associated with the Essbase Server you want to shut down.

username Your user name.

password Your password.

Notes

If you do not specify the parameters on SHUTDOWNSERVER, ESSCMD prompts you for them.

Example

To shut down the Essbase Server named Poplar:

SHUTDOWNSERVER "poplar" "mildred" "password";

To have Essbase prompt you for your user name and password:

SHUTDOWNSERVER "Poplar";

SLEEP
Pauses an ESSCMD script.

Syntax

SLEEP "seconds"

Parameter Description

seconds Number of seconds for the batch file execution to sleep.

Notes

Pauses an ESSCMD script. Pausing an ESSCMD script allows other commands to finish
execution and cleanup.

Example

SLEEP "10";

UNLOADALIAS
Deletes the specified alias table.

Syntax

UNLOADALIAS aliasName

Parameter Description

aliasName Name of the alias table to unload.

616 ESSCMD Commands

Example

Assume that flavors is an alias table mapping the following flavor names to the numerically-
named children of Product:

"400-10" Guava
"400-20" Tangerine
"400-30" Mango

These flavors are discontinued. To delete the alias table called flavors, first select the
application and database, and then enter the following:

UNLOADALIAS "flavors";

See Also

l LISTALIASES

l DISPLAYALIAS

l SETALIAS

UNLOADAPP
Unloads an application from memory.

Syntax

UNLOADAPP appName

Parameter Description

appName Name of the application to unload.

Notes

All databases within the application are unloaded.

Example

UNLOADAPP "SAMPLE";

UNLOADDB
Unloads a database from memory.

Syntax

UNLOADDB appName dbName

Parameter Description

appName Name of the application in which the database resides.

dbName Name of the database to unload.

ESSCMD Command Reference 617

Example

UNLOADDB "SAMPLE" "BASIC";

UNLOCKOBJECT
Unlocks an object that is locked by another user or process.

Syntax

UNLOCKOBJECT objType sourceApp sourceDb sourceObj

Parameter Description

objType Type of object to list. Values:

1 - Outline object.
2 - Calculation script.
3 - Report script.
4 - Rules object.
5 - Alias table (not available).
6 - Structure file (not available).
7 - Backup file (not available).
8 - Worksheet of any type (not available).
9 - Text object.
10 - Partition.
11 - Linked Reporting Object (stored).
12 - Selection.
13 - Wizard.
14 - EQD.

sourceApp Name of the application that includes object.

sourceDb Name of the database that includes object.

sourceObj Name of the existing object to unlock.

Notes

l Values 5 through 8 for the objType parameter represent objects that cannot be locked.

l Two values for the objType parameter, 6 and 7, are retained only for backward compatibility
with Release 2.0.

l Option 11, Linked Reporting Object, unlocks stored LROs only; that is, files with the .LRO
extension. It does not unlock URLs, cell notes, or linked partitions.

Example

UNLOCKOBJECT 1 "FINANC95" "SALES95" "ARCHIVE";

UPDATE
Loads a single data record into the selected database.

618 ESSCMD Commands

Syntax

UPDATE dataString

Parameter Description

dataString A single data record.

Example

UPDATE "Jan Sales '100-10' Florida Actual 220";

See Also

l UPDATEFILE

UPDATEBAKFILE
Compares the security backup file, essbase_timestamp.bak, to the security file,
essbase.sec, at any time, and if needed, triggers an update. The backup file is updated only
if a difference exists between the security file, essbase.sec, and the security backup file,
essbase_timestamp.bak.

Syntax

UPDATEBAKFILE

Example

UPDATEBAKFILE

UPDATEFILE
Loads data, unlocks blocks, and verifies a data file.

Syntax

UPDATEFILE location fileName update

Parameter Description

location Location of the data file. Values:

1 - Local/client-based rules file
2 - Remote/server data object
3 - File. Use option 3 if you want to specify the full path name. Otherwise, the file is assumed to be in the
<appname>/<DBNAME> directory.

fileName Name of the file to load.

update Update action. Values:

1 - Load data
2 - Unlock data blocks
3 - Verify data

ESSCMD Command Reference 619

Example

UPDATEFILE 2 "DATA" 1;

See Also

l LOADDATA

UPDATEVARIABLE
Updates the variable value that corresponds to the specified substitution variable.

Syntax

UPDATEVARIABLE variableName [serverName [appName [dbName]]] value

Parameter Description

variableName The name of the existing substitution variable.

serverName Optional. Host name of the Essbase Server to which the variable is applied.

appName Optional. Name of the application to which the variable is applied. If appName is not used, in a script,
empty quotes must be used to take its place. ("")

dbName Optional. Name of the database to which the variable is applied. If dbName is not used, in a script, empty
quotes must be used to take its place. ("")

value The new string value that corresponds to the substitution variable. The name must be alphanumeric,
and can be a maximum of 255 characters. You can have a null value, but do not use a leading & character
in the value.

Example

The following command in an ESSCMD script updates a substitution variable named CurQtr
to have a value of Qtr2.

UPDATEVARIABLE "CurQtr" "Bamboo" "Sample" "Basic" "Qtr2";

The following ESSCMD script updates a substitution variable named CurQtr to have a value of
Qtr3. Application and database input is left blank because the variable is system-wide; however,
the empty quotation marks are still required as placeholders.

login "Aspen" "fiona" "sunflower";
UPDATEVARIABLE "CurQtr" "aspen" "" "" "Qtr3";

Another script that updates an Essbase Server substitution variable:

OUTPUT 1 "subvar_serv.log";
LOGIN "localhost" "system" "password";
UPDATEVARIABLE "GlobalVar" "" "" "" "Myserver";
exit;

Script that updates an application substitution variable:

OUTPUT 1 "subvar_app.log";
LOGIN "localhost" "system" "password";

620 ESSCMD Commands

UPDATEVARIABLE "AppVar" "localhost" "Sample" "" "MyApp";
exit;

Script that updates a database substitution variable:

OUTPUT 1 "subvar_db.log";
LOGIN "localhost" "system" "password";
UPDATEVARIABLE "DBVar" "localhost" "Sample" "Basic" "MyDB";
exit;

See Also

l LISTVARIABLES

l UPDATEVARIABLE

VALIDATE
Checks the database for data and structural integrity. You must select a database before issuing
this command.

VALIDATE checks the following information:

l Verifies data integrity in each block. Reading from top to bottom, it checks blocks, sections,
block type, and block length. The command checks for validity in floating-point numbers.
This command writes information about bad blocks to the log file.

l Automatically compares every index key in the index page with the index key in the
corresponding data block and checks other header information in the block. If it encounters
a mismatch, VALIDATE displays an error message and continues processing until it checks
the entire database.

l Compares the data block key in the index page with the data block key in the corresponding
data block. Keys out of order indicate corruption.

l Verifies the structural integrity of the index free space information in the index.

l Verifies the structural integrity of the LRO catalog.

If this command finds integrity errors, it writes validation process error messages to a text-format
log file. The default location for the specified file is in the application\database directory. For
example: ESSBASE\APP\app\db\VALIDATE.LST.

Syntax

VALIDATE errorlogFile

Parameter Description

errorlogFile Name and optional path of destination file for error messages. If no path is specified, the specified list file
is stored in the current application\database directory.

Notes

l You can also use the VALIDATE command to clear an internal file,
database_name.OCL, when it grows too large. database_name.OCL is a file used for

ESSCMD Command Reference 621

incremental restructuring. VALIDATE causes Essbase to restructure any blocks whose
restructure was deferred, and clears the file.

l Before issuing the VALIDATE command, we recommend placing the database in read-only
mode, using the ESSCMD BEGINARCHIVE or the MaxL statement alter database
DBS-NAME begin archive to file FILE-NAME;

Example

VALIDATE VALERROR.TXT;

VALIDATEPARTITIONDEFFILE
Validates shared partition definitions.

Syntax

VALIDATEPARTITIONDEFFILE

Notes

This command validates the specified partition definition identified in the partition mapping
definition .DDB file. During validation, Essbase checks the .DDB file to ensure that:

l The area definition is valid (contains no syntax errors).

l The specified data source members are valid members and map to valid members in the
data target.

l All connection information is correct (host names, database names, application names, user
names, and password information).

l For linked partitions, the specified default user name and password are correct.

l For replicated and transparent partitions:

m A replication target does not overlap with replication target.

m A replication target does not overlap with transparent target.

m A transparent target does not overlap with transparent target.

m A replication source does not overlap with transparent target.

m The cell count for the partition is the same on the data source and the data target.

You must issue the VALIDATEPARTITIONDEFFILE command for both the data source and
the data target .DDB files. You need to log in to each database and issue the command separately
for each portion of the partition definition.

For more information, see the Oracle Essbase Database Administrator's Guide.

Example

VALIDATEPARTITIONDEFFILE

622 ESSCMD Commands

6
MaxL

In This Chapter

Overview of MaxL and MDX ... 623

How to Read MaxL Railroad Diagrams ... 624

MaxL Data Definition Language (DDL) ... 626

MaxL Statements... 626

MaxL Definitions ... 767

MaxL Shell Commands ... 818

MaxL Perl Module ... 841

ESSCMD Script Conversion ... 848

Reserved Words List . 855

MaxL Statements (Aggregate Storage).. 864

Outline Paging Dimension Statistics .. 904

Aggregate Storage Runtime Statistics.. 905

MaxL Statements for Data Mining ... 907

MaxL Use Cases... 920

Overview of MaxL and MDX
MaxL is the multi-dimensional database access language for Essbase. MaxL is a practical,
expressive interface for administering and querying the Essbase system. With the MaxL language,
you use statements to make requests. MaxL statements usually begin with a verb, and read like
English sentences.

Beginning with Release 7.0, MaxL has two functional domains:

l MaxL DDL is the data-definition language for Essbase.

Data definition means structural control of a database system. This includes operations like
creation, deletion, and updating of users, applications, databases, and database objects.
Therefore, statements in MaxL DDL include verbs like CREATE, ALTER, DROP, GRANT,
and DISPLAY.

l MDX is the data-manipulation language for Essbase.

Data manipulation means access to to the actual data within a database system. MDX
provides the ability to perform advanced data extraction and querying by means of
statements that typically include the verb SELECT. The equivalent conceptual tool would
be Report Writer.

Overview of MaxL and MDX 623

How to Read MaxL Railroad Diagrams
The MaxL grammar is illustrated using a railroad syntax notation. The railroad diagrams
illustrate all the valid (grammatically correct) statements that can be parsed by MaxL.

l “Anatomy of MaxL Statements” on page 624

l “Railroad Diagram Symbols” on page 624

l “Sample Railroad Diagram” on page 625

Anatomy of MaxL Statements
l A keyword (see , represented in plain, lower-case font, is a unit of MaxL grammar. Keywords

must be entered literally and in the correct order in MaxL statements. See the examples of
keywords in the following diagram excerpt:

l A terminal, represented in upper-case without brackets, is replaced by values in the
appropriate format as defined in the Terminals table. In the above diagram, APP-NAME
and USER-NAME are examples of terminals. Each would need to be replaced with a valid
name; for example, sample or user1.

Keywords cannot be used as terminals, unless enclosed in single quotation marks. For
example, to delete a user named user, the statement drop user user; would return an
error, but drop user 'user'; would work.

l A non-terminal, represented in upper-case with angle brackets <>, is defined in an
additional diagram, usually below the main diagram.

Keywords and variables on the main line are required; optional grammar is recessed. A vertical
stack of words represents alternatives. Bold words indicate defaults when no word is chosen.

Railroad Diagram Symbols
The following table describes the meaning of symbols used in railroad diagrams.

Symbol Definition

Statement begins here.

Statement continues on next line.

624 MaxL

Symbol Definition

Statement is continued from previous line.

Statement ends here.

Alternatives: optionally select one keyword. Boldface indicates default if no selection is made.

Alternatives: selection of one keyword is required.

A comma-separated list of any length is permitted.

Word is not further defined. Replace with value of format shown in the Terminals table.

Word used in statement is further defined.

Non-terminal used in statements is defined here.

Sample Railroad Diagram
The following diagram illustrates a variant grammar that parses the following English sentence:

"The quick brown fox jumps over the lazy dog."

How to Read MaxL Railroad Diagrams 625

Valid sentences parsable by this grammar:

l The fox jumps over the dog. Bold letters indicate a default value when no option is entered;
therefore, entry of this statement would be interpreted as The brown fox jumps over the
dog.

l The quick brown fox jumps over the dog.

l The red fox jumps over the lazy cat.

l The quick brown fox jumps onto the tired elephant.

MaxL Data Definition Language (DDL)
MaxL DDL is the database definition language for Essbase. MaxL DDL is a practical, expressive
interface for administering Essbase. With the MaxL DDL language, you use statements to make
requests. MaxL DDL statements begin with a verb and read like English sentences.

In order for Essbase Server to receive MaxL DDL statements, you must pass the statements to
Essbase Server. To pass statements, you use either MaxL Shell (essmsh), MaxL Script Editor in
the Administration Services Console, or the MaxL Perl Module.

It is recommended that you proceed in the following order:

1. Start Essbase Server.

2. Invoke MaxL Shell or MaxL Script Editor and log in to Essbase Server.

Note: For information about MaxL Script Editor, see the Oracle Essbase Administration
Services Online Help.

3. Create statements for data access and system administration.

4. Learn about syntax, numbers, permissions, and names in the MaxL language (see “MaxL
Definitions” on page 767).

5. Learn about using Perl to issue MaxL statements.

MaxL Statements
The MaxL data-definition language has its own grammar that you use to create statements. In
this document, the syntax for the MaxL DDL is illustrated using railroad diagrams.

The MaxL grammar is case-insensitive. Semicolon statement-terminators are required when
using the MaxL Shell. However, do not use semicolons at the end of statements passed using
Perl functions.

Key words of the MaxL grammar are represented in this document in lower-case. Terminals,
represented in upper-case, are to be replaced by the appropriate names, numbers, privileges, or
strings. For more information about components of MaxL statements, see “MaxL Definitions”
on page 767.

Topics covered in this section:

626 MaxL

l “Performance Statistics in MaxL” on page 627

l “Listed By Verbs” on page 633

l “Object” on page 641

l “MaxL Statement Reference” on page 642

Performance Statistics in MaxL
Query database returns medium and long performance statistics for the database and
application. The statistics appear as tables in the MaxL output. To gather performance statistics,
you must first enable statistics gathering using alter database <dbs-name> set performance
statistics enabled. You also use alter database to return to zero the statistical persistence
(length) and scope (granularity).

Collecting and analyzing performance statistics can help you understand whether the databases
are in good running condition or could use modifications to improve performance.

Topics related to performance statistics:

l “The Essbase Performance Statistics Tables” on page 627

l “MaxL Script Example” on page 632

The Essbase Performance Statistics Tables
The Essbase system gathers a variety of statistics regarding the performance of the system and
the connected applications. The output of query database can vary depending on what the system
has just done, how long statistics have been gathered and the persistence of the gathered statistics.
The tables give information on a typical set of statistics. It can be very helpful to compare two
sets of statistics gathered at similar points in the server's operation, such as after two comparable
updates or after two restructure operations. Statistics should be gathered at intervals and
compared to each other to identify differences. Compare the statistics gathered before and after
any changes to the system and if the system performance changes.

Note: Depending on the calculations you choose to perform, if any, some tables may or may
not be displayed in your output log.

Performance statistics for which tables are available:

l “Kernel Input/Output Statistics” on page 628

l “Kernel Cache Statistics” on page 628

l “Cache End-Transaction Statistics” on page 629

l “Database Synchronous Input/Output Statistics” on page 629

l “Database Asynchronous Input/Output Statistics” on page 630

l “Dynamic Calc Cache Statistics” on page 631

MaxL Statements 627

Kernel Input/Output Statistics

The Kernel I/O Statistics table summarizes input/output for the entire application. There is one
kernel I/O table per application.

Persistence/Scope of this table: med/server

Kernel I/O Read (OS reads from disk) Write (OS writes to disk)

Index I/O Number of reads that occurred through the index
cache.

Number of writes that occurred through the index cache.

Data I/O Number of reads that occurred through the data cache. Number of writes that occurred through the data cache.

Fground I/O Number of data reads that occurred in the foreground
(while a process waited for data to be read).

Number of data writes that occurred in the foreground
(while a process waited for data to be written).

Index bytes Number of bytes read from .IND files. Number of bytes written to .IND files.

Data bytes Number of bytes read from .PAG files. Number of bytes written to .PAG files.

Av byte/dat I/O Average byte size of data reads. A high number is
preferable.

Average byte size of data writes. A high number is
preferable.

Kernel Cache Statistics

The Kernel Cache Statistics table assists in sizing database caches. Make caches only as large as
necessary for optimum performance. Note that cache sizes are listed in order of importance:
index, data file, data.

l The index cache is a buffer in memory that holds index pages.

l The data file cache is a physical data cache layer designed to hold compressed data blocks.

l The data cache is a buffer in memory that holds data pages.

The Kernel Cache Statistics table assists you in determining how to size Essbase caches. The
Essbase kernel uses these caches to manage memory. As a rule, data that is useful to processes
should be kept in memory rather than on a disk. Replacements occur when something needed
for a process is moved from disk to cache and something in the cache is thrown away to make
room for it.

Use this table to help you decide how to size your caches. Make the caches as small as possible;
however, if replacements for a cache are greater than 0, the cache may be too small. Appropriate
sizing of the Index cache is the most important for optimal performance; appropriate sizing of
the Data cache is the least important.

Persistence/Scope of this table: long/db

628 MaxL

Kernel Cache
Statistic

Description

Blocks Number of blocks actually in the Index cache, Data file cache, and Data cache. The block size multiplied by the
number of blocks equals the amount of cache memory being used. Compare this figure to the block estimation
you initially used to size your database (see the Oracle Essbase Database Administrator's Guide).

Replacements Number of replacements per cache. Replacements occur when data moves from disk to cache and something
in the cache is deleted to make room. If the number or replacements is low or zero, the cache might be set too
large.

Dirty repl Number of dirty replacements per cache. A dirty replacement is one that requires a write to the disk before cache
memory can be reused by a process. The data needed for the process is "dirty" because it was modified in
memory but not saved to the disk. Dirty replacements are inefficient and expensive. They indicate that a cache
might be too small.

Log blk xfer in Number of logical blocks transferred to the Data file cache and Data cache (this measurement is not applicable
for the Index cache.) If you are changing cache sizes, it may be instructive to study this statistic and note changes
in data traffic.

Cache End-Transaction Statistics

The Cache End-Transaction Statistics table measures DBWriter efficiency. DBWriter is an
asynchronous (or no-wait) Essbase thread, which searches the cache finding information that
needs to be written to a disk.

The Cache End-Transaction Statistics table shows the cleanup state at the end of a transaction.
These statistics are designed to measure DBWriter efficiency. DBWriter is an asynchronous (or
no-wait) thread, which searches the cache and finds information that needs to be written to a
disk. Because the DBWriter only operates during idle times, measuring the DBWriter activity
can give an idea of the amount of idle time. This number should be high, indicating that the
DBWriter had enough idle time to support the database effectively. Keep these statistics available
for diagnostic purposes, in case you need to call technical support.

Persistence/Scope of this table: med/db

Database Synchronous Input/Output Statistics

The Database Synchronous I/O table tracks synchronous input/output. Synchronous means
that the thread or program waits for the I/O to finish before proceeding. The Tave (us) column
shows the bandwidth (bytes/Ttotal).

Persistence/Scope of this table: med/db

MaxL Statements 629

DataBase Synch I/O Count Bytes Ttotal (ms) Tave (ms)

Index Read

An occurrence of the OS reading index information from a .IND file on
the disk.

Number of
times the OS
went to the disk
to read a .IND
file.

Number of
bytes the OS
read from .
IND files.

Total amount
of time the OS
took to
complete
index reads.

Average
amount of
time the OS
took to
complete one
index read.
This equals
Ttotal (ms)/
Count.

Index Write

An occurrence of the OS writing index information to a .IND file.

Number of
times the OS
wrote
information to
a .IND file.

Number of
bytes the OS
wrote to .
IND files.

Total amount
of time the OS
took to
complete
index writes.

Average
amount of
time the OS
took to
complete one
index write.
This equals
Ttotal (ms)/
Count.

Data Read

An occurrence of the OS reading information from a .PAG file on the
disk.

Number of
times the OS
went to the disk
to read to a .
PAG file.

Number of
bytes the OS
read from .
PAG files.

Total amount
of time the OS
took to
complete
data reads.

Average
amount of
time the OS
took to
complete one
data read.
This equals
Ttotal (ms)/
Count.

Data Write

An occurrence of the OS writing data to a .PAG file.

Number of
times the OS
wrote
information to
a .PAG file.

Number of
bytes the OS
wrote to .
PAG files.

Total amount
of time the OS
took to
complete
data writes.

Average
amount of
time the OS
took to
complete one
data write.
This equals
Ttotal (ms)/
Count.

Note: Bandwidth = bytes/Ttotal. Average bandwidth= bytes/Tave.

Database Asynchronous Input/Output Statistics

The Database Asynchronous I/O table tracks asynchronous input/output. Asynchronous means
no-wait: the I/O happens at an unknown time, while the program does other things. The effective
bandwidth for the application is determined by bytes/Twait.

Persistence/Scope of this table: med/db

630 MaxL

DataBase Asynch I/O Count Bytes Ttotal (ms) Tave (ms) Twait (ms)

Index Read

An occurrence of the OS reading index information
from a .IND file on the disk.

Number of
times the OS
went to the
disk to read a .
IND file.

Number of
bytes the
OS read
from .IND
files.

Time elapsed
between
request for an
index read,
and
verification of
its completion.

Average time
elapsed
between
requests for
index reads,
and
verification of
their
completion.

Wait time if
the OS had
not
completed
index reads at
the time
polled.

Index Write

An occurrence of the OS writing index information to
a .IND file.

Number of
times the OS
wrote
information to
a .IND file.

Number of
bytes the
OS wrote
to .IND
files.

Time elapsed
between
request for an
index write,
and
verification of
its completion.

Average time
elapsed
between
requests for
index writes
and
verification of
their
completion.

Wait time if
the OS had
not
completed
index writes
at the time
polled.

Data Read

An occurrence of the OS reading information from
a .PAG file on the disk.

Number of
times the OS
went to the
disk to read to
a .PAG file.

Number of
bytes the
OS read
from .PAG
files.

Time elapsed
between
request for a
data read, and
verification of
its completion.

Average time
elapsed
between
requests for
data reads,
and
verification of
their
completion.

Wait time if
the OS had
not
completed
data reads at
the time
polled.

Data Write

An occurrence of the OS writing data to a .PAG file.

Number of
times the OS
wrote
information to
a .PAG file.

Number of
bytes the
OS wrote
to .PAG
files.

Time elapsed
between
request for a
data write, and
verification of
its completion.

Average time
elapsed
between
requests for
data writes and
verification of
their
completion.

Wait time if
the OS had
not
completed
data writes at
the time
polled.

Note: (1) Because asynchronous I/O is ideally no-wait, and happens at an unknown time, you
cannot determine how long reads and writes actually took to complete. (2) You cannot
determine the bandwidth (bytes per microsecond). Effective bandwidth, as seen by the
application, is determined by bytes/Twait.

Dynamic Calc Cache Statistics

The Dynamic Calc Cache table shows where blocks that are expanded to contain calculated
members (BigBlks) are calculated: in dynamic calculator cache (DCC), or in regular memory
(nonDCC). By viewing the total number of big blocks allocated versus the maximum number
of big blocks held simultaneously, and by analyzing block wait statistics, you can determine the
efficiency of your dynamic calc cache configuration settings. For more information, refer to the
“DYNCALCCACHEMAXSIZE” on page 433 setting in the essbase.cfg documentation.

MaxL Statements 631

Dynamic Calc Cache
Statistic

Description

BigBlks Alloced The number of big block allocations that have been requested, so far, irrespective of where the system got
the memory (DC cache or regular). For three queries Q1, Q2, and Q3 executed, requiring 25, 35, and 10
big blocks, respectively, BigBlks Alloced would be 70. This does not mean that Q1 needed all 25 blocks at
the same time. It may have used some blocks for a while, then released some of them, and so on, until the
query finished and released all remaining blocks (returned to DC cache or regular memory).

Max BigBlks Held The maximum number of big blocks simultaneously held, so far. For each query Qi executed so far, there
will be a number Ni, which gives the maximum number of big blocks that the query needed to have at the
same time (includes both DCC and regular memory blocks). MaxBigBlksHeld under the Total column is the
maximum over all values of Ni. The values under the DCC and non-DCC columns are similar except that they
restrict themselves to the maximum blocks held in the respective portions of memory.

DCC Blks Waited The number of dynamic calculator blocks that the system had to wait for.

DCC Blks Timeout The number of times that the “DYNCALCCACHEBLKTIMEOUT” on page 430 configuration setting was
exceeded.

DCC Max ThdQLen If the configuration setting, “DYNCALCCACHEWAITFORBLK” on page 436 is TRUE, it is possible for queries
(really, the threads executing them) to sit in a queue, waiting for DC cache memory to be freed by other
threads currently using the memory. DCC MaxThdQLen tells how long this queue ever got (maximum number
of threads simultaneously waiting), giving a sense of how critical the dynamic calculator cache became as
a resource.

MaxL Script Example
The following MaxL script creates an output file of performance statistics tables.

/* to execute:
 essmsh scriptname username password
*/
login $1 $2;
spool on to 'c:\mxlouts\pstatsouts.txt';
alter database sample.basic set performance statistics enabled;
execute calculation
 'SET MSG ERROR;
 CALC ALL;'
on Sample.basic;
alter database sample.basic set performance statistics mode to medium persistence server
scope;
query database sample.basic get performance statistics kernel_io table;
alter database sample.basic set performance statistics mode to long persistence database
scope;
query database sample.basic get performance statistics kernel_cache table;
alter database sample.basic set performance statistics mode to medium persistence
database scope;
query database sample.basic get performance statistics end_transaction table;
query database sample.basic get performance statistics database_synch table;
query database sample.basic get performance statistics database_asynch table;
spool off;
logout;

632 MaxL

Listed By Verbs
alter

create

deploy

display

drop

execute

export

grant

import

query

refresh

Alter
application

database

drillthrough

filter

group

object

partition

session

system

tablespace

trigger

user

Create
application

calculation

database

drillthrough

filter

MaxL Statements 633

function

group

location alias

macro

outline

partition

trigger

user

(data mining) algorithm

(data mining) model

(data mining) task template

Deploy
deploy

Display
application

calculation

database

disk volume

drillthrough

filter

filter row

function

group

location alias

lock

macro

object

partition

privilege

session

system

634 MaxL

tablespace

trigger

trigger spool

user

variable

(data mining) algorithm

(data mining) model

(data mining) session

(data mining) task template

Drop
application

calculation

database

drillthrough

filter

function

group

location alias

lock

macro

object

partition

trigger

trigger spool

user

(data mining) algorithm

(data mining) model

(data mining) result

(data mining) task template

Execute
aggregate process

MaxL Statements 635

aggregate selection

aggregate build

allocation

calculation

custom calculation (aggregate storage)

Export
data

LRO

outline

security_file

Grant
Grant

Import
data

dimensions

lro

Query
database

database backup archive file

application (for aggregate storage only)

Refresh
custom definitions

outline

replicated partition

Listed by Objects
aggregate_build

aggregate_process

636 MaxL

aggregate_selection

application

archive_file

calculation

custom definitions

data

database

data mining objects

dimensions

disk volume

drillthrough

filter

function

group

location alias

lock

lro

macro

object

outline

partition

privilege

security_file

session

system

tablespace

trigger

trigger spool

user

variable

Aggregate Build
execute aggregate build

MaxL Statements 637

Aggregate Process
execute aggregate process

Aggregate Selection
execute aggregate selection

Allocation
execute allocation

Application
alter

create

display

drop

query (for aggregate storage only)

Archive_file
query

Calculation
create

display

drop

execute

execute custom (aggregate storage)

Custom Definitions
create function

create macro

display function

display macro

drop function

drop macro

638 MaxL

refresh custom definitions

Data
export

import

Database
alter

create

display

drop

query

Dimensions
import

Disk Volume
alter database (to add, drop, and set)

display disk volume

Drillthrough
alter

create

display

drop

Filter
alter filter

create filter

display filter

display filter row

drop filter

MaxL Statements 639

Function
create

display

drop

refresh

Group
alter

alter user (to add or remove group members)

create

display

drop

Location Alias
create

display

drop

Lock
display

drop

LRO
export

import

Macro
create

display

drop

refresh

640 MaxL

Object
alter

display

drop

Outline
create

refresh

see also “Dimensions” on page 639

Partition
alter

create

display

drop

refresh replicated

refresh outline for outline synchronization

Privilege
display

grant

Security File
Export Security File

Session
alter

display

alter system to stop a session

System
alter

display

MaxL Statements 641

Tablespace
alter

display

Trigger
alter

create or replace

display

drop

Trigger Spool
display

drop

User
alter

create

display

drop

grant to assign permissions

Variable
display variable

To add, drop, or set substitution variables:

alter application

alter database

alter system

MaxL Statement Reference
Consult the Contents pane for an alphabetical list of MaxL statements.

Alter Application
Click here for aggregate storage version

642 MaxL

Change application-wide settings.

Permission required: Application Manager.

Syntax

Use alter application to change the following application-wide settings:

Keyword Description

set lock_timeout Change the maximum time interval that locks on data blocks can be held by Spreadsheet Add-in
users. When a client data-block lock is held for more than the time out interval, Essbase removes
the lock and the transaction is rolled back. The default interval is 60 minutes. This setting affects
all databases in the application.

set
max_lro_file_size

Specify a maximum file size for Linked Reporting Objects (LRO) attachments. There is no default.
There is no minimum or maximum value, excepting limitations imposed by your system resources.

set minimum
permission

Grant all users a minimum level of permission to all databases in the application. Users with higher
permissions than this minimum are not affected.

set variable Assign a string value to an existing substitution-variable name. If the variable does not exist, first
create it using add variable. Substitution variables may be referenced by calculations in the
application.

MaxL Statements 643

Keyword Description

set type
unicode_mode

Migrate an application to Unicode mode. Migration to Unicode mode cannot be reversed.

load database Start (by loading into memory) an idle database. The statement will fail if you do not have at least
read privilege for the database.

unload database Stop (by unloading from memory) an active database. The statement will fail if you do not have
at least read privilege for the database.

enable startup Permit all users to load (start) the application. This only applies to users who have at least read
privilege for the application. Startup is enabled by default.

disable startup Prevent all users from loading (starting) the application. Startup is enabled by default.

enable autostartup Start the application automatically when Essbase Server starts. By default, autostartup is disabled.

disable autostartup Do not start the application automatically when Essbase Server starts. By default, autostartup is
disabled.

enable commands Allow all users with sufficient permissions to make requests to databases in the application. Use
to reverse the effect of disable commands. The disable commands setting remains in effect only
for the duration of your session. By default, commands are enabled.

disable commands Prevent all requests to databases in the application, including non-data-specific requests, such as
viewing database information or changing database settings. All users are affected, including other
administrators. Administrators are affected by this setting as a safety mechanism to prevent
accidental updates to databases during maintenance operations. This setting remains in effect only
for the duration of your session. The setting takes effect immediately, and affects users who are
currently logged in, as well as users who log in later during your session.

Caution! If performing maintenance operations that require disabling commands, you must
make those maintenance operations within the same session and the same script as
the one in which commands were disabled.

By default, commands are enabled.

enable updates Allow all users with sufficient permissions to make requests to databases in the application. Use
to reverse the effect of disable updates. Disabling updates remains in effect only for the duration
of your session. By default, updates are enabled.

disable updates Prevent all users from making requests to databases in the application. Use before performing
update and maintenance operations. The disable updates setting remains in effect only for the
duration of your session.

Caution! If performing maintenance operations that require updates to be disabled, you must
make those maintenance operations within the same session and the same script as
the one in which updates were disabled. By default, updates are enabled.

enable connects Allow all users with sufficient permissions to make connections to databases in the application.
Use to reverse the effect of disable connects. By default, connections are enabled.

644 MaxL

Keyword Description

disable connects Prevent any user with a permission lower than Application Managers from making connections
to the databases that require the databases to be started. This includes starting the databases or
performing the ESSCMD SELECT command on the databases. Database connections remain
disabled for all databases in the application, until the application setting is re-enabled by the
administrator.

By default, connections are enabled.

enable security When security is disabled, Essbase ignores all security settings in the application and treats all users
as Application Managers. By default, security is enabled.

disable security When security is disabled, Essbase ignores all security settings in the application and treats all users
as Application Managers. By default, security is enabled.

comment Enter an application description (optional). The description can contain up to 80 characters.

clear logfile Delete the application log located in the application directory. A new log is created for entries
recording subsequent application activity.

add variable Create an application-level substitution variable by name, and optionally assign a string value for
the variable to represent. You can assign or change the value later using set variable. A substitution
variable acts as a global placeholder for information that changes regularly. Substitution variables
may be referenced by calculations and report scripts.

If substitution variables with the same name exist at server, application, and database levels, the
order of precedence for the variables is as follows: a database level substitution variable supersedes
an application level variable, which supersedes a server level variable.

drop variable Remove a substitution variable and its corresponding value from the application.

rename to Rename the application. When you rename an application, the application and the application
directory (ARBORPATH\App\application_name) are renamed.

sync user Synchronize the named user's information on this Essbase application with the latest matching
user information found on Shared Services. To issue this statement, you must be an Administrator,
Application Manager, or Database Manager.

sync group Synchronize the named group's information on this Essbase application with the latest matching
group information found on Shared Services. To issue this statement, you must be an
Administrator, Application Manager, or Database Manager.

sync
all_users_groups

Synchronize all user and group information on this Essbase application with the latest user and
group information found on Shared Services. To issue this statement, you must be an
Administrator, Application Manager, or Database Manager.

reregister Re-establish this Essbase application as a Shared Services application. This statement reregisters
the application with Shared Services, in the event that you have:

l deleted the application from Shared Services but kept using it in Essbase.

l changed the Essbase Administration Server location, name, or port number.

l changed the Essbase Server name or port number.

To issue this statement, you must be an Administrator or Application Manager.

MaxL Statements 645

Keyword Description

all reregister Re-establish this and all other Essbase applications as Shared Services applications. This statement
reregisters the applications with Shared Services, in the event that you have:

l deleted the application from Shared Services but kept using it in Essbase.

l changed the Essbase Administration Server location, name, or port number.

l changed the Essbase Server name or port number.

To issue this statement, you must be an Administrator or Application Manager on all applications;
for any applications for which you do not have sufficient permissions, the re-registration will be
skipped with a warning.

Example

alter application Sample set minimum permission read;

Grants all users read access to all databases in the Sample application. Users can retrieve data
values and run report scripts.

alter application Sample disable commands;

Prevents all users from making requests to the application scope. Use this statement before
performing application-wide update and maintenance operations.

alter application Acme set variable Current_month July;

Assigns the string value July to the substitution variable "Current_month."
"Current_month" may be referenced by calculations in the Acme application.

Alter Database
Click here for aggregate storage version

Select a subset of alter database:

l Alter Database enable | disable

l Alter Database Set

l Alter Database (Misc)

l Alter Database (disk volumes)

Alter Database enable | disable
Click here for aggregate storage version

Change database-wide settings.

Permission required: create_application.

646 MaxL

Syntax

Use alter database to change the following database-wide settings:

Keyword Description

enable
two_pass_calc

Recalculate (after a default calculation) database outline members tagged as Two Pass, so they will
be recalculated after other database members have been consolidated. This setting is enabled by
default.

Members that usually require a two-pass calculation are those members of the Accounts dimension
that are calculated by a formula rather than by hierarchical consolidation. These members are
typically ratios, such as "Profit % Sales" (profit percentage of sales), which has a member formula.

This setting is ignored during a calculation script; it is used only during a default calculation. To
use two-pass calculation in a non-default calculation, use the CALC TWOPASS command in the
calculation script.

disable
two_pass_calc

Do not recalculate database outline members tagged as Two Pass after a default calculation. Two-
pass calculation is enabled by default.

enable
aggregate_missing

Consolidate #MISSING values along with the regular database consolidation. If you never load
data at parent levels, aggregating #MISSING values can improve calculation performance,
depending on the ratio between upper level blocks and input blocks in the database.

If this setting is enabled and you load values directly at the parent level, these parent-level values
will be replaced by the results of the consolidation, even if the results are #MISSING values. The
aggregate missing setting is disabled by default.

disable
aggregate_missing

Do not consolidate #MISSING values. This is the default. Data that is loaded at parent levels is not
overwritten by #MISSING values of children below it. However, if any of the child data values are
not #MISSING, these values are consolidated and overwrite the parent values.

enable startup Enable users to start the database directly or as a result of requests requiring the database to be
started. Startup is enabled by default.

disable startup Prevent all users from starting the database directly or as a result of requests that would start the
database. Startup is enabled by default.

enable autostartup Automatically start the database when the application to which it belongs starts. Autostartup is
enabled by default. This setting is applicable only when startup is enabled.

disable autostartup Prevent automatic starting of the database when the application to which it belongs starts.
Autostartup is enabled by default.

enable compression Enable data compression. By default, Bitmap compression is enabled. To switch to a different
compression type, use alter database set compression.

MaxL Statements 647

Keyword Description

disable
compression

Disable data compression. By default, Bitmap compression is enabled.

enable
create_blocks

Allow Essbase to create a data block when you assign a non-constant value to a member
combination for which a data block does not already exist. Block creation on equation is disabled
by default, because it can result in a very large database.

When you assign a constant to a member on a sparse dimension, you do not need to enable Create
Blocks on Equation, because Essbase would create a data block anyway. For example, "West =
5;" would result in the creation of data blocks, with or without the Create Blocks on Equation
setting enabled.

You do need to check this option if you want blocks created when you assign anything other than
a constant to a member on a sparse dimension for which a data block does not already exist. For
example, if no data exists for Actuals, a member of a sparse Scenario dimension, then you need to
enable Create Blocks on Equation in order to perform the following allocation:

2002Forecast = Actuals * 1.05;.

disable
create_blocks

Turn off the Create Blocks on Equation setting. The setting is disabled by default.

enable
committed_mode

Set the database isolation level to committed access, meaning that only one transaction at a time
can update data blocks. Essbase holds read/write locks on all data blocks until the transaction and
the commit operations are performed. If pre-image access is enabled, users (or transactions) can
still have read-only access to data at its last commit point. For more information, see the
enable pre_image_access setting. The default isolation-level mode is Uncommitted.

disable
committed_mode

Turn off the Committed Mode setting, reverting to the default isolation level of Uncommitted for
the database.

Note: Spreadsheet Add-in lock and send operations are always in committed mode.

In uncommitted mode, Essbase allows transactions to hold read/write locks on a block-by-block
basis. Essbase releases a block after it is updated, but does not commit blocks until the transaction
is completed, or until a specified number of blocks or rows (a "synchronization point") has been
reached. You can set this limit using the implicit_commit settings.

enable
pre_image_access

Allow users (or other transactions) read-only access to data at its last commit point, when the
database is in committed mode (meaning that data blocks may be locked for the duration of a
concurrent transaction). Pre-image access is enabled by default when the database is in committed
mode.

See also the enable committed_mode setting.

disable
pre_image_access

Disable pre-image access, disallowing read-only access to locked blocks of data at their last commit
point (this setting is only applicable while the database is in committed mode). Pre-image access
is enabled by default when the database is in committed mode.

648 MaxL

Keyword Description

enable
cache_pinning

Enable cache memory locking, which locks the memory used for the index cache, data file cache,
and data cache into physical memory, giving the Essbase Server kernel priority use of system RAM.
Cache memory locking improves performance for a database because the system memory manager
does not need to swap the memory used by the caches when swapping the memory used by the
Essbase Server. The setting takes effect after you restart the database.

By default, cache memory locking is disabled. To use cache memory locking, you must be using
direct I/O (buffered I/O is the default). For more information, see the Oracle Essbase Technical
Reference documentation for the DIRECTIO setting for essbase.cfg.

disable
cache_pinning

Disable cache memory locking, reverting to the default.

Example

alter database Sample.Basic enable cache_pinning;

Locks database cache pages in physical memory so that the operating system will not page
them out while the database is still using them.

alter database Sample.Basic disable two_pass_calc;

Prevents recalculation (after a default calculation) of members tagged as Two Pass.

Alter Database Set
Click here for aggregate storage version

Change database-wide settings.

Permission required: create_application.

MaxL Statements 649

Syntax

Use alter database set to change the following database-wide settings:

Keyword Description

retrieve_buffer_size Change the database retrieval buffer size. This buffer holds extracted row data cells before
they are evaluated by the RESTRICT or TOP/BOTTOM Report Writer commands. The
default size is 10 KB (on 32-bit platforms), and 20 KB (on 64-bit platforms). The minimum
size is 2 KB. Increasing the size may improve retrieval performance.

retrieve_sort_buffer_size Change the database retrieval sort buffer size. This buffer holds data until it is sorted. The
Report Writer and Essbase Query Designer use the retrieval sort buffer. The default size is
10 KB (on 32-bit platforms), and 20 KB (on 64-bit platforms). The minimum size is 2 KB.
Increasing the size may improve retrieval performance.

650 MaxL

Keyword Description

data_cache_size Change the data cache size. The data cache is a buffer in memory that holds uncompressed
data blocks. Essbase Server allocates memory to the data cache during data load, calculation,
and retrieval operations as needed. The default and minimum size is 3072 KB.

data_file_cache_size Change the data file cache size. The data file cache is a buffer in memory that holds
compressed data files (.PAG files). Essbase Server allocates memory to the data file cache
during data load, calculation, and retrieval operations as needed. The data file cache is not
used when buffered I/O is used; you must use direct i/o to use the data file cache. The default
size is 32 MB.

index_cache_size Change the index cache size. The index cache is a buffer in memory that holds index pages.
When a data block is requested, Essbase looks at the index pages in the index cache to find
its location on disk. The default size is 1 MB when buffered I/O is used, and 10 MB when
direct I/O is used. Buffered I/O is the default for this release.

currency_database Link the database with a currency database. A currency database enables you to convert
currency values in a database from one currency into another currency.

currency_member Specify the member to use as a default value in currency conversions. You can specify any
valid member of the dimension defined as "Currency Type" in the currency database.

currency_conversion Specify whether during currency conversion, the calculation method multiplies the
currency database exchange rates with the main database values, or that the currency
database exchange rates are divided by the main database values.

minimum permission Set a level of permission that all users or groups can have to the database. Users or groups
with higher granted permissions than the minimum permission are not affected.

compression rle Set the database to use run-length encoding (RLE) compression. Essbase compresses
repetitive, consecutive values, including zeros and #MISSING values. The default
compression type is bitmap.

When a compressed data block is brought into the data cache, Essbase expands the block
to its full size, regardless of the scheme that was used to compress it.

compression bitmap Set the database to use bitmap compression, the default. Essbase stores only non-missing
values and uses a bitmapping scheme.

When a compressed data block is brought into the data cache, Essbase expands the block
to its full size, regardless of the scheme that was used to compress it.

compression zlib Set the database to use ZLIB compression.

When a compressed data block is brought into the data cache, Essbase expands the block
to its full size, regardless of the scheme that was used to compress it.

If your database allows or requires "Aggregate Missing Values" setting set to YES, then you
may want to consider using ZLIB as the compression scheme. ZLIB particularly works well
on such databases compared to other compression schemes. However, changing the
aggregate missing values setting may have an impact on calculation results - see the Oracle
Essbase Database Administrator's Guide. Consider using ZLIB only if you have already
determined that the setting should be YES for other reasons.

lock_timeout Change the interval to wait for blocks to be unlocked when the database is in committed
mode. If a transaction request is made that cannot be granted in the allotted time, the
transaction is rolled back until a lock can be granted.

Note: Spreadsheet Add-in lock and send operations are always in committed mode.

MaxL Statements 651

Keyword Description

implicit_commit after
<number> blocks

When uncommitted access is enabled, set the frequency at which Essbase commits data
blocks (after the specified number of blocks has been reached).

implicit_commit after
<number> rows

When uncommitted access is enabled, set the frequency at which Essbase commits data
blocks (after the specified number of rows has been reached).

io_access_mode Change the input/output setting you wish to use for the database. The change takes effect
the next time the database is started.

Buffered I/O uses the file system's buffer cache, and is the default.

Direct I/O bypasses the file system's buffer cache, and is able to perform asynchronous,
overlapped I/Os, providing faster response time and more potential to optimize cache sizes
for databases.

If you set a database to use direct I/O, Essbase will attempt to use direct I/O each time the
database is started. If direct I/O is not available on your platform at the time the database
is started, Essbase will use buffered I/O, which is the default.

variable Change the value of an existing substitution variable on the database. The value must not
exceed 256 bytes. It may contain any character except a leading ampersand (&).

default calculation Change the default calculation (which, by default, is CALC ALL;) to the stored calculation
script you specify, or to an anonymous (unstored) calculation string.

active alias_table Set an alias table as the primary table for reporting and any additional alias requests. Only
one alias table can be used at a time. This setting is user-specific; it only sets the active alias
table for the user issuing the statement.

ha_trace level Enable logging of queries generated by Hybrid Analysis operations, such as running a report
involving relationally stored members, or drilling into a spreadsheet containing relationally
stored members. The queries are logged into the file essha.log, which is found in the
root Essbase installation directory, Essbase.

The level option controls the amount of information written to essha.log. Level
high should be used only for debugging purposes and should be rarely used because it can
quickly fill up the log file. Level low is recommended.

ha_trace off Turn off logging of queries generated by Hybrid Analysis operations.

performance statistics
enabled

Turn on performance-statistics gathering. You might do this when you want to tune the
system, change hardware configuration, or monitor I/O. The measurement begins for
current processes as soon as you enable it. Any subsequent queries for statistics return
measurements spanning from the time of enablement to the time of the query. Performance
statistics can be retrieved using query database.

performance statistics
disabled

Turn off performance-statistics gathering. This halts the collection of statistics; it does not
prevent anyone from retrieving old statistics using query database.

652 MaxL

Keyword Description

performance statistics
mode to <PST-SPEC>

Reset performance statistics gathering for a specified persistence and scope. Each of the
statistics tables available using query database has a pre-defined persistence and
scope. When you use set performance statistics mode, you select the
persistence and scope to reset, and the collecting of measurements starts over for the
applicable tables.

note Create an informational note about the database that Spreadsheet Add-in users can see from
the login dialog box. For example, 'Calc in progress: do not update.'
Database notes can be up to 64 kilobytes long.

Example

alter database Sample.Basic set lock_timeout after 120;

Changes the number of seconds to wait for blocks to be unlocked. If a transaction request
is made which cannot be granted in 120 seconds, the transaction is rolled back until a lock
can be granted.

Alter Database (Misc)
Click here for aggregate storage version

Change database-wide settings.

Permission required: create_application.

MaxL Statements 653

Syntax

Use alter database to change the following database-wide settings:

Keyword Description

reset Clear all data and linked-reporting objects from the database, but preserve the outline.

reset all Clear all data, Linked Reporting Objects, and the outline.

reset data Same as using reset.

654 MaxL

Keyword Description

validate data to local
logfile...

Create a local log file with all index combinations for which blocks contain invalid block
headers.

Before using this MaxL statement, be sure that the server is not performing other operations,
such as calculations or data loads; otherwise, an exception error may occur.

The recommended procedure is:

1. Disable all logins.

2. Forcibly log off all users.

3. Run the MaxL statement to get invalid block header information.

4. Repair invalid block headers, if applicable.

For example,

alter application sample disable connects;
alter system logout session on database sample.basic;
alter database sample.basic validate data to local logfile
'invalid_blocks';
alter database sample.basic repair invalid_block_headers;

validate using... Check the database for data and structural integrity. A file is created containing error messages
if there are problems. The default error file is VALIDATE.LST in the application or database
directory. For example:

Hyperion/products/Essbase/EssbaseServer/app/sample/basic/
VALIDATE.LST.

The validate utility verifies the following:

l That blocks, sections, block type, block length, and floating-point numbers are valid.

l That the index contains an entry for every data block.

l That keys in the index page are matched with keys in the corresponding data blocks. Keys
out of order indicate corruption.

l Structural integrity of index freespace information.

l Structural integrity of the LRO catalog.

repair
invalid_block_headers

Delete all blocks that have invalid headers. Before using this statement, see validate
data to local logfile.

recover freespace Explicitly recover database freespace in the event of a crash or abnormal shutdown. Beginning
with Release 7.0, freespace recovery only occurs if you explicitly request it.

force restructure Explicitly restructure the database to eliminate or reduce fragmentation.

MaxL Statements 655

Keyword Description

load alias_table Load an alias table from a file to the current database. The feeder file (FILE-NAME) must
follow these rules:

l Must be correctly formatted.

l Must be located on the Essbase Server computer, not on a client computer.

l FILE-NAME must include the full path.

Sample contents of a feeder file for loading an alias table:

 $ALT_NAME
 "400-10" Guava
 "400-20" Tangerine
 "400-30" Mango
 $END

unload alias_table Delete the specified alias table.

add variable Create a database-level substitution variable by name, and optionally assign a string value for
the variable to represent. You can assign or change the value later using set variable. A
substitution variable acts as a global placeholder for information that changes regularly.
Substitution variables may be referenced by calculations and report scripts.

If substitution variables with the same name exist at server, application, and database levels,
the order of precedence for the variables is as follows: a database level substitution variable
supersedes an application level variable, which supersedes a server level variable.

drop variable Remove a substitution variable and its corresponding value from the database.

delete lro Delete Linked Reporting Objects linked to the active database for a given user name or
modification date.

unlock all objects Unlock all objects on the database that are in use by a user or process.

begin archive to file Prepare the database for backup by an archiving program, and prevent writing to the files
during backup. This statement requires the database to be started.

Begin archive achieves the following outcomes:

l Commits any modified data to disk.

l Switches the database to read-only mode. The read-only state persists, even after the
application is restarted, until it is changed back to read-write using end archive.

l Reopens the database files in shared, read-only mode.

l Creates a file containing a list of files that need to be backed up. Unless a different path
is specified, the file is stored in the database directory.

Begin archive and end archive do not perform the backup; they simply protect the database
during the backup process.

end archive Return the database to read-write mode after backing up the database files.

This statement requires the database to be started.

End archive achieves the following outcomes:

l Returns the database to read-write mode.

l Re-opens database files in exclusive, read-write mode.

656 MaxL

Keyword Description

archive to file Write a copy of the database files to a specified archive file that resides on the Essbase Server
computer. Provide the full pathname to an existing directory and the name of the archive file.
If only the archive filename is provided, Essbase writes the archive file to ARBORPATH/
app.

Oracle recommends writing the archive file to a different disk than the one where
ARBORPATH is located and recommends that you name the file with a .arc extension.

By default, Essbase creates a single, large archive file. The size of the archive file corresponds
to the size of the database you back up and is limited only by disk space. If, however, in your
environment you cannot use large files or the file-transfer tools that you use cannot handle
large files, you can configure Essbase to split the archive file into multiple files, with each file
no larger than 2 GB. In the essbase.cfg file, set the “SPLITARCHIVEFILE” on page
497 configuration setting to TRUE.

Note: If you use the single-file configuration, Oracle recommends saving archive files to a
file system that supports large files. For Windows, the file system must be formatted
as NTFS. For UNIX, large file support must be enabled (for example, use the ULIMIT
setting to specify a specific file size based on the size of the database or set ULIMIT to
unlimited). See your operating system documentation.

If you are backing up a database to an existing archive file, you must use the force archive to
file grammar to overwrite the file.

Caution! When using the force option, be sure that you no longer need the contents of the
existing archive file.

force archive to file Overwrite the contents of an existing archive file.

Caution! When using the force option, be sure that you no longer need the contents of the
existing archive file.

restore from file Restore a database with the contents of the specified archive file.

If you have configured Essbase to split the archive file into multiple files
(“SPLITARCHIVEFILE” on page 497), you only need to specify the filename of the main
archive file that you want to restore (for example, samplebasic.arc). All archive files
must reside in the same directory as the main archive file.

Typically, you restore a database to the application and database from which the backup was
taken and, therefore, the names of the backed up and restored database and its associated
application are the same. If, however, the names of the backed up database and application
are not the same as the application and database to which you are restoring data, you must
use the force restore from file grammar.

MaxL Statements 657

Keyword Description

restore from
file...replace disk
volume VOL-REPL

Restore a database with the contents of the specified archive file and replace the specified disk
volumes.

Valid values for the VOL-REPL argument are a comma-separated list of volumes to replace:

l 'VOL1' with 'VOL2'

l 'VOL3' with 'VOL4'

l 'VOL5' with 'VOL6'

The number of disk volumes used and the space required for the restored database must be
the same as for the database before it was backed up. Only the name of disk volumes can be
different.

force restore from file... Use the contents of the specified archive file to restore to a database that has different names
than the archived database or its associated application. For example, you can use the archive
file for Sample.Basic to restore to Sample.New (the database name is different),
MyCompany.Basic (the application name is different), or MyCompany.New (both names are
different).

replay transactions Replays the database transactions that were logged after the last replay request was originally
executed or after the last restored backup's time (whichever occurred later).

Transactions that are executed and logged after the restore operation are not replayed, unless
you replay those transactions using their sequence IDs. After restoring a database, Oracle
recommends that you finish replaying the transactions that were logged after the backup and
before the restore and that are needed to fully recover the database; then you can continue
executing new transactions.

replay transactions after
LOG-TIME

Replays the transactions that were logged after the specified time. Enclose the TIME value in
quotation marks; for example: '11_20_2007:12:20:00'

replay transactions
using
sequence_id_range ID-
RANGE

Replays the transactions specified by a comma-separated list of sequence ID ranges. A range
can consist of:

l A single transaction: n to n; for example, 1 to 1

l Multiple transactions: x to y; for example, 20 to 100

Each logged transaction is assigned a sequence ID, indicating the order in which the transaction
was performed. To ensure the integrity of the restored data after a replay, Essbase enforces the
replay of transactions in the same order in which they were originally performed. The order
of sequence IDs are tracked across multiple replay commands.

Note: You can skip replaying a transaction if you are absolutely sure that the transaction
results are not required to recover the database.

rename to Rename the database. When you rename a database, the database directory is also renamed.

comment Create a description of the database. The maximum number of characters is 80. This
description is available to database administrators. To annotate the database for Spreadsheet
Add-in users, use set note.

Example

alter database Sample.Basic archive to file /Hyperion/samplebasic.arc;

658 MaxL

Backs up Sample.Basic database files to the specified archive file (samplebasic.arc) on
Essbase Server.

alter database Sample.Basic force archive to file /Hyperion/samplebasic.arc;

In backing up the Sample.Basic database files, overwrites the existing archive file
(samplebasic.arc).

alter database Sample.Basic restore from file /Hyperion/samplebasic.arc;

Restores the Sample.Basic database using the samplebasic.arc archive file.

alter database MyCompany.New force restore from file /Hyperion/samplebasic.arc;

Uses the archive file for the Sample.Basic database (samplebasic.arc) to restore the
MyCompany.New database.

alter database Sample.Basic restore from file /Hyperion/samplebasic.arc replace disk
volume 'C' with 'F', 'D' with 'G', 'E' with 'H';

Restores the Sample.Basic database using the samplebasic.arc archive file and replaces
the specified disk volumes.

alter database Sample.Basic replay transactions using sequence_id_range 1 to 10,20 to
100;

Replays the transactions in the Sample.Basic database with sequence IDs 1 through 10 and
20 through 100.

alter database Sample.Basic replay transactions after '11_20_2007:12:20:00';

Replays all transactions that were logged after the specified time.

See Also

l Alter Database enable | disable

l Alter Database Set

l Alter Database (disk volumes)

Alter Database (disk volumes)
Add, delete, or modify a database disk volume. Permission required: create_application. Disk
volumes apply only to block storage databases.

Syntax

Use alter database to change the following database disk volume settings:

MaxL Statements 659

Keyword Description

add disk
volume

Add a disk volume definition if you want to allocate storage across multiple volumes, or restrict space used
on a volume. After adding a disk volume definition, use set disk volume to place restrictions on
files stored on the disk volume.

drop disk
volume

Remove a disk volume definition. If no disk volume is defined, data and index files are stored in the database
directory (for example, $ARBORPATH/app/sample/basic).

set disk
volume

Specify what types of files should be stored on the disk volume. You can allocate storage for index files,
data files, or both. You can specify the maximum file size and partition size allowed on the disk volume.

Notes

Add a disk volume definition if you want to allocate storage across multiple volumes, or restrict
space used on a volume. You can allocate storage for index files, data files, or both.

Files are written to the disk volume in the following directory structure:

.../app/app_name/db_name

For new files, disk volume settings become effective after the database is restarted. Previously
existing files and volumes are not affected.

If no disk volume is defined, data and index files are stored in the database directory (for example,
$ARBORPATH/app/sample/basic).

File_size is the maximum size an index or data file may attain. Default = 2G; minimum = 8192K
(8M).

Partition_size is the maximum amount of disk space allocated to the volume. Default =
unlimited.

Example

alter database Sample.Basic set disk volume c file_type index;

Changes the storage settings for Sample Basic so that the alternate disk volume specified as
the C: drive stores only index files.

Alter Drillthrough
Edit drill-through URL definitions used to link to content hosted on Oracle ERP and EPM
applications.

Syntax

Use alter drillthrough to edit a URL definition in the following ways:

660 MaxL

Keyword Description

alter drillthrough Edit drill-through URL metadata.

The number of drill-through URLs per database is limited to 255.

from xml_file Indicate the path to the local URL XML file that defines the link information.

The URL XML is created by the ERP or EPM application that deployed the Essbase database. The
XML contains the drill-through URL display name as well as a URL enabling the hyperlink from a
cell to a Web interface to occur. For a sample URL XML file, see Create Drillthrough.

on {<member-
expression>,...}

Define the list of drillable regions, using the same Essbase member-set calculation language that is
used to define security filters. The list of drillable regions must be enclosed in {brackets}.

The number of drillable regions in a drill-through URL is limited to 256. The number of characters
per drillable region is limited to 65536.

allow_merge Optional: Merge the drillable-region definition instead of replacing it on update.

Example

alter drillthrough sample.basic.myURL from xml_file "C:/drillthrough/data/myfile.xml" on
{'@Ichildren(“Qtr1”)', '@Ichildren(“Qtr2”)'} allow_merge;

See Also

l create drillthrough
l display drillthrough
l drop drillthrough

Alter Filter
Add filter rows to a database security filter. Filters control security for database objects. Use
grant to assign filters to users and groups.

Minimum permission required: Database Manager.

Syntax

Use alter filter in the following ways to edit a filter:

Keyword Description

alter filter ...add
no_access on
<member-
expression>

Block access to a specified member combination.

MaxL Statements 661

Keyword Description

alter filter ... add
read on <member-
expression>

Provide read-only access to a specified member combination.

alter filter ... add
write on
<member-
expression>

Provide write access to a specified member combination.

alter filter ... add
meta_read on
<member-
expression>

Restrict access to siblings and ancestors of the member expression. In case of a filtering conflict,
the MetaRead filtering overrides the other filter permissions. For more information about
metatdata filtering, see “Metadata Filtering” on page 926.

Notes

l Filters created using MaxL must be valid. For information about filter syntax, see the Oracle
Essbase Database Administrator's Guide.

l MEMBER-EXPRESSION must be enclosed in single quotation marks. It can be a comma-
separated list.

Example

alter filter sample.basic.filt7 add read on '@Descendants("East")';

Adds a row to a Sample Basic filter named filt7, giving read-only access to the data for the
eastern states.

alter filter sample.basic.filt8 add read on '@Descendants("East")', add write on
'@Descendants("West")';

Adds two rows to a Sample Basic filter named filt8.

Alter Group
Rename a group or change the comment that describes the group.

Permission required: create_user.

Syntax

Use alter group to change the following settings. See also alter user.

Keyword Description

rename to Rename the group.

662 MaxL

Keyword Description

comment Create a description of the group.

set sss_mode Migrate the group to Oracle Hyperion Enterprise Performance Management System security mode.
This might be useful if the group migration failed using alter system. Minimum permission required:
Administrator. For more information, see the Oracle Essbase Database Administrator's Guide chapter
titled "User Management and Security."

revoke filter Remove a filter assignment to this group. Privilege required: Application manger.

Note: This statement does not remove filter assignments granted to individual users. To remove filter
assignments to users, use Alter User.

all set
sss_mode

Same as set sss_mode, but for all groups.

Notes

See Notes for Alter User.

Example

alter group NewGroup rename to Recruit;

alter group Recruit comment 'This group is for the newly hired';

alter group MyGroup set sss_mode;

Alter Object
Rename, unlock, or copy a database-related artifact.

Syntax

Use alter object to edit artifacts in the following ways:

Keyword Description

rename to Rename the artifact. Not applicable for partition files, worksheets, or outlines.

unlock Unlock an artifact that is locked by another user or process. Not applicable for alias tables and worksheets.
Unlocking an artifact of type lro is applicable for stored linked-reporting objects only; that is, files with
the .LRO extension.

Note: To unlock all database artifacts, use alter database DBS-NAME unlock all
objects;.

copy to Make a copy of a server artifact. Not applicable for partition files, worksheets, or outlines. If an artifact of
the new name already exists, it is replaced.

MaxL Statements 663

Keyword Description

force copy
to

Make a copy of a server artifact. Not applicable for partition files, worksheets, or outlines. If an artifact of
the new name already exists, it is replaced. If an administrator issues the statement with the force keyword,
locked artifacts are unlocked, copied, and re-locked.

Notes

l Specified artifacts must be persisted in the database directory.

l To copy artifacts that are not persisted in the database directory, use the EXPORT ESSCMD
command.

l Attempting to rename or copy an artifact of type "partition_file" returns an error.

Example

alter object sample.basic.genref of type rules_file rename to 'level';

Renames a rules file in the Sample Basic directory, named genref.rul, to level.rul.

alter object sample.basic.Calcdat of type text rename to 'c_data';

Renames a text file in the Sample Basic directory, named calcdat.txt, to c_data.txt.

alter object samppart.company.company of type partition_file unlock;

Unlocks the partition definition file for the Samppart Company database.

Alter Partition
Fix invalid or dangling partition references. Change the authorized user who can connect to
both databases. Change the name of an application, database, or host (in the event that something
was renamed).

Syntax

Use alter partition to edit partitions in the following ways:

664 MaxL

Keyword Description

...set connect Change the user authorized to access the partitioned databases.

...set hostname Edit the partition definition to include the correct computer name that hosts the partition source
database, target database, or both.

...set application
as

Edit the partition definition to include a corrected application name. This is useful if one application
name was changed; if both application names changed, the partition definition cannot be corrected
and you must re-create it.

...set database as Edit the partition definition to include a corrected database name. This is useful if one database name
was changed; if both database names changed, the partition definition cannot be corrected and you
must re-create it.

...direction
single

See Example 2 (Alter Partition), Example 4 (Alter Partition), , and Example 5 (Alter Partition).

...direction all See Example 3 (Alter Partition).

Notes

l The first DBS-NAME is the local database, and the second DBS-NAME is the remote
database.

l Directing a partition to the remote site means the current database is the source. Creating a
partition from the remote site means the current database is the target.

l To change the authorized partition user, you must change the user for both partitioned
databases, as shown in Example 1 (Alter Partition).

l If a partitioned host, application, or database is renamed, the rename does not propagate to
the partition definition, so you must use alter partition to change the name in the partition
definition. As shown in Examples 2 through 5, you must give the old name and the new
name. If both names were changed, the partition definition is not recoverable, and must be
re-created.

Example

Example 1 (Alter Partition)

The following example changes the user authorized to access the partitioned databases.

/* To change authorized partition user on target, log in to source & then use: */
 alter transparent partition app1.source to app2.target
 set connect as newuser identified by newpasswd;

/* To change authorized partition user on source, log in to target & then use: */
 alter transparent partition app2.target from app1.source
 set connect as newuser identified by newpasswd;

Example 2 (Alter Partition)

In the following example, alter partition is used to fix a partition definition that became
invalid when a host name (oldHost) changed and affected only one half of the partition
definition (app2.target):

MaxL Statements 665

alter transparent partition app1.source to app2.target at oldHOST
 set hostname as newHOST instead of oldHOST direction single;

where direction single indicates that only the target host name needs to be changed.

Example 3 (Alter Partition)

In the following example, alter partition is used to fix a partition definition that became
invalid when a host-name change affected both the source and the target, because both
applications were on the same host:

alter transparent partition app1.source to app1.target at newHOST
 set hostname as newHOST instead of oldHOST direction all;

where direction all indicates that the host-name change needs to be made on both the target
and source halves of the partition definition.

Example 4 (Alter Partition)

In the following example, alter partition is used to fix a partition definition that became
invalid when the source application name (oldAppName) changed to newAppName, and affected
only one half of the partition definition:

alter transparent partition newAppName.source to app2.target
 set application as newAppName instead of oldAppName direction single;

where direction single indicates that only one half of the partition definition needs to be
corrected.

Note: The old application name can be discovered by issuing the display partition
statement prior to correcting the partition definition.

Example 5 (Alter Partition)

In the following example, alter partition is used to fix a partition definition that became
invalid when the source application name (oldAppName) changed to newAppName, and affected
both halves of the partition definition because both partitioned databases were on the same
application:

alter transparent partition newAppName.source to newAppName.target
 set application as newAppName instead of oldAppName direction all;

where direction single indicates both halves of the partition definition need to be corrected.

Alter Session
Set MDX display options.

666 MaxL

Syntax

Use alter session to change the following MDX output settings:

Keyword Description

default Revert to the default MDX display settings in the MaxL Shell. The default settings are: alias
ON, metadata_only OFF, cell_status OFF.

alias on|off Set whether to use aliases instead of member names.

metadata_only on|off Set whether to show only the metadata, with no data.

cell_status on|off Set whether to display cell status. Cell status is additional information returned with each cell
value in MDX query outputs.

Note: Every cell consists of one member from each dimension. Up to four cell-status types
may be returned with the output:

l DC: Dynamic Calc. If any of the members defining the cell is Dynamic Calc, this status is
on.

l RO: Read Only. If the cell cannot be written to (for example, by lock-and-send), this status
is on. Security filters in the database might cause cells to be read-only. Dynamic Calc cells
are automatically read-only.

l CM: Calculated Member. If any of the members defining the cell is a calculated member,
this status is on.

l LO: Linked Object. If the cell has any associated Linked Reporting Objects, this status is
on.

MaxL Statements 667

Keyword Description

numerical_display
fixed_decimal|
scientific_notation|
default

Set whether MaxL returns data values in MDX query output as fixed decimals, scientific
notation, or default format (values are returned in a reasonable combination of decimals or
scientific notation).

precision <precision-
digits>

Set the number (0-15) of decimal places to include for the data values in MDX query output.

formatted_value on|off Set whether to return formatted values for all cells of type text or date, or cells associated with
a format string. By default, this setting is on.

get_missing_cells on|
off

Set whether to return #Missing valued cells for all cells of type text or date, or cells associated
with a format string. By default, this setting is on.

get_meaningless_cells
on|off

Set whether to return #Meaningless for cells that are empty only because they are unassociated
with the context attribute or varying attribute. By default, this setting is off, and the empty cells
display as #Missing.

The following example query gets sales for all products, but the aggregation is specified by the
slicer context only for Ounces_12.

SELECT
{Sales, Cogs}
ON COLUMNS,
 {Product.Levels(0).Members}
ON ROWS
FROM Sample.Basic
WHERE (Ounces_12)
;

A value of #Meaningless is displayed for any members not associated with the attribute
Ounces_12.

Alter System
Click here for aggregate storage version

Change the state of the Essbase Server. Start and stop applications, delete application log files,
manipulate system-wide variables, manage password and login activity, disconnect users, end
processes, back up the security file, and shut down the server.

Permission required: administrator.

668 MaxL

Syntax

Use alter system to change the following system-wide settings:

Keyword Description

load application Start an application, or start all applications on the Essbase Server.

unload application Stop an application, or stop all applications on the Essbase Server.

MaxL Statements 669

Keyword Description

set session_idle_limit Set the interval of time permitted for a session to be inactive before Essbase Server logs off the
user. The minimum limit that you can set is five minutes (or 300 seconds). When the session
idle limit is set to none, all users can stay logged on until the Essbase Server is shut down.

The default user idle logout time is 60 minutes. When a user initiates a calculation in the
background, after 60 minutes the user is considered idle and is logged out, but the calculation
continues in the background.

Because the user may mistakenly assume that the calculation stopped because he or she was
logged out, you can do one of the following to correct the user experience:

l Run the calculation in the foreground

l Increase the session idle limit in to a time that exceeds the duration of the calculation, or
to none

set session_idle_poll Set the time interval for inactivity checking and security-backup refreshing. The time interval
specified in the session idle poll gives Essbase instructions:

l Tells it how often to check whether user sessions have passed the allowed inactivity interval
indicated by session_idle_limit in the alter system statement.

l Tells it how often to refresh the security backup file. If session_idle_poll is set to
zero, the security backup file is still refreshed every five minutes.

set invalid_login_limit Set the number of unsuccessful login attempts allowed by any user before the system disables
it. When you change this setting, the counter resets to 0. When the invalid login limit is set to
none, there is no limit. By default, there is no limit.

set inactive_user_days Set the number of days a user account may remain inactive before being disabled by the system.
The counter resets when the user logs in, is edited, or is activated by an administrator. When
the inactive days limit is set to none, user accounts remain enabled even if they are not used.
By default, there is no limit.

set
password_reset_days

Set the number of days users may retain passwords. After the allotted number of days, users are
prompted at login to change their passwords. The counter resets for a user when the user changes
the password, is edited, or is activated by an administrator. When the password reset days limit
is set to none, there is no built-in limit for password retention. By default, there is no limit.

set variable Change the value of an existing subsitution variable on the system. The value must not exceed
256 bytes. It may contain any character except a leading ampersand (&).

670 MaxL

Keyword Description

set sss_mode Migrate Essbase Server and any existing users and groups to Shared Services security mode.
Minimum permission required: Administrator. After you have converted to Shared Services
security mode, you cannot revert to native security mode.

Password Enforcement Grammar:

l enforce username_as_password—Create passwords that are the same as user names for
users being migrated to Shared Services.

Note: The passwords are created in lowercase letters, even if the user name includes
uppercase letters. For example, if a user name KSmith is migrated with this option,
the password is ksmith.

l enforce auto_password—Automatically generate new passwords for users being migrated
to Shared Services. To see the generated passwords, use display user all in
shared_services_native with auto_password;

Optionally save the generated passwords to a nondefault file location. If specifying a file
name that already exists, use the force keyword to overwrite the file.

If file name and location are not specified, the passwords are saved by default to
$ARBORPATH\bin\MigratedUsersPassword.txt.

l enforce password <PASSWORD>—Generate the specified password for users being
migrated to Shared Services.

set eas_loc Set or change the Essbase Administration Server location that will be registered with Shared
Services upon application creation or migration.

set server_port Expand a port range specified in essbase.cfg. Each Essbase application uses two ports from
this range. If no more ports are available, an error message is displayed.

Note: You can expand port ranges only so that the beginning port range is less than
SERVERPORTBEGIN and the ending port range is greater than SERVERPORTEND.

clear logfile Clear accumulated entries from the Essbase Server log located in the Essbase directory. New
log entries are created to record subsequent activity.

delete
export_directory

Delete directories created for linked reporting objects exported from a database to a directory
created in ARBORPATH\app. Use this grammar after the exported LROs are migrated into a
database using import lro, and the directories containing the exported LRO information are
not needed.

Note: This process works only for directories created in ARBORPATH\app using the DBS-
EXPORT-DIR option of the export lro statement. It does not work for directories
created elsewhere using the FULL-EXPORT-DIR option of the export lro statement.

To view a list of names of exported linked-reporting-objects directories in ARBORPATH
\app, use display system export_directory.

MaxL Statements 671

Keyword Description

add variable Create a system-level substitution variable by name, and optionally assign a string value for the
variable to represent. You can assign or change the value later using set variable. A substitution
variable acts as a global placeholder for information that changes regularly. Substitution
variables may be referenced by calculations and report scripts.

If substitution variables with the same name exist at server, application, and database levels, the
order of precedence for the variables is as follows: a database-level substitution variable
supersedes an application-level variable, which supersedes a server-level variable.

drop variable Remove a substitution variable and its corresponding value from the system.

logout session all Terminate all user sessions currently running on the Essbase Server.

logout session...force Terminate a session (or sessions) even if it is currently processing a request. The request is
allowed to proceed to a safe point, and then the transaction is rolled back.

logout session
<session-id>

Terminate a session by its unique session ID number. To see the session ID number, use display
session.

logout session by user Terminate all current sessions by a particular user, either across the entire Essbase Server, or
limited to a specific application or database.

logout session by user
on application

Terminate all current sessions by a particular user across a specific application.

logout session by user
on database

Terminate all current sessions by a particular user across a specific database.

logout session on
application

Terminate all current user sessions across a specific application.

logout session on
database

Terminate all current user sessions across a specific database.

shutdown Shut down the Essbase Server.

kill request all Terminate all current requests on the Essbase Server.

kill request <session-
id>

Terminate the current request indicated by the session ID. You can obtain session IDs using
display session.

kill request by user Terminate all current requests by the specified user on the Essbase Server.

kill request on
application

Terminate all current requests on the specified application.

kill request on
database

Terminate all current requests on the specified database.

stop mining session Terminate the current data-mining session. The session ID of the data-mining session can be
determined using display mining session.

672 MaxL

Keyword Description

sync security_backup Check whether the security backup file is the same as the security file, and if not, synchronize
the security backup file with the current state of Essbase security. The effect is to refresh the
backup file with any additions, changes, or deletions related to applications, databases, users,
groups, filters, permissions, subsitution variables, locked objects, and system settings.

If sync security_backup is not issued directly as described above, the security backup
file is checked/refreshed automatically at the same frequency with which session inactivity is
checked globally. The default inactivity check interval is five minutes. To change the interval,
use set session_idle_poll, or see the Oracle Essbase Administration Services Online
Help.

enable unicode Set the Essbase Server to allow the creation of Unicode-mode applications and the migration
of non-Unicode-mode applications to Unicode-mode applications.

disable unicode Prevent the Essbase Server from allowing the creation of Unicode-mode applications or the
migration of non-Unicode-mode applications to Unicode-mode applications.

compact security file Defragment the security file. Fragmentation can gradually develop when objects such as users,
groups, applications or databases are removed or changed. Please note that this operation slows
down agent activity until the operation is completed, which could take a few minutes.

rename global
registration name

Change the name of the global application and application project in Shared Services.

reconcile When Essbase is started using a security backup file (essbase_timestamp.bak) instead
of essbase.sec, reconcile the security file to match the state of Essbase on an external disk.
This grammar displays discrepancies in application and database information between the
security file and the external disk:

l If an application folder is on the disk but not in the security file, display a message indicating
the discrepancy. (Essbase checks for the presence of a appname/appname.app file in
the ARBORPATH/app directory.)

The force option does not apply in this scenario.

l If an application file is in the security file but not on the disk, display a message indicating
the discrepancy.

The force option removes the application from the security file.

l If an application database folder is on the disk but not in the security file, display a message
indicating the discrepancy. (Essbase checks for the presence of a dbname/
dbname.otl file in the ARBORPATH/app/appname directory.)

The force option does not apply in this scenario.

l If an application database file is in the security file but not on the disk, display a message
indicating the discrepancy.

The force option removes the database from the security file.

Notes

SESSION SPECIFICATION

A session is a single user connection to Essbase Server. The session can be identified by keywords
and names indicating context, or by a unique session ID number.

MaxL Statements 673

A request is a query sent to Essbase Server by a user or by another process; for example, starting
an application or restructuring a database outline. Only one request at a time can be processed
in each session.

If a session is processing a request at the time that an administrator attempts to terminate the
session, the administrator must either terminate the request first, or use the force kewyord
available with alter system to terminate the session and the current request.

PASSWORD ENFORCEMENT SPECIFICATION

Example

alter system unload application Sample;

Stops the Sample application, if it is currently running.

alter system logout session by user Fiona;

Disconnects Fiona from any applications or databases to which she is connected.

Note: To log out a user, log out the sessions owned by that user.

alter system set password_reset_days 10;

Specifies that all users will be prompted after 10 days to change their passwords. The day
count for any user is reset when the user changes the password or is edited or reactivated by
an administrator.

alter system set sss_mode enforce password “password”;

Migrates the Essbase Server to Shared Services security mode, specifying the initial password
for all users.

674 MaxL

Alter Tablespace
Change details about a tablespace. Tablespaces are applicable only to aggregate storage databases.
To see a list of tablespaces, use display tablespace. You cannot change the location or size of the
metadata and log tablespaces.

Permission required: Application Manager. This statement requires the application to be started.

Syntax

Use alter tablespace to edit tablespaces in the following ways:

Keyword Description

add
file_location

Add a new file location to the tablespace.

Note: FILE-NAME is case sensitive in this statement.

alter
file_location

Change the maximum file-size or disk-size value for the specified file location.

Note: FILE-NAME is case sensitive in this statement.

set
max_file_size

Specify a value for the maximum size that a data file may attain before Essbase creates a new file.

The largest possible value that the aggregate storage kernel can handle is 134217727 MB. This is also
the default value. If operating system limits take effect before this value is reached, the kernel creates
a new file. If you enter a value that is larger than 134217727 MB, the kernel ignores the setting and
caps file size at 134217727 MB.

The minimum value is 8MB (8388608b), and any values you enter are rounded up to the next 8MB
interval.

set
max_disk_size

Specify the value for the maximum amount of disk space to be allocated to the file location.

The largest possible value that the aggregate storage kernel can handle is 4294967295 MB. This is also
the default value. If operating system limits take effect before this value is reached, the kernel attempts
to use another file location in the tablespace. If you enter a value that is larger than 4294967295 MB,
the kernel ignores the setting and caps disk size at 4294967295 MB.

The minimum value is 8MB (8388608b), and any values you enter are rounded up to the next 8MB
interval.

drop
file_location

Delete the specified file location from the tablespace. When a file location is deleted, all files in the file
location are deleted, as well as the subdirectory containing the files. You cannot delete a file location
if it contains data. You cannot delete the tablespace itself.

Note: FILE-NAME is case sensitive in this statement.

MaxL Statements 675

Example

alter tablespace asosamp.'default' add file_location 'C:\\mytablespace' set
max_file_size 50mb;

Adds another file location for the default tablespace. Now the tablespace default is in
C:\mytablespace in addition to the original location, C:\Hyperion\products
\Essbase\EssbaseServer\app.

alter tablespace asosamp.'default' alter file_location 'C:\\Hyperion\\products\\Essbase\
\EssbaseServer\\' set max_file_size 50mb;

Changes the maximum file size allowed in the specified location of the default tablespace.
Note that the file_location string is case sensitive.

Alter Trigger
Enable or disable a trigger created to track state changes over a selected cube area.

For more information about the Essbase triggers feature, see the Oracle Essbase Database
Administrator's Guide.

Syntax

Use alter trigger to edit triggers in the following ways:

Keyword Description

enable Essbase monitors the trigger during data load, calculation or lock and send. Essbase performs the trigger
action when the specified condition is met on the specified cube area.

disable Essbase does not monitor the trigger.

on database
<DBS-
NAME>
disable

Essbase disables all triggers currently enabled in the database. A restart of the application or the database
following the disable restores the triggers to the same state as before the disable was issued (all the triggers
disabled using alter trigger on database DBS-NAME disable are re-enabled).

Example

alter trigger Sample.Basic.WatchCosts disable;

alter trigger on database sample.basic disable;

Alter User
Add or remove a user to or from a group. Rename a user. Change the comment that describes
a user. Enable or disable a user account. Change a user's password, or specify whether it should
expire. Control user application access to application domains.

Permission required: create_user.

676 MaxL

When Essbase runs in EPM System security mode, the Essbase create_user permission becomes
obsolete. You must be an Essbase administrator to manage users, and you must additionally be
a Shared Services administrator to manage users from Shared Services.

Syntax

Use alter user to change user information in the following ways:

Keyword Description

add [to group] Add the user to a group.

InEPM System security mode, this action automatically causes a user/group synchronization
between Essbase and Shared Services. It is advisable to use Shared Services to manage users
and groups instead.

add
application_access_type

Add an application access type. An application access type controls which domains a user
can access based on the named user license. To view a list of the user's allowed application
access types, use display user. MaxL can be used only to add or remove Essbase access.

MaxL Statements 677

Keyword Description

remove [from group] Remove the user from a group.

In EPM System security mode, this action automatically causes a user/group
synchronization between Essbase and Shared Services. It is advisable to use Shared Services
to manage users and groups instead.

Note: If you deprovision a group in Shared Services that was provisioned to Essbase, users
in the group remain in the Essbase security file after performing a single group
synchronization. To deprovision a group and its users, perform a full system refresh.

remove
application_access_type

Remove an application access type. MaxL can be used only to add or remove Essbase access.

rename to Rename the user.

enable Reactivate the user if the user's permission to log in has been terminated.

disable Disable the user's permission to log in to Essbase.

set password Change the user's password.

set password_reset_days
INTEGER days

Specify the number of days before a password expires. This setting has meaning only if the
system-level password_reset_days value (shown in the password_reset_days field of display
system) is not zero or "none". The value of this setting must be between 1 and 65535. The
latest effective date for user-level password expiration is Jan 19, 2038.

set password_reset_days
none

Remove any user-level password expiration setting created by alter user set
password_reset_days INTEGER, and revert the password reset days value back to the
system-level value (shown in the password_reset_days field of display system).

set password_reset_days
immediate

Force the user to change password at the next login.

set password_reset_days
exact

Undo the 'immediate' setting above. If the administrator chooses 'immediate' and then
attempts to revert to allowing a set number of days, the setting will not work, because
'immediate' takes precedence. Using 'exact' is the only way to reverse 'immediate.'

set type external Specify that this user must log in to Essbase using Shared Services. For the user to log in
successfully, the “AUTHENTICATIONMODULE” on page 395 parameter must be set to
CSS in the essbase.cfg file, and the user name must match a valid user name in the
external authentication repository.

678 MaxL

Keyword Description

set sss_mode Migrate the user to EPM System security mode. This action might be useful if the user
migration failed using alter system. Minimum permission required: Administrator.

Password Enforcement Grammar:

l enforce username_as_password—Create passwords that are the same as user names
for users being migrated to Shared Services.

Note: The passwords are created as lowercase, even if the user name contains
uppercase letters. For example, if a user name KSmith is migrated with this
option, the password will be ksmith.

l enforce auto_password—Automatically generate passwords for the users being
migrated to Shared Services. To see the generated passwords, use display user
all in shared_services_native with auto_password;

Optionally save the generated passwords to a nondefault file location. If specifying a
file name that exists, use the force keyword to overwrite the file.

If file name and location are not specified, passwords are saved by default to
$ARBORPATH\bin\MigratedUsersPassword.txt.

l enforce password <PASSWORD>—Generate the specified password for users being
migrated to Shared Services.

For more information, see the Oracle Essbase Database Administrator's Guide chapter titled
"User Management and Security."

comment Create a description of the user.

reset Remove obstructions to logging in for the specified user account.

l The user account is re-enabled if it was disabled.

l Any requirement to change password immediately is removed.

l If the password has expired, the expiration is cleared.

l The count of unsuccessful user logins is reset to 0.

revoke filter Remove a filter assignment to this user. Privilege required: Application manger.

Note: This statement does not remove filter assignments gained by membership to groups.
To remove filter assignments to groups, use Alter Group.

all set sss_mode Same as set sss_mode, but for all users.

MaxL Statements 679

Notes

PASSWORD ENFORCEMENT SPECIFICATION

Example

alter user Fiona add to group Newhires;

Assigns Fiona to a group called Newhires.

alter user Fiona enable;

Enables user Fiona to log in again.

alter user Fiona set password_reset_days immediate;

Requires Fiona to change password at the next login.

alter user 'Autumn Smith' set type external;

Specifies that Autumn Smith is externally authenticated in a supported authentication
repository (LDAP, Microsoft Active Directory, or Windows NT LAN Manager).

alter user ASmith rename to 'Autumn Smith';
alter user 'Autumn Smith' set type external;

Renames native Essbase user Asmith to Autumn Smith, because that is the name stored in
the authentication repository. Specifies that Autumn Smith is externally authenticated in a
supported authentication repository.

alter user Fiona remove application_access_type Essbase;

Removes Essbase application access from user Fiona. If user Fiona has permission to access
Oracle Hyperion Planning, Fusion Edition, that permission remains intact.

Create Application
Click here for aggregate storage version

Create or re-create an application, either from scratch or as a copy of another application on the
same system. APP-NAME must consist of 8 or fewer characters. Avoid spaces and special
characters when naming applications and databases. Application names are not case-sensitive.

Permission required: Essbase create_application role and Shared Services Project Manager role.

To copy an application, Manager permission on the source application is also required.

680 MaxL

Syntax

Use create application to create an application in the following ways:

Keyword Description

create application Create a new application. Application names are not case-sensitive.

create or replace
application

Create an application, or replace an existing application of the same name. Application
names are not case-sensitive.

...type nonunicode_mode Create a Non Unicode-mode application. This is also the default if these keywords are
omitted.

...type unicode_mode Create a Unicode-mode application.

create application as Create an application as a copy of another application. Application names are not case-
sensitive.

comment Create an application description (optional). The description can contain up to 80
characters.

Example

create application Sample comment 'This is a test application.';

Creates a new application called Sample with an associated comment.

create application Newsamp as Sample;

Creates an application called Newsamp which is a copy of the application Sample.

create or replace application Sample;

Creates an application called Sample. If an application named Sample already exists, it is
overwritten.

Create Calculation
Create, replace, or copy a stored calculation.

Permissions required: Database Manager to create database-level calculations. Application
Manager to create application-level calculations.

Syntax

MaxL Statements 681

Use create calculation to create a calculation in the following ways:

Keyword Description

create calculation Create a calculation script, the body of which is specified by “CALC-STRING” on page 776.

create or replace
calculation

Create a calculation script, the body of which is specified by “CALC-STRING” on page 776. If a
calculation script of that name alreay exists, it is replaced.

create calculation
as

Create a calculation as a copy of another stored calculation.

Notes

l When creating database-level calculations, this statement requires the database to be started.

l A stored calculation can be associated with an application/database, or with an application
only. To create an application-level calculation, use two tokens for CALC-NAME. To create
a database-level calculation, use three tokens. See “CALC-NAME” on page 774 for more
details.

l Calculations created using MaxL must be valid. For information about calculation syntax,
see the Oracle Essbase Database Administrator's Guide.

Example

create or replace calculation sample.basic.Accts
'SET UPDATECALC ON;
CALC DIM(Accounts);'
;

Creates a calculation named Accts that is associated with sample.basic.

create calculation sample.basic.Accts2 as app.db.Accts

Creates a calculation named Accts2 on sample.basic that is a copy of another database's
calculation named Accts.

Create Database
Click here for aggregate storage version

Create or re-create a regular or currency database. Optionally create the database as a copy of
another database on the same system. DBS-NAME must consist of 8 or fewer characters. Avoid
spaces and special characters when naming applications and databases.

Permission required: Application Manager. To copy a database, Manager permission on the
source database is additionally required.

Syntax

682 MaxL

Use create database to create a database in the following ways:

Keyword Description

create database Create a new database. Database names are not case-sensitive.

create or replace database Create a database, or replace an existing database of the same name. Database names are
not case-sensitive.

create database using
non_unique_members

Create a database that supports the use of duplicate member names. Once you have created
a database with a duplicate member outline, you cannot convert it back to a unique member
outline.

For more information about duplicate member names, see the Oracle Essbase Database
Administrator's Guide chapter titled "Creating and Working With Duplicate Member
Outlines."

create database as Create a database as a copy of another database. Database names are not case-sensitive.

create currency database Create or replace a database for currency conversion. Linking a currency database to a main
database enables you to convert currency values in a database from one currency into
another currency.

comment Create a database description (optional). The description can contain up to 80 characters.

Example

create or replace database Sample.Basic comment 'This is a test.';

Creates a database called Basic within the Sample application. If a database named Basic
within the Sample application already exists, it is overwritten.

create database Sample.New as Sample.Basic;

Creates a database called New within the Sample application that is a copy of the database
Basic within the Sample application.

create currency database Sample.Interntl;

Creates a currency database called Interntl within the Sample application.

Create Drillthrough
Create a drill-through URL within the active database outline.

For each drillable region of an Essbase database, you can enable drill-through access by means
of a URL to Web content hosted on Oracle ERP and EPM applications.

Syntax

Use create drillthrough to create a drill-through URL definition in the following ways:

MaxL Statements 683

Keyword Description

create
drillthrough

Create a drill-through URL as metadata.

The number of drill-through URLs per database is limited to 255.

from xml_file Indicate the path to the local URL XML file that defines the link information.

The URL XML is created by the ERP or EPM application that deployed the Essbase database. The
XML contains the drill-through URL display name and a URL enabling the hyperlink from a cell to
a Web interface to occur.

The following is a sample URL XML file:

<?xml version="1.0" encoding="UTF-8"?>
<foldercontents path="/">
 <resource name="Assets Drill through GL" description=""
type="application/x-hyperion-applicationbuilder-report">
 <name xml:lang="fr">Rapport de ventes</name>
 <name xml:lang="es">Informe de ventas</name>
 <action name="Display HTML" description="Launch HTML display of
Content" shortdesc="HTML">
 <url>/fusionapp/Assetsdrill.jsp?SSO_TOKEN&$CONTEXT$&
$ATTR(ds,pos,gen,level.edge)$
 </url>
 </action>
 </resource>
</foldercontents>

on {<member-
expression>,...}

Define the list of drillable regions, using the same Essbase member-set calculation language that is
used to define security filters. The list of drillable regions must be enclosed in {brackets}.

The number of drillable regions in a drill-through URL is limited to 256. The number of characters
per drillable region is limited to 65536.

level0 only Optional: Restrict the URL definition to level-0 data.

Example

create drillthrough sample.basic.myURL from xml_file "C:/drillthrough/data/myfile1.xml"
on {'@Ichildren(“Qtr1”)', '@Ichildren(“Qtr2”)'} level0 only;

See Also

l alter drillthrough
l display drillthrough
l drop drillthrough

Create Filter
Create or re-create a database security filter, either from scratch or as a copy of another filter on
the same system. Filters control security for database objects. Use grant to assign filters to users
and groups.

Minimum permission required: Database Manager.

684 MaxL

Syntax

Use create filter to create a filter in the following ways:

Keyword Description

create filter Create a security filter to restrict or permit access to specified database cells.

create or replace
filter

Create a security filter or replace an existing security filter of the same name.

create filter ...
no_access on
<member-
expression>

Create a filter blocking access to a specified member combination.

create filter ... read
on <member-
expression>

Create a filter providing read-only access to a specified member combination.

create filter ... write
on <member-
expression>

Create a filter providing write access to a specified member combination.

create filter ...
meta_read on
<member-
expression>

Create a filter restricting access to siblings and ancestors of the member expression. In case of a
filtering conflict, the MetaRead filtering overrides the other filter permissions. For more
information about metatdata filtering, see “Metadata Filtering” on page 926.

create or replace
filter ...
definition_only;

Updates the filter definition while retaining user associations with the filter. If you replace a filter
without using definition_only, then the filter must be re-granted to any users to whom it
was assigned.

Notes

l Filters created using MaxL must be valid. For information about filter syntax, see the Oracle
Essbase Database Administrator's Guide.

l MEMBER-EXPRESSION must be enclosed in single quotation marks. It can be a comma-
separated list.

Example

create filter sample.basic.filt1 read on 'Jan, sales', no_access on '@CHILDREN(Qtr2)';

MaxL Statements 685

Creates a filter to restrict privileges to Sample Basic as follows: gives read-only access to the
intersection of Jan and sales (sales data for January only); blocks access to children of Qtr2
(April, May, and June).

create or replace filter sample.basic.filt1 read on 'Sales, @ATTRIBUTE(Bottle)';

Creates a filter (or changes an existing filter) to restrict privileges to Sample Basic as follows:
gives read-only access to sales data for products packaged in a bottle (product base dimension
members associated with the Bottle attribute member).

Create Function
Create or re-create your own registered Essbase calculation function, using a Java method.

Minimum permission required: Application Manager to create a local (application-level)
function. Administrator to create a global (system-level) function.

Process to follow:

1. Develop the functions in Java classes.

2. Use create function to register them in the Essbase calculator framework.

3. You can now use the functions in the same way that you use the standard Essbase calculation
functions.

Syntax

Use create function to create a function in the following ways:

Keyword Description

create
function as

Register with Essbase a custom-defined function developed in Java, either as a global function usable by
the entire Essbase Server, or as a local function available to an application. To register a global (server-wide)
function, use one token for “FUNC-NAME” on page 786. To register a local (application-wide) function,
use two tokens for “FUNC-NAME” on page 786.

create or
replace
function as

Register with Essbase a global or local custom-defined function. If a function with that name already exists
in the custom-defined function and macro catalog, it is replaced.

spec Enter, for the custom-defined function, an optional Essbase calculator-syntax specification string, such as
in the following example: @COVARIANCE (expList1, expList2). Use a specification string if
you wish the function to be returned by the output string of the EssListCalcFunctions API function.

Note: If you do not specify a calculation specification string, you cannot specify a comment either.

686 MaxL

Keyword Description

with
property
runtime

Designate the custom-defined function as a runtime function. Normally, Essbase pre-executes functions
whose arguments are available at compilation time. The Runtime property prevents that optimization,
executing functions that have constant values as operands (or no operands at all) for every block in the
function range. If the built-in @CALCMODE(CELL) function is used, a custom-defined function declared
as Runtime can execute on every cell in the range.

Note: No built-in Essbase calculator functions have the Runtime property.

The Runtime property should be applied only in special circumstances, as it can seriously affect
performance. The runtime property might be desirable for any custom-defined function whose return
value depends on something besides its arguments; for example, the current date, or values in a rapidly
changing relational table. If you created a runtime function @RANDOM() that returns a new random
number each time it executes, then a member formula such as "Mem1 = @RANDOM();" would return
different values for each block. At compilation time, the Runtime property prevents the pre-execution of
functions that are applied to constants.

comment Create a description of the function (optional). You cannot create a comment without also using spec to
create a calculator-syntax specification string. The optional calculator-syntax specification string and the
comment are used as the output string of the EssListCalcFunctions API function.

Notes

l To create a global or system-level function, use a single name for FUNC-NAME. For
example, '@COVARIANCE'.

l To create a local or application-level function, use MaxL's double naming convention for
FUNC-NAME. For example, Sample.'@COVARIANCE'. The second token must be
enclosed in single quotation marks because it contains a special character.

Example

CREATE FUNCTION '@COVARIANCE'
AS 'com.hyperion.essbase.calculator.Statistics.covariance'
SPEC '@COVARIANCE (expList1, expList2)'
COMMENT 'computes covariance of two sequences given as expression lists';

Create Group
Create or re-create a group, either from scratch or as a copy of another group.

An Essbase group can be created in two ways:

1. From Essbase using MaxL or Administration Services. To do this, you must be an Essbase
administrator. If Essbase is running in Shared Services mode, you must additionally have
the Shared Services Directory Manager role.

2. From Shared Services. To do this, you must be a Shared Services administrator.

MaxL Statements 687

Syntax

Use create group to create a group in the following ways:

Keyword Description

create group Create a security group to assign users to, so that they can share identical minimum permissions
assigned at the group level.

create or replace
group

Create a security group. If a group of that name already exists, it is replaced.

create group as Create a group as a copy of an existing group.

comment Create a description of the security group.

type external For use only in EPM System security mode. Create and provision in Essbase a group that already
exists in Shared Services.

Example

create group Level_1 as Newhires comment 'Copy of Newhires';

Creates a group called Level_1 that is a copy of the existing group Newhires.

Create Location Alias
Create on the database a location alias identifying a host name, database, user name, and
password. Location aliases provide a shorthand way of referencing login information for other
Essbase databases.

Minimum permission required: Database Manager.

Syntax

Use create location alias to create a location alias in the following ways:

Keyword Description

create location
alias

Create a location alias, identifying a remote host name, database, user name, and password. The
location alias can be used by the @XREF function as an abbreviated login to a remote database.

create or replace
location alias

Create a location alias, replacing any existing location alias of the same name on the same database.

688 MaxL

Keyword Description

...from <dbs-
name>

Specify the name of the current database (the database on which the location alias is being created).

...to <dbs-name> Specify the name of the remote database to log in to.

...at <host-name> Specify the remote host name on which the remote database resides.

...as <user-name>
identified by
<password>

Specify a user name and password with which to log in to the remote database.

Notes

l This statement requires the database to be started.

l Location aliases created using MaxL must be valid. For information about location aliases,
see the Oracle Essbase Database Administrator's Guide.

l Location aliases are used by the @XREF function for cross-database calculations.

Example

create location alias EasternDB from Sample.Basic to East.Sales at Easthost as Fiona
identified by sunflower;

Creates a location alias called EasternDB on Sample.Basic that represents the following login
information:

l server = Easthost

l application = East

l database = Sales

l user name = Fiona

l password = sunflower

Create Macro
Create or re-create your own Essbase calculation macro as your chosen combination of existing
calculation functions or macros. This statement registers the new macro with the Essbase
custom-defined function and macro catalog.

Minimum permission required: Application Manager to create a local (application-level) macro.
Administrator to create a global (system-level) macro.

MaxL Statements 689

Syntax

Use create macro to create a macro in the following ways:

Keyword Description

create
macro as

Create and register with Essbase a custom-defined macro as your chosen combination of existing
calculation functions or macros. Register the macro either as a global macro usable by the entire Essbase
Server, or as a local macro available to an application. To register a global (server-wide) macro, use one
token for “MACRO-NAME” on page 793. To register a local (application-wide) function, use two tokens
for “MACRO-NAME” on page 793.

create
macro...
<macro-
signature>

Enter for the macro an optional signature defining the syntax rules for macro arguments. A macro
signature describes the style in which arguments (or input parameters) to the macro may be passed. One
example of a macro signature is (SINGLE, SINGLE, GROUP), meaning that the macro must be passed
two comma-separated arguments followed by a list of arguments. For more information, see “Custom-
Defined Macro Input Parameters” on page 292.

create or
replace
macro

Register with Essbase a global or local custom-defined macro. If a macro with that name already exists in
the custom-defined function and macro catalog, it is replaced.

spec Enter for the macro an optional calculator-syntax specification string, as in the following example:
@MYMACRO (mbrName, rangeList). Use a specification string if you wish the macro to be
returned by the output string of the EssListCalcFunctions API function.

Note: If you do not specify a calculation specification string, you cannot specify a comment either.

comment Create a description of the macro (optional). You cannot create a comment without also using spec to
create a calculator-syntax specification string. The optional calculator-syntax specification string and the
comment are used as the output string of the EssListCalcFunctions API function.

Notes

l To create a global (system-level) macro, use a single name for MACRO-NAME. For example,
'@COVARIANCE'.

l To create a local (application-level) macro, use MaxL's double naming convention for
MACRO-NAME. For example, Sample.'@COVARIANCE'.

690 MaxL

Example

create macro Sample.'@COVARIANCE'(single, single) as '@COUNT(SKIPMISSING,@RANGE(@@S))'
spec '@COVARIANCE (expList1, expList2)' comment 'Computes covariance of two sequences
given as expression lists';

Create Partition
Create or validate a partition definition between two databases. Permission required: Database
Manager at both sites.

Select the type of partition to create:

l transparent

l replicated

l linked

Partitions created using MaxL must be valid. To validate a partition, use the validate only clause.
For information about partition definitions, see the Oracle Essbase Database Administrator's
Guide.

Create Linked Partition
Create or validate a linked partition definition between two databases. A linked partition enables
users to navigate from one data value in one database, to a subset of another database. The two
databases may contain very different outlines.

For example, if a Spreadsheet Add-in in user clicks a database cell that contains a link to another
database, a new sheet opens displaying the dimensions in the second database. The user can then
drill down into the linked database's dimensions.

MaxL Statements 691

Syntax

Use create linked partition to create a partition in the following ways:

Keyword Description

create linked
partition

Create a linked partition. A linked partition connects two different databases with a data cell.
The databases can contain largely different dimensions, and still be connected by a small, mapped
data region.

With linked partitions, the spreadsheet that a user first views is connected to the target, and the
spreadsheet that opens when the user drills across is connected to the source.

create or
replace ...partition

Create a partition definition, or replace an existing partition definition.

area... Define the partition areas to share with the other database. Optionally nickname the area using
an area-alias.

to <dbs-name> Create a partition definition between the current database source and the second database (the
target).

from <dbs-name> Create a partition definition between the current database target and the second database (the
source).

at <host-name> Specify the remote computer name, if you are creating a partition definition between the current
database and one residing on a remote Essbase Server host.

692 MaxL

Keyword Description

as <user-name>
identified by
<password>

Provide the name and password of a default partition user who can connect to both databases.
Essbase uses the login information to synchronize database outlines.

using <user-name>
identified by
<password> for
creation

Create the partition using a different user than the one being set as the default partition user.
This can be useful when you want to specify a read-only user account as the default partition
user.

mapped... Define the member-name mapping for shared sections of both databases, if member names for
sections that map are different in the two databases.

outline... Specify the direction in which outline synchronization should proceed, if necessary. The default
direction is the same as the data-refresh direction.

default login as Specify a default user name and password with which to provide generic access to the linked-
partition data source. When accessing a linked partition, Essbase attempts to use the end user's
login information to connect to the source database. If the user does not have access to the source
database, Essbase looks for the linked-partition default user name and password.

comment Create a comment to describe the source half of the partition definition.

remote comment Create a comment to describe the target half of the partition definition.

validate only Validate the existing partition definition described by this statement, without actually creating
it.

Notes

l Multiple area specifications are allowed, provided they are separated by whitespace. Multiple
mappings are allowed, provided they are separated by whitespace. All area aliases used in a
mapping should be associated with the target, and the direction of the mapped clause should
go from source to target.

l The first DBS-NAME is the local database, and the second DBS-NAME is the remote
database.

l Creating a partition to the remote site means the current database is the source. Creating a
partition from the remote site means the current database is the target.

l If you are creating a partition and specifying a host name that includes a port number, see
“Specifying Port Numbers in Partition Host Names” on page 923 for more information.

l If you are using host name aliases, see “Using Host Name Aliases When Partitioning” on
page 924.

l Aggregate storage databases can be the source, the target, or the source and target of a linked
partition. Outline synchronization (refresh outline statement) is not currently enabled for
partitions that involve aggregate storage databases.

l To create a partition as an externally authenticated user, when using MaxL Script Editor,
you must enter a login statement before the create partition statement. The login statement
must include the full external user name with provider, as well as the host name.

For example,

MaxL Statements 693

login 'admin@Native Directory' 'password' on 'FQN';
create partition....;

Example

create or replace linked partition sampeast.east
 area '@DESCENDANTS("Eastern Region"), @DESCENDANTS(Qtr1)'
to samppart.company at localhost
as partitionuser identified by 'password'
 area '@DESCENDANTS(East) @DESCENDANTS(Qtr1)'
 area '"Region 9020" "FLD Other"'
default login as appdesigner identified by 'password';

Create Replicated Partition
Create or validate a replicated partition definition between two databases. A replicated partition
copies a portion of the source (or master) database to be stored in a target database. Users can
access the target database as if it were the source. The administrator must periodically refresh
the target data from the source data.

Syntax

Use create replicated partition to create a partition in the following ways:

694 MaxL

Keyword Description

create replicated
partition

Create a replicated partition. A replicated partition is a copy of a portion of the data source that
is stored in the data target.

create or
replace ...partition

Create a partition definition, or replace an existing partition definition.

area... Define the partition areas to share with the other database. Optionally nickname the area using
an area-alias .

to <dbs-name> Create a partition definition between the current database source and the second database (the
target).

from <dbs-name> Create a partition definition between the current database target and the second database (the
source).

at <host-name> Specify the remote computer name, if you are creating a partition definition between the current
database and one residing on a remote Essbase Server host.

as <user-name>
identified by
<password>

Provide the name and password of a default partition user who can connect to both databases.
Essbase uses the login information to:

l Transfer data between the source and the target for replicated and transparent partitions.
Database security filters can be applied to prevent end users from seeing privileged data.

l Synchronize database outlines for all partition types.

using <user-name>
identified by
<password> for
creation

Create the partition using a different user than the one being set as the default partition user.
This can be useful when you want to specify a read-only user account as the default partition
user.

mapped... Define the member-name mapping for shared sections of both databases, if member names for
sections that map are different in the two databases.

outline... Specify the direction in which outline synchronization should proceed, if necessary. The default
direction is the same as the data-refresh direction.

update... Allow or disallow the updating of data in a replicated-type partition target. If you do not specify
update allow, by default, the replicated partition cannot be updated.

comment Create a comment to describe the source half of the partition definition.

remote comment Create a comment to describe the target half of the partition definition.

validate only Validate the existing partition definition described by this statement, without actually creating
it.

Notes

l Multiple area specifications are allowed, provided they are separated by whitespace. Multiple
mappings are allowed, provided they are separated by whitespace. All area aliases used in a
mapping should be associated with the target, and the direction of the mapped clause should
go from source to target.

l The first DBS-NAME is the local database, and the second DBS-NAME is the remote
database.

MaxL Statements 695

l Creating a partition tothe remote site means the current database is the source. Creating a
partition fromthe remote site means the current database is the target.

l If you are creating a partition and specifying a host name that includes a port number, see
“Specifying Port Numbers in Partition Host Names” on page 923 for more information.

l If you are using host name aliases, see “Using Host Name Aliases When Partitioning” on
page 924.

l Aggregate storage databases can be the target, but not the source, of a replicated partition.

l To create a partition as an externally authenticated user, when using MaxL Script Editor,
you must enter a login statement before the create partition statement. The login statement
must include the full external user name with provider, as well as the host name.

For example,

login 'admin@Native Directory' 'password' on 'FQN';
create partition....;

Example

create or replace replicated partition source.source
area 'DimensionA' sourceAreaA
area 'DimensionB' sourceAreaB
to target.target at localhost
as admin identified by 'password'
area 'ParentMemberA' targetAreaA
area 'ParentMemberB' targetAreaB
mapped targetAreaA (ChildA) to (Child_a)
mapped targetAreaB (ChildB) to (Child_b)
;

Creates a partition from database Source to database Target where the partitioned areas
between them are DimensionA and DimensionB on the source, corresponding to
ParentMemberA and ParentMemberB (respectively) on the target. Differences in member
names between the two partitioned areas are resolved during the partition creation, using
the mapped clauses. Area aliases are used after each area specification, so that members can
be mapped specifically for each area.

create or replace replicated partition sampeast.east
area '@IDESCENDANTS("Eastern Region"), @IDESCENDANTS(Qtr1)'
to samppart.company at localhost
as partitionuser identified by 'password'
area '@IDESCENDANTS(East) @IDESCENDANTS(Qtr1)'
update disallow;

Creates a replicated partition from an area in the source database, sampeast.east, to an area
in the target database, samppart.company.

create or replace replicated partition sampeast.east
area '@IDESCENDANTS("Eastern Region"), @IDESCENDANTS(Qtr1)'
to samppart.company at localhost
as admin identified by 'password'
area '@IDESCENDANTS(East) @IDESCENDANTS(Qtr1)' foo
mapped foo (Year) to (Yr)
update allow validate only;

696 MaxL

Validates the syntax of a replicated partition you might want to create. To create the partition
after checking validity, simply remove the validate only phrase. For an explanation of foo as
used above, see the definition for “AREA-ALIAS” on page 773 .

Create Transparent Partition
Create or validate a transparent partition definition between two databases. A transparent
partition allows users to manipulate data that is stored in a target database as if it were part of
the source database. The remote data is retrieved from the data source each time that users at
the data target request it.

Syntax

Use create transparent partition to create a partition in the following ways:

Keyword Description

create transparent
partition

Create a transparent partition. A transparent partition enables users to access data from the data
source as though it were stored in the data target. The data is, however, stored at the data source,
which can be in another application, in another database, or on another Essbase Server.

create or
replace ...partition

Create a partition definition, or replace an existing partition definition.

area... Define the partition areas to share with the other database. Optionally nickname the area using
an area-alias.

MaxL Statements 697

Keyword Description

to <dbs-name> Create a partition definition between the current database source and the second database (the
target).

from <dbs-name> Create a partition definition between the current database target and the second database (the
source).

at <host-name> Specify the remote computer name, if you are creating a partition definition between the current
database and one residing on a remote Essbase Server host.

as <user-name>
identified by
<password>

Provide the name and password of a default partition user who can connect to both databases.
Essbase uses the login information to:

l Transfer data between the source and the target for replicated and transparent partitions.
Database security filters can be applied to prevent end users from seeing privileged data.

l Synchronize database outlines for all partition types.

using <user-name>
identified by
<password> for
creation

Create the partition using a different user than the one being set as the default partition user.
This can be useful when you want to specify a read-only user account as the default partition
user.

mapped... Define the member-name mapping for shared sections of both databases, if member names for
sections that map are different in the two databases.

outline... Specify the direction in which outline synchronization should proceed, if necessary. The default
direction is the same as the data-refresh direction.

comment Create a comment to describe the source half of the partition definition.

remote comment Create a comment to describe the target half of the partition definition.

validate only Validate the existing partition definition described by this statement, without actually creating
it.

Notes

l Multiple area specifications are allowed, provided they are separated by whitespace. Multiple
mappings are allowed, provided they are separated by whitespace. All area aliases used in a
mapping should be associated with the target, and the direction of the mapped clause should
go from source to target.

l The first DBS-NAME is the local database, and the second DBS-NAME is the remote
database.

l Creating a partition to the remote site means the current database is the source. Creating a
partition from the remote site means the current database is the target.

l If you are creating a partition and specifying a host name that includes a port number, see
“Specifying Port Numbers in Partition Host Names” on page 923 for more information.

l If you are using host name aliases, see “Using Host Name Aliases When Partitioning” on
page 924.

l Aggregate storage databases can be the source, the target, or the source and target of a
transparent partition. Outline synchronization (refresh outline statement) is not currently
enabled for partitions that involve aggregate storage databases.

698 MaxL

l To create a partition as an externally authenticated user, when using MaxL Script Editor,
you must enter a login statement before the create partition statement. The login statement
must include the full external user name with provider, as well as the host name.

For example,

login 'admin@Native Directory' 'password' on 'FQN';
create partition....;

Example

create or replace transparent partition sampeast.east
 area '@CHILDREN("Eastern Region"), @CHILDREN(Qtr1)' sourceArea
to samppart.company at localhost
as partitionuser identified by 'password'
 area '@CHILDREN(East) @CHILDREN(Qtr1)' targetArea;

Creates a transparent partition between the source, sampeast.east, and the target,
samppart.company. The partition is defined only for the areas specified by the area aliases
sourceArea and targetArea.

create or replace transparent partition source.source
 area 'DimensionA' sourceAreaA
 area 'DimensionB' sourceAreaB
to target.target at localhost
as admin identified by 'password'
 area 'ParentMemberA' targetAreaA
 area 'ParentMemberB' targetAreaB
 mapped targetAreaA (ChildA) to (Child_a)
 mapped targetAreaB (ChildB) to (Child_b)
 ;

Creates a partition from database Source to database Target where the partitioned areas
between them are DimensionA and DimensionB on the source, corresponding to
ParentMemberA and ParentMemberB (respectively) on the target. Differences in member
names between the two partitioned areas are resolved during the partition creation, using
the mapped clauses. Area aliases are used after each area specification, so that members can
be mapped specifically for each area.

Create Trigger
Create or replace a trigger to track state changes over a selected cube area.

Select the type of trigger to create:

l on-update

l after-update

Create After-Update Trigger
Create or replace a trigger to track state changes over a selected cube area.

MaxL Statements 699

Triggers help you track whether designated constraints are violated during updates (events) in
the area, and allow you to specify resultant actions to execute if violations are detected. Minimum
permission required: Database Manager.

Create an after-update trigger if you want the trigger to be activated after the entire data update
operation is completed. This is the only type of trigger supported in aggregate storage mode.
When after-update triggers are used, the trigger fires when an update operation on level-0 data
cells is complete, and the update operation as a whole has met any condition specified for the
cube area.

For more information about the Essbase triggers feature, see the Oracle Essbase Database
Administrator's Guide.

Note: You cannot create or replace a trigger during a calculation, or a data load (including a
lock and send).

Syntax

Use create after update trigger to create a trigger in the following ways:

Keyword Description

create after update
trigger

Create a new after-update trigger.

create or replace
after update trigger

Create an after-update trigger, or replace an existing trigger of the same name.

where <cube area> Define the area of the database to be tracked. Use a valid, symmetric MDX slicer specification.

when <condition> Define the condition to be tested for using the keyword WHEN followed by a valid MDX
conditional expression.

then <action> Define the action to be taken if the WHEN condition is met. See examples in “Examples of Triggers”
on page 927.

end The END keyword must terminate every create trigger statement.

Example

create or replace after update trigger Sample.Basic.EastColas
where (Jan, Sales, Actual, [100], East)
when Jan > 20 then spool EastColas_Fail end;

Logs a message in the $ARBORPATH\app\Sample\Basic\trig\EastColas_Fail file.

700 MaxL

Create On-Update Trigger
Create or replace an on-update trigger to track state changes over a selected cube area.

Triggers help you track whether designated constraints are violated during updates (events) in
the area, and allow you to specify resultant actions to execute if violations are detected. Minimum
permission required: Database Manager.

An on-update trigger is the default type of trigger, even if no type is specified. During a data
update process, any cell update that meets a condition specified for the cube area will immediately
activate the trigger. On-update triggers are not supported in aggregate storage databases. If you
are using an aggregate storage database, you can create after-update triggers.

For more information about the Essbase triggers feature, see the Oracle Essbase Database
Administrator's Guide.

Note: You cannot create or replace a trigger during a calculation, or a data load (including a
lock and send).

Syntax

Use create on update trigger to create a trigger in the following ways:

Keyword Description

create [on update]
trigger

Create a new on-update trigger. The on update keywords are optional; an on-update trigger is
created by default.

create or replace
[on update]
trigger

Create an on-update trigger, or replace an existing trigger of the same name.

log_value OFF Optional. Log no data values to the trigger spool file. This is the default.

log_value ON Optional. Log new and old data values to the trigger spool file.

where <cube
area>

Define the area of the database to be tracked. Use a valid, symmetric MDX slicer specification.

when
<condition>

Define the condition to be tested for using the keyword WHEN followed by a valid MDX conditional
expression.

then <action> Define the action to be taken if the WHEN condition is met. See examples in “Examples of Triggers”
on page 927.

MaxL Statements 701

Keyword Description

else <action> Optional. Define an action to be taken if the WHEN condition is not met. See examples in “Examples
of Triggers” on page 927.

end The END keyword must terminate every create trigger statement.

Example

create or replace on update trigger Sample.Basic.EastColas
where (Jan, Sales, Actual, [100], East)
when Jan > 20 then spool EastColas_Fail end;

Logs a message in the $ARBORPATH\app\Sample\Basic\trig\EastColas_Fail file.

Create User
Create or re-create a user, either from scratch or as a copy of another user. Users can be created
to log in using Essbase security. Optionally, create the Essbase-authenticated user as a member
of a group.

Permission required: create_user, unless Essbase is in Shared Services mode.

In Shared Services mode, an Essbase user can be created in two ways:

1. From Essbase using MaxL or Administration Services. To do this, you must be an Essbase
administrator. You must additionally have the Shared Services Directory Manager role.

2. From Shared Services. To do this, you must be a Shared Services administrator.

Syntax

Use create user to create a user in the following ways:

702 MaxL

Keyword Description

create user Create a new Essbase user.

create or replace
user

Create a new Essbase user. If a user of that name already exists, it is replaced.

create user as Create a user as a copy of an existing user. The new user has an identical security profile to the
user that was copied.

member of group Create a user and assign membership to a security group.

preserve_groups When replacing a user, preserve the original user's group associations.

comment Create an optional comment to describe the user.

type external Create a user that must log in using the Shared Services security platform. In order for the user
to be able to log in successfully, the “AUTHENTICATIONMODULE” on page 395 parameter
must be set to CSS in the essbase.cfg file, and the name must match a valid user name in
the external authentication repository.

Example

create user Fiona identified by sunflower;

Creates a user called Fiona with the password sunflower.

create user Guest identified by 'password' member of group Visitors;

Creates a user called Guest with the password password, and adds Guest to the group called
Visitors. Quotation marks are required because password is a MaxL keyword.

create or replace user Guest identified by 'password' as RecycleMe;

Creates a user called Guest as a copy of an existing user called RecycleMe. If Guest already
exists, it is overwritten.

create or replace user 'Autumn Smith' type external;

Creates a user called Autumn Smith who is externally authenticated in a corporate
authentication repository supported by the Shared Services security platform.

Deploy
Deploy a cube to the Essbase Server.

This MaxL Shell statement replicates the behavior of the Essbase Studio Cube Deployment
Wizard.

For detailed information about cube deployment using Essbase Studio, see the Oracle Essbase
Studio User's Guide.

MaxL Statements 703

Syntax

704 MaxL

Use deploy to deploy a cube in the following ways:

Keyword Description

Deploy [all] from
model …

Load dimensions and members to an Essbase outline, and then populate the Essbase database
with data.

Deploy outline from
model …

Load only dimensions and members (without data) to an Essbase outline.

Deploy data from
model …

Populate Essbase database outline with data. Loading data establishes actual values for the cells
defined by the structural outline of the database.

…in cube schema Deploy the model from a cube schema in Essbase Studio.

…delete_members… Remove all dimensions and members in an existing Essbase outline.

When you delete members, Essbase Studio removes all members from the existing Essbase
database outline and then uses the dimensions and members in the Essbase model to recreate
the outline.

Deploy operations can take longer when the delete_members keywords are used. Oracle
recommends using this option only if you have a specific reason to do so. Use the
delete_members keywords if, for example, you know that some members have been removed
from the underlying hierarchies used to create an existing Essbase model.

…delete database… Delete all members and data in the Essbase database before performing a member load, or a
member and data load.

This action clears the Essbase database outline before the outline build occurs, significantly
reducing the amount of time required for the load. Do not use the delete database keywords if
you are using the deploy data from model keywords.

…incremental_load
…

Update specific dimensions or members in the Essbase outline. You can perform incremental
loads when loading members only, or when loading members and data. This keyword does not
apply when only loading data.

…rule_file_only … Specify the changes Essbase should make to data and members from a data source while loading
them into the Essbase database. The data source is not changed.

Rules files are saved to the app directory of your Essbase installation.

to application…
database

The application and database name of the cube to deploy.

...incremental_load
[update all]

Update all hierarchies in the model. Any new members are added.

When this phrase is used, all hierarchies are automatically selected for update.

…incremental_load
modify using update
for …

Update specified hierarchies. Any new members are added to the specified hierarchies; existing
members are retained and updated.

Use this option to add new members without changing the hierarchy's structure, or to add
shared members. During incremental update, an existing hierarchy is updated without
removing the existing members.

…incremental_load
modify using rebuild
for …

Rebuild specified hierarchies. Clears all the members of the specified hierarchies and adds back
all members, including shared members. If necessary, restructures the hierarchy.

This phrase is particularly useful if you have removed members from a hierarchy. Then the
members that still exist, plus any new ones, are added back into the hierarchy and, if necessary,
the hierarchy is restructured.

MaxL Statements 705

Keyword Description

…
incremental_load…
preserve…all

Restructure the database during member load and preserve all existing data that applies to the
changed outline when restructuring occurs.

…
incremental_load…
preserve…input

Restructure the database during member build and preserve only those blocks containing data
that is loaded. Many applications contain data that is entered at parent levels. Using the preserve
input keywords prevents deletion of any blocks that are created by data load, whether they are
non-level zero or level zero (leaf node) blocks.

…
incremental_load…
preserve…level0

Restructure the database during member build and preserve data only for level zero members.
This is the optimal restructure option if you change the source database and need to recalculate
the data, and if all data required for the calculation is in level zero members.

Using this keyword deletes all upper-level blocks before restructuring. This reduces the disk
space required for restructuring and improves calculation time when the database is
recalculated. The upper-level blocks are recreated when you calculate the database.

…
incremental_load…
preserve…no

Clear all data from the database.

…
incremental_load…
add

Add the values in the data source to the existing values in the cube.

…
incremental_load…
subtract

Subtract the values in the data source from the existing values in the cube.

…
incremental_load…
overwrite values

Replace the values in the cube with the values in the data source.

odbc_dsn Provide a ODBC DSN name. If you choose to deploy using an ODBN DSN name in order to
take advantage of your own custom ODBC DSN parameter settings, follow these guidelines:

l Set up your ODBC DSN before beginning deployment, on the server machine where
Essbase is installed.

l The ODBC DSN must have the same user name and password as the data source connection
being used in this deployment.

To use an Oracle OCI connect identifier, use the following syntax after odbc_dsn keyword:

OCIhost:port/SID

Following is an example OCI connect identifier where the host server name is “myserver,” the
port number is 1521, and the Oracle SID (Service Identifier) is “orcl”:

OCImyserver:1521/orcl

STUDIO-LOGIN-
SPEC

Provide the name and password of the Essbase Studio user.

ESS-LOGIN-SPEC Provide the name and password of an Essbase user who can create databases, and the name of
the Essbase Server machine to which you want to deploy.

…using connection … Provide the name of a valid Essbase connection created in Essbase Studio.

706 MaxL

Keyword Description

...keep all | INTEGER
errors...

Keep all rejected records in the error file, or keep a specified number rejected records.

...on error ignore|
abort dataload ...

Choose either to ignore any errors during the data load process, or cancel the data load if there
is an error.

...on error append |
write

If there is a deployment error, either add errors to an existing error file, or create a new one.

...FILE-NAME | to
default...

Specify an error file-name and path, or accept the default error file location at

HYPERION_HOME/EssbaseStudio/server/essjapihome/data

and the default file name of the following format:
app_name.db_name_timestamp.err

Example

deploy all from model 'cs1Model' in cube schema '\CubeSchemas\cs1' login $1 identified
by $2 on host 'poplar-pc1' to application 'cs2' database 'cs2' add values using
connection 'Connection1' keep 200 errors on error ignore dataload write to default;

deploy outline from model 'MaxLModel3' with option incremental_load modify using rebuild
for 'Time' preserve all data login 'admin' identified by 'password' on host 'localhost'
to application 'mxldemo2' database 'maxldemo' using connection 'Connection1';

Display Application
View information about current application-wide settings.

Syntax

Use display application to display application information in the following ways:

Keyword Description

all Display all applications on the system.

<app-name> Display the named application.

Output Columns

Column Description

application String. Name of the application.

comment String. Optional description of the application.

MaxL Statements 707

Column Description

startup TRUE or FALSE. Whether all users who have at least read permission can start the application.

autostartup TRUE or FALSE. Whether the application starts when Essbase Server starts.

minimum permission String. Minimum level of permission all users can have to databases in the application.

connects TRUE or FALSE. Whether any user with a permission lower than Application Manager can
make connections to the databases in this application which would require the databases to be
started.

commands TRUE or FALSE. Whether users with sufficient permissions can make read requests (or higher)
to databases in the application.

updates TRUE or FALSE. Whether users with sufficient permissions can make write requests (or higher)
to databases in the application.

security TRUE or FALSE. If FALSE, the Essbase security settings are disabled for the application, and
all users are treated as Application Managers.

lock_timeout Number. Maximum time interval (in seconds) that locks on data blocks can be held by clients.

max_lro_file_size Number. If 0, there is no limit on the size of LRO attachments. All other sizes are displayed in
kilobytes.

application_type The type of encoding for the application.

0 Unspecified encoding type. The application was created
using a pre-Release 7.0 version of Essbase.
1 This value is not in use.
2 Non-Unicode-mode application
3 Unicode-mode application

application_locale The language of the character set in use by the application.

server The name of the computer hosting the Essbase Server.

application_status 0 Not Loaded
1 Loading
2 Loaded
3 Unloading

elapsed_time How long the application has been loaded.

users_connected The number of users currently connected to the application.

storage_type 0 Default data storage
1 Multidimensional data storage
2 DB2 relational data storage
3 Oracle relational data storage
4 Aggregate storage
5.......Hybrid analysis

number_of_databases How many databases are in the application namespace.

Example

display application;

708 MaxL

Displays information about all applications on the system.

display application Sample;

Displays information about the Sample application.

Display Calculation
View a list of stored calculations on the system.

Syntax

Use display calculation to display calculations in the following ways:

Keyword Description

all Display all stored calculations on the system.

<calc-name> Display the named calculation.

on application Display all calculations on the specified application.

on database Display all calculations on the specified database.

Example

display calculation;

Display Database
View information about current database-wide settings.

Syntax

Use display database to display database information in the following ways:

Keyword Description

all Display information for all databases on the system.

<dbs-name> Display information about the specified database.

MaxL Statements 709

Keyword Description

on application Display information about all databases on the specified application.

request_history Display information about recent requests for the database. Information about the last three requests
is returned.

Example

display database;

Displays information about all databases on the system.

display database Sample.Basic;

Displays information about the Sample.Basic database.

Display Disk Volume
View a list of currently defined disk volume definitions.

Syntax

Use display disk volume to display disk volume information in the following ways:

Keyword Description

all Display all disk-volume definitions on the system.

<unique-vol-name> Display a disk-volume definition by name.

on database Display all disk-volume definitions associated with the specified database.

Notes

To manage disk volumes, use alter database (containing add, drop, and set disk volume).

Output Columns

The values returned for the file type field are numeric, and translate as follows:

Column Description

1 Index

2 Data

3 Index and Data

710 MaxL

Example

display disk volume;

Displays all (if any) disk volumes defined on the system.

display disk volume sample.basic.'vol3/hyperion/Essbase';

or

display disk volume sample.basic.C;

Displays information about a particular disk volume definition on Sample.Basic.

Display Drillthrough
View drill-through URL definitions used to link to content hosted on Oracle ERP and EPM
applications.

Syntax

Use display drillthrough to display URL information in the following ways:

Keyword Description

<dbs-
name>

Display all drill-through URL definitions on the database.

The number of drill-through URLs per database is limited to 255.

<dbs-
name> to
<file-name-
prefix>

Display all drill-through URL definitions on the database, writing the URL XML content to file names
prefixed with the string given as input for FILE-NAME-PREFIX.

<url-name> Display the specified drill-through URL definition.

The number of drillable regions in a drill-through URL is limited to 256. The number of characters per
drillable region is limited to 65536.

<url-name>
to <file-
name>

Display the specified drill-through URL definition, writing the URL XML content to the specified file
name.

Example

display drillthrough sample.basic;

Displays all drill-through URL definitions on Sample.Basic.

display drillthrough sample.basic to "urlxmls";

Displays all drill-through URL definitions on Sample.Basic, writing the URL XML content
to file names prefixed with urlxmls.

MaxL Statements 711

display drillthrough sample.basic."Drill through To EPMI";

Displays the drill-through URL definition named Drill through To EPMI.

display drillthrough sample.basic."Drill through To EPMI" to "c:/temp/drillthrough.xml";

Displays the drill-through URL definition named Drill through To EPMI, writing the
URL XML content to the file drillthrough.xml.

See Also

l alter drillthrough
l create drillthrough
l drop drillthrough

Display Filter
View a specific filter or a list of all filters on the system.

Syntax

Use display filter to display filters in the following ways. Use display filter row to display the
contents of filters.

Keyword Description

all Display all filters on the system.

<filter-name> Display a filter by name.

on database Display all filters associated with the specified database.

Example

display filter;

Displays the names of all filters on the system.

Display Filter Row
View the filter rows which define database access within a specific filter or all filters.

712 MaxL

Syntax

You can display filter contents in the following ways using display filter row.

Keyword Description

all Display all filters (and their contents) defined on the system.

<filter-name> Display a filter and its contents by name.

on database Display all filters (and their contents) associated with the specified database.

Example

display filter row sample.basic.filt2;

Displays the row-by-row definition of a filter named filt2 which is associated with
Sample.Basic.

Display Function
View a list of custom-defined functions available globally or to an application. If MaxL shows
no application name next to a function in the display output, then that function is global (system-
wide). This statement also returns the validation status of an application's local custom-defined
function or functions. Minimum permission required: read.

Syntax

Use display function to display custom-defined functions in the following ways:

Keyword Description

all Display all custom-defined functions, including those registered on the application level (local) or on
the system level (global).

on system Display all custom-defined functions registered on the system (global). Does not include locally defined
functions.

on application Display all custom-defined functions registered with the specified application (local). Does not include
globally defined functions.

MaxL Statements 713

Keyword Description

<func-name> Display a custom-defined function by name.

Output Columns

The columns returned for this statement are described as follows:

Column Description

application Application name(s).

function Registered custom-defined function name(s), as defined by “FUNC-NAME” on page 786 in the create
function statement.

class The java class before the method, as defined by “JAVACLASS.METHOD” on page 791 in the create
function statement.

method The java method (at the end of the class), as defined by “JAVACLASS.METHOD” on page 791 in the
create function statement.

spec Optional Essbase calculator-syntax specification string, as defined by “CALC-SPEC-STRING” on page
776 in the create function statement.

comment String as defined by “COMMENT-STRING” on page 777 in the create function statement.

runtime Values: TRUE or FALSE. Whether or not the custom-defined function was created with the runtime
property.

state The current state of the registered custom-defined function.

Values:

l 0 = UNKNOWN. It is unknown whether the function is valid Java and is loaded into any application
process.

l 1 = NOT_LOADED. The function is not loaded into any application process. You may have to
refresh or restart the application in order to use this function. Or, the function may not be developed
validly in Java.

l 2 = LOADED.

The function is valid Java, and is loaded into at least one application process.

l 3 = OVERRIDDEN. The local (application) function is overridden by a global (system-wide) function
of the same name.

Example

display function on application sample;

Displays all custom-defined functions associated with the application Sample.

Display Group
View a specific group or a list of all groups on the system. To view group membership
information, use display user.

714 MaxL

Syntax

Use display group to display groups in the following ways:

Keyword Description

all Display all security groups on the system.

all failed_sss_migration Display groups that did not successfully migrate to Shared Services when alter system
set sss_mode or alter group GROUP-NAME set sss_mode was issued.

<group-name> Display a security group by name.

Display Location Alias
View a specific location alias or a list of all location aliases defined on the system.

Syntax

You can display location aliases in the following ways using display location alias.

Keyword Description

all Display all location aliases defined on the system.

<location-alias-name> Display a location alias by name.

on application Display all location aliases defined for the specified application.

on database Display all location aliases defined for the specified database.

Example

display location alias all;

Displays a list of location aliases defined on the system.

Display Lock
View information about locks currently held by users or processes on data blocks.

MaxL Statements 715

Note: Data locks do not apply to aggregate storage applications.

Syntax

You can display locks in the following ways using display lock.

Keyword Description

all Display all locks on the specified scope. If all is omitted, this is the default.

on system Display all locks on the system.

on application Display all locks associated with the specified application.

on database Display all locks associated with the specified database.

Display Macro
View a list of custom-defined macros available globally or to an application. Minimum
permission required: read. If MaxL shows no application name next to a macro in the display
output, then that macro is global (system-wide).

Syntax

You can display custom-defined macros in the following ways using display macro.

Keyword Description

all Display all custom-defined macros, including those registered on the application level (local) or on
the system level (global).

on system Display all custom-defined macros registered on the system (global). Does not include locally defined
macros.

on application Display all custom-defined macros registered with the specified application (local). Does not include
globally defined macros.

<macro-name> Display a custom-defined macro by name.

716 MaxL

Output Columns

The columns returned for this statement are described as follows:

Column Description

application Application name(s).

macro Macro name(s), as defined by “MACRO-NAME” on page 793 in the create macro statement.

signature Macro signature, as defined by the custom-defined macro input parameters in the create macro statement.

expansion Macro expansion, as defined by “MACRO-EXPANSION” on page 792 in the create macro statement.

spec Optional Essbase calculator-syntax specification string, as defined by “CALC-SPEC-STRING” on page
776 in the create macro statement.

comment String as defined by “COMMENT-STRING” on page 777 in the create macro statement.

state The current state of the registered custom-defined macro.

Values:

l 0 = UNKNOWN. It is unknown whether the macro is loaded into any application process.

l 1 = NOT_LOADED. The macro is not loaded into any application process. You may have to refresh
or restart the application in order to use this macro.

l 2 = LOADED.

The macro is loaded into at least one application process.

l 3 = OVERRIDDEN. The local (application) macro is overridden by a global (system-wide) macro of
the same name.

Example

display macro on application sample;

Displays all custom-defined macros associated with the application Sample.

Display Object
View a list of database-related file objects stored in database directories.

MaxL Statements 717

Syntax

You can display objects in the following ways using display object.

Keyword Description

all Display all stored objects on the specified scope.

locked Display only locked objects on the specified scope.

of type... Display only the objects of type specified by OBJ-TYPE ::=.

OBJ-NAME of OBJ-TYPE Display a specific object by name and type.

on system Display all stored objects on the system.

on application Display all objects associated with the specified application.

on database Display all objects associated with the specified database.

Example

MAXL> display object sample.basic.Calcdat of type text;

 applicati database object_na object_ty locked locked_by locked_time
+---------+---------+---------+---------+-----------+-----------+-----------
 Sample Basic Calcdat 9 FALSE N/A N/A

Display Partition
View information about a specific partitioned database or all partitioned databases on the system.
Only displays partition information for applications which are currently started.

718 MaxL

Syntax

You can display partition information in the following ways using display partition.

Keyword Description

all Display all partitions defined on the system.

on database Display all partitions associated with the specified database.

advanced Display full information including areas and member mappings for local and remote pieces of partitions.

Notes

If a partition definition is invalid, the same partition may be displayed twice, one time for each
half. Each half will show the connection information of the other half.

Example

display partition all;

Displays information about all partitioned databases defined on the system.

Display Privilege
View a list of privileges, calculations, or filters held by users or groups.

Syntax

You can display security permissions in the following ways using display privilege.

Keyword Description

user... Display security permissions for all users, or for a specified user.

group... Display security permissions for all groups, or for a specified group.

Output Columns

The values returned for the type field are numeric, and translate as follows:

MaxL Statements 719

Column Description

1 “System-Level System Privileges” on page 814

2 “System-Level System Roles” on page 814

3 Execute calculation

4 Filter

Example

display privilege user Fiona;

Displays the privileges user Fiona has on each database object, including any calculations or
filters granted to Fiona.

display privilege group;

Displays privileges held by all groups on the system to all applications and databases on the
system.

Display Session
View active login sessions on the current server, application, or database, including:

l The user that owns each session

l A session ID for each session

l How long the sessions have been active

l Information about outstanding requests (description, time started, name of computer
originating the request, and status).

Syntax

You can display login and request information in the following ways using display session.

Keyword Description

all Display information about all current user sessions and active requests.

<session-id> Display information about a particular user session, indicated by the numeric session ID.

720 MaxL

Keyword Description

by user Display information about all current sessions by a particular user.

by user on
application

Display information about all current sessions by a particular user on the specified application.

by user on database Display information about all current sessions by a particular user on the specified database.

on application Display information about all current sessions on the specified application.

on database Display information about all current sessions on the specified database.

Example

display session;

display session on database sample.basic;

Display System
View information about current system-wide settings.

Syntax

You can display server-wide information in the following ways using display system.

Keyword Description

display system Display current connections and system-wide settings.

configuration field values are numeric, and translate as follows:

2 Non-Unicode mode
3 Unicode mode

display system version Display the server software version number.

MaxL Statements 721

Keyword Description

display system ports in
use

Display information about ports currently in use on the system.

display system ports
overview

Display the number of ports that are available and in use on the system.

display system
export_directory

Display names of directories created for linked-reporting objects exported from a database
to a directory created in $ARBORPATH\app.

If you used export lro and gave a full path to a directory for export files, those directories are
not listed. Only export directories created in the ARBORPATH\App directory using the
following export lro method are listed:

export database DBS-NAME lro to <server or local> directory
DBS-EXPORT-DIR;

where DBS-EXPORT-DIR is a suffix (for example, dir1) for the name of a directory created
by MaxL in $ARBORPATH\App. MaxL creates the directory with a prefix of appname-
dbsname-. For example, display system export_directory would list the following
directories existing under $ARBORPATH\App:

sample-basic-dir1

sample-basic-dir2

but it would not list export directories created elsewhere by providing a full directory path
when using the export lro statement, such as:c:\MyExports\MyExportDir

display system security
file
fragmentation_percent

Display the percentage of security file fragmentation. 0% means the security file is not
fragmented, and higher percentages indicate the degree of fragmentation.

Fragmentation can gradually develop when objects such as users, groups, applications or
databases are removed or changed. To prevent fragmentation, the security file is compacted
each time the Agent shuts down.

You can also defragment the security file without stopping the Agent. For more information,
see

l The essbase.cfg setting “SECURITYFILECOMPACTIONPERCENT” on page 491.

l The MaxL statement alter system compact security file;

l The Agent command COMPACT (for documentation of Agent commands, see the
Oracle Essbase Database Administrator's Guide).

display system
license_info

Display information about the license settings implemented on the system.

display system security
mode

The type of security in use: native or Shared Services mode.

security_mode field values are numeric, and translate as follows:

1 Native Essbase security
2 Shared Services security

display system
configuration agent

Display values set using the essbase.cfg file, but display only values that apply to Essbase
Agent. Permission required: administrator.

display system
configuration network

Display values set using the essbase.cfg file, but display only values that apply to the
network layer. Permission required: administrator.

722 MaxL

Keyword Description

display system
configuration
lease_manager

Display values set using the essbase.cfg file, but display only values that apply to lease
manager. Permission required: administrator.

display system
configuration errors

Display all lines in the essbase.cfg file that are errors: an error is any line entry that is
not a comment and results in nothing being set. Permission required: administrator.

display system
configuration on
database DBS-NAME

Display values set using the essbase.cfg file, but display only values that apply to the
named database. Permission required: administrator.

Example

display system;

Displays current password and session management settings.

display system configuration agent;

Displays current essbase.cfg settings that apply to the Essbase Agent.

Sample Outputs for Display System Configuration

MAXL> set column_width 40;

MAXL> display system configuration agent;

 KEYWORDS SETTINGS
+---------------------------------------+---------------------------------------
 AUTHENTICATIONMODULE CSS
 JVMMODULELOCATION E:\Hyperion\common\JRE-64\Sun\1.5.0\bin
 MAXLOGINS 50000
 PORTUSAGELOGINTERVAL 600

 OK/INFO - 1241044 - Records returned: [4].

MAXL> display system configuration network;

 KEYWORDS SETTINGS
+---------------------------------------+---------------------------------------
 AGENTPORT 1423
 NETDELAY 1500
 NETRETRYCOUNT 2000
 SERVERPORTBEGIN 32768
 SERVERPORTEND 33768

 OK/INFO - 1241044 - Records returned: [5].

MAXL> display system configuration on database democfg.basic;

 KEYWORDS SETTINGS
+---------------------------------------+---------------------------------------
 CALCCACHE TRUE
 CALCCACHEDEFAULT 1250000
 CALCCACHEHIGH 1750000

MaxL Statements 723

 CALCCACHELOW 40000
 CALCLOCKBLOCKDEFAULT 1000
 CALCLOCKBLOCKHIGH 5000
 CALCLOCKBLOCKLOW 500
 CALCNOTICEDEFAULT 20
 CALCNOTICEHIGH 50
 CALCNOTICELOW 5
 DATAERRORLIMIT 50000
 DLSINGLETHREADPERSTAGE FALSE
 DLTHREADSPREPARE 4
 DLTHREADSWRITE 4
 DYNCALCCACHEMAXSIZE DB[41943040], SV[41943040]
 JVMMODULELOCATION E:\Hyperion\common\JRE-64\Sun\1.5.0\bin
 LOGMESSAGELEVEL INFO
 NOMSGLOGGINGONDATAERRORLIMIT TRUE
 NUMERICPRECISION 1
 SSLOGUNKNOWN FALSE
 SSPROCROWLIMIT 250000

 OK/INFO - 1241044 - Records returned: [21].

Display Trigger
View details about a trigger created to track state changes over a selected cube area. For more
information about the Essbase triggers feature, see the Oracle Essbase Database Administrator's
Guide.

Note: The application containing the trigger must be started in order to use display trigger.

Syntax

Output Columns

Column Description

application The name of the application that contains the database.

database The name of the database that contains the trigger. Essbase lists only databases that contain triggers.

name The name of the trigger.

definition The MaxL trigger statement (for example, create or replace trigger)

enabled Whether Essbase is set to monitor the trigger. Values: TRUE or FALSE. To change the value, use alter
trigger.

724 MaxL

Example

display trigger on database Sample.Basic;

This example displays the output columns:

application database name definition enabled

Sample Basic WatchCosts create or replace trigger TRUE

Display Trigger Spool
View the log file created by a trigger. Triggers track state changes over a selected cube area. For
more information about the Essbase triggers feature, see Defining Triggers.

Syntax

Display User
View a specific user or a list of all users defined on the system. View account and group
membership information.

Syntax

You can display user information in the following ways using display user.

Keyword Description

all Display information about all users on the system.

MaxL Statements 725

Keyword Description

all failed_sss_migration Display users that did not successfully migrate to Shared Services when alter system
set sss_mode or alter group GROUP-NAME set sss_mode was issued.

The following situations are common reasons for users to fail migration:

l The user account is disabled.

l The user name is the same as a group name in Shared Services.

l A user is externally authenticated but the authentication provider is not running.

If any users failed migration, you can retry the migration using alter user all set
sss_mode.

For more information about user migration considerations, see the Oracle Essbase Database
Administrator's Guide topic titled "Migrating Essbase to Shared Services."

Sample output for this statement:

 user
 +-----------------
 ksmith
 user1
 user2

all
shared_services_native
with auto_password

Display the user names and passwords of Shared Services users that were migrated to Shared
Services with the option to have their passwords generated automatically.

Sample output for this statement:

 user password
+--------------+--------------+
 server1 BgjKl1fNo
 server2 BgjKl1fNo

Note: If the administrator designated a specific password for the migrated users, the
password is not displayed.

726 MaxL

Keyword Description

all
migr_modified_access

Display user database permissions that changed during migration to Shared Services.

In Shared Services, if an Essbase application contains multiple databases, the databases must
have the same user security access levels. During migration to Shared Services, if a user has
different access levels for two databases in the same application, the user is given the more
restrictive access level for both databases.

The output columns for this statement are:

Output Column Description

user The user name.

application Applications to which the user has access.

database Databases to which the user has access.

pre_Shared_Services_migration_access The user's access for a specific database
before migration to Shared Services.

current_access The user's access level after migration to
Shared Services. Includes access acquired
through groups and any other means.

filter Filters assigned to the user.

The values returned for the pre_Shared_Services_migration_access and
current_access fields are based on hexadecimal values but are displayed as decimal
values, as follows:

0 No access
255 Full database access
272 Filter
273 Read
275 Write
279 Calc
280 Metaread
311 Database Manager
375 Create database
887 Application Manager
1911 Create application
4095 Full application and database access
65535 Administrator

Most roles are inclusive of other roles, but some additional combinations are possible. For
example:

Read + Filter would be 273+272, or 545
Write + Filter would be 275 + 272, or 547

<user-name> Display information about the specified user.

in group all Display membership information for all groups on the system.

in group <group-name> Display membership information for the specified group.

MaxL Statements 727

Keyword Description

application_access_type Display the licensed application access type for a user.

If a user is created in Planning, it automatically has an application access type of Planning; if
a user is created in Essbase, it automatically has an application access type of Essbase.

application_access_type field values are numeric, and translate as follows:

0 No access
1 Essbase access
2 Planning access
3 Essbase and Planning access (requires 2 licenses)

The application access type can be modified in Essbase using Alter User, or the Planning
application access type can be modified through Oracle Hyperion Planning, Fusion Edition.

Output Columns

Column Description

user String. Name of the user.

description String. Optional description of the user.

logged in Values: TRUE or FALSE.

password_reset_days Integer. The number of days before the password expires, or 0 if no expiration is set.

enabled Values: TRUE if the user account is active, or FALSE if the account has been disabled by an
administrator.

change_password Values: TRUE if the user must change the password at the next login; FALSE otherwise.

type Values:

0 User is set up using native Essbase security.
1 No longer used.
3 User is externally authenticated using Shared Services.

protocol If the user is externally authenticated using Shared Services, this field contains the value
CSS. This field is blank if the type field is 0 (the user is not externally authenticated).

conn param This field is blank.

application_access_type Values:

0 No access
1 Essbase access
2 Planning access
3 Essbase and Planning access (requires 2 licenses)

See also Descriptions section.

Example

display user;

728 MaxL

Displays all users on the system and shows whether they are logged in, whether their accounts
are enabled, and whether their passwords are set to expire.

display user in group;

Displays the membership information of all groups on the system.

display user in group big_group;

Displays the membership information for a group called big_group.

Display Variable
View a list of substitution variables defined on the system.

Syntax

You can display substitution variables in the following ways using display variable.

Keyword Description

all Display all substitution variables defined on the Essbase Server, including those associated with
applications and databases.

<variable-
name>

Display a substitution variable by name. Permission required: read access for the applicable database
or application. Administrator for system-defined variables.

on application Display only substitution variables defined on the specified application. Permission required: read
access for the application.

on database Display only substitution variables defined on the specified database. Permission required: read
access for the database.

on system Display only the substitution variables associated with the Essbase Server. Permission required:
Administrator.

Notes

To manage substitution variables, use alter database (containing add, drop, and set variable).

Example

display variable;

Displays a list of all susbstitution variables on the Essbase Server.

MaxL Statements 729

Drop Application
Delete an empty application from the system. To remove an application with databases, use
cascade. To remove an application that has locked objects in a constituent database, you can use
force. Minimum permission required: Application Manager.

Syntax

You can delete applications in the following ways using drop application.

Keyword Description

cascade Delete an application along with its constituent databases.

force Delete an application that may have locked objects in a constituent database.

Drop Calculation
Delete a stored calculation from a database. Minimum permission required: Database Manager.

Syntax

You can delete calculations using drop calculation.

Keyword Description

drop calculation <calc-name> Delete the specified calculation.

Example

drop calculation Sample.basic.calcname;

Deletes a calculation from Sample.basic.

Drop Database
Delete a database from the sytsem. Minimum permission required: Database Manager. If the
database has outstanding locks, clear them first, or use force to drop with locks.

Syntax

730 MaxL

You can delete databases using drop database.

Keyword Description

force Delete a database that may have locked objects.

Example

drop database Sample.Basic force;

Deletes the database Sample.Basic, even if client users have outstanding locks on
Sample.Basic.

Drop Drillthrough
Delete a drill-through URL definition used to link to content hosted on Oracle ERP and EPM
applications.

Syntax

Example

drop drillthrough sample.basic.myURL;

See Also

l alter drillthrough
l create drillthrough
l display drillthrough

Drop Filter
Delete a security filter from the database. Minimum permission required: Database Manager.

Syntax

You can delete filters using drop filter.

Keyword Description

drop filter <filter-name> Delete a filter by name.

Example

drop filter sample.basic.filter1;

Deletes the filter called filter1 from the sample.basic database.

MaxL Statements 731

Drop Function
Delete a custom-defined function from the system or from an application.

Minimum permission required: Application Manager to drop a local (application-level)
function. Administrator to drop a global (system-level) function.

Syntax

You can delete custom-defined functions using drop function.

Keyword Description

drop function <func-name> Delete a custom-defined function by name.

Notes

If you drop a custom-defined function after having associated it with an application (using
refresh custom definitions), you may have to stop and restart the application for the drop to
take effect.

Example

drop function sample.'@COVARIANCE';

Deletes the function called @COVARIANCE from the Sample application.

Drop Group
Delete a user group from the system. Users belonging to the group are not deleted.

An Essbase group can be deleted in two ways:

1. From Essbase using MaxL or Administration Services. To do this, you must be an Essbase
administrator.

2. From Shared Services. To do this, you must be a Shared Services administrator.

Syntax

You can delete security groups using drop group.

Keyword Description

drop group
<group-name>

Delete a security group by name. Members of the group are not deleted, but their membership to the
group becomes obsolete.

from
security_file

When Essbase is in EPM System security mode, you can use this syntax to remove the user from the
Essbase security file, without de-provisioning the user from Shared Services. Calculation and filter
associations also are removed.

732 MaxL

Example

drop group big_group;

Deletes the group called big_group from the system.

Drop Location Alias
Delete from the database a location alias identifying a host name, application, database, user
name, and password. Minimum permission required: Database Manager.

Syntax

You can delete location aliases using drop location alias.

Keyword Description

drop location alias <location-alias-name> Delete a location-alias definition.

Example

drop location alias Main.Sales.EasternDB;

Drops the location alias called EasternDB in the Main.Sales database.

Drop Lock
Remove locks acquired through a spreadsheet operation.

Note: Data locks do not apply to aggregate storage applications.

Syntax

Keyword Description

drop lock on system all Drops all locks by all users, for all databases on the system.

drop lock all Same as "drop lock on system all"

drop lock on system Same as "drop lock on system all"

drop lock Same as "drop lock on system all"

MaxL Statements 733

Keyword Description

drop lock on application APP-NAME Drops all locks on the application, for all users.

drop lock on application APP-NAME held by
USER-NAME

Drops locks on the application which are held by a specific user.

drop lock on database DBS-NAME Drops all locks on the database, for all users.

drop lock on database DBS-NAME held by
USER-NAME

Drops locks on the database which are held by a specific user.

drop lock held by USER-NAME Drops all locks held by a specific user, on any application or database.

Drop Macro
Delete a custom-defined macro from the system or from an application.

Minimum permission required: Application Manager to drop a local (application-level) macro.
Administrator to drop a global (system-level) macro.

Syntax

You can delete custom-defined macros using drop macro.

Keyword Description

drop macro <macro-name> Delete a custom-defined macro.

Notes

If you drop a custom-defined macro after having associated it with an application (using refresh
custom definitions), you may have to stop and restart the application for the drop to take effect.

Example

drop macro sample.'@COVARIANCE';

Deletes the macro called @COVARIANCE from the Sample application.

Drop Object
Remove database-related file objects stored in database directories.

734 MaxL

Syntax

Keyword Description

...force If the object is locked by a user or proecess, unlock it and delete it.

Notes

To drop a partition, use drop partition.

Drop Partition
Delete from the system a partition definition between two databases. Database Manager
permission for each database is required.

Syntax

You can delete partition definitions in the following ways using drop partition.

Keyword Description

drop...partition...from Remove a transparent, replicated, or linked partition definition between the current target
database and a source database.

drop...partition...to Remove a transparent, replicated, or linked partition definition between the current source
database and a target database.

at <host-name> Optionally specify the host computer name, if removing a partition definition associated with
a remote server. The host name can be an IP address; for example, '127.0.0.1'.

MaxL Statements 735

Keyword Description

force Specify that the source half of a partition definition should be dropped regardless of whether
the target half is missing or invalid. For more information, see “Forcing Deletion of Partitions”
on page 925.

Notes

If the create partition statement used was of the format:

create partition SOURCE to TARGET;

Then the only permutations of the drop partition statement that will have effect are:

drop partition SOURCE to TARGET;
drop partition TARGET from SOURCE;

Example

create or replace replicated partition sampeast.east area '@IDESCENDANTS("Eastern
Region"), @IDESCENDANTS(Qtr1)' to samppart.company at localhost;

drop replicated partition Samppart.Company from Sampeast.East;

Drop Trigger
Remove a trigger created to track state changes over a selected cube area. For more information
about the Essbase triggers feature, see the Oracle Essbase Database Administrator's Guide.

Syntax

Example

drop trigger Sample.Basic.WatchCosts ;

Drop Trigger Spool
Delete the log file created by a trigger. Triggers track state changes over a selected cube area. For
more information about the Essbase triggers feature, see Defining Triggers.

Syntax

Drop User
Delete a user account from the system.

Permission required: create_user, unless Essbase is in EPM System security mode.

In EPM System security mode, an Essbase user can be deleted in two ways:

736 MaxL

1. From Essbase using MaxL or Administration Services. To do this, you must be an Essbase
administrator. You must additionally have the Shared Services Directory Manager role.

2. From Shared Services. To do this, you must be a Shared Services administrator.

Syntax

You can delete users using drop user.

Keyword Description

drop user <user-
name>

Delete an Essbase user account by user name.

from security_file When Essbase is in EPM System security mode, you can use this syntax to remove the user from the
Essbase security file, without de-provisioning the user from Shared Services. Calculation and filter
associations also are removed.

Example

drop user Fiona;

Deletes the user Fiona from the system.

Execute Calculation
Click here for aggregate storage version

Execute a stored calculation, the stored default calculation (determined by alter database), or
an anonymous (non-stored) calculation string.

Minimum permissions required:

l For stored calculations (CALC-NAME): Granted access to the calculation.

l For anonymous calculations (CALC-STRING): Database Manager permission.

l For default calculation: execute privilege.

Syntax

You can run calculations in the following ways using execute calculation.

Keyword Description

execute calculation
<calc-name>

Run the specified stored calculation script.

MaxL Statements 737

Keyword Description

<calc-name> on
database

Run the specified stored calculation script against the specified database.

<calc-string> on
<dbs-name>

Run an anonymous calculation, whose body is contained in <calc-string>, against the specified
database.

default on <dbs-
name>

Run the default calculation against the specified database.

Notes

A stored calculation can be associated with an application/database, or with an application only.
To execute a calculation stored at the application level, you must specify which database to
calculate using the syntax 'on database STRING.'

Example

execute calculation Sample.Basic.calcname;

Calculates the Sample.Basic database using a stored calculation file assocatied with the
database.

execute calculation Sample.calcname on database Basic;

Calculates the Sample.Basic database using a stored calculation file assocatied with the
application Sample.

execute calculation
 'SET MSG ERROR;
 CALC ALL;'
on Sample.basic;

Calculates Sample.Basic using an anonymous (unstored) calculation string.

Execute Aggregate Process
Perform an aggregation, optionally specifying the maximum disk space for the resulting files,
and optionally basing the view selection on user querying patterns. This statement is only
applicable to aggregate storage databases.

This statement causes Essbase to:

1. Select 0 or more aggregate views based on the stopping value and/or on querying patterns,
if given.

2. Build the views that were selected.

For more information about aggregate views, see the Oracle Essbase Database Administrator's
Guide and the Oracle Essbase Administration Services Online Help.

738 MaxL

Syntax

You can aggregate an aggregate storage database in the following ways using execute aggregate
process.

Keyword Description

stopping when
total_size exceeds...

Aggregate whichever views Essbase selects, with the exception the that maximum growth of the
aggregated database must not exceed the given ratio.

based on query_data Aggregate whichever views Essbase selects, based on collected user querying patterns. This option
is only available if query tracking is turned on, using alter database <dbs-name> enable
query_tracking.

enable|disable
alternate_rollups

If enabled, secondary hierarchies (with default level usage) are considered for view selection.
Default: disabled (no secondary hierarchies are considered).

Notes

l View selection (step 1) can be performed independently of aggregation by using execute
aggregate selection. Aggregation (step 2) can be performed without built-in view selection
by using execute aggregate build.

l For small databases, the performance of building aggregate views in Essbase 9.3.1 and later
versions may be slower than Essbase versions earlier than 9.3.1. However, Essbase 9.3.1
should perform better for databases larger than a few hundred million cells, especially on
computers with more than two processors and where the CALCPARALLEL configuration
setting has been chosen appropriately.

Example

execute aggregate process on database ASOSamp.Sample
stopping when total_size exceeds 1.3;

Selects and builds an aggregation of the ASOSamp Sample database that permits the database
to grow by no more than 30% as a result of the aggregation.

execute aggregate process on database ASOSamp.Sample based on query_data;

Selects and builds an aggregation of the ASOSamp Sample database, where the views that
Essbase selects for aggregation are based on the most frequently queried areas of the database.

Execute Aggregate Build
Performs an aggregation based on the views selected by the execute aggregate selection statement.

MaxL Statements 739

The views to build must either be identified by their view IDs, obtained previously using execute
aggregate selection, or by a view selection saved in an aggregation script.

For more information about aggregate views, see the Oracle Essbase Database Administrator's
Guide and the Oracle Essbase Administration Services Online Help.

Syntax

You can materialize aggregations in the following ways using execute aggregate build.

Keyword Description

using views... Builds an aggregation based on a previously selected view (or views) and the associated outline ID.

using
view_file...

Builds an aggregation based on a saved view selection stored in an aggregation script.

Omit the .csc file extension from the view file name when you issue the execute aggregate build
statement.

Notes

l Although it is possible to pass arbitrary view-id and view-size arguments, this practice is not
supported.

l Passing view-size arguments other than those returned by the execute aggregate selection
command may cause unpredictable results.

l For small databases, the performance of building aggregate views in Essbase 9.3.1 and later
versions may be slower than Essbase versions earlier than 9.3.1. However, Essbase 9.3.1
should perform better for databases larger than a few hundred million cells, especially on
computers with more than two processors and where the CALCPARALLEL configuration
setting has been chosen appropriately.

Example

execute aggregate build on database Sample.Basic using views 711 0.00375 with outline_ID
4142187876;

Builds an aggregation of the Sample Basic database. The build is based on the view of an
aggregate storage outline (identified as 4142187876) having the view ID 711, and a view size
of 0.00375.

execute aggregate build on database Sample.Basic using view_file myView;

Builds an aggregation of the Sample Basic database based on the view saved in the aggregation
script myView.csc.

740 MaxL

Execute Aggregate Selection
Select views of an aggregate storage database based on various selection criteria, and return the
results in the form of a table or aggregation script. Next, use the tabular information or
aggregation script to build an aggregation (materialize a view) using execute aggregate build.

Note: View selection and aggregation can be performed by Essbase in a single step by using
execute aggregate process. However, the use of the two separate statements execute
aggregate selection and execute aggregate build enables you more control of the selection
criteria.

For more information about aggregate views, see the Oracle Essbase Database Administrator's
Guide and the Oracle Essbase Administration Services Online Help.

Syntax

You can select views in the following ways using execute aggregate selection.

Keyword Description

using views...with
outline_ID

Selects views based on pre-selected view IDs. The view IDs are obtained from previous
executions of the statement.

using views...with
outline_ID...force
display

Selects views based on pre-selected view IDs, including the pre-selected views IDs themselves.

using views...with
outline_ID...suppress
display

Selects views based on pre-selected view IDs, skipping the pre-selected views IDs themselves.
This is the default behavior even if the suppress keyword is omitted.

selecting <INTEGER>
views

Selects views up to a maximum number of views.

MaxL Statements 741

Keyword Description

stopping when
total_size exceeds

Selects views, specifying a storage stopping value in terms of a factor times the size of the
unaggregated input (level 0) values. For example, a stopping value of 1.5 means that the view
selection should permit the database to grow by no more than 50% as a result of the aggregation.

based on query_data Selects views based on previously collected query-tracking data. You must have enabled query
tracking using alter database <dbs-name> enable query_tracking. After enabling query
tracking, allow sufficient time to collect user data-retrieval patterns before performing an
aggregate selection based on query data.

Query tracking records information about every query executed on the database, so that it can
be used as a basis for view selection. Query-based view selection helps to improve query
performance when the distribution of user queries is skewed.

For every level combination, the cost of retrieving cells is recorded. The recording continues
until the application is shut down or until the recording is explicitly turned off using alter
database <dbs-name> disable query_tracking. In both cases, all the query cost data is
discarded, and the recording stops (and will not continue when the application starts again).

All query cost data becomes invalid when additional views are built.

dump to view_file Saves the view selection to an aggregation script. If the specified script name already exists, an
error is returned. To overwrite an existing script, use the force_dump keyword.

The aggregation script contains information derived during the aggregate view selection. You
can materialize the aggregation at a different time by running the aggregation script. For
example:execute aggregate build on database <dbs-name> using
view_file <view-file-name>

force_dump to
view_file

Saves the view selection to an aggregation script. If the specified script name already exists, the
force_dump keyword causes it to be overwritten.

enable|disable
alternate_rollups

If enabled, secondary hierarchies (with default level usage) are considered for view selection.
Default: disabled (no secondary hierarchies are considered).

Example

execute aggregate selection on database ASOSamp.Sample;

Performs the default view selection for ASOSamp Sample. This statement selects the same
views as execute aggregate process on database ASOSamp.Sample would build.

execute aggregate selection on database ASOSamp.Sample using views 711, 8941 with
outline_ID 4142187876;

Selects views based on the pre-selected view IDs. The view IDs are obtained from previous
executions of the statement.

execute aggregate selection on database ASOSamp.Sample using views 711, 8941 with
outline_ID 4142187876 force display;

Selects views based on the pre-selected view IDs. force display is used to include the pre-
selected views (711 and 8941) in the new selection.

execute aggregate selection on database ASOSamp.Sample selecting 9 views;

Selects a maximum of nine views of ASOSamp Sample.

execute aggregate selection on database ASOSamp.Sample stopping when total_size exceeds
1.2;

742 MaxL

Selects an aggregation of the ASOSamp Sample database that, when built, would permit the
database to grow by no more than 20% as a result of the aggregation.

execute aggregate selection on database ASOSamp.Sample based on query_data;

Selects views based on previously collected query-tracking data. You must have enabled
query tracking using alter database <dbs-name> enable query_tracking.

execute aggregate selection on database ASOSamp.Sample
dump to view_file myView;

Selects a default aggregation of the ASOSamp Sample database, saving the selection to APP
\DB\myView.csc. You can materialize the view later by running the aggregation script
myView.csc. For example:

execute aggregate build on database ASOSamp.Sample using view_file 'myView.csc';

Export Data
Click here for aggregate storage version

Export all data, level-0 data, or input-level data, which does not include calculated values. Export
files are stored in the ARBORPATH/app directory on the server unless an absolute path is
specified. To use Report Writer, export the data using a report file.

Minimum permission required: Read. This statement requires the database to be started.

Syntax

You can export data from a database in the following ways using export data.

Keyword Description

export database <dbs-name>
all data...

Export all data in the specified database to the $ARBORPATH/app directory on the
server.

Note: Exporting data does not clear the data from the database.

export database <dbs-name>
level0 data...

Export level-0 data blocks only (blocks containing only level-0 sparse member
combinations. Note that these blocks may contain data for upper level dense dimension
members.) A level-0 block is created for sparse member combinations when all of the
members of the sparse combination are at the bottom of dimension branches.

Note: Exporting data does not clear the data from the database.

export database <dbs-name>
input data...

Export only blocks of data where the block contains at least one data value that was
loaded (imported), rather than created as the result of a calculation.

MaxL Statements 743

Keyword Description

export database <dbs-
name> ... data in columns

Export data in columns, to facilitate loading the exported data into a relational database.
In each row, the columnar format displays a member name from every dimension.
Names can be repeated from row to row.

Columnar format provides a structure to the exported data, so that it can be used for
further data processing by applications other than Essbase tools. In non-columnar
format, sparse members identifying a data block are included only once for the block.
Because the export file in non-columnar format is smaller than in columnar format,
reloading a file in non-columnar format is faster.

export database <dbs-
name> ...using...report_file...

Run a stored report script, exporting a subset of the database.

Notes

l To export data in parallel, specify a comma-separated list of export files. The number of
threads Essbase uses depends on the number of file names you specify.

If the data for a thread exceeds 2 GB, Essbase may divide the export data into multiple files
with numbers appended to the file names.

The naming convention for additional export files is as follows: _1, _2, etc. are appended
to the additional file names. If the specified output file name contains a period, the numbers
are appended before the period. Otherwise, they are appended at the end of the file name.

For example, if the given file name is /home/exportfile.txt, the next additional file is /
home/exportfile_1.txt. If the file name is /home/exportfile, the next additional file
is /home/exportfile_1.

l To export data in column format, use the optional "in columns" grammar.

l During a data export, the export process allows users to connect and perform read-only
operations.

l When MaxL exports data from a Unicode-mode application, the export file is encoded in
UTF-8. You cannot use UTF-8-encoded export files from a Unicode-mode application to
import data to a non-Unicode-mode application. For more information about file encoding,
see the Unicode section of the Oracle Essbase Database Administrator's Guide.

l MaxL cannot export databases with names containing hyphens (-). To export databases with
names containing hyphens, use Administration Services.

Example

Example 1 (Export Data)

export database sample.basic data to data_file 'D:\\fileout','D:\\fileout2','D:\
\fileout3';

Exports data concurrently to a list of file names.

Example 2 (Export Data)

export database sample.basic input data
to data_file 'exp_input.exp';

744 MaxL

export database sample.basic using report_file "'$ARBORPATH/App/Sample/Basic/asym.rep'"
to data_file 'home/month2.rpt';

Note: In the path to the report file in the above UNIX example, double quotation marks are
used to allow variable expansion in the single-token FILE-NAME, and single quotation
marks are required because there are special characters (see “MaxL Syntax Notes” on page
768) in the file name.

export database sample.basic using report_file 'EssbaseServer\\App\\Sample\\Basic\
\asym.rep' to data_file 'c:\\home\\month2.rpt';

Note: In the file paths in the above Windows example, single quotation marks are required
because there are special characters(see “MaxL Syntax Notes” on page 768) in the file
name. Two backslashes (\\) are required by the MaxL Shell to indicate one backslash,
because the backslash has a special meaning to the MaxL Shell.

Export LRO
Export linked-reporting-object information, and binary files if the database has file-type LROs,
to a directory on the Essbase Server computer.

Syntax

You can export LRO information from a database in the following ways using export lro.

Keyword Description

to server
directory

Export the LRO information to a directory you specify on the Essbase Server to which you are
connected.

to local directory Export the LRO information to a directory you specify on the current computer.

Notes

l This statement requires the database to be started.

l MaxL creates exactly one export directory; it does not create a directory structure. For
example, if c:\temp exists, MaxL will create c:\temp\exports, but not c:\temp
\exports\to\this\long\path.

l If the specified export directory already exists, the export LRO statement will fail. This is a
safeguard against overwriting existing export directories.

l If you do not specify a full path for an export directory to be created on the client or server,
MaxL uses your short directory specification (“DBS-EXPORT-DIR” on page 779) as a
suffix, and creates the destination export-directory in the ARBORPATH\app directory with

MaxL Statements 745

a prefix of appname-dbname-. If you do specify a full path, MaxL creates whatever directory
you specify.

It is recommended that you create export directories in the application/ database directory,
as MaxL can only display or delete export directories that are in the application/database
directory.

l When MaxL exports LROs from a database, if the database is from a Unicode-mode
application, the exported LRO-catalog file is encoded in UTF-8. You cannot use UTF-8-
encoded export files from a Unicode-mode application to import LROs to a non-Unicode
mode application. For more information about file encoding, see the Unicode section of the
Oracle Essbase Database Administrator's Guide.

Example

export database sample.basic lro to server directory '../home/temp/lros';

Exports LRO-catalog information, and binary files if the database has file-type LROs, to a
server directory called home/temp/lros. The directory contains file-type LROs, if
applicable, and the LRO-catalog export file lros.exp. These can be brought back into a
database using import lro.

export database sample.basic lro to server directory 'exportedLROs';

Exports LRO-catalog information, and binary files if the database has file-type LROs, to a
server directory $ARBORPATH/app/sample-basic-exportedLROs. The directory
contains file-type LROs, if applicable, and the LRO-catalog export file named sample-
basic-exportedLROs.exp. These can be brought back into a database using import lro.

export database sample.basic lro to server directory 'D:\\MaxL\\LROexports\\dir';

On Windows, exports LRO-catalog information to a new directory dir under the existing
directory structure D:\MaxL\LROexports. The double backslashes (\\) must be used
becasue a single backslash is an escape character to MaxL.

Export Outline
Export metadata, either from the active database outline or an input outline file, to a specified
XML file. Permission required: database manager.

Syntax

You can export metadata information from a database in the following ways using
export outline.

746 MaxL

Keyword Description

DBS-NAME Specify the database name instead of the outline file path.

FILE-NAME Specify the outline file path instead of the database name.

all dimensions Export information about all dimensions in the database.

list dimensions Export information about only the listed dimensions. Specify each dimension name within curly
braces, and separated by commas.

tree Export only the member names in the hierarchy, omitting full metadata details.

with alias_table Export using only the member names indicated in the specified alias table.

to xml_file Specify the full path to the output XML file.

Notes

l This statement requires the database to be started.

l The following general outline information is included in the XML export:

m Case sensitiveness

m Outline Type

m Duplicate Member Names allowed

m Typed Measures Enabled

m Date Format

m Varying Attributes Enabled

m Alias Table count and list

m Active Alias Table

m Attribute information

m Auto configure

m Text list definitions

m Universal member comments

m Locale, if it exists

m Query hint list (if aggregate storage)

m Get Implied Shared Setting

l The following dimension information is included in the XML export:

m Name

m Two pass calc

m Type

m Text list, if text typed

m Has relational descendants

MaxL Statements 747

m IsHAEnabled (Hybrid Analysis enabled)?

m Formula

m Format String

m Comment

m Extended member comment

m Dimension category

m Attribute type

m Data Storage

m Dimension Storage

m Alias Names, if any

m UDAs, if any

m Consolidation

m Attribute dimension associated

m Independent dimensions, if any

m Time balance

m Skip options

m Variance reporting

m Currency conversion

m Currency conversion member

m Dynamic Time Series enabled list

m Attachment level, if linked attribute dimension

m Dimension solve order

m Is Non Unique dimension?

m Hierarchy type

m Level usage for aggregation (for aggregate storage hierarchies)

m Is Compression dimension? (if aggregate storage)

m Storage category

l The following member information is included in the XML export:

m Name

m Two pass calc

m Type

m Text list, if text typed

m Is shared?

m Shared member name, if shared

m Formula

748 MaxL

m Format string

m Comment

m Extended member comment

m Attribute type

m Data storage

m Dimension storage

m Alias names, if any

m UDAs, if any

m Consolidation

m Attribute member associated

m Validity sets, if any

m Time balance

m Skip options

m Variance reporting

m Currency conversion

m Currency conversion member

m Member solve order (if aggregate storage)

m Level usage for aggregation (for aggregate storage hierarchy members)

Example

export outline sample.basic all dimensions to xml_file "c:/temp/basic.xml";

Exports all outline information from Sample Basic to the specified XML file, basic.xml.

export outline sample.basic list dimensions {"Product", "Market"} tree to xml_file "c:/
temp/basic.xml";

Exports information about Sample Basic dimensions Product and Market from to the XML
file.

Export outline "c:/temp/basic.otl" all dimensions with alias_table "Default" to xml_file
"c:/temp/basic.xml";

Exports information about all dimensions in Sample Basic from the specified outline file to
the XML file, using only default alias names.

Export Security File
Writes the contents of the Essbase security file (essbase.sec) to a readable, text file (ASCII
format) on the system where Essbase Server resides. The statement is run against the Essbase
Server instance for which you are currently logged in. The Essbase Server instance can be one
that is run as a service.

MaxL Statements 749

Exporting the contents of the Essbase security file is useful when you want to review the security
information for an Essbase Server instance. Be sure to follow your company’s security procedures
to ensure the integrity of the data.

Required permission: Essbase Administrator.

Syntax

Notes

l FILE-NAME specifies the name, including the path, of the text file to which the exported
information is written. The path must be to a location on the system where Essbase Server
resides. The file cannot be written to a client system. If a path is not specified, the text file is
created in the ARBORPATH\bin directory.

l Running the export security_file statement against a pre-9.3.1 Essbase Server instance
is not supported.

l The export security_file MaxL statement is similar to the DUMP agent command,
except that the DUMP command cannot be run against an Essbase Server running as a
service.

Example

export security_file to data_file essbase_security_file.txt;

Writes security information to a file named essbase_security_file.txt in the
ARBORPATH\bin directory on the server system.

export security_file to data_file C:\security_review\essbase_security_file.txt;

Writes security information to a file named essbase_security_file.txt in the specified
directory on the server system (C:\security_review).

Grant
Grant a permission, a filter or a stored calculation to a user or a group.

Syntax

750 MaxL

You can grant permissions to users and groups in the following ways using grant.

Keyword Description

create_application to... Grant Create/Delete Applications permission to a user or group.

create_user to... Grant Create/Delete Users/Groups permission to a user or group.

no_access to... Revoke any permissions the user or group may have.

administrator to... Grant Administrator permission to a user or group.

no_access on
application...to...

Revoke any permissions the user or group may have on the specified application.

manager on
application...to...

Grant Application Manager permission to a user or group for the specified application.

no_access on
database...to...

Revoke any permissions the user or group may have on the specified database.

read on database...to... Grant Read permission to a user or group for the specified database.

write on database...to... Grant Write permission to a user or group for the specified database.

manager on
database...to...

Grant Database Manager permission to a user or group for the specified database.

filter <filter-name> to... Assign a filter to a user or group that grants or denies permissions to the specified database at
a data-value level of detail.

execute <calc-name>
to...

Grant the user or group permission to run the specified stored calculation script.

execute any on system
to...

Grant the user or group permission to run any calculation against any database on the Essbase
Server.

execute any on
application...to...

Grant the user or group permission to run any calculation against any databases in the specified
application.

execute any on
database...to...

Grant the user or group permission to run any calculation against the specified database.

execute default on
system to...

Grant the user or group permission to run the default calculation against any database on the
Essbase Server.

execute default on
application...to...

Grant the user or group permission to run the default calculation against any databases in the
specified application.

execute default on
database...to...

Grant the user or group permission to run the default calculation against the specified
database. The default calculation is typically 'CALC ALL;', but it can be changed using alter
application set default calculation.

MaxL Statements 751

Notes

Granting permissions:

At each level (system, application or database) existing roles are replaced. However, the built-
in privileges create_user and create_application are not replaced.

After granting a permission to a user or group, it can be revoked by subsequently granting
no_access. However, to prevent users from being able to load the application, you should also
grant no_access at the application level.

Granting filters:

There may be only one filter per user per database. Therefore, granting a filter replaces any filters
the user may already have on that database.

Filter permission can be revoked from users and groups by using the revoke filter clause of
Alter User and Alter Group.

Granting calculations:

A user or group may have any number of calculations per database. Therefore, granting a
calculation adds it to the user or group's list of calculations. Grant execute any gives the user or
group permission to execute all calculations, including the default calculation.

After granting execute permission, the permission can be revoked by subsequently granting
no_access to the database. However, to prevent users from being able to load the application,
you should also grant no_access at the application level.

Example

grant no_access to NewGroup;

grant administrator to Fiona;

grant manager on application Sample to Fiona;

grant read on database Sample.basic to Fiona;

grant filter Sample.basic.filter8 to Fiona;

Import Data
Click here for aggregate storage version

Import data from text or spreadsheet data files, with or without a rules file. Minimum permission
required: Write.

752 MaxL

Syntax

You can import data to a database in the following ways using import data.

Keyword Description

import
database <dbs-
name> data
from...

Specify whether the data import is from a local or server file, and what type of file to import data from.

...using ...
rules_file

Import data into the database using a specified rules file.

...<data error
spec> (on
error...)

Required. Tell Essbase what to do in case of errors during the data load: abort the operation, or write
or append to a specified error log.

MaxL Statements 753

Keyword Description

...<data record
spec> from
data_string

Load a single data record into the selected database.

Example:

import database sample.basic data
from data_string
 '"Sales" "COGS" "Marketing" "Payroll" "Misc" "Opening Inventory"
"Additions"
 "Ending Inventory" "100-10" "New York" "Jan" "Actual"
 678 271 94 51 0 2101 644 2067'
on error abort;

...<SQL
connect spec>
(connect as...)

If you are importing data from an SQL source, provide your SQL user name and password. You must
always use a rules file when you load SQL data sources.

Notes

l This statement requires the database to be started.

l When using the import statement, you must specify what should happen in case of an error.

l To import from a SQL data source, you must connect as the relational user name, and use
a rules file.

Example

import database sample.basic data from data_file "'$ARBORPATH\\app\\sample\\basic\
\calcdat.txt'" on error abort;

import database sample.basic data
from data_file '/data/calcdat.txt'
using rules_file '/data/rulesfile.rul'
on error write to '/logs/dimbuild.log';

Import Dimensions
Import dimensions from text or spreadsheet data files, using a rules file. Minimum permission
required: Write.

754 MaxL

Syntax

You can import dimensions to a database in the following ways using import dimensions.

Keyword Description

import database
<dbs-name>
dimensions from...

Specify whether the dimension import is from a local or server file, and what type of file to import
the dimension from.

...using ... rules_file Import dimensions into the database outline using a specified rules file.

...enforce
verification

Verify the outline resulting from the dimension build. This is the default behavior.

...suppress
verification

Do not verify the outline resulting from the dimension build.

Caution! Using this option defers restructuring.

...preserve all data If you need to preserve all data when importing dimensions, specify that here.

...on error... Tell Essbase what to do in case of errors during the dimension build: abort the operation, or write
or append to an error log.

...<SQL connect
spec> (connect as...)

If you are importing dimensions from an SQL source, provide your SQL user name and password.
You must always use a rules file when you load SQL data sources.

...<preserve spec
alt>
(preserve...data)

If you need to preserve level-0 or input data when importing dimensions, specify that here.

MaxL Statements 755

Notes

l This statement requires the database to be started.

l When using the import statement, you must specify how error logs should be handled.

l When multiple files are included in the same statement, restructure is deferred until all files
have been processed. The deferred-restructure type of dimension build has been called an
incremental dimension build.

l When the suppress verification option is used, restructure is deferred.

l When multiple files are included in the same statement, be sure verification is enforced for
the last file.

l To import from a SQL data source, you must connect as the relational user name, and use
a rules file.

Example

import database sample.basic dimensions
from data_file '/data/calcdat.txt'
using rules_file '/data/rulesfile.rul'
on error append to '/logs/dimbuild.log';

Deferred-Restructure Examples

For Data File Sources:

import database sample.basic dimensions
from server text data_file 'genref' using server rules_file 'genref' suppress
verification,
from server text data_file 'level' using server rules_file 'level' suppress
verification,
from server text data_file 'time' using server rules_file 'time'
preserve input data on error append to 'C:\Hyperion\products\eas\client\dataload.err';

For SQL Sources:

import database sample.basic dimensions
connect as 'usrname1' identified by 'password1' using server rules_file 'genref',
connect as 'usrname2' identified by 'password2' using server rules_file 'level',
connect as 'usrname3' identified by 'password3' using server rules_file 'time'
on error append to 'C:\Hyperion\products\eas\client\dataload.err';

For Data and SQL Sources:

import database sample.basic dimensions
from server text data_file 'genref' using server rules_file 'genref',
from server text data_file 'level' using server rules_file 'level',
connect as 'usrname1' identified by 'password1' using server rules_file 'genref',
connect as 'usrname2' identified by 'password2' using server rules_file 'genref'
on error append to 'C:\Hyperion\products\eas\client\dataload.errr';

756 MaxL

Import LRO
Import Linked Reporting Objects (LROs) from the specified output directory created by export
lro. The directory contains an ASCII .exp file containing LRO-catalog information, and LRO
binary files (if the database from which LROs were exported contained file-type LROs).
Minimum permission required: Write.

Syntax

You can import exported LRO information to a database using import lro.

Keyword Description

import
database <dbs-
name> lro...

Import Linked Reporting Objects (LROs) from the specified export directory on the local computer
or on a remote server where the Essbase Server resides.

Notes

l This statement requires the database to be started.

l The specified import directory must come from the results of the export lro operation. The
exported LRO-catalog file contains a record of the LRO file locations, cell notes, or URL
text, and database index locations to use for re-importing to the correct data blocks.

l In the paths in the second two examples, double quotation marks are used to allow variable
expansion in the string IMPORT-DIR, and single quotation marks are required because
there are special characters (see “MaxL Syntax Notes” on page 768) in the path name.

Example

Windows Example

import database sample.basic lro
from server directory 'C:\\Hyperion\\products\\Essbase\\EssbaseServer\\app\\sample-
basic-lros';

import database sample.basic lro
from directory "'$ARBORPATH\\app\\sample-basic-lros'";

UNIX Example

import database sample.basic lro

 from server directory "'$ARBORPATH/app/sample-basic-lros'";

From the subdirectory created by export lro in the app directory on the server, both the Windows
and UNIX example statements above re-import the LRO-catalog information (and file-type
LROs if applicable) that were exported to that location.

MaxL Statements 757

Query Archive_File
Retrieve information about the database backup archive file.

Minimum permission required: Read.

The database must be running.

Syntax

You can query archive file information using keywords.

Keyword Description

get overview Retrieve the following overview information:

l Application name

l Database name

l Time when the archive was performed

list disk
volume

Retrieve a list of disk volume names.

On Windows, Essbase adds the default ARBORPATH drive (for example, the C: drive) as a disk volume,
even if the database that you backed up does not store data on that disk volume.

Example

query archive_file /Hyperion/samplebasic.arc get overview;

Retrieves overview information about the samplebasic.arc backup archive file.

query archive_file /Hyperion/samplebasic.arc list disk volume;

Retrieves disk volume information about the samplebasic.arc backup archive file.

Query Database
Click here for aggregate storage version

Get advanced information about the current state of the database.

Minimum permission required: Read. This statement requires the database to be started.

758 MaxL

Syntax

You can query for database information in the following ways using query database.

Keyword Description

get active alias_table Display the active alias table for the user issuing the statement.

get attribute_info Get attribute member, dimension, and name information for the specified attribute
member.

get attribute_spec Display the current attribute specifications for the database. These specifications include
attribute member name format, Attribute Calculation dimension member names,
Boolean and date member names, and numeric range specifications. These settings are
defined in Outline Editor.

get currency_rate Display the currency rate for every currency partition.

MaxL Statements 759

Keyword Description

get dbstats dimension Get information about dimensions.

Output

The index_type field values are numeric, and translate as follows:

0 Dense
1 Sparse
3 None (database is aggregate storage)

get dbstats data_block Get information about data blocks. The information returned has little relevance to
aggregate storage databases.

Output

The type field values are numeric, and translate as follows:

0 Array
1 AVL (or "B+ Tree")

get default calculation View the contents of the calculation designated as default for the database. The default
calculation refers to either the relations defined in the database outline (CALC ALL) or
to the set of calculation strings defined as the default database calculation.

760 MaxL

Keyword Description

get member_info
MEMBER-NAME

Get information on a specific member.

Output

The unary_type field values are numeric, and translate as follows:

0 Add
1 Subtract
2 Multiply
3 Divide
4 Percent
5 NoRollUp

The member_tag_type field values translate as follows:

0 SkipNone
16384 SkipMissing
32768 SkipZero
49152 SkipBoth
1 BalFirst
2 BalLast
4 TwoPass
8 Average
64 Expense

Variations are possible. The field value consists of one of the first four "skip" values plus
any/all/none of the last five values. Some examples:

0 SkipNone
77 SkipNone, BalFirst, TwoPass, Average,
Expense
16385 SkipMissing and BalFirst

The first four "skip" values are base values, and added to them are combinations of 1, 2,
4, 8, and 64.

The status field values are hexadecimal, and translate as follows:

0 Normal
1 Never Share
2 Label
4 Refer Share
8 Refer Share (with different name)
16 Implicit share
32 Virtual Member (stored)
64 Virtual Member (not stored)
2048 Attribute
32768 Referred

get member_calculation
MEMBER-NAME

View the formula associated with the selected member.

get estimated size Display an estimate of the number of blocks a database will create after full calculation
(CALC ALL), based on the number of blocks that exist before calculation. The database
can have all data loaded, or it can have a random sampling of data loaded. Outlines that
contain sparse formulas of any type or top-down formulas are not supported. Results of
the estimation on such databases may be invalid.

MaxL Statements 761

Keyword Description

performance statistics...table Display one of several choices of performance statistics tables. Before you can use this
statement, you must enable performance statistics gathering, using alter database DBS-
NAME set performance statistics enabled.

list alias_table Get a list of alias tables that are defined for the database.

list alias_names in
alias_table

List the alias names defined in an alias table. Alias tables contain sets of aliases for member
names and are stored in the database outline. Use this grammar to see a list of alias names
defined in the specified table.

list lro Get information about linked objects, including the object type, name, and description,
based on criteria you specify. If you specify both a user name and modification date,
objects matching both criteria are listed. If you specify no user name or date, a list of all
linked objects in the database is displayed.

list...file information Get accurate index and data file information. Provides index and data file names, counts,
sizes, and totals, and indicates whether or not each file is presently opened by Essbase.
The file size information is accurate. Note that the file size information provided by the
Windows operating system for index and data files that reside on NTFS volumes may not
be accurate.

list transactions Display, in the MaxL Shell window, database transactions that were logged after the time
when the last replay request was originally executed or after the last restored backup's
time (which ever occurred later).

list transactions after LOG-
TIME

Display, in the MaxL Shell window, database transactions that were logged after the
specified time. Enclose the TIME value in quotation marks; for example:
'11_20_2007:12:20:00'

list transactions after LOG-
TIME write to file
PATHNAME_FILENAME

Write the list of database transactions to the specified file. The list output is written to a
comma-separated file on the Essbase Server computer.

Provide the full pathname to an existing directory and the name of the output file. If only
the output filename is provided, Essbase writes the file to the ARBORPATH/app
directory.

When writing to an output file that already exists, you must use the force grammar to
overwrite the file.

list transactions force write
to file
PATHNAME_FILENAME

Overwrite the contents of an existing output file.

list transactions after
TIME...write to file
PATHNAME_FILENAME

Write the list of database transactions that were logged after the specified time to the
specified file.

score miner ... Scoring a model is similar to applying a model to the data in a database. However, scoring
is executed synchronously and the results are not written back into the database; rather,
they are returned in XML for Analysis format. To load a model in preparation for scoring,
see create mining result. To score a model, use this statement. To unload the model after
scoring, use alter system stop mining session.

Example

Example 1

query database Sample.Basic list transactions;

762 MaxL

Displays, in the MaxL Shell window, Sample.Basic database transactions that were logged
after the time when the last replay request was originally executed or after the last restored
backup's time (which ever occurred later).

Example 2

query database Sample.Basic list transactions after '11_20_2007:12:20:00'
write to file 'C:\\Hyperion\\products\\Essbase\\EssbaseServer\\app\\Sample\\Basic\
\listoutput.csv';

Writes the transactions in the Sample.Basic database that were logged after November 20,
2007 at 12:20:00 to a CSV file in the Sample.Basic database directory.

Example 3

query database sample.basic get member_calculation 'Profit per Ounce';

Displays the formula associated with the 'Profit per Ounce' member.

Example 4

query database sample.basic list lro before '06_16_2008';

Displays information about linked objects, in the Sample.Basic database, that were modified
before the specified time.

Refresh Custom Definitions
Refresh the definitions of custom-defined functions or macros associated with an application,
without restarting the application.

Syntax

You can update Anylitic Services' record of custom-defined function and macro definitions
using refresh custom definitions.

Keyword Description

refresh custom
definitions on
application...

Refresh the definitions of custom-defined functions or macros associated with the specified
application, without restarting the application. To refresh global definitions, issue the statement
separately for each application on the Essbase Server.

Notes

l This statement re-reads the custom-defined function and macro records on the Agent, and
associates newly created functions or macros with the specified application (since the last
refresh, or since the last time the application was restarted).

l A local function or macro must have been created using the double naming convention to
indicate application context: see create function or create macro for details.

l Invalidly defined functions and macros are not loaded to the application.

MaxL Statements 763

l Validation occurs at the application level only, during the refresh (not during creation).
There is no validation on the system level.

Example

refresh custom definitions on application Sample;

Loads all valid, newly created local functions and macros for the application Sample.

Refresh Outline
Synchronize the outlines between partitioned databases. Use this in the event that one outline
has undergone changes to dimensions, members, or member properties, and you wish to
propagate those changes to the partitioned database.

Outline synchronization is not currently enabled for partitions that involve aggregate storage
databases.

764 MaxL

Syntax

You can synchronize the outlines between partitioned databases using refresh outline.

Keyword Description

...to... Use the current source outline to refresh the remote target outline.

...from... Refresh the current target outline using the remote source outline.

purge outline
change_file

Clear any source outline changes that have already been applied to the target outline or have
been rejected. Source outline changes that have not been applied or rejected are not deleted from
the outline change file.

apply all Refresh all aspects of the target outline, including dimension changes, member changes, and
member property changes made to the source outline. This is the recommended method for
refreshing outlines, because if you choose to omit some changes, those changes cannot be applied
later.

MaxL Statements 765

Keyword Description

apply nothing Do not apply source outline changes to any aspects of the target outline. The target outline will
be considered synchronized to the source, and the timestamp will be updated, although source
changes were not actually applied to the target.

apply on dimension... Refresh the target outline with all or some dimension changes made to the source outline.

l add: Refresh with added dimensions.

l delete: Refresh by deleting dimensions.

l rename: Refresh with renamed dimensions.

l update: Refresh with dimensions that have member updates (required if the statement will
also use apply on member).

l move: Refresh the order of dimensions in the outline.

Use commas to separate the types of source dimension changes to refresh on the target. For
example, to refresh only with added or moved dimensions, use the following phrase: apply
on dimension add, move.

apply on member... Refresh the target outline with all or some physical member changes made to the source outline.
Requires apply on dimension update.

l add: Refresh dimensions with added members.

l delete: Refresh dimensions by deleting members.

l rename: Refresh dimensions with renamed members.

l move: Refresh the order or hierarchy of members in the dimension.

Use commas to separate the types of source member changes to refresh on the target. For
example, to refresh only with added or moved members, use the following phrase: apply
on dimension update, apply on member add, move.

apply on
member_property...

Refresh the target outline with all or some member property changes made to the source outline.
Requires apply on dimension update.

l account_type: Refresh with changes in account type.

l alias: Refresh with changes to aliases.

l calc_formula: Refresh with changes to member formulas.

l consolidation: Refresh with changes to consolidation tags.

l currency_conversion: Refresh with changes to currency conversion flags.

l currency_category: Refresh with changes to currency categories.

l data_storage: Refresh with changes to data storage tags.

l uda: Refresh with changes to UDAs.

Use commas to separate the types of source member-property changes to refresh on the target.
For example, to refresh only with updated member formulas, use the following phrase:
apply on dimension update, apply on member_property
calc_formula.

Example

refresh outline on replicated partition sampeast.east to samppart.company
 apply all;

766 MaxL

Refreshes the target outline (for Samppart.company database) with any and all changes
made to the source outline (Sampeast.east).

refresh outline on replicated partition Sampeast.east to Samppart.company
apply on dimension update, apply on member rename, apply on member_property
 account_type;

Refreshes the target outline (for Samppart.company database) with changes made to the
source outline (Sampeast.east), reflecting the following update to a dimension: a member
tagged Accounts was renamed.

Refresh Replicated Partition
Refresh the current replicated-partition database target from the remote (second DBS-NAME)
source partition. Database Manager permission for each database is required.

Syntax

You can update a replicated-partition database using refresh replicated partition.

Keyword Description

...to... Use the current replicated-partition database source to refresh the remote target partition.

...from... Refresh the current replicated-partition database target from the remote source partition.

...updated data Refresh a replicated-partition database only with data that has been updated since the last refresh.

...all data Refresh a replicated-partition database with all data, regardless of the last refresh.

Example

refresh replicated partition sampeast.east to samppart.company at localhost all data;

MaxL Definitions
This section contains the following topics:

l “MaxL Syntax Notes” on page 768

l “Numbers in MaxL Syntax” on page 769

l “Terminals” on page 769

l “Privileges and Roles” on page 813

l “Quoting and Special Characters Rules for MaxL Language” on page 816

MaxL Definitions 767

MaxL Syntax Notes
The following syntax scheme applies to the creation of MaxL statements.

A MaxL statement corresponds to a sentence telling Essbase what to do with users and database
objects. In this documentation, the grammar of MaxL statements is illustrated using railroad
diagrams.

When issued via the MaxL Shell (essmsh), statements must be terminated by semicolons.
Semicolons are used only to tell the shell when to terminate the statement; semicolons are not
part of the MaxL language itself. Therefore, when issuing MaxL statements programmatically
through Perl or API programs, do not terminate with a semicolon.

A token is a delimited sequence of characters recognized by MaxL as a single readable unit.
Tokens may be singleton names, keywords, strings, or numbers. Names can have one, two, or
three tokens, delimited by periods. The space delimiting tokens can be any white space: spaces,
tabs, new lines, or blank lines.

A keyword is a sequence of alphabetic characters that is part of the MaxL grammar. Each keyword
is recognized as one token. To be recognized as keywords, keywords cannot be enclosed in
quotation marks. However, if you wish to use MaxL keywords outside of the grammar as
terminals (for example, as database names or passwords), they must be enclosed in single or
double quotation marks.

A terminal is something referenced in the grammar for which you provide the correct name or
definition. Terminals can be names, numbers, or strings. Examples: user-name, filter-name,
size-string.

A name is any string that starts with an alphabetic character, or any quoted string. Names in
MaxL are used to uniquely identify databases and database objects, such as users, applications,
or filters.

Names in MaxL may be one of three types:

l singletons, which are names with one token (example: Sample). Use a singleton name for
objects that have a system-wide context: for example, applications.

l doubles, which are names with two tokens. A double is two names connected by a period
(example: Sample.basic). Use doubles to name objects with application-wide contexts,
such as databases.

l triples, which are names with three tokens. A triple is three names connected by two periods
(example: Sample.Basic.Calcname). Use triples to name objects having database-wide
contexts, such as filters.

A string is unquoted or quoted. An unquoted string can be any sequence of non-special
characters. A quoted string can be any sequence of characters (special, alphabetic, or numeric)
in the MaxL Alphabet, enclosed in single or double quotation marks.

A number is one kind of token which may be passed to Essbase by MaxL. To have meaning, the
number must be in the correct format for the Essbase value it represents. In the MaxL grammar
documentation, labels for numbers indicate whether the allowed number is positive, negative,
an integer, or a real. See “Numbers in MaxL Syntax” on page 769.

768 MaxL

The MaxL alphabet consists of the following elements:

Element Description

Special
characters

Valid special characters: . , ; : % $ " ' SPACE TAB * + - = < > [] { } () ? ! / \ |
~ ` # & @ ^

When using special characters in MaxL terminals, note the quoting rules (see “Quoting and Special Characters Rules
for MaxL Language” on page 816).

Non-special
characters

Alphabetic characters and numbers.

Alphabetic
characters

Letters of the alphabet, and the underscore. [a-z, A-Z, _]

Numbers See “Numbers in MaxL Syntax” on page 769

Numbers in MaxL Syntax
Numbers in MaxL statements fit into one of the following categories.

l INTEGER—Zero or a positive integer. Decimals and scientific notation are permitted.
Examples: 0, 1, 1000, 1.3e4

l REAL—Zero or a positive real number. Decimals and scientific notation are permitted.
Examples: 0.0, 1, 1000, 1000.4, 13.1e-4

Terminals
The following sections describe terminals in alphabetical order.

ACCESS-TYPE
The domains that a user can access based on the license. The only possible input value for this
string is Essbase.

Type

string (see “MaxL Syntax Notes” on page 768)

Example

Essbase

Referenced By

Alter User

MaxL Definitions 769

ACTION
The required action if a data-monitoring trigger is activated.

Syntax

mail [smtp],[sender],[receiver1,reciever2,...],[subject]
spool FILE-NAME

l mail - sends an email from the specified sender, to a specified email address or addresses,
with the specified subject line (optional). Enclose email addresses containing special
characters in square brackets ([]). The mail action is not supported for after-update triggers,
which are the only triggers available for use with aggregate storage databases.

l spool - logs a message in a specified file in the $ARBORPATH\app\appname\dbname
\trig folder.

Type

string (see “MaxL Syntax Notes” on page 768)

Example

mail manager.sales.com, [mktdir@CC.com, Monitor@acnts.com]

spool "trgmonitor"

Referenced By

create trigger

drop trigger

ADMIN-SVCS-LOCATION
The name (or IP address) and port number of the computer on which Essbase Administration
Server runs.

Type

string (see “MaxL Syntax Notes” on page 768)

Example

Aspen:10080 127.0.0.1:10080

Referenced By

alter system

770 MaxL

ALG-CLASS
The Java class and the method representing a data-mining algorithm. Must be the fully qualified
name of the Java class that contains the logic for the algorithm. Must be enclosed in single or
double quotation marks.

Type

string (see “MaxL Syntax Notes” on page 768)

Example

'com.hyperion.essbase.algorithms.Regression'

Referenced By

create algorithm

ALG-MODE
The task mode for the data-mining algorithm. Possible values for this string are: build.

Type

string (see “MaxL Syntax Notes” on page 768)

Referenced By

display algorithm

ALG-NAME
The name of a data mining algorithm. If the name contains special characters (see “MaxL Syntax
Notes” on page 768), it must be enclosed in single or double quotation marks.

Type

name (see “MaxL Syntax Notes” on page 768)

Example

AssocRules Regression
'Naive Bayes'

Referenced By

create algorithm

create model

display algorithm

drop algorithm

MaxL Definitions 771

ALT-NAME-SINGLE
The name of an alias table. If the name contains special characters (see “MaxL Syntax Notes” on
page 768), it must be enclosed in single or double quotation marks.

Type

name (see “MaxL Syntax Notes” on page 768)

Example

Region
'Long Names'

Referenced By

alter database

query database

APP-NAME
The name of the application. Limit 8 characters.

If the name contains any allowed special characters, it must be enclosed in single or double
quotation marks. Only the following special characters are allowed by Essbase within application
names:

% (percent sign)

$ (dollar sign)

- (minus sign)

{ (open brace)

} (close brace)

((open parenthesis)

) (close parenthesis)

! (exclamation mark)

~ (tilde)

` (accent mark)

(pound sign)

& (ampersand)

@ (at sign)

^ (caret)

Type

name (see “MaxL Syntax Notes” on page 768)

772 MaxL

Example

Sample

Referenced By

alter application

alter partition

alter system

create application

display application

display calculation

display database

display function

display location alias

display lock

display macro

display object

display session

display trigger spool

drop application

drop lock

grant

refresh custom definitions

query application

AREA-ALIAS
A shorthand name used in the in the create partition statement for referring to an already-
specified member expression that designates which areas of the databases should be partitioned.

Type

name (see “MaxL Syntax Notes” on page 768)

Example

In the create partition statement below, "foo" is an area-alias for the member expression specified
in the area specification. To create area-aliases, enter the alias names after the member expression
in each area specification. To specify which area is relevant when mapping members (if
applicable), refer to its alias name in the mapped phrase.

MaxL Definitions 773

In the example below, the alias name as created is shown in this color, and it specifies which area
(in other words, it refers to the entire member expression string, '@IDESCENDANTS(East)
@IDESCENDANTS(Qtr1)'). The alias name as referenced is shown in this color.

create or replace replicated partition sampeast.east
 area '@IDESCENDANTS("Eastern Region"), @IDESCENDANTS(Qtr1)'
to samppart.company at aspen
as admin identified by 'password'
 area '@IDESCENDANTS(East) @IDESCENDANTS(Qtr1)' foo
 mapped foo (Year) to (Yr)
update allow validate only;

Note: All area aliases used in a mapping should be associated with the target (as in the example
above), and the direction of member names listed in the mapped clause should go from
source to target.

Referenced By

create partition

BUFFER-ID
A number between 1 and 999,999 inclusive. To destroy a buffer before a data load is complete,
you must use the same BUFFER-ID number that was used to initialize the buffer.

Type

number (see “MaxL Syntax Notes” on page 768)

Referenced By

alter database

CALC-NAME
A stored calculation.

Syntax

name1.name2.name3 (db-level calc)

OR

name1.name3 (app-level calc)

l name1 - Application name.

l name2 - Database name (not required for application-level calcs).

l name3 - Calc script name.

774 MaxL

Type

name (see “MaxL Syntax Notes” on page 768)

For calculations associated with databases, three tokens are required, to indicate application and
database context and the calculation name.

Example

Sample.basic.'alloc.csc'

For application-level calculations, two tokens are required, indicating application context and
the calculation name. When executing application-level calculations, you must specify which
database to calculate using the syntax 'on database STRING.'

Example

l Sample.'alloc.csc' is the application-level CALC-NAME.

l execute calculation Sample.'alloc.csc' on database Basic; is a way to
execute the application-level calculation on a database.

If any part of the name contains special characters (see “MaxL Syntax Notes” on page 768), it
must be enclosed in single or double quotation marks.

Referenced By

create calculation

display calculation

drop calculation

execute calculation

grant

CALC-NAME-SINGLE
A stored calculation name that is the third token of a database-level “CALC-NAME” on page
774.

If any part of the name contains special characters (see “MaxL Syntax Notes” on page 768), it
must be enclosed in single or double quotation marks.

Type

name (see “MaxL Syntax Notes” on page 768)

Example

If the full database-level calc name is sample.basic.'alloc.csc', then CALC-NAME-
SINGLE is 'alloc.csc'.

MaxL Definitions 775

Referenced By

alter database

CALC-SPEC-STRING
An optional Essbase calculator-syntax specification string. Must be enclosed in single quotation
marks.

Type

string (see “MaxL Syntax Notes” on page 768)

Example

'@COVARIANCE (expList1, expList2)'

Use CALC-SPEC-STRING only if the function or macro needs to be returned through the API
that lists functions.

Referenced By

create function

create macro

CALC-STRING
A calculation string. The body of an anonymous (unstored) calculation, or the string used to
specify the body of a stored calculation at create time.

Because calculations are terminated with a semicolon, and semicolons are special characters to
MaxL, CALC-STRING should be enclosed in single or double quotation marks.

Type

string (see “MaxL Syntax Notes” on page 768)

Example

CALC DIM(Year, Measures, Product);

Referenced By

alter database

execute calculation

COLUMN-WIDTH
A number (at least 8) representing character-width of columns; or, the keyword default,
representing 20 characters wide.

776 MaxL

Type

number (see “MaxL Syntax Notes” on page 768) or default

Example

set display column width 80

set display column width default

Referenced By

“Set Display Column Width” on page 835

COMMENT-STRING
A string of user-defined informational text. If the string contains special characters (see “MaxL
Syntax Notes” on page 768), it must be enclosed in single or double quotation marks.

Type

string (see “MaxL Syntax Notes” on page 768)

Example

'This is a comment.'

Referenced By

alter application

alter database

alter group

alter user

create application

create database

create function

create group

create macro

create partition

create user

CONDITION
A numeric-value-expression developed in MDX. Must be enclosed in double quotation marks.
Enclose strings containing special characters in square brackets ([]).

MaxL Definitions 777

Type

string (see “MaxL Syntax Notes” on page 768)

Example

"Jan>20"

Referenced By

create trigger

CUBE-AREA or MDX-SET
A cube area or other specification developed in MDX as a symmetric, syntactically-valid set. The
area specification must be static, for example it cannot contain Dynamic Calc members or
runtime functions such as Filter, TopSum, or BottomSum. Enclose strings containing special
characters in square brackets ([]). For complete information about defining MDX sets, see
“MDX Set Specification” on page 953 in the MDX section.

Type

string (see “MaxL Syntax Notes” on page 768)

Examples

The following is a set of siblings.

'{[Jan 2000], [Feb 2000], [Mar 2000]}'

The following is a crossjoined set.

'{([Qtr1], [New York]), ([Qtr1], [California]),
 ([Qtr2], [New York]), ([Qtr2], [California])}'

The following set is also a tuple.

'{(Jun, FY2011, Actual)}'

The following statement clears data from a region of ASOsamp.Sample. The region is defined
using a CUBE-AREA expressed in MDX.

alter database ASOsamp.sample clear data in region '{(Coupon, [Prev Year], South)}'
physical;

Referenced By

create trigger

alter database (aggregate storage)

execute allocation (aggregate storage)

execute calculation (aggregate storage)

778 MaxL

CUBE-SCHEMA-PATH
The path to the cube schema in Essbase Studio from the root folder.

Type

string (see “MaxL Syntax Notes” on page 768)

Example

"\folderinpath1\folderinpath2\cubeschemaname"

Referenced By

deploy

DATE
A valid date string formatted according to these rules:

l MM/DD/YYYY or MM/DD/YY

l Any character can be used as a separator; for example, MM~DD~YY is valid.

If the string contains special characters (see “MaxL Syntax Notes” on page 768), it must be
enclosed in single or double quotation marks.

Type

string (see “MaxL Syntax Notes” on page 768)

Example

'04/16/03'
'04.16.2003'
04_16_2003

Referenced By

alter database

query database

DBS-EXPORT-DIR
Suffix for the name of a database directory to contain export files, to be created (upon export
lro) on the server or client as $ARBORPATH/app/appname-dbname-suffix.

After export lro, the directory contains file-type LRO binary files (if applicable to the database),
and the LRO-catalog export file with file-extension .exp.

If for a Sample.Basic export, DBS-EXPORT-DIR is given as lros, then the sample-basic-
lros directory is created in the $ARBORPATH/app directory structure. The sample-basic-

MaxL Definitions 779

lros directory contains file-type LRO binary files and the LRO-catalog export file 'sample-
basic-lros.exp'.

Notes:

l MaxL creates exactly one export directory; it does not create a directory structure.

l If the specified export directory already exists, the export LRO statement will fail. This is a
safeguard against overwriting existing export directories.

Type

string (see “MaxL Syntax Notes” on page 768)

Referenced By

export lro

DBS-NAME
The name of a database. Two tokens are required, to indicate application context.

Syntax

name1.name2

l name1 - The name of the application containing the database. Limit 8 characters.

l name2 - The name of the database. Limit 8 characters.

If the name contains any allowed special characters, it must be enclosed in single or double
quotation marks. Only following special characters are allowed by Essbase within database
names:

% (percent sign)
$ (dollar sign)
- (minus sign)
{ (open brace)
} (close brace)
((open parenthesis)
) (close parenthesis)
! (exclamation mark)
~ (tilde)
` (accent mark)
(pound sign)
& (ampersand)
@ (at sign)
^ (caret)

Type

name (see “MaxL Syntax Notes” on page 768)

Example

Sample.basic

780 MaxL

Referenced By

alter database

alter partition

alter system

alter trigger

create database

create location alias

create mining result

create model

create outline

create partition

display database

display disk volume

display filter

display filter row

display location alias

display lock

display mining result

display mining task template

display model

display object

display partition

display session

display trigger spool

display variable

drop database

drop lock

drop partition

drop trigger spool

execute aggregate build

execute aggregate process

execute aggregate selection

export data

MaxL Definitions 781

grant

import data

import dimensions

import lro

query database

refresh outline

refresh replicated partition

DBS-STRING
The second token of “DBS-NAME” on page 780. Limit 8 characters.

If the name contains special characters (see “MaxL Syntax Notes” on page 768), it must be
enclosed in single or double quotation marks.

Type

string (see “MaxL Syntax Notes” on page 768)

Example

basic

Referenced By

alter application

alter database

alter partition

execute calculation

DIM-NAME
The name of a database dimension.

If the string contains special characters (see “MaxL Syntax Notes” on page 768), it must be
enclosed in single or double quotation marks.

Type

string (see “MaxL Syntax Notes” on page 768)

Example

Year
Market

782 MaxL

Referenced By

query database

ESS-CONN
The name of an Essbase connection stored on the Essbase Studio Server.

Referenced By

deploy

ESS-MODEL-NAME
The name of an Essbase model on the Essbase Studio Server.

Referenced By

deploy

EXPORT-DIR
The exact name of a directory in $ARBORPATH\app where LRO-catalog information was
exported using Export LRO. Give only the directory name; do not give the full path. Must be
enclosed in single or double quotation marks. The typical format is appname-dbname-
suffix.

Type

string (see “MaxL Syntax Notes” on page 768)

Example

'sample-basic-out'

Referenced By

alter system

FILE-NAME
A file name or an absolute path to a file. If the string contains special characters (see “MaxL
Syntax Notes” on page 768), it must be enclosed in single or double quotation marks. Double
quotation marks allows variable expansion; single quotation marks does not. If the file path
contains a backslash (\), it must be preceded with another backslash (\\) to be interpreted
correctly by the MaxL Shell.

Type

string (see “MaxL Syntax Notes” on page 768)

MaxL Definitions 783

Example

l file01

l 'D:\\filename'

l "$ARBORPATH/errors.txt"

l "$ARBORPATH\\app\\sample\\basic\\calcdat.txt" (double quotation marks to
expand the variable)

l '/homes/fiona/scriptfile.msh' (UNIX file path)

Referenced By

alter database

create mining task template

create model

export data

export model

import data

import dimensions

FILE-NAME-PREFIX
Prefix for one or more file names to be created (upon display drillthrough DBS-NAME to FILE-
NAME-PREFIX) on the client in the working directory of MaxL execution.

These display output files contain the URL XML content of URL drill-through definitions used
to link to content hosted on ERP and EPM applications.

If the string contains special characters (see “MaxL Syntax Notes” on page 768), it must be
enclosed in single or double quotation marks.

Type

string (see “MaxL Syntax Notes” on page 768)

Example

urlxmls

Referenced By

display drillthrough

FILTER-NAME
The name of a security filter. Three tokens are required, to indicate application and database
context.

784 MaxL

Syntax

name1.name2.name3

l name1 - Application name.

l name2 - Database name.

l name3 - Filter name.

Type

name (see “MaxL Syntax Notes” on page 768)

Example

Sample.basic.filt1

Referenced By

alter filter

create filter

display filter

display filter row

drop filter

grant

FULL-EXPORT-DIR
Full path for the name of a directory for LRO export files,to be created (upon export lro)
anywhere on the client or server.

After export lro, the directory contains file-type LRO binary files (if applicable to the database),
and the LRO-catalog export file named in the format directoryname.exp.

For example, if for a Sample.Basic export, FULL-EXPORT-DIR is given as home/temp/lros,
then the lros directory structure is created under home/temp if home/temp exists. The lros
subdirectory contains file-type LRO binary files and the LRO-catalog export file 'lros.exp'.

Notes:

l MaxL creates exactly one export directory; it does not create a directory structure. In the
above example, if the home/temp directory structure exists, MaxL creates the lros directory
as a subdirectory of home/temp, but if home/temp does not exist, MaxL will not create
home/temp/lros.

l If the specified export directory already exists, the export LRO statement will fail. This is a
safeguard against overwriting existing export directories.

l On Windows, use double backslashes (\\) to represent backslashes in file paths. This is so
that the MaxL Shell can interpret the second backslash literally, and not as an escape
sequence.

MaxL Definitions 785

Type

string (see “MaxL Syntax Notes” on page 768)

Example

'C:\\temp\\lros'

Referenced By

Export LRO

FUNC-NAME
The name of a custom-defined Essbase function. Using one token indicates a global function.
For a local (application-level) function, use two tokens.

The name of a custom-defined function is a unique string that begins with a letter or a @, #, $,
_ symbol. The name can include alphanumeric characters or the aforementioned symbols. It is
recommended that you start a function name with @.

Any token of the name that contains special characters (see “MaxL Syntax Notes” on page 768),
must be enclosed in single or double quotation marks.

Syntax

name1.name2 (local)

OR

name2 (Global)

See “MaxL Syntax Notes” on page 768

l name1 - Application name.

l name2 - Function name.

Type

name (see “MaxL Syntax Notes” on page 768)

Example

l Sample.'@COVARIANCE' (a local function)

l '@COVARIANCE' (a global function)

Referenced By

display function

drop function

786 MaxL

GROUP-NAME
The name of the Essbase security group. If the group is authenticated with Shared Services, the
name must match a valid group name on one of the configured authentication repositories.

Group name guidelines:

l Non-Unicode application limit: 256 bytes

l Unicode-mode application limit: 256 characters

l Group names must start with a letter or a number

l If the group name contains any special characters (see “MaxL Syntax Notes” on page 768),
the name must be enclosed in single or double quotation marks.

When Essbase is in EPM System security mode, GROUP-NAME can include a user directory
specification or unique identity attribute.

In EPM System security mode, user and group names can be non unique, if you specify either
the user or group's provider directory or unique identity attribute.

Types

l name (see “MaxL Syntax Notes” on page 768)

l name@provider

l WITH IDENTITY ID-STRING

where provider is the name of a user directory (such as LDAP or Active Directory) that hosts
the external group, and ID-STRING is a unique identity assigned to every user and group (if
Essbase is in EPM System security mode).

Note: If a user or group name includes the @ character, you must specify the provider as well,
or else Shared Services considers the @ character as a delimiter indicating a provider name.
For example, if you want to log in user admin@msad which is on a Native Directory
provider, you must specify 'admin@msad@Native Directory'.

Examples

Sales010

Sales010@Native Directory

with identity "native://nvid=f0ed2a6d7fb07688:5a342200:1265973105c:-7f46?GROUP"

Referenced By

alter application

alter group

alter user

create group

MaxL Definitions 787

create user

display group

display privilege

display user

drop group

grant

HOST-NAME
The name of a computer. The maximum length of a computer name can be 1024 bytes (non-
Unicode application) or characters (Unicode application).

For Essbase failover clusters, you must use the URL-based Essbase Server name for the host
name:

http[s]://host:port/aps/Essbase?clusterName=logicalName

For secure mode (SSL), the URL syntax is

http[s]://host:port/aps/Essbase?ClusterName=logicalName&SecureMODE=yesORno

For example,

https://myhost:13080/aps/Essbase?clustername=Essbase-Cluster1&SecureMODE=Yes

You can optionally use IP addresses in place of host names when creating, dropping, or altering
partition definitions. For example: '127.0.0.1'.

If you are creating, altering, or dropping a partition to or from another agent on the same
computer, see “Specifying Port Numbers in Partition Host Names” on page 923 for more
information.

If you are using host name aliases, see “Using Host Name Aliases When Partitioning” on page
924.

For information about partitioning in secure mode (SSL), see also “Partitioning and SSL” on
page 925.

Leading or trailing spaces in the host name are illegal and will be trimmed off.

Type

name (see “MaxL Syntax Notes” on page 768)

ID-RANGE
A comma-separated list of sequence ID ranges for logged sequential transactions. A range can
consist of:

l A single transaction: n to n; for example, 1 to 1

l Multiple transactions: x to y; for example, 20 to 100

788 MaxL

Type

string (see “MaxL Syntax Notes” on page 768)

Example

1 to 10,20 to 100

Referenced By

alter database

ID-STRING
Unique identity attribute identifying a user or group in a directory.

A unique identity attribute, or "identity," is a unique string assigned to every user and group
when Essbase is in EPM System security mode. The identity enables Essbase to distinguish
between users and groups with the same name across providers.

To find the identities of existing users or groups, use display user or display group.

For more information about unique identity attributes, see Oracle Hyperion Enterprise
Performance Management System Security Administration Guide.

Example

native://nvid=f0ed2a6d7fb07688:5a342200:1265973105c:-7f46?USER

Referenced By

USER-NAME

GROUP-NAME

IMPORT-DIR
A string representing the full path to the directory used in the export lro statement.

Note: If importing lros from a server directory (using from server syntax of import lro), you
can give just the full directory name instead of the full path, as specified by “EXPORT-
DIR” on page 783.

The string must be enclosed in single or double quotation marks.

Type

string (see “MaxL Syntax Notes” on page 768)

MaxL Definitions 789

Example

l 'C:\\Hyperion\\products\\Essbase\\EssbaseServer\\app\\sample-basic-

lros'

l 'home/exports/temp/sample-basic-lros'

l "$ARBORPATH\\app\\sample-basic-lros"

Note: If variables are used, the string should be enclosed in double quotation marks.

For information about how IMPORT-DIR is created, see the grammar and definitions for export
lro.

Referenced By

import lro

IMP-FILE
A name or absolute path to a server-side rules file or data file, used for import data and import
dimension statements.

If the data or rules file is specified to be on the server, the following rules apply. If the data or
rules file is specified to be local (or left unspecified, in which case it is also local), skip the following
and use “FILE-NAME” on page 783.

If you are using server data_file or server rules_file, you can get the file from any application
(not just the current application) by starting the IMP-FILE string using the following pattern:

FILE_SEP AppName FILE_SEP DbName FILE_SEP rest_of_file_name

where FILE_SEP must be either / or \\.

Type

name (see “MaxL Syntax Notes” on page 768)

Examples

Consider the MaxL statement

import database demo.basic data
from server rules_file 'IMP-FILE'
on error abort;

If IMP-FILE is 'calcdat.txt', the file will be looked for in \Demo\Basic\calcdat.txt.

If IMP-FILE is '/Sample/Basic/calcdat.txt' (or '\\Sample\\Basic\
\calcdat.txt'), the file will be looked for in \Sample\Basic\calcdat.txt.

If the FILE_SEP string FILE_SEP string FILE_SEP pattern does not start the string, the entire
string is used as the filename, but the current application directory is assumed. For example, if
the initial file separator is omitted and IMP-FILE is incorrectly specified as 'Sample/Basic/
calcdat.txt', the file will be looked for in /Demo/Basic/Sample/Basic/calcdat.txt.

790 MaxL

import database demo.basic data
from server file '/Sample/Basic/Calcdat.txt'
on error abort;

Essbase looks for calcdat.txt inside the Sample.Basic directory, and loads the data to Demo.Basic.

Referenced By

import data

import dimensions

JAVACLASS.METHOD
The java class and the method representing the custom-defined function. Must be a fully
qualified java method name and signature, enclosed in single or double quotation marks.

Type

string (see “MaxL Syntax Notes” on page 768)

Example

'com.hyperion.essbase.calculator.Statistics.covariance'

For Java code examples and MaxL registration scripts for custom-defined functions, see Custom-
Defined Calculation Function Examples

Referenced By

create function

LOCATION-ALIAS-NAME
The name of a location alias referencing another database.

Syntax

name1.name2.name3

l name1 - Application name.

l name2 - Database name.

l name3 - Location alias name.

Type

name (see “MaxL Syntax Notes” on page 768)

Example

Sample.Basic.EasternDB

MaxL Definitions 791

Referenced By

create location alias

display location alias

LOC-ALIAS-SINGLE
The single form of a location alias name. Use if you are creating a new location alias.

Type

name (see “MaxL Syntax Notes” on page 768)

Example

EasternDB

Referenced By

alter database

create location alias

LOG-TIME
A specific log time after which to replay subsequent transactions. Enclose the value in quotation
marks.

Type

string (see “MaxL Syntax Notes” on page 768)

Example

'11_20_2007:12:20:00'

Referenced By

alter database

MACRO-EXPANSION
Extended definition of the macro, to be substituted in wherever the registered macro name is
referenced in a calculation. If the string contains special characters (see “MaxL Syntax Notes”
on page 768), it must be enclosed in single or double quotation marks.

Type

string (see “MaxL Syntax Notes” on page 768)

792 MaxL

Example

'@COUNT(SKIPMISSING,@RANGE(@@S))'

For more information, see “Custom-Defined Macros” on page 292.

Referenced By

create macro

MACRO-NAME
The name of a custom-defined Essbase macro. Macro names are a shorthand way to refer to
macro expansions.

The name of a macro is a unique string that begins with a letter or a @, #, $, _ symbol. The name
can include alphanumeric characters or the aforementioned symbols. It is recommended that
you start a macro name with @. Although macros must have unique names within a given
application, a global macro and a local macro can share the same name. However, the local
macro takes precedence.

To create or refer to a local (application-level) macro, use the double name (for example,
Sample.'@JSUM').

Any part of the name that contains special characters (see “MaxL Syntax Notes” on page
768),must be enclosed in single or double quotation marks.

Syntax

name1.name2 (local)

OR

name2 (global)

l name1 - Application name.

l name2 - Macro name.

Type

name (see “MaxL Syntax Notes” on page 768)

Example

l Sample.'@COUNTRANGE' - Application-level (local) macro name without a signature,
meaning that there are no restrictions on its arguments.

l Sample.'@COUNTRANGE(Any)' - Same as Sample.'@COUNTRANGE'. Once registered for
the application, @COUNTRANGE can take any arguments.

l '@JCOUNTS' - System-level (global) macro name.

l '@JCOUNTS(single,group)' - Same as '@JCOUNTS', but with a signature restricting its
arguments.

MaxL Definitions 793

For more information about macro signatures (input parameters), see “Custom-Defined Macro
Input Parameters” on page 292

Referenced By

create macro

display macro

drop macro

ALLOC-NUMERIC
An MDX numeric value expression used to specify the amount for an allocation source. The
amount value is allocated to cells in the target region. The allocation numeric is one of the
following:

l An MDX tuple

l A number

l An arithmetic expression using member names, with the following restrictions:

m All members in the expression must be from the same dimension.

m Tuples cannot be used.

m Only arithmetic operators (+, -, /, and *) can be used.

m MDX functions (such as Avg and Parent) are not allowed.

Type

string (see “MaxL Syntax Notes” on page 768)

Examples

l (Acc_1000, Jan_2009)

l 100.00

l (Acc_1000 + Acc_2000)/2

l AcctA + AcctB

l Balance * 1.1

Referenced By

execute allocation (aggregate storage)

MEMBER-EXPRESSION
Outline member specification of members from one or more dimensions, member
combinations separated by commas, or member sets defined with functions. Must be enclosed
in single or double quotation marks.

794 MaxL

Type

string (see “MaxL Syntax Notes” on page 768)

Example

'@ANCESTORS(Qtr2)'

If MEMBER-EXPRESSION contains MEMBER-NAMES that begin with numbers or contain
special characters, enclose those member names in double quotation marks, and the entire
MEMBER EXPRESSION in single quotation marks. For example:

l create or replace filter demo.basic.numfilt no_access on '"2"';

l '@DESCENDANTS("Eastern Region"), @CHILDREN(Qtr1)'

The following example shows how create drillthrough uses a member expression to define the
list of drillable regions.

create drillthrough sample.basic.myURL from xml_file "temp.xml" on
{'@Ichildren("Qtr1")', '@Ichildren("Qtr2")'} level0 only;

Referenced By

alter filter

create filter

create partition

create drillthrough

alter drillthrough

MEMBER-NAME
The name of a database outline member.

If the name contains special characters (see “MaxL Syntax Notes” on page 768), it must be
enclosed in single quotation marks.

Type

name (see “MaxL Syntax Notes” on page 768)

Example

l Jan

l 'New York'

If MEMBER-NAME is part of “MEMBER-EXPRESSION” on page 794 and MEMBER-NAME
begins with a number or contains special characters (see “MaxL Syntax Notes” on page 768),
enclose MEMBER-NAME in double quotation marks and enclose MEMBER-EXPRESSION in
single quotation marks.

MaxL Definitions 795

Referenced By

alter database

create partition

query database

MODEL-ACCESSOR
The entity in a data-mining model that accesses data. The data can be input, output, or model
data. The accessor name reflects the type of data it accesses.

Type

string (see “MaxL Syntax Notes” on page 768)

Example

predictor or target

Referenced By

display model

MODEL-MODE
The task mode for the data-mining model. Possible values for this string are: apply or test.

Type

string (see “MaxL Syntax Notes” on page 768)

Referenced By

display model

MODEL-NAME
The name of a data-mining model to apply to create data mining results. The model must exist.

Type

name (see “MaxL Syntax Notes” on page 768)

Referenced By

Create Modeldisplay model

drop model

export model

create mining result

796 MaxL

OBJ-NAME
The name of a database object. Three tokens are required, to indicate application and database
context.

Syntax

name1.name2.name3

l name1 - Application name.

l name2 - Database name.

l name3 - Object name.

Type

name (see “MaxL Syntax Notes” on page 768)

Example

Sample.basic.Calcdat

Referenced By

alter object

drop object

OBJ-NAME-SINGLE
A stored database object name that is the third token of a database-level “OBJ-NAME” on page
797.

If any part of the name contains special characters (see “MaxL Syntax Notes” on page 768), it
must be enclosed in single or double quotation marks.

Type

name (see “MaxL Syntax Notes” on page 768)

Example

If the full database object name is sample.basic.calcdat, then OBJ-NAME-SINGLE is
calcdat.

Referenced By

alter object

MaxL Definitions 797

OUTLINE-ID
The numeric identification of an aggregate storage outline associated with a view. The outline
ID is returned by the execute aggregate selection statement. The execute aggregate selection
statement returns a set of views, including the outline ID for the views it returns.

Type

number (see “MaxL Syntax Notes” on page 768)

Example

4142187876

Referenced By

execute aggregate selection

execute aggregate build

PASSWORD
A user's password. Not applicable for externally authenticated users.

Password guidelines:

l Non-Unicode application limit: 100 bytes

l Unicode-mode application limit: 100 characters

l If the string contains special characters (see “MaxL Syntax Notes” on page 768), the password
must be enclosed in single or double quotation marks

l Leading or trailing spaces are illegal and will be trimmed off

Type

string (see “MaxL Syntax Notes” on page 768)

Referenced By

alter partition

alter user

create location alias

create outline

create partition

create user

Login

798 MaxL

PATHNAME_FILENAME
An absolute path to a file. If the string contains special characters (see “MaxL Syntax Notes” on
page 768), it must be enclosed in single or double quotation marks. Double quotation marks
allows variable expansion; single quotation marks does not. If the file path contains a backslash
(\), it must be preceded with another backslash (\\) to be interpreted correctly by the MaxL
Shell.

Type

string (see “MaxL Syntax Notes” on page 768)

Example

l 'C:\\Hyperion\\products\\Essbase\\EssbaseServer\\app\\Sample\\Basic\

\listoutput.csv'

l "$ARBORPATH/errors.txt"

l "$ARBORPATH\\app\\sample\\basic\\calcdat.txt" (double quotation marks to
expand the variable)

Referenced By

query database

PRECISION-DIGITS
An integer between 0 and 15, inclusive.

Type

number (see “MaxL Syntax Notes” on page 768)

Referenced By

alter session

PROPS
Aggregate storage data load properties that determine how missing and zero values, duplicate
values, and multiple values for the same cell in the data source are processed.

l ignore_missing_values: Ignore missing values in the data source.

l ignore_zero_values: Ignore zeros in the data source.

l aggregate_use_last: Combine duplicate cells by using the value of the cell that was
loaded last into the data load buffer. When using this option, data loads are significantly
slower, even if there are not any duplicate values.

MaxL Definitions 799

Caution! The aggregate_use_last method has significant performance impact, and is
not intended for large data loads. If your data load is larger than one million
cells, consider separating the numeric data into a separate data load process
(from any typed measure data). The separate data load can use
aggregate_sum instead.

l aggregate_sum: (Default) Add values when the buffer contains multiple values for the
same cell.

If you use multiple properties and any conflict occurs, the last property listed takes precedence.

Type

string (see “MaxL Syntax Notes” on page 768)

Referenced By

alter database (aggregate storage)

RECORD-EXPR
Used for scoring, a data mining expression of data as a list of MDX tuples.

Type

string (see “MaxL Syntax Notes” on page 768)

Example

{([New_York],[Bagel],[Profit]),(New_York],[Rye_bread],[Cost]),

([Boston],[Wheat_bread], [Cost])}

For more information see the Oracle Essbase Database Administrator's Guide chapter titled
"Mining an Essbase Database."

Referenced By

query database

RESULT-ACCESSOR
The entity in a data-mining result record that accesses data. The data can be input, output, or
model data. The accessor name reflects the type of data it accesses.

Type

string (see “MaxL Syntax Notes” on page 768)

Example

predictor or target

800 MaxL

Referenced By

display mining result

RESULT-MODE
The task mode for the data-mining result. Possible values for this string are: apply or test.

Type

string (see “MaxL Syntax Notes” on page 768)

Example

apply

Referenced By

create mining result

display mining result

drop mining result

RESULT-NAME
The name of a data-mining result record.

Type

name (see “MaxL Syntax Notes” on page 768)

Referenced By

create mining result

display mining result

drop mining result

RNUM
Resource usage specification for temporary aggregate storage data load buffer.

Must be a number between .01 and 1.0 inclusive. If not specified, the default value is 1.0. Only
two digits after the decimal point are significant (for example, 0.029 is interpreted as 0.02). The
total resource usage of all load buffers created on a database cannot exceed 1.0 (for example, if
a buffer of size 0.9 exists, you cannot create another buffer of a size greater than 0.1). Send
operations internally create load buffers of size 0.2; therefore, a load buffer of the default size of
1.0 will cause send operations to fail because of insufficient load buffer resources.

MaxL Definitions 801

Type

number (see “MaxL Syntax Notes” on page 768)

Example

0.02

Referenced By

alter database (aggregate storage)

RULE-FILE-NAME
A comma separated list of strings of rules-file names. Each rules-file name should be an 8-
character object file name with no extension. The rule files must reside on the Essbase server.

Type

string (see “MaxL Syntax Notes” on page 768)

Example

'h1h1h1' , 'h1h1h2'

Referenced By

import data (aggregate storage)

SESSION-ID
The unique session ID. This ID can be used to logout a user session, or kill the current request
in that session.

Type

number (see “MaxL Syntax Notes” on page 768)

Example

3310545319

Referenced By

alter system

display session

query database

display mining session

802 MaxL

SIZE-STRING

Syntax

number units

OR

number

l number - Any positive number. Decimals and scientific notation are permitted. Whitespace
between number and units is optional.

l units - One of the following: b, kb, mb, gb, tb (case-insensitive).If units are unspecified, bytes
are assumed.

Type

number (see “MaxL Syntax Notes” on page 768)

Examples

51040b
51040 b
11MB
11000kb
12.34gb
1234e-2gb

Referenced By

alter application

alter database

alter tablespace

SPOOL-NAME
The name of a trigger's output file, as specified in the THEN or ELSE section of the create
trigger statement.

Syntax

name1.name2.name3

Type

name (see “MaxL Syntax Notes” on page 768)

Example

In the following create trigger statement, the bold section is the spool name.

create or replace trigger Sample.Basic.Trigger_Jan_20
where "(Jan,Sales,[100],East,Actual)"

MaxL Definitions 803

when Jan > 20 and is(Year.currentmember,Jan) then
spool Trigger_Jan_20
end;

Referenced By

display trigger spool

drop trigger spool

ST-HIER
A named hierarchy in Essbase Studio.

Referenced By

deploy

ST-LEAF
A path in an Essbase Studio hierarchy leading from a top level to level 0. All levels from top to
bottom must be included. Each level name must be enclosed in single quotation marks. Level
names must be separated using the following character sequence: -<

Example

'H_Market'-<'REGION'-<'STATE'

Referenced By

deploy

STOPPING-VAL
Optional stopping value for the execute aggregate process statement. Use this value to give the
ratio of the growth size you want to allow during the materialization of an aggregate storage
database, versus the pre-aggregation size of the database (Before an aggregation is materialized,
the database contains only level 0 input-level data.)

Type

number (see “MaxL Syntax Notes” on page 768)

Example

A stopping value of 1.5 means that during the materialization of the aggregation, the aggregate
cells are allowed to occupy up to 50% of the disk space occupied by the level-0 data.

Referenced By

execute aggregate selection

804 MaxL

execute aggregate process

TABLSP-NAME
The name of a tablespace. Tablespaces are applicable only to aggregate storage databases. For
this release, possible names for tablespaces you can alter are default and temp. Other tablespace
names reserved by the system are metadata and log.

Syntax

name1.name2

l name1 - Application name.

l name2 - Tablespace name.

Type

name (see “MaxL Syntax Notes” on page 768)

Example

temp

Referenced By

alter tablespace

display tablespace

TASK-MODE
The mode for the data-mining task template. Possible values for this string are: build, apply,
test or score.

Type

string (see “MaxL Syntax Notes” on page 768)

Example

apply

Referenced By

display mining task template

drop mining task template

TASK-NAME
The name of a data-mining build, apply, or test template. You use a template to create the
corresponding model.

MaxL Definitions 805

Type

name (see “MaxL Syntax Notes” on page 768)

Referenced By

create mining task template

display mining task template

drop mining task template

TASK-XML-STRING
A string of XML representing a data-mining task to execute. Must be enclosed in single quotation
marks.

There are several ways of obtaining the XML string. For the build task, the XML can be obtained
either from display algorithm template (for a new build template) or from display
mining template with mode 'build' (for an existing build template). For the apply task,
the XML can be obtained either from display model template (for a new apply template)
or from display mining template with mode 'apply' (for an existing apply template).

You may need to do the following before pasting the XML string into a MaxL statement:

1. modify expressions in the template

2. escape all single quotation marks in the XML (replace all ' with \')

Type

string (see “MaxL Syntax Notes” on page 768)

Referenced By

create mining result

create mining task template

create model

TRANSF-CLASS
The Java class and the method representing a data-mining transformation. Must be the fully
qualified name of the Java class that contains the logic for the transformation. Must be enclosed
in single quotation marks.

Type

string (see “MaxL Syntax Notes” on page 768)

Example

com.hyperion.essbase.transformations.Log

806 MaxL

Referenced By

create transformation

TRANSF-NAME
The name of a data-mining transformation. Must be enclosed in single quotation marks.

Type

name (see “MaxL Syntax Notes” on page 768)

Referenced By

create transformation

display transformation

drop transformation

TRIGGER-NAME
The name of the trigger device created to track and respond to database updates. Trigger names
must be triple names, specifying application name, database name, and trigger name (if you
rename the application or database, the trigger is invalidated). Trigger names are case-
insensitive, are a maximum of 30 bytes, and cannot contain special characters.

Syntax

name1.name2.name3

l name1 - Application name.

l name2 - Database name.

l name3 - The name of the trigger.

Type

name (see “MaxL Syntax Notes” on page 768)

Example

Sample.Basic.MyTrigger

Referenced By

alter trigger

create trigger

display trigger

drop trigger

MaxL Definitions 807

UNIQUE-VOL-NAME
The unique name of the disk volume definition. Unlike the name used when the disk volume
definition was created (“VOLUME-NAME” on page 812), the unique disk-volume name must
be a triple. The first two parts of the name specify application and database context. The third
part of the name, on Windows, is a drive letter. On UNIX, it is a path to the EssbaseServer
directory.

If any part of the name contains special characters (see “MaxL Syntax Notes” on page 768), that
part must be enclosed in single or double quotation marks.

If a Windows file path is used which contains a backslash (\), it must be preceded with another
backslash (\\) to be interpreted correctly by the MaxL Shell. If variables are used, enclose the
single-quoted string in double quotes so that the MaxL Shell knows to expand the variables.

Syntax

name1.name2.name3

l name1 - Application name.

l name2 - Database name.

l name3 - Disk volume name.

Type

name (see “MaxL Syntax Notes” on page 768)

Example

sample.basic.'vol3/hyperion/products/Essbase/EssbaseServer'
sample.basic.c
sample.basic."'$ARBORPATH\\diskvol_area'"

Referenced By

display disk volume

URL-NAME
The name of a drill-through URL definition used to link to content hosted on Oracle ERP and
EPM applications.

Syntax

name1.name2.name3

l name1—Application name

l name2—Database name

l name3—URL name

808 MaxL

Type

name (see “MaxL Syntax Notes” on page 768)

Example

Sample.basic.MyURL

If any part of the name contains special characters (see “MaxL Syntax Notes” on page 768), the
name must be enclosed in single or double quotation marks.

Referenced By

create drillthrough

alter drillthrough

display drillthrough

drop drillthrough

USER-NAME
The name of the user. If the user is authenticated with Shared Services, the name must match a
valid login name on one of the configured authentication repositories.

User name guidelines:

l Non-Unicode application limit: 256 bytes

l Unicode-mode application limit: 256 characters

l If the user name contains any special characters (see “MaxL Syntax Notes” on page 768),
the name must be enclosed in single or double quotation marks.

When Essbase is in EPM System security mode, USER-NAME can include a user directory
specification or unique identity attribute.

In EPM System security mode, user and group names can be non unique, if you specify either
the user or group's provider directory or unique identity attribute.

Types

l name (see “MaxL Syntax Notes” on page 768)

l name@provider

l WITH IDENTITY ID-STRING

where provider is the name of a user directory (such as LDAP or Active Directory) that hosts
the external user, and ID-STRING is a unique identity assigned to every user and group (if
Essbase is in Oracle Hyperion Enterprise Performance Management System security mode).

MaxL Definitions 809

Note: If a user or group name includes the @ character, you must specify the provider as well,
or else Shared Services considers the @ character as a delimiter indicating a provider name.
For example, if you want to log in user admin@msad which is on a Native Directory
provider, you must specify 'admin@msad@Native Directory'.

Examples

JWSmith

JWSmith@Native Directory

with identity "native://nvid=f0ed2a6d7fb07688:5a342200:1265973105c:-7f46?USER"

Referenced By

alter application

alter database

alter partition

alter system

alter user

create location alias

create outline

create partition

create user

display privilege

display user

drop lock

drop user

grant

query database

Login

VARIABLE-NAME
The name of the substitution variable. The name can only contain alphanumeric characters and
the underscore (a-z A-Z 0-9 _).

Type

name (see “MaxL Syntax Notes” on page 768)

810 MaxL

Example

curmonth

Referenced By

alter application

alter database

alter system

display variable

VIEW-FILE-NAME
An aggregation script containing information derived during aggregate view selection.

The file is created under ARBORPATH\app\app_name\db_name\ with a .csc extension.

Aggregation scripts are valid as long as the dimension level structure in the outline has not
changed.

Executing an aggregation script (using execute aggregate build) materializes the aggregate views
specified within it.

The .csc extension is optional when executing the script.

The file name can be a maximum of 8 characters in length (excluding the extension) and must
not contain any of the following characters, or whitespace: :;.,=+*?[]|<>"'\/

Type

string (see “MaxL Syntax Notes” on page 768)

Referenced By

execute aggregate selection

execute aggregate build

query database

VIEW-ID
The numeric identification of an aggregate view, returned by the execute aggregate selection
statement. The concept of views applies only to aggregate storage databases.

VIEW-IDs persist only as long as their associated “OUTLINE-ID” on page 798s. OUTLINE-IDs
change when changes are made to the outline.

Type

number (see “MaxL Syntax Notes” on page 768)

MaxL Definitions 811

Example

8941

Referenced By

execute aggregate selection

execute aggregate build

VIEW-SIZE
Approximate view size as a fraction of input data size. For example, a view size of 0.5 means
that the view is 2X smaller than the input-level view. The concept of views applies only to
aggregate storage databases.

Type

number (see “MaxL Syntax Notes” on page 768)

Referenced By

execute aggregate build

VOL-REPL
A disk-volume replacement specification when restoring from an archive file.

Valid values are a comma-separated list of volumes to replace:

l 'VOL1' with 'VOL2'

l 'VOL3' with 'VOL4'

l 'VOL5' with 'VOL6'

Type

string (see “MaxL Syntax Notes” on page 768)

Example

'C' with 'F', 'D' with 'G', 'E' with 'H'

Referenced By

alter database

VOLUME-NAME
The name of the disk volume. On Windows, a drive letter. On UNIX, a path to the
EssbaseServer directory.

812 MaxL

If the name contains special characters (see “MaxL Syntax Notes” on page 768), it must be
enclosed in single or double quotation marks.

If a Windows file path is used which contains a backslash (\), it must be preceded with another
backslash (\\) to be interpreted correctly by the MaxL Shell. If variables are used, enclose the
single-quoted string in double quotes so that the MaxL Shell knows to expand the variables.

Type

name (see “MaxL Syntax Notes” on page 768)

Examples

'vol3/hyperion/products/Essbase/EssbaseServer'

"'$ARBORPATH\\diskvol_area'"

Referenced By

alter database

Privileges and Roles
Essbase system privileges are indivisible database access types. In MaxL, privileges are grouped
together to form permission-sets called roles. With the exception of create_user and
create_application, privileges themselves are not grantable using MaxL; you typically grant
roles, which are the equivalent of privilege levels. The scope of a role can be the system, the
application, or the database.

While one privilege does not imply another, roles are hierarchical. The following table illustrates
the Essbase system privileges that are contained in each MaxL system role.

Privileges and
Roles

read write calculate manage
database

create
database

start
application

manage
application

create/drop
application

create/
drop user

no access

read

write

execute

manager
(database)

.

manager
(application)

. .

administrator

MaxL Definitions 813

System-Level System Privileges
The following privileges apply at the system level. These privileges are built-in; they do not apply
to any specific application or database. They are not included in any role except for the role of
administrator.

l create_application—Ability to create and delete applications.

l create_user—Ability to create and delete users and groups.

System-Level System Roles
System-level system roles are applicable to the Essbase system. The following roles have a system-
wide scope:

l no_access—No access to the system.

l administrator—Full access to the entire system, including other administrators.

Application-Level System Roles
Application-level system roles are applicable to an application. The following roles may have an
application-wide scope:

l no_access—No access to the application or any databases within it.

l manager—Manager access to the application and any databases within it. Manager access
means ability to create, delete, and modify databases within the application, in addition to
having Read, Write, and Execute access for that application.

Database-Level System Roles

Minimum Database Permissions

Database-level system roles are applicable to databases. The following roles have a database-wide
scope and are available when assigning minimum database permissions:

814 MaxL

l no_access—No access to the database (if assigned using alter database) or to any databases
in the application (if assigned using alter application).

l read—Read-only access to the database (if assigned using alter database) or to all databases
in the application (if assigned using alter application). Read access means ability to view
files, retrieve data values, and run report scripts.

l write—Write access to the database (if assigned using alter database) or to all databases in
the application (if assigned using alter application). Write access means ability to update
data values, in addition to having Read access.

l execute—Calculate access to the database (if assigned using alter database) or to all databases
in the application (if assigned using alter application). Calculate access means ability to
update data values, in addition to having Read and Write access.

l manager—Manager access to the database (if assigned using alter database) or to all
databases in the application (if assigned using alter application). Manager access means
ability to modify database outlines, in addition to having Read and Write access.

Database Roles Grantable to Users and Groups

The following database-level system roles are available for granting to users and groups:

l no_access—No access to the database.

l read—Read-only access to the database. Read access means ability to view files, retrieve data
values, and run report scripts.

l write—Write access to the database. Write access means ability to update data values, in
addition to having Read access.

l manager—Manager access to the database. Manager access means ability to modify database
outlines, in addition to having Read and Write access.

Note: After granting read, write, or manager privilege to a user or group, these can be revoked
by subsequently granting no_access. However, to prevent users from being able to load
the application, you should also grant no_access at the application level. For example:

MaxL Definitions 815

/* Grant read permission on a database */
grant read on database Sample.Basic to user1;

/* Revoke read permission on the database */
grant no_access on database Sample.Basic to user1;

/* Revoke read permission at the application level, to remove application-startup
permission */
grant no_access on application Sample to user1;

Filter Roles
The following subset of database-level system roles may be granted or revoked using filters.

l no_access—No access to the database.

l read—Read-only access to the database. Read access means ability to view files, retrieve data
values, and run report scripts.

l write—Write access to the database. Write access means ability to update data values, in
addition to having Read access.

l meta_read—Restricted access to sibling and ancestral metadata (dimensions and members).
In case of a filtering conflict, the MetaRead filtering overrides the other filter permissions.
For more information about metatdata filtering, see “Metadata Filtering” on page 926.

Note: After granting permissions using a filter, the permission can be revoked by subsequently
granting no_access to the database. However, to prevent users from being able to load the
application, you should also grant no_access at the application level. For example:

/* Grant read permission on a database, using a filter */
grant filter Sample.basic.filter8 to user1;

/* Revoke the filter, removing read permission on the database */
grant no_access on database Sample.Basic to user1;

/* Revoke read permission at the application level, to remove application-startup
permission */
grant no_access on application Sample to user1;

Quoting and Special Characters Rules for MaxL Language
These rules apply to terminals of MaxL statements; for example, USER-NAME or FILE-NAME.
Rules for MaxL Shell also apply (see “MaxL Shell Syntax Rules and Variables” on page 828).

816 MaxL

Tokens enclosed in Single Quotation Marks
Contents are preserved as literal, with the following exceptions:

l One backslash is ignored; two are treated as one.

l Apostrophe must be escaped using one backslash (\').

Example: export database sample.basic data to data_file 'D:\\export.txt';

Result: Exports data to D:\export.txt.

Example: create user 'O'Brian' identified by 'password';

Result: Error.

Example: create user 'O\'Brian' identified by 'password';

Result: User O'Brian is created.

Tokens Enclosed in Double Quotation Marks
Contents are preserved as literal, with the following exceptions:

l Variables are expanded.

l One backslash is ignored; two are treated as one.

l Apostrophe must be escaped using one backslash (\').

Example: export database sample.basic data to data_file "D:\\export.txt";

Result: Exports data to D:\export.txt.

Example: export database sample.basic data to data_file "$ARBORPATH\\App\
\Sample\\Basic\\export.txt";

Result: Exports data to C:\Hyperion\products\Essbase\EssbaseServer\App\Sample
\Basic\export.txt.

Example: create user "O'Brian" identified by 'password';

Result: Error.

Example: create user "O\'Brian" identified by 'password';

Result: User O'Brian is created.

Use of Backslashes in MaxL
Ignored unless preceded by another backslash (the escape character). Must use single or double
quotation marks around the token containing the two backslashes.

create application 'finance\\budget';

Result: Application finance\budget is created.

Example (Windows):

MaxL Definitions 817

 export database sample.basic using report_file
 'EssbaseServer\\App\\Sample\\Basic\\asym.rep'
 to data_file 'c:\\home\\month2.rpt';

Result: The Windows file paths are interpreted correctly as EssbaseServer\App\Sample
\Basic\asym.rep and c:\home\month2.rpt.

Use of Apostrophes (Single Quotation Marks)
Syntax error returned, unless preceded by a backslash (the escape character) and enclosed in
single or double quotation marks.

Example:create user 'O\'Brian' identified by 'password';

Result: User O'Brian is created.

Note: Use sparingly. Apostrophes are permitted by Essbase in user and group names, but not
in application or database names.

Use of Dollar Signs
Syntax error returned, unless preceded by a backslash (the escape character) and enclosed in
single quotation marks. Dollar signs ($) intended literally need to be escaped by the backslash
so that they are not considered variable indicators.

Example:create application '\$App1';

Result: Application $App1 is created.

MaxL Shell Commands
The MaxL Shell (essmsh) is a pre-parser mechanism for entering MaxL statements. The MaxL
Shell has a separate set of useful commands, independent of the MaxL language itself. Before
using any of the following MaxL Shell commands, you need to log in (see “Login” on page
826).

l “Spool on/off” on page 833

l “Set Display Column Width” on page 835

l “Set Message Level” on page 835

l “Set Timestamp” on page 836

l “Echo” on page 836

l “Shell Escape” on page 837

l “Nesting” on page 837

l “Error Checking and Branching” on page 837

l “Version” on page 840

l “Logout” on page 840

818 MaxL

l “Exit” on page 840

Overview of MaxL Shell
The MaxL Shell (essmsh) is one way to execute MaxL statements or scripts. The other interfaces
available for passing MaxL statements to the Essbase Server are:

l The MaxL Script Editor in the Administration Services Console. See the Oracle Essbase
Administration Services Online Help for information about using the script editor.

l Perl programs with embedded MaxL DDL statements, made possible by adding the “MaxL
Perl Module” on page 841 to your Perl package.

This section contains the following topics:

l Invocation and Login

l Syntax Rules and Variables

l Shell Commands

l “MaxL Shell and Unicode” on page 833

MaxL Shell Invocation
The MaxL Shell (essmsh) is a pre-parser mechanism for entering MaxL statements.

Start the shell to be used interactively, to read input from a file, or to read stream-oriented input
(standard input from another process). You can log in after you start the shell, interactively or
using a login statement in the input file. You can also log in at invocation time, by using the -l
flag (see “-l Flag: Login” on page 823).

l “Prerequisites for Using MaxL” on page 819

l “MaxL Invocation Summary” on page 820

l “Interactive Input” on page 822

l “File Input” on page 825

l “Standard Input” on page 826

l “Login” on page 826

l “LoginAs” on page 827

l “Encryption” on page 827

l “Query Cancellation” on page 827

Prerequisites for Using MaxL
Before the Essbase Server can receive MaxL statements,

1. The Essbase Server must be running.

MaxL Shell Commands 819

2. The MaxL Shell (essmsh) must be invoked (see “MaxL Invocation Summary” on page
820), if you are using the shell.

3. You must log in (see “Login” on page 826) to the Essbase Server from the MaxL Shell. If
you are running a MaxL script, the first line of your script must be a login statement.

When using the MaxL Shell or the MaxL Script Editor, you must use a semicolon (;) to terminate
each MaxL statement.

MaxL Invocation Summary
The following MaxL Shell help page summarizes invocation options. This help is also available
at the operating-system command prompt if you type essmsh -h | more.

essmsh(1)

NAME
 essmsh -- MaxL Shell

SYNOPSIS
 essmsh [-hlsmup] [-a | -i | file] [arguments...]

DESCRIPTION
 This document describes ways to invoke the MaxL Shell.
 The shell, invoked and nicknamed essmsh, takes input in the following
 ways: interactively (from the keyboard), standard input (piped from another
 program), or file input (taken from file specified on the command line).
 The MaxL Shell also accepts any number of command-line arguments,
 which can be used to represent any name.

OPTIONS
 essmsh accepts the following options on the command line:

 -h
 Prints this help.

 -l <user> <pwd>
 Logs in a user name and password to the local Essbase Server instance.

 -u <user>
 Specifies a user to be logged in to an Essbase Server instance.
 If omitted but the '-p' or '-s' flags are used, essmsh will
 prompt for the username.

 -p <pwd>
 Specifies a password of the user set by the '-u' option to
 be logged in to an Essbase Server instance. If omitted, essmsh
 will prompt for the password, and the password will be hidden
 on the screen.

 -s <server>
 Used after -l, or with [-u -p], logs the specified user into a named
 server. When omitted, localhost is implied.

 -m <msglevel>
 Sets the level of messages returned by the shell. Values for <msglevel>

820 MaxL

 are: all (the default), warning, error, and fatal.

 -i
 Starts a MaxL session which reads from <STDIN>, piped in from another program.
 The end of the session is signalled by the EOF character in that program.

 -a
 Allows a string of command-line arguments to be referenced from within the
 subsequent INTERACTIVE session. These arguments can be referenced with positional
 parameters, such as $1, $2, $3, etc. Note: omit the -a when using arguments with
 a file-input session.

NOTES

 No option is required to pass a filename to essmsh.

 Arguments passed to essmsh can represent anything: for example, a user name, an
 application name, or a filter name. Arguments must appear at the end of the
 invocation line, following '-a', '-i', or filename.

EXAMPLES

 Interactive session, simplest case:
 essmsh

 Interactive session, logging in a user:
 essmsh -l user pwd

 Interactive session, logging user in to a server:
 essmsh -l user pwd -s server

 Interactive session, logging in with two command-line arguments
 (referenced thereafter at the keyboard as $1 and $2):
 essmsh -l user pwd -a argument1 argument2

 Interactive session, with setting the message level:
 essmsh -m error

 Interactive session, hiding the password:
 essmsh -u user1
 Enter Password > ******

 File-input session, simplest case:
 essmsh filename

 File-input session, with three command-line arguments
 (referenced anonymously in the file as $1, $2, and $3):
 essmsh filename argument1 argument2 argument3

 Session reading from <STDIN>, logging into a server with two
 command-line arguments:
 essmsh -l user pwd -s server -i argument1 argument2

MaxL Shell Commands 821

Interactive Input
You can log into the MaxL Shell for interactive use (typing statements at the keyboard) in the
following ways. See “MaxL Invocation Summary” on page 820 for more descriptions of login
flags.

“No Flag” on page 822

“-a Flag: Arguments” on page 822

“-l Flag: Login” on page 823

“-u, -p, and -s Flags: Login Prompts and Hostname Selection” on page 824

“-m Flag: Message Level” on page 824

No Flag

Invoked without a flag, file name, or arguments, the MaxL Shell starts in interactive mode and
waits for you to log in. Note to Windows users: This is the same as double-clicking essmsh.exe,
located in the ESSBASEPATH\BIN directory.

Example:

essmsh

 Essbase MaxL Shell - Release 11.1.2
 Copyright (c) 2000, 2010, Oracle and/or its affiliates.
 All rights reserved.
MAXL> login Fiona identified by sunflower;

 49 - User logged in: [Fiona].

-a Flag: Arguments

With the -a flag, the MaxL Shell starts in interactive mode and accepts space-separated arguments
to be referenced at the keyboard with positional parameters.

Note: If interactive arguments are used with spooling turned on, variables are recorded in the
log file just as you typed them (for example, $1, $2, $ARBORPATH).

Example:

essmsh -a Fiona sunflower appname dbsname

Essbase MaxL Shell - Release 11.1.1
Copyright (c) 2000, 2008, Oracle and/or its affiliates.
All rights reserved.

822 MaxL

MAXL> spool on to 'D:\output\createapp.out';

MAXL> login $1 identified by $2;

 49 - User logged in: [Fiona].

MAXL> create application $3;

 30 - Application created: ['appname'].

MAXL> create database $3.$4 as Sample.Basic;

 36 - Database created: ['appname'.'dbsname'].

MAXL> echo $ARBORPATH;

C:\Hyperion\products\Essbase\EssbaseClient

MAXL> spool off;

Contents of logfile createapp.out:

MAXL> login $1 identified by $2;

 OK/INFO - 1051034 - Logging in user Fiona.
 OK/INFO - 1051035 - Last login on Friday, January 18, 2008 4:09:16 PM.
 OK/INFO - 1241001 - Logged in to Essbase.

MAXL> create application $3;

 OK/INFO - 1051061 - Application appname loaded - connection established.
 OK/INFO - 1054027 - Application [appname] started with process id [404].
 OK/INFO - 1056010 - Application appname created.

MAXL> create database $3.$4 as Sample.Basic;

 OK/INFO - 1056020 - Database appname.dbname created.

MAXL> echo $ARBORPATH;

C:\Hyperion\products\Essbase\EssbaseClient

MAXL> spool off;

-l Flag: Login

When the -l flag is used followed by a user name and password, the MaxL Shell logs in the given
user name and password and starts in interactive or non-interactive mode. The user name and
password must immediately follow the -l, and be separated from it by a space.

Example:

essmsh -l Fiona sunflower

Entered at the command prompt, this starts the MaxL Shell in interactive mode and logs in user
Fiona, who can henceforth issue MaxL statements at the keyboard.

MaxL Shell Commands 823

-u, -p, and -s Flags: Login Prompts and Hostname Selection

The MaxL Shell can be invoked using -u and -p options in interactive mode, for passing the user
name and password to the shell upon startup. To be prompted for both username and password,
use the -s option with the host name of the Essbase Server.

-s Flag: Host Name

If -s <host-name> is passed to the shell, MaxL will prompt for the user name and password, and
the password will be hidden.

Example:

essmsh -s localhost
Enter UserName> admin
Enter Password> ********

 OK/INFO - 1051034 - Logging in user admin.
 OK/INFO - 1051035 - Last login on Monday, January 28, 2003 10:06:16 AM.
 OK/INFO - 1241001 - Logged in to Essbase.

-u Flag: User Name

If -u <username> is passed to the shell and -p <password> is omitted, MaxL Shell will prompt
for the password, and the password will be hidden.

Example:

 essmsh -u user1
 Enter Password > ******

-p Flag: Password

If -p <password> is passed to the shell and -u <username> is omitted, MaxL Shell will prompt
for the user name.

Example:

 essmsh -p passwrd
 Enter Username > user1

-m Flag: Message Level

If -m <messageLevel> is passed to the shell, only the specified level of messages will be returned
by the shell.

Example:essmsh -m error

Values for the <messageLevel> include: default, all, warning, error, and fatal. The default value
is all (same as specifying default).

824 MaxL

File Input
You invoke the MaxL Shell to run scripts (instead of typing statements at the keyboard) in the
following ways. See “MaxL Invocation Summary” on page 820 for a complete description of
login flags.

“File Only” on page 825

“File Only” on page 825

File Only

If you type essmsh followed by a file name or path, the shell takes input from the specified file.

Examples:

essmsh C:\Hyperion\products\Essbase\EssbaseClient\scripts\filename.msh

Entered at the command prompt, this starts the shell, tells it to read MaxL statements from a
file, and terminates the session when it is finished.

essmsh filename

Starts the shell to read MaxL statements from filename, located in the current directory (the
directory from which the MaxL Shell was invoked).

File with Arguments

If you type essmsh followed by a file name followed by an argument or list of space-separated
arguments, essmsh remembers the command-line arguments, which can be referenced as $1,
$2, etc. in the specified file. If spooling is turned on, all variables are expanded in the log file.

Example:

D:\Scripts>essmsh filename.msh Fiona sunflower localhost newuser

Starts the shell to read MaxL statements from filename.msh, located in the current directory.

Contents of script filename.msh:

spool on to $HOME\\output\\filename.out;
login $1 $2 on $3;
create user $4 identified by $2;
echo "Essbase is installed in $ESSBASEPATH";
spool off;
exit;

Contents of logfile filename.out:

MAXL> login Fiona sunflower on localhost;

 49 - User logged in: [Fiona].

MAXL> create user newuser identified by sunflower;

MaxL Shell Commands 825

 20 - User created: ['newuser'].

Essbase is installed in C:\Hyperion\products\Essbase\EssbaseClient

Standard Input
With the -i flag, essmsh uses standard input, which could be input from another process. For
example,

program.sh | essmsh -i

When program.sh generates MaxL statements as output, you can pipe program.sh to essmsh -
i to use the standard output of program.sh as standard input for essmsh. essmsh receives input
as program.sh generates output, allowing for efficient co-execution of scripts.

Example:

echo login Fiona sunflower on localhost; display privilege user;|essmsh -i

The MaxL Shell takes input from the echo command's output. User Fiona is logged in, and user
privileges are displayed.

Login
Before you can send MaxL statements from the MaxL Shell to Essbase Server, you must log in
to an Essbase Server session.

Note: Before logging in to an Essbase Server session, you must start the MaxL Shell (see “MaxL
Invocation Summary” on page 820).Or, you can start the MaxL Shell and log in (see “-l
Flag: Login” on page 823) at the same time.

Note: Login is part of the MaxL Shell grammar, not the MaxL language itself. You can use a
login statement in MaxL scripts and the MaxL Shell, but you cannot embed it in Perl.

Example

login admin mypassword on localhost;

Establishes a connection to the Essbase Server for user Admin identified by mypassword.

login admin password on http://myhost:13080:aps/Essbase?clustername=EssbaseCluster1

Establishes a connection to an Essbase failover cluster for user Admin identified by password.

826 MaxL

LoginAs
To facilitate creating scheduled reports with user-appropriate permissions, administrators can
log in as another user from MaxL.

Example of "log in as" statement:

loginas USER-NAME PASSWORD MIMICKED-USER-NAME [on HOST-NAME];

Example of "log in as" invocation method:

essmsh -la USER-NAME PASSWORD MIMICKED-USER-NAME [-s HOST-NAME]

Interactive example:

MAXL>loginas;
Enter UserName> username
Enter Password> password
Enter Host> machine_name
Enter UserName to Login As> mimicked_user_name

Encryption
You can encrypt user and password information stored in MaxL scripts.

The following MaxL Shell invocation generates a public-private key pair that you can use to
encrypt a MaxL script.

essmsh -gk

The following MaxL Shell invocation encrypts the input MaxL script, obscuring user name and
password, and changing the file extension to .mxls.

essmsh -E scriptname.mxl PUBLIC-KEY

Nested scripts are also encrypted. To avoid this and encrypt only the base script, use -Em.

The following MaxL Shell invocation decrypts and executes the MaxL script.

essmsh -D scriptname.mxls PRIVATE-KEY

The following invocation encrypts input data and returns it in encrypted form. This is useful if
there is a need to manually prepare secure scripts.

essmsh -ep DATA PUBLIC-KEY

The following invocation enables you to encrypt the base script while saving any nested scripts
for manual encryption.

essmsh –Em scriptname.mxl PUBLIC-KEY

Query Cancellation
You can use the Esc key to cancel a query running from MaxL Shell.

MaxL Shell Commands 827

MaxL Shell Syntax Rules and Variables
The MaxL Shell (essmsh) is a pre-parser mechanism for entering MaxL statements. The following
syntax information can help you use the MaxL Shell successfully.

“Semicolons” on page 828

“Variables” on page 828

“Quoting and Special Characters Rules for MaxL Language” on page 816

Semicolons
When a MaxL statement is passed to Essbase Server interactively or in batch mode via the MaxL
Shell (essmsh), it must be terminated by a semicolon. Semicolons are used only to tell essmsh
when to terminate the statement; semicolons are not part of the MaxL language itself. Therefore,
when issuing MaxL statements programmatically through Perl or API programs, do not use
semicolons.

Examples

Program Example

Interactive MaxL Shell create application Sample;

MaxL Shell script: login $1 identified by $2;
create application Sample;
create currency database Sample.Interntl;
display database Sample.Interntl;
exit;

Perl function (Correct) print $dbh->do("create currency database Sample.Interntl");

Perl function (Incorrect) print $dbh->do("create currency database Sample.Interntl;");

Variables
“Overview of MaxL Shell” on page 819

“Environment Variables” on page 829

“Positional Parameters” on page 829

“Locally Defined Shell Variables” on page 830

“Quotation Marks and Variable Expansion” on page 830

“Exit Status Variable” on page 831

Overview of MaxL Shell Variables

In the MaxL Shell, you can use variables as placeholders for any data that is subject to change
or that you refer to often; for example, the name of a computer, user names, and passwords.

828 MaxL

You can use variables in MaxL scripts as well as during interactive use of the shell. Using variables
in MaxL scripts eliminates the need to create many customized scripts for each user, database,
or host.

Variables can be environment variables (for example, $ESSBASEPATH, which references the
directory Essbase is installed to), positional parameters (for example, $1, $2, etc.), or locally
defined shell variables.

All variables must begin with a $ (dollar sign). Locally defined shell variables should be set
without the dollar sign, but should be referenced with the dollar sign. Example:

set A = val_1;
echo $A;
val_1

Note: Variables can be in parentheses. Example: if $1 = arg1, then $(1)23 = arg123.

Use double quotation marks around a string when you want the string interpreted as a single
token with the variables recognized and expanded. For example, "$ESSBASEPATH" is
interpreted as C:\Hyperion\products\Essbase\EssbaseServer.

Use single quotation marks around a string to tell essmsh to recognize the string as a single token,
without expanding variables. For example, '$ESSBASEPATH' is interpreted as $ESSBASEPATH,
not C:\Hyperion\products\Essbase\EssbaseServer.

Environment Variables

You can reference any environment variable in the MaxL Shell.

Example (Windows): spool on to "$ESSBASEPATH\\out.txt";

Result: MaxL Shell session is recorded to C:\Hyperion\products\Essbase
\EssbaseServer\out.txt.

Example (UNIX): spool on to "$HOME/output.txt";

Result: MaxL Shell session is recorded to output.txt in the directory referenced by the
$HOME environment variable.

Positional Parameters

Positional parameter variables are passed in to the shell at invocation time as arguments, and
can be referred to generically by the subsequent script or interactive MaxL Shell session using
$n, where n is the number representing the order in which the argument was passed on the
command line.

For example, given the following invocation of the MaxL Shell,

essmsh filename Fiona sunflower

and the following subsequent login statement in that session,

login $1 identified by $2 on $COMPUTERNAME;

MaxL Shell Commands 829

l $COMPUTERNAME is a Windows environment variable.

l $1 and $2 refer to the user name and password passed in as arguments at invocation time.

The values of positional parameters can be changed within a session. For example, if the value
of $1 was originally Fiona (because essmsh was invoked with Fiona as the first argument), you
can change it using the following syntax:set 1 = arg_new;

Note: If you nest MaxL Shell scripts or interactive sessions, the nested shell does not recognize
positional parameters of the parent shell. The nested shell should be passed separate
arguments, if positional parameters are to be used.

The file or process that the MaxL Shell reads from can be referred to with the positional parameter
$0. Examples:

 1) Invocation: essmsh filename
 $0 = filename
 2) Invocation: program.sh | essmsh -i
 $0 = stdin
 3) Invocation: essmsh
 $0 = null

Locally Defined Shell Variables

You can create variables of any name in the MaxL Shell without the use of arguments or positional
parameters. These variables persist for the duration of the shell session, including in any nested
shell sessions.

Example:

MaxL>login user1 identified by password1;
MaxL>set var1 = sample;
MaxL>echo $var1; /* see what the value of $var1 is */
sample
MaxL>display application $var1; /* MaxL displays application "sample" */

Note: Locally defined variables can be named using alphabetic characters, numbers, and the
underscore (_). Variable values can be any characters, but take note of the usual quoting
and syntax rules that apply for the MaxL Shell (see “MaxL Shell Syntax Rules and
Variables” on page 828).

Note: Variables defined or changed in a nested script persist into the parent script after the
nested script executes.

Quotation Marks and Variable Expansion

In the following examples, assume you logged in to the MaxL Shell interactively with arguments,
as follows. In addition to these examples, see “Quoting and Special Characters Rules for MaxL
Shell” on page 831.

830 MaxL

essmsh -a Fiona sunflower sample basic login $1 $2;

Example Return Value Explanation

echo $1; Fiona $1 is expanded as the first invocation argument.

echo "$1's hat"; Fiona's hat $1 is expanded as the first invocation argument, and the
special character ' is allowed because double quotation marks
are used.

echo $3; sample $3 is expanded as the third invocation argument.

echo '$3'; $3 $3 is taken literally and not expanded, because it is protected
by single quotation marks.

display database
$3.$4;

Database sample.basic is displayed. $3 and $4 are expanded as the third and fourth invocation
arguments. $3.$4 is interpreted as two tokens, which makes
it suitable for “DBS-NAME” on page 780.

echo "$3.$4"; sample.basic, but interpreted as one token
(NOT suitable for “DBS-NAME” on page 780, which
requires two tokens).

$3 and $4 are expanded as the third and fourth invocation
arguments, but the entire string is interpreted as a single token,
because of the double quotation marks.

Exit Status Variable

A successful MaxL Shell operation should have an exit status of zero. Most unsuccessful MaxL
Shell operations have an exit status number, usually 1. Exit status can be referred to from within
the shell, using $?. For example,

MAXL> create application test1;
 OK/INFO - 1051061 - Application test1 loaded - connection established.
 OK/INFO - 1054027 - Application [test1] started with process id [234].
 OK/INFO - 1056010 - Application test1 created.
MAXL> echo $?;
0

MAXL> drop application no_such;
 ERROR - 1051030 - Application no_such does not exist.
MAXL> echo $?;
2

Quoting and Special Characters Rules for MaxL Shell
These rules are for MaxL Shell commands. Applicable MaxL Shell commands include Spool on/
off, Echo, Shell Escape, and Nesting.

See Also

“Quoting and Special Characters Rules for MaxL Language” on page 816

“Tokens enclosed in Single Quotation Marks” on page 817

“Tokens Enclosed in Double Quotation Marks” on page 817

“Use of Backslashes in MaxL” on page 817

MaxL Shell Commands 831

“Use of Apostrophes (Single Quotation Marks)” on page 818

Tokens enclosed in single quotation marks

Contents within single quotation marks are preserved as literal, without variable expansion.

Example: echo '$3';

Result: $3

Tokens enclosed in double quotation marks

Contents of double quotation marks are treated as a single token, and the contents are perceived
as literal except that variables are expanded.

Example: spool on to "$ESSBASEPATH\\out.txt";

Result: MaxL Shell session is recorded to C:\Hyperion\products\Essbase
\EssbaseServer\out.txt.

Example: spool on to "Ten o'clock.txt"

Result: MaxL Shell session is recorded to a file named Ten o'clock.txt

Use of apostrophes (single quotation marks)

Preserved if enclosed in double quotation marks. Otherwise, causes a syntax error.

Example: spool on to "Ten o'clock.txt"

Result: MaxL Shell session is recorded to a file named Ten o'clock.txt

Use of Backslashes

Backslashes must be enclosed in single or double quotation marks because they are special
characters.

One backslash is treated as one backslash by the shell, but is ignored or treated as an escape
character by MaxL. Two backslashes are treated as one backslash by the shell and MaxL.

'\ ' = \ (MaxL Shell)
'\ ' = (nothing) (MaxL)
'\\' = \\ (MaxL Shell)
'\\' = \ (MaxL)

Example: spool on to 'D:\output.txt'

Result: MaxL Shell records output to D:\output.txt.

Example: spool on to 'D:\\output.txt'

Result: MaxL Shell records output to D:\output.txt.

Example: import database sample.basic lro from directory "$ARBORPATH\app
\sample-basic-lros";

832 MaxL

Result: Error. Import is a MaxL statement, and for MaxL, '\' is ignored.

Example: import database sample.basic lro from directory "$ARBORPATH\\app
\\sample-basic-lros";

Result: MaxL imports LRO information to Sample Basic from $ARBORPATH\app\sample-
basic-lros.

MaxL Shell and Unicode
MaxL Shell is in native mode when started in interactive mode.

MaxL Shell is in native mode when processing a script without a UTF8 byte header.

MaxL Shell is in UTF8 mode when processing a script with the UTF8 byte header.

For more information, see the Oracle Essbase Database Administrator's Guide section titled
"Compatibility Between Different Versions of Client and Server Software."

MaxL Shell Command Reference
The following topics describe the MaxL Shell commands.

l Spool on/off

l Set display column width

l Set message level

l Set Timestamp

l Echo

l Shell Escape

l Nesting

l Error Checking and Branching

l Cube Deployment from Essbase Studio

l Version

l Logout

l Exit

Spool on/off
Log the output of a MaxL Shell session to a file. Send standard output, informational messages,
error messages, and/or warning messages generated by the execution of MaxL statements to a
file.

If FILE-NAME does not exist, it is created. If FILE-NAME already exists, it is overwritten. If a
directory path is not specified for FILE-NAME, FILE-NAME is created in the current directory
of the MaxL Shell. Directories cannot be created using the spool command.

MaxL Shell Commands 833

Message logging begins with spool on and ends with spool off.

Example

spool on to 'output.txt';

{MaxL statements}

spool off;

Sends output of MaxL statements to a file called output.txt, located in the current directory
where the MaxL Shell was invoked, or in eas\console\bin if the MaxL Script Editor is being
used.

spool on to 'c:\hyperion\output.txt';

Sends output of MaxL statements to a file called output.txt, located in the pre-existing directory
specified by an absolute path.

spool on to '../../../output.txt';

Sends output of MaxL statements to a file called output.txt, located in the pre-existing directory
specified by a relative path. The file would be located three directories above the current
directory, or three directories above eas\console\bin if the MaxL Script Editor is being used.

Description

Most operating systems support three channels for input/output:

l STDIN (standard input channel)

l STDOUT (standard output channel)

l STDERR (standard error channel)

Most operating systems also provide command-line options for re-directing data generated by
applications, depending on which of the above channels the data is piped through.

Errors in MaxL are flagged as STDERR, allowing command-line redirection of errors using
operating-system redirection handles. Non errors are flagged as STDOUT; thus normal output
may be logged separately from error output. Here is an example of redirecting error-output at
invocation time:

essmsh script.mxl 2>errorfile.err

Note: Operating-system redirection handles vary; check the platform documentation.

834 MaxL

You can also redirect STDERR and STDOUT independently to different MaxL output logs, using
the corresponding options in the spool command. For example, you can direct errors to one
file and output to another by placing the following lines in your script:

spool stdout on to 'output.txt';
spool stderr on to 'errors.txt';

or you can direct errors only:

spool stderr on to 'errors.txt';

or you can direct output only:

spool stdout on to 'output.txt';

Note: You cannot use the generic spool and the special output-channel spools in the same script.
For example, the following is not valid:

spool on to 'session.txt';
spool stderr on to 'errors.txt';

Set Display Column Width
Set the width of the columns that appear in MaxL display output tables, for the current MaxL
Shell session.

Default: 20 characters
Minimum: 8 characters
Maximum: No maximum.

Example

set column_width 10;

Sets the column width to 10 characters.

set column_width default;

Sets the column width back to 20 characters.

Set Message Level
Set the level of messaging you want returned from MaxL Shell sessions. By default, all messages
are returned.

MaxL Shell Commands 835

Message level Description

all Errors, warnings, status reporting, and informational messages. This is the default message level.

error Essbase and MaxL Shell error messages.

warning Essbase warning messages.

fatal Only errors which cause the shell to disconnect from Essbase.

Example

set message level all;

Set Timestamp
Enable or disable the display of a timestamp after execution of each MaxL statement. By default,
no timestamps are returned.

Notes

The timestamp information does not display after the error-control shell statements goto,
iferror, and define.

Example

set timestamp on;

Echo
Display text or expand variables to the screen or to a log file. When used in scripts with spooling
(log-file generation) turned on, echo expands variables in the log file. For interactive sessions,
variables are not expanded in the log file; instead, the variable name you typed is recorded (for
example, $1).

Syntax

echo <text> | <variablename>

836 MaxL

Example

See examples of echo under the discussion of variables (“Quotation Marks and Variable
Expansion” on page 830).

Shell Escape
Issue operating-system commands directly from a MaxL Shell session. The operating-system
output becomes part of the shell session's output, and may be logged to a file. When the operating
system finishes executing whatever commands are issued (as STRING), it returns control to the
shell session.

Nesting
Reference (include) a MaxL script from within another MaxL script. You might use this if
variables are defined in the referenced MaxL script which are useful to the current MaxL script.

Syntax

msh <scriptfile>;

Example

login fiona sunflower;
alter database sample.basic end archive;
msh calculate.msh;
alter database sample.basic
 begin archive to file bak;
 logout;

Note: Variables defined or changed in a nested script persist into the parent script after the
nested script executes.

Note: Because msh is a shell command, it is limited to the originating session. Therefore, you
should not reference MaxL scripts that contain new login statements.

Error Checking and Branching
The MaxL Perl Module is the most powerful way to integrate error handling into MaxL.
However, the following method is for users who do not implement the MaxL Perl Module.

IfError instructs the MaxL Shell to respond to an error in the previous statement by skipping
subsequent statements, up to a certain location in the script that is defined by a label name.

MaxL Shell Commands 837

IfError checks the presence of errors only in the precedent statement. IfError checks for:

l Errors in MaxL statement execution

l Errors in MaxL Shell command execution, including:

m Errors in spool on/off, such as permission errors

m Errors in set column_width, such as invalid widths

m Errors in script nesting, such as permission errors or nonexistent include files

Goto forces the MaxL Shell to branch to a certain location in the script defined by a label name;
goto is not dependent on the occurence of an error.

Syntax

iferror LABELNAME
goto LABELNAME
define label LABELNAME

Example: Iferror (MaxL)

The following example script contains a dimension build statement and a data load statement.
If the dimension build fails, the data load is skipped.

login $1 $2;

import database sample.basic dimensions
 from data_file 'C:\\data\\dimensions.txt'
 using rules_file 'C:\\\\data\\rulesfile.rul'
 on error append to 'C:\\\\logs\\dimbuild.log';

iferror 'dimbuildFailed';

import database sample.basic data from data_file
"$ARBORPATH\\app\\sample\\basic\\calcdat.txt"
 on error abort;

define label 'dimbuildFailed';
exit;

Example: Iferror (MaxL Shell)

The following example script tests various errors including MaxL Shell errors, and demonstrates
how you can set the exit status variable to a nonzero argument to return an exit status to the
MaxL Shell.

Begin Script

login $1 $2;
echo "Testing syntactic errors...";

spool on to spool.out;

set timestampTypo on;
iferror 'End';

838 MaxL

echo "Testing shell escape...";
shell "cat doesnotexist.txt";
iferror 'ShellError';

msh "doesnotexistlerr.mxl";
iferror 'FileDoesNotExistError';

echo "Script completed successfully...";
spool off;
logout;
exit 0;

define label 'FileDoesNotExistError';
echo "Error detected: Script file does not exist";
spool off;
logout;
exit 1;

define label 'ShellError';
echo ' Shell error detected...';
spool off;
logout;
exit 2;

define label 'End';
echo ' Syntax error detected...';
spool off;
logout;
exit 3;

End Script

Example: Goto

The following example script contains a dimension build statement and a data load statement.
Goto is used to skip the data load.

login $1 $2;

import database sample.basic dimensions
 from data_file 'C:\\data\\dimensions.txt'
 using rules_file 'C:\\\\data\\rulesfile.rul'
 on error append to 'C:\\\\logs\\dimbuild.log';

goto 'Finished';

import database sample.basic data from data_file
"$ARBORPATH\\app\\sample\\basic\\calcdat.txt"
 on error abort;

define label 'Finished';
exit;

Notes

The MaxL Shell will skip forward in the script to LABELNAME but not backwards.

MaxL Shell Commands 839

Cube Deployment from Essbase Studio
The MaxL Shell Deploy statement replicates the behavior of the Oracle Essbase Studio Cube
Deployment Wizard.

For more information, please see Deploy, listed in the MaxL Statements section.

Version
To see which version of MaxL you are using, type version.

Example

version;

Returns

Essbase MaxL Shell - Release 11.1.2
Copyright (c) 2000, 2010, Oracle and/or its affiliates.
All rights reserved.
MAXL>

Logout
Log out from Essbase without exiting the interactive MaxL Shell.

Syntax

logout;

Example

logout;

Exit
Exit from the MAXL> prompt after using interactive mode. You can optionally set the exit status
variable to a non zero argument to return an exit status to the parent shell.

Note: It is not necessary to exit at the end of MaxL script files or stream-oriented input (using
the -i switch).

Syntax

exit;

Example

exit;

Closes the MaxL Shell window or terminal.

exit 10;

840 MaxL

Closes the MaxL Shell window or terminal with a return status of 10. You can use this in
combination with IfError to return a non zero error status to the parent shell.

MaxL Perl Module
The MaxL Perl Module, Essbase.pm, provides access to Essbase multi-dimensional databases
from Perl programs through MaxL, the multi-dimensional access language for Essbase.
Communication from Perl to MaxL to Essbase provides the system-administrative functionality
of MaxL with the rich programmatic control of Perl.

This section contains the following topics:

l “Installation Help” on page 841

l “Functions” on page 843

l “Perl Scripting Examples” on page 845

To get Perl and learn about it, go to the Comprehensive Perl Archive Network.

Installation Help
The MaxL Perl Module is available for all supported Essbase platforms.

Windows Prerequisites
We recommend that you download the Perl source from www.cpan.org and build it yourself.
You may also use a binary distribution; many of these are listed on www.cpan.org.

Before you install the Essbase.pm extension to Perl, ensure that:

1. You have Perl 5.6 (or higher) installed on your system.

2. You have Microsoft Visual C++ version 6 or higher installed on your system.

3. The Essbase Server is either installed locally, or you have at least the Runtime Client installed
and your system's environment is set up to access a remote Essbase Server. Your system
should have an environment variable $ESSBASEPATH pointing to the root directory of the
Essbase Server installation. In addition, %ESSBASEPATH%\Bin should be included in your
path variable.

Note: MaxL Perl Module can only be used with the same version Essbase Server.

Windows Instructions
1. Install Essbase Server. The MaxL Perl Module files are included as part of the installation,

and a Perlmod directory will be created under %ESSBASEPATH%.

2. Follow the instructions in README, included in the Perlmod directory.

MaxL Perl Module 841

http://www.cpan.org
http://www.cpan.org
http://www.cpan.org

UNIX Prerequisites
Before you install the Essbase.pm extension to Perl, ensure that:

1. You have Perl 5.6 (or higher) installed on your system.

2. You have a C compiler installed on your system.

3. The Essbase Server is installed. Your system should have an environment variable
$ESSBASEPATH pointing to the root directory the Essbase installation. In addition,
$ESSBASEPATH/bin should be included in your path variable.

4. The following MaxL and Essbase files exist in the appropriate directories. If Essbase is
installed correctly, this is already the case.

File Name Directory

essmsh $ESSBASEPATH/bin

essmaxl.h $ESSBASEPATH/api/include

maxldefs.h $ESSBASEPATH/api/include

essapi.h $ESSBASEPATH/api/include

essxlat.h $ESSBASEPATH/api/include

esstypes.h $ESSBASEPATH/api/include

esstsa.h $ESSBASEPATH/api/include

essauth.h $ESSBASEPATH/api/include

libessutlu.so $ESSBASEPATH/bin

libessshru.so $ESSBASEPATH/bin

libessotlnu.so/libessotlsu.so $ESSBASEPATH/bin

libesssdtapiu.so/libessdvrq.so $ESSBASEPATH/bin

libglobalc.so $ESSBASEPATH/bin

Note: You do not have to install the API to use MaxL. The necessary api/include and api/
lib directories are created to contain the MaxL; libraries and header files.

UNIX Instructions
1. If you have met the above prerequisites, change to the MaxL Perl Module; directory, which

is perlmod in the Essbase directory.

2. Follow the instructions in README, included in the perlmod directory.

842 MaxL

Functions
l “connect (user, password, host);” on page 843

l “do (statement);” on page 843

l “pop_msg();” on page 843

l “fetch_desc();” on page 844

l “fetch_row();” on page 845

l “disconnect();” on page 845

connect (user, password, host);
l user- Required. The Essbase user name.

l password- Required. A valid password for user.

l host- Optional. The computer name hosting the Essbase instance.

Usage

my $dbh = Essbase->connect("user","password", "host");

Establishes a connection to Essbase using $dbh, the database handle in "my" namespace. Returns:
A session object (for example, $dbh).

do (statement);
l statement- Required. A MaxL statement to be passed to the Essbase Server.

Usage

$dbh->do("display user");

Where display user is a valid MaxL statement.

Returns (and sets Essbase{STATUS} to):

$MAXL_STATUS {NOERR} if execution was successful. There are likely to be informational and
feedback massages on the message stack, which may be obtained with pop_msg().

$MAXL_STATUS {ERROR} if there was a user error. Error numbers, levels, and texts may be
obtained with the pop_msg method.

Note: There are likely to be informational messages on the message stack even if execution was
successful. These also may be obtained using pop_msg.

pop_msg();
Navigates through MaxL status messages one at a time.

Arguments: none.

MaxL Perl Module 843

Returns: a list of the form (<message_number>, <message_level>, <message_text>)

Each invocation of the "do" method results in a stack of status messages. This stack is unwound
by repeatedly calling pop_msg until it returns nothing. It is acceptable for a Perl program to
ignore the message stack or to unwind it only partially. The next call to "do" will clear left-over
messages.

There will probably be a number of messages on the stack even after a successful execution. In
most cases, a Perl program will only need to know if the execution of the last "do" was successful,
which is indicated by the return value from "do".

When the message stack is empty, the return list elements are undfined and Essbase{STATUS}
is set to $MAXL_STATUS{END_OF_DATA}.

fetch_desc();
Returns a reference to a row of query results and a reference to a corresponding row of datatypes
for the query results.

The function should be called as follows:

To return column names and dataytpes:

($column_name, $datatypes) = $dbh->fetch_desc();

To return only column names:

($column_name) = $dbh->fetch_desc();

A datatype is information about what kind of data a particular value is. For example, Hello is
a string, and is represented by a Char datatype. 0 could be a Number, but it could also be a False
value for a Boolean datatype.

If you fetch only column-description records and ignore the datatypes, the array of values might
look like the following:

application comment startup max_file_size

By fetching the datatype information in addition to the column values, the array of values might
look like the following:

application comment startup max_file_size
 3 3 1 2

A row of datatype is defined the same way as a row of column descriptions:{ val[0],
val[1], ...,val[NUM_OF_FIELDS-1] }

Row numbers are counted cardinally from 0:[0, 1, 2, ... , NUM_OF_ROWS - 1]

The values placed into the row of datatypes are 0, 1, 2, or 3 corresponding to the values of
MAXL_DTINT_T inside maxldefs.h.

None = 0
Bool = 1
Number = 2
Char = 3

844 MaxL

fetch_row();
Returns a reference to a row of query results in a MaxL output table, as a list.

Essbase->{STATUS} is set to one of the following:

l $MAXL_STATUS{NOERR} on success.

l $MAXL_STATUS{END_OF_DATA} if there were no rows to fetch.

l $MAXL_STATUS{ERROR} if a user error has occured.

A row of record is defined as { val[0], val[1], ... , val[NUM_OF_FIELDS-1] } }

Row numbers are counted cardinally from 0:[0, 1, 2, ... , NUM_OF_ROWS - 1]

disconnect();
Terminates an Essbase session and destroys the session object.

Returns: Completion status.

Perl Scripting Examples

Createuser.pl

The following is the simplest example of a Perl script using Essbase.pm. The script establishes
a connection to the Essbase Server, creates a user, and disconnects.

Use the Essbase.pm module. This statement is required to use Essbase within
a Perl script.
use Essbase;

Create a handle to the Essbase Server by connecting as admin, mypassword to
the local machine.
my $dbh = Essbase->connect("admin", "mypassword", "localhost");

Use the do Perl function to pass the MaxL create user statement (enclosed
in quotation marks) to the Essbase Server.
$dbh->do("create user Essbase identified by mypassword");

Disconnect from the Essbase Server.
$dbh->disconnect();

Createusers.pl

The following Perl script tests whether Perl is able to use the MaxL Perl Module. If
Essbase.pm is loaded, the program establishes a connection to Essbase, creates three users with
different passwords, and disconnects.

######################### print on failure.

BEGIN { $| = 1; }
END {print "ERROR: System NOT Loaded\n" unless $loaded;}
use Essbase;

MaxL Perl Module 845

$loaded = 1;

#########################

sub create_user
{
In connect statements, replace the sample login details.
 my $dbh = Essbase->connect("admin", "pass1", "localhost");

Create array of users.
 @user = (
 "Fred",
 "George",
 "Mary",
);

Create array of passwords.
 @password = (
 "password1",
 "password2",
 "password3",
);

 $i = 0;

 while ($i le 2) {

 $username = $user[$i];
 $newpassword = $password[$i];
 $j = $i + 1;

 print $dbh->do("create user $username identified by $newpassword") == 0 ? "user$j
created\n" : "ERROR: user user$j NOT created\n";

 $i = $i + 1;

 }

 print $dbh->disconnect() == 0 ? "Essbase database handle released\n" : "ERROR:
Essbase database handle NOT released\n";
}

Create user test.
#
&create_user;

Maketable.pl

The following subroutines from a Perl script return a message list that resulted from executing
a MaxL statement, and build a table from a result set.

use Essbase;

#
Returns a message list that resulted from executing

846 MaxL

a MaxL statement.

sub msgs
{
 my $dbh = shift(@_);
 my $msglist;

 # dump all messages one thread at a time
 while (1)
 {
 my ($msgno, $level, $msg);

 ($msgno, $level, $msg) = $dbh->pop_msg();
 # gets us out of the loop if a $msg comes back as undef
 last if ! $msg;
 $msgstr = sprintf " %-8d", $msgno;
 $msglist .= "$msgstr - $msg\n";
 }

 return $msglist;
}

#
Returns a result set in the form of a table.
#
sub tab
{
 my $dbh = shift;
 my ($colnum, $rec, $dt, $name, $tab, $line);

 # build an output table

 # setup the header
 ($name, $dt) = $dbh->fetch_desc();
 for ($col = 0; $col < $dbh->{NUM_OF_FIELDS}; $col++)
 {
 $str = sprintf " %-19.19s", $name->[$col];
 $tab .= $str;
 $line .= "+-------------------";
 }

 $tab .= "\n$line\n";

 # now populate the table with data
 $rec = $dbh->fetch_row();
 while(defined($rec))
 {
 for ($col = 0; $col < $dbh->{NUM_OF_FIELDS}; $col++)
 {
 if ($dt->[$col] == 3) {
 #format for characters
 $str = sprintf " %-19.19s", $rec->[$col];
 } elsif ($dt->[$col] == 2) {
 #format for numbers
 $str = sprintf " %19.19s", $rec->[$col];
 } elsif ($dt->[$col] == 1) {
 #format for bools

MaxL Perl Module 847

 if ($rec->[$col] == 0) {
 $str = sprintf " %19.19s", "FALSE";
 } else {
 $str = sprintf " %19.19s", "TRUE";
 }
 }
 $tab .= $str;
 }
 $tab .= "\n";
 $rec = $dbh->fetch_row();
 }
 $tab .= "\n";

 if ($tab=~s/^\n//)
 {
 $tab="";
 }

 return $tab;
}

ESSCMD Script Conversion
cmd2mxl is a fully supported utility for converting existing ESSCMD scripts to their
corresponding MaxL scripts. To convert an ESSCMD script to a MaxL script, go to the operating-
system command prompt and enter the executable name, the ESSCMD script name, the desired
MaxL script name, and the name of a logfile to write to in case of errors.

l “ESSCMD Script Utility Usage” on page 848

l “Things to Note About the ESSCMD Script Utility” on page 848

l “ESSCMD to MaxL Mapping” on page 849

ESSCMD Script Utility Usage
cmd2mxl esscmd_script maxl_output logfile

For example, if the ESSCMD script name is %ARBORPATH%\dailyupd.scr, the command
issued on the operating-system command line would be:

cmd2mxl %ARBORPATH%\dailyupd.scr %ARBORPATH%\dailyupd.mxl %ARBORPATH%

\log\dailyupd.log

Subsequently, the MaxL script can be executed using the MaxL Shell by the follwing command:

essmsh %ARBORPATH%\dailyupd.mxl

Things to Note About the ESSCMD Script Utility
1. The utility will only translate syntactically and semantically valid ESSCMD scripts.

2. For invalid ESSCMD scripts, the resulting MaxL script is undefined.

848 MaxL

3. All ESSCMD statements in the scripts should end with a semicolon (;) statement terminator.

4. This utility will only work on Windows platforms.

5. Although most ESSCMD commands have corresponding MaxL statements, there are
exceptions. For such exceptions, a comment will be generated in the logfile, and the resulting
MaxL script will have to be modified to work correctly. Note that if an ESSCMD command
is still needed, it can be invoked from a MaxL script using shell esscmd
<scriptname>.

6. All strings in the ESSCMD scripts should be surrounded by double quotation marks ("").

ESSCMD to MaxL Mapping
The following table compares ESSCMD usage to MaxL usage, and the following conversions are
supported by cmd2mxl.

ESSCMD Command ESSCMD Usage Example MaxL Equivalent Example

ADDUSER ADDUSER finance essexer1; alter user essexer1 add to group finance;

BEGINARCHIVE beginarchive sample basic "test.txt"; alter database Sample.Basic begin archive to file 'test.txt';

BEGININCBUILDDIM beginincbuilddim; import database Sample.Basic dimensions from local text data_
file 'c:\\data.txt' using local rules_file 'c:\\data_rule.rul' on error
write to 'c:\\error.log';

BUILDDIM builddim 1 "c:\data_rul.rul" 3 "c:\data.
txt" 4 "c:\error.log";

Same as BEGININCDIMBUILD

CALC calc "CALC ALL;"; execute calculation 'CALC ALL' on sample.basic;

CALCDEFAULT calcdefault; execute calculation default on Sample.Basic;

CALCLINE calcline "CALC ALL;"; execute calculation 'CALC ALL;' on sample.basic;

COPYAPP copyapp sample sampnew; create application sampnew as sample;

COPYDB copydb sample basic sample basic2; create or replace database sample.basic2 as sample.basic;

COPYFILTER copyfilter sample basic westwrite sample
basic westmgr;

create filter sample.basic.westmgr as sample.basic.westwrite;

COPYOBJECT copyobject "9" "sample" "basic"
"calcdat" "sample" "basic" "calcdat2";

alter object sample.basic.calcdat of type text copy to 'sample.
basic.calcdat2';

CREATEAPP createapp finance; create or replace application finance;

CREATEDB createdb finance investor; create or replace database finance.investor;

CREATEGROUP creategroup managers; create group managers;

ESSCMD Script Conversion 849

ESSCMD Command ESSCMD Usage Example MaxL Equivalent Example

CREATELOCATION select sample basic;

createlocation hq hqserver finance
investor admin password;

alter system load application sample;

alter application sample load database basic;

create location alias hq from sample.basic to finance.investor at
hqserver as admin identified by 'password';

CREATEUSER createuser karen password; create user karen identified by 'password';

CREATEVARIABLE createvariable CurMnth localhost sample
basic Jan;

alter database sample.basic add variable CurMnth 'Jan';

alter application sample add variable CurMnth 'Jan';

alter system add variable CurMnth 'Jan';

DELETEAPP deleteapp sampnew; drop application sampnew cascade;

DELETEDB deletedb demo basic; drop database demo.basic;

DELETEGROUP deletegroup engg; drop group engg;

DELETELOCATION select finance investor;

deletelocation hq1;

alter system load application finance;

alter application finance load database investor;

drop location alias finance.investor.hq1;

DELETELOG deletelog sample; alter application sample clear logfile;

DELETEUSER deleteuser rob; drop user rob;

DELETEVARIABLE select sample basic;

deletevariable CurMnth "localhost";

alter system load application sample;

alter application sample load database basic;

alter database sample.basic drop variable CurMnth;

alter application sample drop variable CurMnth;

alter system drop variable CurMnth;

DISABLELOGIN disablelogin demo; alter application demo disable connects;

DISPLAYALIAS select sample basic;

displayalias "default";

query database sample.basic list alias_names in alias_table
'Default';

ENABLELOGIN enablelogin demo; alter application demo enable connects;

ENDARCHIVE endarchive sample basic; alter database sample.basic end archive;

ENDINCBUILDDIM ENDINCBUILDDIM; See BEGININCBUILDDIM

ESTIMATEFULLDBSIZE select sample basic;

estimatefulldbsize;

query database sample.basic get estimated size;

EXIT exit; exit;

850 MaxL

ESSCMD Command ESSCMD Usage Example MaxL Equivalent Example

EXPORT select sample basic;

export "c:\data.txt" 1;

alter system load application sample;

alter application sample load database basic;

export database Sample.Basic all data to data_file 'c:\\data.txt';

GETALLREPLCELLS select samppart company;

getallreplcells "svr2" "sampeast" "east";

alter system load application samppart;

alter application samppart load database company;

refresh replicated partition samppart.company from sampeast.
east at svr2;

GETAPPINFO getappinfo "demo"; display application demo;

GETAPPSTATE getappstate demo; display application demo;

GETATTRIBUTESPECS select sample basic;

getattributespecs;

query database sample.basic get attribute_spec;

GETATTRINFO select sample basic;

getattrinfo "Caffeinated_True";

query database sample.basic get attribute_info 'Caffeinated_
True';

GETDBINFO select sample basic;

getdbinfo;

display database sample.basic request_history;

GETDBSTATE getdbstate sample basic; display database sample.basic;

GETDBSTATS select sample basic;

getdbstats;

query database sample.basic get dbstats data_block;

GETCRRATE getcrrate; query database sample.basic get currency_rate;

GETDEFAULTCALC select sample basic;

getdefaultcalc;

query database sample.basic get default calculation;

GETMBRCALC select sample basic;

getmbrcalc "Profit %";

query database sample.basic get member_calculation 'Profit %';

GETMBRINFO select sample basic;

getmbrinfo "Ounces_20";

query database sample.basic get member_info 'Ounces_20';

GETPERFSTATS select sample basic;

getperfstats;

query database sample.basic get performance statistics kernel_
cache table;

GETUPDATEDREPLCELLS See GETALLREPLCELLS See GETALLREPLCELLS

GETUSERINFO getuserinfo admin; display user admin;

GETVERSION getversion; version;

ESSCMD Script Conversion 851

ESSCMD Command ESSCMD Usage Example MaxL Equivalent Example

IMPORT select sample basic;

import 1 "c:\data.txt" 4 y 3 "c:\import.
rul" n "c:\data_load.err";

alter system load application sample;

alter application sample load database basic;

import database sample.basic data from local text data_file 'c:\
\data.txt' using local rules_file 'c:\\data_rule.rul' on error write to
'c:\\data_load.err';

INCBUILDDIM See BEGININCBUILDDIM See BEGININCBUILDDIM

LISTALIASES select sample basic;

listaliases;

query database sample.basic list alias_table;

LISTAPP listapp; display application all;

LISTDB listdb; display database all;

LISTFILES listfiles "" "sample" "basic"; query database sample.basic list all file information;

LISTFILTERS listfilters sample basic; display filter on database Sample.Basic;

LISTGROUPS listgroups; display group all;

LISTGROUPUSERS listgroupusers finance; display user in group finance;

LISTLINKEDOBJECTS select sample basic;

listlinkedobjects "Fiona" "07/07/2003";

query database sample.basic list lro by Fiona before
'07/07/2003';

LISTLOCATIONS select sample basic;

listlocations;

alter system load application sample;

alter application sample load database basic;

display location alias on database sample.basic;

LISTLOCKS listlocks; display lock;

LISTLOGINS listlogins; display session all;

LISTOBJECTS listobjects "2" "Sample" "Basic"; display object of type calc_script on database sample.basic;

LISTUSERS listusers; display user all;

LISTVARIABLES listvariables localhost sample basic; display variable on database sample.basic;

LOADALIAS select sample basic;

loadalias "special_flavors" "C:\Hyperion
\products\Essbase\EssbaseServer\app
\sample\basic\seasonal.txt";

alter database sample.basic load alias_table 'special_flavors'
from data_file "$ARBORPATH\\app\\sample\\basic\\seasonal.
txt";

LOADAPP loadapp sample; alter system load application sample;

LOADDB loaddb sample basic; alter application sample load database basic;

852 MaxL

ESSCMD Command ESSCMD Usage Example MaxL Equivalent Example

LOADDATA select sample basic;

loaddata 3 "c:\data.txt";

alter system load application sample;

alter application sample load database basic;

import database sample.basic data from local text data_file 'c:\
\data.txt' on error abort;

LOGIN login local admin password; login admin 'password' on local;

LOGOUT logout; logout;

LOGOUTALLUSERS logoutallusers y; alter system logout session all;

LOGOUTUSER Available only in interactive ESSCMD
sessions.

alter system logout session 4294967295;

OUTPUT output 1 c:\test.log;

output 4;

spool on to 'c:\test.log';

spool off;

PURGELINKEDOBJECTS purgelinkedobjects "Fiona"
"07/07/2002";

alter database sample.basic delete lro by 'fiona' before
'07/07/2002';

PUTALLREPLCELLS select sampeast east;

putallreplcells svr1 samppart company;

alter system load application sampeast;

alter application sampeast load database east;

refresh replicated partition sampeast.east from samppart.
company at svr1 updated data;

PUTUPDATEDREPLCELLS See PUTALLREPLCELLS See PUTALLREPLCELLS

REMOVELOCKS removelocks "2"; drop lock held by Fiona;

REMOVEUSER removeuser finance steve; alter user steve remove from group finance;

RENAMEAPP renameapp sample newsamp1; alter application sample rename to newsamp1;

RENAMEDB renamedb sample basic newbasic; alter database sample.basic rename to newbasic;

RENAMEFILTER renamefilter sample basic westmgr
allwest;

create or replace filter sample.basic.westmgr as sample.basic.
allwest;

drop filter sample.basic.westmgr;

RENAMEOBJECT RENAMEOBJECT "9" "sample" "basic"
"calcdat" "calcdat2";

alter object sample.basic.calcdat of type text rename to 'calcdat2';

RENAMEUSER renameuser steve_m m_steve; alter user steve_m rename to m_steve;

RESETDB select sample basic;

resetdb;

alter database sample.basic reset;

RESETPERFSTATS resetperfstats enable; alter database sample.basic set performance statistics enabled;

ESSCMD Script Conversion 853

ESSCMD Command ESSCMD Usage Example MaxL Equivalent Example

RUNCALC The only command supported is the
server based calc script execution.

Select Sample Basic;

Runcalc 2 one;

execute calculation Sample.Basic.one;

RUNREPT select sample basic; runrept 2 complex
"c:\complex.out";

alter system load application sample;

alter application load database basic;

export database sample.basic using server report_file 'complex' to
data_file 'c:\\complex.out';

SELECT select sample basic; alter system load application sample;

alter application load database basic;

SETALIAS select sample basic;

setalias "long names";

alter database sample.basic set active alias_table 'Long Names';

SETAPPSTATE setappstate sample "" y y 4 y y y y 1000
1000;

alter application sample enable startup;

alter application sample enable autostartup;

alter application sample set minimum permission manager;

alter application sample enable connects;

alter application sample enable commands;

alter application sample enable updates;

alter application sample enable security;

alter application sample set lock_timeout after 1000 seconds;

alter application sample set max_lro_file_size 1000 kb;

SETDBSTATE setdbstate "" "Y" "Y" 4 3145728 "Y" "Y"
"Y" "" "" 0 1048576 1025 "Y";

alter database sample.basic enable startup;

alter database sample.basic enable autostartup;

alter database sample.basic set minimum permission manager;

alter database sample.basic set data_cache_size 3145728;

alter database sample.basic enable aggregate_missing;

alter database sample.basic enable two_pass_calc;

alter database sample.basic enable create_blocks;

alter database sample.basic set currency_conversion division;

alter database sample.basic set index_cache_size 1048576;

alter database sample.basic enable compression;

SETDBSTATEITEM . See the alter database statement.

SETDEFAULTCALC select sample basic;

setdefaultcalc "CALC ALL;";

alter database sample.basic set default calculation as 'CALC ALL';

854 MaxL

ESSCMD Command ESSCMD Usage Example MaxL Equivalent Example

SETDEFAULTCALCFILE select sample basic;

setdefaultcalcfile defcalc;

Create a calculation file in the server containing the calculation
string. Then, alter database sample.sasic set default calculation
sample.basic.defcalc; will set the default calculation.

SETMSGLEVEL setmsglevel 2; set message level all;

Note: This is part of the separate MaxL Shell grammar, not the
MaxL language itself. You can use set message level with the MaxL
Shell, but it is not embeddable in Perl.

SETPASSWORD setpassword steve newpass; alter user steve set password newpass;

SHUTDOWNSERVER shutdownserver local admin password; login admin 'password' on local;

alter system shutdown;

SLEEP sleep 10; shell sleep 10;

UNLOADALIAS select sample basic;

unloadalias "flavors";

alter database sample.basic unload alias_table 'flavors';

UNLOADAPP unloadapp sample; alter system unload application sample;

UNLOADDB unloaddb sample basic; alter application sample unload database basic;

UNLOCKOBJECT unlockobject "1" "sample" "basic"
"basic";

alter object 'sample.basic.basic' of type outline unlock;

UPDATE select sample.basic

update "Jan Sales '100-10' Florida
Actual 220";

import database sample.basic from data_string 'Jan Sales 100-10
Florida Actual 220';

UPDATEFILE updatefile 3 "c:\data.txt" 1; same as LOADDATA;

UPDATEVARIABLE updatevariable hot_product local sample
basic "100-10";

alter system set variable 'hot_product' '100-10';

alter application sample set variable 'hot_product' "100-10";

alter database Sample.Basic set variable 'hot_product' '100-10';

VALIDATE validate; alter database sample.basic validate data to local logfile
'validation.txt';

Reserved Words List
The following keywords are part of the MaxL DDL grammar, and are reserved. If you intend to
use any of these words as names or passwords, you must enclose the word in single quotation
marks.

abort
absolute_value
account_type
active
add

Reserved Words List 855

administrator
advanced
after
aggregate
aggregates
aggregate_assume_equal
aggregate_missing
aggregate_storage
aggregate_sum
aggregate_view
aggregate_use_last
algorithm
alias
alias_names
alias_table
all
all_users_groups
allocation
alloc_rule
allow
allow_merge
alter
alternate_rollups
amount
amountcontext
amounttimespan
any
append
application
application_access_type
apply
archive
archive_file
area
as
aso_level_info
at
attribute
attribute_calc
attribute_info
attribute_spec
attribute_to_base_member_association
auto_password
autostartup
b
backup_file
based
basis
basistimespan
basistimespanoptions
before
begin
bitmap
blocks
buffer_id
buffered
build

856 MaxL

by
cache_pinning
cache_size
calc_formula
calc_script
calc_string
calculation
cascade
cell_status
change_file
clear
client
cnt_sempaphore
column_width
columns
combinebasis
commands
comment
commitblock
committed_mode
compact
compression
compression_info
config_values
connect
connects
consolidation
copy
copy_subvar
copy_useraccess
create
create_application
create_blocks
create_user
creation
creation_user
creditmember
cube_size_info
currency
currency_category
currency_conversion
currency_database
currency_member
currency_rate
custom
data
data_block
data_cache_size
data_file
data_file_cache_size
data_storage
data_string
database
database_synch
database_asynch
days
dbstats

Reserved Words List 857

debitmember
debug
default
definition_only
definitions
delete
designer
destroy
dimension
dimensions
direct
direction
directory
disable
disabled
disallow
discard_errors
disk
display
divideamount
division
drillthrough
dml_output
drop
dump
dynamic_calc
eas_loc
enable
enabled
encrypted
end
end_transaction
enforce
eqd
error
error_file
errors_to_highest
errors_to_location
errors_to_lowest
estimated
event
exact
excel
exceeds
excludedrange
execute
existing_views
export
export_directory
external
failed_sss_migration
fragmentation_percent
freespace
from
file
file_location
file_size

858 MaxL

file_type
filter
filter_access
fixed_decimal
for
force
force_dump
formatted_value
function
gb
get
get_missing_cells
get_meaningless_cells
global
grant
group
group_id
ha_trace
held
high
hostname
identified
identify
ignore_missing_values
ignore_zero_values
immediate
implicit_commit
import
in
inactive
inactive_user_days
including
incremental
index
index_cache_size
index_data
index_page_size
information
initialize
input
instead
invalid_block_headers
invalid_login_limit
io_access_mode
kb
kernel_io
kernel_cache
kill
level
level0
license_info
linked
list
load
load_buffer
load_buffers
load_buffer_block

Reserved Words List 859

local
location
lock
lock_timeout
locked
log_level
logfile
login
logout
long
lotus_2
lotus_3
lotus_4
low
lro
macro
manager
mapped
max_disk_size
max_file_size
max_lro_file_size
mb
medium
member
member_alias_namespace
member_calculation
member_comment
member_data
member_fixed_length_data
member_formula
member_info
member_name_namespace
member_property
member_uda
member_uda_namespace
member_variable_length_data
merge
meta_read
metadata_only
migr_modified_access
miner
minimum
mining
minutes
missing_value
mode
model
move
multiple
multiplication
mutex
name
negativebasisoptions
never
no_access
none
non_unique_members

860 MaxL

nonunicode_mode
note
nothing
numerical_display
object
objects
of
off
offset
on
only
opg_cache
opg_state
optional
optional_group
options
or
outline
outline_id
outline_paging_file
output
override
overview
partition
partition_file
partition_size
passive
password
password_reset_days
performance
permission
persistence
perspective
physical
pmml_file
ports
pov
pre_image_access
precision
preserve
preserve_groups
private
privilege
process
project
property
protocol
purge
query
query_data
query_tracking
range
read
recover
reference_cube
reference_cube_reg
refresh

Reserved Words List 861

region
registration
reregister
remote
remove
remove_zero_cells
rename
repair
repeatamount
replace
replay
replicated
replication_assume_identical
report_file
request
request_history
request_id
reset
resource_usage
restore
restructure
result
resync
retrieve_buffer_size
retrieve_sort_buffer_size
reverse
revoke
rle
round
row
rows
rules_file
runtime
runtime_info
save
scientific_notation
scope
score
script_file
seconds
security
security_backup
select
selecting
selection
self_session_info
semaphore
sequence_id_range
server
server_port
session
session_idle_limit
session_idle_poll
set
shared_services_native
short
shutdown

862 MaxL

single
singlecell
size
size_limit
skip_to_next_amount
skip_missing
skip_negative
skip_zero
slice
sourceregion
spec
spinlock
splitbasis
spread
SSL
sss
sss_mode
sss_name
starting
startup
statistics
status
stop
stopping
storage
storage_info
structure_file
subtract
supervisor
suppress
sync
system
table
tablespace
target
targettimespan
targettimespanoptions
task
tb
template
text
thread
to
total_size
transactions
transformation
transparent
trigger
trigger_func
trigger_spool
two_pass_calc
type
uda
unicode
unicode_mode
unlimited
unload

Reserved Words List 863

unlock
update
updated
updates
use
user
username_as_password
using
validate
values
variable
vector
verification
version
view_file
views
volume
wait_for_resources
warn
when
with
wizard
worksheet
write
xml_file
zero_value
zeroamountoptions
zerobasisoptions
zlib

MaxL Statements (Aggregate Storage)
Click here for non-aggregate storage list

Some MaxL grammar is applicable only to aggregate storage mode, and some standard grammar
is not applicable to aggregate storage mode. The following statements support aggregate storage
application and database operations.

l alter application

l alter database

l alter filter

l alter group

l alter object

l alter partition

l alter system

l alter tablespace

l alter trigger

l alter user

l create application

864 MaxL

l create database

l create filter

l create group

l create outline

l create partition

l create after-update trigger

l create user

l display application

l display calculation

l display database

l display disk volume

l display filter

l display filter row

l display group

l display lock

l display object

l display partition

l display privilege

l display session

l display system

l display tablespace

l display trigger

l display user

l display variable

l drop application

l drop calculation

l drop database

l drop filter

l drop group

l drop lock

l drop object

l drop partition

l drop trigger

l drop user

l execute aggregate process

MaxL Statements (Aggregate Storage) 865

l execute aggregate build

l execute aggregate selection

l export data

l grant

l import data

l import dimensions

l login

l query application

l query database

l refresh outline

l refresh replicated partition

The MaxL grammar is case-insensitive. Semicolon statement-terminators are required when
using the MaxL Shell. However, do not use semicolons at the end of statements passed using
Perl functions. Key words of the MaxL grammar are represented in this document in lower-case.
Terminals, represented in upper-case, are to be replaced by the appropriate names, numbers,
privileges, or strings. For more information about components of MaxL statements, see “MaxL
Definitions” on page 767.

Note: “Login” on page 826 is part of the separate command shell grammar, not the MaxL
language itself. You can use the login statement with the MaxL Shell, but it is not
embeddable in Perl. For Perl, use “connect (user, password, host);” on page 843.

Alter Application (Aggregate Storage)
Click here for non-aggregate storage version

Change application-wide settings. Permission required: Application Manager.

866 MaxL

Syntax

You can change the following application-wide settings using alter application.

Keyword Description

set minimum
permission

Grant all users a minimum level of permission to all databases in the application. Users with higher
permissions than this minimum are not affected.

set variable Assign a string value to an existing substitution-variable name. If the variable does not exist, first
create it using add variable. Substitution variables may be referenced by calculations in the
application.

set cache_size Set the maximum size to which the aggregate storage cache may grow. The aggregate storage cache
grows dynamically until it reaches this limit. This setting takes effect after you restart the application.
To check the currently set limit, use the following MaxL statement:

query application APP-NAME get cache_size;

set type
unicode_mode

Migrate an application to Unicode mode. Migration to Unicode mode cannot be reversed.

load database Start (by loading into memory) an idle database. The statement will fail if you do not have at least
read privilege for the database.

unload database Stop (by unloading from memory) an active database. The statement will fail if you do not have at
least read privilege for the database.

enable startup Permit all users to load (start) the application. This only applies to users who have at least read
privilege for the application. Startup is enabled by default.

MaxL Statements (Aggregate Storage) 867

Keyword Description

disable startup Prevent all users from loading (starting) the application. Startup is enabled by default.

enable autostartup Start the application automatically when Essbase Server starts. By default, autostartup is disabled.

disable
autostartup

Do not start the application automatically when Essbase Server starts. By default, autostartup is
disabled.

enable commands Allow all users with sufficient permissions to make requests to databases in the application. Use to
reverse the effect of disable commands. The disable commands setting remains in effect only for
the duration of your session. By default, commands are enabled.

disable commands Prevent all requests to databases in the application, including non-data-specific requests, such as
viewing database information or changing database settings. All users are affected, including other
administrators. Administrators are affected by this setting as a safety mechanism to prevent
accidental updates to databases during maintenance operations. This setting remains in effect only
for the duration of your session. The setting takes effect immediately, and affects users who are
currently logged in, as well as users who log in later during your session.

Caution! If performing maintenance operations that require disabling commands, you must
make those maintenance operations within the same session and the same script as
the one in which commands were disabled.

By default, commands are enabled.

enable updates Allow all users with sufficient permissions to make requests to databases in the application. Use to
reverse the effect of disable updates. Disabling updates remains in effect only for the duration of
your session. By default, updates are enabled.

disable updates Prevent all users from making requests to databases in the application. Use before performing
update and maintenance operations. The disable updates setting remains in effect only for the
duration of your session.

Caution! If performing maintenance operations that require updates to be disabled, you must
make those maintenance operations within the same session and the same script as
the one in which updates were disabled. By default, updates are enabled.

enable connects Allow all users with sufficient permissions to make connections to databases in the application. Use
to reverse the effect of disable connects. By default, connections are enabled.

disable connects Prevent any user with a permission lower than Application Manager from making connections to
the databases that require the databases to be started. This includes starting the databases or
performing the ESSCMD SELECT command on the databases. Database connections remain
disabled for all databases in the application, until the application setting is re-enabled by the
administrator.

By default, connections are enabled.

enable security When security is disabled, Essbase ignores all security settings in the application and treats all users
as Application Managers. By default, security is enabled.

disable security When security is disabled, Essbase ignores all security settings in the application and treats all users
as Application Managers. By default, security is enabled.

comment Enter an application description (optional). The description can contain up to 80 characters.

868 MaxL

Keyword Description

clear logfile Delete the application log located in the application directory. A new log is created for entries
recording subsequent application activity.

add variable Create an application-level substitution variable by name, and optionally assign a string value for
the variable to represent. You can assign or change the value later using set variable. A substitution
variable acts as a global placeholder for information that changes regularly. Substitution variables
may be referenced by calculations and report scripts.

If substitution variables with the same name exist at server, application, and database levels, the
order of precedence for the variables is as follows: a database level substitution variable supersedes
an application level variable, which supersedes a server level variable.

drop variable Remove a substitution variable and its corresponding value from the application.

rename to Rename the application. When you rename an application, the application and the application
directory (ARBORPATH\App\application_name) are renamed.

sync user Synchronize the named user's information on this Essbase application with the latest matching user
information found on Shared Services. To issue this statement, you must be an Administrator,
Application Manager, or Database Manager.

sync group Synchronize the named group's information on this Essbase application with the latest matching
group information found on Shared Services. To issue this statement, you must be an
Administrator, Application Manager, or Database Manager.

sync
all_users_groups

Synchronize all user and group information on this Essbase application with the latest user and
group information found on Shared Services. To issue this statement, you must be an
Administrator, Application Manager, or Database Manager.

reregister Re-establish this Essbase application as a Shared Services application. This statement reregisters the
application with Shared Services, in the event that you have:

l deleted the application from Shared Services but kept using it in Essbase.

l changed the Essbase Administration Server location, name, or port number.

l changed the Essbase Server name or port number.

To issue this statement, you must be an Administrator or Application Manager.

all reregister Re-establish this and all other Essbase applications as Shared Services applications. This statement
reregisters the applications with Shared Services, in the event that you have:

l deleted the application from Shared Services but kept using it in Essbase.

l changed the Essbase Administration Server location, name, or port number.

l changed the Essbase Server name or port number.

To issue this statement, you must be an Administrator or Application Manager on all applications;
for any applications for which you do not have sufficient permissions, the re-registration will be
skipped with a warning.

Example

alter application ASOSamp set cache_size 64MB;

Sets the maximum size of the aggregate storage cache to 64 MB.

alter application ASOSamp disable commands;

MaxL Statements (Aggregate Storage) 869

Prevents all users from making requests to the application scope. Use this statement before
performing application-wide update and maintenance operations.

alter application ASOSamp comment 'Aggregate storage application';

Attaches a descriptive comment to the ASOSamp application.

Alter Database (Aggregate Storage)
Click here for non-aggregate storage version

Change database-wide settings. Permission required: create_application.

870 MaxL

Syntax

You can change the following database-wide settings using alter database.

Keyword Description

enable startup Enable users to start the database directly or as a result of requests requiring the
database to be started. Startup is enabled by default.

disable startup Prevent all users from starting the database directly or as a result of requests
that would start the database. Startup is enabled by default.

MaxL Statements (Aggregate Storage) 871

Keyword Description

enable autostartup Automatically start the database when the application to which it belongs starts.
Autostartup is enabled by default. This setting is applicable only when startup
is enabled.

disable autostartup Prevent automatic starting of the database when the application to which it
belongs starts. Autostartup is enabled by default.

enable query_tracking Begin collecting query data for this database, to be used for query-based view
optimization.

To utilize the results of query tracking, use the optional based on query_data
clause found in either of the following statements:

l query database <dbs-name> list existing_views

l execute aggregate process

l execute aggregate selection

Query tracking is disabled by default.

disable query_tracking Stop collecting query data for query-based view optimization. Query tracking
is disabled by default.

set retrieve_buffer_size Change the database retrieval buffer size. This buffer holds extracted row data
cells before they are evaluated by the RESTRICT or TOP/BOTTOM Report
Writer commands. The default size is 10 KB. The minimum size is 2 KB.
Increasing the size may improve retrieval performance.

set retrieve_sort_buffer_size Change the database retrieval sort buffer size. This buffer holds data until it is
sorted. The Report Writer and Essbase Query Designer use the retrieval sort
buffer. The default size is 10 KB. The minimum size is 2 KB. Increasing the size
may improve retrieval performance.

set minimum permission Set a level of permission that all users or groups can have to the database. Users
or groups with higher granted permissions than the minimum permission are
not affected.

set variable Change the value of an existing subsitution variable on the database. The value
must not exceed 256 bytes. It may contain any character except a leading
ampersand (&).

set active alias_table Set an alias table as the primary table for reporting and any additional alias
requests. Only one alias table can be used at a time. This setting is user-specific;
it only sets the active alias table for the user issuing the statement.

reset Clear all data and linked-reporting objects from the database, but preserve the
outline.

Note: If kernel queries are running when a clear data operation starts, the clear
data operation waits for the kernel queries to complete and then the
clear data operation proceeds. This information also applies to the reset
all and reset data grammar.

reset all Clear all data, Linked Reporting Objects, and the outline.

reset data Same as using reset.

872 MaxL

Keyword Description

clear aggregates Delete all aggregate views.

compact outline Compact the outline file to remove the records of members that have been
deleted. Compaction helps keeps the outline file at an optimal size.

add variable Create a database-level substitution variable by name, and optionally assign a
string value for the variable to represent. You can assign or change the value
later using set variable. A substitution variable acts as a global
placeholder for information that changes regularly. Substitution variables may
be referenced by calculations and report scripts.

If substitution variables with the same name exist at server, application, and
database levels, the order of precedence for the variables is as follows: a database
level substitution variable supersedes an application level variable, which
supersedes a server level variable.

drop variable Remove a substitution variable and its corresponding value from the database.

initialize load_buffer Create a temporary buffer in memory for loading data.

Data load buffers are used in aggregate storage databases for allocations, custom
calculations, and lock and send operations. Multiple data load buffers can exist
on a single aggregate storage database.

You can control the share of aggregate storage cache resources the load buffer
is allowed to use and how long to wait for resources to become available before
aborting load buffer operations. You can also set properties that determine how
missing and zero values, duplicate values, and multiple values for the same cell
in the data source are processed.

l resource_usage

l property

l wait_for_resources: Waits up to the amount of time specified by the
ASOLOADBUFFERWAIT configuration setting in essbase.cfg for
resources to become available in order to process load buffer operations.
The default value is 10 seconds.

destroy load_buffer Destroy the temporary data-load memory buffer.

unlock all objects Unlock all objects on the database that are in use by a user or process.

rename to Rename the database. When you rename a database, the database directory is
also renamed.

comment Create a description of the database. The maximum number of characters is 80.
This description is available to database administrators. To annotate the
database for Spreadsheet Add-in users, use set note.

merge all|incremental data
[remove_zero_cells]

Merge incremental data slices. Use these keywords:

l all—Merge all incremental data slices into the main database slice.

l incremental—Merge all incremental data slices into a single data slice. The
main database slice is not changed.

l (Optional) remove_zero_cells—When merging incremental data slices,
remove cells that have a value of zero (logically clearing data from a region
results in cell with a value of zero).

MaxL Statements (Aggregate Storage) 873

Keyword Description

clear data in region … Clear the data in the specified region.

There are two methods for clearing data from a region:

l Physical, in which the input cells in the specified region are physically
removed from the aggregate storage database. The process for physically
clearing data completes in a length of time that is proportional to the size
of the input data, not the size of the data being cleared. Therefore, you
might typically use this method only when you need to remove large slices
of data.

Use the MaxL statement with the physical keyword:

alter database appname.dbname clear data in region
'MDX set expression' physical;

l Logical, in which the input cells in the specified region are written to a new
data slice with negative, compensating values that result in a value of zero
for the cells you want to clear. The process for logically clearing data
completes in a length of time that is proportional to the size of the data
being cleared. Because compensating cells are created, this option increases
the size of the database.

Use the MaxL statement without a keyword:

alter database appname.dbname clear data in region
'MDX set expression';

The region must be symmetrical. Members in any dimension in the region must
be stored members. When physically clearing data, members in the region can
be upper-level members in alternate hierarchies. (If the region contains upper-
level members from alternate hierarchies, you may experience a decrease in
performance.) Members cannot be dynamic members (members with implicit
or explicit MDX formulas), nor can they be from an attribute dimension.

To remove cells with a value of zero, use the alter database MaxL statement with
the merge grammar and the remove_zero_cells keyword.

enable
replication_assume_identical_outline

Optimize the replication of an aggregate storage database when the aggregate
storage database is the target and a block storage database is the source and the
two outlines are identical.

Replication optimization affects only the target aggregate storage application;
the source block storage application is not affected. This functionality does not
apply to block storage replication.

This statement can be enabled only at the database level. To enable this
functionality at the server or application (or database) level, use the
REPLICATIONASSUMEIDENTICALOUTLINE configuration setting in the
essbase.cfg file.

disable
replication_assume_identical_outline

Do not optimize the replication of an aggregate storage database when the
aggregate storage database is the target and a block storage database is the source
and the two outlines are identical.

874 MaxL

Keyword Description

begin archive to file Prepare the database for backup by an archiving program, and prevent writing
to the files during backup.

Begin archive achieves the following outcomes:

l Switches the database to read-only mode. The read-only state persists, even
after the application is restarted, until it is changed back to read-write using
end archive.

l Creates a file containing a list of files that need to be backed up. Unless a
different path is specified, the file is stored in the database directory.

Begin archive and end archive do not perform the backup; they simply protect
the database during the backup process.

end archive Return the database to read-write mode after backing up the database files.

Example

alter database AsoSamp.Sample clear aggregates;

Deletes all aggregate views in the AsoSamp.Sample database.

alter database AsoSamp.Sample initialize load_buffer with buffer_id 1;

See “Loading Data Using Buffers” on page 921.

alter database AsoSamp.Sample initialize load_buffer with buffer_id 1 resource_usage .5
property ignore_missing_values, ignore_zero_values;

Creates a data-load buffer in memory for the AsoSamp.Sample database. The buffer can use
only 50% of available resources. Missing values and zeros in the data source are ignored.

alter database AsoSamp.Sample disable query_tracking;

Turns off the harvesting of query data for the AsoSamp.Sample database.

alter database AsoSamp.Sample merge all data;

Merges all incremental data slices into the main slice in the AsoSamp.Sample database.

alter database AsoSamp.Sample merge incremental data;

Merges all incremental data slices into a single data slice within the AsoSamp.Sample
database.

alter database AsoSamp.Sample merge all data remove_zero_cells;

Merges all incremental data slices into the main slice in the AsoSamp.Sample database, and
removes cells with a value of zero.

alter database AsoSamp.Sample clear data in region '{Jan, Budget}';

Clears all Budget data for the month of Jan, using the logical method, from the
AsoSamp.Sample database.

alter database AsoSamp.Sample clear data in region '{Jan, Budget}' physical;

Clears all Budget data for the month of Jan, using the physical method, from the
AsoSamp.Sample database.

MaxL Statements (Aggregate Storage) 875

alter database AsoSamp.Sample clear data in region 'CrossJoin({Jan},{Forecast1,
Forecast2})';

Clears all January data for the Forecast1 and Forecast2 scenarios from the AsoSamp.Sample
database.

Alter System (Aggregate Storage)
Click here for non-aggregate storage version

Change the state of the Essbase Server. Start and stop applications, delete application log files,
manipulate system-wide variables, manage password and login activity, disconnect users, kill
processes, back up the security file, and shut down the server. Permission required:
Administrator.

876 MaxL

Syntax

You can change the following system-wide settings using alter system.

Keyword Description

load application Start an application, or start all applications on the Essbase Server.

unload application Stop an application, or stop all applications on the Essbase Server.

MaxL Statements (Aggregate Storage) 877

Keyword Description

set session_idle_limit Set the interval of time permitted for a session to be inactive before Essbase Server logs off the
user. The minimum limit that you can set is five minutes (or 300 seconds). When the session
idle limit is set to none, all users can stay logged on until the Essbase Server is shut down.

The default user idle logout time is 60 minutes. When a user initiates a calculation in the
background, after 60 minutes the user is considered idle and is logged out, but the calculation
continues in the background.

Because the user may mistakenly assume that the calculation stopped because he or she was
logged out, you can do one of the following to correct the user experience:

l Run the calculation in the foreground

l Increase the session idle limit in to a time that exceeds the duration of the calculation, or
to none

set session_idle_poll Set the time interval for inactivity checking and security-backup refreshing. The time interval
specified in the session idle poll gives Essbase instructions:

l Tells it how often to check whether user sessions have passed the allowed inactivity interval
indicated by session_idle_limit in the alter system statement.

l Tells it how often to refresh the security backup file. If session_idle_poll is set to
zero, the security backup file is still refreshed every five minutes.

set invalid_login_limit Set the number of unsuccessful login attempts allowed by any user before the user account
becomes disabled. When you change this setting, the counter resets to 0. When the invalid login
limit is set to none, there is no limit. By default, there is no limit.

set inactive_user_days Set the number of days a user account may remain inactive before the system disables it. The
counter resets when the user logs in, is edited, or is activated by an administrator. When the
inactive days limit is set to none, user accounts remain enabled even if they are not used. By
default, there is no limit.

set
password_reset_days

Set the number of days users may retain passwords. After the allotted number of days, users are
prompted at login to change their passwords. The counter resets for a user when the user changes
the password, is edited, or is activated by an administrator. When the password reset days limit
is set to none, there is no built-in limit for password retention. By default, there is no limit.

set variable Change the value of an existing subsitution variable on the system. The value must not exceed
256 bytes. It may contain any character except a leading ampersand (&).

878 MaxL

Keyword Description

set sss_mode Migrate Essbase Server and any existing users and groups to Shared Services security mode.
Minimum permission required: Administrator. After you have converted to Shared Services
security mode, you cannot revert to native security mode.

Password Enforcement Grammar:

l enforce username_as_password—Create passwords that are the same as user names for
users being migrated to Shared Services.

Note: The passwords are created in lowercase letters, even if the user name includes
uppercase letters. For example, if a user name KSmith is migrated with this option,
the password will be ksmith.

l enforce auto_password—Automatically generate new passwords for users being migrated
to Shared Services. To see the generated passwords, use display user all in
shared_services_native with auto_password;

Optionally save the generated passwords to a nondefault file location. If specifying a file
name that already exists, use the force keyword to overwrite the file.

If file name and location are not specified, passwords are saved by default to
$ARBORPATH\bin\MigratedUsersPassword.txt.

l enforce password <PASSWORD>—Generate the specified password for users being
migrated to Shared Services.

set eas_loc Set or change the Essbase Administration Server location that will be registered with Shared
Services upon application creation or migration.

set server_port Expand a port range specified in essbase.cfg. Each Essbase application uses two ports from
this range. If no more ports are available, an error message is displayed.

Note: You can expand port ranges only so that the beginning port range is less than
SERVERPORTBEGIN and the ending port range is greater than SERVERPORTEND.

clear logfile Clear accumulated entries from the Essbase Server log located in the Essbase directory. New
log entries are created to record subsequent activity.

add variable Create a system-level substitution variable by name, and optionally assign a string value for the
variable to represent. You can assign or change the value later using set variable. A substitution
variable acts as a global placeholder for information that changes regularly. Substitution
variables may be referenced by calculations and report scripts.

If substitution variables with the same name exist at server, application, and database levels, the
order of precedence for the variables is as follows: a database-level substitution variable
supersedes an application-level variable, which supersedes a server-level variable.

drop variable Remove a substitution variable and its corresponding value from the system.

logout session all Terminate all user sessions currently running on the Essbase Server.

logout session...force Terminate a session (or sessions) even if it is currently processing a request. The request is
allowed to proceed to a safe point, and then the transaction is rolled back.

logout session
<session-id>

Terminate a session by its unique session ID number. To see the session ID number, use display
session.

logout session by user Terminate all current sessions by a particular user, either across the entire Essbase Server, or
limited to a specific application or database.

MaxL Statements (Aggregate Storage) 879

Keyword Description

logout session by user
on application

Terminate all current sessions by a particular user across a specific application.

logout session by user
on database

Terminate all current sessions by a particular user across a specific database.

logout session on
application

Terminate all current user sessions across a specific application.

logout session on
database

Terminate all current user sessions across a specific database.

shutdown Shut down the Essbase Server.

kill request all Terminate all current requests on the Essbase Server.

kill request <session-
id>

Terminate the current request indicated by the session ID. You can obtain session IDs using
display session.

kill request by user Terminate all current requests by the specified user on the Essbase Server.

kill request on
application

Terminate all current requests on the specified application.

kill request on
database

Terminate all current requests on the specified database.

sync security_backup Check whether the security backup file is the same as the security file, and if not, synchronize
the security backup file with the current state of Essbase security. The effect is to refresh the
backup file with any additions, changes, or deletions related to applications, databases, users,
groups, filters, permissions, subsitution variables, locked objects, and system settings.

If sync security_backup is not issued directly as described above, the security backup
file is checked/refreshed automatically at the same frequency with which session inactivity is
checked globally. The default inactivity check interval is every five minutes. To change the
interval, use set session_idle_poll, or see the Oracle Essbase Administration Services
Online Help.

compact security file Defragment the security file. Fragmentation can gradually develop when objects such as users,
groups, applications, or databases are removed or changed. Please note that this operation slows
down agent activity until the operation is completed, which could take a few minutes.

880 MaxL

Keyword Description

reconcile When Essbase is started using a security backup file (essbase_timestamp.bak) instead
of essbase.sec, reconcile the security file to match the state of Essbase on an external disk.
This grammar displays discrepancies in application and database information between the
security file and the external disk:

l If an application folder is on the disk but not in the security file, display a message indicating
the discrepancy. (Essbase checks for the presence of a appname/appname.app file in
the ARBORPATH/app directory.)

The force option does not apply in this scenario.

l If an application file is in the security file but not on the disk, display a message indicating
the discrepancy.

The force option removes the application from the security file.

l If an application database folder is on the disk but not in the security file, display a message
indicating the discrepancy. (Essbase checks for the presence of a dbname/
dbname.otl file in the ARBORPATH/app/appname directory.)

The force option does not apply in this scenario.

l If an application database file is in the security file but not on the disk, display a message
indicating the discrepancy.

The force option removes the database from the security file.

Notes

SESSION SPECIFICATION

A session is a single user connection to Essbase Server. The session can be identified by keywords
and names indicating context, or by a unique session ID number.

A request is a query sent to Essbase Server by a user or by another process; for example, starting
an application or restructuring a database outline. Only one request at a time can be processed
in each session.

If a session is processing a request at the time that an administrator attempts to terminate the
session, the administrator must either terminate the request first, or use the force kewyord
available with alter system to terminate the session and the current request.

MaxL Statements (Aggregate Storage) 881

PASSWORD ENFORCEMENT SPECIFICATION

Example

alter system unload application Sample;

Stops the Sample application, if it is currently running.

alter system logout session by user Fiona;

Disconnects Fiona from any applications or databases to which she is connected.

Note: To log out a user, log out the sessions owned by that user.

alter system set password_reset_days 10;

Specifies that all users will be prompted after 10 days to change their passwords. The day
count for any user is reset when the user changes the password or is edited or reactivated by
an administrator.

alter system set sss_mode enforce password “password”;

Migrates the Essbase Server to Shared Services security mode, specifying the initial password
for all users.

Create Application (Aggregate Storage)
Click here for non-aggregate storage version

Create or re-create an application, either from scratch or as a copy of another application on the
same system. APP-NAME must consist of 8 or fewer characters. Avoid spaces and special
characters when naming applications and databases. Application names are not case-sensitive.

Permissions required: Essbase create_application role and Oracle's Hyperion® Shared Services
Project Manager role.

To copy an application, Application Manager permission on the source application is also
required.

882 MaxL

Syntax

You can create an application in the following ways using the aggregate storage version of
create application.

Keyword Description

create application Create a new application. Application names are not case-sensitive.

create or replace
application

Create an application, or replace an existing application of the same name. Application names
are not case-sensitive.

...type
nonunicode_mode

Create a Non Unicode-mode application. This is also the default if these keywords are omitted.

...type unicode_mode Create a Unicode-mode application.

...using
aggregate_storage

Create an application using an aggregate storage model. Only one database per application is
allowed. Selecting to use aggregate storage model for an application is non-reversible.

Use the aggregate storage model if the following is true for your database:

l The database is sparse and has many dimensions, or a large hierarchical depth of members
in the dimensions.

l The database is used primarily for read-only purposes; there are few or no data updates.

l There are no formulas on the outline except in the dimension tagged as Accounts.

l Calculation of the database is frequent and highly aggregational, with no dependency on
calculation scripts.

create application as Create an application as a copy of another application. Application names are not case-sensitive.

You cannot copy block storage applications to aggregate storage applications or vice versa. The
copy will always use the same storage as the original. However, you can convert an outline from
a block storage database to an aggregate storage database, using create outline.

comment Create an application description (optional). The description can contain up to 80 characters.

Example

create application Sample2 using aggregate_storage comment 'aggregate storage
application.';

Creates a new aggregate storage application called Sample2, with an associated comment.

Create Database (Aggregate Storage)
Click here for non-aggregate storage version

Create or re-create a database for an aggregate storage application.

MaxL Statements (Aggregate Storage) 883

The syntax for creating an aggregate storage database is the same as for creating a block storage
database, except that the currency database option is not supported. You must create an
aggregate storage database as part of an aggregate storage application.

Permission required: Application Manager.

Syntax

Use create database to create a database in the following ways:

Keyword Description

create database Create a new database. Database names are not case-sensitive.

create or replace database Create a database, or replace an existing database of the same name. Database names are
not case-sensitive.

create database using
non_unique_members

Create a database that supports the use of duplicate member names. Once you have created
a database with a duplicate member outline, you cannot convert it back to a unique member
outline.

For more information about duplicate member names, see the Oracle Essbase Database
Administrator's Guide chapter titled "Creating and Working With Duplicate Member
Outlines."

comment Create a database description (optional). The description can contain up to 80 characters.

Notes

l You cannot create an aggregate storage database as a copy of another aggregate storage
database. Only one aggregate storage database is allowed per application.

l You cannot copy a block storage database to an aggregate storage database. For an example
of how to create an aggregate storage application and database based on a block storage
application and database, see “Creating an Aggregate Storage Sample Using MaxL” on page
920.

Example

create or replace database Sample.Basic comment 'This is a test.';

Creates a database called Basic within the Sample application. If a database named Basic within
the Sample application already exists, it is overwritten.

Create Outline (Aggregate Storage)
Create an aggregate storage outline based on a block storage outline. The outline you are creating
must be for an aggregate storage database that is local to your current login session. The block-
storage database you are using as a source can be remote. If a remote host is specified, you can

884 MaxL

also specify a user name and password if the connection is remote. Permission required: Database
Manager.

Essbase supports the following scenarios for converting block storage outlines to aggregate
storage outlines:

l Non-Unicode block storage outline to non-Unicode aggregate storage outline

l Non-Unicode block storage outline to Unicode aggregate storage outline

l Unicode block storage outline to Unicode aggregate storage outline

The following conversion scenarios are not supported:

l Unicode block storage outline to non-Unicode aggregate storage outline

l Aggregate storage outline to a block storage outline

Syntax

You can create an outline in the following ways using create outline.

Keyword Description

create outline... Create an aggregate-storage database outline based on a block storage outline. If an outline of the
same name already exists, it is replaced.

create or replace
outline...

This statement has the same result as create outline above.

at HOST-NAME If the block-storage database you are using as a source is remote, specify the host name.

as USER-NAME
identified by
PASSWORD

If the block-storage database you are using as a source is remote, specify the host name. If the
connection is also remote (requires a different authentication), provide the user name and password,
as you would do when creating a remote partition.

Example

create or replace outline on aggregate_storage database Sample2.Basic2 as outline on
database sample.basic;

Creates an aggregate storage outline based on the Sample Basic outline. For a complete example
of how to create an aggregate storage version of a block storage database, see “Creating an
Aggregate Storage Sample Using MaxL” on page 920.

Display Tablespace
View details about a tablespace. Tablespaces are applicable only to aggregate storage databases.
Permission required: Application Manager. This statement requires the application to be started.

MaxL Statements (Aggregate Storage) 885

Syntax

Example

set column_width 50; /* so file_location will not be truncated */
display tablespace ASOSamp.'default';

This example displays the following output:

Column Header Contents

file_location C:\Hyperion\products\Essbase\EssbaseServer\APP\

max_file_size 56

max_disk_size 4294967295

Execute Allocation
Allocate one or more given source amounts to a target range of cells in an aggregate storage
database. The source amount can be allocated to the target proportionately to a given basis, or
the source amount can be spread evenly to the target region.

Allocations are typically used in the budgeting process to distribute revenues or costs.

Minimum permission required: execute.

For more information about allocations and to understand the input parameters, see
“Performing Custom Calculations and Allocations on Aggregate Storage Databases” in the
Oracle Essbase Database Administrator's Guide.

886 MaxL

Syntax

MaxL Statements (Aggregate Storage) 887

Keyword Description

pov <mdx-set> Required. Provide an MDX set defining the context region in which the allocation is
performed.

amount <alloc-
numeric>

Required. Provide an MDX numeric value expression indicating the amount to be allocated.

amountcontext <mdx-
tuple>

Optional. Provide an MDX tuple with one member from each dimension missing from pov
and amount. This clause is required when amount is an arithmetic expression and pov does
not specify two or more dimensions. It should not be used otherwise.

amounttimespan
<mdx-set>

Optional. Provide an MDX set indicating one or more time periods to be considered for the
amount. The amount value is aggregated over the specified time periods, and the aggregated
amount value is allocated. Time periods must be level 0 members in a Time dimension.

target <mdx-tuple> Required. Provide an MDX tuple defining the database region where results are written.

targettimespan <mdx-
set>

Optional. Provide an MDX set indicating one or more time periods to be considered for the
target. Time periods must be level 0 members in a Time dimension.

targettimespanoptions Optional, but required if targettimespan is used.

Select a method for allocating values across the target time span:

l divideamount–Divide the amount evenly across the time periods

l repeatamount–Repeat the amount across the time periods

offset <mdx-tuple> Optional. If offsetting entries are used, provide an MDX tuple defining the location in the
database where an offsetting value is written for each source amount.

debitmember <mdx-
mbr>

Optional. If double-entry accounting is used, provide an MDX member expression indicating
the member to which positive result values are written.

creditmember <mdx-
mbr>

Optional. If double-entry accounting is used, provide an MDX member expression indicating
the member to which negative result values are written.

range <mdx-set> Required. Provide an MDX set indicating the database region in which allocated values are
calculated and written.

excludedrange <mdx-
set>

Optional. Provide an MDX set specifying locations in the range where you do not want
allocation values written.

basis <mdx-tuple> Required in most cases. Provide an MDX tuple that, when combined with the range, defines
the location of basis values that determine how the amount is allocated. The basis can consist
of upper-level or level 0 members.

Optional if the allocation method used is spread, and no values are skipped; required
otherwise. Basis must be omitted when the allocation method spread is used without skip
options.

basistimespan <mdx-
set>

Optional. Provide an MDX set that indicates one or more time periods to be considered for
the basis. Time periods must be level 0 members in a Time dimension.

basistimespanoptions Optional, but required if basistimespan is used. Select a method for using the basis time span:

l splitbasis–Use the basis value for each time period individually

l combinebasis–Use the sum of the basis values across the time periods specified by
basistimespan

888 MaxL

Keyword Description

share Optional. Specify to allocate the amount(s) proportionately to the basis values. For syntax,
see Allocation Method Specification in Notes.

spread Optional. Specify to allocate the amount(s) evenly. For syntax, see Allocation Method
Specification in Notes. You can include one or more of the following skip options when using
spread allocation:

l skip_missing–Skip missing basis values

l skip_zero–Skip zero basis values

l skip_negative–Skip negative basis values

zeroamountoptions Optional. If omitted, zero or #MISSING amount values are allocated. Otherwise, specify
treatment of amount values that are zero or #MISSING:

l skip_to_next_amount–Skip to the next nonzero, non-#MISSING amount value

l abort–Cancel the entire allocation operation

zerobasisoptions Optional. For share, this option specifies the action when the sum of all basis values is zero.
For spread, this option specifies the action when all the basis values are skipped. Select one
of the following options:

l skip_to_next_amount–Skip to the next nonzero, non-#MISSING amount value

l abort–Cancel the entire allocation operation

round Optional. Specify rounding options. The following options are available: For syntax, see
Rounding Method Specification in Notes.

l Round to a specified number of decimal places, using an integer or MDX numeric value
expression. The value must be between 100 and -100, and is truncated if it is not a whole
number.

l Perform rounding, but discard rounding errors

l Add rounding errors to the highest allocated value

l Add rounding errors to the lowest allocated value

l Provide an MDX tuple indicating a cell to which the rounding error should be added

Notes

l The clauses following the with keyword can be entered in any order, each separated by white
space.

l Each clause can only be entered once.

l The pov, amount , target, range, and basis clauses are mandatory; the others are optional.

l You can specify only stored, level-0 members in all of the clauses except for amount,
amountcontext, basis, and the number of rounding digits; for all other arguments, do not
use upper-level members, attribute members, or dynamic calc members.

MaxL Statements (Aggregate Storage) 889

Allocation Method Specification

Rounding Method Specification

Example

The following statement executes an allocation. For a more complete use case, see “Performing
Custom Calculations and Allocations on Aggregate Storage Databases” in the Oracle Essbase
Database Administrator's Guide.

execute allocation on database glrpt.db with
pov "Crossjoin({[VisionUS]},
 Crossjoin({[5740]},
 Crossjoin({[USD]},
 Descendants([Geography],[Geography].Levels(0)))))"
amount "Jan + Feb"
amountcontext "([100], [Beginning Balance], [Actual], [CostCenter1])"
target "([Allocation], [CostCenter1])"
offset "([Allocation], [CostCenter1], [100], [YearNA])"
debitmember "[Debit]"
creditmember "[Credit]"
range "Crossjoin(Descendants([999], [Department].Levels(0)),
 Descendants([Year], [Year].Levels(0)))"
excludedrange "{[9994], [9995], [9996]}"
basis "([SQFT], [Balance], [Actual], [CostCenter2])"
share
zeroamountoptions abort
zerobasisoptions abort
negativebasisoptions zero_value
targettimespanoptions divideamount
round "Currency.CurrentMember.CurrencyPrecision"
errors_to_location "([101], [Jan])" ;

Execute Calculation (Aggregate Storage)
Click here for non-aggregate storage version

890 MaxL

Execute a custom calculation script expressed in MDX, specifying the script file, source region,
and point of view (POV). Optionally specify the target, offset, and debit or credit members.

Minimum permission required: execute.

For more information about custom calculation script parameters, see “Performing Custom
Calculations and Allocations on Aggregate Storage Databases” in the Oracle Essbase Database
Administrator's Guide.

Syntax

You can execute custom calculations with the following options:

Keyword Description

local script_file Required. Run the specified local calculation script file. Custom calculation scripts are expressed in
MDX. The following is an example of a custom calculation script, script.txt.

(AccountA,Proj1) := 100;
([AccountB], [Proj1]) := ([AccountB], [Proj1]) * 1.1;
(AccountC,Proj1) :=
 ((AccountB,Proj1,2007) + (AccountB, Proj1)) / 2;
(AccountA,Proj2) :=
 ((AccountD,Proj1) +
 (AccountB,Proj2)) / 2;

For information about writing custom calculation scripts, see “Performing Custom Calculations and
Allocations on Aggregate Storage Databases” in the Oracle Essbase Database Administrator's Guide.

pov <mdx-set> Required. Provide an MDX set defining the context region in which the calculation is performed. The
calculation script will be executed once for every cross-product in the POV region.

sourceregion
<mdx-set>

Required. Provide an MDX set specifying the region of the cube referred to by the formulas in the
script. At a minimum, the source region should include all members from the right-hand sides of the
assignment statements in the custom calculation script.

target <mdx-
tuple>

Optional. Provide an MDX tuple defining the database region where results are written. You can use
only stored, level-0 members in the tuple; do not use upper-level members, attribute members, or
dynamic calc members.

MaxL Statements (Aggregate Storage) 891

Keyword Description

debitmember
<mdx-mbr>

Optional. If double-entry accounting is used, provide an MDX member expression indicating the
member to which positive result values are written. You can specify only stored, level-0 members; do
not use upper-level members, attribute members, or dynamic calc members.

creditmember
<mdx-mbr>

Optional. If double-entry accounting is used, provide an MDX member expression indicating the
member to which negative result values are written. You can specify only stored, level-0 members; do
not use upper-level members, attribute members, or dynamic calc members.

offset <mdx-
tuple>

Optional. If offsetting entries are used, provide an MDX tuple defining the location in the database
where an offsetting value for each source amount is written. You can use only stored, level-0 members
in the tuple; do not use upper-level members, attribute members, or dynamic calc members.

Notes

l The clauses following the with keyword can be entered in any order, each separated by white
space.

l Each clause can only be entered once.

l The script_file, pov, and sourceregion clauses are mandatory; the others are optional.

l You can specify only stored, level-0 members on the left side of the assignment statement
in the custom calculation script; do not use upper-level members, attribute members, or
dynamic calc members.

l You can specify only stored, level-0 members in the following clauses: DebitMember,
CreditMember, Target, and Offset.

Example

The following statement executes script.txt referenced above. For a sample use case, see
“Performing Custom Calculations and Allocations on Aggregate Storage Databases” in the
Oracle Essbase Database Administrator's Guide.

execute calculation on app.db with
 local script_file "script.txt"
 POV "Crossjoin({[VisionUS]},
 Crossjoin({[101]},
 Crossjoin ({[Jan]},
 Crossjoin({[Scenario]},
 Descendants(Geography, Geography.Levels(0))))))"
 Target "(Allocation)"
 DebitMember "[BeginningBalance_Debit]"
 CreditMember "[BeginningBalance_Credit]"
 Offset "([Account_000], [Project_000])"
 SourceRegion "Crossjoin({[AccountB], [AccountD]},
 Crossjoin({[Proj1], [Proj2]}, {[2007]}))" ;

Export Data (Aggregate Storage)
Click here for non-aggregate storage version

892 MaxL

Export level-0 data, which does not include calculated values, from an aggregate storage database.
Export files are stored in the ARBORPATH/app directory on the server unless an absolute path
is specified. To use Report Writer, export the data using a report file.

Minimum permission required: Read. This statement requires the database to be started.

Syntax

On aggregate storage databases, use export data to export in the following ways:

Keyword Description

export database <dbs-name>
level0 data...

Export level-0 input data to a text file. You cannot export aggregates, upper level
data, or data from dynamically calculated members.

Note: Exporting data does not clear the data from the database.

export database <dbs-name>
input data...

This statement performs the same action as export database <dbs-name> level0
data....

export database <dbs-
name> ...using...report_file...

Run a stored report script, exporting a subset of the database.

Notes

Exports on aggregate storage databases are limited as follows:

l You can export level-0 data only (level-0 data is the same as input data in aggregate storage
databases).

l You cannot perform upper-level data export on an aggregate storage database.

l You cannot perform columnar export on an aggregate storage database.

l To export data in parallel, specify a comma-separated list of export files. The number of
threads Essbase uses depends on the number of file names you specify. For parallel export
on a very small database, it is possible that only a single file will be created, even though
parallel export to multiple files is requested. In this case, the export file name will be the first
file name given as input.

l During a data export, the export process allows users to connect and perform read-only
operations.

l If the data for a thread exceeds 2 GB, Essbase may divide the export data into multiple files
with numbers appended to the file names.

The naming convention for additional export files is as follows: _1, _2, etc. are appended
to the additional file names. If the specified output file name contains a period, the numbers
are appended before the period. Otherwise, they are appended at the end of the file name.

MaxL Statements (Aggregate Storage) 893

For example, if the given file name is /home/exportfile.txt, the next additional file is /
home/exportfile_1.txt. If the file name is /home/exportfile, the next additional file
is /home/exportfile_1.

Example

export database ASOSamp.Sample data to data_file 'exportfile.exp';

export database ASOSamp.Sample using report_file 'my.rep' to data_file 'my.rpt';

Import Data (Aggregate Storage)
Click here for non-aggregate storage version

Import data from text or spreadsheet data files, with or without a rules file. Minimum permission
required: Write.

894 MaxL

Syntax

MaxL Statements (Aggregate Storage) 895

Use import data in the following ways to load data into an aggregate storage database:

Keyword Description

import database
<dbs-name> data
from...

Specify whether the data import is from a local or server file, and what type of file to import data
from.

...using ... rules_file Import data into the database using a specified rules file.

...<data error spec>
(on error...)

Required. Tell Essbase what to do in case of errors during the data load: abort the operation, or
write or append to a specified error log.

...<data record
spec> from
data_string

Load a single data record into the selected database.

...<SQL connect
spec> (connect
as...)

If you are importing data from an SQL source, provide your SQL user name and password. You
must always use a rules file when you load SQL data sources.

When loading SQL data into aggregate storage databases, you can use up to eight rules files to load
data in parallel by using the multiple rules_file grammar with the grammar specified in <buffer-
block-spec>. Essbase initializes multiple temporary aggregate storage data load buffers (one for
each rules file) and, when the data is fully loaded into the buffers, commits the contents of all
buffers into the database in one operation.

Each rules file must use the same authentication information (SQL user name and password).

In the following example, SQL data is loaded from two rules files (rule1.rul and
rule2.rul):

import database AsoSamp.Sample data
 connect as TBC identified by 'password'
 using multiple rules_file 'rule1','rule2'
 to load_buffer_block starting with buffer_id 100
 on error write to "error.txt";

In specifying the list of rules files, use a comma-separated string of rules file names (excluding
the .rul extension). The filename for rules files must not exceed eight bytes and the rules files
must reside on Essbase Server.

In initializing a data load buffer for each rules file, Essbase uses the starting data load buffer ID
you specify for the first rules file in the list (for example, ID 100 for rule1) and increments the ID
number by one for each subsequent data load buffer (for example, ID 101 for rule2).

The ODBC driver you are using must be configured for parallel SQL connections. See the Oracle
Essbase SQL Interface Guide.

Note: Performing multiple SQL data loads in parallel to aggregate storage databases is different
than using the to load_buffer with buffer_id grammar to load data into a buffer, and then
using the from load_buffer with buffer_id grammar to explicitly commit the buffer
contents to the database. For more information on aggregate storage data load buffers, see
the Oracle Essbase Database Administrator's Guide.

...to load_buffer
with buffer_id

If you are importing data from multiple data files to an aggregate storage database, you can import
to a buffer first, in order to make the data import operation more efficient.

...from load_buffer
with buffer_id

If you are importing data from multiple data files to an aggregate storage database, you can import
from a data load buffer in order to make the data import operation more efficient.

896 MaxL

Keyword Description

...from load_buffer
with
buffer_id...values

Specify whether you want to add to existing values, substract from existing values, or override
existing values when committing the contents of the specified data load buffer to the database.

...from load_buffer
with
buffer_id...create
slice

Commit the contents of the specified data load buffer to the database by creating a new data slice.

...from load_buffer
with buffer_id
override all data

Remove the current contents of the database and replace the database with the contents of the
specified data load buffer.

...from load_buffer
with buffer_id
override
incremental data

Remove the current contents of all incremental data slices in the database and create a new data
slice with the contents of the specified data load buffer. The new data is created with the data load
property "add values" (aggregate_sum). If there are duplicate cells between the new data and the
primary slice, their values are added together when you query for them.

Notes

l This statement requires that the database is started.

l When using the import statement, you must specify what should happen in case of an error.

l To import from a SQL data source, you must connect as the relational user name and use a
rules file.

Example

import database asosamp.sample data from data_file "'$ARBORPATH\\app\\asosamp\\sample\
\dataload.txt'" using rules_file "'$ARBORPATH\\app\\asosamp\\sample\\dataload.rul'" on
error abort;

Loads data into the ASOSamp.Sample database.

import database AsoSamp.Sample data from load_buffer with buffer_id 1;

Commits the contents of a specified data load buffer to the AsoSamp.Sample database.

import database AsoSamp.Sample data from load_buffer with buffer_id 1, 2;

Commits the contents of multiple data load buffers (buffer_id 1 and buffer_id 2) to the
AsoSamp.Sample database.

import database AsoSamp.Sample data from load_buffer with buffer_id 1 add values;

Commits the contents of a specified data load buffer to the AsoSamp.Sample database by adding
values.

import database AsoSamp.Sample data from load_buffer with buffer_id 1 override values
create slice;

Commits the contents of the specified data load buffer into a new data slice in the
AsoSamp.Sample database.

import database AsoSamp.Sample data from load_buffer with buffer_id 1 override all data;

MaxL Statements (Aggregate Storage) 897

Replaces the contents of the AsoSamp.Sample database with the contents of the specified data
load buffer.

import database AsoSamp.Sample data from load_buffer with buffer_id 1 override
incremental data;

Replaces the contents of all incremental data slices in the AsoSamp.Sample database by creating
a new data slice with the contents of the specified data load buffer. The new data is created with
the data load property "add values" (aggregate_sum). If there are duplicate cells between the new
data and the primary slice, their values are added together when you query for them.

See “Loading Data Using Buffers” on page 921.

Query Application (Aggregate Storage)
Get information about the current state of the application.

This statement requires the application to be started. This statement is only applicable for
applications using aggregate storage mode.

Syntax

Example

The following MaxL statement:

query application sample get cache_size;

returns the maximum size (in kilobytes) to which the aggregate storage cache may grow.

The following MaxL statement:

query application asoapp list aggregate_storage storage_info;

returns the following information:

Output Columns Description

Cache hit ratio Ratio of the number of requests answered from aggregate storage cache as opposed
to from the hard disk.

Current cache size (KB) The current size of the aggregate storage cache. See description for current
cache size limit (KB).

Current cache size limit (KB) The maximum size (in kilobytes) to which the aggregate storage cache may grow.

Page reads since last startup Number of data blocks (pages) read from disk since the last time the application was
started.

Page writes since last startup Number of data blocks (pages) written to disk since the last time the application was
started.

Page size (KB) Size of the data block (page) in kilobytes.

898 MaxL

Output Columns Description

Disk space allocated for data (KB) Total space used by all disk files in the default tablespace.

Disk space used by data (KB) Total space actually in use within the disk files in the default tablespace (some
space within files may be free).

Temporary disk space allocated (KB) Total space used by all disk files in the temp tablespace.

Temporary disk space used (KB) Total space actually in use within the disk files in the temp tablespace (some space
within files may be free).

Query Database (Aggregate Storage)
Click here for non-aggregate storage version

Get advanced information about the current state of the database.

Minimum permission required: Read. This statement requires the database to be started.

Syntax

You can query for database information in the following ways using query database:

Keyword Description

get active alias_table Display the active alias table for the user issuing the statement.

MaxL Statements (Aggregate Storage) 899

Keyword Description

get attribute_info Get attribute member, dimension, and name information for the specified
attribute member.

get attribute_spec Display the current attribute specifications for the database. These
specifications include attribute member name format, Attribute Calculation
dimension member names, Boolean and date member names, and numeric
range specifications. These settings are defined in Outline Editor.

get cube_size_info Display information about input data size, aggregated data size, and number
of queries tracked (when query tracking is enabled).

This statement returns the output listed in the following table:

Column Name Contents

input_data_
size_cells

Number of input-level cells in the cube.

input_data_
size_bytes

Number of bytes used by the input-level data (approximate).

aggregate_
data_size_cells

Total number of cells in all aggregate views in the cube.

aggregate_
data_size_bytes

Number of bytes used by the aggregate cells (approximate).

kernel_queries_
tracked

Number of kernel queries executed since the last time query
tracking was enabled or query tracking information was reset.

total_query_
cost

Total cost of all queries executed since the last time query
tracking information was reset.

query_tracking_
enabled

Values: True or False. Tells whether user retrieval statistics
are being collected for the aggregate storage database. The
statistics can be used by the following MaxL statements for
query-based view optimization:

l query database <dbs-name> list existing_views

l execute aggregate process

l execute aggregate selection

Query tracking is disabled by default.

get dbstats dimension Get information about dimensions.

The index_type field values are numeric, and translate as follows:

0 Dense
1 Sparse
3 None (database is aggregate storage)

get dbstats data_block Get information about data blocks. The information returned has little
relevance to aggregate storage databases.

900 MaxL

Keyword Description

get member_info <MEMBER-NAME> Get information on a specific member.

Output

The unary_type field values are numeric, and translate as follows:

0 Add
1 Subtract
2 Multiply
3 Divide
4 Percent
5 NoRollUp

The member_tag_type field values translate as follows:

0 SkipNone
16384 SkipMissing
32768 SkipZero
49152 SkipBoth
1 BalFirst
2 BalLast
4 TwoPass
8 Average
64 Expense

Variations are possible. The field value consists of one of the first four "skip"
values plus any/all/none of the last five values. Some examples:

0 SkipNone
77 SkipNone, BalFirst, TwoPass,
Average, Expense
16385 SkipMissing and BalFirst

The first four "skip" values are base values, and added to them are
combinations of 1, 2, 4, 8, and 64.

The status field values are hexadecimal, and translate as follows:

0 Normal
1 Never Share
2 Label
4 Refer Share
8 Refer Share (with different name)
16 Implicit share
32 Virtual Member (stored)
64 Virtual Member (not stored)
2048 Attribute
32768 Referred

get opg_state of member_data Display outline navigational information (for example, parent, child, or
sibling), fixed-length information (for example, the line aggregation symbol
or the number of children), and text strings (for example, member names or
aliases).

See “Outline Paging Dimension Statistics” on page 904 for a description of
the output.

MaxL Statements (Aggregate Storage) 901

Keyword Description

get opg_state of
member_name_namespace

Display information that matches member names to internal member
identifiers (one section per database, thus the information for all dimensions
is the same).

See “Outline Paging Dimension Statistics” on page 904 for a description of
the output.

get opg_state of member_formula Display all formulas for the dimension.

See “Outline Paging Dimension Statistics” on page 904 for a description of
the output.

get opg_state of member_UDA Display all user defined attributes (UDAs) for the dimension.

See “Outline Paging Dimension Statistics” on page 904 for a description of
the output.

get opg_state of
member_UDA_namespace

Display information that matches UDAs to internal member identifiers.

See “Outline Paging Dimension Statistics” on page 904 for a description of
the output.

get opg_state of
attribute_to_base_member_association

Display information that identifies the attribute member associated with each
base member of the dimension.

See “Outline Paging Dimension Statistics” on page 904 for a description of
the output.

get opg_state of member_comment Display all member comments for the dimension.

See “Outline Paging Dimension Statistics” on page 904 for a description of
the output.

get opg_state of
member_alias_namespace

Display information that matches member alias names to internal member
identifiers (one section per alias table, thus the information for all dimensions
is the same).

See “Outline Paging Dimension Statistics” on page 904 for a description of
the output.

list aggregate_storage runtime_info Display runtime statistics about the aggregate storage database. For a
description of the output returned by this statement, see “Aggregate Storage
Runtime Statistics” on page 905.

902 MaxL

Keyword Description

list aggregate_storage compression_info Display estimated compression for aggregate storage databases when
different dimensions are hypothetically used as the accounts dimension.
These estimates can help you choose the best dimension to use as the accounts
dimension.

In aggregate storage databases, the accounts dimension enables database
compression. A good candidate for an accounts dimension is one that
optimizes data compression and maintains retrieval performance.

This statement returns the following output:

Column
Name Contents

Accounts
Dim

Each dimension name in the database, hypothetically
considered to be the accounts dimension.

Stored Level
0 Members

The number of leaf-level members in the dimension. A large
number of stored level-0 members in a dimension indicates that
it may not perform well as an accounts dimension.

Average
Bundle Fill

Estimated average number of values per accounts dimension
bundle. Choosing an accounts dimension that has a higher
average bundle fill means that the database compresses better.

Average
Value Length

Estimated average number of bytes required to store a value.
Dimensions with a smaller average value length compress the
database better.

Expected
Level 0 Size
(MB)

Estimated size of of the compressed database, in megabytes. A
smaller expected level-0 size indicates that choosing this
dimension enables better compression.

Except for the scenario in which there is no accounts dimension
(<None>), all estimates assume that all pages are compressed.
Since compressed pages require additional overhead that
uncompressed pages do not, the estimated level-0 database
size for some dimensions may be larger than the value for
<None>.

list alias_table Get a list of alias tables that are defined for the database.

list alias_names in alias_table List the alias names defined in an alias table. Alias tables contain sets of aliases
for member names and are stored in the database outline. Use this grammar
to see a list of alias names defined in the specified table.

MaxL Statements (Aggregate Storage) 903

Keyword Description

list existing_views Display information about all aggregate views. An aggregate view is a
collection of aggregate cells based on the levels of the members within each
dimension.

The optional based on query_data clause causes the returned query cost
information to be based on the collected cost of actual user queries. If this
clause is not used, the default assumption is that all possible queries happen
with the same probability.

To use the based on query_data clause, query tracking must first be enabled.
To enable query tracking, use alter database <dbs-name> enable query
tracking.

For more information about aggregate views, see the Oracle Essbase Database
Administrator's Guide.

list ... file information Get accurate index and data file information. Provides index and data file
names, counts, sizes, and totals, and indicates whether or not each file is
presently opened by Essbase. The file size information is accurate. Note that
the file size information provided by the Windows operating system for index
and data files that reside on NTFS volumes may not be accurate.

list load_buffers Display a list and description of the data load buffers that exist on an aggregate
storage database. See “Using Aggregate Storage Data Load Buffers” on page
923.

list aso_level_info Display the aggregation level count for each real dimension in the outline.
Aggregation level count is the total number of aggregation levels in a real
dimension (including associated attribute dimensions) that exist on an
aggregate storage database.

dump|force_dump existing views... Saves existing views of this database to an aggregation script. This action
requires a minimum permission of execute (“Execute” on page 635).

If the specified script name already exists, you can use the force_dump
keyword to overwrite it; otherwise, an error is returned if the file name already
exists.

If the based on query_data phrase is used, the view selection that is saved will
be based on previously collected query-tracking data. You must have enabled
query tracking to use this option. For more information about query tracking,
see the based on query_data description in execute aggregate
selection. See also the Oracle Essbase Database Administrator's Guide.

Example

query database Asosamp.Sample list load_buffers;

Display a list and description of the data load buffers that exist on Asosamp.Sample.

Outline Paging Dimension Statistics
The following columns are the output of the MaxL statement beginning with query database
DBS-NAME get opg_state.

This statement is only applicable to databases using aggregate storage.

904 MaxL

Column Name Contents

version The version of the outline paging section (a Berkeley DB database).

unique_keys The number of unique keys in the outline paging section.

key/data_pairs The number of key/data pairs in the outline paging section.

page_size The page size (in bytes) of the underlying database.

minimum_keys_per_page The minimum number of keys per page.

length of fixed_length_records The length of the fixed-length records (only available when the outline
paging section is a Recno database).

padding_byte_value_for_fixed_length_columns The padding byte value for fixed-length records.

levels Number of levels in the underlying database corresponding to the outline
paging section.

internal_pages Number of internal pages in the underlying database.

leaf_pages Number of leaf pages in the underlying database.

duplicate_pages Number of duplicate pages in the underlying database.

overflow_pages Number of overflow pages in the underlying database.

pages_on_free_list Number of pages on the free list in the underlying database.

bytes_free_in_internal_pages Number of bytes free in internal pages of the underlying database.

bytes_free_in_leaf_pages Number of bytes free in leaf pages of the underlying database.

bytes_free_in_duplicate_pages Number of bytes free in duplicate pages of the underlying database.

bytes_free_in_overflow_pages Number of bytes free in overflow pages of the underlying database.

Aggregate Storage Runtime Statistics

Statistics per Dimension

The following MaxL statement:

query database asoapp.asodb list aggregate_storage runtime_info;

Returns output which includes the following lines:

parameter value
+--+------------------------------------
Dimension [Year] has [3] levels, bits used 4
Dimension [Measures] has [1] levels, bits 4
Dimension [Product] has [3] levels, bits u 5
Dimension [Market] has [3] levels, bits us 5
Dimension [Scenario] has [1] levels, bits 2
...

Aggregate Storage Runtime Statistics 905

For each dimension, the following statistics are shown:

l The name of the dimension.

l How many stored levels the dimension has, in the aggregate storage perspective. Not all
levels are stored in aggregate storage databases; some are virtual levels.

l The number of bits being used in the key for the dimension.

Each cell in an aggregate storage database is stored as a key/value pair. The key length is 8 bytes
or a multiple of 8 bytes; for example, 8, 16, 24.

Each key corresponds to a numeric value in the database. The statistics shown above report key
lengths in bytes and the number of bits used per key. How many bits each dimension uses in the
dimensional key is shown in the value column for each dimension.

How many bits used in each key may amount to less than the bytes needed for physical storage
of the key. As an example where this knowledge might be useful, consider a case in which a key
is using 65 bits. If you can reduce the key length by one bit to 64, then you can have then key
length be 8 bytes instead of 9, an improvement which reduces the overall size of the databse.
Another use for these statistics might be to examine them to see how much you gain from
removing any particular dimension.

Statistics for the Whole Database

The same MaxL statement used above also returns the following lines in its output:

parameter value
+----------------------------------+--
...
Max. key length (bits) 20
Max. key length (bytes) 0
Number of input-level cells 0
Number of aggregates 0
Number of aggregate cells 0
Size of the input level data (KB)
Size of the aggregate data (KB)

The whole-database statistics are described in the following table.

Column Name Description

Max. key length (bits) The sum of all the bits used by each dimension. For example, there are 20 bits in the
key used for dimensions, and the first 4 are used by Year.

Max. key length (bytes) How many bytes the key uses per cell.

Number of input-level cells The number of existing level-0 cells in the database.

Number of aggregates The number of aggregate views in the database.

Number of aggregate cells The number of cells stored in the database's aggregate views.

Size of the input level data (KB) The total disk space used by input-level data.

Size of the aggregate data (KB) The total disk space occupied by aggregate cells.

906 MaxL

For input-level and aggregate cells, the above statistics show

1. Number of cells

2. Disk space occupied by those cells

Because Essbase uses compression, these statistics are useful because it is not always possible to
derive disk size based on the number of cells.

MaxL Statements for Data Mining
The following are the MaxL statements for data mining.

Data Mining Algorithms
The following are the statements to create, delete, and display information about data-mining
algorithms.

create algorithm

drop algorithm

display algorithm

Data Mining Transformations
The following are the statements to create, delete, and display information about data-mining
transformations.

create transformation

drop transformation

display transformation

Mining Models
The following are the statements to delete and display information about data-mining models.

create model

display model

drop model

export model

MaxL Statements for Data Mining 907

Mining Results
The following are the statements to create, delete, and display information about data-mining
results.

create mining result

display mining result

drop mining result

Mining Task Templates
The following are the statements to create, delete, and display information about data-mining
templates.

create mining task template

drop mining task template

display mining task template

Mining Sessions
The following statements pertain to current data-mining sessions.

display mining session
alter system stop mining session
query database (<dbs-name> score miner with mining session ...)

Data Mining Statements Listed by Verbs

Create

Create Algorithm

Create Mining Result

Create Mining Task Template

Create Model

Create Transformation

Display

Display Algorithm

Display Mining Result

Display Mining Session

Display Mining Task Template

908 MaxL

Display Mining Model

Display Transformation

Drop

Drop Algorithm

Drop Mining Result

Drop Mining Task Template

Drop Model

Drop Transformation

Export

Export Mining Model

Data Mining Statements Listed by Objects

Algorithm

Create Algorithm

Display Algorithm

Drop Algorithm

Model

Create Model

Display Mining Model

Drop Model

Export Mining Model

Result

Create Mining Result

Display Mining Result

Drop Mining Result

Session

Display Mining Session

Task

Create Mining Task Template

Display Mining Task Template

MaxL Statements for Data Mining 909

Drop Mining Task Template

Data Mining Statements
The following topics describe the Data Mining statements.

Create Algorithm
Register a new data mining algorithm for use with Essbase.

The Essbase Data Mining Framework provides a set of built-in algorithms. This statement
enables you to register additional algorithms from third-party vendors.

Before you register an algorithm, be certain that:

l A Java wrapper has been created for the algorithm.

l The Java code for the algorithm has been compiled and a JAR file containing the class has
been created.

l The JAR file containing the class is contained in the ESSBASEPATH\java\udf directory.

Minimum permission required: Administrator.

Syntax

You can register an algorithm in the following ways:

Keyword Description

create algorithm Register an algorithm. Algorithm names are case sensitive.

create or replace
algorithm

Register an algorithm, or replace an existing algorithm of the same name. Algorithm names are
case sensitive.

Example

create algorithm Regression as 'com.hyperion.essbase.algorithms.Regression';

Registers an algorithm named Regression for use with the Data Mining Framework. The
class, com.hyperion.essbase.algorithms.Regression, implements this algorithm.

create or replace algorithm Clustering as 'com.hyperion.essbase.algorithms.clustering';

Registers an algorithm named Clustering for use with the Data Mining Framework. The
class, com.hyperion.essbase.algorithms.Clustering, implements this algorithm.
If an algorithm named Clustering already exists, the new version replaces it.

910 MaxL

Create Mining Task Template
Create a data mining task template. Any mining task specification can be saved as a template.
This template can be later retrieved, modified and invoked as a task.

Minimum permission required: No minimum permission needed to create a template.
Administrator or template owner required to replace a template.

Syntax

Example

create or replace mining task template 'AssocRule' from server file 't1xAssocRule.dmb';

Create Model
Create a data-mining model using either a data-mining template or a model from another system
exported to PMML.

Permission required: Database Manager. To replace an existing model, you must be an
Administrator or the owner of the model.

Syntax

Notes

PMML stands for Predictive Model Markup Language, a standard exchange format developed
by the Data Mining Group (http://www.dmg.org).

Example

create model 'm2xModel' on database Sample.Basic using algorithm 'Regression' from local
pmml_file 'e:/essbase/java/dmf/pmml/m2xRegression.pmml' ;

Create Mining Result
Initiate a data-mining session, using previously created models.

Permission required: execute calculation privilege. To replace an existing result, you must be an
Administrator or the owner of the result.

MaxL Statements for Data Mining 911

http://www.dmg.org

Syntax

Example

The following example creates a mining result from an XML string which defines model data.
The XML string should not be written manually; it must be obtained from a display statement.
For more information see the definition of “TASK-XML-STRING” on page 806.

The easiest way to change the mining task specification is to use the Administration Services
Data Mining Wizard. See "About Data Mining" in the Oracle Essbase Administration Services
Online Help for information.

If you do make changes to the template you obtain from the server, restrict changes to the
attributes of the <task> element, the <information> element, and the contents of the
<expression> elements.

create or replace mining result 'r1xRegression'
with mode 'apply' on database 'DMDemo'.'Basic' using model 'm1xRegression' as '<task
algorithm=\'MultivariateRegression\' class=\'com.hyperion.essbase.algorithms.Regression
\' mode=\'apply\' model=\'m1xRegression\' output=\'r1xRegression\' owner=\'\' pmml=\'\'
source=\'DMDemo.Basic\'>
<information>
Execution of this task produces forecasted target values for new predictors values. The
algorithm uses the previously constructed regression coefficients to output target
results for each input predictor vector. The forecast is based on the formula: target =
(slope * predictor) + intercept, where the (*) operation stands for dot product.
</information>
<modelInfo>
This is a test model
</modelInfo>
<setting name=\'missingTreatment\' value=\'NaN\'>
<information>
Define missing treatment by the framework
</information>
</setting>
<setting name=\'language\' value=\'mdx\'>
<information>
Choose language for expressions
</information>
</setting>
<accessor mode=\'read\' name=\'Predictor\' type=\'numerical\'>
<information>
References mining attributes used as predictors
</information>
<domain name=\'Predictor\' type=\'attribute\'>
<information>
Defines the locations of the predictor attributes. Traverses the coordinates of the
predictor vector.
</information>
<expression>
{[Television], [DVD], [VCR]}
</expression>

912 MaxL

</domain>
<domain name=\'Sequence\' type=\'sequence\'>
<information>
Traverses the sequence of predictor/target values
</information>
<expression>
{[Jan 1].Level.Members}
</expression>
</domain>
<domain name=\'External\' type=\'external\'>
<information>
Determines the scope of the model
</information>
<expression>
{[East].Children}
</expression>
</domain>
<anchor>
<information>
Determines additional restrictions
</information>
<expression>
{([2001], [Actual], [Sales])}
</expression>
</anchor>
</accessor>
<accessor mode=\'write\' name=\'Target\' type=\'numerical\'>
<information>
This mining attribute is used as the target
</information>
<domain name=\'Target\' size=\'1\' type=\'attribute\'>
<information>
Defines the location of the single target value
</information>
<expression>
{[Camera]}
</expression>
</domain>
<domain name=\'Sequence\' type=\'sequence\'>
<information>
Traverses the sequence of predictor/target values
</information>
<expression>
{[Jan 1].Level.Members}
</expression>
</domain>
<domain name=\'External\' type=\'external\'>
<information>
Determines the scope of the model
</information>
<expression>
{[East].Children}
</expression>
</domain>
<anchor>
<information>
Determines additional restrictions

MaxL Statements for Data Mining 913

</information>
<expression>
{([2001], [Actual], [Sales])}
</expression>
</anchor>
</accessor>
</task>';

Create Transformation
Register a data mining transformation.

Transformations can be applied to any accessor within a data mining task. If the accessor is
reading from the Essbase database, the transformation is applied to the value of each cell before
it reaches the data mining algorithm. If the accessor is writing into an Essbase database, the
transformation is applied to the data before it is written into its cell.

For example, a transformation could be registered that squares the result of a mining operation,
or offsets the result by a set amount.

The Essbase Data Mining Framework provides a set of built-in transformations. This statement
enables you to register additional transformations that you develop or obtain from third-party
vendors.

Before you register a transformation, be certain that:

l A Java wrapper has been created for the transformation.

l The Java code for the transformation has been compiled and a JAR file containing the class
has been created.

l The JAR file containing the class is contained in the ESSBASEPATH\java\udf directory.

Minimum permission required: Administrator.

Syntax

You can register a transformation in the following ways:

Keyword Description

create transformation Register a transformation. Transformation names are case sensitive.

create or replace
transformation

Register a transformation, or replace an existing transformation of the same name.
Transformation names are case sensitive.

Example

create transformation 'Scale' as 'com.hyperion.essbase.transformations.Scale';

Registers a transformation named Scale for use with the Data Mining Framework. The class,
com.hyperion.essbase.transformations.Scale, implements this transformation.

914 MaxL

create or replace transformation 'Log' as 'com.hyperion.essbase.transformations.Log';

Registers a transformation named Log for use with the Data Mining Framework. The class,
com.hyperion.essbase.transformations.log, implements this transformation. If a
transformation named Log already exists, the new version replaces it.

Display Algorithm
View a list of registered data mining algorithms.

Minimum permission required: Read.

Syntax

Example

display algorithm all;

Lists all registered data mining algorithms.

display algorithm template Regression as build;

Displays the build.

Display Mining Result
View a data-mining result.

Minimum permission required: Read.

Syntax

Example

display mining result with mode 'apply';

MaxL Statements for Data Mining 915

Display Mining Session
View a list of current data-mining sessions.

Syntax

Example

display mining session;

Displays all data-mining sessions.

Display Mining Task Template
View a data-mining task template.

Minimum permission required: Read.

Syntax

Example

display mining task template with mode 'build';

Display Mining Model
View a list of data-mining models.

Minimum permission required: Read.

916 MaxL

Syntax

You can list information about a model in the following ways:

Keyword Description

all List information about all data mining models.

on database List information about all models that belong to the specified database.

template... List information about models with the specified name of the specified type (see “MODEL-
MODE” on page 796).

attribute Show all accessors for the specified model.

data with attribute
all

Show all accessors for the specified model.

data with attribute Show the specified accessor for the specified model.

Example

display model all;

Lists information about all data mining models.

display model on database Sample.Basic;

Displays only those models that belong to the Sample.Basic database.

display model template m1AssocRule.dmm with mode apply;

Lists information about the m1AssocRule apply model.

display model m1Regression.dmm attribute;

Shows all accessors for the m1Regression model.

display model m1Cluster.dmm data with attribute predictor;

Shows the predictor accessor for the m1Cluster model.

MaxL Statements for Data Mining 917

Display Transformation
View a list of data-mining transformations.

Minimum permission required: Read.

Syntax

You can list information about transformations in the following ways:

Keyword Description

all List information about all data mining transformations.

template Obtain the template to use for the transformation. This information must be inserted into the desired
accessor's XML element within the algorithm/model template.

Example

display transformation;

Lists information about all the registered data mining transformations.

display transformation template 'Scale';

Lists information about the transformation named Scale.

Drop Algorithm
Delete a data-mining-algorithm registration. Once an algorithm is deleted, it is no longer
available for use in Essbase.

Minimum permission required: Administrator.

Built-in algorithms provided with Essbase cannot be deleted.

Syntax

Example

drop algorithm Regression;

Deletes the algorithm Regression so it is no longer available for use in Essbase.

Drop Mining Result
Delete a data-mining result. Once it is deleted, it is no longer available for use in Essbase.

Minimum permission required: Administrator (or model owner).

918 MaxL

Syntax

Example

drop mining result 'r1xAssocRule' with mode 'apply';

Drop Mining Task Template
Delete a data-mining task template. Once a task template is deleted, it is no longer available for
use in Essbase.

Minimum permission required: Administrator or template owner.

Syntax

Example

ddrop mining task template 'QAAssocRule' with mode 'build';

Drop Model
Delete a data-mining model. Once the model is deleted, it is no longer available for use in Essbase.

Minimum permission required: Administrator (or model owner).

Syntax

Example

drop model m1Regression.dmm;

Deletes the m1Regression model so it is no longer available for use in Essbase.

Drop Transformation
Delete a data-mining transformation. Once a transformation is deleted, it is no longer available
for use in Essbase.

Minimum permission required: Administrator.

Built-in transformations provided with Essbase cannot be deleted.

Syntax

Example

drop transformation 'Scale';

MaxL Statements for Data Mining 919

Deletes the transformation Scale so it is no longer available for use in Essbase.

Export Mining Model
Export a data-mining model to PMML format.

Minimum permission required: Administrator or model owner.

Syntax

Notes

The export file is an XML file in PMML format which contains the model data. PMML stands
for Predictive Model Markup Language, a standard exchange format developed by the Data
Mining Group (http://www.dmg.org).

Example

export model 'm2xModel' to local pmml_file 'e:/essbase/java/dmf/pmml/m2xModel.pmml';

MaxL Use Cases

Creating an Aggregate Storage Sample Using MaxL
Related MaxL statements: create application, create database, create outline, alter database,
import data, execute aggregate process,

The following sample MaxL script creates an aggregate storage application and database based
on Sample Basic.

login $1 $2;

spool on to 'maxl_log.txt';

create or replace application Sample2 using aggregate_storage
 comment 'aggregate storage version of Sample';

create database Sample2.Basic2
 comment 'aggregate storage version of Sample Basic';

create or replace outline on aggregate_storage database Sample2.Basic2
 as outline on database sample.basic;

alter database Sample2.Basic2 initialize load buffer with buffer_id 1;

import database Sample2.Basic2 data
 from server data_file 'C:\\Hyperion\\products\\Essbase\\EssbaseServer\\app\\Sample2\
\Basic2\\calcdat.txt'
 to load_buffer with buffer_id 1
 on error abort;

920 MaxL

http://www.dmg.org

import database Sample2.Basic2 data from load_buffer with buffer_id 1;

execute aggregate process on database Sample2.Basic2
 stopping when total_size exceeds 1.9;

spool off;

logout;

Loading Data Using Buffers

Related MaxL Statements

l Alter Database (Aggregate Storage)

l Query Database (Aggregate Storage)

l Import Data (Aggregate Storage)

If you use multiple Import Data (Aggregate Storage) statements to load data values to
aggregate storage databases, you can significantly improve performance by loading values to a
temporary data load buffer first, with a final write to storage after all data sources have been
read.

While the data load buffer exists in memory, you cannot build aggregations or merge slices, as
these operations are resource-intensive. You can, however, load data to other data load buffers,
and perform queries and other operations on the database. There might be a brief wait for
queries, until the full data set is committed to the database and aggregations are created.

The data load buffer exists in memory until the buffer contents are committed to the database
or the application is restarted, at which time the buffer is destroyed. Even if the commit operation
fails, the buffer is destroyed and the data is not loaded into the database.

Multiple data load buffers can exist on a single aggregate storage database. To save time, you can
load data into multiple data load buffers at the same time by using separate MaxL Shell sessions.
Although only one data load commit operation on a database can be active at any time, you can
commit multiple data load buffers in the same commit operation, which is faster than
committing buffers individually.

You can query the database for a list and description of the data load buffers that exist on an
aggregate storage database. See “Using Aggregate Storage Data Load Buffers” on page 923.

Examples:

l Example: Load Multiple Data Sources into a Single Data Load Buffer

l Example: Perform Multiple Data Loads in Parallel

Example: Load Multiple Data Sources into a Single Data Load Buffer

Assume there are three data files that need to be imported. With aggregate storage databases,
data loads are most efficient when all data files are loaded using one import operation. Therefore,
load buffers are useful when loading more than one data file.

MaxL Use Cases 921

1. Use Alter Database (Aggregate Storage) to create a load buffer.

alter database ASOSamp.Sample
initialize load_buffer with buffer_id 1;

2. Load data into the buffer, using the Import Data (Aggregate Storage) statement.

import database ASOSamp.Sample data
from server data_file 'file_1'
to load_buffer with buffer_id 1
on error abort;

import database ASOSamp.Sample data
from server data_file 'file_2'
to load_buffer with buffer_id 1
on error abort;

import database ASOSamp.Sample data
from server data_file 'file_3'
to load_buffer with buffer_id 1
on error abort;

3. Move the data from the buffer into the database.

import database ASOSamp.Sample data
from load_buffer with buffer_id 1;

The data-load buffer is implicitly destroyed.

4. Assume that in Step 2, after loading 'file_2' into the load buffer, you decided not to load the
data. Because the data is in a buffer and not yet in the database, you would simply use
Alter Database (Aggregate Storage) to destroy the buffer without moving the data
to the database.

alter database ASOSamp.Sample
destroy load_buffer with buffer_id 1;

Example: Perform Multiple Data Loads in Parallel

1. In one MaxL Shell session, load data into a buffer with an ID of 1:

alter database AsoSamp.Sample
initialize load_buffer with buffer_id 1 resource_usage 0.5;

import database AsoSamp.Sample data
from data_file "dataload1.txt"
to load_buffer with buffer_id 1
on error abort;

2. Simultaneously, in another MaxL Shell session, load data into a buffer with an ID of 2:

alter database AsoSamp.Sample
initialize load_buffer with buffer_id 2 resource_usage 0.5;

import database AsoSamp.Sample data
from data_file "dataload2.txt"
to load_buffer with buffer_id 2
on error abort;

3. When the data is fully loaded into the data load buffers, use one MaxL statement to commit
the contents of both buffers into the database by using a comma separated list of buffer IDs:

922 MaxL

import database AsoSamp.Sample data
from load_buffer with buffer_id 1, 2;

Using Aggregate Storage Data Load Buffers

Related MaxL Statement:

Query Database (Aggregate Storage)

Use the following MaxL statement to get a list and description of the data load buffers that exist
on an aggregate storage database.

query database appname.dbname list load_buffers;

This statement returns the following information about each existing data load buffer:

Field Description

buffer_id ID of a data load buffer (a number between 1 and 4294967296).

internal A Boolean that specifies whether the data load buffer was created internally by Essbase (TRUE) or by a user (FALSE).

active A Boolean that specifies whether the data load buffer is currently in use by a data load operation.

resource_usage The percentage (a number between .01 and 1.0 inclusive) of the aggregate storage cache that the data load buffer
is allowed to use.

aggregation
method

One of the methods used to combine multiple values for the same cell within the buffer:

l AGGREGATE_SUM: Add values when the buffer contains multiple values for the same cell.

l AGGREGATE_USE_LAST: Combine duplicate cells by using the value of the cell that was loaded last into the
load buffer.

ignore_missings A Boolean that specifies whether to ignore #MI values in the incoming data stream.

ignore_zeros A Boolean that specifies whether to ignore zeros in the incoming data stream.

Specifying Port Numbers in Partition Host Names
You can install multiple agents on a single Windows computer. When multiple agents are
installed on a single computer, you can connect to an agent by specifying the host name and the
agent port number, in the form: hostName:agentPort.

When creating partitions across different ports, you must do the following:

1. Specify the current hostName:agentPort when you log in to Essbase. For
example,login partitionuser mypassword on 'localhost:3300';

2. Specify the target hostName:agentPort as part of the create, alter, drop, or refresh
partition statement. For example,

create or replace transparent partition sampeast.east
 area '@CHILDREN("Eastern Region"), @CHILDREN(Qtr1)' sourceArea
to samppart.company at 'localhost:2200'

MaxL Use Cases 923

as partitionuser identified by mypassword
 area '@CHILDREN(East) @CHILDREN(Qtr1)' targetArea;

If you log on to Essbase specifying the agent port, then you must specify the agent port for
partition operations. If you do not log in specifying the agent port, then do not specify the agent
port for partition operations.

The first DBS-NAME specified in a statement is the local database, and the second DBS-NAME
is the remote database. Only the remote (second) DBS-NAME in any partition statement can
be specified using an agent port. Therefore, when dealing with multiple agent ports, always put
the side of the partition that you aren't logged on to second in the statement, so that you can
specifiy which hostName:agentPort it is on.

See Also

“Using Host Name Aliases When Partitioning” on page 924

Using Host Name Aliases When Partitioning
If you want to use network aliases for the data source or data target names, you must make sure
that the aliases are propagated to all computers on your system. Otherwise, use the full server
name.

To propagate an alias to all the computers on your system, edit the /etc/hosts file (on UNIX
systems) or the %WINDIR%/system32/drivers/etc/hosts file (on Windows systems),
adding an entry with the IP address, followed by the host name, followed by the alias.

For example, if you want to use an alias abcdefg.hijk.123 for a system with host name
hostname.domainname having IP address 172.234.23.1, then the host file entry should be:

172.234.23.1 hostname.domainname abcdefg.hijk.123

In case of multiple aliases, append the aliases following the hostname. For example, if you want
to use multiple aliases abcdefg.hijk.123 and lmnopqrs.tuvw.456 for a system with host
name hostname.domainname having IP address 172.234.23.1, then the host file entries
should be:

172.234.23.1 hostname.domainname abcdefg.hijk.123 lmnopqrs.tuvw.456
172.234.23.1 hostname.domainname lmnopqrs.tuvw.456 abcdefg.hijk.123

Notes

l Do not use localhost as an alias to specify source and target server names.

l The user should have root or admin privileges for the system to edit the hosts file.

See Also

“Specifying Port Numbers in Partition Host Names” on page 923

924 MaxL

Partitioning and SSL
The following considerations apply when partitioning in secure (SSL) mode:

l The partition source and target must have the same security protocol; for example, both or
neither use SSL.

l To enable Essbase to use SSL connectivity, you must set ENABLESECUREMODE to TRUE.

l Consider setting CLIENTPREFERREDMODE to SECURE.

If CLIENTPREFERREDMODE is not set, or is set to FALSE, but ENABLESECUREMODE
is set to TRUE, you can securely create and refresh partitions in MaxL by adding :secure
to the HOST-NAME string. For example,

login esbuser esbpassword on “localhost:6423:secure”;

Forcing Deletion of Partitions
The force keyword used at the end of the drop partition statement specifies that the source half
of a partition definition should be dropped regardless of whether the target half is missing or
invalid.

For example, in the following session, assume there is a partition definition between app1.source
and app2.target, but the app2.target database has been dropped. An ordinary attempt to drop
the partition definition fails:

MAXL> drop transparent partition app1.source to app2.target;

 OK/INFO - 1053012 - Object source is locked by user system.
 OK/INFO - 1051034 - Logging in user System.
 OK/INFO - 1051035 - Last login on Friday, January 10, 2005 2:28:09 PM.
 ERROR - 1051032 - Database target does not exist.
 OK/INFO - 1053013 - Object source unlocked by user system.
 OK/INFO - 1051037 - Logging out user system, active for 0 minutes.

In the second attempt, the force keyword allows the invalid source partition to be dropped:

MAXL> drop transparent partition app1.source to app2.target force;

 OK/INFO - 1053012 - Object source is locked by user system.
 OK/INFO - 1051034 - Logging in user System.
 OK/INFO - 1051035 - Last login on Friday, January 10, 2005 2:31:50 PM.
 ERROR - 1051032 - Database target does not exist.
 OK/INFO - 1051037 - Logging out user system, active for 0 minutes.
 OK/INFO - 1053013 - Object source unlocked by user system.
 OK/INFO - 1241125 - Partition dropped.

Note: The force keyword only works to drop a partition definition when the source half of the
partition definition remains valid. In other words, if the source database is deleted, the
partition cannot be dropped from the dangling target.

MaxL Use Cases 925

Metadata Filtering
Related MaxL statements: create filter, alter filter.

Metadata filtering provides an additional layer of security in addition to data filtering. With
metadata filtering, an administrator can remove outline members from a user's view, providing
access only to those members that are of interest to the user.

When a filter is used to apply MetaRead permission on a member,

1. Data for all ancestors of that member are hidden from the filter user’s view.

2. Data and metadata (member names) for all siblings of that member are hidden from the
filter user’s view.

Example

The following report script for Sample Basic:

//Meta02.rep

<COLUMN (Year, Product)
<CHILDREN Cola

<ROW (Market)
<ICHILDREN West
!

under normal unfiltered conditions returns

 Year 100-10 Measures Scenario
California 3,498
Oregon 159
Washington 679
Utah 275
Nevada (18)
 West 4,593

But with the following filter granted to an otherwise read-access user,

 create or replace filter sample.basic.meta02
 meta_read on '"California","Oregon"'
 ;

the report script then returns:

 Year 100-10 Measures Scenario
California 3,498
Oregon 159
 West #Missing

In summary, MetaRead permission on California and Oregon means that:

1. The affected user can see no data for ancestors of California and Oregon members. West
data shows only #Missing (or #NoAccess, in a spreadsheet interface).

2. The affected user can see no sibling metadata (or data) for siblings of California and Oregon.
In other words, the user sees only the western states for which the filter gives MetaRead
permission.

926 MaxL

Overlapping Metadata Filter Definitions

You should define a MetaRead filter using multiple rows only when the affected member set in
any given row (the metaread members and their ancestors) has no overlap with MetaRead
members in other rows. It is recommended that you specify one dimension per row in filters
that contain MetaRead on multiple rows. However, as long as there is no overlap between the
ancestors and MetaRead members, it is still valid to specify different member sets of one
dimension into multiple MetaRead rows.

For example, in Sample Basic, the following filter definition has overlap conflicts:

Access Member Specification

MetaRead California

MetaRead West

In the first row, applying MetaRead to California has the effect of allowing access to California
but blocking access to its ancestors. Therefore, the MetaRead access to West is ignored; users
who are assigned this filter will have no access to West.

If you wish to assign MetaRead access to West as well as California, then the appropriate method
is to combine them into one row:

Access Member Specification

MetaRead California,West

Examples of Triggers
Related MaxL statements: alter trigger, create trigger, display trigger, drop trigger.

The triggers feature is licensed separately from Essbase. The following examples are based on
the Sample Basic database.

Note: You cannot define a trigger that requires data from Dynamic Calc members, hybrid
analysis members, or members from another partition.

Example 1: Tracking Sales for January

Example 1 tracks the Actual, Sales value for the following month, product, and region:

l January (Year dimension member Jan)

l Colas (Product dimension member 100)

l In the Eastern region (Market dimension member East)

When the current member being calculated is Jan, and when the Actual, Sales value of Colas for
January exceeds 20, the example logs an entry in the file Trigger_jan_Sales.

MaxL Use Cases 927

create or replace trigger Sample.Basic.Trigger_Jan_20
Where
 {(Jan,Sales,[100],East,Actual)}
When
 Jan > 20 AND Is(Year.CurrentMember, Jan)
then spool Trigger_Jan_20
end;

Example 2: Tracking Sales for Quarter 1

Example 2 tracks the Actual, Sales value for the following months, product, and region:

l January, February, March (The children of Year dimension member Qtr1)

l Colas (Product dimension member 100)

l In the Eastern region (Market dimension member East)

When the current member being calculated is Jan, Feb or Mar, and when the Actual, Sales value
of Colas for any of the the months January, February, or March exceeds 20, the example logs an
entry in the file Trigger_Jan_Sales_20, Trigger_Feb_Sales_20, or Trigger_Mar_Sales_20.

create or replace trigger Sample.Basic.Trigger_Qtr1_Sales
Where
Crossjoin(
 {Qtr1.children},
 {([Measures].[Sales], [Product].[100], [Market].[East], [Scenario].[Actual])}
)
When
 Year.Jan > 20 and is(Year.currentmember, Jan)
then spool Trigger_Jan_Sales_20
When
 Year.Feb > 20 and is(Year.currentmember, Feb)
then spool Trigger_Feb_Sales_20
When
 Year.Mar > 20 and is(Year.currentmember, Mar)
then spool Trigger_Mar_Sales_20
end;

Example 3: Tracking Inventory Level

Example 3 tracks the inventory level for the following product, region, and months:

l Colas (product 100)

l In the eastern region (market East)

l For January, February, and March (the children of Qtr1)

If the inventory of Colas in the eastern region falls below 500,000, the example trigger sends an
email to recipient@company.com.

create or replace trigger Sample.Basic.Inventory_east
where CrossJoin(
 {[Qtr1].children},
 {([East],[100],[Ending Inventory])}
)
when [Ending Inventory] < 500000 then

928 MaxL

mail ([smtp_server.company.com],[sender@company.com],
 [recipient@company.com],
[Subject of E-Mail])
end;

MaxL Use Cases 929

930 MaxL

7
MDX

In This Chapter

Overview of MDX ... 931

MDX Query Format .. 932

MDX Syntax and Grammar Rules ... 932

MDX Operators .. 963

About MDX Properties .. 964

MDX Comments ... 970

MDX Query Limits .. 971

Aggregate Storage and MDX Outline Formulas... 973

MDX Functions ... 989

MDX Function Reference ... 997

Overview of MDX
MDX is a language-based data analysis mechanism to Essbase databases. MDX exhibits all of
the following characteristics:

l Provides advanced data extraction capability

l Provides advanced reporting capability

l Includes functions for identifying and manipulating very specific subsets of data

l Is a data-manipulation language, complementing MaxL DDL (the data-definition language
for Essbase)

l Utilizes the platform-independent XML for Analysis specification

MDX is a joint specification of the XML for Analysis founding members. For more information
about XML for Analysis, please visit http://www.xmlforanalysis.com.

MDX is a language for anyone who needs to develop scripts or applications to query and report
against data and metadata in Essbase databases. The following prerequisite knowledge is
assumed:

l A working knowledge of the operating system your server uses and the ones your clients use.

l An understanding of Essbase concepts and features.

l Familiarity with XML.

Overview of MDX 931

http://www.xmlforanalysis.com

In order for Essbase to receive MDX statements, you must pass the statements to Essbase. To
pass statements, use either the MaxL Shell (essmsh) or MDX Script Editor in Administration
Services. When using the MaxL Shell, terminate all statements with a semicolon. Results are
returned in the form of a grid.

MDX Query Format
Every query using the SELECT statement has the following basic format. Items in [brackets] are
optional.

[<with_section>]
SELECT [<axis_specification>
 [, <axis_specification>...]]
 [FROM [<cube_specification>]]
[WHERE [<slicer_specification>]]

Item Description

<with_section> An optional section, beginning with the keyword WITH, in which you can define referenceable sets or members.

SELECT A literal keyword that must precede axis specifications.

[<axis_specification> [,
<axis_specification>...
]]

Any number of comma-separated axis specifications. Axes represent an n dimensional cube schema. Each axis
is conceptually a framework for retrieving a data set; for example, one axis could be thought of as a column,
and the next could be considered a row. See “MDX Axis Specifications” on page 949 for more information.

FROM A literal keyword that must precede the cube specification.

<cube_specification> The name of the database from which to select. If left blank, the current database context is assumed.

WHERE A literal keyword that must precede the slicer specification, if one is used.

<slicer_specification> A tuple, member, or set representing any further level of filtering you want done on the results. For example,
you may want the entire query to apply only to Actual Sales in the Sample Basic database, excluding budgeted
sales. The WHERE clause might look like the following:WHERE ([Scenario].[Actual], [Measures].
[Sales])

MDX Syntax and Grammar Rules
The following topics describe syntax and grammar rules for MDX functions:

l “Understanding BNF Notation” on page 933

l “MDX Grammar Rules” on page 934

l “MDX Syntax for Specifying Duplicate Member Names and Aliases” on page 947

l “MDX Axis Specifications” on page 949

l “MDX Slicer Specification” on page 952

l “MDX Cube Specification” on page 952

l “MDX Set Specification” on page 953

932 MDX

l “MDX With Section” on page 954

l “MDX Dimension Specification” on page 958

l “MDX Layer Specification” on page 959

l “MDX Member Specification” on page 960

l “MDX Hierarchy Specification” on page 961

l “MDX Tuple Specification” on page 961

l “MDX Create Set / Delete Set” on page 962

Understanding BNF Notation
This section briefly explains the meaning of symbolic notations used to describe grammar in
this document. The query grammar rules are presented using Backus-Naur Form (BNF) syntax
notation.

The following table of conventions is not a complete description of BNF, but it can help you
read the grammar rules presented in this document.

Symbol Description Example

<word>

(A word in angle
brackets.)

The word presented in
angle brackets is not
meant to be literally used
in a statement; its rules
are further defined
elsewhere.

When reading the following syntax,

SELECT <axis-specification> ...

you know that axis-specification is not meant to be typed literally into the
statement. The rules for axis-specification are further defined in the documentation
(look for <axis-specification> ::= to get the definition).

<word> ::=

(A word in angle
brackets, followed
directly by the
symbol ::=)

A definition, or BNF
"production." The
symbol ::= can be
interpreted to mean "is
defined as."

The word referred to
elsewhere as the
placeholder <word> is
defined here, directly
following <word> ::=.

The following syntax tells you that a tuple is defined as either one member in
parenthesis, or two or more comma-separated members in parenthesis.

<tuple> ::=
'(' <member> [,<member>]... ')'

|

The pipe symbol or "OR"
symbol.

Precedes alternatives.
The symbol | can be
interpreted to mean "or."

The following syntax:

ON COLUMNS|ROWS|PAGES|CHAPTERS|SECTIONS

can be used to build any of the following literal statement parts:

l ON COLUMNS

l ON ROWS

l ON PAGES

l ON CHAPTERS

l ON SECTIONS

MDX Syntax and Grammar Rules 933

Symbol Description Example

WORD

(Text in all caps.)

A query-grammar
keyword, to be typed
literally.

When reading the following syntax,

SELECT <axis-specification> ...

you know that SELECT is a keyword, and therefore should be typed literally into
its proper location in the statement.

[<word>] or [word]
or[WORD]

(Square brackets
enclosing some word or
item.)

An optional element. In the following high-level query syntax,

[<with_section>]
SELECT [<axis_specification>
 [, <axis_specification>...]]
FROM [<cube_specification>]
[WHERE [<slicer_specification>]]

everything, technically, is optional except for SELECT and FROM. Therefore, a query
containing only the words

SELECT FROM

would in fact be valid; however, it would select one consolidated data value from
its best estimate of a cube context, which might not be very useful.

[, <word>...]

(A comma, a word, and
an ellipsis, all enclosed
in square brackets.)

You can optionally
append a comma-
separated list of one or
more <words>.

The following syntax

SELECT [<axis_specification>
 [, <axis_specification<...]]

indicates that multiple, comma-separated axis specifications can optionally be
supplied to the SELECT statement.

MDX Grammar Rules
The following is a comprehensive view of the syntax for MDX in Essbase.

In this document, the syntax for MDX is illustrated using BNF notation.

[<with_section>]
SELECT [<axis_specification>
 [, <axis_specification>...]]
[FROM [<cube_specification>]]
[WHERE [<slicer_specification> [<dim_props>]]

<cube_specification> ::=
 '[' <ident_or_string>.<ident_or_string> ']'
 | <delim_ident>.<delim_ident>

<delim_ident> ::=
 '[' <ident> ']'
 | <ident_or_string>

<ident_or_string> ::=
 ' <ident> '
 | <ident>

934 MDX

Note: <ident> refers to a valid Essbase application/database name. In the cube specification, if
there are two identifiers, the first one should be application name and the second one
should be database name. For example, all of the following are valid identifiers:

l Sample.Basic

l [Sample.Basic]

l [Sample].[Basic]

l 'Sample'.'Basic'

<axis_specification> ::=
 [NON EMPTY] <set> [<dim_props>] ON
 COLUMNS | ROWS | PAGES | CHAPTERS |
 SECTIONS | AXIS (<unsigned_integer>)

<dim_props> ::=
 [DIMENSION] PROPERTIES <property> [, <property>...]

<slicer_specification> ::= <set> | <tuple> | <member>

Note: The cardinality of the <set> in the slicer should be 1.

<member> ::=
 <member-name-specification>
 | <member_value_expression>

<member-name-specification> ::=

A member name can be specified in the following ways:

1. By specifying the actual name or the alias; for example, Cola, Actual, COGS, and [100].

If the member name starts with number or contains spaces, it should be within braces; for
example, [100]. Braces are recommended for all member names, for clarity and code
readability.

For attribute members, the long name (qualified to uniquely identify the member) should
be used; for example, [Ounces_12] instead of just [12].

2. By specifying dimension name or any one of the ancestor member names as a prefix to the
member name; for example, [Product].[100-10] and [Diet].[100-10] This is a
recommended practice for all member names, as it eliminates ambiguity and enables you
to refer accurately to shared members.

Note: Use only one ancestor in the qualification. Essbase returns an error if multiple
ancestors are included. For example, [Market].[New York] is a valid name for
New York, and so is [East].[New York]. However, [Market].[East].[New
York] returns an error.

3. By specifying the name of a calculated member defined in the WITH section.

MDX Syntax and Grammar Rules 935

4. For outlines that have duplicate member names enabled, see also “MDX Syntax for
Specifying Duplicate Member Names and Aliases” on page 947.

<member_value_expression> ::=
 Parent (<member> [,<hierarchy>])
 | <member>.Parent [(<hierarchy>)]
 | FirstChild (<member>)
 | <member>.FirstChild
 | LastChild (<member>)
 | <member>.LastChild
 | PrevMember (<member> [,<layertype>])
 | <member>.PrevMember [(<layertype>)]
 | NextMember (<member> [,<layertype>])
 | <member>.NextMember [(<layertype>)]
 | FirstSibling (<member> [,<hierarchy>])
 | <member>.FirstSibling [(<hierarchy>)]
 | LastSibling (<member> [,<hierarchy>])
 | <member>.LastSibling [(<hierarchy>)]
 | Ancestor (<member> , <layer> | <index> [,<hierarchy>])
 | Lead (<member>, <index> [,<layertype>] [,<hierarchy>])
 | <member>.Lead (<index> [,<layertype>] [,<hierarchy>])
 | Lag (<member>, <index> [,<layertype>] [,<hierarchy>])
 | <member>.Lag (<index> [,<layertype>] [,<hierarchy>])
 | CurrentMember (<dim_hier>)
 | <dim_hier>. CurrentMember
 | DefaultMember (<dim_hier>)
 | <dim_hier>. DefaultMember
 | OpeningPeriod ([<layer> [,<member>]])
 | ClosingPeriod ([<layer> [,<member>]])
 | Cousin (<member>, <member>)
 | ParallelPeriod([<layer>[, <index>[, <member> [,<hierarchy>]]]])
 | Item (<tuple>, <index>)
 | tuple[.Item] (<index>)
 | LinkMember (<member>, <hierarchy>)
 | member.LinkMember (<hierarchy>)
 | DateToMember (<date>, <dim_hier> [,<genlev>])
 | StrToMbr (<string_value_expr> [,<dimension>] [, MEMBER_NAMEONLY |
<alias_table_name>])

<dim_hier> ::= <dimension>

<dimension> :: =
 <dimension-name-specification>
 | Dimension (<member> | <layer>)
 | <member>.DIMENSION
 | <layer>.DIMENSION

<dimension-name-specification> ::=
 Same as <member_name-specification> case 1.
 e.g. Product, [Product]

<hierarchy> ::=

A hierarchy refers to a root member of an alternate hierarchy, which is always at
generation 2 of a dimension. Member value expressions are not allowed as hierarchy
arguments.

936 MDX

<layertype> ::=
 GENERATION | LEVEL

<layer> ::=
 <layer-name-specification>
 | Levels (<dim_hier>, <index>)
 | <dim_hier>.Levels (<index>)
 | Generations (<dim_hier>, <index>)
 | <dim_hier>.Generations (<index>)
 | <member>.Generation
 | <member>.Level

<layer-name-specification> ::=

A layer name can be specified in the following ways:

1. By specifying the generation or level names; for example, States or Regions.

The generation or level name can be within braces; for example, [Regions]. Using braces
is recommended.

2. By specifying the dimension name along with the generation or level name; for example,
Market.Regions and [Market].[States] This naming convention is recommended.

<tuple> ::=
 <member>
 | (<member> [,<member>]..)
 | <tuple_value_expression>

A tuple is a collection of member(s) with the restriction that no two members can be from the
same dimension. For example, (Actual, Sales) is a tuple. (Actual, Budget) is not a tuple,
as both members are from the same dimension.

<tuple_value_expression> ::=
 CurrentTuple (<set>)
 | <set>.Current
 | Item (<set>, <index>)
 | <set>[.Item] (<index>)

A set is a collection of tuples where members in all tuples must be from the same dimensions
and in the same order.

For example, {(Actual, Sales), (Budget, COGS)} is a set.

{(Actual, Sales), (COGS, [100])} is not a set because the second tuple has members
from Scenario and Product dimensions, whereas the first tuple has members from Scenario and
Measures dimensions.

{(Actual, Sales). (COGS, Budget)} is not a set because the second tuple has members
from Scenario and Measures dimensions, whereas the first tuple has members from Measures
and Scenario dimensions (the order of dimensions is different).

Note: The size of an input set to a function has range between 0 and 4294967295 tuples.

MDX Syntax and Grammar Rules 937

<set> ::=
 MemberRange (<member>, <member>
 [,<layertype>] [,<hierarchy>])
 | <member> : <member>
 | { <tuple>|<set> [, <tuple>|<set>].. }
 | (<set>)
 | <set_value_expression>

<set_value_expression> ::=
 | Members (<dim_hier>)
 | <dim_hier>.Members
 | Members (<layer>)
 | <layer>.Members
 | Children (<member>)
 | <member>.Children
 | CrossJoin (<set> , <set>)
 | Union (<set> , <set> [,ALL])
 | Intersect (<set> , <set> [,ALL])
 | Except (<set> , <set> [,ALL])
 | Extract (<set> , <dim_hier> [, <dim_hier>]..)
 | Head (<set> [, <index>])
 | Subset (<set> , <index> [,index])
 | Tail (<set> [,index])
 | Distinct (<set>)
 | Siblings (<member> [, <selection_flags>, [INCLUDEMEMBER|EXCLUDEMEMBER]])
 | <member>.Siblings
 | Descendants (<member> , [{<layer>|<index>}[, <Desc_flags>]])
 | PeriodsToDate ([<layer>[, <member> [,<hierarchy>]]])
 | LastPeriods (<index>[, <member> [,<hierarchy>]])
 | xTD ([<member>])
 where xTD could be {HTD|YTD|STD|PTD|QTD|MTD|WTD|DTD}
 | Hierarchize (<set> [,POST])
 | Filter (<set> , <search_condition>)
 | Order (<set>, <value_expression> [,BASC | BDESC])
 | TopCount (<set> , <index> [,<numeric_value_expression>])
 | BottomCount (<set> , <index> [,<numeric_value_expression>])
 | TopSum (<set> , <numeric_value_expression>
 , <numeric_value_expression>)
 | BottomSum (<set> , <numeric_value_expression>
 , <numeric_value_expression>)
 | TopPercent (<set> , <percentage> , <numeric_value_expression>)
 | BottomPercent (<set> , <percentage> , <numeric_value_expression>)
 | Generate (<set> , <set> [, [ALL]])
 | DrilldownMember (<set> , <set>[, RECURSIVE])
 | DrillupMember (<set> , <set>)
 | DrilldownByLayer (<set> [, {<layer>|<index>])
 | DrilldownLevel (<set> [, {<layer>|<index>])
 | DrillupByLayer (<set> [, <layer>])
 | DrillupLevel (<set>[, <layer>])
 | WithAttr (<member> , <character_string_literal>, <value_expression>)
 | WithAttrEx (<member> , <character_string_literal>, <value_expression>, ANY,
<tuple>|<member> [, <tuple>|<member>])
 | Attribute (<member>)
 | AttributeEx (<member>, ANY, <tuple>|<member> [, <tuple>|<member>])
 | Uda (<dimension> | <member> , <string_value_expression>)
 | RelMemberRange (<member>, <prevcount>, <nextcount>,

938 MDX

 [,<layertype>] [,<hierarchy>])
 | Ancestors (<member>, <layer>|<index>)
 | <conditional_expression>

Note: <conditional_expression> is expected to return a <set> in the above production.

<Desc_flags> ::=
 SELF
 | AFTER
 | BEFORE
 | BEFORE_AND_AFTER
 | SELF_AND_AFTER
 | SELF_AND_BEFORE
 | SELF_BEFORE_AFTER
 | LEAVES

<selection_flags> ::=
 LEFT
 | RIGHT
 | ALL

<value_expression> ::=
 <numeric_value_expression>
 | <string_value_expression>

<numeric_value_expression> ::=
 <term>
 | <numeric_value_expression> + <term>
 | <numeric_value_expression> - <term>

<term> ::=
 <factor>
 | <term> * <factor>
 | <term> / <factor>

<factor> ::=
 [+ | -]<numeric_primary>

<numeric_primary> ::=
 <value_expr_primary>
 | <numeric_value_function>
 | <mathematical_function>
 | <date_function>

Note: The data type of <value_expr_primary> in the above production must be numeric.

<base> ::=
 <numeric_value_expression>
<power> ::=
 <numeric_value_expression>

<mathematical_function> ::=
 Abs (<numeric_value_expression>)
 | Exp (<numeric_value_expression>)

MDX Syntax and Grammar Rules 939

 | Factorial (<index>)
 | Int (<numeric_value_expression>)
 | Ln (<numeric_value_expression>)
 | Log (<numeric_value_expression> [, <base>])
 | Log10 (<numeric_value_expression>)
 | Mod (<numeric_value_expression> , <numeric_value_expression>)
 | Power (<numeric_value_expression> , <power>)
 | Remainder (<numeric_value_expression>)
 | Stddev (<set> [,<numeric_value_expression> [,IncludeEmpty]])
 | Stddevp (<set> [,<numeric_value_expression> [,IncludeEmpty]])
 | Round (<numeric_value_expression> , <index>)
 | Truncate (<numeric_value_expression>)

<date_function> ::=
 DateRoll(<date>, <date_part>, <index>)
 | DateDiff(<date>, <date>, <date_part>)
 | DatePart(<date>, <date_part>)
 | Today()
 | TodateEx(<date_format_string>, <string>)
 | GetFirstDate(<member>)
 | GetLastDate(<member>)
 | UnixDate(<numeric_value_expression>)
 | GetFirstDay(<date>, <date_part>)
 | GetLastDay(<date>, <date_part>)
 | GetNextDay(<date>, <week-day-specification>, [0|1])
 | GetRoundDate(<date>, <date_part>)

The <date> argument is a number representing the input date. The number is the number of
seconds elapsed since midnight, January 1, 1970. To retrieve this number, use any of the
following functions: Today(), TodateEx(), GetFirstDate(), GetLastDate().

<date_part> ::=
 DP_YEAR
 | DP_QUARTER
 | DP_MONTH
 | DP_WEEK
 | DP_DAY
 | DP_DAYOFYEAR
 | DP_WEEKDAY

Note: DP_DAYOFYEAR and DP_WEEKDAY are not valid arguments in functions DateRoll and
DateDiff.

<week-day-specification> ::=
 1 | 2 | 3 | 4 | 5 | 6 | 7
 e.g. 1 implying Sunday, 7 implying Saturday

<date_format_string> ::=
 "mon dd yyyy"
 | "Month dd yyyy"
 | "mm/dd/yy"
 | "mm/dd/yyyy"

940 MDX

 | "yy.mm.dd"
 | "dd/mm/yy"
 | "dd.mm.yy"
 | "dd-mm-yy"
 | "dd Month yy"
 | "dd mon yy"
 | "Month dd, yy"
 | "mon dd, yy"
 | "mm-dd-yy"
 | "yy/mm/dd"
 | "yymmdd"
 | "dd Month yyyy"
 | "dd mon yyyy"
 | "yyyy-mm-dd"
 | "yyyy/mm/dd"
 | "Long format"
 | "Short format"

<string_value_expression> ::=
 <string_value_primary>
 | FormatDate (<date>, <date_format_string>)
 | Concat (<string_value_expression> [<, string_value_expression> ...])
 | Left(<string_value_expression>, <length>)
 | Right(<string_value_expression>, <length>)
 | Substring(<string_value_expression>, <index> [, <index>])
 | Upper(<string_value_expression>)
 | Lower (<string_value_expression>)
 | RTrim(<string_value_expression>)
 | LTrim(<string_value_expression>)
 | NumToStr(<value_expr_primary>)
 | EnumText(<textlistname> | <member>, <numeric_value_expression>)

<value_expr_primary> ::=
 <unsigned_numeric_literal>
 | (<numeric_value_expression>)
 | <tuple>[.RealValue]
 | <member>[.RealValue]
 | <tuple> [.Value]
 | <member>[.Value]
 | CellValue()
 | <property>
 | <conditional_expression>
 | MISSING

<string_value_primary> ::=
 <character_string_literal>
 | <string_property>

Notes

l <conditional_expression> is expected to return a numeric value in the above
production.

l String literals are delimited by double quotes(").

<conditional_expression> ::=
 <if_expression>

MDX Syntax and Grammar Rules 941

 | <case_expression>
 | CoalesceEmpty (<numeric_value_expression>
 , <numeric_value_expression>)

<case_expression> ::=
 <simple_case> | <searched_case>

<if_expression> ::=
 IIF (<search_condition>, <true_part>, <false_part>)
<true_part> ::=
 <value_expression> | <set>
<false_part> ::=
 <value_expression> | <set>

<simple_case> ::=
 Case <case_operand>
 <simple_when_clause>...
 [<else_clause>]
 END

<simple_when_clause> ::=
 WHEN <when_operand>
 THEN <result>
<else_clause> ::=
 ELSE <value_expression> | <set>

<case_operand> ::=
 <value_expression>
<when_operand> ::=
 <value_expression>
<result> ::=
 <value_expression> | <set>

<searched_case> ::=
 Case
 <searched_when_clause>...
 [<else_clause>]
 END

<searched_when_clause> ::=
 WHEN <search_condition>
 THEN <result>

<numeric_value_function> ::=
 Avg (<set> [, <numeric_value_expression>] [, IncludeEmpty])
 | Max (<set> [, <numeric_value_expression>])
 | Min (<set> [, <numeric_value_expression>])
 | Sum (<set> [, <numeric_value_expression>])
 | NonEmptyCount (<set> [, <numeric_value_expression>])
 | Count (<set> [, IncludeEmpty])
 | <dts-specification> ::= DTS (<dts-operation-specification>,<member>)
 <dts-operation-specification> ::= HTD|YTD|STD|PTD|QTD|MTD|WTD|DTD
 | Todate (<string_value_expression> , <string_value_expression>)
 | Ordinal (<layer>)
 | Aggregate (<set> [,<member-name-specification>])
 | Rank (<member_or_tuple>, <set> [,<numeric_value_expression>
 [, <rank_flags>]])

942 MDX

 | NTile (<member_or_tuple>, <set>, <index>,
 <numeric_value_expression>)
 | Percentile (<set>, <numeric_value_expression>,
 <numeric_value_expression>)
 | Median (<set>, <numeric_value_expression>)
 | Len (<string_value_expression>)
 | InStr (<index>, <string_value_expression>,
 <string_value_expression>, <numeric_value_expression>)
 | StrToNum (<string_value_expression>)
 | EnumValue(<enum_string>)
 | JulianDate(<date>)

Note: The <member-name-specification> in Aggregate function should refer to an Accounts
dimension member name.

Note: <enum_string> represents an enumerated string. It should be in the following format.
The member should refer to a member of type text.

<enum_string> ::=
 <textlist-name-specification>.<character_string_literal>
 | <member>.<character_string_literal>
<textlist-name-specification> ::=
 Same as <member_name-specification> case 1. The text list name specification should
refer to the name of a text list object.
 e.g. AccountStatus, [AccountStatus]

<member_or_tuple> ::=
 <member>
 | <tuple>

<index> ::=
 <numeric_value_expression>

Note: The input <index> argument has range between -2147483647 and 2147483647.

<percentage> ::=
 <numeric_value_expression>

<search_condition> ::=
 <bool_term>
 | <search_condition> OR <bool_term>

<bool_term> ::=
 <bool_factor>
 | <bool_term> AND <bool_factor>

<bool_factor> ::=
 <bool_primary>
 | NOT <bool_primary>

<bool_primary> ::=
 <value_expression> [=|>|<|<>|>=|<=] <value_expression>

MDX Syntax and Grammar Rules 943

 | <property> IN <member>|<character_string_literal>
 | <property>
 | IsEmpty (<value_expression>)
 | (<search_condition>)
 | IsSibling(<member>,<member> [, INCLUDEMEMBER])
 | IsLeaf(<member>)
 | IsGeneration(<member>,<index>)
 | IsLevel(<member>,<index>)
 | IsAncestor(<member>,<member> [, INCLUDEMEMBER])
 | IsChild(<member>,<member> [, INCLUDEMEMBER])
 | IsUda (<member>, <string_value_expression>)
 | IsAccType (<member>, <AcctTag>)
 | Is (<member> , <member>)
 | <member> Is <member>
 | IsValid (<member> | <tuple> | <set> | <layer> | <property>)
 | IsMatch (<string_value_expression>, <string_value_expression>, [,MATCH_CASE|
IGNORE_CASE])
 | Contains (<member_or_tuple>, <set>)

Note: Only properties with boolean values can be used as <bool_primary>.

<AcctTag> ::=
 FIRST
 | LAST
 | AVERAGE
 | EXPENSE
 | TWO-PASS

<rank_flags> ::=
 ORDINALRANK
 | DENSERANK
 | PERCENTRANK

<with_section> ::=
 WITH <frml_spec>

<frml_spec> ::=
 <single_frml_spec>
 | <frml_spec> <single_frml_spec>

<single_frml_spec> ::=
 <set_spec>
 | <perspective_specification>
 | <member_specification>

<set_spec> ::=
 SET <set_name> AS ' <set> '

<set_name> ::=

The name of the set to be defined. The name cannot be same as any names/aliases of database
members, generation/level names, or UDA names.

<perspective_specification> ::=

944 MDX

 PERSPECTIVE REALITY | <tuple> FOR <dimension-name-specification>

<member_specification> ::=
 MEMBER <member_name> AS '
 <nonempty_specification>
 <numeric_value_expression> '
 [, <solve_order_specification>]

<member_name> ::=
 <dimension-name-specification>.<calculated member name>

<calculated member name> ::=

Names used for calculated members cannot be the same as any names/aliases of database
members, generation/level names, or UDA names.

<solve_order_specification> ::=
 SOLVE_ORDER = <unsigned_integer>

<property> ::=
 <member>.<property_specification>
 | <dim_hier>.<property_specification>
 | <property_specification>

Note: The last two alternatives in the above rule can be used only inside the DIMENSION
PROPERTIES section.

For example, assume an axis has 2 dimensions, Product and Market. Using DIMENSION
PROPERTIES Gen_number, [Product].level_number, the generation number will be
present in the output for the members of both dimensions, whereas the level number will be
present only for the members of the Product dimension.

Within a value expression, [Product].Gen_number refers to the generation number of the
member named [Product].

[Product].CurrentMember.Gen_number refers to the generation number of the current
member of the [Product] dimension.

For example,

Filter ([Product].Members, [Product].Gen_number > 1)

returns an empty set. Product.Generation is 1, so the search condition fails for each tuple of
[Product].Members.

Filter ([Product].Members, [Product].CurrentMember.Gen_number > 1)

returns all members of Product dimension except the top dimension member, [Product].

<string_property> ::= <member>.<property_specification>

Note: The above rule specifies string properties such as MEMBER_NAME, MEMBER_ALIAS.

MDX Syntax and Grammar Rules 945

<property_specification> ::=
 MEMBER_NAME
 | MEMBER_ALIAS
 | GEN_NUMBER
 | LEVEL_NUMBER
 | <dimension-name-specification>
 | <uda-specification>

Note: The <dimension-name-specification> in <property_specification> should
be an attribute dimension-name specification. The attribute dimension names are treated
as properties of members from their corresponding base dimensions.

<uda-specification> ::=

The <uda-specification> specifies a User Defined Attribute(UDA). UDA properties are
Boolean-valued properties. A TRUE value indicates presence of a UDA for a member. For
example,

Filter (Market.Members, Market.CurrentMember.[Major Market])

returns the Market dimension members tagged with "Major Market" UDA in the outline.

For more discussion of properties, see “About MDX Properties” on page 964.

The following rule describes the syntax for Essbase outline formulas in aggregate storage
applications.

<formula_specification> ::= <nonempty_specification>
 <numeric_value_expression>

<nonempty_specification> ::= NONEMPTYMEMBER <nonempty_member_list>
 | NONEMPTYTUPLE (<nonempty_member_list>)

<nonempty_member_list> ::= <nonempty_member_name>
 | <nonempty_member_name> [, <nonempty_member_list>]

<nonempty_member_name> ::=
 An Essbase member name or a calculated member name (only when used in another
calculated member).

Note: The member name (or member names when multiple names are specified) in a
NONEMPTYMEMBER directive should belong to the same dimension as the calculated
member or formula member in which it is specified.

<signed_numeric_literal> ::=
 [+|-] <unsigned_numeric_literal>

<unsigned_numeric_literal> ::=
 <exact_numeric_literal>
 | <approximate_numeric_literal>

<exact_numeric_literal> ::=
 <unsigned_integer>[.<unsigned_integer>]

946 MDX

 | <unsigned_integer>.
 | .<unsigned_integer>

<unsigned_integer> ::=
 {<digit>}...

<approximate_numeric_literal> ::=
 <mantissa>E<exponent>

<mantissa> ::=
 < exact_numeric_literal>

<exponent> ::=
 [<sign>]<unsigned_integer>

<digit> ::=
 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Note: Numbers can also be input in scientific notation (mantissa/exponent), using the E
character.

<character_string_literal> ::=
 <quote>[<character_representation>...] <quote>

<character_representation> ::=
 <nonquote_character>
 | <quote_symbol>

<nonquote_character> ::=
 Any character in the character set other than <quote>

<quote_symbol> ::=
 <quote> <quote>

<quote> ::= "

The following is the syntax for Format Strings in Essbase:
MdxFormat(string_value_expression)

MDX Syntax for Specifying Duplicate Member Names and
Aliases
The following member specification rules apply to databases with duplicate member names
enabled.

Qualified names must be used to specify duplicate member names. Qualified member or alias
names can be specified using:

l Fully qualified member names—Consist of duplicate member or alias name and all
ancestors up to and including the dimension name. Each name must be enclosed in square
brackets([]) and separated by a period.

MDX Syntax and Grammar Rules 947

[DimensionMember].[Ancestors...].[DuplicateMember]

For example:

[Product].[100].[100-10]

l Shortcut qualified member names—Essbase internally constructs shortcut qualified names
for members in duplicate member outlines. These can be inserted into scripts using
Administration Services by right clicking on the member and selecting Insert member name.
You can also manually insert shortcut qualified names into scripts, spreadsheets, or MDX
queries.

Essbase uses the following syntax to construct shortcut qualified names. Using the same
syntax that Essbase uses when you reference members in scripts, spreadsheets, and MDX
queries is optimal, but not required.

Scenario Qualified Name Syntax Example

Duplicate member
names exist at
generation 2

[DimensionMember].[DuplicateMember] [Year].[Jan] or [Product].[Jan]

Duplicate member
names exist in an
outline, but are
unique within a
dimension

[DimensionMember]@[DuplicateMember] [Year]@[Jan]

Duplicate member
names have a
unique parent

[ParentMember].[DuplicateMember] [East].[New York]

Duplicate member
names exist at
generation 3

[DimensionMember].[ParentMember].
[DuplicateMember]

[Products].[Personal Electronics].
[Televisions]

Duplicate member
names exist at a
named generation
or level, and the
member is unique
at its generation or
level

[DimensionMember]@[GenLevelName]|
[DuplicateMember]

[2006]@[Gen1]|[Jan]

In MDX, either one the following syntax methods must be used to reference shortcut
qualified member names:

m Escape Character method—Because MDX syntax also uses square brackets:

1. Any internal closing bracket (])used by name parts within the shortcut qualified
names requires an additional] escape character.

2. The entire shortcut qualified member name must be enclosed in a set of square
brackets ([]).

Examples:

[Year].[Jan] is referenced as [[Year]].[Jan]]] in MDX.

948 MDX

[Year]@[Jan] is referenced as [[Year]]@[Jan]]] in MDX.

[2006]@[Gen1]|[Jan] is referenced as [[2006]]@[Gen1]]|[Jan]]] in MDX.

Note: The above syntax also works for fully qualified member names, but is not
required.

m StrToMbr Function method—You can use the StrToMbr function to convert qualified
name strings to member value expressions.

Examples:

[Year].[Jan] is referenced as StrToMbr("[Year].[Jan]") in MDX.

[Year]@[Jan] is referenced as StrToMbr("[Year]@[Jan]") in MDX.

[2006]@[Gen1]|[Jan] is referenced as StrToMbr("[2006]@[Gen1]|[Jan]") in
MDX.

Note: The above syntax also works for fully qualified member names, but is not
required.

Query Example

The following query uses both methods of referencing shortcut member names in MDX:

SELECT
 { Sales, Profit }
ON COLUMNS,
 {[[Store]]@[6]]], StrToMbr("Product.SKU.1")}
ON ROWS
FROM MySample.Basic
WHERE ([[1998]].[Q1]].[1]]])

Note: StrToMbr accepts any type of member-identifier strings: names, aliases or qualified
names.

MDX Axis Specifications
An axis specification consists of a set and one or more axis keywords.

<axis_specification> :: =
 [NON EMPTY] <set> ON COLUMNS|ROWS|PAGES|CHAPTERS|SECTIONS|AXIS(<unsigned_integer>)

Understanding the following concepts will help you construct axis specifications for many
SELECT queries

Ordering of Axes

If providing multiple axes, you cannot skip axes. For example, you can specify a Row axis only
if you have a Column axis. You can specify a Pages axis only if you also have Column and Row
axes.

MDX Syntax and Grammar Rules 949

You can also use ordinals to represent the axes. For example, you can specify <set> ON AXIS(0),
<set> ON AXIS(1), etc.

You can specify up to 64 axes (though it is common to use just two). The first five ordinal axes
have keyword aliases:

Axis Keyword Axis Ordinal

COLUMNS AXIS(0) (default if nothing specified)

ROWS AXIS(1)

PAGES AXIS(2)

CHAPTERS AXIS(3)

SECTIONS AXIS(4)

For example:

SELECT set1 ON COLUMNS,
set2 ON ROWS
FROM Sample.Basic

is the same as:

SELECT set1 ON AXIS(0),
set2 ON AXIS(1)
FROM Sample.Basic

Both return a hypothetical data cube (or subset) of the following format:

(axis) Member names in set1

Member names in set2 Data at intersections of set1 and set2 members

The examples above are hypothetical because they will not return a cube until values are provided
for the sets. In the following example, we replace set1 and set2 with real sets:

SELECT
{[100-10], [100-20]} ON COLUMNS,
{[Qtr1], [Qtr2], [Qtr3], [Qtr4]} ON ROWS
FROM Sample.Basic

which returns the following results:

(axis) 100-10 100-20

Qtr1 5096 1359

Qtr2 5892 1534

Qtr3 6583 1528

Qtr4 5206 1287

950 MDX

Specifying the Set

You can represent the sets in each axis in many ways.

SELECT
{ }
ON COLUMNS
from sample.basic

illustrates that you can choose nothing for a set. However, no cell values will be returned. The
following rules apply:

l When any of the axes contains an empty set, no cell values are returned. The axes whose sets
have at least one tuple will have their tuples returned.

l If there are no axes at all, then exactly one cell is returned using the default member of each
dimension. The slicer tuple, if present, overrides the default member for the respective
dimensions.

SELECT
{ ([Year].[Qtr2]) }
ON COLUMNS
from sample.basic

illustrates using a set that contains a single tuple.

For more information about sets, see “MDX Set Specification” on page 953.

NON EMPTY

The axis specification syntax including NON EMPTY is shown below:

<axis_specification> ::=
 [NON EMPTY] <set> ON
 COLUMNS | ROWS | PAGES | CHAPTERS |
 SECTIONS | AXIS (<unsigned_integer>)

Including the optional keywords NON EMPTY before the set specification in an axis causes
suppression of slices in that axis that would contain entirely #MISSING values.

For any given tuple on an axis (such as (Qtr1, Actual)), a slice consists of the cells arising
from combining this tuple with all tuples of all other axes. If all of these cell values are #MISSING,
the NON EMPTY keyword causes the tuple to be eliminated.

For example, if even one value in a row is not empty, the entire row is returned. Including NON
EMPTY at the beginning of the row axis specification would eliminate the following row slice
from the set returned by a query:

Qtr1

Actual #Missing #Missing #Missing #Missing #Missing

For another example, see the Tail function.

Dimension Properties

A property, in MDX grammar, refers to the Essbase concepts of attributes and UDAs.

MDX Syntax and Grammar Rules 951

The axis specification syntax including the properties specification is shown below:

<axis_specification> ::=
 [NON EMPTY] <set> [<dim_props>] ON
 COLUMNS | ROWS | PAGES | CHAPTERS |
 SECTIONS | AXIS (<unsigned_integer>)

As shown in the above syntax, a properties specification can follow the set specification in an
axis.

For more information about properties, see “About MDX Properties” on page 964.

MDX Slicer Specification
This section shows rules for the slicer specification (WHERE clause). The slicer axis is a way of
limiting a query to apply only to a specific area of the database.

A slicer specification consists of the WHERE keyword followed by a tuple, member, or set. You
can optionally query for certain dimension properties in the slicer specification.

Syntax

[WHERE [<slicer_specification> [<dim_props>]]

 <slicer_specification> ::= <set> | <tuple> | <member>

Note: The cardinality of the <set> in the slicer should be 1; in other words, if a set is used, it
must evaluate to a single tuple.

<dim_props> ::=
 [DIMENSION] PROPERTIES <property> [, <property>...]

Example

For example, you may want an entire query to apply only to Actual Sales in the Sample Basic
database, excluding budgeted sales or any other measures. The WHERE clause might look like
the following:

SELECT
 {([West].children)}
ON COLUMNS,
 {([Diet].children)}
ON ROWS
FROM Sample.Basic
WHERE ([Scenario].[Actual], [Measures].[Sales])

MDX Cube Specification
Use the cube specification to name the database at which the query is directed. A cube
specification consists of the FROM keyword followed by delimited or nondelimited identifiers
indicating an application name and a database name.

952 MDX

The first identifier should be an application name and the second one should be a database name.
For example, all of the following are valid identifiers:

l Sample.Basic

l [Sample.Basic]

l [Sample].[Basic]

l 'Sample'.'Basic'

Syntax

[FROM [<cube_specification>]]

 <cube_specification> ::=
 '['<ident_or_string>.<ident_or_string>']'
 |<delim_ident>.<delim_ident>

 <delim_ident> ::=
 '[' <ident> ']'
 |<ident_or_string>

 <ident_or_string> ::=
 '<ident>'
 |<ident>

Notes

If [FROM [<cube_specification>]] is omitted from a query, the current database context
is assumed.

Example

Sample.Basic is the cube specification in the following hypothetical query.

SELECT
...
FROM Sample.Basic

MDX Set Specification
A set is a collection of tuples. In each tuple of the set, members must represent the same
dimensions as do the members of other tuples of the set. Additionally, the dimensions must be
represented in the same order.

<set> ::=
 MemberRange (<member>, <member>)
 | <member> : <member>
 | { [<tuple> | <set>] [, <tuple> | <set>].. }
 | <set_value_expression>

MDX Syntax and Grammar Rules 953

Item Description

MemberRange
(<member>,
<member>)

A set can be a range of members, specified using the MemberRange function.

<member> :
<member>

Alternate syntax that has the same effect as the MemberRange function.

{[<tuple> | <set>]
[, <tuple> | <set>].
. }

Unless it is returned by a function, a set must be enclosed in curly braces { }. A set can be one or more tuples, or
it can be made up of other sets.

All tuples in a set must have the same dimensionality.

<set_value_
expression>

Output from any function that returns a set. As an alternative to creating sets member-by-member or tuple-by-tuple,
you can use a function that returns a set. For a list of functions that return sets, see “MDX Functions” on page
989.

MDX With Section
The WITH section is for defining referential sets or members that can be used multiple times
during the life of a query.

Beginning with the keyword WITH at the very start of a query, you can define a buffer of reusable
logic lasting for the length of the query execution. This can save time in lines of code written as
well as in execution time.

If varying attributes are enabled, the WITH section can also be used to define perspective for
each varying attribute dimension. In case of multiple varying attributes, perspective setting can
be defined for each varying attribute dimension separately.

In the WITH section, you can create the following reusable elements:

l Calculated members

l Named Sets

Syntax

WITH
 SET set_name AS ' set '
 | MEMBER calculated_member_name AS ' <numeric_value_expr> '
 [, <solve_order_specification>]
 | <perspective_specification>

954 MDX

Item Description

set_name The name of the set that will be defined after the AS keyword. Any name can be used; it should be something that helps
you remember the nature of the set. For example, a set name could be Best5Books, which names a set of the five
top-selling paperback titles in December:

WITH
SET [Best5Books] AS
 'Topcount (
 [Paperbacks].members,
 5,
 ([Measures].[Sales], [Scenario].[Actual],
 [Year].[Dec])
)'

set The logic of a set specification; this can be re-used because it is being named. Must be enclosed in single quotation
marks. In the example above, the Topcount function defines the entire set.

calculated_
member_name

A name for a hypothetical member existing for the duration of query execution. In its definition, you must associate the
calculated member with a dimension (as [Max Qtr2 Sales] is associated with the Measures dimension, in the example
that follows).

For example, the calculated member named Max Qtr2 Sales has its value calculated at execution time using the
Max function:

WITH
MEMBER [Measures].[Max Qtr2 Sales] AS
 'Max (
 {[Year].[Qtr2]},
 [Measures].[Sales]
)'

Calculated members do not work with metadata functions such as Children, Descendants, Parent, and Siblings. For
example, if there is a calculated member defined as [CM1], you cannot use it in the following way: [CM1].
children.

<numeric_
value_expr>

An expression involving real members in the database outline, compared using mathematical functions. The value
resulting from the expression is applied to the calculated member. By using calculated members, you can create and
analyze a great many scenarios without the need to modify the database outline.

<solve_order_
specification>

Optional. By adding ,SOLVE_ORDER = n to the end of each calculated member, you can specify the order in which
the members are calculated. For example, solve order in the following hypothetical query is indicated in bold:

WITH
MEMBER [Product].[mbr1] AS
 'calculation', SOLVE_ORDER = 2

MEMBER [Product].[mbr2] AS
 'calculation', SOLVE_ORDER = 1

SELECT
 {[Year].children}
on columns,
 {
 [Product].[mbr1],
 [Product].[mbr2]
 }
on rows

See Usage Examples for Solve Order.

MDX Syntax and Grammar Rules 955

Item Description

<perspective_
specification>

PERSPECTIVE REALITY | tuple FOR dimension

When a database uses varying attributes, base members associated with the varying attributes are aggregated according
to the specified perspective.

You can set the perspective to reality (using the REALITY keyword) or to explicit (using an input tuple consisting of level
0 members).

Reality-based evaluation and reporting is the default, in which independent members are determined by the current
context.

When using explicit evaluation and reporting, you specify a tuple of level 0 members from the independent dimension
to be used as the context.

For an example of a reality-based perspective, see the example for AttributeEx. For an example of an explicit
perspective, see the example for WithAttrEx.

Usage Examples for Solve Order

WITH
MEMBER
 [Measures].[Profit Percent]
 AS 'Profit *100 /Sales', SOLVE_ORDER=20
MEMBER
 [Year].[FirstFourMonths]
 AS 'Sum(Jan:Apr)',SOLVE_ORDER=10
SELECT
 {[Profit], [Sales], [Profit Percent]}
ON COLUMNS,
 {[Jan], [Feb], [Mar], [Apr], [FirstFourMonths]}
ON ROWS
FROM Sample.Basic

The calculated member [Profit Percent], defined in the Measures dimension, calculates
Profit as a percentage of Sales.

The calculated member [FirstFourMonths], defined in the Year dimension, calculates sum
of data for first four months.

When data for ([Profit Percent], [FirstFourMonths]) is evaluated, SOLVE_ORDER
specifies the order of evaluation, ensuring that [Profit Percent] is evaluated first, and
resulting in a correct value for percentage. If you change the order of evaluation, you will see
that the percentage value is not correct. In this example, SOLVE_ORDER specifies that sum
should be calculated before percentage.

Tie-Case Example for Solve Order

When evaluating a cell identified by multiple calculated members, the SOLVE_ORDER value is
used to determine the order in which the expressions are evaluated. The expression that is used
to evaluate the cell is that of the calculated member with the highest SOLVE_ORDER value. In
this case, [Profit Percent]'s expression is used to evaluate ([Profit Percent], [FirstFourMonths]).
The example above is calculated as:

([Profit Percent], [FirstFourMonths])
 = ([Profit], [FirstFourMonths]) * 100 / ([Sales], [FirstFourMonths])
 = (([Profit], [Jan]) + ([Profit], [Feb]) + ([Profit], [Mar]) + ([Profit], [Apr])) *

956 MDX

100 /
 (([Sales], [Jan]) + ([Sales], [Feb]) + ([Sales], [Mar]) + ([Sales], [Apr]))

A tie situation is possible because calculated members may have the same SOLVE_ORDER value.
The tie is broken based on the position of the dimensions to which the calculated members are
attached:

l For aggregate storage outlines, the calculated member belonging to the dimension that
comes later in the outline is the one that wins in this case.

l For block storage database outlines (and for pre-Release 7.1.2 aggregate storage outlines),
the solve order property applies to calculated members defined in an MDX query. The
calculated member belonging to the dimension that comes earlier in the outline is the one
that wins in this case, and its expression is used to evaluate the cell.

Calculated Members

For examples of queries using calculated members, see examples for the following functions:

Abs

Avg

BottomPercent

Case

ClosingPeriod

Count

Exp

FirstSibling

IIF

Int

Lag

LastPeriods

Lead

Ln

Max

Min

Mod

NextMember

NonEmptyCount

Ordinal

PrevMember

Remainder

MDX Syntax and Grammar Rules 957

Sum

Todate

Named Sets

For examples of queries using named sets, see examples for the following functions:

BottomPercent

CurrentTuple

Filter (example 3)

Generate

Parent (example 2)

Perspective

For examples of varying attribute queries using perspective, see examples for the following
functions:

AttributeEx

WithAttrEx

MDX Dimension Specification
A dimension is a top-level member in the hierarchy (a member with no parent). Represent a
dimension using the following rules:

Syntax

<dimension> :: =
 <dimension-name-specification>
 | <member>.DIMENSION
 | <layer>.DIMENSION
 | DIMENSION (<member> | <layer>)

Syntax Description

<dimension-name-specification> A dimension name. See Description, item 1.

<member>.DIMENSION Dimension function with a member specification as input.

<layer>.DIMENSION Dimension function with a layer specification as input.

DIMENSION (<member> | <layer>) Alternate syntax. Dimension (<member>) has the same effect as <member>.Dimension.
Dimension (<layer>) has the same effect as <layer>.Dimension.

Description

A dimension can be represented in the following ways:

958 MDX

1. Using the dimension name (the name of the top member of a dimension.) For example,
[Market].

2. Using the Dimension function with a member of a dimension as input. For example,
[New York].Dimension or Dimension ([New York]).

3. Using the Dimension function with a layer specification as input. For example,
Dimension ([Market].Generations(2).Members) or
{([Market].Generations(2).Members)}.Dimension.

MDX Layer Specification
A layer is a shared depth in the outline hierarchy. Therefore, the concept of layer includes
generations and levels. Represent a layer using the following rules:

Syntax

<layer> ::=
 <layer-name-specification>
 | Levels (<dim_hier>, <index>)
 | <dim_hier>.Levels (<index>)
 | Generations (<dim_hier>, <index>)
 | <dim_hier>.Generations (<index>)
 | <member>.Generation
 | <member>.Level

Syntax Description

<layer-name-
specification>

A layer name can be specified in the following ways:

1. By specifying the generation or level names; for example, States or Regions.

The generation or level name can be within braces; for example, [Regions]. Using braces is recommended.

2. By specifying the dimension name along with the generation or level name; for example, Market.
Regions and [Market].[States] This naming convention is recommended.

<dimension>.Levels
(<index>)

Levels function with the dimension specification and a level number as input. For example, [Year].
Levels(0).

Levels (<dimension>,
<index>)

Alternate syntax for Levels function with the dimension specification and a level number as input. For example,
Levels ([Year], 0).

<dimension>.
Generations (<index>)

Generations function with the dimension specification and a generation number as input. For example,
[Year].Generations (3).

Generations
(<dimension>,
<index>)

Alternate syntax for Generations function with the dimension specification and a generation number as
input. For example, Generations ([Year], 3).

<member>.Generation Generation function with a member specification as input. For example, [Year].Generation. Returns
the generation of the specified member.

<member>.Level Level function with a member specification as input. For example, [Year].Level. Returns the level of the
specified member.

MDX Syntax and Grammar Rules 959

Description

Generation numbers begin counting with 1 at the dimension name; higher generation numbers
are those that are closest to leaf members in a hierarchy.

Level numbers begin with 0 at the deepest part of the hierarchy; the highest level number is a
dimension name.

Note: In an asymmetric (or ragged) hierarchy, same level numbers does not mean that the
members are at the same depth in the outline. For example, in the following diagram,
member aa and member f are both level 0 members, and yet they are not at the same
depth:

MDX Member Specification
A member is a named hierarchical element in a database outline. Represent a member using the
following rules:

Syntax

<member> ::=
 <member-name-specification>
 | <member_value_expression>

Member Name Specification

A member name can be specified in the following ways:

1. By specifying the actual name or the alias; for example, Cola, Actual, COGS, and [100].

960 MDX

If the member name starts with number or contains spaces, it should be within braces; for
example, [100]. Braces are recommended for all member names, for clarity and code
readability.

If the member name starts with an ampersand (&) , it should be within quotation marks;
for example, ["&xyz"]. This is because the leading ampersand is reserved for substitution
variables. You can also specify it as StrToMbr("&100").

For attribute members, the long name (qualified to uniquely identify the member) should
be used; for example, [Ounces_12] instead of [12].

2. By specifying dimension name or any one of the ancestor member names as a prefix to the
member name; for example, [Product].[100-10] and [Diet].[100-10] This is a
recommended practice for all member names, as it eliminates ambiguity and enables you
to refer accurately to shared members.

Note: Use only one ancestor in the qualification. Essbase returns an error if multiple
ancestors are included. For example, [Market].[New York] is a valid name for
New York, and so is [East].[New York]. However, [Market].[East].[New
York] returns an error.

3. By specifying the name of a calculated member defined in the WITH section.

4. For outlines that have duplicate member names enabled, see also “MDX Syntax for
Specifying Duplicate Member Names and Aliases” on page 947.

Member Value Expression

A member value expression is output from any function that returns a member. As an alternative
to referencing the member by name or alias, you can use a function that returns a member in
place of <member>. For a list of functions that return a member, see “MDX Functions” on page
989.

MDX Hierarchy Specification
A hierarchy is a root member of an alternate hierarchy, which is always at generation 2 of a
dimension. Member value expressions are not allowed as hierarchy arguments.

Alternate hierarchies are applicable to aggregate storage databases only.

The dimension of the hierarchy argument passed to a function must match the dimension of
the other arguments passed to the function. If they do not match, an error is returned, and the
query is aborted.

MDX Tuple Specification
This section shows rules for tuple specifications.

A tuple is a collection of member(s) with the restriction that no two members can be from the
same dimension. For example, (Actual, Sales) is a tuple. (Actual, Budget) is not a tuple,
as both members are from the same dimension.

MDX Syntax and Grammar Rules 961

Syntax

<tuple> ::=
 <member>
 | (<member> [, <member>]..)
 | <tuple_value_expression>

Syntax Description

<member> A member name. If a member name contains spaces or special characters, enclose it in brackets []. It is good practice
to use brackets for member names, even if they do not contain special characters. Example: [West]

(<member> [,
<member>]..)

One or more member names, separated by commas. The members must be from different dimensions. The list of
members must be enclosed in parentheses (). Example: ([West], [Feb])

<tuple_value_
expression>

An instance of a function that extracts a tuple from a set. There are two such functions available:

l CurrentTuple

l Item

Description

A tuple represents a single data cell if all dimensions are represented. For example, this tuple
from Sample Basic is a single data value:

([Qtr1], [Sales], [Cola], [Florida], [Actual])

MDX Create Set / Delete Set
This section shows how to create and delete a named set that persists for the duration of a login
session.

A named set is a re-usable member selection that can help streamline the writing and execution
of MDX queries.

Syntax

The syntax to create or delete session-persistsent named sets is shown below:

 CREATE SET set name AS ' set ' [WHERE [<slicer_specification>]]
|DELETE set_name

Examples

Example 1

The following statement creates a named set called "My Favorite Customers," which is a selection
of the top three customers for sales in 2001:

CREATE SET [My Favorite Customers] AS '{ TopCount ([Customer].Individual).Members, 3,
([Measures].[Sales], [Time].[2001])} }'

The following query, issued in the same login session as the CREATE statement, references the
stored named set "My Favorite Customers":

962 MDX

SELECT
{ [Time].[2000], [Time].[2001]} ON COLUMNS
{ [My Favorite Customers] } ON ROWS
FROM Sample.Basic
WHERE ([Measures].[Profits])

Example 2

To provide a context, a slicer clause maybe added to the set creation statement, as shown in bold:

CREATE SET [My Favorite Customers] AS
 '{ TopCount ([Customer].Individual).Members, 3, ([Measures].[Sales], [Time].[2001])} }
 WHERE (East, Toys)'

Notes

l Only 16 session-based named sets maybe stored simultaneously.

l Named set definitions may not contain references to other named sets.

MDX Operators
This section describes operators that can be used in MDX queries as part of numeric value
expressions or search conditions.

Mathematical Operators

Operator Definition

+ Adds. Also can be used as a unary operator.

- Subtracts. Also can be used as a unary operator; for example, -5, -(Profit).

* Multiplies.

/ Divides.

% Evaluates percentage. For example, Member1%Member2 evaluates Member1 as a percentage of Member2. Note: Aggregate
storage outline formulas cannot contain the % operator. In outline formulas, replace % with expression: (value1/
value2)*100)

Conditional and Logical Operators

Conditional operators take two operands and check for relationships between them, returning
TRUE or FALSE.

Operator Definition

> Data value is greater than.

< Data value is less than.

= Data value is equal to.

MDX Operators 963

Operator Definition

<> Data value is not equal to.

>= Data value is greater than or equal to.

<= Data value is less than or equal to.

IN The syntax for the IN operator is as follows:

<property> IN <member>|<character_string_literal>

The first argument, <property> should be an attribute property; for example, Population in the following example.

The second argument, <member> or <character_string_literal>, should be an attribute member that is neither a level-0 member
nor a generation-1 member; for example, Medium in the following example.

Example

The following filter evaluates the Population property (attribute) of the current member of Market dimension:

 Filter ([Market].Members, Market.CurrentMember.Population IN Medium)

If the population attribute of the current member is Medium, the expression returns TRUE.

IS The IS operator syntax is as follows: member1 IS member2. The IS operator is equivalent to the IS function. For details and
examples, see the IS function.

Boolean Operators

Boolean operators can be used in the following functions to perform conditional tests: Filter,
Case, IIF, Generate. Boolean operators operate on boolean operands (TRUE/FALSE values).

See also “MDX Functions that Return a Boolean” on page 995.

Operator Definition

AND Logical AND linking operator for multiple value tests. Result is TRUE if both conditions are TRUE. Otherwise the result is FALSE.
For an example using AND, see IsValid.

OR Logical OR linking operator for multiple value tests. Result is TRUE if either condition is TRUE. Otherwise the result is FALSE.

NOT Logical NOT operator. Result is TRUE if condition is FALSE. Result is FALSE if condition is TRUE. For an example using NOT,
see IsEmpty.

XOR Logical XOR linking operator for multiple value tests. Result is TRUE if only one condition is TRUE. Otherwise the result is FALSE.

About MDX Properties
Properties describe certain characteristics of data and metadata. MDX enables users to write
queries that use properties to retrieve and analyze data. Properties can be intrinsic or custom.

“MDX Intrinsic Properties” on page 965

“MDX Custom Properties” on page 965

“MDX Optimization Properties” on page 966

964 MDX

“Querying for Member Properties in MDX” on page 968

“The Value Type of MDX Properties” on page 969

“MDX NULL Property Values” on page 969

MDX Intrinsic Properties
Intrinsic properties are defined for members in all dimensions. In Essbase, the intrinsic MDX
member properties defined for all members in an Essbase database outline are MEMBER_NAME,
MEMBER_ALIAS, LEVEL_NUMBER, GEN_NUMBER, IS_EXPENSE, COMMENTS,
RELATIONAL_DESCENDANTS, and MEMBER_UNIQUE_NAME.

The MEMBER_NAME intrinsic property returns a member name string for each member.

The MEMBER_ALIAS intrinsic property returns a member alias string for each member.

The LEVEL_NUMBER intrinsic property returns the level number of each member.

The GEN_NUMBER intrinsic property returns the generation number of each member.

The IS_EXPENSE intrinsic property returns TRUE if a member has the Expense account type,
and FALSE otherwise. Example:

 SELECT
 [Measures].Members
 DIMENSION PROPERTIES [Measures].[IS_EXPENSE] on columns
from Sample.Basic;

The COMMENTS intrinsic property returns a comment string for each member where applicable.
Example:

 SELECT
 [Market].Members
 DIMENSION PROPERTIES [Market].[COMMENTS] on columns
from Sample.Basic;

The RELATIONAL_DESCENDANTS intrinsic property retruns TRUE if a member has descendants
in a relational database, and FALSE otherwise. This property is only applicable for Hybrid
Analysis. Example:

SELECT
 [Market].Members
 DIMENSION PROPERTIES [Market].[RELATIONAL_DESCENDANTS] on columns
from Sample.Basic;

The MEMBER_UNIQUE_NAME intrinsic property is a member-name property. It returns NULL
for unique members, and a system-generated key for duplicate members.

MDX Custom Properties
MDX in Essbase supports three types of custom properties: attribute properties, UDA properties,
and alias-table-name properties. Attribute properties are defined by the attribute dimensions in
an outline. In the Sample Basic database, the [Pkg Type] attribute dimension describes the

About MDX Properties 965

packaging characteristics of members in the Product dimension. This information can be
queried in MDX using the property name [Pkg Type].

Attribute properties are defined only for specific dimensions and only for a specific level in each
dimension. For example, in the Sample Basic outline, [Ounces] is an attribute property defined
only for members in the Product dimension, and this property has valid values only for the
level-0 members of the Product dimension. The [Ounces] property does not exist for other
dimensions, such as Market. The [Ounces] property for a non level-0 member in the Product
dimension is a NULL value. The attribute properties in an outline are identified by the names
of attribute dimensions in that outline.

The custom properties also include UDAs. For example, [Major Market] is a UDA property
defined on Market dimension members. It returns a TRUE value if [Major Market] UDA is
defined for a member, and FALSE otherwise.

Custom alias-table-name properties enable you to query for alias table names used by each
member returned in the output.

MDX Optimization Properties
Optimization properties can improve the performance of formulas and calculated members, as
well as the performance of queries that rely on them.

Optimization properties are applicable to outline members with formulas and calculated
members only. Stored members are not associated with these properties.

The NONEMPTYMEMBER and NONEMPTYTUPLE properties enable MDX in Essbase to
query on large sets of members or tuples while skipping formula execution on non-contributing
values that contain only #MISSING data.

Because large sets tend to be very sparse, only a few members contribute to the input member
(have non #MISSING values) and are returned. As a result, the use of NONEMPTYMEMBER
and NONEMPTYTUPLE in calculated members and formulas conserves memory resources,
allowing for better scalability, especially in concurrent user environments.

NONEMPTYMEMBER

NONEMPTYMEMBER nonempty_member_list

where nonempty_member_list is one or more comma-separated member names or calculated
member names from the same dimension as the formula or calculated member.

Use a single NONEMPTYMEMBER property clause at the beginning of a calculated member
or formula expression to indicate to Essbase that the value of the formula or calculated member
is empty when any of the members specified in nonempty_member_list are empty.

NONEMPTYTUPLE

NONEMPTYTUPLE "("nonempty_member_list")"

where nonempty_member_list is one or more comma-separated member names or calculated
member names, each from different dimensions.

966 MDX

Use a single NONEMPTYTUPLE property clause at the beginning of a calculated member or
formula expression to indicate to Essbase that the value of the formula or calculated member is
empty when the cell value at the tuple given in nonempty_member_list is empty.

Example

The following query calculates a member [3 Month Units] that represents the sum of Units
(items per package) for the current month and the previous two months, where Units data is
not missing.

The calculated member [3 Month Units] calculates Units shipped for last three months. If the
units shipped for [MTD] (units shipped in a year) is empty, it follows that Units data is empty
for all months in the Year; therefore, the sum of Units shipped for last three months is also empty.
Because the row axis in the query is very large and sparse, the NONEMPTYTUPLE property
would significantly increase the performance of the query in this case.

WITH MEMBER [Measures].[3 Month Units] AS
'
 NONEMPTYTUPLE ([Units], [MTD])
 Sum(
 {
 ClosingPeriod(Time.Generations(5), Time.CurrentMember),
 Time.CurrentMember.Lag(1),
 Time.CurrentMember.Lag(2)
 },
 Units
)
'
SELECT
 {Units, [3 Month Units]} ON COLUMNS,
 NON EMPTY
 CrossJoin(
 Stores.Levels(0).Members,
 [Store Manager].Children
)
ON ROWS
FROM Asosamp.Sample
WHERE (Mar);

This query returns the following grid (results truncated):

(axis) Items Per Package 3 Month Units

(017589, Carrie) 610 1808

(020408, Debra) 584 1778

(020486, Kalluri) 551 1670

(047108, Kimberley) 593 1723

(051273, Madhukar) 541 1642

(056098, Melisse) 607 1750

...

About MDX Properties 967

Querying for Member Properties in MDX
Properties can be used inside an MDX query in two ways. In the first approach, you can list the
dimension and property combinations for each axis set. When a query is executed, the specified
property is evaluated for all members from the specified dimension and included in the result
set.

For example, on the column axis, the following query will return the GEN_NUMBER
information for every Market dimension member. On the row axis, the query returns
MEMBER_ALIAS information for every Product dimension member.

SELECT
 [Market].Members
 DIMENSION PROPERTIES [Market].[GEN_NUMBER] on columns,
 Filter ([Product].Members, Sales > 5000)
 DIMENSION PROPERTIES [Product].[MEMBER_ALIAS] on rows
from Sample.Basic

When querying for member properties using the DIMENSION PROPERTIES section of an axis,
a property can be identified by the dimension name and the name of the property, or just by
using the property name itself. When a property name is used by itself, that property information
is returned for all members from all dimensions on that axis, for which that property applies.

Note: When a property name is used by itself within the DIMENSION PROPERTIES section,
do not use brackets [] around the property name.

In the following query. the MEMBER_ALIAS property is evaluated on the row axis for both Year
and Product dimensions.

SELECT
 [Market].Members
 DIMENSION PROPERTIES [Market].[GEN_NUMBER] on columns,
 CrossJoin([Product].Children, Year.Children)
 DIMENSION PROPERTIES MEMBER_ALIAS on rows
from Sample.Basic

In a second approach, properties can be used inside value expressions in an MDX query. For
example you can filter a set based on a value expression that uses properties of members in input
set.

The following query returns all caffeinated products that are packaged in cans.

Select
Filter([Product].levels(0).members,
 [Product].CurrentMember.Caffeinated and
 [Product].CurrentMember.[Pkg Type] = "Can")
 Dimension Properties
 [Caffeinated], [Pkg Type] on columns

The following query uses the UDA [Major Market] to calculate the value
[BudgetedExpenses] based on whether the current member of the Market dimension is a
major market or not.

968 MDX

With
 MEMBER [Measures].[BudgetedExpenses] AS
 'IIF([Market].CurrentMember.[Major Market],
 [Marketing] * 1.2, [Marketing])'
Select
 {[Measures].[BudgetedExpenses]} on columns,
 Market.Members on rows
Where
 ([Budget])

The following queries use alias table names.

 SELECT
 [Product].Members
 DIMENSION PROPERTIES [Default] on columns
from Sample.Basic;

SELECT
 [Product].Members
 DIMENSION PROPERTIES [Long Names] on columns
from Sample.Basic;

The Value Type of MDX Properties
The value of an MDX property in Essbase can be a numeric, Boolean, or string type.
MEMBER_NAME and MEMBER_ALIAS properties return string values. LEVEL_NUMBER
and GEN_NUMBER properties return numeric values.

The attribute properties return numeric, Boolean, or string values based on the attribute
dimension type. For example, in Sample Basic, the [Ounces] attribute property is a numeric
property. The [Pkg Type] attribute property is a string property. The [Caffeinated]
attribute property is a Boolean property.

Essbase allows attribute dimensions with date types. The date type properties are treated as
numeric properties in MDX. When comparing these property values with dates, you need to
use the TODATE function to convert date strings to numeric before comparison.

The following query returns all Product dimension members that have been introduced on date
03/25/1996. Since the property [Intro Date] is a date type, the TODATE function must be
used to convert the date string "03-25-1996" to a number before comparing it.

Select
 Filter ([Product].Members,
 [Product].CurrentMember.[Intro Date] =
 TODATE("mm-dd-yyyy","03-25-1996")) on columns

When a property is used in a value expression, you must use it appropriately based on its value
type: string, numeric, or Boolean.

MDX NULL Property Values
Not all members may have valid values for a given property name. For example, the
MEMBER_ALIAS property returns an alternate name for a given member as defined in the

About MDX Properties 969

outline; however, not all members may have aliases defined. In these cases A NULL value would
be returned for those members that do not have aliases.

In the following query:

 SELECT
 [Year].Members
 DIMENSION PROPERTIES MEMBER_ALIAS on columns

none of the members in the Year dimension have aliases defined for them. Therefore, the query
returns NULL values for the MEMBER_ALIAS property for members in the Year dimension.

The attribute properties are defined for members of a specific dimension and a specific level in
that dimension. In the Sample Basic database, the [Ounces] property is defined only for level-0
members of the Product dimension.

Therefore, if you query for the [Ounces] property of a member from the Market dimension,
as shown in the following query, you will get a syntax error:

 SELECT
 Filter([Market].members,
 [Market].CurrentMember.[Ounces] = 32) on columns

Additionally, if you query for the [Ounces] property of a non level-0 member of the dimension,
you will get a NULL value.

When using property values in value expressions, you can use the function IsValid() to check
for NULL values. The following query returns all Product dimension members with
[Ounces] property value of 12, after eliminating members with NULL values.

 Select
 Filter([Product].Members,
 IsValid([Product].CurrentMember.[Ounces]) and
 [Product].CurrentMember.[Ounces] = 12) on columns

MDX Comments
This section describes how to add comments to MDX queries.

Syntax

MDX supports two types of syntax for comments:

1. MDX supports the "C++ style" comments that are also supported by the Essbase Server
calculator framework. This type of comment can cover multiple lines. Everything in between
is ignored by the MDX parser.

Example:

/*
commented text is
ignored by parser
*/

970 MDX

2. MDX supports inline comments beginning with two hyphens. Beginning with two hyphens,
the rest of the line is ignored by the MDX parser. A new line ends the span of the comment.

Example:

-- short comment can go on till line break

Example

The following example uses both styles of comments:

/* Query the profit figures in each
 market for the "100" products
*/
SELECT
 {([Market].levels(1).members)} --L1 members of Market
ON COLUMNS,
 --Cross of the "100" products and their profit figures:
 CrossJoin ([100].children, [Profit].children)
ON ROWS
FROM Sample.Basic

MDX Query Limits

Overview

The following concepts are applicable to understanding MDX query limits.

Concept Description

NON EMPTY
processing

Refers to how Essbase processes MDX queries and sets when the NON EMPTY keywords are used in an axis
specification. The NON EMPTY specification optimizes processing by suppressing slices that would contain entirely
#MISSING values.

Cluster
elements /
symmetric
sets

Although an MDX set is a collection of tuples, internally, Essbase represents sets using clusters and tuples. A cluster is
a type of set derived using the CrossJoin function, where the arguments to CrossJoin are sets from one dimension only.

A cluster can also be thought of as a symmetric set. The following set is a symmetric set and can be stored as one cluster.

CROSSJOIN(Products.LEVELS(0).MEMBERS, [Market].LEVELS(0).MEMBERS)

A tuple is a collection of members from different dimensions. The following set has one tuple.

{([Product].Product_1, [Market].Market_1)}

The following set is a union of the above two sets. It is stored internally as a cluster and a tuple.

UNION(
CROSSJOIN(Products.LEVELS(0).MEMBERS, [Market].LEVELS(0).MEMBERS)
,
{([Product].Product_1, [Market].Market_1)}
)

Compact set A set is stored in compact form if it can be internally represented as a cluster or symmetric set.

MDX Query Limits 971

Concept Description

Flattened set A set that must be internally expanded into tuples is a flattened set. Flattened sets consume more memory to be processed.
Certain MDX functions, such as Order, need to flatten sets in order to process them correctly. Therefore, certain functions,
as listed in the next section, have different set size or query limits.

The following set is an example of a flattened set.

{(Colas, East)
(Colas, West)
(Colas, South)
(Colas, Central)
(Root Beer, East)
(Root Beer, West)
(Root Beer, South)
(Root Beer, Central
(Cream Soda, East)
(Cream Soda, West)
(Cream Soda, South)
(Cream Soda, Central)
(Fruit Soda, East)
(Fruit Soda, West)
(Fruit Soda, South)
(Fruit Soda, Central)}

Asymmetric
set

The following set is stored internally as a collection of a tuple element and a cluster element. The two elements cannot
be combined into a single element. Such sets are called asymmetric sets.

UNION({(Colas, East)}
 CROSSJOIN(
 [Product].CHILDREN,
 [Market].CHILDREN))

MDX Query Limits

The following size limitations apply to MDX queries, sets, and certain functions.

Note: The following exception applies to the general query limits: If the database being queried
is the target database of a partition, the maximum size of a cube region you can query
using MDX is 2 32 potential cells.

Limitations Units

Number of cells in a query region defined by all axis sets in an MDX query with NON EMPTY
clause

264

Number of cells that can be returned to a client after NON EMPTY processing 232

Number of cells in a query region defined by all axis sets in an MDX query with no NON
EMPTY clause

232

Number of tuples in an axis set with NON EMPTY directive after NON EMPTY processing 228

972 MDX

Limitations Units

Size of a set in compact form 264

Size of a set in flattened form 232

Number of elements in a set 232

Number of members (from all dimensions) in a cluster element 232

Number of cells in a query after applying non empty cell processing 232

Size of a set that can be processed by the following functions:

l Distinct

l Except

l Filter

l Intersect

l Ntile

l Order

l Percentile

l Rank

l TopPercent

l BottomPercent

l TopSum

l BottomSum

l Hierarchize

l Union (with removal of duplicates)

l NonEmptySubset (output set size)

l TopCount (output set size)

l BottomCount (output set size)

228

EssMdx API
l Maximum number of tuples/clusters on

an axis—229-1

l Maximum number of cells (when cell
status is not requested)—227-1

l Maximum number of cells (when cell
status is not requested)—approximately
226-1

MDX queries run through MaxL
l Maximum number of columns—229-1

l Maximum number of rows—229-1

Aggregate Storage and MDX Outline Formulas
To write formulas for block storage outlines, Essbase provides a set of calculation functions and
operators known as the Calculator, or Calc, language. The Calculator language cannot be used

Aggregate Storage and MDX Outline Formulas 973

to write member formulas for aggregate storage databases. Formulas in aggregate storage
outlines use the MDX language.

The following sections provide information for rewriting Calculator formulas in MDX for
outlines that have been migrated from block storage to aggregate storage. Before attempting to
rewrite formulas you should be familiar with the basic workings of aggregate storage outlines in
Essbase. See the Oracle Essbase Database Administrator's Guide, which discusses all aspects of
aggregate storage.

Translating Calculator Functions to MDX Functions

When translating Calculator formulas to MDX, keep in mind the following differences between
block storage outlines and aggregate storage outlines:

l The storage characteristics of a member and hence all its associated cells are defined in a
block storage outline through Dynamic Calc (and Dynamic Calc and Store) attributes, and
stored attributes. Such attributes do not exist in an aggregate storage outline. Upper level
members along an explicitly tagged accounts dimension and members with formulas
attached to them are always calculated dynamically in such a database.

l In block storage outlines, calculation order is dependent on the order in which members
appear in the outline whereas formulas are executed in order of their dependencies in
aggregate storage outlines. In addition, calculation order in the event of ambiguity in the
evaluation of a cell, and two-pass calculation tags are not required in an aggregate storage
outline.

l The layout of block storage outlines and the separation of dimensions into dense and sparse
has an effect on the semantics of certain calculations, giving rise to concepts such as top-
down calculation mode, cell and block calculation mode, and create-blocks on equations.
The simplicity of the aggregate storage outlines, which do not separate dimensions into
dense and sparse, do not require such concepts.

General Guidelines for Translating Calculator Formulas to MDX

This section provides some general guidelines for translating Calculator formulas to MDX.

Be certain that the application has been redesigned to use an aggregate storage outline. In this
regard, make certain that formulas do not reference any block-storage specific outline constructs,
such as variance functions that rely on expense tagging, or functions that operate on shared
members (for example, @RDESCENDANTS). Such constructs are not valid in aggregate storage
outlines.

Rewrite each function in the formulas attached to an explicitly tagged accounts dimension for
which a direct counterpart in MDX exists. Table 1 provides specific information and examples.
Then identify functions for which an indirect rewrite is required. Table 1 also provides
information and examples for these functions.

Understand the calculation order semantics for the formulas in the block storage outline.
Organize the dependent formulas in the aggregate storage outline carefully to achieve the same
results as block storage.

If formulas reference custom-defined functions or macros consider rewriting them, if possible,
using other MDX functions.

974 MDX

The following table lists all functions in the Calculator language and their analogs in MDX (and
vice versa). Where a direct analog does not exist, transformation rules and examples are
provided.

Table 1 Calculator to MDX Function Mapping

Calculator MDX Remarks/Examples

@ABS Abs Calculator

@ABS(Actual-Budget)

MDX

Abs([Actual]-[Budget])

@ALLANCESTORS Ancestors Shared members are not relevant to aggregate storage outlines.

@ALIAS Not required. In MDX, the argument to @ALIAS can be passed as-is to the outer
function.

@ANCEST Ancestor with
CurrentMember as input. Use a
tuple to combine the result with the
optional third argument to the
@ANCEST function.

Calculator

@ANCEST(Product,2,Sales)

MDX

(
 Sales,
 Ancestor(
 Product.CurrentMember,
 Product.Generations(2)
)
)

@ANCESTORS Ancestors Calculator

@ANCESTORS("New York")

MDX

 Ancestors([New York].parent,
[Market].levels(2))

@ANCESTVAL Ancestor with
CurrentMember as input. Use a
tuple to combine the result with the
optional third argument to the
@ANCESTVAL function.

Calculator

@ANCESTVAL(Product,2,Sales)

MDX

(Sales,
 Ancestor(
 Product.CurrentMember,
 Product.Generations(2)
)
).Value

Aggregate Storage and MDX Outline Formulas 975

Calculator MDX Remarks/Examples

@ATTRIBUTE Attribute Calculator

@ATTRIBUTE(Can)

MDX

Attribute([Can])

@ATTRIBUTEBVAL [BaseDim] .CurrentMember.
AttributeDim

See “About MDX Properties” on page 964.Calculator

@ATTRIBUTEBVAL(Caffeinated)

MDX

Product.CurrentMember.Caffeinated

@ATTRIBUTESVAL [BaseDim] .CurrentMember.
AttributeDim

See “About MDX Properties” on page 964.Calculator

@ATTRIBUTESVAL("Pkg Type")

MDX

Product.CurrentMember.[Pkg Type]

@ATTRIBUTEVAL [BaseDim] .CurrentMember
AttributeDim

See “About MDX Properties” on page 964.Calculator

@ATTRIBUTEVAL(Ounces)

MDX

Product.CurrentMember.Ounces

@AVG If the dimensionality of all elements
in the input set to @AVG is the same,
use Avg. Translate SKIPNONE to
INCLUDEEMPTY.

If the dimensionality of all elements
in the input set to @AVG is not the
same, then perform average by
explicitly adding the tuples and
dividing by the set cardinality (the
number of tuples in the set).

Note that the MDX Avg function skips missing cell values by default.

Calculator

@AVG(SKIPMISSING, @CHILDREN(East))

MDX

Avg([East].Children)

If SKIPMISSING is replaced by SKIPNONE, the translation changes to:

Avg([East].Children, Sales, INCLUDEEMPTY)

For SKIPZERO, the translation is:

Avg([East].Children,
 IIF(Market.CurrentMember.Value=0, Missing,
 IIF(Market.CurrentMember= Missing,0,
 Market.CurrentMember.Value
)
)
)

For SKIPBOTH, the translation is:

Avg([East].Children,
 IIF(Market.CurrentMember=0, Missing,
 Market.CurrentMember.Value)
)

976 MDX

Calculator MDX Remarks/Examples

@AVGRANGE CrossJoin (first argument, set
created out of second argument). The
rest is similar to @AVG when the
dimensionality of all elements of the
input set is identical.

Calculator

@AVGRANGE(SKIPMISSING, Sales,
@CHILDREN(West))

MDX

Avg(CrossJoin({Sales},{[West].Children)})

If SKIPMISSING is replaced by SKIPNONE, the translation becomes:

Avg({[West].Children)},Sales,INCLUDEEMPTY)

If SKIPZERO is used, then the translation is:

Avg([West].Children),
 IIF(Sales = 0, Missing,
 IIF(Sales = Missing, 0, Sales)
)
)

@CHILDREN Children Calculator

@CHILDREN(Market)

MDX

Children(Market)

or

Market.Children

@CONCATENATE Concat Calculator

@MEMBER(@CONCATENATE("Qtr1", "1"));

MDX

Concat("01", "01")

@CORRELATION Not supported in MDX. .

Aggregate Storage and MDX Outline Formulas 977

Calculator MDX Remarks/Examples

@COUNT Use Count if SKIPNONE.

Use NonEmptyCount if
SKIPMISSING.

For SKIPZERO, see the example in the
next column.

For SKIPBOTH, use Count
(Filter(set, value <> 0 &&
value <> MISSING))

Calculator

@COUNT(SKIPMISSING,@RANGE(Sales,
Children(Product)))

MDX

NonEmptyCount(CrossJoin({Sales},
{Product.Children}))

Note that Count always counts including the empty cells, whereas
NonEmptyCount does not.

For SKIPNONE, the translation is:

Count(Product.Children)

For SKIPZERO, the translation is:

NonEmptyCount
 (Product.Children,
 IIF(Sales=0, Missing,
 IIF(Sales = Missing, 0, sales)
)
)

@CURGEN Generation
(CurrentMember(dimension))

Calculator

@CURGEN(Year)

MDX

Year.CurrentMember.Generation

@CURLEV Level
(CurrentMember(dimension))

Calculator

@CURLEV(Year)

MDX

Year.CurrentMember.Level

@CURRMBR CurrentMember Calculator

@CURRMBR(Product)

MDX

[Product].CurrentMember

@CURRMBRRANGE RelMemberRange Calculator

@CURRMBRRANGE(Year, LEV, 0, -1, 1)

MDX

RelMemberRange
 (Year.CurrentMember, 1, 1, LEVEL)

@DESCENDANTS Descendants (member) See MDX Descendants documentation for examples.

978 MDX

Calculator MDX Remarks/Examples

@EXP Exp Calculator

@EXP("Variance %"/100);

MDX

Exp([Scenario].[Variance %]/100)

@FACTORIAL Factorial Calculator

@FACTORIAL(5)

MDX

Factorial(5)

@GEN, @LEV Generation, Level .

@GENMBRS,
@LEVMBRS

layer.Members .

@IALLANCESTORS Ancestors Shared members are not relevant to aggregate storage outlines.

@IANCESTORS Ancestors Shared members are not relevant to aggregate storage outlines.

@ICHILDREN Union(member, member.
Children)

Calculator

@ICHILDREN(Market)

MDX

Union({Market}, {Market.children})

@IDESCENDANTS Descendants(member) Calculator

@IDESCENDANTS(Market)

MDX

Descendants(Market)

@ILSIBLINGS MemberRange (member.
FirstSibling,member)

Calculator

@ILSIBLINGS(Florida)

MDX

MemberRange(Florida.FirstSibling,
Florida.Lag(1))

@INT Int Calculator

@INT(104.504)

MDX

Int(104.504)

@ISACCTYPE IsAccType See MDX IsAccType documentation for examples.

Aggregate Storage and MDX Outline Formulas 979

Calculator MDX Remarks/Examples

@ISANCEST IsAncestor Calculator

@ISANCEST(California)

MDX

IsAncestor(Market.CurrentMember, California)

@ISCHILD IsChild See MDX IsChild documentation for examples.

@ISDESC See examples. Calculator

@ISDESC(Market)

MDX

IsAncestor([Market],
[Market].Dimension.CurrentMember)

or

Count(Intersect({Member.Descendants},
 {Member.dimension.CurrentMember}) = 1

@ISGEN IsGeneration Calculator

@ISGEN(Market, 2)

MDX

IsGeneration(
 Market.CurrentMember, 2)

@ISIANCEST IIF(Is(member,
ancestormember) OR
IsAncestor(member,
ancestormember), <true-part>,
<false-part>)

Calculator

@ISIANCEST(California)

MDX

IIF(
 IS(Market.CurrentMember, California)
 OR
 IsAncestor(Market.CurrentMember,
California),
 <true-part>, <false-part>
)

@ISIBLINGS Siblings(member) Returns a set that includes the specified member and its siblings.

@ISICHILD IIF(Is(member, childmember) OR
IsChild(member, childmember),
<true-part>, <false-part>)

Calculator

@ISICHILD(South)

MDX

IIF(
 Is(Market.CurrentMember,South)
 OR
 IsChild(Market.CurrentMember,South),
 <true-part>, <false-part>
)

980 MDX

Calculator MDX Remarks/Examples

@ISIDESC See examples. Calculator

@ISIDESC(South)

MDX

(Count(Intersect({[South].Descendants},
{South}) = 1
OR
Is(CurrentMember, [South]))

@ISIPARENT IIF(Is(member, parentmember) Calculator

@ISIPARENT(Qtr1)

MDX

IIF(
 Is(Time.CurrentMember, [Qtr1])
 OR
 IsChild([Qtr1], Time.CurrentMember),
 <true-part>, <false-part>)

@ISISIBLING IsSibling(member,
siblingmember)

Calculator

@ISISIBLING(Qtr2)

MDX

IIF(
 IsSibling(
 [Qtr2], Time.CurrentMember
),
 <true-part>, <false-part>
)

@ISLEV IsLevel .

Aggregate Storage and MDX Outline Formulas 981

Calculator MDX Remarks/Examples

@ISMBR IIF(Count(Intersect
(member-set, member)) = 1, true-
part, false-part)

Calculator allows a collection of members or cross members that do
not subscribe to the rules of an MDX set to appear as the second
argument. This functionality cannot be easily replicated without
enumerating each element of the second set and testing for
intersection.

However, if the second argument subscribes to MDX set rules then the
translation is easier, as shown. For example:

Calculator

@ISMBR("New York":"New Hampshire")

MDX

IIF(
 Count(
 Intersect(
 {MemberRange([New York],[New
Hampshire])},
 {Market.CurrentMember}
)
) = 1,
 <true-part>, <false-part>
)

@ISPARENT Use IsChild. Calculator

@ISPARENT("New York")

MDX

IsChild(Market.CurrentMember,[New York])

@ISSAMEGEN,
@ISSAMELEV

IIF (member.Generation =
CurrentMember(dimension).
Generation, <true-part>, <false-
part>)

Calculator

@ISSAMEGEN(West)

MDX

IIF(
 Ordinal(
 Market.CurrentMember.Generation
)
 = Ordinal(West.Generation),
 <true-part>, <false-part>
)

@ISSIBLING IsSibling See MDX IsSibling documentation for examples.

@ISUDA IsUda See MDX IsUda documentation for examples.

@LIST . If the member set does not subscribe to MDX set rules, then explicit
enumeration is required. For rangelist use CrossJoin(member, set).

@LN, @LOG,
@LOG10

Ln, Log, Log10 .

982 MDX

Calculator MDX Remarks/Examples

@LSIBLINGS

@RSIBLINGS

MemberRange(member.
FirstSibling, member.
Lag(1))

MemberRange(member.Lead(1),
member.LastSibling)

Calculator

@LSIBLINGS(Qtr4)

MDX

MemberRange([Qtr4].FirstSibling,
[Qtr4].Lag(1))

Calculator

@RSIBLINGS(Qtr1)

MDX

MemberRange([Qtr1].Lead(1),
[Qtr1].LastSibling)

@MATCH . .

@MAX Max Use Max if argument list is a set. Otherwise, rewrite logic using Case
constructs by explicit enumeration of the argument list.

Calculator

@MAX(Jan:Mar)

MDX

Max(MemberRange([Jan], [Mar]))

@MAXRANGE Max Calculator

@MAXRANGE(Sales, @CHILDREN(Qtr1))

MDX

Max(
 CrossJoin(
 {Sales},
 {[Qtr1].Children}
)
)

OR

Max([Qtr1].Children, Sales)

Aggregate Storage and MDX Outline Formulas 983

Calculator MDX Remarks/Examples

@MAXS Max Calculator

@MAXS(SKIPMISSING,Sales,@CHILDREN(Qtr1))

MDX

Max(
 Children([Qtr1]),Sales)
)

For SKIPZERO, the translation is:

Max (Children ([Qtr1]), IIF (Sales = 0,
MISSING, Sales))

For SKIPBOTH, the translation is the same as for SKIPZERO, because
Max skips missing values by default.

@MAXSRANGE Max Calculator

@MAXSRANGE(SKIPMISSING, Sales,
@CHILDREN(Qtr1))

MDX

Max(
 Children([Qtr1]),Sales)
)

For SKIPZERO, the translation is:

Max (Children ([Qtr1]), IIF (Sales = 0,
MISSING, Sales))

For SKIPBOTH, the translation is the same as for SKIPZERO, because
Max skips missing values by default.

@MDANCESTVAL Use Ancestor, Value, and
Currentmember as shown in the
example.

Calculator

@MDANCESTVAL(2, Market, 2, Product, 2,
Sales)

MDX

Construct a tuple consisting of Sales from the Measures dimension, the
ancestor of the current member along the Market dimension, and the
ancestor of the current member along the Product dimension. Then get
the value of the tuple.

(Sales, Ancestor(Market.CurrentMember, 2),
 Ancestor(Product.CurrentMember, 2)).Value

984 MDX

Calculator MDX Remarks/Examples

@MDPARENTVAL Use Parent, Value, and
CurrentMember as shown in
the example.

Calculator

@MDPARENTVAL(2, Market, Product, Sales)

MDX

Construct a tuple consisting of Sales from the Measures dimension, the
parent of the current member along the Market dimension, and the
parent of the current member along the Product dimension. Then get
the value of the tuple.

(Sales, Market.CurrentMember.Parent,
 Product.CurrentMember.Parent).Value

@MDSHIFT See MDX equivalent for @NEXT, and
repeat it for each dimension that
needs to be shifted. CrossJoin
the results from each dimension and
get the value of the final tuple. See
comments for @MDANCESTVAL.

.

@MEDIAN Not supported in MDX. .

@MEMBER Not needed in MDX. .

@MERGE Union(set1,set2) If the lists specified as inputs to @MERGE do not subscribe to the rules
of an MDX set, then the @MERGE function cannot be translated. The
following example assumes that the lists do subscribe to MDX set rules.

Calculator

@MERGE(@CHILDREN(East),@CHILDREN(West))

MDX

{Union([East].Children, [West].Children)}

@MIN Min Use Min if argument list is a set. Otherwise, rewrite logic using Case
constructs by explicit enumeration of the argument list.

Calculator

@MIN(Jan:Mar)

MDX

Min(MemberRange([Jan], [Mar]))

Aggregate Storage and MDX Outline Formulas 985

Calculator MDX Remarks/Examples

@MINRANGE Min Calculator

@MINRANGE(Sales, @CHILDREN(Qtr1))

MDX

Min(
 CrossJoin(
 {Sales},
 {[Qtr1].Children}
)
)

OR

Min([Qtr1].Children, Sales)

@MINS Min Calculator

@MINS(SKIPMISSING,Sales,@CHILDREN(Qtr1))

MDX

Min(
 Filter(
 Children([Qtr1]),
 Sales <> Missing
)
)

For SKIPZERO, the translation is:

Min(
 Filter(
 Children([Qtr1]),
 Sales <> 0
)
)

For SKIPBOTH, the translation is:

Min(
 Filter(
 Children([Qtr1]),
 Sales <> 0 AND
 Sales <> Missing
)
)

986 MDX

Calculator MDX Remarks/Examples

@MINSRANGE Min Calculator

@MINSRANGE(SKIPMISSING, Sales,
@CHILDREN(Qtr1))

MDX

Min(
 Filter(Children([Qtr1]),
 Sales <> Missing
)
)

For SKIPZERO, the translation is:

Min(
 Filter(Children([Qtr1]),
 Sales <> 0
)
)

For SKIPBOTH, the translation is:

Min (
 Filter(Children([Qtr1]),
 Sales <> 0 AND
 Sales <> Missing
)
)

@MOD Mod .

@MODE Not supported in MDX. .

@NAME Not needed in MDX. .

@NEXT @NEXT(member,[n, range]) returns
the nth cell value in the range from
the supplied member. The function
returns a missing value if the supplied
member does not exist in the range.
If range is not specified, level-0
members of the Time dimension are
used.

MDX does not have an equivalent
function for an arbitrary range.
However, if the range is restricted to
members from a specific level or
generation, then using
NextMember (if n=1) or Lead/
Lag will work as shown in the
sample translation. This is probably
the common case.

Calculator

@Next(Cash)

MDX

(NextMember(
 [Year].CurrentMember, LEVEL),
 [Cash]).Value

Alternative:

Calculator

@Next(Cash, 2)

MDX

CrossJoin(
 Year.CurrentMember.Lead(2, LEVEL),
 Cash).Value

@NEXTS Not supported in MDX. .

@PARENT Parent .

Aggregate Storage and MDX Outline Formulas 987

Calculator MDX Remarks/Examples

@PARENTVAL Parent with
CurrentMember as input. Use a
tuple to combine the result with the
optional second argument to the
@PARENTVAL function.

Calculator

@PARENTVAL(Market, Sales)

MDX

([Sales],
[Market].CurrentMember.Parent).Value

@POWER Power .

@PRIOR @PRIOR(member,[n, range]) returns
the nth cell value in the range from
the supplied member. The function
returns a missing value if the supplied
member does not exist in the range.
If range is not specified, level-0
members of the Time dimension are
used.

MDX does not have an equivalent
function for an arbitrary range.
However, if the range is restricted to
members from a specific level or
generation, then using
PrevMember (if n=1) or Lead/
Lag will work as shown in the
sample translation. This is probably
the common case.

Calculator

@Prior(Cash)

MDX

PrevMember(Year.CurrentMember, LEVEL),
[Cash]).Value

Alternative:

Calculator

@Prior(Cash, 2)

MDX

(Year.CurrentMember.Lag(2, LEVEL),
[Cash]).Value

@PRIORS Not supported in MDX. .

@RANGE CrossJoin(member, rangeset) Calculator automatically uses level-0 members of the Time dimension
if a range is unspecified. That feature does not exist in MDX, so you
must explicitly include the range.

Calculator

@RANGE(Sales, @CHILDREN(East))

MDX

CrossJoin({Sales}, {[East].Children})

@RANK Not supported in MDX. This is a vector
function.

.

@REMAINDER Remainder .

@REMOVE Except(set1, set2) Translation will work only if set1 and set2 are true MDX sets.

Calculator

@REMOVE(@CHILDREN(East),@LIST("New
York",Connecticut))

MDX

Except ({[East].Children}, {[New York],
[Connecticut]})

988 MDX

Calculator MDX Remarks/Examples

@ROUND Round .

@SHIFT See @PRIOR and @NEXT. .

@SIBLINGS Siblings .

@STDEV, @STDEVP,
@STDEVRANGE

Not supported in MDX. .

@SUBSTRING Not supported in MDX. .

@SUM Sum Convert each element of the explist to a tuple so that collectively the
tuples can form a set.

@SUMRANGE Sum(CrossJoin(member,
Xrangelist))

Calculator

@SUMRANGE("New York",Jan:Jun)

MDX

Sum(CrossJoin({[New York]}, {[Jan]:[Jun]}))

@TODATE Todate .

@TRUNCATE Truncate .

@UDA Uda .

@VAR, @VARPER Arg1 - Arg2 An aggregate storage outline has no expense tags. Therefore, variance
functionality defaults to subtraction.

@VARIANCE,
@VARIANCEP

Not supported in MDX. .

@WITHATTR WithAttr .

@XRANGE Not supported in MDX. .

@XREF Not supported in MDX. .

MDX Functions
Functions can be used to generate metadata and/or value information that you need to pass to
a SELECT statement. Becoming proficient with the functions reduces the need to enumerate
tuples, members, numeric values, or other needed values explicitly in the set specifications of a
query. More importantly, using functions allows in-depth analysis of your database.

This section contains a listing of query functions by return value. The possible return values are
described in these topics:

l “MDX Functions that Return a Member” on page 990

l “MDX Functions that Return a Set” on page 991

l “MDX Functions that Return a Tuple” on page 993

MDX Functions 989

l “MDX Functions that Return a Number” on page 993

l “MDX Functions that Return a Dimension” on page 995

l “MDX Functions that Return a Layer” on page 995

l “MDX Functions that Return a Boolean” on page 995

l “MDX Functions that Return a Date” on page 996

l “MDX Functions that Return a String” on page 996

MDX Functions that Return a Member
The following functions return a member or a member value expression.

Function Result

Ancestor Returns a member that is an ancestor of the specified member, at a specified generation or level.

ClosingPeriod Returns the last descendant of a layer, or the last child of the Time dimension.

Cousin Returns a child member at a matching outline level and location as a member from another parent.

CurrentMember Returns the current member in the input dimension. Current is in the context of query execution mechanics. Use
in combination with iterative functions such as Filter.

DateToMember Returns the date-hierarchy member specified by the input date.

DefaultMember Returns the default member in the input dimension.

FirstChild Returns the first child of the input member.

FirstSibling Returns the first child of the input member's parent.

Lag Using the default order of members in a database outline, returns a member that is n steps behind the input
member.

LastChild Returns the last child of the input member.

LastSibling Returns the last child of the input member's parent.

Lead Using the default order of members in a database outline, returns a member that is n steps past the input
member.

NextMember Returns the member (in the same layer) that is one step past the input member.

OpeningPeriod Returns the first descendant of a layer, or the first child of the Time dimension.

ParallelPeriod Returns a member from a prior time period as the specified or default time member.

Parent Returns a member's parent.

PrevMember Returns the member (in the same layer) that is one step prior to the input member.

StrToMbr Converts a string to a member name.

990 MDX

MDX Functions that Return a Set
The following categories of functions return a set or a set value expression.

l Pure Set Functions

l Metadata-based Set Functions

l Data-based Set Functions

Pure Set Functions

Functions in this category derive their results without getting any further information from the
cube.

Function Result

CrossJoin Returns a cross-section of two sets from different dimensions.

Distinct Deletes duplicate tuples from a set.

Except Returns a subset containing the differences between two sets.

Generate For each tuple in set1, return set2.

Head Returns the first n members or tuples present in a set.

Intersect Returns the intersection of two input sets.

Subset Returns a subset from a set, in which the subset is a numerically specified range of tuples.

Tail Returns the last n members or tuples present in a set.

TupleRange Returns the range of tuples between (and inclusive of) two tuples at the same level.

Union Returns the union of two input sets.

Metadata-based Set Functions

Functions in this category derive their results using metadata information from the cube.

Function Result

Ancestors Returns a set of ancestors up to a specified layer or distance.

Attribute Returns all base members that are associated with the specified attribute member.

Children Returns all child members of the input member.

Descendants Returns the set of descendants of a member at specified layers.

DrilldownByLayer Drills down members of a set that are at a specified layer.

DrilldownMember Drills down on any members or tuples of <set1> that are also found in <set2>.

DrillupByLayer Drills up the members of a set that are below a specified layer.

MDX Functions 991

Function Result

DrillupMember Tests two sets for common ancestors, and drills up members in the first set to the layer of the ancestors
which are present in the second set.

Extract Returns a subset containing only the tuples of a specified dimensionality.

Hierarchize Sorts members according to the default member ordering as represented in the database outline.

LastPeriods Returns a set of members ending either at the specified member or at the current member in the time
dimension.

MemberRange Returns the range of members positioned between two input members (inclusive) at the same generation or
level.

Members Returns a set of all members of a given dimension, hierarchy, or layer.

PeriodsToDate Returns a set of dynamic-time-series members from the beginning of a given layer up to a given member in
that layer (or up to the default member); or, returns members up to the current member of the Time dimension.

RelMemberRange Returns a set based on the relative position of the specified member.

Siblings Returns the siblings of the input member.

Uda Returns all members that share a specified user-defined attribute.

WithAttr Returns all base members that are associated with an attribute member of the specified type.

AttributeEx Given the varying attribute member and the perspective setting, returns the associated base member list.

WithAttrEx Given the varying attribute dimension, condition, predicate, and perspective setting, returns the base member
list satisfying the predicate.

xTD Functions returning period-to-date values.

Data-based Set Functions

Functions in this category derive their results using data values from the cube.

Function Result

BottomCount Returns a set of n elements ordered from smallest to largest, optionally based on an evaluation.

BottomPercent Returns the smallest possible subset, with elements listed from smallest to largest, of a set for which the total
results of a numeric evaluation are at least a given percentage.

BottomSum Returns the smallest possible subset, with elements listed from smallest to largest, of a set for which the total
results of a numeric evaluation are at least a given sum.

Case Performs conditional expressions.

Filter Returns those parts of a set which meet the criteria of a search condition.

IIF Performs a conditional test, and returns an appropriate numeric expression or set depending on whether the test
evaluates to true or false.

Leaves Returns the set of level 0 (leaf) members that contribute to the value of the specified member.

992 MDX

Function Result

Order Sorts members of a set in order based on an expression.

TopCount Returns a set of n elements ordered from largest to smallest, optionally based on an evaluation.

TopPercent Returns the smallest possible subset, with elements listed from largest to smallest, of a set for which the total
results of a numeric evaluation are at least a given percentage.

TopSum Returns the smallest possible subset, with elements listed from largest to smallest, of a set for which the total
results of a numeric evaluation are at least a given sum.

MDX Functions that Return a Tuple
The following functions return a tuple.

Function Result

CurrentTuple Returns the current tuple in a set. Current is in the context of query execution mechanics. Use in combination with
iterative functions such as Filter.

Item Extracts a member from a tuple.

MDX Functions that Return a Number
The following functions return a value.

Function Result

Abs Returns absolute value of an expression.

Aggregate Aggregates the Accounts member based on its Time Balance behavior.

Avg Returns the average of values found in the tuples of a set.

Case Performs conditional expressions.

CellValue Returns the numeric value of the current cell.

CoalesceEmpty Returns the first non #Missing value from the given value expressions.

Count Returns the count of the number of tuples in a set.

DateDiff Returns the difference between two input dates.

DatePart Returns a number representing a date part (such as Week).

EnumText Returns the text value corresponding to a numeric value in a text list.

EnumValue Returns the internal numeric value for a text value in a text list.

Exp Returns the exponent of an expression.

MDX Functions 993

Function Result

Factorial Returns the factorial of an expression.

IIF Performs a conditional test, and returns an appropriate numeric expression or set depending on whether the test
evaluates to true or false.

InStr Returns a number specifying the position of the first occurrence of one string within another.

Int Returns the next lowest integer value of an expression.

Len Returns length of a string.

Ln Returns the natural logarithm of an expression.

Log Returns the logarithm of an expression to a specified base.

Log10 Returns the base-10 logarithm of an expression.

Max Returns the maximum of values found in the tuples of a set.

Median Returns the value of the median tuple of a set.

Min Returns the minimum of values found in the tuples of a set.

Mod Returns the modulus (remainder value) of a division operation.

NonEmptyCount Returns the count of the number of tuples in a set that evaluate to nonempty values.

NTile Returns a division number of a tuple in a set.

Ordinal Returns a number indicating depth in the hierarchy.

Percentile Returns the value of the tuple that is at a given percentile of a set.

Power Returns the value of the numeric value expression raised to power.

Rank Returns the numeric position of a tuple in a set.

RealValue Returns a value for the specified member or tuple without the inherited attribute dimension context.

Remainder Returns the remainder value of the numeric value expression.

Round Rounds a numeric value expression to the specified number of digits.

Stddev Calculates standard deviation based on a sample.

Stddevp Calculates standard deviation based on a population.

StrToNum Converts a string to a number.

Sum Returns the sum of values of tuples in a set.

Todate Converts a date string to a value that is usable in calculations.

Truncate Removes the fractional part of a numeric value expression, returning the integer.

994 MDX

MDX Functions that Return a Dimension
The Dimension function returns the dimension that contains the input element.

MDX Functions that Return a Layer
The following functions return a layer. A layer is used to group the members of a dimension by
hierarchical depth.

In Essbase, a layer is either a generation or a level, indicated by a name or a number.

Function Result

Generation Returns the generation of the input member.

Generations Returns the generation specified by the input numerical depth and the input dimension or hierarchy.

Level Returns the level of the input member.

Levels Returns the level specified by the input numerical depth and the input dimension or hierarchy.

MDX Functions that Return a Boolean
The following functions return a Boolean (TRUE or FALSE).

Function Result

Is Returns TRUE if two members are identical.

IsAccType Returns TRUE if the current member has the associated accounts tag.

IsAncestor Returns TRUE if the first member is an ancestor of the second member.

IsChild Returns TRUE if the first member is a child of the second member.

IsEmpty Returns True if the value of an input numeric-value-expression is #MISSING.

IsGeneration Returns TRUE if the member is in a specified generation.

IsLeaf Returns TRUE if the member is a level-0 member.

IsLevel Returns TRUE if the member is in a specified level.

IsSibling Returns TRUE if the first member is a sibling of the second member.

IsUda Returns TRUE if the member has the associated UDA tag (user-defined attribute).

IsValid Returns TRUE if the specified element validates successfuly.

Contains Returns TRUE if a tuple is found within a set.

MDX Functions 995

MDX Functions that Return a Date
The following functions return a date.

Function Result

DateRoll To the given date, rolls (adds or subtracts) a number of specific time intervals, returning another date.

GetFirstDate Returns the start date for a date-hierarchy member.

GetLastDate Returns the end date for a date-hierarchy member.

GetNextDay To the given date and the week day, gets the next date after input date that corresponds to the week day.

GetFirstDay For a given date_part, returns the first day of the time interval for the input date.

GetLastDay For a given date_part, returns the last day of the time interval for the input date.

TodateEx Converts date strings to dates.

Today Returns a number representing the current date.

JulianDate For the given UNIX date, gets its Julian date.

UnixDate For the given Julian date, gets its UNIX date.

MDX Functions that Return a String
The following functions return a string.

Function Result

FormatDate Formats date strings.

Concat Concatenates input strings.

Left Returns a specified number of characters from the left side of the string.

Right Returns a specified number of characters from the right side of the string.

LTrim Trims whitespace on the left of the string.

RTrim Trims whitespace on the right of the string.

Lower Converts upper-case string to lower case.

Upper Converts lower-case string to upper case.

Substring Returns the substring between a starting and ending position.

NumToStr Converts a double-precision floating-point value into a decimal string.

996 MDX

MDX Function Reference
Consult the Contents pane for a list of MDX functions by return value.

Abs Generations Min

Aggregate GetFirstDate Mod

Ancestor GetFirstDay NextMember

Ancestors GetLastDate NonEmptyCount

Attribute GetLastDay NonEmptySubset

AttributeEx GetNextDay NTile

Avg GetRoundDate NumToStr

BottomCount Head OpeningPeriod

BottomPercent Hierarchize Order

BottomSum IIF Ordinal

Case InStr ParallelPeriod

CellValue Int Parent

Children Intersect Percentile

ClosingPeriod Is PeriodsToDate

CoalesceEmpty IsAccType Power

Concat IsAncestor PrevMember

Contains IsChild Rank

Count IsEmpty RealValue

Cousin IsGeneration RelMemberRange

CrossJoin IsLeaf Remainder

CurrentMember IsLevel Right

CurrentTuple IsMatch Round

DateDiff IsSibling RTrim

DatePart IsUda Siblings

DateRoll IsValid Stddev

DateToMember Item Stddevp

DefaultMember JulianDate StrToMbr

MDX Function Reference 997

Abs Generations Min

Descendants Lag StrToNum

Distinct LastChild Subset

Dimension LastPeriods Substring

DrilldownByLayer LastSibling Sum

DrilldownMember Lead Tail

DrillupByLayer Leaves Todate

DrillupMember Left TodateEx

DTS Len Today

EnumText Level TopCount

EnumValue Levels TopPercent

Except LinkMember TopSum

Exp Ln Truncate

Extract Log TupleRange

Factorial Log10 Uda

Filter Lower Union

FirstChild LTrim UnixDate

FirstSibling Max Upper

FormatDate Median Value

Generate MemberRange WithAttr

Generation Members WithAttrEx

 xTD

Abs
Returns the absolute value of expression. The absolute value of a number is that number less its
sign. A negative number becomes positive, while a positive number remains positive.

Syntax

Abs (numeric_value_expression)

Parameter Description

numeric_value_expression Numeric value expression (see “MDX Grammar Rules” on page 934).

998 MDX

Example

The following example is based on the Demo Basic database. The absolute value is taken in case
Variance is a negative number. Absolute Variance is always a non-negative number.

The following query:

WITH MEMBER
 [Scenario].[Absolute Variance]
AS
 'Abs([Scenario].[Actual] - [Scenario].[Budget])'
SELECT
 { [Year].[Qtr1].children }
ON COLUMNS,
 { [Scenario].children, [Scenario].[Absolute Variance] }
ON ROWS
FROM
 Demo.Basic
WHERE
 ([Accounts].[Sales], [Product].[VCR], [Market].[San_Francisco])

returns the grid:

(axis) Jan Feb Mar

Actual 1323 1290 1234

Budget 1200 1100 1100

Variance 123 190 134

Absolute Variance 123 190 134

Aggregate
Aggregates the Accounts member based on its Time Balance behavior.

Syntax

Aggregate (set [, accounts_member])

Parameter Description

set A set containing tuples to be aggregated. If empty, #Missing is returned.

accounts_member A member from an Accounts dimension. If omitted, the current member from Accounts is used.

Notes

For each tuple in set, the value of accounts_member is evaluated.

If accounts_member has no time balance tag, or if set is one-dimensional, this function behaves
the same as Sum().

If accounts_member has a time balance tag, this function behaves as follows:

l For TB First, returns the value of accounts_member for the first tuple in set.

MDX Function Reference 999

l For TB First with SKIP, scans tuples in set from first to last and returns first tuple with non-
empty value for accounts_member.

l For TB Last, returns the value of accounts_member for the last tuple in set.

l For TB Last with SKIP, scans tuples in set from last to first and returns first tuple with non-
empty value for accounts_member.

l For TB Average, returns the average of values of accounts_member at each tuple in set.

l For TB Average with SKIP, returns the average of value of accounts_member at each tuple
in set without factoring empty values.

Ancestor
Given the input member, this function returns an ancestor at the specified layer.

Syntax

Ancestor (member , layer | index [, hierarchy])

Parameter Description

member The member for which an ancestor is sought.

layer Layer specification.

index A number of hierarchical steps up from member, locating the ancestor you want returned.

hierarchy Optional. A specific hierarchy within the time dimension.

Notes

l The return value of this function is a member. If you want the return value to be a set, use
Ancestors.

l Do not use negative numbers for index. If you want to return lower members, use
Descendants instead of Ancestor. Ancestor([Qtr1], -1) would return an empty
member, not a descendant.

l If you use layer to specify a level but no ancestor exists at that level, then the return value is
an empty member. For example, in the Sample Basic database, consider the level numbers
of the ancestors of the member [Additions] in the [Measures] dimension:

1000 MDX

m [Additions], being a leaf-level member, has level number 0.

m [Inventory] has level number 1.

m [Measures] has level number 3, as one of its children [Profit] has level number 2.

The level number of a member = (highest level number among its children) + 1. Therefore,
Ancestor ([Measures].[Additions], [Measures].Levels(2)) returns an empty
member, because [Additions] does not have an ancestor with level number 2.

Example

Ancestor ([New York], [Market].levels(2))

returns the member [Market], which is the ancestor of [New York] that is located at level 2
in the outline.

Ancestor ([Year].[Jan], [Year].generations(2))

returns the member [Qtr1], which is the ancestor of Jan that is located in the second generation
of the Year dimension.

Ancestor ([Feb], 2)

returns the member [Year], which is the grandparent of Feb.

Ancestor ([Feb], 0)

returns the member [Feb]. An "ancestor" that is zero steps away is considered to be the member
itself.

Ancestors
Given the input member and a layer or distance, this function returns a set of ancestors along
with the input member.

MDX Function Reference 1001

When the layer specification is a level, this function returns all ancestors having a level no greater
than the input level. For example, Ancestors ([Additions], [Measures].Levels(2))
returns {[Inventory] , [Additions]}.

Syntax

Ancestors (member , layer | index)

Parameter Description

member The member for which a set of ancestors is sought.

layer Layer specification.

index A number of hierarchical steps up from member, locating the highest ancestor you want returned in the
result set.

Notes

l Do not use negative numbers for index. If you want to return lower members, use
Descendants instead of Ancestors. Ancestors([Qtr1], -1) would return an empty
member, not a descendant.

l If you use layer to specify a level but no ancestors exist at that level, then the return value is
an empty member.

Example

Ancestors ([New York], [Market].levels(2))

returns {[Market], [East], [New York]}, the self-inclusive set of [New York] ancestors
beginning with the ancestor that is located at level 2 of the Market dimension.

Ancestors ([Feb], 1)

returns {[Qtr1],[Feb]}, the self-inclusive set of ancestors beginning with the ancestor one
step higher than Feb.

Ancestors ([Feb], 0)

returns {[Feb]}.

Using the ASOSamp.Sample database,

Ancestors ([94089], [Geography].generations(2))

returns {[West], [CA], [SUNNYVALE - CA], [94089]}, the self-inclusive set of 94089
ancestors beginning with the second generation of the Geography dimension.

Attribute
Returns all base members that are associated with a specified attribute member.

Syntax

Attribute (member)

1002 MDX

Parameter Description

member Specification of a member from an attribute dimension.

Example

The following query

SELECT
 {[Year].Children}
ON COLUMNS,
 Attribute ([Ounces_12])
ON ROWS
FROM Sample.Basic

returns the grid:

(axis) Qtr1 Qtr2 Qtr3 Qtr4

Cola 5096 5892 6583 5206

Diet Cola 1359 1534 1528 1287

Old Fashioned 1697 1734 1883 1887

Sarsaparilla 1153 1231 1159 1093

Diet Cream 2695 2723 2855 2820

See Also

l WithAttr

AttributeEx
Returns the set of base members that are associated with a specified varying attribute member
or dimension, given the perspective setting.

Syntax

AttributeEx (member|dimension, ANY, tuple|member[,tuple|member])

Parameter Description

member Specification of a member from an attribute dimension.

dimension Specification of an attribute dimension.

ANY The keyword ANY.

tuple | member Level 0 start tuple (or member) of the independent dimension set. The tuple must contain all the
discrete dimensions followed by the continuous dimension members, in the same order that the
continuous range has been defined.

MDX Function Reference 1003

Parameter Description

tuple | member Optional level 0 end tuple (or member) of the independent dimension set. The tuple must contain all
the discrete dimensions followed by the continuous dimension members, in the same order that the
continuous range has been defined.

Example

Consider the following scenario: Products are packaged under different ounces over time and
the market state, according to the marketing strategy of the company. Ounces is defined as a
varying attribute for the Product dimension, to capture the varying attribute association over
the continuous Year dimension and the discrete Market dimension.

Year and Market are the independent dimensions, and level-0 tuple months (for example, Jan)
combined with a market state (for example, California) is a perspective for which the varying
attribute association is defined.

The following query analyzes the Ounces_32 sales performance of products packaged as
Ounces_32 any time from Jul to Dec in New York over all quarters. This is the reality view, which
gives the most current view of metrics as they happened over time.

WITH PERSPECTIVE REALITY for Ounces
SELECT
 { Qtr1, Qtr2, Qtr3, Qtr4}
ON COLUMNS,
 {AttributeEx(Ounces_32, ANY, ([New York], Jul), ([New York], Dec))}
ON ROWS
FROM
 app.db
WHERE
 (Sales, [New York], Ounces_32);

See Also

l WithAttrEx

Avg
Returns the average of values found in the tuples of a set.

Syntax

Avg (set [,numeric_value_expression [,IncludeEmpty]])

Parameter Description

set Set specification.

numeric_value_expression Numeric value expression (see “MDX Grammar Rules” on page 934). Avg() sums the
numeric value expression and then takes the average.

IncludeEmpty Use this keyword if you want to include in the average any tuples with #MISSING values.
Otherwise, they are omitted by default.

1004 MDX

Notes

The average is calculated as (sum over the tuples in the set of numeric_value_expr) / count, where
count is the number of tuples in the set. Tuples with missing values are not included in count
unless IncludeEmpty is specified.

The return value of Avg is #MISSING if either of the following is true:

l The input set is empty.

l All tuple evaluations result in #MISSING values.

Example

Empty Values Included in Calculation of the Average

The following query

WITH MEMBER
 [Market].[Western Avg]
AS
 'Avg ([Market].[California]:[Market].[Nevada], [Measures].[Sales], INCLUDEEMPTY)'
SELECT
 { [Product].[Colas].children }
ON COLUMNS,
 { [Market].[West].children, [Market].[Western Avg] }
ON ROWS
FROM
 Sample.Basic
WHERE
 ([Measures].[Sales], [Year].[Jan], [Scenario].[Actual])

returns the grid:

(axis) Cola Diet Cola Caffeine Free Cola

California 678 118 145

Oregon 160 140 150

Washington 130 190 #Missing

Utah 130 190 170

Nevada 76 62 #Missing

Western Avg 234.8 140 93

Western Avg for Caffeine Free Cola is 93 because the sales for all Western states is divided by 5,
the number of states.

Empty Values Not Included in Calculation of the Average

The following query is the same as the above query, except that it does not use IncludeEmpty:

WITH MEMBER
 [Market].[Western Avg]
AS
 'Avg ([Market].[California]:[Market].[Nevada], [Measures].[Sales])'

MDX Function Reference 1005

SELECT
 { [Product].[Colas].children }
ON COLUMNS,
 { [Market].[West].children, [Market].[Western Avg] }
ON ROWS
FROM
 Sample.Basic
WHERE
 ([Measures].[Sales], [Year].[Jan], [Scenario].[Actual])

returning the grid:

(axis) Cola Diet Cola Caffeine Free Cola

California 678 118 145

Oregon 160 140 150

Washington 130 190 #Missing

Utah 130 190 170

Nevada 76 62 #Missing

Western Avg 234.8 140 155

Western Avg for Caffeine Free Cola is 155 because the sales for all Western states is divided by
3, the number of states that do not have empty values for Caffeine Free Cola.

BottomCount
Returns a set of n elements ordered from smallest to largest, optionally based on an evaluation.

This function ignores tuples that resulted in missing values after evaluating numeric value
expression.

Syntax

BottomCount (set, index [,numeric_value_expression])

Parameter Description

set The set from which the bottom n elements are selected.

index The number of elements to be included in the set (n).

numeric_value_expression Optional. An expression further defining the selection criteria (see “MDX Grammar Rules”
on page 934).

Example

The following expression

Bottomcount ([Product].levels(0).members, 10, ([Sales], [Actual]))

returns the set:

1006 MDX

{ [200-40], [100-30], [400-30], [300-20], [200-30],
 [100-20], [100-20], [400-20], [400-10], [300-30] }

Therefore, the following query

SELECT {[Year].levels(1).members} ON COLUMNS,
BottomCount ([Product].levels(0).members, 10, ([Sales], [Actual]))
ON ROWS
FROM Sample.Basic
WHERE ([Sales], [Actual])

returns the grid:

(axis) Qtr1 Qtr2 Qtr3 Qtr4

200–40 2807 2922 2756 3265

100–30 3187 3182 3189 3283

400–30 3763 3962 3995 4041

300–20 4248 4638 4556 4038

200–30 4440 4562 4362 4195

100–20 7276 7957 8057 7179

100–20 7276 7957 8057 7179

400–20 7771 8332 8557 8010

400–10 8614 9061 9527 8957

300–30 8969 9105 9553 9342

See Also

l TopCount

BottomPercent
Returns the smallest possible subset of a set for which the total results of a numeric evaluation
are at least a given percentage. The result set is returned with elements listed from smallest to
largest.

Syntax

BottomPercent (set, percentage, numeric_value_expression)

Parameter Description

set The set from which the bottom-percentile elements are selected.

percentage The percentile. This argument must be a value between 0 and 100.

MDX Function Reference 1007

Parameter Description

numeric_value_expression The expression that defines the selection criteria (see “MDX Grammar Rules” on page
934).

Notes

This function ignores negative and missing values.

Example

The following query returns data for products making up the lowest 5th percentile of all product
sales in the Sample Basic database.

WITH
 SET [Lowest 5% products] AS
 'BottomPercent (
 { [Product].members },
 5,
 ([Measures].[Sales], [Year].[Qtr2])
)'

MEMBER
 [Product].[Sum of all lowest prods] AS
 'Sum ([Lowest 5% products])'

MEMBER [Product].[Percent that lowest sellers hold of all product sales] AS
 'Sum ([Lowest 5% products]) / [Product] '

SELECT
 {[Year].[Qtr2].children}
on columns,
 {
 [Lowest 5% products],
 [Product].[Sum of all lowest prods],
 [Product],
 [Product].[Percent that lowest sellers hold of all product sales]
 }
on rows
FROM Sample.Basic
WHERE ([Measures].[Sales])

In the WITH section,

l The named set [Lowest 5% products] consists of those products accounting for the
lowest 5 percent of sales in the second quarter. This set includes Birch Beer, Caffeine Free
Cola, Strawberry, Sasparilla, and Vanilla Cream.

l The first calculated member, [Product].[Sum of all lowest prods], is used to show
the sum of the sales of the products with sales in the lowest fifth percentile.

l The second calculated member, [Product].[Percent that lowest sellers hold
of all product sales], is used to show, for each month, how the sales of lowest-selling
products compare (as a percentage) to sales of all products in the Product dimension.

This query returns the following grid:

1008 MDX

(axis) Apr May Jun

Birch Beer 954 917 1051

Caffeine Free Cola 1049 1065 1068

Strawberry 1314 1332 1316

Sarsaparilla 1509 1552 1501

Vanilla Cream 1493 1533 1612

Sum of all lowest prods 6319 6399 6548

Product 32917 33674 35088

Percent that lowest sellers hold of all product sales 0.192 0.194 0.187

BottomSum
Returns the smallest possible subset of a set for which the total results of a numeric evaluation
are at least a given sum. Elements of the result set are listed from smallest to largest.

Syntax

BottomSum (set, numeric_value_expression, numeric_value_expression)

Parameter Description

set The set from which the lowest-summing elements are selected.

numeric_value_expression1 The given sum (see “MDX Grammar Rules” on page 934).

numeric_value_expression2 The numeric evaluation (see “MDX Grammar Rules” on page 934).

Notes

l If the total results of the numeric evaluation do not add up to the given sum, an empty set
is returned.

l This function ignores negative and missing values.

Example

The following query selects Qtr1 and Qtr2 sales for the lowest selling products in Qtr1 (where
Sales totals at least 10000).

SELECT
 {[Year].[Qtr1], [Year].[Qtr2]}
ON COLUMNS,
 {
 BottomSum(
 [Product].Members, 10000, [Year].[Qtr1]
)
 }
ON ROWS

MDX Function Reference 1009

FROM Sample.Basic
WHERE ([Measures].[Sales])

This query returns the grid:

(axis) Qtr1 Qtr2

200-40 2807 2922

100-30 3187 3182

400-30 3763 3962

300-20 4248 4638

Case
The CASE keyword begins a conditional expression. There are two types of conditional test you
can perform using CASE: simple case expression and searched case expression.

Syntax

The simple case expression evaluates case_operand and returns a result based on its value, as
specified by WHEN or ELSE clauses. The result of a case expression can be a value expression
or a set. If no ELSE clause is specified, and none of the WHEN clauses is matched, an empty
value/empty set is returned.

CASE
case_operand
simple_when_clause...
[else_clause]
END

In searched case expression, each WHEN clause specifies a search condition and a result to be
returned if that search condition is satisfied. The WHEN clauses are evaluated in the order
specified. The result is returned from the first WHEN clause in which the search condition
evaluates to TRUE. The result can be a value expression or a set. If no ELSE clause is specified,
and none of the search conditions in the WHEN clauses evaluate to TRUE, an empty value/
empty set is returned.

CASE
searched_when_clause...
[else_clause]
END

Parameter Description

case_operand An expression to evaluate.

simple_when_clause One or more WHEN/THEN statements. Syntax: WHEN when_operand THEN result

l when_operand: A value expression.

l result: A numeric value expression, a string value expression, or a set.

1010 MDX

Parameter Description

else_clause Optional. Syntax:

ELSE numeric_value_expression | set | string_value_expression

searched_when_clause One or more WHEN/THEN statements. Syntax: WHEN search_condition THEN
result

l search_condition: A value expression.

l result: A numeric value expression, a string value expression, or a set.

Example

Example for Simple Case Expression

In the following query, the calculated member [Measures].[ProductOunces] is evaluated
based on the value of the Ounce attribute for the current member of the Product dimension.

WITH MEMBER [Measures].[ProductOunces] AS
'Case Product.CurrentMember.Ounces
 when 32 then 32
 when 20 then 20
 when 16 then 16
 when 12 then 12
 else 0
end'
SELECT
{ [Measures].[ProductOunces] } ON COLUMNS,
{ [Product].Members } ON ROWS
FROM Sample.Basic

This query returns the following result:

(axis) ProductOunces

Product 0

Colas 0

Cola 12

Diet Cola 12

Caffeine Free Cola 16

Root Beer 0

Old Fashioned 12

Diet Root Beer 16

Sarsaparilla 12

Birch Beer 16

Cream Soda 0

MDX Function Reference 1011

(axis) ProductOunces

Dark Cream 20

Vanilla Cream 20

Diet Cream 12

Fruit Soda 0

Grape 32

Orange 32

Strawberry 32

Diet Drinks 0

Diet Cola 0

Diet Root Beer 0

Diet Cream 0

Example for Searched Case Expression

The following query divides products into different profit categories based on Profit, and returns
categories for each product.

WITH MEMBER [Measures].[ProfitCategory] AS
' Case
 when Profit > 10000 then 4
 when Profit > 5000 then 3
 when Profit > 3000 then 2
 else 1
end'
SELECT
{ [Measures].[ProfitCategory] } ON COLUMNS,
{ [Product].Members } ON ROWS
FROM Sample.Basic

This query returns the following result:

(axis) ProfitCategory

Product 4

Colas 4

Cola 4

Diet Cola 3

Caffeine Free Cola 1

Root Beer 4

1012 MDX

(axis) ProfitCategory

Old Fashioned 3

Diet Root Beer 4

Sarsaparilla 2

Birch Beer 2

Cream Soda 4

Dark Cream 4

Vanilla Cream 1

Diet Cream 4

Fruit Soda 4

Grape 4

Orange 3

Strawberry 1

Diet Drinks 4

Diet Cola 3

Diet Root Beer 4

Diet Cream 4

CellValue
Returns the numeric value of the current cell.

Syntax

CellValue

Notes

l This function can be useful when defining format strings for a member. Most MDX
expressions can be used to specify format strings; however, format strings cannot contain
references to values of data cells other than the current cell value being formatted. Use this
function to reference the current cell value.

l Enclose all format strings within the MdxFormat() directive as shown in the examples.

MDX Function Reference 1013

Example

Example 1

The following format string displays negative values for the current measure if the current
[AccountTypes] member is of type “Expense”. CellValue refers to the current cell value that is
being formatted. The CurrentMember function in the expression refers to the context of the cell
being formatted.

/* Display negative values if current Account is an Expense type account */
MdxFormat(
IIF(IsUda(AccountTypes.CurrentMember, "Expense"),
 NumToStr(-CellValue()),
 NumToStr(CellValue()))
)

Example 2

The following format string displays negative cell values as positive values enclosed in
parentheses.

MdxFormat(
 IIF(
 CellValue() < 0,
 Concat(Concat("(", numtostr(-CellValue())), ")"),
 numtostr(CellValue())
)
)

Example 3

This example illustrates a dynamic member [Variance %] along the [Scenario] dimension.
[Variance %] has the following formula, which specifies how to calculate its value from [Actual]
and [Budget].

[Variance %] Formula

IIF(Is(Measures.CurrentMember, Title) OR
 Is(Measures.CurrentMember, Performance),
 (Actual – Budget) * 10, (Actual – Budget)*100/Budget)

[Variance %] also has the following format string, which specifies how its values should be
displayed. In this case, based on the percentage value computed for a [Variance %] cell, a text
value is displayed which conveys the importance of the number.

[Variance %] Format String

MdxFormat(
CASE
 WHEN CellValue() <= 5 THEN “Low”
 WHEN CellValue() <= 10 THEN “Medium”
 WHEN CellValue() <= 15 THEN “High”
 ELSE “Very High”

1014 MDX

END
)

Children
Returns a set of all child members of the specified member.

Syntax

member.Children

Children (member)

Parameter Description

member A member specification.

Notes

If the input member does not have any children (is a level-0 member), this function returns an
emtpy set.

Example

This example uses the following parts of the Sample Basic outline:

The following expression

([West].children)

returns the set:

{ [California], [Oregon], [Washington], [Utah], [Nevada] }

And the following expression

([Diet].children)

returns the set:

{ [100-20], [200-20], [300-30] }

Therefore, the following query

SELECT
 {([West].children)}
ON COLUMNS,
 {([Diet].children)}
ON ROWS
FROM Sample.Basic

returns the grid:

MDX Function Reference 1015

(axis) California Oregon Washington Utah Nevada

100-20 -1587 338 231 398 86

200-20 2685 1086 579 496 167

300-30 1328 288 1217 413 362

ClosingPeriod
Returns the last descendant of a layer, or the last child of the Time dimension.

Syntax

ClosingPeriod ([layer [,member]])

Parameter Description

layer Layer specification.

member Optional member specification. If omitted, the last child of the Time dimension is assumed (for example,
Qtr4 in Sample Basic).

Notes

The return value of this function varies depending on the input.

1. When both layer and member arguments are given as input, Closingperiod returns the last
descendant of the input member at the input layer. For example,
Closingperiod(Year.generations(3), Qtr3) returns Sep. If the input member and
layer are the same layer, the output is the input member. For example,
Closingperiod(Year.generations(3), Sep) returns Sep.

2. When only the layer argument is specified, the input member is assumed to be the current
member of the dimension used in the layer argument. Closingperiod returns the last
descendant of that dimension, at the input layer. For example,
Closingperiod(Year.generations(3)) returns Dec.

3. When no arguments are specified, the input member is assumed to be the current member
of the Time dimension, and ClosingPeriod returns the last child of that member. Do not
use this function without arguments if there is no dimension tagged as Time.

Example

The following query

WITH
MEMBER [Measures].[Starting Inventory] AS
'
IIF (
 IsLeaf (Year.CurrentMember),
 [Measures].[Opening Inventory],
 ([Measures].[Opening Inventory],
 OpeningPeriod (
 [Year].Levels(0),

1016 MDX

 [Year].CurrentMember
)
)
)'

MEMBER [Measures].[Closing Inventory] AS
'
IIF (
 Isleaf(Year.CurrentMember),
 [Measures].[Ending Inventory],
 ([Measures].[Closing Inventory],
 ClosingPeriod (
 [Year].Levels(0),
 [Year].CurrentMember
)
)
)'
SELECT
CrossJoin (
 { [100-10] },
 { [Measures].[Starting Inventory], [Measures].[Closing Inventory] }
)
ON COLUMNS,
Hierarchize ([Year].Members , POST)
ON ROWS
FROM Sample.Basic

returns the grid:

(axis) 100-10 100-10

(axis) Starting Inventory Closing Inventory

Jan 14587 14039

Feb 14039 13566

Mar 13566 13660

Qtr1 14587 13660

Apr 13660 14172

May 14172 15127

Jun 15127 15580

Qtr2 13660 15580

Jul 15580 14819

Aug 14819 14055

Sep 14055 13424

Qtr3 15580 13424

MDX Function Reference 1017

(axis) 100-10 100-10

(axis) Starting Inventory Closing Inventory

Oct 13424 13323

Nov 13323 13460

Dec 13460 12915

Qtr4 13424 12915

Year 14587 12915

See Also

l OpeningPeriod

l LastPeriods

l ParallelPeriod

l PeriodsToDate

CoalesceEmpty
Returns the first (from the left) non #Missing value from the given value expressions.

Syntax

CoalesceEmpty (numeric_value_expression1, numeric_value_expression2)

Parameter Description

numeric_value_expression1 A numeric value expression (see “MDX Grammar Rules” on page 934).

numeric_value_expression2 A numeric value expression (see “MDX Grammar Rules” on page 934).

Notes

This function returns numeric_value_expression2 if numeric_value_expression1 is #MISSING;
otherwise it returns numeric_value_expression1.

Example

CoalesceEmpty([Profit per Ounce], 0)

returns the [Profit per Ounce] value if it is not #MISSING; returns zero otherwise. This can
be used inside the Order function to coalesce all #MISSING values to zero, as shown in the next
example:

Order([Product].Members, CoalesceEmpty([Profit per Ounce], 0))

Without CoalesceEmpty in the value expression, the Order function would skip all [Product]
members with MISSING values for [Profit per Ounce].

See Also

l Order

1018 MDX

Concat
Returns the concatenated input strings.

Syntax

Concat (string [, string +])

Parameter Description

string A string.

string + Optional. A second string, or a list of multiple additional strings. If omitted, this function returns the single
input string.

Example

Concat("01", "01")

Contains
Returns TRUE if a tuple is found within a set; otherwise returns FALSE.

Syntax

Contains (member_or_tuple, set)

Parameter Description

member_or_tuple A member or a tuple.

set The set to search.

Example

The following expression returns TRUE.

Contains([Oregon],{[California], [Oregon]})

Count
Returns the number of tuples in a set (the cardinality of the set). This function counts all tuples
of the set regardless of empty values. If you wish to count only tuples that evaluate to nonempty
values, use NonEmptyCount.

Syntax

Count (set [, IncludeEmpty])

Parameter Description

set The set for which a tuple count is needed.

IncludeEmpty Optional and default (empty values are counted even if this keyword is omitted).

MDX Function Reference 1019

Notes

This function returns a zero if the input set is empty.

Example

WITH MEMBER
 [Measures].[Prod Count]
AS
 'Count (
 Crossjoin (
 {[Measures].[Sales]},
 {[Product].children}
)
)'
SELECT
 { [Scenario].[Actual], [Scenario].[Budget] }
ON COLUMNS,
 {
 Crossjoin (
 {[Measures].[Sales]},
 {[Product].children}
),
 ([Measures].[Prod Count], [Product])
 }
ON ROWS
FROM
 Sample.Basic
WHERE
 ([Year].[Jan], [Market].[New York])

returns the grid:

(axis) Actual Budget

Sales Colas 678 640

Root Beer 551 530

Cream Soda 663 510

Fruit Soda 587 620

Diet Drinks #Missing #Missing

Prod Count Product 5 5

The WITH section of the query calculates the count of all products for which a data value exists.
The SELECT section arranges the members shown on columns and rows. The entire query is
sliced by January and New York in the WHERE section; though those members are not shown
in the grid, the data is applicable to those members.

Cousin
Returns a child member at the same position as a member from another ancestor.

1020 MDX

Syntax

Cousin (member1, member2)

Parameter Description

member1 A child member. For example, [Year].[Qtr1].

member2 An ancestor for which Cousin() should the return child member at the same position as member1.

Notes

Assuming a symmetric hierarchy, Cousin takes as input one member (member1) from one
hierarchy and an ancestor member (member2) of another hierarchy, and returns the child of
member2 that is at the same position as member1.

Example

This example uses the following parts of the Sample Basic outline:

The following expression

{ Cousin ([Qtr2].[Apr], [Qtr4]) }

returns the member:

[Qtr4].[Oct]

And the following expression

[Product].generations(2).members

returns the set:

{ [100], [200], [300], [400], [Diet] }

Therefore, the following query

SELECT
 { Cousin ([Qtr2].[Apr], [Qtr4]) }
ON COLUMNS,
 [Product].generations(2).members
ON ROWS
FROM Sample.Basic

returns the grid:

MDX Function Reference 1021

(axis) Oct

100 2317

200 2505

300 2041

400 1790

Diet 2379

CrossJoin
Returns the cross-product of two sets from different dimensions.

Syntax

CrossJoin (set1, set2)

Parameter Description

set1 A set to cross with set2.

set2 A set to cross with set1. Must not include any dimension used in set1.

Notes

This function returns the cross-product of two sets from different dimensions. If the two sets
share a common dimension, an error is returned.

If one of the input sets is empty, the output set will be empty as well. For example, the output
will be empty if the input set is [Root Beer].children but [Root Beer] has no children.

The order of the sets (and their constituent tuples) provided to the CrossJoin function have an
effect on the order of the tuples in the result set. For example,

CrossJoin({a, b}, {c, d})

returns {(a, c), (a, d), (b, c), (b, d)}

CrossJoin({a, b, c}, {d, e, f})

returns {(a, d), (a, e), (a, f), (b, d), (b, e), (b, f), (c, d), (c, e),
(c, f)}

Be aware of the order of the output set when using the results of CrossJoin with other order-
dependent set functions; for example, Head or Tail.

Example

Example 1

The following expression

CrossJoin({[Qtr1], [Qtr2]}, {[New York], [California]})

1022 MDX

returns the set:

{([Qtr1], [New York]), ([Qtr1], [California]),
 ([Qtr2], [New York]), ([Qtr2], [California])}

Therefore, the following query

SELECT
CrossJoin({[Qtr1], [Qtr2]}, {[New York], [California]})
ON COLUMNS
FROM sample.basic

returns the grid:

Qtr1 Qtr1 Qtr2 Qtr2

New York California New York California

1656 3129 2363 3288

Example 2

The following expression

CrossJoin({[Qtr1], [Qtr2], [Qtr3]}, {[New York], [California], [Texas]})

returns the set

{([Qtr1], [New York]), ([Qtr1], [California]), ([Qtr1], [Texas]),
([Qtr2], [New York]), ([Qtr2], [California]), ([Qtr2], [Texas]),
([Qtr3], [New York]), ([Qtr3], [California]), ([Qtr3], [Texas])}

Therefore, the following query

SELECT
CrossJoin({[Qtr1], [Qtr2], [Qtr3]}, {[New York], [California], [Texas]})
ON AXIS(0)
FROM Sample.Basic

returns the grid:

Qtr1 Qtr1 Qtr1 Qtr2 Qtr2 Qtr2 Qtr3 Qtr3 Qtr3

New York California Texas New York California Texas New York California Texas

1656 3129 1582 2363 3288 1610 1943 3593 1703

Example 3

The following expression

CrossJoin ([100].children, [Profit].children)

returns the set:

MDX Function Reference 1023

{([100-10], Margin), ([100-10], [Total Expenses]),
 ([100-20], Margin), ([100-20], [Total Expenses]),
 ([100-30], Margin), ([100-30], [Total Expenses])}

Therefore, the following query

SELECT
 {([Market].levels(1).members)}
ON COLUMNS,
 CrossJoin ([100].children, [Profit].children)
ON ROWS
FROM Sample.Basic

returns the grid:

(axis) (axis) East West South Central

100–10 Margin 15762 8803 5937 8124

Total Expenses 4633 4210 2361 4645

100–20 Margin 1785 3707 2767 7426

Total Expenses 671 4241 1570 3495

100–30 Margin 871 1629 #Missing 3975

Total Expenses 458 2139 #Missing 1895

CurrentMember
Returns the current member in the input dimension.

The current member is evaluated in the context of query execution mechanics. Used in
conjunction with iterative functions such as Filter, at every stage of iteration the member
being operated upon is the current member.

Syntax

dimension.CurrentMember

CurrentMember (dimension)

Parameter Description

dimension A dimension specification.

Notes

This function returns the child of an implied shared member instead of the member itself. To
avoid this behavior when using CurrentMember in MDX formulas and calculated members, tag
the parent with the "Never Share" property.

1024 MDX

An implied share occurs when a parent has only one child, or only one child that consolidates.
For more information, see "Understanding Shared Members" in the Oracle Essbase Database
Administrator's Guide.

Example

The following query selects the quarters during which sales growth is 3% or more compared to
the previous month.

SELECT
Filter (
 [Year].Children, -- outer loop
 Max (
 Except (
 [Year].CurrentMember.Children, -- current in outer loop
 { [Year].[Jan] }
),
 ([Year].CurrentMember -- current in Max loop
 / [Year].CurrentMember.PrevMember)
) >= 1.03
)
ON axis(0)
FROM Sample.Basic
WHERE ([Measures].[Sales])

Returns the grid:

Qtr2 Qtr4

101679 98141

CurrentTuple
Returns the current tuple in a set. Current is in the context of query execution mechanics. Use
in combination with iterative functions such as Filter.

Syntax

CurrentTuple (set)

set.Current

set.CurrentTuple

Parameter Description

set A set specification. This argument should be a named set, defined in the WITH section.

Example

The following example finds all Product, Market combinations for which Sales data exists.

WITH SET [NewSet]
AS 'CrossJoin([Product].Children, [Market].Children)'
SELECT
 Filter([NewSet], NOT IsEmpty([NewSet].CurrentTuple))

MDX Function Reference 1025

ON COLUMNS
FROM Sample.Basic
WHERE
 {[Sales]}

This query returns the following grid:

100 200 ... 400 Diet

East West South Central East ... Central East West South Central

27740 28306 16280 33808 23672 ... 33451 7919 36423 18676 42660

DateDiff
Returns the difference (number) between two input dates in terms of the specified date-parts,
following a standard Gregorian calendar.

Syntax

DateDiff (date1, date2, date_part)

Parameter Description

date1 A number representing the input date between January 1, 1970 and Dec 31, 2037. The number is the number
of seconds elapsed since midnight, January 1, 1970. To retrieve this number, use any of the following
functions: Today(), TodateEx(), GetFirstDate(), GetLastDate(), DateRoll().

Date-time attribute properties of a member can also be used to retrieve this number. For example,

l Product.currentmember.[Intro Date] returns the product introduction date for the
current product in context.

l [Cola].[Intro Date] returns the product introduction date for Cola.

date2 A second input date. See date1.

date_part Defined time components as per the standard calendar.

l DP_YEAR - Year of the input date.

l DP_QUARTER - Quarter of the input date.

l DP_MONTH - Month of the input date.

l DP_WEEK - Week of the input date.

l DP_DAY - Day of the input date.

Notes

Based on the input date_part, the difference between the two input dates is counted in terms of
time component specified.

Example: For input dates June 14, 2005 and Oct 10, 2006,

l DP_YEAR returns the difference in the year component. (2006 - 2005 = 1)

l DP_QUARTER returns the distance between the quarters capturing the input dates.
(Quarter 4, 2006 - Quarter 2, 2005 = 6)

1026 MDX

l DP_MONTH returns the distance between the months capturing the input dates. (Oct 2006
- June 2005 = 16)

l DP_WEEK returns the distance between the weeks capturing the input dates. Each Standard
calendar week is defined to start on Sunday and it spans 7 days. (Oct 10, 2006 - June 14,
2005 = 69)

l DP_DAY returns the difference between the input dates in terms of days. (483 days)

Example

The following query returns weekly sales for the last 6 months for the product Cola in the market
California.

SELECT
{sales} ON COLUMNS,
Filter(
 [Time dimension].Weeks.members,
 Datediff(
 GetFirstDate([Time dimension].CurrentMember),
 Today(),
 DP_MONTH
) < 6
)
ON ROWS
FROM Mysamp.Basic
WHERE (Actual, California, Cola);

DatePart
This function returns the Year/Quarter/Month/Week/Weekday/DayOfYear/Day as a number,
given the input date and a date part, following the standard Gregorian calendar.

Syntax

DatePart (date, date_part_ex)

Parameter Description

date A number representing the input date between January 1, 1970 and Dec 31, 2037. The number is the
number of seconds elapsed since midnight, January 1, 1970. To retrieve this number, use any of the
following functions: Today(), TodateEx(), GetFirstDate(), GetLastDate(), DateRo

Date-time attribute properties of a member can also be used to retrieve this number. For example,

l Product.currentmember.[Intro Date] returns the product introduction date for the
current product in context.

l [Cola].[Intro Date] returns the product introduction date for Cola.

MDX Function Reference 1027

Parameter Description

date_part_ex Defined time components as per the standard calendar.

l DP_YEAR - Year of the input date, in yyyy format.

l DP_QUARTER - Quarter of the year (1 to 4) for the input date.

l DP_MONTH - Month of the year (1 to 12) for the input date.

l DP_WEEK - Week of the year for the input date (1 to 54).

l DP_WEEKDAY - Week day of the input date. (1 - Sunday, 2 - Monday, ... 7 - Saturday).

l DP_DAYOFYEAR - Day of the year numbering (1 to 366).

l DP_DAY - Day of the month for the input date (1 to 31).

Notes

Based on the requested time component, the output is as follows:

l DP_YEAR returns the year of the input date in yyyy format.

l DP_QUARTER returns the quarter of the year (1 to 4) for the input date.

l DP_MONTH returns the month of the year (1 to 12) for the input date.

l DP_WEEK returns the week of the year for the input date (1 to 54).

l DP_WEEKDAY returns the week day of the input date. (1 - Sunday, 2 - Monday, ... 7 -
Saturday).

l DP_DAYOFYEAR returns the day of the year numbering (1 to 366).

l DP_DAY returns the day of the month for the input date (1 to 31).

Example: For June 14, 2005,

DP_YEAR returns 2005 (the year member, in yyyy format).

DP_QUARTER returns 2 (Second quarter of the year)

DP_MONTH returns 6 (Sixth month of the year)

DP_WEEK returns 24 (24th week of the year)

DP_WEEKDAY returns 4 (for Wednesday. Sunday = 1)

DP_DAYOFYEAR returns 165 (165th day of the year)

DP_DAY returns 14 (14th day of the month)

Example

The following query returns the quarterly sales for the second quarter across all years for the
product Cola in the market California.

SELECT
 {[Sales]}
 ON COLUMNS,
 {
 Filter(
 [Time dimension].Quarters.members,
 Datepart(

1028 MDX

 getFirstDate([Time dimension].CurrentMember),
 DP_QUARTER
) = 2
)
}
 ON ROWS,
FROM MySamp.Basic
WHERE (Actual, Cola, California);

DateRoll
To the given date, rolls (adds or subtracts) a number of specific time intervals, returning another
date. This function assumes a standard Gregorian calendar.

Syntax

DateRoll (date, date_part, number)

Parameter Description

date A number representing the date between January 1, 1970 and Dec 31, 2037. The number is the number of
seconds elapsed since midnight, January 1, 1970. To retrieve this number, use any of the following functions:
Today(), TodateEx(), GetFirstDate(), GetLastDate().

Date-time attribute properties of a member can also be used to retrieve this number. For example,

l Product.currentmember.[Intro Date] returns the product introduction date for the
current product in context.

l [Cola].[Intro Date] returns the product introduction date for Cola.

date_part Defined time components as per the standard calendar.

l DP_YEAR - Year of the input date.

l DP_QUARTER - Quarter of the input date.

l DP_MONTH - Month of the input date.

l DP_WEEK - Week of the input date.

l DP_DAY - Day of the input date.

number Number of time intervals to add or subtract.

Notes

Based on input date_part and dateroll number, the date is moved forward or backward in time.

Example: For input date June 14, 2005 and input dateroll number 5,

l DP_YEAR adds 5 years to the input date. (June 14, 2010)

l DP_QUARTER adds 5 quarters to the input date. (June 14, 2005 + 5 quarters = June 14,
2005 + 15 months = Sept 14, 2006)

l DP_MONTH adds 5 months to the input date (June 14, 2005 + 5 months = Nov 14, 2005)

l DP_WEEK adds 5 weeks to the input date (June 14, 2005 + 5 weeks = June 14, 2005 + 35
days = July 19, 2005)

l DP_DAY adds 5 days to the input date. (June 14, 2005 + 5 days = June 19, 2005)

MDX Function Reference 1029

Example

The following query returns actual weekly sales, rolling back for six months from Apr 2005
(inclusive), for the product Cola in the market California.

SELECT
 {[Sales]}
ON COLUMNS,
 {DateToMember
 (
 DateRoll(
 GetFirstDate ([Apr 2005]),
 DP_MONTH,
 6
),
 [Time dimension].Dimension,
 [Time dimension].[WEEKS]
): ClosingPeriod([Time dimension].[Weeks], [Apr 2005]))
 } ON ROWS
FROM MySamp.Basic
Where (Actual, California, Cola);

DateToMember
Returns the date-time dimension member specified by the input date and the input layer.

Syntax

DateToMember (date, dimension [,layer])

Parameter Description

date A number representing the input date between January 1, 1970 and Dec 31, 2037. The number is the number
of seconds elapsed since midnight, January 1, 1970. To retrieve this number, use any of the following
functions: Today(), TodateEx(), GetFirstDate(), GetLastDate(), DateRoll().

Date-time attribute properties of a member can also be used to retrieve this number. For example,

l Product.currentmember.[Intro Date] returns the product introduction date for the
current product in context.

l [Cola].[Intro Date] returns the product introduction date for Cola.

dimension A date-time dimension specification.

layer Optional. A date-time dimension layer specification. If not specified, defaults to the date-time dimension's
leaf generation.

Notes

l This function is applicable only to aggregate storage databases.

l This function is only applicable if there is a date-time dimension in the outline.

Example

Consider the following Time-Date dimension hierarchy:

1030 MDX

Time dimension (gen 1)
 Years (gen 2)
 Semesters (gen 3)
 Quarters (gen 4)
 Months (gen 5)
 Weeks (gen 6)
 Days (gen 7)

The following query returns sales for the week containing Dec 25, 2006 for the product Cola in
the market California.

SELECT
{Sales} ON COLUMNS,
{
DateToMember(
 TodateEx("Mon dd yyyy", "December 25 2006"),
 [Time dimension].Dimension,
 [Time dimension].[Weeks])
 } ON ROWS
FROM MySamp.Basic
WHERE (Actual, California, Cola);

DefaultMember
Returns the default member in the input dimension. In Essbase, the top member of the input
dimension is returned.

Syntax

dimension.DefaultMember

DefaultMember (dimension)

Parameter Description

dimension A dimension specification.

Example

DefaultMember ([Market])

returns the member [Market].

DefaultMember ([Florida].Dimension)

returns the member [Market].

DefaultMember ([Bottle])

returns the member [Pkg Type].

MDX Function Reference 1031

Descendants
Returns the set of descendants of a member at a specified level or distance, optionally including
or excluding descendants in other levels. The members are returned in hierarchized order; for
example, parent members are followed by child members.

Syntax

Descendants (member , [{ layer | index }[, Desc_flags]])

Parameter Description

member The member for which descendants are sought.

layer Optional. Layer specification indicating the depth of the descendants to return.

index Optional. A number of hierarchical steps down from member, locating the descendants you want returned.

Desc_flags Optional. Keywords which further indicate which members to return. These keywords are available only if
layer or index is specified.

See Values for Desc_flags

Notes

Values for Desc_flags

For all flags, SELF refers to layer; therefore, BEFORE indicates "before the layer" and AFTER
indicates "after the layer."

l SELF—Include only members in layer, including member only if member is in layer.

l AFTER—Include members below layer, but not the members of layer.

l BEFORE—Include member and all its descendants that are higher in the hierarchy than
layer, excluding layer and anything below it.

1032 MDX

l BEFORE_AND_AFTER—Include member and all its descendants, down to level 0, but
excluding members in layer.

l SELF_AND_AFTER—Include members in layer and all descendants below layer.

l SELF_AND_BEFORE—Include member and all its descendants, down to and including
layer.

l SELF_BEFORE_AFTER—Include member and all its descendants.

l LEAVES—Include only level-0 descendants between member and layer.

Example

The following query

SELECT
 Descendants ([Year])
ON COLUMNS
FROM sample.basic

returns the grid:

Year Qtr1 Jan Feb Mar Qtr2 Apr May Jun Qtr3 Jul Aug Sep Qtr4 Oct Nov Dec

12656 2747 924 888 935 3352 1011 1071 1270 3740 1334 1304 1102 2817 907 884 1026

The following expressions return the following sets

Descendants ([Year], 2)

MDX Function Reference 1033

returns {([Jan]:[Dec])}, which is the range of members found two steps below Year.

Descendants ([Year], 2, BEFORE)

returns {[Year], [Qtr1], [Qtr2], [Qtr3], [Qtr4]}, which is the set of Year and its
descendants that occur BEFORE the layer that is two steps below Year.

Descendants ([Market], [West].level)

returns {[East], [West], [South], [Central]}, which is the set of Market's descendants
found at the level of West.

Descendants([Market])

is equivalent to Descendants([Market], [Market].level, SELF_BEFORE_AFTER). It
returns all descendants of Market:

{[Market],
 [East], [New York], [Massachusetts], [Florida], [Connecticut], [New Hampshire],
 [West], [California], [Oregon], [Washington], [Utah], [Nevada],
 [South], [Texas], [Oklahoma], [Louisiana], [New Mexico],
 [Central], [Illinois], [Ohio], [Wisconsin], [Missouri], [Iowa], [Colorado] }

Descendants([Market], [Region])

is equivalent to Descendants([Market], [Region]), SELF), where [Region] is an alias.
It returns all members at [Region] level:

{[East], [West], [South], [Central]}

Descendants([Market], [State], SELF)

returns all descendants of [Market] at [State] level:

{[New York], [Massachusetts], [Florida], [Connecticut], [New Hampshire],
 [California], [Oregon], [Washington], [Utah], [Nevada], [Texas],
 [Oklahoma], [Louisiana], [New Mexico], [Illinois], [Ohio], [Wisconsin],
 [Missouri], [Iowa], [Colorado]}

Descendants([Market], [State], BEFORE)

returns all regions and [Market]:

{[Market], [East], [West], [South], [Central]}

Descendants([Market], [State], AFTER)

returns an empty set, because there are no levels below [State] level in the [Market] dimension:

{}

Descendants([Market], [Region], AFTER)

returns all states in the [Market] dimension:

{[New York], [Massachusetts], [Florida], [Connecticut], [New Hampshire],
 [California], [Oregon], [Washington], [Utah], [Nevada], [Texas],
 [Oklahoma], [Louisiana], [New Mexico], [Illinois], [Ohio], [Wisconsin],
 [Missouri], [Iowa], [Colorado]}

Descendants([Market], [State], LEAVES)

1034 MDX

returns all level-0 members between [Market] level and [State] level, including both levels:

{[New York], [Massachusetts], [Florida], [Connecticut], [New Hampshire],
 [California], [Oregon], [Washington], [Utah], [Nevada], [Texas],
 [Oklahoma], [Louisiana], [New Mexico], [Illinois], [Ohio], [Wisconsin],
 [Missouri], [Iowa], [Colorado]}

Descendants([Market], 1)

The second argument specifies a distance of 1 from [Market] level, which is [Region] level. So
this expression is equivalent to Descendants([Market], [Region]). It returns:

{[East], [West], [South], [Central]}

Descendants([Market], 2, SELF_BEFORE_AFTER)

is equivalent to Descendants([Market], [State], SELF_BEFORE_AFTER). It returns:

{[Market],
 [East], [New York], [Massachusetts], [Florida], [Connecticut], [New Hampshire]
 [West], [California], [Oregon], [Washington], [Utah], [Nevada],
 [South], [Texas], [Oklahoma], [Louisiana], [New Mexico],
 [Central], [Illinois], [Ohio], [Wisconsin], [Missouri], [Iowa], [Colorado] }

Descendants([Market], -1, SELF_BEFORE_AFTER)

prints a warning in application log, because a negative distance argument is not valid. The
expression returns an empty set:

{}

Descendants([Market], 10, SELF)

returns an empty set, because there are no descendants of [Market] at a distance of 10 from
[Market] level.

Descendants([Market], 10, BEFORE)

returns all descendants of [Market]:

{[Market],
 [East], [New York], [Massachusetts], [Florida], [Connecticut], [New Hampshire]
 [West], [California], [Oregon], [Washington], [Utah], [Nevada],
 [South], [Texas], [Oklahoma], [Louisiana], [New Mexico],
 [Central], [Illinois], [Ohio], [Wisconsin], [Missouri], [Iowa], [Colorado] }

Descendants([Market], 10, LEAVES)

returns all level-0 descendants of [Market]:

{[New York], [Massachusetts], [Florida], [Connecticut], [New Hampshire],
 [California], [Oregon], [Washington], [Utah], [Nevada], [Texas],
 [Oklahoma], [Louisiana], [New Mexico], [Illinois], [Ohio], [Wisconsin],
 [Missouri], [Iowa], [Colorado]}

Distinct
Deletes duplicate tuples from a set.

MDX Function Reference 1035

Syntax

Distinct (set)

Parameter Description

set The set from which to remove duplicates.

Notes

l Duplicates are eliminated from the tail of the set.

l Distinct of an empty set returns an empty set.

Example

The expression

Distinct({[Colas], [Root Beer], [Cream Soda], [Colas]})

returns the set

{[Colas], [Root Beer], [Cream Soda]}

Note that the duplicate [Colas] is removed from the end of the set.

Dimension
Returns the dimension that contains the input element.

Syntax

member.Dimension

layer.Dimension

Dimension (member | layer)

Parameter Description

member A member specification. The dimension returned is the dimension that this member belongs to.

layer A layer specification. The dimension returned is the dimension that this layer belongs to.

Example

[Colas].Dimension returns Product.

[Market].[Region].Dimension returns Market.

DrilldownByLayer
Drills down members of a set that are at a specified layer.

Syntax

DrilldownByLayer (set [, layer | index])

1036 MDX

Parameter Description

set The set in which the drilldown should occur.

layer The layer of the members that should be drilled down.

index A number of hierarchical steps representing the location of members that should be drilled down.

Notes

This function returns the members of set to one level below the optionally specified layer (or
index number of the level). If layer (or index) is omitted, the lowest level of set is returned.
Members are returned in their hierarchical order as represented in the database outline.

Example

The following query

SELECT
DrilldownByLayer (
 {([Product],[California]), ([Product],[Oregon]),
 ([Product],[New York]), ([Product],[South]),
 ([Product],[Washington])}, [Market].[Region]
)
ON COLUMNS
FROM Sample.Basic

returns the grid:

Product

California Oregon New York South Texas Oklahoma Louisiana New Mexico Washington

12964 5062 8202 13238 6425 3491 2992 330 4641

TO use index, note that index is the index number of the dimension to drill down on. In the
example below, the function drills down on Market. If you change the 1 to a 0, it drills down on
Product.

SELECT
DrilldownByLayer (
 {
 ([Product],[East]), ([Product],[West])
 }, 1
)
ON COLUMNS
FROM Sample.Basic

DrilldownMember
Drills down on any members or tuples of set1 that are also found in set2. The resulting set contains
the drilled-down members or tuples, as well as the original members or tuples (whether they
were expanded or not).

MDX Function Reference 1037

Syntax

DrilldownMember(set1, set2 [, RECURSIVE])

Parameter Description

set1 The set containing members or tuples to drill down on if comparison with set2 tests positive for identical
members or tuples.

set2 The set to compare with set1 before drilling down on members or tuples in set1.

RECURSIVE Optional. A keyword to enable repeated comparisons of the sets.

Notes

This function drills down on all members of set1 that are also found in set2. The two sets are
compared. Then the members or tuples of the first set that are also present in the second set are
expanded to include their children.

If the first set is a list of tuples, then any tuples in the first set that contain members from the
second set are expanded to their children, generating more tuples.

If the RECURSIVE keyword is used, multiple passes are made on the expanded result sets.
Drilldownmember repeats the set comparison and resulting drilldown until there are no more
unexpanded members or tuples of set1 that are also present in set2.

Example

Drilling Down on Members

The following examples drill down on members.

Example 1

Example 2

The following expression

DrilldownMember({Market, [New York]}, {Market, West}, RECURSIVE)

returns the set:

{Market, East, West, California, Oregon, Washington, Utah, Nevada, South,
 Central, [New York]}

The member Market is drilled down and then the West member of the resulting set is drilled
down, because the RECURSIVE parameter was specified.

Drilling Down on Tuples

This example uses the following part of the Sample Basic outline:

1038 MDX

The following example drills down on tuples.

The following expression

DrilldownMember
 ({([100],[California]), ([200],[Washington])},
 { [100] }
)

returns the set of tuples:

{ ([100],California), ([100-10],California), ([100-20],California),
 ([100-30],California), ([200],Washington)}

Therefore, the following query

SELECT
DrilldownMember
 ({([100],[California]), ([200],[Washington])},
 { [100] }
)
ON COLUMNS
FROM Sample.Basic

returns the grid:

100 100-10 100-20 100-30 200

California California California California Washington

999 3498 -1587 -912 1091

DrillupByLayer
Drills up the members of a set that are below a specified layer.

Syntax

DrillupByLayer (set [,layer])

Parameter Description

set The set in which the drill-up should occur.

layer The layer of the members that should be drilled up. If omitted, the set is drilled up to the second lowest level
found in the set.

Notes

DrillupLevel can be used as a synonym for DrillupByLayer.

Example

These examples focus on the following hierarchy from the Sample Basic outline:

MDX Function Reference 1039

Example 1

The following query drills up the members of set to the second generation of the Measures
dimension:

SELECT
 DrillupByLayer
 (
 {[Measures],[Profit],
 [Margin], [Sales], [COGS]
 }, Generations([Measures], 2)
)

ON COLUMNS
FROM Sample.Basic

This query returns the grid:

Measures Profit

105522 105522

Example 2

With no layer specified, the following query drills up the members of set to the second lowest
level found in set:

SELECT
 DrillupByLayer
 (
 {[Measures],[Profit],
 [Margin], [Sales], [COGS]
 }
)

ON COLUMNS
FROM Sample.Basic

This query returns the grid:

Measures Profit Margin

105522 105522 221519

1040 MDX

DrillupMember
Tests two sets for common ancestors and drills up members of the first set to the level of the
ancestors that are present in the second set.

Syntax

DrillupMember (set1, set2)

Parameter Description

set1 The set containing members to drill up if comparison with set2 tests positive for identical members or tuples.

set2 The set to compare with set1 before drilling up members in set1.

Notes

This function drills up any members of set1 whose ancestors are found in set2. The level to which
members in set1 are drilled up depends on the level of the ancestor found in set2. The resulting
set contains the ancestors of the drilled up member at the level found in set2, as well as any
members of set1 that were not drilled up.

Example

Example 1

The following example

DrillupMember({East, South, West, California, Washington, Oregon},{West})

returns the set:

{East, South, West}

The following expression

DrillupMember
 (
 {East, South, West, California,
 Washington, Oregon, Central, Nevada},
 {West}
)

returns the set:

{East, South, West, Central, Nevada}

The member Nevada is not drilled up to member West because another member Central
interrupts the chain of West descendants.

Example 2

The following examples use the following part of the Sample Basic outline:

MDX Function Reference 1041

The following expression

DrillupMember
 ({Product, [100], [100-10]},
 {[Product]}
)

returns the set:

{Product}

The following expression

 DrillupMember
 ({Product, [100], [100-10]},
 {[100]}
)

returns the set:

{Product, [100]}

DTS
Calculates period-to-date values using built-in Dynamic Time Series functionality on block
storage databases.

Syntax

DTS (dts-operation-specification, member)

Parameter Description

dts-operation-
specification

The Dynamic Time Series member for which to return values. Specify one of the following operations:

l HTD—History-to-date

l YTD—Year-to-date

l STD—Season-to-date

l PTD—Period-to-date

l QTD—Quarter-to-date

l MTD—Month-to-date

l WTD—Week-to-date

l DTD—Day-to-date

Note: The operation you use for this parameter must have a corresponding Dynamic Time Series
member enabled in the outline.

1042 MDX

Parameter Description

member Member specification. Must be a level-0 member from the time dimension.

Notes

This function is applicable only to block storage databases.

Example

The following query returns year to date information for Sample Basic.

WITH MEMBER [Year].[QuarterToDate_April] AS 'DTS(QTD,Apr)'
SELECT
 {[Profit], [Opening Inventory],[Ratios]}
ON COLUMNS,
 {[Jan],[Feb],[Mar],[Apr],[QuarterToDate_April]}
ON ROWS
FROM Sample.Basic;

This query returns the grid:

(axis) Profit Opening Inventory Ratios

Jan 8024 117405 55.1017819772972

Feb 8346 116434 55.3868221647073

Mar 8333 115558 55.2665073107131

Apr 8644 119143 55.4181729805268

QuarterToDate_April 8644 119143 55.4181729805268

EnumText
Returns the text value corresponding to a numeric value in a text list.

Syntax

EnumText (textlistname, numeric_value_expression)

Parameter Description

textlistname Name of a text list defined on the outline.

numeric_value_expression Numeric value expression (see “MDX Grammar Rules” on page 934).

Example

EnumText(CSRatings, 1)

returns “Excellent” if there is a text list named CSRatings containing the text “Excellent” mapped
to ID 1. This example returns an empty string if there is no text associated with the given numeric
ID.

MDX Function Reference 1043

EnumValue
Returns the internal numeric value for a text value in a text list.

Syntax

EnumValue (enum_string)

Parameter Description

enum_string Either textlistname.string_literal or textlistmembername.string_literal,
where

l textlistname is the name of a text list defined on the outline

l textlistmembername is the name of a member that has an associated text list

l string_literal is the text value stored in the text list

Example

The following expression shows how EnumValue can be used to filter employees based on their
title, which is stored as a text list in [Measures].[Title].

FILTER([Employee].Levels[0].Members, [Measures].[Title] = EnumValue([Job
Titles]."Manager"))

Except
Returns a subset containing the differences between two sets, optionally retaining duplicates.
The two input sets must have identical dimensionality.

Syntax

Except (set1, set2 [,ALL])

Parameter Description

set1 A set to compare with set2.

set2 A set to comparet with set1.

ALL The optional ALL flag retains duplicates. Matching duplicates in set1 and set2 are eliminated.

Example

Except({[New York], [California], [Florida], [California]},
 {[Oregon], [Washington], [California], [Florida]})

returns {[New York]}.

Except({[New York], [California], [Florida], [California]},
 {[Oregon], [Washington], [California], [Florida]}, ALL)

returns {[New York], [California]}.

1044 MDX

The following query returns Actual Sales and Profit numbers for the level-0 markets that are not
defined as "Major Market."

SELECT
 {[Measures].[Sales], [Measures].[Profit]}
ON COLUMNS,
 Except(
 [Market].Levels(0).Members,
 UDA (Market, "Major Market")
) ON ROWS
FROM Sample.Basic
WHERE {([Year].[Qtr1], [Scenario].[Actual])}

This query returns the grid:

(axis) Sales Profit

Connecticut 3472 920

New Hampshire 1652 202

Oregon 5058 1277

Washington 4835 1212

Utah 4209 744

Nevada 6516 775

Oklahoma 2961 718

Louisiana 2906 773

New Mexico 1741 4

Wisconsin 4073 913

Missouri 3062 399

Iowa 6175 2036

Exp
Returns the exponent of an expression; that is, the value of e (the base of natural logarithms)
raised to the power of the expression.

Syntax

Exp (numeric_value_expression)

Parameter Description

numeric_value_expression A numeric value (see “MDX Grammar Rules” on page 934).

MDX Function Reference 1045

Notes

l Exp returns the inverse of Ln, the natural logarithm.

l The constant e is the base of the natural logarithm. e is approximately 2.71828182845904.

Example

The calculated member Index is created to represent e raised to the power of [Variance %]/
100. In the example, [Variance %] divided by 100 is the numeric value expression provided to
the Exp function.

WITH MEMBER [Scenario].[Index]
AS
 'Exp(
 [Scenario].[Variance %]/100
)'
SELECT
 {[Scenario].[Variance %], [Scenario].[Index]}
ON COLUMNS,
 {[Market].children}
ON ROWS
FROM
 Sample.Basic
WHERE
 {[Sales]}

This query returns the grid:

(axis) Variance % Index

East 10.700 1.113

West 10.914 1.115

South 3.556 1.036

Central 3.595 1.037

See Also

l Ln

Extract
Returns a set of tuples with members from the specified dimensions of the input set.

Syntax

Extract (set [, dimension ...])

Parameter Description

set The set from which to extract tuples belonging to the specified dimension.

dimension One or more dimensions from which to extract a set.

1046 MDX

Notes

This function always removes duplicates. The dimension argument should specify dimensions
present in the input set. It is an error to specify a dimension that is not present in the input set.
The members in the tuples of the output set are ordered based on the dimension order specified
in the input set.

Example

In the following example, Extract returns a subset of only those tuples belonging to the Year
dimension.

SELECT
 Extract(
 {
 ([Year].[Qtr1], [Market].[California]),
 ([Year].[Qtr1], [Market].[Oregon]),
 ([Year].[Qtr2], [Market].[Oregon])
 }, Year
)
ON COLUMNS
FROM Sample.basic

Qtr1 Qtr2

24703 27107

Factorial
Returns the factorial of a number.

Syntax

Factorial (index)

Parameter Description

index A numeric value. The fractional part of index is ignored.

Example

Factorial(5) returns 120 (which is 5 * 4 * 3 * 2 * 1).

Factorial(3.5) returns 6 (which is 3 * 2 * 1). The fractional part of index is ignored.

Filter
Returns the tuples of a set that meet the criteria of a search condition.

Syntax

FILTER (set, search_condition)

MDX Function Reference 1047

Parameter Description

set The set through which to iterate.

search_condition A Boolean expression (see “MDX Grammar Rules” on page 934). The search condition is evaluated
in the context of every tuple in the set.

Notes

This function returns the subset of tuples in set for which the value of the search condition is
TRUE. The order of tuples in the returned set is the same as in the input set.

Example

Example 1

The following unfiltered query returns profit for all level-0 products:

SELECT
 { [Profit] }
ON COLUMNS,
 [Product].levels(0).members
ON ROWS
FROM Sample.Basic

This query returns the grid:

(axis) Profit

100-10 22777

100-20 5708

100-30 1983

200-10 7201

200-20 12025

200-30 4636

200-40 4092

300-10 12195

300-20 2511

300-30 11093

400-10 11844

400-20 9851

400-30 -394

100-20 5708

1048 MDX

(axis) Profit

200-20 12025

300-30 11093

To filter the above results to only show negative Profit, use the Filter function, passing it the
original set and a search condition. Filter will only return the set of members for which the search
condition is true (for which Profit is less than zero).

SELECT
 { Profit }
ON COLUMNS,
 Filter([Product].levels(0).members, Profit < 0)
ON ROWS
FROM Sample.Basic

The resulting query returns only the products with negative profit:

(axis) Profit

400-30 -394

Example 2

The search expression in Example 1 compared a value expression (Profit) with a value. You can
also filter using a member attribute as the search condition. For example, you can use the Filter
function to only select members whose Caffeinated attribute is TRUE.

SELECT
 { [Profit] }
ON COLUMNS,
 Filter([Product].levels(0).members, Product.CurrentMember.[Caffeinated])
ON ROWS
FROM Sample.Basic

This query returns profit for the members that are caffeinated:

(axis) Profit

100-10 22777

100-20 5708

200-10 7201

200-20 12025

300-10 12195

300-20 2511

300-30 11093

To understand the search condition, Product.CurrentMember.[Caffeinated], it may be
helpful to read it right to left: Filter is searching for presense of the Caffeinated property on the

MDX Function Reference 1049

current member, for each member in the input set, which happens to be from the Product
dimension (The CurrentMember function requires the dimension name as its argument).

Filter is an iterative function, meaning that at every member or tuple in the set being evaluated,
the member being operated upon is the "current member," until Filter has looped through the
entire input set and evaluted the search condition for each tuple. So to see how the previous
query results were generated, it would be useful to see first which members actually have the
Caffeinated attribute set to true. The following unfiltered query uses a calculated member to
reveal which of the level-0 product members is caffeinated. The IIF function returns a value of
1 for each member whose Caffeinated attribute is set to TRUE, and returns a value of 0 otherwise.

WITH MEMBER Measures.IsCaffeinated
AS 'IIF(Product.CurrentMember.[Caffeinated], 1, 0)'
SELECT
 { IsCaffeinated }
ON COLUMNS,
 [Product].levels(0).members
ON ROWS
FROM Sample.Basic

This query returns the grid:

(axis) IsCaffeinated

100-10 1

100-20 1

100-30 0

200-10 1

200-20 1

200-30 0

200-40 0

300-10 1

300-20 1

300-30 1

400-10 0

400-20 0

400-30 0

100-20 0

200-20 0

300–30 0

1050 MDX

Looking at the results for the second query, you can begin to see that the search condition is
evaluated for each tuple in the input set, and that only the tuples meeting the search condition
are returned.

Example 3

Example 2 introduced the CurrentMember function. Even when CurrentMember is not
explicitly called, Filter operates in the context of "the current member" while it iterates through
a set. Filter and other iterative functions are processed in a nested context.

By default, Filter operates in the current-member context of top dimension members. You make
the MDX context smaller by using a slicer (the Where clause), which overrides the built-in top-
dimensional context. Additionally, you can override the slicer context by specifying context in
the search condition argument for Filter.

The following query returns the Profit values for Western Region, for Qtr1. Note that the MDX
context is West, Qtr1.

SELECT
 { [Profit] }
ON COLUMNS,
 [Product].levels(0).members
ON ROWS
FROM Sample.Basic
Where (West, Qtr1)

When adding a filter to the above query, the values for Profit are still evaluated as (Profit,
West, Qtr1), because the sub-context for Filter is based on the main context.

SELECT
 { [Profit] }
ON COLUMNS,
 Filter([Product].levels(0).members, Profit < 0)
ON ROWS
FROM Sample.Basic
Where (West, Qtr1)

In the next query, the values for Profit are evaluated as (Profit, West, Qtr1), even though
the outer context is (Profit, Market, Qtr1). This is because the inner context in the Filter
function overrides the outer context of the slicer (West replaces Market).

SELECT
 { [Sales] }
ON COLUMNS,
Filter([Product].levels(0).members, (Profit, West) < 0)
ON ROWS
FROM Sample.Basic
Where (Market, Qtr1)

The above query returns the Sales values for West, Qtr1 for members of Product whose Profit
for West, Qtr1 was less than 0.

(axis) Sales

100-20 2153

MDX Function Reference 1051

(axis) Sales

400-30 1862

100-20 2153

Additional Examples

The following query on Sample Basic returns Qtr2 sales figures for products where the sales have
increased by at least 10% since Qtr1.

SELECT
{
 Filter (
 [Product].Members,
 [Measures].[Sales] >
 1.1 *
 ([Measures].[Sales], [Year].CurrentMember.PrevMember)
)
}
on columns
FROM sample.basic
WHERE ([Year].[Qtr2], [Measures].[Sales])

Cola Dark Cream

16048 11993

The following query on Sample Basic returns sales figures for product family "100" where the
monthly sales of that product family are greater than 8,570. The filtering logic is stored as a
named set in the WITH section.

WITH SET [High-Sales Months] as
'
 Filter(
 [Year].Levels(0).members,
 [Measures].[Sales] > 8570
)
'
SELECT
 {[Measures].[Sales]}
ON COLUMNS,
 {[High-Sales Months]}
ON ROWS
FROM
 sample.basic
WHERE
 ([Product].[100])

(axis) Sales

Apr 8685

May 8945

1052 MDX

(axis) Sales

Jun 9557

Jul 9913

Aug 9787

Sep 8844

Dec 8772

FirstChild
Returns the first child of the input member.

Syntax

member.FirstChild

FirstChild (member)

Parameter Description

member A member specification. If a level-0 member, the output of FirstChild is an empty member.

Example

SELECT
 {[Qtr1].firstchild}
ON COLUMNS,
 {[Market].[Central].lastchild}
ON ROWS
FROM Sample.Basic

(axis) Jan

Colorado 585

See Also

l LastChild

l FirstSibling

FirstSibling
Returns the first child of the input member's parent.

Syntax

FirstSibling (member [, hierarchy])

member.FirstSibling [(hierarchy)]

MDX Function Reference 1053

Parameter Description

member A member specification.

hierarchy Optional. A specific hierarchy within the time dimension.

Notes

If member is the top member of a dimension, then member itself is returned.

Example

Example 1

Year.Firstsibling returns Year.

Qtr3.firstsibling returns Qtr1.

Example 2

For every month, the following query displays the change in inventory level since the beginning
of the quarter.

WITH MEMBER
 [Measures].[Inventory Level since beginning of Quarter]
AS
 '[Ending Inventory] - ([Opening Inventory], [Year].CurrentMember.FirstSibling)'
SELECT
 {[Measures].[Inventory Level since beginning of Quarter]}
ON COLUMNS,
 Year.Levels(0).Members ON ROWS
FROM Sample.Basic

This query returns the grid:

(axis) Inventory Level Since Beginning of Quarter

Jan -971

Feb -1847

Mar 1738

Apr 6740

May 17002

Jun 24315

Jul -871

Aug -1243

Sep -1608

Oct 2000

1054 MDX

(axis) Inventory Level Since Beginning of Quarter

Nov 5308

Dec 4474

See Also

l LastSibling

l FirstChild

FormatDate
Returns a formatted date-string.

Syntax

FormatDate (date, internal-date-format)

Parameter Description

date A number representing the input date between January 1, 1970 and Dec 31, 2037. The number is the number
of seconds elapsed since midnight, January 1, 1970. To retrieve this number, use any of the following
functions: Today(), TodateEx(), GetFirstDate(), GetLastDate(), DateRoll().

Date-time attribute properties of a member can also be used to retrieve this number. For example,

l Product.currentmember.[Intro Date] returns the product introduction date for the
current product in context.

l [Cola].[Intro Date] returns the product introduction date for Cola.

MDX Function Reference 1055

Parameter Description

internal-
date-
format

One of the following literal strings (excluding ordered-list numbers and parenthetical examples) indicating
a supported date format.

1. "mon dd yyyy" (Example: mon = Aug)

2. "Month dd yyyy" (Example: Month = August)

3. "mm/dd/yy"

4. "mm/dd/yyyy"

5. "yy.mm.dd"

6. "dd/mm/yy"

7. "dd.mm.yy"

8. "dd-mm-yy"

9. "dd Month yy"

10. "dd mon yy"

11. "Month dd, yy"

12. "mon dd, yy"

13. "mm-dd-yy"

14. "yy/mm/dd"

15. "yymmdd"

16. "dd Month yyyy"

17. "dd mon yyyy"

18. "yyyy-mm-dd"

19. "yyyy/mm/dd"

20. "Long format" (Example: "WeekDay, Mon dd, yyyy")

21. "Short format" (Example: "m/d/yy")

Notes

l Using an invalid input date returns an error.

l Using extra whitespace not included in the internal format strings returns an error.

l This function interprets years in the range 1970 to 2029 for yy format. Therefore, if the
function is invoked using a date format mm/dd/yy for June 20, 2006, the returned date string
is "06/20/06".

Example

The following query returns the first 10 day sales for all Colas products since their release date
in the market California.

WITH MEMBER
 Measures.[first 10 days sales] AS
 'SUM(
 LastPeriods(-10,
 StrToMbr(
 FormatDate("Mon dd yyyy", Product.CurrentMember.[Intro Date])
)
)

1056 MDX

 , Sales)'
SELECT
 {[first 10 days sales]}
ON COLUMNS,
 {Colas.Children}
ON ROWS
FROM MySamp.basic
WHERE (California, Actual);

Generate
Returns a set formed by evaluating a set expression. For each tuple in set1, return set2.

Syntax

Generate (set1, set2 [, [ALL]])

Parameter Description

set1 The set to loop through.

set2 The set expression to evaluate for every tuple in set1.

ALL If the optional ALL flag is used, duplicate tuples are retained.

Notes

The set expression set2 is evaluated in the context of each of the tuples from set1. The resulting
sets are combined, in the same order as of the tuples in set1, to produce the output. Duplicates
are not included by default.

Example

For each region of the market, return its top-selling 3 products. Display the sales data by quarter.

WITH SET [Top3BevsPerRegion]
AS
 'Generate ({[Market].children},
 Crossjoin
 (
 {[Market].Currentmember},
 TopCount
 (
 [Product].Members, 3, [Measures].[Sales]
)
)
)'
SELECT
 {[Top3BevsPerRegion]}
ON COLUMNS,
 {[Year].children}
ON ROWS
FROM Sample.Basic
WHERE ([Scenario].[Actual], [Measures].[Sales])

MDX Function Reference 1057

(axis) East West South Central

(axis) Product Colas Root
Beer

Product Diet
Drinks

Cream
Soda

Product Root
Beer

Diet
Drinks

Product Diet
Drinks

Colas

Qtr1 20621 6292 5726 31674 8820 8043 12113 5354 4483 31412 10544 8074

Qtr2 224499 7230 5902 33572 9086 8982 12602 5535 4976 33056 10809 8701

Qtr3 22976 7770 5863 35130 9518 9616 13355 5690 4947 33754 10959 8894

Qtr4 21352 6448 6181 32555 8999 8750 12776 5429 4450 31458 10348 8139

Generation
Returns the generation of the input member.

Syntax

member.Generation

Parameter Description

member Member specification.

Example

The following query

SELECT
 [Year].[Qtr1].Generation.Members
ON COLUMNS,
 [Product].Generations(2).Members
ON ROWS
FROM Sample.Basic

returns the grid:

(axis) Qtr1 Qtr2 Qtr3 Qtr4

100 7048 7872 8511 7037

200 6721 7030 7005 7198

300 5929 6769 6698 6403

400 5005 5436 5698 5162

Diet 7017 7336 7532 6941

See Also

l Generations

l Level

l IsGeneration

1058 MDX

Generations
Returns the generation specified by the input generation number.

Syntax

dimension.Generations (index)

Generations (dimension, index)

Parameter Description

dimension The dimension specification.

index The numerical depth from the top member of the outline, where the top member is 1.

Example

The following query

SELECT
 [Year].[Qtr1].Generation.Members
ON COLUMNS,
 [Product].Generations(2).Members
ON ROWS
FROM Sample.Basic

returns the grid:

(axis) Qtr1 Qtr2 Qtr3 Qtr4

100 7048 7872 8511 7037

200 6721 7030 7005 7198

300 5929 6769 6698 6403

400 5005 5436 5698 5162

Diet 7017 7336 7532 6941

See Also

l Generation

l Levels

GetFirstDate
Returns the start date for a date-time dimension member.

Syntax

GetFirstDate (member)

MDX Function Reference 1059

Parameter Description

member A member from a date-time dimension.

Notes

l This function returns #MISSING if the input member is not from a date hierarchy in a Time-
Date tagged dimension.

l The return value is a number representing the input date. The number is the number of
seconds elapsed since midnight, January 1, 1970.

l This function is applicable only to aggregate storage databases.

Example

The following query returns sales for the first week of April, 2004.

SELECT
 {[Sales]}
ON COLUMNS,
 {DateToMember(
 GetFirstDate ([Apr 2004]),
 [Time dimension].Dimension,
 [Time dimension].[Weeks]
)}
ON ROWS
FROM MySamp.basic;

GetFirstDay
For a given date_part, this function returns the first day of the time interval for the input date,
following a standard Gregorian calendar.

Syntax

GetFirstDay (date, date_part)

Parameter Description

date A number representing the input date between January 1, 1970 and Dec 31, 2037. The number is the number
of seconds elapsed since midnight, January 1, 1970. To retrieve this number, use any of the following
functions: Today(), TodateEx(), GetFirstDate(), GetLastDate(), DateRoll().

Date-Time type attribute properties of a member can also be used to retrieve this number. For example:
Product.currentmember.[Intro Date] returns the Introduction or release date for the current
product in context. [Cola].[Intro Date] returns the Introduction or release date for the “Cola”
product.

date_part Defined time components of the standard calendar.

l DP_YEAR - year of the input date.

l DP_QUARTER – quarter of the input date.

l DP_MONTH - month of the input date.

l DP_WEEK - week of the input date.

1060 MDX

Notes

This function can be used for getting the truncated date of an input date for a given date part,
following a standard Gregorian calendar.

Example

Assuming today’s date is April 15 2007, consider the following scenarios.

GetFirstDay(Today(), DP_YEAR)

returns the first day of the year, Jan 1 2007

GetFirstDay(Today(), DP_QUARTER)

returns the first day of the quarter, Apr 1 2007

GetFirstDay(Today(), DP_MONTH)

returns the first day of the month, Apr 1 2007

GetFirstDay(Today(), DP_WEEK)

returns the first day of the week, Apr 15 2007

See Also

l GetNextDay

l GetLastDay

l Today

GetLastDate
Returns the end date for a date-time dimension member.

Syntax

GetLastDate (member)

Parameter Description

member A member from a date-time tagged dimension.

Notes

l This function returns #MISSING if the input member is not from a date hierarchy in a Time-
Date tagged dimension.

l The return value is a number representing the input date. The number is the number of
seconds elapsed since midnight, January 1, 1970.

l This function is applicable only to aggregate storage databases.

Example

The following query returns sales for the last week of April, 2004.

SELECT
 {[Sales]}

MDX Function Reference 1061

ON COLUMNS,
 {DateToMember(
 GetLastDate ([Apr 2004]),
 [Time dimension].Dimension,
 [Time dimension].[Weeks]
)}
ON ROWS
FROM MySamp.basic;

GetLastDay
For a given date_part, this function returns the last day of the time interval for the input date,
following a standard Gregorian calendar.

Syntax

GetLastDay (date, date_part)

Parameter Description

date A number representing the input date between January 1, 1970 and Dec 31, 2037. The number is the number
of seconds elapsed since midnight, January 1, 1970. To retrieve this number, use any of the following
functions: Today(), TodateEx(), GetFirstDate(), GetLastDate(), DateRoll().

Date-Time type attribute properties of a member can also be used to retrieve this number. For example:
Product.currentmember.[Intro Date] returns the Introduction or release date for the current
product in context. [Cola].[Intro Date] returns the Introduction or release date for the “Cola”
product.

date_part Defined time components of the standard calendar.

l DP_YEAR - year of the input date.

l DP_QUARTER – quarter of the input date.

l DP_MONTH - month of the input date.

l DP_WEEK - week of the input date.

Notes

This function can be used for getting the truncated date of an input date for a given date part,
following a standard Gregorian calendar.

Example

Assuming today’s date is April 15 2007, consider the following scenarios.

GetLastDay(Today(), DP_YEAR)

returns the last day of the year, Dec 31 2007

GetLastDay(Today(), DP_QUARTER)

returns the last day of the quarter, Jun 30 2007

GetLastDay(Today(), DP_MONTH)

returns the last day of the month, Apr 30 2007

GetLastDay(Today(), DP_WEEK)

1062 MDX

returns the last day of the week, Apr 21 2007

See Also

l GetFirstDay

l GetNextDay

l Today

GetNextDay
To the given date and the week day, get the next date after input date that corresponds to the
week day.

Syntax

GetNextDay (date, week_day, [0|1])

Parameter Description

date A number representing the input date between January 1, 1970 and Dec 31, 2037. The number is the number
of seconds elapsed since midnight, January 1, 1970. To retrieve this number, use any of the following
functions: Today(), TodateEx(), GetFirstDate(), GetLastDate(), DateRoll().

Date-Time type attribute properties of a member can also be used to retrieve this number. For example:
Product.currentmember.[Intro Date] returns the Introduction or release date for the current
product in context. [Cola].[Intro Date] returns the Introduction or release date for the “Cola”
product.

week_day A number between 1 (Sunday) and 7 (Saturday) representing the week day.

0 or 1 Optional. Indicates whether to include the date itself or not. Default behavior is 1: to include the date itself.

Example

GetNextDay(Today(), 2, 0)

returns the next Monday following today.

GetNextDay(Today(), 2, 1)

returns the next Monday following today, or today if today is Monday.

GetNextDay(Today(), 2)

returns the next Monday following today, or today if today is Monday.

See Also

l GetFirstDay

l GetLastDay

l Today

GetRoundDate
For a given date_part, this function returns the rounded date of the input date to the input
time interval, following a standard Gregorian calendar.

MDX Function Reference 1063

Syntax

GetRoundDate (date, date_part)

Parameter Description

date A number representing the input date between January 1, 1970 and Dec 31, 2037. The number is the number
of seconds elapsed since midnight, January 1, 1970. To retrieve this number, use any of the following
functions: Today(), TodateEx(), GetFirstDate(), GetLastDate(), DateRoll().

Date-Time type attribute properties of a member can also be used to retrieve this number. For example:
Product.currentmember.[Intro Date] returns the Introduction or release date for the current
product in context. [Cola].[Intro Date] returns the Introduction or release date for the “Cola”
product.

date_part Defined time components of the standard calendar.

l DP_YEAR - year of the input date.

l DP_QUARTER – quarter of the input date.

l DP_MONTH - month of the input date.

l DP_WEEK - week of the input date.

Example

Assuming today’s date is April 15 2007, consider the following scenarios.

GetRoundDate(Today(), DP_YEAR)

returns the rounded date to the year, Jan 1 2007

GetRoundDate(Today(), DP_QUARTER)

returns the rounded date to the quarter, Apr 1 2007

GetRoundDate(Today(), DP_MONTH)

returns the rounded date to the month, Apr 1 2007

GetRoundDate(Today(), DP_WEEK)

returns the rounded date to the week, Apr 15 2007

See Also

l GetNextDay

l GetFirstDay

l GetLastDay

l Today

Head
Returns the first n members or tuples present in a set.

Syntax

Head (set [,numeric value expression])

1064 MDX

Parameter Description

set The set from which to take items.

numeric value
expression

The count of items to take from the beginning of the set. If omitted, the default is 1. If less than 1, an
empty set is returned. If the value exceeds the number of tuples in the input set, the original set is
returned.

Example

Example 1

This example uses the following part of the Sample Basic outline:

The following expression

[Product].children

returns the set:

{ [100], [200], [300], [400], [Diet] }

Therefore, the following expression

 Head (
 [Product].children, 2)

returns the first two members of the previous result set:

{ [100], [200] }

Example 2

This example uses the following parts of the Sample Basic outline:

MDX Function Reference 1065

The following expression

 CrossJoin ([100].children, [South].children)

returns the set:

{ ([100-10], Texas), ([100-10], Oklahoma), ([100-10], Louisiana), ([100-10], [New
Mexico]),
 ([100-20], Texas), ([100-20], Oklahoma), ([100-20], Louisiana), ([100-20], [New
Mexico]),
 ([100-30], Texas), ([100-30], Oklahoma), ([100-30], Louisiana), ([100-30], [New
Mexico]) }

And the following expression

Head (CrossJoin ([100].children, [South].children), 8)

returns the first 8 tuples of the previous result set:

{ ([100-10], Texas), ([100-10], Oklahoma), ([100-10], Louisiana), ([100-10], [New
Mexico]),
 ([100-20], Texas), ([100-20], Oklahoma), ([100-20], Louisiana), ([100-20], [New
Mexico]) }

Additionally, the following expression

([Year].generations(2).members)

returns the set of members comprising the second generation of the Year dimension:

{ [Qtr1], [Qtr2], [Qtr3], [Qtr4] }

Therefore, the following query

SELECT
 {([Year].generations(2).members)}
ON COLUMNS,
Head (
 CrossJoin (
 [100].children, [South].children), 8
)
ON ROWS
FROM Sample.Basic

returns the grid:

(axis) Qtr1 Qtr2 Qtr3 Qtr4

100–10 Texas 489 536 653 547

Oklahoma 87 92 128 211

Louisiana 93 106 128 137

New Mexico 76 101 122 70

1066 MDX

(axis) Qtr1 Qtr2 Qtr3 Qtr4

100–20 Texas 206 199 152 82

Oklahoma 84 66 55 79

Louisiana 119 158 171 104

New Mexico –103 –60 –98 –18

See Also

l Tail

Hierarchize
Returns members of a set in their hierarchical order as represented in the database outline.

Syntax

Hierarchize (set [,POST])

Parameter Description

set Set specification.

POST If this keyword is used, child members are returned before their parents.

Notes

This function returns members of a set in their hierarchical order as represented in the database
outline (viewed from top-down by default, meaning that parent members are returned before
their children).

If POST is used, child members are returned before their parents (the view changes to bottom-
up). For example,

Hierarchize({Child, Grandparent, Parent})

returns {Grandparent, Parent, Child}.

Hierarchize({Child, Grandparent, Parent}, POST)

returns {Child, Parent, Grandparent}.

Example

Example 1

The following expression

Hierarchize({May, Apr, Jun})

returns the set:

{Apr, May, Jun}

MDX Function Reference 1067

Therefore, the following query

Select
Hierarchize({May, Apr, Jun})
on columns from sample.basic

returns the grid:

Apr May Jun

8644 8929 9534

Example 2

The following expression

Hierarchize({May, Qtr2, Apr, Jun})

returns the set:

{ Qtr2 Apr May Jun }

Therefore, the following query

Select
Hierarchize({May, Qtr2, Apr, Jun})
on columns from sample.basic

returns the grid:

Qtr2 Apr May Jun

27107 8644 8929 9534

Example 3

The following expression

Hierarchize({May, Qtr2, Apr, Jun}, POST)

returns the set:

{Apr, May, Jun, Qtr2}

Therefore, the following query

Select
Hierarchize({May, Qtr2, Apr, Jun}, POST)
on columns from sample.basic

returns the grid:

Apr May Jun Qtr2

8644 8929 9534 27107

Example 4

The following query

1068 MDX

Select
Hierarchize({Dec, Year, Feb, Apr, Qtr1, Jun, Qtr2}, POST)
on columns,
Hierarchize({Margin, Sales})
on rows
from sample.basic

returns the grid:

(axis) Feb Qtr1 Apr Jun Qtr2 Dec Year

Margin 17762 52943 18242 19457 56317 18435 221519

Sales 32069 95820 32917 35088 101679 33342 400855

IIF
Performs a conditional test, and returns an appropriate numeric expression or set depending
on whether the test evaluates to true or false.

Syntax

IIF (search_condition, true_part, false_part)

Parameter Description

search_condition An expression to evaluate as true or false (see “MDX Grammar Rules” on page 934).

true_part A value_expression or a set. IIF returns this expression if the search condition evaluates to TRUE
(something other than zero).

The value_expression can be a numeric value expression or a string value expression.

false_part A value_expression or a set. IIF returns this expression if the search condition evaluates to FALSE
(zero).

The value_expression can be a numeric value expression or a string value expression.

Example

Example 1

The company plans an expensive promotion of its caffeinated drinks. For the Caffeinated
products only, the following query calculates a Revised Budget that is 110% of the regular budget.

WITH MEMBER
 [Scenario].[Revised Budget]
AS
 'IIF (
 [Product].CurrentMember.Caffeinated,
 Budget * 1.1, Budget
)'
SELECT
 {[Scenario].[Budget], [Scenario].[Revised Budget]}
ON COLUMNS,
 [Product].Levels(0).Members

MDX Function Reference 1069

ON ROWS
FROM Sample.Basic
WHERE ([Measures].[Sales], [Year].[Qtr3])

This query returns the grid:

(axis) Budget Revised Budget

100-10 18650 20515

100-20 8910 9801

100-30 3370 3370

200-10 11060 12166

200-20 9680 10648

200-30 3880 3880

200-40 2660 2660

300-10 10600 11660

300-20 3760 4136

300-30 8280 9108

400-10 7750 7750

400-20 6800 6800

400-30 3290 3290

100-20 8910 8910

200-20 9680 9680

300-30 8280 8280

Example 2

The following query calculates a Revised Budget equaling Budget for caffeinated products, and
Actual for non-caffeinated products.

WITH MEMBER
 [Scenario].[Revised Budget]
AS
 'StrToMbr(IIF (
 [Product].CurrentMember.Caffeinated,
 "Budget" , "Actual"
))'
SELECT
 {[Scenario].[Budget], [Scenario].[Revised Budget]}
ON COLUMNS,
Children([100])
ON ROWS

1070 MDX

FROM Sample.Basic
WHERE ([Measures].[Sales], [Year].[Qtr3])

This query returns the grid:

(axis) Budget Revised Budget

Cola 18650 18650

Diet Cola 8910 8910

Caffeine Free Cola 3370 3189

InStr
Returns a number specifying the position of the first occurrence of one string within another.

Syntax

InStr ([start,] string1, string2 [,compare])

Parameter Description

start Optional character position to begin search in string1. The default value is 1. A position value of 1 indicates
the very first character in the string. If omitted, search begins at first character in string1.

string1 String expression or literal string in which to search.

string2 String expression or literal string for which to search.

compare Optional search mode. Values: 0 for case sensitive, 1 for case insensitive. Default is case sensitive.

Notes

If a matching string is not found, the return value is 0.

Example

InStr (5, "Year2000_promotional", "promotional", 1)

returns 10

Int
Returns the next lowest integer value of an expression.

Syntax

Int (numeric_value_expression)

Parameter Description

numeric_value_expression A numeric value or an expression that returns a numeric value (see “MDX Grammar Rules”
on page 934).

MDX Function Reference 1071

Example

Example 1

Int(104.504) returns 104.

Example 2

The following query

WITH MEMBER [Market].[West_approx]
AS
 'Int(
 Sum(
 Children([Market].[West])
)
)'
SELECT
 {[Year].[Qtr1].Children}
ON COLUMNS,
 {[Market].[West].children,
 [Market].[West_approx]}
ON ROWS
FROM
 Sample.Basic
WHERE ([Measures].[Profit %], [Product].[Cola], [Scenario].[Actual])

returns the grid:

(axis) Jan Feb Mar

California 38.643 37.984 38.370

Oregon 17.500 16.129 16.107

Washington 29.231 30.986 32.000

Utah 23.077 23.077 20.968

Nevada -3.947 -6.757 -5.333

West_approx 104.000 101.00 102.000

Intersect
Returns the intersection of two input sets, optionally retaining duplicates.

Syntax

Intersect (set1, set2 [,ALL])

Parameter Description

set1 A set to intersect with set2.

1072 MDX

Parameter Description

set2 A set to intersect with set1.

ALL The optional ALL keyword retains matching duplicates in set1 and set2.

Notes

Duplicates are eliminated by default from the tail of the set. The optional ALL keyword retains
duplicates. The two input sets must have identical dimension signatures. For example, if set1
consists of dimensions Product and Market, in that order, then set2 should also consist of Product
followed by Market.

Example

Example 1

The following expression

Intersect({[New York], [California], [Oregon]},
 {[California], [Washington], [Oregon]})

returns the set:

{[California], [Oregon]}

Therefore, the following query

SELECT
Intersect({[New York], [California], [Oregon]},
 {[California], [Washington], [Oregon]})
ON COLUMNS
FROM Sample.Basic

returns the grid:

California Oregon

12964 5062

Example 2

The following expression

Intersect({ [New York], [California], [Florida], [California] },
 { [Oregon], [Washington], [California], [Florida], [California] }, ALL)

returns the set:

{ [California], [Florida], [California] }

Therefore, the following query

MDX Function Reference 1073

SELECT
Intersect({ [New York], [California], [Florida], [California] },
 { [Oregon], [Washington], [California], [Florida], [California] }, ALL)
ON COLUMNS
FROM Sample.Basic

returns the grid:

California Florida California

12964 5029 12964

The matching duplicate element [California] is duplicated in the result.

However, the following expression

Intersect({ [New York], [California], [Florida], [California] },
 { [Oregon], [Washington], [California], [Florida] }, ALL)

would return only

{ [California], [Florida] }

because only one match exists between [California] in set1 and [California] in set2.

Is
Returns TRUE if two members are identical.

Syntax

IS (member1 , member2)

member1 IS member2

Parameter Description

member1 First member specification.

member2 Second member specification.

Example

IS([Year].CurrentMember.Parent, [Qtr1])

returns TRUE if the parent of the current member in [Year] dimension is [Qtr1].

Filter([Year].Levels(0).members, IS([Year].CurrentMember.Parent, [Qtr1]))

returns children of [Qtr1].

The following query returns all members of [Market] that have the parent [East]; in other words,
children of [East].

SELECT
{

1074 MDX

 Filter (
 [Market].members,
 [Market].CurrentMember.Parent IS [East]
)
}
on columns
FROM sample.basic

This query returns the following grid:

New York Massachusetts Florida Connecticut New Hampshire

8202 6712 5029 3093 1125

IsAccType
Returns TRUE if the member has the associated accounts tag. Account tags apply only to
dimensions marked as Accounts dimensions. A FALSE value is returned for all other dimensions.

Syntax

IsAccType (member , AcctTag)

Parameter Description

member A member specification.

AcctTag Valid values (defined in the database outline):

l First

l Last

l Average

l Expense

l TwoPass

Example

SELECT
Filter([Measures].Members, IsAccType([Measures].CurrentMember, First))
ON COLUMNS
FROM Sample.Basic

This query returns the following grid:

Opening Inventory

117405

IsAncestor
Returns TRUE if the first member is an ancestor of the second member and, optionally, if the
first member is equal to the second member.

MDX Function Reference 1075

Syntax

IsAncestor (member1 , member2 [, INCLUDEMEMBER])

Parameter Description

member1 A member specification.

member2 A member specification.

INCLUDEMEMBER Optional. Use this keyword if you want IsAncestor to return TRUE if the first member is equal
to the second member.

Example

Example 1

The following query returns all Market dimension members for which the expression
IsAncestor([Market].CurrentMember, [Florida]) returns TRUE; in other words, the
query returns all ancestors of Florida.

SELECT
 Filter([Market].Members, IsAncestor([Market].CurrentMember, [Florida]))
ON COLUMNS
FROM Sample.Basic

Market East

105522 24161

Example 2

The following query is the same as the above query, except that it uses INCLUDEMEMBER. It
returns all Market dimension members for which the expression
IsAncestor([Market].CurrentMember, [Florida], INCLUDEMEMBER)) returns
TRUE; in other words, the query returns Florida and all ancestors of Florida.

SELECT
 Filter([Market].Members, IsAncestor([Market].CurrentMember, [Florida], INCLUDEMEMBER))
ON COLUMNS
FROM Sample.Basic

{[Market], [East], [Florida]}

Market East Florida

105522 24161 5029

IsChild
Returns TRUE if the first member is a child of the second member and, optionally, if the first
member is equal to the second member.

1076 MDX

Syntax

IsChild (member1 , member2 [, INCLUDEMEMBER])

Parameter Description

member1 A member specification.

member2 A member specification.

INCLUDEMEMBER Optional. Use this keyword if you want IsChild to return TRUE if the first member is equal to
the second member.

Example

Example 1

The following query returns all Market dimension members for which the expression
IsChild([Market].CurrentMember, [East]) returns TRUE; in other words, the query
returns all children of East.

SELECT
 Filter([Market].Members, IsChild([Market].CurrentMember, [East]))
ON COLUMNS
FROM Sample.Basic

New York Massachusetts Florida Connecticut New Hampshire

8202 6712 5029 3093 1125

Example 2

The following query is the same as the above query, except that it uses INCLUDEMEMBER. It
returns all Market dimension members for which the expression
IsChild([Market].CurrentMember, [East]) returns TRUE; in other words, the query
returns East and all children of East.

SELECT
 Filter([Market].Members, IsChild([Market].CurrentMember, [East], INCLUDEMEMBER))
ON COLUMNS
FROM Sample.Basic

East New York Massachusetts Florida Connecticut New Hampshire

24161 8202 6712 5029 3093 1125

IsEmpty
Returns True if the value of an input numeric-value-expression evaluates to #MISSING, and
returns FALSE otherwise.

Syntax

IsEmpty (value_expression)

MDX Function Reference 1077

Parameter Description

value_expression A set returning values to check for emptiness.

Notes

Zero is not equivalent to #MISSING. IsEmpty(0) returns TRUE.

Example

The following example finds all Product, Market combinations for which Sales data exists.

WITH SET [NewSet]
AS 'CrossJoin([Product].Children, [Market].Children)'
SELECT
 Filter([NewSet], NOT IsEmpty([NewSet].CurrentTuple))
ON COLUMNS
FROM Sample.Basic
WHERE
 {[Sales]}

This query returns the following grid:

100 ... 400 Diet

East West South Central ... East West Central East West South Central

27740 28306 16280 33808 ... 15745 35034 33451 7919 36423 18676 42660

IsGeneration
Returns TRUE if the member is in a specified generation.

Syntax

IsGeneration (member, index)

Parameter Description

member A member specification.

index A generation number.

Example

IsGeneration([Market].CurrentMember, 2)

returns TRUE if the current member of the Market dimension is at generation 2.

Therefore, the following query

SELECT
 Filter([Market].Members, IsGeneration([Market].CurrentMember, 2))
ON COLUMNS
FROM Sample.Basic

returns

1078 MDX

East West South Central

24161 29861 13238 38262

See Also

l Generation

l IsLevel

IsLeaf
Returns TRUE if the member is a level-0 member.

Syntax

IsLeaf (member)

Parameter Description

member A member specification.

Notes

IsLeaf(member) is the same as IsLevel(member, 0).

Example

IsLeaf([Market].CurrentMember)

returns TRUE if the current member of the Market dimension is at level 0.

Therefore, the following query

SELECT
 Filter([Market].Members, IsLeaf([Market].CurrentMember))
ON COLUMNS
FROM Sample.Basic

returns

New York Massachusetts Florida ... Missouri Iowa Colorado

8202 6712 5029 ... 1466 9061 7227

IsLevel
Returns TRUE if the member is in a specified level.

Syntax

IsLevel (member , index)

MDX Function Reference 1079

Parameter Description

member A member specification.

index A level number.

Example

IsLevel([Market].CurrentMember, 1)

returns TRUE if the current member of the Market dimension is at level 1.

Therefore, the following query

SELECT
 Filter([Market].Members, IsLevel([Market].CurrentMember, 1))
ON COLUMNS
FROM Sample.Basic

returns

East West South Central

24161 29861 13238 38262

See Also

l Level

l IsGeneration

IsMatch
Performs wild-card search / pattern matching to check if a string matches a given pattern. The
input string can be a member name, an alias, an attribute value, or any relevant string. This
function searches for strings matching the pattern you specify, and returns the artifacts it finds.

Syntax

IsMatch(string, patternstring, {MATCH_CASE | IGNORE_CASE})

Parameter Description

string The string that should be tested against the pattern.

patternstring The pattern to search for. Must be in POSIX Extended Regular Expression Syntax. See the syntax
specification at The Open Group.

See the Notes in this topic for additional rules regarding special characters.

MATCH_CASE Optional. Consider patternstring to be case sensitive. If MATCH_CASE / IGNORE_CASE are omitted,
Essbase defaults to the case-sensitive setting of the outline properties.

To define database member names as case-sensitive, use Outline Editor in Administration Services
(see the Oracle Essbase Administration Services Online Help).

1080 MDX

http://www.opengroup.org/onlinepubs/000095399/basedefs/xbd_chap09.html#tag_09_04

Parameter Description

IGNORE_CASE Optional. Do not consider patternstring to be case sensitive. If MATCH_CASE / IGNORE_CASE are
omitted, Essbase defaults to the case-sensitive setting of the outline properties.

Notes

l To search for a member name containing $, you must precede it with three backslash (\)
escape characters in the patternstring. For example, to search for member a$bc in Market,
you must use IsMatch(Market.CurrentMember.MEMBER_NAME, "a\\\$bc").

l To search for a character at the end of a line, you must precede the POSIX end-of-line anchor,
which is a dollar sign ($), with one backslash (\) escape character in the patternstring. For
example, to search for a member name that ends with a c in Market, you must use
IsMatch(Market.CurrentMember.MEMBER_NAME, "c\$").

l To search for any other special characters besides $, you must precede them with two
backslash (\) escape characters in the patternstring. For example, to search for member a?
bc in Market, you must use IsMatch(Market.CurrentMember.MEMBER_NAME, "a\\?
bc").

Example

The following query searches for members whose names start with “new”:

SELECT
 Filter(Market.Levels(0).Members,
 IsMatch(Market.CurrentMember.MEMBER_NAME, "^new")
)
ON COLUMNS
FROM Sample.Basic

The following query searches for members whose names start with at least an “n”:

SELECT
 Filter(Market.Levels(0).Members,
 ISMATCH(Market.CurrentMember.MEMBER_NAME, "^n+")
)
ON COLUMNS
FROM Sample.Basic

The following query searches for members whose names contain an “*”:

SELECT
 Filter(Year.Members,
 ISMATCH(Year.CurrentMember.MEMBER_NAME, "*")
)
ON COLUMNS
FROM Sample.Basic

The following query searches for members whose names contain zero or an “a”:

SELECT
 Filter(Year.Members,

MDX Function Reference 1081

 ISMATCH(Year.CurrentMember.MEMBER_NAME, "a?")
)
ON COLUMNS
FROM Sample.Basic

IsSibling
Returns TRUE if the first member is a sibling of the second member and, optionally, if the first
member is equal to the second member.

Syntax

IsSibling(member1, member2 [, INCLUDEMEMBER])

Parameter Description

member1 A member specification.

member2 A member specification.

INCLUDEMEMBER Optional. Use this keyword if you want IsSibling to return TRUE if the first member is equal to
the second member.

Example

Example 1

The following query returns all Market dimension members for which the expression
IsSibling([Market].CurrentMember, [California]) returns TRUE; in other words,
the query returns all states that are siblings of California.

SELECT
 Filter([Market].Members, IsSibling([Market].CurrentMember, [California]))
ON COLUMNS
FROM Sample.Basic

Oregon Washington Utah Nevada

5062 4641 3155 4039

Example 2

The following query is the same as the above query, except that it uses INCLUDEMEMBER. It
returns all Market dimension members for which the expression
IsSibling([Market].CurrentMember, [California]) returns TRUE; in other words,
the query returns all states that are siblings of California, including California itself.

SELECT
 Filter([Market].Members, IsSibling([Market].CurrentMember, [California],
INCLUDEMEMBER))
ON COLUMNS
FROM Sample.Basic

1082 MDX

California Oregon Washington Utah Nevada

12964 5062 4641 3155 4039

IsUda
Returns TRUE if the member has the associated UDA tag (user-defined attribute).

Syntax

IsUda (member , string_value_expression)

Parameter Description

member A member specification.

string_value_expression A user-defined attribute (UDA) name string, defined in the database outline.

Example

IsUda([Market].CurrentMember, "Major Market")

returns TRUE if the current member of the Market has the user-defined attribute "Major
Market."

Therefore, the following query

SELECT
 Filter([Market].Members, IsUda([Market].CurrentMember, "Major Market"))
ON COLUMNS
FROM Sample.Basic

returns

East New York Massachusetts Florida California Texas Central Illinois Ohio Colorado

24161 8202 6712 5029 12964 6425 38262 12577 4384 7227

IsValid
Returns TRUE if the specified element validates successfuly.

Syntax

IsValid (member | tuple | set | layer | property)

Parameter Description

member A member specification.

tuple A tuple specification.

set A set specification.

MDX Function Reference 1083

Parameter Description

layer A layer specification.

property A property specification (see “MDX Grammar Rules” on page 934).

Example

Example 1

The following example shows how IsValid can be used to check whether a given property value
is valid. It returns all Product dimension members that have an Ounces attribute value of 12.

SELECT
Filter([Product].members,
 IsValid([Product].CurrentMember.Ounces)
 AND
 [Product].CurrentMember.Ounces = 12)
ON COLUMNS
FROM Sample.Basic

The expression IsValid([Product].currentmember.Ounces) returns TRUE for only
those members in the Product dimension that have a valid property value for [Ounces]. This
eliminates ancestral members such as [Product] and [Colas] that do not have the
[Ounces] property defined because they are not level-0 members of the Product dimension.

The second part of the AND condition in the filter selects only those members with a value of
12 for [Ounces].

This query returns the following grid:

100-10 100-20 200-10 200-30 300-30

22777 5708 7201 4636 11093

Example 2

IsValid([Jan].FirstChild)

returns FALSE, because [Jan] is a level-0 member, therefore it does not have any children.

Item
Extracts a member from a tuple.

Extracts a tuple from a set.

Syntax

Syntax that Returns a Member—one of the following:

tuple[.Item] (index)

Item (tuple, index)

Syntax that Returns a Tuple—one of the following:

1084 MDX

set[.Item] (index)

Item (set, index)

Parameter Description

tuple The tuple from which to get a member.

index The usage depends upon whether you are returning a member or a tuple:

l Returning a member: Numeric position (starting from 0) of the member to extract from the tuple. A
valid value for index is from 0 to 1 less than the size of the input tuple. A value of less than 0, or greater
than or equal to size of the input tuple, results in an empty member.

l Returning a tuple: Numeric position (starting from 0) of the tuple to extract from the set. A valid value
for index is from 0 to 1 less than the size of the input set. A value of less than 0, or greater than or equal
to size of the input set, results in an empty tuple.

set The set from which to get a tuple.

Example

Example 1, Extracting a Member from a Tuple

SELECT
{([Qtr1], [Sales], [Cola], [Florida], [Actual]).Item(3)}
ON COLUMNS
FROM Sample.Basic

returns:

Florida

5029

SELECT
 {Item(([Qtr1], [Sales], [Cola], [Florida], [Actual]), 2)}
ON COLUMNS
FROM Sample.Basic

returns:

Cola

22777

Example 2, Extracting a Tuple from a Set

The following query

SELECT
{CrossJoin
 (
 [Market].CHILDREN,
 [Product].CHILDREN
).ITEM(0)}
 ON COLUMNS
 FROM Sample.Basic

MDX Function Reference 1085

returns the first tuple in the set CrossJoin([Market].CHILDREN,
[Product].CHILDREN), which is ([East], [Colas]):

The above query can also be written as:

SELECT
{CrossJoin
 (
 [Market].CHILDREN,
 [Product].CHILDREN
)(0)}
 ON COLUMNS
 FROM Sample.Basic

because the ITEM keyword is optional.

Example 3, Extracting Member from a Set

Consider the following crossjoined set of Market and Product members:

{
([East],[100]),([East],[200]),([East],[300]),([East],[400]),([East],[Diet]),
([West],[100]),([West],[200]),([West],[300]),([West],[400]),([West],[Diet]),
([South],[100]),([South],[200]),([South],[300]),([South],[400]),([South],[Diet]),
([Central],[100]),([Central],[200]),([Central],[300]),([Central],[400]),([Central],
[Diet])
}

The following example

CrossJoin([Market].CHILDREN, [Product].CHILDREN).item(0)

returns the first tuple of the crossjoined set, ([East],[100]), and the following example

CrossJoin([Market].CHILDREN, [Product].CHILDREN).item(0).item(1)

returns [100], the second member of the first tuple of the crossjoined set.

JulianDate
To the given UNIX date, get its Julian date.

Syntax

JulianDate (date)

Parameter Description

date A number representing the input date between January 1, 1970 and Dec 31, 2037. The number is the number
of seconds elapsed since midnight, January 1, 1970. To retrieve this number, use any of the following
functions: Today(), TodateEx(), GetFirstDate(), GetLastDate(), DateRoll().

Date-Time type attribute properties of a member can also be used to retrieve this number. For example:
Product.currentmember.[Intro Date] returns the Introduction or release date for the current
product in context. [Cola].[Intro Date] returns the Introduction or release date for the “Cola”
product.

1086 MDX

Notes

l This function is useful in converting the UNIX date to Julian Date or the 1900 Date system
recognized by Microsoft Excel.

l In the 1900 date system, the first day that is supported is January 1, 1900. When you enter
a date, the date is converted into a serial number that represents the number of elapsed days
since January 1, 1900. For example, if you enter July 5, 1998, Microsoft Excel converts the
date to the serial number 35981. By default, Microsoft Excel for Windows uses the 1900 date
system.

Return Value

This function returns juliandate, a number representing the Julian date. This number is a
continuous count of days and fractions elapsed since noon Universal Time on January 1, 4713
BC in the proleptic Julian calendar.

Note: For Excel workbooks using 1900 date system, (JulianDate – 2415018.50) gets the
sequential serial number as per 1900 date system.

Example

The following query returns the total monthly sales for all Colas along with their release dates
as in 1900 Date system in market “California” for “March 2007.”

WITH MEMBER
 Measures.[Product Intro Date]
AS
 'JulianDate(Product.CurrentMember.[Intro Date]) – 2415018.50'
SELECT
 {Measures.[Product Intro Date], Measures.Sales}
ON COLUMNS,
 {Colas.Children}
ON ROWS
FROM Sample.Basic
WHERE
 (California, [March 2007], Actual);

See Also

l UnixDate

Lag
Using the order of members existing in a database outline, returns a member that is n steps
behind a given member, along the same generation or level (as defined by layertype).

Syntax

member.Lag (index [,layertype] [, hierarchy])

Lag (member, index [, hierarchy])

MDX Function Reference 1087

Parameter Description

member The starting member from which .LAG counts to a given number of previous members.

index A number n representing how many steps prior to <member> to count.

layertype GENERATION or LEVEL. Generation is the default.

hierarchy Optional. A specific hierarchy within the time dimension.

Notes

l If the member specified by the Lag function does not exist, the result is an empty member.
For example, using Sample Basic, [Jun].lag (12) returns an empty member.

l When multiple hierarchies are enabled, this function returns NULL when the source
member is in one hierarchy and the result member belongs to a different hierarchy.

Example

The following expression:

[Jun].lag (3)

returns the member that is 3 steps prior to Jun:

[Mar]

The following expression:

[Jun].lag (-3)

returns the member that is 3 steps following Jun:

[Sep]

For every month, the following query displays the sales and average over the last three months.

WITH MEMBER
 [Measures].[Average Sales in Last 3 months]
AS
'Avg(
 {[Year].CurrentMember,
 [Year].CurrentMember.Lag(1),
 [Year]. CurrentMember.Lag(2)
 },
 [Measures].[Sales]
)'
SELECT
 {[Measures].[Sales],
 [Measures].[Average Sales in Last 3 months]
 }
ON COLUMNS,
 [Year].Levels(0).Members
ON ROWS
FROM Sample.Basic

This query returns the grid:

1088 MDX

(axis) Sales Average Sales in Last 3 Months

Jan 31538 31538

Feb 23069 31803.500

March 32213 31940

April 32917 32399.667

May 33674 32934.667

Jun 35088 33893

Jul 36134 34965.333

Aug 36008 35743.333

Sep 33073 35071.667

Oct 32828 33969.667

Nov 31971 32624

Dec 33342 32713.667

See Also

l Lead

l PrevMember

LastChild
Returns the last child of the input member.

Syntax

member.LastChild

LastChild (member)

Parameter Description

member A member specification.

Example

SELECT
 {[Qtr1].firstchild}
ON COLUMNS,
 {[Market].[Central].lastchild}
ON ROWS
FROM Sample.Basic

MDX Function Reference 1089

(axis) Jan

Colorado 585

See Also

l FirstChild

l LastSibling

LastPeriods
Returns a set of members ending either at the specified member or at the current member in the
time dimension.

Syntax

LastPeriods (numeric value expression [, member [, hierarchy]])

Parameter Description

numeric value
expression

The number of members to return (see “MDX Grammar Rules” on page 934). If negative,
member is treated as the starting point.

member Optional. A member expression.

hierarchy Optional. A specific hierarchy within the time dimension.

Example

Lastperiods(3, Apr) returns the set {Feb, Mar, Apr}.

Lastperiods(-3, Apr) returns the set {Apr, May, Jun}.

Lastperiods(1, Apr) returns a set of one member: {Apr}.

Lastperiods(0, Apr) returns an empty set.

Lastperiods(5, Apr) returns the set {Jan, Feb, Mar, Apr}. Note that the output set has
only four members.

The following query:

WITH MEMBER
 [Measures].[Rolling Sales] AS
'Avg (
 LastPeriods
 (3, [Year].Currentmember
),
 [Measures].[Sales]
)'
SELECT
 {[Measures].[Sales], [Measures].[Rolling Sales]}
ON COLUMNS,
 Descendants ([Year].[Qtr2])
ON ROWS
FROM Sample.Basic
WHERE [Product].[Root Beer]

1090 MDX

returns the grid:

(axis) Sales Rolling Sales

Qtr2 27401 27014

Apr 8969 8960

May 9071 8997

Jun 9361 9133.667

See Also

l PeriodsToDate

l OpeningPeriod

l ClosingPeriod

l ParallelPeriod

LastSibling
Returns the last child of the input member's parent.

Syntax

LastSibling (member [, hierarchy])

member.LastSibling [(hierarchy)]

Parameter Description

member A member specification.

hierarchy Optional. A specific hierarchy within the time dimension.

Notes

If member is the top member of a dimension, then member itself is returned.

Example

Year.Lastsibling returns Year.

Qtr3.Lastsibling returns Qtr4.

See Also

l FirstSibling

l LastChild

Lead
Using the order of members existing in a database outline, returns a member that is n steps past
a given member, along the same generation or level (as defined by layertype).

MDX Function Reference 1091

Syntax

member.Lead (index [,layertype] [, hierarchy])

Lead (member, index [, hierarchy])

Parameter Description

member The starting member from which .LEAD counts a given number of following members.

index A number n representing how many steps away from <member> to count.

layertype GENERATION or LEVEL.

hierarchy Optional. A specific hierarchy within the time dimension.

Notes

l If the member specified by the Lead function does not exist, the result is an empty member.
For example, using Sample Basic, [Jun].lead (12) returns an empty member.

l When multiple hierarchies are enabled, this function returns NULL when the source
member is in one hierarchy and the result member belongs to a different hierarchy.

Example

The following expression:

[Jan].lead (11)

returns the member that is 11 steps past Jan:

[Dec]

The following expression:

[Dec].lead (-11)

returns the member that is 11 steps prior to Dec:

[Jan]

For every month, the following query displays the marketing expenses and budgeted sales for
the next month.

WITH MEMBER
 [Measures].[Expected Sales in Next month]
AS
 '([Measures].[Sales], [Year].CurrentMember.Lead(1))'
SELECT
 {
 ([Scenario].[Actual], [Measures].[Marketing]),
 ([Scenario].[Budget], [Measures].[Expected Sales in Next month])
 }
ON COLUMNS,
[Year].Levels(0).Members
ON ROWS
FROM Sample.Basic

This query returns the grid:

1092 MDX

(axis) Actual Budget

(axis) Marketing Expected Sales in Next Month

Jan 5223 30000

Feb 5289 30200

Mar 5327 30830

Apr 5421 31510

May 5530 32900

Jun 5765 33870

Jul 5985 33820

Aug 6046 31000

Sep 5491 29110

Oct 5388 29540

Nov 5263 30820

Dec 5509 #Missing

See Also

l Lag

l NextMember

Leaves
Returns the set of level 0 (leaf) members that contribute to the value of the specified member.

The Leaves function compactly describes large sets of members or tuples while avoiding pre-
expansion of the set before retrieval. Because large sets tend to be very sparse, only a few members
contribute to the input member (have non #Missing values) and are returned. As a result, Leaves
consumes less memory resources than the equivalent nonempty Descendants function call,
allowing for better scalability, especially in concurrent user environments.

Members with #MISSING values are not included in the return set.

When member is on the primary hierarchy, the return set is the set of descendants at level 0 that
are nonempty.

The set returned by Leaves is the set of nonempty descendants at level 0, with a few differences.
For example, when member is from an alternate hierarchy, the return set contains all primary,
stored, level 0 members whose values are aggregated into member's value. These contributing
members may be either:

l Direct descendants of member along the alternate hierarchy

MDX Function Reference 1093

l Members that contribute value to a direct descendant of member by means of a shared
member

In most cases, the Leaves function does not pre-expand the set prior to retrieval. Thus it requires
less memory resources than the Descendants function, allowing for more scalability in dealing
with large sets, especially in a high-concurrency user environment. Large sets tend to be very
sparse; therefore, very few members are returned given the current point of view as defined by
the MDX current member stack.

For example, a healthcare provider may have a database containing Doctor and Geography
dimensions. While there may be hundreds of thousands, even millions, of doctors, only a fraction
have data associated with them for a given geographic location. Leaves is ideal for queries where
the set is large but is sparse at a given point of view:

Select {[Copayments]} ON COLUMNS
CrossJoin(Leaves ([Doctors]), Leaves([Santa Clara County]) ON ROWS

The Leaves function is beneficial for queries on large dimensions.

In some cases, Leaves does require pre-expansion of sets, limiting the memory savings. Pre-
expansion of sets likely will occur when the input member to Leaves is:

l On an Accounts dimension

l On a Time dimension

l On a dimension with fewer than 10,000 members

Syntax

Leaves (member)

Parameter Description

member The member for which contributing leaf members are sought

Notes

l This function is applicable only to aggregate storage databases. Using Leaves() with a non
aggregate-storage input member returns an error.

l Leaves() is supported only for members in stored hierarchies. Using Leaves with a member
in a dynamic hierarchy returns an error.

l If you modify the return set of Leaves with a metadata function such as Head, Tail, or Subset,
then the query is not optimized. For example, querying for half of the Leaves set reduces
performance to about the same as for the nonempty Descendants function call.

l Leaves() is recommended for use on large, sparse dimensions. In general, use Leaves() to
optimize performance when the input set contains 10,000 members or more. For smaller,
denser input sets, using the NON EMPTY keyword on an axis with CrossJoin might improve
performance.

Example

The following examples are based on the Asosamp.Sample database.

1094 MDX

Example 1 (Leaves)

The following query returns the Units (items per package) for all level 0 Personal Electronics
products for which the Units data is not #MISSING:

SELECT
{Units} ON COLUMNS,
Leaves([Personal Electronics]) ON ROWS
FROM [Asosamp.Sample]

Because Leaves returns nonempty, level 0 descendants, the above query is identical to the
following query:

SELECT
{Units} ON COLUMNS,
NON EMPTY Descendants([Personal Electronics], [Products].Levels(0), SELF) ON ROWS
FROM [Asosamp.Sample]

These queries return the following grid:

(axis) Items Per Package

Digital Cameras 3041

Camcorders 3830

Photo Printers 6002

Memory 23599

Other Accessories 117230

Boomboxes 10380

Radios 20009

[Handhelds] was omitted from the result set because it has a value of #MISSING for the measure
Units.

Example 2 (Leaves)

For this example, a third hierarchy called [Small Items] was added to the Products dimension.

MDX Function Reference 1095

The following query

SELECT
{Units} ON COLUMNS,
Leaves ([Small Items]) ON ROWS
FROM [Asosamp.Sample]

Returns the the following grid:

(axis) Items Per Package

Digital Cameras 3041

Camcorders 3830

Memory 23599

Other Accessories 117230

In addition to the primary members [Digital Cameras] and [Camcorders], Leaves also returned
the primary members [Memory] and [Other Accessories], because these level-0 members
contributed to [Small Items] via [Handhelds/PDAs].

Left
Returns a specified number (length) of characters from the left side of the string .

Syntax

Left (string ,length)

Parameter Description

string Input string.

length The number of characters to return from the left side of the input string.

Example

Left ("Northwind", 5)

1096 MDX

returns North.

Len
Returns length of a string in terms of number of characters.

Syntax

Len (string)

Parameter Description

string A string.

Example

Level
Returns the level of the input member.

Syntax

member.Level

Parameter Description

member A member specification.

Example

The following query

SELECT
 [Year].[Qtr1].Level.Members
ON COLUMNS,
 [Product].Levels(0).Members
ON ROWS
FROM Sample.Basic

returns the grid:

(axis) Qtr1 Qtr2 Qtr3 Qtr4

100-10 5096 5892 6583 5206

100-20 1359 1534 1528 1287

100-30 593 446 400 544

200-10 1697 1734 1883 1887

200-20 2963 3079 3149 2834

200-30 1153 1231 1159 1093

MDX Function Reference 1097

(axis) Qtr1 Qtr2 Qtr3 Qtr4

200-40 908 986 814 1384

300-10 2544 3231 3355 3065

300-20 690 815 488 518

300-30 2695 2723 2855 2820

400-10 2838 2998 3201 2807

400-20 2283 2522 2642 2404

400-30 -116 -84 -145 -49

100-20 1359 1534 1528 1287

200-20 2963 3079 3149 2834

300-30 2695 2723 2855 2820

See Also

l Generation

l Levels

l IsLevel

Levels
Returns the level specified by the input level number.

Syntax

dimension.Levels (index)

Levels (dimension, index)

Parameter Description

dimension The dimension specification.

index The number of steps up from the lowest level-0 member of the dimension. The count begins with zero at
leaf members.

Example

The following query

SELECT
 [Year].[Qtr1].Level.Members
ON COLUMNS,
 [Product].Levels(0).Members
ON ROWS
FROM Sample.Basic

returns the grid:

1098 MDX

(axis) Qtr1 Qtr2 Qtr3 Qtr4

100-10 5096 5892 6583 5206

100-20 1359 1534 1528 1287

100-30 593 446 400 544

200-10 1697 1734 1883 1887

200-20 2963 3079 3149 2834

...

300-30 2695 2723 2855 2820

See Also

l Level

l Generations

LinkMember
Returns a member’s shared member along a given hierarchy.

This function can be used instead of passing hierarchy arguments to Parent, Ancestor,
FirstSibling, and LastSibling functions. This function works well in conjunction with Is*
functions such as IsAncestor, IsChild, IsSibling, IsLevel, IsGeneration, and IsLeaf.

Syntax

member.LinkMember(hierarchy)

LinkMember(member,hierarchy)

Parameter Description

member A member specification

hierarchy Optional. A specific hierarchy within the time dimension.

Notes

l This function is applicable only to aggregate storage databases.

l If the primary hierarchy is passed to this function, it returns the primary member.

l If there is no shared member along the given hierarchy, this function returns an empty
member.

l If a calculated member is passed to this function, the calculated member itself is returned.

Example

The following examples are based on ASOSamp.Sample.

MDX Function Reference 1099

The following MDX returns the member [HDTV] along the [High End Merchandise] hierarchy.
By default, the primary instance of [HDTV] is used.

LinkMember([HDTV], [High End Merchandise])

The following MDX also returns the member [HDTV] along the [High End Merchandise]
hierarchy. In this example, the input member is on the input hierarchy.

LinkMember([High End Merchandise].[HDTV], [High End Merchandise])

The following MDX returns the member [HDTV] along the [All Merchandise] hierarchy.

LinkMember([All Merchandise].[HDTV], [All Merchandise])

The following MDX returns an empty member, because there is no instance of [Digital Cameras]
along the [High End Merchandise] hierarchy. The empty member has a value of #MISSING.

LinkMember([Digital Cameras], [High End Merchandise])

The following MDX also returns an empty member.

LinkMember([All Merchandise], [High End Merchandise])

The following MDX also returns an empty member.

LinkMember([Products], [High End Merchandise])

The following MDX returns [High End Merchandise].

LinkMember([High End Merchandise], [High End Merchandise])

Ln
Returns the natural logarithm (base e) of an expression.

Syntax

Ln (numeric_value_expression)

Parameter Description

numeric_value_expression A numeric value (see “MDX Grammar Rules” on page 934).

Notes

l Ln returns the inverse of Exp.

l The constant e is the base of the natural logarithm. e is approximately 2.71828182845904.

Example

WITH MEMBER [Measures].[Ln_Sales]
AS
 'Ln([Measures].[Sales])'
SELECT
 {[Year].levels(0).members}
ON COLUMNS,
 {[Measures].[Sales], [Measures].[Ln_Sales]}
ON ROWS

1100 MDX

FROM
 Sample.Basic
WHERE
 ([Market].[East], [Product].[Cola])

returns the following grid:

(axis) Jan Feb ... Nov Dec

Sales 1812 1754 ... 1708 1841

Ln_Sales 7.502 7.470 ... 7.443 7.518

See Also

l Log

l Log10

l Exp

Log
Returns the logarithm of an expression to a specified base.

Syntax

Log (numeric_value_expression [,base])

Parameter Description

numeric_value_expression A numeric value or an expression that returns a numeric value (see “MDX Grammar Rules”
on page 934).

base Optional. A number representing the base to use for the logarithm. If less than zero, zero,
or close to 1, the Log function returns #MISSING. If omitted, the Log function calculates
the base-10 logarithm. Log (Sales, 10) is equivalent to Log(Sales), and is also equivalent to
Log10(Sales).

Example

Log(9,3) returns 2.

Log10
Returns the base-10 logarithm of an expression.

Syntax

Log10 (numeric_value_expression)

Parameter Description

numeric_value_expression A numeric value or an expression that returns a numeric value (see “MDX Grammar Rules”
on page 934).

MDX Function Reference 1101

Example

Log10(1000) returns 3.

Lower
Converts upper-case string to lower-case.

Syntax

Lower (string)

Parameter Description

string Input string.

Example

Lower(STRING)

returns string

See Also

l Upper

LTrim
Trims all whitespace on the left side of the string.

Syntax

LTrim (string)

Parameter Description

string Input string.

Example

LTrim(" STRING")

returns "STRING"

Max
Returns the maximum of values found in the tuples of a set.

Syntax

Max (set [,numeric_value_expression])

1102 MDX

Parameter Description

set The set to search for values.

numeric_value_expression Optional numeric value expression (see “MDX Grammar Rules” on page 934).

Notes

The return value of Max is #MISSING if either of the following is true:

l The input set is empty.

l All tuple evaluations result in #MISSING values.

Example

WITH
MEMBER [Measures].[Max Qtr2 Sales] AS
 'Max (
 {[Year].[Qtr2]},
 [Measures].[Sales]
)'
SELECT
{ [Measures].[Max Qtr2 Sales] } on columns,
{ [Product].children } on rows
FROM Sample.Basic

(axis) Max Qtr2 Sales

Colas 27187

Root Beer 27401

Cream Soda 25736

Fruit Soda 21355

Diet Drinks 26787

Median
Orders the set according to the numeric value expression, and then returns the value of the set's
median tuple.

Syntax

Median (set, numeric_value_expr)

Parameter Description

set The set from which to get a median tuple value.

numeric_value_expr A numeric value or an expression that returns a numeric value.

MDX Function Reference 1103

Notes

This function is a special case of the Percentile function where n = 50.

Example

The following query returns the median price for radios paid in all states last year.

WITH MEMBER
 [Geography].[Median Mkt Price]
AS
 'Median ([Geography].Levels(2).Members, [Measures].[Price Paid])'
SELECT
 { [Geography].[Median Mkt Price]}
ON COLUMNS
FROM
 ASOSamp.Sample
WHERE ([Products].[Radios], [Years].[Prev Year])

MemberRange
Using the order of members existing in a database outline, returns a range of members inclusive
of and between two members in the same generation or level.

Syntax

MemberRange (member1, member2 [,layertype] [, hierarchy])

member1:member2

Parameter Description

member1 The beginning point of the member range.

member2 The endpoint of the member range.

layertype GENERATION or LEVEL. Available only with function-style MemberRange() syntax. If omitted or if
operator-style member:member syntax is used, the range of members returned is inclusive of and between
two specified members of the same generation. If MemberRange(member, member, LEVEL) is used, the
range of members returned is inclusive of and between two specified members of the same level.

hierarchy Optional. A specific hierarchy within the time dimension.

Notes

l If the two input members are not from the same generation or level, the result is an empty
set.

l If the two input members are not from the same dimension, an error is returned.

l The order of the output resembles the order of the input. See Example 2.

l If the hierarchy argument is passed, member1 and member2 should belong to the same
hierarchy. Otherwise, an empty set is returned.

l When multiple hierarchies are enabled, this function returns NULL when the range begins
in one hierarchy and terminates in another hierarchy.

1104 MDX

Example

Example 1 (MemberRange)

The following set:

{ [Year].[Qtr1], [Year].[Qtr2], [Year].[Qtr3], [Year].[Qtr4] }

is returned by both of the following examples:

MemberRange ([Year].[Qtr1], [Year].[Qtr4])

([Year].[Qtr1] : [Year].[Qtr4])

Example 2 (MemberRange)

[Jan] : [Mar]

returns:

{ [Jan], [Feb], [Mar] }

[Mar] : [Jan]

returns:

{ [Mar], [Feb], [Jan] }

Example 3 (MemberRange)

The following query

SELECT
 {[Measures].[Sales], [Measures].[Profit]}
ON COLUMNS,
 MemberRange([Year].[Feb], [Year].[Nov])
ON ROWS
FROM Sample.Basic

returns the grid:

(axis) Sales Profit

Feb 32069 8346

Mar 32213 8333

Apr 32917 8644

May 33674 8929

Jun 35088 9534

Jul 36134 9878

Aug 36008 9545

Sep 33073 8489

MDX Function Reference 1105

(axis) Sales Profit

Oct 32828 8653

Nov 31971 8367

See Also

l RelMemberRange

Members
Returns all members of the specified dimension or layer.

Syntax

dimension.Members | Members (dimension)

layer.Members | Members (layer)

Parameter Description

dimension A dimension specification.

layer A layer specification.

Example

This example focuses on the following part of the Sample Basic outline:

The following expression:

{([Market].members)}

returns the following set, which includes all descendant members of the Market dimension:

{
 Market, [New York], Massachusetts, Florida, Connecticut,
 [New Hampshire], East, California, Oregon, Washington,
 Utah, Nevada, West, Texas, Oklahoma, Louisiana, [New Mexico],
 South, Illinois, Ohio, Wisconsin, Missouri, Iowa, Colorado, Central
}

The following expression:

{([Market].levels(1).members)}

returns the following set, which includes one level of descendant members of the Market
dimension:

1106 MDX

{East, West, South, Central}

The following query assumes that level 1 of the Market dimension has an alias of Region:

Select
{([Market].[Region].members) }
on columns
from Sample.Basic

This query returns the following grid:

East West South Central

24161 29861 13238 38262

Min
Returns the minimum of values found in the tuples of a set.

Syntax

Min (set [,numeric_value_expression])

Parameter Description

set The set to search for values.

numeric_value_expression Optional numeric value expression (see “MDX Grammar Rules” on page 934).

Notes

The return value of Min is #MISSING if either of the following is true:

l The input set is empty.

l All tuple evaluations result in #MISSING values.

Example

For every quarter, the following query displays the minimum monthly sales value.

WITH MEMBER
 [Measures].[Minimum Sales in Quarter]
AS
 'Min ([Year].CurrentMember.Children, [Measures].[Sales])'
SELECT
 {[Measures].[Minimum Sales in Quarter]}
ON COLUMNS,
 [Year].Children
ON ROWS
FROM Sample.Basic

This query returns the grid:

MDX Function Reference 1107

(axis) Minimum Sales in Quarter

Qtr1 31538

Qtr2 32917

Qtr3 33073

Qtr4 31971

Mod
Returns the modulus (remainder value) of a division operation.

Syntax

Mod (numeric_value_expr_1, numeric_value_expr_2)

Parameter Description

numeric_value_expr_1 The number for which to find the remainder. Must be a numeric value or an expression that
returns a numeric value (see “MDX Grammar Rules” on page 934).

numeric_value_expr_2 The divisor. Must be a numeric value or an expression that returns a numeric value (see “MDX
Grammar Rules” on page 934).

Notes

The Essbase implementation of the function Mod returns the following values, which may be
different from other vendors' implementations:

Mod(n,k) = - Mod(-n,k) , where n < 0
Mod(n,k) = Mod(n,-k) , where k < 0

Example

WITH MEMBER [Measures].[Factor] AS
 'Mod ([Measures].[Margin %],[Measures].[Profit %])'
SELECT
 {
 [Measures].[Margin %],
 [Measures].[Profit %],
 [Measures].[Factor]
 }
ON COLUMNS,
 {[Year].[Qtr1].Children}
ON ROWS
FROM sample.basic

returns:

(axis) Margin % Profit % Factor

Jan 55.102 25.44 4.217

1108 MDX

(axis) Margin % Profit % Factor

Feb 55.387 26.025 3.337

Mar 55.267 25.868 3.530

NextMember
Using the order of members existing in a database outline, returns the next member along the
same generation or level.

Syntax

member.NextMember [(layertype)]

NextMember (member [,layertype])

Parameter Description

member The starting member from which .NEXTMEMBER counts one member forward.

layertype GENERATION or LEVEL. The default is Generation.

Notes

l If the next member is not found, this function returns an empty member. For example, using
Sample Basic, these would return an empty member: Qtr4.nextmember and
Year.nextmember.

l When multiple hierarchies are enabled, this function returns NULL when the source
member is in one hierarchy and the result member belongs to a different hierarchy.

Example

Example 1

The following expression:

 [Jun].nextmember

returns the member that is one step further than Jun:

[Jul]

Example 2

The following query

/*
For January, PrevMember doesn't exist
For December, NextMember doesn't exist
*/

WITH

MEMBER

MDX Function Reference 1109

 [Measures].[Delta from Previous Month]
AS
 ' [Measures].[Sales] -
 ([Measures].[Sales],[Year].CurrentMember.PrevMember)
 '

MEMBER [Measures].[Delta from Next Month]
AS
 ' [Measures].[Sales] -
 ([Measures].[Sales], [Year].CurrentMember.NextMember)
 '

SELECT
 { [Measures].[Sales],
 [Measures].[Delta from Previous Month],
 [Measures].[Delta from Next Month]
 }
ON COLUMNS,

 [Year].Levels(0).Members
ON ROWS

FROM Sample.Basic
WHERE
 (
 [Scenario].[Actual],
 [Market].[East],
 [Product].[100]
)

returns the grid:

(axis) Sales Delta from Previous Month Delta from Next Month

Jan 2105 2105 44

Feb 2061 -44 -65

Mar 2126 65 -132

Apr 2258 132 -89

May 2347 89 -278

Jun 2625 278 -110

Jul 2735 110 62

Aug 2673 -62 311

Sep 2362 -311 268

Oct 2094 -268 28

Nov 2066 -28 -222

Dec 2288 222 2288

1110 MDX

See Also

l PrevMember

l Lead

NonEmptyCount
Returns the count of the number of tuples in a set that evaluate to non #Missing values.

Syntax

NonEmptyCount (set [,numeric_value_expression])

Parameter Description

set The set in which to count tuples.

numeric_value_expression Optional expression (see “MDX Grammar Rules” on page 934).

Notes

Each tuple is evaluated and included in the count returned by this function. If the numeric value
expression is specified, it is evaluated in the context of every tuple, and the count of non #Missing
values is returned.

Example

The following query

With
Member [Measures].[Number Of Markets]
as 'NonEmptyCount (Market.Levels(0).Members, Sales)'

Select
{[Measures].[Number Of Markets]} on Columns,
{[100].Children, [200].Children} on Rows
FROM Sample.Basic

Returns the grid:

(axis) Number of Markets

100-10 20

100-20 16

100-30 8

200-10 20

200-20 17

200-30 9

200-40 3

MDX Function Reference 1111

NonEmptySubset
Given an input set, NonEmptySubset returns a subset of that input set in which all tuples
evaluate to nonempty. An optional value expression may be specified for the nonempty check.

This function can help optimize queries that are based on a large set for which the set of nonempty
combinations is known to be small. NonEmptySubset reduces the size of the set in the presense
of a metric; for example, you might request the nonempty subset of descendants for specific
Units.

NonEmptySubset is used to reduce the size of a set before a subsequent analytical retrieval.

Syntax

NonEmptySubset (set [, value_expression [, dimension...]])

Parameter Description

set The set to reduce

value_expression A value expression--ideally, a stored member or a simple formula. For each tuple in set, if
value_expression is nonempty, the tuple is returned as part of the subset. Otherwise, it is removed.

dimension One or more (comma-separated) dimensions from which to return the non-empty subset

Notes

Value_expression, if used, should be a stored member or simple formula. If value_expression is
a complex formula, the retrieval of the nonempty subset is not optimized.

Example

The following example gets the bottom 10 products in terms of Units (items per package), and
then returns the CrossJoin of that set and the level 0 members (zip codes) of [Albany - NY].

WITH SET Bottom_10
AS '
 BottomCount(
 Leaves(Products),
 10,
 Units
)
'
SELECT
 {Units}
ON COLUMNS,
 NonEmptySubset(CrossJoin(Bottom_10, Leaves([Albany - NY])))
ON ROWS
FROM Asosamp.Sample

This query returns the following grid:

(axis) Items Per Package

Digital Cameras,12201 4

Camcorders,12201 3

1112 MDX

(axis) Items Per Package

Photo Printers, 12201 2

Digital Recorders, 12201 2

Desktops,12201 3

Digital Cameras,12212 5

Camcorders,12212 2

Photo Printers, 12212 3

Flat Panel, 12212 1

HDTV,12212 1

Home Theater, 12212 1

Desktops, 12212 2

Notebooks,12212 1

Digital Cameras,12223 1

Camcorders,12223 1

Photo Printers,12223 4

HTDV,12223 1

Notebooks,12223 1

Camcorders,12229 4

HDTV,12229 1

Home Theater,12229 3

Desktops,12229 1

Digital Cameras,12249 2

Photo Printers,12249 3

Projection TVs,12249 1

HDTV,12249 2

Home Theater,12249 1

Digital Recorders,12249 1

Notebooks,12249 1

Camcorders,12257 2

MDX Function Reference 1113

(axis) Items Per Package

Photo Printers,12257 4

Projection TVs,12257 2

HDTV,12257 1

Home Theater,12257 3

Digital Recorders,12257 1

NTile
Returns a division number of a tuple in a set. This function only applies to aggregate storage
databases.

Syntax

NTile (member_or_tuple, set, number_of_divisions, numeric_value_expr)

Parameter Description

member_or_tuple A member or a tuple.

set The set to order.

number_of_divisions The number of divisions to use in ordering the set.

numeric_value_expr A numeric value or an expression that returns a numeric value.

Notes

l This function is applicable only to aggregate storage databases.

l This function orders the set by a numeric value, divides it into n equal divisions, and returns
the division number that the given tuple is in.

Example

WITH
MEMBER [Measures].[7tile] AS
 'Ntile
 ([Measures].[Price Paid],
 { [Products].Levels(0).Members },
 7,
 [Measures].[Price Paid]
)'
SELECT
{ [Measures].[Price Paid], [Measures].[7tile] } on columns,
{ [Products].Levels(0).Members } on rows
FROM ASOSamp.Sample

1114 MDX

NumToStr
Converts a double-precision floating-point value into a decimal string. The number is formatted
according to locale-specific conventions.

Syntax

NumToStr (numeric_value_expression)

Parameter Description

numeric_value_expression Numeric value expression (see “MDX Grammar Rules” on page 934).

Example

NumToStr(1)

returns "1.00".

OpeningPeriod
Returns the first descendant of a layer, or the first child of the Time dimension.

Syntax

OpeningPeriod ([layer [,member]])

Parameter Description

layer A layer specification. If omitted, the first descendant of member is used. If member is omitted, the first child
of the Time dimension is assumed.

member Optional. A member specification. If omitted, the first child of the Time dimension is assumed (for example,
Qtr1 in Sample Basic).

Notes

The return value of this function varies depending on the input.

1. When no arguments are specified, the input member is assumed to be the current member
of the Time dimension, and Openingperiod returns the first child of that member. Do not
use this function without arguments if there is no dimension tagged as Time.

2. When both layer and member arguments are given as input, Openingperiod returns the first
descendant of the input member at the input layer. For example,
Openingperiod(Year.generations(3), Qtr3) returns Jul. If the input member and
layer are the same layer, the output is the input member. For example,
Openingperiod(Year.generations(3), Jul) returns Jul.

3. When only the layer argument is specified, the input member is assumed to be the current
member of the dimension used in the layer argument. Openingperiod returns the first
descendant of that dimension, at the input layer. For example,
Openingperiod(Year.generations(3)) returns Oct.

MDX Function Reference 1115

See Also

l ClosingPeriod

l LastPeriods

l ParallelPeriod

l PeriodsToDate

Order
Sorts members of a set in order based on an expression.

Syntax

Order (set, string_expr | numeric_value_expression [,BASC | BDESC])

Parameter Description

set The set to sort.

string_expr String sorting criteria.

numeric_value_expression Numeric sorting criteria (see “MDX Grammar Rules” on page 934).

BASC If this keyword is used, the returned set is arranged in ascending order. Ascending order is
the default even if no keyword is used.

BDESC If this keyword is used, the returned set is arranged in descending order.

Notes

This function ignores missing values.

Example

The following query displays budgeted Sales and Marketing in Qtr2, and the display of products
is sorted based on ascending Actual Sales in Qtr1.

SELECT
 CrossJoin(
 {[Scenario].[Budget]},
 {[Measures].[Marketing], [Measures].[Sales]}
)
ON COLUMNS,
 Order(
 [Product].Levels(0).Members,
 ([Year].[Qtr1], [Scenario].[Actual])
)
ON ROWS
FROM Sample.Basic
WHERE ([Year].[Qtr2])

This query returns the grid:

1116 MDX

(axis) Budget Budget

(axis) Marketing Sales

400-30 510 3240

100-30 450 3400

300-20 550 3800

200-40 310 2830

200-30 550 4060

100-20 1160 8800

100-20 1160 8800

200-10 2090 10330

400-20 880 6590

300-10 1450 10080

300-30 1080 7880

300-30 1080 7880

400-10 790 7410

200-20 1080 9590

200-20 1080 9590

100-10 1800 17230

Ordinal
Returns a generation number or level number.

Syntax

Ordinal (layer)

Parameter Description

layer A layer specification for which to determine the ordinal.

Example

The following example prints generation number and level number for each member in the
Product dimension. The value of calculated member [ProdGen] is a generation number because
the input argument to the Ordinal function is a generation. The value of calculated member
[ProdLev] is a level number because the input argument to the Ordinal function is a level.

MDX Function Reference 1117

WITH
 MEMBER [Measures].[ProdGen] AS
 'Ordinal([Product].CurrentMember.Generation)'
 MEMBER [Measures].[ProdLev] AS
 'Ordinal([Product].CurrentMember.Level)'
SELECT
 {[ProdGen], [ProdLev]} ON COLUMNS,
 [Product].Members ON ROWS
FROM Sample.Basic

This query returns the following grid:

(axis) ProdGen ProdLev

Product 3 0

100 2 1

100-10 3 0

100-20 3 0

100-30 3 0

200 3 0

200-10 2 1

200-20 3 0

200-30 3 0

200-40 3 0

300 2 1

300-10 3 0

300-20 3 0

300-30 3 0

400 2 1

400-10 3 0

400-20 3 0

400-30 3 0

Diet 2 1

100-20 3 0

200-20 3 0

300-30 3 0

1118 MDX

ParallelPeriod
Returns a member from a prior time period as the specified or default time member.

Syntax

ParallelPeriod ([layer [,index [,member [, hierarchy]]]])

Parameter Description

layer Optional layer specification. If omitted, the same layer is assumed.

index Number of time periods to count back in the specified layer.

member Optional member specification. If omitted, the default member is assumed (for more information, see
Defaultmember).

hierarchy Optional. A specific hierarchy within the time dimension.

Notes

If layer, index, and member are present, this function determines the member ANCESTOR1,
which is computed as

Ancestor(member, layer)

The member ANCESTOR2 is then computed as

Lag(ANCESTOR1, index)

The return value of this function is then computed as

Cousin(member, ANCESTOR2)

If layer and index are present and member is absent, member is taken to be the current member
along the dimension associated with layer. The returned value is determined as above.

If only layer is present, index is taken to be 1, and member is taken to be the current member
along the dimension associated with layer. The returned value is determined as above.

If layer, index, and member are all absent, member is taken to be CurrentMember along TIME
Dimension, index is taken to be 1, and layer is taken to be the generation of the parent of
member. The returned value is determined as above.

See Also

l LastPeriods

l PeriodsToDate

l ClosingPeriod

l OpeningPeriod

Parent
Returns a member's parent.

MDX Function Reference 1119

Syntax

member.Parent [(hierarchy)]

Parent (member [, hierarchy])

Parameter Description

member A member specification.

hierarchy Optional. A specific hierarchy within the time dimension.

Example

Example 1

SELECT
 {Parent ([100-10])}
ON COLUMNS
FROM
 sample.basic

returns the parent of 100-10:

100

30468

Example 2

The following query uses Filter to find the months in which Sales for [Product].[100] are higher
than 8,570. The Parent function is used with Generate to create a set consisting of the parents
(quarters) of the high-sales months.

WITH SET [High-Sales Months] as
'
 Filter(
 [Year].Levels(0).members,
 [Measures].[Sales] > 8570
)
'
SELECT
 {[Measures].[Sales]}
ON COLUMNS,
 Generate([High-Sales Months], { Parent([Year].CurrentMember) })
ON ROWS
FROM
 sample.basic
WHERE
 ([Product].[100])

This query returns the grid:

(axis) Sales

Qtr2 27187

1120 MDX

(axis) Sales

Qtr3 28544

Qtr4 25355

Percentile
Orders the set according to the numeric value expression, and then returns the value of the tuple
that is at the given percentile.

This function only applies to aggregate storage databases.

Syntax

Percentile (set, numeric_value_expr, percentile)

Parameter Description

set The set from which to get a tuple value.

numeric_value_expr A numeric value or an expression that returns a numeric value.

percentile A percentile. Must be between 0 and 100.

Notes

l This function is applicable only to aggregate storage databases.

l The returned value is such that n percent of the of the set members are smaller than it.

Example

WITH MEMBER [Measures].[Perc] AS
 'Percentile(Products.Levels(0).Members, [Measures].[Price Paid], 10)'
SELECT {[Measures].[Price Paid], [Measures].[Perc] } ON COLUMNS,
{ Products.Levels(0).Members } ON ROWS
FROM AsoSamp.Sample

PeriodsToDate
Returns a set of single-member tuples from a specified layer up to a given member in that layer
(or up to the default member), or, returns members up to the current member of the Time
dimension.

Syntax

PeriodsToDate ([layer [, member [, hierarchy]]])

Parameter Description

layer The layer to use as a beginning point.

member The member to use as an ending point.

MDX Function Reference 1121

Parameter Description

hierarchy Optional. A specific hierarchy within the time dimension.

Notes

l If layer and member are present, this function determines the ANCESTOR of member,
computed as Ancestor(member, layer).

Consider the subtree rooted at the ANCESTOR. This function returns the set of all members
along the same generation between the first descendant of ANCESTOR at input member's
generation and the input member (inclusive of both.)

The return value of this function is the set of single-member tuples constructed from the
members in the subtree rooted at ANCESTOR which are in the same layer as member and
which are at or before the position of member within its layer. The order of tuples in the
returned set is the same as the order of the members included in the input layer.

l If layer is present and member is absent, member is considered to be CurrentMember of the
dimension that layer is associated with.

l If layer and member are both absent, member is considered to be the current member of the
Time dimension, and layer is assumed to be the generation of the member's parent. Hence
the return value is a set containing the left siblings of member and member itself.

l Using Periodstodate(layer, member) has the same effect as using the following nested
functions:

MemberRange(
 OpeningPeriod(
 member.GENERATION,
 Ancestor (member, layer)
)
 : member
)

Example

PeriodsToDate (Year.Generations(1), May) returns the set:

{ Jan, Feb, Mar, Apr, May }

PeriodsToDate (Year.Generations(2), May) returns the set:

{ Apr, May }

PeriodsToDate (Year.Generations(3), May) returns the set:

{ May }

See Also

l OpeningPeriod

l ClosingPeriod

l ParallelPeriod

l LastPeriods

1122 MDX

Power
Returns the result of raising a number to a given power.

Syntax

Power (numeric_value_expression, power)

Parameter Description

numeric_value_expression An expression that returns a value (see “MDX Grammar Rules” on page 934).

power The power to which the numeric value expression is raised.

Example

Power(9, 2.5) returns 243.

PrevMember
Using the order of members existing in a database outline, returns the previous member along
the same generation or level.

Note: When multiple hierarchies are enabled, this function returns NULL when the source
member is in one hierarchy and the result member belongs to a different hierarchy.

Syntax

member.PrevMember [(layertype)]

PrevMember (member [,layertype])

Parameter Description

member The starting member from which PrevMember counts one member back.

layertype GENERATION or LEVEL. The default is Generation.

Example

Example 1

The following expression

 [Jun].prevmember

returns the member that is 1 step prior to Jun:

[May]

Example 2

The following query

MDX Function Reference 1123

/*
For January, PrevMember doesn't exist
For December, NextMember doesn't exist
*/

WITH

MEMBER
 [Measures].[Delta from Previous Month]
AS
 ' [Measures].[Sales] -
 ([Measures].[Sales],[Year].CurrentMember.PrevMember)
 '

MEMBER [Measures].[Delta from Next Month]
AS
 ' [Measures].[Sales] -
 ([Measures].[Sales], [Year].CurrentMember.NextMember)
 '

SELECT
 { [Measures].[Sales],
 [Measures].[Delta from Previous Month],
 [Measures].[Delta from Next Month]
 }
ON COLUMNS,

 [Year].Levels(0).Members
ON ROWS

FROM Sample.Basic
WHERE
 (
 [Scenario].[Actual],
 [Market].[East],
 [Product].[100]
)

Returns the grid:

(axis) Sales Delta from Previous Month Delta from Next Month

Jan 2105 2105 44

Feb 2061 -44 -65

Mar 2126 65 -132

Apr 2258 132 -89

May 2347 89 -278

Jun 2625 278 -110

Jul 2735 110 62

Aug 2673 -62 311

1124 MDX

(axis) Sales Delta from Previous Month Delta from Next Month

Sep 2362 -311 268

Oct 2094 -268 28

Nov 2066 -28 -222

Dec 2288 222 2288

See Also

l NextMember

l Lag

Rank
Returns the numeric position of a tuple in a set.

Syntax

Rank (member_or_tuple, set [,numeric_value_expr [,ORDINALRANK | DENSERANK |
PERCENTRANK]])

Parameter Description

member_or_tuple The member or tuple to rank.

set The set containing the tuple to rank. Should not have duplicate members.

numeric_value_expr Optional. Numeric sorting criteria.

ORDINALRANK Optional. Rank duplicates separately.

DENSERANK Optional. Rank with no gaps in ordinals.

PERCENTRANK Optional. Rank on a scale from 0 to 1.

Notes

This function is applicable only to aggregate storage databases.

If no numeric value expression is given, this function returns the 1-based position of the tuple
in the set.

If a numeric value expression is given, this function sorts the set based on the numeric value and
returns the 1-based position of the tuple in the sorted set.

If an optional rank flag is given, this function sorts the set based on the numeric value and returns
the 1-based position of the tuple in the sorted set according to the instructions in the flag. The
meanings of the flags are:

l [no flag]: Default behavior. Ties are given the same rank, and the next member is the count
of members. Example:(1,1,1,4,5)

MDX Function Reference 1125

l ORDINALRANK: Ties are decided by Essbase. Duplicates are considered different entities.
Example: (1,2,3,4,5).

l DENSERANK: Ties are given the same rank, but there are no gaps in ordinals. Example:
(1,1,1,2,3)

l PERCENTRANK: Rank values are scaled by the cumulative sum up to this member.
Example: (.1, .15, .34, .78, 1.0). Values range from 0.0 to 1.0.

In the cases where this function sorts the set, it sorts tuples in descending order, and assigns
ranks based on that order (highest value has a rank of 1).

Example

Example 1

WITH MEMBER [Measures].[Units_Rank] AS
 'Rank(Products.CurrentMember, Products.CurrentMember.Siblings)'
SELECT
 {Units, [Price Paid], [Units_Rank]}
ON COLUMNS,
 { Products.Members } ON ROWS
FROM ASOSamp.Sample;

Example 2

WITH MEMBER [Measures].[Units_Rank] AS
 'Rank(Products.CurrentMember, Products.CurrentMember.Siblings)'
SELECT {Units, [Measures].[Units_Rank]}
ON COLUMNS,
 Union(Children([Televisions]),
 Children([Radios]))
ON ROWS
FROM ASOSamp.Sample;

RealValue
Returns a value for the specified member or tuple without the inherited attribute dimension
context.

Syntax

tuple[.RealValue]

member[.RealValue]

Parameter Description

tuple A tuple for which to return a real value

member A member for which to return a real value

1126 MDX

Example

The following query sorts level-0 members of the Product dimension by the real value of Sales
without the attribute dimension (Ounces_12) context, in descending order, and returns their
sales for Ounces_12.

SELECT
{[Sales]}
ON COLUMNS,
Order([Product].Levels(0).Members,
 [Sales].REALVALUE, BDESC)
ON ROWS
FROM Sample.Basic
WHERE ([OUNCES_12]) ;

RelMemberRange
Returns a set that is based on the relative position of the specified member in the database outline.

Note: When multiple hierarchies are enabled, this function returns NULL when the range begins
in one hierarchy and terminates in another hierarchy.

Syntax

RelMemberRange (member, prevcount, nextcount, [,layertype] [, hierarchy])

Parameter Description

member An input member in the set you want to return.

prevcount The number of members in the same layer specified by layertype prior to member to include in the return
set.

nextcount The number of members in the same layer specified by layertype following member to include in the return
set.

layertype GENERATION or LEVEL. If omitted, the default is GENERATION. Defines whether the set to be returned
is based the same generation or on the same level as member.

hierarchy Optional. A specific hierarchy within the time dimension.

Example

The following examples are based on ASOSamp.Sample.

Example 1

SELECT
RelMemberRange ([PORTLAND - OR],1,2)
ON COLUMNS
FROM asosamp.sample

This query returns the set:

MDX Function Reference 1127

{[PHOENIX - OR],[PORTLAND - OR],[POWERS - OR],[PRAIRIE CITY - OR]}

Example 2

RelMemberRange(Apr, 5, 0)

returns the set {Jan, Feb, Mar, Apr}. Note that the output set has only four members.

RelMemberRange(Apr, 5, 10)

returns the set {Jan, Feb, Mar, Apr, May ...,Dec}. Note that the output set has only
four previous members and seven next members of Apr.

See Also

l LastPeriods

Remainder
Returns the fractional part of the numeric value expression.

Syntax

Remainder (numeric_value_expression)

Parameter Description

numeric_value_expression A numeric value expression (see “MDX Grammar Rules” on page 934).

Example

Remainder([Margin %])

extracts the fractional part of the [Margin %] value.

The following query shows [Margin %] and the fractional part of it for all members of the
Product dimension.

WITH
 MEMBER [Measures].[Margin % Rem] AS 'Remainder([Margin %])'
SELECT
 {[Margin %], [Margin % Rem]} ON COLUMNS,
 [Product].Members ON ROWS
FROM Sample.Basic

This query returns the following grid:

(axis) Margin % Margin % Rem

Product 55.262 0.262

100 57.273 0.273

100-10 61.483 0.483

100-20 51.479 0.479

1128 MDX

(axis) Margin % Margin % Rem

100-30 50.424 0.424

200 55.540 0.540

200-10 54.270 0.270

200-20 56.436 0.436

200-30 56.450 0.450

200-40 55.753 0.753

300 54.238 0.238

300-10 55.816 0.816

300-20 42.992 0.992

300-30 57.551 0.551

400 53.600 0.600

400-10 57.354 0.354

400-20 56.299 0.299

400-30 39.477 0.477

Diet 55.397 0.397

100-20 51.479 0.479

200-20 56.436 0.436

300-30 57.551 0.551

Right
Returns a specified number (length) of characters from the right side of the string .

Syntax

Right (string ,length)

Parameter Description

string Input string.

length The number of characters to return from the right side of the input string.

Example

Right ("Northwind", 4)

MDX Function Reference 1129

returns wind.

Round
Rounds a numeric value expression to the specified number of digits.

Syntax

Round (numeric_value_expression, index)

Parameter Description

numeric_value_expression A numeric value expression (see “MDX Grammar Rules” on page 934).

index Expression yielding an integer value. numeric_value_expression is rounded to the number
of digits specified by this value. The fractional part of index is ignored.

Example

Round(234.5678, 2) returns 234.57.

RTrim
Trims all whitespace on the right side of the string.

Syntax

RTrim (string)

Parameter Description

string Input string.

Example

RTrim("STRING ")

returns "STRING"

Siblings
Returns the siblings of the input member, optionally based on selection options.

Syntax

Siblings (member[, selection [,include_or_exclude]])

member.Siblings

Parameter Description

member The member for which siblings are returned.

1130 MDX

Parameter Description

selection Optional. This option can be one of the following:

l LEFT—Selects the siblings to the left of the input member

l RIGHT—Selects the siblings to the right of the input member

l ALL—Selects all the siblings of the input member

If no selection is made, the default is ALL.

include_or_exclude Optional. This option can be one of the following:

l INCLUDEMEMBER—Includes the input member in the siblings list

l EXCLUDEMEMBER—Excludes the input member from the siblings list

If neither is specified, the default is to include the input member.

Notes

l If the input member is the top level of the dimension, this function returns a set containing
the input member.

l In aggregate storage databases, in multiple-hierarchy-enabled dimensions, if the input
member is a top-level member of a hierarchy, the output is members across hierarchies that
are top-level members of hierarchies.

l This function is the same as Children(member.parent).

l The member. Siblings syntax returns the same set as Siblings(member), Siblings(member,
ALL), or Siblings(member, ALL, INCLUDEMEMBER).

Example

Example 1

Siblings(Year) returns {Year}.

The following query

SELECT
CrossJoin (
 Union (
 Siblings ([Old Fashioned]),
 {([Root Beer]), ([Cream Soda])}
),
 {(Budget), ([Variance])}
)
ON COLUMNS
from Sample.Basic

returns the grid:

MDX Function Reference 1131

Old Fashioned Diet Root Beer Sarsaparilla Birch Beer Root Beer Cream Soda

Budget Variance Budget Variance Budget Variance Budget Variance Budget Variance Budget Variance

11640 -4439 14730 -2705 5050 -414 4530 -438 35950 -7996 29360 -3561

Example 2

The following examples are based on a Years – Quarters – Months Time hierarchy.

Siblings([Feb 2000], LEFT, INCLUDEMEMBER)

Returns {[Jan 2000], [Feb 2000]}.

Siblings([Feb 2000], RIGHT, EXCLUDEMEMBER)

Returns {[Mar 2000]}.

Siblings([Mar 2000], LEFT)

Returns {[Jan 2000], [Feb 2000], [Mar 2000]}.

Siblings([May 2000], RIGHT)

Returns {[May 2000], [Jun 2000]}.

Siblings([Mar 2000])

OR

[Mar 2000].Siblings

Returns {[Jan 2000], [Feb 2000], [Mar 2000]}.

Stddev
Calculates the standard deviation of the specified set. The calculation is based upon a sample of
a population. Standard deviation is a measure of how widely values are dispersed from their
mean (average).

Syntax

Stddev (set [,numeric_value_expression [,IncludeEmpty]])

Parameter Description

set A valid MDX set specification.

numeric_value_expression A numeric value or an expression that returns a numeric value (see “MDX Grammar Rules”
on page 934).

IncludeEmpty Use this keyword if you want to include in the calculation any tuples with #MISSING values.
Otherwise, they are omitted by default.

1132 MDX

Example

The following example, based on Sample Basic, calculates the standard deviation (based on a
sample of a population) of the January sales values for all products sold in New York.

WITH MEMBER [Measures].[Std Deviation]
AS
 'Stddev(
 Crossjoin(
 {[Product].Children}, {[Measures].[Sales]}
)
)
 '
SELECT
 {[Scenario].[Actual],[Scenario].[Budget]}
ON COLUMNS,
 {Crossjoin(
 {[Measures].[Sales]},{[Product].Children}
),
 Crossjoin(
 {[Measures].[Sales], [Measures].[Std Deviation]},
 {[Product]}
)}
ON ROWS
FROM
 Sample.Basic
WHERE
 ([Year].[Jan], [Market].[New York])

This query returns the following grid:

(axis) Actual Budget

(Sales, 100) 678 640

(Sales, 200) 551 530

(Sales, 300) 663 510

(Sales, 400) 587 620

(Sales, Diet) #Missing #Missing

(Sales, Product) 2479 2300

(Std Deviation, Product) 60.723 64.55

See Also

l Stddevp

Stddevp
Calculates the standard deviation of the specified set. This function assumes that the set
represents the entire population. If you want to calculate based a sample of a population, use
Stddev.

MDX Function Reference 1133

Standard deviation is a measure of how widely values are dispersed from their mean (average).

Syntax

Stddevp (set [,numeric_value_expression [,IncludeEmpty]])

Parameter Description

set A valid MDX set specification.

numeric_value_expression A numeric value or an expression that returns a numeric value (see “MDX Grammar Rules”
on page 934).

IncludeEmpty Use this keyword if you want to include in the calculation any tuples with #MISSING values.
Otherwise, they are omitted by default.

Example

The following example, based on Sample Basic, calculates the standard deviation (based on the
entire population) of the January sales values for all products sold in New York.

WITH MEMBER [Measures].[Std Deviation]
AS
 'StddevP(
 Crossjoin(
 {[Product].Children}, {[Measures].[Sales]}
)
)
 '
SELECT
 {[Scenario].[Actual],[Scenario].[Budget]}
ON COLUMNS,
 {Crossjoin(
 {[Measures].[Sales]},{[Product].Children}
),
 Crossjoin(
 {[Measures].[Sales], [Measures].[Std Deviation]},
 {[Product]}
)}
ON ROWS
FROM
 Sample.Basic
WHERE
 ([Year].[Jan], [Market].[New York])

This query returns the following grid:

(axis) Actual Budget

(Sales, 100) 678 640

(Sales, 200) 551 530

(Sales, 300) 663 510

(Sales, 400) 587 620

1134 MDX

(axis) Actual Budget

(Sales, Diet) #Missing #Missing

(Sales, Product) 2479 2300

(Std Deviation, Product) 52.59 55.9

See Also

l Stddev

StrToMbr
Converts a string to a member name.

Syntax

StrToMbr (string [, dimension] [, MEMBER_NAMEONLY | alias_table_name])

Parameter Description

string Input string.

dimension Optional dimension specification. If used, only member names found in this dimension will
be returned.

MEMBER_NAMEONLY Optional. Create member name only out of member names found (not including aliases).
The default is to search for member names and all aliases.

alias_table_name Optional. Create member name only out of alias name strings found. The default is to search
for member names and all aliases.

Notes

You can also use member properties as string input. These properties include MEMBER_NAME,
MEMBER_UNIQUE_NAME, MEMBER_ALIAS, ANCESTOR_NAMES, and COMMENTS.
For example:

SELECT {StrToMbr(Sales.MEMBER_NAME)} ON COLUMNS
FROM Sample.Basic

Example

SELECT
 { StrToMbr("CA" , [Geography], "Default") }
ON COLUMNS,
 Children([High End Merchandise])
ON ROWS
FROM Asosamp.Sample

returns CA.

SELECT
 { StrToMbr("Quarter1" , [Year], MEMBER_NAMEONLY) }
 DIMENSION PROPERTIES [YEAR].[MEMBER_ALIAS]
ON COLUMNS,

MDX Function Reference 1135

 Children([100])
ON ROWS
FROM Sample.Basic

returns nothing, because "Quarter1" is an alias.

SELECT
 { StrToMbr("Qtr1" , [Year], MEMBER_NAMEONLY) }
 DIMENSION PROPERTIES [YEAR].[MEMBER_ALIAS]
ON COLUMNS,
 Children([100])
ON ROWS
FROM Sample.Basic

returns Qtr1.

SELECT
 { StrToMbr("Quarter1" , [Year], "Long Names") }
 DIMENSION PROPERTIES [YEAR].[MEMBER_ALIAS]
ON COLUMNS,
 Children([100])
ON ROWS
FROM Sample.Basic

returns Qtr1 because "Quarter1" is in the "Long Names" alias table.

StrToNum
Converts a string to a number.

Syntax

StrToNum (string)

Parameter Description

string Input string.

Notes

This function returns a numeric value after converting the string to a number. For example,
string "0.9" becomes the number 0.9. StrToMbr returns zero if the string cannot be converted.

Example

StrToNum("0.9")

returns 0.9 as a numeric value expression.

Subset
Returns a subset from a set, in which the subset is a numerically specified range of tuples.

Syntax

Subset (set, index1 [,index2])

1136 MDX

Parameter Description

set The set from which to take tuples.

index1 The location of the tuple with which to begin the subset. Example: if index1 is 0, the subset begins with the
first tuple of set. If a negative value, the return is an empty set.

index2 Optional. The count of tuples to include in the subset. If omitted, all tuples to the end of set are returned.
If a negative value, the return is an empty set. If the count goes beyond the range of the input set, all tuples
to the end of the set are returned.

Notes

The first tuple of the subset is represented by index1. If index1 is 0, then the first tuple of the
returned subset will be the same as the first tuple of the input set.

Example

Example 1

The following expression

Subset ({Product.Members},0)

returns the set:

{ Product, [100-10], [100-20], [100-30], [100],
 [200-10], [200-20], [200-30], [200-40], [200],
 [300-10], [300-20], [300-30], [300],
 [400-10], [400-20], [400-30], [400],
 [100-20], [200-20], [300-30], Diet }

All tuples of the set {Product.Members} are returned, because the subset is told to begin with
the first tuple, and no count of tuples given for index2.

Example 2

The following expression

Subset ({Product.Members},0,4)

returns the set:

{ Product, [100], [100-10], [100-20] }

Therefore, the following query

Select
 Subset ({Product.Members},0,4)
on columns
from sample.basic

returns the grid:

Product 100 100-10 100-20

105522 30468 22777 5708

MDX Function Reference 1137

Substring
Returns the substring between a starting and ending position. Both the positional arguments
are 1-based.

Syntax

Substring (string, index1 [, index2 +])

Parameter Description

string String to subdivide (or field containing that string).

index1 A number n representing a starting position within a string.

index2 Optional. A number n representing an ending position within a string. If omitted, the endpoint is assumed
to be the end of the original string.

Sum
Returns the sum of values of tuples in a set.

Syntax

Sum (set [,numeric_value_expression])

Parameter Description

set The set containing the tuples to aggregate. If empty, the return value is #MISSING.

numeric_value_expression Optional. An expression that returns a value. Commonly used to restrict the aggregation
to a slice from a Measures dimension (see “MDX Grammar Rules” on page 934). In the
example below, [Measures].[Total Expenses] is the numeric value expression provided to
the Sum function.

Notes

For each tuple in set, the numeric value expression is evaluated in the context of that tuple and
the resulting values are summed up.

The return value of Sum is #MISSING if either of the following is true:

l The input set is empty.

l All tuple evaluations result in #MISSING values.

Example

WITH MEMBER [Market].[Sum Expense for Main States]
AS
 'Sum
 ({[Market].[California], [Market].[Colorado],
 [Market].[Texas], [Market].[Illinois],
 [Market].[Ohio], [Market].[New York],
 [Market].[Massachusetts], [Market].[Florida]},
 [Measures].[Total Expenses]
)'

1138 MDX

SELECT
 {[Measures].[Total Expenses]}
ON COLUMNS,
 {UDA([Market], "Major Market"),
 [Market].[Sum Expense for Main States]}
ON ROWS
FROM
 Sample.Basic
WHERE ([Scenario].[Actual])

returns the grid:

(axis) Total Expenses

New York 8914

Massachusetts 3412

Florida 5564

East 25310

California 11737

Texas 4041

Illinois 6900

Ohio 5175

Colorado 6131

Central 34864

Sum Expense for Main States 51874

Tail
Returns the last n members or tuples present in a set.

Syntax

Tail (set [,index])

Parameter Description

set The set from which to take items.

index The number of items to take from the end of the set. If omitted, the default is 1. If less than 1, an empty set
is returned. If the value exceeds the number of tuples in the input set, the original set is returned.

Example

Example 1

This example uses the following part of the Sample Basic outline:

MDX Function Reference 1139

The following expression

[Product].children

returns the set:

{ [100], [200], [300], [400], [Diet] }

Therefore, the following expression

 Tail (
 [Product].children, 2)

returns the last two members of the previous result set:

{ [400], [Diet] }

Example 2

This example uses the following parts of the Sample Basic outline:

The following expression

 Crossjoin ([100].children, [South].children)

returns the set:

{ ([100-10], Texas), ([100-10], Oklahoma), ([100-10], Louisiana), ([100-10], [New
Mexico]),
 ([100-20], Texas), ([100-20], Oklahoma), ([100-20], Louisiana), ([100-20], [New
Mexico]),
 ([100-30], Texas), ([100-30], Oklahoma), ([100-30], Louisiana), ([100-30], [New
Mexico]) }

And the following expression:

Tail (Crossjoin ([100].children, [South].children), 8)

1140 MDX

returns the last 8 tuples of the previous result set:

{ ([100-20], Texas), ([100-20], Oklahoma), ([100-20], Louisiana), ([100-20], [New
Mexico]),
 ([100-30], Texas), ([100-30], Oklahoma), ([100-30], Louisiana), ([100-30], [New
Mexico]) }

Additionally, the following expression

([Year].generations(2).members)

returns the set of members comprising the second generation of the Year dimension:

{ [Qtr1], [Qtr2], [Qtr3], [Qtr4] }

Therefore, the following query

SELECT
 {([Year].generations(2).members)}
ON COLUMNS,
 Tail (
 Crossjoin ([100].children, [South].children),
 8)
ON ROWS
FROM Sample.Basic

returns the grid:

(axis) (axis) Qtr1 Qtr2 Qtr3 Qtr4

100–20 Texas 206 199 152 82

Oklahoma 84 66 55 79

Louisiana 119 158 171 104

New Mexico –103 –60 –97 –18

100–30 Texas #Missing #Missing #Missing #Missing

Oklahoma #Missing #Missing #Missing #Missing

Louisiana #Missing #Missing #Missing #Missing

New Mexico #Missing #Missing #Missing #Missing

To suppress the missing rows, use NON EMPTY at the beginning of the row axis specification:

SELECT
 {([Year].generations(2).members)}
ON COLUMNS,
NON EMPTY
 Tail (
 Crossjoin ([100].children, [South].children),
 8)
ON ROWS
FROM Sample.Basic

This modified query returns as many of the 8 requested tuples as it can, without returning any
that have entirely #Missing data:

MDX Function Reference 1141

(axis) Qtr1 Qtr2 Qtr3 Qtr4

100-20 Texas 206 199 152 82

100-20 Oklahoma 84 66 55 79

100-20 Louisiana 119 158 171 104

100-20 New Mexico -103 -60 -97 -18

See Also

l Head

Todate
Converts date strings to numbers that can be used in calculations.

Syntax

Todate (string_value_expression_1 ,string_value_expression_2)

Parameter Description

string_value_expression_1 The format of the date string, either "mm-dd-yyyy" or "dd-mm-yyyy" (must be in lower
case).

string_value_expression_2 The date string.

Notes

l If you specify a date that is earlier than 01-01-1970, this function returns an error.

l The latest date supported by this function is 12-31-2037.

Example

For products introduced before 06.01.1996, the following query calculates a Revised Budget that
is 110% of Budget.

WITH MEMBER
 [Scenario].[Revised Budget]
AS
 'IIF (
 [Product].CurrentMember.[Intro Date]
 > TODATE("mm-dd-yyyy","06-01-1996"),
 Budget * 1.1, Budget
)'
SELECT
 {[Scenario].Budget, [Scenario].[Revised Budget]}
ON COLUMNS,
 [Product].[200].Children
 DIMENSION PROPERTIES [Intro Date]
ON ROWS
FROM Sample.Basic
WHERE ([Measures].[Sales], [Year].[Qtr3])

1142 MDX

This query returns the grid:

Axis-1 Axis-1.properties Budget Revised Budget

200-10 (Intro Date = 09-27-1995, type: TIME,) 11060 11060

200-20 (Intro Date = 07-26-1996, type: TIME,) 9680 10648

200-30 (Intro Date = 12-10-1996, type: TIME,) 3880 4268

200-40 (Intro Date = 12-10-1996, type: TIME,) 2660 2926

TodateEx
Returns the numeric date value from input date-string according to the date-format specified.
The date returned is the number of seconds elapsed since midnight, January 1, 1970.

If the date or the date format strings are invalid, an error is returned.

Syntax

TodateEx (internal-date-format, date-string)

MDX Function Reference 1143

Parameter Description

internal-
date-
format

One of the following literal strings (excluding ordered-list numbers and parenthetical examples) indicating
a supported date format.

1. "mon dd yyyy" (Example: mon = Aug)

2. "Month dd yyyy" (Example: Month = August)

3. "mm/dd/yy"

4. "mm/dd/yyyy"

5. "yy.mm.dd"

6. "dd/mm/yy"

7. "dd.mm.yy"

8. "dd-mm-yy"

9. "dd Month yy"

10. "dd mon yy"

11. "Month dd, yy"

12. "mon dd, yy"

13. "mm-dd-yy"

14. "yy/mm/dd"

15. "yymmdd"

16. "dd Month yyyy"

17. "dd mon yyyy"

18. "yyyy-mm-dd"

19. "yyyy/mm/dd"

20. Long format (Example: WeekDay, Mon dd, yyyy)

21. Short format (Example: m/d/yy)

1144 MDX

Parameter Description

date-string A date string following the rules of internal-date-format. The following examples correspond to the above
listed internal date formats.

1. Jan 15 2006

2. January 15 2006

3. 01/15/06

4. 01/15/2006

5. 06.01.06

6. 15/01/06

7. 15.01.06

8. 15-01-06

9. 15 January 06

10. 15 Jan 06

11. January 15 06

12. Jan 15 06

13. 01-15-06

14. 06/01/15

15. 060115

16. 15 January 2006

17. 15 Jan 2006

18. 2006-01-15

19. 2006/01/15

20. Sunday, January 15, 2006

21. 1/8/06 (m/d/yy)

Notes

l This function is an extension of Todate.

l This function is case-sensitive. For example, using apr instead of Apr returns an error.

l Using extra whitespace not included in the internal format strings returns an error.

l Trailing characters after the date format has been satisfied are ignored. If you erroneously
use a date string of 06/20/2006 with date format mm/dd/yy, the trailing 06 is ignored and
the date is interpreted as June 20, 2020.

l Long Format (Weekday, Mon dd, yyyy) is not verified for a day-of-week match to the given
date.

For example: For date string Sunday, March 13, 2007 with date format Long Format,
the input date string is parsed correctly for March 13, 2007, although March 13, 2007
does not fall on Sunday.

l If you specify a date that is earlier than 01-01-1970, this function returns an error.

l The latest date supported by this function is 12-31-2037.

MDX Function Reference 1145

l When the yy format is used, this function interprets years in the range 1970 to 2029.

Example

The following query returns the actual sales on May 31, 2005 for the product Cola in the market
California.

TodateEx() returns the date May 31, 2005, corresponding to date string 05.31.2005. StrToMbr
returns the corresponding day level member, capturing May 31, 2005.

SELECT
 {[Sales]}
ON COLUMNS,
 {
 StrToMbr(
 FormatDate(
 TodateEx("mm.dd.yyyy", "05.31.2005"),
 "Mon dd yyyy"
)
)
 }
ON ROWS
FROM Mysamp.basic
WHERE (Actual, California, Cola);

Today
Returns a number representing the current date on the Essbase computer. The number is the
number of seconds elapsed since midnight, January 1, 1970.

Syntax

Today

Notes

The date returned can be used as input to other functions listed in the See Also section.

Example

This query returns today's actual sales for the product Cola in the market California. Today()
returns today's date. StrToMbr retrieves the day member represented by the date returned by
Today.

SELECT
 {[Sales]}
ON COLUMNS,
 {
 StrToMbr(
 FormatDate(Today(), "Mon dd yyyy")
)
 }
ON ROWS
FROM Mysamp.basic;

1146 MDX

See Also

l DateToMember

l DateRoll

l DateDiff

l DatePart

l FormatDate

TopCount
Returns a set of n elements ordered from largest to smallest, optionally based on an evaluation.

This function ignores missing values.

Syntax

TopCount (set , index [,numeric_value_expression])

Parameter Description

set The set from which the top n elements are selected.

index The number of elements to include in the set (n).

numeric_value_expression Optional. An expression further defining the selection criteria (see “MDX Grammar Rules”
on page 934).

Example

The following query selects the five top-selling markets in terms of yearly Diet products sales,
and displays the quarterly sales for each Diet product.

SELECT
 CrossJoin(
 [Product].[Diet].Children,
 [Year].Children
)
ON COLUMNS,
 TopCount(
 [Market].Levels(0).Members,
 5,
 [Product].[Diet]
)
ON ROWS
FROM Sample.Basic
WHERE ([Scenario].[Actual], [Measures].[Sales])

This query returns the grid:

(axis) 100-20 100-20 100-20 100-20 200-20 200-20 200-20 200-20 300-30 300-30 300-30 300-30

(axis) Qtr1 Qtr2 Qtr3 Qtr4 Qtr1 Qtr2 Qtr3 Qtr4 Qtr1 Qtr2 Qtr3 Qtr4

Illinois 755 958 1050 888 1391 1520 1562 1402 675 755 859 894

MDX Function Reference 1147

(axis) 100-20 100-20 100-20 100-20 200-20 200-20 200-20 200-20 300-30 300-30 300-30 300-30

California 367 491 506 468 1658 1833 1954 1706 700 802 880 673

Colorado 700 802 880 673 549 465 412 539 1006 921 892 991

Washington 637 712 837 704 459 498 597 514 944 799 708 927

Iowa 162 153 121 70 129 129 129 129 1658 1833 1954 1706

See Also

l BottomCount

TopPercent
Returns the smallest possible subset of a set for which the total results of a numeric evaluation
are at least a given percentage. Elements in the result set are listed from largest to smallest.

Syntax

TopPercent (set, percentage, numeric_value_expression)

Parameter Description

set The set from which the top-percentile elements are selected.

percentage The percentile. This argument must be a value between 0 and 100.

numeric_value_expression The expression that defines the selection criteria (see “MDX Grammar Rules” on page
934).

Notes

This function ignores negative and missing values.

Example

The following query selects the top-selling markets that contribute 25% of the total yearly Diet
products sales, and displays the quarterly sales for each Diet product.

SELECT
 CrossJoin(
 [Product].[Diet].Children,
 [Year].Children
)
ON COLUMNS,
 TopPercent(
 [Market].Levels(0).Members,
 25,
 [Product].[Diet]
)
ON ROWS
FROM Sample.Basic
WHERE ([Scenario].[Actual],
 [Measures].[Sales])

1148 MDX

This query returns the grid:

(axis) 100-20 100-20 100-20 100-20 200-20 200-20 200-20 200-20 300-30 300-30 300-30 300-30

(axis) Qtr1 Qtr2 Qtr3 Qtr4 Qtr1 Qtr2 Qtr3 Qtr4 Qtr1 Qtr2 Qtr3 Qtr4

Illinois 755 958 1050 888 1391 1520 1562 1402 675 755 859 894

California 367 491 506 468 1658 1833 1954 1706 700 802 880 673

Colorado 700 802 880 673 549 465 412 539 1006 921 892 991

TopSum
Returns the smallest possible subset of a set for which the total results of a numeric evaluation
are at least a given sum. Elements of the result set are listed from largest to smallest.

Syntax

TopSum (set, numeric_value_expression1, numeric_value_expression2)

Parameter Description

set The set from which the highest-summing elements are selected.

numeric_value_expression1 The given sum (see “MDX Grammar Rules” on page 934).

numeric_value_expression2 The numeric evaluation (see “MDX Grammar Rules” on page 934).

Notes

l If the total results of the numeric evaluation do not add up to the given sum, an empty set
is returned.

l This function ignores negative and missing values.

Example

The following query selects the top-selling markets that collectively contribute 60,000 to the total
yearly Diet products sales, and displays the quarterly sales for each Diet product.

SELECT
 CrossJoin(
 [Product].[Diet].Children,
 [Year].Children
)
ON COLUMNS,
 TopSum(
 [Market].Levels(0).Members,
 60000,
 [Product].[Diet]
)
ON ROWS
FROM Sample.Basic
WHERE ([Scenario].[Actual],
 [Measures].[Sales])

MDX Function Reference 1149

This query returns the grid:

(axis) 100-20 100-20 100-20 100-20 200-20 200-20 200-20 200-20 300-30 300-30 300-30 300-30

(axis) Qtr1 Qtr2 Qtr3 Qtr4 Qtr1 Qtr2 Qtr3 Qtr4 Qtr1 Qtr2 Qtr3 Qtr4

Illinois 755 958 1050 888 1391 1520 1562 1402 675 755 859 894

California 367 491 506 468 1658 1833 1954 1706 700 802 880 673

Colorado 700 802 880 673 549 465 412 539 1006 921 892 991

Washington 637 712 837 704 459 498 597 514 944 799 708 927

Iowa 162 153 121 70 129 129 129 129 1658 1833 1954 1706

Florida 620 822 843 783 548 611 657 577 332 323 260 159

Oregon 389 303 277 322 1006 921 892 991 263 231 197 184

Truncate
Returns the integral part of a number. The return value has the same sign as its argument.

Syntax

Truncate (numeric_value_expression)

Parameter Description

numeric_value_expression Numeric value expression (see “MDX Grammar Rules” on page 934).

Example

Truncate(2.65) returns 2.

Truncate(-8.12) returns -8.

TupleRange
Returns the range of tuples between (and inclusive of) two tuples at the same level.

The range is created by identifying the level of the arguments and pruning the result set to include
only the argument tuples and the tuples that are, in terms of outline order, between them.

Syntax

TupleRange (tuple1, tuple2)

Parameter Description

tuple1 The first input tuple, marking the beginning of the range.

tuple2 The second input tuple, marking the end of the range.

1150 MDX

Notes

l TupleRange serves the same purpose as the @XRANGE function in the Essbase calculator
language.

l The two input tuples must be of the same dimensionality. See the example, wherein both
input tuples are of the format ([Year],[Month]).

Example

TupleRange can be useful if you have two Time dimensions. For example, the following
expression averages a value for the range of months from Mar 2005 to Feb 2006, inclusive.

AVG (
 TUPLERANGE(
 ([2005], [Mar]), ([2006], [Feb])
)
)

The values are averaged for the following range:

{([2005], [Mar]),
 ([2005], [Apr]),
 ([2005], [May]),
 ([2005], [Jun]),
 ([2005], [Jul]),
 ([2005], [Aug]),
 ([2005], [Sep]),
 ([2005], [Oct]),
 ([2005], [Nov]),
 ([2005], [Dec]),
 ([2006], [Jan]),
 ([2006], [Feb])}

Uda
Selects all members to which a specified user-defined attribute is associated in the entire
dimension or in a subtree rooted at the input member.

Syntax

Uda (dimension | member, string_value_expression)

Parameter Description

dimension The dimension in which matching UDAs are searched.

member A member to search (descendants included) for matching UDAs.

string_value_expression The name of the UDA to be selected. Can be an expression that evaluates to the UDA string,
or an exact character string (not case-sensitive) enclosed in double quotation marks.

Notes

A user-defined attribute is a term associated with members of an outline to describe a
characteristic. This function selects all members that have the specified UDA.

MDX Function Reference 1151

Example

Dimension Example

In the following query, the Uda function searches a dimension (top member included) for
descendant members having a UDA of Major Market:

SELECT
 {[Measures].[Sales], [Measures].[Profit]} ON COLUMNS,
 {UDA([Market], "Major Market")} ON ROWS
FROM Sample.Basic
WHERE ([Year].[Jul], [Product].[Cola])

(axis) Sales Profit

East 2248 1156

New York 912 370

Massachusetts 665 564

Florida 286 104

California 912 370

Texas 567 206

Central 1392 369

Illinois 567 208

Ohio 85 18

Colorado 199 70

returning the grid:

Member Example

In the following query, the Uda function searches a member (itself included) for descendant
members having a UDA of Major Market:

SELECT
 {[Measures].[Sales], [Measures].[Profit]} ON COLUMNS,
 {UDA([East], "Major Market")} ON ROWS
FROM Sample.Basic
WHERE ([Year].[Jul], [Product].[Cola])

returning the grid:

(axis) Sales Profit

East 2248 1156

New York 912 370

Massachusetts 665 564

1152 MDX

(axis) Sales Profit

Florida 286 104

Union
Returns the union of two input sets, optionally retaining duplicates.

Syntax

Union (set1, set2 [,ALL])

Parameter Description

set1 A set to join with set2.

set2 A set to join with set1.

ALL If the optional ALL keyword is used, duplicates are retained.

Notes

Duplicates are eliminated by default from the tail of the set. The optional ALL keyword retains
duplicates. The two input sets must have identical dimension signatures. For example, if set1
consists of dimensions Product and Market, in that order, then set2 should also consist of Product
followed by Market.

Example

Example 1

The expression

Union(Siblings([Old Fashioned]), {[Sarsaparilla], [Birch Beer]})

returns the set

{ [Old Fashioned], [Diet Root Beer], [Sarsaparilla], [Birch Beer] }

Example 2

The expression

Union(Siblings([Old Fashioned]), {[Sarsaparilla], [Birch Beer]}, ALL)

returns the set

{ [Old Fashioned], [Diet Root Beer], [Sarsaparilla], [Birch Beer],
 [Sarsaparilla], [Birch Beer] }

Example 3

The following query

SELECT
CrossJoin (

MDX Function Reference 1153

 Union (
 Siblings ([Old Fashioned]),
 {([Root Beer]), ([Cream Soda])}
),
 {(Budget), ([Variance])}
)
ON COLUMNS
from Sample.Basic

returns the grid

Old Fashioned Diet Root Beer Sarsaparilla Birch Beer Root Beer Cream Soda

Budget Variance Budget Variance Budget Variance Budget Variance Budget Variance Budget Variance

11640 -4439 14730 -2705 5050 -414 4530 -438 35950 -7996 29360 -3561

UnixDate
To the given Julian date, get its UNIX date.

Syntax

UnixDate (juliandate)

Parameter Description

juliandate A number representing the Julian date. This number is a continuous count of days and fractions elapsed
since noon Universal Time on January 1, 4713 BC in the proleptic Julian calendar.

Note: For Excel workbooks using 1900 date system, (JulianDate – 2415018.50) gets the sequential serial
number as per 1900 date system.

Notes

l This function is useful in converting the Julian date to UNIX date.

l In the 1900 date system, the first day that is supported is January 1, 1900. When you enter
a date, the date is converted into a serial number that represents the number of elapsed days
since January 1, 1900. For example, if you enter July 5, 1998, Microsoft Excel converts the
date to the serial number 35981. By default, Microsoft Excel for Windows uses the 1900 date
system.

Return Value

This function returns date a number representing the input date between January 1, 1970 and
Dec 31, 2037. The number is the number of seconds elapsed since midnight, January 1, 1970.
To retrieve this number, use any of the following functions: Today(), TodateEx(),
GetFirstDate(), GetLastDate(), DateRoll().

Date-Time type attribute properties of a member can also be used to retrieve this number. For
example: Product.currentmember.[Intro Date] returns the Introduction or release date
for the current product in context. [Cola].[Intro Date] returns the Introduction or release
date for the “Cola” product.

1154 MDX

See Also

l JulianDate

Upper
Converts lower-case string to upper case.

Syntax

Upper (string)

Parameter Description

string Input string.

Example

Upper(string)

returns STRING

See Also

l Lower

Value
Returns a value for the specified member or tuple.

Syntax

tuple[.Value]

member[.Value]

Parameter Description

tuple A tuple for which to return a value.

member A member for which to return a value.

Notes

The VALUE keyword is optional. In Example 2, the value of Sales can be represented either as
[Sales].VALUE or [Sales]. Any value expression (for example, the value expressions supplied
to functions such as Filter, Order, or Sum) has an implicit Value function in it. The expression
[Qtr1] <= 0.00 is a shortcut for [Qtr1].VALUE <= 0.00.

Example

Example 1

[Sales].Value

MDX Function Reference 1155

Returns the value of the Sales measure.

([Product].CurrentMember, [Sales]).Value

Returns the value of the Sales measure for the current member of the Product dimension.

Note: The Value keyword is optional. The above expressions can also be entered as:

[Sales]

Which is equivalent to [Sales].Value

([Product].CurrentMember, [Sales])

Which is equivalent to ([Product].CurrentMember, [Sales]).VALUE

Example 2

The following query sorts level-0 members of the Product dimension by the value of Sales, in
descending order.

SELECT
 {[Sales]}
ON COLUMNS,
 Order([Product].Levels(0).Members,
 [Sales].VALUE, BDESC)
ON ROWS
FROM Sample.Basic

This query returns the grid:

(axis) Sales

100-10 62824

300-10 46956

200-10 41537

200-20 38240

200-20 38240

300-30 36969

300-30 36969

400-10 35799

400-20 32670

100-20 30469

100-20 30469

200-30 17559

1156 MDX

(axis) Sales

300-20 17480

400-30 15761

100-30 12841

200-40 11750

WithAttr
Returns all base members that are associated with an attribute member of the specified type.

Syntax

WithAttr (member, character_string_literal, value_expression)

Parameter Description

member The top member of an attribute dimension.

character_string_literal An operator. Must be enclosed in double quotation marks.

The following operators are supported:

l > Greater than

l >= Greater than or equal to

l < Less than

l <= Less than or equal to

l = = Equal to

l <> or != Not equal to

l IN In

value_expression An attribute value described by a value expression. The expression must evaluate to a numeric
value for numeric/date attributes and must evaluate to a string for text valued attributes. Can
also be an exact character string (not case-sensitive) enclosed in double quotation marks.

Example

The following query

SELECT
 Withattr([Pkg Type], "==", "Can")
on columns
FROM Sample.Basic

returns products that are packaged in a can:

Cola Diet Cola Diet Cream

22777 5708 11093

MDX Function Reference 1157

See Also

l Attribute

WithAttrEx
Returns the set of base members that are associated with a specified varying attribute member
or dimension, given the perspective setting and the predicate.

Syntax

WithAttrEx (member, options, character_string_literal, value_expression, ANY, tuple|
member[,tuple|member])

Parameter Description

member The top member of an attribute dimension.

character_string_literal An operator. Must be enclosed in double quotation marks.

The following operators are supported:

l > Greater than

l >= Greater than or equal to

l < Less than

l <= Less than or equal to

l = = Equal to

l <> or != Not equal to

l IN In

value_expression An attribute value described by a value expression. The expression must evaluate to a numeric
value for numeric/date attributes and must evaluate to a string for text valued attributes. Can
also be an exact character string (not case-sensitive) enclosed in double quotation marks.

ANY The keyword ANY.

tuple | member Level 0 start tuple (or member) of the independent dimension set. The tuple must contain all
the discrete dimensions followed by the continuous dimension members, in the same order
that the continuous range has been defined.

tuple | member Optional level 0 end tuple (or member) of the independent dimension set. The tuple must
contain all the discrete dimensions followed by the continuous dimension members, in the
same order that the continuous range has been defined.

Example

Consider the following scenario: Products are packaged under different ounces over time and
the market state, according to the marketing strategy of the company. Ounces is defined as a
varying attribute for the Product dimension, to capture the varying attribute association over
the continuous Year dimension and the discrete Market dimension.

Year and Market are the independent dimensions, and level-0 tuple months (for example, Jan)
combined with a market state (for example, California) is a perspective for which the varying
attribute association is defined.

1158 MDX

The following query analyzes sales performance of products packaged in units of 20 ounces or
greater any time from Jan to Dec in New York, over all quarters. This is the perspective view,
which restates the sales according to the packaging strategy in July.

WITH PERSPECTIVE (Jul) FOR Ounces
SELECT
 {Qtr1, Qtr2, Qtr3, Qtr4}
ON COLUMNS,
 {WithattrEx(Ounces, “>=”, 20, ANY,
 ([New York], Jan), ([New York], Dec))}
ON ROWS
FROM app.db
WHERE
 (Sales, Ounces, [New York])
;

See Also

l AttributeEx

xTD
Returns period-to-date values.

Syntax

xTD ([member])

Parameter Description

xTD Values:

Parameter Value

HTD History-To-Date (H-T-D)

YTD Year-To-Date

STD Season-To-Date

PTD Period-To-Date

QTD Quarter-To-Date

MTD Month-To-Date

WTD Week-To-Date

DTD Day-To-Date

member Member specification. Should be a member from the time dimension.

MDX Function Reference 1159

Notes

l xTD ([member]) is equivalent to PeriodsToDate (layer, [member]) where
layer is assumed to be the value set in the corresponding Dynamic Time Series member in
the database outline.

For example, in Sample Basic, QTD ([member]) is equivalent to PeriodsToDate
(Year.Generations(2) [,member]), because Q-T-D is Generation 2 in the Year
dimension.

l The xTD functions YTD, QTD, MTD, etc. are not relevant for use in aggregate storage
databases, because the xTD functions assume that Dynamic Time Series members are
defined in the outline. Dynamic Time Series members are not supported for aggregate
storage database outlines.

You can use the PeriodsToDate function with aggregate storage databases in place of the
xTD functions.

For example,

YTD(May) is equivalent to PeriodsToDate(Year.Generations(1), May)

QTD(May) is equivalent to PeriodsToDate(Year.Generations(2), May).

Example

QTD([Feb])

returns the set {[Jan], [Feb]}.

QTD([Feb]) is equivalent to PeriodsToDate([Year].Generations(2), [Feb]), because
the dynamic-time-series member Q-T-D is defined as Generation 2 of the Year dimension.

HTD([May])

returns the set {[Jan], [Feb], [Mar], [Apr], [May]}.

HTD([May]) is equivalent to PeriodsToDate([Year].Generations(1), [May]), because
the dynamic-time-series member H-T-D is defined as Generation 1 of the Year dimension.

Note: If a dynamic-time-series member is not defined, an empty set is returned.

PTD([Feb])

returns an empty set, because the dynamic-time-series member P-T-D is not enabled in the
outline.

1160 MDX

8
Query Logging Configuration

In This Chapter

Query Logging Overview ... 1161

Query Logging Settings Procedure... 1161

Query Log Settings File Syntax.. 1162

Query Logging Sample File .. 1165

Query Logging Sample Output .. 1165

Query Logging Overview
Query logging provides a way for Essbase administrators to track query patterns of an Essbase
database. The query log file tracks all queries performed against the database regardless of
whether the query originated from Spreadsheet Add-in , an MDX query, or Report Writer. Query
logging can track members, generation or level numbers of members belonging to specific
generations or levels, and Hybrid Analysis members. Query logging also offers the flexibility to
exclude logging of certain dimensions and members belonging to generations or levels. Because
the query log file output is an XML document, you can import the log file to any XML-enabled
tool to view the log.

Note: You can import the .XML file to Microsoft Access or Microsoft Excel. However, you must
first shut down the database.

For details about the query log file structure, refer to querylog.dtd in the ARBORPATH/bin
directory.

To enable query logging, create a query log file and add to the file the settings that control how
query logging is performed.

You must create a query log file for each database that requires query logging. If the query log
file is missing or the QUERYLOG setting is off, query logging is disabled.

Query Logging Settings Procedure
The following steps explain how to create a query log settings file. To see a sample query log file,
see Query Logging Sample File.

Query Logging Overview 1161

ä To enable query logging:

1 In the ARBORPATH\App\appname\dbname directory of Essbase, create a query log settings file.

The settings file must be named dbname.cfg, where dbname matches the name of the
database. For example, the query log settings file for Sample Basic is basic.cfg. For
databases in Unicode-mode applications, the query log file must be encoded in UTF-8 and
include the UTF-8 signature.

2 In the settings file, specify required and optional elements, using the syntax from the section Query
Logging Syntax:

l The dimension for which you want to log queries (QUERYLOG [dimension_name]).

l Optional: The setting to log generation or level numbers for members of specified
generations or levels in a dimension (QUERYLOG GENERATION generation-range or
QUERYLOG LEVEL level-range).

l Optional: The setting to exclude logging of members from specified generations or levels
in a dimension (QUERYLOG NONE GENERATION generation-range or QUERYLOG
NONE LEVEL level-range).

l Optional: The setting to log Hybrid Analysis members for a specified dimension
(QUERYLOG LOGHAMBRS ON | OFF).

l Optional: The location where the query log file is created (QUERYLOG LOGPATH
path-expression).

l Optional: The format of the log file output (QUERYLOG LOGFORMAT CLUSTER |
TUPLE).

l Optional: The size of the log file (QUERYLOG LOGFILESIZE n)

l Optional: The size of all log files (QUERYLOG TOTALLOGFILESIZE n).

l A setting to enable or disable query logging the next time the application starts
(QUERYLOG ON | OFF).

3 Restart the database to accept the settings.

Note: Restart after creating a file or changing any entries in a file.

4 After query logging is enabled, review the log entries in the query log file, dbname.qlg.

For example, you can view the output of the log file to analyze how many times a certain
member has been queried. You can use a UTF-8-enabled editor to view query log files for
databases in Unicode-mode applications.

Query Log Settings File Syntax
The query log settings filename must be of the form dbname.cfg, where dbname represents the
name of a database. The dbname.cfg file must be located in the ARBORPATH\App\appname
\dbname directory of Essbase. The dbname.cfg file consists of the following syntax:

QUERYLOG [dimension_name]
QUERYLOG NONE GENERATION generation-range

1162 Query Logging Configuration

QUERYLOG NONE LEVEL level-range
QUERYLOG GENERATION generation-range
QUERYLOG LEVEL level-range
QUERYLOG LOGHAMBRS ON | OFF
QUERYLOG LOGPATH path-expression
QUERYLOG LOGFORMAT CLUSTER | TUPLE
QUERYLOG LOGFILESIZE n
QUERYLOG TOTALLOGFILESIZE n
QUERYLOG ON | OFF

QUERYLOG Parameter Description

[dimension_name] Identifies the dimension name to be tracked. The brackets around the dimension name are required. QUERYLOG
[dimension_name] logs all members of a dimension. For example, QUERYLOG [Product] tracks all members
of the Product dimension. Each dimension must be specified in a separate QUERYLOG [dimension_name]
setting.

Note: QUERYLOG [dimension_name] must precede all settings that track Hybrid Analysis members and
members of generation and level ranges; otherwise, Hybrid Analysis and generation and level settings are
ignored.

NONE GENERATION
generation-range

Prevents tracking of members from the specified generation range. For example, QUERYLOG NONE GENERATION
2 excludes tracking of all members from generation 2 of the named dimension.

NONE LEVEL level-range Prevents tracking of members from the specified level range. For example, QUERYLOG NONE LEVEL 0-2 excludes
tracking of all members of levels 0, 1, and 2 of the named dimension.

GENERATION generation-
range

Tracks members of the specified generation range by generation number, rather than by member name. For
example, QUERYLOG GENERATION 5-7 logs members of generations 5, 6, and 7 of the named dimension by
their generation number in the log file.

LEVEL level-range Tracks members of the specified level range by level number, rather than by member name. For example,
QUERYLOG LEVEL -3 logs members of levels 0, 1, 2, and 3 of the named dimension by their level number in
the log file.

LOGHAMBRS ON | OFF Tracks Hybrid Analysis members of the specified dimension. By default, the setting is OFF. The QUERYLOG
NONE, GENERATION, and LEVEL parameters do not apply to Hybrid Analysis members because Hybrid Analysis
members are not actually members in an Essbase outline. If QUERYLOG LOGHAMBRS ON is set, the log output
is always displayed in CLUSTER format, regardless of whether QUERYLOG LOGFORMAT TUPLE is set. If
QUERYLOG LOGHAMBRS ON is set, but the database or dimension does not have any Hybrid Analysis members,
the setting is ignored.

LOGPATH path-
expression

Specifies the location of the output log file. The log file name is dbname00001.qlg; for example,
basic00001.qlg. Examples of the log path are QUERYLOG LOGPATH /usr/local/Essbaselogs/ and
QUERYLOG LOGPATH d:\Essbaselogs\querylogs\. You must include a backslash \ (for Windows
directories) or forward slash / (for UNIX directories) at the end of the path expression; otherwise, the query
log file is not created.

By default, the location for the log output file is the ARBORPATH\App\appname\dbname\ directory. If the
LOGPATH path-expression setting is missing, the default is used. Essbase writes log information to the query
log file after an application stops running.

LOGFORMAT CLUSTER |
TUPLE

Specifies the format of the log output. CLUSTER and TUPLE provide the same log information, but display the
information differently. CLUSTER provides information on how many members of a dimension were queried
and lists queried members within their respective dimensions. TUPLE lists each queried member combination.
By default, CLUSTER is the log format. Because the TUPLE format lists each member combination queried,
TUPLE may have a greater impact on query performance than CLUSTER. See Sample Cluster Output for an
example of a query log in cluster format. See Sample Tuple Output for an example of a query log in tuple
format.

Query Log Settings File Syntax 1163

QUERYLOG Parameter Description

LOGFILESIZE n Specifies the maximum size of an individual query log file in megabytes (MB). The minimum value is 1 MB.
The maximum value is 2048 MB (2 GB). If the LOGFILESIZE setting is missing, then, by default, the query log
file size is 1 MB. If an initial query log file size exceeds the specification, log information is added to a new
query log file. Each time a new file is created, the filename is incremented by one.

TOTALLOGFILESIZE n Specifies the maximum size of all query log files combined in megabytes (MB). The minimum value is 512 MB
(1/2 GB). The maximum value is 4095 MB. If the TOTALLOGFILESIZE setting is missing, then, by default, the
total query log file size is 1024 MB (1 GB). Query log files are created until the file size total exceeds the
specified maximum. When the maximum is exceeded, a message is displayed and query logging automatically
turns off.

ON | OFF Specifies whether the query logging feature is turned on or off. All query log settings are ignored if this setting
is OFF or missing. By default, the setting is OFF.

Generation-range and level-range values are represented in one of the following ways:

Generation-Range or
Level-Range Value

Description

x A specific generation or level number. For example, QUERYLOG NONE GENERATION 2 excludes generation 2
from query logging.

x-y All generations or levels inclusive of number x through number y. For example, QUERYLOG GENERATION 1-3
or QUERYLOG LEVEL 1-3 includes generation or level numbers 1, 2, and 3.

-x For generation-range, all generations within the range 1 through x. For level-range, all levels within the range
0 through x. For example, QUERYLOG GENERATION -2 includes generations 1 and 2. QUERYLOG LEVEL -3
includes levels 0, 1, 2, and 3.

x- For generation-range, all generations within the range from number x through the highest generation. For level-
range, all levels within the range from number x through the highest level. For example, QUERYLOG Level 1-
includes levels 1, 2, 3 and so on up to the highest level.

Notes

l When query logging is enabled, queries to the database may be slower. Performance depends
on how many members are being tracked and the size of the query.

l If the settings file name does not match the name of the database or the settings file is located
in a place other than the ARBORPATH\App\appname\dbname directory, Essbase ignores
query logging.

l You can place QUERYLOG settings in any order in the settings file, but QUERYLOG
[dimension_name] must precede any settings that specify Hybrid Analysis members or any
setting that specify members by generation or level.

l If, in the settings, QUERYLOG ON is missing or if QUERYLOG OFF is set, query logging
is disabled.

l If generation and level settings cause contradictions in the settings file, the following
precedence rules apply:

m generation numbers (highest priority)

m level numbers

1164 Query Logging Configuration

m member names (lowest priority)

For example, if a member belongs to both level 1 and generation 2 and the settings
QUERYLOG GENERATION 2 and QUERYLOG NONE LEVEL 1 are in the settings file,
the generation setting takes precedence, and members of generation 2 are logged by
generation number.

Tips

l To view query log output easily, change the file extension .QLG to .XML, and then using the
Internet Explorer or Netscape browser view the .XML file.

Note: You can import the .XML file to Microsoft Access or Microsoft Excel. However, you
must first shut down the database.

l If Essbase is not producing a query log file as expected, view the dbname.log file in the
ARBORPATH\App\appname directory to search for query log messages.

Query Logging Sample File

Note: # indicates a comment that describes a line of the settings file. Comments are not necessary
to include in the actual query log settings file.

Log the Product dimension
QUERYLOG [Product]
Log Hybrid Analysis members of Product, if applicable
QUERYLOG LOGHAMBRS ON
Log the Market dimension
QUERYLOG [Market]
Log members of generation 2 of Market by generation number
QUERYLOG GENERATION 2
Display log output in cluster format
QUERYLOG LOGFORMAT CLUSTER
Create log file in C:\QUERYLOG\
QUERYLOG LOGPATH C:\QUERYLOG\
Start a new log file after an individual log file size reaches 2 MB
QUERYLOG LOGFILESIZE 2
Turn off query logging after the total size of all log files reaches 1024 MB (1 GB)
QUERYLOG TOTALLOGFILESIZE 1024
Enable query logging
QUERYLOG ON

Query Logging Sample Output

The following seSample Query Log Outputgment shows an example of how log settings look in
a log file. In the example, the log settings show that all members of Product are logged and that

Query Logging Sample File 1165

members of generation 2 of Market are logged by generation number. The log format is cluster
and the log path is C:\QUERYLOG\.

 <?xml version="1.0" encoding="UTF-8" ?>
- <root>
 - <session>
 <bootuptime>Wed Jul 23 15:27:26 2002</bootuptime>
 - <logsettings>
 - <dimensions>
 - <logdim name="Product">
 - <logdim name="Market">
 <spec>GENERATION 2</spec>
 </logdim>
 </dimensions>
 - <othersettings>
 <logformat>cluster</logformat>
 <logpath>C:\QUERYLOG\</logpath>
 </othersettings>
 </logsettings>

Description

A query is a unit of retrieval from the user perspective. The way a user may perceive a query is
different than how the server analyzes and executes a query. Even if a user performs a single
retrieval, in order for the server to efficiently execute the logical query, the server splits the query
into a number of subqueries to execute. Therefore, a single retrieval from the user perspective
may actually consist of several subqueries from the server perspective. These subqueries are
reflected in the query log.

Sample Cluster Output

The following segment shows an example of how queries are logged in cluster format. The
username is listed along with the query execution date and the start time of the query. Each
cluster contains two dimension entries. The first cluster shows that members 100 and 200 of the
Product dimension were queried. The second cluster shows that member 300 of Product and
Generation 2 of Market were queried. The elapsed time to perform the query is also provided.

<query>
 <user>User1</user>
 <time>Tue Aug 13 12:29:49 2002</time>
 <subquery>
 <cluster size="2">
 <dim size="2">
 <member>100</member>
 <member>200</member>
 </dim>
 <dim size="1">
 <member>Market</member>
 </dim>
 </cluster>
 </subquery>
 <subquery>
 <cluster size="2">
 <dim size="1">
 <member>300</member>

1166 Query Logging Configuration

 </dim>
 <dim size="2">
 <member>Market</member>
 <generation>2</generation>
 </dim>
 </cluster>
 </subquery>
 <elapsedtime>0.016 seconds</elapsedtime>
</query>

Sample Tuple Output

The following segment shows an example of how queries are logged in tuple format. The
username is listed along with the query execution date and the start time of the query. Note that
each member of Product is displayed with Market. Each possible member combination is
displayed for a given query. The elapsed time to perform the query is also provided.

<query>
 <user>User1</user>
 <time>Tue Aug 13 12:28:14 2002</time>
 <subquery>
 <tuples>
 <tuple>
 <member>100</member>
 <member>Market</member>
 </tuple>
 </tuples>
 </subquery>
 <subquery>
 <tuples>
 <tuple>
 <member>200</member>
 <member>Market</member>
 </tuple>
 </tuples>
 </subquery>
 <elapsedtime>0.02 seconds</elapsedtime>
</query>

Query Logging Sample Output 1167

1168 Query Logging Configuration

9
Report Writer Commands

In This Chapter

Report Writer Overview ... 1169

Report Writer Syntax .. 1170

Report Writer Command Groups... 1171

Examples of Report Scripts .. 1177

Report Writer Command Reference ... 1214

Report Writer Overview
Report Writer is a text-based script language that you can use to report on data in
multidimensional databases. You can combine Report Writer's selection, layout, and formatting
commands to build a variety of reports.

With the Report Writer, you can generate reports whose length or specialized format exceed the
capabilities of a spreadsheet. You can use the Report Writer to:

l Define formatted reports on multidimensional data

l Export data from an Essbase database

l Produce free-form reports

To produce reports, Essbase provides several options:

l Use the Report Writer option in Essbase to select commands and options.

l Create a report script using the report editor or any text editor.

l Use a spreadsheet in Essbase template retrieval mode.

l Execute a report script in MaxL or ESSCMD interactive or batch mode.

For an introduction to writing reports, see the Oracle Essbase Database Administrator's Guide.

Note: Essbase uses double-precision math as supported by the C compiler on the corresponding
platform. Floating point values exceeding the number of significant digits for that
platform may result in rounded numbers.

Report Writer Overview 1169

Report Writer Syntax
This topic contains the following information:

l “Report Delimiters” on page 1170

l “Syntax Guidelines” on page 1170

l “Referencing Static Members” on page 1171

Report Delimiters
The < or {} delimiters are required for most Report Writer commands. If you do not use a
delimiter, Report Writer assumes that the command name is a member name.

Delimiter Use in Report Writer: Example

{} Encloses report formatting commands {SUPFORMATS}

< Precedes layout and member sorting, selection, calculation, and some formatting commands <PAGE

Syntax Guidelines
l Separate commands with at least one space, tab, or new line. Report processing is not affected

by extra blank lines, spaces, or tabs.

l Enter commands in either upper or lowercase. Commands are not case sensitive. If the
database outline is case-sensitive, then the member names used in the report script must
match the outline.

l To start report processing, enter the ! report output command (exclamation point or
"bang"), or one or more consecutive numeric values. You can place one or more report
scripts, each terminated by its own ! command, in the same report file.

l You can group more than one format command within a single set of curly braces. For
example, these formats are synonyms:

 {UDATA SKIP}
 {UDATA} {SKIP}

l Enclose member names that contain spaces or the member name "Default" in double quotes;
for example, "Cost of Goods Sold" "Default".

l If a formatting command is preceded by three or more of the characters "=," "-," and "_,"
the Report Extractor assumes that the characters are extraneous underline characters and
ignores them. For example, ==={SKIP 1}

l Use // (double slash) to indicate a comment. Everything on the line following a comment
is ignored by the Report Writer. Each line of a comment must start with a double slash.

1170 Report Writer Commands

Referencing Static Members
You can enter static (non-changing) member names, such as Sales and COGS, directly into the
report script. For static member names, use staticMbrDefinition syntax, as described below:

Command

A staticMbrDefinition specifies the member to select.

Syntax

mbrName [mbrName]

mbrName

Dimension or member name of member to specify. When specifying multiple member names,
separate them with spaces. Enclose member names in double quotes if they contain spaces or
consist of numbers. For example: "Cost of Goods Sold" or "100-10"

Description

A static member definition specifies a database outline member in a report specification. This
definition does not automatically reflect changes to the database outline. If you change a member
name in the database outline, you must manually update each report script associated with that
outline.

Example

Year

Selects the member Year.

Sales "Cost_of_Goods_Sold"

Selects the members Sales and Cost_of_Goods_Sold.

Report Writer Command Groups
This section lists all Report Writer commands, grouped by command type. The command
groups correspond to the steps of report design:

l “Report Layout Commands” on page 1172

l “Data Range Commands” on page 1172

l “Data Ordering Commands” on page 1172

l “Member Selection and Sorting Commands” on page 1172

l “Format Commands” on page 1173

l “Column or Row Calculation Commands” on page 1176

l “Member Names and Aliases” on page 1176

Report Writer Command Groups 1171

For a description of the stages of report design, see the Oracle Essbase Database Administrator's
Guide.

Report Layout Commands
A report layout is composed of items that make up the columns and rows of a page. Report
layout commands provide column, page, and row layout, and include two commands that
override the default method for interpreting column dimension member lists. Report Writer
provides the following page layout commands:

l ASYM

l COLUMN

l PAGE

l ROW

l SYM

Data Range Commands
Data range commands restrict the range of data selected for your reports. Report Writer provides
the following data range commands:

l BOTTOM

l RESTRICT

l TOP

Data Ordering Commands
Data ordering commands order data in your reports. Report Writer provides the following
ordering command:

l ORDERBY

Member Selection and Sorting Commands
Member selection commands enhance your selection options using member relationships based
on the database outline. The Report Writer provides the following selection and sorting
commands:

l ALLINSAMEDIM

l ALLSIBLINGS

l ANCESTORS

l ATTRIBUTE

l CHILDREN

1172 Report Writer Commands

l CURRENCY

l DESCENDANTS

l DIMBOTTOM

l DIMEND

l DIMTOP

l DUPLICATE

l IANCESTORS

l ICHILDREN

l IDESCENDANTS

l IPARENT

l LATEST

l LEAVES

l LINK

l MATCH

l OFSAMEGEN

l ONSAMELEVELAS

l PARENT

l SORTALTNAMES

l SORTASC

l SORTDESC

l SORTGEN

l SORTLEVEL

l SORTMBRNAMES

l SORTNONE

l TODATE

l UDA

l WITHATTR

Format Commands
These commands define the appearance of your data and your report. Each format command
applies only to those output lines that follow the command.

l ACCON

l ACCOFF

l AFTER

l BEFORE

Report Writer Command Groups 1173

l BLOCKHEADERS

l BRACKETS

l COLHEADING

l COMMAS

l CURHEADING

l DECIMAL

l ENDHEADING

l EUROPEAN

l FEEDON

l FIXCOLUMNS

l FORMATCOLUMNS

l HEADING

l IMMHEADING

l INCEMPTYROWS

l INCFORMATS

l INCMASK

l INCMISSINGROWS

l INCZEROROWS

l INDENT

l INDENTGEN

l LMARGIN

l MASK

l MISSINGTEXT

l NAMESCOL

l NAMESON

l NAMEWIDTH

l NEWPAGE

l NOINDENTGEN

l NOPAGEONDIMENSION

l NOROWREPEAT

l NOSKIPONDIMENSION

l NOUNAMEONDIM

l ORDER

l OUTALTNAMES

l OUTMBRNAMES

1174 Report Writer Commands

l OUTPUT

l PAGEHEADING

l PAGELENGTH

l PAGEONDIMENSION

l PYRAMIDHEADERS

l QUOTEMBRNAMES

l RENAME

l ROWREPEAT

l SCALE

l SETCENTER

l SINGLECOLUMN

l SKIP

l SKIPONDIMENSION

l STARTHEADING

l SUPALL

l SUPBRACKETS

l SUPCOLHEADING

l SUPCOMMAS

l SUPCURHEADING

l SUPEMPTYROWS

l SUPEUROPEAN

l SUPFEED

l SUPFORMATS

l SUPHEADING

l SUPMASK

l SUPMISSINGROWS

l SUPNAMES

l SUPOUTPUT

l SUPPAGEHEADING

l SUPSHARE

l SUPSHAREOFF

l SUPZEROROWS

l TABDELIMIT

l TEXT

l UCHARACTERS

Report Writer Command Groups 1175

l UCOLUMNS

l UDATA

l UNAME

l UNAMEONDIMENSION

l UNDERLINECHAR

l UNDERSCORECHAR

l WIDTH

l ZEROTEXT

Column or Row Calculation Commands
These commands perform column and row calculations that let you create extra columns or
rows in a report (not defined as part of the database outline) based on selected data members.
Enclose all calculation commands and their arguments in curly { } braces.

l CALCULATE COLUMN

l CALCULATE ROW

l CLEARALLROWCALC

l CLEARROWCALC

l OFFCOLCALCS

l OFFROWCALCS

l ONCOLCALCS

l ONROWCALCS

l PRINTROW

l REMOVECOLCALCS

l SAVEANDOUTPUT

l SAVEROW

l SETROWOP

Member Names and Aliases
These commands allow you to set aliases or alternate names that can make reports easier to read
and help your reader focus on the data values rather than the meanings of member (page,
column, and row) names.

l REPALIAS

l REPALIASMBR

l REPMBR

l REPMBRALIAS

1176 Report Writer Commands

l REPQUALMBR

l OUTMBRALT

l OUTALTMBR

l OUTALT

l OUTALTNAMES

l OUTALTSELECT

l OUTPUTMEMBERKEY

You can use aliases to display members in a report:

l By alias alone. For example, display the name as Diet Cola rather than its corresponding
member name 100-20.

l As a combination of member name and alias. For example, display the name as Diet Cola
100-20.

In addition, these report commands also control the display of member names and aliases.

l ALLINSAMEDIM

l CHILDREN

l DESCENDANTS

l GEN

l LEV

l SORTASC

l SORTALTNAMES

l SORTDESC

l SORTGEN

l SORTLEVEL

l SORTNONE

Examples of Report Scripts
This section includes report scripts demonstrating report procedures and formats frequently
required in business settings.

The samples use both the Demo Basic and Sample Basic databases provided with Essbase Server.
The scripts for these examples are available in \ARBORPATH\App\Demo\Basic or
\ARBORPATH\App\Sample\Basic. They are also displayed in Enterprise View in
Administration Services, if you chose to install sample applications during installation.

The sample reports demonstrate the following techniques:

l “Sample 1: Creating a Different Format for Each Page” on page 1178

Examples of Report Scripts 1177

l “Sample 2: Handling Missing Values” on page 1179

l “Sample 3: Nesting Columns” on page 1181

l “Sample 4: Grouping Rows” on page 1182

l “Sample 5: Reporting on Different Combinations of Data” on page 1186

l “Sample 6: Formatting Different Combinations of Data” on page 1187

l “Sample 7: Using Aliases” on page 1189

l “Sample 8: Creating Custom Headings and % Characters” on page 1190

l “Sample 9: Creating Custom Page Headings” on page 1193

l “Sample 10: Using Formulas” on page 1195

l “Sample 11: Placing Two-Page Layouts on the Same Page” on page 1196

l “Sample 12: Formatting for Data Export” on page 1198

l “Sample 13: Creating Asymmetric Columns” on page 1199

l “Sample 14: Calculating Columns” on page 1200

l “Sample 15: Calculating Rows” on page 1202

l “Sample 16: Sorting by Top or Bottom Data Values” on page 1207

l “Sample 17: Restricting Rows” on page 1209

l “Sample 18: Ordering Data Values” on page 1210

l “Sample 19: Narrowing Member Selection Criteria” on page 1211

l “Sample 20: Using Attributes in Member Selection” on page 1212

l “Sample 21: Using the WITHATTR Command in Member Selection” on page 1213

For fundamental information about reports and report scripts, see "Understanding Report Script
Basics" in the Oracle Essbase Database Administrator's Guide. For detailed information about
using Report Writer commands to write reports and reports scripts, see the "Developing Report
Scripts" section.

Sample 1: Creating a Different Format for Each Page
This sample report contains data for Actual Sales. Each report page shows a different Product.
The report lists products on the same page until the maximum page length is reached. To place
each Product on a separate page, you must use the PAGEONDIMENSION format command,
as shown in “Sample 2: Handling Missing Values” on page 1179.

Because none of the cities in South sell Stereo or Compact_Disc, the data values indicate
#MISSING. You can represent missing values by suppressing the row or substituting a
replacement text string, such as N/A. See “Sample 2: Handling Missing Values” on page 1179
for an example of substituting page breaks and labels for missing values.

 Sales Actual Stereo

 Qtr1 Qtr2 Qtr3 Qtr4

1178 Report Writer Commands

 ======== ======== ======== ========
East 7,839 7,933 7,673 10,044
West 11,633 11,191 11,299 14,018
South #Missing #Missing #Missing #Missing
Market 19,472 19,124 18,972 24,062

 Sales Actual Compact_Disc

 Qtr1 Qtr2 Qtr3 Qtr4
 ======== ======== ======== ========
East 10,293 9,702 9,965 11,792
West 14,321 14,016 14,328 17,247
South #Missing #Missing #Missing #Missing
Market 24,614 23,718 24,293 29,039

 Sales Actual Audio

 Qtr1 Qtr2 Qtr3 Qtr4
 ======== ======== ======== ========
East 18,132 17,635 17,638 21,836
West 25,954 25,207 25,627 31,265
South #Missing #Missing #Missing #Missing
Market 44,086 42,842 43,265 53,101

Use the following script to create Sample 1:

<PAGE (Accounts, Scenario, Product)
Sales
Actual
<IDESCENDANTS Audio

 <COLUMN (Year)
 <CHILDREN Year

<ROW(Market)
<ICHILDREN Market
 !

The ! report output command is required to generate the report.

Because the IDESCENDANTS selection command is used for Audio, the report selects all three
members. Only a single member is selected from the other page dimensions, Sales and Actual.
As a result, the script creates three report pages. They display as one long report page unless you
use the PAGEONDIMENSION format command, as shown in “Sample 2: Handling Missing
Values” on page 1179.

This report script, ACTSALES.REP, is available in the \ARBORPATH\App\Demo\Basic
directory, and is displayed in Enterprise View in Administration Services.

Sample 2: Handling Missing Values
This report has the same layout and member selection as Sample 1, and shows you how to use
page breaks and labels for missing values.

 Sales Actual Stereo

Examples of Report Scripts 1179

 Qtr1 Qtr2 Qtr3 Qtr4
 ======== ======== ======== ========
East 7,839 7,933 7,673 10,044
West 11,633 11,191 11,299 14,018
South N/A N/A N/A N/A
 Market 19,472 19,124 18,972 24,062

 Sales Actual Compact_Disc

 Qtr1 Qtr2 Qtr3 Qtr4
 ======== ======== ======== ========
East 10,293 9,702 9,965 11,792
West 14,321 14,016 14,328 17,247
South N/A N/A N/A N/A
 Market 24,614 23,718 24,293 29,039

 Sales Actual Audio

 Qtr1 Qtr2 Qtr3 Qtr4
 ======== ======== ======== ========
East 18,132 17,635 17,638 21,836
West 25,954 25,207 25,627 31,265
South N/A N/A N/A N/A
 Market 44,086 42,842 43,265 53,101

Use the following script to create Sample 2:

<PAGE (Accounts, Scenario, Product)
Sales
Actual
<IDESCENDANTS Product
{ PAGEONDIMENSION Product }
{ MISSINGTEXT "N/A" }

 <COLUMN (Year)
 <CHILDREN Year

<ROW(Market)
<ICHILDREN Market
 !

The PAGEONDIMENSION format command creates a page break whenever a member from
the specified dimension changes. Because the report selects eight Product members, the report
is eight pages long.

The MISSINGTEXT format command substitutes any strings enclosed within double quotes
into the #MISSING string. To suppress missing values, use the SUPMISSINGROWS command.

You can also combine format commands within one set of braces:

{ PAGEONDIMENSION Product MISSINGTEXT "N/A" }

This report script, MISS_LBL.REP, is available in the \ARBORPATH\App\Demo\Basic
directory, and is displayed in Enterprise View in Administration Services.

1180 Report Writer Commands

Sample 3: Nesting Columns
Each page produced by this report sample contains Sales information for a given Market. The
report has two groups of columns across the page. The Actual and Budget members are the
nested column group below Year members.

Note that the Actual and Budget members are on the same line in the report. You can put multiple
commands on one line, but report commands are easier to read if they are spread out.

 Sales East

 Jan Feb Mar Qtr1
 Actual Budget Actual Budget Actual Budget Actual Budget
 ======= ======= ======= ======= ======= ======= ======= =======

Stereo 2,788 2,950 2,482 2,700 2,569 2,700 7,839 8,350
Compact_Disc 3,550 3,450 3,285 3,250 3,458 3,250 10,293 9,950
 Audio 6,338 6,400 5,767 5,950 6,027 5,950 18,132 18,300
Television 5,244 4,800 4,200 4,300 3,960 4,300 13,404 13,400
VCR 4,311 4,200 3,734 3,700 3,676 3,700 11,721 11,600
Camera 2,656 2,850 2,525 2,670 2,541 2,670 7,722 8,190
 Visual 12,211 11,850 10,459 10,670 10,177 10,670 32,847 33,190
 Product 18,549 18,250 16,226 16,620 16,204 16,620 50,979 51,490

 Sales West

 Jan Feb Mar Qtr1
 Actual Budget Actual Budget Actual Budget Actual Budget
 ====== ======= ======= ======= ======= ======= ======= =======

Stereo 4,102 4,000 3,723 3,600 3,808 3,600 11,633 11,200
Compact_Disc 4,886 4,700 4,647 4,400 4,788 4,400 14,321 13,500
 Audio 8,988 8,700 8,370 8,000 8,596 8,000 25,954 24,700
Television 5,206 5,100 4,640 4,600 4,783 4,600 14,629 14,300
VCR 4,670 4,650 4,667 4,200 4,517 4,200 13,854 13,050
Camera 3,815 4,050 3,463 3,750 3,478 3,750 10,756 11,550
 Visual 13,691 13,800 12,770 12,550 12,778 12,550 39,239 38,900
 Product 22,679 22,500 21,140 20,550 21,374 20,550 65,193 63,600
/pre>

 Sales South

 Jan Feb Mar Qtr1
 Actual Budget Actual Budget Actual Budget Actual Budget
 ======== ======= ======= ======= ======= ======= ======= =======

Television 3,137 3,400 2,929 3,100 2,815 3,100 8,881 9,600
VCR 3,225 3,400 3,206 3,100 3,120 3,100 9,551 9,600
Camera 2,306 2,400 2,167 2,400 2,168 2,400 6,641 7,200
 Visual 8,668 9,200 8,302 8,600 8,103 8,600 25,073 26,400
 Product 8,668 9,200 8,302 8,600 8,103 8,600 25,073 26,400

 Sales Market

 Jan Feb Mar Qtr1
 Actual Budget Actual Budget Actual Budget Actual Budget
 ======= ======= ======= ======= ======= ======= ======= =======

Examples of Report Scripts 1181

Stereo 6,890 6,950 6,205 6,300 6,377 6,300 19,472 19,550
Compact_Disc 8,436 8,150 7,932 7,650 8,246 7,650 24,614 23,450
 Audio 15,326 15,100 14,137 13,950 14,623 13,950 44,086 43,000
Television 13,587 13,300 11,769 12,000 11,558 12,000 36,914 37,300
VCR 12,206 12,250 11,607 11,000 11,313 11,000 35,126 34,250
Camera 8,777 9,300 8,155 8,820 8,187 8,820 25,119 26,940
 Visual 34,570 34,850 31,531 31,820 31,058 31,820 97,159 98,490
 Product 49,896 49,950 45,668 45,770 45,681 45,770 141,245 141,490

Use the following script to create Sample 3:

<PAGE (Accounts, Market)
Sales
<ICHILDREN Market
{ PAGEONDIMENSION Market }
{ SUPMISSINGROWS }
 <COLUMN (Year, Scenario)
 <ICHILDREN Qtr1
 Actual Budget
<ROW(Product)
<IDESCENDANTS Product
 !

The report selects four Markets because the <ICHILDREN command is applied to Market. Only
Sales is selected from the other page dimension, so the report has four pages.

For the South, all the rows of Product data are not displayed. Recall that the cities in the South
do not sell every Product. The report uses the SUPMISSINGROWS format command to suppress
the output of any member rows with all missing values.

This report script, COLGROUP.REP, is available in the \ARBORPATH\App\Demo\Basic
directory, and is displayed in Enterprise View in Administration Services.

Sample 4: Grouping Rows
Each page of this report contains Sales information for a given Market. The report page contains
members for both Product and Year as groups of rows down the page. This script creates a four-
page report because the page dimensions and their member selections are the same as in “Sample
3: Nesting Columns” on page 1181. The row and column layout is switched because the row and
column dimensions are different. This section shows a representative part of the output.

 Sales East
 Actual Budget Variance
 ======== ======== ========

Stereo Qtr1 7,839 8,350 (511)
 Qtr2 7,933 8,150 (217)
 Qtr3 7,673 8,350 (677)
 Qtr4 10,044 10,400 (356)
 Year 33,489 35,250 (1,761)
Compact_Disc Qtr1 10,293 9,950 343
 Qtr2 9,702 9,750 (48)
 Qtr3 9,965 10,050 (85)
 Qtr4 11,792 12,550 (758)
 Year 41,752 42,300 (548)

1182 Report Writer Commands

 Audio Qtr1 18,132 18,300 (168)
 Qtr2 17,635 17,900 (265)
 Qtr3 17,638 18,400 (762)
 Qtr4 21,836 22,950 (1,114)
 Year 75,241 77,550 (2,309)
Television Qtr1 13,404 13,400 4
 Qtr2 12,115 12,900 (785)
 Qtr3 15,014 14,200 814
 Qtr4 17,861 17,300 561
 Year 58,394 57,800 594
VCR Qtr1 11,721 11,600 121
 Qtr2 10,999 11,100 (101)
 Qtr3 13,217 11,800 1,417
 Qtr4 14,386 14,900 (514)
 Year 50,323 49,400 923
Camera Qtr1 7,722 8,190 (468)
 Qtr2 7,581 8,210 (629)
 Qtr3 8,181 8,630 (449)
 Qtr4 10,853 11,550 (697)
 Year 34,337 36,580 (2,243)
 Visual Qtr1 32,847 33,190 (343)
 Qtr2 30,695 32,210 (1,515)
 Qtr3 36,412 34,630 1,782
 Qtr4 43,100 43,750 (650)
 Year 143,054 143,780 (726)
 Product Qtr1 50,979 51,490 (511)
 Qtr2 48,330 50,110 (1,780)
 Qtr3 54,050 53,030 1,020
 Qtr4 64,936 66,700 (1,764)
 Year 218,295 221,330 (3,035)

 Sales West
 Actual Budget Variance
 ======== ======== ========

Stereo Qtr1 11,633 11,200 433
 Qtr2 11,191 11,050 141
 Qtr3 11,299 11,650 (351)
 Qtr4 14,018 14,500 (482)
 Year 48,141 48,400 (259)
Compact_Disc Qtr1 14,321 13,500 821
 Qtr2 14,016 13,500 516
 Qtr3 14,328 14,300 28
 Qtr4 17,247 16,700 547
 Year 59,912 58,000 1,912
 Audio Qtr1 25,954 24,700 1,254
 Qtr2 25,207 24,550 657
 Qtr3 25,627 25,950 (323)
 Qtr4 31,265 31,200 65
 Year 108,053 106,400 1,653
Television Qtr1 14,629 14,300 329
 Qtr2 14,486 13,800 686
 Qtr3 14,580 14,000 580
 Qtr4 20,814 19,400 1,414
 Year 64,509 61,500 3,009
VCR Qtr1 13,854 13,050 804
 Qtr2 13,156 12,600 556
 Qtr3 15,030 13,750 1,280

Examples of Report Scripts 1183

 Qtr4 18,723 17,950 773
 Year 60,763 57,350 3,413
Camera Qtr1 10,756 11,550 (794)
 Qtr2 10,573 11,400 (827)
 Qtr3 10,735 11,550 (815)
 Qtr4 13,906 15,000 (1,094)
 Year 45,970 49,500 (3,530)
 Visual Qtr1 39,239 38,900 339
 Qtr2 38,215 37,800 415
 Qtr3 40,345 39,300 1,045
 Qtr4 53,443 52,350 1,093
 Year 171,242 168,350 2,892
 Product Qtr1 65,193 63,600 1,593
 Qtr2 63,422 62,350 1,072
 Qtr3 65,972 65,250 722
 Qtr4 84,708 83,550 1,158
 Year 279,295 274,750 4,545
/pre>

 Sales South

 Actual Budget Variance
 ======== ======== ========

Television Qtr1 8,881 9,600 (719)
 Qtr2 8,627 9,300 (673)
 Qtr3 8,674 9,300 (626)
 Qtr4 12,919 12,600 319
 Year 39,101 40,800 (1,699)
VCR Qtr1 9,551 9,600 (49)
 Qtr2 9,049 9,300 (251)
 Qtr3 9,998 10,000 (2)
 Qtr4 12,923 13,600 (677)
 Year 41,521 42,500 (979)
Camera Qtr1 6,641 7,200 (559)
 Qtr2 6,765 7,350 (585)
 Qtr3 6,798 7,500 (702)
 Qtr4 9,486 10,200 (714)
 Year 29,690 32,250 (2,560)
 Visual Qtr1 25,073 26,400 (1,327)
 Qtr2 24,441 25,950 (1,509)
 Qtr3 25,470 26,800 (1,330)
 Qtr4 35,328 36,400 (1,072)
 Year 110,312 115,550 (5,238)
 Product Qtr1 25,073 26,400 (1,327)
 Qtr2 24,441 25,950 (1,509)
 Qtr3 25,470 26,800 (1,330)
 Qtr4 35,328 36,400 (1,072)
 Year 110,312 115,550 (5,238)

 Sales Market

 Actual Budget Variance
 ======== ======== ========

Stereo Qtr1 19,472 19,550 (78)
 Qtr2 19,124 19,200 (76)
 Qtr3 18,972 20,000 (1,028)

1184 Report Writer Commands

 Qtr4 24,062 24,900 (838)
 Year 81,630 83,650 (2,020)
Compact_Disc Qtr1 24,614 23,450 1,164
 Qtr2 23,718 23,250 468
 Qtr3 24,293 24,350 (57)
 Qtr4 29,039 29,250 (211)
 Year 101,664 100,300 1,364
 Audio Qtr1 44,086 43,000 1,086
 Qtr2 42,842 42,450 392
 Qtr3 43,265 44,350 (1,085)
 Qtr4 53,101 54,150 (1,049)
 Year 183,294 183,950 (656)
Television Qtr1 36,914 37,300 (386)
 Qtr2 35,228 36,000 (772)
 Qtr3 38,268 37,500 768
 Qtr4 51,594 49,300 2,294
 Year 162,004 160,100 1,904
VCR Qtr1 35,126 34,250 876
 Qtr2 33,204 33,000 204
 Qtr3 38,245 35,550 2,695
 Qtr4 46,032 46,450 (418)
 Year 152,607 149,250 3,357
Camera Qtr1 25,119 26,940 (1,821)
 Qtr2 24,919 26,960 (2,041)
 Qtr3 25,714 27,680 (1,966)
 Qtr4 34,245 36,750 (2,505)
 Year 109,997 118,330 (8,333)
 Visual Qtr1 97,159 98,490 (1,331)
 Qtr2 93,351 95,960 (2,609)
 Qtr3 102,227 100,730 1,497
 Qtr4 131,871 132,500 (629)
 Year 424,608 427,680 (3,072)
 Product Qtr1 141,245 141,490 (245)
 Qtr2 136,193 138,410 (2,217)
 Qtr3 145,492 145,080 412
 Qtr4 184,972 186,650 (1,678)
 Year 607,902 611,630 (3,728)

Use the following script to create Sample 4:

<PAGE (Accounts, Market)
Sales
<ICHILDREN Market
{ PAGEONDIMENSION Market }
{ SUPMISSINGROWS }

 <COLUMN (Scenario)
 <CHILDREN Scenario

<ROW(Product3, Year)
<ICHILDREN Year
<IDESCENDANTS Product
 !

This report script, ROWGROUP.REP, is available in the \ARBORPATH\App\Demo\Basic
directory, and is displayed in Enterprise View in Administration Services.

Examples of Report Scripts 1185

Sample 5: Reporting on Different Combinations of Data
Each page represents a different combination of Product, Market, and Budget data. The total
number of pages is determined by the number of Market and Product members. This section
shows a representative part of the output.

Some data values have four decimal places. The number of decimal places, by default, is output
to the true number of decimal values of the data cell. “Sample 6: Formatting Different
Combinations of Data” on page 1187 uses the DECIMAL format command to define a specific
number of places.

The member selection commands select three Product members and fourteen Market members,
producing a 42-page report. The number of report pages is determined by multiplying the
number of members selected from each page dimension.

 Budget Audio New_York

 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======== ======== ======== ======== ========

Sales 6,400 6,400 6,700 8,350 27,850
Cost_of_Goods_Sold 3,012 3,012 3,146 3,973 13,143
 Margin 3,388 3,388 3,554 4,377 14,707
Marketing 525 515 475 555 2,070
Payroll 1,950 1,950 1,950 1,950 7,800
Miscellaneous 0 0 0 0 0
 Total_Expenses 2,475 2,465 2,425 2,505 9,870
 Profit 913 923 1,129 1,872 4,837
 Profit_% 14 14 17 22 17
 Margin_% 53 53 53 52 53

 Budget Audio Boston

 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======== ======== ======== ======== ========

Sales 6,050 5,750 5,900 7,350 25,050
Cost_of_Goods_Sold 2,829 2,695 2,762 3,413 11,699
 Margin 3,221 3,055 3,138 3,937 13,351
Marketing 410 400 400 520 1,730
Payroll 1,590 1,590 1,590 1,590 6,360
Miscellaneous 0 0 0 0 0
 Total_Expenses 2,000 1,990 1,990 2,110 8,090
 Profit 1,221 1,065 1,148 1,827 5,261
 Profit_% 20 19 19 25 21
 Margin_% 53 53 53 54 53

 Budget Product Market

 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======== ======== ======== ======== ========

Sales 141,490 138,410 145,080 186,650 611,630
Cost_of_Goods_Sold 55,860 54,579 57,379 73,276 241,093
 Margin 85,630 83,831 87,702 113,374 370,537
Marketing 10,555 10,680 10,780 13,915 45,930
Payroll 43,234 43,248 43,248 43,248 172,978

1186 Report Writer Commands

Miscellaneous 0 0 0 0 0
 Total_Expenses 53,789 53,928 54,028 57,163 218,908
 Profit 31,841 29,903 33,674 56,211 151,629
 Profit_% 23 22 23 30 25
 Margin_% 61 61 60 61 61

Use the following script to create Sample 5:

<PAGE (Scenario, Product, Market)
Budget
<ICHILDREN Product
<IDESCENDANTS Market
{ PAGEONDIMENSION Product } // New page at each new Product
{ PAGEONDIMENSION Market } // New page at each new Market
 <COLUMN (Year)
 <ICHILDREN Year

<ROW(Accounts)
<DESCENDANTS Accounts
 !

This report script, COMBO1.REP, is available in the \ARBORPATH\App\Demo\Basic directory,
and is displayed in Enterprise View in Administration Services.

Sample 6: Formatting Different Combinations of Data
This report uses the same layout and member selection as Sample 5, and adds more formatting
in the report body. Note the use of line formatting.

 Budget Audio New_York

 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======== ======== ======== ======== ========

Sales 6,400 6,400 6,700 8,350 27,850
Cost_of_Goods_Sold 3,012 3,012 3,146 3,973 13,143
 -------- -------- -------- -------- --------
 Margin 3,388 3,388 3,554 4,377 14,707

Marketing 525 515 475 555 2,070
Payroll 1,950 1,950 1,950 1,950 7,800
Miscellaneous 0 0 0 0 0
 -------- -------- -------- -------- --------
 Total_Expenses 2,475 2,465 2,425 2,505 9,870

 Profit 913 923 1,129 1,872 4,837
 ======== ======== ======== ======== ========
 Profit_% 14.27 14.42 16.85 22.42 17.37
 Margin_% 52.94 52.94 53.04 52.42 52.81

 Budget Audio Boston

 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======== ======== ======== ======== ========

Examples of Report Scripts 1187

Sales 6,050 5,750 5,900 7,350 25,050
Cost_of_Goods_Sold 2,829 2,695 2,762 3,413 11,699
 -------- -------- -------- -------- --------
 Margin 3,221 3,055 3,138 3,937 13,351

Marketing 410 400 400 520 1,730
Payroll 1,590 1,590 1,590 1,590 6,360
Miscellaneous 0 0 0 0 0
 -------- -------- -------- -------- --------
 Total_Expenses 2,000 1,990 1,990 2,110 8,090

 Profit 1,221 1,065 1,148 1,827 5,261
 ======== ======== ======== ======== ========
 Profit_% 20.18 18.52 19.46 24.86 21.00
 Margin_% 53.24 53.13 53.19 53.56 53.30

Use the following script to create Sample 6:

<PAGE (Scenario, Product, Market)
{ PAGEONDIMENSION Product PAGEONDIMENSION Market }
Budget
<ICHILDREN Product
<IDESCENDANTS Market
 <COLUMN (Year)
 <ICHILDREN Year
<ROW(Accounts)
{ SUPBRACKETS DECIMAL 0 }
Sales
Cost_of_Goods_Sold
{ UDATA "-" } //line formatting command
Margin
{ SKIP }
Marketing
Payroll
Miscellaneous
{ UDATA "-" } //line formatting command
Total_Expenses
{ SKIP }
Profit
{ UDATA DECIMAL 2 } //line formatting command
Profit_%
Margin_%
 !

Format commands apply to members that follow the commands. The report begins each new
page with the formats in place at the end of the previous report page. For example, if a report
page ends with two decimal places, the following page begins with two decimal places. This
report demonstrates the use of several important format commands:

l DECIMAL-The script for this report specifies the DECIMAL 0 format command before the
Sales member.

l SUPBRACKETS-By default, negative numbers are enclosed in brackets, (). The
SUPBRACKETS format command causes negative numbers to be output with a minus sign.

l UDATA-The UDATA command places underline characters under data columns. The
character is specified within double quotes. The default is a double underline.

1188 Report Writer Commands

This report script, COMBO2.REP, is available in the \ARBORPATH\App\Demo\Basic directory,
and is displayed in Enterprise View in Administration Services.

Sample 7: Using Aliases
This report outputs members in the middle of a page and uses aliases or alternate names. The
default row member indentation is turned off.

 Stereo Market

 Qtr4 Year
 Actual Budget Actual Budget
======== ======== ======== ========

 24,062 24,900 Sales 81,630 83,650
 13,937 14,442 COGS 47,654 48,517
-------- -------- -------- --------
 10,125 10,458 Margin 33,976 35,133

 1,438 1,600 Marketing 4,933 5,465
 7,110 6,840 Payroll 28,440 27,360
 -200 0 Misc. -143 0
-------- -------- -------- --------
 8,348 8,440 Total_Expenses 33,230 32,825

 1,777 2,018 Profit 746 2,308
======== ======== ======== ========
 7.39 8.10 Profit_% 0.91 2.76
 42.08 42.00 Margin_% 41.62 42.00

 Compact_Disc Market

 Qtr4 Period
 Actual Budget Actual Budget
======== ======== ======== ========

 29,039 29,250 Sales 101,664 100,300
 10,830 11,115 COGS 38,120 38,114
-------- -------- -------- --------
 18,209 18,135 Margin 63,544 62,186
 1,669 1,780 Marketing 6,067 5,975
 5,721 5,415 Payroll 22,200 21,660
 -226 0 Misc. 97 0
-------- -------- -------- --------
 7,164 7,195 Total_Expenses 28,364 27,635

 11,045 10,940 Profit 35,180 34,551
======== ======== ======== ========
 38.04 37.40 Profit_% 34.60 34.45
 62.71 62.00 Margin_% 62.50 62.00

Use the following script to create Sample 7:

<PAGE (Product, Market)
{ PAGEONDIMENSION Product }
{ PAGEONDIMENSION Market }

Examples of Report Scripts 1189

<IDESCENDANTS Product
{ DECIMAL 0 }
<SYM

 <COLUMN (Year, Scenario)
 Qtr4 Year
 Actual Budget
<ROW(Accounts)
{ SUPBRACKETS OUTALTNAMES NOINDENTGEN ORDER 1,2,0,3,4 }
Sales Cost_of_Goods_Sold
{ UDATA "-" }
Margin
{ SKIP }
Marketing Payroll Miscellaneous
{ UDATA "-" }
Total_Expenses
{ SKIP }
Profit
{ UDATA DECIMAL 2 }
Profit_%
Margin_%
 !

The SYM command forces the report to output symmetric column groups. The default is to
display two columns-one for Qtr4 Actual and one for Year Budget. Because the report calls for
Actual and Budget under both Qtr4 and Year, the SYM command is required. Alternatively,
repeat the Actual and Budget names under Qtr4 and Year.

The OUTALTNAMES format command causes the report to use aliases or alternate names
instead of member names.

The NOINDENTGEN format command causes row members to not be indented. By default,
members are indented two spaces for each level.

The ORDER command moves specified output columns to new locations. The row name is
considered column 0.

The FIXCOLUMNS format command restricts the number of output columns. Reports often
require both ORDER and FIXCOLUMNS. You can use ORDER to remove unwanted columns,
and FIXCOLUMNS to stop these columns from displaying after the report columns.

This report script, MIDDLE.REP, is available in the \ARBORPATH\App\Demo\Basic directory,
and is displayed in Enterprise View in Administration Services.

Sample 8: Creating Custom Headings and % Characters
This report displays custom headings and percent sign (%) characters after each data value. This
section shows a representative part of the output.

Prepared by: Admin The Electronics Club Page: 1
 09/21/01

 Profit_% Actual Stereo

 Jan Feb Mar Apr May Jun

1190 Report Writer Commands

 ======= ======= ======= ======= ======= =======

New_York 1.43% -10.00% -3.51% -2.22% 1.14% -6.18%
Boston -0.34% -2.51% -4.44% -4.89% -7.02% -13.15%
Chicago -0.65% -0.72% -2.28% -3.53% -6.33% -10.79%
 East 0.18% -4.47% -3.39% -3.41% -3.60% -9.70%
San_Francisco 1.43% -1.87% 4.42% 2.15% -1.26% 0.66%
Seattle 0.95% -5.66% 1.42% -6.82% -11.47% -12.34%
Denver 3.03% -1.11% -5.88% -6.52% -5.17% -13.83%
Los_Angeles -1.50% -3.94% -2.86% -3.29% 3.12% -2.51%
 West 0.98% -2.95% -0.13% -2.81% -2.62% -5.61%
Dallas 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Houston 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Phoenix 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
 South 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
 Market 0.65% -3.56% -1.44% -3.06% -3.03% -7.29%

Prepared by: Admin The Electronics Club Page: 2
 09/21/01

 Profit_% Actual Compact_Disc

 Jan Feb Mar Apr May Jun
 ======= ======= ======= ======= ======= =======

New_York 32.51% 29.95% 35.30% 32.70% 30.45% 31.73%
Boston 33.42% 27.92% 33.98% 30.74% 27.45% 30.85%
Chicago 34.29% 30.48% 26.33% 28.83% 28.11% 33.76%
 East 33.35% 29.50% 32.30% 30.92% 28.77% 32.09%
San_Francisco 37.77% 35.02% 33.41% 33.23% 35.32% 37.95%
Seattle 40.41% 38.33% 38.89% 37.06% 37.01% 38.29%
Denver 31.93% 32.10% 34.82% 29.15% 32.71% 30.85%
Los_Angeles 31.65% 30.22% 30.22% 31.45% 27.06% 33.20%
 West 35.51% 33.94% 34.21% 32.77% 33.16% 35.25%
Dallas 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Houston 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Phoenix 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
 South 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
 Market 34.60% 32.10% 33.41% 32.01% 31.35% 33.97%

Prepared by: Admin The Electronics Club Page: 3
 09/21/01

 Profit_% Actual Audio

 Jan Feb Mar Apr May Jun
 ======= ======= ======= ======= ======= =======

New_York 19.35% 13.64% 18.64% 16.55% 16.70% 14.65%
Boston 18.34% 14.44% 18.94% 14.94% 12.14% 12.42%
Chicago 18.50% 16.67% 13.18% 14.12% 12.70% 13.74%
 East 18.76% 14.88% 17.09% 15.32% 14.05% 13.68%
San_Francisco 20.32% 17.38% 18.92% 18.03% 18.23% 20.57%
Seattle 23.36% 21.40% 23.37% 20.17% 18.82% 19.04%
Denver 18.36% 17.25% 18.88% 13.43% 15.84% 12.14%
Los_Angeles 17.15% 14.76% 15.44% 15.76% 15.10% 17.07%
 West 19.75% 17.53% 19.00% 16.88% 17.01% 17.52%
Dallas 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Examples of Report Scripts 1191

Houston 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Phoenix 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
 South 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
 Market 19.34% 16.45% 18.21% 16.24% 15.78% 15.96%

Prepared by: Admin The Electronics Club Page: 8
 09/21/01

 Profit_% Actual Product

 Jan Feb Mar Apr May Jun
 ======= ======= ======= ======= ======= =======

New_York 22.71% 21.43% 13.11% 10.54% 9.73% 13.16%
Boston 24.98% 23.25% 19.95% 18.00% 17.03% 18.62%
Chicago 22.01% 17.94% 18.14% 15.45% 18.70% 16.01%
 East 23.19% 20.84% 16.89% 14.42% 14.94% 15.78%
San_Francisco 23.71% 20.60% 21.93% 20.45% 21.44% 19.98%
Seattle 21.06% 21.05% 21.24% 19.00% 21.72% 15.13%
Denver 21.61% 16.01% 19.79% 14.81% 20.66% 13.89%
Los_Angeles 17.54% 15.51% 17.03% 14.33% 17.59% 16.09%
 West 21.02% 18.35% 19.99% 17.26% 20.30% 16.61%
Dallas 15.67% 16.50% 15.32% 13.93% 20.36% 15.49%
Houston 20.01% 20.29% 20.62% 15.87% 23.60% 12.38%
Phoenix 20.01% 16.12% 17.18% 16.50% 21.39% 15.22%
 South 18.39% 17.53% 17.59% 15.36% 21.66% 14.46%
 Market 21.37% 19.09% 18.46% 15.92% 18.67% 15.93%

Use the following script to create Sample 8:

<PAGE (Accounts, Scenario, Product)
{ PAGEONDIMENSION Product } // New page when Product changes
Profit_%
Actual
<IDESCENDANTS Product

 <COLUMN (Year)
 Jan Feb Mar Apr May Jun

<ROW(Market)

{ STARTHEADING
TEXT 1 "Prepared by:"
 14 "*USERNAME"
 C "The Electronics Club"
 65 "*PAGESTRING"
TEXT 65 "*DATE"
SKIP
ENDHEADING }

{ Decimal 2 AFTER "%" SUPBRACKETS } // Place % at end and
 // suppress bracket
<IDESCENDANTS Market
 !

Each data value in the report has a percent sign, %. This label is defined with the AFTER "%"
format command. You can specify any character within quotation marks.

1192 Report Writer Commands

This report has custom headings at the top of each page. All format commands specified between
the STARTHEADING and ENDHEADING format commands are displayed at the top of each
report page.

TEXT format commands define text labels. The report generator provides dynamic text with
*options. This report uses the following options:

l *USERNAME, which outputs the user name used when connecting to Essbase Server

l *PAGESTRING, which outputs the current page number of the report

l C, which centers the report title

This report script, HEADING1.REP, is available in the \ARBORPATH\App\Demo\Basic
directory, and is displayed in Enterprise View in Administration Services.

Sample 9: Creating Custom Page Headings
This report builds on “Sample 8: Creating Custom Headings and % Characters” on page 1190
by adding custom page headings. By default, page dimension members are output at the top
center of a report page. This section shows a representative part of the output.

Prepared by :admin The Electronics Club Page: 1
 Actual Profit by Product 12/12/01

 Product: Stereo

 Jan Feb Mar Apr May Jun

New York 1.43% -10.00% -3.51% -2.22% 1.14% -6.18%
Boston -0.34% -2.51% -4.44% -4.89% -7.02% -13.15%
Chicago -0.65% -0.72% -2.28% -3.53% -6.33% -10.79%
San Francisco 1.43% -1.87% 4.42% 2.15% -1.26% 0.66%
Seattle 0.95% -5.66% 1.42% -6.82% -11.47% -12.34%
Denver 3.03% -1.11% -5.88% -6.52% -5.17% -13.83%
Los Angeles -1.50% -3.94% -2.86% -3.29% 3.12% -2.51%
Dallas #Missing #Missing #Missing #Missing #Missing #Missing
Houston #Missing #Missing #Missing #Missing #Missing #Missing
Phoenix #Missing #Missing #Missing #Missing #Missing #Missing
 East 0.18% -4.47% -3.39% -3.41% -3.60% -9.70%
 West 0.98% -2.95% -0.13% -2.81% -2.62% -5.61%
 South #Missing #Missing #Missing #Missing #Missing #Missing
Market 0.65% -3.56% -1.44% -3.06% -3.03% -7.29%

Prepared by :admin The Electronics Club Page: 2
 Actual Profit by Product 12/12/01

 Product:Compact Disc

 Jan Feb Mar Apr May Jun
 New York 32.51% 29.95% 35.30% 32.70% 30.45% 31.73%
 Boston 33.42% 27.92% 33.98% 30.74% 27.45% 30.85%
 Chicago 34.29% 30.48% 26.33% 28.83% 28.11% 33.76%
 San Francisco 37.77% 35.02% 33.41% 33.23% 35.32% 37.95%
 Seattle 40.41% 38.33% 38.89% 37.06% 37.01% 38.29%
 Denver 31.93% 32.10% 34.82% 29.15% 32.71% 30.85%

Examples of Report Scripts 1193

 Los Angeles 31.65% 30.22% 30.22% 31.45% 27.06% 33.20%
 Dallas #Missing #Missing #Missing #Missing #Missing #Missing
 Houston #Missing #Missing #Missing #Missing #Missing #Missing
 Phoenix #Missing #Missing #Missing #Missing #Missing #Missing
 East 33.35% 29.50% 32.30% 30.92% 28.77% 32.09%
 West 35.51% 33.94% 34.21% 32.77% 33.16% 35.25%
 South #Missing #Missing #Missing #Missing #Missing #Missing
Market 34.60% 32.10% 33.41% 32.01% 31.35% 33.97%

Prepared by :admin The Electronics Club Page: 8
 Actual Profit by Product 12/12/01
 Product:Product

 Jan Feb Mar Apr May Jun
 New York 22.71% 21.43% 13.11% 10.54% 9.73% 13.16%
 Boston 24.98% 23.25% 19.95% 18.00% 17.03% 18.62%
 Chicago 22.01% 17.94% 18.14% 15.45% 18.70% 16.01%
 San Francisco 23.71% 20.60% 21.93% 20.45% 21.44% 19.98%
 Seattle 21.06% 21.05% 21.24% 19.00% 21.72% 15.13%
 Denver 21.61% 16.01% 19.79% 14.81% 20.66% 13.89%
 Los Angeles 17.54% 15.51% 17.03% 14.33% 17.59% 16.09%
 Dallas 15.67% 16.50% 15.32% 13.93% 20.36% 15.49%
 Houston 20.01% 20.29% 20.62% 15.87% 23.60% 12.38%
 Phoenix 20.01% 16.12% 17.18% 16.50% 21.39% 15.22%
 East 23.19% 20.84% 16.89% 14.42% 14.94% 15.78%
 West 21.02% 18.35% 19.99% 17.26% 20.30% 16.61%
 South 18.39% 17.53% 17.59% 15.36% 21.66% 14.46%
Market 21.37% 19.09% 18.46% 15.92% 18.67% 15.93%

Use the following script to create Sample 9:

<PAGE (Accounts, Scenario, Product)
<IDESCENDANTS Product
<SORTLEVEL
{ PAGEONDIMENSION Product }
{ STARTHEADING
TEXT 1 "Prepared by:"
 14 "*USERNAME"
 C "The Electronics Club"
 65 "*PAGESTRING"
SUPPAGEHEADING
UNDERLINECHAR " "
TEXT C "Actual Profit by Product"
 65 "*DATE"
TEXT 1 "Product:"
 10 "*PAGEHDR 3"
SKIP
ENDHEADING }
Profit_%
Actual

 <COLUMN (Year)
 Jan Feb Mar Apr May Jun
<ROW(Market)

{ DECIMAL 2 AFTER "%" SUPBRACKETS UNDERSCORECHAR " " }
{ INDENTGEN 1 }

1194 Report Writer Commands

<IDESCENDANTS Market
 !

The SUPPAGEHEADING format command suppresses the default page headings from output.

The *PAGEHDR command customizes the location of page member labels. The Sample 9 script
uses page heading number 3, Product because this is the third page dimension.

You may have also noticed that member names do not have underscores. The
UNDERSCORECHAR format command blanks out underscores.

Another difference is the underlining of column headings. The UNDERLINECHAR format
command causes the underlining to character to change to the character in quotes.

The report rows are also sorted according to their levels in the database outline. Sort commands,
such as SORTLEVEL, do not affect individual members selected in reports. Instead, these
commands work in conjunction with member selection commands.

Note: You can use only one sort command in a report.

Sample 9 reverses the indentation of levels from previous reports. The INDENTGEN command
indents members to the specified number of characters.

This report script, HEADING2.REP, is available in the \ARBORPATH\App\Demo\Basic
directory, and is displayed in Enterprise View in Administration Services.

Sample 10: Using Formulas
Column calculation formulas manipulate the column value of a particular row or a constant. In
this report sample, each % column represents the quarterly values as a percent of Sales for the
respective quarter. In addition, the Avg column represents an average value for the two quarters.

 Actual Product Market

 Qtr1 % Qtr2 % Avg
 ======== ====== ======== ====== ========

Sales 141,245 100.00 136,193 100.00 138,719
Cost_of_Goods_Sold 58,104 41.14 56,281 41.32 57,193
 Margin 83,141 58.86 79,912 58.68 81,527
Marketing 11,211 7.94 11,302 8.30 11,257
Payroll 43,817 31.02 43,827 32.18 43,822
Miscellaneous 302 0.21 1,859 1.36 1,081
 Total_Expenses 55,330 39.17 56,988 41.84 56,159
 Profit 27,811 19.69 22,924 16.83 25,368
 Profit_% 20 0.01 17 0.01 18
 Margin_% 59 0.04 59 0.04 59

Use the following script to create Sample 10:

// This report performs column calculations based on values in a
// report row.

<PAGE (Scenario, Product, Market)

Examples of Report Scripts 1195

Actual

 <COLUMN (Year)
 Qtr1 Qtr2

{ DECIMAL 2 3 4 }
{ NAMEWIDTH 22 WIDTH 7 3 4 }
{ ORDER 0 1 3 2 4 5 }

<ROW (Accounts)
{ SAVEROW } Sales
 !

{ CALCULATE COLUMN "%" = 1 % "Sales" 1 }
{ CALCULATE COLUMN "% " = 2 % "Sales" 2 }
{ CALCULATE COLUMN "Avg" = 1 + 2 / 2. }

<DESCENDANTS Accounts
 !

Note: You can include comments in the report by preceding the text with //. The Report
Extractor ignores everything that follows the double slash. You can use comments to
explain report processing.

The SAVEROW command reserves space for a row member that the CALCULATE COLUMN
command calculates. In this case, the calculation affects SALES. The ! is required after the
member name.

The CALCULATE COLUMN command allows column numbers, row names, or constants in
formulas. You can read the first calculation this way: "% equals column 1 as a percent of Sales
in column 1."

Each calculated column label must be unique. Note how the second calculated column label has
a blank space after the % sign.

To specify a constant, define a number followed by a period. You can use a constant in either a
column or row calculation. The last column calculation takes the sum of columns 1 and 2 and
divides by the value 2. This formula is interpreted as (1+2)/2, not 1 + (2/2.).

As noted in “Sample 7: Using Aliases” on page 1189, the ORDER command arranges columns
in the specified order. By default, calculated columns are added to the end of existing columns
retrieved from the database. In this example, columns 0-2 are automatically retrieved, based on
selected members. Columns 3-5 are the calculated columns. The ORDER command applies to
both retrieved and calculated columns.

This report script, COLCALC1.REP, is available in the \ARBORPATH\App\Demo\Basic
directory, and is displayed in Enterprise View in Administration Services.

Sample 11: Placing Two-Page Layouts on the Same Page
This sample report has two different page layouts on the same page.

1196 Report Writer Commands

 Year Profit_% Actual

 East West South Market
 ========= ========= ========= =========

Stereo -0.52% 1.91% 0.00% 0.91%
Compact_Disc 32.60% 36.00% 0.00% 34.60%
 Audio 17.86% 20.81% 0.00% 19.60%
Television 20.40% 16.57% 13.50% 17.21%
VCR 30.81% 32.43% 33.70% 32.24%
Camera 16.66% 21.66% 17.83% 19.07%
 Visual 23.16% 23.56% 22.27% 23.09%
 Product 21.34% 22.50% 22.27% 22.04%

 Sales Actual Product

 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ========= ======== ======== ======== ========

New_York $18,631 $17,681 $19,923 $24,403 $80,638
Boston $15,812 $15,050 $16,716 $19,159 $66,737
Chicago $16,536 $15,599 $17,411 $21,374 $70,920
 East $50,979 $48,330 $54,050 $64,936 $218,295
San_Francisco $19,761 $19,019 $20,722 $24,807 $84,309
Seattle $13,766 $13,546 $14,204 $19,034 $60,550
Denver $13,800 $13,588 $13,838 $18,232 $59,458
Los_Angeles $17,866 $17,269 $17,208 $22,635 $74,978
 West $65,193 $63,422 $65,972 $84,708 $279,295
Dallas $ 9,226 $ 9,175 $ 9,481 $12,700 $40,582
Houston $ 7,690 $ 7,363 $ 7,646 $10,785 $33,484
Phoenix $ 8,157 $ 7,903 $ 8,343 $11,843 $36,246
 South $25,073 $24,441 $25,470 $35,328 $110,312
 Market $141,245 $136,193 $145,492 $184,972 $607,902

Use the following script to create Sample 11:

<PAGE (Year, Accounts, Scenario)

 <COLUMN (Market)
 <ICHILDREN Market

<ROW(Product)
<IDESCENDANTS Product

Actual
{ DECIMAL 2 WIDTH 10 SUPBRACKETS AFTER "%" }
Profit_%
 !

<PAGE (Accounts, Scenario, Product)
Actual
Sales
Product

 <COLUMN(Year)
 <ICHILDREN Year

<ROW(Market)

Examples of Report Scripts 1197

{ DECIMAL 0 After " " BEFORE "$" }
<IDESCENDANTS Market
 !

In a single report, you can select multiple dimension layouts and members. To define a multiple
layout report, define reports as you normally do. Separate the commands with exclamation
marks as shown above. Whenever the column, row, or page dimensions change between ! output
commands, new headings are automatically generated to match the new layout.

The BEFORE format command places a character in front of data values. The AFTER format
command turns off the percent signs from the first report layout.

his report script, 2LAYOUTS.REP, is available in the \ARBORPATH\App\Demo\Basic directory,
and is displayed in Enterprise View in Administration Services.

Sample 12: Formatting for Data Export
This sample creates a report with a member name in each column. This format is required when
you export Essbase data to another product, such as an SQL database, with a flat file.

New York Stereo Sales 1000.0 950.0
New York Stereo Cost of Goods Sold 580.0 551.0
New York Stereo Margin 420.0 399.0
New York Stereo Marketing 80.0 80.0
New York Stereo Payroll 340.0 340.0
New York Stereo Miscellaneous 0.0 0.0
New York Stereo Total Expenses 420.0 420.0
New York Stereo Profit 0.0 -21.0
New York Stereo Profit % 0.0 -2.2
New York Stereo Margin % 42.0 42.0
New York Compact Disc Sales 1200.0 1150.0
New York Compact Disc Cost of Goods Sold 456.0 437.0
New York Compact Disc Margin 744.0 713.0
New York Compact Disc Marketing 95.0 95.0
New York Compact Disc Payroll 310.0 310.0
New York Compact Disc Miscellaneous 0.0 0.0
New York Compact Disc Total Expenses 405.0 405.0
New York Compact Disc Profit 339.0 308.0
New York Compact Disc Profit % 28.3 26.8
New York Compact Disc Margin % 62.0 62.0
New York Audio Sales 2200.0 2100.0
New York Audio Cost of Goods Sold 1036.0 988.0
New York Audio Margin 1164.0 1112.0
New York Audio Marketing 175.0 175.0
New York Audio Payroll 650.0 650.0
New York Audio Miscellaneous 0.0 0.0
New York Audio Total Expenses 825.0 825.0
New York Audio Profit 339.0 287.0
New York Audio Profit % 15.4 13.7
New York Audio Margin % 52.9 53.0
New York Television Sales 1800.0 1600.0

Use the following script to create Sample 12:

<PAGE(Scenario)

1198 Report Writer Commands

<COLUMN(Year)

<ROW (Market, Product, Accounts)
<CHILDREN East
<DESCENDANTS Product

{ DECIMAL 1
WIDTH 9
SUPBRACKETS
SUPCOMMA
MISSINGTEXT " "
UNDERSCORECHAR " "
SUPHEADING
NOINDENTGEN
SUPFEED
ROWREPEAT

Budget
 Jan Feb

<DESCENDANTS Accounts
 !

The ROWREPEAT command produces rows of data that have the member names repeated for
each row dimension.

The SUPFEED command suppresses page feeds. A page feed automatically occurs when the
report output reaches the default page length of 66 rows, unless you enter the PAGELENGTH
command to change this setting. When a large flat file is created, you can use this command to
prevent page breaks (blank rows) from being displayed in the report every time output reaches
a logical page length.

This report script, FLAT2SQL.REP, is available in the \ARBORPATH\App\Demo\Basic
directory, and is displayed in Enterprise View in Administration Services.

Sample 13: Creating Asymmetric Columns
Asymmetric columns make up this report. Typically, a report contains symmetric columns. That
is, when multiple dimensions are displayed across the page as column groups, each level of nested
columns has the same number of members nested below. Because Actual has only one nested
column, Jan, and Budget has three nested columns, this report is considered asymmetric.

Some rows in the report use names other than the member names from the database. In addition
to allowing aliases, as in “Sample 7: Using Aliases” on page 1189, you can rename a row name
in the reporter.

 Product Market

 Actual Budget Budget Budget
 Jan Jan Feb Mar
 ======== ======== ======== ========

Revenue 49,896 49,950 45,770 45,770
Cost of Goods 20,827 19,755 18,058 18,047
 Gross Margin 29,069 30,196 27,712 27,723

Examples of Report Scripts 1199

Marketing 3,560 3,515 3,525 3,515
Payroll 14,599 14,402 14,416 14,416
Miscellaneous 249 0 0 0
 Total Expenses 18,408 17,917 17,941 17,931

 Profit 10,661 12,279 9,771 9,792

Use the following script to create Sample 13:

<PAGE (Product, Market)

 <COLUMN (Scenario, Year)
 Actual Budget Budget Budget
 Jan Jan Feb Mar

<ROW (Accounts)

{ RENAME "Revenue" } Sales
{ RENAME "Cost of Goods" } Cost_of_Goods_Sold
{ RENAME "Gross Margin" } Margin

{ SKIP UNDERSCORECHAR " " }
<ICHILDREN Total_Expenses

{ SKIP }
Profit
!

To create an asymmetric report, you must specify the member name of each column. Because
the report output has two column groupings, Scenario and Year, you must specify a member
from each dimension for each column. If you do not specify each column member, the resulting
report format is symmetric.

The RENAME command redefines a member name when the report is output. Use the RENAME
command when you do not want to use an alias table.

This report script, ASYMM.REP, is available in the \ARBORPATH\App\Demo\Basic directory,
and is displayed in Enterprise View in Administration Services.

Sample 14: Calculating Columns
This section contains two examples of CALCULATE COLUMN scripts and the reports they
produce. CALCULATE COLUMN supports standard mathematical operations.

l “Sample 14-A: Basic Calculated Columns” on page 1200

l “Sample 14-B: Asymmetric Columns” on page 1201

Sample 14-A: Basic Calculated Columns
 East

 Actual Budget Var
 Jan Feb Mar Qtr1 Jan Feb Mar Q1 Q1

1200 Report Writer Commands

====== ====== ====== ====== ====== ====== ====== ====== =======
 1,295 1,132 553 2,980 Tele~ Profit 1,240 950 950 3,140 (160)
 25 27 14 66 Profit_% 26 22 22 70 (4)
 56 62 59 177 Margin_% 60 60 60 180 (3)
 1,417 1,120 898 3,435 VCR Profit 1,466 1,161 1,161 3,788 (353)
 33 30 24 87 Profit_% 35 31 31 98 (10)
 61 61 62 183 Margin_% 63 63 63 189 (6)
 400 272 256 928 Cam~ Profit 528 360 360 1,247 (319)
 15 11 10 36 Profit_% 19 13 13 45 (10)
 70 70 70 211 Margin_% 71 71 71 213 (2)
 3,112 2,524 1,707 7,343 Visu~ Profit 3,234 2,471 2,471 8,175 (832)
 25 24 17 66 Profit_% 27 23 23 74 (7)
 61 63 63 187 Margin_% 64 64 64 191 (4)

Use the following script to create Sample 14-A:

<PAGE(Market)
East
 <COLUMN (Scenario, Year)
 Actual Budget
 Jan Feb Mar
{ CALCULATE COLUMN "Qtr1" = 2 : 4
 CALCULATE COLUMN "Q1" = 5 : 7
 CALCULATE COLUMN "Var~Q1" = 8 - 9

 ORDER 2,3,4,8,0,1,5,6,7,9
 WIDTH 7 WIDTH 10 0 1
}
<ROW (Product, Accounts)
<ICHILDREN Visual

<CHILDREN Accounts
 !

This report script, COLCALC2.REP, is available in the \ARBORPATH\App\Demo\Basic
directory, and is displayed in Enterprise View in Administration Services.

Sample 14-B: Asymmetric Columns
The following sample has two regular columns defined in asymmetric mode. For an explanation,
including an example, of the use of asymmetric columns, see “Sample 13: Creating Asymmetric
Columns” on page 1199.

 East

 Budget Actual Actual
 Jan Jan % Sales
 ======== ======== ========

 1,200 Television Payroll 1,236 25%
 440 Marketing 365 9%
 1,240 Profit 1,295 26%
 4,800 Sales 5,244 100%

 1,030 VCR Payroll 1,044 25%
 150 Marketing 156 4%

Examples of Report Scripts 1201

 1,466 Profit 1,417 35%
 4,200 Sales 4,311 100%

 1,195 Camera Payroll 1,167 42%
 300 Marketing 288 11%
 528 Profit 400 19%
 2,850 Sales 2,656 100%

 3,425 Visual Payroll 3,447 29%
 890 Marketing 809 8%
 3,234 Profit 3,112 27%
 11,850 Sales 12,211 100%

Use the following script to create Sample 14-B:

<PAGE(Market)
East

 <COLUMN(Scenario, Year)
 Budget Actual
 Jan Jan

{ ORDER 2,0,1,3,4 WIDTH 12 0 1 NOINDENTGEN AFTER "%" 4
 SKIPONDIMENSION Product LMARGIN 10 }

<ROW(Product, Accounts)

{ CALCULATE ROW "Sales" OFF }
{ CALCULATE COLUMN "Actual~% Sales" = 2 % "Sales" 2 }

<ICHILDREN Visual
{ SAVEROW } Sales
 Payroll
 Marketing
 Profit
<DUPLICATE Sales
 !

This report script, COLCALC3.REP, is available in the \ARBORPATH\App\Demo\Basic
directory, and is displayed in Enterprise View in Administration Services.

Sample 15: Calculating Rows
The sample reports in this section demonstrate CALCULATE ROW scripts and the reports they
produce.

l “Sample 15-A: Basic Calculated Row” on page 1202

l “Sample 15-B: Calculated Rows and Missing Relationships” on page 1203

l “Sample 15-C: Rows of Averages” on page 1204

Sample 15-A: Basic Calculated Row
This sample report demonstrates the basic form of the CALCULATE ROW command.

1202 Report Writer Commands

 Audio Actual Sales
 Jan Feb Mar
 ======== ======== ========

Boston 1,985 1,801 1,954
New_York 2,310 2,082 2,259
Chicago 2,043 1,884 1,814

Total Sales 6,338 5,767 6,027
Avg Sales 2,113 1,922 2,009

Use the following script to create Sample 15-A:

 Audio Actual Sales
 Jan Feb Mar

{ CALCULATE ROW "Total Sales" } //create new calculated row
Boston
New_York
Chicago

{ SKIP
 CALCULATE ROW "Avg Sales" = "Total Sales" /3
 PRINTROW "Total Sales"
 PRINTROW "Avg Sales" }
 !

This report script, ROWCALC1.REP, is available in the \ARBORPATH\App\Demo\Basic
directory, and is displayed in Enterprise View in Administration Services.

Sample 15-B: Calculated Rows and Missing Relationships
This sample report is a simple summary of information in a North/South grouping, which is
not part of the database outline. When relationships that you need for reporting are missing in
the database outline, often the best solution is to use calculated rows (or columns).

 Budget Payroll

 Jan Feb Mar
 ==== ==== ====
Northern Cities
================
New_York 1,940 1,930 1,930
Boston 1,610 1,610 1,610
Chicago 1,630 1,630 1,630
San_Francisco 1,815 1,815 1,815
Seattle 1,415 1,409 1,409

Southern Cities
================
Denver 1,499 1,499 1,499
Los_Angeles 1,757 1,787 1,787
Dallas 1,002 1,002 1,002
Phoenix 900 900 900
Houston 834 834 834

Examples of Report Scripts 1203

Total Northern 8,410 8,394 8,394
Total Southern 5,992 6,022 6,022

Use the following script to create Sample 15-B:

// Declare Calculated Rows to Sum Southern and Northern Cities
{ CALCULATE ROW "Total Southern" OFF

// initially, set operation to OFF
 CALCULATE ROW "Total Northern" OFF }

<PAGE(Product,Scenario,Accounts)
{ RENAME "" } Product // all products, so blank out
 // the Product Label
Budget
Payroll
 <COLUMN(Year)
 Jan Feb Mar

<ROW(Market) // Northern Cities

{ SETROWOP "Total Northern" + // Accumulate for Northern

SKIP 3
IMMHEADING // Put out heading now so text
 // will go after it
Text 0 "Northern Cities" UCHARACTERS
}

New_York Boston Chicago San_Francisco Seattle

//Southern Cities

{ SETROWOP "Total Southern" + } // Accumulate for Southern
{ SETROWOP "Total Northern" OFF } // Stop Accumulation for Northern

{ SKIP Text 0 "Southern Cities" UCHARACTERS }

Denver Los_Angeles Dallas Phoenix Houston

{ SKIP
PRINTROW "Total Northern" // output calculated rows
PRINTROW "Total Southern"
}
 !

This report script, ROWCALC2.REP, is available in the \ARBORPATH\App\Demo\Basic
directory, and is displayed in Enterprise View in Administration Services.

Sample 15-C: Rows of Averages
This report sample restricts columns during calculation to average rows that contain partly
numbers and percentages. The report must calculate the total regional average percentages using
previously calculated rows that contain the total sales for the region. Also, the report must
compute (for averaging) a count of regions. The number of regions is set as a constant in the

1204 Report Writer Commands

database outline. If this number changes, the report definition must be modified. If a count of
regions is not computed, a hard-to-notice error can result.

 Actual Total Sales for the 3 Video Products in Qtr1: 36,914 35,126 25,119
 Budget Total Sales for the 3 Video Products in Qtr1: 37,300 34,250 26,940
 == ====== ====== ======
 Qtr1

 Television VCR Camera
 Profit Profit_% Profit Profit_% Profit Profit_%
 ====== ======= ====== ======== ====== =========
 New_York Budget 1,020 20.40% 1,382 31.41% 540 16.68%
 Actual 847 17.66% 1,243 29.62% 352 11.79%
 Boston Budget 1,020 24.88% 1,344 35.37% 277 11.79%
 Actual 1,405 33.48% 1,002 27.49% 207 9.28%
 Chicago Budget 1,100 25.58% 1,062 31.24% 430 16.54%
 Actual 728 16.51% 1,190 30.68% 369 14.72%
 San_Fran~ Budget 930 21.63% 718 21.12% 1,270 31.75
 Actual 674 15.54% 1,197 31.12% 1,000 27.4%
 Seattle Budget 390 15.60% 973 32.98% 376 16.00%
 Actual 340 12.20% 977 31.56% 312 13.79%
 Denver Budget 690 22.26% 929 30.97% 462 18.86%
 Actual 334 11.94% 914 30.48% 361 15.92%
Los_Ange~ Budget 810 18.41% 1,101 29.76% 506 18.40%
 Actual 429 9.11% 1,127 28.81% 377 14.62%
 Dallas Budget 780 21.08% 1,341 36.24% 333 13.88%
 Actual 163 4.69% 1,055 30.28% 243 10.71%
 Houston Budget 690 24.64% 1,128 36.39% 432 18.00%
 Actual 256 10.44% 1,064 34.98% 241 10.98%
 Phoenix Budget 630 20.32% 894 31.93% 498 20.75%
 Actual 251 8.49% 940 31.07% 261 11.99%

 Total Regions Averages

 Avg Budget 806 21.61% 1,087 31.74% 512 19.02%
 Avg Actual 543 14.70% 1,071 30.49% 372 14.82%

Use the following script to create Sample 15-C:

{ // Declare some of the Calculated Rows to be used
 CALCULATE ROW "Avg~Budget" OFF
 CALCULATE ROW "Avg~Actual" OFF
 CALCULATE ROW "Tot Sales~Budget" OFF
 CALCULATE ROW "Tot Sales~Actual" OFF
}
// We need the values of Market->Visual->Qtr1->Sales->Actual and
// Market ->Visual->Qtr1->Sales ->Budget to compute some
// percentages at the bottom, so get them now

Market
<CHILDREN Visual Qtr1 Sales
{ SAVEROW "Actual Sales" } Actual // stores into first 3
 // data columns
{ SAVEROW "Budget Sales" } Budget // of
these rows, which
 // are cols 1-3
 // change to columns 2-4 when we
 // specify 2 row dimensions in

Examples of Report Scripts 1205

 // next section
// Since this is an example, not a formal report, we'll
// type out the values for Actual Sales and Budget Sales here so
// you can check the numbers:

{ SKIP 2
TEXT 0 "Actual Total Sales for the 3 Video Products in Qtr1:" 55 "*CALC" "Actual Sales"
TEXT 0 "Budget Total Sales for the 3 Video Products in Qtr1:" 55 "*CALC" "Budget Sales"
UCHARACTERS
SKIP 5 }
 ! // Now we can do the main report
{ AFTER "%" 3,5,7 DECI 2 3,5,7 ZEROTEXT "--" MISSING "--"
 WIDTH 10 0 1 }

<PAGE(Year)
Qtr1
 <COLUMN(Product,Accounts)
 <CHILDREN Visual
 Profit // split these 2 accounts onto
 // 2 lines to prevent default
 Profit_% // to asymmetric mode
 // because both column
 // dimensions have the same # of
 // members selected. Could have
 // used <SYM instead.
<ROW(Market,Scenario)
<ONSAMELEVELAS New_York
 { SETROWOP "Avg~Actual" OFF
 SETROWOP "Avg~Budget" +

 CALCULATE ROW "Count" = "Count" + 1. }

 Budget

 { SETROWOP "Avg~Budget" OFF
 SETROWOP "Avg~Actual" + }

 >{ SKIP }

 Actual

{ UCOLUMNS SKIP 2 }
{
 // at this point, Avg~Budget and Avg~Actual ARE NOT YET
 // AVERAGES--they are the SUM of the Profit rows of each type.
 // Before converting them to averages, the report computes
 // Profit as a % of total sales for each type. Since we only
 // have 1 value for "Budget Sales" and "Actual Sales",
 // for each of the three visual products in those
 // rows, the report restricts the reference to those rows to
 // columns 2-4 while computing the percentage columns 3, 5, and 7,
 // based on profits in columns 2, 4 and 6
 // calculate the percentages for Budget
CALCULATE ROW "Avg~Budget" 3 = "Avg~Budget" 2 % "Budget Sales" 2
CALCULATE ROW "Avg~Budget" 5 = "Avg~Budget" 4 % "Budget Sales" 3
CALCULATE ROW "Avg~Budget" 7 = "Avg~Budget" 6 % "Budget Sales" 4

1206 Report Writer Commands

 // now calculate the averages
CALCULATE ROW "Avg~Budget" 2 = "Avg~Budget" / "Count"
CALCULATE ROW "Avg~Budget" 4 = "Avg~Budget" / "Count"
CALCULATE ROW "Avg~Budget" 6 = "Avg~Budget" / "Count"

 // calculate the percentages for Actual
CALCULATE ROW "Avg~Actual" 3 = "Avg~Actual" 2 % "Actual Sales" 2
CALCULATE ROW "Avg~Actual" 5 = "Avg~Actual" 4 % "Actual Sales" 3
CALCULATE ROW "Avg~Actual" 7 = "Avg~Actual" 6 % "Actual Sales" 4

 // now calculate the averages
CALCULATE ROW "Avg~Actual" 2 = "Avg~Actual" / "Count"
CALCULATE ROW "Avg~Actual" 4 = "Avg~Actual" / "Count"
CALCULATE ROW "Avg~Actual" 6 = "Avg~Actual" / "Count"

TEXT C "Total Regions Averages"
PRINTROW "Avg~Budget"
PRINTROW "Avg~Actual" }
 !

This report script, ROWAVG.REP, is available in the \ARBORPATH\App\Demo\Basic directory,
and is displayed in Enterprise View in Administration Services.

Sample 16: Sorting by Top or Bottom Data Values
The following two reports demonstrate the use of TOP and BOTTOM conditional retrieval
commands in a report script. For a discussion of various issues related to use of the TOP and
BOTTOM commands, see "Restricting and Ordering Data Values" in the Oracle Essbase Database
Administrator's Guide.

l “Sample 16-A: Bottom Data Values” on page 1207

l “Sample 16-B: Top Data Values” on page 1208

Sample 16-A: Bottom Data Values
This sample report demonstrates the basic use of the BOTTOM command. The report is based
on the Sample Basic database.

 Measures

 Actual Budget
 Jan Dec Jan Dec
 ======== ======== ======== ========
East 200 158 233 280 340
 300 184 277 240 210
 Diet 181 213 200 240
West 100 378 223 830 530
 300 755 971 830 950
 400 454 434 470 370
South 200 480 496 520 390
 Diet 355 404 490 430
 300 188 213 270 240
Central 300 790 824 930 810
 100 724 792 900 890

Examples of Report Scripts 1207

 400 691 785 660 650
 Market 200 2,141 2,302 2,710 2,810
 300 1,917 2,285 2,270 2,210
 400 1,611 1,720 1,730 1,600

Use the following script to create Sample 16-A:

<Sym
<Column (Scenario, Year)
Actual Budget
Jan Dec
<Row (Market, Product)
<ICHILDREN Market
<ICHILDREN Product
<Bottom (3, @DataColumn(3))
 !

The BOTTOM command specifies that only the three lowest data values are returned for each
row grouping, based on the target data values specified in column three (Budget, Jan). Notice
that no row dimension is selected here, so the report output defaults to the innermost row.

This report script, BOTTOM.REP, is available in the \ARBORPATH\App\Sample\Basic
directory, and is displayed in Enterprise View in Administration Services.

Sample 16-B: Top Data Values
This sample report fragment demonstrates the basic use of the TOP command. The report is
based on the Sample Basic database.

 Measures

 Actual Budget
 Jan Dec Jan Dec
 ======== ======== ======== ========

New York 100-10 262 271 260 250
 200-40 175 312 200 320
 400-10 101 89 120 90
 400-20 94 133 110 150
 300-10 111 309 100 210
 400-30 54 52 70 60
 300-20 (113) (189) (70) (150)
 200-10 (172) (224) (170) (210)
Massachusetts 100-10 367 390 360 360
 200-40 100 87 110 80
 400-10 29 29 40 40
 400-30 29 25 40 30
 300-10 17 7 30 10
 200-10 (23) (20) (10) (10)
...
 East 100-10 837 867 860 830
 200-40 267 383 310 400
 400-10 215 201 280 230
 400-30 157 167 210 200
 300-10 177 368 190 270
 400-20 94 133 110 150
 200-20 80 79 100 110

1208 Report Writer Commands

 100-20 67 122 70 110
 100-30 20 37 30 50
 300-30 34 12 30 20

Use the report script TOP.REP, reproduced here, to create Sample 16-B:

<Sym
//Suppress shared members from displaying
<Supshare
 <Column (Scenario, Year)
 Actual Budget
 Jan Dec
<Row (Market, Product)
<Desc Market
//Use bottom level of products
<DimBottom Product
<Top (10, @DataColumn(3))
!

The TOP command specifies that only the ten highest data values are returned for each row
grouping, based on the target data values specified in column three (Budget, Jan).

This report script, TOP.REP, is available in the \ARBORPATH\App\Sample\Basic directory,
and is displayed in Enterprise View in Administration Services.

Sample 17: Restricting Rows
The following report demonstrates the use of the RESTRICT conditional retrieval command in
a report script. For a discussion of various issues related to use of the RESTRICT command, see
"Restricting and Ordering Data Values" in the Oracle Essbase Database Administrator's Guide.

 Measures

 Actual Budget
 Jan Dec Jan Dec
 ======== ======== ======== ========

East 200 158 233 280 340
 300 184 277 240 210
 Diet 181 213 200 240
South 300 188 213 270 240
 400 #Missing #Missing #Missing #Missing

Use the following script to create Sample 17:

<Sym
<Column (Scenario, Year)
Actual Budget
Jan Dec
<Row (Market, Product)
<Ichildren Market
<Ichildren Product
<Restrict (@DataCol(3) < $300.00)
 !

Examples of Report Scripts 1209

The RESTRICT command specifies that only data values that are less than $300.00 are returned
for each row grouping, based on the target data values specified in column three (Budget, Jan).
Notice that no row dimension is selected here, so the report output defaults to the innermost
row.

This report script, RESTRICT.REP, is available in the \ARBORPATH\App\Sample\Basic
directory, and is displayed in Enterprise View in Administration Services.

Sample 18: Ordering Data Values
The following report demonstrates the use of the ORDERBY conditional retrieval command in
a report script. For a discussion of various issues related to use of the ORDERBY command, see
"Restricting and Ordering Data Values" in the Oracle Essbase Database Administrator's Guide.

 Sales Scenario
 Jan Feb Mar Apr
 ======== ======== ======== ========

New York 100-20 #Missing #Missing #Missing #Missing
 100-30 #Missing #Missing #Missing #Missing
 200-20 #Missing #Missing #Missing #Missing
 200-30 #Missing #Missing #Missing #Missing
 300-30 #Missing #Missing #Missing #Missing
 Diet #Missing #Missing #Missing #Missing
 200-10 61 61 63 66
 400-30 134 189 198 198
 300-20 180 180 182 189
 400-20 219 243 213 223
 400-10 234 232 234 245
 300-10 483 495 513 638
 200-40 490 580 523 564
 200 551 641 586 630
 400 587 664 645 666
 300 663 675 695 827
 100-10 678 645 675 712
 100 678 645 675 712
 Product 2,479 2,625 2,601 2,835

Use the following script to create Sample 18:

<Page ("Measures")
<Column ("Scenario", "Year")
<Row ("Market", "Product")
"Sales"
"Scenario"
"Jan" "Feb" "Mar" "Apr"
"New York"
"Product" "100" "100-10" "100-20" "100-30" "200" "200-10"
"200-20" "200-30" "200-40" "300" "300-10" "300-20" "300-30" "400"
"400-10" "400-20" "400-30" "Diet" "100-20" "200-20" "300-30"

<ORDERBY ("Product", @DATACOL(1) ASC, @DATACOL(2) DESC, @DATACOL(3) ASC @DataCol (4)
DESC)
 !

1210 Report Writer Commands

The ORDERBY command is based only on data in the data columns. If the SUPPRESSMISSING
command is not used in the report, #MISSING is considered to be the lowest data value.
ORDERBY compares data values in the following order:

l Two values in the same column (for example, in COL1, the value associated with 200-10 is
compared with the 400-30 data value, as shown in the example below).

l Data values between two data columns (for example, the data value in COL1 is compared
with the data value in COL2, as shown in the example next).

If two data values are the same, the sort proceeds to the next column to determine the order.

In the following subset of Sample 18, for Product 200-10, the data values in COL1 and COL2
are both 61; the data in COL1 should be in ascending order, the data in COL2 should be in
descending order. The two values are compared, and as they are the same, COL2 and COL3 are
compared. Therefore, even though COL2 is supposed to be in descending order, the comparison
for the row 400-30 was determined by the values in COL3, which is in ascending order.

 COL 1 COL 2 COL 3 COL 4
 ===== =====

 200-10 61 61 63 66
 400-30 134 189 198 198
 300-20 180 180 182 189

The report script for Sample 18, ORDERBY.REP, is available in the \ARBORPATH\App\Sample
\Basic directory, and is displayed in Enterprise View in Administration Services.

Sample 19: Narrowing Member Selection Criteria
The following report demonstrates the use of the LINK command to narrow the members
returned in a selection in a report script. For a examples of use of the LINK command, see
"Selecting Members by Using Boolean Operators" in the Oracle Essbase Database Administrator's
Guide.

 Market Measures Scenario

 Qtr1 Qtr2
 ======== ========

 100-10 5,096 5,892
 100-20 1,359 1,534
 100-30 593 446
 200-10 1,697 1,734
 200-20 2,963 3,079
 200-30 1,153 1,231
 200-40 908 986
 300-10 2,544 3,231
 300-20 690 815
 300-30 2,695 2,723
 400-10 2,838 2,998
 400-20 2,283 2,522
 400-30 (116) (84)
 100-20 1,359 1,534

Examples of Report Scripts 1211

 200-20 2,963 3,079
 300-30 2,695 2,723
 Product 24,703 27,107

Use the following script to create Sample 19:

<Page (Market)
<Column (Year)
Qtr1 Qtr2
<Row (Product)
<Link (<UDA (product, naturally-flavored) OR <LEV (product, 0))
 !

The LINK command uses the AND, OR, and NOT Boolean operators to refine the search. In
the preceding example, the product with the "naturally-flavored" user-defined attribute (UDA),
as well as all Level 0 products, are returned in the search.

Be careful how you group operators in the LINK expression. Essbase evaluates operators from
left to right. Use parentheses to group the expressions. For example, A OR B AND C is the same
as ((A OR B) AND C). In the first expression, Essbase evaluates the expression from left to right,
evaluating A OR B before evaluating AND C. In the second expression, Essbase evaluates the
subexpression in parentheses (A OR B) before the whole expression, producing the same result.
However, if you use (A OR (B AND C)), Essbase evaluates the subexpression in parentheses (B
AND C) before the whole expression, producing a different result.

This report script, LINK.REP, is available in the \ARBORPATH\App\Sample\Basic directory,
and is displayed in Enterprise View in Administration Services.

Sample 20: Using Attributes in Member Selection
This sample report uses members of attribute dimensions to view data on base dimensions that
are associated with those attribute dimensions.

Profit Actual Caffeinated_True Qtr1 East

 Ounces_32 Ounces_20 Ounces_16 Ounces_12 Ounces
 =========== =========== =========== =========== ===========

Bottle #Missing 488 240 (586) 142
Can #Missing #Missing #Missing 2,776 2,776
Pkg Type #Missing 488 240 2,190 2,918

Use the following script to create Sample 20:

{WIDTH 12}
<Page (Measures, Scenario, Caffeinated, Year, Market)
Profit
Actual
Caffeinated_True
Qtr1
East
<Column (Ounces)
<ICHILDREN Ounces
<Row ("Pkg Type")
<ICHILDREN "Pkg Type"
 !

1212 Report Writer Commands

The report output reflects data on Quarter 1 profits for caffeinated products by all their available
sizes and package types. The data values indicate #MISSING when there is no data for a specific
size in a specific package type. Because attributes are defined only on sparse dimensions, there
are several #MISSING values in the sample report. You can represent missing values by
suppressing the row or substituting a replacement text string, such as N/A. See “Sample 2:
Handling Missing Values” on page 1179 for an example of substituting page breaks and labels
for missing values.

This report script, ATTR.REP, is available in the \ARBORPATH\App\Sample\Basic directory,
and is displayed in Enterprise View in Administration Services.

Sample 21: Using the WITHATTR Command in Member
Selection
This sample report uses the WITHATTR command to view information based on the attributes
of the members of a base dimension.

 Profit Actual Qtr1 East

 Bottle Can Pkg Type
 =========== =========== ===========
100-30 74 #Missing 74
200-30 #Missing #Missing #Missing
200-40 908 #Missing 908
400-10 645 #Missing 645
400-20 290 #Missing 290
400-30 545 #Missing 545

Use the following script to create Sample 21:

{WIDTH 12}
<Page (Measures, Scenario, Year, Market)
Profit
Actual
Qtr1
East
<Column ("Pkg Type")
<ICHILDREN "Pkg Type"
<Row (Product)
<WITHATTR(Caffeinated,"<>",True)
<IDESCENDANTS Product
!

The report output reflects data on Quarter 1 profits for caffeinated products by their package
types. The data values indicate #MISSING when there is no data for a specific package type.
Because attributes are defined only on sparse dimensions, there are several #MISSING values in
the sample report.

This report script, WITHATTR.REP, is available in the \ARBORPATH\App\Sample\Basic
directory, and is displayed in Enterprise View in Administration Services.

Examples of Report Scripts 1213

Report Writer Command Reference
Consult the Contents pane for a categorical list of Report Writer commands.

& LEV SAVEROW

! LINK SCALE

ACCOFF LMARGIN SETCENTER

ACCON MASK SETROWOP

AFTER MATCH SINGLECOLUMN

ALLINSAMEDIM MATCHEX SKIP

ALLSIBLINGS MEANINGLESSTEXT SKIPONDIMENSION

ANCESTORS MISSINGTEXT SORTALTNAMES

ASYM NAMESCOL SORTASC

ATTRIBUTE NAMESON SORTDESC

ATTRIBUTEVA NAMEWIDTH SORTGEN

BEFORE NEWPAGE SORTLEVEL

BLOCKHEADERS NOINDENTGEN SORTMBRNAMES

BOTTOM NOPAGEONDIMENSION SORTNONE

BRACKETS NOROWREPEAT SPARSE

CALCULATE COLUMN NOSKIPONDIMENSION STARTHEADING

CALCULATE ROW NOUNAMEONDIM SUDA

CHILDREN OFFCOLCALCS SUPALL

CLEARALLROWCALC OFFROWCALCS SUPBRACKETS

CLEARROWCALC OFSAMEGEN SUPCOLHEADING

COLHEADING ONCOLCALCS SUPCOMMAS

COLUMN ONROWCALCS SUPCURHEADING

COMMAS ONSAMELEVELAS SUPEMPTYROWS

CURHEADING ORDER SUPEUROPEAN

CURRENCY ORDERBY SUPFEED

DATEFORMAT OUTALT SUPFORMATS

DECIMAL OUTALTMBR SUPHEADING

1214 Report Writer Commands

& LEV SAVEROW

DESCENDANTS OUTALTNAMES SUPMASK

DIMBOTTOM OUTALTSELECT SUPMISSINGROWS

DIMEND OUTFORMATTEDMISSING SUPNAMES

DIMTOP OUTFORMATTEDVALUES SUPOUTPUT

DUPLICATE OUTMBRALT SUPPAGEHEADING

ENDHEADING OUTMBRNAMES SUPSHARE

EUROPEAN OUTMEANINGLESS SUPSHAREOFF

FEEDON OUTPUT SUPZEROROWS

FIXCOLUMNS OUTPUTMEMBERKEY SYM

FORMATCOLUMNS PAGE TABDELIMIT

GEN PAGEHEADING TEXT

HYBRIDANALYSISON PAGELENGTH TODATE

HYBRIDANALYSISOFF PAGEONDIMENSION TOP

HEADING PARENT UCHARACTERS

IANCESTORS PERSPECTIVE UCOLUMNS

ICHILDREN PRINTROW UDA

IDESCENDANTS PYRAMIDHEADERS UDATA

IMMHEADING QUOTEMBRNAMES UNAME

INCEMPTYROWS REMOVECOLCALCS UNAMEONDIMENSION

INCFORMATS RENAME UNDERLINECHAR

INCMASK REPALIAS UNDERSCORECHAR

INCMISSINGROWS REPALIASMBR WIDTH

INCZEROROWS REPMBR WITHATTR

INDENT REPMBRALIAS WITHATTREX

INDENTGEN REPQUALMBR ZEROTEXT

IPARENT RESTRICT

LATEST ROWREPEAT

LEAVES SAVEANDOUTPUT

Report Writer Command Reference 1215

&
Prefaces a substitution variable in the report script.

Syntax

& variableName

Parameter Description

variableName The name of the substitution variable set on the database.

Notes

Any string that begins with a leading & is treated as a substitution variable; Essbase replaces these
variables with their associated values prior to the parsing of the report script. Member names
beginning with & are considered substitution variables by Report Writer.

Example

<ICHILDREN &CurQtr

becomes

<ICHILDREN Qtr1

if the substitution variable CurQtr has the value name "Qtr1".

See Also

l & in calculation scripts

!
Tells Essbase to output the instructions in the report script to the current line.

Syntax

!

Notes

Each report script requires at least one ! command to produce output. Use multiple instances
of the ! command to separate multiple report specifications in a report script.

Following !, the new report specification retains data format output commands from previous
specifications unless you enter commands in the new report that turn them off. The new report
specification does not retain data extraction command defaults.

If you omit ! at the end of the report script and run the report, the report processor does not
report output or display an error message.

ACCOFF
Turns off member accumulation.

1216 Report Writer Commands

Note: By default, the report script uses <ACCOFF.

Syntax

<ACCOFF

Notes

<ACCOFF selects members of the same dimension only if the select commands of the dimension
follow one another in the report script. If a select command containing another dimension
interrupts, the report script ignores the previous select commands. <ACCOFF can be used in
multiple report scripts where the script redefines only a few select statements from the previous
script.

Example

In the following report script, <ACCOFF excludes the two members that precede East (100-10
and 200-10), because East is from a different dimension. The report script includes 300-10 and
400-10, which follow East.

<PAGE (Measures)
Sales
<ASYM
<COLUMN (Scenario, Year)
Actual Budget
Jan Feb
<ROW (Product, Market)
<ACCOFF
"100-10"
"200-10"
"East"
"300-10"
"400-10"
!

This example produces the following report:

 Sales
 Actual Budget
 Jan Feb
 ======= =======
300-10 East 999 770
400-10 East 562 580

See Also

l ACCON

ACCON
Turns on member accumulation.

Note: By default, member accumulation is off.

Report Writer Command Reference 1217

Syntax

<ACCON

Notes

This command selects all members, regardless of the order of the select statements. Use this
command to mix members from different dimensions in select statements.

Example

In the following report script, the <ACCON command includes all members in the report script,
regardless of dimensionality.

<PAGE (Measures)
Sales
<ASYM
<COLUMN (Scenario, Year)
Actual Budget
Jan Feb
<ROW (Product, Market)
<ACCON
"100-10"
"200-10"
"East"
"300-10"
"400-10"
!

This example produces the following report:

 Sales
 Actual Budget
 Jan Feb
 ======= =======
100-10 East 1,812 1,640
200-10 East 647 630
300-10 East 999 770
400-10 East 562 580

See Also

l ACCOFF

AFTER
Displays a character following the data columns in the report.

This command displays only the first character of a string, even if more are specified. If you do
not specify any columns in columnList, char is displayed after all data columns in the report.

Syntax

{ AFTER char [columnList] }

1218 Report Writer Commands

Parameter Description

char A single-byte character enclosed in quotation marks.

columnList Optional list of one or more column numbers, separated by spaces. If included, AFTER affects only these
columns. If you do not specify columnList, all data columns are affected.

Notes

l Double-byte characters are not supported.

l If a value is equal to #MISSING, the string inserted after it does not print, even if you replace
#MISSING with some other value (such as 0).

Example

The {AFTER "%"} command in the following report displays the percent sign after each data
value.

<PAGE (Market, Accounts, Scenario)
Chicago Sales Actual

<COLUMN (Year)
<ICHILDREN Year

<ROW (Product)

{ AFTER "%" }
<ICHILDREN Audio
 !

This example produces the following report:

 Chicago Sales Actual

 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======= ====== ====== ====== =======

Stereo 2,591% 2,476% 2,567% 3,035% 10,669%
Compact_Disc 3,150% 3,021% 3,032% 3,974% 13,177%
 Audio 5,741% 5,497% 5,599% 7,009% 23,846%

See Also

l BEFORE

ALLINSAMEDIM
Selects all the members from the same dimension as the specified dimension member for the
report.

Syntax

<ALLINSAMEDIM mbrName

Report Writer Command Reference 1219

Parameter Description

mbrName Single member representing a dimension. All members from this dimension are selected.

Notes

ALLINSAMEDIM is not supported with HYBRIDANALYSISON.

Example

<ALLINSAMEDIM Audio

Selects all the members from the dimension for the following report.

<PAGE (Market, Accounts, Scenario)
Chicago Sales Actual

 <COLUMN (Year)
 <ICHILDREN Year

<ROW (Product)
<ALLINSAMEDIM Audio
 !

This example produces the following report:

 Chicago Sales Actual

 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======= ====== ====== ====== =======
Stereo 2,591 2,476 2,567 3,035 10,669
Compact_Disc 3,150 3,021 3,032 3,974 13,177
 Audio 5,741 5,497 5,599 7,009 23,846
Television 4,410 4,001 4,934 6,261 19,606
VCR 3,879 3,579 4,276 4,877 16,611
Camera 2,506 2,522 2,602 3,227 10,857
 Visual 10,795 10,102 11,812 14,365 47,074
 Product 16,536 15,599 17,411 21,374 70,920

See Also

l ALLSIBLINGS

l DESCENDANTS

ALLSIBLINGS
Adds all the siblings of the specified member to the report.

Syntax

<ALLSIBLINGS mbrName

Parameter Description

mbrName Name of member whose siblings you want to add.

1220 Report Writer Commands

Example

<ALLSIBLINGS Stereo

selects the siblings of the member Stereo for the following report script:

<PAGE (Market, Accounts, Scenario)
Chicago Sales Actual

 <COLUMN (Year)
 <ICHILDREN Year

<ROW Product)
<ALLSIBLINGS Stereo
 !

This example produces the following report:

 Chicago Sales Actual

 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======= ====== ====== ====== =======
Stereo 2,591 2,476 2,567 3,035 10,669
Compact_Disc 3,150 3,021 3,032 3,974 13,177

See Also

l ANCESTORS

l DESCENDANTS

ANCESTORS
Adds all the ancestors of the specified member to the report.

Syntax

<ANCESTORS mbrName

Parameter Description

mbrName Name of member whose ancestors you want to add.

Example

<ANCESTORS Stereo

Adds Audio and Product to the following report since Audio is the parent to Stereo and Product
is the parent to Audio.

<PAGE (Market, Accounts, Scenario)
Chicago Sales Actual

 <COLUMN (Year)
 <ICHILDREN Year

<ROW (Product)

Report Writer Command Reference 1221

<ANCESTORS Stereo
 !

This example produces the following report:

 Chicago Sales Actual

 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======= ====== ====== ====== ======
Audio 5,741 5,497 5,599 7,009 23,846
 Product 16,536 15,599 17,411 21,374 70,920

See Also

l IANCESTORS

ASYM
Causes a report to be printed in an asymmetric format.

This command reverses a previously specified SYM command in an asymmetric report.

If <SYM is used, all report headers appear in a symmetric format, even if there are equal numbers
of members in each row of the column header. <ASYM turns off symmetric mode.

Note: Essbase prints an asymmetric report (with BLOCKHEADERS) only when all column
dimensions include the same number of selected members and all members from each
column dimension are on the same line. Otherwise, a symmetric report (with
PYRAMIDHEADERS) is produced.

Syntax

<ASYM

Notes

If the number of members you select from one column dimension differs from the number of
members you select from another column dimension, the resulting report is always symmetric.

Example

The following example is based on Sample Basic.

<PAGE (Measures, Market)
South Sales
<SYM
 <COLUMN (Scenario, Year)
 Actual Budget
 Jan Feb
<ROW (Product)
<IDESCENDANTS "100"
!
<ASYM
!

1222 Report Writer Commands

Which produces the following reports:

 Sales Texas
 Actual Budget
 Jan Feb Jan Feb
 ======== ======== ======== ========

100-10 452 465 560 580
100-20 190 190 230 230
100-30 #Missing #Missing #Missing #Missing
 100 642 655 790 810

 Sales Texas
 Actual Budget
 Jan Feb
 ======== ========

100-10 452 580
100-20 190 230
100-30 #Missing #Missing
 100 642 810

See Also

l SYM

ATTRIBUTE
Returns all base-dimension members associated with a specified attribute.

Syntax

<ATTRIBUTE attMbrName

Parameter Description

attrMbrName The name of a member of an attribute dimension.

Notes

l When attrMbrName is a non level-0 member of an attribute dimension, Essbase returns all
base-dimension members associated with its children. For example, in the Sample Basic
database, <ATTRIBUTE Large returns all base-dimension members associated with any
children of the attribute parent Large.

l With Boolean attributes, if you specify a Boolean dimension name (for example,
Caffeinated), Essbase returns all base-dimension members associated with either
Caffeinated member (for example, True or False). To return only one or the other, specify
that member name (for example, <ATTRIBUTE Caffeinated_True).

l Your outline may contain duplicate Boolean, date, and numeric attribute-dimension
member names; for example, 12 can be the attribute value for the size (in ounces) of a product
as well as the value for the number of packing units for a product. To distinguish duplicate

Report Writer Command Reference 1223

member names with the <ATTRIBUTE command, specify the full name of the attribute (for
example, <ATTRIBUTE 12_Ounces).

Example

<ATTRIBUTE Red

returns all base-dimension members associated with the member Red of the specified attribute
dimension.

<PAGE (Market, Measures, Scenario)
 South Sales Actual

<COLUMN (Year)
<ICHILDREN Year

{OUTALTNAMES}
<ATTRIBUTE Ounces_12

 !

returns on rows only the names of the drinks that are associated with the member Ounces_12
on the corresponding attribute dimension:

 South Sales Actual

 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======== ======== ======== ======== ========

Cola 2,296 2,509 2,975 2,824 10,604
Diet Cola 1,436 1,569 1,482 1,189 5,676
Old Fashioned 1,686 1,625 1,773 1,840 6,924
Sasparilla 1,862 1,938 1,830 1,921 7,551
Diet Cream 1,241 1,255 1,378 1,593 5,467

See Also

l WITHATTR

ATTRIBUTEVA
Returns all base-dimension members associated with a specified varying attribute member. This
command allows querying of the base member list given the attribute member-dimension and
the perspective setting.

Note: For use only in applications enabled with varying attributes.

Syntax

<ATTRIBUTEVA (attMbrName, options, startTuple[, endTuple])

1224 Report Writer Commands

Parameter Description

attrMbrName The name of a member of a varying attribute dimension.

options ANY

startTuple[,
endTuple]

(m1, m2, ..., mN)

Level-0 members from one or more independent dimensions for attrMbrName may be part of
the input tuple.

Members from all independent dimensions should be listed. If a member is not listed, the member
of the same dimension from the current query or calculation context is used.

Notes

l When attrMbrName is a non level-0 member of an attribute dimension, Essbase returns all
base-dimension members associated with its children.

l With Boolean attributes, if you specify a Boolean dimension name (for example,
Caffeinated), Essbase returns all base-dimension members associated with either
Caffeinated member (for example, True or False). To return only one or the other, specify
that member name (for example, <ATTRIBUTEVA Caffeinated_True).

l Your outline may contain duplicate Boolean, date, and numeric attribute-dimension
member names; for example, 12 can be the attribute value for the size (in ounces) of a product
as well as the value for the number of packing units for a product. To distinguish duplicate
member names with the <ATTRIBUTEVA command, specify the full name of the attribute
(for example, <ATTRIBUTE 12_Ounces).

Example

<AttributeVa([Ounces_12], ANY, (Jan), (Feb))

<AttributeVa([Ounces], ANY, (Jan))

See Also

l WITHATTR

l PERSPECTIVE

BEFORE
Displays a character string before data columns in the report.

Quotes without a character string clear the text displayed before data columns. For example,
{ BEFORE "" } turns off previously issued BEFORE commands.

Syntax

{ BEFORE "char" [columnList] }

Parameter Description

char A single-byte character enclosed in quotation marks.

Report Writer Command Reference 1225

Parameter Description

columnList Optional. List of the column numbers, separated by spaces, that you want char to precede. Without
columnList, char is displayed before all columns in the report.

Notes

l Double-byte characters are not supported.

Example

{ BEFORE "$" } displays the dollar sign before all the data values in the following report:

<PAGE Market, Accounts, Scenario)
Chicago Sales Actual
 <COLUMN Year)
 <ICHILDREN Year
<ROW (Product)
{ BEFORE "$" }
<ICHILDREN Audio
 !

This example produces the following report:

 Chicago Sales Actual
 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======= ====== ====== ====== =======
Stereo $2,591 $2,476 $2,567 $3,035 $10,669
Compact_Disc $3,150 $3,021 $3,032 $3,974 $13,177
 Audio $5,741 $5,497 $5,599 $7,009 $23,846

See Also

l AFTER

BLOCKHEADERS
Displays all members that apply to a column as the column heading, in the style used by
asymmetric reports.

Note: This is the only format that can be used with asymmetric reports. Pyramid headers are
the default for symmetric reports.

Syntax

{ BLOCKHEADERS }

Notes

l BLOCKHEADERS is a setting command.

l BLOCKHEADERS can be useful when columns are reordered and previously symmetric
upper-tier column headers no longer align properly.

l BLOCKHEADERS ensures right-justified alignment of all columns.

1226 Report Writer Commands

Example

The following example is based on Sample Basic.

<PAGE Measures)
Sales
{WIDTH 7}
{BLOCKHEADERS}
<SYM
 <COLUMN (Scenario, Year, Market)
 Actual Budget
 Jan Feb
 East West
<ROW (Market)
<IDESCENDANTS "400"
 !

This example produces the following report:

 Sales
 Actual Actual Actual Actual Budget Budget Budget Budget
 Jan Jan Feb Feb Jan Jan Feb Feb
 East West East West East West East West
 ====== ====== ====== ====== ====== ====== ====== ======
400-10 562 1,115 560 1,122 580 740 580 740
400-20 219 1,032 243 1,065 230 690 260 700
400-30 432 625 469 618 440 410 490 400
 400 1,213 2,772 1,272 2,805 1,250 1,840 1,330 1,840

See Also

l PYRAMIDHEADERS

BOTTOM
Returns rows with the lowest values of a specified data column.

Syntax

<BOTTOM ([rowgroupDimension,] rows, column)

Parameter Description

rowgroupDimension Optional row grouping dimension that determines the rows to sort as a set. Default value: inner
row.

rows Number of rows to be returned; must be greater than 0.

column @DATACOL (colnumber) | @DATACOL (colnumber)

where colnumber is the target column number; must be between 1 and the maximum number
of columns in the report.

Notes

This command sorts the result set by the value of the specified data column in descending order.

Report Writer Command Reference 1227

Rows containing #MISSING values in the sort column are discarded from the result set before
BOTTOM is applied.

You can use TOP and BOTTOM, ORDERBY and RESTRICT in the same report script, but you
can use each command only once per report. If you repeat the same command in a second report
in the same report script, the second command overwrites the first. Place global script formatting
commands before a PAGE, COLUMN command or associated member (for example,
<ICHILDREN or <IDESCENDANTS). Avoid using row formatting commands with BOTTOM.

If any of the ORDERBY, TOP, BOTTOM, or RESTRICT commands exist together in a report
script, rowgroupDimension should be the same. Otherwise, an error is issued.

The ORDERBY, TOP, and BOTTOM commands sort a report output by its data values. The
RESTRICT command restricts the number of valid rows for the report output. Their order of
execution is:

1. Any sorting command that sorts on member names (for example <SORTDESC or
<SORTASC)

2. RESTRICT

3. TOP and BOTTOM

4. ORDERBY

This order of execution applies regardless of the order in which the commands appear in the
report script.

You can use configurable settings to specify the size of the internal buffers used for storing and
sorting the extracted data. The following settings affect the way the RESTRICT, TOP, and
BOTTOM commands work:

l Retrieval Buffer Size (a database setting)

l Retrieval Sort Buffer Size (a database setting)

l “NUMERICPRECISION” on page 477 (an essbase.cfg setting)

For more information on the database settings, see the Oracle Essbase Database Administrator's
Guide.

Example

Example 1:

<Page (Market, Accounts, Scenario)
 Chicago Sales Actual
<Bottom (5, @DataCol(4))
<Column(Year)
<Ichildren Year
<Row(Product)
<Idescendants Product
!
<Bottom (3, @DataCol(1))
{Indentgen 3}
Boston Sales Actual
<Ichildren Year

1228 Report Writer Commands

<Idescendants Product
!

Which produces the following report based on the Demo Basic sample database:

 Chicago Sales Actual
 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======== ======== ======== ======== ========
Television 4,410 4,001 4,934 6,261 19,606
VCR 3,879 3,579 4,276 4,877 16,611
Compact_Disc 3,150 3,021 3,032 3,974 13,177
Camera 2,506 2,522 2,602 3,227 10,857
Stereo 2,591 2,476 2,567 3,035 10,669

--

 Boston Sales Actual
 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======== ======== ======== ======== ========
Compact_Disc 3,290 3,034 3,132 3,571 13,027
Stereo 2,450 2,341 2,377 2,917 10,085
Camera 2,230 2,255 2,266 3,162 9,913

 Boston Sales Actual
 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======== ======== ======== ======== ========
Compact_Disc 3,290 3,034 3,132 3,571 13,027
Stereo 2,450 2,341 2,377 2,917 10,085
Camera 2,230 2,255 2,266 3,162 9,913

Example 2:

The following example uses the ORDERBY, TOP, BOTTOM, and RESTRICT functions:

<TOP ("Year", 10, @Datacol(2))
{Width 15}
{Decimal 2}
{OutAltNames}
<BOTTOM ("Year", 5, @DataCol(2))
<OutMBrAlt
<Column(Scenario)
 {SupBrackets}
 Actual Budget "Variance %"
<RESTRICT (@DataCol(2) > 3000 and @DataCol(1)
 < 3500)
<Row(Year, Product)
<Idescendants Product
<Children Year
<OrderBy ("Year",@DataCol(1), @DataCol(2) Desc)
!

Which produces the following report based on the Sample Basic sample database:

 Measures Market
 Actual Budget Variance %
 ============== ============== ==============
Qtr2 100-20 Diet Cola 1,534.00 21,010.00 -38.15
 100-20 Diet Cola 1,534.00 21,010.00 -38.15

Report Writer Command Reference 1229

 300-30 Diet Cream 2,723.00 3,100.00 -12.16
 300-30 Diet Cream 2,723.00 3,100.00 -12.16
Qtr4 300-30 Diet Cream 2,820.00 3,080.00 -8.44
 300-30 Diet Cream 2,820.00 3,080.00 -8.44
 200-20 Diet Root 2,834.00 3,790.00 -25.22
 200-20 Diet Root 2,834.00 3,790.00 -25.22
Qtr1 200-20 Diet Root 2,963.00 3,600.00 -17.69
Qtr2 200-20 Diet Root 3,079.00 3,640.00 -15.41
 200-20 Diet Root 3,079.00 3,640.00 -15.41
Qtr3 200-20 Diet Root 3,149.00 3,700.00 -14.89
 200-20 Diet Root 3,149.00 3,700.00 -14.89
 400-10 Grape 3,201.00 3,090.00 3.59
 300-10 Dark Cream 3,355.00 3,730.00 -10.05

See Also

l RESTRICT

l TOP

l ORDERBY

BRACKETS
Displays parentheses around negative numbers instead of negative signs.

Note: Brackets are the default for negative numbers.

Syntax

{ BRACKETS }

Notes

The BRACKETS command need only be used to cancel the effect of a previously issued
SUPBRACKETS command. Brackets are used by this command to mean parentheses.

Example

{BRACKETS} displays -43.243 as (43.243) in the report.

See Also

l SUPBRACKETS

CALCULATE COLUMN
Creates a new report column, performs on-the-fly calculations, and displays the calculation
results in the newly-created column.

Each new calculated column is appended to the right of the existing columns in the order in
which it is created, and is given the next available column number.

See ORDER for more information on column numbering and ordering.

1230 Report Writer Commands

Syntax

{ CALCULATE COLUMN "newColumn" = expression }

Parameter Description

"newColumn" New column name enclosed by quotation marks.

expression A column calculation expression.

If an operation or equation is not specified, the default is + (add).

The following mathematical operators are supported in column calculations:

+ Addition operator.

- Subtraction operator.

* Multiplication operator.

%X%Y Evaluates X as a percentage of Y.

/ Division operator.

:X:Y Performs a summation of data values from X to Y (inclusive). Must be the first operator if used
with multiple operators.

Notes

l No more than 50 column calculations can be defined at any one time in the report.

l All arguments in expressions must be valid data column numbers, as determined by the
original order of the columns, or constants. Floating point constants can be entered directly
into an expression (for example 0.05). Integer values are designated by a decimal point
following the last digit (for example, 10.); this distinguishes integer constants from column
references. For example, the following command sums columns 1 through 12 and divides
the total by 12:

{CALCULATE COLUMN "New_Col" = 1+3 / 6+8 % 15 * 100.-"Tot_Row" 3+12}

l Precede and follow all operators in an expression with a single space.

l Nested (parenthetical) expressions are not supported.

l Expressions are always evaluated left to right, regardless of operator precedence. For
example, the expression 1 + 4 + 5 / 100.0 sums columns 1, 4, and 5, and divides the total by
100. To sum columns 1 and 4 and add the quotient of column 5 divided by 100, use the
following expression: 5 / 100.0 + 1 + 4

l You can use the ORDER command to arrange columns in an easy-to-read fashion.

l If you use the same name for more than one column, Essbase creates only the last column
specified in the CALC COLUMN command. Use a leading space with the second (or two
leading spaces with the third, and so on) name to create a "unique" column name.

l The SUM RANGE operator (:) can only be used as the first operation in an expression. For
example, = 1 : 3 or = 1 : 3 + 7 * 9 are valid expressions, but =7* 9 : 12 is invalid because the
SUM RANGE operator is not the first operator. The SUM RANGE operator (:) may not be
used with a calculated row as one of the arguments. For example, = 1 : "Total_Sales" 3 is
invalid.

Report Writer Command Reference 1231

l A reference to a calculated row in a column calculation must include a column restriction
to specify the single column whose value is to be used in the calculation.

l A column calculation cannot reference a calculated row name that has not yet been declared.
Use { CALCULATE ROW "calcrowname" OFF } prior to the CALCULATE COLUMN
referencing it, to declare a calculated row's name when the actual definition of the row
calculation's operation cannot be done until later in the report.

l If a column calculation is attached to a member that is nested within a repeating group, it
is redefined over and over. This is allowed, but very inefficient. When possible, define
column calculations prior to areas of the report where members repeat. If the same name
occurs later in the report with a new and different definition, the prior definition is lost.

Example

Example 1 (CALCULATE COLUMN)

The following example is based on Sample Basic.

<PAGE (Measures, Market)
Sales
<SYM
 <COLUMN (Scenario, Year)
 Actual Budget
 Jan Feb
{WIDTH 8 0}
{WIDTH 7}
{WIDTH 11 5 6}
{CALCULATE COLUMN "Actual YTD" = 1 + 2}
{CALCULATE COLUMN "Budget YTD" = 3 + 4}
{ORDER 0 1 2 5 3 4 6}
<ROW (Market)
<CHILD "400"
 !

This example produces the following report:

 Sales Market
 Actual Budget
 Jan Feb Actual Ytd Jan Feb Budget Ytd
 ====== ====== ========== ====== ====== ==========
400-10 2,839 2,879 5,718 2,320 2,350 4,670
400-20 2,562 2,596 5,158 2,040 2,050 4,090
400-30 1,233 1,261 2,494 990 1,030 2,020

Example 2 (CALCULATE COLUMN)

The following samples demonstrate additional column calculations.

To calculate a new column named "1st Qtr" equal to the sum of the first 3 columns:

{CALCULATE COLUMN "1st Qtr" = 1 : 3}

To calculate a new column that is equal to column 12 taken as a percentage of the value in column
12 of a calculated row called "Total Sales":

{CALCULATE COLUMN "% of Total" = 12 % "Total Sales" 12}

1232 Report Writer Commands

To calculate a new column equal to column 1 multiplied by the constant 35:

{CALCULATE COLUMN "Extended_Price" = 1 * 35.}

The following example calculates a new column, adds column 1 to column 3, divides the result
by column 6, adds column 8, takes that result as a percentage of column 15, multiplies that result
by the constant number 100, subtracts the value from the 3rd column of the calculated row
"Tot_Row", and adds the result to column 12.

{CALCULATE COLUMN "New_Col" = 1+3 / 6+8 % 15 * 100.-"Tot_Row" 3+12}

See Also

l OFFCOLCALCS

l ONCOLCALCS

l REMOVECOLCALCS

l SETROWOP

CALCULATE ROW
Creates a named row and associates it with a row name or label. This is similar to declaring a
variable. This command can also specify an operation (+, _, *, /, or OFF) as an equation consisting
of constants, other calculated rows, and operators.

Equations are evaluated at the time of declaration. If an operator is specified, subsequent output
rows have the operator applied to them with the result stored in the calculated row.

This is useful for aggregating a series of rows to obtain a subtotal or total. The operator can be
reset at any point with SETROWOP. If neither an equation nor an operator are specified in the
CALCULATE ROW command, the + operator is assumed.

SETROWOP defines a calculation operator to be applied to all subsequent output data rows.
Use PRINTROW to display the calculation results in the newly created row.

Syntax

1:

{ CALCULATE ROW "newRow" [columnNo] = expression }

2:

{ CALCULATE ROW "newRow" [operator]}

Parameter Description

"newRow" Name of a new row, enclosed by quotation marks, that was declared with SAVEROW or
SAVEANDOUTPUT.

columnNo Optional. Column numbers to which Essbase applies the expression.

expression Row calculation expression. Member names are not supported.

Report Writer Command Reference 1233

Parameter Description

operator One of the following mathematical operators:

l + Addition.

l - Subtraction.

l * Multiplication.

l %X%Y X as a percentage of Y.

l / Division.

l OFF Turns off the row operator.

If omitted, the default is + (add).

Notes

l Row name can have multiple levels, separated by the tilde (~} character, for use when there
is more than one row name column in the report. For example, the calculated row name
"Actual~Sales", if output (using PRINTROW) in a report with at least two row name
columns, results in Sales in the right-most row name column, and Actual in the row name
column to its left. If a multiple level row-name is used in a report with only one row-name
column, only the rightmost part of the name appears in the report.

l The practical length of the row name is limited by the width of the column(s) in which it is
output. Characters to the right that would overwrite information in the next column are
truncated.

l To store a multiple-value array into a calculated row prior to the point where you have
defined your columns (with your column dimension member selections), you can use NS
to pre-allocate a larger number of columns with which to work with. If you supply fewer
values than there are data columns, the operation using the array stops after the last array
value and there are no changes to the remaining columns based on that operator. If the extra
columns are currently missing, they stay missing; if they are non-missing, they retain their
current values.

l Expressions are always computed from left to right. Parentheses may not be used for
grouping.

l Expressions cannot contain member names.

l Commands that designate columns must use valid data column numbers, as determined by
the original order of the columns.

l All operators in an expression must be preceded and followed with a single space.

l Integer and floating point constants are supported in expressions as single entries or
members of an array.

l Row calculations are created with three commands: CALCULATE ROW, SETROWOP, and
PRINTROW.

Example

The following samples demonstrate row calculations that you can perform. Note that "Total
Sales" in the examples represent a calculated row, not a member name.

1234 Report Writer Commands

To compute "Avg Sales" by dividing by the constant 2:

{ CALCULATE ROW "Avg Sales" = "Total Sales" / 2 }

To multiply the first six data columns of the calculated row "Total Sales" by the six factors and
store the result in the calculated row "Factored Sales":

{ CALCULATE ROW "Factored Sales" = "Total Sales" * [1.0 1.3 1.9 2.3 3.0
3.7] }

To store five factors in the first five columns of "Factors", for use in later calculated row
computations and/or PRINTROW output:

{ CALCULATE ROW "Factors" = [1.3 2.6 3.1 2.3 5] }

To store the value from the seventh column of "Total Sales", multiplied by 1000, in every column
of the calculated row "Ending Sales":

{ CALCULATE ROW "Ending Sales" = "Total Sales" 7 * 1000 }

To set the value in column 7 of "Ending Sales" to the corresponding value from the row "Total
Sales":

{ CALCULATE ROW "Ending Sales"7 = "Total Sales" }

"Total" refers to itself in this calculation and divides itself by 1000:

{ CALCULATE ROW "Total" = "Total" / 1000. }

To show a variety of operations used in one expression, use an expression like this:

{ CALCULATE ROW "xyz" = [11 12.3 -6] / 7 + "abc"2 % 4300. + 10 }

This expression divides the three values in the array by the constant 7 (if there are currently more
than three data columns, the extra columns remain #Missing), adds the value from column 2 of
"abc" to every column, and computes the resulting row's values as percentages of the constant
4300, and adds the constant 10 to all columns, storing the final result in "xyz". Note that if there
are more than three data columns, the result in the extra columns is 10, since prior to the last
operation, they were #Missing.

See Also

l CLEARROWCALC

l CLEARALLROWCALC

l DUPLICATE

l OFFCOLCALCS

l OFFROWCALCS

l ONCOLCALCS

l ONROWCALCS

l OUTPUT

l PRINTROW

l REMOVECOLCALCS

l RENAME

l SAVEROW

l SETROWOP

l SUPOUTPUT

Report Writer Command Reference 1235

CHILDREN
Selects all members in the level immediately below the specified member.

This command does not select the specified member.

Syntax

<CHILDREN mbrName

Parameter Description

mbrName Dimension or member name of the parent

Notes

l If member names contain spaces (for example, Cost of Goods Sold) or consist of numbers
(for example, 100-10), they must be enclosed in double quotes.

l CHILDREN lists members in their outline order. The parent, specified by mbrName, is not
included.

l The ICHILDREN command includes the specified member.

Example

<CHILDREN Year

Selects members Qtr1, Qtr2, Qtr3, and Qtr4, in that order (see the Notes for this command).

<CHILD Qtr1

Selects members Jan, Feb, and Mar, in that order.

See Also

l DESCENDANTS

l ICHILDREN

l IDESCENDANTS

CLEARALLROWCALC
Resets the value of all calculated rows to #MISSING.

Syntax

{ CLEARALLROWCALC }

See Also

l CALCULATE ROW

l CLEARROWCALC

l OFFCOLCALCS

l OFFROWCALCS

l ONCOLCALCS

l ONROWCALCS

l PRINTROW

1236 Report Writer Commands

l REMOVECOLCALCS

l SETROWOP

l SUPOUTPUT

CLEARROWCALC
Resets the value of the row calculation name to #MISSING.

Syntax

{ CLEARROWCALC name }

Parameter Description

name Name of a calculated row from a CALCULATE ROW command.

See Also

l CALCULATE ROW

l CLEARALLROWCALC

l OFFCOLCALCS

l OFFROWCALCS

l ONCOLCALCS

l ONROWCALCS

l PRINTROW

l REMOVECOLCALCS

l RENAME

l SAVEANDOUTPUT

l SAVEROW

l SETROWOP

l SUPOUTPUT

COLHEADING
Turns on automatic display of the column header, and sets it to be output prior to display of the
next non-suppressed output data row.

Syntax

{ COLHEADING }

Notes

l The purpose of delaying the header output is to ensure that when no data follows a heading
(due to suppression with a SUPMISSING or at the end of a report, for instance, a meaningless
header is not generated.

l IMMHEADING produces a new page and column heading immediately, without waiting
for the next non-suppressed output line.

l COLHEADING can be specified between the STARTHEADING and ENDHEADING
commands to position the heading relative to other outputs defined in the custom heading.

Report Writer Command Reference 1237

l When COLHEADING is used, the column members are displayed at the time the heading
is generated, rather than immediately. Thus, if this command was issued at the start of the
report script, it would still generate column headings only as part of the regular heading,
and not as the first item on the page.

l COLHEADING also displays column headings after they have been suppressed with either
a SUPCOLHEADING, SUPHEADING, or SUPALL command.

l By default, page and column headers (together called the HEADING) are turned on. This
means they are displayed prior to the first actual output row in a report, and are reset to
display again whenever:

1. A new page is generated.

2. Any member in the page or column dimensions changes.

l A specific COLHEADING, PAGEHEADING, or IMMHEADING dictates a new heading.
Once they are reset to "display", they are output just prior to the new non-suppressed output
row.

Example

The command COLHEADING displays the column heading members for a second time in the
following report after displaying a blank line with the SKIP command.

<PAGE (Market, Accounts, Scenario)
Chicago Sales Actual
 <COLUMN (Year)
 <ICHILDREN Year
<ROW (Product)
<ICHILDREN Audio
{ SKIP COLHEADING }
<ICHILDREN Visual
 !

This example produces the following report:

 Chicago Sales Actual
 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======= ====== ====== ====== =======
Stereo 2,591 2,476 2,567 3,035 10,669
Compact_Disc 3,150 3,021 3,032 3,974 13,177
 Audio 5,741 5,497 5,599 7,009 23,846

 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======= ====== ====== ====== =======
Television 4,410 4,001 4,934 6,261 19,606
VCR 3,879 3,579 4,276 4,877 16,611
Camera 2,506 2,522 2,602 3,227 10,857
 Visual 10,795 10,102 11,812 14,365 47,074

See Also

l HEADING

l SUPCOLHEADING

l IMMHEADING

l SUPPAGEHEADING

l PAGEHEADING

1238 Report Writer Commands

l TEXT

COLUMN
Defines the dimensions displayed as column members. Column members are displayed above
data columns.

The order of the members in the command determines the order of the column headers in the
report. The first header line of column members are from the same dimension as the first member
in the dimList. The second line members are from the dimension of the second member, and so
on. DimList can contain a maximum of one member from each dimension.

Once you have identified the column dimensions using this command, any members from those
dimensions that are a part of the report are defined as the data columns. If a member is not
selected from a column dimension, then the highest member in that dimension is used.

Syntax

<COLUMN (dimList)

Parameter Description

dimList Dimension name or a comma-delimited list of dimensions

Notes

l If dimension names contain spaces or consist of numbers, they must be enclosed in double
quotes.

l When more than one dimension is specified, the first dimension in the list appears at the
top of each column, the next dimension in the list appears lower on the page, nested below
the first dimension, and so on.

l The maximum number of members in a dimension that is being specified for reporting on
Hybrid Analysis is 255.

Example

<COLUMN (Year, Scenario)

Creates a report with Year members at the head of each column. Nested below each Year
member are columns headed by members of Scenario.

See Also

l PAGE

l ROW

COMMAS
Displays commas for numbers greater than 999 after commas have been suppressed with either
a SUPCOMMAS or SUPALL command.

Report Writer Command Reference 1239

Syntax

{ COMMAS }

Example

{ COMMAS }

displays the number 1345 as 1,345 in the report.

See Also

l BRACKETS

l DECIMAL

l SUPALL

l SUPCOMMAS

CURHEADING
Enables the display of the currency conversion heading.

Syntax

{ CURHEADING }

Notes

This command turns on the display of the currency conversion heading, if it was suppressed
with SUPCURHEADING. The currency conversion heading is displayed along with each page
heading as it is displayed.

Example

See the example for the CURRENCY command.

See Also

l IMMHEADING

l CURRENCY

l SUPCURHEADING

l TEXT

CURRENCY
Converts data values in the report to the targetCurrency, and causes the currency heading to be
displayed with the page heading. This does not convert the data in the database: only in the
report.

If the <CURRENCY command is not used, the data is reported as it is currently stored in the
database. Typically, the database is set up with currency conversions, requiring no additional
conversion.

Syntax

<CURRENCY targetCurrency

1240 Report Writer Commands

Parameter Description

targetCurrency Currency and currency type to display in the report. Currency type is optional. Up to four members
(at most one from each currency database dimension) in a cross-dimensional member (->)

For example:USD, or USD->Actual->Jun99

Notes

l The currency conversion label, which identifies the currency used in the report, appears at
the top of each page. See the TEXT command for custom placement of the currency label.

l For information on creating and maintaining currency databases, see the Oracle Essbase
Database Administrator's Guide.

Example

<PAGE (Market, Measures, Scenario)
Illinois Sales Budget
 <COLUMN (Year)
 <CHILDREN Qtr1
<CURRENCY USD
<ICHILDREN Colas
 !

This example produces the following report:

Currency: USD
 Illinois Sales Budget
 Jan Feb Mar
 ======== ======== ========
100-10 360 370 380
100-20 240 260 280
100-30 #Missing #Missing #Missing
 100 600 630 660

See Also

l CURHEADING

l SUPCURHEADING

l TEXT

DATEFORMAT
Report Writer can be used prepare reports based on Date type members. Report writer display
format directives that apply to numeric values apply to Date type values also. The following
format directive formats all the output cells based on the outline’s date format string:

{OUTFORMATTEDVALUES}

Report Writer post-processing commands that operate on numeric data, such as like RESTRICT,
TOP, BOTTOM and SORT, will operate on internal numeric date values.

Syntax

{ DATEFORMAT “string” }

Report Writer Command Reference 1241

Parameter Description

“string” A string in one of the date format string supported by Essbase

Example

See Also

l WITHATTR

DECIMAL
Determines the number of decimal places to display in the report.

Syntax

{ DECIMAL decPlaces | VARIABLE [columnN [columnN]] }

Parameter Description

decPlaces Number of decimal places to display. Positive integer from 0 (the default) to 40. Specify either VARIABLE
or decPlaces.

VARIABLE Allows the decimal to float; may switch to scientific notation (E+00 format) if necessary to display the
significant digits of a number in the given column width.

columnN Optional. Space-separated list of columns to be affected. If omitted, all columns are affected.

Notes

If you specify columns in the DECIMAL command before designating them with a member
selection, the column numbers apply to all selected columns with a number that is a multiple of
the specified column number.

The total number of specified column numbers should not exceed the value of columnN.

Default Value

Positive integer from 0 (the default) to 40.

Example

{DECIMAL 2}

Displays the number 65.4365 as 65.44 in the final report.

See Also

l BRACKETS

l COMMAS

l SUPBRACKETS

l SUPCOMMAS

1242 Report Writer Commands

DESCENDANTS
Adds the descendants of mbrName to the report, excluding mbrName.

Adding the descendants of the top of the dimension adds all the members in the dimension to
the report, except the dimension top.

When a generation or level name is provided, this command returns all descendants at (or up
to) the specified generation or level below mbrName.

Syntax

<DESCENDANTS mbrName

When used as an extraction command in conjunction with the < LINK command, the syntax
is:

<DESCENDANTS (mbrName [, gen/levelName [, AT|UPTO]])

Parameter Description

mbrName Name of parent of descendants.

gen/levelName Optional. Generation or level name.

AT Optional. Keyword indicating that all descendants at the specified generation or level should be
returned. If AT or UPTO are omitted, this behavior is the default.

UPTO Optional. Keyword indicating that all descendants between the root member and up to the specified
generation or level should be returned. The root member is also returned.

Notes

l The IDESCENDANTS command includes the specified member.

l The DESCENDANTS command, when used with UPTO keyword, includes the specified
member.

l Syntax specifying generation or level is available only when this command is used as an
extraction command in conjunction with the <LINK command.

Example

Example 1 (DESCENDANTS)

<DESCENDANTS Year

Selects members Jan, Feb, Mar, Q1, Apr, May, June, Q2, Jul, Aug, Sep, Q3, Oct, Nov, Dec,
Q4.

Example 2 (DESCENDANTS)

<LINK(<DESCENDANTS(Market,"Lev0,Market"))
OR
<LINK(<DESCENDANTS(Market,State))
!

This example produces the following report:

Report Writer Command Reference 1243

New York #Missing
Massachusetts #Missing
Florida #Missing
Connecticut #Missing
New Hampshire #Missing
California #Missing
Oregon #Missing
Washington #Missing
Utah #Missing
Nevada #Missing
Texas #Missing
Oklahoma #Missing
Louisiana #Missing
New Mexico #Missing
Illinois #Missing
Ohio #Missing
Wisconsin #Missing
Missouri #Missing
Iowa #Missing
Colorado #Missing

Example 3 (DESCENDANTS)

<LINK(<DESCENDANTS(Market,"Lev0,Market",UPTO))
OR
<LINK(<DESCENDANTS(Market,State,UPTO))
!

This example produces the following report:

 Market #Missing
New York #Missing
Massachusetts #Missing
Florida #Missing
Connecticut #Missing
New Hampshire #Missing
 East #Missing
California #Missing
Oregon #Missing
Washington #Missing
Utah #Missing
Nevada #Missing
 West #Missing
Texas #Missing
Oklahoma #Missing
Louisiana #Missing
New Mexico #Missing
 South #Missing
Illinois #Missing
Ohio #Missing
Wisconsin #Missing
Missouri #Missing
Iowa #Missing
Colorado #Missing
Central #Missing

1244 Report Writer Commands

See Also

l CHILDREN

l ICHILDREN

l IDESCENDANTS

l LINK

DIMBOTTOM
Adds all level-0 dimension members to the report, if the dimension is not Hybrid Analysis-
enabled. In a Hybrid Analysis-enabled dimension, DIMBOTTOM adds the bottom members
in a relational source only.

Syntax

<DIMBOTTOM mbrName

Parameter Description

mbrName A member from the dimension.

Notes

This command adds all level 0 members to the report. mbrName is from the dimension whose
level 0 members you want to select. Regardless of the member you specify, Essbase retrieves all
level 0 members of that dimension. For example, if you specify Audio in the Demo Basic database,
Essbase retrieves all the level 0 members under Audio and under Visual, because they are all level
0 members of the Product dimension.

Example

The command <DIMBOTTOM Audio adds all the members from the bottom of the Product
dimension:

<PAGE (Market, Accounts, Scenario)
Chicago Sales Actual
 <COLUMN (Year)
 <ICHILDREN Year
<ROW (Product)
<DIMBOTTOM Audio
 !

This example produces the following report:

 Chicago Sales Actual
 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======= ====== ====== ====== =======
Stereo 2,591 2,476 2,567 3,035 10,669
Compact_Disc 3,150 3,021 3,032 3,974 13,177
Television 4,410 4,001 4,934 6,261 19,606
VCR 3,879 3,579 4,276 4,877 16,611
Camera 2,506 2,522 2,602 3,227 10,857

Report Writer Command Reference 1245

See Also

l DIMTOP

DIMEND
Specifies a dimension format to be processed after cycling through all members in the dimension.

Any formatting commands in the report script encountered immediately before the DIMEND
command become formats for all dimensions in dimList.

When the report is produced, after processing all members from the specified dimension(s)
associated with the format, including the processing of any groups of members from other
dimensions which are nested inside the specified dimension(s), the DIMEND format is then
processed.

Syntax

<DIMEND dimList

Parameter Description

dimList List of members, separated by commas, that represents the dimensions for which the format is intended.

Notes

Formats are associated with the subsequent member, and are processed just prior to any output
of that member. Therefore, without this command, in some situations it would be impossible
to define a format to process after a member, especially if it was the last in a group.

Example

The UCOLUMNS format command underlines the columns in the report after every cycle
through the Market dimension. In the report, you see children of Qtr1 for East followed by
children of Qtr1 for West. After West, before starting over with East again, the processing of
UCOLUMNS displays the underlines in the report.

<PAGE (Accounts, Scenario)
Sales Actual
 <COLUMN (Product)
 /* Applied after dimension processing*/
 <ICHILDREN Audio
<ROW (Market,Year)
 East West
 <CHILDREN Qtr1
{ UCOLUMNS }
<DIMEND(Market)
/* Puts underline after Market */
 !

This example produces the following report:

 Sales Actual
 Stereo Compact Audio

1246 Report Writer Commands

 ======== ======== ========
East Jan 2,788 3,550 6,338
 Feb 2,482 3,285 5,767
 Mar 2,569 3,458 6,027
West Jan 4,102 4,886 8,988
 Feb 3,723 4,647 8,370
 Mar 3,808 4,788 8,596
=========== ============ ======== ======== ========

DIMTOP
Adds the top of the dimension for the member to the report.

Syntax

<DIMTOP mbrName

Parameter Description

mbrName Single member from the dimension to designate.

Notes

You can specify any member from the dimension, including the top member.

Example

<DIMTOP Stereo

Adds the top of the Product dimension to the report.

<PAGE (Market, Accounts, Scenario)
Chicago Sales Actual

<COLUMN (Year)
<ICHILDREN Year

<ROW (Product)
<DIMTOP Stereo
 !

This example produces the following report:

 Chicago Sales Actual
 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======= ======= ======= ======= =======
Product 16,536 15,599 17,411 21,374 70,920

See Also

l DIMBOTTOM

l DIMEND

Report Writer Command Reference 1247

DUPLICATE
Enables a member name to occur more than once in a dimension group selection.

This command is useful either (a) in a multi-section report when the same row name appears
more than once in each section or (b) when the row must be captured (without printing) once
at the top of each section for calculation purposes, and included again later in the section for
output.

Syntax

<DUPLICATE mbrRange

Parameter Description

mbrRange A single member name or selection command.

l Single member: A member already selected for the dimension can be selected again.

l Selection command: <DUPLICATE applies to all members selected by mbrRange. For example,
<CHILDREN Accounts.

Notes

l If the DUPLICATE command is not used, by default the data extraction operation ignores
duplicates in a group of members in the same dimension up to the point where a "!" is
encountered.

l <DUPLICATE is not restricted to row dimensions. It can also be used to allow a repeat of
a column or page dimension member.

Example

The following example is based on Sample Demo.

<PAGE (Market)
East
 <COLUMN (Scenario, Year)
 Budget Actual
 Jan Jan

{ ORDER 2,0,1,3,4 WIDTH 12 0 1 NOINDENTGEN AFTER "%" 4
 SKIPONDIM Product LMARGIN 10
}
<ROW (Product, Accounts)

{ CALC ROW "Sales" OFF }
{ CALC COL "Actual~% Sales" = 2 % "Sales" 2 }

<ICHILDREN Visual

{ SAVEROW } Sales
 Payroll
 Marketing
 Profit

<DUPLICATE Sales

1248 Report Writer Commands

 !

This example produces the following report:

 East
 Budget Actual Actual
 Jan Jan % Sales
 ======== ======== ========
 1,200 Television Payroll 1,236 25%
 440 Marketing 365 9%
 1,240 Profit 1,295 26%
 4,800 Sales 5,244 100%

 1,030 VCR Payroll 1,044 25%
 150 Marketing 156 4%
 1,466 Profit 1,417 35%
 4,200 Sales 4,311 100%

 1,195 Camera Payroll 1,167 42%
 300 Marketing 288 11%
 528 Profit 400 19%
 2,850 Sales 2,656 100%

 3,425 Visual Payroll 3,447 29%
 890 Marketing 809 8%
 3,234 Profit 3,112 27%
 11,850 Sales 12,211 100%

See Also

l PAGE

l COLUMN

l ROW

ENDHEADING
Ends the definition of the custom page heading displayed at the top of each page.

Syntax

{ ENDHEADING }

Notes

This command ends the definition of the custom page heading displayed at the top of each page
in the report and in certain other situations. The STARTHEADING command begins the
heading, and all commands encountered between the STARTHEADING and ENDHEADING
are part of the heading definition.

Example

See example for the STARTHEADING command.

Report Writer Command Reference 1249

See Also

l HEADING

l IMMHEADING

l STARTHEADING

l SUPHEADING

EUROPEAN
Enables non-US number formatting by switching commas and decimal points in report data
values.

Syntax

{ EUROPEAN }

Notes

In non-US number formatting, decimal points are used as the thousands separator, while
commas separate the decimal from the integer.

Example

The following example is based on Sample Demo.

This report displays an example of the { EUROPEAN } command for the report based on Chicago
followed by the { SUPEUROPEAN } command for the Boston report.

<PAGE(Market, Accounts, Scenario)
Chicago Sales Actual
 <COLUMN (Year)
 <CHILDREN Year

<ROW (Product)
<CHILDREN Audio
 !

{EUROPEAN}

Chicago Sales Actual

 <CHILDREN Year
 <CHILDREN Audio
 !

This example produces the following report:

 Chicago Sales Actual

 Qtr1 Qtr2 Qtr3 Qtr4
 ======== ======== ======== ========
Stereo 2,591 2,476 2,567 3,035
Compact_Disc 3,150 3,021 3,032 3,974

 Chicago Sales Actual
 Qtr1 Qtr2 Qtr3 Qtr4
 ======== ======== ======== ========

1250 Report Writer Commands

Stereo 2.591 2.476 2.567 3.035
Compact_Disc 3.150 3.021 3.032 3.974

See Also

l BRACKETS

l COMMAS

l DECIMAL

l SUPBRACKETS

l SUPCOMMAS

l SUPEUROPEAN

FEEDON
Enables page break insertion when the number of output lines on a page is greater than the
PAGELENGTH setting.

Syntax

{ FEEDON }

Notes

This command enables page breaks (and, by default, a new page header) in a report when the
number of output lines on a page is greater than the PAGELENGTH setting. Use after a
SUPFEED command has disabled page breaks.

Default Value

The defaults are FEEDON and PAGELENGTH of 66 lines.

See Also

l PAGELENGTH

l SUPFEED

FIXCOLUMNS
Fixes the number of columns in the report regardless of how many columns are originally
selected.

Syntax

{ FIXCOLUMNS number }

Parameter Description

number Number of columns that you want to be displayed in your final report.

Report Writer Command Reference 1251

Notes

This command fixes the number of columns in the final report regardless of how many columns
are originally selected. Only the first number of columns, which includes row name columns and
data columns, are displayed.

This command is often used in conjunction with the ORDER command to select and reorder a
subset of columns, cutting off excess columns.

Example

The following examples are based on Sample Demo.

The command { FIXCOLUMNS 3 } causes only 3 columns, the row name column and two data
columns, to be displayed even though there are additional columns for the data values of Qtr3,
Qtr4 and Year.

<PAGE (Market, Accounts, Scenario)
Chicago Sales Actual

 <COLUMN (Year)
 <ICHILDREN Year

<ROW (Product)

{FIXCOLUMNS 3}
<ICHILDREN Audio
 !

This example produces the following report:

 Chicago Sales Actual

 Qtr1 Qtr2
 ======== ========

Stereo 2,591 2,476
Compact_Disc 3,150 3,021
 Audio 5,741 5,497

This example used FIXCOLUMNS and ORDER to create a non-symmetric report.

<PAGE (Market, Accounts)
<COLUMN (Year, Scenario)
<ROW (Product)
{ ORDER 0,1,3,5,6 FIXCOLUMNS 5 }

Chicago Sales

 Jan Feb Mar
 Actual Budget

<ICHILDREN Audio
 !

1252 Report Writer Commands

 Chicago Sales

 Jan Feb Mar Mar
 Actual Actual Actual Budget
 ======== ======== ======== ========
Stereo 923 834 834 900
Compact_Disc 1,120 1,050 980 1,000
 Audio 2,043 1,884 1,814 1,900

If the command { BLOCKHEADERS } had also been used, the output would be:

 Chicago Sales

 Jan Feb Mar Mar
 Actual Actual Actual Budget
 ======== ======== ======== ========

Stereo 2,591 2,476 2,348 2,438
Compact_Disc 3,150 3,021 3,115 3,028
 Audio 5,741 5,497 5,825 5,003

Note that without the FIXCOLUMNS, the column headers would have been:

 Jan Feb Mar
Actual Budget Actual Budget Actual Budget

See Also

l ORDER

FORMATCOLUMNS
Expands the number of data columns when processed.

Syntax

{ FORMATCOLUMNS number }

Parameter Description

number Expected number of columns that are encountered for formatting purposes.

Notes

Before any data column members are added, the report assumes only one data column.
FORMATCOLUMNS (and other commands that reference column numbers) expands the
number of data columns. FORMATCOLUMNS formats the report layout for a predetermined
number of data columns for text and headings.

This command does not limit the number of output columns, as FIXCOLUMNS does. For
example, a TEXT command used to center text can be issued before the addition of members
that define the data columns, so centering would be off unless FORMATCOLUMNS is used to
indicate the expected number of columns.

Report Writer Command Reference 1253

Example

{ FORMATCOLUMNS 10 } sets up an expected report size of 10 columns for formatting
purposes.

See Also

l COLUMN

l NAMESCOL

GEN
Returns all members in a dimension with the specified generation name. This command does
not work with Hybrid Analysis members.

Syntax

GEN name, dimension

When used as an extraction command in conjunction with the <LINK command, the syntax is:

<GEN(dimension,genNumber)

Parameter Description

name Generation name

dimension Dimension name

genNumber Generation number

Notes

l The report script can use either default generation names or user-defined generation names.
Examples of default generation names are GEN1, GEN2, and so on.

l Use quotes around the GEN command if the dimension name contains spaces.

Example

GEN3,Year

Selects members of generation 3 from the Year dimension.

CityGen,State

Selects members of the user-defined generation name CityGen from the State dimension.

"GEN2,All Markets"

Selects members of generation 2 from the All Markets dimension.

<LINK (<GEN(Product,3) AND <LEV(Product,0))

Selects members with generation 3 and level 0 from the Product dimension.

See Also

l LEV

1254 Report Writer Commands

l LINK

HYBRIDANALYSISON
Enables Essbase to interpret Report Writer commands in the context of a Hybrid Analysis
relational source.

Syntax

<HYBRIDANALYSISON

Notes

l If a database contains a Hybrid Analysis relational source, specifying the
<HYBRIDANALYSISON command before Report Writer commands causes Essbase to
determine if the Report Writer commands need to be extended to include one or more
Hybrid Analysis members.

l You can use the <HYBRIDANALYSISON command multiple times in a report, and you
can place the command around members or expansions that do not include Hybrid Analysis
members without affecting the report results. <HYBRIDANALYSISON applies to all
subsequent member selections until its effect is cancelled by the <HYBRIDANALYSISOFF
command.

l Disabling Hybrid Analysis in Administration Services takes precedence over the
<HYBRIDANALYSISON setting for any dimensions that are disabled and thus cancels any
<HYBRIDANALYSISON command issued in Report Writer.

l Reports that include Hybrid Analysis members are always symmetric. Specifying the <ASYM
command in a report script results in an error.

l ALLINSAMEDIM is not supported with HYBRIDANALYSISON.

Example

Assume that some members of the Product dimension are present in a Hybrid Analysis relational
source and that no members of Scenario and Market are present in the Hybrid Analysis relational
source. When the following report script is run, Hybrid Analysis members in the Product
dimension are returned.

<DESC "Scenario"
<HYBRIDANALYSISON
<DESC "Product"
<DESC "Market"

Assume that 100-10-1 is present in the Hybrid Analysis relational source. The following report
script produces an error because 100-10-1 does not exist in the Essbase outline. If
<HYBRIDANALYSISON were specified, 100-10-1 would be recognized in the report.

<DESC "Scenario"
<DESC "100-10-1"
<DESC "Market"

See Also

l HYBRIDANALYSISOFF

Report Writer Command Reference 1255

l ASYM

l SYM

HYBRIDANALYSISOFF
Prevents Essbase from interpreting Report Writer commands in the context of a Hybrid Analysis
Relational Source.

Syntax

<HYBRIDANALYSISOFF

Notes

If a database contains a Hybrid Analysis Relational Source, specifying the
<HYBRIDANALYSISOFF command before one or more Report Writer commands prevents
Essbase from extending the report to include Hybrid Analysis members. You can use
<HYBRIDANALYSISOFF multiple times in a report. <HYBRIDANALYSISOFF applies to all
subsequent member selections until its effect is cancelled by the <HYBRIDANALYSISON
command.

Example

Assume that some members of the Product and Market dimensions are present in the Hybrid
Analysis Relational Source and that no members of Scenario are present in the Hybrid Analysis
Relational Source. When the following report script is run, Hybrid Analysis members in the
Product dimension are returned; however, Hybrid Analysis members in the Market dimension
are not returned because retrievals subsequent to the <HYBRIDANALYSISOFF command
cannot include a dimension that has members present in the Hybrid Analysis Relational Source.

<DESC "Scenario"
<HYBRIDANALYSISON
<DESC "Product"
<HYBRIDANALYSISOFF
<DESC "Market"

See Also

l HYBRIDANALYSISON

l ASYM

l SYM

HEADING
Displays the page heading: either the default heading or the heading as defined with the
STARTHEADING and ENDHEADING commands.

If the SUPHEADING command has been used to turn off the display of the heading, this
command also turns it back on, printing it just before the next non-suppressed output row, and
thereafter at the top of every new page (unless SUPHEADING is used again). The heading

1256 Report Writer Commands

automatically adjusts to any change in column or page selection members and is generated prior
to the next output data row without the need for a further HEADING command.

Note: The default heading includes the page member heading, the column member heading,
and, if applicable, the currency heading.

Syntax

{ HEADING }

Notes

l By default, page and column headers (together called the HEADING) are turned on. This
means they are displayed prior to the first actual output row in a report, and are reset to
display again whenever:

m A new page is generated.

m Any member in the page or column dimensions changes.

m A specific COLHEADING, PAGEHEADING, or IMMHEADING dictates a new
heading. Once they are reset to "display", they are output just prior to the new non-
suppressed output row.

l To produce a new page and column heading immediately, without waiting for the next non-
suppressed output line, use IMMHEADING.

l A heading normally comprises the page heading (members of the PAGE dimension) and
the column heading (the current members of the column dimensions). The last line of the
column header is also underlined.

l If STARTHEADING/ENDHEADING is used, the HEADING command redefines the
makeup of the report heading.

l If SUPHEADING is used, the page heading and column heading can still be independently
turned back on by the commands: PAGEHEADING and COLHEADING.

Example

See the example for the STARTHEADING command for an example of a heading.

See Also

l COLHEADING

l ENDHEADING

l IMMHEADING

l PAGEHEADING

l STARTHEADING

l SUPHEADING

IANCESTORS
Adds a member and its ancestors to the report.

Report Writer Command Reference 1257

Syntax

<IANCESTORS mbrName

Parameter Description

mbrName Single member whose ancestors you want to include.

Notes

The ancestors of a member consists of its parent, that parent's parent, and so on, all the way to
the top member of the dimension, including the specified member.

See Also

l CHILDREN

l DESCENDANTS

l PARENT

ICHILDREN
Selects the specified member and all members in the level immediately below it.

Syntax

<ICHILDREN mbrName

Parameter Description

mbrName Dimension or member name of the parent

Notes

l If member names contain spaces (for example, Cost of Goods Sold or consist of numbers
(for example, 100-10), they must be enclosed in double quotes.

l ICHILDREN lists members in their defined order, according to the database outline. The
parent, which is the member specified as the parameter in the ICHILDREN command, is
listed last.

Example

<ICHILDREN Year

Selects members Qtr1, Qtr2, Qtr3, Qtr4, and Year, in that order.

<ICHILDREN Qtr1

Selects members Jan, Feb, Mar, and Qtr1, in that order.

See Also

l ANCESTORS

l CHILDREN

l DESCENDANTS

l PARENT

1258 Report Writer Commands

IDESCENDANTS
Adds the specified member and its descendants to the report.

Syntax

<IDESCENDANTS mbrName

When used as an extraction command in conjunction with the <LINK command, the syntax is:

<IDESCENDANTS (mbrName [, gen/levelName [, AT|UPTO]])

Parameter Description

mbrName Name of single member and descendants to add to the report.

gen/levelName Optional. Generation or level name.

AT Optional. Keyword indicating that all descendants at the specified generation or level should be
returned. If AT or UPTO are omitted, this behavior is the default.

UPTO Optional. Keyword indicating that all descendants between the root member and up to the specified
generation or level should be returned. The root member is also returned.

Notes

Adding the descendants of the top of the dimension adds all the members in the dimension to
the report, including the dimension top.

Example

Example 1

<IDESCENDANTS Product

Adds all the members from the Product dimension to the report since all the members are
descendants of the member Product which is the top of the dimension. Audio and Visual are
the children of Product. Stereo and Compact_Disc are the children of Audio while Television,
VCR, and Camera are the children of Visual.

<PAGE (Market, Accounts, Scenario)
Chicago Sales Actual
<COLUMN (Year)
<ICHILDREN Year
<ROW (Product)
<IDESCENDANTS Product
!

This example produces the following report:

 Chicago Sales Actual

 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======= ====== ====== ====== =======

Stereo 2,591 2,476 2,567 3,035 10,669
Compact_Disc 3,150 3,021 3,032 3,974 13,177

Report Writer Command Reference 1259

 Audio 5,741 5,497 5,599 7,009 23,846
Television 4,410 4,001 4,934 6,261 19,606
VCR 3,879 3,579 4,276 4,877 16,611
Camera 2,506 2,522 2,602 3,227 10,857
 Visual 10,795 10,102 11,812 14,365 47,074
 Product 16,536 15,599 17,411 21,374 70,920

Example 2

<LINK(<IDESCENDANTS(Market,"Lev0,Market"))
OR
<LINK(<IDESCENDANTS(Market,State))
!

This example produces the following report:

New York #Missing
Massachusetts #Missing
Florida #Missing
Connecticut #Missing
New Hampshire #Missing
California #Missing
Oregon #Missing
Washington #Missing
Utah #Missing
Nevada #Missing
Texas #Missing
Oklahoma #Missing
Louisiana #Missing
New Mexico #Missing
Illinois #Missing
Ohio #Missing
Wisconsin #Missing
Missouri #Missing
Iowa #Missing
Colorado #Missing
 Market #Missing

Example 3

<LINK(<IDESCENDANTS(Market,"Lev0,Market",UPTO))
OR
<LINK(<IDESCENDANTS(Market,State,UPTO))
!

This example produces the following report:

 Market #Missing
New York #Missing
Massachusetts #Missing
Florida #Missing
Connecticut #Missing
New Hampshire #Missing
 East #Missing
California #Missing
Oregon #Missing
Washington #Missing

1260 Report Writer Commands

Utah #Missing
Nevada #Missing
 West #Missing
Texas #Missing
Oklahoma #Missing
Louisiana #Missing
New Mexico #Missing
 South #Missing
Illinois #Missing
Ohio #Missing
Wisconsin #Missing
Missouri #Missing
Iowa #Missing
Colorado #Missing
Central #Missing

See Also

l ANCESTORS

l CHILDREN

l DESCENDANTS

l PARENT

l LINK

IMMHEADING
Forces the immediate display of the heading without waiting for the next non-suppressed data
row.

Syntax

{IMMHEADING}

Notes

Under normal circumstances, the heading only appears when at least one non-suppressed row
is ready to be output on the current page. For this reason, when any suppression commands are
turned on (such as SUPMISSING or SUPZEROS), and an entire page is suppressed, those page
headers are normally skipped entirely.

An occurrence of the IMMHEADING command prints the header immediately, even if there is
no current row to print. This command does not unsuppress data, but simply prints its headings.

This command is useful for inserting special formatting between the heading and the first output
record. This is usually impossible because the header does not print until it is ready to output
data immediately, that is, after any formats associated with the row have been processed.

Example

See the example for STARTHEADING for an example of a heading.

See Also

l ENDHEADING

l HEADING

Report Writer Command Reference 1261

l STARTHEADING

l SUPHEADING

INCEMPTYROWS
Displays empty rows of data, or rows that contain only zeros or #MISSING data values, in the
final report.

Syntax

{ INCEMPTYROWS }

Notes

This command displays empty rows of data, or rows that contain only zeros or #MISSING data
values, in the final report. This command is used to cancel the effects of SUPEMPTYROWS,
SUPMISSINGROWS or SUPZEROROWS.

See Also

l INCMISSINGROWS

l INCZEROROWS

l SUPALL

l SUPEMPTYROWS

l SUPMISSINGROWS

l SUPZEROROWS

INCFORMATS
Controls the formats affected by the following commands: SUPMASK, SUPMISSING, and
SUPZERO.

Syntax

{ INCFORMATS }

Notes

INCFORMATS prints out the format associated with a particular data row even when that row
is suppressed. This means that line formatting, TEXT and MASK commands, and headers do
not print unless their associated data rows print (or are not suppressed).

Default Value

Whenever the SUPMASK, SUPMISSING, or SUPZERO commands are used, by default
SUPFORMATS is also set on, unless it has been specifically turned off.

See Also

l SUPFORMATS

1262 Report Writer Commands

INCMASK
Re-includes (turns back on) the mask that has been suppressed by the command SUPMASK.

Syntax

{ INCMASK }

See Also

l MASK

INCMISSINGROWS
Displays missing rows of data, or rows that contain all #MISSING data values, in the final report.

Syntax

{ INCMISSINGROWS }

Notes

This command displays missing rows of data, or rows that contain all #MISSING data values, in
the final report. This command is used after a SUPMISSINGROWS or SUPEMPTYROWS
command has been used to remove the missing rows from the final report.

See Also

l INCEMPTYROWS

l INCZEROROWS

l SUPALL

l SUPEMPTYROWS

l SUPMISSINGROWS

l SUPZEROROWS

INCZEROROWS
Includes rows that contain only data values of zero in the final report.

Syntax

{ INCZEROROWS }

Notes

This command displays zero rows of data, or rows that contain only data values of zero, in the
final report. This command is used after a SUPZEROROWS or SUPEMPTYROWS command
has been used to remove the zero rows from the final report.

See Also

l INCEMPTYROWS

l INCMISSINGROWS

l SUPALL

Report Writer Command Reference 1263

l SUPEMPTYROWS

l SUPMISSINGROWS

l SUPZEROROWS

INDENT
Shifts the first row names column in column-output order by the specified number of characters.

Note: Default (No value): Indents columns by 2.

Syntax

{ INDENT [offset] }

Parameter Description

offset Optional. Number of spaces to indent column 0 from the left boundary of the name column. Values:

l Positive number (up to 100): Shifts column 0 to the right.

l Negative number: Shifts column left, but cannot indent to the left of the start of the name column.

l 0: Returns column to original position.

l Default (no value): Indents columns by 2.

Notes

l { INDENT } shifts column 0 two characters to the right (the default) and decreases the size
of column 1 by two.

l { INDENT 0 } resets the indent position to the original position regardless of the current
position.

l When a member is indented, the width of the names column for that member is decreased
to offset the indent. This does not shift the remaining columns in the report.

l Once the indented names column has been declared, you can use the ORDER command to
moved it within the final output format or precede it with regular or calculated columns.

l Hierarchical relationships between row members are, by default, indicated by indentation.
Indentation only applies to a group of rows generated together, such as when a single ! is
used. If each consecutive row is generated independently, using its own !, then no indentation
occurs.

Example

In the following example, the first report for Chicago shows the default indentation while the
second report for Boston uses the { INDENT 10} command to shift the row names column 10
places to the right.

<PAGE (Market, Accounts, Scenario)
Chicago Sales Actual

<COLUMN (Year)
<ICHILDREN Year

1264 Report Writer Commands

<ROW (Product)
<ICHILDREN Audio
 !

{ INDENT 10 }
Boston Sales Actual

<ICHILDREN Year
<ICHILDREN Audio
 !

This example produces the following report:

 Chicago Sales Actual
 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======== ======== ======== ======== ========
Stereo 2,591 2,476 2,567 3,035 10,669
Compact_Disc 3,150 3,021 3,032 3,974 13,177
 Audio 5,741 5,497 5,599 7,009 23,846

 Boston Sales Actual
 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======== ======== ======== ======== ========
 Stereo 2,450 2,341 2,377 2,917 10,085
 Compact_~ 3,290 3,034 3,132 3,571 13,027
 Audio 5,740 5,375 5,509 6,488 23,112

See Also

l INDENTGEN

l LMARGIN

l NOINDENTGEN

INDENTGEN
Indents subsequent row members in the row names column based on the generation in the
database outline.

Syntax

{ INDENTGEN [offset] }

Parameter Description

offset Optional. Number that determines the amount to indent each succeeding generation from the previous
generation. Default: INDENTGEN -2.

Notes

This command indents row members in the row names column based on the generation in the
Database Outline. Generations are counted starting at the top of the dimension.

Report Writer Command Reference 1265

The top of the dimension is the first generation of the dimension. The children of the top are
the second generation and so on. The offset determines how many characters each successive
generation is indented. A positive number places the first generation at the leftmost position
and indents each successive generation to the right. A negative number places the last generation
on the left.

By default, all generations in a row group are indented by -2 for each relative generation
difference. A row group is the group of row members selected before a an exclamation point (!)
is encountered. If every row is generated separately (a ! after every row member) all the "groups"
are one row only, and thus are not indented because there is no relative generation difference.

The indentation is based on relative rather than absolute generation differences so that if a report
is working with only the lower levels of a many-level tree, all the row names do not start heavily
indented, wasting column space. If offset is not given, it does not have a default value of -2.

Default Value

-2 is the default at the start of each report. {INDENTGEN}

Example

The following example shows the default generation indentation for the Chicago report followed
by the {INDENTGEN 3} command in the Boston report.

<PAGE (Market, Accounts, Scenario)
Chicago Sales Actual

 <COLUMN (Year)
 <ICHILDREN Year

<ROW (Product)
<IDESCENDANTS Product
 !

{ INDENTGEN 3 }
Boston Sales Actual

 <ICHILDREN Year

<IDESCENDANTS Product
 !

This example produces the following report:

 Chicago Sales Actual
 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======= ======= ======= ======= =======
Stereo 2,591 2,476 2,567 3,035 10,669
Compact_Disc 3,150 3,021 3,032 3,974 13,177
 Audio 5,741 5,497 5,599 7,009 23,846
Television 4,410 4,001 4,934 6,261 19,606
VCR 3,879 3,579 4,276 4,877 16,611
Camera 2,506 2,522 2,602 3,227 10,857
 Visual 10,795 10,102 11,812 14,365 47,074

1266 Report Writer Commands

 Product 16,536 15,599 17,411 21,374 70,920

 Boston Sales Actual
 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======= ======= ======= ======= =======

 Stereo 2,450 2,341 2,377 2,917 10,085
 Compact_Disc 3,290 3,034 3,132 3,571 13,027
 Audio 5,740 5,375 5,509 6,488 23,112
 Television 4,197 3,757 4,740 5,000 17,694
 VCR 3,645 3,663 4,201 4,509 16,018
 Camera 2,230 2,255 2,266 3,162 9,913
 Visual 10,072 9,675 11,207 12,671 43,625
Product 15,812 15,050 16,716 19,159 66,737

See Also

l INDENT

l NOINDENTGEN

IPARENT
Adds the specified member and its parent to the report.

Syntax

IPARENT mbrName

Parameter Description

mbrName A single member, which must not be the top member of the dimension.

Notes

This command selects the current member and its parent, as defined in the database outline.

Example

<IPARENT Jan

Selects the member Jan and its parent member, Qtr1, in that order.

See Also

l PARENT

LATEST
Specifies a Dynamic Time Series member in a report script, which has reserved generation names
that are defined in the database outline alias table (You must create a Dynamic Time Series
member in the database outline before you use it in a report script.)

If you use the < LATEST syntax, the command is applied globally in the report script. If you use
the reservedName (mbrName) syntax, Essbase applies the command only to the member listed
in the syntax argument.

Report Writer Command Reference 1267

Syntax

1:

<LATEST mbrName

2:

<LATEST reservedName (mbrName)

Parameter Description

reservedName One of the following pre-defined generation names:

History-To-Date (H-T-D)
Year-To-Date (Y-T-D)
Season-To-Date (S-T-D)
Period-To-Date (P-T-D)
Quarter-To-Date (Q-T-D)
Month-To-Date (M-T-D)
Week-To-Date (W-T-D)
Day-To-Date (D-T-D)

mbrName The name of the level 0 member in the Time dimension.

Notes

l You can create an alias table in the database and replace the predefined generation names
with alias names.

l The "latest" period must be a level 0 member in the time dimension.

l Sparse retrieval optimization eliminates requested sparse members that do not have any
data blocks in the database.

l You cannot use attributes as arguments.

Example

<LATEST May

or

Q-T-D (May)

LEAVES
Adds level 0 contributing descendants (descendants with non #MISSING data) for the specified
member to the report. This command is equivalent to getting DESCENDANTS of mbrName at
level-0 (for primary hierarchy) with SUPMISSINGROWS enabled for the dimension.

The Leaves command compactly describes large dimensions correlated with another dimension
(many-to-many relationship) while avoiding internal expansion of members before retrieval.

Because large sets tend to be very sparse, only a few members contribute to the input member
(have non #Missing values) and are returned. As a result, LEAVES consumes less memory
resources than the equivalent nonempty Descendants function call, allowing for better
scalability, especially in concurrent user environments.

1268 Report Writer Commands

Syntax

<LEAVES mbrName

Parameter Description

mbrName Single member whose level 0 contributing descendants should be added to the report

Notes

l This command only applies to aggregate storage databases.

l This command can only be used on rows or pages; if used on columns, an error is returned.

l This command is not supported in combination with name and alias sorting commands.
Members will be returned in outline order.

l This command is not supported in combination with other selection commands for the
same dimension.

l This command is not supported in combination with row and column calculation
commands.

Example

<LEAVES("Personal Electronics")
!

This example produces the following report:

Digital Cameras 1,344,844
Camcorders 2,747,641
Photo Printers 1,325,536
Memory 2,607,186
Other Accessori~ 6,475,762
Boomboxes 1,720,446
Radios 1,657,511

"Handhelds" was omitted from the result set because it has a value of #MISSING, so it does not
contribute to "Personal Electronics".

See Also

l DESCENDANTS

LEV
Returns all members in a dimension with the specified level name. This command does not work
with Hybrid Analysis members.

Syntax

LEV name,dimension

When used as an extraction command in conjunction with the <LINK command, the syntax is:

<LEV(dimension,levNumber)

Report Writer Command Reference 1269

Parameter Description

name Level name

dimension Dimension name

levNumber Level number

Notes

l The report script can use either default level names or user-defined level names. Examples
of default level names are LEV0, LEV1, and so on.

l Use quotes around the LEV command if the dimension name contains spaces.

Example

LEV0,Product

Selects members of level 0 from the Product dimension.

ZipCodeLev,State

Selects members of the user-defined generation name ZipCodeLev from the State
dimension.

"LEV1,All Regions"

Selects members of level 1 from the All Regions dimension.

<LINK (<GEN(Market,2) AND NOT <LEV(Market,0))

Selects members of generation 2, but not level 0 from the Market dimension.

See Also

l GEN

l LINK

LINK
Uses the AND, OR, and NOT Boolean operators, combined with extraction commands, to refine
member selections. The LINK command has been extended to span into dimension levels that
are located in the Hybrid Analysis portion of an Essbase cube.

Syntax

<LINK (extractionCommand [operator extractionCommand])

1270 Report Writer Commands

Parameter Description

extractionCommand Any of the following extraction commands or another AND/OR expression:

<ALLINSAMEDIM (member)
<ALLSIBLINGS (member)
<ANCESTORS (member)
<CHILDREN (member)
<DESCENDANTS (member [, gen/levelName [, AT|UPTO]])
<DIMBOTTOM (member)
<DIMTOP (member)
<IANCESTORS (member)
<ICHILDREN (member)
<IDESCENDANTS (member [, gen/levelName [, AT|UPTO]])
<IPARENT (member)
<MATCH (Dimension, match_string)
<MEMBER (member)
<OFSAMEGEN (member)
<ONSAMELEVELAS (member)
<PARENT (member)
<UDA (Dimension, UDA_name)

Operator Any of the following Boolean operators:

l Use the AND operator when all conditions must be met.

l Use the OR operator when either one condition or another must be met.

l Use the NOT operator to choose the inverse of the selected condition.

Notes

l NOT can only be associated with an extraction command, and does not apply to the entire
expression. You must use NOT in conjunction with either the AND or OR operators.

l The MEMBER extraction command is only used within a LINK expression; you can use the
MEMBER selection to select a single member. Do not use the MEMBER command outside
of a LINK expression.

l You must select members from the same dimension, and all extraction command arguments
must be enclosed in parentheses, as in the example above.

l Essbase evaluates operators from left to right. Use parentheses to group the expressions. For
example: A OR B AND C is the same as ((A OR B) AND C). In the first expression Essbase
evaluates the expression from left to right, evaluating A OR B before evaluating AND C. In
the second expression, Essbase evaluates the sub-expression in parentheses (A OR B) before
the whole expression, producing the same result. However, if you use (A OR (B AND C)),
Essbase evaluates the sub-expression in parentheses (B AND C) before the whole expression,
producing a different result.

l You can include up to 50 arguments in a LINK statement. For example, <LINK (A OR B
OR (C AND D)) counts as four separate arguments.

l All extraction commands within a LINK statement need to select from the same dimensions;
a command such as LINK (<ICHILDREN (east) AND <LEV (product,0)) causes a syntax
error.

l The LINK command also retrieves members located in the Hybrid Analysis portion of an
Essbase database. When used in conjunction with <DIMBOTTOM for a Hybrid Analysis-

Report Writer Command Reference 1271

enabled dimension for reports accessing data at the relational level, <DIMBOTTOM adds
the bottom members in a relational source only.

l If the LINK command returns an empty set of members, nothing is returned.

l On Teradata ODBC driver version 3.0.2, using the LINK command to access Hybrid Analysis
members does not work if the command uses more than one AND or OR operator. Teradata
ODBC driver versions 2.7 or 3.0.3 have no issue.

Example

<LINK (<UDA(product,Sweet) AND <LEV(product,0))

Selects all level 0 products that are sweet.

<LINK ((<IDESCENDANTS("100") AND <UDA(product,Sweet)) OR <LEV(product, 0))

Selects sweet products from the "100" sub-tree plus all level 0 products.

<LINK ((<IDESCENDANTS("100") AND NOT <UDA(product, Sweet)) OR <LEV(product, 0))

Selects non sweet products from the "100" sub-tree plus all level 0 products.

See Also

l ALLINSAMEDIM

l ALLSIBLINGS

l ANCESTORS

l CHILDREN

l DESCENDANTS

l DIMBOTTOM

l DIMTOP

l IANCESTORS

l ICHILDREN

l IDESCENDANTS

l IPARENT

l MATCH

l OFSAMEGEN

l ONSAMELEVELAS

l PARENT

l UDA

LMARGIN
Sets the left margin for the report to marginSize characters.

Syntax

{ LMARGIN [marginSize] }

Parameter Description

marginSize Optional numeric value: number of character spaces for left margin.

1272 Report Writer Commands

Notes

This command sets the left margin for the report to marginSize characters. In most cases the
value of marginSize should be 2 or greater when printing on a laser printer.

Default Value

If the LMARGIN command is not used, the default is 0. If marginSize is omitted, it assumes
a default value of 0.

Example

{LMARGIN 10} sets the left margin to 10 characters.

See Also

l INDENT

l PAGELENGTH

MASK
Overwrites the text in each output row with the specified characters at the specified position.

All nonblank characters in the text overwrite appear in the output line.

To create a mask of a blank character that overwrites output, enter ~ (the tilde character), rather
than a blank space. The ~ is output as a blank space mask.

In addition to constant text, this command can use keywords to insert special strings into the
report. These keywords begin with a "*" and must be entered. These are identical to the *
keywords under the TEXT command, and are listed here for convenience. For a more complete
discussion of * keywords, see the TEXT command.

You may include multiple sets of positions and text in a single MASK command.

Keyword Description

*APPNAME Name of the application as set in the application definition.

*ARBOR Version information from the Essbase Server.

*COLHDRnumber1 number2 Column heading members from the report, usually used with SUPCOLHEADING.

*COLHDRFULL Vull column heading, along with underlines of the column headings and a 1-line skip.

*CURRENCY Currency conversion label that indicates to which currency the data values have been converted at report
time with the CURRENCY command.

*DATE Date the report was generated.

*DATETIME Date and time the report was generated.

*DBNAME Name of the data base within the application.

*EDATE Date in European (dd/mm/yy) format.

Report Writer Command Reference 1273

Keyword Description

*EDATETIME European format date (dd/mm/yy) and time.

*MACHINE Network name for the computer that is running the Essbase Server.

*PAGEHDRnumber Page member heading for the report, usually used with SUPPAGEHEADING.

*PAGENO Page number for the current page.

*PAGESTRING Page number preceded by the text "Page:"

*TIME Time the report was generated.

*TIMEDATE Time and date the report was generated.

*TIMEEDATE Time and European format (dd/mm/yy) date.

*USERNAME Name of the user generating the report.

Syntax

{ MASK charPosition "replacement" [charPosition "replacement"] }

Parameter Description

charPosition Character position at which to start replacing text.

"replacement" New text, enclosed by quotation marks, with which to overwrite the original output.

Notes

l MASK is a setting command.

l To replace a space, use a ~ (the tilde character).

l If you want to produce an output file in comma-delimited format, use the SUPCOMMAS
command, as in the example, to suppress the commas in numeric values. You can also use
the SUPPAGEHEADING command to suppress page headings in the comma-delimited file.

Example

The following example is based on Sample Basic.

<ROW (Year, Measures, Product, Market, Scenario)
{SUPPAGEHEADING}
{ROWREPEAT}
{DECIMAL 2}
{SUPCOMMAS}
{MASK 3 "," 22 "," 40 "," 55 "," 74 ","}
<CHILDREN Qtr1
Sales
<CHILDREN Colas
East
Budget
 !

This example produces the following report:

1274 Report Writer Commands

Jan, Sales, 100-10, East, Budget, 1690.00
Jan, Sales, 100-20, East, Budget, 190.00
Jan, Sales, 100-30, East, Budget, 80.00
Feb, Sales, 100-10, East, Budget, 1640.00
Feb, Sales, 100-20, East, Budget, 190.00
Feb, Sales, 100-30, East, Budget, 90.00
Mar, Sales, 100-10, East, Budget, 1690.00
Mar, Sales, 100-20, East, Budget, 200.00
Mar, Sales, 100-30, East, Budget, 100.00

See Also

l INCMASK

l SUPMASK

l TEXT

MATCH
Performs wildcard member selection. Essbase searches for member names that match the pattern
you specify, and returns the member names it finds.

If you defined the members names in the database you are searching as case-sensitive, the search
is case-sensitive. Otherwise, the search is not case-sensitive. To define database member names
as case-sensitive, use Outline Editor in Administration Services (see the Oracle Essbase
Administration Services Online Help).

You can use more than one MATCH command in your report.

If Essbase does not find any members that match the chosen character pattern, it returns no
member names and continues with the other report commands in your report.

Syntax

<MATCH ("Member"|"Gen"|"Level","Pattern")

Parameter Description

"Member" Member name at the top of the member hierarchy you want to search. Essbase searches the member name
and its descendants.

"Gen" Default or user-defined name of the generation you want to search.

"Level" Default or user-defined name of the level you want to search.

"Pattern" The character pattern you want to search for, including a wildcard character (* or ?).

l ? Substitutes one occurrence of any character; can be placed anywhere in the string.

l * Substitutes any number of characters; must be used at the end of the string.

l You can include spaces in the character pattern. Ensure that you enclose the pattern in quotation marks
("").

Notes

MATCH does not function with Hybrid-Analysis relational sources.

Report Writer Command Reference 1275

Example

The following report is based on the Sample Basic database, and uses a * wildcard pattern search.

<PAGE (Measures, Market, Scenario)
Sales East Actual
<COLUMN (Year)
<MATCH (Year, J*)
<ROW (Product)
lev1,Product
!

Essbase searches the Year dimension and finds 3 months beginning with the letter "J":Jan, Jun,
and Jul. The report returns the following data:

 Sales East Actual
 Jan Jun Jul
 ======== ======== ========
100 2,105 2,625 2,735
200 1,853 2,071 1,992
300 1,609 1,795 1,926
400 1,213 1,404 1,395
Diet 620 712 778

The following report is based on the Sample Basic database, and uses a ? wildcard pattern search.

<PAGE (Measures, Market, Scenario)
Sales East Actual
<COLUMN (Year)
<ROW (Product)
<MATCH (Product, "???-10")
!

Essbase searches the Product dimension and finds all instances of products ending in "-10", and
preceded by three characters. The report returns the following data:

 Sales East Actual Year
100-10 23,205
200-10 8,145
300-10 13,302
400-10 6,898

MATCHEX
Performs wildcard member selection. Essbase searches for member names that match the pattern
you specify, and returns the member names it finds.

Provides an optional parameter to specify if the search should be performed on member names
or aliases, regardless of whether the query output in the report script uses members or aliases.

If you defined the members names in the database you are searching as case-sensitive, the search
is case-sensitive. Otherwise, the search is not case-sensitive. To define database member names

1276 Report Writer Commands

as case-sensitive, use Outline Editor in Administration Services (see the Oracle Essbase
Administration Services Online Help).

You can use more than one MATCHEX command in your report.

If Essbase does not find any members that match the chosen character pattern, it returns no
member names and continues with the other report commands in your report.

Syntax

<MATCH ("Member"|"Gen"|"Level","Pattern",ALT|MBR|BOTH)

Parameter Description

"Member" Member name at the top of the member hierarchy you want to search. Essbase searches the member name
and its descendants.

"Gen" Default or user-defined name of the generation you want to search.

"Level" Default or user-defined name of the level you want to search.

"Pattern" The character pattern you want to search for, including a wildcard character (* or ?).

l ? Substitutes one occurrence of any character; can be placed anywhere in the string.

l * Substitutes any number of characters; must be used at the end of the string.

l You can include spaces in the character pattern. Ensure that you enclose the pattern in quotation
marks ("").

ALT|MBR|
BOTH

Optional—The ALT|MBR|BOTH option overrides default pattern matching specifications. The default
pattern matching uses aliases for pattern matching if aliases are to be displayed in report output, but uses
names otherwise.

l ALT

Filter using aliases of selected members from selected alias table for pattern matching. The alias table
is set by outaltselect, otherwise default alias table.

l MBR

Filters using member names of selected members for pattern matching.

l BOTH

Filters using member names as well as aliases for selected members from selected alias table for pattern
matching. The alias table is set by outaltselect, otherwise default alias table.

Notes

MATCHEX does not function with Hybrid-Analysis relational sources.

Example

<NewAlt ""
<matchex(product,100,MBR)
!

<outaltselect default
<nmatchex(product,Caff*,ALT)
!

<OUTALTSELECT "Default"
<NewAlt "Product"

Report Writer Command Reference 1277

<OUTMBRNAME
<LINK((<MATCHEX("Product", "100", MBR) AND < IDESCENDANTS("Product")))
!

MEANINGLESSTEXT
Displays #ME in place of a specified text string. Used with OUTMEANINGLESS.

Syntax

{ MEANINGLESSTEXT “string” }

Parameter Description

“string” The specified string to be replaced with #ME in cells.

Example

See Also

l WITHATTR

MISSINGTEXT
Replaces the #MISSING with text when a missing data value is generated on a line in the report.
If you do not specify text, the default #MISSING is restored.

Syntax

{MISSINGTEXT ["text"] }

Parameter Description

text Optional text to use for missing values.

Notes

l MISSINGTEXT is a setting command.

l The label must be enclosed in double quotes.

Example

{MISSINGTEXT "Not Applicable."}

See Also

l SUPEMPTYROWS

l SUPMISSINGROWS

l SUPZEROROWS

l TEXT

1278 Report Writer Commands

NAMESCOL
Determines the location of the row names columns in the report.

Use the NAMESCOL command after entering the column members in the report. You can get
the same result with the ORDER command, but NAMESCOL is more convenient for moving
just the names columns and when the number of data columns can vary.

Syntax

{ NAMESCOL [columnList | CENTERED] }

Parameter Description

columnList Optional list, separated by spaces, of the locations for each row name. List position corresponds to the
number of the affected column.

NAMESCOL shifts the remaining columns left or right to make room for the columns of row member
names.

CENTERED
(or C)

Key word that centers the column of row member names in the report. Before using this parameter:

l Define all columns in the report.

l Use the FORMATCOLUMNS command to set the number of columns.

Notes

{ NAMESCOL c c 10 } places the first two row name columns in the center of the report, and
the third row name column in column 10.

Example

The command { NAMESCOL c} places the row names column in the following report in the
center of the report.

<PAGE (Market, Accounts, Scenario)
Chicago Sales Actual

 <COLUMN (Year)
 <ICHILDREN Year

<ROW (Product)
{ NAMESCOL c }
<ICHILDREN Audio
 !

This example produces the following report:

Chicago Sales Actual

 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ====== ====== ====== ====== ========
 2,591 2,476 Stereo 2,567 3,035 10,669
 3,150 3,021 Compact_Disc 3,032 3,974 13,177
 5,741 5,497 Audio 5,599 7,009 23,846

Report Writer Command Reference 1279

See Also

l FIXCOLUMNS

l FORMATCOLUMNS

l NAMEWIDTH

l ORDER

NAMESON
Turns on the display of column(s) of row member names.

Syntax

{ NAMESON }

Notes

This command reverses the effect of a SUPALL or SUPNAMES command. These commands
turn off the display of column(s) of row member names in the final report.

See Also

l SUPALL

l SUPNAMES

NAMEWIDTH
Determines the width of all row name columns in the report.

Syntax

{ NAMEWIDTH [width] }

Parameter Description

width Optional. Specifies the total number of characters displayed for each column.

Notes

This command determines the width of the column for all row member names in the report.
Member names are truncated when necessary to fit in the column and the tilde character(~)
signifies that there are letters not visible in the report. If each names column needs a different
width, use the WIDTH command.

Default Value

If width is not given, then a default value of 17 is assumed.

Example

In the following example, the first report for Chicago displays the default width for the row
names column while the { NAMEWIDTH 25 } command in the Boston report increases the
width of the row names column to 25.

1280 Report Writer Commands

<PAGE (Market, Accounts, Scenario)
Chicago Sales Actual

 <COLUMN (Year)
 <ICHILDREN Year

<ROW (Product)
<CHILDREN Audio
 !

{ NAMEWIDTH 25 }

Boston Sales Actual

 <ICHILDREN Year

<CHILDREN Audio
 !

This example produces the following report:

 Chicago Sales Actual
 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======= ====== ====== ====== =======
Stereo 2,591 2,476 2,567 3,035 10,669
Compact_Disc 3,150 3,021 3,032 3,974 13,177

 Boston Sales Actual
 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======= ====== ====== ====== =======
Stereo 2,450 2,341 2,377 2,917 10,085
Compact_Disc 3,290 3,034 3,132 3,571 13,027

See Also

l NAMESCOL

l WIDTH

NEWPAGE
Inserts a new page in the report regardless of how many lines have been generated for the current
page.

Syntax

{ NEWPAGE }

Notes

This command inserts a new page in the report regardless of how many lines have been generated
for the current page. The report continues with a new page for the next row. A new heading is
displayed at the top of the new page, assuming the page has at least one non-suppressed output
data row, unless SUPHEADING is used.

Report Writer Command Reference 1281

See Also

l FEEDON

l SUPFEED

NOINDENTGEN
Displays all row member names left-aligned in the row names column without indenting
members based on generation in the database outline.

Syntax

{ NOINDENTGEN }

Notes

This command displays all row member names left-justified in the row names column without
indenting members based on generation in the Database Outline. Indenting generations is
generally not useful if you sort member names alphabetically by name in a report.

Default Value

By default, each generation is indented unless NOINDENTGEN is used.

See Also

l INDENT

l INDENTGEN

NOPAGEONDIMENSION
Turns off insertion of a new page when the member in the report from the same dimension as
member changes in a row of the report.

Syntax

{ NOPAGEONDIMENSION mbrName }

Parameter Description

mbrName Single member whose dimension is part of the PAGEONDIMENSION declaration.

Notes

This command turns off insertion of a new page when the member in the report from the same
dimension as mbrName changes in a row of the report. It is needed only after the
PAGEONDIMENSION command has been used.

Example

{NOPAGEONDIMENSION Year} prevents a new page from being inserted when a member in
the dimension Year changes, after PAGEONDIMENSION Year has been set.

1282 Report Writer Commands

See Also

l NOSKIPONDIMENSION

l PAGEONDIMENSION

l SKIPONDIMENSION

NOROWREPEAT
Prevents row member names from being repeated on each line of the report if the row member
name does not change on the next line. This is the default.

Syntax

{ NOROWREPEAT }

Notes

This command prevents row member names from being repeated on each line of the report if
the row member name does not change on the next line. NOROWREPEAT is only used to cancel
the effects of the ROWREPEAT command. The ROWREPEAT command causes all row member
names to be displayed on every line of the report even if the names for some members are the
same.

Default Value

NOROWREPEAT is the default; you need only use this command after using ROWREPEAT.

Example

The following example is based on the Sample Demo database.

The following report is an example of the default behavior for row names not repeating. The
names only print when they change.

<PAGE (Market, Accounts)
Chicago Sales

 <COLUMN (Scenario)
 Actual

<ROW (Year, Product)
{ NOROWREPEAT }
<ICHILDREN Qtr1
<ICHILDREN Audio!
{ ROWREPEAT }
<ICHILDREN Qtr2 !

Which produces the following report:

 Chicago Sales Actual

Jan Stereo 923
 Compact_Disc 1,120
 Audio 2,043
Feb Stereo 834
 Compact_Disc 1,050

Report Writer Command Reference 1283

 Audio 1,884
Mar Stereo 834
 Compact_Disc 980
 Audio 1,814
 Qtr1 Stereo 2,591
 Compact_Disc 3,150
 Audio 5,741

 Chicago Sales Actual

Apr Stereo 821
Apr Compact_Disc 985
Apr Audio 1,806
May Stereo 821
May Compact_Disc 1,014
May Audio 1,835
Jun Stereo 834
Jun Compact_Disc 1,022
Jun Audio 1,856
 Qtr2 Stereo 2,476
 Qtr2 Compact_Disc 3,021
 Qtr2 Audio 5,497

See Also

l ROWREPEAT

NOSKIPONDIMENSION
Prevents insertion of a new line when a member from the same dimension as mbrName changes
in a row of the report.

Syntax

{ NOSKIPONDIMENSION mbrName }

Parameter Description

mbrName Single member that defines a dimension for which to halt line-skipping.

Notes

This command turns off insertion of a new line when the member in the report from the same
dimension as mbrName in the command changes in a row of the report.

This command is required only after the SKIPONDIMENSION command.

Example

{NOSKIPONDIMENSION Year}

prevents the insertion of a new line when a member in the dimension Year changes after an
occurrence of SKIPONDIMENSION Year.

See Also

l NOPAGEONDIMENSION

1284 Report Writer Commands

l PAGEONDIMENSION

l SKIPONDIMENSION

NOUNAMEONDIM
Turns off underlining for the new member name when the member in the report from the same
dimension as the specified member changes in a row of the report.

Syntax

{ NOUNAMEONDIM mbrName }

Parameter Description

mbrName Member whose dimension is part of the UNAMEONDIM declaration.

Notes

This command turns off underlining for a new row when the member in the report from the
same dimension as mbrName changes. It is needed only after the UNAMEONDIM command
has been used.

See Also

l NOPAGEONDIMENSION

l NOSKIPONDIMENSION

l PAGEONDIMENSION

l SKIPONDIMENSION

l UNAMEONDIMENSION

OFFCOLCALCS
Disables all column calculations within the report.

Syntax

{ OFFCOLCALCS }

Notes

This command disables all column calculations within the report, for example, those calculations
set by CALCULATE COLUMN. The column(s) defined for the calculation(s) display the value
#MISSING to indicate no value was calculated for the column. This command temporarily turns
off the calculations but does not remove them.

Example

See the example for the CALCULATE COLUMN command.

See Also

l CALCULATE COLUMN

l CLEARROWCALC

Report Writer Command Reference 1285

l CLEARALLROWCALC

l OFFROWCALCS

l ONCOLCALCS

l ONROWCALCS

l PRINTROW

l REMOVECOLCALCS

l SETROWOP

OFFROWCALCS
Temporarily disables all row calculations.

Syntax

{ OFFROWCALCS }

Notes

This command temporarily disables all row calculations, for example, those calculations set by
CALCULATE ROW. Subsequent rows of data do not contribute to a calculated row with an
active SETROWOP until ONROWCALCS is issued. Disabling the calculations does not reset
the values of the rows to zero. Instead, rows of data in the report after the command are ignored
in the calculations.

Example

See the examples for the CALCULATE ROW command.

See Also

l CALCULATE ROW

l CLEARROWCALC

l CLEARALLROWCALC

l OFFCOLCALCS

l ONCOLCALCS

l ONROWCALCS

l PRINTROW

l REMOVECOLCALCS

l SETROWOP

OFSAMEGEN
Adds to the report the members from the same dimension and generation as the specified
member. This command does not apply to Hybrid Analysis members.

Syntax

<OFSAMEGEN mbrName

1286 Report Writer Commands

Parameter Description

mbrName Single member that designates the dimension and generation to retrieve.

Notes

Generations are counted starting at the top of the dimension. The top of the dimension is
generation 1; its children are generation 2. Each child's generation number is one greater than
its parent's.

Example

<PAGE (Market, Accounts, Scenario)
Chicago Sales Actual

 <COLUMN (Year)
 <ICHILDREN Year

<ROW (Product)
<OFSAMEGEN VCR
 !

This example produces the following report:

 Chicago Sales Actual

 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======= ====== ====== ====== =======
Stereo 2,591 2,476 2,567 3,035 10,669
Compact_Disc 3,150 3,021 3,032 3,974 13,177
Television 4,410 4,001 4,934 6,261 19,606
VCR 3,879 3,579 4,276 4,877 16,611
Camera 2,506 2,522 2,602 3,227 10,857

See Also

l ALLINSAMEDIM

l CHILDREN

l DESCENDANTS

l ONSAMELEVELAS

ONCOLCALCS
Re-enables column calculations in the report after they have been disabled by OFFCOLCALCS.

Syntax

{ ONCOLCALCS }

Notes

This command is required after the OFFCOLCALCS command, which disables column
calculations.

Report Writer Command Reference 1287

Example

See the example for the CALCULATE COLUMN command.

See Also

l CALCULATE COLUMN

l CLEARROWCALC

l CLEARALLROWCALC

l OFFCOLCALCS

l OFFROWCALCS

l ONROWCALCS

l PRINTROW

l REMOVECOLCALCS

l SETROWOP

ONROWCALCS
Re-enables all row calculations after they have been disabled by OFFROWCALCS. Each
subsequent row of data after using the command is calculated.

Syntax

{ ONROWCALCS }

Notes

This command is required after the OFFROWCALCS command, which disables the row
calculation(s).

Example

See the example for the CALCULATE ROW command.

See Also

l CALCULATE ROW

l CLEARROWCALC

l CLEARALLROWCALC

l OFFCOLCALCS

l ONCOLCALCS

l REMOVECOLCALCS

ONSAMELEVELAS
Adds to the report all members on the same level as the specified member. This command does
not apply to Hybrid Analysis members.

Syntax

<ONSAMELEVELAS mbrName

1288 Report Writer Commands

Parameter Description

mbrName Single member that designates the dimension and generation to retrieve.

Notes

Levels are counted up from the bottom of the dimension. Members in the database outline with
no children are level 0; their parents are level 1, and so on. The level for a child is always 1 lower
than its parent.

Example

<PAGE (Market, Accounts, Scenario)
Chicago Sales Actual

 <COLUMN (Year)
 <ICHILDREN Year

<ROW (Product)
<ONSAMELEVELAS Audio
 !

This example produces the following report:

 Chicago Sales Actual

 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======== ======= ======= ======= ========

Audio 5,741 5,497 5,599 7,009 23,846
Video 10,795 10,102 11,812 14,365 47,074

See Also

l ALLINSAMEDIM

l CHILDREN

l DESCENDANTS

l OFSAMEGEN

ORDER
Specifies the order of columns in a report, based on the original ordering of the columns.

Make sure you specify all the report columns in the ORDER command unless you use
FIXCOLUMNS. ORDER simply moves the listed columns to locations in the final report but
does not shift the unlisted columns to make room for the columns moved. If you have a five
column report and you specify the command {ORDER 2 3 4}, you see columns 2, 3 and 4 in the
report followed again by columns 3 and 4. If you really want a 3 column report, use
{FIXCOLUMNS 3}.

Calculated data columns have column numbers which begin after the last regular data column.
In other words, if each output data row had:

l 2 row names;

Report Writer Command Reference 1289

l 3 regular data columns; and

l 2 calculated data columns

then columns 0 and 1 are the row name column numbers; 2, 3, and 4 are the regular data column
numbers; and 5 and 6 are the calculated-data column members.

Syntax

{ ORDER columnList }

Parameter Description

columnList Numeric designations of the columns to rearrange, separated by a space between each column number.

Each column number represents the initial positions of each column (from 0 to n where n is the last column,
counting names, data, and calculated columns, respectively).

The position of each number in the columnList represents the new order in which you want the columns
to be displayed.

Note: Using the ORDER command without a columnList resets the column order to the default setting
(that is, 0, 1, 2, 3, 4, and so on).

Notes

l ORDER is a setting command.

l The first name column is designated as column 0. Column numbers then increment, starting
with any additional row name columns, then the data columns, followed by calculated data
columns.

Example

The following example is based on the Sample Basic database.

<PAGE (Measures, Market)
Texas Sales
{ORDER 0 1 4 2 5 3 6 BLOCKHEADERS}
 <COLUMN (Scenario, Year)
 Actual Budget
 Jan Feb Mar
<ROW (Product)
<DESCENDANTS "100"
 !

This script arranges the Jan, Feb, and Mar columns side-by-side.

 Sales Texas
 Actual Budget Actual Budget Actual Budget
 Jan Jan Feb Feb Mar Mar
 ======== ======== ======== ======== ======== ========
100-10 452 560 465 580 467 580
100-20 190 230 190 230 193 240
100-30 #Missing #Missing #Missing #Missing #Missing #Missing

See Also

l FIXCOLUMNS

1290 Report Writer Commands

l NAMESCOL

ORDERBY
Orders the rows in a report according to data values in the specified columns.

Syntax

<ORDERBY ([<rowgroupDimension>,] <column> [direction>]{,<column> [<direction>]})

Parameter Description

<Optional
rowgroup
Dimension>

Row grouping dimension that determines the rows to sort as a set.

<column> @DATACOL (<colnumber>) | @DATACOL (<colnumber>)

where <colnumber> is the target column number; must be between 1 and the maximum number
of columns in the report.

<direction> You can specify multiple columns with different sorting directions where:

ASC is the ascending sort

DESC is the descending sort

Notes

You can use ORDERBY, TOP, BOTTOM, and RESTRICT in the same report script, but you can
use each command only once per report. If you repeat the same command in a second report
in the same report script, the second command overwrites the first. Place global script formatting
commands, for example, SAVEROW, before a PAGE, COLUMN command or associated
member (for example, <ICHILDREN or <IDESCENDANTS).

If any of the ORDERBY, TOP, BOTTOM, or RESTRICT commands exist together in a report
script, the row group dimension <rowgroupDimension> should be the same. This restriction
removes any confusion about the sorting and ordering of rows within a row group. Otherwise,
an error is issued.

If TOP or BOTTOM commands exist in the same report with ORDERBY, the ordering column
of ORDERBY need not be the same as that of TOP or BOTTOM.

The ORDERBY, TOP and BOTTOM commands sort a report output by its data values. The
RESTRICT command restricts the number of valid rows for the report output. Their order of
execution is:

1. Any sorting command that sorts on member names (for example <SORTDESC or
<SORTASC)

2. RESTRICT

3. TOP and BOTTOM

4. ORDERBY

Report Writer Command Reference 1291

This order of execution applies irrespective of the order in which the commands appear in the
report script.

For an example that uses TOP, BOTTOM, ORDERBY, and RESTRICT together, see the entry
for the BOTTOM command.

Default Value

The innermost row grouping is the default row group dimension. Default direction is ascending.

Example

//Page dimension
<PAGE("Measures")

//Column dimensions
<COLUMN("Scenario", "Year")

//Row dimensions
<ROW("Market", "Product")

// Page Members
"Sales"

// Column Members
"Scenario"

"Jan" "Feb" "Mar"

// Row Members
"New York"

"Product" "100" "100-10" "100-20" "100-30" "200" "200-10" "200-20" "200-30" "200-40"
"300" "300-10" "300-20" "300-30" "400" "400-10" "400-20" "400-30" "Diet" "100-20"
"200-20" "300-30"

// Data sorting
<ORDERBY ("Product", @DATACOL(1) ASC, @DATACOL(2) DESC, @DATACOL(3) ASC)
!
// End of report

Which produces the following report based on the Sample Basic sample database:

 Sales Scenario

 Jan Feb Mar
 ======== ======== ========

New York 100-20 #Missing #Missing #Missing
 100-30 #Missing #Missing #Missing
 200-20 #Missing #Missing #Missing
 200-30 #Missing #Missing #Missing
 300-30 #Missing #Missing #Missing
 Diet #Missing #Missing #Missing
 200-10 61 61 63
 400-30 134 189 198
 300-20 180 180 182
 400-20 219 243 213

1292 Report Writer Commands

 400-10 234 232 234
 300-10 483 495 513
 200-40 490 580 523
 200 551 641 586
 400 587 664 645
 300 663 675 695
 100-10 678 645 675
 100 678 645 675
 Product 2,479 2,625 2,601

See Also

l RESTRICT

l TOP

l BOTTOM

OUTALT
Sets the output alias to the database outline alias name, as defined in the current alias table.

Syntax

<OUTALT

Notes

l OUTALT cannot be used on duplicate member outlines. See REPALIAS.

l OUTALT is used to reset the output alias to the Database Outline alias name. Use this
command to restore the default alias after OUTALTMBR or OUTMBRALT have been used
to redefine the alternate name.

l You must precede the OUTALT command with OUTALTNAMES to display the alias (rather
than the member name).

Example

The following example is based on the Sample Basic database.

<PAGE (Product, Measures)
<COLUMN (Scenario, Year)
{OUTALTNAMES}
<OUTMBRALT
Actual
<CHILDREN Qtr1
<ROW Market)
<IDESCENDANTS "300"
<OUTALT
<IDESCENDANTS "300"
 !
<OUTALT
<IDESCENDANTS "300"
 !

This example produces the following report:

 300-10 Measures Actual

Report Writer Command Reference 1293

 Jan Feb Mar
 ======== ======== ========
Market 800 864 880

 Vanilla Cream Measures Actual
 Jan Feb Mar
 ======== ======== ========
Market 220 231 239

 Diet Cream Measures Actual
 Jan Feb Mar
 ======== ======== ========
Market 897 902 896

 Cream Soda Measures Actual
 Jan Feb Mar
 ======== ======== ========
Market 1,917 1,997 2,015

 Dark Cream Measures Actual
 Jan Feb Mar
 ======== ======== ========
Market 800 864 880

 Vanilla Cream Measures Actual
 Jan Feb Mar
 ======== ======== ========
Market 220 231 239

 Diet Cream Measures Actual
 Jan Feb Mar
 ======== ======== ========
Market 897 902 896

 Cream Soda Measures Actual
 Jan Feb Mar
 ======== ======== ========
Market 1,917 1,997 2,015

See Also

l OUTALTMBR

l OUTALTNAMES

l OUTMBRALT

l OUTMBRNAMES

OUTALTMBR
Sets the output alias to the database outline alias name (as defined in the current alias table)
followed by the database outline member name.

Syntax

<OUTALTMBR

1294 Report Writer Commands

Notes

l Separate the alias and member name with a single space.

l To produce reports that display the alternate name for a member, you must also use the
{ OUTALTNAMES } command. If no alternate name exists, only the member name is
displayed.

l OUTALTMBR cannot be used on duplicate member outlines. See REPALIASMBR.

Example

The following example is based on Sample Basic.

<PAGE (Product, Measures)
<COLUMN (Scenario, Year)
{OUTALTNAMES}
<OUTALTMBR
Actual
<CHILDREN Qtr1
<ROW (Market)
<IDESCENDANTS "300"
 !

This example produces the following report:

 300-10 Measures Actual
 Jan Feb Mar
 ======== ======== ========
Market 800 864 880

 Vanilla Cream 300-20 Measures Actual
 Jan Feb Mar
 ======== ======== ========
Market 220 231 239

 Diet Cream 300-30 Measures Actual
 Jan Feb Mar
 ======== ======== ========
Market 897 902 896

 Cream Soda 300 Measures Actual
 Jan Feb Mar
 ======== ======== ========
Market 1,917 1,997 2,015

See Also

l OUTALT

l OUTALTNAMES

l OUTMBRALT

l REPALIASMBR

OUTALTNAMES
Displays alias names for members in a report.

Report Writer Command Reference 1295

May be used in conjunction with OUTMBRNAME to switch between member names and alias
names in report rows.

The member name, not the alias name, is the default for reporting.

Syntax

{ OUTALTNAMES }

Notes

l OUTALTNAMES cannot be used on duplicate member outlines. See REPALIAS.

l OUTALTNAMES is a setting command.

l The OUTALTMBR or OUTMBRALT commands may be used to redefine the alternate
names definition.

Example

The following example is based on Sample Basic.

{WIDTH 15}
//{OUTALTNAMES} If used (commented out), displays alias names for column headers
<PAGE (Measures)
Sales
<COL (Year, Market, Scenario)
Jan Feb Mar
 East Actual
<ROW(Measures)
{OUTALTNAMES}
// These members display with aliases.
<IDESCENDANTS "100"
{OUTMBRNAMES}
// These members display their member names as defined in the outline.
<IDESCENDANTS "200"
{OUTALTNAMES}
// Switches back to alias names, as defined in the current alias table.
<IDESCENDANTS "400"
!

This example produces the following report:

 Sales East Actual
 Jan Feb Mar
 ============== ============== ==============
Cola 1,812 1,754 1,805
Diet Cola 200 206 214
Caffeine Free Cola 93 101 107
 Colas 2,105 2,061 2,126
200-10 647 668 672
200-20 310 310 312
200-30 #Missing #Missing #Missing
200-40 896 988 923
 200 1,853 1,966 1,907
Grape 562 560 560
Orange 219 243 213
Strawberry 432 469 477
 Fruit Soda 1,213 1,272 1,250

1296 Report Writer Commands

See Also

l OUTALT

l OUTALTMBR

l OUTMBRALT

l OUTMBRNAMES

OUTALTSELECT
Selects an alias table in a report script.

The table remains in effect until another <OUTALTSELECT command executes. This lets you
use different alias tables for different dimensions in a report script.

Syntax

<OUTALTSELECT AliasTableName

Parameter Description

AliasTableName The name of the selected alias table associated with the database outline.

Notes

l OUTALTSELECT can be used on unique member outlines or duplicate member outlines.

Example

The following example is based on Sample Basic, using two different alias tables: Long Names
and Default.

<PAGE("Scenario")
<COLUMN("Year", "Market")
<ROW("Measures", "Product")
<LINK(<CHILDREN("Qtr4"))
<LINK(<CHILDREN("South"))
<OUTALTSELECT "Long Names"
{OUTALTNAMES}"100-10"
"100-20"
"100-30"
<OUTALTSELECT Default
{OUTALTNAMES}
"200-10"
"200-20"
"200-30"
!

See Also

l REPALIAS

l REPALIASMBR

l REPMBR

l REPMBRALIAS

l OUTALTMBR

l OUTALTNAMES

Report Writer Command Reference 1297

l OUTMBRALT

l OUTMBRNAMES

OUTFORMATTEDMISSING
Formats missing values in reports instead of the missing alias. By default, missing values are not
formatted. Only cells with non-numeric type are formatted.

Syntax

{ OUTFORMATTEDMISSING }

Parameter Description

Example

See Also

l WITHATTR

OUTFORMATTEDVALUES
Generates formatted cell values in the report instead of cell values. By default cell values are
reported. Cells with missing values will not be formatted.

Syntax

{ OUTFORMATTEDVALUES }

Parameter Description

Example

See Also

l WITHATTR

OUTMBRALT
Sets the output name to the database outline member name followed by the outline alias, as
defined in the current alias table.

The member name and alias are separated by a single space.

Syntax

<OUTMBRALT

1298 Report Writer Commands

Notes

l OUTMBRALT cannot be used on duplicate member outlines. See REPMBRALIAS.

l You must precede the OUTMBRALT command with OUTALTNAMES to display the alias,
followed by the member name (rather than the member name alone).

l OUTMBRALT cannot be used on duplicate member name outlines.

l REPMBRALIAS can be used on both unique and duplicate member name outlines.
REPMBRALIAS supercedes OUTMBRALT.

Example

The following example is based on Sample Basic.

<PAGE (Product, Measures)
<COLUMN (Scenario, Year)
{OUTALTNAMES}
<OUTMBRALT
Actual
<CHILDREN Qtr1
<ROW (Market)
<IDESCENDANTS "300"
 !

This example produces the following report:

 300-10 Measures Actual
 Jan Feb Mar
 ======== ======== ========
Market 800 864 880

 300-20 Vanilla Cream Measures Actual
 Jan Feb Mar
 ======== ======== ========
Market 220 231 239

 300-30 Diet Cream Measures Actual
 Jan Feb Mar
 ======== ======== ========
Market 897 902 896

 300 Cream Soda Measures Actual
 Jan Feb Mar
 ======== ======== ========
Market 1,917 1,997 2,015

See Also

l OUTALT

l OUTALTMBR

l OUTALTNAMES

l OUTMBRNAMES

l REPMBRALIAS

Report Writer Command Reference 1299

OUTMBRNAMES
Reverts to the default member name display after the OUTALTNAMES command has been used
to display alternate names.

The member name is the default for reporting.

Syntax

{ OUTMBRNAMES }

Notes

l OUTMBRNAMES cannot be used on duplicate member outlines. See REPMBR.

See Also

l OUTALT

l OUTALTMBR

l OUTALTNAMES

l OUTMBRALT

OUTMEANINGLESS
Displays #ME in reports for cells that are meaningless because no base member-attribute member
combination exists.

Syntax

{ OUTMEANINGLESS }

Parameter Description

Example

See Also

l WITHATTR

OUTPUT
Resumes output, reversing the action of SUPOUTPUT.

Syntax

{ OUTPUT }

Notes

This command causes Report Writer to resume output with the member specifications in effect
when the OUTPUT command was issued. It will not "remember" where it was when the
SUPOUTPUT command was issued. Further, any formatting commands that were issued in the

1300 Report Writer Commands

interim will also be in effect. Thus, you can use the SUPOUTPUT command to suppress all
output from a portion of the report script.

See Also

l SUPOUTPUT

OUTPUTMEMBERKEY
Displays a member identifier (in addition to the member or alias name) for any duplicate
member names. OUTPUTMEMBERKEY applies to duplicate member outlines only.

Syntax

<OUTPUTMEMBERKEY

Notes

l OUTPUTMEMBERKEY is primarily for use in programing applications.

l OUTPUTMEMBERKEY cannot be used in combination with the existing commands
OUTMBRALT, OUTALTMBR, OUTALT, OUTALTNAMES, OR OUTMBRNAMES.

l SORTMBRNAMES does not sort by member identifier.

See Also

l REPQUALMBR

l REPMBR

l REPALIAS

l REPMBRALIAS

l REPALIASMBR

PAGE
Defines which dimensions are displayed as page members in the final report.

This command specifies the dimension or dimensions to be used such that each member or
combination of members of these dimensions is an attribute of all data cells on a page.

Page members are displayed at the top of the report above the column members. Any member
in the report specification from the same dimension as a member in the PAGE command is a
page member. Only one member at a time from each page dimension is displayed in the page
heading at the top of each page.

Each time any member from one of the dimensions in the page heading changes, it creates a new
page heading. The order of the dimensions in the PAGE command determines the order in which
members occur in the page heading. The member from the first dimension is displayed first,
followed by the second and so on.

On any single report page, the current page members are representative of (are attributes of) all
the data cells on the page.

Report Writer Command Reference 1301

Syntax

<PAGE (dimList)

Parameter Description

dimList Dimension name or a comma-delimited list of dimensions.

Notes

l If dimension names contain spaces or consist of numbers, they must be enclosed in double
quotes.

l Essbase automatically generates new page headings when dimensions change. Essbase does
not, however, automatically generate page breaks. To specify page breaks when dimensions
change, use the PAGEONDIMENSION format command, described in the Data Formatting
Commands section later in this chapter.

l When more than one dimension is specified, the last dimension in the list changes most
frequently. For example, <PAGE (Measures, Market) lists all values for Sales East (New York,
Massachusetts, Florida, etc.), then lists all values for Sales West. After all Markets have been
cycled, the next Measure will replace Sales, and then Markets will cycle through again.

Example

<PAGE (Measures, Market)

Creates a report based on member combinations of dimensions Measures and Market. The first
page of the report lists all values for Sales, East; the next page lists all values for Sales, West; When
all children of Market have been extracted, the report continues with Cost of Goods Sold, East
followed by Cost of Goods Sold, West, and so on.

See Also

l COLUMN

l ROW

PAGEHEADING
Displays the page heading before the next data-output row.

Otherwise, a new page heading occurs only if the page or column members change, a page is
generated (for example, page length is exceeded or a NEWPAGE command is issued), or a page
header has not been done for this page and the first output row on the page is ready to print.

If PAGEHEADING is specified between the STARTHEADING and ENDHEADING commands,
however, the page heading is displayed with the heading and not immediately. This command
also permanently nullifies the effect of a previously issued SUPPAGEHEADING command.

The page heading is the default heading, which contains the current page members.

Syntax

{ PAGEHEADING }

1302 Report Writer Commands

Notes

l The TEXT and SUPPRESSHEADING command can be used to customize page heading text
and placement.

l By default, page and column headers (together called the HEADING) are turned on. This
means they are displayed prior to the first actual output row in a report, and are reset to
display again whenever:

1. A new page is generated.

2. Any member in the page or column dimensions changes.

3. A specific COLHEADING, PAGEHEADING, or IMMHEADING dictates a new
heading. Once they are reset to display, they are output just prior to the new non-
suppressed output row.

l IMMHEADING produces a new page and column heading immediately, without waiting
for the next non-suppressed output line.

Example

The PAGEHEADING command in the following report inserts the page heading members in
the report for a second time.

<PAGE (Market, Accounts, Scenario)
Chicago Sales Actual
 <COLUMN (Year)
 <ICHILDREN (Year)
<ROW (Product)
Television
VCR
{ SKIP PAGEHEADING SKIP }
Compact_Disc
Stereo
 !

This example produces the following report:

 Chicago Sales Actual

 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======= ====== ====== ====== =======
Television 4,410 4,001 4,934 6,261 19,606
VCR 3,879 3,579 4,276 4,877 16,611

 Chicago Sales Actual

Compact_Disc 3,150 3,021 3,032 3,974 13,177
Stereo 2,591 2,476 2,567 3,035 10,669

See Also

l COLHEADING

l HEADING

l PAGE

l SUPALL

l SUPCOLHEADING

Report Writer Command Reference 1303

l SUPHEADING

l SUPPAGEHEADING

l TEXT

PAGELENGTH
Sets the maximum number of lines for one page in the report.

Syntax

{ PAGELENGTH [lines] }

Parameter Description

lines Optional total number of output lines for the size of paper you are using. Because the Report Writer does
not recognize any of the font characteristics of the output report, it operates based on lines rather than
inches.

Notes

Default Value

The defaults are FEEDON and a PAGELENGTH of 66 lines, which normally translates to an 11-
inch-long page. This value is assumed if lines is not given.

This command sets the maximum number of lines for one page in the report. After displaying
the number of lines, a page break is inserted, followed by the heading. The page break is not
inserted if a SUPFEED command has been used. The heading is displayed at the start of the new
page unless SUPHEADING has been used.

If you are using legal size paper, the value should be 84 lines. If you are using A4 paper, the value
should be 70 lines.

Example

{ PAGELENGTH 50 } sets the maximum number of lines for one page to 50.

See Also

l LMARGIN

l WIDTH

PAGEONDIMENSION
Performs a page break whenever a member from the same dimension as the specified member
changes from one line in the report to the next.

Syntax

{ PAGEONDIMENSION mbrName }

1304 Report Writer Commands

Parameter Description

mbrName Single member. If any member of the same dimension increments, a new page is started.

Notes

This command performs a page break whenever a member from the same dimension as the
member in the command changes from one line in the report to the next.

With the ROW command, you can display members from several dimensions in columns on
the side of the report. At least one member changes from one of these dimensions for each row
of the report.

PAGEONDIMENSION causes a new page to begin when the member from the selected
dimension changes. A single report can have several PAGEONDIMENSION commands to page
on different dimensions which change.

When combined with UNAMEONDIMENSION and SKIPONDIMENSION,
UNAMEONDIMENSION is processed first followed by SKIPONDIMENSION and
PAGEONDIMENSION in order.

Example

The command { PAGEONDIMENSION Year } inserts a page break before displaying the
members Qtr2, Qtr3, and Qtr4 in the following report below. On each new page, the heading
members Chicago, Sales and Actual are displayed at the top of the page.

<PAGE (Market, Accounts)
Chicago Sales Actual

 <COLUMN (Scenario)
 <CHILDREN Year

<ROW (Year, Product)
{ PAGEONDIMENSION Year }
<ICHILDREN Audio
 !

This example produces the following report:

 Chicago Sales Actual

Qtr1 Stereo 2,591
 Compact_Disc 3,150
 Audio 5,741

 Chicago Sales Actual

Qtr2 Stereo 2,476
 Compact_Disc 3,021
 Audio 5,497

 Chicago Sales Actual

Qtr3 Stereo 2,567

Report Writer Command Reference 1305

 Compact_Disc 3,032
 Audio 5,599

 Chicago Sales Actual

Qtr4 Stereo 3,035
 Compact_Disc 3,974
 Audio 7,009

See Also

l NOPAGEONDIMENSION

l NOSKIPONDIMENSION

l SKIPONDIMENSION

PARENT
Adds the parent of the member to the report.

Syntax

<PARENT mbrName

Parameter Description

mbrName Single member, which must not be the dimension (top) member.

Example

<PARENT Jan

adds Qtr1 to the report.

See Also

l ANCESTORS

l CHILDREN

l DESCENDANTS

PERSPECTIVE
Sets the perspective, a tuple or REALITY, for a varying attribute dimension for a report.

Syntax

<PERSPECTIVE(tuple, attrDim)

1306 Report Writer Commands

Parameter Description

tuple (m1, m2, ..., mX) | REALITY

This is the perspective tuple to be applied for the given attribute dimension.

l (m1, m2, ..., mN)

Level-0 members from one or more independent dimensions for attrDim may be part of the input
tuple.

l REALITY

The REALITY keyword indicates using independent members from the current query-calculation
context. When explicit perspectives are missing for an attribute dimension, the default usage for the
perspective is REALITY.

attrdim The varying attribute dimension to which the perspective applies. May be any member from attribute
dimension hierarchy.

Notes

l Without the use of the perspective command, the default perspective will be used.

l The perspective specified for an attribute dimension influences the attribute calculations in
the query. The following Report Writer commands involving attributes honor the prevailing
perspective:

m <Attribute attMbrName

m <WithAttr(dimName,"operator",value)

l Only the first the perspective command in a report is honored. Any other perspective
commands are ignored.

Example

<PERSPECTIVE((Jan), Ounces)

<PERSPECTIVE((Jan, California), Ounces)

See Also

l WITHATTREX

l ATTRIBUTEVA

PRINTROW
Displays the calculated rowName with its current values.

Syntax

{ PRINTROW "rowName" }

Parameter Description

"rowName" Character string, enclosed by quotation marks, which designates a previously declared calculated row.
When the command is issued, the designated row is printed immediately in the report.

Report Writer Command Reference 1307

Example

See the examples for the CALCULATE COLUMN command.

See Also

l CALCULATE COLUMN

l CLEARROWCALC

l CLEARALLROWCALC

l OFFCOLCALCS

l OFFROWCALCS

l ONCOLCALCS

l ONROWCALCS

l REMOVECOLCALCS

l RENAME

l SAVEANDOUTPUT

l SAVEROW

l SETROWOP

PYRAMIDHEADERS
Displays column members in centered, pyramid-shaped levels above columns (the default style
used by symmetric reports).

Syntax

{PYRAMIDHEADERS}

Notes

This command displays column members in centered, pyramid-shaped levels over the columns
in the report. Pyramid display of column members is the default method for displaying column
members.

Pyramid headers cannot be used with asymmetric reports unless the report is extracted as a
symmetric report and reordered or truncated to make it asymmetric.

Default Value

Default for symmetric reports. Also resets the default column display following a
BLOCKHEADERS command.

Example

The following example is based on Sample Basic.

<PAGE (Measures, Market)
Sales
{WIDTH 7}
{ BLOCKHEADERS }
 <COLUMN (Scenario, Year)
 Actual Budget
 Jan Feb Mar
<ROW (Market)

1308 Report Writer Commands

<CHILD "200"
 !
{PYRAMIDHEADERS}
<CHILD "300"
 !

This example produces the following report:

 Sales Market
 Actual Actual Actual Budget Budget Budget
 Jan Feb Mar Jan Feb Mar
 ====== ====== ====== ====== ====== ======
200-10 3,220 3,348 3,326 3,230 3,370 3,370
200-20 3,122 3,161 3,203 3,090 3,120 3,190
200-30 1,478 1,463 1,499 1,310 1,290 1,330
200-40 896 988 923 870 950 890

 Sales Market
 Actual Budget
 Jan Feb Mar Jan Feb Mar
 ====== ====== ====== ====== ====== ======
300-10 3,517 3,613 3,650 2,950 3,050 3,080
300-20 1,397 1,417 1,434 1,140 1,160 1,170
300-30 2,960 3,016 2,993 2,560 2,590 2,580

See Also

l BLOCKHEADERS

QUOTEMBRNAMES
Displays all the member names within quotation marks in the report script output when run
through interfaces such as Administration Services, ESSCMD, and MaxL. Note that when the
report script is run through the Spreadsheet Add-in or GRID API, the members are not returned
within quotation marks.

Syntax

<QUOTEMBRNAMES

Notes

QUOTEMBRNAMES can occur anywhere in a report script. This command is useful when using
the Report Writer to export data intended for reloading a database without the use of a data load
rule file.

Note: When used in a report script that also uses the RENAME report command, names
substituted using the RENAME command are not enclosed in quotation marks.

Example

<PAGE (Scenario)
<COLUMN (Year)
<ROW (Product, Market, Measures)

Report Writer Command Reference 1309

<QUOTEMBRNAMES
{ROWREPEAT}

<ICHILDREN Year
<DIMBOTTOM Product
<DIMBOTTOM Market
<CHILDREN Profit
 !

REMOVECOLCALCS
Removes all column calculation definitions from the report.

Syntax

{ REMOVECOLCALCS }

Notes

This command removes all column calculation definitions from the report. The data values for
any calculated columns are no longer calculated or displayed. This may be used if the limit of
declared column calcs (50) is a problem. If the previous column calcs are no longer needed, they
can be freed, creating room for up to 50 more.

See Also

l CALCULATE COLUMN

l CLEARROWCALC

l CLEARALLROWCALC

l OFFCOLCALCS

l OFFROWCALCS

l ONCOLCALCS

l ONROWCALCS

l PRINTROW

l SETROWOP

RENAME
Renames a member within the report.

Syntax

{ RENAME "newMbrName" } mbrName

Parameter Description

"newMbrName" Valid member name, enclosed in quotation marks, to be used as the replacement name.

mbrName Name of the member that you want to rename temporarily.

1310 Report Writer Commands

Notes

This command renames a member within the report. This is a way of creating a temporary alias
that applies to a single member, and it applies only within the report. Note that when you assign
a temporary name to a member name, you do not have to state the member name again before
or on the following line after the RENAME command. However, if you do state the member
name later in the report, but not immediately on the next line after the RENAME command,
the temporary name will be reset to its original member name.

Example

{RENAME "Video"} Visual

renames the Visual member to "Video" in the report.

REPALIAS
Displays alias names for members of the dimension specified.

If no alias exists for a member, the member name only is displayed. The current alias table is
used unless OUTALTSELECT is used to specify an alternative alias table.

Syntax

<REPALIAS dimensionname

Notes

l <REPALIAS "" specifies the command for all dimensions.

l REPALIAS can be used on unique member outlines or duplicate member outlines.

l Some formatting commands (for example, RENAME) do not work with REPALIAS.

l REPALIAS cannot be used in combination with the existing commands OUTMBRALT,
OUTALTMBR, OUTALT, OUTALTNAMES, OR OUTMBRNAMES.

Example

The following example is based on Sample Basic.

{WIDTH 15}
<PAGE (Measures)
Sales
<COL (Year, Market, Scenario)
Jan Feb Mar
 East Actual
<ROW(Product)
<IDESCENDANTS "100"
<IDESCENDANTS "200"
<IDESCENDANTS "400"
<REPALIAS product
// Displays aliases for all Product members
!

This example produces the following report:

Report Writer Command Reference 1311

 Sales East Actual

 Jan Feb Mar
 ============== ============== ==============

Cola 1,812 1,754 1,805
Diet Cola 200 206 214
Caffeine Free Cola 93 101 107
 Colas 2,105 2,061 2,126
Old Fashioned 647 668 672
Diet Root Beer 310 310 312
Sasparilla #Missing #Missing #Missing
Birch Beer 896 988 923
 Root Beer 1,853 1,966 1,907
Grape 562 560 560
Orange 219 243 213
Strawberry 432 469 477
 Fruit Soda 1,213 1,272 1,250

See Also

l OUTALTSELECT

l OUTPUTMEMBERKEY

l REPALIASMBR

l REPMBR

l REPMBRALIAS

l REPQUALMBR

REPALIASMBR
Displays alias names followed by member names for members of the dimension specified in the
report output.

The alias and member name are separated by a single space. If no alias exists for a member, the
member name only is displayed. The current alias table is used unless OUTALTSELECT is used
to specify an alternative alias table.

Syntax

<REPALIASMBR dimensionname

Notes

l <REPALIASMBR "" specifies the command for all dimensions.

l REPALIASMBR can be used on unique member outlines or duplicate member outlines.

l Some formatting commands (for example, RENAME) do not work with REPALIASMBR.

l REPALIASMBR cannot be used in combination with the existing commands
OUTMBRALT, OUTALTMBR, OUTALT, OUTALTNAMES, OR OUTMBRNAMES.

Example

The following example is based on Sample Basic.

1312 Report Writer Commands

<PAGE (Product, Measures)
<COLUMN (Scenario, Year)
<REPALIASMBR Product
Actual
<CHILDREN Qtr1
<ROW (Market)
<IDESCENDANTS "300"
 !

This example produces the following report:

 Dark Cream 300-10 Measures Actual

 Jan Feb Mar
 ======== ======== ========

Market 800 864 880

 Vanilla Cream 300-20 Measures Actual

 Jan Feb Mar
 ======== ======== ========

Market 220 231 239

 Diet Cream 300-30 Measures Actual

 Jan Feb Mar
 ======== ======== ========

Market 897 902 896

 Cream Soda 300 Measures Actual

 Jan Feb Mar
 ======== ======== ========

Market 1,917 1,997 2,015

See Also

l OUTALTSELECT

l OUTPUTMEMBERKEY

l REPALIAS

l REPMBR

l REPMBRALIAS

l REPQUALMBR

REPMBR
Displays member names only for members of the dimension specified.

Used with the commands REPALIAS, REPMBRALIAS, and REPALIASMBR.

Report Writer Command Reference 1313

Syntax

<REPMBR dimensionname

Notes

l <REPMBR "" specifies the command for all dimensions.

l REPMBR can be used on unique member outlines or duplicate member outlines.

l Some formatting commands (for example, RENAME) do not work with REPMBR.

l REPMBR cannot be used in combination with the existing commands OUTMBRALT,
OUTALTMBR, OUTALT, OUTALTNAMES, OR OUTMBRNAMES.

Example

The following example is based on Sample Basic.

<PAGE (Product, Measures)
<COLUMN (Scenario, Year)
//Displays aliases for all dimensions except the Product dimension. Displays member
names for the Product dimension.
<REPALIAS ""
<REPMBR Product
Actual
<CHILDREN Qtr1
<ROW (Market)
<IDESCENDANTS "300"
 !

This example produces the following report:

 300-10 Measures Actual

 Jan Feb Mar
 ======== ======== ========

Market 800 864 880

 300-20 Measures Actual

 Jan Feb Mar
 ======== ======== ========

Market 220 231 239

 300-30 Measures Actual

 Jan Feb Mar
 ======== ======== ========

Market 897 902 896

 300 Measures Actual

 Jan Feb Mar
 ======== ======== ========

1314 Report Writer Commands

Market 1,917 1,997 2,015

See Also

l OUTPUTMEMBERKEY

l REPALIAS

l REPALIASMBR

l REPMBRALIAS

l REPQUALMBR

REPMBRALIAS
Displays member names followed by aliases for members of the dimension specified. The
member name and alias are separated by a single space. If no alias exists for a member, the
member name only is displayed. The current alias table is used unless OUTALTSELECT is used
to specify an alternative alias table.

Syntax

<REPMBRALIAS dimensionname

Notes

l <REPMBRALIAS "" specifies the command for all dimensions.

l REPMBRALIAS can be used on unique member outlines or duplicate member outlines.

l Some formatting commands (for example, RENAME) do not work with REPMBRALIAS.

l REPMBRALIAS cannot be used in combination with the existing commands
OUTMBRALT, OUTALTMBR, OUTALT, OUTALTNAMES, OR OUTMBRNAMES.

Example

The following example is based on Sample Basic.

<PAGE (Product, Measures)
<COLUMN (Scenario, Year)
<REPMBRALIAS Product
Actual
<CHILDREN Qtr1
<ROW (Market)
<IDESCENDANTS "300"
 !

This example produces the following report:

 300-10 Dark Cream Measures Actual

 Jan Feb Mar
 ======== ======== ========

Market 800 864 880

 300-20 Vanilla Cream Measures Actual

 Jan Feb Mar

Report Writer Command Reference 1315

 ======== ======== ========

Market 220 231 239

 300-30 Diet Cream Measures Actual

 Jan Feb Mar
 ======== ======== ========

Market 897 902 896

 300 Cream Soda Measures Actual

 Jan Feb Mar
 ======== ======== ========

Market 1,917 1,997 2,015

See Also

l OUTALTSELECT

l OUTPUTMEMBERKEY

l REPALIAS

l REPALIASMBR

l REPMBR

l REPQUALMBR

REPQUALMBR
Displays member names for any unique member names and a system generated identifier (for
example, a qualified name) for any duplicate member names for the dimension specified.
REPQUALMBR applies to duplicate member outlines only.

Syntax

<REPQUALMBR dimensionname

Notes

l <REPQUALMBR "" specifies the command for all dimensions.

l Some formatting commands (for example, RENAME) do not work with REPQUALMBR.

l REPQUALMBR cannot be used in combination with the existing commands
OUTMBRALT, OUTALTMBR, OUTALT, OUTALTNAMES, OR OUTMBRNAMES.

See Also

l OUTPUTMEMBERKEY

l REPALIAS

l REPALIASMBR

l REPMBR

l REPMBRALIAS

1316 Report Writer Commands

RESTRICT
The RESTRICT command specifies the conditions that the row must satisfy before it becomes
part of a result set.

Syntax

<RESTRICT (<column | value> <operator> <column | value>{<logicalOperator><column |
value> <operator> <column | value>})

Parameter Description

<column > @DATACOL (<colnumber>) | @DATACOL (<colnumber>)

where <colnumber> is the target column number; must be between 1 and the maximum number
of columns in the report.

<value> Cell data type (real number) | #MISSING

<operator> >, >= greater than, greater or equal
<, <= less than, less than or equal
= equal
!=, <> not equal

<logicalOperator> Report Writer processes logical operations from left to right without exception. Parentheses are
not supported. The supported logical operators are AND and OR.

Notes

Restrictions set by this command are processed from left to right.

You can use only one RESTRICT command per report, with a maximum of nine operators
included in the command. RESTRICT persists to the end of the report script unless overwritten.
You can use RESTRICT, TOP, BOTTOM, and ORDERBY in the same report script, but you can
use each command only once per report. If you repeat the same command in a second report
in the same report script, the second command overwrites the first. Place global script formatting
commands, for example, SAVEROW, before a PAGE, COLUMN command or associated
member (for example, <ICHILDREN or <IDESCENDANTS).

The RESTRICT command can appear anywhere in a script. If sorting commands, including
TOP, BOTTOM, or ORDERBY occur in the same report, the order of execution is:

1. Any sorting command that sorts on member names (for example <SORTDESC or
<SORTASC)

2. RESTRICT

3. TOP and BOTTOM

4. ORDERBY

This order of execution applies irrespective of the order in which the commands appear in the
report script.

For an example that uses TOP, BOTTOM, ORDERBY, and RESTRICT together, see the entry
for the BOTTOM command.

Report Writer Command Reference 1317

You can use configurable variables to specify the size of the internal buffers used for storing and
sorting the extracted data. The following settings affect the way the RESTRICT, TOP, and
BOTTOM commands work:

l Retrieval Buffer Size (a database setting)

l Retrieval Sort Buffer Size (a database setting)

l “NUMERICPRECISION” on page 477 (an essbase.cfg setting)

For more information on the database settings, see the Oracle Essbase Database Administrator's
Guide.

Example

{ StartHeading
 SupPageHeading
 Skip
 Text C "Annual Report" 70 "*PageString"
 Skip
 Endheading }

// Display the rows where the value of column 3 is greater than 1,300
<RESTRICT (@DataCol(3) > +1300)

// Page and column dimensions
<Page (Accounts, Scenario)
<Column (Scenario, Year)

// Scenario members
Actual Budget Scenario

// Row dimensions
<Row (Market, Product)

// Market members
<Ichildren Market

// Product members
<Idescendants Product

!
// End report

Which produces the following report based on the Demo Basic sample database:

 Annual Report Page: 1

 Actual Budget Scenario
 ======== ======== ========

East Compact_Disc 13,612 13,616 13,612
 Audio 13,438 14,551 13,438
 Television 11,911 14,780 11,911
 VCR 15,506 16,772 15,506
 Camera 5,721 7,079 5,721
 Visual 33,138 38,631 33,138

1318 Report Writer Commands

 Product 46,576 53,182 46,576
West Compact_Disc 21,568 20,935 21,568
 Audio 22,488 22,308 22,488
 Television 10,688 13,535 10,688
 VCR 19,706 17,782 19,706
 Camera 9,957 12,397 9,957
 Visual 40,351 43,714 40,351
 Product 62,839 66,022 62,839
South Television 5,278 9,395 5,278
 VCR 13,994 15,810 13,994
 Camera 5,293 7,220 5,293
 Visual 24,565 32,425 24,565
 Product 24,565 32,425 24,565
 Market Compact_Disc 35,180 34,551 35,180
 Audio 35,926 36,859 35,926
 Television 27,877 37,710 27,877
 VCR 49,206 50,364 49,206
 Camera 20,971 26,696 20,971
 Visual 98,054 114,770 98,054
 Product 133,980 151,629 133,980

See Also

l TOP

l BOTTOM

l ORDERBY

ROW
Determines the row dimensions for a report whose member names appear in the data rows of
the report.

The member(s) in the command determine which dimensions from the Database Outline are
displayed in the rows.

dimList is a list of members or dimension members that specifies the order, from left to right,
in which the row headers are listed unless subsequently moved by ORDER or NAMESCOL. Each
dimension may be represented only once in dimList.

Syntax

<ROW (dimList)

Parameter Description

dimList Dimension name or a comma-delimited list of dimensions.

Notes

l If dimension names contain spaces or consist of numbers, they must be enclosed in double
quotes.

l When more than one dimension is specified the first dimension in the list appears in the
leftmost row Name column, the next dimension in the list appears nested to the right of the
first, and so on.

Report Writer Command Reference 1319

l By default attribute calculation dimension members (for example, SUM, AVG) are displayed
as columns. To display them in rows, you must include them in the ROW command.

Example

<ROW (Product)

creates a report with each member of Product as a row in the report.

See Also

l COLUMN

l PAGE

ROWREPEAT
Displays all applicable row members on each row of the report even if a member describing a
row is the same as in the previous row.

Syntax

{ ROWREPEAT }

Notes

This command returns the report to displaying members that change from one line to the next.

Default Value

Default is NOROWREPEAT.

Example

The following example is based on Demo Basic.

The command { ROWREPEAT } causes the row member names Qtr1 through Qtr4 to repeat
for each line showing Compact_Disc in the report where the duplications would normally be
suppressed.

<PAGE Market, Accounts)
Chicago Sales

 <COLUMN Scenario)
 Actual Budget

<ROW Year, Product)

{ROWREPEAT}

<CHILDREN Year
<CHILDREN Audio
 !

This example produces the following report:

1320 Report Writer Commands

 Chicago Sales

 Actual Budget
 ======== ========
Qtr1 Stereo 2,591 2,800
Qtr1 Compact_Disc 3,150 3,050
Qtr2 Stereo 2,476 2,700
Qtr2 Compact_Disc 3,021 3,050
Qtr3 Stereo 2,567 2,750
Qtr3 Compact_Disc 3,032 3,050
Qtr4 Stereo 3,035 3,300
Qtr4 Compact_Disc 3,974 3,950

See Also

l NOROWREPEAT

l ROW

SAVEANDOUTPUT
Adds rowMbr to the report and creates a new calculated row whose default name is rowMbr, but
which may be renamed with an optional name, rowCalcName, enclosed in quotation marks.

The command automatically stores the data associated with rowMbr, and this data can be
referenced by CALC ROW, CALC COLUMN, PRINTROW, or any other command that can
reference a calculated row.

When this command is used, the calculation operator for that command is set to OFF, so that
its contents are not be affected unless the user explicitly turns the operator back on.

SAVEANDOUTPUT both captures data and outputs the result, whereas SAVEROW captures
the output but suppress it.

Syntax

{ SAVEANDOUTPUT ["rowCalcName"] } rowMbr !

Parameter Description

"rowCalcName" Optional. Name, enclosed by quotation marks, for the calculated data row created by the SAVEROW
command.

rowCalcName can be multi-part, separated by a tilde (~), as in the CALCULATE ROW and
CALCULATE COLUMN syntax.

rowMbr Row member that determines the row name for the calculated data row.

Notes

A member and a calculated row can have the same name. Report Writer considers them separate
entities even though they have the same name.

Example

The following example is based on Demo Basic.

Report Writer Command Reference 1321

{ TEXT 18 "Expenses as % of Sales for January" }

Jan Boston Audio

 Actual Budget

{ SAVEANDOUTPUT } Sales !

{ CALCULATE COLUMN " Actual%" = 1 % "Sales" 1
 CALCULATE COLUMN "Budget%" = 2 % "Sales" 2 }

COGS Misc
Payroll
Marketing
 !

This example produces the following report:

 Expenses as % of Sales for January

 Jan Boston Audio
 Actual Budget
 ======== ========
Sales 1,985 2,150

 Jan Boston Audio
 Actual Budget Actual% Budget%
 ======== ======== ======== ========
Cost_of_Goods_Sold 941 1,007 47 47
Miscellaneous 4 0 0 0
Payroll 542 530 27 25
Marketing 134 130 7 6

See Also

l CALCULATE COLUMN

l CALCULATE ROW

l CLEARROWCALC

l CLEARALLROWCALC

l OFFCOLCALCS

l OFFROWCALCS

l ONCOLCALCS

l ONROWCALCS

l OUTPUT

l PRINTROW

l REMOVECOLCALCS

l SAVEANDOUTPUT

l SAVEROW

l SUPOUTPUT

1322 Report Writer Commands

SAVEROW
Creates a new calculated row whose default name is rowMbr, but which may be renamed with
an optional name enclosed in quotation marks.

The command automatically stores the data associated with rowMbr, and this data can be
referenced by any CALC ROW, CALC COLUMN, PRINTROW command, or any other that
can reference a calculated row.

When the command is used, the calculation operator for that command is set to OFF, so that
its contents are not affected unless the user explicitly turns the operator back on. SAVEROW
captures the data, but suppresses its output.

Syntax

{ SAVEROW ["newRowCalcName"] } rowMbr !

Parameter Description

newRowCalcName Optional. Name, enclosed in quotation marks, for the data row created by the SAVEROW
command. The name can be multi-part, separated by a tilde (~), as in the CALCULATE ROW and
CALCULATE COLUMN syntax.

rowMbr Default row member used to determine the row name for the calculated data row.

rowMbr is the next member encountered after the { SAVEROW } command, so other intervening
{ } format commands or non-member-selecting < commands are allowed and do not affect which
member is saved.

Notes

There is no conflict with a member and a calculated row having the same name. They are separate
entities even though they have the same name.

Example

The following example is based on Demo Basic.

{TEXT 18 "Expenses as % of Sales for January"}
Jan Boston Audio

 Actual Budget

{SAVEROW} Sales !
{CALCULATE COLUMN " Actual%" = 1 % "Sales" 1
 CALCULATE COLUMN "Budget%" = 2 % "Sales" 2}
COGS Misc
Payroll
Marketing
Sales
 !

Which produces the following report:

 Expenses as % of Sales for January

 Jan Boston Audio

Report Writer Command Reference 1323

 Actual Budget Actual% Budget%
 ======== ======== ======== ========
Cost_of_Goods_Sold 941 1,007 47 47
Miscellaneous 4 0 0 0
Payroll 542 530 27 25
Marketing 134 130 7 6
Sales 1,985 2,150 100 100

See Also

l SAVEANDOUTPUT

SCALE
Scales the data in the report by multiplying it by a numeric value.

Syntax

{ SCALE factor [columnList] }

Parameter Description

factor Numeric value by which all output values are multiplied. The result is a scaled value.

columnList Optional. List of column numbers that this command affects.

Notes

This command affects only the columns specified in the command or all columns if none are
specified. Stored data is not affected by this command.

Example

The command {SCALE .01} multiplies the data values in the second report by .01.

<PAGE (Market, Accounts, Scenario)
Chicago Sales Actual
 <COLUMN (Year)
 <CHILDREN Year
<ROW (Product)
<CHILDREN Audio
 !

{SCALE 2}
Chicago Sales Actual
 <CHILDREN Year
<CHILDREN Audio
 !

This example produces the following report:

 Chicago Sales Actual

 Qtr1 Qtr2 Qtr3 Qtr4
 ======= ====== ====== ======
Stereo 2,591 2,476 2,567 3,035

1324 Report Writer Commands

Compact_Disc 3,150 3,021 3,032 3,974

 Chicago Sales Actual

 Qtr1 Qtr2 Qtr3 Qtr4
 ======= ====== ====== ======
Stereo 5,182 4,952 5,134 6,070
Compact_Disc 6,300 6,042 6,064 7,948

See Also

l BRACKETS

l COMMAS

l DECIMAL

l SUPBRACKETS

l SUPCOMMAS

SETCENTER
Sets a new centerline position on the page.

Syntax

{ SETCENTER charPosition }

Parameter Description

charPosition Integer representing a character position on your page. Character position is counted from the left edge
of the page and is not affected by the left margin setting.

Notes

This command sets a new centerline position on the page. Under normal circumstances, the
center of the page is calculated based on the default page width and the left margin position until
column members have been encountered, after which it defaults to the center of the data column
area.

The SETCENTER command allows you to issue an arbitrary centerline position, which is then
used for all centered text, including page headers. This can be helpful to center text before all
the members defining the columns (and thus, the page width). It can also be used to reset the
center in cases where the centering is not appealing when based on the exact center of the data
columns.

SETROWOP
Defines on-the-fly calculations for a named row created with CALCULATE ROW.

This command determines the calculation for the calculated row specified in rowCalcName. The
following table lists the operators you use for the operation in the command:

Report Writer Command Reference 1325

Operator Operation

+ Addition

- Subtraction

* Multiplication

/ Division

% Percentages

OFF Turns off the calculation

The addition operator, for example, sums all values in all rows output while the operation is on.
The result in the calculated row may be printed with PRINTROW at any time. You may only
use a single operator per calculated row. Before using the SETROWOP command, you must
define the row name with the CALCULATE ROW command, or with SAVEROW or
SAVEANDOUTPUT. Refer to the CALCULATE ROW command for more information on its
ability to set the row operator.

If an operation is not specified, the default is + (add).

Syntax

{ SETROWOP "rowCalcName" [operation] }

Parameter Description

rowCalcName Named row, in double quotes, to which SETROWOP applies.

operation You can use any valid row calculation expression.

SETROWOP accepts the same mathematical operators as CALCULATE ROW. In addition,
SETROWOP accepts the OFF operator, which turns off row operations for rows that follow.

Notes

SETROWOP performs unary operations on the row or rows that follow. SETROWOP
"rowCalcName" OFF turns off operations on subsequent rows.

Example

See the examples for CALCULATE ROW.

See Also

l CALCULATE ROW

l CLEARROWCALC

l CLEARALLROWCALC

l OFFCOLCALCS

l OFFROWCALCS

l ONCOLCALCS

l ONROWCALCS

l OUTPUT

1326 Report Writer Commands

l PRINTROW

l REMOVECOLCALCS

l SAVEANDOUTPUT

l SAVEROW

l SUPOUTPUT

SINGLECOLUMN
Displays a column heading when there is only one column member extracted in the report.

Syntax

<SINGLECOLUMN

Notes

This formatting command displays a column heading when there is only one column member
selected in the report.

Example

<singlecolumn
{suppagehead}
<column(year)
<row(measures)
Profit Inventory Ratios
Qtr1
!

This examples produces the following report:

 Qtr1
 ========
Profit 24,703
Inventory 117,405
Ratios 55

See Also

l COLHEADING

l PAGEHEADING

l SUPCOLHEADING

l SUPPAGEHEADING

SKIP
Outputs a number of blank lines in the report or a single line if n is omitted from the command.
The default value is single skip.

Syntax

{SKIP n }

Report Writer Command Reference 1327

Parameter Description

n Positive integer representing the number of lines to skip.

Notes

l SKIP is an output command.

l The value of n must be a positive integer.

l If you do not specify a value for n, {SKIP} defaults to 1.

Example

<PAGE (Measures, Market)
Texas Sales
 <COLUMN (Scenario, Year)
 Actual Budget
 Jan Feb
<ROW (Market)
<DESCENDANTS "100"
{SKIP 2}
<DESCENDANTS "200"
<DESCENDANTS "300"
 !

Which inserts two blank lines between the rows containing descendants of member 100 and
descendants of members 200 and 300.

See Also

l NEWPAGE

l NOSKIPONDIMENSION

l SKIPONDIMENSION

SKIPONDIMENSION
Inserts a blank line when a member from the same dimension as the specified member changes
on the next line in the report.

Syntax

{ SKIPONDIMENSION mbrName }

Parameter Description

mbrName Name of single member. When a member from this dimension changes during report processing, a blank
line is inserted before the member change.

Notes

This command outputs a blank line when a member from the same dimension as mbrName in
the command changes on the next line in the report. With the ROW command, you can display
members from several dimensions in columns on the side of the report. At least one member
changes from one of these dimensions for each row of the report. The SKIPONDIMENSION

1328 Report Writer Commands

displays a blank line before the member from the dimension changes. When combined with
UNAMEONDIMENSION and/or PAGEONDIMENSION, UNAMEONDIMENSION is
processed first followed by SKIPONDIMENSION and PAGEONDIMENSION in order.

Example

The command {SKIPONDIMENSION Year} in the following report inserts a blank line before
the row members Qtr2, Qtr3, and Qtr4 in the report.

<PAGE (Market, Accounts)
Chicago Sales
 <COLUMN (Scenario)
 Actual
<ROW (Year, Product)
{ SKIPONDIMENSION Year }
<CHILDREN Year
<ICHILDREN Audio
 !

 Chicago Sales Actual

Qtr1 Stereo 2,591
 Compact_Disc 3,150
 Audio 5,741

Qtr2 Stereo 2,476
 Compact_Disc 3,021
 Audio 5,497

Qtr3 Stereo 2,567
 Compact_Disc 3,032
 Audio 5,599

Qtr4 Stereo 3,035
 Compact_Disc 3,974
 Audio 7,009

See Also

l NOPAGEONDIMENSION

l NOSKIPONDIMENSION

l PAGEONDIMENSION

SORTALTNAMES
Alphabetically sorts members by their alternate names within a member selection command
(for example, <CHILDREN).

Syntax

<SORTALTNAMES

Report Writer Command Reference 1329

Notes

This command sorts alphabetically all members added with a member command (for example,
<CHILDREN) by their alternate name. Members entered directly in the report specification
without a member command, calculated rows and column names, or member commands
encountered in the specification prior to the SORTALTNAMES command, are not affected by
the command.

This command must precede the selection commands, for example, CHILDREN or
DESCENDANTS. If no sorting commands are used, members are output in hierarchical order
based on the member outline. Any sort command remains in effect until another sort command
is issued.

Example

The following example is based on Demo Basic.

The command <SORTALTNAMES sorts the members added to the report with the
<IDESCENDANTS Product command by the alternate name of each member. The command
{OUTALTNAMES} causes alternate member names to be displayed in the report.
{NOINDENTGEN} turns off hierarchical indenting so the row names line up. Indented row
names are not particularly useful when the output is sorted on any criteria other than generation.

 Chicago Sales Actual

 Qtr1 Qtr2 Qtr3 Qtr4
 ======== ======== ======== ========
Audio 5,741 5,497 5,599 7,009
Camera 2,506 2,522 2,602 3,227
Compact_Disc 3,150 3,021 3,032 3,974
Product 16,536 15,599 17,411 21,374
Stereo 2,591 2,476 2,567 3,035
Television 4,410 4,001 4,934 6,261
VCR 3,879 3,579 4,276 4,877
Visual 10,795 10,102 11,812 14,365

 Chicago Sales Actual

 Qtr1 Qtr2 Qtr3 Qtr4
 ======= ======= ======= =======
Audio 5,740 5,375 5,509 6,488
CD 3,290 3,034 3,132 3,571
Camera 2,230 2,255 2,266 3,162
Items 15,812 15,050 16,716 19,159
Media 10,072 9,675 11,207 12,671
Radio 2,450 2,341 2,377 2,917
TV 4,197 3,757 4,740 5,000
Video 3,645 3,663 4,201 4,509

See Also

l ALLINSAMEDIM

l CHILDREN

l DESCENDANTS

l SORTASC

1330 Report Writer Commands

l SORTDESC

l SORTGEN

l SORTLEVEL

l SORTMBRNAMES

l SORTNONE

SORTASC
Specifies an ascending sort order.

Syntax

<SORTASC

Notes

This command determines the order in which members are sorted in member commands in the
report specification. You use this command prior to the other sort commands including
SORTALTNAMES, SORTGEN, SORTLEVEL and SORTMBRNAMES. With the SORTASC
command, all following members selected are sorted into ascending order starting with either
the letter "a" or the lowest generation and moving toward the letter "z" or the highest generation.
Sorting in ascending order is the default sort order and is only changed with the SORTDESC
command.

This command must precede the selection commands, or example, CHILDREN or
DESCENDANTS. If no sorting commands are used, members are output in hierarchical order
based on the member outline. Any sort command remains in effect until reset by another sort
command.

The SORTASC command can be used to restore the default (ascending) sort order. It reverses
the effects of a previously-specified SORTDESC command.

See Also

l ALLINSAMEDIM

l CHILDREN

l DESCENDANTS

l SORTALTNAMES

l SORTDESC

l SORTGEN

l SORTLEVEL

l SORTMBRNAMES

l SORTNONE

SORTDESC
Specifies a descending, hierarchical sort order.

Syntax

<SORTDESC

Report Writer Command Reference 1331

Notes

This command determines the order in which items are sorted in member commands in the
report specification. You use this command prior to the other sort commands including
SORTALTNAMES, SORTGEN, SORTLEVEL and SORTMBRNAMES. With the SORTDESC
command, all members are sorted in descending order starting with either the letter "z" or the
highest generation and moving toward the letter "a" or the lowest generation.

This command must precede the selection commands, for example CHILDREN or
DESCENDANTS. If no sorting commands are used, members are output in hierarchical order
based on the member outline. Any sort command remains in effect until another sort command
is issued.

Example

The following example is based on Sample Basic.

<PAGE (Market, Measures)
Massachusetts Sales
<COLUMN (Scenario, Year)
Actual Budget
Jan Feb Mar
<ROW (Product)
<SORTDESC
<ICHILDREN Product
 !

This example produces the following report:

 Massachusetts Sales
 Actual Budget

 Jan Feb Mar Jan Feb Mar
 ======== ======== ======== ======== ======== ========
 Product 1,251 1,206 1,203 1,170 1,130 1,120
Diet #Missing #Missing #Missing #Missing #Missing #Missing
400 160 136 132 160 140 130
300 130 132 129 100 100 100
200 467 468 450 450 450 430
100 494 470 492 460 440 460

See Also

l ALLINSAMEDIM

l DESCENDANTS

l SORTASC

l SORTALTNAMES

l SORTGEN

l SORTLEVEL

l SORTMBRNAMES

l SORTNONE

1332 Report Writer Commands

SORTGEN
Sorts all members added with a member command, such as <CHILDREN, according to the
generation of the member in the Database Outline. The top of the dimension in the Outline is
generation 1 for the dimension. The children of the top are generation 2, and so on. Each
member's generation is one higher than its parent. Members entered directly in the report
specification without using a member selection command, calculated rows and column names,
or member commands encountered in the specification prior to the SORTGEN command, are
not affected by the command.

This command must precede the selection commands, for example CHILDREN or
DESCENDANTS. If no sorting commands are used, members are output in hierarchical order
based on the member outline. Any sort command remains in effect until another sort command
is issued.

Syntax

<SORTGEN

Notes

l SORTGEN sorts members from the last generation, which is the leaf member of the
dimension, to the first generation in the branch, which is the root of the dimension.

l SORTGEN is not affected by other sort commands.

Example

The following example is based on Sample Basic.

<PAGE (Product, Measures)
East Sales
<COLUMN (Scenario, Year)

Actual Budget
Jan Feb Mar
<ROW (Market)
<SORTGEN
<IDESCENDANTS Market
 !

Which produces the following report:

 Product Sales

 Actual Budget
 Jan Feb Mar Jan Feb Mar
 ======== ======== ======== ======== ======== ========
Market 31,538 32,069 32,213 29,480 30,000 30,200
 East 6,780 6,920 6,921 6,180 6,350 6,360
 West 10,436 10,564 10,674 9,460 9,530 9,640
 South 3,976 4,082 4,055 3,870 3,970 3,990
 Central 10,346 10,503 10,563 9,970 10,150 10,210
New York 2,479 2,625 2,601 2,300 2,450 2,440
Massachusetts 1,251 1,206 1,203 1,170 1,130 1,120
Florida 1,321 1,383 1,428 1,170 1,250 1,290

Report Writer Command Reference 1333

Connecticut 1,197 1,157 1,118 1,080 1,040 1,000
New Hampshire 532 549 571 460 480 510
California 3,602 3,699 3,755 3,450 3,490 3,570
Oregon 1,741 1,667 1,650 1,590 1,530 1,500
Washington 1,605 1,629 1,601 1,420 1,450 1,440
Utah 1,388 1,397 1,424 1,320 1,320 1,350
Nevada 2,100 2,172 2,244 1,680 1,740 1,780
Texas 1,455 1,544 1,506 1,490 1,580 1,560
Oklahoma 980 980 1,001 920 920 940
Louisiana 978 980 948 900 910 900
New Mexico 563 578 600 560 560 590
Illinois 2,538 2,653 2,697 2,580 2,690 2,740
Ohio 1,471 1,411 1,390 1,470 1,410 1,380
Wisconsin 1,341 1,363 1,369 1,280 1,330 1,330
Missouri 1,009 1,014 1,039 960 980 1,000
Iowa 2,029 2,042 2,104 1,810 1,800 1,860
Colorado 1,958 2,020 1,964 1,870 1,940 1,900

See Also

l ALLINSAMEDIM

l CHILDREN

l DESCENDANTS

l SORTASC

l SORTALTNAMES

l SORTDESC

l SORTLEVEL

l SORTMBRNAMES

l SORTNONE

SORTLEVEL
Sorts all members added with a member selection command, such as <CHILDREN, according
to the level of the member.

Each member is 1 level higher than the highest level of its children. Members entered without
using a member selection command, calculated rows and column names, or member commands
encountered prior to the SORTLEVEL command are not affected.

This command must precede the selection commands, for example CHILDREN or
DESCENDANTS.

Syntax

<SORTLEVEL

Notes

SORTLEVEL sorts members from the lowest level to the highest level.

Example

The following example is based on Sample Basic.

<PAGE (Product, Measures)
East Sales

1334 Report Writer Commands

<COLUMN (Scenario, Year)

Actual Budget
Jan Feb Mar
<ROW (Market)
<SORTLEVEL
<IDESCENDANTS Market
 !

This example produces the following report:

 Product Sales

 Actual Budget
 Jan Feb Mar Jan Feb Mar
 ======== ======== ======== ======== ======== ========
New York 2,479 2,625 2,601 2,300 2,450 2,440
Massachusetts 1,251 1,206 1,203 1,170 1,130 1,120
Florida 1,321 1,383 1,428 1,170 1,250 1,290
Connecticut 1,197 1,157 1,118 1,080 1,040 1,000
New Hampshire 532 549 571 460 480 510
California 3,602 3,699 3,755 3,450 3,490 3,570
Oregon 1,741 1,667 1,650 1,590 1,530 1,500
Washington 1,605 1,629 1,601 1,420 1,450 1,440
Utah 1,388 1,397 1,424 1,320 1,320 1,350
Nevada 2,100 2,172 2,244 1,680 1,740 1,780
Texas 1,455 1,544 1,506 1,490 1,580 1,560
Oklahoma 980 980 1,001 920 920 940
Louisiana 978 980 948 900 910 900
New Mexico 563 578 600 560 560 590
Illinois 2,538 2,653 2,697 2,580 2,690 2,740
Ohio 1,471 1,411 1,390 1,470 1,410 1,380
Wisconsin 1,341 1,363 1,369 1,280 1,330 1,330
Missouri 1,009 1,014 1,039 960 980 1,000
Iowa 2,029 2,042 2,104 1,810 1,800 1,860
Colorado 1,958 2,020 1,964 1,870 1,940 1,900
 East 6,780 6,920 6,921 6,180 6,350 6,360
 West 10,436 10,564 10,674 9,460 9,530 9,640
 South 3,976 4,082 4,055 3,870 3,970 3,990
 Central 10,346 10,503 10,563 9,970 10,150 10,210
 Market 31,538 32,069 32,213 29,480 30,000 30,200

See Also

l ALLINSAMEDIM

l CHILDREN

l DESCENDANTS

l SORTASC

l SORTALTNAMES

l SORTDESC

l SORTGEN

l SORTMBRNAMES

l SORTNONE

Report Writer Command Reference 1335

SORTMBRNAMES
Sorts all members added with a member selection command, such as <CHILDREN
alphabetically by member name when the members are added to the report. Members entered
without using a member selection command, calculated rows and column names, or member
commands encountered in the specification prior to the SORTMBRNAMES command are not
affected.

This command must precede the selection commands. Any sort command remains in effect
until another sort command is issued.

Syntax

<SORTMBRNAMES

Notes

l SORTMBRNAMES disregards hierarchical relationships between members.

l Numeric characters rise above alphanumeric characters in the sort order. For example, 100
rises above A200, which rises above Accounts.

l If SORTASC or SORTDESC are used to control sorting, they must precede the
SORTMBRNAMES command.

Example

The following example is based on Sample Basic.

<PAGE (Product, Measures)
Sales
<COLUMN (Scenario, Year)
Actual Budget
Jan Feb Mar
<ROW (Market)
<SORTMBRNAMES
<IDESCENDANTS South
 !

This example produces the following report:

 Product Sales

 Actual Budget
 Jan Feb Mar Jan Feb Mar
 ======== ======== ======== ======== ======== ========
Louisiana 978 980 948 900 910 900
New Mexico 563 578 600 560 560 590
Oklahoma 980 980 1,001 920 920 940
 South 3,976 4,082 4,055 3,870 3,970 3,990
Texas 1,455 1,544 1,506 1,490 1,580 1,560

SORTNONE
Disables all previous sorting commands.

1336 Report Writer Commands

Syntax

<SORTNONE

Notes

This command disables all previous sorting commands so that members added to the report
with member selection commands are added in outline order.

See Also

l ALLINSAMEDIM

l DESCENDANTS

l SORTALTNAMES

l SORTDESC

l SORTGEN

l SORTLEVEL

l SORTMBRNAMES

SPARSE
Tells Essbase to use the sparse data extraction method, which optimizes performance when a
high proportion of the reported data rows are #MISSING. Essbase cannot use the sparse data
retrieval optimization method on Dynamic Calc or Dynamic Calc and Store members.

If you have at least one sparse row dimension in your report, Essbase uses the sparse data
extraction method in two cases:

l Case 1: You use SUPMISSINGROWS in your report script to suppress #MISSING values,
and Essbase estimates that a very high proportion of the requested data rows are
#MISSING. In this case, Essbase implicitly uses the sparse method to optimize performance.

l Case 2: You explicitly use the SPARSE command in your report script. This forces Essbase
to use the sparse method. If you use the SPARSE command in a report, and you have not
used SUPMISSINGROWS, Essbase automatically turns on SUPMISSINGROWS for the
report containing SPARSE. Essbase also turns on SUPMISSINGROWS for all following
reports in your report script, unless you specify INCMISSINGROWS in a subsequent report.

Note: If your report does not contain at least one sparse row dimension, Essbase cannot use the
sparse method, and reverts to the regular method. Essbase displays a message to tell you
that it cannot use the sparse method.

When Essbase uses the sparse method, it displays the following message: Report Writer
Sparse Extractor method will be executed.

If you have at least one sparse row dimension in your report, the report is very large, and a very
high proportion of the reported data rows are #MISSING, you may want to use the SPARSE
command. You can then assess if this improves your report script performance.

If your report requests a small number of cells (#MISSING and non-missing), the sparse data
extraction method is less efficient than the regular method. In this case, Essbase uses the regular

Report Writer Command Reference 1337

method, unless you have at least one sparse row dimension in your report, and you explicitly
use the SPARSE command.

SPARSE method: When Essbase uses the sparse data extraction method, Essbase first selects the
row member combinations you have requested in your report script. Essbase looks at only the
non-missing data blocks for these row member combinations. If your database is very sparse,
this method is very efficient.

Regular method: By contrast, when Essbase uses the regular data extraction method, it cycles
through every possible member combination requested by the report script. It then reports only
those rows that are not#MISSING.

For example, suppose that only 1 in 10,000 data cells exist in a database. The remaining cells are
#MISSING. On this database, you run a report script that requests 100% of the data, and uses
SUPMISSINGROWS to suppress the #MISSING values.

If Essbase uses the regular method of data extraction, it cycles through all the requested member
combinations.

If Essbase uses the sparse extraction method, it looks only at the non-missing data blocks for the
row member combinations requested. As this database is very sparse, the number of data blocks
is probably low. The sparse method produces the report much faster.

To exclude the sparse data extraction method from being used, use the <SPARSEOFF command.
For example, you might want to use this command when reporting on data that includes
Dynamic Calc and Dynamic Calc and Store members.

Syntax

<SPARSE

<SPARSEOFF

Notes

l The sparse extraction method cannot be used if the report contains attribute dimensions.

l When you include multiple logical reports separated by a ! within one report script, include
the format commands/Headings for each logical report.

See Also

l SUPMISSINGROWS

STARTHEADING
Starts the definition of the page heading in place of the default heading, which is displayed at
the top of each page in the report or immediately following a HEADING command.

Syntax

{ STARTHEADING }

1338 Report Writer Commands

Notes

This command starts the definition of the page heading in place of the default heading, which
is displayed at the top of each page in the report or immediately following a HEADING
command. The ENDHEADING command signifies the end of the heading; all commands
encountered between the STARTHEADING and ENDHEADING are part of the heading
definition. Unless SUPHEADING is used outside the STARTHEADING / ENDHEADING
group, the commands within the STARTHEADING/ENDHEADING group are re-executed at
the start of each new page.

By default, new pages are started whenever a page member changes, the makeup of column
headings change, the page length is exceeded and SUPFEED has not been used, the NEWPAGE
command is issued, the HEADING command is issued, or the PAGEONDIMENSION
command causes a page break. A custom heading will include the default page header and
column headers unless they are suppressed with SUPPAGEHEADING and/or
SUPCOLHEADING in the custom heading definition.

Note that headings (whether the default page and column headings or a custom heading created
with ENDHEADING) do not get output right at the start of a new page. They are delayed until
the next non-suppressed output data row is encountered, and even then the heading is output
only after the data row's format { } commands have been processed. This avoids blank pages
with nothing but headers on them but it can make it awkward to put out a TEXT (or other
format which produces output) between the heading and the first output data row.

Tip: To ensure that headings display correctly, structure the report script so that column
member selections precede row member selections, and make sure that the script contains
at least one column member.

Default Value

Replaces default heading.

Example

The following example shows how to define a heading for a report. All the commands within
the STARTHEADING and ENDHEADING commands are executed at the top of each page. The
TEXT commands display information about the person who prepared the report, the date the
report was generated, and other title information.

<PAGE (Market, Accounts, Scenario)
Chicago Sales Actual

 <COLUMN (Year)
 <CHILDREN Year

<ROW (Product)

{ STARTHEADING TEXT 2 "Prepared by:" 14 "*USERNAME"
 C "The Electronics Club" 60 "*PAGESTRING"
 TEXT C "Quarterly Sales by City" 60 "*DATE"
 SUPPAGEHEADING
 TEXT 2 "*PAGEHDR" SKIP ENDHEADING}

Report Writer Command Reference 1339

<IDESCENDANTS Product
 !

This example produces the following report:

Prepared by: Bob The Electronics Club Page: 1
 Quarterly Sales by City 05/13/03

 Chicago Sales Actual

 Qtr1 Qtr2 Qtr3 Qtr4
 ======= ======= ======= =======

Stereo 2,591 2,476 2,567 3,035
Compact_Disc 3,150 3,021 3,032 3,974
 Audio 5,741 5,497 5,599 7,009
Television 4,410 4,001 4,934 6,261
VCR 3,879 3,579 4,276 4,877
Camera 2,506 2,522 2,602 3,227
 Visual 10,795 10,102 11,812 14,365
 Product 16,536 15,599 17,411 21,374

See Also

l ENDHEADING

l HEADING

l IMMHEADING

l SUPCOLHEADING

l SUPHEADING

l SUPPAGEHEADING

SUDA
Selects members based on a common attribute, defined as a UDA (user-defined attribute) along
with their shared counterparts.

Syntax

<SUDA (dimName, udaStr)

Parameter Description

dimName Name of the dimension associated with udaStr.

udaStr Name of the UDA.

Notes

l You can use the <SUDA command as a standalone command or as a selection command
inside the LINK statement.

l You cannot use attributes as arguments.

1340 Report Writer Commands

l With the <UDA command, Report Extractor selects only the members tagged with the
specified UDA. Shared members are not selected. For example, consider the following
outline structure:

Product
 100
 100-10
 100-20 (UDAS: No Carb)
 200
 200-10
 200-20 (UDAS: No Carb)
Diet
 100-20 (shared)
 200-20 (shared)

The following command returns no members because the children of Diet are not recognized
as having the UDA "No Carb":

<CHILDREN (Diet) and <UDA (Product, "No Carb")

In contrast, the <SUDA report command enables Report Extractor to recognize all instances
of shared members as having the UDA associated with the original instance of the member.
For example, the following command:

<CHILDREN (Diet) and <SUDA (Product, "No Carb")

returns the following members:

[Product].[100].[100-20]
[Product].[200].[200-20]
[Product].[Diet].[100-20]
[Product].[Diet].[200-20]

because these members are children of Diet, and the "No Carb" UDA associated with the
first instances of the members is also associated with the shared members.

Example

The following example uses the SUDA command within a LINK statement to select shared
members under Diet that are not "No Carb":

<LINK (<DESC(Diet) and not <SUDA (product, "No Carb))

See Also

l UDA

SUPALL
Suppresses the display of the page and column headings, all member names, page breaks,
commas, and brackets.

Syntax

{ SUPALL }

Report Writer Command Reference 1341

Notes

With this command, you see the data of the report and any text displayed as the result of the
TEXT command. This command is equivalent to SUPHEADING, SUPPAGEHEADING,
SUPCOLHEADING, SUPNAMES, SUPBRACKETS, SUPFEED, and SUPCOMMAS.

Example

<PAGE (Market, Accounts, Scenario)
Chicago Sales Actual
 <COLUMN (Year)
 <CHILDREN Year
<ROW (Product)
<ICHILDREN Audio
 !

{ SUPALL }
Boston Sales Actual
 <CHILDREN Year
<ICHILDREN Audio
 !

This example produces the following report.

Note: The last three rows show the totals for Boston, without headings.

 Chicago Sales Actual

 Qtr1 Qtr2 Qtr3 Qtr4
 ====== ====== ====== ======

Stereo 2,591 2,476 2,567 3,035
Compact_Disc 3,150 3,021 3,032 3,974
 Audio 5,741 5,497 5,599 7,009

 2450 2341 2377 2917
 3290 3034 3132 3571
 5740 5375 5509 6488

See Also

l SUPBRACKETS

l SUPCOLHEADING

l SUPCOMMAS

l SUPCURHEADING

l SUPEMPTYROWS

l SUPEUROPEAN

l SUPFEED

l SUPHEADING

l SUPMISSINGROWS

l SUPNAMES

l SUPPAGEHEADING

l SUPZEROROWS

1342 Report Writer Commands

SUPBRACKETS
Suppresses the display of parentheses around negative numbers.

Syntax

{ SUPBRACKETS }

Notes

The negative sign,(-), rather than parentheses, indicates negative numbers.

Example

{SUPBRACKETS}

displays (34.43) as -34.43.

See Also

l COMMAS

l DECIMAL

l SUPALL

l SUPBRACKETS

l SUPCOMMAS

SUPCOLHEADING
Suppresses display of default column headings.

Syntax

{ SUPCOLHEADING }

Notes

Unless a custom heading is defined, you will see only the page heading members at the top of
the page and row members on the left side of each row. The keyword >*COLHDR with the
TEXT command is not affected by SUPCOLHEADING and may still be used to generate column
headings where desired.

Example

<PAGE (Market, Accounts, Scenario)
{ SUPCOLHEADING }
Boston Sales Actual
 <COLUMN (Year)
 <CHILDREN Year
<ROW (Product)
<ICHILDREN Audio
 !

This example produces the following report:

 Boston Sales Actual

Report Writer Command Reference 1343

Stereo 2,450 2,341 2,377 2,917
Compact_Disc 3,290 3,034 3,132 3,571
 Audio 5,740 5,375 5,509 6,488

See Also

l COLHEADING

l NAMESON

l PAGEHEADING

l SUPNAMES

l SUPPAGEHEADING

SUPCOMMAS
Suppresses the display of commas in numbers greater than 999.

Note: The display of commas is the default.

Syntax

{ SUPCOMMAS }

Example

{SUPCOMMAS}

displays the number 12,234,534.23 as 12234534.23.

See Also

l BRACKETS

l COMMAS

l DECIMAL

l SUPBRACKETS

SUPCURHEADING
Suppresses the display of currency information when you use the CURRENCY command to
convert the data values in your report to a specified currency.

Syntax

{ SUPCURHEADING }

Notes

The keyword *CURRENCY with the TEXT command is not affected by SUPCURHEADING
and may be used after SUPCURHEADING to create custom currency heading and placement.

See Also

l CURHEADING

l CURRENCY

1344 Report Writer Commands

SUPEMPTYROWS
Suppresses the display of rows that have only 0 or #MISSING values in the row.

Syntax

{ SUPEMPTYROWS }

Notes

This command suppresses the display of zero rows, for example, rows that have only 0 or missing
values. The report will contain only rows which have at least one data value which is neither
#MISSING nor zero.

Example

{SUPEMPTYROWS} would suppress the display of the following row in a report:

Qtr1 Actual 0 #Missing 0 0 #Missing

See Also

l INCEMPTYROWS

l INCMISSINGROWS

l INCZEROROWS

l SUPMISSINGROWS

l SUPZEROROWS

SUPEUROPEAN
Disables the European method for displaying numbers.

Syntax

{ SUPEUROPEAN }

Notes

In European mode, commas separate the decimal and whole number portion of a data value,
while decimal points are used for the thousands separator character. Non-European number
display uses commas to separate thousands and the decimal point to separate decimals.

SUPEUROPEAN need only be used after a EUROPEAN command.

Default Value

Non-European is the default.

Example

See the example for EUROPEAN.

See Also

l EUROPEAN

Report Writer Command Reference 1345

SUPFEED
Suppresses the automatic insertion of a physical page break whenever the number of lines on a
page exceeds the current PAGELENGTH setting.

Syntax

{ SUPFEED }

Notes

This command disables the FEEDON command. The command FEEDON re-enables physical
page breaks. The default page length is 66 lines unless reset with the PAGELENGTH command.

Default Value

Default when performing ad-hoc reports into a spreadsheet.

See Also

l FEEDON

l NEWPAGE

l PAGELENGTH

SUPFORMATS
Suppresses formats that produce extra output such as underlines and skips.

Syntax

{ SUPFORMATS }

Notes

The SUPFORMATS command is used in those instances where you need to suppress formats
which produce output, such as underlines, skips, etc., because the data row with which the
formats are associated is automatically (and therefore unpredictably) suppressed due to
commands such as SUPMISSING. Otherwise, a page could be filled with "orphan" underlines
and no data. If you want to retain formatting in this case, you need to turn the formats on by
using the INCFORMATS command.

Default Value

Set to "ON" by default when the SUPMASK, SUPMISSING, or SUPZERO commands are used.

See Also

l INCFORMATS

SUPHEADING
Suppresses the display of the default heading (page header and column headers) or custom
header, if defined, at the top of each page.

1346 Report Writer Commands

Syntax

{ SUPHEADING }

Notes

A custom heading is defined with the STARTHEADING and ENDHEADING commands. The
HEADING command cancels the effect of the SUPHEADING command in addition to
displaying the heading immediately prior to the next non-suppressed data row to be output. By
default, new pages are started either when a page member changes, the makeup of column
headings change, the page length is exceeded and SUPFEED has not been used, the NEWPAGE
command is issued, the HEADING command is issued, or the PAGEONDIMENSION
command causes a page break.

Default Value

Display of the default heading is suppressed.

Example

See the example for STARTHEADING.

See Also

l ENDHEADING

l HEADING

l IMMHEADING

l STARTHEADING

SUPMASK
Suppresses the display of a text mask.

Syntax

{ SUPMASK }

Notes

Text masks are defined using the MASK command. The MASK command cancels the effect of
the SUPMASK command, in addition to defining a new mask. While SUPMASK is in effect, a
mask text string may still be output using the TEXT command's *MASK option.

See Also

l MASK

l TEXT

SUPMISSINGROWS
Suppresses the display of rows that contain only #MISSING values.

Report Writer Command Reference 1347

Syntax

{ SUPMISSINGROWS }

Example

<Sym
 <Column (Scenario, Year)
 Actual Budget
 Jan Dec
<Top ("Measures", 5, @DataCol(4))
<Row (Measures, Market, Product)
{SupMissingRows}

<Idescendants Profit
<Ichildren Market
<Idescendants Product
!

This example produces the following report:

 Actual Budget
 Jan Dec Jan Dec
 ======== ======== ======== ========
Sales Market Product 31,538 33,342 29,480 30,820
Margin Market Product 17,378 18,435 16,850 17,360
COGS Market Product 14,160 14,907 12,630 13,460
Sales Central Product 10,346 10,662 9,970 10,310
 West Product 10,436 11,116 9,460 10,200

See Also

l INCEMPTYROWS

l INCMISSINGROWS

l INCZEROROWS

l SUPEMPTYROWS

l SUPZEROROWS

SUPNAMES
Suppresses the display of row member names in the final report.

Syntax

{ SUPNAMES }

Notes

The NAMESON command re-enables the display of row member names in the report.

Example

The following example is based on Demo Basic.

<PAGE (Market, Accounts, Scenario)
Chicago Sales Actual

 <COLUMN (Year)

1348 Report Writer Commands

 <CHILDREN Year

<ROW (Product)
<ICHILDREN Audio
 !

{ SUPNAMES }
Boston Sales Actual
 <CHILDREN Year
<ICHILDREN Audio
 !

This example produces the following report:

Note: The rows with the suppressed row member names are not indented with whitespace.

 Chicago Sales Actual
 Qtr1 Qtr2 Qtr3 Qtr4
 ======== ======== ======== ========
Stereo 2,591 2,476 2,567 3,035
Compact_Disc 3,150 3,021 3,032 3,974
 Audio 5,741 5,497 5,599 7,009
 Boston Sales Actual
 Qtr1 Qtr2 Qtr3 Qtr4
 ======== ======== ======== ========
2,450 2,341 2,377 2,917
3,290 3,034 3,132 3,571
5,740 5,375 5,509 6,488

See Also

l COLHEADING

l NAMESON

l PAGEHEADING

l SUPCOLHEADING

l SUPPAGEHEADING

SUPOUTPUT
Suppresses all output, except columns, while continuing to process other operations such as
calculations or format settings. Use the OUTPUT command to resume output.

Syntax

{ SUPOUTPUT }

Example

<PAGE (Market, Accounts, Scenario)
Chicago Sales Actual

 <COLUMN (Year)
 <CHILDREN Year

Report Writer Command Reference 1349

<ROW (Product)
<ICHILDREN Audio
Stereo
Compact_Disc
{SUPOUTPUT}
VCR
TELEVISION
{OUTPUT}
Audio
 !
{ SUPNAMES }
Boston Sales Actual
 <CHILDREN Year
<ICHILDREN Audio
 !

Which produces the same report as in the SUPNAMES example.

See Also

l OUTPUT

SUPPAGEHEADING
Suppresses display of the page member heading whenever a heading is generated.

Syntax

{ SUPPAGEHEADING }

Notes

This command does not suppress column headings and row members.

To reinstate page headings, use the PAGEHEADING command.

The keyword *PAGEHDR with the TEXT command may be used after a SUPPAGEHEADING
to produce a custom page member heading. *PAGEHDR with the TEXT is not affected by
SUPCOLHEADING.

Example

<PAGE (Market, Accounts, Scenario)
Chicago Sales Actual

 <COLUMN (Year)
 <CHILDREN Year

<ROW (Product)
<ICHILDREN Audio
 !
{ SUPPAGEHEADING }
Boston Sales Actual
 <CHILDREN Year
<ICHILDREN Audio

1350 Report Writer Commands

 !

This example produces the following report:

 Chicago Sales Actual

 Qtr1 Qtr2 Qtr3 Qtr4
 ======= ====== ====== ======
Stereo 2,591 2,476 2,567 3,035
Compact_Disc 3,150 3,021 3,032 3,974
 Audio 5,741 5,497 5,599 7,009

 Qtr1 Qtr2 Qtr3 Qtr4
 ======= ====== ====== ======
Stereo 2,450 2,341 2,377 2,917
Compact_Disc 3,290 3,034 3,132 3,571
 Audio 5,740 5,375 5,509 6,488

See Also

l COLHEADING

l HEADING

l IMMHEADING

l NAMESON

l PAGEHEADING

l SUPCOLHEADING

l SUPNAMES

l TEXT

SUPSHARE
Suppresses the display of later instances of shared members when you use generation or level
names to extract data for your report.

Syntax

<SUPSHARE

Notes

This command suppresses the display of later instances of shared members only when you extract
data using:

l Default or user-defined generation or level names

l DIMBOTTOM

l OFSAMEGEN

l ONSAMELEVELAS

SUPSHARE suppresses the display for the duration of the script, which can contain one or more
reports. Use the SUPSHAREOFF command to reinstate the display of shared members.

Report Writer Command Reference 1351

Default Value

SUPSHAREOFF.

Example

The Sample Basic database has a shared level of diet drinks. The shared members are 100-20
(Diet Cola), 200-20 (Diet Root Beer), and 300-30 (Diet Cream). All are level 0 members on the
Product dimension. The following report:

{SUPMISSINGROWS}
<SUPSHARE
<PAGE (Measures, Market, Scenario)
Sales West Actual
<COLUMN (Year)
<IDESCENDANTS Qtr1
<ROW (Product)
lev0,Product
!

returns the following data. The shared members appear only once in the data.

 Sales West Actual
 Jan Feb Mar Qtr1
 ====== ====== ====== ======
100-10 1,174 1,146 1,173 3,493
100-20 700 726 727 2,153
100-30 465 426 413 1,304
200-10 667 705 707 2,079
200-20 1,203 1,209 1,209 3,621
200-30 853 845 880 2,578
300-10 1,102 1,127 1,133 3,362
300-20 523 546 566 1,635
300-30 977 1,029 1,040 3,046
400-10 1,115 1,122 1,107 3,344
400-20 1,032 1,065 1,100 3,197
400-30 625 618 619 1,862

See Also

l SUPSHAREOFF

SUPSHAREOFF
The SUPSHAREOFF command reinstates the display of later instances of shared members after
they have been suppressed using the SUPSHARE command.

Syntax

<SUPSHAREOFF

Notes

You can suppress and reinstate shared member display only when you extract data for your
report using:

l Default or user-defined generation or level names

1352 Report Writer Commands

l DIMBOTTOM

l OFSAMEGEN

l ONSAMELEVELAS

Default Value

SUPSHAREOFF.

Example

The Sample Basic database has a shared level of diet drinks. The shared members are 100-20
(Diet Cola), 200-20 (Diet Root Beer), and 300-30 (Diet Cream). All are level 0 members on the
Product dimension. The following report:

{SUPMISSINGROWS}
<SUPSHAREOFF
<PAGE (Measures, Market, Scenario)
Sales West Actual
<COLUMN (Year)
<IDESCENDANTS Qtr1
<ROW (Product)
lev0,Product
!

returns the following data. The example assumes that you have used SUPSHARE in a previous
report in the report script. The SUPSHAREOFF command reinstates the shared member display
so that the shared members appear twice in the report.

 Sales West Actual
 Jan Feb Mar Qtr1
 ====== ====== ====== ======
100-10 1,174 1,146 1,173 3,493
100-20 700 726 727 2,153
100-30 465 426 413 1,304
200-10 667 705 707 2,079
200-20 1,203 1,209 1,209 3,621
200-30 853 845 880 2,578
300-10 1,102 1,127 1,133 3,362
300-20 523 546 566 1,635
300-30 977 1,029 1,040 3,046
400-10 1,115 1,122 1,107 3,344
400-20 1,032 1,065 1,100 3,197
400-30 625 618 619 1,862
100-20 700 726 727 2,153
200-20 1,203 1,209 1,209 3,621
300-30 977 1,029 1,040 3,046

See Also

l SUPSHARE

SUPZEROROWS
The SUPZEROROWS command suppresses the display of rows that have only 0 values.

Report Writer Command Reference 1353

Syntax

{ SUPZEROROWS }

Example

{SUPZEROROWS} would not display the following row in the report:

Qtr1 Actual 0 0 0 0

but would display the following row:

Qtr1 Actual 0 #Missing 0 0

See Also

l INCEMPTYROWS

l INCZEROROWS

l SUPEMPTYROWS

l SUPMISSINGROWS

SYM
Forces a symmetric report, regardless of the data selection. Use SYM to change the symmetry of
a report that Essbase would create as an asymmetric report.

Syntax

<SYM

Notes

This command is used to set the report type as symmetric. Under default conditions (for
example, when neither the ASYM nor SYM commands have been used), Essbase will print an
asymmetric report (with BLOCKHEADERS) when all column dimensions include the same
number of selected members and all members for each column dimension are on the same line.
Otherwise, a symmetric report (with PYRAMIDHEADERS) is produced. If the <SYM keyword
is used, all report headers will appear in a symmetric format, even if there are equal numbers of
members in each row of the column header. A symmetric report will also result if at least one
of the column member lists is broken out onto more than one line.

When the <SYM keyword is used, the report will always be generated as a symmetric report,
even with equal numbers of members selected in each column dimension. This is especially
useful when you want to create a symmetric report without having to repeatedly type the lower-
level members of symmetric/asymmetric reports. For a more detailed explanation see the
<ASYM command. To turn off symmetric-only mode, use the <ASYM command.

Default Value

Essbase prints a symmetric report (with PYRAMIDHEADERS) when column dimensions do
not include the same number of selected members or the members for each column dimension
are not on the same line.

1354 Report Writer Commands

Example

The following example is based on Sample Basic.

<PAGE (Measures, Market)
Texas Sales
<SYM
 <COLUMN (Scenario, Year)
 Actual Budget
 Jan Feb
<ROW (Product)
<IDESCENDANTS "100"
 !

This example produces the following report:

 Sales Texas

 Actual Budget
 Jan Feb Jan Feb
 ======== ======== ======== ========
100-10 452 465 560 580
100-20 190 190 230 230
100-30 #Missing #Missing #Missing #Missing
 100 642 655 790 810

See Also

l ASYM

TABDELIMIT
The TABDELIMIT command places tabs rather than spaces between columns.

Syntax

{ TABDELIMIT }

Notes

This command is useful when you want to turn report output into a more compressed form for
export. TABDELIMIT can occur anywhere in a report script.

Example

<PAGE (Scenario)
<COLUMN (Year)
<ROW (Product, Market, Measures)
{Tabdelimit}
{ROWREPEAT}
<ICHILDREN Year
<DIMBOTTOM Product
<DIMBOTTOM Market
<CHILD Profit
 !

Report Writer Command Reference 1355

This example produces the following report (example truncated):

 Scenario
 Qtr1 Qtr2 Qtr3 Qtr4 Year

100-10 New York Margin 1,199 1,416 1,568 1,184 5,367
100-10 New York Total Expenses 433 488 518 430 1,869
100-10 Massachusetts Margin 1,237 1,533 1,741 1,224 5,735
100-10 Massachusetts Total Expenses 164 155 149 162 630
100-10 Florida Margin 372 442 494 375 1,683
100-10 Florida Total Expenses 174 192 200 175 741
100-10 Connecticut Margin 567 481 425 557 2,030
100-10 Connecticut Total Expenses 217 197 184 215 813
100-10 New Hampshire Margin 213 249 276 209 947
100-10 New Hampshire Total Expenses 139 149 155 137 580
100-10 California Margin 1,199 1,416 1,568 1,184 5,367
100-10 California Total Expenses 433 488 517 431 1,869
100-10 Oregon Margin 270 203 202 216 891
100-10 Oregon Total Expenses 193 183 176 180 732

The following is the same report without TABDELIMIT:

<PAGE (Scenario)
<COLUMN (Year)
<ROW (Product, Market, Measures)
{ROWREPEAT}
<ICHILDREN Year
<DIMBOTTOM Product
<DIMBOTTOM Market
<CHILD Profit
 !

Without TABDELIMIT, the report looks like this (example truncated):

 Scenario
 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======== ======== ======== ======== ========

100-10 New York Margin 1,199 1,416 1,568 1,184 5,367
100-10 New York Total Expenses 433 488 518 430 1,869

TEXT
Inserts text or other information on a new line in the report. You specify the character position
(charPosition) to begin the text along with the text (text) that you want to display. The command
can accept multiple sets of charPosition and text arguments.

In addition to text, you can use this command to insert special information based on keywords
into the report. These keywords begin with a "*" and must be entered exactly. For example, you
can display the current date and time, the page number, or information such as user name and
application.

The following list presents the keywords and associated display information.

l APPNAME: Name of application

l ARBOR: Version information

1356 Report Writer Commands

l CALC: All or part of a calculated row Optionally, the CALC keyword can include an integer
to designate a data column that is to be displayed. For example, {TEXT 25 "*CALC
2""TotSales"} would display the column 2 value of the calculated row "TotSales" starting
at character position 25, using the current column format settings in effect for column 2.

Note: Names columns are not allowed.

l COLHDR number1 number2: Displays the column heading members from the current
default heading. You can indicate which rows of the column header members you want to
display and which members in the row following the keyword.

Number1 selects the row of column members and number2 selects the member within the
row. If you specify just *COLHDR or *COLHDR with number1, the column heading members
can not be combined with any other text on the same line. Furthermore, the position of the
text is ignored (the header line will automatically be lined up with the existing data column
setup), unless you specify both number1 and number2. For example, *COLHDR 2 would
display the second row of column heading members in normal position over the data
columns. *COLHDR 2 5 would display the 5th column member from the second row of
column heading members. This command is usually used with SUPHEADING or
SUPCOLHEADING.

Using both number1 and number2,

TEXT 25 "*COLHDR 2 3"

would display the third member of the column heading range from the second row of
column members starting in position 25.

Generally all column heading rows after the first level in symmetric reports have repeating
groups of the same range of members.

The number2 specified refers to the member in the basic group of repeating members. For
example, if Qtr1 Qtr2 and Qtr3 are the basic group which repeats in the second level column
heading, the value for number2 can range from 1 to 3. Just because the group repeats 2 or 3
times does not mean that number2 can range up to 6 or 9. In this example, any number2
higher than 3 would be interpreted as trying to access a calculated column header.

Calculated column headers may also be accessed by the *COLHDR option. If a report has,
for example, 3 calculated columns, the number2 which is used to access any particular level
of the calculated column name depends on the number of members in the primary column
header group for that heading level. In the previous example, where the second column
heading line contained three members (Qtr1, Qtr2, and Qtr3), the second-level calculated
column headings would be accessed with number2 set to 4, 5, or 6 (assuming only one row
names column). Again, it does not matter how many times Qtr1, Qtr2, and Qtr3 may have
been repeated on the column heading line-there are still only three members of the primary
column header group.

For example, if the first calculated column defined is "YTD~PCT~TOTAL", then the second
level header "PCT" could be printed with TEXT 10 "*COLHDR 2 4"

assuming once again that the primary column heading group on level 2 had three members
and only one row name dimension. Refer to ORDER for more information about column
numbering.

Report Writer Command Reference 1357

The ORDER command does not affect the parameters for selecting the headers. The
Number2 value is based on the original column order without regard to any reordering or
truncation of columns with ORDER or FIXCOLUMNS.

l COLHDRFULL, which is the full column heading along with underlines of the column
headings and a 1 line skip. The position is ignored with this keyword (the headers and
underlines will be aligned automatically over the data columns as currently set up)and it
can not be combined with any other text on the same line.

l CURRENCY, which is the currency conversion label which indicates which currency the
data values have been converted to at report time with the CURRENCY command. Usually
used with SUPCURHEADING.

l DATA, which is used to display data rows. If the command does not include a column
designator, it will display all data starting at the character position. If a column number is
included, only that column will be displayed. See *CALC above.

l DATE, which is the date the report was generated.

l DATETIME, which is the date followed by the time the report was generated.

l DBNAME, which is the name of the data base within the application.

l EDATE, which is the date in European (dd/mm/yy) format.

l EDATETIME, which is the date in European (dd/mm/yy) format followed by the time. Time
is in 24-hour format, as hour:minute:second; for example, 14:35:02.

l MACHINE, which is the network name for the machine that is running the Essbase Server.

l PAGEHDR number,: Displays the default page member heading. Number indicates which
specific page members you wish to display following the keyword. The page member text
can only be combined with other text on the same line if number is specified. For example,
TEXT C *PAGEHDR 2 would display only the second page member from the page heading
members from the current default page heading. It is usually used with SUPHEADING or
SUPPAGEHEADING.

l PAGENO: Page number for the current page.

l PAGESTRING: Page number preceded by the text "Page:".

l TIME: Time the report was generated.

l TIMEDATE: Time followed by the date the report was generated.

l TIMEEDATE: Time followed by the European format (dd/mm/yy) date.

l USERNAME: Name of the user generating the report.

Syntax

{TEXT charPosition "text " [charPosition "text" ...]}

Parameter Description

charPosition Character position on the line to start the text specified in the next text argument. When multiple sets of
charPositions/i>s and text can be specified, successive charPositions need not be in ascending order. If the
positions of two text strings cause an overlap, the last overwrites the first. "Last" is determined by left-
right order in the TEXT statement, not by charPosition.

1358 Report Writer Commands

Parameter Description

text Text to add to the report. Commas, tabs and multiple spaces are ignored. Maximum length: 500 characters.

Notes

l TEXT is an output command.

l n must be an integer greater than or equal to zero or the letter c for centered. (If you specify
n as zero, the line starts at the left margin.) You must specify a value for n.

l TEXT does not wrap the text specified in "text".

l You can use the * (asterisk) character to add report keywords, such as *CALC and *TIME.
If * precedes an invalid keyword, Essbase displays the text that follows.

Example

l Adding the text "Golden State Bottling Division" 27 spaces from the left margin of the report.
This example is based on Demo Basic.

{TEXT 27 "Golden State Bottling Division" }

l The following report lists several Examples of the TEXT command.

The first set of TEXT commands is defined in the custom heading of the report which is
displayed at the top of every page.

m The command { TEXT 2 "*DATETIME" C "Annual Report" 65 "*PAGESTRING" SKIP }
displays the date and time starting at character position 2 of the first line of the heading,
centers the text "Annual Report" in the middle of the line, and displays the text "Page"
followed by the actual page number starting at character position 65 of the first line.

m The second line of the heading is defined by the command { TEXT 2 "City: " 12
"*PAGEHDR 1" } which displays the text "City:" starting a character position 2 and then
displays the first page member for the page in the report. As per the first member in the
PAGE command, these members are always from the Market dimension.

m The command { TEXT 2 "Account: " 12 "*PAGEHDR 2" SKIP } for the third line of
heading displays the text "City" at character position 2 followed by the page heading
member from the Accounts dimension.

The TEXT commands at the end of the report display summary information about the
report.

m The command { TEXT 2 "Prepared by: " 18 "*USERNAME" } displays the text "Prepared
by:" at character position 2 followed by the name of the user who generated the report
at character position 18.

m For the next line, the command { TEXT 2 "Server Version: " 18 "*ARBOR" } displays
the text "Server Version:" at character position 2 followed by the version information.

m The third line uses the command { TEXT 2 "Application: " 18 "*APPNAME" } to display
the text "Application:" at character position 2 followed by the application name.

m The final line uses the command { TEXT 2 "Database: " 18 "*DBNAME" } to display the
text "Database:" at character position 2 followed by the database name.

Report Writer Command Reference 1359

{ STARTHEADING
 SUPPAGEHEADING
 TEXT 2 "*DATETIME" C "Annual Report" 65 "*PAGESTRING" SKIP
 TEXT 2 "City: " 12 "*PAGEHDR 1"
 TEXT 2 "Account: " 12 "*PAGEHDR 2" SKIP
 ENDHEADING }

<PAGE (Market, Accounts)
Chicago Sales

 <COLUMN (Scenario, Year)

 Actual
 <CHILDREN Year

<ROW Audio

{ SKIP 2 "Prepared by: " 18 "*USERNAME" }
{ TEXT 2 "Server Version: " 18 "*ARBOR" }
{ TEXT 2 "Application: " 18 "*APPNAME" }
{ TEXT 2 "Database: " 18 "*DBNAME" }
 !

09/15/03 14:14:59 Annual Report Page: 1

 City: Chicago
 Account: Sales

 Qtr1 Qtr2 Qtr3 Qtr4
 ======== ======== ======== ========

Stereo 2,591 2,476 2,567 3,035
Compact_Disc 3,150 3,021 3,032 3,974
 Audio 5,741 5,497 5,599 7,009

 Prepared by : Admin
 Server Version: Gemini Alpha - 9/6/95 [Fri Sep 15 14:14:59 1995]
 Application: Demo
 Database: Basic

l The remaining examples of the TEXT command are based on the following report heading:

 Chicago Sales

 Actual Budget
 Qtr1 Qtr2 Qtr3 Qtr1 Qtr2 Qtr3
======= ======= ======= ======= ======== ========

l { TEXT 10 "*COLHDR 2" }

would produce the following line:

Qtr1 Qtr2 Qtr3 Qtr1 Qtr2 Qtr3

l { TEXT 10 "*COLHDR 2 3" }

would produce the following text at position 10:

 Qtr3

1360 Report Writer Commands

l { TEXT 10 "*COLHDR 1 2" }

would produce the following text at position 10:

 Budget

l { TEXT 10 "COLHDRFULL" }

would produce the following lines of text regardless of the value of charposition:

 Actual Budget
 Qtr1 Qtr2 Qtr3 Qtr1 Qtr2 Qtr3
 ======= ======= ======= ======= ======== ========

See Also

l SUPCOLHEADING

l SUPPAGEHEADING

TODATE
The TODATE command converts date strings to numbers that can be used to extract data output
for a specific time period. TODATE converts date strings into the number of seconds elapsed
since midnight, January 1, 1970.

Syntax

<TODATE (formatString, dateString)

Parameter Description

formatString The date string format, either "mm-dd-yyyy" or "dd-mm-yyyy".

dateString The date string.

Notes

l If you specify a date that is earlier than 01-01-1970, this command returns an error.

l The latest date supported by this command is 12-31-2037.

Example

 <TODATE("dd-mm-yyyy","15-10-2002")

See Also

l ATTRIBUTE

l WITHATTR

TOP
Returns rows with the highest values of a specified data column.

Report Writer Command Reference 1361

Syntax

<TOP ([<rowgroupDimension>,] <rows>, <column>)

Parameter Description

<rowgroupDimension> Optional. Row grouping dimension that determines the rows to sort as a set. The default is
the inner row.

<rows> Positive integer that specifies the number of rows to be returned; must be greater than 0.

<column> @DATACOL (<colnumber>) | @DATACOL (<colnumber>)

where <colnumber> is the target column number; must be between 1 and the maximum
number of columns in the report.

Notes

This command sorts the result set by the value of the specified data column in descending order.

Rows containing #MISSING values in the sort column are discarded from the result set before
TOP is applied. You can use TOP and BOTTOM, ORDERBY and RESTRICT in the same report
script, but you can use each command only once per report. If you repeat the same command
in the same report script, the second command overwrites the first. Place global script formatting
commands before a PAGE, COLUMN command or associated member (for example,
<ICHILDREN or <IDESCENDANTS). Avoid using row formatting commands with TOP.

If any of the ORDERBY, TOP, BOTTOM, or RESTRICT commands coexist in a report script,
the row group dimension <rowgroupDimension> should be the same. This prevents confusion
about the sorting and ordering of rows within a row group. Otherwise, an error is issued. The
ORDERBY, TOP, and BOTTOM commands sort a report output by its data values. The
RESTRICT command restricts the number of valid rows for the report output. Their execution
order is:

1. Any sorting command that sorts on member names (for example <SORTDESC or
<SORTASC)

2. RESTRICT

3. TOP and BOTTOM

4. ORDERBY

This order applies regardless of the order in which the commands appear in the report script.
For an example that uses TOP, BOTTOM, ORDERBY, and RESTRICT together, see the entry
for the BOTTOM command.

You can configure the size of the internal buffers used for storing and sorting the extracted data.
The following settings affect the way the RESTRICT, TOP, and BOTTOM commands work:

l Retrieval Buffer Size (a database setting)

l Retrieval Sort Buffer Size (a database setting)

l “NUMERICPRECISION” on page 477 (an essbase.cfg setting)

1362 Report Writer Commands

For more information on the database settings, see the Oracle Essbase Database Administrator's
Guide.

Example

<Sym
<Column (Scenario, Year)
Actual Budget
Jan Dec
<Top ("Measures", 5, @DataCol(4))
<Row (Measures, Market, Product)
{SupMissingRows}

<Idescendants Profit
<Ichildren Market
<Idescendants Product
 !

Which produces the following report based on the Sample Basic sample database:

 Actual Budget
 Jan Dec Jan Dec
 ====== ======== ======== ========

Sales Market Product 31,538 33,342 31,538 30,820
 Margin Market Product 17,378 18,435 17,378 17,360
COGS Market Product 14,160 14,907 14,160 13,460
Sales Central Product 10,346 10,662 10,346 10,310
 West Product 10,436 11,116 10,436 10,200

See Also

l RESTRICT

l ORDERBY

l BOTTOM

UCHARACTERS
Underlines all non-blank characters in the preceding row.

To underline names cleanly, the UCHARACTERS command treats a single space between two
non-space characters as a character to underline. For example, in the name Sales_Revenue, the
underscore is changed to a space on output, UCHARACTERS changes the space to "_". Default
underline character "=" is used.

Syntax

{ UCHARACTERS ["char"] }

Parameter Description

"char" Optional. A single-byte character, enclosed in quotation marks, used as the underline character.

Notes

l Double-byte characters are not supported.

Report Writer Command Reference 1363

Example

The following example is based on Demo Basic.

{UCHARACTERS} underlines all the characters in the previous (Television) row.

<PAGE (Market, Accounts, Scenario)
Chicago Sales Actual

 <COLUMN (Year)
 <ICHILDREN Year

<ROW (Product)
Television

{ UCHARACTERS }

VCR
Compact_Disc
 !

This example produces the following report:

 Chicago Sales Actual

 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======== ======== ======== ======== ========

Television 4,410 4,001 4,934 6,261 19,606
========== ===== ===== ===== ===== ======
VCR 3,879 3,579 4,276 4,877 16,611
Compact_Disc 3,150 3,021 3,032 3,974 13,177

See Also

l UCOLUMNS

l UDATA

l UNDERLINECHAR

l UNDERSCORECHAR

UCOLUMNS
Underlines all columns, including names and data, in the preceding row.

The underline width is based on column width. If char is provided, it is used as the underline
character. Otherwise the default character "=" is used.

Syntax

{ UCOLUMNS ["char"] }

Parameter Description

"char" Optional. A single-byte character, enclosed in quotation marks, that creates an underline character.

1364 Report Writer Commands

Notes

l Double-byte characters are not supported.

Example

The command {UCOLUMNS} in the following report underlines all the columns in the previous
row which is the Television row.

<PAGE (Market, Accounts, Scenario)
Chicago Sales Actual

 <COLUMN (Year)
 <ICHILDREN Year

<ROW (Product)
Television

{ UCOLUMNS }

VCR
Compact_Disc
 !

This example produces the following report:

 Chicago Sales Actual

 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======= ====== ====== ====== =======

Television 4,410 4,001 4,934 6,261 19,606
============ ======= ====== ====== ====== =======
 VCR 3,879 3,579 4,276 4,877 16,611
Compact_Disc 3,150 3,021 3,032 3,974 13,177

See Also

l UCHARACTERS

l UDATA

l UNDERLINECHAR

UDA
Selects and reports on members based on a common attribute, defined as a UDA (user-defined
attribute).

Syntax

<UDA (dimName, udaStr)

Parameter Description

dimName The dimension associated with the udaStr.

udaStr Name of the user-defined attribute.

Report Writer Command Reference 1365

Notes

l If a UDA is associated with shared members, only the first instance is returned. If you want
to include all instances, use the SUDA command.

l You can use the <UDA command as a standalone command or as a selection command
inside the LINK statement.

l You cannot use attributes as arguments.

Example

The following example selects products that are sweet:

<UDA (product, "Sweet")

The following example uses the UDA command within a LINK statement to select level 0
products that are sweet:

<LINK(<UDA(product, "Sweet") AND <LEV(product, 0))

Note: If the Product dimension includes shared members with the UDA "Sweet", this command
selects only the first instance in the outline of the shared member.

See Also

l SUDA

UDATA
Underlines data columns for a row, while not underlining the row name columns.

The underline width is based on column width. If char is provided, it is used as the underline
character. Otherwise, the default underline character is "=".

Syntax

{ UDATA ["char"] }

Parameter Description

"char" Optional. A single-byte character, enclosed in quotation marks, used as the underline character.

Notes

l Double-byte characters are not supported.

Example

The command {UDATA} in the following report underlines all the data in the previous row
which is the Television row.

<PAGE (Market, Accounts, Scenario)
Chicago Sales Actual

 <COLUMN (Year)

1366 Report Writer Commands

 <ICHILDREN Year

<ROW (Product)
Television
{ UDATA }
VCR
Compact_Disc
 !

This example produces the following report:

 Chicago Sales Actual

 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======= ====== ====== ====== =======

Television 4,410 4,001 4,934 6,261 19,606
 ======= ====== ====== ====== =======
VCR 3,879 3,579 4,276 4,877 16,611
Compact_Disc 3,150 3,021 3,032 3,974 13,177

See Also

l UCHARACTERS

l UNDERLINECHAR

UNAME
Underlines the row name columns in the preceding row while not underlining the data columns.

If char is provided, then it will be used as the underline character. Otherwise, the default underline
character is "=".

Syntax

{ UNAME ["char"] }

Parameter Description

"char" Optional. A single-byte character, enclosed in quotation marks, used as the underline character.

Notes

l Double-byte characters are not supported.

Example

The command { UNAME } in the following report underlines the row member names in the
previous row which is the Television row.

<PAGE (Market, Accounts, Scenario)
Chicago Sales Actual

 <COLUMN (Year)
 <ICHILDREN Year

Report Writer Command Reference 1367

<ROW (Product)

Television
{ UNAME }

VCR
Compact_Disc
 !

This example produces the following report:

 Chicago Sales Actual

 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======= ====== ====== ====== =======

Television 4,410 4,001 4,934 6,261 19,606
============
VCR 3,879 3,579 4,276 4,877 16,611
Compact_Disc 3,150 3,021 3,032 3,974 13,177

See Also

l UCHARACTERS

l UDATA

UNAMEONDIMENSION
Underlines the row member names in a row whenever a member from the same dimension as
the specified member changes.

Syntax

{ UNAMEONDIMENSION mbrName }

Parameter Description

mbrName Single member representing a dimension. When a new member from this dimension is output, an underline
appears under all row names in the previous line.

Notes

With the ROW command, you can display members from several dimensions in columns on
the side of the report. At least one member changes from one of these dimensions for each row
of the report. A single report can have several UNAMEONDIMENSION commands to underline
row member names, based on different dimensions which change. When combined with
UNAMEONDIMENSION and PAGEONDIMENSION, UNAMEONDIMENSION is processed
first, followed by SKIPONDIMENSION and PAGEONDIMENSION in order.

Example

The following example is based on Demo Basic.

<PAGE (Market, Accounts)
Chicago Sales

1368 Report Writer Commands

 <COLUMN (Scenario)
 Actual
<ROW (Year, Product)
{ UNAMEONDIMENSION Year }
<ICHILDREN Year
<ICHILDREN Audio
 !

This example produces the following report:

=============== ================
 Chicago Sales Actual

Qtr1 Stereo 2,591
 Compact_Disc 3,150
 Audio 5,741
================ ================
Qtr2 Stereo 2,476
 Compact_Disc 3,021
 Audio 5,497
================ ================
Qtr3 Stereo 2,567
 Compact_Disc 3,032
 Audio 5,599
================ ================
Qtr4 Stereo 3,035
 Compact_Disc 3,974
 Audio 7,009
================ ================
 Year Stereo 10,669
 Compact_Disc 13,177
 Audio 23,846

See Also

l NOPAGEONDIMENSION

l NOSKIPONDIMENSION

l PAGEONDIMENSION

l SKIPONDIMENSION

UNDERLINECHAR
Sets the default underline character displayed in a report.

You can use any graphic character that you can generate in the text editor used to define the
report. In some editing tools, you can generate a graphic underline by holding the ALT key down
while typing 196 on the numeric keypad and then releasing the ALT key. For a double graphic
underline, type 205. You must use a font with these graphic characters if the report is to print
correctly. Default underline character "=" is used.

Syntax

{ UNDERLINECHAR ["character"] }

Report Writer Command Reference 1369

Parameter Description

"character" A single-byte character, enclosed in quotation marks, for the new underline character.

Notes

l Double-byte characters are not supported.

Example

{UNDERLINECHAR "-"}

sets the character used when underlining to a single dash.

See Also

l UCHARACTERS

l COLUMN

l UDATA

UNDERSCORECHAR
Replaces the _ (underscore) character in a member name with another character.

Reports generated with this command may not be suitable for reloading into the database as
report format files. Member names may no longer match the outline if the underscores are
replaced.

Syntax

{ UNDERSCORECHAR "char"}

Parameter Description

"char" Single character, enclosed in quotation marks, that displays in place of underscore.

Notes

UNDERSCORECHAR is a setting command.

Example

{UNDERSCORECHAR " "}

replaces all underscores with spaces (for example, member name New_York would appear as
New York in the final report.)

WIDTH
Specifies the width of columns in a report.

If the WIDTH command is followed by number with no column selections, number sets the
width for all data columns. Otherwise, the width is set for each data column listed in the
command. Column numbers are assigned starting at 0 for the first row-name column,

1370 Report Writer Commands

incrementing by one for each row-name column, data column, and calculated column, in that
order. The tilde character (~) follows member names or values that must be truncated to fit in
the column to indicate part of the name or value is not displayed. If possible, space from adjacent
columns is used to avoid truncating. The widths of names columns may be adjusted if their
column numbers (0,1,...) are specifically included in the command. Alternatively, the
NAMEWIDTH command may be used.

If the WIDTH command is not used, columns are wide enough to fit the widest value.

Syntax

{ WIDTH number [column1 [column2 [columnN]]] }

Parameter Description

number New column width in characters.

column1column2columnN Optional. Numbers designating the columns to resize, separated by spaces. Values:
between 0 and 161, where 0 is the first row-name column. If column-numbers are not
specified, all columns are resized to the width indicated by number.

Notes

l The value of n must be zero or a positive integer.

l WIDTH is a column formatting command. If you specify columns in the WIDTH command
before designating them with a member selection, Essbase expands the report to that number
of columns. See the information on "Column Formatting Commands".

l After members for the report specification are selected, the numbers specified should not
exceed the number of columnN.

Example

The following example is based on Sample Basic.

<PAGE (Measures, Market)
Illinois Sales
<SYM
{WIDTH 7}
{WIDTH 20 0}
 <COLUMN (Scenario, Year)
 Actual Budget Scenario
 Jan Feb Mar
<DESCENDANTS "100"
 !

Which resizes all data columns to a WIDTH of seven and the row name label column (column
0) to a WIDTH of 20.

 Sales Illinois

 Actual Budget Scenario
 Jan Feb Mar Jan Feb Mar Jan Feb Mar
 ====== ====== ====== ====== ====== ====== ====== ====== ======

100-10 345 354 367 360 370 380 345 354 367

Report Writer Command Reference 1371

100-20 234 254 267 240 260 280 234 254 267
100-30 #Missi #Missi #Missi #Missi #Missi #Missi #Missi #Missi #Missi

See Also

l NAMEWIDTH

WITHATTR
Specifies the characteristics of a base-dimension member that match the specified values in a
report script. You must create attribute dimensions in the outline and associate them with a base
dimension before you use WITHATTR.

Syntax

<WITHATTR (dimName, "operator", value)

Parameter Description

dimName Single attribute dimension name.

"operator" Operator specification, which must be enclosed in double quotes ("").

The supported operators are:

l > (Greater than)

l >= (Greater than or equal to)

l < (Less than)

l <= (Less than or equal to)

l = = (Equal to)

l <> or != (Not equal to)

l IN (Within a specified range)

Note: These operators may behave differently depending on the attribute type with which you use them.
See the table in Examples for more information.

value Value that, in combination with the operator, defines the condition that must be met. The value can be an
attribute member specification, a constant, or a date-format function (for example, <TODATE).

Notes

This command specifies two or more attribute dimension tags, which are associated with a base
dimension. If you use the <WITHATTR syntax, the command is applied only to a specific query.

Example

Example 1

The following table shows examples, based on the Sample Basic database, for each type of
operator:

1372 Report Writer Commands

Operator Example Result

> <WITHATTR(Population,">","18000000") Returns New York, California, and Texas

>= <WITHATTR(Population,">=",10000000) where 10,000,000 is
not a numeric attribute member, but a constant

Returns New York, Florida, California, Texas, Illinois, and
Ohio

< <WITHATTR(Ounces,"<","16") Returns Cola, Diet Cola, Old Fashioned, Sasparilla, and
Diet Cream

<= <WITHATTR("Intro Date","<=",<TODATE("mm-dd-yyyy",
"04-01-1996"))

Returns Cola, Diet Cola, Caffeine Free Cola, and Old
Fashioned

= = <WITHATTR("Pkg Type","= =",Can) Returns Cola, Diet Cola, and Diet Cream

<> or != <WITHATTR(Caffeinated,"<>",True) Returns Caffeine Free Cola, Sasparilla, Birch Beer, Grape,
Orange, Strawberry

IN <WITHATTR("Population","IN",Medium) Returns Massachusetts, Florida, Illinois, and Ohio

Example 2

The following report script

<PAGE (Product, Measures, Scenario)
Florida Sales Actual

 <COLUMN (Year)
 <ICHILDREN Year

<ROW (Market)
<WITHATTR(Population IN Large)
 !

returns on rows only those members of Market whose Population attributes map to ranges
defined as Large:

 Product Sales Actual

 Qtr1 Qtr2 Qtr3 Qtr4 Year
 ======== ======== ======== ======== ========

New York 7,705 9,085 9,325 8,583 34,698
California 11,056 12,164 13,073 11,149 47,442
Texas 4,505 4,589 4,807 4,402 18,303

See Also

l <ATTRIBUTE
l <TODATE

WITHATTREX
Specifies the characteristics of a base-dimension member that match the specified values in a
report script. You must create varying attribute dimensions in the outline and associate them
with a base dimension before you use WITHATTREX in a report script.

Report Writer Command Reference 1373

Syntax

<WITHATTREX (dimName, "operator", value,options,startTuple[,endTuple])

Parameter Description

dimName Single varying attribute dimension name.

"operator" Operator specification, which must be enclosed in double quotes ("").

The supported operators are:

l > (Greater than)

l >= (Greater than or equal to)

l < (Less than)

l <= (Less than or equal to)

l = = (Equal to)

l <> or != (Not equal to)

l IN (Within a specified range)

value Value that, in combination with the operator, defines the condition that must be met. The value can
be an attribute member specification, a constant, or a date-format function (for example, <TODATE).

options ANY

startTuple[,
endTuple]

(m1, m2, ..., mN)

Level-0 members from one or more independent dimensions for attrMbrName may be part of the
input tuple.

Members from all independent dimensions should be listed. If a member is not listed, the member of
the same dimension from the current query or calculation context is used.

Notes

This command specifies two or more attribute dimension tags, which are associated with a base
dimension. If you use the <WITHATTREX syntax, the command is applied only to a specific
query.

Example

<withattrex("intro date","<=",<todate("mm-dd-yyyy","04-01-1996"),ANY,(jan),(jun))

<withattrex(ounces,">","16",ANY,(jan),(jun))

See Also

l <ATTRIBUTEVA
l <PERSPECTIVE
l <TODATE

ZEROTEXT
Replaces zero data values with a text string if a zero data value is output.

1374 Report Writer Commands

Syntax

{ ZEROTEXT ["text"] }

Parameter Description

text Optional. String, in quotation marks, to use in place of 0.

Notes

All data values less than .00000000000001 and greater than -.00000000000001 are treated as 0,
as well as all data values that would be displayed as 0, regardless of their true value.

Default Value

If you do not specify text, the default 0 is restored.

Example

{ZEROTEXT "-"}

changes a 0 value to -.

See Also

l MISSINGTEXT

Report Writer Command Reference 1375

1376 Report Writer Commands

10
Essbase Unicode File Utility

In This Chapter

Essbase Unicode File Utility Overview... 1377

Types of Encoding Indicators .. 1378

Determining Whether to Use UTF-8 or Non-Unicode Text Files .. 1378

When to Use the Essbase Unicode File Utility. 1379

Essbase Unicode File Utility Syntax .. 1379

Essbase Unicode File Utility Overview
The Essbase Unicode File Utility is a standalone program that enables you to add encoding
identifiers to files used with Unicode-mode applications. Encoding identifiers are markers that
identify the text encoding used in the file. Located in the ESSBASEPATH\bin directory, this
utility is called essutf8.exe (in Windows) or ESSUTF8 (in UNIX). You can use this utility to
make the following changes to text files, outline files, and rules files:

l Add a UTF-8 signature to UTF-8-encoded text files

l Convert non-Unicode-encoded text files to UTF-8 encoding, including the UTF-8 signature

l Insert a locale indicator in non-Unicode-encoded files, including script files, data source
files, outline files (.otl) and rules files (.rul)

l Remove locale indicators from non-Unicode-encoded files

l Backup the files before changing them

The Essbase Unicode File Utility works with text files and binary files that you can edit and
change. This utility does not support user-defined characters (UDC) such as can be found in
Japanese, Korean, Chinese, and Taiwanese host code pages.

Applicable text files include:

l Calculation scripts (.csc)

l Report scripts (.rep)

l Data source files for dimension builds, data loads, and partition area definitions

l Alias table import files (.alt)

Applicable binary files include:

l Outline files (.otl)

Essbase Unicode File Utility Overview 1377

l Rules files (.rul)

Using the Essbase Unicode File Utility to insert locale indicators in outline files and rules files is
relevant when outline files and rules files were created by earlier releases of Essbase or its clients
(prior to Release 7.0) or when rules files are initially created on a client. For a more detailed
description of encoding and locale indicators, see the "Enabling Multi-Language Applications
Through Unicode" part in the Oracle Essbase Database Administrator's Guide.

Note: Text files for non-Unicode-mode applications cannot be encoded in UTF-8. They must
be encoded according to a locale definition common to the client and Essbase Server.

See the "Enabling Multi-language Applications through Unicode" part of the Oracle Essbase
Database Administrator's Guide for additional information about encoding formats, the UTF-8
signature, and locale indicators.

Types of Encoding Indicators
Different types of encoding indicators are used, depending on the type of file and its encoding:

l The UTF-8 signature, which indicates that a text file is encoded in UTF-8, is a mark at the
beginning of the file. Although optional within the computer industry, Essbase requires that
UTF-8-encoded files include the UTF-8 signature.

l Inserted at the beginning of non-Unicode-encoded text files, the locale header record is an
additional text record that includes a locale that identifies the encoding of the file. You can
use the Essbase Unicode File Utility to insert the locale header or you can use a text editor
to create the locale header. For the format and other details about the locale header record,
see the Oracle Essbase Database Administrator's Guide.

l As binary files that contain text information, outline files and rules files contain a flag that
indicates whether the text is encoded in UTF-8 or in a supported non-Unicode encoding.

l As needed, if a file is not UTF-8-encoded, Essbase uses an internal locale indicator to identify
the locale used for character text encoding.

Determining Whether to Use UTF-8 or Non-Unicode Text
Files
While you are migrating various client and server sites to a Unicode-enabled release with
Unicode-mode applications, Essbase provides you the flexibility to use non-Unicode-encoded
files. For Unicode-mode applications, using UTF-8-encoded text files is recommended. Using
UTF-8 encoding is simpler; you do not need to keep track of different locales.

1378 Essbase Unicode File Utility

When to Use the Essbase Unicode File Utility
The following list includes examples of situations when you would use the Essbase Unicode File
Utility.

l To determine if a file contains an encoding indicator and, if it does, how it is encoded.

l To add a UTF-8 signature to a UTF-8-encoded file. UTF-8-encoded files must include the
UTF-8 signature.

l To add a locale indicator to an outline file or rules file that is input to a Unicode-mode
application on a Release 7.0 Essbase Server, if the file was created by an earlier release of
Essbase.

l To remove a locale indicator from a file created by Release 7.0 Oracle Essbase Administration
Services, if the file is to be used with an Essbase Server release prior to 7.0.

Note: Release 7.0 rules files that are not compatible with prior releases of Essbase are
excepted.

For a more detailed description of encoding and locale indicators, see the Oracle Essbase Database
Administrator's Guide.

Essbase Unicode File Utility Syntax
The Essbase Unicode File Utility (ESSUTF8 or essutf8) modifies files to be used with Unicode-
mode applications. Use this utility to make the following changes to files:

l Add a UTF-8 signature to UTF-8-encoded text files

l Convert non-Unicode-encoded text files to UTF-8 encoding, including the UTF-8 signature

l Insert a locale indicator in non-Unicode-encoded files including script files, data sources,
outline files (.otl) and rules files (.rul)

l Remove locale indicators from non-Unicode-encoded files

l Backup files before changing them

For a description of encoding indicators, see the “Types of Encoding Indicators” on page 1378.

essutf8 [option] filespec

Syntax Description

[option] Case-sensitive, lowercase execution options. A single command can include more than one execution option Include the
hyphen at the beginning of each execution option within a command. See Table 2, “Execution Options,” on page 1380.

The -c, -d, -i, and -s options may not be used in combination. The remaining options may be used in combination with
one of the four options, or in combination with each other. See Notes for more information.

When to Use the Essbase Unicode File Utility 1379

Syntax Description

filespec Location and names of files. You can specify any of the following items:

l A file name in the current directory

l An absolute path that includes the file name

l A file-name mask containing the * (asterisk) and ? (question mark) wildcards (for example, abc*.txt includes all files
with names starting with abc and ending with the extension .txt)

Caution! To avoid corruption of binary files not related to Oracle Essbase, do not use wildcards within file extensions (for
example, do not specify anything like xyz.* or *.*). Use of wildcards is recommended only within the portion of the file name
before the dot; for example, *.scr or *2002.txt.

Table 2 Execution Options

Option Description

-a Lists supported locales. You can copy locales from the list into the clipboard.

-b Creates a backup file (.bak) for each modified file.

-c Converts text files without a UTF-8 signature to UTF-8 encoding, removing existing locale indicators and inserting a UTF-8
signature in each file.

Caution! The utility cannot recognize a file to be in UTF-8 encoding if the file does not contain a UTF-8 signature. Be sure
to use the -c option only with files that are not in UTF-8 encoding. Using the -c option with files that are in UTF-8 encoding
results in files that are not usable. To add a UTF-8 signature to a UTF-8 encoded file, use the -s option as described below.

-d Deletes locale indicators from specified non-Unicode outline and rules files.

-e Displays the encoding of each specified text, outline, or rules file.

-h Displays help text. This is the default option.

-i Inserts a locale indicator in each non-Unicode file that does not have an indicator. If a -l option is not included to specify
a locale, the ESSLANG locale is assumed.

-l locale Specifies the locale for the locale indicator for a non-Unicode file. For locale, use the following locale format:

<language>_<territory>.<code page name>@<sort sequence>

Supported locales are listed in the Oracle Essbase Database Administrator's Guide

Caution! Do not add a locale indicator to a file containing UTF-8 encoding.

-q Defines a quiet operation. No messages are displayed.

-s Adds a UTF-8 signature to each text file that does not have a UTF-8 signature or a locale header

Caution! The utility cannot recognize a file to be in UTF-8 encoding if the file does not contain a UTF-8 signature. Be sure
to use the -s option only with files that are not in UTF-8 encoding. Using the -s option with files that are in UTF-8 encoding
results in files that are not usable.

Notes

l In Windows, run essutf8.exe; in UNIX, run ESSUTF8.

l Backing up files (option -b) is recommended.

1380 Essbase Unicode File Utility

l To process UTF-8 encoded files, Essbase Server requires the files include the UTF-8
signature.

l Do not combine a UTF-8 signature and locale header in the same file. If a text file contains
both types of encoding indicators, the file is interpreted as UTF-8 encoded, and the locale
header is read as the first data record.

l See the "Enabling Multi-Language Applications Through Unicode" part in the Oracle Essbase
Database Administrator's Guide for more information about file encoding.

l Ensure that the encoding and condition of the specified files is what the specified operation
expects. For example, do not define a command to delete locale indicators from non-
Unicode-encoded files that do not contain locale indicators.

Examples

Backup plus UTF-8 signature insertion

essutf8 -b -s salesjune.utf8

Backup plus insertion of locale header record

essutf8 -b -i -l Spanish_Spain.Latin1@Spanish complex.rep

Backup plus conversion of multiple files to UTF-8 encoding

essutf8 -b -c *.txt

Backup plus deletion of locale indicator in a rules file

essutf8 -b -d \EssbaseServer\app\demo\basic\genref.rul

Essbase Unicode File Utility Syntax 1381

1382 Essbase Unicode File Utility

Index

Symbols
! (bang).. See bang
"" "" quotation marks

in MaxL Shell, 828
%. See Operators
& (ampersand).. See ampersand
*. See Operators
+. See Operators
-. See Operators
/. See Operators
; semicolon

in MaxL statements, 828
<. See Operators
< left angle bracket (in reports), 1170
<=. See Operators
<>. See Operators
=. See Operators
>. See Operators
>=. See Operators
{ } curly braces (in reports), 1170

A
ABS

calculation function, 39
MDX function, 998

absolute value function
in calculation scripts or formulas, 39
in MDX queries, 998

ACCOFF report writer command, 1216
ACCON report writer command, 1217
accounts tag

calculation function returning TRUE if present,
105

MDX function returning TRUE if present, 1075
ACCUM, 40
ACTION specification for triggers, 767
AFTER report writer command, 1218

AGENTDELAY configuration setting, 382
AGENTDESC configuration setting, 383
AGENTDISPLAYMESSAGELEVEL configuration

setting, 383
AGENTLEASEEXPIRATIONTIME configuration

setting, 384
AGENTLEASEMAXRETRYCOUNT configuration

setting, 385
AGENTLEASERENEWALTIME configuration

setting, 385
AGENTLOGMESSAGELEVEL configuration setting,

386
AGENTPORT configuration setting, 387
AGENTSECUREPORT configuration setting, 388
AGENTTHREADS configuration setting, 388
AGG calculation command, 309
aggregate storage databases

clearing data by region, 874
creating an application, 882
creating outline formulas, 973
data load buffers, using, 923
list aso_level_info, 904
list data load buffers, 904
MaxL data load process, 921
MaxL statements enabled for, 864
merging data slices, 873
outline optimization settings, 480, 483, 484
overview, 19
tablespaces, 642

aggregations
performing using MaxL, 738

AGGRESSIVEBLKOPTIMIZATION configuration
setting, 389

AGTMAXLOGFILESIZE configuration setting, 390
AGTSVRCONNECTIONS configuration setting, 391
algorithms

for data mining
creating, 910

A B C D E F G H I J K L M N O P Q R S T U V W X Z

Index 1383

deleting, 918
displaying, 915

for the @Trend calculation function, 210
DES, 21
linear regression, 21
linear regression with seasonal adjustment, 21
SES, 21
TES, 21

ALIAS calculation function, 42
aliases

in reports, 1171
managing in ESSCMD, 534
managing in MaxL, 649, 653

ALLANCESTORS calculation function, 41
ALLINSAMEDIM report writer command, 1219
ALLOCATE calculation function, 42
allocation functions, 27
allocations

executing in MaxL, 886
ALLSIBLINGS report writer command, 1220
alter (MaxL), 633
ampersand

calculation command, 309
report writer command, 1216

Ancest calculation function, 46
ancestors

calculation function that returns an ancestor, 46
calculation function that tests for an ancestor, 106
calculation functions that return ancestor values,

48, 140, 185
calculation functions that return more than an

ancestor, 41
MDX function that returns one ancestor, 1000
MDX function that returns set of ancestors, 1001
MDX function that tests for an ancestor, 1075
report command that returns ancestors, 1221

ancestors calculation function, 47
Ancestors functions

MDX function, 1001
report writer command, 1221

Ancestval calculation function, 48
AND

calculation operator, 24
MDX operator, 963

APP-NAME in MaxL, 767
applications

creating in MaxL, 680

aggregate storage applications, 882
deleting in MaxL, 730
displaying in MaxL, 707
modifying in MaxL, 642
sample applications used in this document, 17

APPMAXLOGFILESIZE configuration setting, 392
APSRESOLVER configuration setting, 392
ARRAY calculation command, 310
array variables, 310
ASOLOADBUFFERWAIT configuration setting, 393
ASOSAMPLESIZEPERCENT configuration setting,

394
ASYM report writer command, 1222
Attribute function

in calculation scripts or formulas, 49
in MDX queries, 1002

ATTRIBUTE report writer command, 1223
Attribute-value calculation functions

for Boolean values, 50
for numeric or date values, 53
for text values, 51

Attributebval calculation function, 50
AttributeEx function

in MDX queries, 1003
attributes

as MDX properties, 964
calculation function that returns base members of

attributes, 106
calculation function that returns members with

attribute, 49
calculation function that returns members with

type of attribute, 225
MDX function that returns members with attribute,

1002
MDX function that returns members with type of

attribute, 1157
Attributesval calculation function, 51
ATTRIBUTEVA report writer command, 1224
Attributeval calculation function, 53
AUTHENTICATIONMODULE configuration

setting, 395
Average function

in calculation scripts or formulas, 54
in MDX queries, 1004

averages
Avg MDX function, 1004
calculation functions, 54, 55, 153, 311

A B C D E F G H I J K L M N O P Q R S T U V W X Z

1384 Index

Avgrange calculation function, 55
axis specification in MDX queries, 949

B
bang command (report writer), 1216
BEFORE report writer command, 1225
between calculation function, 56
block locks

limiting number of locks, 401
limiting the time a lock is held, 464

block storage databases
outline optimization settings, 484

BLOCKHEADERS report writer command, 1226
blocks

calculating updated, 366
clearing/deleting, 316
locking to calculate, 359
preventing creation of during calculation, 345, 346

Boolean functions
in calculator, 27
in MDX, 989

BOTTOM report writer command, 1227
bottom-up calculations, 358
BottomCount MDX function, 1006
BottomPercent MDX function, 1007
BottomSum MDX function, 1009
BRACKETS report writer command, 1230
buffer

aggregate storage data loads, 921
data load buffer, 923

buffers
list of, 904

C
caches

aggregate storage formula cache, 467
calculator cache, setting size, 337

CALC ALL calculation command, 311
CALC AVERAGE calculation command, 311
CALC DIM calculation command, 312
CALC FIRST calculation command, 313
CALC LAST calculation command, 313
CALC TWOPASS calculation command, 314
CALC-NAME in MaxL, 767
CALC-STRING in MaxL, 767
CALCCACHE configuration setting, 396

CALCCACHEDEFAULT configuration setting, 398
CALCCACHEHIGH configuration setting, 397
CALCCACHELOW configuration setting, 399
CALCLIMITFORMULARECURSION configuration

setting, 400
CALCLOCKBLOCK configuration setting, 401
Calcmode calculation function, 57
CALCMODE configuration setting, 402
CALCNOTICE configuration setting, 403
CALCOPTFRMBOTTOMUP configuration setting,

404
CALCPARALLEL configuration setting, 406
CALCREUSEDYNCALCBLOCKS configuration

setting, 405
CALCTASKDIMS configuration setting, 407
CALCULATE COLUMN report writer command,

1230
CALCULATE ROW report writer command, 1233
calculated members in MDX, 954
calculation commands

groups of, 305
overview of, 303

calculation operators
in calculator syntax, 24
in MDX syntax, 963

calculations
average members, 311
clean data blocks and, 341
columns and rows in reports, 1171
commands for, 303
creating in MaxL, 681
currency conversions, 314
custom, executing in MaxL, 890
deleting in MaxL, 730
dirty blocks, 366
displaying in MaxL, 709
entire database, 311
executing in MaxL, 737
first members, 313
formulas and aggregations, 312
ignoring member formulas, 309
iterative, 335
last members, 313
locking blocks concurrently, 359
monitoring progress, 360
optimizing formulas on sparse dimensions, 358
overview of commands, 303

A B C D E F G H I J K L M N O P Q R S T U V W X Z

Index 1385

parallel, 338
parents with same defined currency, 367
restricting to database subset, 331
rows and columns in reports, 1171
sparse dimensions, 309
temporary variables, 368
two-pass members, 314
types of, 305
varying attributes perspective command, 365

calculator cache, 337
CASE MDX function, 1010
CCONV calculation command, 314
CCTRACK configuration setting, 408
CellValue MDX function, 1013
characters

underlining in reports, 1363
characters in MaxL, 767
Children function

in calculation scripts or formulas, 64
in MDX queries, 1015

CHILDREN report writer command, 1236
clean status, 341
CLEARALLROWCALC report writer command,

1236
CLEARBLOCK calculation command, 316
CLEARCCTRACK calculation command, 317
CLEARDATA calculation command, 317
clearing

blocks, 316
data, 317
data by region (aggregate storage), 874
exchange rate tracking (CCTRACK), 317

CLEARLOGFILE configuration setting, 410
CLEARROWCALC report writer command, 1237
CLIENTPREFERREDMODE configuration setting,

411
ClosingPeriod MDX function, 1016
clusters

in MDX, 971
cmd2mxl utility, 848
CoalesceEmpty MDX function, 1018
COLHEADING report writer command, 1237
column or row calculation commands, 1171
COLUMN report writer command, 1239
columns

calculating, 1230
displaying dimensions as, 1230

underlining in a report, 1364
commands

calculations, 303
COMMAS report writer command, 1239
COMMENT-STRING in MaxL, 767
comments in MDX, 970
compaction of security file, 491
Compound calculation function, 65
Compoundgrowth calculation function, 66
Concatenate calculation function, 66
CONDITION specification for triggers, 767
conditional calculation commands, 305
conditional functions

in MDX, 1010, 1047, 1057, 1069
conditional tests, 305
consolidating

#MISSING values, 336
only parents with same currency, 367

constraints on data, 699, 927
control flow calculation commands, 305
copying data, 318
Correlation calculation function, 67
Count function

in calculation scripts or formulas, 69
in MDX queries, 1019

count functions in MDX queries, 1006, 1019, 1111,
1147

Cousin MDX function, 1020
CRASHDUMP configuration setting, 411
create (MaxL), 633
create blocks on equation, 346
CrossJoin MDX function, 1022
cube

deploying, 703, 840
CUBE AREA specification for triggers, 767
cube specification in MDX queries, 952
Curgen calculation function, 70
CURHEADING report writer command, 1240
Curlev calculation function, 72
currency conversions

calculating, 314
displaying headings of, 1240
performing in a report, 1240
suppressing information in reports, 1344
tracking, 341

currency members, 367
CURRENCY report writer command, 1240

A B C D E F G H I J K L M N O P Q R S T U V W X Z

1386 Index

CurrentMember MDX function, 1024
CurrentTuple MDX function, 1025
Currmbr calculation function, 73
Currmbrrange calculation function, 74

configuring behavior of, 490
custom-defined functions

creating in MaxL, 686
deleting in MaxL, 732
displaying in MaxL, 713
overview, 234

custom-defined macros
creating in MaxL, 689
deleting in MaxL, 734
displaying in MaxL, 716
overview, 292

D
data

appearance in reports, 1171
clearing sections of, 317
copying, 318
exporting using MaxL, 743
importing using MaxL, 752
ordering in reports, 1291
restricting ranges in reports, 1171

data blocks.. See blocks
data constraints, 699, 927
data declaration calculation commands, 305
data load buffer, 921
data mining, 907
data ordering commands, 1171
data range commands, 1171
data slices (aggregate storage)

merging, 873
database objects

deleting in MaxL, 734
displaying in MaxL, 717
modifying in MaxL, 663

databases
calculating, 303
clearing data from, 317
consolidating parent/child relationships only, 309
creating in MaxL, 682
deleting in MaxL, 730
displaying in MaxL, 709
mining using algorithms, 907
modifying in MaxL, 646, 653

modifying settings in MaxL, 649
DATACACHESIZE configuration setting, 412
DATACOPY calculation command, 318
DATAERRORLIMIT configuration setting, 413
DATAEXPORT calculation command, 319
DATAEXPORTCOND calculation command, 323
DATAEXPORTENABLEBATCHINSERT

configuration setting, 414
DATAFILECACHESIZE configuration setting, 415
DATAIMPORTBIN calculation command, 325
date

get first day in MDX queries, 1060
get last day in MDX queries, 1062
get next day in MDX queries, 1063
get rounded date in MDX queries, 1063

date (Julian)
in MDX queries, 1086

date (UNIX)
in MDX queries, 1154

DATEFORMAT report writer command, 1241
DBS-NAME in MaxL, 767
DECIMAL report writer command, 1242
Decline calculation function, 80
DEFAULTLOGLOCATION configuration setting,

415
DefaultMember MDX function, 1031
defragmentation of security file, 491
DELAYEDRECOVERY configuration setting, 416
DELIMITEDMSG configuration setting, 417
DELIMITER configuration setting, 417
delimiters

in reports, 1170
deploying cube from Essbase Studio, 703, 840
Descendants function

in MDX queries, 1032
descendants function

in calculation scripts or formulas, 81
DESCENDANTS report writer command, 1243
DEXPSQLROWSIZE configuration setting, 418
DIMBOTTOM report writer command, 1245
DIMBUILDERRORLIMIT configuration setting, 419
DIMBUILDSTATSINTERVAL configuration setting,

420
DIMEND report writer command, 1246
Dimension MDX function, 1036
dimensions

as report page members, 1301

A B C D E F G H I J K L M N O P Q R S T U V W X Z

Index 1387

calculating, 312
calculation functions that work on multiple

dimensions, 136, 140, 141, 142
importing using MaxL, 754
rows in reports, 1319
specifying in MDX queries, 958

DIMTOP report writer command, 1247
DIRECTIO configuration setting, 420
dirty blocks, 366
DISABLEREPLMISSINGDATA configuration

setting, 421
Discount calculation function, 82
disk volumes

adding using MaxL, 659
deleting using MaxL, 659
displaying in MaxL, 710
setting using MaxL, 659

display (MaxL), 634
DISPLAYMESSAGELEVEL configuration setting,

423
Distinct MDX function, 1035
DLSINGLETHREADPERSTAGE configuration

setting, 424
DLTHREADSPREPARE configuration setting, 426
DLTHREADSWRITE configuration setting, 427
drill-through URLs

creating in MaxL, 683
deleting in MaxL, 731
displaying in MaxL, 711
modifying in MaxL, 660

DrillDown MDX functions
byLayer, 1036
Member, 1037

DrillUp MDX functions
byLayer, 1039
Member, 1041

drop (MaxL), 635
DTS MDX function, 1042
DUPLICATE report writer command, 1248
DYNCALCCACHEBLKRELEASE configuration

setting, 429
DYNCALCCACHEBLKTIMEOUT configuration

setting, 430
DYNCALCCACHECOMPRBLKBUFSIZE

configuration setting, 432
DYNCALCCACHEMAXSIZE configuration setting,

433

DYNCALCCACHEONLY configuration setting, 435
DYNCALCCACHEWAITFORBLK configuration

setting, 436

E
ELSE calculation command, 326
ELSEIF calculation command, 327
ENABLE_DIAG_TRANSPARENT_PARTITION

configuration setting, 438
ENABLECLEARMODE configuration setting, 439
ENABLESECUREMODE configuration setting, 440
ENABLESWITCHTOBACKUPFILE configuration

setting, 440
encoding management, 1377
ENDHEADING report writer command, 1249
ENDIF calculation command, 328
EnumText MDX function, 1043
EnumValue function

in calculation scripts or formulas, 83
Enumvalue MDX function, 1044
equal calculation function, 83
Essbase

changing system properties in MaxL, 668
viewing system information in MaxL, 721

Essbase sessions
displaying in MaxL, 720
stopping in MaxL, 668

essbase.cfg file, 369
essbase.pm, 841
ESSBASEFAILOVERTRACELEVEL configuration

setting, 441
ESSBASESERVERHOSTNAME configuration

setting, 442
ESSCMD, 526

batch mode, 522
batch-processing mode, 519
commands, 534
interacrtive mode, 519
migrating from ESSCMD to MaxL, 848
multi-user considerations, 519
starting, 526
syntax, 520

ESSCMD commands, 534
essutf8 utility, 1377
EUROPEAN report writer command, 1250
Except MDX function, 1044

A B C D E F G H I J K L M N O P Q R S T U V W X Z

1388 Index

EXCEPTIONLOGOVERWRITE configuration
setting, 442

exchange rates, 314, 317
EXCLUDE...ENDEXCLUDE calculation command,

329
EXCLUSIVECALC configuration setting, 444
execute (MaxL), 635
Exp (exponent) function

in calculation scripts or formulas, 84
in MDX queries, 1045

expand calculation function, 85
export (MaxL), 636
EXPORTTHREADS configuration setting, 444
Extract MDX function, 1046

F
Factorial function

in calculation scripts or formulas, 87
in MDX queries, 1047

FAILOVERMODE configuration setting, 445
FEEDON report writer command, 1251
file encoding indicators, 1377
FILE-NAME in MaxL, 767
FILELOCKINGMODE configuration setting, 446
files

locking on UNIX, 446
Filter MDX function, 1047
FILTER-NAME in MaxL, 767
filtering on metadata, 926
filters

creating in MaxL, 684
deleting in MaxL, 731
displaying in MaxL, 712
modifying in MaxL, 661

financial functions, 27
first members, calculating, 313
FirstChild MDX function, 1053
FirstSibling MDX function, 1053
FIX...ENDFIX calculation command, 331
FIXCOLUMNS report writer command, 1251
flattened sets

in MDX, 971
flow commands.. See control flow calculation

commands
FORCEGRIDEXPANSION configuration setting,

447
forecasting functions, 27

format commands in report writer, 1171
FORMATCOLUMNS report writer command, 1253
formulas

cache size for (aggregate storage), 467
ignoring during calculation, 309
MDX formulas for aggregate storage databases,

973
optimizing calculation of, 358

fragmentation of security file, 491
FROM section in MDX queries, 952
FUNC-NAME in MaxL, 767
functional calculation commands, 305
functions (custom defined)

creating in MaxL, 686
deleting in MaxL, 732
displaying in MaxL, 713

functions for calculator, 37

G
Gen calculation function, 89
GEN report writer command, 1254
Generate MDX function, 1057
Generation MDX function, 1058
generations

calculation functions pertaining to, 70, 89, 108,
115

described, 21
in MaxL, 959
MDX functions pertaining to, 1058, 1059, 1078

Generations MDX function, 1059
Genmbrs calculation function, 89
GetFirstDay

MDX function, 1060
GetLastDay

MDX function, 1062
GetNextDay

MDX function, 1063
GetRoundDate

MDX function, 1063
grant (MaxL), 750
GRIDEXPANSION configuration setting, 448
GRIDEXPANSIONMESSAGES configuration setting,

448
GROUP-NAME in MaxL, 767
groups

creating in MaxL, 687
deleting in MaxL, 732

A B C D E F G H I J K L M N O P Q R S T U V W X Z

Index 1389

displaying in MaxL, 714
modifying in MaxL, 662

Growth calculation function, 91

H
HAENABLE configuration setting, 449
HAMAXNUMCONNECTION configuration setting,

449
HAMAXNUMSQLQUERY configuration setting,

450
HAMAXQUERYROWS configuration setting, 451
HAMAXQUERYTIME configuration setting, 452
HAMEMORYCACHESIZE configuration setting,

453
HARAGGEDHIERARCHY configuration setting,

454
HARETRIEVENUMROW configuration setting, 455
HASOURCEDSNOS390 configuration setting, 456
Head MDX function, 1064
HEADING report writer command, 1256
headings of report pages.. See page headings
Hierarchize MDX function, 1067
HISLEVELDRILLTHROUGH configuration setting,

457
HOST-NAME in MaxL, 767
Hybrid Analysis

controlling memory cache size, 453
disabling in report scripts, 1256
enabling in report scripts, 1255
enabling/disabling, 449
enabling/disabling query logging, 649
handling null values, 454
limiting connections to relational source, 449
limiting number of rows, 451, 455
limiting number of SQL queries, 450
limiting query time, 452

HYBRIDANALYSISOFF report writer command,
1256

HYBRIDANALYSISON report writer command,
1255

I
iallancestors calculation function, 91
iancestors calculation function, 93
IANCESTORS report writer command, 1257
IBHFIXTHRESHOLD configuration setting, 457

Ichildren calculation function, 94
ICHILDREN report writer command, 1258
idescendants calculation function, 94
IDESCENDANTS report writer command, 1259
IF calculation command, 333
iIancestors calculation function, 96
IIF MDX function, 1069
ildescendants calculation function, 97
ILsiblings calculation function, 99
IMMHEADING report writer command, 1261
IMPLIED_SHARE configuration setting, 459
import (MaxL), 636
IN. See Operators (MDX)
INCEMPTYROWS report writer command, 1262
INCFORMATS report writer command, 1262
INCMASK report writer command, 1263
INCMISSINGROWS report writer command, 1263
incremental data loads, 752
INCRESTRUC configuration setting, 460
INCZEROROWS report writer command, 1263
INDENT report writer command, 1264
INDENTGEN report writer command, 1265
INDEXCACHESIZE configuration setting, 463
Int (integer) function

in calculation scripts or formulas, 100
in MDX queries, 1071

intelligent calculation
clean/dirty status, 341
turning on/off, 366

Interest calculation function, 101
Intersect MDX function, 1072
IPARENT report writer command, 1267
Irdescendants calculation function, 102
IRR calculation function, 103
Irsiblings calculation function, 104
IS. See Operators (MDX)
IS MDX function, 1074
Isacctype function

in calculation scripts or formulas, 105
in MDX queries, 1075

Isancest calculation function, 106
Isancestor MDX function, 1075
Isattribute function

in calculation scripts or formulas, 106
Ischild function

in calculation scripts or formulas, 107
in MDX queries, 1076

A B C D E F G H I J K L M N O P Q R S T U V W X Z

1390 Index

Isdesc calculation function, 107
IsEmpty MDX function, 1077
Isgen calculation function, 108
Isgeneration MDX function, 1078
Isiancest calculation function, 108
isiblings calculation function, 109
Isichild calculation function, 110
Isidesc calculation function, 110
Isiparent calculation function, 111
Isisibling calculation function, 111
IsLeaf MDX function, 1079
Islev calculation function, 112
Islevel MDX function, 1079
IsMatch MDX function, 1080
Ismbr calculation function, 112
Ismbrwithattr function

in calculation scripts or formulas, 113
Isparent calculation function, 114
Issamegen calculation function, 115
Issamelev calculation function, 115
Issibling function

in calculation scripts or formulas, 116
in MDX queries, 1082

Isuda function
in calculation scripts or formulas, 117
in MDX queries, 1083

IsValid MDX function, 1083
Item MDX function, 1084
iterative calculations, 335

J
JulianDate

MDX function, 1086
JVMMODULELOCATION configuration setting,

463

K
keywords in MaxL, 767

L
Lag MDX function, 1087
lancestors calculation function, 117
last members, calculating, 313
LastChild MDX function, 1089
LastPeriods MDX function, 1090
LastSibling MDX function, 1091

LATEST report writer command, 1267
layers in MDX

defined, 959
functions returning a layer, 989

ldescendants calculation function, 119
Lead MDX function, 1091
leading &.. See ampersand
leaf members

MDX function testing for, 1079
Lev calculation function, 121
LEV report writer command, 1269
Level MDX function, 1097
levels

calculation functions pertaining to, 72, 112, 115,
121

described, 21
in MaxL, 959
MDX functions pertaining to, 1079, 1097, 1098

Levels MDX function, 1098
Levmbrs calculation function, 121
like calculation function, 123
limits

in MDX queries, 971
LINK report writer command, 1270
linked reporting object (LRO) operations in MaxL,

640
LinkMember function

in MDX queries, 1099
List calculation function, 124
LMARGIN report writer command, 1272
Ln function

in calculation scripts or formulas, 125
in MDX queries, 1100

loading data with MaxL, 752
loading dimensions with MaxL, 754
local currency, converting, 314
locale headers, 1377
location aliases

creating in MaxL, 688
deleting in MaxL, 733
displaying in MaxL, 715

locking files on UNIX, 446
locks

deleting in MaxL, 733
displaying in MaxL, 715
limiting number of blocks that can be locked, 401
limiting the time users can hold, 464

A B C D E F G H I J K L M N O P Q R S T U V W X Z

Index 1391

LOCKTIMEOUT configuration setting, 464
log files

logging query durations, 507
login failure details in, 465
MaxL Shell log files, 833
of calculation progress, 363, 403
of outline changes, 478, 479
of outline queries, 497
of spreadsheet updates, 499, 500
to overwrite or not, 410

Log function
in calculation scripts or formulas, 125
in MDX queries, 1101

Log10 function
in calculation scripts or formulas, 126
in MDX queries, 1101

logging in
error detail upon failure, 465
from ESSCMD, 526
from MaxL Shell, 819

LOGINFAILUREMESSAGEDETAILED
configuration setting, 465

LOGMESSAGELEVEL configuration setting, 465
LOOP...ENDLOOP calculation command, 335
LROONSHAREDMBR configuration setting, 466
lsiblings calculation function, 127

M
MACRO-NAME in MaxL, 767
macros (custom defined)

creating in MaxL, 689
deleting in MaxL, 734
displaying in MaxL, 716

MASK report writer command, 1273
Match calculation function, 128
MATCH report writer command, 1275
MATCHEX report writer command, 1276
materializing aggregations, 738
mathematical functions

in calculator, 27
in MDX, 989

Max (maximum value) function
in calculation scripts or formulas, 129
in MDX queries, 1102

MAX_REQUEST_GRID_SIZE configuration setting,
468

MAX_RESPONSE_GRID_SIZE configuration
setting, 469

MAXERRORMBRVERIFYREPORT configuration
setting, 467

MAXFORMULACACHESIZE configuration setting,
467

maximums
calculation functions, 129, 130, 131, 154
Max MDX function, 1102

MaxL
help with diagrams, 624
migrating from ESSCMD, 848
overview, 626
starting, 819
statements, 626

MaxL data definition language
help with diagrams, 624
migrating from ESSCMD, 848
overview, 626
starting, 819
statements, 626

MaxL Perl Module, 841
MaxL Shell

commands, 833
invoking, 819
overview, 819
syntax rules, 828

MAXLOGINS configuration setting, 468
Maxrange calculation function, 129
Maxs calculation function, 130
Maxsrange calculation function, 131
mbrcompare calculation function, 133
mbrparent calculation function, 135
Mdallocate calculation function, 136
Mdancestval calculation function, 140
Mdparentval calculation function, 141
Mdshift calculation function, 142
MDX

comments, 970
functions, 989
outline formulas, 973
overview, 931
properties, 964
query format, 932
syntax, 934

MDXFORMULARECURSIONLIMIT configuration
setting, 470

A B C D E F G H I J K L M N O P Q R S T U V W X Z

1392 Index

MEANINGLESSTEXT report writer command, 1278
Median calculation function, 143
Member calculation function, 145
member formula calculation commands, 305
member formulas.. See formulas
member set functions, 27
MEMBER-NAME in MaxL, 767
MemberRange MDX function, 1104
members

formulas in calculation scripts, 305
names/aliases in reports, 1171
selecting/sorting in reports, 1171
specifying in MDX queries, 960

Members MDX function, 1106
MEMSCALINGFACTOR configuration setting, 471
Merge calculation function, 145
merging data slices (aggregate storage), 873
messaging

for calculations, 360
metadata filtering, 926
metadata security, 926
metaread access in filters, 684, 926
metaread permission, 926
Min (minimum value) function

in calculation scripts or formulas, 147
in MDX queries, 1107

minimums
calculation functions, 147, 148, 149, 158
Min MDX function, 1107

mining data, 907
Minrange calculation function, 147
Mins calculation function, 148
Minsrange calculation function, 149
missing values

aggregating, 336
clearing blocks, 316
clearing data, 317
determining whether a value is empty in MDX

queries, 1077
displaying empty rows in Report Writer, 1262
displaying missing rows in Report Writer, 1263
substituting with a text label in Report Writer,

1278
suppressing in MDX queries, 949

missing values (#MISSING)
aggregating, 336
clearing blocks, 316

clearing data, 317
displaying empty rows in reports, 1262
displaying missing rows in reports, 1263
how they are treated in calculation scripts or

formulas, 25
setting calculated row name as, 1237
substituting with text label in reports, 1278

MISSINGTEXT report writer command, 1278
Mod (modulus) function

in calculation scripts or formulas, 151
in MDX queries, 1108

Mode calculation function, 151
models for data mining

creating, 911
deleting, 919
displaying, 916

monitoring calculation progress, 360, 363
monitoring data, 699, 927
Movavg calculation function, 153
Movmax calculation function, 154
Movmed calculation function, 156
Movmin calculation function, 158
Movsum calculation function, 159
Movsumx calculation function, 161
MULTIPLEBITMAPMEMCHECK configuration

setting, 472

N
Name calculation function, 163
named sets in MDX, 954
NAMESCOL report writer command, 1279
NAMESON report writer command, 1280
NAMEWIDTH report writer command, 1280
nested IF statements, 333
Netbinretrydelay configuration setting, 473
NETDELAY configuration setting, 473
NETRETRYCOUNT configuration setting, 474
NETSSLHANDSHAKETIMEOUT configuration

setting, 474
NETTCPCONNECTRETRYCOUNT configuration

setting, 475
NEWPAGE report writer command, 1281
Next calculation function, 164
NextMember MDX function, 1109
Nexts calculation function, 165
nextsibling calculation function, 166
NOINDENTGEN report writer command, 1282

A B C D E F G H I J K L M N O P Q R S T U V W X Z

Index 1393

NOMSGLOGGINGONDATAERRORLIMIT
configuration setting, 476

NonEmptyCount MDX function, 1111
NOPAGEONDIMENSION report writer command,

1282
NOROWREPEAT report writer command, 1283
NOSKIPONDIMENSION report writer command,

1284
NOT, 24, 963
notequal calculation function, 167
NOUNAMEONDIM report writer command, 1285
NPV calculation function, 168
NUMBEROFSECFILEBACKUPS configuration

setting, 476
numbers in MaxL, 767
numeric value expressions as arguments to MDX

functions, 998, 1004, 1006, 1007, 1009, 1010, 1018,
1045, 1064, 1071, 1090, 1100, 1101, 1102, 1107,
1108, 1111, 1116, 1123, 1128, 1130, 1138, 1147,
1148, 1149, 1150

numeric value functions in MDX, 989
NUMERICPRECISION configuration setting, 477
NumToStr MDX function, 1115

O
OBJECT-NAME in MaxL, 767
objects (database files)

deleting in MaxL, 734
displaying in MaxL, 717
modifying in MaxL, 663

OFFCOLCALCS report writer command, 1285
OFFROWCALCS report writer command, 1286
OFSAMEGEN report writer command, 1286
ON COLUMNS/ON ROWS/ON PAGES etc, 949
ONCOLCALCS report writer command, 1287
ONROWCALCS report writer command, 1288
ONSAMELEVELAS report writer command, 1288
OpeningPeriod MDX function, 1115
operators

calculation, 303
in MDX, 963

OR, 24, 963
Order MDX function, 1116
ORDER report writer command, 1289
ORDERBY report writer command, 1291
Ordinal MDX function, 1117
OUTALT report writer command, 1293

OUTALTMBR report writer command, 1294
OUTALTNAMES report writer command, 1295
OUTALTSELECT report writer command, 1297
OUTFORMATTEDMISSING report writer

command, 1298
OUTFORMATTEDVALUES report writer command,

1298
outline

change log file size, 479
conversion to aggregate storage, 884
log of changes, 478
log of queries, 497
MDX formulas for aggregate storage outlines, 973
synchronization of partitioned outlines, 764
unlocking, 663
verification errors, 467

OUTLINECHANGELOG configuration setting, 478
OUTLINECHANGELOGFILESIZE configuration

setting, 479
OUTMBRALT report writer command, 1298
OUTMBRNAMES report writer command, 1300
OUTMEANINGLESS report writer command, 1300
output

generating report output, 1300
logging output of MaxL Shell, 833

OUTPUT command
ESSCMD, 590
report writer, 1300

OUTPUTMEMBERKEY report command, 1301

P
page breaks in reports

inserting, 1281
when PAGELENGTH is exceeded, 1251, 1346

page headings in reports
defining in place of current, 1338
displaying, 1256
displaying before next row, 1302
displaying immediately, 1261
ending definition of, 1249
suppressing, 1346
suppressing with other formatting, 1341

PAGE report writer command, 1301
PAGEHEADING report writer command, 1302
PAGELENGTH report writer command, 1304
PAGEONDIMENSION report writer command,

1304

A B C D E F G H I J K L M N O P Q R S T U V W X Z

1394 Index

pages in report writer
column headings, 1239
inserting, 1281
row formatting, 1319
setting center lines, 1325
setting max number of lines, 1304

parallel calculation, 338
ParallelPeriod MDX function, 1119
PARCALCMULTIPLEBITMAPMEMCHECK

configuration setting, 479
Parent function

in calculation scripts or formulas, 169
in MDX queries, 1119

PARENT report writer command, 1306
parents

adding to reports, 1306
Parentval calculation function, 170
partial calculations, 331
partitions

creating in MaxL, 691
deleting in MaxL, 735
displaying in MaxL, 718
modifying in MaxL, 664
using port numbers in host names, 923

PASSWORD in MaxL, 767
percent functions in MDX queries, 1007, 1148
performance statistics

output (ESSCMD), 572
output (MaxL), 758
settings (ESSCMD), 603
settings (MaxL), 649

period-to-date calculation function, 174
periods (in MDX queries), 1016, 1115, 1119, 1121,

1159
Periodstodate MDX function, 1121
Perl module, 841
PERSISTUSERATLOGIN configuration setting, 480
PERSPECTIVE report writer command, 1306
PIPEBUFFERSIZE configuration setting, 480
port numbers

in host names, 767
in partition host names, 923

PORTINC configuration setting, 481
PORTUSAGELOGINTERVAL configuration setting,

482
Power function

in calculation scripts or formulas, 171

in MDX queries, 1123
Preloadaliasnamespace configuration setting, 483
Preloadmembernamespace configuration setting,

483
PRELOADUDANAMESPACE configuration setting,

484
PrevMember MDX function, 1123
prevsibling calculation function, 171
PRINTROW report writer command, 1307
Prior calculation function, 172
Priors calculation function, 173
privileges

defined, 767
displaying in MaxL, 719
granting in MaxL, 750

PTD function
in calculation scripts or formulas, 174
in MDX queries, 1159

PYRAMIDHEADERS report writer command, 1308

Q
QRYGOVEXECBLK configuration setting, 485
QRYGOVEXECTIME configuration setting, 486
queries

against relational databases.. See Hybrid Analysis.
for data and metadata using MDX, 931
for database state using MaxL, 758
timing, 507
tracking, 1161

outline queries, 497
query (MaxL), 636
query limits

in MDX, 971
quotation marks

used with ESSCMD commands, 521
QUOTEMBRNAMES report writer command, 1309

R
railroad diagrams in MDX documentation, 624
Range calculation function, 175
range functions, 27
Rank calculation function, 177
Rdescendants calculation function, 178
RealValue function

in MDX queries, 1126
refresh (MaxL), 636

A B C D E F G H I J K L M N O P Q R S T U V W X Z

Index 1395

reiterating commands, 335
relationship functions

in calculator, 27
in MDX queries, 1000, 1015, 1020, 1032, 1053,

1075, 1076, 1082, 1089, 1119, 1130
Relative calculation function, 179
RelMemberRange MDX function, 1127
Remainder function

in calculation scripts or formulas, 180
in MDX queries, 1128

Remove calculation function, 181
REMOVECOLCALCS report writer command, 1310
RENAME report writer command, 1310
REPALIAS report writer command, 1311
REPALIASMBR report writer command, 1312
repeating commands, 335
REPLAYSECURITYOPTION configuration setting,

488
REPLICATIONASSUMEIDENTICALOUTLINE

configuration setting, 489
REPMBR report writer command, 1313
REPMBRALIAS report writer command, 1315
report layout commands, 1171
report scripts

delimiters in, 1170
running in MaxL, 743
syntax, 1170

Report Writer
command groups, 1171
overview, 1169
syntax, 1170

report writer command groups, 1171
reports

alias and member name display, 1171
column or row calculation, 1171
data ordering, 1171
data range, 1171
delimiters, 1170
format, 1171
layout, 1171
member selection/sorting, 1171
output, 1216
syntax, 1170

REPQUALMBR report writer command, 1316
RESTRICT report writer command, 1317
results for data mining

deleting, 918

displaying, 915
retrieval buffer

dynamic sizing, 514
Return calculation function, 182
Round function

in calculation scripts or formulas, 183
in MDX queries, 1130

row calculation commands, 1171
ROW report writer command, 1319
ROWREPEAT report writer command, 1320
rsiblings calculation function, 184
RTDEPCALCOPTIMIZE configuration setting, 490

S
Sancestval calculation function, 185
SAVEANDOUTPUT report writer command, 1321
SAVEROW report writer command, 1323
SCALE report writer command, 1324
SECFILEBACKUPINTERVAL configuration setting,

490
security file compaction

triggering by defragmentation percent, 491
triggering using MaxL, 668

security file export (MaxL), 749
security privileges

defined, 767
displaying in MaxL, 719
granting in MaxL, 750

Securityfilecompactionpercent configuration setting,
491

SELECT statements (MDX), 932
semicolon

used with ESSCMD commands, 521
serial calculation, 338
SERVERLEASEEXPIRATIONTIME configuration

setting, 492
SERVERLEASEMAXRETRYCOUNT configuration

setting, 492
SERVERLEASERENEWALTIME configuration

setting, 493
SERVERPORTBEGIN configuration setting, 493
SERVERPORTEND configuration setting, 494
SERVERTHREADS configuration setting, 496
SESSION-ID in MaxL, 767
sessions

displaying in MaxL, 720
stopping in MaxL, 668

A B C D E F G H I J K L M N O P Q R S T U V W X Z

1396 Index

sessions for data mining
displaying, 916
initiating, 911
stopping, 668

SET AGGMISSG calculation command, 336
SET CACHE calculation command, 337
SET CALCPARALLEL calculation command, 338
SET CALCTASKDIMS calculation command, 339
SET CCTRACKCALC calculation command, 341
SET CLEARUPDATESTATUS calculation command,

341
SET commands (overview), 336
SET COPYMISSINGBLOCK calculation command,

344
SET CREATEBLOCKONEQ calculation command,

346
SET CREATENONMISSINGBLK calculation

command, 345
SET DATAEXPORTOPTIONS calculation

command, 348
SET DATAIMPORTIGNORETIMESTAMP

calculation command, 356
SET EMPTYMEMBERSETS calculation command,

357
SET FRMLBOTTOMUP calculation command, 358
SET FRMLRTDYNAMIC calculation command, 358
set functions in MDX, 989
SET LOCKBLOCK calculation command, 359
SET MSG calculation command, 360
SET NOTICE calculation command, 363
SET REMOTECALC calculation command, 365
SET SCAPERSPECTIVE calculation command, 365
SET UPDATECALC calculation command, 366
SET UPTOLOCAL calculation command, 367
SETCENTER report writer command, 1325
SETROWOP report writer command, 1325
sets in MDX, 953

limits, 971
Share calculation function, 187
shared members

returning, 1099
Shift calculation function, 187
Shiftminus calculation function, 188
Shiftplus calculation function, 189
shiftsibling calculation function, 190
Siblings function

in MDX queries, 1130

siblings function
in calculation scripts or formulas, 191

Silentotlquery configuration setting, 497
SINGLECOLUMN report writer command, 1327
SIZE-STRING in MaxL, 767
SKIP report writer command, 1327
SKIPONDIMENSION report writer command, 1328
slicers in MDX, 952
SLN calculation function, 192
solve order in MDX queries, 954
SORTALTNAMES report writer command, 1329
SORTASC report writer command, 1331
SORTDESC report writer command, 1331
SORTGEN report writer command, 1333
SORTLEVEL report writer command, 1334
SORTMBRNAMES report writer command, 1336
SORTNONE report writer command, 1336
Sparentval calculation function, 193
sparse dimensions, calculating

calculating only, 309
parallel calculation and, 339

sparse formula calculation, 358
SPARSE report writer command, 1337
special characters in MaxL, 767
Spline calculation function, 195
SPLITARCHIVEFILE configuration setting, 497
spreadsheet

error messages, 503
logging queries, 1161
logging updates, 499, 500
optimized grid processing, 503
processing controls, 504
suppressing grid messages, 448
timing queries, 507

SQLFETCHERRORPOPUP configuration setting,
498

SSAUDIT configuration setting, 499
SSAUDITR configuration setting, 500
SSINVALIDTEXTDETECTION configuration

setting, 501
SSL configuration settings

AGENTSECUREPORT, 388
CLIENTPREFERREDMODE, 411
ENABLECLEARMODE, 439
ENABLESECUREMODE, 440
NETSSLHANDSHAKETIMEOUT, 474
SSLCIPHERSUITES, 502

A B C D E F G H I J K L M N O P Q R S T U V W X Z

Index 1397

WALLETPATH, 515
SSLCIPHERSUITES configuration setting, 502
SSLOGUNKNOWN configuration setting, 503
SSOPTIMIZEDGRIDPROCESSING config setting,

503
SSPROCROWLIMIT configuration setting, 504
STARTHEADING report writer command, 1338
statements in MaxL, 626
statistical calc functions, 27
status of clean/dirty blocks, 341
Stddev MDX function, 1132
StddevP MDX function, 1133
Stdev calculation function, 199
Stdevp calculation function, 200
Stdevrange calculation function, 201
Subset MDX function, 1136
substitution variables

adding in MaxL, 642, 653, 668
deleting in MaxL, 642, 653, 668
displaying in MaxL, 729
setting in MaxL, 642, 649, 653, 668
using "&" character with, 309, 1216

Substring calculation function, 203
SUDA report writer command, 1340
Sum function

in calculation scripts or formulas, 203
in MDX queries, 1138

sum functions in MDX queries, 1009, 1138, 1149
Sumrange calculation function, 204
SUPALL report writer command, 1341
SUPBRACKETS report writer command, 1343
SUPCOLHEADING report writer command, 1343
SUPCOMMAS report writer command, 1344
SUPCURHEADING report writer command, 1344
SUPEMPTYROWS report writer command, 1345
SUPEUROPEAN report writer command, 1345
SUPFEED report writer command, 1346
SUPFORMATS report writer command, 1346
SUPHEADING report writer command, 1346
SUPMASK report writer command, 1347
SUPMISSINGROWS report writer command, 1347
SUPNA configuration setting, 505
SUPNAMES report writer command, 1348
SUPOUTPUT report writer command, 1349
SUPPAGEHEADING report writer command, 1350
SUPSHARE report writer command, 1351
SUPSHAREOFF report writer command, 1352

SUPZEROROWS report writer command, 1353
SYD calculation function, 205
SYM report writer command, 1354
syntax

report script, 1170

T
TABDELIMIT report writer command, 1355
tablespaces

altering, 675
displaying, 885

tabs in reports, 1355
Tail MDX function, 1139
TARGETASOOPT configuration setting, 506
TARGETTIMESERIESOPT configuration setting,

507
templates for data mining

creating, 911
deleting, 919
displaying, 916

temporary variables in calculations
containing a single value, 368
one-dimensional array, 310

terminals in MaxL, 767
TEXT report writer command, 1356
threads

parallel calculation and, 338
time balance members, calculating

average, 311
first, 313
in MDX queries, 1016, 1090, 1115, 1119, 1121,

1159
last, 313

TIMINGMESSAGES configuration setting, 507
Todate function

in calculation scripts or formulas, 206
in MDX queries, 1142

TODATE report writer command, 1361
TOP report writer command, 1361
TopCount MDX function, 1147
TopPercent MDX function, 1148
TopSum MDX function, 1149
TRANSACTIONLOGDATALOADARCHIVE

configuration setting, 508
TRANSACTIONLOGLOCATION configuration

setting, 510
Trend calculation function, 210

A B C D E F G H I J K L M N O P Q R S T U V W X Z

1398 Index

TRIGGER-NAME in MaxL, 767
triggers

about, 927
creating in MaxL, 699
deleting in MaxL, 736
displaying in MaxL, 724
modifying in MaxL, 676

TRIGMAXMEMSIZE configuration setting, 511
Truncate function

in calculation scripts or formulas, 220
in MDX queries, 1150

TupleRange MDX function, 1150
tuples in MDX, 961
two-pass calculation, 314

U
UCHARACTERS report writer command, 1363
UCOLUMNS report writer command, 1364
UDA function

in calculation scripts or formulas, 220
in MDX queries, 1151

UDA report writer command, 1365
UDAs

using in calculation scripts or formulas, 117, 220
using in MDX queries, 964, 1083, 1151

UDATA report writer command, 1366
UNAME report writer command, 1367
UNAMEONDIMENSION report writer command,

1368
UNDERLINECHAR report writer command, 1369
underlining in reports

changed row member names in same dimension,
1368

characters in preceding row, 1363
data columns only, 1366
default, 1369
name and data columns, 1364
name columns only, 1367
turning off for new member names in same

dimension, 1285
UNDERSCORECHAR report writer command, 1370
Unicode, 1377
UNICODEAGENTLOG configuration setting, 512
Union MDX function, 1153
UNIX

locking files on, 446
UnixDate

MDX function, 1154
UPDATECALC configuration setting, 513
user sessions

displaying in MaxL, 720
stopping in MaxL, 668

USER-NAME in MaxL, 767
users

creating in MaxL, 702
deleting in MaxL, 736
displaying in MaxL, 725
modifying in MaxL, 676

UTF-8 conversion utility, 1377

V
Value MDX function, 1155
value without attribute association

MDX functions, 1126
VAR calculation command, 368
VARIABLE-NAME in MaxL, 767
variables

array variables, 310
temporary in calculations, 368

variance function
in calculation scripts or formulas

statistical variance, 222
variance as "difference", 221

Variancep calculation function, 223
Varper calculation function, 221
varying attributes

calculation function that returns base members
with varying attributes, 106

calculation function that returns members with
type of attribute, 225

calculation function that returns members with
type of varying attribute, 113

defining perspective in calculation scripts, 365
MDX function that returns members with attribute

based on perspective, 1003
MDX function that returns members with type of

varying attribute, 1158
Vlbreport configuration setting, 514
VOLUME-NAME in MaxL, 767

W
WALLETPATH configuration setting, 515
WIDTH report writer command, 1370

A B C D E F G H I J K L M N O P Q R S T U V W X Z

Index 1399

wild card search
MDX functions pertaining to, 1080

WITH section in MDX queries, 954
Withattr function

in calculation scripts or formulas, 225
in MDX queries, 1157

WITHATTR report writer command, 1372
WithattrEx function

in MDX queries, 1158
WITHATTREX report writer command, 1373

X
XML configuration

for query logging, 1162
XOLAPMAXNUMCONNECTION configuration

setting, 516
XOLAPSCHEMAVERIFICATION configuration

setting, 516, 517
XOLAPSQLIDLEPERIOD configuration setting, 518
Xrange calculation function, 227
Xref calculation function, 229
Xwrite calculation function, 232

Z
zero values in reports, 1374
ZEROTEXT report writer command, 1374

A B C D E F G H I J K L M N O P Q R S T U V W X Z

1400 Index

	Contents
	Documentation Accessibility
	Oracle Essbase Technical Reference Overview
	About the Oracle Essbase Technical Reference
	What You Should Know Before You Start
	Sample Applications
	Syntax Conventions

	About Aggregate Storage Databases

	Calculation Functions
	Calculation Functions Overview
	Generations and Levels
	Abbreviations

	Function Syntax
	Function Parameters
	Calculation Operators
	Mathematical Operators
	Conditional and Logical Operators
	Cross-Dimensional Operators

	Operation Results on #MISSING Values and Zero (0) Values
	Calculation Function Categories
	Boolean Functions
	Relationship Functions
	Mathematical Functions
	Member Set Functions
	Range and Financial Functions
	Allocation Functions
	Forecasting Functions
	Statistical Functions
	Date & Time Function
	Miscellaneous Functions
	Custom-defined Functions

	Calculation Function Reference
	@ABS
	@ACCUM
	@ALLANCESTORS
	@ALIAS
	@ALLOCATE
	@ANCEST
	@ANCESTORS
	@ANCESTVAL
	@ATTRIBUTE
	@ATTRIBUTEBVAL
	@ATTRIBUTESVAL
	@ATTRIBUTEVAL
	@AVG
	@AVGRANGE
	@BETWEEN
	@CALCMODE
	@CHILDREN
	@COMPOUND
	@COMPOUNDGROWTH
	@CONCATENATE
	@CORRELATION
	@COUNT
	@CURGEN
	@CURLEV
	@CURRMBR
	@CURRMBRRANGE
	@DATEDIFF
	@DATEPART
	@DATEROLL
	@DECLINE
	@DESCENDANTS
	@DISCOUNT
	@ENUMVALUE
	@EQUAL
	@EXP
	@EXPAND
	@FACTORIAL
	@FORMATDATE
	@GEN
	@GENMBRS
	@GROWTH
	@IALLANCESTORS
	@IANCESTORS
	@ICHILDREN
	@IDESCENDANTS
	@ILANCESTORS
	@ILDESCENDANTS
	@ILSIBLINGS
	@INT
	@INTEREST
	@IRDESCENDANTS
	@IRR
	@IRSIBLINGS
	@ISACCTYPE
	@ISANCEST
	@ISATTRIBUTE
	@ISCHILD
	@ISDESC
	@ISGEN
	@ISIANCEST
	@ISIBLINGS
	@ISICHILD
	@ISIDESC
	@ISIPARENT
	@ISISIBLING
	@ISLEV
	@ISMBR
	@ISMBRWITHATTR
	@ISPARENT
	@ISSAMEGEN
	@ISSAMELEV
	@ISSIBLING
	@ISUDA
	@LANCESTORS
	@LDESCENDANTS
	@LEV
	@LEVMBRS
	@LIKE
	@LIST
	@LN
	@LOG
	@LOG10
	@LSIBLINGS
	@MATCH
	@MAX
	@MAXRANGE
	@MAXS
	@MAXSRANGE
	@MBRCOMPARE
	@MBRPARENT
	@MDALLOCATE
	@MDANCESTVAL
	@MDPARENTVAL
	@MDSHIFT
	@MEDIAN
	@MEMBER
	@MERGE
	@MIN
	@MINRANGE
	@MINS
	@MINSRANGE
	@MOD
	@MODE
	@MOVAVG
	@MOVMAX
	@MOVMED
	@MOVMIN
	@MOVSUM
	@MOVSUMX
	@NAME
	@NEXT
	@NEXTS
	@NEXTSIBLING
	@NOTEQUAL
	@NPV
	@PARENT
	@PARENTVAL
	@POWER
	@PREVSIBLING
	@PRIOR
	@PRIORS
	@PTD
	@RANGE
	@RANK
	@RDESCENDANTS
	@RELATIVE
	@REMAINDER
	@REMOVE
	@RETURN
	@ROUND
	@RSIBLINGS
	@SANCESTVAL
	@SHARE
	@SHIFT
	@SHIFTMINUS
	@SHIFTPLUS
	@SHIFTSIBLING
	@SIBLINGS
	@SLN
	@SPARENTVAL
	@SPLINE
	@STDEV
	@STDEVP
	@STDEVRANGE
	@SUBSTRING
	@SUM
	@SUMRANGE
	@SYD
	@TODATE
	@TODATEEX
	@TODAY
	@TREND
	@TRUNCATE
	@UDA
	@VAR
	@VARPER
	@VARIANCE
	@VARIANCEP
	@WITHATTR
	@XRANGE
	@XREF
	@XWRITE

	Custom-Defined Calculation Functions
	Java Code Examples
	MaxL Registration Scripts

	Custom-Defined Macros
	Custom-Defined Macro Input Parameters
	Using Argument Values in Macro Definitions
	Directives Used in Custom-Defined Macros
	Macro Reference

	Calculation Commands
	Calculation Commands Overview
	Calculation Operators
	Mathematical Operators
	Conditional and Logical Operators
	Cross-Dimensional Operator

	Calculation Command Groups
	Conditional Commands
	Control Flow Commands
	Data Declaration Commands
	Functional Commands
	Member Formulas

	Calculation Command Reference
	&
	AGG
	ARRAY
	CALC ALL
	CALC AVERAGE
	CALC DIM
	CALC FIRST
	CALC LAST
	CALC TWOPASS
	CCONV
	CLEARBLOCK
	CLEARCCTRACK
	CLEARDATA
	DATACOPY
	DATAEXPORT
	DATAEXPORTCOND
	DATAIMPORTBIN
	ELSE
	ELSEIF
	ENDIF
	EXCLUDE…ENDEXCLUDE
	FIX…ENDFIX
	IF
	LOOP...ENDLOOP
	SET Commands
	SET AGGMISSG
	SET CACHE
	SET CALCPARALLEL
	SET CALCTASKDIMS
	SET CCTRACKCALC
	SET CLEARUPDATESTATUS
	SET COPYMISSINGBLOCK
	SET CREATENONMISSINGBLK
	SET CREATEBLOCKONEQ
	SET DATAEXPORTOPTIONS
	SET DATAIMPORTIGNORETIMESTAMP
	SET EMPTYMEMBERSETS
	SET FRMLBOTTOMUP
	SET FRMLRTDYNAMIC
	SET LOCKBLOCK
	SET MSG
	SET NOTICE
	SET REMOTECALC
	SET SCAPERSPECTIVE
	SET UPDATECALC
	SET UPTOLOCAL
	VAR

	Essbase.cfg Configuration Settings
	Configuration File Overview
	Configuring Essbase.cfg
	Essbase.cfg Setting Categorical List
	Backup and Recovery Configuration Settings
	Calculation Configuration Settings
	Data Import and Export Configuration Settings
	Hybrid Analysis Configuration Settings
	Failover Clustering Configuration Settings
	Logging and Error Handling Configuration Settings
	Memory Management Configuration Settings
	Miscellaneous Configuration Settings
	Partitioning Configuration Settings
	Ports and Connections Configuration Settings
	Query Management Configuration Settings
	Security File Configuration Settings
	SSL Configuration Settings

	Aggregate Storage and Block Storage Settings Comparison
	Configuration Settings Reference
	AGENTDELAY
	AGENTDESC
	AGENTDISPLAYMESSAGELEVEL
	AGENTLEASEEXPIRATIONTIME
	AGENTLEASEMAXRETRYCOUNT
	AGENTLEASERENEWALTIME
	AGENTLOGMESSAGELEVEL
	AGENTPORT
	AGENTSECUREPORT
	AGENTTHREADS
	AGGRESSIVEBLKOPTIMIZATION
	AGTMAXLOGFILESIZE
	AGTSVRCONNECTIONS
	APPMAXLOGFILESIZE
	APSRESOLVER
	ASOLOADBUFFERWAIT
	ASOSAMPLESIZEPERCENT
	AUTHENTICATIONMODULE
	CALCCACHE
	CALCCACHEHIGH
	CALCCACHEDEFAULT
	CALCCACHELOW
	CALCLIMITFORMULARECURSION
	CALCLOCKBLOCK
	CALCMODE
	CALCNOTICE
	CALCOPTFRMLBOTTOMUP
	CALCREUSEDYNCALCBLOCKS
	CALCPARALLEL
	CALCTASKDIMS
	CCTRACK
	CLEARLOGFILE
	CLIENTPREFERREDMODE
	CRASHDUMP
	DATACACHESIZE
	DATAERRORLIMIT
	DATAEXPORTENABLEBATCHINSERT
	DATAFILECACHESIZE
	DEFAULTLOGLOCATION
	DELAYEDRECOVERY
	DELIMITEDMSG
	DELIMITER
	DEXPSQLROWSIZE
	DIMBUILDERRORLIMIT
	DIMBUILDSTATSINTERVAL
	DIRECTIO
	DISABLEREPLMISSINGDATA
	DISKVOLUMES
	DISPLAYMESSAGELEVEL
	DLSINGLETHREADPERSTAGE
	DLTHREADSPREPARE
	DLTHREADSWRITE
	DYNCALCCACHEBLKRELEASE
	DYNCALCCACHEBLKTIMEOUT
	DYNCALCCACHECOMPRBLKBUFSIZE
	DYNCALCCACHEMAXSIZE
	DYNCALCCACHEONLY
	DYNCALCCACHEWAITFORBLK
	ENABLE_DIAG_TRANSPARENT_PARTITION
	ENABLECLEARMODE
	ENABLESECUREMODE
	ENABLESWITCHTOBACKUPFILE
	ESSBASEFAILOVERTRACELEVEL
	ESSBASESERVERHOSTNAME
	EXCEPTIONLOGOVERWRITE
	EXCLUSIVECALC
	EXPORTTHREADS
	FAILOVERMODE
	FILELOCKINGMODE
	FORCEALLDENSECALCON2PASSACCOUNTS
	FORCEGRIDEXPANSION
	GRIDEXPANSION
	GRIDEXPANSIONMESSAGES
	HAENABLE
	HAMAXNUMCONNECTION
	HAMAXNUMSQLQUERY
	HAMAXQUERYROWS
	HAMAXQUERYTIME
	HAMEMORYCACHESIZE
	HARAGGEDHIERARCHY
	HARETRIEVENUMROW
	HASOURCEDSNOS390
	HISLEVELDRILLTHROUGH
	IBHFIXTHRESHOLD
	IDMIGRATION
	IMPLIED_SHARE
	INCRESTRUC
	INDEXCACHESIZE
	JVMMODULELOCATION
	LOCKTIMEOUT
	LOGINFAILUREMESSAGEDETAILED
	LOGMESSAGELEVEL
	LROONSHAREDMBR
	MAXERRORMBRVERIFYREPORT
	MAXFORMULACACHESIZE
	MAXLOGINS
	MAX_REQUEST_GRID_SIZE
	MAX_RESPONSE_GRID_SIZE
	MDXFORMULARECURSIONLIMIT
	MEMSCALINGFACTOR
	MULTIPLEBITMAPMEMCHECK
	NETBINDRETRYDELAY
	NETDELAY
	NETRETRYCOUNT
	NETSSLHANDSHAKETIMEOUT
	NETTCPCONNECTRETRYCOUNT
	NOMSGLOGGINGONDATAERRORLIMIT
	NUMBEROFSECFILEBACKUPS
	NUMERICPRECISION
	OUTLINECHANGELOG
	OUTLINECHANGELOGFILESIZE
	PARCALCMULTIPLEBITMAPMEMOPT
	PERSISTUSERATLOGIN
	PIPEBUFFERSIZE
	PORTINC
	PORTUSAGELOGINTERVAL
	PRELOADALIASNAMESPACE
	PRELOADMEMBERNAMESPACE
	PRELOADUDANAMESPACE
	QRYGOVEXECBLK
	QRYGOVEXECTIME
	REPLAYSECURITYOPTION
	REPLICATIONASSUMEIDENTICALOUTLINE
	RTDEPCALCOPTIMIZE
	SECFILEBACKUPINTERVAL
	SECURITYFILECOMPACTIONPERCENT
	SERVERLEASEEXPIRATIONTIME
	SERVERLEASEMAXRETRYCOUNT
	SERVERLEASERENEWALTIME
	SERVERPORTBEGIN
	SERVERPORTEND
	SERVERTHREADS
	SILENTOTLQUERY
	SPLITARCHIVEFILE
	SQLFETCHERRORPOPUP
	SSAUDIT
	SSAUDITR
	SSINVALIDTEXTDETECTION
	SSLCIPHERSUITES
	SSLOGUNKNOWN
	SSOPTIMIZEDGRIDPROCESSING
	SSPROCROWLIMIT
	SUPNA
	TARGETASOOPT
	TARGETTIMESERIESOPT
	TIMINGMESSAGES
	TRANSACTIONLOGDATALOADARCHIVE
	TRANSACTIONLOGLOCATION
	TRIGMAXMEMSIZE
	UNICODEAGENTLOG
	UPDATECALC
	VLBREPORT
	WALLETPATH
	XOLAPENABLEHEURISTICS
	XOLAPMAXNUMCONNECTION
	XOLAPSCHEMAVERIFICATION
	XOLAPSQLIDLEPERIOD

	ESSCMD Commands
	ESSCMD Overview
	ESSCMD Getting Started
	Starting ESSCMD
	Canceling ESSCMD Operations
	Quitting ESSCMD

	ESSCMD Syntax Guidelines
	Quotation Marks in ESSCMD
	ESSCMD Semicolon Statement Terminator
	Referencing Files

	ESSCMD Batch Processing
	Writing Script Files
	Running Script Files
	Handling Command Errors in a Script File
	Sample Script Files
	Writing Batch Files
	Handling Command Errors in Batch Files

	ESSCMD Interactive Mode
	Logging On to Essbase Server
	Entering Commands
	Canceling Operations

	ESSCMD Command Groups
	Using ESSCMD
	Application and Database Administration
	User and Group Security
	Security Filters and Locks
	Database Objects
	Outline and Attribute Information
	Dimension Building
	Data Loading, Clearing, and Exporting
	Calculating
	Reporting
	Partitioning
	Outline Synchronization
	Error and Log Handling
	Currency Conversion Information
	Location Aliases
	Substitution Variables
	Aliases
	Integrity, Performance
	Backing Up

	ESSCMD Command Reference
	ADDUSER
	APPLYOTLCHANGEFILE
	APPLYOTLCHANGEFILEEX
	BEGINARCHIVE
	BEGININCBUILDDIM
	BUILDDIM
	CALC
	CALCDEFAULT
	CALCLINE
	COPYAPP
	COPYDB
	COPYFILTER
	COPYOBJECT
	CREATEAPP
	CREATEDB
	CREATEGROUP
	CREATELOCATION
	CREATEUSER
	CREATEVARIABLE
	DELETEAPP
	DELETEDB
	DELETEGROUP
	DELETELOCATION
	DELETELOG
	DELETEUSER
	DELETEVARIABLE
	DISABLELOGIN
	DISPLAYALIAS
	ENABLELOGIN
	ENDARCHIVE
	ENDINCBUILDDIM
	ESTIMATEFULLDBSIZE
	EXIT
	EXPORT
	GETALLREPLCELLS
	GETAPPACTIVE
	GETAPPINFO
	GETAPPSTATE
	GETATTRIBUTESPECS
	GETATTRINFO
	GETCRDB
	GETCRDBINFO
	GETCRRATE
	GETCRTYPE
	GETDBACTIVE
	GETDBINFO
	GETDBSTATE
	GETDBSTATS
	GETDEFAULTCALC
	GETMBRCALC
	GETMBRINFO
	GETMEMBERS
	GETPARTITIONOTLCHANGES
	GETPARTITIONOTLCHANGESEX
	GETPERFSTATS
	GETUPDATEDREPLCELLS
	GETUSERINFO
	GETVERSION
	GOTO
	IFERROR
	IMPORT
	INCBUILDDIM
	LISTALIASES
	LISTAPP
	LISTDB
	LISTFILES
	LISTFILTERS
	LISTGROUPS
	LISTGROUPUSERS
	LISTLINKEDOBJECTS
	LISTLOCATIONS
	LISTLOCKS
	LISTLOGINS
	LISTOBJECTS
	LISTUSERS
	LISTVARIABLES
	LOADALIAS
	LOADAPP
	LOADDATA
	LOADDB
	LOGIN
	LOGOUT
	LOGOUTALLUSERS
	LOGOUTUSER
	OUTPUT
	PAREXPORT
	PRINTPARTITIONDEFFILE
	PURGELINKEDOBJECTS
	PURGEOTLCHANGEFILE
	PUTALLREPLCELLS
	PUTUPDATEDREPLCELLS
	REMOVELOCKS
	REMOVEUSER
	RENAMEAPP
	RENAMEDB
	RENAMEFILTER
	RENAMEOBJECT
	RENAMEUSER
	REPORT
	REPORTLINE
	RESETDB
	RESETOTLCHANGETIME
	RESETPERFSTATS
	RESETSTATUS
	RUNCALC
	RUNREPT
	SELECT
	SETALIAS
	SETAPPSTATE
	SETDBSTATE
	SETDBSTATEITEM
	SETDEFAULTCALC
	SETDEFAULTCALCFILE
	SETLOGIN
	SETMSGLEVEL
	SETPASSWORD
	SHUTDOWNSERVER
	SLEEP
	UNLOADALIAS
	UNLOADAPP
	UNLOADDB
	UNLOCKOBJECT
	UPDATE
	UPDATEBAKFILE
	UPDATEFILE
	UPDATEVARIABLE
	VALIDATE
	VALIDATEPARTITIONDEFFILE

	MaxL
	Overview of MaxL and MDX
	How to Read MaxL Railroad Diagrams
	Anatomy of MaxL Statements
	Railroad Diagram Symbols
	Sample Railroad Diagram

	MaxL Data Definition Language (DDL)
	MaxL Statements
	Performance Statistics in MaxL
	Listed By Verbs
	Listed by Objects
	MaxL Statement Reference
	Alter Application
	Alter Database
	Alter Database enable | disable
	Alter Database Set
	Alter Database (Misc)
	Alter Database (disk volumes)
	Alter Drillthrough
	Alter Filter
	Alter Group
	Alter Object
	Alter Partition
	Alter Session
	Alter System
	Alter Tablespace
	Alter Trigger
	Alter User
	Create Application
	Create Calculation
	Create Database
	Create Drillthrough
	Create Filter
	Create Function
	Create Group
	Create Location Alias
	Create Macro
	Create Partition
	Create Linked Partition
	Create Replicated Partition
	Create Transparent Partition
	Create Trigger
	Create After-Update Trigger
	Create On-Update Trigger
	Create User
	Deploy
	Display Application
	Display Calculation
	Display Database
	Display Disk Volume
	Display Drillthrough
	Display Filter
	Display Filter Row
	Display Function
	Display Group
	Display Location Alias
	Display Lock
	Display Macro
	Display Object
	Display Partition
	Display Privilege
	Display Session
	Display System
	Display Trigger
	Display Trigger Spool
	Display User
	Display Variable
	Drop Application
	Drop Calculation
	Drop Database
	Drop Drillthrough
	Drop Filter
	Drop Function
	Drop Group
	Drop Location Alias
	Drop Lock
	Drop Macro
	Drop Object
	Drop Partition
	Drop Trigger
	Drop Trigger Spool
	Drop User
	Execute Calculation
	Execute Aggregate Process
	Execute Aggregate Build
	Execute Aggregate Selection
	Export Data
	Export LRO
	Export Outline
	Export Security File
	Grant
	Import Data
	Import Dimensions
	Import LRO
	Query Archive_File
	Query Database
	Refresh Custom Definitions
	Refresh Outline
	Refresh Replicated Partition

	MaxL Definitions
	MaxL Syntax Notes
	Numbers in MaxL Syntax
	Terminals
	Privileges and Roles
	Quoting and Special Characters Rules for MaxL Language

	MaxL Shell Commands
	Overview of MaxL Shell
	MaxL Shell Invocation
	MaxL Shell Syntax Rules and Variables
	MaxL Shell and Unicode
	MaxL Shell Command Reference

	MaxL Perl Module
	Installation Help
	Functions
	Perl Scripting Examples

	ESSCMD Script Conversion
	ESSCMD Script Utility Usage
	Things to Note About the ESSCMD Script Utility
	ESSCMD to MaxL Mapping

	Reserved Words List
	MaxL Statements (Aggregate Storage)
	Alter Application (Aggregate Storage)
	Alter Database (Aggregate Storage)
	Alter System (Aggregate Storage)
	Create Application (Aggregate Storage)
	Create Database (Aggregate Storage)
	Create Outline (Aggregate Storage)
	Display Tablespace
	Execute Allocation
	Execute Calculation (Aggregate Storage)
	Export Data (Aggregate Storage)
	Import Data (Aggregate Storage)
	Query Application (Aggregate Storage)
	Query Database (Aggregate Storage)

	Outline Paging Dimension Statistics
	Aggregate Storage Runtime Statistics
	MaxL Statements for Data Mining
	Data Mining Algorithms
	Data Mining Transformations
	Mining Models
	Mining Results
	Mining Task Templates
	Mining Sessions
	Data Mining Statements Listed by Verbs
	Data Mining Statements Listed by Objects
	Data Mining Statements
	Create Algorithm
	Create Mining Task Template
	Create Model
	Create Mining Result
	Create Transformation
	Display Algorithm
	Display Mining Result
	Display Mining Session
	Display Mining Task Template
	Display Mining Model
	Display Transformation
	Drop Algorithm
	Drop Mining Result
	Drop Mining Task Template
	Drop Model
	Drop Transformation
	Export Mining Model

	MaxL Use Cases
	Creating an Aggregate Storage Sample Using MaxL
	Loading Data Using Buffers
	Using Aggregate Storage Data Load Buffers
	Specifying Port Numbers in Partition Host Names
	Using Host Name Aliases When Partitioning
	Partitioning and SSL
	Forcing Deletion of Partitions
	Metadata Filtering
	Examples of Triggers

	MDX
	Overview of MDX
	MDX Query Format
	MDX Syntax and Grammar Rules
	Understanding BNF Notation
	MDX Grammar Rules
	MDX Syntax for Specifying Duplicate Member Names and Aliases
	MDX Axis Specifications
	MDX Slicer Specification
	MDX Cube Specification
	MDX Set Specification
	MDX With Section
	MDX Dimension Specification
	MDX Layer Specification
	MDX Member Specification
	MDX Hierarchy Specification
	MDX Tuple Specification
	MDX Create Set / Delete Set

	MDX Operators
	About MDX Properties
	MDX Intrinsic Properties
	MDX Custom Properties
	MDX Optimization Properties
	Querying for Member Properties in MDX
	The Value Type of MDX Properties
	MDX NULL Property Values

	MDX Comments
	MDX Query Limits
	Aggregate Storage and MDX Outline Formulas
	MDX Functions
	MDX Functions that Return a Member
	MDX Functions that Return a Set
	MDX Functions that Return a Tuple
	MDX Functions that Return a Number
	MDX Functions that Return a Dimension
	MDX Functions that Return a Layer
	MDX Functions that Return a Boolean
	MDX Functions that Return a Date
	MDX Functions that Return a String

	MDX Function Reference
	Abs
	Aggregate
	Ancestor
	Ancestors
	Attribute
	AttributeEx
	Avg
	BottomCount
	BottomPercent
	BottomSum
	Case
	CellValue
	Children
	ClosingPeriod
	CoalesceEmpty
	Concat
	Contains
	Count
	Cousin
	CrossJoin
	CurrentMember
	CurrentTuple
	DateDiff
	DatePart
	DateRoll
	DateToMember
	DefaultMember
	Descendants
	Distinct
	Dimension
	DrilldownByLayer
	DrilldownMember
	DrillupByLayer
	DrillupMember
	DTS
	EnumText
	EnumValue
	Except
	Exp
	Extract
	Factorial
	Filter
	FirstChild
	FirstSibling
	FormatDate
	Generate
	Generation
	Generations
	GetFirstDate
	GetFirstDay
	GetLastDate
	GetLastDay
	GetNextDay
	GetRoundDate
	Head
	Hierarchize
	IIF
	InStr
	Int
	Intersect
	Is
	IsAccType
	IsAncestor
	IsChild
	IsEmpty
	IsGeneration
	IsLeaf
	IsLevel
	IsMatch
	IsSibling
	IsUda
	IsValid
	Item
	JulianDate
	Lag
	LastChild
	LastPeriods
	LastSibling
	Lead
	Leaves
	Left
	Len
	Level
	Levels
	LinkMember
	Ln
	Log
	Log10
	Lower
	LTrim
	Max
	Median
	MemberRange
	Members
	Min
	Mod
	NextMember
	NonEmptyCount
	NonEmptySubset
	NTile
	NumToStr
	OpeningPeriod
	Order
	Ordinal
	ParallelPeriod
	Parent
	Percentile
	PeriodsToDate
	Power
	PrevMember
	Rank
	RealValue
	RelMemberRange
	Remainder
	Right
	Round
	RTrim
	Siblings
	Stddev
	Stddevp
	StrToMbr
	StrToNum
	Subset
	Substring
	Sum
	Tail
	Todate
	TodateEx
	Today
	TopCount
	TopPercent
	TopSum
	Truncate
	TupleRange
	Uda
	Union
	UnixDate
	Upper
	Value
	WithAttr
	WithAttrEx
	xTD

	Query Logging Configuration
	Query Logging Overview
	Query Logging Settings Procedure
	Query Log Settings File Syntax
	Query Logging Sample File
	Query Logging Sample Output

	Report Writer Commands
	Report Writer Overview
	Report Writer Syntax
	Report Delimiters
	Syntax Guidelines
	Referencing Static Members

	Report Writer Command Groups
	Report Layout Commands
	Data Range Commands
	Data Ordering Commands
	Member Selection and Sorting Commands
	Format Commands
	Column or Row Calculation Commands
	Member Names and Aliases

	Examples of Report Scripts
	Sample 1: Creating a Different Format for Each Page
	Sample 2: Handling Missing Values
	Sample 3: Nesting Columns
	Sample 4: Grouping Rows
	Sample 5: Reporting on Different Combinations of Data
	Sample 6: Formatting Different Combinations of Data
	Sample 7: Using Aliases
	Sample 8: Creating Custom Headings and % Characters
	Sample 9: Creating Custom Page Headings
	Sample 10: Using Formulas
	Sample 11: Placing Two-Page Layouts on the Same Page
	Sample 12: Formatting for Data Export
	Sample 13: Creating Asymmetric Columns
	Sample 14: Calculating Columns
	Sample 15: Calculating Rows
	Sample 16: Sorting by Top or Bottom Data Values
	Sample 17: Restricting Rows
	Sample 18: Ordering Data Values
	Sample 19: Narrowing Member Selection Criteria
	Sample 20: Using Attributes in Member Selection
	Sample 21: Using the WITHATTR Command in Member Selection

	Report Writer Command Reference
	&
	!
	ACCOFF
	ACCON
	AFTER
	ALLINSAMEDIM
	ALLSIBLINGS
	ANCESTORS
	ASYM
	ATTRIBUTE
	ATTRIBUTEVA
	BEFORE
	BLOCKHEADERS
	BOTTOM
	BRACKETS
	CALCULATE COLUMN
	CALCULATE ROW
	CHILDREN
	CLEARALLROWCALC
	CLEARROWCALC
	COLHEADING
	COLUMN
	COMMAS
	CURHEADING
	CURRENCY
	DATEFORMAT
	DECIMAL
	DESCENDANTS
	DIMBOTTOM
	DIMEND
	DIMTOP
	DUPLICATE
	ENDHEADING
	EUROPEAN
	FEEDON
	FIXCOLUMNS
	FORMATCOLUMNS
	GEN
	HYBRIDANALYSISON
	HYBRIDANALYSISOFF
	HEADING
	IANCESTORS
	ICHILDREN
	IDESCENDANTS
	IMMHEADING
	INCEMPTYROWS
	INCFORMATS
	INCMASK
	INCMISSINGROWS
	INCZEROROWS
	INDENT
	INDENTGEN
	IPARENT
	LATEST
	LEAVES
	LEV
	LINK
	LMARGIN
	MASK
	MATCH
	MATCHEX
	MEANINGLESSTEXT
	MISSINGTEXT
	NAMESCOL
	NAMESON
	NAMEWIDTH
	NEWPAGE
	NOINDENTGEN
	NOPAGEONDIMENSION
	NOROWREPEAT
	NOSKIPONDIMENSION
	NOUNAMEONDIM
	OFFCOLCALCS
	OFFROWCALCS
	OFSAMEGEN
	ONCOLCALCS
	ONROWCALCS
	ONSAMELEVELAS
	ORDER
	ORDERBY
	OUTALT
	OUTALTMBR
	OUTALTNAMES
	OUTALTSELECT
	OUTFORMATTEDMISSING
	OUTFORMATTEDVALUES
	OUTMBRALT
	OUTMBRNAMES
	OUTMEANINGLESS
	OUTPUT
	OUTPUTMEMBERKEY
	PAGE
	PAGEHEADING
	PAGELENGTH
	PAGEONDIMENSION
	PARENT
	PERSPECTIVE
	PRINTROW
	PYRAMIDHEADERS
	QUOTEMBRNAMES
	REMOVECOLCALCS
	RENAME
	REPALIAS
	REPALIASMBR
	REPMBR
	REPMBRALIAS
	REPQUALMBR
	RESTRICT
	ROW
	ROWREPEAT
	SAVEANDOUTPUT
	SAVEROW
	SCALE
	SETCENTER
	SETROWOP
	SINGLECOLUMN
	SKIP
	SKIPONDIMENSION
	SORTALTNAMES
	SORTASC
	SORTDESC
	SORTGEN
	SORTLEVEL
	SORTMBRNAMES
	SORTNONE
	SPARSE
	STARTHEADING
	SUDA
	SUPALL
	SUPBRACKETS
	SUPCOLHEADING
	SUPCOMMAS
	SUPCURHEADING
	SUPEMPTYROWS
	SUPEUROPEAN
	SUPFEED
	SUPFORMATS
	SUPHEADING
	SUPMASK
	SUPMISSINGROWS
	SUPNAMES
	SUPOUTPUT
	SUPPAGEHEADING
	SUPSHARE
	SUPSHAREOFF
	SUPZEROROWS
	SYM
	TABDELIMIT
	TEXT
	TODATE
	TOP
	UCHARACTERS
	UCOLUMNS
	UDA
	UDATA
	UNAME
	UNAMEONDIMENSION
	UNDERLINECHAR
	UNDERSCORECHAR
	WIDTH
	WITHATTR
	WITHATTREX
	ZEROTEXT

	Essbase Unicode File Utility
	Essbase Unicode File Utility Overview
	Types of Encoding Indicators
	Determining Whether to Use UTF-8 or Non-Unicode Text Files
	When to Use the Essbase Unicode File Utility
	Essbase Unicode File Utility Syntax

	Index

