
O R A C L E ® H Y P E R I O N F I N A N C I A L M A N A G E M E N T ,
F U S I O N E D I T I O N

R E L E A S E 1 1 . 1 . 1 . 3

L I B R A R Y O F F U N C T I O N S

Financial Management Library of Functions, 11.1.1.3

Copyright © 2000, 2009, Oracle and/or its affiliates. All rights reserved.

Authors: EPM Information Development Team

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable: U.S. GOVERNMENT RIGHTS: Programs, software, databases, and related
documentation and technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government
contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal
injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim
any liability for any damages caused by use of this software in dangerous applications.

This software and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with
respect to third party content, products and services. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third party content, products or services.

Contents

Chapter 1. Library of Functions Overview . 5

Chapter 2. Management Reporting Functions . 7

Custom Functions . 7

Average . 7

Cumulative . 9

Difference . 12

DSO - Days Sales Outstanding . 13

Opening . 16

Rate . 17

Chapter 3. Business Rules Functions . 23

Custom Functions . 23

Custom_Alloc . 23

Increase_Decrease . 26

Pro_Rata_Ratio . 28

Spread . 29

Units_Rates . 31

Contents iii

iv Contents

1
Library of Functions Overview

The following custom functions are available for Oracle Hyperion Financial Management,
Fusion Edition. This library of functions contains management reporting functions as well as
planning functions.

The scope of this library is limited to the available internal HS functions that are implemented
for Oracle Hyperion Financial Management, Fusion Edition.

Included are two sample VB Script rules files for these functions: one for management reporting
functions and one for planning functions. You can copy and paste the relevant functions from
the sample rules files to your own rules files.

Each custom function includes a short description, the type of function, the return value, the
syntax, a detailed description, an example, and a sample script.

If you need to modify the custom function, you should copy the custom function provided and
rename the function before making the changes.

Table 1 Management Reporting Functions

Custom Function Description Syntax Function Type
Hyperion Enterprise
Equivalent

Average Calculates the
financial average

Average (POV,
Periods)

Function AVE A12

Cumulative Accumulates
amounts from prior
periods

Cumulative (POV,
View, NumPeriod)

Function CUM CTD YTD

Difference Calculates the
difference between
current and opening

Difference (POV,
View)

Function DIF DFB

DSO Calculates the days
sales are
outstanding

DSO (DSO, Debtor,
Sales, DIP)

Procedure Procedure

Opening Carries opening
balances forward

Opening (POV, View) Function OPE BASE
BASEFLOW

Rate Gets the relative
exchange rate

Rate (ExchangeRate,
Triangulation
Currency)

Function CrossRate

5

Table 2 Planning Functions

Custom Function Description Parameters Function Type

Units_Rates Units * rates (C=A*B) Unit_Rates (Description,
Units, Rates)

Procedure

Custom_Alloc Allocates in the custom
dimension

Custom_Alloc
(Destination, Source,
Factor, FactorN, FactorD,
Elimination)

Procedure

Increase_Decrease Increases or decreases the
account by a percentage

Increase_Decrease
(Destination, Source,
Factor, Scale, Inverse)

Procedure

Pro_Rata_Ratio The ratio between 2
accounts

Pro_Rata_Ratio
(Destination, SourceN,
SourceD)

Procedure

Spread Spreads the total amount
among all periods in the
year

Spread (Destination,
Source, Factor, FactorN,
FactorD, Temp, Per)

Procedure

6 Library of Functions Overview

2
Management Reporting

Functions

In This Chapter

Custom Functions ... 7

The management reporting custom functions are described in this section.

Custom Functions
The custom functions are listed in alphabetical order. The following information is provided
for each custom function:

l A short and detailed description

l A return value, if any

l A syntax

l An example using the function

l A sample script

Average
Calculates the average value for a specified fully defined account (Acc/C1/C2/C3/C4/ICP) across
a number of periods.

Return Value
Returns a string of characters representing the correct expression to be used as part of the HS.EXP
function.

Syntax
Average (PointOfView, Periods)

Custom Functions 7

Table 3 Syntax of Average Function

Parameter Valid Values

PointOfView Valid combination of the RHS dimension which includes Account, Custom1….4, ICP members. For
example, "A#CASH.C1#[None].I#[ICP Top]"

For flow type accounts, the function will average only the periodic value.

Periods It must be one of the three possible values:

"YTD" - User specifies the year-to-date option to average the cumulative data from period one in the
current year.

"Periodic" - User specifies the periodic option to average the current and immediately prior period in
the current year only. For the first period this value will be the same as the source.

"[any whole positive number]" - User specifies a number of periods over which the average is to be
calculated. For a rolling year average in a monthly category, the user would specify "12" here.

Detailed Description
This function calculates the average value of a given account over a specified number of prior
periods. If the source is a balance type account, the average is based on the entered data. If the
source is a flow type account, the average is based on the periodic data only.

The Average value will be derived differently based on the Periods parameter passed to the
function.

l If the Periods parameter is "YTD", the average value will be the sum of all periods in the
current year up to the current divided by the current period number.

l If the Periods parameter is "Periodic", the average value will be the sum of the current and
immediately prior periods divided by 2. If the current period is the first period of the year,
the average value will be the same value as the source.

l If the Periods parameter is a number, the average value will be the sum of the current and
each preceding period for the specified number of periods, divided by the specified number.

Example
The account SALES will return the following values for Jan, Feb, and Mar, 2001 depending on
the Periods parameter used in the Average custom function. The default view set for the scenario
being processed is YTD.

Table 4 Example of Average Function

Account Oct2000 Nov2000 Dec2000 Jan2001 Feb2001 Mar2001

A#Sales 9,000 10,500 11,700 800 1,900 3,200

Average(“A#
Sales”, “YTD”)

N/A N/A N/A 800 950 1,067

8 Management Reporting Functions

Account Oct2000 Nov2000 Dec2000 Jan2001 Feb2001 Mar2001

Average(“A#
Sales”,
“Periodic”)

N/A N/A N/A 800 950 1,200

Average(“A#
Sales, “3”)

N/A N/A N/A 1,167 1,033 1,067

Sample Script

' sample statement written in the calling routine
Sub Calculate()
Hs.Exp "A#AVG_SALES = " & Average("A#Sales", "12")
End Sub
' programming of the AVERAGE function
FUNCTION Average(strPOV,strPERIOD)
DIM nPERIOD
DIM strCUM
DIM i
strPOV = UCASE(strPOV)
strPERIOD = UCASE(strPERIOD)
IF strPERIOD = "PERIODIC" THEN
IF HS.PERIOD.ISFIRST = TRUE THEN
nPERIOD = 1
ELSE
 nPERIOD = 2
END IF
ELSEIF strPERIOD = "YTD" THEN
nPERIOD = HS.PERIOD.NUMBER()
ELSEIF CINT(strPERIOD) > 0 THEN
nPERIOD = CINT(strPERIOD)
ELSE
EXIT FUNCTION
END IF
FOR i = 0 TO nPERIOD-1
IF i = 0 THEN
strCUM = strPOV &".W#PERIODIC"
ELSE
strCUM = strCUM &"+"& strPOV &".W#PERIODIC.P#CUR-"&i
END IF
NEXT
Average = "(("& strCUM &")/"& nPERIOD &")"
END FUNCTION

Cumulative
Calculates the total of the preceding period’s values for a specified account.

Return Value
Returns a string of characters representing the correct expression to be used as part of the HS.EXP
function.

Custom Functions 9

Syntax
Cumulative (PointOfView, View, NumPeriod)

Table 5 Syntax of Cumulative Function

Parameter Valid Values

PointOfView Valid combination of the RHS dimension which includes Account, Custom1….4, ICP members. For
example, "A#CASH.C1#[None].I#[ICP Top]"

View It must be one of the 3 possible values:

" " (double quote) - Based on the default view defined for the scenario being processed (either YTD or
Periodic).

"YTD" - User specifies the Year-to-date option, which overrides the default view set for the scenario.

"Periodic" - User specifies the periodic option, which overrides the default view set for the scenario.

NumPeriod A whole number representing the number of periods in the current scenario to accumulate, starting
with the current period.

If NumPeriod is 0 or negative, the function will aggregate from the beginning of the current year.

Detailed Description
This function calculates the sum of either the periods specified or calculates the sum year to date
for the specified account. By default, the view of the data accumulated will be the scenario default;
however, the user may wish to override this for flow type accounts.

l If the View parameter is "YTD", the function will accumulate the year-to-date values.

l If the View parameter is "Periodic", the function will accumulate the periodic values.

l If the View parameter is blank (" "), the function will accumulate the data using the scenario
default view.

Example
The account CASH will return the following values for Jan, Feb, and Mar, 2001 depending on
the Number parameter used in the Cumulative function.

The account SALES will return the following values for Jan, Feb, and Mar, 2001 depending on
both the View and Number parameters used in the Cumulative function. The default view set
for the scenario being processed is YTD.

Table 6 Example of Cumulative Function

Account Oct2000 Nov2000 Dec2000 Jan2001 Feb2001 Mar2001

A#Cash 1,000 1,500 1,200 800 1,100 1,300

Cumulative(“
A#Cash”, “”,
0)

N/A N/A N/A 800 1,900 3,200

10 Management Reporting Functions

Account Oct2000 Nov2000 Dec2000 Jan2001 Feb2001 Mar2001

Cumulative(“
A#Cash”, “”,
3)

N/A N/A N/A 3,500 3,100 3,200

A#Sales 9,000 10,500 11,700 800 1,900 3,200

Cumulative(“
A#Sales”, “”,
0)

N/A N/A N/A 800 2,700 5,900

Cumulative(“
A#Sales”,
“Periodic”,0)

N/A N/A N/A 800 1,900 3,200

Cumulative(“
A#Sales”,
“Periodic”,3)

N/A N/A N/A 3,500 3,100 3,200

Sample Script

' sample statement written in the calling routine
Sub Calculate()
HS.EXP "A#TOT_Cash ="&Cumulative("A#Cash"," ",0)
End Sub
' programming of the Cumulative function
Function Cumulative(StrPov, StrVIEW, nPERIOD)
DIM strCUM
DIM i
IF nPERIOD <= 0 THEN
nPERIOD = HS.PERIOD.NUMBER() - 1
ELSE
nPERIOD = nPERIOD - 1
END IF
IF strVIEW = "" THEN
strVIEW = HS.SCENARIO.DEFAULTVIEW(“”)
END IF
strPOV = UCASE(strPOV)
strVIEW = UCASE(strVIEW)
IF strVIEW = "PERIODIC" THEN
strVIEW = ".W#PERIODIC"
ELSEIF strVIEW = "YTD" THEN
strVIEW = ".W#YTD"
ELSE
EXIT FUNCTION
END IF
FOR i = 0 TO nPERIOD
IF i = 0 THEN
strCUM = strPOV & strVIEW
ELSE
strCUM = strCUM &"+"& strPOV & strVIEW &".P#CUR-"&i
END IF
NEXT
 Cumulative = "("& strCUM &")"
END FUNCTION

Custom Functions 11

Difference
Calculates the difference between the current period value and the opening value.

Return Value
Returns a string of characters representing the correct expression to be used as part of the HS.EXP
function.

Syntax
Difference (PointOfView, View)

Table 7 Syntax of Difference Function

Parameter Valid Values

PointOfView Valid combination of the RHS dimension which includes Account, Custom1….4, ICP members. For
example, "A#CASH.C1#[None].I#[ICP Top]"

View It must be one of the 3 possible values:

" " (double quote) - Based on the default view defined for the scenario being processed (either YTD or
Periodic).

"YTD" - User specifies the Year-to-date option, which overrides the default view set for the scenario.

"Periodic" - User specifies the periodic option, which overrides the default view set for the scenario.

Detailed Description
This function calculates the difference between the value of the current period and the opening
value. (Current - Opening)

The opening value will be derived differently based on the View parameter passed to the function.

l If the View parameter is "YTD", the opening value will be retrieved from the last period of
the prior year.

l If the View parameter is "Periodic", the opening value will be retrieved from the prior period
of the current year. If the current period is the first period of the year, the opening value will
be retrieved from the last period of the prior year.

l If the View parameter is blank (" "), the opening value will be based upon the default data
view of the scenario.

Example
The account CASH will return the following values for Jan, Feb, and Mar, 2001 depending on
the View parameter used in the Difference function. The default view set for the scenario being
processed is YTD. The Difference function subtracts the opening value from the current period
value.

12 Management Reporting Functions

Table 8 Example of Difference Function

Account Dec2000 Jan2001 Feb2001 Mar2001

A#Cash 900 1,200 1,100 1,500

Difference(“A#Cash”
, “”)

N/A 300 200 600

Difference(“A#Cash”
, “YTD”)

N/A 300 200 600

Difference(“A#Cash”
, “Periodic”)

N/A 300 -100 400

Sample Script

' sample statement written in the calling routine
Sub Calculate()
Hs.Exp "A#DiffCash = " & Difference("A#Cash", "YTD")
End Sub
' programming of the DIFFERENCE function
FUNCTION DIFFERENCE(strPOV,strVIEW)
IF strVIEW = "" THEN
strVIEW = HS.SCENARIO.DEFAULTVIEW (“”)
END IF
strPOV = UCASE(strPOV)
strVIEW = UCASE(strVIEW)
IF strVIEW = "PERIODIC" THEN
DIFFERENCE = "("&strPOV &"-"& strPOV & ".P#PRIOR" &")"
ELSEIF strVIEW = "YTD" THEN
DIFFERENCE = "("&strPOV &"-"& strPOV & ".Y#PRIOR.P#LAST" &")"
ELSE
EXIT FUNCTION
END IF
END FUNCTION

DSO - Days Sales Outstanding
Calculates the number of days sales in the current period debtors using the exhaustion method.

Return Value
This routine calculates a single value representing the amount of days sales contained within the
current period trade debtors figure. The DSO sub-routine included here makes certain
assumptions:

l Both Debtors and Sales are positive figures.

l The parameters supplied are fully defined points of view (for example, Account/C1/C2/C3/
C4/ICP) because the routine uses the HS.GETCELL function.

Custom Functions 13

l The routine will calculate the days going back as far as possible in time. However, it will stop
if the periodic sales value for any period is a negative or zero value.

Syntax
CALL DSO (strDSO,strDEBTOR,strSALES,strDIP)

Table 9 Syntax of DSO Function

Parameter Valid Values

strDSO Fully defined account with custom and intercompany dimensions. This account is the destination for
the calculation.

strDEBTOR Fully defined account with custom and intercompany dimensions. This account is the source for the
current period trade debtors.

strSALES Fully defined account with custom and intercompany dimensions. This account is the source for the
sales.

Specifically exclude references to frequency.

strDIP Fully defined account with custom and intercompany dimensions. This account is the source for the
number of days in the period.

This is assumed to be in the [None] entity.

Detailed Description
The routine takes the values in the debtors account (parameter 2) and sales account (parameter
3) for the current period and compares them. If either are zero or negative, the calculation stops.
For each successive period where the debtors value exceeds that of the cumulative sales (working
backwards from the current period), the routine will add the number of days for that period as
specified in the days in the period account (parameter 4) to a running total.

When all the debtors value has been "exhausted" in this way, the final period’s days are calculated
as a proportion of the unexpired debtors against the periodic sales value.

Finally, the routine posts the running total to the destination account (parameter 1).

Example
The example calculates the total days outstanding for the months shown.

Table 10 Example of DSO Function

Month Debtors Period Sales Days in Month
Formula for
DSO Total DSO

September 12,000 2,500 30 100% 30

August N/A 1,750 31 100% 31

July N/A 2,250 31 100% 31

14 Management Reporting Functions

Month Debtors Period Sales Days in Month
Formula for
DSO Total DSO

June N/A 2,500 30 100% 30

May N/A 2,000 31 100% 31

April N/A 2,250 30 2000/2250 26.7

Total N/A N/A N/A N/A 179.7

Sample Script

' Use within the calculation section:
' 1. Standard use
CALL DSO("A#DSO","A#TradeDebtors.C1#AllAges.C2#[None].I#[ICP
Top]","A#TotalSales.C1#[None].C2#AllProducts.I#[ICP Top]","A#DIP")
' 2. Use with a common custom dimension
set vPRODUCT = ARRAY("C2#PRODUCT1","C2#PRODUCT2", ….. ,"C2#PRODUCTn")
FOR EACH iITEM IN vPRODUCT
CALL DSO("A#DSO."&iITEM,"A#TradeDebtors.C1#AllAges.I#[ICP
Top]."&iITEM,"A#TotalSales.C1#[None].I#[ICP Top]."&iITEM,"A#DIP")
NEXT
' Actual script of Sub-routine
SUB DSO(strDSO,strDEBTOR,strSALES,strDIP)
DIM vTEST
DIM vDSO
DIM vCOUNT
DIM vXS_1
DIM vXS
HS.CLEAR(strDSO)
vTEST = HS.GETCELL(strDEBTOR) * HS.GETCELL(strSALES&".W#Periodic") *
HS.GETCELL(strDIP&".E#[None]")
' checks if any of the parameters are zero (uses principle of X * 0 = 0)
IF vTEST = 0 THEN
EXIT SUB
ELSE
vDSO = 0
vCOUNT = 0
vXS_1 = HS.GETCELL(strDEBTOR)
vXS = vXS_1 - HS.GETCELL(strSALES&".W#Periodic")
' ensures that periodic sales are not negative or zero
WHILE vXS > 0 AND vXS_1 > vXS
vDSO = vDSO + HS.GETCELL(strDIP&".E#[None].P#CUR-" &vCOUNT)
vCOUNT = vCOUNT + 1
vXS_1 = vXS
vXS = vXS - HS.GETCELL(strSALES&".W#Periodic.P#CUR-" &vCOUNT)
WEND
IF vXS = vXS_1 THEN
vCOUNT = vCOUNT - 1
END IF
vDSO = vDSO + (vXS_1 / HS.GETCELL(strSALES&".W#Periodic.P#CUR-"
&vCOUNT)*HS.GETCELL(strDIP&".E#[None].P#CUR-" &vCOUNT))
IF vDSO < 0 THEN
vDSO = 0
END IF

Custom Functions 15

END IF
HS.EXP strDSO &"="& vDSO
END SUB

Opening
Retrieves the opening value for a specified, fully defined account (Acc/C1/C2/C3/C4/ICP).

Return Value
This function returns a string of characters representing the correct expression to be used as part
of the HS.EXP function.

Syntax
Opening (PointOfView, View)

Table 11 Syntax of Opening Function

Parameter Valid Values

PointOfView Valid combination of the RHS dimension which includes Account, Custom1….4, ICP members. For
example, "A#CLOSE.C1#[None].I#[ICP Top]"

View It must be one of the 3 possible values:

" " (double quote) - Based on the default view defined for the scenario being processed (either YTD or
Periodic).

"YTD" - User specifies the Year-to-date option, which overrides the default view set for the scenario.

"Periodic" - User specifies the Periodic option, which overrides the default view set for the scenario.

Detailed Description
This function calculates the opening value of a given account. The opening value will be derived
differently based on the View parameter passed to the function.

l If the View parameter is "YTD", the opening value will be retrieved from the last period of
the prior year.

l If the View parameter is "Periodic", the opening value will be retrieved from the prior period
of the current year. If the current period is the first period of the year, the opening value will
be retrieved from the last period of the prior year.

l If the View parameter is blank (" "), the opening value will be based upon the default data
view of the scenario.

16 Management Reporting Functions

Example
The account FA_COST will return the following values for Jan, Feb, and Mar, 2001 depending
on the View parameters used in the Opening function. The default view set for the scenario being
processed is YTD.

Table 12 Example of Opening Function

Account Dec2000 Jan2001 Feb2001 Mar2001

A#FA_COST 900 1,200 1,100 1,500

Opening(“A#FA_
COST”, “ ”)

N/A 900 900 900

Opening(“A#FA_
COST”, “ YTD”)

N/A 900 900 900

Opening(“A#FA_
COST”, “Periodic ”)

N/A 900 1,200 1,100

Sample Script

' sample statement written in the calling routine
Sub Calculate()
Hs.Exp "A#Open_FA_Cost = " & Opening("A#FA_Cost", "YTD")
End Sub
' programming of the OPENING function
FUNCTION OPENING(strPOV,strVIEW)
IF strVIEW = "" THEN
strVIEW = HS.SCENARIO.DEFAULTVIEW (“”)
END IF
strPOV = UCASE(strPOV)
strVIEW = UCASE(strVIEW)
IF strVIEW = "PERIODIC" THEN
OPENING = strPOV &".P#PRIOR"
ELSEIF strVIEW = "YTD" THEN
OPENING = strPOV &".Y#PRIOR.P#LAST"
ELSE
EXIT FUNCTION
END IF
END FUNCTION

Rate
Calculates the relative exchange rate between a parent and child and returns the value as a
multiplier.

Return Value
This function returns a value to be used as part of an HS.EXP function, usually in the translation
section.

Custom Functions 17

Syntax
Rate (ExchangeRate, TriangulationCurrency)

Table 13 Syntax of Rate Function

Parameter Valid Values

ExchangeRate A main account of the type "CurrencyRate" specified as an account string, without reference
to custom or intercompany dimensions.

For example, "A#EOP_RATE"

TriangulationCurrency This is either a valid currency label as a string or double quotes (" "). When specifying a
currency, it is not necessary to reference any custom dimension.

Detailed Description
l This function calculates the relative exchange rate between a parent and child, returning a

value as a multiplier. The value will be calculated based on the TriangulationCurrency
parameter passed to the function.

l If the TriangulationCurrency parameter is a valid currency label, the cross rate will be based
on this currency.

l If the TriangulationCurrency parameter is blank (" "), the function first searches for a valid
direct rate, and if none is found will then use Triangulation against the application currency.

l If no rate values can be found, the function will return 1.

The following tables show the methods of searching for the data and the order in which the
search is made. The order is represented by a number in parentheses, for example (1). In each
case, the search is made first in the child entity and, if no data is found, then from the “[None]”
entity.

In the following table, either the currency of the child or of the parent is the same as the
Triangulation currency, or if Triangulation is blank, the application currency.

Table 14 Rate Example — Triangulation Currency Same

 Custom 1 dimension rates

 Child Parent

Custom 2 dimension rates Child (2)

Parent (1)

In the following table, Triangulation has been specified and is not the same as either the child
or parent currencies.

Table 15 Rate Example — Triangulation Currency Different

 Custom 1 dimension rates

 Child Parent Triangulation

18 Management Reporting Functions

 Custom 1 dimension rates

Custom 2 dimension
rates

Child (2)

Parent

Triangulation (1)

In the following table, Triangulation has not been specified and the application currency is
different from both the child and parent currencies.

Table 16 Rate Example — Triangulation Not Specified

 Custom 1 dimension rates

 Child Parent Application

Custom 2 dimension
rates

Child (2) (4)

Parent (1)

Application (3)

Example
The application currency is Euros, and we are translating a French child to a US parent using
the following rates entered in the [None] entity against the C2#EURO:

Table 17 Example of Rate Function

 Opening Rate Closing Rate

C1#FFR 0.16000 0.16500

C1#USD 1.15862 1.15785

The following function multiplies the opening balance account by the difference between the
relative ending and opening rates. This is useful when calculating movement analyses if the
translation is not consistently between the local and application currencies.

HS.EXP "A#FXO = A#OPEN * (" & RATE("A#EOP_RATE"," ") & "-" &
RATE("A#OPE_RATE"," ") &")"

For the previous example, if the value in the OPEN account for the child is FFR 10,000,000, the
value in the US parent FXO account will be USD 44,102 [10,000,000 * (0.165 /1.15785 - 0.16 /
1.15862)].

Sample Script

' sample statement written in the calling routine
SUB TRANSLATE()

Custom Functions 19

HS.TRANS "A#FXO","A#FXO","A#EOP_RATE",“”
HS.EXP "A#FXO = A#OPEN * (" & RATE("A#EOP_RATE"," ") & "-" &
RATE("A#OPE_RATE"," ") &")"
END SUB
' programming of the RATE function
FUNCTION RATE(sRATE,sTRI)
DIM sCCUR, sPCUR, sACUR, bRET, retValue, s3rdCUR
DIM i
sRATE = UCASE(sRATE)
sTRI = UCASE(sTRI)
sCCUR = UCASE(HS.ENTITY.DEFCURRENCY(“”))
sPCUR = UCASE(HS.VALUE.CURRENCY)
sACUR = UCASE(HS.APPSETTINGS.CURRENCY)
retValue = 0
' check whether there is a triangulation specified, or if triangulation or
application currencies are the same as either parent or child and set up
the select case
IF sTRI = sCCUR OR sTRI = sPCUR OR (sTRI = " " AND (sACUR = sCCUR OR sACUR
= sPCUR)) THEN
i = 1
ELSEIF sTRI <> " " THEN
i = 2
ELSE
i = 3
END IF
SELECT CASE i
CASE 1
' bRET is a boolean that returns true if data is found. First search the
child...
' ...then search the [None] entity
bRET = GETVALUECP(".V#<Entity Currency>",retValue,sRATE,sCCUR,sPCUR)
IF NOT bRET THEN
bRET = GETVALUECP(".E#[None]",retValue,sRATE,sCCUR,sPCUR)
END IF
CASE 2
' use a dynamic parameter name for ease of writing the triangulation checks
s3rdCUR = sTRI
bRET = GETVALUE3(".V#<Entity Currency>",retValue,sRATE,sCCUR,sPCUR,s3rdCUR)
IF NOT bRET THEN
bRET = GETVALUE3(".E#[None]",retValue,sRATE,
sCCUR,sPCUR,s3rdCUR)
END IF
CASE 3
' this case is used when the 2nd parameter is blank and is the most
complex.
' first check direct rates in the child…
' … then check triangulation against application currency in the child
' then check direct rates in [None].
'… finally check triangulation in [None]
s3rdCUR = sACUR
bRET = GETVALUECP(".V#<Entity Currency>",retValue,sRATE,sCCUR,sPCUR)
IF NOT bRET THEN
bRET = GETVALUE3(".V#<Entity Currency>",retValue,sRATE,sCCUR,sPCUR,s3rdCUR)
IF NOT bRET THEN
bRET = GETVALUECP(".E#[None]",retValue,sRATE,sCCUR,sPCUR)
IF NOT bRET THEN

20 Management Reporting Functions

bRET = GETVALUE3(".E#[None]",retValue,
sRATE,sCCUR,sPCUR,s3rdCUR)
END IF
END IF
END IF
END SELECT
IF bRET THEN
RATE = retValue
ELSE
RATE = 1
END IF
END FUNCTION
FUNCTION GETVALUECP(sENTITY,sVALUE,sRATE,sCCUR,sPCUR)
' this sub-function is used when comparing direct rates between child and
parent
GETVALUECP = FALSE
' check if data exists for direct rate child to parent. If it does return
it.
' if no direct child to parent rate check for indirect parent to child
rate...
' return the inverse of the indirect rate.
IF HS.GETCELL(sRATE & ".C1#" & sCCUR & ".C2#" & sPCUR & sENTITY) <> 0 THEN
sVALUE = CDBL(HS.GETCELL(sRATE & ".C1#" & sCCUR & ".C2#" & sPCUR & sENTITY))
GETVALUECP = TRUE
ELSEIF HS.GETCELL(sRATE & ".C1#" & sPCUR & ".C2#" & sCCUR & sENTITY) <> 0
THEN
sVALUE = CDBL(1 / HS.GETCELL(sRATE & ".C1#" & sPCUR & ".C2#" & sCCUR &
sENTITY))
GETVALUECP = TRUE
END IF
END FUNCTION
FUNCTION GETVALUE3(sENTITY,sVALUE,sRATE,sCCUR,sPCUR,s3rdCUR)
' this sub-function is used when triangulating
' check if data exists for direct rate child to triangulation…
' … if it does return the direct relative rate child to parent…
' if no direct child to triangulation rate check for indirect triangulation
to child rate…
' … return the inverse of the indirect relative rates.
GETVALUE3 = FALSE
IF HS.GETCELL(sRATE & ".C1#" & sCCUR & ".C2#" & s3rdCUR & sENTITY) <> 0 THEN
sVALUE = CDBL(HS.GETCELL(sRATE & ".C1#" & sCCUR & ".C2#" & s3rdCUR &
sENTITY) / HS.GETCELL(sRATE & ".C1#" & sPCUR & ".C2#" & s3rdCUR & sENTITY))
GETVALUE3 = TRUE
ELSEIF HS.GETCELL(sRATE & ".C1#" & s3rdCUR & ".C2#" & sCCUR & sENTITY) <> 0
THEN
sVALUE = CDBL(HS.GETCELL(sRATE & ".C1#" & s3rdCUR & ".C2#" & sPCUR &
sENTITY) / HS.GETCELL(sRATE & ".C1#" & s3rdCUR & ".C2#" & sCCUR & sENTITY))
GETVALUE3 = TRUE
END IF
END FUNCTION

Custom Functions 21

22 Management Reporting Functions

3
Business Rules Functions

In This Chapter

Custom Functions23

The business rules custom functions are described in this section.

Custom Functions
The custom functions are listed in alphabetical order. The following information is provided
for each custom function:

l A short and detailed description

l A return value, if any

l A syntax

l An example using the function

l A sample script

Custom_Alloc
This function allocates a Source point of view (POV) to a Destination POV using a Factor POV
as the basis of Allocation, with the option to reverse post the total allocated amount to an
Elimination POV. This function is designed for custom dimension allocations.

Return Value
No return value.

Syntax
Custom_Alloc(Destination,Source,Factor,FactorN,FactorD,
Elimination)

Custom Functions 23

Table 18 Syntax of Custom_Alloc Function

Parameter Valid Values

Destination A valid destination POV. That is, a valid combination of Account, ICP and Custom 1-4 members.

Source A valid source POV. That is, a valid combination of dimension members. Source is the amount that is
to be allocated.

Factor A valid source POV. Factor is the Account used to store the allocation factor.

FactorN A valid source POV. FactorN is the numerator factor used as the basis for allocation.

FactorD A valid source POV. FactorD is the denominator factor used as the basis for allocation.

Elimination A valid source POV. Elimination may be an empty string (""), in which case this parameter is ignored.
If the Elimination parameter is set, the amount posted to the Destination POV will be multiplied by -1
and posted to the Elimination POV.

Detailed Description
This function allocates a Source POV to a Destination POV using a Factor POV as the basis of
allocation, with the option to reverse post the total allocated amount to an Elimination POV.
This function is designed for custom dimension allocations.

The Factor parameter stores the result of FactorN divided by FactorD. This is required to enable
the factor to refer to entities other than the current entity.

If the entity in the Source POV is a parent, that parent must be consolidated before executing
the calculation at the child level. If the parent currency is different from the child currency, then
a translation of all relevant currencies must also be run before executing the calculation at the
child level.

It is recommended that variables are set in the calling routine and passed to the Custom_Alloc
function, which define the Destination, Source, Factor, FactorN, FactorD and Elimination
POVs. It is also recommended that the variable names in the calling routine be set to be the same
as the Custom_Alloc function.

The Elimination parameter may be an empty string (""), in which case this parameter is ignored.
If the Elimination parameter is set, the amount posted to the Destination POV will be multiplied
by -1 and posted to the Elimination POV.

Example
The account Telephone is allocated to Products based on a ratio of Products Sales to Total Sales.
The inverse of the allocated amount will be posted to account Allocations.

Table 19 Example of Custom_Alloc Function

Account Jan2001 Feb2001 Mar2001

A#Telephone.C1#[None] 100 300 400

24 Business Rules Functions

Account Jan2001 Feb2001 Mar2001

A#Sales”.C1#Product1 1000 1000 1000

A#Sales.C1#Product2 1000 2000 3000

A#Sales.C1#TotalProducts 2000 3000 4000

Custom_
Alloc("A#Telephone","A#T
elephone.C1#[None]",
"A#Factor", A#Sales",
"A#Sales.C1#TotalProduct
s",
"A#ProductAllocations.C1
#[None]")

N/A N/A N/A

A#Factor.C1#Product1 0.50 0.33 0.25

A#Factor.C1#Product2 0.50 0.66 0.75

A#Telephone.C1#Product
1

50 100 100

A#Telephone.C1#Product
2

50 200 300

A#ProductAllocations.C1#
[None]

-100 -300 -400

The result returned from the CUSTOM_ALLOC function is as follows:

HS.EXP "A#Factor = A#Sales / A#Sales.C1#TotalProducts"
HS.EXP "A#Telephone = A#Telephone.C1#[None] * A#Factor"
HS.EXP "A#Allocations.C1#[None] = (A#Telephone.C1#[None] * -1)"

Sample Script
This script contains the following information:

l A sample statement written in the calling routine.

l Variables set in the calling routine and passed to the Custom_Alloc function.

l Variable names in the calling routine set to be the same as the Custom_Alloc function.

Sub Calculate()
Dim Destination
Dim Source
Dim Elimination
Dim Factor
Dim FactorN
Dim FactorD
Dim C1list
Dim C1item
C1list = HS.Custom1.List("Alloc")
For Each C1item in C1list

Custom Functions 25

Source = "A#Telephone.C1#[None]"
Destination = "A#Telephone.C1#" & C1item
Factor = "A#Factor.C1#" & C1item
FactorN = "A#Sales.C1#" & C1item
FactorD = "A#Sales.C1#TotalProducts"
Elimination = "A#ProductAllocations.C1#" & C1item
Call Custom_Alloc(Destination,Source,Factor,FactorN,
FactorD,Elimination)
Next
End Sub
' Beginning of the Custom_Alloc function
Sub Custom_Alloc(Destination,Source,FactorN,FactorD,
Elimination)
HS.Clear Factor
HS.Exp Factor & " = " & FactorN & "/" & FactorD
HS.EXP Destination & " = " & Source & " * " & Factor
If Elimination <> "" Then
HS.EXP Elimination & " = " & Source & " * -1 * " & Factor
End If
End Sub

Increase_Decrease
This function increases or decreases a Destination POV by a percentage Factor. The percentage
factor may be taken from either a Source POV, a VBScript constant or a VBScript variable.

Return Value
No return value.

Syntax
Increase_Decrease(Destination,Source,Factor,Scale,Inverse)

Table 20 Syntax of Increase_Decrease Function

Parameter Valid Values

Destination A valid destination POV. That is, a valid combination of Account, ICP and Custom 1-4 members.

Source A valid source POV. That is, a valid combination of dimension members. Source is the amount that is
to be allocated.

Factor A valid source POV, constant, or variable.

Scale Integer value 1 or 100. Factor is divided by scale.

Inverse True or False. True reverses the sign of the Factor. This can be used to generate a decrease where the
Factor is stored as a positive number (or Visa Versa). False takes the stored sign of the Factor to
determine an increase or decrease.

26 Business Rules Functions

Detailed Description
This function increases or decreases a Destination POV by a percentage factor. The percentage
factor may be taken from a Source POV, a VBScript constant or a VBScript variable.

In general, the Source POV will be the same as the Destination POV. However, the Source POV
may also be different from the Destination POV.

The Scale parameter is used to scale down the factor, if required. This will be relevant where the
factor is taken from a Source POV and the factor is stored in a non-scaled form (for example,
50% is stored as 50 and not 0.50).

The Inverse parameter is used to reverse the sign of the factor. This will be relevant where the
factor is taken from a Source POV and the factor is stored as an absolute number. If the
Inverse parameter is set to True, the factor will be multiplied by -1. If the Inverse parameter is
set to False, the factor will not be multiplied -1.

Example
In this example, the account Telephone is increased by 10%.

Table 21 Example of Increase_Decrease Function

Account Jan2001 Feb2001 Mar2001

A#Telephone 100 300 400

A#Factor/C1[None] 10 10 10

Increase_
Decrease("A#Telephone",
"A#Telephone",
"A#Factor.C1#[None]",
100,False)

N/A N/A N/A

A#Telephone 110 330 440

The result returned from the INCREASE_DECREASE function is as follows:

HS.EXP "A#Telephone = A#Telephone * (1+ (A#Factor.C1#[None]/100))”

Sample Script
l A sample statement written in the calling routine.

l Variables set in the calling routine and passed to the Increase_Decrease function.

l Variable names in the calling routine set to be the same as the Increase_Decrease function.

Sub Calculate()
Dim Destination
Dim Source
Dim Factor
Dim Scale
Dim Inverse

Custom Functions 27

Destination = "A#Telephone"
Source = "A#Telephone"
Factor = "A#Factor.C1#[None]"
Scale = "100"
Inverse = False
Call Increase_Decrease(Destination,Source,Factor,Scale,
Inverse)
End Sub
' Beginning of the Increase_Decrease function
Sub Increase_Decrease(Destination,Source,Factor,Scale,Inverse)
If Inverse = False Then
HS.EXP Destination & " = " & Source & " *
(1 + (" & Factor & " / " & Scale & "))"
Else
HS.EXP Destination & " = " & Source & " *
(1 + ((" & Factor & " * -1) / " & Scale &))"
End If
End Sub

Pro_Rata_Ratio
This function calculates the ratio between two source POVs (C = A / B).

Return Value
No return value.

Syntax
Pro_Rata_Ratio(Destination,SourceN,SourceD)

Table 22 Syntax of Pro_Rata_Ratio Function

Parameter Valid Values

Destination A valid destination POV. That is, a valid combination of Account, ICP and Custom 1-4 members.

SourceN A valid source POV. That is, a valid combination of dimension members. SourceN is the numerator of
the ratio calculation.

SourceD A valid source POV. SourceD is the denominator of the ratio calculation.

Detailed Description
This function calculates the ratio between two source POVs (C = A / B).

It is recommended that variables are set in the calling routine and passed to the Pro_Rata_Ratio
function, which define the Destination, SourceN and SourceD POVs. It is also recommended
that the variable names in the calling routine be set to be the same as the Pro_Rata_Ratio
function. These recommendations are a suggested best practice approach.

28 Business Rules Functions

It should be noted that HFM does not naturally calculate weighted average ratios for parent
members. Parent member values will appear as an aggregation of child values. This will always
result in a mathematically incorrect value for parent members. As such, it is recommended that
aggregation be turned off for Ratio accounts.

Example
The account MarginPct will return the value of GrossMargin/TotalRevenues.

Table 23 Example of Pro_Rata_Ratio Function

Account Jan2001 Feb2001 Mar2001

A#GrossMargin 1000 100 750

A#TotalRevenues 2000 400 1000

Pro_Rata_
Ratio(“A#GrossMargin”,”#
TotalRevenues”)

0.50 0.25 0.75

The result returned from the PRO_RATA_RATIO function is as follows:

HS.EXP "A#MarginPct = A#GrossMargin / A# TotalRevenues”

Sample Script
The script contains the following information:

l A sample statement written in the calling routine.

l Variables set in the calling routine and passed to the Pro_Rata_Ratio function.

l Variable names in the calling routine set to be the same as the Pro_Rata_Ratio function.

Sub Calculate()
Dim Destination 'Destination POV
Dim SourceN 'Source Numerator POV
Dim SourceD 'Source Denominator POV
Destination = "A#MarginPct"
SourceN = "A#GrossMargin"
SourceD = "A#TotalRevenues "
Call Pro_Rata_Ratio(Destination,SourceN,SourceD)
End Sub
' Beginning of the Pro_Rata_Ratio function
Sub Pro_Rata_Ratio(Destination,SourceN,SourceD)
HS.EXP Destination & " = " & SourceN & " / " & SourceD
End Sub

Spread
This function allocates a single time period value (e.g. P#[Year]) of a Source Account to all
periods of a Destination Account based on a profile defined in a Profile Account (e.g., Revenue
profile, 4-4-5, etc.).

Custom Functions 29

Return Value
No return value.

Syntax
Spread(Destination,Source,Factor,FactorN,FactorD,Temp,Per)

Table 24 Syntax of Spread Function

Parameter Valid Values

Destination A valid destination POV. That is, a valid combination of Account, ICP and Custom 1-4 members.

Source A valid source POV. That is, a valid combination of dimension members. The Source POV must include
a single time period, for example, P#[Year]. The single time period amount is the amount to be spread.

Factor A valid source POV. Factor is the account used to store the allocation factor.

FactorN A valid source POV. FactorN is the numerator factor used as the basis for spread allocation.

FactorD A valid source POV. FactorD is the denominator factor used as the basis for spread allocation.

Temp A valid destination Account. Temp is the account that temporarily stores the Source value.

Per A period string that defines the name of the first period in the timeframe, for example, "January". The
Temp value is stored in the first period and the parameter is required to refer to this in the calculation.

Detailed Description
This function allocates a single time period value (e.g. P#[Year]) of a Source POV to all periods
of a Destination POV based on a profile defined in a Profile POV (for example, Revenue profile,
4-4-5, and so on).

Time-based allocations are particularly suited to budgeting applications where amounts are first
entered for the total year, and then later allocated across time periods based on a suitable profile.

The Source POV must contain a single time period. The time period will generally be P#[Year],
but could be any single period (e.g., P#January).

The value in the Source POV is stored by the calculation in a temporary account. This is required
because the source and destination accounts are typically the same account. Where this is the
case, the value in P#[Year] will change as the calculation proceeds from 1 period to the next.
Therefore, one has to store the value first to be able to refer to it for all time periods.

It is recommended that variables are set in the calling routine and passed to the Spread function,
which define the Destination, Source, Profile, Temp, and Period1 parameters. It is also
recommended that the variable names in the calling routine be set to be the same as the Spread
function.

30 Business Rules Functions

Example
The Year value in the account Telephone are allocated across Time Periods using a 4-4-5
quarterly ratio.

The result returned from the SPREAD function is as follows:

HS.EXP "A#TempTelephone.C1#[None] = A#Telephone.C1#[None].P#[Year]" (Where
Period.Number = 1)
HS.EXP "A#Telephone.C1#[None] = A#TempTelephone P#January
*
E.Globals.A#Profile445.C1#[None].P#Cur /
E.Globals.A#Profile445.C1#[None].P#[Year]

Sample Script
The script contains the following information:

l A sample statement written in the calling routine.

l Variables set in the calling routine and passed to the Spread function.

l Variable names in the calling routine set to be the same as the Spread function.

Sub Calculate()
Dim Destination
Dim Source
Dim Factor
Dim FactorN
Dim FactorD
Dim Temp
Dim Per
Source = "A#Telephone.C1#[None].P#[Year]"
Destination = "A#Telephone.C1#[None]"
Factor = "A#Factor.C1#[None]"
FactorN = "E#Globals.A#Profile445.C1#[None].P#CUR"
FactorD = "E#Globals.A#Profile445.C1#[None].P#[Year]"
Temp = "A#TempTelephone.C1#[None]"
Per = "January"
Call Spread(Destination,Source,Factor,
FactorN,FactorD,Temp,Per)
End Sub
' Beginning of the Spead function
Sub Spread(Destination,Source,Factor,FactorN,FactorD,Temp,Per)
If HS.Period.Number = 1 Then
HS.Exp Temp & " = " & Source
End If
HS.Clear Factor
HS.EXP Factor & " = " & FactorN & " / " & FactorD
HS.Clear Destination
HS.EXP Destination & " = " & Temp & ".P#" & Per & " * " & Factor
End Sub

Units_Rates
This function calculates the product of two source POVs (C = A * B).

Custom Functions 31

Return Value
No return value.

Syntax
Units_Rates(Destination,Units,Rates)

Table 25 Syntax of Units_Rates Function

Parameter Valid Values

Destination A valid destination POV. That is, a valid combination of Account, ICP and Custom 1-4 members.

Units A valid source POV. That is, a valid combination of dimension members.

Rates A valid source POV.

Detailed Description
This function calculates the product of two source POVs (C = A * B). It is recommended that
variables are set in the calling routine and passed to the Units_Rates function, which define the
Destination, Units and Rates POVs. It is also recommended that the variable names in the calling
routine are set to be the same as the Units_Rates function. These recommendations are a
suggested best practice approach.

Example
The account Sales will return the value of UnitsSold * Price.

Table 26 Example of Pro_Rata_Ratio Function

Account Jan2001 Feb2001 Mar2001

A#UnitsSold 1000 2000 5000

A#Price 1.25 1.00 0.50

Units_
Rates(“A#UnitsSold”,A#Pr
ice)

1250 2000 2500

The result returned from the UNITS_RATES function is as follows:

HS.EXP “A#Sales = A#UnitsSold * A#Price”

Sample Script
The script contains the following information:

l A sample statement written in the calling routine.

l Variables set in the calling routine and passed to the Units_Rates function.

32 Business Rules Functions

l Variable names in the calling routine set to be the same as the Units_Rates function.

Sub Calculate()
Dim Destination
Dim Units
Dim Rates
Destination = "A#Sales"
Units = "A#UnitsSold"
Rates = "A#Price"
Call Units_Rates(Destination,Units,Rates)
End Sub
' Beginning of the Units_Rates function
Sub Units_Rates(Destination,Units,Rates)
HS.EXP Destination & " = " & Units & " * " & Rates
End Sub

Custom Functions 33

34 Business Rules Functions

	Contents
	Library of Functions Overview
	Management Reporting Functions
	Custom Functions
	Average
	Cumulative
	Difference
	DSO - Days Sales Outstanding
	Opening
	Rate

	Business Rules Functions
	Custom Functions
	Custom_Alloc
	Increase_Decrease
	Pro_Rata_Ratio
	Spread
	Units_Rates

