
H Y P E R I O N ® I N T E R A C T I V E R E P O R T I N G

R E L E A S E 1 1 . 1 . 2

O B J E C T M O D E L A N D D A S H B O A R D
D E V E L O P M E N T S E R V I C E S D E V E L O P E R ’ S

G U I D E

VOLUME I: DASHBOARD DESIGN GUIDE

Interactive Reporting Object Model and Dashboard Development Services Developer’s Guide, 11.1.2

Copyright © 1996, 2009, Oracle and/or its affiliates. All rights reserved.

Authors: EPM Information Development Team

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to
change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS:
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers
are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and
adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to
the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal
injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.

This software and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with
respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Contents

Part I. Overview . 11

Chapter 1. Working with Dashboard Sections . 13

Dashboard Sections . 13

Inserting, Renaming, Deleting, and Changing Mode of Dashboard Sections 14

Inserting Dashboard Sections . 14

Renaming Dashboard Sections . 14

Deleting Dashboard Sections . 14

Switching Between Design and Run Modes . 14

Working with Dashboard Objects . 15

Inserting Dashboard Objects . 16

Deleting Dashboard Objects . 16

External Content in Dashboards . 16

Working with Embedded Browser Controls . 17

Referencing A Name With A Single-Byte Character . 19

Browsing the Repository . 19

Document Options . 20

Setting Dashboard Home Sections . 23

Working with HyperLink Controls . 24

Embedded Section Objects . 26

Embedded Section Object Scrollbar and Auto-Sizing Properties 27

Embedded Section Object View Only Behavior . 27

Embedded Section Object Active Mode in the EPM Workspace 27

Embedded Section Object Paging . 32

Embedded Section Object Design Considerations . 33

Embedded Pivot Section Object Interactivity . 33

Gauges and (Live) Charts . 34

Gauges . 35

Adding Gauges to the Dashboard . 36

Gauge Properties . 38

(Live) Charts . 40

Adding (Live) Charts to the Dashboard . 44

Contents iii

(Live) Chart Properties . 45

Sliders . 52

Adding a Slider to the Dashboard . 52

Slider Properties . 53

Setting Dashboard Properties . 54

Using Design Tools . 55

Layout Tools . 55

Using the Navigation Toolbar . 57

Chapter 2. Working with the Interactive Reporting Object Model . 59

The Object Model . 59

Interactive Reporting Events . 60

Object-Level Events . 60

Active Section-Level Events . 61

Document-Level Events . 62

Using Script Editor . 63

Using the Object Browser . 63

Using the Scripting Pane . 63

Using the Events Menu . 64

Cutting, Copying and Pasting Dashboard Objects . 64

Using the Description Pane and Online Help . 64

Using a Sample JavaScript Script . 65

Testing Scripts Using the Interactive Reporting Execution Window 65

Reviewing Error Messages in the Interactive Reporting Console Window 65

Finding and Replacing Within Scripts . 65

Chapter 3. Scripting Dashboard Controls . 67

Scripting Control Objects . 67

Creating a New Dashboard Section . 67

Changing a Control Object Title . 67

Associating Scripts with Command Buttons . 68

Creating a Custom Button . 69

Associating Scripts with Radio Buttons . 70

Associating Scripts with Check Boxes . 72

Associating Scripts with List Boxes . 74

Exercise: Associating a Script with a List Box . 75

Chapter 4. JavaScript Syntax . 77

Basic JavaScript Syntax . 77

JavaScript Code Structure . 78

iv Contents

JavaScript Operators . 79

Using Assignment versus Comparison Operators . 80

Including Operators in Strings . 82

Concatenating versus Adding . 84

Variables . 86

Declaring Local Variables . 86

Declaring Global Variables . 87

Dynamically Declaring Variables . 87

Assigning Values . 87

Reserved Words . 88

Chapter 5. JavaScript Basics . 91

Using Drop-Down Boxes . 91

Accessing a Drop-Down Selection . 91

Using a Variable for the Selection . 93

Modifying Filters . 94

Modifying a Results Filter . 95

Using a Variable for an Object . 97

Modifying a Query Filter . 98

Finishing the Interactive Reporting Document File . 98

Setting a Chart Fact . 98

Hiding Toolbars . 99

Chapter 6. JavaScript Control Structures . 101

Understanding Control Structure Syntax . 101

About if...else Statements . 102

Exercise: Using an if...else Statement to Change Chart Types 103

Exercise . 104

About switch Statements . 105

Exercise: Using a switch Statement to Change Chart Types 106

Controlling Chart Facts with if...else . 107

Controlling Chart Facts with switch . 108

Chapter 7. JavaScript Operators . 111

Arithmetic Operators . 111

Assignment Operators . 112

Bitwise Operators . 113

Bitwise Logical Operators . 114

Bitwise Shift Operators . 115

Comparison Operators . 115

Contents v

Logical Operators . 116

Short-Circuit Evaluation . 117

String Operators . 117

Special Operators . 117

?: (Conditional operator) . 118

, (comma operator) . 118

delete . 119

new . 119

this . 121

typeof . 121

void . 122

Chapter 8. Core Objects . 125

Array . 126

Array Properties . 128

Array Methods . 129

Boolean . 140

Boolean Properties . 141

Boolean Methods . 142

Date . 142

Date Properties . 143

prototype . 157

Function . 157

Function Properties . 158

Function Methods . 164

Math . 166

Math Properties . 166

Math Methods . 170

Number . 184

Number Properties . 185

Object . 189

Object Properties . 189

Object Methods . 190

String . 197

String Properties . 198

String Methods . 199

Regular Expression . 224

Regular Expression Properties . 228

Regular Expression Methods . 234

vi Contents

Part II. Scripting Reference . 239

Chapter 9. Dashboard Scripting . 241

About Scripts . 241

Understanding Functions . 241

Defining Functions . 242

Changing Function Parameters and Object Properties . 242

Calling Functions . 242

Function Scope . 243

Using Variables . 245

Using JavaScript Statements . 246

Conditional Statements . 246

Loop Statements . 249

break Statements . 252

Manipulating Objects with JavaScript . 253

for...in Statements . 253

with Statements . 253

Microsoft Automation Interfaces and the Object Model . 254

OLE Automation Controller within JavaScript (JOOLE) . 254

Exporting Scripts to Text Files . 255

Chapter 10. Object Model Map . 257

Object Model Hierarchy . 257

Application Level Hierarchy . 258

ActiveDocument Level Hierarchy . 259

Sections . 260

Query Section . 261

Dashboard Section . 261

Chart Section . 262

Results, Report, and Pivot Sections . 263

Table and OLAPQuery Sections . 264

Chapter 11. JavaScript Examples . 267

Displaying and Entering Values in Text Boxes . 267

Retrieving and Setting Object Properties . 268

Object Model Placement and Sizing . 269

Placement Node . 269

Placement Properties . 269

Placement Method . 269

Creating and Deleting Shapes . 270

Contents vii

CreateShape Function . 270

RemoveShape Function . 270

Using the Placement Properties and Method . 270

Placing Objects . 270

Verifying Functionality . 272

Using CreateShape and RemoveShape . 272

Verify CreateShape and RemoveShape Functionality . 273

Enabling and Disabling Controls . 273

Controlling the Visibility of Graphics and Controls . 274

Creating Interactive Reporting Database Connection Files (OCEs) 274

Displaying a Connection Login Box . 275

Downloading Data Models . 275

Displaying Table Catalogs . 275

Adding Topics To Data Model Sections . 275

Setting Up Topic Object Variables . 275

Adding Joins . 275

Adding Items to the Request Line . 276

Adding Computed Columns to Query Request Lines . 276

Creating and Setting Variable Filters (Limits) . 276

Using a BrioQuery 5.5 Limit Dialog Box to Store Values . 276

Turning Off Page Headers on Report First Page . 277

Turning Off the Prompt to Save Dialog Box . 277

Chapter 12. Troubleshooting Scripts . 279

Identifying Errors . 279

Space-Saving Variables . 279

Case-Sensitive Code . 280

Assignment Operators Versus Comparison Operators . 280

Conditional Tests . 281

Syntax Displayed in the Description Pane . 282

Recalculating Results . 283

Designing Scripts . 283

Code Entry . 284

Bypass Errors . 284

Getting Assistance with Problem Scripts . 285

Chapter 13. Designing for EPM Workspace . 287

Architecture of EPM Workspace . 287

EPM Workspace Components . 288

EPM Workspace Performance-Enhancing Features . 288

viii Contents

Interactive Reporting Features Supported in EPM Workspace . 289

EPM Workspace Limitations—Designing and Using Interactive Reporting Document
Sections . 290

General Functions—EPM Workspace Limitations . 290

Query and Data Model Sections—EPM Workspace Limitations 291

OLAPQuery Sections—EPM Workspace Limitations . 291

Results and Table Sections—EPM Workspace Limitations . 292

Pivot Sections—EPM Workspace Limitations . 292

Chart Sections—EPM Workspace Limitations . 293

Dashboard Sections—EPM Workspace Limitations . 293

Report Sections—EPM Workspace Limitations . 294

Computed Items EPM Workspace Limitations . 294

Creating Predefined Drill-Down Paths . 294

Chart Sizing . 295

Locating Errors . 296

Console Window . 296

Error Logs . 296

try-catch Block . 296

Controls . 296

Control Object Properties . 297

Graphics . 297

Borders, Background, and Fonts . 298

Events . 298

Client-Side JavaScript . 298

Client Status . 299

Client-Side Events . 299

Text Box Events and Properties . 300

Alert Dialog Box . 300

Toolbars . 301

Toolbars Not Required in EPM Workspace . 301

Standard Interactive Reporting Toolbar . 301

Event Controls for Toolbar Display . 303

Rules for Toolbars in EPM Workspace . 303

Personal Pages . 304

Section 508 Compliance . 304

Accessibility . 304

Guided Analysis and Reporting . 305

Processing the POV . 305

Parsing SmartCuts and Storing Data in Global Variables . 305

Contents ix

Traversing the Object Model Tree . 306

Object Model Items Excluded from EPM Workspace . 306

Object Model Properties Irrelevant to EPM Workspace That Must Be Retained 307

User Embedded HTML . 309

BQY-XML Formatting . 310

User Credentials in Scripting . 310

Fixing Scripted Credentials Errors . 311

PrintOut() Method Support in EPM Workspace . 311

Anti-Aliasing and Charts . 312

Appendix A. Abbreviations and Acronyms . 315

Glossary . 321

Index . 343

x Contents

P a r t I

Overview

In Overview:

l Working with Dashboard Sections
l Working with the Interactive Reporting Object Model
l Scripting Dashboard Controls
l JavaScript Syntax
l JavaScript Basics
l JavaScript Control Structures
l JavaScript Operators
l Core Objects

Overview 11

12 Overview

1
Working with Dashboard

Sections

In This Chapter

Dashboard Sections13

Inserting, Renaming, Deleting, and Changing Mode of Dashboard Sections14

Working with Dashboard Objects .. .15

External Content in Dashboards16

Embedded Section Objects .. .26

Gauges and (Live) Charts .34

Sliders.. .52

Setting Dashboard Properties.. .54

Using Design Tools.. .55

Dashboard Sections
Dashboards are customizable documents that enable developers to build and deploy analytic
applications and end users to access information.

The dashboard sections of Oracle's Hyperion® Interactive Reporting provide a streamlined,
push-button approach to querying databases, combining reports, and enhancing controls to
develop and deliver prepackaged business content that includes these items:

l Simple forms to collect multiple input parameters for a report

l Executive dashboard applications, with visual drill-down from high-level metrics to
underlying data

l Browser-style navigation pages to assist users in maneuvering within and between
documents

Within Oracle's Hyperion® Interactive Reporting Studio and Oracle's Hyperion® Interactive
Reporting Web Client, developers can customize dashboard sections to create interfaces that
focus on the data views relevant to end users. When an end user opens an Interactive Reporting
document file, the customized dashboard section is displayed.

Users navigate dashboard sections by clicking buttons and entering parameters. Button clicks,
item selections, or navigation sequences invoke scripts that are processed in the background.
No in-depth knowledge of the data structure or the Interactive Reporting Studio and Interactive
Reporting Web Client applications is required.

Dashboard Sections 13

Inserting, Renaming, Deleting, and Changing Mode of
Dashboard Sections
Like other report sections, dashboard sections can be added to an Interactive Reporting
document. Within Interactive Reporting documents, the dashboard section is displayed at the
top of the Sections pane.

Inserting Dashboard Sections
Newly added dashboard sections are listed after existing dashboard sections.

ä To insert dashboard sections, select Insert, then New Dashboard.

Renaming Dashboard Sections
The first dashboard section inserted in an Interactive Reporting document file is, by default,
named Dashboard. Subsequent dashboard sections are numbered sequentially; for example,
Dashboard2, Dashboard3, and so on.

ä To rename dashboard sections:

1 From Sections, select a dashboard section.

2 Select Edit, then Rename Section.

Section Label is displayed.

3 In Label, enter a name, and click OK.

Deleting Dashboard Sections

ä To delete dashboard sections:

1 From Sections, select a dashboard section.

2 Select Edit, then Delete Section

Delete Section is displayed.

3 Click Delete.

Switching Between Design and Run Modes
Dashboard section modes:

l Design—Used to design dashboard sections. Available objects are displayed in the Elements

l Run—Used to deploy dashboard sections to end users. The Elements is empty.

14 Working with Dashboard Sections

All dashboard sections within an Interactive Reporting document file use the same mode.
Dashboard sections of Interactive Reporting document files open by default in Run mode.
Changing one section to Design mode changes all sections to Design mode.

ä To switch to Design mode, select Dashboard, then Design Mode or click , or press Ctrl
+D.

Working with Dashboard Objects
Embeddable objects used to construct custom dashboard sections:

l Sections—Results, chart, pivot, table, and OLAP sections from the active Interactive
Reporting document file. When you embed a section in a dashboard section, the section is
resized, and its data is updated.

Note: In Run mode, you can sort active embedded tables and results (from the shortcut
menu) and resize table and results columns.

l Graphics—Objects, such as lines, rectangles, and pictures, for which you can set colors and
border properties. These are available from Elements.

m Line

m Hz line

m Vt line

m Rectangle

m Round rectangle

m Oval

m Text label, can be used as a caption

m Picture, insert BMPs, GIFs, JPGs, and PNGs

l Controls—Objects for which you can set fonts and default values. Controls, which provide
users a way to interact with the application, can be populated with values at design time or
dynamically populated using JavaScript.

Table 1 Dashboard Control Objects

Control Object Suggested Use

Command button Initiate or activate a process

Radio button Select one from a group of choices

Check box Toggle an option, on and off or true and false

List box List multiple values from which users can select one or more

Drop down List multiple values from which users can select one

Working with Dashboard Objects 15

Control Object Suggested Use

Text box Gather and display user input

Embedded browser Display external content through a browser

HyperLink Link to external content through a hyperlink

l Resources—Pictures or images loaded in the Resource Manager.

Inserting Dashboard Objects

ä To embed objects in dashboard sections:

1 Select Dashboard, then Design Mode, or press Ctrl+D.

2 From Elements, expand the folder that contains the object to be inserted.

3 Drag the object onto the content area.

ä To insert control and graphic objects:

1 Select Dashboard, then Design Mode, or press Ctrl+D.

2 Select Dashboard, then Insert Graphic or Dashboard, thenInsert Control, and, from the menu, select a
graphic or control object.

3 Click within the content area to insert the control or graphic.

Deleting Dashboard Objects

ä To delete embedded sections, controls, and graphics:

1 Select Dashboard, then Design Modeor press Ctrl+D.

2 From the content area, select one or more objects.

To select multiple objects, press and hold Ctrl while selecting objects.

3 Select Dashboard, then Remove Selected Items.

External Content in Dashboards
You can incorporate external Web-based content into your dashboards, embedding the content
in your reports sections and thus enhancing your reports. You can embed stock tickers,
calendars, and document objects and launch the content of a URL-based hyperlink in a separate
window.

Embeddable external Web-based dashboard objects:

l Interactive Reporting document files

16 Working with Dashboard Sections

l Interactive Reporting jobs

l Oracle's Hyperion® SQR® Production Reporting jobs

l Oracle's Hyperion® Web Analysis

l Oracle Hyperion Financial Reporting, Fusion Edition

Interactive Reporting Studio and Interactive Reporting Web Client provide two controls for
working with Web-based content:

l Embedded browser control—Essentially, an instance of a Web browser window, positioned
on the dashboard page. Similar to an embedded section object, except that the content is
anything that can be referenced through a URL and rendered in a Web browser window,
rather than in a section. There are no recognizable events in the control; that is, you can not
create scripts on an embedded browser control.

l Hyperlink control—A URL-based hyperlink control. The content may be displayed in a
pop-up window or the current window.

Working with Embedded Browser Controls
An embedded browser control renders and executes in all Interactive Reporting environments
(Interactive Reporting Studio, Interactive Reporting Web Client, and Oracle Enterprise
Performance Management Workspace, Fusion Edition).

Attributes and behavior of embedded browser controls, typical of all dashboard controls:

l Is added to the dashboard section (in Design mode) by dragging an instance from Elements,
sizing the instance, and setting properties

l Uses common dashboard-control properties: name, visible, locked, tab order, accessibility,
cut, copy, paste, auto-alignment and sizing

Properties of embedded browser controls, similar to properties of embedded sections:

l Show Scrollbars

l Reference to the content—For embedded sections, the reference is the name of a chart, pivot,
or table that is contained in the Interactive Reporting document file. For the embedded
browser control, the reference is a URL. If the content is a generic URL (such as a stock
ticker), the designer can reference it by entering the URL. If the content is an Interactive
Reporting document, file in the repository, the designer can use GUI controls to select the
Interactive Reporting document file and the preferred parameters, thus creating the
appropriate Smartcut URL.

Note: A report section that is contained in one Interactive Reporting document file and
displayed in an embedded browser object of another Interactive Reporting document
file cannot be printed.

ä To create instances of embedded browser controls:

1 Select Insert, then New Dashboard.

External Content in Dashboards 17

Inserting a dashboard section changes the document to Design mode. The content area is
blank, and Elements displays the sections, graphics, controls and resources available for
embedding in a dashboard section.

2 From Elements, expand Controls, and drag the embedded browser control onto the content area.

3 Double-click the control object.

Objects is displayed.

4 In Name enter a unique name for the control.

The default name is EmbeddedBrowser followed by a number.

5 In Title enter a title for the dashboard section.

The Title is only used when the dashboard section is printed.

6 Select Visible to display the embedded browser control when the dashboard section is executed.

By default, Visible is selected.

7 Select Locked to prevent the embedded browser control from being moved or deleted.

By default, Locked is not selected.

8 From Show Scrollbar, to indicate when scroll bars are displayed on the embedded browser control,
select a scrolling option:

l Always

l Never

l Automatic (the default)

9 Optional: To define explicitly the URL of the content to be displayed in the embedded browser, in URL,
enter the URL address.

When the embedded browser is rendered, the URL is used “as is” (server information is not
appended).

You can reference Oracle's Hyperion Reporting and Analysis repository content by entering
an explicit URL. In this case, the URL is treated like any other external reference (no special
authentication support).

It is important to plan how the content of the URL is displayed in the embedded browser.
An action from within the embedded content can result in the browser, rather than only the
contents of the embedded browser control, being replaced.

10 Optional: To select a repository document (and associated properties) or an object to be displayed in
the embedded browser control or HyperLink object, select Repository, and perform one or more actions:

l Document—Enter manually the path and name of the preferred repository document

l Browse—Browse the Reporting and Analysis repository for the preferred document

l Options—Launch the Document Options dialog box so that you can select display
properties for a EPM Workspace document (See “Document Options” on page 20)

11 Click OK.

18 Working with Dashboard Sections

Referencing A Name With A Single-Byte Character

If you are using the Embedded Browser control of the Dashboard section to embed content from
the repository, and it references a name (for example, file name, directory, section, parameter)
that contains a single-byte character with a value greater than 127 (for example, accent
characters), and the SmartCut encoding for URLs is set to “default”, then the characters display
as scrambled and the embedded content may not display properly.

ä To change the encoding property for SmartCuts:

1 Log in to EPM Workspace with a user ID that has an Administrator role.

2 Select Administration on the Module menu.

3 Click the System tab and navigate to SmartCut.

4 Change the Encoding for URLs property to UTF8.

Browsing the Repository
With proper authentication, you can select a document to embed from the Reporting and
Analysis Repository dialog box. Authentication is provided through an authentication service,
which reviews user credentials at login time and enables users to connect. The service also
determines a user’s group membership, which, with user roles, affects what content and other
system objects (resources) the user can view and modify.

For users authenticated to a global service manager (GSM), the Foundation Browse dialog box
is displayed automatically. Authentication is assumed for Interactive Reporting Web Client and
EPM Workspace documents, because they receive a URL stamp when they are created. The
stamp provides GSM access.

Interactive Reporting Studio users who are not authenticated are prompted to enter a valid server
address on the Connect to Server dialog box (Tools, then Connect to Server). When the user
selects Connect (and the connection succeeds), the server address is persisted in the Windows
registry. Thus, the address can be used as the default server address, if no valid address can be
obtained from the session or the Interactive Reporting document.

After a valid server address is determined, the Interactive Reporting Studio application contacts
the data access servlet, and an authentication dialog box is displayed. After user credentials are
validated, the user is authenticated, and the Reporting and Analysis Repository dialog box is
displayed.

ä To log into the Reporting and Analysis repository and embed an object:

1 In the Objects dialog box, select Repository.

2 Click Browse.

Connect to Server is displayed.

3 In the Connect to Server dialog box, enter a server address, and click Connect.

The Reporting and Analysis Login dialog box is displayed.

External Content in Dashboards 19

4 Enter your user name and password, and click Login.

After you are successfully authenticated, Browse Listing is displayed.

5 Navigate to the folder that contains the repository object to be embedded.

6 Double-click the object.

Verify that the full path name and object name are displayed to the right of the Selection
field.

7 Click Apply.

The document name is displayed in the Document field of the Object dialog box.

Document Options
You use the Document Options dialog box to select display properties for a document to be
viewed in EPM Workspace. The properties that you select prepare a Smartcut (a URL reference
to a Reporting and Analysis repository object, for example, an Interactive Reporting document
or job).

Document types available for display in EPM Workspace:

l Interactive Reporting document (BQY)

l Interactive Reporting Job

l Production Reporting Job

l Web Analysis

l Financial Reporting

l Others

Note: If a hyperlink control display type is New Window or Current Window, the Document
Options dialog box looks and behaves as described in “Working with Embedded Browser
Controls” on page 17.

If Interactive Reporting Studio and Interactive Reporting Web Client determines the document
type prior to the display of the Document Options dialog box, then the Document Type drop-
down list presets the document type, and no document-type choices are available.

If Interactive Reporting Studio and Interactive Reporting Web Client cannot determine the
document type prior to display of the Document Options dialog box, the default is Others, and
you can select one of the five specific document types.

Depending on the document, specific options are available.

20 Working with Dashboard Sections

Table 2 Interactive Reporting Document Type Display Options

Option Description

Document
Type

For Interactive Reporting Studio and Interactive Reporting Web Client, select Interactive Reporting document.

Section Specify which Interactive Reporting document section is displayed.

If the list of EPM Workspace-enabled sections is determined prior to display of the Document Options dialog box, the list
is displayed. The default section name is the name of the default section of the Interactive Reporting document.

If the section list cannot be determined, a blank text box is displayed, and you can enter the section name manually. If
the text box is blank, the default section is displayed when Browse is clicked in the Properties dialog box.

Toolbar Specify which EPM Workspace toolbar is displayed:

l Standard—Contains the controls for commonly used operations, such as Open and Save

l Paging—Contains the section paging controls (Page Left, Page Up, Page Down, and Page Right) and indicates the
current page (Page x of y)

l Section Navigation—Contains the navigational controls (Back, Forward, and Dashboard Home)

l Paging and Section Navigation—Contains the controls for paging and section navigation

l None

Smartcut
Parameters

Specify key value pairs for the document and add parameters to the URL.

To add a parameter, enter the parameter into the Smartcut Parameters text box, and click Add. When the URL is formed,
the parameter is appended to the end of the URL. For example, the Smartcut Parameter “ShowMenubar” specifies state
of the toolbar when the Interactive Reporting document is opened. Parameter values include:

l Standard

l Navigation (for Paging)

l Section Navigation and Navigation

l None

l Numbers (1, 2, 3, 4 respectively)

To remove parameters from the list, select the parameters, and click Remove.

Table 3 Interactive Reporting Job Document Type Display Options

Option Description

Document
Type

For Interactive Reporting Studio and Interactive Reporting Web Client, select Interactive Reporting Job.

Section Specify which Interactive Reporting document section is displayed.

If the list of EPM Workspace-enabled sections is determined prior to display of the Document Options dialog box, the list
is displayed. The default section name is the name of the default section of the Interactive Reporting document.

If the section list cannot be determined, a blank text box is displayed, and you can enter the section name manually. If
the text box is blank, the default section is displayed when Browse is clicked in the Properties dialog box.

External Content in Dashboards 21

Option Description

Toolbar Specify which EPM Workspace toolbar is displayed:

l Standard—Contains the controls for commonly used operations, such as Open and Save

l Paging—Contains the section paging controls (Page Left, Page Up, Page Down, and Page Right) and indicates the
current page (Page x of y)

l Section Navigation—Contains the navigational controls (Back, Forward, and Dashboard Home)

l Paging and Section Navigation—Contains the controls for paging and section navigation

l None

Smartcut
Parameters

To add a parameter, enter the parameter into the Smartcut Parameters text box, and click Add. When the URL is formed,
the parameter is appended to the end of the URL.

To remove parameters from the list, select the parameters, and click Remove.

Table 4 Production Reporting Job Document Type Display Options

Option Description

Document Type For Production Reporting, select Production Reporting Job.

Run Job Specify whether the job should be executed. Not selected (not to be run) is the default.

Smartcut
Parameters

Specify key value pairs for the document and add parameters to the URL.

To add a parameter, enter the parameter into the Smartcut Parameters text box, and click Add. When the URL is
formed, the parameter is appended to the end of the URL.

To remove parameters from the list, select the parameters, and click Remove.

Table 5 Web Analysis Document Type Display Options

Option Description

Document Type For Web Analysis, select Web Analysis.

Smartcut Parameters Specify key value pairs for the document and add parameters to the URL.

When the URL is formed, the parameter is appended to the end of the URL.

To remove parameters from the list, select the parameters, and click Remove.

Table 6 Financial Reporting Document Type Display Options

Option Description

Document Type For Financial Reporting, select Oracle Hyperion Financial Reporting, Fusion Edition

Display Format Specify the type of format in which to display the report (HTML or PDF). The default is HTML.

Smartcut Parameters Specify key value pairs for the document and add parameters to the URL.

When the URL is formed, the parameter is appended to the end of the URL.

To remove parameters from the list, select the parameters, and click Remove.

22 Working with Dashboard Sections

Table 7 Others Document Type Display Options

Option Description

Document Type Select Others to add parameters to the URL.

Smartcut
Parameters

Add parameters; for example, add Oracle's Hyperion® SQR® Production Reporting Job parameters or Interactive
Reporting document limits (filters).

To add a parameter, enter the parameter into the Smartcut Parameters text box, and click Add. When the URL is
formed, the parameter is appended to the end of the URL.

To remove parameters from the list, select the parameters, and click Remove.

Setting Dashboard Home Sections
Use the Dashboard Home dialog box to select a section to set as the home dashboard section
(the first section that is displayed when the document is opened). In addition for Interactive
Reporting users only, use the Dashboard Home dialog box to enable the preloading of the active
home section in order to increase loading performance in EPM Workspace. This option is
enabled only when the selected dashboard section in an Interactive Reporting document
contains a minimum of one dashboard with at least one embedded browser.

Section rules define the first displayed section when a document is opened:

l Defined through the object model, for example, Activate()

l Selected on the Dashboard Home dialog box

l If not defined through the object model or the user interface, the section that was last saved
is opened first (This behavior is a change in Release 9.3, that may cause the document to
open to the home section. In releases earlier than Release 9.3, the same document might
have opened to the last saved section or another section)

l If a home dashboard is not set, then the last saved section is opened (If the user cannot access
the last saved section; for example, due to an adaptive state which prevents a user from
viewing some sections, then the document is opened in a section available to the user)

In releases earlier than Release 9.3, the default home section was the first section added to the
document. In Release 9.3, there is no default home section; that is, if no home section is defined,
none is assumed in Interactive Reporting.

To enable the Dashboard Home toolbar button when an Interactive Reporting document file is
deployed in the EPM Workspace, Dashboard home must be explicitly set in Interactive Reporting
Studio or Interactive Reporting Web Client.

Note:

ä To specify a home dashboard section:

1 From the Dashboard menu, select Home Dialog.

2 Select the dashboard to use for the home section.

External Content in Dashboards 23

3 Optional: To use a hidden dashboard section, select View, then Unhide section and select the section
before displaying the Dashboard Home dialog box.

When you save the Interactive Reporting document, the section is no longer hidden.

4 To preload embedded browser objects, click Preload.

5 Click OK.

Note:
Setting a home dashboard section in Design mode activates (Dashboard Home) on
the toolbar.

Working with HyperLink Controls
Hyperlink controls behave like embedded browser controls, except that their URL-based content
is displayed as follows:

l Current window

l Top window

l New window

l Named window

l No window

Hyperlink-control behavior depends upon the display window selection and the type of
application (Interactive Reporting Studio, Interactive Reporting Web Client, or EPM
Workspace)

Table 8 Hyperlink control behavior

Target Interactive Reporting
Studio

Interactive Reporting
Web Client

EPM Workspace

New window Launches new window Launches new window Launches new window

Current
window

Launches new window Replaces current window Replaces content of the EPM Workspace tab, if the content is
derived from the Oracle's Hyperion Reporting and Analysis
repository. Otherwise, opens the hyperlink object in a new
window.

Top window Launches new window Replaces current window Opens in a new EPM Workspace tab, if the content is derived
from the repository. Otherwise, opens the hyperlink object in the
top window.

Named
window

Launches new named
window

Launches new named
window

Launches new named window

Other properties of hyperlink controls are similar to the properties of text label graphics and the
OpenURL method. Hyperlink controls are added like embedded browser controls are added,
except that the control name in Elements is Hyperlink.

24 Working with Dashboard Sections

ä To create instances of hyperlink controls:

1 Select Insert, then New Dashboard.

Inserting a dashboard section changes the document to Design mode. The content area is
blank, and Elements displays the available sections, graphics, and control objects.

2 From Elements, expand Controls.

3 Drag the hyperlink control onto the content area, and double-click the control.

Properties is displayed.

4 On the Object tab, enter a unique name for the hyperlink control.

The default name is Hyperlink.

5 Enter a title for the dashboard section.

The Title is only used when the dashboard section is printed.

6 Select Visible to display the hyperlink control when the dashboard section is executed.

By default, Visible is selected.

7 Select Locked to prevent the hyperlink control from being moved or deleted in dashboard Design mode.

By default, Locked is not selected.

8 From Display in, select where to display the contents of the hyperlink control:

l New Window—A pop-up window is created every time the hyperlink is clicked. This
option, which is the default, maps to the OpenURL OM method "_blank" target.

l Current Window—If the execution application is Interactive Reporting Web Client or
EPM Workspace, the content replaces the EPM Workspace content area (for example,
excluding the surrounding browse application panes). In Interactive Reporting Studio,
a pop-up window is displayed.

l Top Window—If the execution application is Interactive Reporting Web Client or EPM
Workspace, the content replaces the top HTML window. This option maps to the
OpenURL OM methods "_top" target.

l Named Window—A named pop-up window is created. If a named window is currently
displayed, the URL replaces the content of the current window. When this option is
selected, the user can enter the new window name in the Target window text box that
is displayed below the drop-down list. This option maps to the user-specified, target-
name option of the OpenURL method.

9 Optional: To define explicitly the URL of the content to be displayed in the hyperlink control, in URL,
enter the URL address.

When the hyperlink control is rendered, the URL is used “as is” (server information is not
appended).

You can reference repository content by entering an explicit URL. In this case, the URL is
treated like any other external reference (no special authentication support).

External Content in Dashboards 25

It is important to plan how the content of the URL is displayed in the hyperlink control. An
action from within the hyperlink content can result in the browser, rather than only the
contents of the hyperlink control, being replaced.

10 Optional: To select a repository document (and associated properties) to be displayed in the hyperlink
control, select Repository, and perform one or more actions:

l Document—Enter the path and name of the preferred repository document.

l Browse—Browse the repository for the preferred document.

l Options—Launch the Document Options dialog box, from which a user can select
display properties for a selected EPM Workspace document. If the display type is New
Window or Current Window, the dialog box looks and behaves as described in
“Working with Embedded Browser Controls” on page 17. Also see “Document Options”
on page 20.

11 Click OK.

Embedded Section Objects
Results, Pivot, Chart, Table, OLAP, and CubeQuery sections can be embedded in any Interactive
Reporting document and viewed in EPM Workspace. Data is updated in EPM Workspace as it
is updated in the original sections.

The limitations to Interactive Reporting document files embedded in a dashboard through an
embedded browser or hyperlink control include:

l Online help is available through a toolbar or a dialog box.

l Number formatting options are not available.

l The Reference sub dialog box of the Computed Item dialog box is not available.

Properties that define what users can do with embedded sections:

l View-only—Can view static reports. (The reports are displayed as thumbnails in the
dashboard section—as currently defined in the native-report section. Users cannot interact
with the reports.)

l Hyperlink—Can navigate to original sections by clicking thumbnails in the dashboard
section.

l Active—Embedded section objects in active mode enables users to interact with reports.
Selecting a live report activates it in-place for drill down, pivoting, and other analysis
functions.

Note: When context menu changes made through the Object Model have been associated with
embedded section objects of the same dashboard, the entire dashboard should be
refreshed for changes to take effect. To refresh an entire dashboard, switch to another
section, and then switch back to the same section. This was designed so that menu changes
could be executed from the Startup script or from the user interface and saved with the
document. It is not expected to be a frequent operation.

26 Working with Dashboard Sections

Embedded Section Object Scrollbar and Auto-Sizing
Properties
Scrollbar options are only available when an embedded object is view only. Scrollbar properties
on the Object tab determine how and when they are displayed: The horizontal and vertical
scrollbars can be used to scroll only the current page of the original section

l If the Show Scrollbar option is set to always, vertical and horizontal scrollbars are displayed
adjacent to but outside the container boundaries of the sections and do not obstruct them.

l If the Show Scrollbar option is set to never, vertical and horizontal scrollbars are not
displayed.

l If the Show Scrollbar is set to automatic, The horizontal and vertical scrollbars appear when
necessary and not as a default.

If Auto-Size is enabled, the object data is scaled to fit within the container boundary of the
section, and the object cannot be scrolled. This means only the first page of the report is displayed.
Disabling the autosize option makes the scrollbars active.

Embedded Section Object View Only Behavior
Embedded section objects in view only mode enables users to view, but not interact with, reports.
View-only is the default setting for all embedded sections supported for embedded objects in
the EPM Workspace. The behavior of view-only embedded section objects is:

l Results and Table—Selection of columns, rows, or column titles is not permitted.

l OLAPQuery, CubeQuery and Pivot—Selection of report cells and handles is not permitted.
(For a Pivot embedded section object in active mode, a fact cell can be double-clicked to
launch a script if there is an OnCellDoubleClick event and JavaScript associated with the
event . The event is associated with the dashboard object, not with the pivot section. See
Embedded Pivot Section Object Interactivity)

l Chart—Selection of labels, bars, lines, and pie slices is not permitted.

l Results, table, OLAPQuery, pivot, and chart—EPM Workspace speed-menu options, which
typically are displayed for selected sections, are not available.

l Reports—An embedded Report section is shown as a contiguous band that includes all the
pages of the section. design time helpers such as the Ruler and specific graphical markups
to outline boundaries of report elements are not displayed.

Embedded Section Object Active Mode in the EPM Workspace
In Active mode embedded section objects are displayed on the page in the same position, of the
same size and with the same Active options applied as in Interactive Reporting and Interactive
Reporting Web Client and within the feature constraints of the EPM Workspace.

An embedded section object in active mode includes this behavior:

Embedded Section Objects 27

l If the “Scrollbars Always Shown” property of the embedded section object is enabled, vertical
and horizontal scrollbars are displayed adjacent to, but outside the defined object’s container
boundary, and do not obstruct the object. Vertical and horizontal scrollbars are always
available.

l If the scrollbar property is not set, vertical and horizontal scrollbars appear only when the
object has the focus and are adjacent to, but outside the defined object’s container boundary
and not obstruct the object. The scrollbars continue to show until the user applies focus to
another object, selects a toolbar button (other than the EPM Workspacepaging toolbar
buttons) or until the Dashboard section is exited.

l Scrolling of the object using either of the object’s scrollbars (vertical or horizontal) enables
only the scrolling of the current page if the parent section

l If the parent section has multiple pages and the embedded section object has focus, the
paging buttons in the EPM Workspace become enabled to allow for the paging of the parent
section.

.

Embedded Section Objects Shortcut Menu
You can customize the shortcut menus added to active embedded section objects in the
Dashboard sections of Interactive Reporting Studio, Interactive Reporting Web Client and EPM
Workspace. Shortcut menus are enabled by selecting the object and right-clicking or pressing
Shift + [F10].

Shortcut menu functionality is added through the Interactive Reporting Studio, or Interactive
Reporting Web Client. The designer selects which options are eligible on a shortcut menu from
a list of all applicable options. Actions performed on the active embedded section have an
immediate effect on the parent section. Actions performed on the parent section of the embedded
section object and Object Model scripted command also update the embedded section object.
The list of available shortcut menu options is context sensitive: and depends on:

l type of application in which the section is available.

l what component of the report is selected (for example, label, or fact, etc.)

l state when the component selection is made (if items have been hidden, if additional
columns are available for drill down, etc).

Several of the shortcut menu options listed for the individual sections EPM Workspace are not
available as shortcut menu options in Interactive Reporting Studio or Interactive Reporting Web
Client and vice versa. They may be are available by other means such as the Standard Toolbar
or mouse controls (i.e. double-click column border). All actions which are possible for the active
embedded section object in Interactive Reporting Studio or Interactive Reporting Web Client
are included as a shortcut menu options for the EPM Workspace.

Adding a Shortcut Menu to an Embedded Section Object

You can specify which shortcut menu are displayed for an embedded section object.

28 Working with Dashboard Sections

ä To add a shortcut menu to an embedded section object:

1 In the Interactive Reporting Studio or Interactive Reporting Web Client, add an embedded section object
to a Dashboard section in design mode.

Note: An embedded section object cannot be added in the EPM Workspace.

Embeddable sections are:

l Results and Tables

l Chart

l Pivot

l OLAPQuery

l CubeQuery

2 Select the embedded section object and on the shortcut menu, select Properties.

The Properties dialog box is displayed.

Note that multiple component selection can be performed in two ways:

l Shift + Click—Selects a range of components

l Ctrl + Click—Selects multiple components one at a time (also enables you to deselect
components one at a time)

3 Select the Object tab.

4 In Make Embedded Section, enable Active.

5 Select OK.

6 Select the embedded section object again and on the shortcut menu, select Shortcut Menu.

The Shortcut Menu dialog box is displayed. The dialog shows an Available and Selected
Pane, the shortcut menu name and the name of the application in which the shortcut menu
is available (Interactive Reporting Web Client is included under “Desktop”. By default all
applicable shortcut menu options have been added to the Selected pane.

7 To accept the default shortcut menu options, select OK.

Note: The relative order of the shortcut menu items cannot be changed.

To remove a default shortcut menu option, select the option in the Selected pane and click

.

Active Embedded Results/Table Section Object Shortcut Menus

Shortcut menus can be launched by selecting the column title or column body for individual
and multiple columns. Multiple column selection can be performed in two ways:

Embedded Section Objects 29

l Shift + Click—Selects a range of columns

l Ctrl + Click—Selects multiple columns one at a time (also enables you to deselect of columns
one at a time)

When a column or columns are selected, the EPM Workspace shortcut menu displays with the
following options:

l Sort Ascending (Desktop and EPM Workspace)

l Sort Descending (Desktop and EPM Workspace)

l Background (Desktop)

l Auto-Size Column (EPM Workspace)

Active Embedded Pivot Section Object Shortcut Menu

Shortcut menus can be launched by selecting the top or side labels, fact column, fact column
label, column title or the pivot handles of the top and side labels. Individual or multiple selections
of pivot components is available. Multiple component selection can be performed by selecting
Ctrl + Click.

The list of available shortcut menu options is context sensitive and depends on what component
of the report is selected (label, fact, pivot handle) and the state when the component selection
is made (if items have been hidden, if additional columns are available for drill down, etc).

Depending on the selected component selected, the shortcut menu displays the following
options:

l Drill Anywhere (Desktop and EPM Workspace)

l Drill Up (Desktop and EPM Workspace)

l Focus on Items (Desktop and EPM Workspace)

l Hide Items (Desktop and EPM Workspace)

l Show Hidden Items (Desktop and EPM Workspace)

l Show All Items (Desktop and EPM Workspace)

l Auto-Size Column Width (EPM Workspace)

l Swing

m Horizontal (EPM Workspace)

m Vertical (EPM Workspace)

m Up (EPM Workspace)

m Down (EPM Workspace)

m Left (EPM Workspace)

m Right (EPM Workspace)

m Before (EPM Workspace)

m After (EPM Workspace)

30 Working with Dashboard Sections

l Sort Ascending (EPM Workspace)

l Sort Descending (EPM Workspace)

l Refresh Pivot (EPM Workspace)

Active Embedded Chart Section Object Shortcut Menu

Shortcut menus can be launched by selecting bars, pie slices, lines, slice labels, or X and Z axis
labels. Individual or multiple selections of Chart components is available. Multiple component
selection can be performed by selecting Ctrl + Click. This command allows the selection of
multiple like components, one at a time (it also allows for the deselection of components one at
a time) Depending on the selected component(s) selected, the shortcut menu displays the
following options:

The list of available shortcut menu options is context sensitive and depends on what component
of the report is selected (label, bar, slice) and the state when the component selection is made
(if items have been hidden, if additional columns are available for drill down, etc).

l Drill Anywhere (Desktop and EPM Workspace)

l Drill Up (Desktop and EPM Workspace)

l Focus on Items (Desktop and EPM Workspace)

l Hide Items (Desktop and EPM Workspace)

l Show Hidden Items (Desktop and EPM Workspace)

l Show All Items (Desktop and EPM Workspace)

l (Un)Group (EPM Workspace)

l Show Negative Values (Desktop)

l Show Pie Outline (Desktop)

l Show Bar Border (Desktop)

l Show Marker Border (Desktop)

l Show Label (Desktop and EPM Workspace)

l Sort Ascending (EPM Workspace)

l Sort Descending (EPM Workspace)

l Zoom (EPM Workspace)

m In (EPM Workspace)

m Out (EPM Workspace)

m Return to original (EPM Workspace)

l Refresh Chart (EPM Workspace)

Active Embedded OLAPQuery/CubeQuery Section Object Shortcut Menu

Selection within the object is permitted by either selecting the top or side labels, fact column,
fact column label or column title or by selecting the handles of the top and side labels. Individual

Embedded Section Objects 31

selections of these components can be performed as well as the selection of multiple components.
Multiple component selection can be performed in two ways:

l Shift + click—Selects a range of columns

l Ctrl + click—Selects multiple columns one at a time (also enables you to deselect of columns
one at a time)

Depending on the selected component selected, the shortcut menu displays the following
options:

l Keep Only (Desktop and EPM Workspace)

l Remove Only (Desktop and EPM Workspace)

l Drill (Desktop and Workspace)

m Down (Desktop and EPM Workspace)

m Up (Desktop andEPM Workspace)

m Next (Desktop and EPM Workspace)

m Bottom (Desktop and EPM Workspace)

m All Descendants (Desktop and EPM Workspace)

m Siblings (Desktop and EPM Workspace)

m Same Level (Desktop and EPM Workspace)

m Same Generation (Desktop and EPM Workspace)

l Suppress (Desktop and EPM Workspace)

m Missing rows (Desktop and EPM Workspace)

m Missing columns (Desktop and EPM Workspace)

m Missing columns (Desktop and EPM Workspace)

m Zero rows (Desktop and EPM Workspace)

m Zero columns (Desktop and EPM Workspace)

l Drill-Through (Desktop and EPM Workspace)

l Column width (Desktop and EPM Workspace)

l Row height (Desktop and EPM Workspace)

Embedded Section Object Paging
Paging standards used by embedded objects:

l If the original section includes multiple pages and the embedded section is selected, the
paging buttons of the EPM Workspace toolbar are enabled. When a toolbar button is clicked,
the updated page view is displayed within the borders of the embedded section.

l Embedded-section paging is independent of original-section paging, and the paging of each
embedded section is independent of the paging of other sections, even if the other sections
are embedded in the same dashboard section and derived from the same original section.

32 Working with Dashboard Sections

l For hyperlinks, page view cannot be updated.

l In EPM Workspace, hyperlinks are displayed in new tabs, if the hyperlink content is derived
from the repository and the hyperlink is set to display in the top window. If you select the
current window and the content is from the repository, the repository content replaces the
current-tab content. Otherwise, the content is displayed in a new window.

l If an action performed on the original section invalidates the current-page view of the
embedded section, the embedded-section view moves to the next valid page.

l Non-paging-related actions performed on original sections (such as column modification
and formatting) are propagated to all embedded sections (regardless of active-page or
embedded-section mode). In these cases, embedded sections retain their current page views.

Embedded Section Object Design Considerations
Reminders for designers working with embedded objects:

l Because embedded section scrollbars are sometimes displayed outside defined boundaries,
objects and controls within embedded sections must be placed carefully, to avoid obstructing
the scrollbars.

l When you connect to a computer to start the BI Service on Windows, ensure that the color-
setting for the display is at least 16-bits. If the color setting is less than 16-bits, users may
encounter extremely long response times when opening chart sections of Interactive
Reporting documents. Color setting is a significant pre-startup step, especially when services
are started remotely (for example using VNC, Terminal Services, Remote Administrator, or
Timbuktu), because many remote administration clients connect with only 8-bit colors by
default.

Embedded Pivot Section Object Interactivity
Pivot tables embedded in dashboards as active sections can be scripted to enable users to double-
click cells and build interactivity around them. This feature is available on all fact cells of pivot
tables. When a fact cell is double-clicked, the OnCellDoubleClick event is fired, and JavaScript
associated with the event can be executed. The event is associated with the dashboard object,
not with the pivot section.

Embedded pivot section interactivity is available for Interactive Reporting Studio and Interactive
Reporting Web Client. It is not available for documents deployed in EPM Workspace.

Prior to executing the script associated with the OnCellDoubleClick event, certain object-tree
properties are set. The properties are then valid from wherever within the object model that the
object is accessible, such as from document startup and shutdown scripts. If the pivot section is
recalculated, the properties are reset to the initial, default state, as if no double-click event had
occurred.

Properties set prior to executing OnCellDoubleClick events:

l OnCellDoubleClick (Method)

l FactName (Property)

Embedded Section Objects 33

l CellValue (Property)

l TopLabelValues (Array)

l SideLabelValues (Array)

See “Object-Level Events” on page 60.

Gauges and (Live) Charts
Gauges and (Live) Charts enable you to transform the Interactive Reporting data set into Adobe
Flash based graphics. They are snapshots of real time data graphically embedded in the
Dashboard section. When you need to present compact data driven visuals, use these objects to
develop the solution.

Interactive Reporting offers four types of gauges, six types of (Live) Charts, and a Slider control.

Available gauges are:

l Speedometer

l Thermometer

l Bullet

l Traffic Light

Available (Live) Charts are:

l (Live) Bar Chart (in cluster, stack or 100% formats)

l (Live) Block Chart (in pyramid or cone formats)

l (Live) Funnel Chart

l (Live) Line Chart (in line or area formats)

l (Live) Pie Chart (in pie or donut formats)

l (Live) Radar Chart

The XML template drives the overall appearance of gauges and (Live) Charts. The template
provides a consistent look, and each object inherits the properties specifically defined for it by
the template. It is provided in the installed version of Interactive Reporting. Many properties of
each object can be changed without editing the template directly. For example you can select a
gauge theme, choose the type of a (Live) Chart (cluster, stack or 100% stack for a (Live) Bar
chart), or define which labels and values are rendered.

Below is an example of a Speedometer gauge (right) which has been associated with a Slider
(left).

34 Working with Dashboard Sections

Note: Adobe Flash must already be installed before you can display the gauges and (Live) Charts
in Interactive Reporting. See the epm_install_start_here.pdf for more information.

Gauges
Gauges simulate familiar measuring devices, such as a speedometer or thermometer. They
illustrate at a glance the performance relationships between actual and target values. Gauges can
be embedded as stand-alone graphics, or made dynamic by association with a Slider. The Slider
is a graphical control which drives the display of data by category in the gauge.

Gauge Description

Speedometer—Features a speedometer like object. The radial design provides an easily to
recognize mechanism for measuring values. The Speedometer gauge can be shown in 360 degree,
180 degree, 90 degree left or 90 degree formats.

Gauges and (Live) Charts 35

Gauge Description

Thermometer—Illustrates values in a thermometer like graphic. This Thermometer gauge is
particularly useful for comparing levels based on a certain “temperature” level.

Bullet—Features a linear shape that is easily scalable to a smaller space in the dashboard.

Traffic Light—Illustrates the “safety” or health of a specific indicator in a single or multiple traffic
light like graphic.

Adding Gauges to the Dashboard
One or multiple gauges can be added to the Dashboard section. For each gauge, you select actual
and target fact values from the same section.

ä To add a gauge to the Dashboard:

1 Open a dashboard section in design mode.

2 From the Elements, expand Gauges.

36 Working with Dashboard Sections

3 Select a gauge and drag it to the Content pane.

Available gauges include:

l Bullet

l Speedometer

l Thermometer

l Traffic Light

The gauge object is added to the Content pane.

4 Select the gauge object to launch the data layout.

5 In the Elements pane, expand the Results or Table section.

6 Drag a fact column to the (actual) Fact pane of the data layout.

7 To apply a data function to the actual value in step 6, select the value in the data layout and on the
shortcut menu, choose Data Function.

8 Select the data function from the sub-menu.

Available data functions are:

l Sum (default function)

l Average

l Count

l Maximum

l Minimum

9 Drag a fact column to the Target pane of the data layout.

The Traffic Light gauge does not include a target range. As a result, no Target pane is available
when the Traffic Light object is selected.

10 To apply a data function to the target value in step 9, select the target value and on the shortcut menu,
choose Data Function.

11 Select the data function from the sub-menu.

Available data functions are:

l Sum

l Average

l Count

l Maximum

l Minimum

12 To modify gauge properties, select the gauge object and on the shortcut menu, select Properties.

For more information, see “Gauge Properties ” on page 38.

13 Associate the gauge with a Slider.

Gauges and (Live) Charts 37

For more information, see Adding a Slider to the Dashboard.

14 To view the gauge, switch to the Dashboard section in run mode.

Gauge Properties
Use the Gauge Properties dialog box to set the display options for the gauges.

General
Properties

Description

Theme Refers to the parts of the gauge that can be altered to change the look without changing its functionality. Available options:

l realistic—Renders the graphic with a three-dimensional appearance.

l simplistic—Renders the gauge with a one dimensional appearance. If a gauge is scaled on the smaller side, use the
simplistic theme.

Subtype Select the degrees of orientation of the gauge. Individual gauge sub-types include:

Speedometer

l Speedo_Full—360 degree orientation

l Speedo_180—180 degree orientation

l Speedo_90left—90 degree left orientation

l Speedo_90right—90 degree right orientation

Thermometer

l Vertical_Thermometer—Vertical thermometer orientation

l Horizontal_Thermometer—Horizontal thermometer orientation

Bullet

l Vertical_Bullet—Vertical bullet orientation

l Horizontal_Thermometer—Horizontal bullet orientation

Traffic Light

l Vertical_Traffic_Light—Vertical Traffic Light orientation

l Horizontal_Traffic_Light—Horizontal Traffic Light orientation

l Single_Traffic_Light

Scale Properties Description

Auto Enable the calculation of the lower and upper values scale of the data set automatically. The scale is recalculated
automatically when the data set is refreshed. To specify a minimum and maximum scale manually, disable this field.

Min. Specify the lowest value of the numeric scale from the actual data set in this field. This option is disabled if Auto is
enabled.

Minor Interval Specify the minor interval unit placed on the scale of gauge. For example, if you select 10, tick marks are placed at
every tenth minor interval. This option is disabled if Auto is enabled.

38 Working with Dashboard Sections

Scale Properties Description

Max. Specify the highest value of the numeric scale from the actual data set in this field. This option is disabled if Auto is
enabled.

Major Interval Specify the major interval unit placed on the scale of gauge. For example, if you select 20, tick marks are placed at
every twentieth major interval. This option is disabled if Auto is enabled.

Show Properties Description

Legend Enables the display of the gauge legend.

Tickmarks Enables the display of short lines extending from the label to the value.

Value Enables the display of the featured actual value beneath the gauge.

Scale Enables the display of the numeric ranges in the gauge.

Color Range Properties Description

Min For each color range, specify the minimum value from which to apply a color. Only the first minimum color range
value can be blank.

Max For each color range, specify the maximum value to which a color is applied. Only the last maximum color range
value can be blank.

Color For each color range to be applied, double-click the Color field and select a color from the Color Palette.

Tooltips For each color range, specify a description of the range. For example, you might assign “poor” for the color red,
or “excellent” for the color green. The tool tip is specific to the color range. The default tool tip description is
“Current value is xxx”.

Add Adds another color range.

X Removes a color range.

Color Range Behavior
Color ranges are not rendered the same way for two identical gauges with approximate starting
and ending values if one gauge has one or more blank color range buckets, and the other has all
explicitly defined.

For example in the first sample, the numeric scale for the color ranges is defined at:

Table 9 Speedometer 1 Color Range

Min Max Color

10 50 Red

50 100 Green

The result is:

Gauges and (Live) Charts 39

In the second example, the numeric scale for the color ranges is defined at:

Table 10 Speedometer 2 Color Range

Min Max Color

 50 Red

50 Green

(Live) Charts
Use (Live) Charts to present your data in a Flash based animated chart format. (Live) Charts
consists of six chart types, each or which can be customized to show different degrees of
information. Like gauges, they can be driven by a slider control. Interactive Reporting (Live)
charts include:

40 Working with Dashboard Sections

Name (Live) Chart Type Description

Pie (Live) Pie Chart in 2–D format:

(Live) Pie Chart in donut format:

(Live) Pie charts display data as
shares or “slices” to a whole in a
pie-shaped graphic. These types of
charts are useful for relative
comparisons within the same data
series, for example if you need to
compare advertising costs of
different brands. (Live) Pie charts
can be displayed in a standard pie
format, or in donut format. Charts
can be “exploded” such that slices
are moved away from the center of
the chart.

Bar (Live) Bar Chart (Live) Bar charts displays data
values within the same category by
bar length. This type of chart is
useful for comparing data series
within a category.

Gauges and (Live) Charts 41

Name (Live) Chart Type Description

Line (Live) Line Chart in line format:

(Live) Line Chart in area format:

(Live) Line charts displays items or
a series in one or more categories
at equal intervals. They are
effective for comparing highs and
lows in a continuum. Values are
depicted by the height of a point
determined in the y-axis, and
categories are represented on the
x-axis. (Live) Line charts are also
effective in showing numeric
increases or decreases within the
same category. The (Live) Line
chart can be displayed in the
traditional or area format.

42 Working with Dashboard Sections

Name (Live) Chart Type Description

Radar (Live) Radar charts display data
values in relation to a center point.
This chart is effective for
demonstrating variances between
multiple components associated
with a single value. A point nearer
to the center on an axis shows a low
value, and a point closer to the
edge show a higher value. Each
data point is displayed as a marker,
and you can plot data along
multiple axes.

Block (Live) Block Chart in cone format:

(Live) Block in Pyramid format

(Live) Block charts consists of a
cone shape or pyramid shaped
chart. Like (Live) Bar charts, (Live)
Block charts are useful for
comparing values using a common
scale, where the values need to be
rendered hierarchically. (Live)
Block charts are best used with a
small data set since they taper at
the end.

Gauges and (Live) Charts 43

Name (Live) Chart Type Description

Funnel (Live) Funnel charts illustrate
discreet components within a
larger context. The height of the bar
represents how close the actual
value (Fact) is to a target values.
For example, if the target value is
100, and the actual value is 50, the
bar is drawn half way. (Live) Funnel
charts are traditionally used to
demonstrate phases in the sales
pipeline (for example, prospects,
qualified leads, tested customer
requirements, proposals sent and
negotiations to close).

Adding (Live) Charts to the Dashboard

ä To add a (Live) Chart:

1 Open a Dashboard section in design mode.

2 From the Elements Catalog, expand Live Charts.

3 Select a (Live) Chart and drag it to the Content pane.

Available (Live) Charts include:

l (Live) Bar Chart

l (Live) Line Chart

l (Live) Pie Chart

l (Live) Radar Chart

l (Live) Block Chart

l (Live) Funnel Chart

A (Live) chart object is added to the Contents pane.

4 Select the (Live) Chart object and select Data Layout.

5 In the Elements pane, expand the Results or Table section.

6 Drag a fact column to the (actual) Fact pane of the data layout.

7 To apply a data function to the Fact value in step 6, select the Fact value in the data layout and on the
shortcut menu, choose Data Function.

8 Select the data function from the sub-menu.

44 Working with Dashboard Sections

Available data functions are:

l Sum

l Average

l Count

l Maximum

l Minimum

9 Drag a Category column to the XAxis, Wedge, or Slice pane of the data layout.

Depending on the type of (Live) Chart, two or more data layout panes are displayed. The
values that can be in the data layout panes are based on the chart type:

l (Live) Bar Chart—Accepts Fact values and X-Axis values.

l (Live) Line Chart—Accepts Fact values, Target Fact values and X-Axis values.

l (Live) Pie Chart—Accepts Fact values, and Slice values.

l (Live) Radar Chart—Accepts Fact values and Axis values.

l (Live) Block Chart—Accepts Fact values and Wedge values.

l (Live) Funnel Chart—Accepts Fact values, Target values, and X axis values.

10 To apply a data function to category (numeric only) value in step 9, select the value and on the shortcut
menu, choose Data Function.

11 Select the data function from the sub-menu.

Available data functions are:

l Sum

l Average

l Count

l Maximum

l Minimum

12 Optional for (Live) Line Charts only, drag a fact column to Target Fact pane of the data layout.

13 To change (Live) Chart properties, select the (Live) Chart object and on the shortcut menu, select
Properties.

For more information about chart specific properties, see (Live) Chart Properties.

14 Optional: Associate the (Live) Chart with a Slider.

For more information, see: Adding a Slider to the Dashboard.

15 To view the (Live) Chart, switch to the Dashboard section in run mode.

(Live) Chart Properties
Use the (Live) Chart Properties dialog box to set the display options for the following (Live)
Charts:

Gauges and (Live) Charts 45

l (Live) Bar Chart Properties

l (Live) Line Chart Properties

l (Live) Pie Chart Properties

l (Live) Radar Chart Properties

l (Live) Block Chart Properties

l (Live) Funnel Chart Properties

Note: The Live Chart color scheme is derived from the color scheme defined in the Default Fonts
and Styles dialog box.

(Live) Bar Chart Properties
Use the (Live) Bar Chart Properties dialog box to define specific properties associated with a
(Live) Bar Chart.

Table 11 (Live) Bar Chart General Properties

General
Properties

Description

Type Specify the bar chart type. Available options include:

l Cluster—Show data series grouped together on one axis.

l Stack—Shows data series arranged in a layered format. Stacked bar charts offer similar complexity to clustered bar
charts by adding component value items within chart bars or areas. By stacking items and assigning a different color
to each item, you can effectively display trends among comparable or related items, or visually emphasize a sum of
several indicators.

l 100% Stack—Shows the data series arranged in a stacked format as a percentage of the whole total. This format
enables you to compare percentage across different data series.

Effect Select either a 2–D, 3–D, or gradient effect. A 2D or 3D effect refers to the perspective of the rendered chart. A gradient
defines the direction of the blend pattern from one color to another, and simulates depths of color from light to dark.
Available options are:

l 2–D—The 2–D effect is flat and shows values only on the horizontal and vertical axes (X and Y axis).

l 3–D—The 3–D effect shows rotation and depth in addition to the horizontal and vertical axes.

l gradient-Vert—Sets a top to bottom gradient.

l gradient-Hort—Sets a left to right gradient.

Orientation Specify the direction of the bars. Available options are vertical or horizontal.

Show Legend Enables the displays of the chart legend.

Show Bar
Values

Enables the display of bar values.

Table 12 (Live) Bar Chart Category Axis Properties

Category Axis Property Description

Title Enables the display of the category axis title.

46 Working with Dashboard Sections

Category Axis Property Description

Show Labels Enables the display of category axis labels.

Table 13 (Live) Bar Chart Fact Axis Properties

Fact Axis Property Description

Title Enables the display of the fact axis title.

Show Labels Enables the display of fact labels.

Auto Enable to calculate the lower and upper values scale of the data set automatically. The scale is recalculated
automatically when the data set is refreshed. To specify a minimum and maximum scale manually, disable this field.

Min: Enter the minimum data value on the values scale. This option is disabled if Auto is enabled.

Max: Enter the maximum data value on the value scale. This option is disabled if Auto is enabled.

(Live) Line Chart Properties
Use the (Live(Line Chart Properties dialog box to define specific properties associated with a
(Live) Line Chart or Area Chart.

Table 14 (Live) Line Chart General Properties

General
Properties

Description

Type Select the format for the (Live) Line Chart. Available options include:

l Line—Displays items as data points connected by a line. or a series in one or more categories at equal intervals. Line
charts are effective for comparing highs and lows in a continuum. Values are depicted by the height of a data point
determined in the y-axis, and categories are represented on the x-axis.

l Area—Displays values as data points connected by a line. The area below the line is filled. Values are represented by
the height of the point as measured by the y-axis. Category labels are displayed on the x-axis. Area charts are typically
used to compare values over time.

Effect Select either a 2–D, or gradient effect. A 2–D effect refers to the perspective of the rendered chart. A gradient defines the
direction of the blend pattern from one color to another, and simulates depths of color from light to dark. Available options
are:

l 2–D—Two dimensional refers to the actual dimensions of the graphic. The 2–D effect is flat and shows values on the
horizontal and vertical axis (X and Y axis).

l gradient-Vert—Sets a top to bottom gradient.

l gradient-Hort—Sets a left to right gradient.

Marker Style Select the style of a marker. A marker depicts a data point in a cell. Valid options are:

l Circle

l Square

l Triangle

l Diamond

l None

Gauges and (Live) Charts 47

General
Properties

Description

Show Title Enables the display of the chart title.

Show
Legend

Enables the display of the chart legend.

Target Range (Live) Line charts can include a colored band around the target line to indicate the absolute or percentage distance from
the target markers. A unique color can also be associated with the area above or below the specified band.

From left to right, the first color box corresponds to the upper range, the second color box corresponds to the middle range,
and the third color box corresponds to the lower range. By default the upper and lower ranges have a transparent color.
To select an alternate color for a range, double click the box and select a color from the palette.

This option is not available for a (Live) Line Chart in area chart format.

(% or
Absolute
Deviation)

For the target range above, select one of the following options:

l % of Deviation—Select a percentage amount in the first box and % in the second box. The percentage is added to the
data point.

l Absolute—Select a real number in the first box and Absolute in the second box.

In this example “Units” is the actual range and shown in blue, “Unit Target” is the target range and shown in black. The
target range band is shown in light green, and the absolute deviation is 25 (shown in the green band):

Table 15 (Live) Line Chart Category Axis Properties

Category Axis Properties Description

Title Enables the display of the category axis title.

Show Labels Enables the display of category axis labels.

48 Working with Dashboard Sections

Table 16 (Live) Line Chart Fact Axis Properties

Fact Axis Property Description

Title Enables the display of the fact axis title.

Show Labels Enables the display of fact labels.

Auto Enable to calculate the lower and upper values scale of the data set automatically. The scale is recalculated
automatically when the data set is refreshed. To specify a minimum and maximum scale manually, disable this field.

Min: Enter the minimum data value on the values scale. This option is disabled if Auto is enabled.

Max: Enter the maximum data value on the value scale. This option is disabled if Auto is enabled.

(Live) Pie Chart Properties
Use the (Live) Pie Chart Properties dialog box to define specific properties associated with a
(Live) Pie Chart.

Table 17 (Live) Pie Chart General Properties

General
Properties

Description

Type Select the (Live) Chart format. Available options include:

l Pie—Displays pieces (slices) of the pie drawn to represent the relative value of a measurable item to the whole.
Only one category (data series) can be plotted in a Pie Chart.

l Donut—Drawn like a (Live) Pie Chart, the donut chart format does not include a center hole.

Effect Specify the effect associated with the chart. A 2–D or 3–D effect refers to the perspective of the rendered chart. Available
options are:

l 2–D—The 2–D effect is flat.

l 3–D—The 3–D effect shows rotation and depth.

Show Legend Enables the display of the chart legend.

Show Label Enables the display of value labels.

Explode Pulls individual slices from the center.

(Live) Radar Chart Properties
Use the (Live) Radar Chart Properties dialog box to define specific properties associated with a
(Live) Radar Chart.

Gauges and (Live) Charts 49

Table 18 (Live) Radar Chart General Properties

General Property Description

Effect Specify the effect for the area contained within the data value points. Available options are:

l Outline—The area shows only the lines connecting the data value points.

l Fill—The area contained within the data value points is filled with color.

Show Legend Enables the display of the (Live) Radar Chart legend.

Table 19 (Live) Radar Chart Category Property

Category Axis Property Description

Show Labels Enables the display of category axis labels.

Table 20 (Live) Radar Chart Fact Axis Properties

Fact Axis Properties Description

Title Enables the display of the fact axis title.

Show Labels Enables the display of fact labels.

Auto Enable to calculate the lower and upper values scale of the data set automatically. To specify a minimum and
maximum scale manually, disable this field.

Min: Enter the minimum data value on the values scale. This option is disabled if Auto is enabled.

Max: Enter the maximum data value on the values scale. This option is disabled if Auto is enabled.

(Live) Block Chart Properties
Use the (Live) Block Chart Properties dialog box to define specific properties associated with a
(Live) Block Chart.

Table 21 (Live) Block Chart General Properties

General
Properties

Description

Type Select the format of the (Live) Block chart. Available options include:

l Pyramid—A pyramid shaped chart that shows the percentage of each data value to the whole with the smallest value
at the top and the largest at the bottom.

l Cone—A conical shaped chart that show the percentage of each data value to the whole with the smallest value at
the top and the largest at the bottom.

Effect Select the effect associated with the chart. A 2–D or 3–D effect refers to the perspective of the rendered chart. Available
options are:

l 2–D—The 2–D effect is flat and shows values only on the horizontal and vertical axes (X and Y axes).

l 3–D—The 3–D effect shows rotation and depth in addition to values on the horizontal and vertical axes.

50 Working with Dashboard Sections

General
Properties

Description

Orientation Select the position of the tapered end of the block chart. Available positions are:

l Up

l Down

l Left

l Right

Show Legend Enables the display of the chart legend.

Show Label Enables the display of value labels.

Explode Pushes out individual values.

(Live) Funnel Chart Properties
Use the (Live) Funnel Chart Properties dialog box to define specific properties associated with
a (Live) Funnel Chart.

Table 22 (Live) Funnel Chart General Properties

General
Properties

Description

Effect Select the effect associated with the chart. A 2–D or 3–D effect refers to the perspective of the rendered chart. Available
options are:

l 2–D—The 2–D effect is flat and shows values only on the horizontal and vertical axes (X axis and Y axis).

l 3–D—The 3–D effect shows rotation and depth in addition to the horizontal and vertical axes.

Orientation Select the position of the tapered end of the block chart. Available positions are:

l Up

l Down

l Left

l Right

Show Legend Enables the display of the chart legend.

Show Bar Values Enables the display of bar values.

Table 23 (Live) Funnel Chart Category Axis Properties

Category Axis Properties Description

Title Enables the display of the category axis title.

Show Labels Enables the display of category axis labels.

Gauges and (Live) Charts 51

Table 24 (Live) Funnel Chart Fact Axis Properties

Fact Axis Properties Description

Title Enables the display of the fact axis title.

Show Labels Enables the display of fact axis labels.

Auto Enable to calculate the lower and upper values scale of the data set automatically. The scale is recalculated
automatically when the data set is refreshed. To specify a minimum and maximum scale manually, disable this
field.

Min Enter the minimum data value on the values scale. This option is disabled if Auto is enabled.

Max Enter the maximum data value on the values scale. This option is disabled if Auto is enabled.

Sliders
A slider is a control that drives the data on a associated gauge or (Live) Chart. It is the mechanism
that provides the real interactivity between you and the gauge or (Live) Chart object. As you
move along the dimension labels on the slider, the gauge or (Live) Chart snaps onto the
corresponding values. Slider dimensions must reference the same data set used by the gauge or
(Live) Chart. A Slider can control multiple gauges or (Live) Charts in the same Dashboard
section. Like other Dashboard controls, Slider properties can be modified.

Adding a Slider to the Dashboard

ä To add a slider:

1 Open a dashboard section in design mode.

2 From the Elements pane, expand Controls

3 Select the Slider control and drag it to the Content pane.

A slider object is added to the Contents pane.

4 Select the Slider object.

The Category pane of the data layout is displayed.

5 From the Elements pane, expand the Results or Table section.

6 Select a dimension (non-fact) item and drag it to the Category pane of the data layout

7 Select the slider and on the shortcut menu select Properties.

The Properties dialog box is displayed.

8 Select the Association tab.

The Association dialog box is displayed.

9 In the Available, pane, select a gauge or (Live) Chart and click to add it to the Selected pane.

52 Working with Dashboard Sections

10 Select OK.

To remove the association between the slider and the gauge, select the gauge in the Selected

pane and click .

11 Select the Slider tab.

12 From the Theme drop-down, select the theme of the Slider.

Available options are: realistic or simplistic.

13 From the Subtype drop-down, select the orientation of the Slider.

Available options are: vertical or horizontal.

14 Click OK.

Slider Properties

Association Properties
Use the Association dialog box to link a gauge or (Live) Chart with the slider. Multiple gauges
or (Live) Charts can be associated with one slider.

ä To associate a gauge with a slider:

1 In design mode, select the slider and on the shortcut menu, select Properties.

The Properties dialog box is displayed.

2 Select the Association tab.

3 In the Available, pane, select a gauge and click to add it to the Selected pane.

4 Click OK.

Table 25 Association Properties

Association Properties Description

Available Lists the gauges and (Live) Charts available to be associated with the selected Slider.

Selected Lists the gauges and () Charts associated with the selected Slider.

Slider Properties
Use Slider Properties dialog box to set the appearance of the Slider control.

ä To define properties of the slider:

1 In design mode, select the Slider and on the shortcut menu, select Properties.

The Properties dialog box is displayed.

Sliders 53

2 Select the of the slider.

Available options are

l realistic—Renders the graphic with a three-dimensional appearance.

l simplistic—Renders the gauge with a one dimensional appearance

3 Select the orientation of the slider from the Subtype field.

Available options are:

l Vertical

l Horizontal

Table 26 Slider Properties

Slider
Properties

Description

Theme Refers to the parts of the slider that can be altered to change the look without changing its functionality. Available
options:

l realistic—Renders the graphic with a three-dimensional appearance.

l simplistic—Renders the gauge with a one dimensional appearance. If a gauge is scaled on the smaller side,
use the simplistic theme.

Subtype Refers to the orientation of the slider. Available options are:

l Vertical_Slider

l Horizontal_Slider

Setting Dashboard Properties
You use the Properties dialog box to set properties for a dashboard section or for specific objects
within a dashboard section. Many dashboard objects have unique properties. For example, radio
buttons (option buttons) have Radio Group properties, and list boxes have Multiple Selection
properties. Tab-order properties apply to all sections and are accessible in the Properties dialog
boxes for the dashboard section and for individual objects.

ä To set properties for objects and dashboard sections:

1 Select an object on the content area or a dashboard section.

2 Right-click and select Properties, or select Dashboard, then Properties.

Properties is displayed. The active tab depends on the selection made prior to invoking
Properties.

3 Set the properties for the object or dashboard section, by using the tabs.

Available properties:

l Alignment—Horizontal and vertical alignment, text wrapping, and rotation

l Border and Background—Border color, width, style, and shadow and background color
and pattern

54 Working with Dashboard Sections

l Font—Family, style, size, effects (underline, overline, double overline), and color

l Object—Name, title, visible, enable (control objects only), locked, scroll bars always
shown, and auto-size; for embedded sections, view-only, active, or hyperlink

l Picture—File name, size, and effects—for dashboard background and graphic object
pictures

l Tab Order—Object path that end users follow when Tab is pressed in Run mode

l Accessibility—User-defined and auto generated descriptive 508 text for each embedded
section or graphic

l Values—User-defined values that populate list box, drop-down lists, or text box
controls

4 Click OK to apply the settings and close Properties.

Using Design Tools
Interactive Reporting Studio gives you complete control of your dashboard section setup and
provides layout and navigation tools that assist you in designing effective, high quality custom
applications.

Layout Tools:

l Using Design Guides

l Using Grids

l Using Rulers

Layout Tools
Layout tools are available from the dashboard menu or the dashboard section toolbar.

Using Design Guides
Design guides are horizontal and vertical lines that you place in your report to help you align
objects. Design guides are similar to grids in that objects automatically snap to align to the guides.

If rulers are visible, you can click a ruler and drag one or more design guides from the horizontal
or vertical ruler.

ä To display or not display design guides, select Dashboard, then Design Guides.

If guides were visible, they are now invisible. If guides were not visible, they are now visible. If
guides are visible, a check mark is displayed before Design Guides.

Using Design Tools 55

Using Grids
Interactive Reporting Studio and Interactive Reporting Web Client provide a layout grid that
automatically snaps all objects to the closest grid point.

ä To display or not display the grid, select Dashboard , then Grid

If the grid was visible, it is now invisible. If the grid was not visible, it is now visible. If the grid
is visible, a check mark is displayed before Grid.

Using Rulers
Horizontal and vertical rulers help you align items based on units of measure—inches,

centimeters, and pixels. You select a unit by clicking (measure indicator) at the intersection
of the top and left rulers.

ä To display and not display the ruler, select Dashboard , then Ruler.

If the ruler was visible, it is now invisible. If the ruler was not visible, it is not visible. If the ruler
is visible, a check is displayed before Ruler.

Using the Dashboard Section Toolbar
The dashboard section toolbar provides icons allow you to maneuver multiple dashboard
objects.

Table 27 Dashboard Section Toolbar

Numbered
Item

Button Name Description

1 Design/Run Toggle between Design and Run modes

56 Working with Dashboard Sections

Numbered
Item

Button Name Description

2 Align Aligns multiple selected objects to the first selected object (Select the first object, press and hold Ctrl,
and select the remaining objects. Click , and select an alignment option: left, center, right, top,
middle, or bottom)

3 Make Same
Size

Sizes multiple selected objects to the size of the first selected object. (Select the first object, press
and hold Ctrl, and select the remaining objects. Click , and select a sizing option: width, height, or
both)

4 Layer Stacks one object relative to other objects: bring to front, send to back, bring forward, and send
backward (Use this feature to layer multiple objects so that only the sections of the objects that you
want visible are displayed)

Using the Navigation Toolbar
You use the navigation toolbar to return to a dashboard section from another section when
Sections, section title bar, toolbars, and menus are turned off.

The navigation toolbar is hidden by default, but you can use scripts to enable it. When activated,

the toolbar is available in all sections and includes the (Back), (Forward), and
(Dashboard Home—See “Setting Dashboard Home Sections” on page 23).

Use these scripts to work with the navigation toolbar.

This script activates the navigation toolbar.

//Syntax for turning on Navigation toolbar
Toolbars["Navigation"].Visible=true;

This script activates all toolbars except the navigation toolbar.

//Syntax for turning on all toolbars except the Navigation toolbar

j=Toolbars.Count

for (i=1; i<=j; i++) {
 if (Toolbars[i].Name != "Navigation") {Toolbars[i].Visible=true}
}

This script turns off all toolbars.

//Syntax for turning off all toolbars
j=Toolbars.Count

for (i=1; i<=j; i++) {
 Toolbars[i].Visible=false
}

Using Design Tools 57

58 Working with Dashboard Sections

2
Working with the Interactive

Reporting Object Model

In This Chapter

The Object Model .59

Interactive Reporting Events .. .60

Using Script Editor .. .63

Using a Sample JavaScript Script .. .65

Testing Scripts Using the Interactive Reporting Execution Window... .65

Reviewing Error Messages in the Interactive Reporting Console Window... .65

Finding and Replacing Within Scripts .. .65

The Object Model
The object model is the cornerstone for scripting customized interfaces (dashboards). The object
model and Script Editor provide access to all levels of Interactive Reporting.

The object model is a hierarchical representation of Interactive Reporting and the Interactive
Reporting Web Client objects and the actions (methods) and attributes (properties) that are
used to manipulate the objects.

Objects include applications, documents, sections, limits, connections, graphics, controls,
catalog items, topics, request lines, results columns, chart labels, pivot-side labels, facts, menu
bars, status bars, toolbars, and so on.

Methods include create, activate, open, close, save, add, copy, remove, process, export,
recalculate, and so on. For example, data-results objects (database-query results or tables that
contain results data) have a recalculate method, which refreshes (recalculates) data based on
updated parameters.

Properties include object names, values, alignments, colors, and so on. You can view properties
or set (modify) the values of properties. For example, all graphics objects have a visible property
—if set to true, an object is visible, and, if set to false, an object is invisible.

Table 28 Object Model Terminology

Term Definition Example Interactive Reporting Example

Object Items perceived as entities Tree, leaf, fruit Application, Section, Document

Method Actions that are executed when an object receives
messages

Grow, bear fruit, drop leaves Activate, Copy, Add

The Object Model 59

Term Definition Example Interactive Reporting Example

Property Qualities or distinctive features (attributes) Name, color, growing pattern Active, Visible, Type

Collection Groups of objects Grove Documents

Constant Values that do not change or vary Number Constants

Typically, the object model is manipulated by JavaScript from inside dashboard sections and
used to build self-contained analytic applications. On Windows systems, the object model is also
accessible through the automation interfaces (OLE Automation) that enable Interactive
Reporting to be controlled by external applications that can make OLE Automation calls (such
as Excel or, VB).

Interactive Reporting Events
Custom applications (that is, dashboard sections) that are developed using Interactive Reporting
and Interactive Reporting Web Client are event-driven. Events are actions; such as, clicking a
button or opening a document, that are recognized by Interactive Reporting documents, or
sections, or by dashboard objects. When an event occurs, Interactive Reporting and Interactive
Reporting Web Client invoke the script attached to the event. The order in which events are
executed depends upon the order of user actions.

You determine how events respond to actions by attaching scripts to events. For example, assume
that you want a particular action to occur when a particular button is clicked. You attach a script
that defines the response to the OnClick event associated with the button. When the button is
clicked, Interactive Reporting and Interactive Reporting Web Client invoke the script.

Note: Since Interactive Reporting and Interactive Reporting Web Client Release 6.0, JavaScript
has been used as the scripting language. Documents scripts created using the Brio scripting
language are converted to JavaScript when documents are first opened.

Predefined event levels and the items with which they are associated:

l Object-level events—Dashboard objects

l Section-level events—Dashboard sections

l Document-level events—Interactive Reporting and Interactive Reporting Web Client
documents

Object-Level Events

Note: All events starting with OnClient are executed in the client browser, not on the server.
See “Client-Side JavaScript” on page 298.

60 Working with the Interactive Reporting Object Model

Table 29 Predefined Object-Level Events Associated with Dashboard Objects

Event Associated Object Action that Invokes the Event

OnCellDoubleClick Dashboard sections within Interactive
Reporting or Interactive Reporting Web Client
that contain pivot Embedded Section Objects
(ESOs) in Active mode

Note: Double-clicking label values does not
initiate OnCellDoubleClick.

Double-clicking fact cells or using
theOnCellDoubleClick () method

Note: Executing OnCellDoubleClick does not corrupt
documents, but actions invoked by
OnCellDoubleClick may corrupt documents. Whether
the corrupt state persists, within the document or
application, depends upon which action is invoked.

OnClick Sections: Hyperlinked embedded sections (if
not View-only or Active)

Graphics: Line, horizontal line, vertical line,
rectangle, round rectangle, oval, text label,
and picture

Controls: Command button, radio button,
check box, list box, drop-down list, and text
box

Clicking sections, graphics, or controls.

The OnClick handler also supports the optional bqoEvent
parameter, which provides access to the mouse cursor
position relative to the Dashboard control. The bqoEvent
parameter contains two properties: ClickX and ClickY. When
the event occurs, the event handler has access to the event
related information needed to process it. For example, the
event might require the position of the mouse cursor for a
picture OnClick event, or information about which table
column was clicked for a table embedded section object
OnClick event.

OnDoubleClick List box Double-clicking list-box values

OnSelection List box and drop-down list Selecting list-box or drop-down-list values

OnChange Text box (not available for EPM Workspace) Changing data in text boxes

OnEnter Text box Entering text boxes

OnExit Text box Leaving text boxes

OnRowDoubleClick Active embedded results or table sections (if
not View-only or Hyperlinked)

Double-clicking rows

OnClientClick Command button, radio button, check box, list
box, text box, and drop-down list

Clicking sections or controls

OnClientDoubleClick List box Double-clicking list-box values

OnClientEnter Text box Entering text boxes

OnClientExit Text box Leaving text boxes

Active Section-Level Events
Active section-level events are associated with dashboard sections.

Actions that invoke predefined section-level events:

l OnActivate—Entering a dashboard section

l OnDeactivate—Existing a dashboard section

Interactive Reporting Events 61

Document-Level Events
Document-level events are associated with Interactive Reporting and Interactive Reporting Web
Client documents.

Actions that invoke predefined document-level events:

l OnStartUp—Opening an Interactive Reporting document

l OnShutDown—Closing an Interactive Reporting document

l OnPreProcess—Before a query is processed

l OnPostProcess—After a query is processed

The execution of document events can be enabled or disabled by using options in Script Editor
programmatically through the object model.

Note: The Save and Save As commands in Interactive Reporting Studio, Interactive Reporting
Web Client, and EPM Workspace do not execute the document shutdown scripts. The
scripts execute only when documents are closed.

Caution! OnShutDown events execute before the prompts of the Save dialog box.

Associating Document-Level Events
By default, the desktop and Interactive Reporting Web Client applications invoke the scripts
attached to document-level events when the events are triggered. For example, the
OnStartup document event is triggered when Interactive Reporting documents are opened.

On the other hand, Hyperion Scheduler does not invoke a script attached to a document-level
event until the user sets the document-level event for the Interactive Reporting document
manually. Settings for document-level events can be set based on how a document is to be
deployed (on the desktop, or on EPM Workspace, or in Interactive Reporting Web Client).

ä To associate document-level events:

1 Select File , then Document Scripts.

Script Editor is displayed. Document is selected by default in the Object drop-down list, and
OnStartup is selected by default in the Event Trigger drop-down list.

2 From Event Trigger, select a document-level event to be associated with the Interactive Reporting
document.

3 In Enable For, select the type of document to associate with the event.

Available types include All Clients (Interactive Reporting Studio, Thin Client (EPM
Workspace), Plug-in Client (Scheduler), Oracle Hyperion Smart View for Office, Fusion
Edition, (EPM Workspace).

62 Working with the Interactive Reporting Object Model

Note: To remove a document-level event association, in Enable For, deselect the type of
document.

Using Script Editor
You can use Script Editor (a built-in feature) to add scripts to events. Open the Script Editor for
an object, an active dashboard section, or a document. Script Editor contains the object browser,
description pane, events menu, and scripting pane.

ä To open Script Editor, perform an action:

l From a section other than a dashboard section, select File, then Document Scripts

l From within a dashboard section, in Design mode, select Dashboard, then Scripts

l For an object, select Dashboard, then Scripts

Using the Object Browser
Script Editor provides an object browser in the left pane. The browser displays the object model,
listing all available objects, properties, and methods. At the top of the hierarchy is Application,
which represents the Interactive Reporting application and contains application-wide settings
and options and methods, and properties. See Chapter 10, “Object Model Map.”

Clicking objects or collections displays methods, properties, and internal objects. Double-
clicking methods or properties generates scripts in the scripting pane of Script Editor.

The Application object contains a Documents collection and an ActiveDocument collection.
Methods and properties of the active document Sample1.bqy, are available in two places in the
object model hierarchy:

l Application, then Documents, then Sample1.bqy

l Application, then ActiveDocument

Scripts that access multiple open documents should use the Documents path to the methods
and properties of a document. Scripts that affect only the currently active document can use the
ActiveDocument path.

Using the Scripting Pane
You use the scripting pane to enter scripts that are attached to specific object events (such as
mouse clicks, button clicks, and so on). Use the object model to access objects, properties, and
methods. When you double-click an item in the object browser, a reference to the object,
property, or method is displayed in Script Editor at the cursor location.

Using Script Editor 63

Using the Events Menu
Above the scripting pane is the Object drop-down list that includes all available objects associated
with the selected document, section, or object. Adjacent to Object is the Event Trigger drop-
down list. This list displays the events for the control object, the action that invokes the script
attached to the event.

After selecting an event, you can enter JavaScript and reference the object model. To see or edit
scripts that extend beyond the scripting pane boundaries, use the horizontal and vertical scroll
bars.

Script Editor provides functions to: (cut), (copy), (paste), and (find and
replace, see “Finding and Replacing Within Scripts” on page 65).

Other functions provided by Script Editor:

l Check Syntax—Verify the script is written and edited correctly

l Go To Line number—Navigate to a specific code line in the script

Cutting, Copying and Pasting Dashboard Objects
You can cut, copy, and paste embedded sections, controls, or graphic objects in a dashboard
section.

ä To cut, copy, and paste dashboard objects, embedded sections, or controls:

1 Select Ctrl+D to enter Design Mode.

2 Select an object, embedded section, or control on the content area.

Press Ctrl+Click to select multiple items. Selection handles display.

3 Select Edit, then Cutor select Ctrl+X.

The item is placed on the clipboard.

4 Optional: Select Edit , then Copy or selectCtrl+C.

5 Locate a position on the dashboard content area, position your cursor, and click.

6 Select Edit, then Paste.

The object, embedded section, or control is pasted to the new location.

Using the Description Pane and Online Help
When you select an item in the object model hierarchy, a brief description of the item is displayed
in the description pane. For example, selecting the ActiveDocument properties item displays the
description “Object/Document ActiveDocument.”

ä To display Help text for object model items:

1 Select the item.

64 Working with the Interactive Reporting Object Model

2 Click Help.

A help dialog box is displayed. It provides information on the selected method or property,
such as the type of argument expected.

Using a Sample JavaScript Script
Each level of the object model has a Methods folder that contains the methods (actions)
applicable to objects at that level. You can use the methods to write scripts.

Testing Scripts Using the Interactive Reporting
Execution Window
You can test scripts you are working on by copying and pasting them into the Interactive
Reporting Execution window. For example, instead of closing and reopening a document to test
the OnStartup script, copy and paste the script into the Execution window and press Enter. In
Interactive Reporting, select View, then Execution Window.

Reviewing Error Messages in the Interactive Reporting
Console Window
The Console window records all error messages that occur from the time Interactive Reporting
starts until the application is closed or the window is cleared (with Edit Clear). In Interactive
Reporting, select View, then Console Window.

ä To view error messages in the Console window:

Finding and Replacing Within Scripts
The Script Editor Find and Replace function enables you to search scripts for strings, punctuation
marks, and numbers. You can conduct partial-word and whole-word searches, apply case-
sensitive constraints, and replace individual or multiple occurrences of your search item.

Table 30 Find/Replace Definitions

Field Definition

Find What Enter the search criteria—a string, punctuation mark, or number. If you do not stipulate whole word, the search
criteria acts as a prefix. That is, “report” matches “reporting,” “reporter” and “reported.” Wildcard characters cannot
be used.

Replace With Enter the replacement text.

Match Whole Word Instructs the Find/Replace feature to match only the entire text that matches exactly your search criteria. For example,
“report” matches only “report”. It does not match “reports” “reporting”, “reporter” and “re-ported.”

Using a Sample JavaScript Script 65

Field Definition

Match Case Instructs the Find/Replace feature to match only the text that matches the case of your search criteria. For example,
if you specify “Chart,” the found words must match “Chart” with a capital C.

Direction Specify the direction from which to conduct the search, upward or downward. By default, the direction is downward.

Replace Specify whether to replace, as indicated.

ReplaceAll Specify whether to replace of all occurrences.

Close Close the Find/Replace window.

Note: In JavaScript version 1.4, if a regular expression starts with ‘|’ , this character is treated as
a vertical bar and not an alternate regexp metacharacter. For example, the regular
expression “|aaa” matches the string “bbb|aaa” starting at the fourth position, and it does
not match the string “aaabbb”. In JavaScript verion 1.5, the ‘|’ character is treated (when
not quoted) as an alternate metacharacter . In this case, the regular expression “|aaa”
means “empty string OR ‘aaa’”. For example “|aaa” matches the string “bbb|aaa” starting
before the first character (and the matched string is empty). The same occurs with
“aaabbb”. It matches the empty alternative before the first character. To make an older
“|aaa” regular expression work in JavaScript 1.5, place quotes around the | character with
a backslash.. For example, enter “|aaa” as “\|aaa”, or “|Target~”. In JS1.5 as “\|Target~”.
Also note the JavaScript version 1.4 behavior not only occurs when ‘|’ is located at
beginning of whole regular expression, but also at the beginning of regexp group. For
example, you would need to change the regular expression “aaa(|bbb)” to “aaa(\|bbb)”.
See http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference.

Note: When the Find/Replace feature finishes its search, the message "Reached the end of the
script. All instances of search item replaced" or “Reached the end of the script. Cannot
find Search item” is displayed.

66 Working with the Interactive Reporting Object Model

http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference

3
Scripting Dashboard Controls

In This Chapter

Scripting Control Objects .. .67

Associating Scripts with Command Buttons... .68

Associating Scripts with Radio Buttons70

Associating Scripts with Check Boxes... .72

Associating Scripts with List Boxes... .74

Scripting Control Objects
The following topics explain how to associate JavaScript scripts with four of the Dashboard
control objects: command buttons, radio buttons, check boxes, and list boxes. The exercises in
these topics guide you through inserting a new Dashboard section in Sample3.bqy, adding
control objects to the new section, and associating scripts with the controls.

Creating a New Dashboard Section

ä To insert a new Dashboard section in Sample3.bqy and rename it:

1 Open the Sample3.bqy file from within Designer.

2 Select Insert , then New Dashboard to add a new Dashboard section to the Interactive Reporting
document file.

Inserting a new Dashboard section changes the Interactive Reporting document file to
Design mode. The Content is blank and the Elements pane displays the sections, graphics,
and control objects available for embedding in an Dashboard.

3 In the Section frame, double-click Dashboard to open the Section Label dialog box.

4 Type Controls in the Label field and then click OK to close the Section Label dialog box.

Changing a Control Object Title
When working with control objects, change the default title to a title the user understands.

Note: The exercise in this section assumes that you have previously inserted a new Dashboard
section in Sample3.bqy and renamed the new section Controls.

Scripting Control Objects 67

ä To change an object’s title:

1 From the Elements pane, expand the Controls folder.

Note: The Controls folder is only visible in Design mode.

2 Drag the desired control object (command button, text box, and so on) to the Content pane.

3 Double-click the control object to display the Properties dialog box.

4 Type a new entry in the Title field and click OK to view the results.

The entry in the Title field is displayed as a label on the control object. The entry in the Name
field is displayed on the Title bar in the Script Editor and in the object model.

Associating Scripts with Command Buttons
A command button is typically used to initiate or activate a process or action.

Note: The exercise in this section assumes that you have previously inserted a new Dashboard
section in Sample3.bqy and renamed the new section Controls.

68 Scripting Dashboard Controls

Tip: If you need to change the text color or the color of the actual command button, use graphic
object to create your own button. For more information, see Creating a Custom Button.

ä To associate a script with a command button:

1 Elements pane, drag a command button control to the Content pane and use the Properties dialog box
to specify its title as RevSummary

From the Elements pane, drag a command button control to the Content pane and use the
Properties dialog box to specify its title as RevSummary.

(See “Changing a Control Object Title” on page 67 for detailed instructions.)

2 With the RevSummary object’s selection handles visible, choose Dashboard , then Scripts or press F8.

The objects name (as shown in the Name field of the Properties dialog box) is displayed on
the Title bar of the Script Editor, and the default event for the object (OnClick) is displayed
in the Event drop-down box.

3 Use the Object browser to navigate to ActiveDocument , then Sections, then RevSummary, and then
Methods.

4 Double-click Activate.

Interactive Reporting automatically enters the correct command in the Script Editor.

5 Click OK to save the script and close the Script Editor.

6 Toggle to Run mode, press Ctrl+D and click the RevSummary button.

The RevSummary section displays, as dictated by the script.

You have just learned to associate a script with a command button. You can review your script
by activating the Controls Dashboard section, toggling to Design mode, and opening the Script
Editor for the command button.

Example:

Create another button. Associate the button with a script that duplicates the RevSummary
section. You can also try this on other Interactive Reporting document files.

ActiveDocument.Sections[“RevSummary”].Duplicate()

Creating a Custom Button
You can create your own colorized button object rather than use the standard command button
included in the Controls Catalog.

ä To create a custom command button:

1 From the Elements pane, expand the folder containing the desired graphic object such as a rectangle
or round rectangle object.

2 Select the graphic object; then, drag and drop the object into the Contents frame.

3 Double-click the graphic object to display the Properties dialog box.

Associating Scripts with Command Buttons 69

The Object tab is displayed.

4 Type a new entry in the Name field and in the Title field.

The entry in the Title field is displayed as a label on the control object. The entry in the Name
field is displayed on the Title bar in the Script Editor and in the object model.

5 Click the Border and Background tab.

6 Select the color you want to assign to the border of the button from the Color palette in the Border
section.

7 Select the color you want to assign to the background of the bottom from the Background section.

8 Click OK.

9 Select Scripts from the shortcut menu.

The objects name (as show in the Name field of the Properties dialog box) is displayed on
the Title bar of the Script Editor, and the default event for the object (OnClick) is displayed
in the Event drop-down list box.

10 Add any scripts you want to associate with the custom button object.

For example, if you wanted to change the fill color of a radio button, you could type the
following in the Script Editor:

//Button color, hex
ActiveSection.Shapes["RadioButton1"].Fill.Color = 0xFF3399

11 Click OK.

12 Type a new entry in the Name field and in the Title field.

13 Drag a text label object from the Graphics folder and place it on your custom button object.

14 Click the Border and Background tab.

15 Select the color you want to assign to the border of the text label from the Color palette in the Border
section.

16 Select the color you want to assign to the background of the text label from the Background section.

17 Set font and size of the text if desired.

18 Click OK.

19 Select Scripts from the shortcut menu.

20 Copy and paste the script from the button object to the OnClick script for the text label.

If the name of the button object is displayed in the script associated with the text label,
rename the button object to the name of the text label object. This will ensure that both the
text label and button object remain dynamic.

Associating Scripts with Radio Buttons
Radio buttons are typically used to allow a user to select one option from a group of options;
for example, to select one type of chart over another. The exercises in this section assume that
you have previously inserted an Dashboard section in Sample3.bqy and renamed it Controls.

70 Scripting Dashboard Controls

These exercises show you how to embed a chart and add radio buttons for user-control of the
chart type.

ä To embed a chart in an Dashboard section:

1 In the Controls section, toggle to Design mode.

When in Design mode, the Element pane is displayed below the Section frame as a
hierarchical structure of available Dashboard objects.

2 Elements pane, drag the chart named RevbyTime to the Content pane.

The script in this exercise changes the chart type to a line chart. Before changing the chart with
the script, verify that RevbyTime is a vertical bar chart. To verify and change the chart type,
activate the RevByTime section and choose Format, then Chart Type, then Vertical Bar, and
then return to the Controls section.

ä To associate a script with a radio button:

1 Elements pane, drag a radio button control to the Content pane and use the Properties dialog box to
specify its title as Line.

(See “Changing a Control Object Title” on page 67 for detailed instructions.)

2 With the Line object’s selection handles visible, choose Dashboard, then Scripts or press [F8].

3 Use the Object browser to locate and expand the RevByTime section of ActiveDocument.

4 Expand the RevbyTime Properties folder, then double-click ChartType.

Interactive Reporting automatically enters the first part of the script in the Scripting frame.
Property ChartType as BqChartType is displayed in the Description frame. BqChartType is
a constant whose values is displayed in the Constants collection of the Object browser.

5 To select the applicable BqChartType, use the Object browser to scroll down to Constants and expand
it, then expand the BqChartType collection.

6 In the Script Editor, type and equals sign (=) immediately after ChartType.

7 Double-click bqChartTypeLine.

Associating Scripts with Radio Buttons 71

Interactive Reporting adds the rest of the script to the Scripting frame.

8 Click OK to save the script and close the Script Editor.

9 Toggle to Run mode and click the Line radio button.

The chart changes to a Line chart.

Example

Create a second radio button with the title Vertical Bar by toggling to Design mode and
working through the preceding exercise.

Add a script to this radio button to change the chart type to vertical bar
(bqChartTypeVerticalBar).

Tip: Radio buttons work in groups: when one button in the group is selected, the others in
the same group are cleared. Set the group name in the Properties dialog box for each
button. The default group name is RadioGroup.

Associating Scripts with Check Boxes
A check box is typically used to indicate whether an option should be turned on/off or is true/
false.

The exercise in this section uses an if...else control structure. “JavaScript Control
Structures” on page 101 goes into more detail on control structure syntax and usage.

Note: The exercise in this section assumes that you have previously inserted a new Dashboard
section in Sample3.bqy and renamed the new section Controls. If you have been
following the tutorial in sequence, you might try to associate a script to a check box on
your own. The steps in the following procedure are very similar to the steps in the previous
sections.

ä To add a check box to the Controls section:

1 Elements pane, drag a check box control to the Content pane.

2 Use the Properties dialog box to change the Name and Title properties as follows:

l Name—chk_IntervalValues

l Title—Show/Hide Dollars

The Name chk_IntervalValues is used in the script for the Show/Hide Dollars check box.

Note: The rest of this exercise associates a script with the check box. The script turns on or
off the display of revenue values (the ShowIntervalValues property) of the
RevByTime chart.

72 Scripting Dashboard Controls

Consider that a check box has two conditions: checked and unchecked (or cleared). Hence,
the JavaScript needs to perform an action when a given condition is true and negate that
action if it is false. “If” a condition exists, then a given action occurs; “else” the reverse
happens.

ä To associate the ShowIntervalValues property with the check box:

1 With the Show/Hide Dollars check box object’s selection handles visible, select Dashboard, then
Scripts.

2 Type the following into the Script Editor:

if ()
{
}
else
{
}

l The parentheses enclose a statement that tests the checked property of the check box
(chk_IntervalValues).

l The first set of curly brackets, after the if, encloses the statement to execute if the test is
true.

l The second set of curly brackets, after the else, encloses the statement to execute if the
test is not true.

3 Click in the parentheses after if, navigate to Controls Objects, then chk_IntervalValues, then
Properties and then double-click Checked.

if (chk_IntervalValues.Checked)

4 Type ==true after Checked.

if (chk_IntervalValues.Checked==true)

Use “==” to mean is equal to or matches.

5 Click on the line between the curly brackets and add the statement to execute if the test is true.

a. Use the Object browser to navigate to Application, then ActiveDocument, then
Sections, then RevByTime, then ValuesAxis, then Properties, and then double-click
ShowIntervalValues.

You can see more of the object model by dragging the striped arrow at the bottom of
the Object browser’s scroll bar.

b. Type =true and a semicolon (;) at the end of the line in the Scripting frame.

if (chk_IntervalValues.Checked==true)
{
ActiveDocument.Sections["RevByTime"].ValuesAxis.ShowIntervalValues=true;
}

6 Click on the line between the curly brackets (after else) and add the statement to execute if the test is
false.

Associating Scripts with Check Boxes 73

a. Use the Object browser to navigate to Application, then ActiveDocument, then
Sections, then RevByTime, then ValuesAxis, then Propertiesand then double-click
ShowIntervalValues.

b. Type =false and a semicolon (;) at the end of line in the Scripting frame.

else
{
ActiveDocument.Sections["RevByTime"].ValuesAxis.ShowIntervalValues=false;
}

7 Click OK to save the script and close the Script Editor.

8 Toggle to Run mode, press Ctrl+D, and test how the check box works.

You have just learned to associate a script with a check box.

Example:

Create another check box. Associate the check box with a script that shows/hides another
property of the chart.

Any property in the Property dialog (in the chart section) can be accessed through the object
model and JavaScript. To view the RevByTime chart properties, activate this section by clicking
the title in the Sections frame, click in white space close to the chart, right-click, and then select
Properties from the menu that is displayed.

You can also try the exercise on some other Interactive Reporting document file.

Associating Scripts with List Boxes
A list box is typically used to list multiple values from which users can make one or more
selections. This section introduces the list box with an exercise limited to creating the list values
and displaying an alert with a single selection as the alert message.

Note: The exercise in this section assumes that you have previously inserted a new Dashboard
section in Sample3.bqy and renamed the new section Controls.

74 Scripting Dashboard Controls

Exercise: Associating a Script with a List Box

ä To associate a script with a list box:

1 Elements pane, drag the list box icon from the to the Content pane of the Controls section.

2 With the list box control selection handles visible, choose Dashboard, then Properties.

3 Enter Time in the Name field and then clear the Allow Multiple Selections check box.

When Allow Multiple Values is not selected, only one selection is allowed.

4 Click the Values tab, add the values Today, Tomorrow, and Yesterday, and then click OK.

5 In the Content frame, select the Time list box control and choose Dashboard, then Scripts or press F8.

6 Use the Object browser to navigate to Application , then Methods and then double-click Alert.

Application.Alert()

This method displays an alert box. The content of the alert is controlled with arguments
added between the parentheses.

7 Click in the parentheses after Alert and use the Object browser to navigate to Controls Objects, then
Time, then SelectedList, then Methods and then double-click Item.

Application.Alert(Time.SelectedList.Item())

The SelectedList object contains the list of user selections.
Time.SelectedList.Item() needs a number as the argument to point to the specific
item in the list of user selections.

8 Type 1 between the parentheses after Item.

9 Click OK to save the script and close the Script Editor.

10 Toggle to Run mode, press Ctrl+D and select an item in the Time list box.

An alert is displayed, showing the selection.

You have just learned to associate a script with a list box.

Example

Edit the Alert to say What a wonderful day! after the selected item. Type a plus sign (+) in the
parentheses after Item(1), and enclose the new phrase (a string) in quotes.

Application.Alert(Time.SelectedList.Item(1)+" What a wonderful day!")

Associating Scripts with List Boxes 75

76 Scripting Dashboard Controls

4
JavaScript Syntax

In This Chapter

Basic JavaScript Syntax .. .77

JavaScript Code Structure... .78

JavaScript Operators.. .79

Variables86

Reserved Words88

Basic JavaScript Syntax
JavaScript is a powerful programming language with three basic syntax rules, shown in the
following table.

Rule Example

JavaScript is case-sensitive. Alert is not the same as alert.

Strings must be in quotes. The following two statements define a variable n as the string Hyperion, and then insert the string value
as an argument for the Alert method. The alert says Brio.

var n="Hyperion";

Application.Alert(n);

The following two statements define n without quotes. The alert generates the error Hyperion is
not defined because Brio is not a recognized JavaScript term.

var n=Hyperion;

Application.Alert("The company name is "+n);

Legal names (for variables,
functions, and objects):

l Start with a letter and
continue with only letters,
numbers, or an underscore

l Do not use reserved words.

l Must be unique in context.

The first character must be a letter or an underscore(_), not a number. Subsequent characters may be
any letter or digit or an underscore, but not a hyphen, period, or space.

sample legal name: _letters123

Names need to be unique in context. An Dashboard section cannot have two drop-down boxes with
the same name, a function cannot have two variables with the same name, a document cannot have
two sections with the same name

See “Reserved Words” on page 88 for a complete list of reserved words.

Basic JavaScript Syntax 77

JavaScript Code Structure
JavaScript uses dot notation or object.method() syntax. There is a dot, or period, between each
model path segment and before the method or property. Methods always have parentheses.
When there is a choice of Properties, they are specified with square brackets, or with square
brackets and quotes when the choice is a string or name.

The following table summarizes the parts of a JavaScript.

Parts of Code Examples

Object Model Paths:

l Start with an uppercase
letter

l Separate path segments
with a period (.)

ActiveDocument.Sections.Count

is the correct syntax to access the Count property of the Sections in Active Document, while

ActiveDocumentSections.Count

generates the following error because the separator between ActiveDocument and Sections is missing:

ActiveDocumentSections is not defined

Methods (and Functions):

l Separate from the object
path with a period (.)

l Include parentheses for
arguments

Activate() does not take arguments, but the parentheses are still required.

ActiveDocument.Sections["RevSummary"].Activate()

The Add() method requires a single argument, included in the parentheses.

Time.Add(TextBox1.Text)

The Alert() method requires at least one argument and allows for multiple optional arguments. Multiple
arguments are separated by commas.

Application.Alert(TextBox1.Text,"Text Box")

Properties:

l Separate properties from
objects with a period (.)

l Refer to one of a collection
of properties, by number,
in brackets []

l Refer to one of a collection
of properties, by name, in
brackets, with quotes [""]

When referring to the Count property of document sections, use:

ActiveDocument.Sections.Count

When referring to the first section (not the name, but the position in the section array in the object model),
use:

ActiveDocument.Sections[1]

When referring to a specific section named RevSummary, use:

ActiveDocument.Sections["RevSummary"]

Statement Separators:

l Statements must end with
a return [Enter]

l End statements with both
a semicolon (;) and a
return [Enter] to avoid
JavaScript errors

l Separate short statements
on one line with a
semicolon (;)

Statements can be on separate lines:

Time.Add(TextBox1.Text);

DropTime.Add(TextBox1.Text);

Multiple statements can be on one line, with a semicolon separating them:

Time.Add(TextBox1.Text);DropTime.Add(TextBox1.Text);

78 JavaScript Syntax

Parts of Code Examples

Comments

l Use // for single line or
inline

l Use /* and */ for multiple
lines

 Time.Add(TextBox1.Text) // this is a comment

 // DropTime.Add(TextBox1.Text)

// this line and the line above are both comments

 /*

 Everything in here is a comment until the end comment

 marker.

 */

JavaScript Operators
JavaScript provides one- or two-character symbols (operators) for use in assigning values,
performing math, increasing and decreasing counters, and making comparisons.

It is important to use operators correctly to avoid JavaScript errors. You can avoid many errors
if you understand:

l Assignment versus comparison operators

l How to use operators as characters in strings

l Concatenation versus addition

The following table lists available JavaScript operators.

Type of Operator Symbol Operation Performed

Assignment Operator returns the
assigned value

= Assign a value

Arithmetic Operators return the
resulting value

+ += Addition or Concatenate Addition (or Concatenate) and assign resulting value

 - -= Subtraction Subtraction and assign resulting value

 * *= Multiplication: Multiplication and assign resulting value

 / /= Division Division and assign resulting value

 % %= Modulus (integer remainder of dividing 2 operands) Modulus and assign resulting value

 ++ Increment by 1 (x=x+1 is the same as x++)

 -- Decrement by 1 (x=x–1 is the same as x––)

Comparison Operators return a
Boolean value true or false

== Test if Equal

JavaScript Operators 79

Type of Operator Symbol Operation Performed

 != Test if Not Equal

 > Test if Greater Than

 < Test if Less Than

 >= Test if Greater Than or Equal To

 <= Test if Less Than or Equal To

Logical Operators return a Boolean
value true or false

&& And (test if both operands are true)

 || Or (test if one or the other operand is true)

Using Assignment versus Comparison Operators
JavaScript makes a distinction between assignment (=) and comparison (==) operators.

l Use = to assign the value on the right to the object on the left.

l Use == to test if the values on both sides match (the result is true if they match).

Note: The following exercise uses the Intelligence Client file Sample3.bqy and the
RevByTime chart used in “Associating Scripts with Radio Buttons” on page 70. You
can use any bqy document that includes a chart.

Example

Insert a new Dashboard section in Sample3.bqy. Add a line chart and two buttons titled
Comparison and Assignment.

Add a JavaScript script to the Comparison button to compare the type of chart to
bqChartTypeVerticalBar and open an alert that displays the result of the comparison. Test
the comparison button. What does the alert say?

Script the Assignment button to change the chart type to bqChartTypePie. Try the comparison
button again. What does the alert say now?

80 JavaScript Syntax

Figure 1 Assigning and Comparing chart type

Tip: Both JavaScript scripts act on the actual chart, not the view of the chart in the Dashboard
section.

The script for the Comparison button uses == to test if ChartType matches
bqChartTypeVerticalBar. The alert displays true if they match, false if they don’t match.

The Assignment button’s script uses = to set RevByTime’s ChartType property equal to
bqChartTypePie. The chart changes to a pie chart.

Exercise: Adding Comparison and Assignment Buttons

ä To add a chart, and Comparison and Assignment buttons:

1 Open Sample3.bqy and insert a new Dashboard section. Rename it to Equal Dashboard.

Refer to “Creating a New Dashboard Section” on page 67 for information on renaming a
section.

2 Add two command buttons by dragging them from the Elements pane to the Content pane.

3 Double-click one button and change the Title to Comparison.

4 Double-click the other button and change the Title to Assignment.

5 Drag the RevByTime chart from the Elements pane to the Content pane.

Verify that the chart is a vertical bar chart. (To verify and/or change the chart type, choose
Format, then Chart Type, then Vertical Bar in the RevByTime section.)

Exercise: Using the Comparison Operator

ä To script the Comparison command button to make a comparison and return an alert:

1 Select the Comparison button and choose Dashboard, Scripts.

2 Use the Object browser to navigate to Application, then Methods, and then double-click Alert.

3 Click in the parentheses of the Alert method.

JavaScript Operators 81

4 Navigate to ActiveDocument, then Sections, then RevByTime, then Properties and then double-click
ChartType.

Your script should look like this:

Application.Alert(ActiveDocument.Sections["RevByTime"].ChartType)

5 Type the comparison operator (==) after the property ChartType.

6 Navigate to Constants, then BqChartType and then double-click bqChartTypeVerticalBar.

Your script should now look like this:

Application.Alert(ActiveDocument.Sections["RevByTime"].ChartType==bqChartTypeVerticalBar
)

7 Click OK to save the script and close the Script Editor.

The Comparison button is ready to test.

In Run mode, click the Comparison button. The alert displays true if the chart is a vertical bar
chart, false if the chart is any other chart type.

Exercise: Using the Assignment Operator

ä To assign a specific chart type with the Assignment command button:

1 In Design mode, select the Assignment button and choose Dashboard, then Scripts.

2 Navigate to ActiveDocument, then Sections, then RevByTime, then Properties and double-click
ChartType.

The script should look like this:

ActiveDocument.Sections["RevByTime"].ChartType

3 Type the assignment operator (=) after the ChartType property.

4 Navigate to Constants, then BqChartType and double-click bqChartTypePie.

The script should now look like this:

ActiveDocument.Sections["RevByTime"].ChartType=bqChartTypePie

5 Click OK to save the script and close the Script Editor.

6 Toggle to Run mode and click the Assignment button, then click the Comparison button.

Clicking the Assignment button assigns the chart type Pie to the RevByTime chart.
Subsequent clicks on the Comparison button displays the alert false because the chart type
is not vertical bar.

Including Operators in Strings
When JavaScript sees an operator, it performs the operation, even in strings. To tell JavaScript
to treat an operator as a character, add the “escape” character, the backslash (\), in front of the
operator.

82 JavaScript Syntax

Example:

The following exercise adds a script to the file c:\\dirname\\MyDoc.bqy to open the c:\\dirname
\\YourDoc.bqy file. You can use any twoInteractive Reporting document for this exercise. Add
a command button and a script to open a specificInteractive Reporting document.

Verify where the file is on your system, and copy the path to this file from your desktop. Escape
the backslash in the directory path.

Exercise: Using Operators as Characters

ä To create a command button that opens a file:

1 Open Sample3.bqy and insert a new Dashboard section. Rename it Strings Dashboard.

Refer to“Creating a New Dashboard Section” on page 67 for instructions on renaming a
section.

2 Drag a command button from the Elements pane to the Content pane.

3 Select the command button and choose Dashboard, then Scripts.

4 Use the Object browser to navigate to Application, then Documents, then Methods and then double-
click Open.

The Description pane shows that the arguments for the Open method are strings:
Document Open(String Filename, [optional] String DisplayName). The
second argument is not required and this script does not include it. step 6 on page 83
through step 7 on page 83 adds the String Filename argument to the Open method.

Caution! Strings must be quoted! The Documents.Open() method requires string
arguments.

5 Switch to the desktop and find and copy the path (not the file name) to the file you wish to open.

For the What’s New.bqy document, the default path is C:\Program Files\Brio
\BrioQuery\Samples.

6 Add the path to the file inside the parentheses.

a. Click inside the parentheses, type quotes, and paste the path plus an ending slash between
the quote marks.

b. Type a backslash (\) in front of each slash in the file path.

The script should look similar to

Documents.Open("C:\\Program Files\\Brio\\BrioQuery\\Samples\\")

7 Copy the file name and paste it at the end of the path in the current script.

a. Switch back to the desktop and copy the exact file name.

b. Return to Intelligence Clients and open the Script Editor on the command button.

c. Click after the last slash in the path, before the ending quote mark, and paste the file
name.

JavaScript Operators 83

The script should look similar to:

Documents.Open("C:\\Program Files\\Brio\\BrioQuery\\Samples\\What's New.bqy")

8 Click OK to save the script and close the Script Editor.

9 Toggle to Run mode and click the command button to open the file.

Concatenating versus Adding
JavaScript recognizes several types of data including: strings of characters (letters and numbers)
and real or integer numbers. The data type affects the results of expressions using the + and +=
operators. If all the values in the expression are numeric, + performs addition. If one value is a
string value, + concatenates.

Figure 2 Concatenation and addition of strings

Text boxes, list boxes, and drop-down boxes return string values, not numbers. If these strings
are to be treated as numbers, JavaScript needs to be told to “parse” (change the value of) the
string into a number.

JavaScript has two methods for parsing strings into numbers:

l parseInt() converts a string into an integer

l parseFloat() converts a string into a floating point number

Note: An Interactive Reporting document can be used for the following exercise.

Example

In Design mode, add three text boxes and a command button to a new or existing Dashboard
section in Sample3.bqy, similar to Addition of Strings in Figure 2. Script the command button
to add the values of the first and second text boxes, returning the result in the third text box.

Enter numbers in both the first and second text box and click the button. What is the result?

Exercise: Concatenating Values

ä To concatenate the values of two text boxes to a third text box:

1 In Design mode, drag a text box from the Elements pane to the Content pane of a new or existing
Dashboard section.

2 Double-click the text box and change the Name to operand1.

84 JavaScript Syntax

3 Add a command button to the right of operand1.

4 Double-click the command button and change the Title to +.

5 Copy and paste the operand1 text box, move it to the right of the + button.

The new text box is automatically renamed operand2 by Interactive Reporting.

Tip: Interactive Reporting allows copying and pasting of control objects only when the
Console window is closed, and only within the same document section.

6 Copy and paste the operand1 text box again and move it to the right of operand2.

Interactive Reporting automatically renames the new text box operand3.

7 Change the Name of operand3 to txt_result.

8 Select the + button and choose Dashboard, then Scripts

9 Add the following JavaScript:

txt_result.Text=operand1.Text+operand2.Text

To avoid typing errors, use the Object browser to navigate to Dashboard Objects, and then
select the Text property for each text box. Type only the = and + operators.

10 Click OK to save the script and close the Script Editor.

In Run mode, type numbers in operand1 and operand2. They concatenate to txt_result after
you click the + button.

Note: The following exercise continues from the previous one, but changes the script to add
instead of concatenate strings.

Exercise: Summing Values

ä To sum the values in two text boxes to a third text box:

1 In Design mode, select the + button and choose Dashboard, then Scripts.

2 Add the parseInt() method around operand1.Text.

txt_result.Text=parseInt(operand1.Text)+operand2.Text

3 Add the parseInt() method around operand2.Text.

txt_result.Text=parseInt(operand1.Text)+parseInt(operand2.Text)

Caution! The method parseInt is lowercase, with the I capitalized.

4 Click OK to save the script and close the Script Editor.

In Run mode, the sum of the numbers in operand1 and operand2 is displayed in txt_result
after you click the + button.

JavaScript Operators 85

Variables
Variables are user-defined names that temporarily store data such as numbers, strings, or other
objects (a string, a limit, a chart, a pivot, and so on). Variables can be created and defined when
the variable is needed, or formally declared at the beginning of the script. Variables can be either
local or global and have two important characteristics:

l Name—Word used to identify the variable. A variable name must not be a reserved word
and must start with a letter. Letters, numbers, or an underscore can be used in the name.
Do not use periods, spaces or hyphens.

l Data Type—Type of information stored in the variable, including:

m Numbers—For example, 1 or 6.5777

m Booleans—True or false

m Strings—For example, Hyperion Solutions

m null—Keyword which denotes a null value. The null value is also a primitive value.

m undefined—Top-level property whose value is undefined. The undefined value is also
a primitive value.

Note: There is no method to distinguish explicitly between integer values (for example,
2) and real (floating point) numbers (for example, 3.14.). In addition, there is no
date data type. However, you can use the Date object to handle date
manipulations.

Chapter 5, “JavaScript Basics” introduces the use of variables in JavaScript scripts.

Declaring Local Variables
Use the term var to declare a new local variable.

var variable

A local variable is available only to the function or event handler script that defines it, and cannot
be accessed by another function or event. Once a name is declared, it is assigned a value of
null or undefined unless you assign a specific value when declaring the variable name.

In the Intelligence Client object model, it is helpful to adopt a naming convention that starts
with the type of object and includes the action or value. For example, a list box containing
StoreType data values could be named Lbx_storeType.

Caution! JavaScript is case-sensitive. A variable named Lbx_StoreType is not the same as
lbx_StoreType.

86 JavaScript Syntax

Declaring Global Variables
Global variables are available throughout Intelligence Clients and include document and custom
scripts, all Dashboard control and section scripts, the Report Designer section, the computed
items features of the Results, Chart, and Pivot sections, and other BQY documents opened in
the same instance of Intelligence Clients.

Note: Global variables are not available between BQY documents when using the web client
because Web browsers do not support them. Cookies should be used to write variables
shared between documents.

A global variable is defined outside of a function or event and once defined, can be accessed by
other functions and events. You must assign a specific value to global variable when you declare
it. If you type:

gvariable

you get a run-time “not defined” error because global variables can not have a value of null or
undefined.

Note: There is no way to bypass a “not defined” error, not even by using try-catch syntax since
it is a run-time error. The JavaScript engine halts execution before “try” has a change to
“catch” an exception. This is expected behavior of the JavaScript language.

To prevent this error, assign a specific value to the global variable when declaring it:

gvariable=25

You should consider some naming convention to distinguish global variables from local
variables, such as an extra “g” at the beginning of the global variable name.

Dynamically Declaring Variables
You can also dynamically declare a variable by creating a new property on an object, for example:

ActiveDocument.MyName = "Dan"

These variables are similar to global variables but they can be seen only within the scope of the
object with which they are associated, and they exist only as long as the object exists. To access
this variable you need to include the object name as well as the variable name, for example:

Console.Writeln(ActiveDocument.MyName)

Assigning Values
The JavaScript assignment operator (=) assigns a value to a variable. The type of data can be a
number (the number of items or the result of a calculation), an object (a string or an object
path), or a boolean (true or false).

Variables 87

var Result = 15 // The value 15 is assigned to
 the variable named Result
var Result = Result + 2 // The variable Result is incremented by 2

The data type can be changed at any time. For local variables, the data type is null or undefined
until a value is assigned. Once a value is assigned, the variable’s data type defines whether the +
operator concatenates or adds; to add, all values must be numeric. See “Concatenating versus
Adding” on page 84 for converting a string to a number.

JavaScript is a dynamically typed language. This means that you do not need to specify the data
type of a variable when you declare it. Data types are converted automatically as needed during
script execution. This allows you to reuse variables with different data types. For example, if you
define a variable, such as:

var version = 6.5

Later, you can assign a string value to the same variable:

version = "Brio Intelligence 6.6"

Since JavaScript is dynamically typed, this assignment does not cause an error message.

In expressions involving numeric and string values with the + operator, JavaScript converts
numeric values to strings. For example, consider the following statements:

// returns The version is 6.5
x = "The version is " + 6.5

In statements that involve other operators, JavaScript does not convert numeric values to strings,
for example:

"50" - 5 // returns 45
"60" + 5 // returns 65

Reserved Words
JavaScript sets aside certain words that have a unique meaning and cannot be used as function
or variable names, or method and object names. Some of the reserved words are in use in the
current version of JavaScript or are intended for use in a future version.

The following table lists JavaScript’s reserved words.

Reserved Words

abstract default goto null this

add do if package throw

application double implements private throws

boolean else imports protected transient

break extends in public true

88 JavaScript Syntax

Reserved Words

byte false instanceof return try

case final int short var

catch finally interface static void

char float long super while

class for native switch with

const function new synchronized

continue

Special characters to avoid when naming sections and variables:

Table 31 Reserved Characters

Reserved Characters

<space> '

<comma> !

<period> &

/ *

\ %

“ @

| ?

€ (euro symbol) $

Reserved Words 89

90 JavaScript Syntax

5
JavaScript Basics

In This Chapter

Using Drop-Down Boxes... .91

Modifying Filters.. .94

Finishing the Interactive Reporting Document File .. .98

Using Drop-Down Boxes
Drop-down boxes are typically used to list multiple values from which users can make one
selection. You can use limits that were set in other sections to limit the values available in drop-
down boxes.

For example, Activate the Limits Results section of Sample1mod.bqy and double-click Territory
on the Limit line. There are seven available Territory values in the database, but only three are
selected in the Show Values list (Asia, North America, and South America). This means the
Results section displays only products sold in Asia, North America, and South America.

In the Limits Dashboard section, the territories shown in the drop-down box also are limited to
these three selected values.

This section shows you how to create a script that allows the user to view the pie chart according
by territory as selected from the drop-down box.

The exercises in this section add a script to a drop-down box to display an alert. The exercises
introduce two concepts:

l Accessing a Drop-Down Selection

l Using a Variable for the Selection

Note: Use the file Sample1mod.bqy to add a script to DropDown1 in the Limits Dashboard
section.

Accessing a Drop-Down Selection

ä To add a JavaScript script to the drop-down box to display the selection in an alert:

1 Open Sample1mod.bqy, activate the Limits Dashboard section, and change to Design mode.

Using Drop-Down Boxes 91

2 Double-click DropDown1 to display the Properties dialog box, change the Name field to drp_Territory,
and then click OK.

Tip: To clarify the purpose of control objects when viewed through the object model, adopt
a naming convention that includes the type of object (drp_ for a drop-down box) and
the type of information or action associated with the object (Territory for database
Territory options).

3 Open the Script Editor for the drop-down box.

Right-click drp_Territory (changed from DropDown1)—which should still have handles
around the box—and select Scripts from the shortcut menu.

Note: This rest of this exercise shows how to click through the object model to associate a
script to drp_Territory, a Limits Dashboard object. The script will apply the Item
method, using a pointer to the selected item (SelectedIndex) as the method argument.

4 Expand Methods and Properties for Limits DashboardDashboard Objects., then drp_Territory.

To see both methods and properties for drp_Territory, scroll down, or click the striped arrow
below the scroll bar to expand the Elements pane.

5 Double-click the Item method to enter drp_Territory.Item() in the Script Editor.

drp_Territory.Item()

6 Place the cursor inside the parentheses of the Item method, and then double-click SelectedIndex from
the Properties folder.

7 Type a semicolon (;) and a return [Enter] at the end of the line.

The line now reads:

drp_Territory.Item(drp_Territory.SelectedIndex);

The SelectedIndex property of a drop-down box is the index number (or position
number) of the selected value. Item() uses this argument to return the text the user selected.

8 Add a new statement using the Alert method with the drop-down selection as its argument.

a. Type Alert() or double-click Alert from within Application, then Methods.

b. Copy the first JavaScript statement and paste it inside the Alert method’s argument
parentheses.

c. Delete the semicolon from within the argument.

d. Type a semicolon (;) and return [Enter] at the end of the statement.

9 Click OK to save the current script and close the Script Editor.

10 Toggle to Run mode, click the arrow in the drp_Territory drop-down box and select an item.

Selecting an item causes a popup message to is displayed.

The Alert method displays a popup message that contains the name of the item selected
from the drop-down box.

92 JavaScript Basics

Using a Variable for the Selection
A variable is a temporary holder of information, such as the user’s selection in a drop-down box.
Using variables clarifies the programming logic, making it easier to troubleshoot. The table below
lists the characteristics of a variable.

Characteristic Explanation

Name Names must start with a letter or underscore. Subsequent characters may include letters, numbers, or the underscore
(drp_Territory is a legal name). A variable name cannot be a reserved word (new is a reserved word, but
newVariable is not).

Use a JavaScript var statement to declare a variable name before it is used. For example:

var newVariable;

In the above statement, JavaScript reserves the name newVariable, with a value of null or undefined.

Value Values are assigned to variables with the JavaScript assignment operator (=). Any type of data can be assigned to a
variable: an object (a string, a user selection, an object path), a boolean (true or false), or a number. For example:

var newVariable;

newVariable=true;

The value can be assigned in a separate statement like above, or in the same statement that declares the variable name.
For example:

var newVariable=true;

newVariable (and its value) is available only within the script or function that declares it, preventing accidental changes
from other scripts using the same variable name.

This exercise uses a variable to hold the user’s selection (the first line of the script from the
preceding exercise). A variable can be declared in one statement and the value assigned in
another:

var Selection;
Selection=Territory.Item(Territory.SelectedIndex);

or the statements can be combined:

var Selection=Territory.Item(Territory.SelectedIndex);

Note: The following exercise continues from the previous section. This exercise alters the script
in the drop-down box (renamed drp_Territory) in the Limits Dashboard section of
Sample1mod.bqy.

Exercise: Declaring a Variable

ä To declare a variable and assign the drop-down selection:

1 Toggle to Design mode, open the Script Editor on drp_Territory.

2 Type var Selection= at the beginning of the first line of the existing script.

var Selection=drp_Territory.Item(drp_Territory.SelectedIndex);

Using Drop-Down Boxes 93

This declares a new variable Selection, and assigns the user’s selection to it.

3 Replace the argument for Alert with the variable Selection.

var Selection=drp_Territory.Item(drp_Territory.SelectedIndex);
Alert(Selection)

4 Click OK to save the script and close the Script Editor.

5 Test the script by toggling to Run mode and selecting an item from the drop-down box.

An alert containing the name of the selected item should is displayed.

If the alert displays “undefined”, the alert argument has not been assigned a value. This is most
likely a typo: If the variable is defined with a capital “S” for Selection, the variable in the alert
argument must also have a capital “S”.

The exercises in this section used JavaScript and the Intelligence Client object model to access a
user’s selection in a drop-down box. The Item method, with SelectedIndex as the argument
can be acted on directly, or a variable can hold the selection, clarifying the JavaScript logic: get
the selection, act on it.

Modifying Filters
The drop-down box in the Limits Dashboard section of Sample1mod.bqy displays three
Territory options and a pie chart of total unit sales. Continuing from the previous exercises, the
exercises in this section change the drop-down script so the user’s selection modifies the Limit
line in the Limits Results section instead of displaying an alert. When the Limits Results section
recalculates, the pie chart shows data for the selected Territory.

Study the JavaScript below. The basic steps to modify an existing limit are:

1. Remove the existing value.

2. Add a value.

3. Assign a “limit operator”.

4. Recalculate (results and tables), or Process (queries).

94 JavaScript Basics

Modifying a Results Filter
The advantage of modifying a Results section filter is that it excludes data from the display
without affecting the local data set and without a database connection. Processing Query section
limits requires a database connection.

Caution! There must be a limit on the Limit Line for the script to execute. If there is no existing
limit, an “uncaught exception” error will be recorded in the Console window and
the rest of the script will not execute.

Note: This exercise assumes that the Script Editor for the drop-down box drp_Territory is open.
If it is not, open the file Sample1mod.bqy and activate the Limits Dashboard section. In
Design mode, select the drop-down box drp_Territory, and then right-click to select
Scripts.

ä To modify an existing limit with the drop-down selection:

1 Delete the Alert line in the existing JavaScript.

There should be one statement left in the scripting frame.

var Selection=drp_Territory.Item(drp_Territory.SelectedIndex);

Modifying Filters 95

2 Use the Object browser to navigate to Application), then ActiveDocument, then Sections, then Limits
Results, then Limits, then 1, then SelectedValues, then Methods and then double-click RemoveAll.

The Limits Results section is low in the object model hierarchy because it is the result of a
second query (every section that pertains to the first query comes before it).

The RemoveAll method deletes any current values, making “room” for the new selection.

3 Type a semicolon (;) at the end of the statement, and then press [Enter].

ActiveDocument.Sections["Limits Results"].Limits[1].SelectedValues.RemoveAll();

JavaScript recognizes an end-of-statement when it sees a return [Enter] or a semicolon (;).
It is good practice to end statements with both, especially when a long line wraps and starts
looking like several lines in the Script Editor.

4 Add the user’s selection as the next statement in the script.

a. Double-click the Add method (in the same Methods folder as RemoveAll).

b. Type the variable Selection as the argument for Add (inside the parentheses).

c. Type a semicolon (;) at the end of the statement, and then press [Enter].

ActiveDocument.Sections["Limits
Results"].Limits[1].SelectedValues.Add(Selection);

This step adds the selection the user chose as the value for the limit.

5 For the next statement, add the limit operator.

a. Navigate up the object model to object 1, expand the Properties folder, and then double-
click Operator.

b. Type = after Operator.

The Intelligence Client object model includes a collection of Constants. Use the
BqLimitOperator constant to set the Operator value in the next step.

c. In the object model Constants collection, open BqLimitOperator, and double-click
bqLimitOperatorEqual.

You may want to close all expanded folders to access Constants more easily.

d. End the statement with a semicolon (;) and a return [Enter].

ActiveDocument.Sections["Limits
Results"].Limits[1].Operator=bqLimitOperatorEqual;

6 Double-click the Recalculate method from ActiveDocument, then Sections, then Limit Results, then
Methods.

ActiveDocument.Sections["Limits Results"].Recalculate()

The Recalculate method instructsInteractive Reporting to recalculate the results data. It
takes no arguments, but still has parentheses because it is a method.

7 Click OK to save the script and close the Script Editor.

8 Toggle to Run mode and select a different item in the drop-down box.

96 JavaScript Basics

In Run mode, selecting an item in the drop-down box changes the limit value and operator,
and recalculates the results to include data for a Territory equal to the selection. The pie
chart updates with the current results data.

Using a Variable for an Object
The JavaScript script for modifying a limit with the drop-down selection is:

var Selection=drp_Territory.Item(drp_Territory.SelectedIndex);
ActiveDocument.Sections["Limits Results"].Limits[1].SelectedValues.RemoveAll();
ActiveDocument.Sections["Limits Results"].Limits[1].SelectedValues.Add(Selection);
ActiveDocument.Sections["Limits Results"].Limits[1].Operator=bqLimitOperatorEqual;
ActiveDocument.Sections["Limits Results"].Recalculate()

Several words in the last four statements are repeated in each line—the path to Limits[1] and
the path to Limits Results section. A variable can hold these objects (the repeated words), which
makes the JavaScript logic easier to read.

Note: This following exercise edits the JavaScript associated with drp_Territory from the
previous exercise (in the Limits Dashboard section of Sample1mod.bqy) to use a variable
for the object path.

Example

Refer to figure in the and study the last two sets of statements—using a variable for the object
(path). Select one of the sets to enter in Design mode.

Start by commenting out the last four statements in your current script by typing /* before the
first ActiveDocument.Sections statement and */ after the fourth one. This will make the
four lines comment lines that JavaScript does not execute.

Enter one set of statements with a variable newChoice holding the object path. Do not enclose
these statements in comments.

Test the new statements in Run mode. Selecting an item in the drop-down box should still change
the pie chart results.

Caution! Do not end an object path value with a period. The syntax error “missing name after.
operator” refers to an incomplete object model path.

The first set of commented statements in the figure below creates a variable equal to navigating
from ActiveDocument to Limits[1].

var newChoice;
newChoice=ActiveDocument.Sections["Limits Results"].Limits[1];
newChoice.SelectedValues.RemoveAll();
newChoice.SelectedValues.Add(Selection);
newChoice.Operator=bqLimitOperatorEqual;
ActiveDocument.Sections["Limits Results"].Recalculate()

Modifying Filters 97

The second set creates a variable equal to navigating from ActiveDocument to the Limits Results
section (one step up in the hierarchy).

var newChoice;
newChoice=ActiveDocument.Sections["Limits Results"];
newChoice.Limits[1].SelectedValues.RemoveAll();
newChoice.Limits[1].SelectedValues.Add(Selection);
newChoice.Limits[1].Operator=bqLimitOperatorEqual

Modifying a Query Filter
The same JavaScript logic modifies a Results and a Query filter, except a query uses Process
instead of Recalculate to update the data with the new filter value. Processing a query requires
a database connection.

Example

Change the existing limit in the Limits Query section based on the drop-down selection. Use
the Process method instead of the Recalculate method to update the query results.

ActiveDocument.Sections["Limits Query"].Process()

To test the script, a database connection is needed. Use Brio 6.0 Sample 1.oce. Leave the
Host Name and Host Password blank.

The exercises in this section modified a limit according to a user’s selection. Variables were used
to hold the user’s choice and to hold the object model path to the limit line object.

Finishing the Interactive Reporting Document File
The Limits Dashboard section contains an active pie chart and a drop-down box that allows the
user to choose limit options. To “finish” this Interactive Reporting document file as a user
interface, set Limits Dashboard as the section that displays when the Interactive Reporting
document file is opened. Additional features to add are:

l Setting a Chart Fact

l Hiding Toolbars

Setting a Chart Fact
A chart in an Dashboard section can be passive (View-only), can activate the chart section when
clicked (Hyperlink), or can access drill down options when right-clicked (Active). The pie chart
in the Limits Dashboard section is set to Active in the Properties dialog box, which allows direct
access to underlying Product Line data.

When the user drills down into underlying data, the chart section’s X-Categories are changed
to reflect this action. With JavaScript, the chart can be returned to the top level (Product Line).

The following script executes when the Limits Dashboard section is activated.

98 JavaScript Basics

Note: This following exercise sets the XCategory of the Limits Chart section to display the top
level fact: Product Line. The script is added to the Limits Dashboard section of
Sample1mod.bqy.

ä To script an Dashboard section to set a chart to a specific fact:

1 Activate the Limits Dashboard section by clicking the title in the Section frame.

2 Toggle to Design mode and choose Dashboard , then Scripts to open the Script Editor on the active
section.

3 Declare a variable topDrill and assign the string Product Line.

var topDrill="Product Line";

The variable topDrill now holds the chart fact Product Line.

4 RemoveAll XCategories from the Limits Chart section.

ActiveDocument.Sections["Limits Chart"].XCategories.RemoveAll();

5 Add topDrill to the XCategories of the chart section.

ActiveDocument.Sections["Limits Chart"].XCategories.Add(topDrill);

6 Click OK to save the script and close the Script Editor.

In Run mode, when the user selects Limits Dashboard in the Section frame, or the Interactive
Reporting document file automatically activates this section, the chart shows Product Line
data.

The same JavaScript can be added to a command button, so the user can choose to return the
chart to Product Line at any time.

Hiding Toolbars
JavaScript scripts can be added to the Interactive Reporting document file itself, executing
OnStartup or OnShutdown. Add scripts to these events to perform any startup and shutdown
tasks. The following exercise hides the application Status bar, the Format toolbar, and the
dInteractive Reporting document file Section/Element pane. There are other toolbars accessible
in each of these areas of the object model. Use this exercise as a starting point to accessing the
various toolbars.

ä To hide toolbars:

1 Choose File, then Document Scripts to open the Script Editor on the Interactive Reporting document
file.

2 Use the Object browser to navigate the object model, and set the property for the Status bar, the
Formatting toolbar, and the Section/Element panes to false.

a. In Application, then Properties, then double-click ShowStatusBar, and then type
=false. End the statement with a semicolon and a return.

 Application.ShowStatusBar=false;

Finishing the Interactive Reporting Document File 99

The menu bar can be accessed at this level of the object model, with ShowMenuBar
property.

b. In Application, then Toolbars, then Formatting, then Properties, then double-click
Visible, and then type =false. End the statement with a semicolon and a return.

 Toolbars["Formatting"].Visible=false;

Several other toolbars are accessible under Application, then Toolbars.

c. In Application, then ActiveDocument, then Properties, then double-click
ShowCatalog, and then type =false. End the statement with a semicolon and a return.

 ActiveDocument.ShowCatalog=false;

The Section title bar can be accessed at this level of the object model with the
ShowSectionTitleBar property.

100 JavaScript Basics

6
JavaScript Control Structures

In This Chapter

Understanding Control Structure Syntax .. 101

About if...else Statements... 102

About switch Statements... 105

Controlling Chart Facts with if...else... 107

Controlling Chart Facts with switch ... 108

Understanding Control Structure Syntax
The basic syntax of a control structure is:

type of control (control statement) { block of statements to execute, based on the value of the control
statement ; }

l Parentheses hold the control statement and are a required part of the control structure
syntax.

l Curly brackets delineate the control statement block or control body.

l Each statement in the body of the control structure ends with a semicolon.

The result of the control statement defines whether or not the statements in the control block
are executed. Statements outside the control block are always executed. The following table
describes three JavaScript control structures and their syntax.

Control Explanation Syntax

If An if tests the condition of a control statement, using the comparison or logical
operators in the JavaScript Operators table.

The body statements execute only if the condition tests true.

if (condition returning
true or false)
{
 statements;
}
statements executed after
control;

Understanding Control Structure Syntax 101

Control Explanation Syntax

If…else An if...else tests the condition of a control statement, using the comparison or
logical operators in the JavaScript Operators table.

The body of the if executes only when the condition tests true. The body of the
else executes if the condition tests false.

if (condition returning
true or false)
{
 statements;
}
else
{
 statements;
}
statements executed after
control;

Switch A switch compares an expression to multiple case values. Statements within a
case execute only if the case value matches the expression value.

Each case can end with an optional break statement which breaks out of the
switch control block and continues execution with statements that follow the
end of switch.

An optional default statement executes only if none of the case values match
the expression value.

If there is no default statement, and no matching case value is found, execution
continues with the statement that follows the end of switch.

switch (expression
returning a value)
{
case value :
 statements;
break;

case value :
 statements;
break;

.

.

.

default :
 statements;
}
statements executed after
control;

About if...else Statements
The JavaScript logic to set the ChartType to a Line if the check box is checked is:

if (the checked property of the Check Box==true)
{
set the chart type to a line chart
}

JavaScript tests whether the Checked property of the check box matches true. When the condition
test returns true (yes, the Checked property matches true), it executes the body of the if statement
block. When the condition test returns false (no, the Checked property does not match true), it
skips the if statement block.

With this JavaScript logic, when the check box is selected, the pie chart changes to a line chart.
When the check box is cleared, the chart does not change because the condition test
(chk_ChartType.Checked==true) is false.

Use an if...else statement to expand the if to change the chart back to a pie chart when the
condition test is false. JavaScript tests the Checked property of the check box. When the check

102 JavaScript Control Structures

box is checked, the body of the if executes. When the check box is not checked, the body of the
else executes.

Note: The following exercise adds scripts to new control objects in the Limits Dashboard section
of Sample1mod.bqy.

Exercise: Using an if...else Statement to Change Chart Types

ä To display a line chart if the check box is checked, otherwise (else) display a pie chart:

1 Add a new check box to Limits Dashboard, change the Name to chk_ChartType, and change the Title
to Show Chart As A Line Chart (use the Properties dialog box).

2 Open the Script Editor on the new Show Chart As A Line Chart check box.

3 Type if (), a return [Enter] an open curly bracket ({), two returns [Enter] and a close curly bracket (}).

if ()
{
}

The parentheses hold the controlling condition test. The curly brackets are for the body of
the if, executed only when the condition tests to true.

4 Click inside the control part of the if, then use the Object browser to navigate to Limits Dashboard
Objects , then chk_ChartType , then Properties and then double-click Checked.

if (chk_ChartType.Checked)
{
}

The Description pane shows Property Checked as Boolean. There are two Boolean values:
true and false.

5 After the chk_ChartType.Checked property, type ==true.

if (chk_ChartType.Checked==true)
{
}

Verify that there are two equal signs, meaning match true, not assign the value true. Condition
statements use the comparison or logical operators “Logical Operators” on page 116.

6 Add a statement in the body of the if statement to change the Limits Chart to type Line.

a. Click inside the body of the if (on the blank line between the curly brackets), then use
the Object browser to navigate to Application , then ActiveDocument, then Sections,
then Limits Chart, then Properties and then double-click ChartType.

if (chk_ChartType.Checked==true)
{
ActiveDocument.Sections["Limits Chart"].ChartType
}

About if...else Statements 103

The Description Pane shows Property ChartType as BqChartType. Find the collection
for BqChartType in the object model under Constants.

b. After ChartType, type an equal sign (=), navigate to Constants, then BqChartType, and
then double-click bqChartTypeLine.

c. Type a semicolon (;) at the end of the statement.

if (chk_ChartType.Checked==true)
{
ActiveDocument.Sections["Limits Chart"].ChartType=bqChartTypeLine;
}

The semicolon clarifies where the statement ends and is recommended practice.

7 On a new line, after the close curly bracket for the if, type else, a return [Enter], an open curly bracket
({), two returns [Enter], and a close curly bracket (}).

}
else
{
}

The curly brackets are for the body of the else, executed only when the condition tests false.

8 Click in the body of the else and use the Object browser to add a statement to change the Limits Chart
to a pie chart.

else
{
ActiveDocument.Sections["Limits Chart"].ChartType=bqChartTypePie;
}

The statement should end with a semicolon.

9 Click OK to save the script and close the Script Editor.

10 Toggle to Run mode to test the script.

When Show Chart As Line Chart is checked, the chart type changes to Line. When it is not
checked, the chart type is Pie. The on/off (checked/unchecked) states of the check box controls
two chart type options.

Exercise
Add a new check box to the Limits Dashboard section of Sample1mod.bqy. Add an if statement
that shows the chart legend when the check box is selected, and hides it when the check box is
not selected.

ShowLegend requires a Boolean (true or false) assignment. The statement to show the chart
legend is:

ActiveDocument.Sections["Limits Chart"].ShowLegend=true;

The JavaScript script to show a chart legend if chk_ShowLegend is true is:

104 JavaScript Control Structures

if (chk_ShowLegend.Checked==true)
{
ActiveDocument.Sections["Limits Chart"].ShowLegend=true;
}
else
{
ActiveDocument.Sections["Limits Chart"].ShowLegend=false;
}

Caution! Use one equal sign when assigning a value, use two equal signs when testing if the
value matches true.

Tip: The check box and its script show the chart legend when the check box is selected and its
state becomes “checked.” Since the chart legend is already showing, the check box must be
cleared to hide the legend the first time the Dashboard section is used. The initial state of
the chart and the check box can be set with JavaScript statements associated with the
OnActivate event of the Dashboard section:

ActiveDocument.Sections["Limits Chart"].ShowLegend=true;
chk_ShowLegend.Checked=true;

Tip: Set both ShowLegend and the check box Checked properties to true when the section is
activated.

About switch Statements
switch statements use expressions, or cases, to control statement execution. Each case holds one
possible value and includes the statements to execute when the value matches the expression
result. The following table compares the control logic of a switch to an if...else.

switch if...else

switch (CheckBox.Checked)
{
case true :
 set the chart type to a line chart
case false :
 set the chart type to a pie chart
}

if (CheckBox.Checked==true)
{
 set the chart type to a line chart
}
else
{
 set the chart type to a pie chart
}

JavaScript evaluates the expression in a switch, then compares the expression value to each case
until it finds a matching value. The statements in the matching case are executed and the next
case is compared. If the matching case ends with a break statement, JavaScript skips the rest of
the cases (conserving execution time).

About switch Statements 105

Note: Add a check box to the Limits Dashboard section of Sample1mod.bqy. Use switch logic
instead of if...else logic to change the chart type.

Exercise: Using a switch Statement to Change Chart Types

ä To switch to a line chart when Checked is true, or to a pie chart when Checked is false:

1 Add a new check box to Limits Dashboard, and use the Properties dialog box to change the Title to
Switch Chart To Line Chart and the Name to chk_ChartType2.

2 Open the Script Editor on the new Switch Chart To Line Chart check box. [F8]

3 Type switch () a return [Enter], an open curly bracket ({), two returns [Enter], and a close curly bracket
(}).

switch ()
{
}

The parentheses are for the expression. The curly brackets are for the body of the switch.

4 Click inside the expression parentheses, and then use the Object browser to navigate to Limits
Dashboard Objects, then chk_ChartType2 Properties and then double-click Checked.

switch (chk_ChartType2.Checked)
{
}

The Description pane shows Property Checked as Boolean. Since there are two Boolean
values (true and false), we will provide two case values.

5 In the body of the switch, add the case for a value of true, and the statement to change the Limits Chart
to a Line chart.

a. Click inside the body of the switch (on the blank line between the curly brackets), type
case true : and a return [Enter].

b. Navigate to Application, then ActiveDocument, then Sections, then Limits Chart then
Properties and then double-click ChartType.

The Description pane shows Property ChartType as BqChartType. Find the collection
for BqChartType in the object model under Constants.

c. After ChartType, type an equal sign (=), then navigate to Constants, then
BqChartType, then and double-click bqChartTypeLine.

d. Type a semicolon (;) at the end of the statement, and a return [Enter].

e. Type break; and two returns [Enter].

switch (chk_ChartType2.Checked)
{
case true :
ActiveDocument.Sections["Limits Chart"].ChartType=bqChartTypeLine;
break;
}

106 JavaScript Control Structures

The case for true changes the chart to a line chart and ends with a break statement so
other cases are ignored. The extra return is for readability.

6 Add the case for a value of false, and the statement to change the Limits Chart to a pie chart.

a. Click inside the body of the switch (on the blank line above the closing curly bracket),
type case false : and a return [Enter].

b. Use the Object browser to navigate to Application, then ActiveDocument, then
Sections, then Limit Charts, and then double-click ChartType.

c. After ChartType, type an equal sign (=), and then navigate to Constants, then
BqChartType, and then double-click bqChartTypePie.

d. Type a semicolon (;) at the end of the statement, and a return [Enter].

e. Type break; and a return [Enter].

switch (chk_ChartType2.Checked)
{
case true :
ActiveDocument.Sections["Limits Chart"].ChartType=bqChartTypeLine;
break;
case false :
ActiveDocument.Sections["Limits Chart"].ChartType=bqChartTypePie;
break;
}

Verify that there is a close curly bracket after the last case.

7 Click OK to save the script and close the Script Editor.

8 Toggle to Run mode to test the script.

The chart should work the same with the switch as with the if...else logic. When the check
box is selected, the chart is a line chart; when the check box is cleared, the chart is a pie chart.

Example

DropDown1 (under Select View) of The Plan and Actual section of Sample2mod.bqy allows
the user to change the Costs, Sold, and Revenue charts to display results in terms of Planned
vs. Actual, Planned, or Actual.

The OnClick event for DropDown1 creates a variable for the user choice. Then, depending
on the value of choice, the JavaScript goes through each chart and removes all facts, and adds
the appropriate facts. This is done with an if...else control structure.

In Design mode, with the Console window closed, copy and paste DropDown1 and rename
the new one DropDown1_switch. Change the if...else control structure to a switch. (See
“Controlling Chart Facts with if...else” on page 107 and “Controlling Chart Facts with
switch” on page 108 for the finished JavaScript scripts.)

Controlling Chart Facts with if...else
The JavaScript script for DropDown1, Plan and Actual section of Sample2mod.bqy is:

Controlling Chart Facts with if...else 107

var choice=ActiveDocument.Sections["Plan and
Actual"].Shapes.DropDown1[DropDown1.SelectedIndex];
if (choice=='Planned vs. Actual')
{
ActiveDocument.Sections["PlanActualCostsChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualCostsChart"].Facts.Add('Costs Plan');
ActiveDocument.Sections["PlanActualCostsChart"].Facts.Add('Costs Actual');
ActiveDocument.Sections["PlanActualSoldChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualSoldChart"].Facts.Add('Units Sold Plan');
ActiveDocument.Sections["PlanActualSoldChart"].Facts.Add('Units Sold Actual');
ActiveDocument.Sections["PlanActualRevenueChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualRevenueChart"].Facts.Add('Revenue Plan');
ActiveDocument.Sections["PlanActualRevenueChart"].Facts.Add('Revenue Actual');
}
else
if (choice=='Planned')
{
ActiveDocument.Sections["PlanActualCostsChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualCostsChart"].Facts.Add('Costs Plan');
ActiveDocument.Sections["PlanActualSoldChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualSoldChart"].Facts.Add('Units Sold Plan');
ActiveDocument.Sections["PlanActualRevenueChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualRevenueChart"].Facts.Add('Revenue Plan');
}
else
if (choice=='Actual')
{
ActiveDocument.Sections["PlanActualCostsChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualCostsChart"].Facts.Add('Costs Actual');
ActiveDocument.Sections["PlanActualSoldChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualSoldChart"].Facts.Add('Units Sold Actual');
ActiveDocument.Sections["PlanActualRevenueChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualRevenueChart"].Facts.Add('Revenue Actual');
}

Controlling Chart Facts with switch
The JavaScript for DropDown1_switch, Plan and Actual section of Sample2mod.bqy is:

var choice=ActiveDocument.Sections["Plan and
Actual"].Shapes.DropDown1_switch[DropDown1_switch.SelectedIndex];
switch (choice)
{
 case 'Planned vs. Actual':
ActiveDocument.Sections["PlanActualCostsChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualCostsChart"].Facts.Add('Costs Plan');
ActiveDocument.Sections["PlanActualCostsChart"].Facts.Add('Costs Actual');
ActiveDocument.Sections["PlanActualSoldChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualSoldChart"].Facts.Add('Units Sold Plan');
ActiveDocument.Sections["PlanActualSoldChart"].Facts.Add('Units Sold Actual');
ActiveDocument.Sections["PlanActualRevenueChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualRevenueChart"].Facts.Add('Revenue Plan');
ActiveDocument.Sections["PlanActualRevenueChart"].Facts.Add('Revenue Actual');
 break;
 case 'Planned':
ActiveDocument.Sections["PlanActualCostsChart"].Facts.RemoveAll();

108 JavaScript Control Structures

ActiveDocument.Sections["PlanActualCostsChart"].Facts.Add('Costs Plan');
ActiveDocument.Sections["PlanActualSoldChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualSoldChart"].Facts.Add('Units Sold Plan');
ActiveDocument.Sections["PlanActualRevenueChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualRevenueChart"].Facts.Add('Revenue Plan');
 break;
 case 'Actual' :
ActiveDocument.Sections["PlanActualCostsChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualCostsChart"].Facts.Add('Costs Actual');
ActiveDocument.Sections["PlanActualSoldChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualSoldChart"].Facts.Add('Units Sold Actual');
ActiveDocument.Sections["PlanActualRevenueChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualRevenueChart"].Facts.Add('Revenue Actual');
 break;
}

Controlling Chart Facts with switch 109

110 JavaScript Control Structures

7
JavaScript Operators

In This Chapter

Arithmetic Operators .. 111

Assignment Operators .. 112

Bitwise Operators .. 113

Comparison Operators.. 115

Logical Operators .. 116

String Operators.. 117

Special Operators .. 117

This section provides detailed information on JavaScript operators and operator precedence.

Arithmetic Operators
Arithmetic operators, described in the following table, take numerical values (either literals or
variables) as their operands and return a single numerical value.

Operator Description

+ (Addition) Adds 2 numbers.

++ (Increment) Adds one to a variable representing a number (returning either the new or old value of the variable). The increment
operator is used as follows:

var++ or ++var

The increment operator increments (adds one to) its operand and returns a value. If it is used postfix, with operator after
operand (for example, x++), then it returns the value before incrementing. If it is used prefix with operator before operand (for
example, ++x), then it returns the value after incrementing.

For example, if x is three, then the statement y = x++ sets y to 3 and increments x to 4. If x is 3, then the statement y = ++x
increments x to 4 and sets y to 4.

Arithmetic Operators 111

Operator Description

-- (Decrement) Subtracts one from a variable representing a number (returning either the new or old value of the variable). The
decrement operator is used as follows:

var-- or --var

The decrement operator decrements (subtracts one from) its operand and returns a value. If it is used postfix (for example,
x--), then it returns the value before decrementing. If it is used prefix (for example, --x), then it returns the value after
decrementing.

For example, if x is three, then the statement y = x-- sets y to 3 and decrements x to 2. If x is 3, then the statement y = --x
decrements x to 2 and sets y to 2.

- (Unary negation, subtraction) As a unary operator, negates the value of its argument. As a binary operator, subtracts two
numbers.

The unary negation operator precedes its operand and negates it. For example, y = -x negates the value of x and assigns
that to y; that is, if x were 3, y would get the value -3 and x would retain the value 3.

* (Multiplication) Multiplies two numbers.

/ (Division) Divides two numbers.

% (Modulus) Computes the integer remainder of dividing two numbers. The modulus operator is used as follows:

var1 % var2

The modulus operator returns the first operand modulo the second operand, that is, var1 modulo var2, in the preceding
statement, where var1 and var2 are variables. The modulo function is the integer remainder of dividing var1 by var2.

For example, 12 % 5 returns 2.

Assignment Operators
Assignment operators assign a value to a left operand based on the value of a right operand. The
basic assignment operators are described in the Assignment Operators table. The other
assignment operators, described in the Shorthand Assignment Operators table, are shorthand
for standard operations.

Operator Description

= Assigns the value of the second operand to the first operand.

+= Adds two numbers and assigns the result to the first.

-= Subtracts two numbers and assigns the result to the first.

*= Multiplies two numbers and assigns the result to the first.

/= Divides two numbers and assigns the result to the first.

%= Computes the modulus of two numbers and assigns the result to the first.

&= Performs a bitwise AND and assigns the result to the first operand.

^= Performs a bitwise XOR and assigns the result to the first operand.

112 JavaScript Operators

Operator Description

|= Performs a bitwise OR and assigns the result to the first operand.

>>= Performs a sign-propagating right shift and assigns the result to the first operand.

>>>= Performs a zero-fill right shift and assigns the result to the first operand.

Shorthand Operator Meaning

x += y x = x + y

x -= y x = x – y

x *= y x = x * y

x /= y x = x / y

x %= y x = x % y

x <<= y x = x << y

x >>= y x = x >> y

x >>>= y x = x >>> y

x &= y x = x & y

x ^= y x = x ^ y

x |= y x = x | y

Bitwise Operators
Bitwise operators, described in the following table, treat their operands as a set of bits (zeros and
ones), rather than as decimal, hexadecimal, or octal numbers. For example, the decimal number
nine has a binary representation of 1001. Bitwise operators perform their operations on such
binary representations, but they return standard JavaScript numerical values.

Operator Description

& (Bitwise AND) Returns a one in each bit position if bits of both operands are ones. The Bitwise AND operator is used as follows:

a & b

Returns a one in each bit position if bits of both operands are ones.

^ (Bitwise XOR) Returns a one in a bit position if bits of one, but not if both operands are one. The bitwise XOR operator is used
as follows:

a ^ b

Returns a one in a bit position if bits of one, but not both operands are one.

Bitwise Operators 113

Operator Description

| (Bitwise OR) Returns a one in a bit if bits of either operand is one. The Bitwise OR operator is used as follows:

a | b

Returns a one in a bit if bits of either operand is one.

~ (Bitwise NOT) Flips the bits of its operand. The Bitwise NOT operator is used as follows:

~ a

Flips the bits of its operand.

<< (Left shift) Shifts its first operand in binary representation the number of bits to the left specified in the second operand, shifting
in zeros from the right. The Left shift operator is used as follows:

a << b

Shifts a in binary representation b bits to left, shifting in zeros from the right.

>> (Sign-propagating right shift) Shifts the first operand in binary representation the number of bits to the right specified in the
second operand, discarding bits shifted off. The Sign-propagating right shift operator is used as follows:

a >> b

Shifts a in binary representation b bits to right, discarding bits shifted off.

>>> (Zero-fill right shift) Shifts the first operand in binary representation the number of bits to the right specified in the second
operand, discarding bits shifted off, and shifting in zeros from the left. The zero-fill right shift operator is used as follows:

a >>> b

Shifts a in binary representation b bits to the right, discarding bits shifted off, and shifting in zeros from the left.

Bitwise Logical Operators
Conceptually, the bitwise logical operators work as follows:

1. The operands are converted to thirty-two-bit integers and expressed by a series of bits (zeros
and ones).

2. Each bit in the first operand is paired with the corresponding bit in the second operand: first
bit to first bit, second bit to second bit, and so on.

3. The operator is applied to each pair of bits, and the result is constructed bitwise.

For example, the binary representation of nine is 1001, and the binary representation of fifteen
is 1111. So, when the bitwise operators are applied to these values, the results are as follows:

15 & 9 yields 9 (1111 & 1001 = 1001)
15 | 9 yields 15 (1111 | 1001 = 1111)
15 ^ 9 yields 6 (1111 ^ 1001 = 0110)

114 JavaScript Operators

Bitwise Shift Operators
The bitwise shift operators, described in the following table, take two operands: the first is a
quantity to be shifted, and the second specifies the number of bit positions by which the first
operand is to be shifted. The operator used controls the direction of the shift operation

Shift operators convert their operands to thirty-two-bit integers and return a result of the same
type as the left operator.

Operator Description

<< (Left Shift) This operator shifts the first operand the specified number of bits to the left. Excess bits shifted off to the left are
discarded. Zero bits are shifted in from the right.

For example, 9<<2 yields thirty-six, because 1001 shifted two bits to the left becomes 100100, which is thirty-six.

>> (Sign-
Propagating Right
Shift)

This operator shifts the first operand the specified number of bits to the right. Excess bits shifted off to the right are
discarded. Copies of the leftmost bit are shifted in from the left.

For example, 9>>2 yields two, because 1001 shifted two bits to the right becomes 10, which is two. Likewise,
-9>>2 yields -3, because the sign is preserved.

>>> (Zero-Fill Right
Shift)

This operator shifts the first operand the specified number of bits to the right. Excess bits shifted off to the right are
discarded. Zero bits are shifted in from the left.

For example, 19>>>2 yields four, because 10011 shifted two bits to the right becomes 100, which is four. For non-
negative numbers, zero-fill right shift and sign-propagating right shift yield the same result.

Comparison Operators
A comparison operator compares its operands and returns a logical value based on whether the
comparison is true or not. The operands can be numerical or string values. When used on string
values, the comparisons are based on the standard lexicographical ordering.

The following table describes the comparison operators. It assume var1 has been assigned the
value 3 and var2 has been assigned the value 4.

Operator Description

== (Equal) Returns true if the operands are equal. For example:

3 == var1

!= (Not equal) Returns true if the operands are not equal. For example:

var1 != 4

> (Greater than) Returns true if left operand is greater than right operand. For example:

var2 > var1

>= (Greater than or equal) Returns true if left operand is greater than or equal to right operand. For example:

var2 >= var1

var1 >= 3

Comparison Operators 115

Operator Description

< (Less than) Returns true if left operand is less than right operand. For example:

var1 < var2

<= (Less than or equal) Returns true if left operand is less than or equal to right operand. For example:

var1 <= var2

var2 <= 5

Logical Operators
Logical operators, described in the following, take Boolean (logical) values as operands and
return a Boolean value.

Operator Description

&& (Logical AND) Returns true if both logical operands are true. Otherwise, returns false. The Logical AND operator is used as
follows:

expr1 && expr2

Returns expr1 if it converts to false. Otherwise, returns expr2.

|| (Logical OR) Returns true if either logical expression is true. If both are false, returns false. The Logical OR operator is used as
follows:

expr1 || expr2

Returns expr1 if it converts to true. Otherwise, returns expr2.

! (Logical negation) If its single operand is true, returns false; otherwise, returns true.

Example

Consider the following script:

v1 = "Cat";
v2 = "Dog";
v3 = false;
Console.Write("t && t returns " + (v1 && v2));
Console.Write("f && t returns " + (v3 && v1));
Console.Write("t && f returns " + (v1 && v3));
Console.Write("f && f returns " + (v3 && (3 == 4)));
Console.Write("t || t returns " + (v1 || v2));
Console.Write("f || t returns " + (v3 || v1));
Console.Write("t || f returns " + (v1 || v3));
Console.Write("f || f returns " + (v3 || (3 == 4)));
Console.Write("!t returns " + (!v1));

Console.Write("!f returns " + (!v3));

This script displays the following:

t && t returns Dog

116 JavaScript Operators

f && t returns false
t && f returns false
f && f returns false
t || t returns Cat
f || t returns Cat
t || f returns Cat
f || f returns false
!t returns false
!f returns true

Short-Circuit Evaluation
As logical expressions are evaluated left to right, they are tested for possible “short-circuit”
evaluation using these rules:

false && anything is short-circuit evaluated to false.
true || anything is short-circuit evaluated to true.

The rules of logic guarantee that these evaluations are always correct. Note that the anything
part of the above expressions is not evaluated, so any side effects of doing so do not take effect.

String Operators
Use the concatenation operator (+) to concatenate two string values together and a return
another string that is the union of the two operand strings. For example, "my " + "string"
returns the string "my string".

The shorthand assignment operator += can also be used to concatenate strings. For example, if
the variable mystring has the value “alpha,” then the expression mystring += "bet" evaluates
to “alphabet” and assigns this value to mystring.

The following table describes the string operators.

Operator Description

+ (String addition) Concatenates two strings.

+= Concatenates two strings and assigns the result to the first operand.

Special Operators
This section explains the syntax, parameters, and descriptions for the special operators used in
JavaScript, which are listed in the following table

Operator Description

?: (Conditional operator) Lets you perform a simple “if...then...else”

, (comma operator) Evaluates two expressions and returns the result of the second expression.

String Operators 117

Operator Description

delete Lets you delete an object property or an element at a specified index in an array.

new Lets you create an instance of a user-defined object type or of one of the built-in object types.

this Keyword that you can use to refer to the current object.

typeof Returns a string indicating the type of the unevaluated operand.

void Specifies an expression to be evaluated without returning a value.

?: (Conditional operator)
The conditional operator is the only JavaScript operator that takes three operands. This
operator is frequently used as a shortcut for the if statement.

Syntax

condition ? expr1 : expr2

Parameters

Condition—An expression that evaluates to either true or false.

expr1, expr2—Expressions with values of any type.

Description

If condition is true, the operator returns the value of expr1; otherwise, it returns the value of
expr2. For example, to display a different message based on the value of the isMember variable,
you could use this statement:

Console.Write ("The fee is " + (isMember ? "$2.00" : "$10.00"))

, (comma operator)
The comma operator evaluates both of its operands and returns the value of the second operand.

Syntax

expr1, expr2

Parameters

expr1, expr2—Any expressions

Description

118 JavaScript Operators

You can use the comma operator when you want to include multiple expressions in a location
that requires a single expression. The most common usage of this operator is to supply multiple
parameters in a for loop.

For example, if a is a two-dimensional array with 10 elements on a side, the following code uses
the comma operator to increment two variables at once. The code prints the values of the
diagonal elements in the array:

 for (var i=0, j=10; i <= 10; i++, j--)
 Console.Write("a["+i+","+j+"]= " + a[i,j])

delete
The delete operator deletes an object’s property or an element at a specified index in an array.

Syntax

delete objectName.property
delete objectName[index]
delete property

Parameters

objectName—The name of an object.

property—An existing property.

index—An integer representing the location of an element in an array.

Description

The third form is legal only within a with statement.

If the deletion succeeds, the delete operator sets the property or element to undefined.
delete always returns undefined.

new
The new operator lets you create an instance of a user-defined object type or of one of the built-
in object types that has a constructor function.

Syntax

objectName = new objectType (param1 [,param2] ...[,paramN])

Arguments

objectName—Name of the new object instance.

objectType—Must be a function that defines an object type.

param1...paramN—Property values for the object. These properties are parameters defined
for the objecType function.

Description

Creating a user-defined object type requires two steps:

Special Operators 119

1. Define the object type by writing a function.

2. Create an instance of the object with new.

To define an object type, create a function for the object type that specifies its name, properties,
and methods. An object can have a property that is itself another object. See the examples that
follow.

You can always add a property to a previously defined object. For example, the statement
car1.color = "black" adds a property color to car1, and assigns it a value of black.
However, this does not affect any other objects. To add the new property to all objects of the
same type, you must add the property to the definition of the car object type.

You can add a property to a previously defined object type by using the
Function.prototype property. This defines a property that is shared by all objects created
with that function, rather than by just one instance of the object type. The following code adds
a color property to all objects of type car, and then assigns a value to the color property of
the object car1.

Car.prototype.color=null
car1.color="black"
birthday.description="The day you were born"

Examples

Example1: object type and object instance. Suppose you want to create an object type for cars.
You want this type of object to be called car, and you want it to have properties for make, model,
and year. To do this, you would write the following function:

function car(make, model, year) {
 this.make = make
 this.model = model
 this.year = year
}

Now you can create an object called mycar as follows:

mycar = new car("Eagle", "Talon TSi", 1993)

This statement creates mycar and assigns it the specified values for its properties. Then the value
of mycar.make is the string “Eagle,” mycar.year is the integer 1993, and so on.

You can create any number of car objects by calls to new. For example,

kenscar = new car("Nissan", "300ZX", 1992)

Example2: object property that is itself another object. Suppose you define an object called person
as follows:

function person(name, age, sex) {
 this.name = name
 this.age = age
 this.sex = sex
}

And then instantiate two new person objects as follows:

120 JavaScript Operators

rand = new person("Rand McNally", 33, "M")
ken = new person("Ken Jones", 39, "M")

Then you can rewrite the definition of car to include an owner property that takes a person
object, as follows:

function car(make, model, year, owner) {
 this.make = make;
 this.model = model;
 this.year = year;
 this.owner = owner;
}

To instantiate the new objects, you then use the following:

car1 = new car("Eagle", "Talon TSi", 1993, rand);
car2 = new car("Nissan", "300ZX", 1992, ken)

Instead of passing a literal string or integer value when creating the new objects, the above
statements pass the objects rand and ken as the parameters for the owners. To find out the name
of the owner of car2, you can access the following property:

car2.owner.name

this
A keyword that you can use to refer to the current object. In general, in a method this refers
to the calling object.

Syntax

this[.propertyName]

Examples

Suppose a function called validate validates an object's value property, given the object and
the high and low values:

function validate(obj, lowval, hival) {
 if ((obj.value < lowval) || (obj.value > hival))
 Alert("Invalid Value!")
}

typeof
The typeof operator is used in either of the following ways:

l typeof operand

l typeof (operand)

The typeof operator returns a string indicating the type of the unevaluated operand. operand
is the string, variable, keyword, or object for which the type is to be returned. The parentheses
are optional.

Special Operators 121

Suppose you define the following variables:

var myFun = new Function("5+2")
var shape="round"
var size=1
var today=new Date()

The typeof operator returns these results:

typeof myFun is object
typeof shape is string
typeof size is number
typeof today is object
typeof dontExist is undefined

For the keywords true and null, the typeof operator returns these results:

typeof true is boolean
typeof null is object

For a number or string, the typeof operator returns these results:

typeof 62 is number
typeof 'Hello world' is string

For property values, the typeof operator returns the type of value the property contains:

typeof document.lastModified is string
typeof window.length is number
typeof Math.LN2 is number

For methods and functions, the typeof operator returns results as follows:

typeof blur is function
typeof eval is function
typeof parseInt is function
typeof shape.split is function

For predefined objects, the typeof operator returns results as follows:

typeof Date is function
typeof Function is function
typeof Math is function
typeof Option is function
typeof String is function

void
The void operator is used in either of the following ways:

l void (expression)

l void expression

122 JavaScript Operators

The void operator specifies an expression to be evaluated without returning a value.
expression is a JavaScript expression to evaluate. The parentheses surrounding the expression
are optional, but it is good style to use them.

Special Operators 123

124 JavaScript Operators

8
Core Objects

In This Chapter

Array... 126

Boolean ... 140

Date ... 142

Function... 157

Math... 166

Number .. 184

Object .. 189

String ... 197

Regular Expression... 224

This section provides detailed descriptions of the JavaScript core objects, which are summarized
in the following table.

Object Description

Array Represents an array.

Boolean Represents a Boolean value.

Date Represents a date.

Function Specifies a string of JavaScript code to be compiled as a function.

Math Provides basic math constants and functions; for example, its PI property contains the value of pi.

Number Represents primitive numeric values.

Object Contains the base functionality shared by all JavaScript objects.

125

Object Description

String Represents a JavaScript string.

Regular Expression Represents a regular expression; also contains static properties that are shared among all regular expression objects.

Array

Function

An array allows you to store a list of common elements in a variable as shown in the following
example:

var models = new Array("Ford", "Mazda", "Honda");

You can easily access the elements of an array by using the index number assigned to each
element. Elements are stored in sequential order beginning with index number 0, proceeding
with index number 1, and so on. Since the index numbering begins with 0, the array's item count
will always be one higher than the highest value of the array. The element's index number is
enclosed in square brackets and constitutes its location in the array. The Array is a core object.

To set the first element of the array in the example shown above, you would type:

models[0];

When you execute the JavaScript, the variable will contain the "Ford" string.

Created by

The Array object constructor:

new Array(arrayLength);
new Array(element0, element1, ..., elementN);

Parameters

arrayLength

(Optional) The initial length of the array. You can access this value using the length property.

element

(Optional) A list of values for the array's elements. When this form is specified, the array is
initialized with the specified values as its elements, and the array's length property is set to the
number of arguments.

Description

An array's length increases if you assign a value to an element higher than the current length of
the array. The following code creates an array of length 0, then assigns a value to element 99.
This changes the length of the array to 100.

126 Core Objects

colors = new Array()
colors[99] = "midnightblue"

You can construct a dense array of two or more elements starting with index 0 if you define initial
values for all elements. A dense array is one in which each element has a value. The following
code creates a dense array with three elements:

myArray = new Array("Hello", myVar, 3.14159)

The result of a match between a regular expression and a string can create an array. This array
has properties and elements that provide information about the match. An array is the return
value of RegExp.exec, String.match, and String.replace.

To help explain these properties and elements, look at the following example and then refer to
the table below:

//Match one d followed by one or more b's followed by one d
//Remember matched b's and the following d
//Ignore case
myRe=/d(b+)(d)/i;
myArray = myRe.exec("cdbBdbsbz");

The following table lists the properties and elements returned from this match.

Property/Element Description Example

Input A read-only property that reflects the original string against which the regular expression was matched. CdbBdbsbz

Index A read-only property that is the zero-based index of the match in the string. 1

[0] A read-only element that specifies the last matched characters. DbBd

[1], ...[n] Read-only elements that specify the parenthesized substring matches, if included in the regular
expression. The number of possible parenthesized substrings is unlimited.

[1]=bB

[2]=d

Examples

The following example creates an array, msgArray, with a length of 0, then assigns values to
msgArray[0] and msgArray[99], changing the length of the array to 100.

msgArray = new Array()
msgArray [0] = "Hello"
msgArray [99] = "world"
// The following statement is true,
// because defined msgArray [99] element.
if (msgArray.length == 100)
 Console.Write("The length is 100.")

The following code creates a two-dimensional array and displays the results.

a = new Array(4)
for (i=0; i < 4; i++) {a[i] = new Array(4)
for (j=0; j < 4; j++)
{a[i][j] = "["+i+","+j+"]"}
}

Array 127

for (i=0; i < 4; i++)
{str = "\r\nRow "+i+":"
for (j=0; j < 4; j++)
{str += a[i][j]}
Console.Write(str)
}

This example displays the following results:

Multidimensional array test
Row 0:[0,0][0,1][0,2][0,3]
Row 1:[1,0][1,1][1,2][1,3]
Row 2:[2,0][2,1][2,2][2,3]
Row 3:[3,0][3,1][3,2][3,3]

Array Properties
The following table displays a summary of the array properties. Detailed descriptions of each
property follow the table.

Property Description

index For an array created by a regular expression match, the zero-based index of the match in the string.

input For an array created by a regular expression match, reflects the original string against which the regular expression was
matched.

length Reflects the number of elements in an array.

prototype Allows the addition of properties to an Array object.

index

Property of

Array

Description

For an array created by a regular expression match, the zero-based index of the match in the
string. The index property is static.

input

Property of

Array

Description

For an array created by a regular expression mathc, reflects the original string against which the
regular expression was matched. The input property is static.

128 Core Objects

length

Property of

Array

Description

An integer that specifies the number of elements in an array. You can set the length property to
truncate an array at any time. You cannot extend an array; for example, if you set length to 3
when it is currently 2, the array will still contain only 2 elements. The length property is
static.

Examples

In the following example, the getChoice function uses the length property to iterate over
every element in the musicType array. musicType is a select element on the musicForm
form.

function getChoice() {
 for (var i = 0; i < document.musicForm.musicType.length; i++) {
 if (document.musicForm.musicType.options[i].selected == true) {
 return document.musicForm.musicType.options[i].text
 }
 }
}

The following example shortens the array statesUS to a length of 50 if the current length is
greater than 50.

if (statesUS.length > 50) {
 statesUS.length=50
 alert("The U.S. has only 50 states. New length is " + statesUS.length)
}

prototype

Property of

Array

Description

Represents the prototype for this class. You can use the prototype to add properties or methods
to all instances of a class.

Array Methods
The following table displays a summary of the array methods. Detailed descriptions of each
method follow the table.

Array 129

Method Description

concat Joins two arrays and returns a new array.

join Joins all elements of an array into a string.

pop Removes the last element from an array and returns that element.

push Adds one or more elements to the end of an array and returns that last element added.

reverse Transposes the elements of an array: the first array element becomes the last and the last becomes the first.

shift Removes the first element from an array and returns that element.

slice Extracts a section of an array and returns a new array.

splice Adds and/or removes elements from an array.

sort Sorts the elements of an array.

toString Returns a string representing the specified object.

unshift Adds one or more elements to the front of an array and returns the new length of the array.

concat
Joins two arrays and returns a new array.

Applies to

Array

Syntax

concat(arrayName2)

Parameters

ArrayName2

130 Core Objects

Name of the array to concatenate to this array.

Description

concat does not alter the original arrays, but returns a one level deep copy that contains copies
of the same elements combined from the original arrays. Elements of the original arrays are
copied into the new array as follows:

Object references (and not the actual object) — concat copies object references into the new
array. Both the original and new array refer to the same object. If a referenced object changes,
the changes are visible to both the new and original arrays.

Strings and numbers (not String and Number objects) — concat copies strings and numbers
into the new array. Changes to the string or number in one array do not affect the other arrays.

If a new element is added to either array, the other array is not affected.

join
Joins all elements of an array into a string.

Applies to

Array

Syntax

join(separator)

Parameters

separator

Specifies a string to separate each element of the array. The separator is converted to a string if
necessary. If omitted, the array elements are separated with a comma.

Description

The string conversion of all array elements are joined into one string.

Examples

The following example creates an array with three elements, then joins the array three times:
using the default separator, then a comma and a space, and then a plus.

a = new Array("Wind","Rain","Fire")
Console.Write(a.join())
Console.Write(a.join(", "))
Console.Write(a.join(" + "))

This code produces the following output:

Wind,Rain,Fire
Wind, Rain, Fire
Wind + Rain + Fire

Array 131

See also

Array: reverse

pop
Removes the last element from an array and returns that element. This method changes the
length of the array.

Applies to

Array

Syntax

pop()

Parameters

None

Example

The following code displays the myFish array before and after removing its last element. It also
displays the removed element:

myFish = ["angel", "clown", "mandarin", "surgeon"];
Console.Write("\r\nmyFish before: " + myFish);
popped = myFish.pop();
Console.Write("\r\nmyFish after: " + myFish);
Console.Write("\r\npopped this element: " + popped);

This example displays the following:

myFish before: ["angel", "clown", "mandarin", "surgeon"]
myFish after: ["angel", "clown", "mandarin"]
popped this element: surgeon

See also

Array: push, Array: shift, Array: unshift

push
Adds one or more elements to the end of an array and returns that last element added. This
method changes the length of the array.

Applies to

Array

Syntax

push(elt1, ..., eltN)

132 Core Objects

Parameters

elt1,...eltN

The elements to add to the end of the array.

Description

The behavior of the push method is analogous to the push function in Perl 4. Note that this
behavior is different in Perl 5.

Example

The following code displays the myFish array before and after adding elements to its end. It also
displays the last element added:

myFish = ["angel", "clown"];
Console.Write("myFish before: " + myFish);
pushed = myFish.push("drum", "lion");
Console.Write("myFish after: " + myFish);
Console.Write("pushed this element last: " + pushed);

This example displays the following:

myFish before: ["angel", "clown"]
myFish after: ["angel", "clown", "drum", "lion"]
pushed this element last: lion

See also

Array: pop, Array: shift, Array: unshift

reverse
Transposes the elements of an array: the first array element becomes the last and the last becomes
the first.

Applies to

Array

Syntax

reverse()

Parameters

None

Description

The reverse method transposes the elements of the calling array object.

Array 133

Examples

The following example creates an array myArray, containing three elements, then reverses the
array.

myArray = new Array("one", "two", "three")
myArray.reverse()

The output is as follows

myArray[0] is "three"
myArray[1] is "two"
myArray[2] is "one"

See also

Array: join, Array: sort

shift
Removes the first element from an array and returns that element. This method changes the
length of the array.

Applies to

Array

Syntax

shift()

Parameters

None

Example

The following code displays the myFish array before and after removing its first element. It also
displays the removed element:

myFish = ["angel", "clown", "mandarin", "surgeon"];
Console.Write("myFish before: " + myFish);
shifted = myFish.shift();
Console.Write("myFish after: " + myFish);
Console.Write("Removed this element: " + shifted);

This example displays the following:

myFish before: ["angel", "clown", "mandarin", "surgeon"]
myFish after: ["clown", "mandarin", "surgeon"]
Removed this element: angel

See also

Array: pop, Array: push, Array: unshift

134 Core Objects

slice
Extracts a section of an array and returns a new array.

Applies to

Array

Syntax

slice(begin,end)

Parameters

Begin

Zero-based index at which to begin extraction.

End

(Optional) Zero-based index at which to end extraction. slice extracts up to but not including
end. slice(1,4) extracts the second element through the fourth element (elements indexed
1, 2, and 3). As a negative index, end indicates an offset from the end of the sequence.
slice(2,-1) extracts the third element through the second to last element in the sequence. If
end is omitted, slice extracts to the end of the sequence.

Description

slice does not alter the original array, but returns a new "one level deep" copy that contains
copies of the elements sliced from the original array. Elements of the original array are copied
into the new array as follows:

Object references (and not the actual object) -- slice copies object references into the new
array. Both the original and new array refer to the same object. If a referenced object changes,
the changes are visible to both the new and original arrays.

Strings and numbers (not String and Number objects)-- slice copies strings and numbers
into the new array. Changes to the string or number in one array does not affect the other array.

If a new element is added to either array, the other array is not affected.

Example

In the following example, slice creates a new array, newCar, from myCar. Both include a
reference to the object myHonda. When the color of myHonda is changed to purple, both arrays
reflect the change.

//Using slice, create newCar from myCar.
myHonda = {color:"red",wheels:4,engine:{cylinders:4,size:2.2}}
myCar = [myHonda, 2, "cherry condition", "purchased 1997"]
newCar = myCar.slice(0,2)
//Write the values of myCar, newCar, and the color of myHonda
// referenced from both arrays.
Console.Write("myCar = " + myCar)
Console.Write("newCar = " + newCar)
Console.Write("myCar[0].color = " + myCar[0].color)

Array 135

Console.Write("newCar[0].color = " + newCar[0].color)
//Change the color of myHonda.
myHonda.color = "purple"
Console.Write("The new color of my Honda is " + myHonda.color)
//Write the color of myHonda referenced from both arrays.
Console.Write("myCar[0].color = " + myCar[0].color)
Console.Write("newCar[0].color = " + newCar[0].color)

This script writes:

myCar = [{color:"red", wheels:4, engine:{cylinders:4, size:2.2}}, 2
 "cherry condition", "purchased 1997"]
newCar = [{color:"red", wheels:4, engine:{cylinders:4, size:2.2}}, 2]
myCar[0].color = red newCar[0].color = red
The new color of my Honda is purple
myCar[0].color = purple
newCar[0].color = purple

splice
Changes the content of an array, adding new elements while removing old elements.

Applies to

Array

Syntax

splice(index, howMany, newElt1, ..., newEltN)

Parameters

index

Index at which to start changing the array.

howMany

An integer indicating the number of old array elements to remove. If howMany is 0, no elements
are removed. In this case, you should specify at least one new element.

newElt1...newEltN

(Optional) The elements to add to the array. If you don't specify any elements, splice simply
removes elements from the array.

Description

If you specify a different number of elements to insert than the number you're removing, the
array will have a different length at the end of the call. If howMany is 1, this method returns the
single element that it removes. If howMany is more than 1, the method returns an array containing
the removed elements.

Examples

The following script illustrates the use of the splice:

136 Core Objects

myFish = ["angel", "clown", "mandarin", "surgeon"];
Console.Write("myFish: " + myFish);
removed = myFish.splice(2, 0, "drum");
Console.Write("After adding 1: " + myFish);
Console.Write("removed is: " + removed);
removed = myFish.splice(3, 1)
Console.Write("After removing 1: " + myFish);
Console.Write("removed is: " + removed);
removed = myFish.splice(2, 1, "trumpet")
Console.Write("After replacing 1: " + myFish);
Console.Write("removed is: " + removed);
removed = myFish.splice(0, 2, "parrot", "anemone", "blue")
Console.Write("After replacing 2: " + myFish);
Console.Write("removed is: " + removed);

This script displays:

myFish: ["angel", "clown", "mandarin", "surgeon"]
After adding 1: ["angel", "clown", "drum", "mandarin", "surgeon"]
removed is: undefined
After removing 1: ["angel", "clown", "drum", "surgeon"]
removed is: mandarin
After replacing 1: ["angel", "clown", "trumpet", "surgeon"]
removed is: drum
After replacing 2: ["parrot", "anemone", "blue", "trumpet", "surgeon"]
removed is: ["angel", "clown"]

sort
Sorts the elements of an array.

Applies to

Array

Syntax

sort(compareFunction)

Parameters

compareFunction

Specifies a function that defines the sort order. If omitted, the array is sorted lexicographically
(in dictionary order) according to the string conversion of each element.

Description

If compareFunction is not supplied, elements are sorted by converting them to strings and
comparing strings in lexicographic ("dictionary" or "telephone book," not numerical) order. For
example, "80" comes before "9" in lexicographic order, but in a numeric sort 9 comes before 80.

If compareFunction is supplied, the array elements are sorted according to the return value
of the compare function. If a and b are two elements being compared, then:

l If compareFunction(a, b) is less than 0, sort b to a lower index than a.

Array 137

l If compareFunction(a, b) returns 0, leave a and b unchanged with respect to each other,
but sorted with respect to all different elements.

l If compareFunction(a, b) is greater than 0, sort b to a higher index than a.

So, the compare function has the following form:

function compare(a, b) {
 if (a is less than b by some ordering criterion)
 return -1
 if (a is greater than b by the ordering criterion)
 return 1
 // a must be equal to b
 return 0
}

To compare numbers instead of strings, the compare function can simply subtract b from a:

function compareNumbers(a, b) {
 return a - b
}

JavaScript uses a stable sort: the index partial order of a and b does not change if a and b are
equal. If a's index was less than b's before sorting, it will be after sorting, no matter how a and b
move due to sorting.

a = new Array();
a[0] = "Ant";
a[5] = "Zebra";
function writeArray(x) {
 for (i = 0; i < x.length; i++) {
 Console.Write(x[i]);
 if (i < x.length-1) Console.Write(", ");
 }
}
writeArray(a);
a.sort();
Console.Write();
writeArray(a);
ant, undefined, undefined, undefined, undefined, zebra
ant, zebra, undefined, undefined, undefined, undefined

Examples

The following example creates four arrays and displays the original array, then the sorted arrays.
The numeric arrays are sorted without, then with, a compare function.

stringArray = new Array("Blue","Humpback","Beluga")
numericStringArray = new Array("80","9","700")
numberArray = new Array(40,1,5,200)
mixedNumericArray = new Array("80","9","700",40,1,5,200)
function compareNumbers(a, b) {
 return a - b
}
Console.Write("stringArray:" + stringArray.join())
Console.Write("Sorted:" + stringArray.sort())

138 Core Objects

Console.Write("numberArray:" + numberArray.join())
Console.Write("Sorted without a compare function:" + numberArray.sort())
Console.Write("Sorted with compareNumbers:" + numberArray.sort(compareNumbers))
Console.Write("numericStringArray:" + numericStringArray.join())
Console.Write("Sorted without a compare function:" + numericStringArray.sort())
Console.Write("Sorted with compareNumbers:" + numericStringArray.sort(compareNumbers))
Console.Write("mixedNumericArray:" + mixedNumericArray.join())
Console.Write("Sorted without a compare function:" + mixedNumericArray.sort())
Console.Write("Sorted with compareNumbers: " + mixedNumericArray.sort(compareNumbers))

This example produces the following output. As the output shows, when a compare function is
used, numbers sort correctly whether they are numbers or numeric strings.

stringArray: Blue,Humpback,Beluga
Sorted: Beluga,Blue,Humpback
numberArray: 40,1,5,200
Sorted without a compare function: 1,200,40,5
Sorted with compareNumbers: 1,5,40,200
numericStringArray: 80,9,700
Sorted without a compare function: 700,80,9
Sorted with compareNumbers: 9,80,700
mixedNumericArray: 80,9,700,40,1,5,200
Sorted without a compare function: 1,200,40,5,700,80,9
Sorted with compareNumbers: 1,5,9,40,80,200,700

See also

Array: join, Array: reverse

toString
Returns a string representing the specified object.

Applies to

Array

Syntax

toString()

Parameters

None

Description

Every object has a toString method that is automatically called when it is to be represented as
a text value or when an object is referred to in a string concatenation.

You can use toString within your own code to convert an object into a string, and you can
create your own function to be called in place of the default toString method.

For Array objects, the built-in toString method joins the array and returns one string
containing each array element separated by commas. For example, the following code creates
an array and uses toString to convert the array to a string while writing output.

Array 139

var monthNames = new Array("Jan","Feb","Mar","Apr")
Console.Write("monthNames.toString() is " + monthNames.toString())

The output is as follows:

monthNames.toString() is Jan,Feb,Mar,Apr

For information on defining your own toString method, see the Object: toString
method.

unshift
Adds one or more elements to the beginning of an array and returns the new length of the array.

Applies to

Array

Syntax

arrayName.unshift(elt1,..., eltN)

Parameters

elt1...eltN

The elements to add to the front of the array.

Example

The following code displays the myFish array before and after adding elements to it.

myFish = ["angel", "clown"];
Console.Write("myFish before: " + myFish);
unshifted = myFish.unshift("drum", "lion");
Console.Write("myFish after: " + myFish);
Console.Write("New length: " + unshifted);

This example displays the following:

myFish before: ["angel", "clown"]
myFish after: ["drum", "lion", "angel", "clown"]
New length: 4

See also

Array: pop, Array: push, Array: shift

Boolean
The Boolean object is an object wrapper for a boolean value. The Boolean object is a core object.

Created by

The Boolean constructor:

140 Core Objects

new Boolean(value)

Parameters

value

The initial value of the Boolean object. The value is converted to a boolean value, if necessary.
If value is omitted or is 0, null, false, or the empty string (""), the object has an initial value of
false. All other values, including the string "false", create an object with an initial value of true.

Description

Use a Boolean object when you need to convert a non-boolean value to a boolean value. You
can use the Boolean object any place JavaScript expects a primitive boolean value. JavaScript
returns the primitive value of the Boolean object by automatically invoking the valueOf
method.

Examples

The following examples create Boolean objects with an initial value of false:

bNoParam = new Boolean()
bZero = new Boolean(0)
bNull = new Boolean(null)
bEmptyString = new Boolean("")
bfalse = new Boolean(false)

The following examples create Boolean objects with an initial value of true:

btrue = new Boolean(true)
btrueString = new Boolean("true")
bfalseString = new Boolean("false")
bSuLin = new Boolean("Su Lin")

Boolean Properties
The following table displays the boolean property. A detailed description of the property follows
the table.

Property Description

Prototype Defines a property that is shared by all Boolean objects.

prototype

Property of

Boolean

Description

Represents the prototype for this class. You can use the prototype to add properties or methods
to all instances of a class.

Boolean 141

Boolean Methods
The following table displays the boolean method. A detailed description of the method follows
the table.

Method Description

toString Returns a string representing the specified object.

toString
Returns a string representing the specified object.

Applies to:

Boolean

Syntax

toString()

Parameters

None

Description

Every object has a toString method that is automatically called when it is to be represented as
a text value or when an object is referred to in a string concatenation.

You can use toString within your own code to convert an object into a string, and you can
create your own function to be called in place of the default toString method.

For Boolean objects and values, the built-in toString method returns "true" or "false" depending
on the value of the boolean object.

flag.toString returns "true".
flag = new Boolean(true)
Console.Write("flag.toString() is " + flag.toString())

For information on defining your own toString method, see the Object: toString method.

Date
Lets you work with dates and times. Date is a core object.

Created by

The Date constructor:

new Date()

new Date("month day, year hours:minutes:seconds")

142 Core Objects

new Date(yr_num, mo_num, day_num)

new Date(yr_num, mo_num, day_num, hr_num, min_num, sec_num)

Parameters

month, day, year, hours, minutes, seconds

String values representing part of a date.

yr_num, mo_num, day_num, hr_num, min_num, sec_num

Integer values representing part of a date. As an integer value, the month is represented by 0 to
11 with 0=January and 11=December.

Description

If you supply no arguments, the constructor creates a Date object for today's date and time.
If you supply some arguments, but not others, the missing arguments are set to 0. If you supply
any arguments, you must supply at least the year, month, and day. You can omit the hours,
minutes, and seconds.

The way JavaScript handles dates is very similar to the way Java handles dates: both languages
have many of the same date methods, and both store dates internally as the number of
milliseconds since January 1, 1970 00:00:00. Dates prior to 1970 are not allowed.

Examples

The following examples show several ways to assign dates:

today = new Date()
birthday = new Date("December 17, 1995 03:24:00")
birthday = new Date(95,11,17)
birthday = new Date(95,11,17,3,24,0)

Date Properties
The following table displays the date property. A detailed description of the property follows the
table.

Property Description

constructor A reference to the function which created the object.

prototype Enables you to add properties and methods to the object.

Date Methods
The following table displays a summary of the date methods. Detailed descriptions of each
method follow the table.

Date 143

Method Description

getDate Returns the day of the month for the specified date.

getDay Returns the day of the week for the specified date.

getHours Returns the hour in the specified date.

getMinutes Returns the minutes in the specified date.

getMonth Returns the month in the specified date.

getSeconds Returns the seconds in the specified date.

getTime Returns the numeric value corresponding to the time for the specified date.

getTimezoneOffset Returns the time-zone offset in minutes for the current locale.

getFullYear Returns the year in the specified date.

parse Returns the number of milliseconds in a date string since January 1, 1970, 00:0 0:00, local time.

setDate Sets the day of the month for a specified date.

setHours Set the hours for a specified date.

setMinutes Sets the minutes for a specified date.

setMonth Sets the month for a specified date.

setSeconds Sets the seconds for a specified date.

toGMTString Converts a date to a string, using the Internet GMT conventions.

144 Core Objects

Method Description

toLocaleString Converts a data to a string, using the current locale’s conventions.

UTC Returns the number of milliseconds in a Date object since January 1, 1970.

getDate

Returns the day of the month for the specified date.

Applies to:

Date

Syntax

getDate()

Parameters

None

Description

The value returned by getDate is an integer between 1 and 31.

Examples

The second statement below assigns the value 25 to the variable day, based on the value of the
Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
day = Xmas95.getDate()

See also

Date: setDate

getDay

Returns the day of the week for the specified date.

Applies to

Date

Syntax

getDay()

Date 145

Parameters

None

Description

The value returned by getDay is an integer corresponding to the day of the week: 0 for Sunday,
1 for Monday, 2 for Tuesday, and so on.

Examples

The second statement below assigns the value 1 to weekday, based on the value of the Date
object Xmas95. December 25, 1995, is a Monday.

Xmas95 = new Date("December 25, 1995 23:15:00")
weekday = Xmas95.getDay()

getHours

Returns the hour for the specified date.

Applies to

Date

Syntax

getHours()

Parameters

None

Description

The value returned by getHours is an integer between 0 and 23.

Examples

The second statement below assigns the value 23 to the variable hours, based on the value of the
Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
hours = Xmas95.getHours()

See also

Date: setHours

getMinutes

Returns the minutes in the specified date.

146 Core Objects

Applies to

Date

Syntax

getMinutes()

Parameters

None

Description

The value returned by getMinutes is an integer between 0 and 59.

Examples

The second statement below assigns the value 15 to the variable minutes, based on the value of
the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
minutes = Xmas95.getMinutes()

See also

Date: setMinutes

getMonth

Returns the month in the specified date.

Applies to

Date

Syntax

getMonth()

Parameters

None

Description

The value returned by getMonth is an integer between 0 and 11. 0 corresponds to January 1 to
February, and so on.

Examples

The second statement below assigns the value 11 to the variable month, based on the value of
the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")

Date 147

month = Xmas95.getMonth()

See also

Date: setMonth

getSeconds

Returns the seconds in the current time.

Applies to

Date

Syntax

getSeconds()

Parameters

None

Description

The value returned by getSeconds is an integer between 0 and 59.

Examples

The second statement below assigns the value 30 to the variable secs, based on the value of the
Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:30")
secs = Xmas95.getSeconds()

See also

Date: setSeconds

getTime

Returns the numeric value corresponding to the time for the specified date.

Applies to

Date

Syntax

getTime()

Parameters

None

148 Core Objects

Description

The value returned by the getTime method is the number of milliseconds since 1 January 1970
00:00:00. You can use this method to help assign a date and time to another Date object.

Examples

The following example assigns the date value of theBigDay to sameAsBigDay:

theBigDay = new Date("July 1, 1999")
sameAsBigDay = new Date()
sameAsBigDay.setTime(theBigDay.getTime())

See also

Date: setTime

getTimezoneOffset

Returns the time-zone offset in minutes for the current locale.

Applies to

Date

Syntax

getTimezoneOffset()

Parameters

None

Description

The time-zone offset is the difference between local time and Greenwich Mean Time (GMT).
Daylight savings time prevents this value from being a constant.

Examples

x = new Date()
currentTimeZoneOffsetInHours = x.getTimezoneOffset()/60

getFullYear

Returns the year in the specified date.

Applies to

Date

Syntax

getFullYear()

Date 149

Parameters

None

Description

The value returned by getFullYear is the four-digit year. For example, if the year is 1856, the
value returned is 1856. If the year is 2026, the value returned is 2026.

Examples

The second statement assigns the value 1995 to the variable year.

Xmas = new Date("December 25, 1995 23:15:00")
year = Xmas.getFullYear()

The second statement assigns the value 2000 to the variable year.

Xmas = new Date("December 25, 2000 23:15:00")
year = Xmas.getFullYear()

The second statement assigns the value 95 to the variable year, representing the year 1995.

Xmas.setYear(95)
year = Xmas.getFullYear()

See also

Date: setYear

parse

Returns the number of milliseconds in a date string since January 1, 1970, 00:00:00, local time.
The parse method is static, read only.

Applies to:

Date

Syntax

Date.parse(dateString)

Parameters

dateString

A string representing a date.

Description

The parse method takes a date string (such as "Dec 25, 1995") and returns the number of
milliseconds since January 1, 1970, 00:00:00 (local time). This function is useful for setting date
values based on string values, for example in conjunction with the setTime method and the
Date object.

150 Core Objects

Given a string representing a time, parse returns the time value. It accepts the IETF standard
date syntax: "Mon, 25 Dec 1995 13:30:00 GMT." It understands the continental US time-
zone abbreviations, but for general use, use a time-zone offset, for example, "Mon, 25 Dec
1995 13:30:00 GMT+0430" (4 hours, 30 minutes west of the Greenwich meridian). If you do
not specify a time zone, the local time zone is assumed. GMT and UTC are considered equivalent.

Because parse is a static method of Date, you always use it as Date.parse(), rather than as
a method of a Date object you created.

Examples

If IPOdate is an existing Date object, then you can set it to August 9, 1995 as follows:

IPOdate.setTime(Date.parse("Aug 9, 1995"))

setDate

Sets the day of the month for a specified date.

Applies to:

Date

Syntax

setDate(dayValue)

Parameters

datValue

An integer from 1 to 31, representing the day of the month.

Examples

The second statement below changes the day for theBigDay to July 24 from its original value.

theBigDay = new Date("July 27, 1962 23:30:00"
theBigDay.setDate(24)

See also

Date: getDate

setHours

Sets the hours for a specified date.

Applies to:

Date

Syntax

setHours(hoursValue)

Date 151

Parameters

hoursValue

An integer between 0 and 23, representing the hour.

Examples

theBigDay.setHours(7)

setMinutes

Sets the minutes for a specified date.

Applies to:

Date

Syntax

setMinutes(minutesValue)

Parameters

mintuesValue

An integer between 0 and 59, representing the minutes.

Examples

theBigDay.setMinutes(45)

See also

Date: getMinutes

setMonth

Sets the month for a specified date.

Applies to:

Date

Syntax

setMonth(monthValue)

Parameters

monthValue

An integer between 0 and 11, representing the months January through December.

152 Core Objects

Examples

theBigDay.setMonth(6)

See also

Date: getMonth

setSeconds

Sets the seconds for a specified date.

Applies to:

Date

Syntax

setSeconds(secondsValue)

Parameters

secondsValue

An integer between 0 and 59.

Examples

theBigDay.setSeconds(30)

See also

Date: getSeconds

setTime

Sets the value of a Date object.

Applies to:

Date

Syntax

setTime(timevalue)

Parameters

timevalue

An integer representing the number of milliseconds since 1 January 1970 00:00:00.

Description

Use the setTime method to help assign a date and time to another Date object.

Date 153

Examples

theBigDay = new Date("July 1, 1999")
sameAsBigDay = new Date()
sameAsBigDay.setTime(theBigDay.getTime())

setYear

Sets the year for a specified date.

Applies to

Date

Syntax

setYear(yearValue)

Parameters

yearValue

An integer.

Description

If yearValue is a number between 0 and 99 (inclusive), then the year for dateObjectName
is set to 1900 + yearValue. Otherwise, the year for dateObjectName is set to yearValue.

Examples

Note that there are two ways to set years in the 20th century.

l The year is set to 1996.

 theBigDay.setYear(96)

l The year is set to 1996.

 theBigDay.setYear(1996)

l The year is set to 2000.

 theBigDay.setYear(2000)

See also

Date: getFullYear

toGMTString

Converts a date to a string, using the Internet GMT conventions.

Applies to:

Date

154 Core Objects

Syntax

toGMTString()

Parameters

None

Description

The exact format of the value returned by toGMTString varies according to the platform.

Examples

In the following example, today is a Date object:

today.toGMTString()

In this example, the toGMTString method converts the date to GMT (UTC) using the operating
system's time-zone offset and returns a string value that is similar to the following form. The
exact format depends on the platform.

Mon, 18 Dec 1995 17:28:35 GMT

See also

Date: toLocaleString

toLocaleString

Converts a date to a string, using the current locale's conventions.

Applies to:

Date

Syntax

toLocaleString()

Parameters

None

Description

If you pass a date using toLocaleString, be aware that different platforms assemble the string
in different ways. Using methods such as getHours, getMinutes, and getSeconds gives
more portable results.

Examples

In the following example, today is a Date object:

today = new Date(95,11,18,17,28,35) //months are represented by 0 to 11
today.toLocaleString()

Date 155

In this example, toLocaleString returns a string value that is similar to the following form.
The exact format depends on the platform.

12/18/95 17:28:35

See also

Date: toGMTString

UTC

Returns the number of milliseconds in a Date object since January 1, 1970, 00:00:00, Universal
Coordinated Time (GMT). UTC is static, read only.

Applies to

Date

Syntax

Date.UTC(year, month, day, hrs, min, sec)

Parameters

year

A year after 1900.

month

A month between 0 and 11.

date

A day of the month between 1 and 31.

hrs

(Optional) A number of hours between 0 and 23.

min

(Optional) A number of minutes between 0 and 59.

sec

(Optional) A number of seconds between 0 and 59.

Description

UTC takes comma-delimited date parameters and returns the number of milliseconds since
January 1, 1970, 00:00:00, Universal Coordinated Time (GMT).

Because UTC is a static method of Date, you always use it as Date.UTC(), rather than as a
method of a Date object you created.

156 Core Objects

Examples

The following statement creates a Date object using GMT instead of local time:

gmtDate = new Date(Date.UTC(96, 11, 1, 0, 0, 0))

prototype

Property Description

Prototype Allows the addition of properties to a Date object.

Property of

Date

Description

Represents the prototype for this class. You can use the prototype to add properties or methods
to all instances of a class.

Function
Specifies a string of JavaScript code to be compiled as a function. Function is a core object.

Created by

The Function constructor:

new Function (arg1, arg2, ... argN, functionBody)

Parameters

arg1, arg2,...argn

(Optional) Names to be used by the function as formal argument names. Each must be a string
that corresponds to a valid JavaScript identifier; for example "x" or "theForm".

functionBody

A string containing the JavaScript statements comprising the function definition.

Description

Function objects are evaluated each time they are used. This is less efficient than declaring a
function and calling it within your code, because declared functions are compiled.

In addition to defining functions as described here, you can also use the function statement,
as described in the JavaScript Guide.

Function 157

Examples

The following code assigns a function to the variable activeSection.name. This function sets
the current document's section name.

 var changeName = new Function("activeSection.name='sales'")

To call the Function object, you can specify the variable name as if it were a function. The
following code executes the function specified by the changeName variable:

 var newName="sales"
 if (newName=="sales") {newName()}
 function changeName() {
 activeSection.name='sales'
 }

Assigning a function to a variable is similar to declaring a function, but they have differences:

When you assign a function to a variable using var changeName = new
Function("..."), changeName is a variable for which the current value is a reference to the
function created with new Function().

When you create a function using function changeName() {...}, changeName is not a
variable, it is the name of a function

Specifying arguments in a Function object

The following code specifies a Function object that takes two arguments.

 var multFun = new Function("x", "y", "return x * y")

The string arguments "x" and "y" are formal argument names that are used in the function
body, "return x * y".

The following code shows a way to call the function multFun:

 var theAnswer = multFun(7,6)
 Console.Write("15*2 = " + multFun(15,2))

Function Properties
The following table displays a summary of the function properties. Detailed descriptions of each
property follow the table.

Property Description

arguments An array corresponding to the arguments passed to a function.

arity Indicates the number of arguments expected by the function.

caller Specifies which function called the current function.

158 Core Objects

Property Description

prototype Allows the addition of properties to a Function object.

arguments
An array corresponding to the arguments passed to a function.

Property of

Function

Description

You can call a function with more arguments than it is formally declared to accept by using the
arguments array. This technique is useful if a function can be passed a variable number of
arguments. You can use arguments.length to determine the number of arguments passed
to the function, and then treat each argument by using the arguments array.

The arguments array is available only within a function declaration. Attempting to access the
arguments array outside a function declaration results in an error.

The this keyword does not refer to the currently executing function, so you must refer to
functions and Function objects by name, even within the function body.

In JavaScript 1.2, arguments includes these additional properties:

l formal arguments—Each formal argument of a function is a property of the arguments
array.

l local variables—Each local variable of a function is a property of the arguments array.

l caller—A property whose value is the arguments array of the outer function. If there is
no outer function, the value is undefined.

l callee —A property whose value is the function reference.

For example, the following script demonstrates several of the arguments properties:

function b(z) {
 Console.Write(arguments.z)
 Console.Write (arguments.caller.x)
 return 99
}
function a(x, y) {
 return b(534)
}
Console.Write (a(2,3))
This displays:
534
2
99

Function 159

534 is the actual parameter to b, so it is the value of arguments.z. 2 is a's actual x parameter,
so (viewed within b) it is the value of arguments.caller.x. 99 is what a(2,3) returns.

Examples

This example defines a function that creates test lists. The only formal argument for the function
is a string that changes the appearance of the list. To create a bullet list (also called an "unordered
list"), use "U". To create a numbered list (also called an "ordered list"), use "O". The function
is defined as follows:

function list(type) {
 Console.Write(type)
 for (var i=1; i<list.arguments.length; i++) {
 Console.Write(list.arguments[i])
 Console.Write(type)
 }
}

You can pass any number of arguments to this function, and it displays each argument as an
item in the type of list indicated. For example, the following call to the function:

list("U", "One", "Two", "Three")
results in this output:
One
Two
Three

arity
Indicates the number of arguments expected by the function.

Description

arity is external to the function, and indicates how many arguments the function expects. By
contrast, arguments.length provides the number of arguments actually passed to the
function.

Example

The following example demonstrates the use of arity and arguments.length.

function addNumbers(x,y){
 Console.Write("length = " + arguments.length)
 z = x + y
}
Console.Write("arity = " + addNumbers.arity)
addNumbers(3,4,5)

This script writes:

arity = 2
length = 3

160 Core Objects

caller
Returns the name of the function that invoked the currently executing function.

Property of

Function

Description

In JavaScript 1.4, the caller property is available only within the body of a function. If used
outside a function declaration, the caller property is null.

If the currently executing function was invoked by the top level of a JavaScript program, the
value of caller is null.

The this keyword does not refer to the currently executing function, so you must refer to
functions and Function objects by name, even within the function body.

The caller property is a reference to the calling function, so if you use it in a string context,
you get the result of calling functionName.toString. That is, the decompiled canonical
source form of the function.

You can also call the calling function, if you know what arguments it might want. Thus, a called
function can call its caller without knowing the name of the particular caller, provided it knows
that all of its callers have the same form and fit, and that they will not call the called function
again unconditionally (which would result in infinite recursion).

In JavaScript 1.4 arguments.caller was an intrinsic object available to any function. Using
Arguments you could examine such properties as the parameters you were called with and who
called you. For example, you might have added:

function myFunc() {
 if (arguments.caller == null) {
 return ("The function was called from the top!");
 } else
 return ("This function's caller was " +
arguments.caller.callee.toString().split("(")[0].replace("function ",""))
}

In JavaScript 1.5 this has been changed implementing of a direct function property that is more
directly accessible. Now you would need to replace the above script by adding:

function myFunc() {
 if (myFunc.caller == null) {
 return ("The function was called from the top!");
 } else
 return ("This function's caller was " + myFunc.caller.toString().split("(")
[0].replace("function ",""))
}

Calling the script has not changed in JavaScript 1.5:

Console.Writeln(myFunc())
function localFunction(){
 Console.Writeln(myFunc())

Function 161

}
localFunction()

Additionally, prior to the introduction of JavaScript 1.5, access to your caller and its callers was
through the arguments.caller and arguments.caller.callee objects. For example, assume the
following scenario:

function a (){ b() }
function b (){ c() }
function c (){ d() }
function d (){getStack() }
a()

to print a list of the names of all the functions from the original caller to the current point of
execution was achieved by writing the getStack function as follows

 function getStack(){
 var f = arguments.caller
 var stack = "Stack trace:";
 while (f != null){
 stack += "\r\n" + f.callee.toString().split("{")[0];
 f = f.caller
 }
 Console.Writeln(stack)
 }

With JavaScript 1.5 arguments are no longer available and a "name" property has been added.
The equivalent function is now:

function getStack(){
 var f = getStack.caller
 var stack = "Stack trace:";
 while (f != null){
 stack += "\r\n function " + f.name + "()";
 f = f.caller;
 }
 Console.Writeln(stack)
 }

The Mozilla web site also refers to the fact that where there is recursion in functions, then an
infinite loop occurs with this code. See http://developer.mozilla.org/en/docs/
Core_JavaScript_1.5_Reference:Global_Objects:Function:caller. If the original environment
showed:

var go = true
function a (){ b() }
function b (){
 if (go){ go = false; a() }
 else{ c() }
}
function b (){ c() }
function c (){ d() }
function d (){getStack() }
a()

162 Core Objects

then an infinite loop resulted in the function trying to print the stack trace. To avoid this, add
script that stops after a certain amount of loops

Examples

The following code checks the value of a function's caller property.

function myFunc() {
 if (myFunc.caller == null) {
 alert("The function was called from the top!")
 } else alert("This function's caller was " + myFunc.caller)
}

See also

Function: arguments

prototype
A value from which instances of a particular class are created. Every object that can be created
by calling a constructor function has an associated prototype property.

Property of

Object

Description

You can add new properties or methods to an existing class by adding them to the prototype
associated with the constructor function for that class. The syntax for adding a new property or
method is:

fun.prototype.name = value

where

Property Description

fun The name of the constructor function object you want to change.

name The name of the property or method to be created.

value The value initially assigned to the new property or method.

If you add a new property to the prototype for an object, then all objects created with that object's
constructor function will have that new property, even if the objects existed before you created
the new property. For example, assume you have the following statements:

var array1 = new Array();
var array2 = new Array(3);
Array.prototype.description=null;
array1.description="Contains some stuff"
array2.description="Contains other stuff"

Function 163

After you set a property for the prototype, all subsequent objects created with Array will have
the property:

anotherArray=new Array()
anotherArray.description="Currently empty"

Example

The following example creates a method, str_rep, and uses the statement
String.prototype.rep = str_rep to add the method to all String objects. All objects
created with new String() then have that method, even objects already created. The example
then creates an alternate method and adds that to one of the String objects using the statement
s1.rep = fake_rep. The str_rep method of the remaining String objects is not altered.

var s1 = new String("a")
var s2 = new String("b")
var s3 = new String("c")
// Create a repeat-string-N-times method for all String objects
function str_rep(n) {
var s = "", t = this.toString()
while (--n >= 0) s += t
return s
}
String.prototype.rep = str_rep
// Display the results
Console.Write("s1.rep(3) is " + s1.rep(3)) // "aaa"
Console.Write("s2.rep(5) is " + s2.rep(5)) // "bbbbb"
Console.Write("s3.rep(2) is " + s3.rep(2)) // "cc"
// Create an alternate method and assign it to only one String variable
function fake_rep(n) {
 return "repeat " + this + n + " times."
}
s1.rep = fake_rep
Console.Write("s1.rep(1) is " + s1.rep(1)) // "repeat a 1 times."
Console.Write("s2.rep(4) is " + s2.rep(4)) // "bbbb"
Console.Write("s3.rep(6) is " + s3.rep(6)) // "cccccc"

This example produces the following output:

s1.rep(3) is aaa
s2.rep(5) is bbbbb
s3.rep(2) is cc
s1.rep(1) is repeat a1 times.
s2.rep(4) is bbbb
s3.rep(6) is cccccc

The function in this example also works on String objects not created with the String
constructor. The following code returns "zzz".

"z".rep(3)

Function Methods
The following displays the function method. A detailed description of the method follows the
table.

164 Core Objects

Method Description

toString Returns a string representing the specified object.

toString
Returns a string representing the specified object.

Applies to

Function

Syntax

toString()

Parameters

None

Description

Every object has a toString method that is automatically called when it is to be represented
as a text value or when an object is referred to in a string concatenation.

You can use toString within your own code to convert an object into a string, and you can
create your own function to be called in place of the default toString method.

For Function objects, the built-in toString method decompiles the function back into the
JavaScript source that defines the function This string includes the function keyword, the
argument list, curly braces, and function body.

For example, assume you have the following code that defines the Dog object type and creates
theDog, an object of type Dog:

function Dog(name,breed,color,sex) {
 this.name=name
 this.breed=breed
 this.color=color
 this.sex=sex
}
theDog = new Dog("Gabby","Lab","chocolate","girl")

Any time Dog is used in a string context, JavaScript automatically calls the toString function,
which returns the following string:

function Dog(name, breed, color, sex) { this.name = name; this.breed = breed; this.color
= color; this.sex = sex; }

For information on defining your own toString method, see the Object: toString method.

Function 165

Math
A built-in object that has properties and methods for mathematical constants and functions.
For example, the Math object's PI property has the value of pi. Math is a core object.

Created by

The Math object is a top-level, predefined JavaScript object. You can automatically access it
without using a constructor or calling a method.

Description

All properties and methods of Math are static. You refer to the constant PI as Math.PI and you
call the sine function as Math.sin(x), where x is the method's argument. Constants are defined
with the full precision of real numbers in JavaScript.

It is often convenient to use the with statement when a section of code uses several Math
constants and methods, so you don't have to type "Math" repeatedly. For example:

with (Math) {
 a = PI * r*r
 y = r*sin(theta)
 x = r*cos(theta)
}

Math Properties
The following table displays a summary of the math properties. Detailed descriptions of each
property follow the table.

Properties Descriptions

E Euler's constant and the base of natural logarithms, approximately 2.718.

LN10 Natural logarithm of 10, approximately 2.302.

LN2 Natural logarithm of 2, approximately 0.693.

LOG10E Base 10 logarithm of E (approximately 0.434).

LOG2E Base 2 logarithm of E (approximately 1.442).

PI Ratio of the circumference of a circle to its diameter, approximately 3.14159.

166 Core Objects

Properties Descriptions

SQRT1_2 Square root of v; equivalently, 1 over the square root of 2, approximately 0.707.

SQRT2 Square root of 2, approximately 1.414.

E
Euler's constant and the base of natural logarithms, approximately 2.718. Math is static, read-
only.

Property of

Math

Examples

The following function returns Euler's constant:

function getEuler() {
 return Math.E
}

Description

Because E is a static property of Math, you always use it as Math.E, rather than as a property of
a Math object you created.

LN10
The natural logarithm of 10, approximately 2.302. LN10 is static, read-only.

Property of

Math

Example

The following function returns the natural log of 10:

function getNatLog10() {
 return Math.LN10
}

Description

Because LN10 is a static property of Math, you always use it as Math.LN10, rather than as a
property of a Math object you created.

Math 167

LN2
The natural logarithm of 2, approximately 0.693. LN2 is static, read-only.

Property of

Math

Examples

The following function returns the natural log of 2:

function getNatLog2() {
 return Math.LN2
}

Description

Because LN2 is a static property of Math, you always use it as Math.LN2, rather than as a property
of a Math object you created.

LOG10E
The base 10 logarithm of E (approximately 0.434). LOG10E is static, read-only.

Property of

Math

Example

The following function returns the base 10 logarithm of E:

function getLog10e() {
 return Math.LOG10E
}

Description

Because LOG10E is a static property of Math, you always use it as Math.LOG10E, rather than as
a property of a Math object you created.

LOG2E
The base 2 logarithm of E (approximately 1.442). LOG2E is static, read-only.

Property of

Math

Examples

The following function returns the base 2 logarithm of E:

function getLog2e() {

168 Core Objects

 return Math.LOG2E
}

Description

Because LOG2E is a static property of Math, you always use it as Math.LOG2E, rather than as a
property of a Math object you created.

PI
The ratio of the circumference of a circle to its diameter, approximately 3.14159. PI is static,
read-only.

Property of

Math

Examples

The following function returns the value of pi:

function getPi() {
 return Math.PI
}

Description

Because PI is a static property of Math, you always use it as Math.PI, rather than as a property
of a Math object you created.

SQRT1_2
The square root of Ú; equivalently, 1 over the square root of 2, approximately 0.707. SQRT1_2
is static, read-only.

Property of

Math

Example

The following function returns 1 over the square root of 2:

function getRoot1_2() {
 return Math.SQRT1_2
}

Description

Because SQRT1_2 is a static property of Math, you always use it as Math.SQRT1_2, rather than
as a property of a Math object you created.

Math 169

SQRT2
The square root of 2, approximately 1.414. SQRT2 is static, read-only.

Property of

Math

Example

The following function returns the square root of 2:

function getRoot2() {
 return Math.SQRT2
}

Description

Because SQRT2 is a static property of Math, you always use it as Math.SQRT2, rather than as a
property of a Math object you created.

Math Methods
The following displays a summary of the math methods. Detailed descriptions of each method
follow the table.

Method Description

abs Returns the absolute value of a number.

acos Returns the arccosine (in radians) of a number.

asin Returns the arcsine (in radians) of a number.

atan Returns the arctangent (in radians) of a number.

atan2 Returns the arctangent of the quotient of its arguments.

ceil Returns the smallest integer greater than or equal to a number.

cos Returns the cosine of a number.

exp Returns Enumber, where number is the argument, and E is Euler's constant, the base of the natural logarithms.

170 Core Objects

Method Description

floor Returns the largest integer less than or equal to a number.

log Returns the natural logarithm (base E) of a number.

max Returns the greater of two numbers.

min Returns the lesser of two numbers.

pow Returns base to the exponent power, that is, baseexponent.

random Returns a pseudo-random number between 0 and 1.

round Returns the value of a number rounded to the nearest integer.

sin Returns the sine of a number.

sqrt Returns the square root of a number.

tan Returns the tangent of a number.

abs
Returns the absolute value of a number.

Applies to

Math

Syntax

abs(x)

Parameters

x

A number.

Math 171

Example

The following function returns the absolute value of the variable x:

function getAbs(x) {
 return Math.abs(x)
}

Description

abs is a static method of Math. As a result, you always use it as Math.abs(), rather than as a
method of a Math object you create.

acos
Returns the arccosine (in radians) of a number.

Applies to

Math

Syntax

acos(x)

Parameters

x

A number.

Description

The acos method returns a numeric value between 0 and pi radians. If the value of number
is outside this range, it returns 0.

acos is a static method of Math. As a result, you always use it as Math.acos(), rather than as
a method of a Math object you create.

Example

The following function returns the arccosine of the variable x:

function getAcos(x) {
 return Math.acos(x)
}

If you pass -1 to getAcos, it returns 3.141592653589793; if you pass 2, it returns 0 because 2 is
out of range.

See also

Math:asin, Math:atan, Math:atan2, Math:cos, Math:sin, Math:tan

172 Core Objects

asin
Returns the arcsine (in radians) of a number.

Applies to

Math

Syntax

asin(x)

Parameters

x

A number.

Description

The asin method returns a numeric value between -pi/2 and pi/2 radians. If the value of
number is outside this range, it returns 0.

asin is a static method of Math. As a result, you always use it as Math.asin(), rather than
as a method of a Math object you create.

Examples

The following function returns the arcsine of the variable x:

function getAsin(x) {
 return Math.asin(x)
}

If you pass getAsin the value 1, it returns 1.570796326794897 (pi/2); if you pass it the value 2,
it returns 0 because 2 is out of range.

See also

Math:acos, Math:atan, Math:atan2, Math:cos, Math:sin, Math:tan

atan
Returns the arctangent (in radians) of a number.

Applies to

Math

Syntax

atan(x)

Parameters

x

Math 173

A number.

Description

The atan method returns a numeric value between -pi/2 and pi/2 radians.

atan is a static method of Math. As a result, you always use it as Math.atan(), rather than as
a method of a Math object you create.

Example

The following function returns the arctangent of the variable x:

function getAtan(x) {
 return Math.atan(x)
}

If you pass getAtan the value 1, it returns 0.7853981633974483; if you pass it the value .5, it
returns 0.4636476090008061.

See also

Math.acos, Math.asin, Math.atan2, Math.cos, Math.sin, Math.tan

atan2
Returns the arctangent of the quotient of its arguments.

Applies to

Math

Syntax

atan2(y, x)

Parameters

y,x

A number.

Description

The atan2 method returns a numeric value between -pi and pi representing the angle theta of
an (x,y) point. This is the counterclockwise angle, measured in radians, between the positive X
axis, and the point (x,y). Note that the arguments to this function pass the y-coordinate first
and the x-coordinate second.

atan2 is passed separate x and y arguments, and atan is passed the ratio of those two arguments.

atan2 is a static method of Math. As a result, you always use it as Math.atan2(), rather than
as a method of a Math object you create.

174 Core Objects

Example

The following function returns the angle of the polar coordinate:

function getAtan2(x,y) {
 return Math.atan2(x,y)
}

If you pass getAtan2 the values (90,15), it returns 1.4056476493802699; if you pass it the values
(15,90), it returns 0.16514867741462683.

See also

Math.acos, Math.asin, Math.atan, Math.cos, Math.sin, Math.tan

ceil
Returns the smallest integer greater than or equal to a number.

Applies to

Math

Syntax

ceil(x)

Parameters

x

A number.

Description

ceil is a static method of Math. As a result, you always use it as Math.ceil(), rather than as
a method of a Math object you create.

Example

The following function returns the ceil value of the variable x:

function getCeil(x) {
 return Math.ceil(x)
}

If you pass 45.95 to getCeil, it returns 46; if you pass -45.95, it returns -45.

See also

Math:floor

cos
Returns the cosine of a number.

Math 175

Applies to

Math

Syntax

cos(x)

Parameters

x

A number.

Description

The cos method returns a numeric value between -1 and 1, which represents the cosine of the
angle.

cos is a static method of Math. As a result, you always use it as Math.cos(), rather than as a
method of a Math object you create.

Examples

The following function returns the cosine of the variable x:

function getCos(x) {
 return Math.cos(x)
}

If x equals Math.PI/2, getCos returns 6.123031769111886e-017; if x equals Math.PI,
getCos returns -1.

See also

Math:acos, Math.asin, Math.atan, Math.atan2, Math.sin, Math.tan

exp
Returns Ex, where x is the argument, and E is Euler's constant, the base of the natural logarithms.

Applies to

Math

Syntax

exp(x)

Parameters

x

A number.

176 Core Objects

Description

exp is a static method of Math. As a result, you always use it as Math.exp(), rather than as a
method of a Math object you create.

Examples

The following function returns the exponential value of the variable x:

function getExp(x) {
 return Math.exp(x)
}

If you pass getExp the value 1, it returns 2.718281828459045.

See also

Math:E, Math:log, Math:pow

floor
Returns the largest integer less than or equal to a number.

Applies to

Math

Syntax

floor(x)

Parameters

x

A number.

Description

floor is a static method of Math. As a result, you always use it as Math.floor(), rather than
as a method of a Math object you create.

Examples

The following function returns the floor value of the variable x:

function getFloor(x) {
 return Math.floor(x)
}

If you pass 45.95 to getFloor, it returns 45; if you pass -45.95, it returns -46.

See also

Math:ceil

Math 177

log
Returns the natural logarithm (base E) of a number.

Applies to

Math

Syntax

log(x)

Parameters

x

A number.

Description

If the value of number is outside the suggested range, the return value is always
-1.797693134862316e+308.

log is a static method of Math. As a result, you always use it as Math.log(), rather than as a
method of a Math object you create.

Examples

The following function returns the natural log of the variable x:

function getLog(x) {
 return Math.log(x)
}

If you pass getLog the value 10, it returns 2.302585092994046; if you pass it the value 0, it returns
-1.797693134862316e+308 because 0 is out of range.

See also

Math.exp, Math.pow

max
Returns the larger of two numbers.

Applies to

Math

Syntax

max(x,y)

Parameters

x,y

178 Core Objects

Numbers.

Description

max is a static method of Math. As a result, you always use it as Math.max(), rather than as a
method of a Math object you create.

Examples

The following function evaluates the variables x and y:

function getMax(x,y) {
 return Math.max(x,y)
}

If you pass getMax the values 10 and 20, it returns 20; if you pass it the values -10 and -20, it
returns -10.

See also

Math.min

min
Returns the smaller of two numbers.

Applies to

Math

Syntax

min(x,y)

Parameters

x,y

Numbers.

Description

min is a static method of Math. As a result, you always use it as Math.min(), rather than as
a method of a Math object you create.

Examples

The following function evaluates the variables x and y:

function getMin(x,y) {
 return Math.min(x,y)
}

If you pass getMin the values 10 and 20, it returns 10; if you pass it the values -10 and -20, it
returns -20.

Math 179

See also

Math.max

pow
Returns base to the exponent power, that is, baseexponent.

Applies to

Math

Syntax

pow(x,y)

Parameters

base

The base number.

exponent

The exponent to which to raise base.

Description

pow is a static method of Math. As a result, you always use it as Math.pow(), rather than as a
method of a Math object you create.

Examples

function raisePower(x,y) {
 return Math.pow(x,y)
}

If x is 7 and y is 2, raisePower returns 49 (7 to the power of 2).

See also

Math.exp, Math.log

random
Returns a pseudo-random number between 0 and 1. The random number generator is seeded
from the current time, as in Java.

Applies to

Math

Syntax

random()

180 Core Objects

Parameters

None

Description

random is a static method of Math. As a result, you always use it as Math.random(), rather than
as a method of a Math object you create.

Examples

//Returns a random number between 0 and 1
function getRandom() {
 return Math.random()
}

round
Returns the value of a number rounded to the nearest integer.

Applies to

Math

Syntax

round(x)

Parameters

x

A number.

Description

If the fractional portion of number is .5 or greater, the argument is rounded to the next highest
integer. If the fractional portion of number is less than .5, the argument is rounded to the next
lowest integer.

round is a static method of Math. As a result, you always use it as Math.round(), rather than
as a method of a Math object you create.

Examples

//Displays the value 20
Console.Write("The rounded value is " + Math.round(20.49))
//Displays the value 21
Console.Write("The rounded value is " + Math.round(20.5))
//Displays the value -20
Console.Write("The rounded value is " + Math.round(-20.5))
//Displays the value -21
Console.Write("The rounded value is " + Math.round(-20.51))

Math 181

sin
Returns the sine of a number.

Applies to

Math

Syntax

sin(x)

Parameters

x

A number.

Description

The sin method returns a numeric value between -1 and 1, which represents the sine of the
argument.

sin is a static method of Math. As a result, you always use it as Math.sin(), rather than as a
method of a Math object you create.

Examples

The following function returns the sine of the variable x:

function getSine(x) {
 return Math.sin(x)
}

If you pass getSine the value Math.PI/2, it returns 1.

See also

Math:acos, Math:asin, Math:atan, Math:atan2, Math:cos, Math:tan

sqrt
Returns the square root of a number.

Applies to

Math

Syntax

sqrt(x)

Parameters

x

182 Core Objects

A number.

Description

If the value of number (x) is outside the required range,sqrt returns 0.

sqrt is a static method of Math. As a result, you always use it as Math.sqrt(), rather than as
a method of a Math object you create.

Examples

The following function returns the square root of the variable x:

function getRoot(x) {
 return Math.sqrt(x)
}

If you pass getRoot the value 9, it returns 3; if you pass it the value 2, it returns
1.414213562373095.

tan
Returns the tangent of a number.

Applies to

Math

Syntax

tan(x)

Parameters

x

A number.

Description

The tan method returns a numeric value that represents the tangent of the angle.

tan is a static method of Math. As a result, you always use it as Math.tan(), rather than as a
method of a Math object you create.

Examples

The following function returns the tangent of the variable x:

function getTan(x) {
 return Math.tan(x)
}

If you pass Math.PI/4 to getTan, it returns 0.9999999999999999.

Math 183

Number
Lets you work with numeric values. The Number object is an object wrapper for primitive
numeric values and a core object.

Created by

The Number constructor.

Syntax

new Number(value);

Parameters

value

The numeric value of the object being created.

Description

The primary uses for the Number object are:

l To access its constant properties, which represent the largest and smallest representable
numbers, positive and negative infinity, and the Not-a-Number value

l To create numeric objects that you can add properties to. Most likely, you will rarely need
to create a Number object.

The properties of Number are properties of the class itself, not of individual Number objects.

Number(x) now produces NaN rather than an error if x is a string that does not contain a well-
formed numeric literal. For example:

x=Number("three");
Console.Write(x);
prints NaN

Examples

The following example uses the Number object's properties to assign values to several numeric
variables:

biggestNum = Number.MAX_VALUE
smallestNum = Number.MIN_VALUE
infiniteNum = Number.POSITIVE_INFINITY
negInfiniteNum = Number.NEGATIVE_INFINITY
notANum = Number.NaN

The following example creates a Number object, myNum, then adds a description property to
all Number objects. Then a value is assigned to the myNum object's description property.

myNum = new Number(65)
Number.prototype.description=null
myNum.description="wind speed"

184 Core Objects

Number Properties
The following displays a summary of the number properties. Detailed descriptions of each
property follow the table.

Property Description

MAX_VALUE The largest representable number.

MIN_VALUE The smallest representable number.

NaN Special "not a number" value.

NEGATIVE_INFINITY Special infinite value; returned on overflow.

POSITIVE_INFINITY Special negative infinite value; returned on overflow.

Prototype Allows the addition of properties to a Number object.

MAX_VALUE
The maximum numeric value representable in JavaScript.

Property of

Number

Description

The MAX_VALUE property has a value of approximately 1.79E+308. Values larger than
MAX_VALUE are represented as Infinity.

Description

The MAX_VALUE property has a value of approximately 1.79E+308. Values larger than
MAX_VALUE are represented as Infinity.

MAX_VALUE is a static, read-only property of Number. As a result, you always use it as
Number.MAX_VALUE, rather than as a property of a Number object you create.

Example

The following code multiplies two numeric values. If the result is less than or equal to
MAX_VALUE, the func1 function is called; otherwise, the func2 function is called.

if (num1 * num2 <= Number.MAX_VALUE)

Number 185

 func1()
else
 func2()The smallest positive numeric value that can be represented in JavaScript.

MIN_VALUE
The smallest positive numeric value representable in JavaScript.

Property of

Number

Description

The MIN_VALUE property is the number closest to 0, not the most negative number, that
JavaScript can represent.

MIN_VALUE has a value of approximately 2.22E-308. Values smaller than MIN_VALUE
("underflow values") are converted to 0.

MIN_VALUE is a static, read-only property of Number. As a result, you always use it as
Number.MIN_VALUE, rather than as a property of a Number object you create.

Example

The following code divides two numeric values. If the result is greater than or equal to
MIN_VALUE, the func1 function is called; otherwise, the func2 function is called.

if (num1 / num2 >= Number.MIN_VALUE)
 func1()
else
 func2()

NaN
A special value representing Not-A-Number. This value is represented as the unquoted literal
NaN. NaN is a read-only property.

Property of

Number

Description

JavaScript prints the value Number.NaN as NaN.

NaN is always unequal to any other number, including NaN itself; you cannot check for the not-
a-number value by comparing to Number.NaN. Use the isNaN function instead.

You might use the NaN property to indicate an error condition for a function that should return
a valid number.

186 Core Objects

Example

In the following example, if month has a value greater than 12, it is assigned NaN, and a message
is displayed indicating valid values.

var month = 13
if (month < 1 || month > 12) {
 month = Number.NaN
 alert("Month must be between 1 and 12.")
}

NEGATIVE_INFINITY
A special numeric value representing negative infinity. This value is displayed as -Infinity.

Property of:

Number

Description

This value behaves mathematically like infinity; for example, anything multiplied by infinity is
infinity, and anything divided by infinity is 0.

NEGATIVE_INFINITY is a static, read-only property of Number. As a result, you always use it
as Number.NEGATIVE_INFINITY, rather than as a property of a Number object you create.

Examples

In the following example, the variable smallNumber is assigned a value that is smaller than the
minimum value. When the if statement executes, smallNumber has the value -Infinity, so
the func1 function is called.

var smallNumber = -Number.MAX_VALUE*10
if (smallNumber == Number.NEGATIVE_INFINITY)
 func1()
else
 func2()

POSITIVE_INFINITY
A special numeric value representing infinity. This value is displayed as Infinity.

Property of

Number

Description

This value behaves mathematically like infinity; for example, anything multiplied by infinity is
infinity, and anything divided by infinity is 0.

JavaScript does not have a literal for Infinity.

Number 187

POSITIVE_INFINITY is a static, read-only property of Number. As a result, you always use it
as Number.POSITIVE_INFINITY, rather than as a property of a Number object you create.

Example

In the following example, the variable bigNumber is assigned a value that is larger than the
maximum value. When the if statement executes, bigNumber has the value Infinity, so the
func1 function is called.

var bigNumber = Number.MAX_VALUE * 10
if (bigNumber == Number.POSITIVE_INFINITY)
 func1()
else
 func2()

Prototype

Description

Represents the prototype for this class. You can use the prototype to add properties or methods
to all instances of a class. For information on prototypes, see Function.prototype.

Property of

Number

Number Methods
The following table displays the method for Number. A detailed description of this method
follows the table.

Method Description

tostring Returns a string representing the specified object.

toString
Returns a string representing the specified object.

Applies to

Number

Syntax

toString()

toString(radix)I I

Parameters

radix

188 Core Objects

(Optional) An integer between 2 and 16 specifying the base to use for representing numeric
values.

Description

Every object has a toString method that is automatically called when it is to be represented as
a text value or when an object is referred to in a string concatenation.

You can use toString within your own code to convert an object into a string, and you can
create your own function to be called in place of the default toString method.

You can use toString on numeric values, but not on numeric heliterals:

// The next two lines are valid
var howMany=10
 ("howMany.toString() is " + howMany.toString())
// The next line causes an error
 ("45.toString() is " + 45.toString())

For information on defining your own toString method, see the Object.toString method.

Object
Object is the primitive JavaScript object type. All JavaScript objects are descended from
Object. That is, all JavaScript objects have the methods defined for Object.

Created by

The Object constructor

Syntax

new Object();

Parameters

None

Object Properties
The following table displays a summary of the object properties. Detailed descriptions of each
property follow the table.

Property Description

constructor Specifies the function that creates an object's prototype.

Prototype Allows the addition of properties to all objects.

Object 189

constructor
Specifies the function that creates an object's prototype. Note that the value of this property is
a reference to the function itself, not a string containing the function's name.

Property of:

Object

Description

All objects inherit a constructor property from their prototype:

o = new Object // or o = {}
o.constructor == Object
a = new Array // or a = []
a.constructor == Array
n = new Number(3)
n.constructor == Number

Example

The following example creates a prototype, Tree, and an object of that type, theTree. The
example then displays the constructor property for the object theTree.

function Tree(name) {
 this.name=name
}
theTree = new Tree("Redwood")
Console.Write("theTree.constructor is" + theTree.constructor)

This example displays the following output:

theTree.constructor is function Tree(name) { this.name = name; }

Prototype
Represents the prototype for this class. You can use the prototype to add properties or methods
to all instances of a class.

Property of

Object

Object Methods
The following table displays a summary of the object methods. Detailed descriptions of each
method follow the table.

190 Core Objects

Method Description

eval Evaluates a string of JavaScript code in the context of the specified object.

toString Returns a string representing the specified object.

unwatch Removes a watchpoint from a property of the object.

valueOf Returns the primitive value of the specified object.

watch Adds a watchpoint to a property of the object.

eval
Evaluates a string of JavaScript code in the context of this object.

Property of

Object

Syntax

eval(string)

Parameters

string

Any string representing a JavaScript expression, statement, or sequence of statements. The
expression can include variables and properties of existing objects.

Description

The argument of the eval method is a string. If the string represents an expression, eval
evaluates the expression. If the argument represents one or more JavaScript statements, eval
performs the statements. Do not call eval to evaluate an arithmetic expression; JavaScript
evaluates arithmetic expressions automatically.

If you construct an arithmetic expression as a string, you can use eval to evaluate it at a later
time. For example, suppose you have a variable x. You can postpone evaluation of an expression
involving x by assigning the string value of the expression, say "3 * x + 2", to a variable, and
then calling eval at a later point in your script.

eval is also a global function, not associated with any object.

Object 191

Examples

The following example creates breed as a property of the object myDog, and also as a variable.
The first write statement uses eval('breed') without specifying an object; the string
“breed” is evaluated without regard to any object, and the write method displays
Shepherd, which is the value of the breed variable.

The second write statement uses myDog.eval('breed') which specifies the object
myDog; the string “breed" is evaluated with regard to the myDog object, and the write method
displays "Lab", which is the value of the breed property of the myDog object.

function Dog(name,breed,color) {
 this.name=name
 this.breed=breed
 this.color=color
}
myDog = new Dog("Gabby")
myDog.breed="Lab"
var breed='Shepherd'
Console.Write(eval('breed'))
Console.Write(myDog.eval('breed'))

The following example uses eval within a function that defines an object type, stone. The
statement flint = new stone("x=42") creates the object flint with the properties x, y,
z, and z2. The write statements display the values of these properties as 42, 43, 44, and 45,
respectively.

function stone(str) {
 this.eval("this."+str)
 this.eval("this.y=43")
 this.z=44
 this["z2"] = 45
}
flint = new stone("x=42")
Console.Write(flint.x is " + flint.x)
Console.Write(flint.y is " + flint.y)
Console.Write(flint.z is " + flint.z)
Console.Write(flint.z2 is " + flint.z2)

toString
Returns a string representing the specified object.

Applies to

Object

Syntax

toString()

toString(radix)

Parameters

radix

192 Core Objects

(Optional) An integer between 2 and 16 specifying the base to use for representing numeric
values.

Description

Every object has a toString method that is automatically called when it is to be represented
as a text value or when an object is referred to in a string concatenation. For example, the
following examples require theDog to be represented as a string:

Console.Write(theDog)
Console.Write("The dog is " + theDog)

You can use toString within your own code to convert an object into a string, and you can
create your own function to be called in place of the default toString method.

l Built-in toString methods

Every object type has a built-in toString method, which JavaScript calls whenever it needs
to convert an object to a string. If an object has no string value and no user-defined
toString method, toString returns [object type], where type is the object type or
the name of the constructor function that created the object.

Some built-in classes have special definitions for their toString methods. See the descriptions
of this method for these objects:

l User-defined toString methods

You can create a function to be called in place of the default toString method. The
toString method takes no arguments and should return a string. The toString method
you create can be any value you want, but it will be most useful if it carries information
about the object.

The following code defines the Dog object type and creates theDog, an object of type Dog:

 function Dog(name,breed,color,sex) {
 this.name=name
 this.breed=breed
 this.color=color
 this.sex=sex
 }
 theDog = new Dog("Gabby","Lab","chocolate","girl")

The following code creates dogToString, the function that will be used in place of the
default toString method. This function generates a string containing each property, of the
form property = value;.

 function dogToString() {
 var ret = "Dog " + this.name + " is ["
 for (var prop in this)
 ret += " " + prop + " is " + this[prop] + ";"
 return ret + "]"
 }

The following code assigns the user-defined function to the object's toString method:

 Dog.prototype.toString = dogToString

Object 193

With the preceding code in place, any time theDog is used in a string context, JavaScript
automatically calls the dogToString function, which returns the following string:

 Dog Gabby is [name is Gabby; breed is Lab; color is chocolate; sex is girl;
toString is function dogToString() { var ret = "Object " + this.name + " is ["; for
(var prop in this) { ret += " " + prop + " is " + this[prop] + ";"; } return ret +
"]"; } ;]

An object's toString method is usually invoked by JavaScript, but you can invoke it
yourself as follows:

 alert(theDog.toString())

Examples

The following example prints the string equivalents of the numbers 0 through 9 in decimal and
binary.

for (x = 0; x < 10; x++) {
 ("Decimal: ", x.toString(10), " Binary: ",
Console.write
 x.toString(2))
}

The preceding example produces the following output:

Decimal: 0 Binary: 0
Decimal: 1 Binary: 1
Decimal: 2 Binary: 10
Decimal: 3 Binary: 11
Decimal: 4 Binary: 100
Decimal: 5 Binary: 101
Decimal: 6 Binary: 110
Decimal: 7 Binary: 111
Decimal: 8 Binary: 1000
Decimal: 9 Binary: 1001

See also

Object.valueOf

unwatch
Removes a watchpoint set with the watch method.

Applies to

Object

Syntax

unwatch(prop)

Parameters

prop

194 Core Objects

The name of a property of the object.

Example

See: Object:watch

valueOf
Returns the primitive value of the specified object.

Applies to

Object

Syntax

valueOf()

Parameters

None

Description

Every object has a valueOf method that is automatically called when it is to be represented as
a primitive value. If an object has no primitive value, valueOf returns the object itself.

You can use valueOf within your own code to convert an object into a primitive value, and you
can create your own function to be called in place of the default valueOf method.

Every object type has a built-in valueOf method, which JavaScript calls whenever it needs to
convert an object to a primitive value.

You rarely need to invoke the valueOf method yourself. JavaScript automatically invokes it
when encountering an object where a primitive value is expected.

The following table shows object types for which the valueOf method is most useful. Most
other objects have no primitive value.

Object Type Value Returned by valueOf

Number Primitive numeric value associated with the object.

Boolean Primitive boolean value associated with the object.

String String associated with the object.

Function Function reference associated with the object. For example, typeof funObj returns object, but typeof funObj.
valueOf() returns function.

You can create a function to be called in place of the default valueOf method. Your function
must take no arguments.

Suppose you have an object type myNumberType and you want to create a valueOf method
for it. The following code assigns a user-defined function to the object's valueOf method:

Object 195

myNumberType.prototype.valueOf = new Function(functionText)

With the preceding code in place, any time an object of type myNumberType is used in a context
where it is to be represented as a primitive value, JavaScript automatically calls the function
defined in the preceding code.

An object's valueOf method is usually invoked by JavaScript, but you can invoke it yourself
as follows:

myNumber.valueOf()

Tip: Objects in string contexts convert via the toString method, which is different from
String objects converting to string primitives using valueOf. All string objects have a
string conversion, if only [object type]. But many objects do not convert to number,
boolean, or function.

watch
Watches for a property to be assigned a value and runs a function when that occurs.

Applies to

Object

Syntax

watch(prop, handler)

Parameters

prop

The name of a property of the object.

handler

A function to call.

Description

Watches for assignment to a property named prop in this object, calling handler(prop,
oldval, newval) whenever prop is set and storing the return value in that property. A
watchpoint can filter (or nullify) the value assignment, by returning a modified newval (or
oldval).

If you delete a property for which a watchpoint has been set, that watchpoint does not disappear.
If you later recreate the property, the watchpoint is still in effect.

To remove a watchpoint, use the unwatch method.

Example

o = {p:1}
o.watch("p",
 function (id,oldval,newval) {

196 Core Objects

 Console.Write("o." + id + " changed from "
 + oldval + " to " + newval)
 return newval
 })
o.p = 2
o.p =
delete o.p
o.p = 4
o.unwatch('p')
o.p = 5

This script displays the following:

o.p changed from 1 to 2
o.p changed from 2 to 3
o.p changed from 3 to 4

String
An object representing a series of characters in a string. String is a core object.

Created by

The String constructor:

new String(string);

Parameters

string

Any string.

Description

The String object is a built-in JavaScript object. You an treat any JavaScript string as a
String object.

A string can be represented as a literal enclosed by single or double quotation marks; for example,
"Hyperion" or 'Hyperion'.

Examples

l String Variable

The following statement creates a string variable:

 var last_name = "Schaefer"

l String Object Properties

The following statements evaluate to 8, "SCHAEFER," and "schaefer":

 last_name.length
 last_name.toUpperCase()
 last_name.toLowerCase()

String 197

l Accessing individual characters in a string

You can think of a string as an array of characters. In this way, you can access the individual
characters in the string by indexing that array. For example, the following code:

 var myString = "Hello"
 Console.Write ("The first character in the string is " + myString[0])

displays:

"The first character in the string is H"

String Properties
The following example displays a summary of the string properties. Detailed descriptions of each
property follow the table.

Property Description

length Reflects the length of the string.

prototype Allows the addition of properties to a String object.

length
The length of the string. The length property is read-only.

Property of

String

Description

For a null string, length is 0.

Example

The following example displays 8 in an Alert dialog box:

var x="Netscape"
Alert("The string length is " + x.length)

prototype
Represents the prototype for this class. You can use the prototype to add properties or methods
to all instances of a class. For information on prototypes, see Function.prototype.

Property of

String

198 Core Objects

String Methods
The following example displays a summary of the string methods. Detailed descriptions of each
method follow the table.

Method Description

anchor Creates an HTML anchor that is used as a hypertext target.

big Causes a string to be displayed in a big font as if it were in a BIG tag.

blink Causes a string to blink as if it were in a BLINK tag.

bold Causes a string to be displayed as if it were in a B tag.

charAt Returns the character at the specified index.

charCodeAt Returns a number indicating the ISO-Latin-1 codeset value of the character at the given index.

concat Combines the text of two strings and returns a new string.

fixed Causes a string to be displayed in fixed-pitch font as if it were in a TT tag.

fontcolor Causes a string to be displayed in the specified color as if it were in a tag.

fontsize Causes a string to be displayed in the specified font size as if it were in a tag.

fromCharCode Returns a string from the specified sequence of numbers that are ISO-Latin-1 codeset values.

indexOf Returns the index within the calling String object of the first occurrence of the specified value.

italics Causes a string to be italic, as if it were in an I tag.

lastIndexOf Returns the index within the calling String object of the last occurrence of the specified value.

link Creates an HTML hypertext link that requests another URL.

match Used to match a regular expression against a string.

String 199

Method Description

replace Used to find a match between a regular expression and a string, and to replace the matched substring with a new substring.

search Executes the search for a match between a regular expression and a specified string.

slice Extracts a section of a string and returns a new string.

small Causes a string to be displayed in a small font, as if it were in a SMALL tag.

split Splits a String object into an array of strings by separating the string into substrings.

strike Causes a string to be displayed as struck-out text, as if it were in a STRIKE tag.

sub Causes a string to be displayed as a subscript, as if it were in a SUB tag.

substr Returns the characters in a string beginning at the specified location through the specified number of characters.

substring Returns the characters in a string between two indexes into the string.

sup Causes a string to be displayed as a superscript, as if it were in a SUP tag.

toLowerCase Returns the calling string value converted to lowercase.

toUpperCase Returns the calling string value converted to uppercase.

anchor
Creates an HTML anchor that is used as a hypertext target.

Applies to

String

Syntax

anchor(nameAttribute)

Parameters

nameAttribute

A string.

Description

Use the anchor method with Console.Write to programmatically create and display an
anchor in a document. Create the anchor with the anchor method, and then call write to
display the anchor in a document.

In the syntax, the text string represents the literal text that you want the user to see. The
nameAttribute string represents the NAME attribute of the A tag.

Anchors created with the anchor method become elements in the document.anchors
array.

200 Core Objects

Examples

The following example opens the msgWindow window and creates an anchor for the table of
contents:

var myString="Table of Contents"
Write(myString.anchor("contents_anchor"))

The previous example produces the same output as the following HTML:

Table of Contents

See also

String:link

big
Causes a string to be displayed in a big font as if it were in a BIG tag.

Applies to

String

Syntax

big()

Parameters

None

Description

Use the big method with the Write method to format and display a string in a document.

Example

The following example uses string methods to change the size of a string:

var worldString="Hello, world"
Console.Write(worldString.small())
Console.Write(worldString.big())
Console.Write(worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hello, world</SMALL>
<BIG>Hello, world</BIG>
<FONTSIZE=7>Hello, world</FONTSIZE>

See also

String.fontsize, String.small

String 201

blink
Causes a string to blink as if it were in a BLINK tag.

Applies to

String

Syntax

blink()

Parameters

None

Description

Use the blink method with the Write method to format and display a string in a document.

Example

The following example uses string methods to change the formatting of a string:

var worldString="Hello, world"
Console.Write(worldString.blink())
Console.Write("<P>" + worldString.bold())
Console.Write("<P>" + worldString.italics())
Console.Write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also

String.bold, String.italics, String.strike

bold
Causes a string to be displayed as bold as if it were in a B tag.

Applies to

String

Syntax

bold()

Parameters

None

202 Core Objects

Description

Use the bold method with the Write methods to format and display a string in a document.

Example

The following example uses string methods to change the formatting of a string:

var worldString="Hello, world"
Console.Write(worldString.blink())
Console.Write("<P>" + worldString.bold())
Console.Write("<P>" + worldString.italics())
Console.Write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also

String:blink, String:italics, String.strike

charAt
Returns the specified character from the string.

Applies to

String

Syntax

charAt(index)

Parameters

index

An integer between 0 and 1 less than the length of the string.

Description

Characters in a string are indexed from left to right. The index of the first character is 0, and the
index of the last character in a string called stringName is stringName.length - 1. If the
index you supply is out of range, JavaScript returns an empty string.

Example

The following example displays characters at different locations in the string "Brave new
world":

var anyString="Brave new world"
Console.Write("The character at index 0 is " + anyString.charAt(0))

String 203

Console.Write("The character at index 1 is " + anyString.charAt(1))
Console.Write("The character at index 2 is " + anyString.charAt(2))
Console.Write("The character at index 3 is " + anyString.charAt(3))
Console.Write("The character at index 4 is " + anyString.charAt(4))

These lines display the following:

The character at index 0 is B
The character at index 1 is r
The character at index 2 is a
The character at index 3 is v
The character at index 4 is e

See also

String:indexOf, String.lastIndexOf, String.split

charCodeAt
Returns a number indicating the ISO-Latin-1 codeset value of the character at the given index.

Applies to

String

Syntax

charCodeAt(index)

Parameters

index

(Optional) An integer between 0 and 1 less than the length of the string. The default value is 0.

Description

The ISO-Latin-1 codeset ranges from 0 to 255. The first 0 to 127 are a direct match of the ASCII
character set.

Example

The following example returns 65, the ISO-Latin-1 codeset value for A.

"ABC".charCodeAt(0)

concat
Combines the text of two strings and returns a new string.

Applies to

String

204 Core Objects

Syntax

concat(string2)

Parameters

string1

The first string.

string 2

The second string.

Description

concat combines the text from two strings and returns a new string. Changes to the text in one
string do not affect the other string.

Example

The following example combines two strings into a new string.

str1="The morning is upon us. "
str2="The sun is bright."
str3=str1.concat(str2)
Console.Write(str1)
Console.Write(str2)
Console.Write(str3)

This writes:

The morning is upon us.
The sun is bright.
The morning is upon us. The sun is bright.

fixed
Causes a string to be displayed in fixed-pitch font as if it were in a TT tag.

Applies to

String

Syntax

fixed()

Parameters

None

Description

Use the fixed method with the Write method to format and display a string in a document.

String 205

Example

The following example uses the fixed method to change the formatting of a string:

var worldString="Hello, world"
 (worldString.fixed())

The previous example produces the same output as the following HTML:

<TT>Hello, world</TT>

fontcolor
Causes a string to be displayed in the specified color as if it were in a
tag.

Applies to

String

Syntax

fontcolor(color)

Parameters

color

A string expressing the color as a hexadecimal RGB triplet or as a string literal. String literals for
color names are listed in Appendix B, "Color Values," in the JavaScript Guide.

Description

Use the fontcolor method with the Write method to format and display a string in a
document.

If you express color as a hexadecimal RGB triplet, you must use the format rrggbb. For
example, the hexadecimal RGB values for salmon are red=FA, green=80, and blue=72, so the
RGB triplet for salmon is "FA8072".

The fontcolor method overrides a value set in the fgColor property.

Examples

The following example uses the fontcolor method to change the color of a string:

var worldString="Hello, world"
Console.Write(worldString.fontcolor("maroon") +
 " is maroon in this line")
Console.Write("<P>" + worldString.fontcolor("salmon") +
 " is salmon in this line")
Console.Write("<P>" + worldString.fontcolor("red") +
 " is red in this line")
Console.Write("<P>" + worldString.fontcolor("8000") +
 " is maroon in hexadecimal in this line")
Console.Write("<P>" + worldString.fontcolor("FA8072") +

206 Core Objects

 " is salmon in hexadecimal in this line")
Console.Write("<P>" + worldString.fontcolor("FF00") +
 " is red in hexadecimal in this line")

The previous example produces the same output as the following HTML:

Hello, world is maroon in this line
<P>Hello, world is salmon in this line
<P>Hello, world is red in this line
Hello, world
is maroon in hexadecimal in this line
<P>Hello, world
is salmon in hexadecimal in this line
<P>Hello, world
is red in hexadecimal in this line

fontsize
Causes a string to be displayed in the specified font size as if it were in a
tag.

Applies to

String

Syntax

fontsize(size)

Parameters

size

An integer between 1 and 7, a string representing a signed integer between 1 and 7.

Description

Use the fontsize method with the Write method to format and display a string in a document.

When you specify size as an integer, you set the size of stringName to one of the 7 defined
sizes. When you specify size as a string such as "-2", you adjust the font size of
stringName relative to the size set in the BASEFONT tag.

Example

The following example uses string methods to change the size of a string:

var worldString="Hello, world"
Console.Write(worldString.small())
Console.Write("<P>" + worldString.big())
Console.Write("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>

String 207

<P><FONTSIZE=7>Hello, world</FONTSIZE>

See also

String.big, String.small

fromCharCode
Returns a string created by using the specified sequence ISO-Latin-1 codeset values.

Applies to

String

Syntax

fromCharCode(num1, ..., numN)

Parameters

num1...numN

A sequence of numbers that are ISO-Latin-1 codeset values.

Description

This method returns a string and not a String object.

fromCharCode is a static method of String. As a result, you always use it as
String.fromCharCode(), rather than as a method of a String object you create.

Examples

The following example returns the string "ABC".

String.fromCharCode(65,66,67)

indexOf
Returns the index within the calling String object of the first occurrence of the specified value,
starting the search at fromIndex, or -1 if the value is not found.

Applies to

String

Syntax

indexOf(searchValue, fromIndex)

Parameters

searchValue

A string representing the value for which to search.

208 Core Objects

fromIndex

(Optional) The location within the calling string to start the search from. It can be any integer
between 0 and 1 less than the length of the string. The default value is 0.

Description

Characters in a string are indexed from left to right. The index of the first character is 0, and the
index of the last character of a string called stringName is stringName.length - 1.

If stringName contains an empty string (""), indexOf returns an empty string.

The indexOf method is case-sensitive. For example, the following expression returns -1:

"Blue Whale".indexOf("blue")

Examples

The following example uses indexOf and lastIndexOf to locate values in the string
"Brave new world."

var anyString="Brave new world"
//Displays 8
Console.Write("<P>The index of the first w from the beginning is " +
 anyString.indexOf("w"))
//Displays 10
Console.Write("<P>The index of the first w from the end is " +
 anyString.lastIndexOf("w"))
//Displays 6
Console.Write("<P>The index of 'new' from the beginning is " +
 anyString.indexOf("new"))
//Displays 6
Console.Write("<P>The index of 'new' from the end is " +
 anyString.lastIndexOf("new"))

The following example defines two string variables. The variables contain the same string except
that the second string contains uppercase letters. The first write method displays 19. But
because the indexOf method is case-sensitive, the string "cheddar" is not found in
myCapString, so the second write method displays -1.

myString="brie, pepper jack, cheddar"
myCapString="Brie, Pepper Jack, Cheddar"
Console.Write('myString.indexOf("cheddar") is ' +
 myString.indexOf("cheddar"))
Console.Write('myCapString.indexOf("cheddar") is ' +
 myCapString.indexOf("cheddar"))

The following example sets count to the number of occurrences of the letter x in the string
str:

count = 0;
pos = str.indexOf("x");
while (pos != -1) {
 count++;
 pos = str.indexOf("x",pos+1);
}

String 209

See also

String:charAt, String:lastIndexOf, String:split

italics
Causes a string to be italic, as if it were in an I tag.

Applies to

String

Syntax

italics()

Parameters

None

Description

Use the italics method with the Write method to format and display a string in a document.

Example

The following example uses string methods to change the formatting of a string:

var worldString="Hello, world"
Console.Write(worldString.blink())
Console.Write(worldString.bold())
Console.Write(worldString.italics())
Console.Write(worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also

String:blink, String:bold, String:strike

lastIndexOf
Returns the index within the calling String object of the last occurrence of the specified value.
The calling string is searched backward, starting at fromIndex, or -1 if not found.

Applies to

String

210 Core Objects

Syntax

lastIndexOf(searchValue, fromIndex)

Parameters

searchValue

A string representing the value for which to search.

fromIndex

(Optional) The location within the calling string to start the search from. It can be any integer
between 0 and 1 less than the length of the string. The default value is 1 less than the length of
the string.

Description

Characters in a string are indexed from left to right. The index of the first character is 0, and the
index of the last character is stringName.length - 1.

The lastIndexOf method is case-sensitive. For example, the following expression returns -1:

"Blue Whale, Killer Whale".lastIndexOf("blue")

Example

The following example uses indexOf and lastIndexOf to locate values in the string "Brave
new world."

var anyString="Brave new world"
//Displays 8
Console.Write("The index of the first w from the beginning is " +
 anyString.indexOf("w"))
//Displays 10
Console.Write("The index of the first w from the end is " +
 anyString.lastIndexOf("w"))
//Displays 6
Console.Write("The index of 'new' from the beginning is " +
 anyString.indexOf("new"))
//Displays 6
Console.Write("The index of 'new' from the end is "
 anyString.lastIndexOf("new"))

See also

String:charAt, String:indexOf, String:split

link
Creates an HTML hypertext link that requests another URL.

Applies to

String

String 211

Syntax

link(hrefAttribute)

Parameters

hrefAttribute

Any string that specifies the HREF attribute of the A tag; it should be a valid URL (relative or
absolute).

Description

Use the link method to programmatically create a hypertext link, and then call to the write
method display the link in a document.

Example

The following example displays the word "Hyperion" as a hypertext link that returns the user to
the Hyperion Web site:

var hotText="Hyperion"
var URL="http://www.hyperion.com"
Console.Write("Click to return to " + hotText.link(URL))

The previous example produces the same output as the following HTML:

Click to return to Hyperion

See also

String:anchor

match
Used to match a regular expression against a string.

Applies to

String

Syntax

match(regexp)

Parameters

regexp

Name of the regular expression. It can be a variable name or literal.

Description

If you want to execute a global match, or a case insensitive match, include the g (for global)
and i (for ignore case) flags in the regular expression. These can be included separately or
together. The following two examples below show how to use these flags with match.

212 Core Objects

Tip: If you execute a match simply to find true or false, use String.search or the regular
expression test method.

Examples

In the following example, match is used to find 'Chapter' followed by 1 or more numeric
characters followed by a decimal point and numeric character 0 or more times. The regular
expression includes the i flag so that case will be ignored.

str = "For more information, see Chapter 3.4.5.1";
re = /(chapter \d+(\.\d)*)/i;
found = str.match(re);
Console.Write(found);

This returns the array containing Chapter 3.4.5.1, Chapter 3.4.5.1,.1

'Chapter 3.4.5.1' is the first match and the first value remembered from (Chapter \d+(\.\d)*).

'.1' is the second value remembered from (\.\d).

The following example demonstrates the use of the global and ignore case flags with match.

str = "abcDdcba";
newArray = str.match(/d/gi);
Console.Write(newArray);

The returned array contains D, d.

replace
Used to find a match between a regular expression and a string, and to replace the matched
substring with a new substring.

Applies to

String

Syntax

replace(regexp, newSubStr)

Parameters

regexp

The name of the regular expression. It can be a variable name or a literal.

newSubStr

The string to put in place of the string found with regexp. This string can include the
RegExp properties $1, ..., $9, lastMatch, lastParen, leftContext, and
rightContext.

Description

This method does not change the String object it is called on; it simply returns a new string.

String 213

If you want to execute a global search and replace, or a case insensitive search, include the g (for
global) and i (for ignore case) flags in the regular expression. These can be included separately
or together. The following two examples below show how to use these flags with replace.

Examples

In the following example, the regular expression includes the global and ignore case flags which
permits replace to replace each occurrence of 'apples' in the string with 'oranges.'

re = /apples/gi;
str = "Apples are round, and apples are juicy.";
newstr=str.replace(re, "oranges");
Console.Write(newstr)

This prints "oranges are round, and oranges are juicy."

In the following example, the regular expression is defined in replace and includes the ignore
case flag.

str = "Twas the night before Xmas...";
newstr=str.replace(/xmas/i, "Christmas");
Console.Write(newstr)

This prints:

"Twas the night before Christmas..."

The following script switches the words in the string. For the replacement text, the script uses
the values of the $1 and $2 properties.

re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr = str.replace(re, "$2, $1");
Console.Write(newstr)

This prints:

"Smith, John"

search
Executes the search for a match between a regular expression and this String object.

Applies to

String

Syntax

search(regexp)

Parameters

regexp

Name of the regular expression. It can be a variable name or a literal.

214 Core Objects

Description

If successful, search returns the index of the match inside the string. Otherwise, it returns -1.

When you want to know whether a pattern is found in a string use search (similar to the regular
expression test method); for more information (but slower execution) use match (similar to
the regular expression exec method).

Example

The following example prints a message which depends on the success of the test.

function testinput(re, str){
 if (str.search(re) != -1)
 midstring = " contains ";
 else
 midstring = " does not contain ";
 Console.Write (str + midstring + re.source);
}

slice
Extracts a section of a string and returns a new string.

Applies to

String

Syntax

slice(beginslice,endSlice)

Parameters

beginSlice

The zero-based index at which to begin extraction.

endSlice

(Optional) The zero-based index at which to end extraction. If omitted, slice extracts to the end
of the string.

Description

slice extracts the text from one string and returns a new string. Changes to the text in one
string do not affect the other string.

slice extracts up to but not including endSlice. string.slice(1,4) extracts the second
character through the fourth character (characters indexed 1, 2, and 3).

As a negative index, endSlice indicates an offset from the end of the string.
string.slice(2,-1) extracts the third character through the second to last character in the
string.

String 215

Example

The following example uses slice to create a new string.

str1="The morning is upon us. "
str2=str1.slice(3,-5)
Console.Write(str2)

This writes:

The morning is upon us

small
Causes a string to be displayed in a small font, as if it were in a SMALL tag.

Applies to

String

Syntax

small()

Parameters

None

Description

Use the small method with the Write method to format and display a string in a document.

Example

The following example uses string methods to change the size of a string:

var worldString="Hello, world"
Console.Write(worldString.small())
Console.Write("<P>" + worldString.big())
Console.Write("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>

See also

String:big, String:fontsize

split
Splits a String object into an array of strings by separating the string into substrings.

216 Core Objects

Applies to

String

Syntax

split(separator, limit)

Parameters

separator

(Optional) Specifies the character to use for separating the string. The separator is treated as a
string. If separator is omitted, the array returned contains one element consisting of the entire
string. The separator can either be a single separator or a multi-character separators.

limit

(Optional) Integer specifying a limit on the number of splits to be found.

Description

The split method returns the new array.

When found, separator is removed from the string and the substrings are returned in an array.
If separator is omitted, the array contains one element consisting of the entire string.

It can take a regular expression argument, as well as a fixed string, by which to split the object
string. If separator is a regular expression, any included parentheses cause submatches to be
included in the returned array.

It can take a limit count so that it won't include trailing empty elements in the resulting array.

Examples

The following example defines a function that splits a string into an array of strings using the
specified separator. After splitting the string, the function displays messages indicating the
original string (before the split), the separator used, the number of elements in the array, and
the individual array elements.

function splitString (stringToSplit,separator) {
 arrayOfStrings = stringToSplit.split(separator)
 Console.Write ('<P>The original string is: "' + stringToSplit + '"')
 Console.Write ('
The separator is: "' + separator + '"')
 Console.Write ("
The array has " + arrayOfStrings.length + " elements: ")
 for (var i=0; i < arrayOfStrings.length; i++) {
 Console.Write (arrayOfStrings[i] + " / ")
 }
}
var tempestString="Oh brave new world that has such people in it."
var monthString="Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec"
var space=" "
var comma=","
splitString(tempestString,space)
splitString(tempestString)
splitString(monthString,comma)

This example produces the following output:

String 217

The original string is: "Oh brave new world that has such people in it."
The separator is: " "
The array has 10 elements: Oh / brave / new / world / that / has / such / people / in /
it. /
The original string is: "Oh brave new world that has such people in it."
The separator is: "undefined"
The array has 1 elements: Oh brave new world that has such people in it. /
The original string is: "Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec"
The separator is: ","
The array has 12 elements: Jan / Feb / Mar / Apr / May / Jun / Jul / Aug / Sep / Oct /
Nov / Dec /

Consider the following script:

str="She sells seashells \nby the\n seashore"
Console.Write(str)
a=str.split(" ")
Console.Write(a)

Using LANGUAGE="JavaScript1.2", this script produces

"She", "sells", "seashells", "by", "the", "seashore"

In the following example, split looks for 0 or more spaces followed by a semicolon followed
by 0 or more spaces and, when found, removes the spaces from the string. nameList is the array
returned as a result of split.

names = "Harry Trump ;Fred Barney; Helen Rigby ; Bill Abel ;Chris Hand ";
Console.Write (names , " ");
re = /\s*;\s*/;
nameList = names.split (re);
Console.Write(nameList);

This prints two lines; the first line prints the original string, and the second line prints the
resulting array.

Harry Trump ;Fred Barney; Helen Rigby ; Bill Abel ;Chris Hand
Harry Trump,Fred Barney,Helen Rigby,Bill Abel,Chris Hand

In the following example, split looks for 0 or more spaces in a string and returns the first 3
splits that it finds.

myVar = " Hello World. How are you doing? ";
splits = myVar.split(" ", 3);
Console.Write(splits)

This script displays the following:

["Hello", "World.", "How"]

See also

String.charAt, String.indexOf, String.lastIndexOf

strike
Causes a string to be displayed as struck-out text, as if it were in a STRIKE tag.

218 Core Objects

Applies to

String

Syntax

strike()

Parameters

None

Description

Use the strike method with the Write method to format and display a string in a document.

Examples

The following example uses string methods to change the formatting of a string:

var worldString="Hello, world"
Console.Write(worldString.blink())
Console.Write("<P>" + worldString.bold())
Console.Write("<P>" + worldString.italics())
Console.Write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also

String.blink, String.bold, String.italics

sub
Causes a string to be displayed as a subscript, as if it were in a SUB tag.

Applies to

String

Syntax

sub()

Parameters

None

Description

Use the sub method with the Write method to format and display a string in a document.

String 219

Example

The following example uses the sub and sup methods to format a string:

var superText="superscript"
var subText="subscript"
Console.Write("This is what a " + superText.sup() + " looks like.")
Console.Write("<P>This is what a " + subText.sub() + " looks like.")

The previous example produces the same output as the following HTML:

This is what a ^{superscript} looks like.
<P>This is what a _{subscript} looks like.

See also

String:sup

substr
Returns the characters in a string beginning at the specified location through the specified
number of characters.

Applies to

String

Syntax

substr(start, length)

Parameters

start

Location at which to begin extracting characters.

length

(Optional) The number of characters to extract.

Description

start is a character index. The index of the first character is 0, and the index of the last character
is 1 less than the length of the string. substr begins extracting characters at start and collects
length number of characters.

If start is positive and is the length of the string or longer, substr returns no characters.

If start is negative, substr uses it as a character index from the end of the string. If start is
negative and abs(start) is larger than the length of the string, substr uses 0 is the start index.

If length is 0 or negative, substr returns no characters. If length is omitted, start extracts
characters to the end of the string.

220 Core Objects

Example

Consider the following script:

str = "abcdefghij"
Console.Write("(1,2): ", str.substr(1,2))
Console.Write("(-2,2): ", str.substr(-2,2))
Console.Write("(1): ", str.substr(1))
Console.Write("(-20, 2): ", str.substr(1,20))
Console.Write("(20, 2): ", str.substr(20,2))

This script displays:

(1,2): bc
(-2,2): ij
(1): bcdefghij
(-20, 2): bcdefghij
(20, 2):

See also

String: substring

substring
Returns a subset of a String object.

Applies to

String

Syntax

substring(indexA, indexB)

Parameters

indexA

An integer between 0 and 1 less than the length of the string.

indexB

An integer between 0 and 1 less than the length of the string.

Description

substring extracts characters from indexA up to but not including indexB. In particular:

l If indexA is less than 0, indexA is treated as if it were 0.

l If indexB is greater than stringName.length, indexB is treated as if it were
stringName.length.

l If indexA equals indexB, substring returns an empty string.

l If indexB is omitted, substring extracts characters to the end of the string.

String 221

l If indexA is greater than indexB, JavaScript returns a substring beginning with indexB
and ending with indexA - 1.

Examples

The following example uses substring to display characters from the string "Netscape":

var anyString="Netscape"
//Displays "Net"
Console.Write(anyString.substring(0,3))
Console.Write(anyString.substring(3,0))
//Displays "cap"
Console.Write(anyString.substring(4,7))
Console.Write(anyString.substring(7,4))
//Displays "Netscap"
Console.Write(anyString.substring(0,7))
//Displays "Netscape"
Console.Write(anyString.substring(0,8))
Console.Write(anyString.substring(0,10))

The following example replaces a substring within a string. It will replace both individual
characters and substrings. The function call at the end of the example changes the string
"Brave New World" into "Brave New Web".

function replaceString(oldS,newS,fullS) {
// Replaces oldS with newS in the string fullS
 for (var i=0; i<fullS.length; i++) {
 if (fullS.substring(i,i+oldS.length) == oldS) {
 fullS = fullS.substring(0,i)+newS+fullS.substring(i
+oldS.length,fullS.length)
 }
 }
 return fullS
}
replaceString("World","Web","Brave New World")

sup
Causes a string to be displayed as a superscript, as if it were in a SUP tag.

Applies to

String

Syntax

sup()

Parameters

None

Description

Use the sup method with the Write method to format and display a string in a document.

222 Core Objects

Examples

The following example uses the sub and sup methods to format a string:

var superText="superscript"
var subText="subscript"
Console.Write("This is what a " + superText.sup() + " looks like.")
Console.Write("<P>This is what a " + subText.sub() + " looks like.")

The previous example produces the same output as the following HTML:

This is what a ^{superscript} looks like.
<P>This is what a _{subscript} looks like.

See also

String.sub

toLowerCase
Returns the calling string value converted to lowercase.

Applies to

String

Syntax

toLowerCase()

Parameters

None

Description

The toLowerCase method returns the value of the string converted to lowercase.
toLowerCase does not affect the value of the string itself.

Example

The following example displays the lowercase string "alphabet":

var upperText="ALPHABET"
Console.Write(upperText.toLowerCase())

See also

String:toUpperCase

toUpperCase
Returns the calling string value converted to uppercase.

String 223

Applies to

String

Syntax

toUpperCase()

Parameters

None

Description

The toUpperCase method returns the value of the string converted to uppercase.
toUpperCase does not affect the value of the string itself.

Examples

The following example displays the string "ALPHABET":

var lowerText="alphabet"
Console.Write(lowerText.toUpperCase())

See also

String.toLowerCase

Regular Expression
A regular expression object contains the pattern of a regular expression. It has properties and
methods for using that regular expression to find and replace matches in strings.

In addition to the properties of an individual regular expression object that you create using the
RegExp constructor function, the predefined RegExp object has static properties that are set
whenever any regular expression is used. Regular expression is a core object.

Note: In JavaScript 1.5, some characters such as pipes (|) which were treated a characters in
certain circumstances are now treated as regular expression symbols. See also http://
developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference.

Created by

A literal text format or the RegExp constructor function.

The literal format is used as follows:

/pattern/flags

The constructor function is used as follows:

new RegExp("pattern", "flags")

224 Core Objects

Parameters

pattern

The text of the regular expression

flags

(Optional) If specified, flags can have one of the following 3 values:

l G —global match

l i—ignore case

l gi—both global match and ignore case

Notice that the parameters to the literal format do not use quotation marks to indicate strings,
while the parameters to the constructor function do use quotation marks. So the following
expressions create the same regular expression:

/ab+c/i
new RegExp("ab+c", "i")

Description

When using the constructor function, the normal string escape rules (preceding special
characters with \ when included in a string) are necessary. For example, the following are
equivalent:

re = new RegExp("\\w+")
re = /\w+/

The following table provides a complete list and description of the special characters that can be
used in regular expressions.

Character Description

\ For characters that are usually treated literally, indicates that the next character is special and not to be interpreted literally.
For example, /b/ matches the character 'b'. By placing a backslash in front of b, that is by using /\b/, the character
becomes special to mean match a word boundary -or- For characters that are usually treated specially, indicates that the
next character is not special and should be interpreted literally. For example, * is a special character that means 0 or
more occurrences of the preceding character should be matched; for example, /a*/ means match 0 or more a's. To
match * literally, precede the it with a backslash; for example, /a*/ matches 'a*'.

^ Matches beginning of input or line. For example, /^A/ does not match the 'A' in "an A," but does match it in "An A."

$ Matches end of input or line. For example, /t$/ does not match the 't' in "eater", but does match it in "eat"

* Matches the preceding character 0 or more times. For example, /bo*/ matches 'boooo' in "A ghost booooed" and 'b' in
"A bird warbled", but nothing in "A goat grunted".

+ Matches the preceding character 1 or more times. Equivalent to {1,}. For example, /a+/ matches the 'a' in "candy" and
all the a's in "caaaaaaandy."

Regular Expression 225

Character Description

? Matches the preceding character 0 or 1 time.For example, /e?le?/ matches the 'el' in "angel" and the 'le' in "angle."

. (The decimal point) matches any single character except the newline character. For example, /.n/ matches 'an' and
'on' in "nay, an apple is on the tree", but not 'nay'.

(x) Matches 'x' and remembers the match. For example, /(foo)/ matches and remembers 'foo' in "foo bar." The matched
substring can be recalled from the resulting array's elements [1], ..., [n], or from the predefined RegExp object's properties
$1, ..., $9.

x|y Matches either 'x' or 'y'. For example, /green|red/ matches 'green' in "green apple" and 'red' in "red apple."

{n} Where n is a positive integer. Matches exactly n occurrences of the preceding character. For example, /a{2}/ doesn't
match the 'a' in "candy," but it matches all of the a's in "caandy," and the first two a's in "caaandy."

{n,} Where n is a positive integer. Matches at least n occurrences of the preceding character. For example, /a{2,} doesn't
match the 'a' in "candy", but matches all of the a's in "caandy" and in "caaaaaaandy."

{n,m} Where n and m are positive integers. Matches at least n and at most m occurrences of the preceding character. For
example, /a{1,3}/ matches nothing in "cndy", the 'a' in "candy," the first two a's in "caandy," and the first three a's
in "caaaaaaandy" Notice that when matching "caaaaaaandy", the match is "aaa", even though the original string had
more a's in it.

[xyz] A character set. Matches any one of the enclosed characters. You can specify a range of characters by using a hyphen.
For example, [abcd] is the same as [a-c]. They match the 'b' in "brisket" and the 'c' in "ache".

[^xyz] A negated or complemented character set. That is, it matches anything that is not enclosed in the brackets. You can
specify a range of characters by using a hyphen. For example, [^abc] is the same as [^a-c]. They initially match 'r'
in "brisket" and 'h' in "chop."

[\b] Matches a backspace. (Not to be confused with \b.)

\b Matches a word boundary, such as a space. (Not to be confused with [\b].).For example, /\bn\w/ matches the 'no'
in "noonday"; /\wy\b/ matches the 'ly' in "possibly yesterday."

\B Matches a non-word boundary. For example, /\w\Bn/ matches 'on' in "noonday", and /y\B\w/ matches 'ye' in
"possibly yesterday."

\cX Where X is a control character. Matches a control character in a string. For example, /\cM/ matches control-M in a string.

\d Matches a digit character. Equivalent to [0-9]. For example, /\d/ or /[0-9]/ matches '2' in "B2 is the suite number.
"

\D Matches any non-digit character. Equivalent to [^0-9]. For example, /\D/ or /[^0-9]/ matches 'B' in "B2 is the suite
number."

226 Core Objects

Character Description

\f Matches a form-feed.

\n Matches a linefeed.

\r Matches a carriage return.

\s Matches a single white space character, including space, tab, form feed, line feed. Equivalent to [\f\n\r\t\v]. For
example, /\s\w*/ matches ' bar' in "foo bar."

\S Matches a single character other than white space. Equivalent to [^ \f\n\r\t\v]. For example, /\S/\w* matches
'foo' in "foo bar."

\t Matches a tab.

\v Matches a vertical tab.

\w Matches any alphanumeric character including the underscore. Equivalent to [A-Za-z0-9_]. For example, /\w/
matches 'a' in "apple," '5' in "$5.28," and '3' in "3D."

\W Matches any non-word character. Equivalent to [^A-Za-z0-9_]. For example, /\W/ or /[^$A-Za-z0-9_]/ matches
'%' in "50%."

\n Where n is a positive integer. A back reference to the last substring matching the n parenthetical in the regular expression
(counting left parentheses). For example, /apple(,)\sorange\1/ matches 'apple, orange', in "apple, orange, cherry,
peach." A more complete example follows this table.

Note: If the number of left parentheses is less than the number specified in \n, the \n is taken as an octal escape as
described in the next row.

\ooctal \xhex Where \ooctal is an octal escape value or \xhex is a hexadecimal escape value. Allows you to embed ASCII codes
into regular expressions.

The literal notation provides compilation of the regular expression when the expression is
evaluated. Use literal notation when the regular expression will remain constant. For example,
if you use literal notation to construct a regular expression used in a loop, the regular expression
won't be recompiled on each iteration.

The constructor of the regular expression object, for example, new RegExp("ab+c"), provides
runtime compilation of the regular expression. Use the constructor function when you know
the regular expression pattern will be changing, or you don't know the pattern and are getting
it from another source, such as user input. Once you have a defined regular expression, and if
the regular expression is used throughout the script and may change, you can use the
compile method to compile a new regular expression for efficient reuse.

Regular Expression 227

A separate predefined RegExp object is available in each window; that is, each separate thread
of JavaScript execution gets its own RegExp object. Because each script runs to completion
without interruption in a thread, this assures that different scripts do not overwrite values of the
RegExp object.

The predefined RegExp object contains the static properties input, multiline, lastMatch,
lastParen, leftContext, rightContext, and $1 through $9. The input and multiline
properties can be preset. The values for the other static properties are set after execution of the
exec and test methods of an individual regular expression object, and after execution of the
match and replace methods of String.

Examples

The following script uses the replace method to switch the words in the string. For the
replacement text, the script uses the values of the $1 and $2 properties of the global RegExp
object. Note that the RegExp object name is not be prepended to the $ properties when they are
passed as the second argument to the replace method.

re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr=str.replace(re, "$2, $1");
(newstr)

This displays:

"Smith, John".

In the following example, RegExp.input is set by the Change event. In the getInfo function,
the exec method uses the value of RegExp.input as its argument. Note that RegExp is
prepended to the $ properties.

function getInfo() {
 re = /(\w+)\s(\d+)/;
 re.exec();
 alert(RegExp.$1 + ", your age is " + RegExp.$2);
}
Enter your first name and your age, and then press Enter.
<FORM>
<INPUT TYPE:"TEXT" NAME="NameAge" onChange="getInfo(this);">
</FORM>
</HTML>

Regular Expression Properties
The following table displays a summary of the regular expression properties. Note that several
of these properties have both long and short (Perl-like) names. Both names always refer to the
same value. Perl is the programming language from which JavaScript modeled its regular
expressions. Detailed descriptions of each property follow the table.

Property Description

$1, ..., $9 Parenthesized substring matches, if any.

228 Core Objects

Property Description

$_ See input.

$* See multiline.

$& See lastMatch.

$+ See lastParen.

$' See leftContext.

$' See rightContext.

global Whether to test the regular expression against all possible matches in a string, or only against the first.

ignoreCase Whether to ignore case while attempting a match in a string.

input The string against which a regular expression is matched.

lastIndex The index at which to start the next match.

lastMatch The last matched characters.

lastParen The last parenthesized substring match, if any.

leftContext The substring preceding the most recent match.

multiline Whether to search in strings across multiple lines.

rightContext The substring following the most recent match.

source The text of the pattern.

$1, ..., $9
Properties that contain parenthesized substring matches, if any.

Property of

RegEx

Description

input is static, read-only. As a result, it is not a property of an individual regular expression
object. Instead, you always use it as RegExp.input.

The number of possible parenthesized substrings is unlimited, but the predefined RegExp object
can only hold the last nine. You can access all parenthesized substrings through the returned
array's indexes.

These properties can be used in the replacement text for the String.replace method. When
used this way, do not prepend them with RegExp. The example below illustrates this. When
parentheses are not included in the regular expression, the script interprets $n's literally (where
n is a positive integer).

Regular Expression 229

Example

The following script uses the replace method to switch the words in the string. For the
replacement text, the script uses the values of the $1 and $2 properties of the global RegExp
object. Note that the RegExp object name is not be prepended to the $ properties when they
are passed as the second argument to the replace method.

re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr=str.replace(re, "$2, $1");
Console.Write(newstr)

This displays:

"Smith, John".

$_
See input.

$*
See multiline.

$&
See lastMatch.

$+
See lastParen.

$'
See leftContext.

$'
See rightContext.

global
Whether the "g" flag is used with the regular expression. The global property is read-only.

Property of

RegEx

230 Core Objects

Description

global is a property of an individual regular expression object.

The value of global is true if the "g" flag is used; otherwise, it is false. The "g" flag indicates
that the regular expression should be tested against all possible matches in a string.

You cannot change this property directly. However, calling the compile method changes the
value of this property.

ignoreCase
Whether or not the "i" flag is used with the regular expression. The ignorecase property is
read-only.

Property of

RegEx

Description

ignoreCase is a property of an individual regular expression object.

The value of ignoreCase is true if the "i" flag is used; otherwise, it is false. The "i" flag
indicates that case should be ignored while attempting a match in a string.

You cannot change this property directly. However, calling the compile method changes the
value of this property.

input
The string against which a regular expression is matched. $_ is another name for the same
property.

Property of

RegEx

Description

Because input is static, it is not a property of an individual regular expression object. Instead,
you always use it as RegExp.input.

If no string argument is provided to a regular expression's exec or test methods, and if
RegExp.input has a value, its value is used as the argument to that method.

The script or the browser can preset the input property. If preset and if no string argument
is explicitly provided, the value of input is used as the string argument to the exec or test
methods of the regular expression object. input is set by the browser in the following cases:

When an event handler is called for a TEXT form element, input is set to the value of the
contained text.

Regular Expression 231

When an event handler is called for a TEXTAREA form element, input is set to the value of the
contained text. Note that multiline is also set to true so that the match can be executed
over the multiple lines of text.

When an event handler is called for a SELECT form element, input is set to the value of the
selected text.

When an event handler is called for a Link object, input is set to the value of the text between
 and .

The value of the input property is cleared after the event handler completes.

lastIndex
A read/write integer property that specifies the index at which to start the next match.

Property of

RegEx

Description

lastIndex is a property of an individual regular expression object.

This property is set only if the regular expression used the "g" flag to indicate a global search.
The following rules apply:

l If lastIndex is greater than the length of the string, regexp.test and regexp.exec
fail, and lastIndex is set to 0.

l If lastIndex is equal to the length of the string and if the regular expression matches the
empty string, then the regular expression matches input starting at lastIndex.

l If lastIndex is equal to the length of the string and if the regular expression does not
match the empty string, then the regular expression mismatches input, and lastIndex
is reset to 0.

l Otherwise, lastIndex is set to the next position following the most recent match.

For example, consider the following sequence of statements:

Table 32 lastIndex Statements

Statement Description

re = /(hi)?/g Matches the empty string.

re("hi") Returns ["hi", "hi"] with lastIndex equal to 2.

re("hi") Returns [""], an empty array whose zeroth element is the match string. In this case, the empty string because
lastIndex was 2 (and still is 2) and "hi" has length 2.

lastMatch
The last matched characters. $& is another name for the same property.

232 Core Objects

Property of

RegEx

Description

Because lastMatch is static, it is not a property of an individual regular expression object.
Instead, you always use it as RegExp.lastMatch.

lastParen
The last parenthesized substring match, if any. $+ is another name for the same property.

Property of

RegEx

Description

Because lastParen is static (read-only), it is not a property of an individual regular expression
object. Instead, you always use it as RegExp.lastParen.

leftContext
The substring preceding the most recent match. $' is another name for the same property.

Property of

RegEx

Description

Because leftContext is static (read-only), it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.leftContext.

multiline
Reflects whether or not to search in strings across multiple lines. $* is another name for the same
property.

Property of

RegEx

Description

Because multiline is static, it is not a property of an individual regular expression object.
Instead, you always use it as RegExp.multiline.

The value of multiline is true if multiple lines are searched, false if searches must stop at
line breaks.

Regular Expression 233

rightContext
The substring following the most recent match. $' is another name for the same property.

Property of

RegEx

Description

Because rightContext is static (read-only), it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.rightContext.

source
A read-only property that contains the text of the pattern, excluding the forward slashes and
"g" or "i" flags.

Property of

RegEx

Description

source is a property of an individual regular expression object. It is read-only. You cannot
change this property directly. However, calling the compile method changes the value of this
property.

Regular Expression Methods
The following table displays a summary of the regular expression methods. Detailed descriptions
of each method follow the table.

Method Expression

compile Compiles a regular expression object.

exec Executes a search for a match in its string parameter.

test Tests for a match in its string parameter.

compile
Compiles a regular expression object during execution of a script.

Applies to

RegExp

Syntax

regexp.compile(pattern, flags)

234 Core Objects

Parameters

regexp

The name of he regular expression. It can be a variable name or a literal.

pattern

A string containing the text of the regular expression.

flags

(Optional) If specified, flags can have one of the following 3 values:

l g—global match

l i—ignore case

l gi—both global match and ignore case

Description

Use the compile method to compile a regular expression created with the RegExp constructor
function. This forces compilation of the regular expression once only which means the regular
expression isn't compiled each time it is encountered. Use the compile method when you know
the regular expression will remain constant (after getting its pattern) and will be used repeatedly
throughout the script.

You can also use the compile method to change the regular expression during execution. For
example, if the regular expression changes, you can use the compile method to recompile the
object for more efficient repeated use.

Calling this method changes the value of the regular expression's source, global, and
ignoreCase properties.

exec
Executes the search for a match in a specified string. Returns a result array.

Applies to:

RegExp

Syntax

regexp.exec(str)

regexp(str)

Parameters

regexp

The name of the regular expression. It can be a variable name or a literal.

str

Regular Expression 235

(Optional) The string against which to match the regular expression. If omitted, the value of
RegExp.input is used.

Description

As shown in the syntax description, a regular expression's exec method call be called either
directly, (with regexp.exec(str)) or indirectly (with regexp(str)).

If you are executing a match simply to find true or false, use the test method or the
String search method.

If the match succeeds, the exec method returns an array and updates properties of the regular
expression object and the predefined regular expression object, RegExp. If the match fails, the
exec method returns null.

Note: In JavaScript version 1.5, the ‘|’ (pipe) character is treated (when not quoted) as an
alternate metacharacter . In this case, the regular expression “|aaa” means “empty string
OR ‘aaa’”. For example “|aaa” matches the string “bbb|aaa” starting before the first
character (and the matched string is empty). The same occurs with “aaabbb”. It matches
the empty alternative before the first character. To make an older “|aaa” regular expression
work in JavaScript 1.5, place quotes around the | character with a backslash.. For example,
enter “|aaa” as “\|aaa”, or “|Target~”. In JS1.5 as “\|Target~”. Also note the JavaScript
version 1.4 behavior not only occurs when ‘|’ is located at beginning of whole regular
expression, but also at the beginning of regexp group. For example, you would need to
change the regular expression “aaa(|bbb)” to “aaa(\|bbb)”.

Consider the following example:

//Match one d followed by one or more b's followed by one d
//Remember matched b's and the following d
//Ignore case
myRe=/d(b+)(d)/ig;
myArray = myRe.exec("cdbBdbsbz");

The following table shows the results for this script:

Object Property/Index Description Example

myArray The contents of myArray ["dbBd", "bB", "d"]

index The 0-based index of the match in the string. 1

input The original string cdbBdbsbz

[0] The last matched characters dbBd

[1], ...[n] The parenthesized substring matches, if any. The number of possible
parenthesized substrings is unlimited.

[1] = bB [2] = d

myRe lastIndex The index at which to start the next match. 5

236 Core Objects

Object Property/Index Description Example

ignoreCase Indicates if the "i" flag was used to ignore case true

global Indicates if the "g" flag was used for a global match true

source The text of the pattern d(b+)(d)

RegExp lastMatch $& The last matched characters dbBd

leftContext $\Q The substring preceding the most recent match. c

rightContext $' The substring following the most recent match. bsbz

$1, ...$9 The parenthesized substring matches, if any. The number of possible
parenthesized substrings is unlimited, but RegExp can only hold the last nine.

$1 = bB $2 = d

lastParen $+ The last parenthesized substring match, if any. d

If your regular expression uses the "g" flag, you can use the exec method multiple times to
find successive matches in the same string. When you do so, the search starts at the substring
of str specified by the regular expression's lastIndex property. For example, assume you
have this script:

myRe=/ab*/g;
str = "abbcdefabh"
myArray = myRe.exec(str);
Console.Write("\r\nFound " + myArray[0] +
". Next match starts at " + myRe.lastIndex)
mySecondArray = myRe.exec(str);
Console.Write("\r\nFound " + mySecondArray[0] +
". Next match starts at " + myRe.lastIndex)

This script displays the following text:

Found abb. Next match starts at 3
Found ab. Next match starts at 9

Examples

In the following example, the user enters a name and the script executes a match against the
input. It then cycles through the array to see if other names match the user's name.

This script assumes that first names of registered party attendees are preloaded into the array A,
perhaps by gathering them from a party database.

A = ["Frank", "Emily", "Jane", "Harry", "Nick", "Beth", "Rick",
 "Terrence", "Carol", "Ann", "Terry", "Frank", "Alice", "Rick",
 "Bill", "Tom", "Fiona", "Jane", "William", "Joan", "Beth"]
function lookup() {
 firstName = /\w+/i();
 if (!firstName)
 Alert (RegExp.input + " isn't a name!");
 else {
 count = 0;
 for (i=0; i<A.length; i++)

Regular Expression 237

 if (firstName[0].toLowerCase() == A[i].toLowerCase()) count++;
 if (count ==1)
 midstring = " other has ";
 else
 midstring = " others have ";
 window.alert ("Thanks, " + count + midstring + "the same name!")
 }
}
Enter your first name and then press Enter.

test
Executes the search for a match between a regular expression and a specified string. Returns
true or false.

Syntax

regexp.test(str)

Parameters

regexp

The name of the regular expression. It can be a variable name or a literal.

str

(Optional) The string against which to match the regular expression. If omitted, the value of
RegExp.input is used.

Description

When you want to know whether a pattern is found in a string use the test method (similar to
the String.search method); for more information (but slower execution) use the exec
method (similar to the String.match method).

Example

The following example prints a message which depends on the success of the test:

function testinput(re, str){
 if (re.test(str))
 midstring = " contains ";
 else
 midstring = " does not contain ";
 Console.Write (str + midstring + re.source);
}

238 Core Objects

P a r t I I

Scripting Reference

In Scripting Reference:

l Dashboard Scripting
l Object Model Map
l JavaScript Examples
l Troubleshooting Scripts
l Designing for EPM Workspace

Scripting Reference 239

240 Scripting Reference

9
Dashboard Scripting

In This Chapter

About Scripts .. 241

Understanding Functions... 241

Using JavaScript Statements... 246

Manipulating Objects with JavaScript .. 253

Microsoft Automation Interfaces and the Object Model.. 254

OLE Automation Controller within JavaScript (JOOLE) ... 254

Exporting Scripts to Text Files .. 255

About Scripts
When you use Interactive Reporting to create a dashboard, you can include one or more
Interactive Reporting documents and one or more of script components:

l Startup and Shutdown Scripts—Scripts that run when documents are opened and closed
(Save and Save As in Interactive Reporting Studio, Interactive Reporting Web Client, and
EPM Workspace do not execute document shutdown scripts when saving documents. These
scripts only execute when documents are closed. To prevent a startup script from running,
press and hold Ctrl while opening the document)

l Dashboard Shapes and Controls—User-interface components that enable interaction with
the application

l Computed Columns—Scripts that run within the context of a results or table section column

l Custom Menu Items—Items that enable scripts to run from any section

On Windows, you can launch script commands from the command line. The commands must
include the -jscriptcmd flag. For example, to launch Interactive Reporting, you type

brioqry.exe –jscriptcmd "Application.Documents.Open ("c:\\temp\\hyperiondoc.bqy")"

Understanding Functions
Functions are a fundamental building block of JavaScript. A function is a JavaScript procedure:
a set of statements that performs a specific task. To use a function, you must define it before
your script can call it.

About Scripts 241

Defining Functions
A function definition consists of the function keyword, followed by:

l The function name

l A list of arguments, enclosed in parentheses and separated by commas

l JavaScript statements that define the function, enclosed in braces { }

For example, to define a simple function named square, you type

function square(number) {
 return number * number;
}

The function name is square; the argument is number. The statement is return number *
number. The function returns the value of the argument multiplied by itself.

Changing Function Parameters and Object Properties
Parameters are passed to functions by a value. If a function changes the value of a parameter,
the change is not reflected globally or in the calling function. If you pass an object as a parameter
to a function and the function changes the properties of the object, the change is visible outside
the function.

Example:

function myFunc(theObject) {
 theObject.make="Toyota"
}
mycar = {make:"Honda", model:"Accord", year:2004}
x=mycar.make // returns Honda
muffin (mycar) // pass object mycar to the function
y=mycar.make // returns Toyota (property was changed by the function)

Calling Functions
In Interactive Reporting, all functions defined in the current script or defined globally or at a
higher level than the current script can be called.

Note: Use caution when working with global variables. Global variables are visible throughout
Interactive Reporting, including to computed column calculations and report section
expressions.

Defining a function names the function and specifies what happens when the function is called.
Calling the function performs the specified actions with the indicated parameters. For example,
to call the function square (see “Defining Functions” on page 242) with an argument of 5, you
call square(5). The function executes its statements and returns the value 25.

242 Dashboard Scripting

Function arguments can be strings, numbers, and objects. Functions can be recursive; that is,
they can call themselves.

Example—Recursive function that computes factorials:

function factoring) {
 if ((n == 0) || (n == 1))
 return 1
 else {
 result = (n * factorial(n-1))
 return result
 }
}

You can compute the factorials of 1 through 5 as follows:

a=factorial(1) // returns 1
b=factorial(2) // returns 2
c=factorial(3) // returns 6
d=factorial(4) // returns 24
e=factorial(5) // returns 120

Function Scope
Functions are accessible within the scope in which they are created, unless they are explicitly
defined in a different scope. Thus, a function which is defined in the OnClick() event handler
of a command button can only be called by other statements in that event handler.

Example—Two command buttons in a dashboard section:

// MyButton
function square(value)
{
return value*value;
}
Alert (‘’The square of 3 equals ‘’+ square(3))

// YourButton
var retVal = square(3)
// generates a runtime error
Alert (‘’The square of 3 equals ‘’+ retVal)

The square function is only visible in the context of MyButton. As a result, a call to the
square function from YourButton generates a runtime error.

Defining Functions in Different Scopes
To make functions visible to scripts throughout an application, you must explicitly define the
scope in which the function is visible. This objective can be accomplished in various ways:

l Using with statements

l Dynamically adding methods to objects

l Assigning functions to global variables

Understanding Functions 243

Examples: Defining Functions in Different Scopes
When using a with statement to set the script scope, functions defined within the with statement
become visible for that object.

Example—Using a with statement:

// MyButton
With (YourButton)
{
 function square(value)
 {
 return value*value;
 }
 Alert (“The square of 3 equals “+ square(3))
}

// YourButton
var retVal = square(3)
Alert (“The square of 3 equals “+ retVal)

Explicitly defining the square function within the context of the YourButton object makes the
function visible to scripts that are running behind the button. Any object from the object model
can be used with the with statement.

Example—Dynamically adding a method to an object:

// MyButton
Function square(value)
 {
 return value*value;
 }
Alert (“The square of 3 equals “+ square(3))YourButton.square = square;

// YourButton
var retVal = square(3)
Alert (“The square of 3 equals “+ retVal)

A new method is added dynamically to the YourButton object. Scripts running in the context
of this object can access the dynamically created square function.

Example—Assigning a value to a global variable:

// MyButton
Function square(value)
 {
 return value*value;
 }
Alert (“The square of 3 equals “+ square(3)) MyGlobalFunction = square;

// YourButton
var retVal = MyGlobalFunction(3)
Alert (“The square of 3 equals “+ retVal)

Creating a variable named MyGlobalFunction without using the var statement places the variable
in the top scope. Thus, the variable is global.

244 Dashboard Scripting

Using Variables
Variables used to create function components:

l Using Global Variables

l Using Document Variables

l Using Section Variables

Using Global Variables
Functions declared at the top level of scripts are global; that is, they are always in memory, and
all other functions can read and modify them.

You must carefully consider how and where to use global variables because a change to one
component of a variable affects all variables that reference the changed variable.

ä To call a function using a global variable, type

glMyFunction(myParam)

Using Document Variables
Document variables belong to and depend upon the document script in which they are included.
That is, document variables are erased when their documents are closed or another variable is
defined for them. From one document, you can call functions in two ways:
myFunction(myParam) or ActiveDocument.myFunction(myParam).

Using Section Variables
Section variables exist in the section and document in which they are included. You use section
variables to specify elements defined from multiple dashboard sections (provided that each
section declares a function of the same name).

You can call the same-named function by typing

ActiveDocument.Sections["Dashboard"].myFunction(myParam)

(myParam) can be defined in two ways:

l In this.Parent.myFunction=myFunction, this.Parent is the parent object of
this, which can be a Fields or Shapes object and is the object to which the script belongs.

l In this.myFunction=myFunction, the object belongs to the OnActivate or
OnDeactivate method of the section and this is the section object.

Understanding Functions 245

Using JavaScript Statements
JavaScript uses conditional and loop statements to change the order in which scripts execute
(based on object states or user selections) and break statements to change the execution of control
structures.

l Conditional Statements

l Loop Statements

l break Statements

l for...in Statements

l with Statements

Conditional Statements
Conditional statements are sets of commands that execute if specified conditions are true.
JavaScript supports three conditional statements:

l if...else Statements

l Inline if Statements

l switch Statements

if...else Statements
If a logical condition is true, the if statement performs one or more actions. If a logical condition
is false, the else clause, which is optional, performs one or more actions.

A typical if statement:

if (condition) {
 statements1
}
else {
 statements2
}

Conditions are JavaScript expressions that evaluate to true or false. Statements to be executed
are JavaScript statements, including nested if statements. If you want to use multiple statements
after an if or else statement, enclose the statements in braces {}.

Do not confuse primitive-Boolean true and false values with Boolean-object true and false values.
Objects whose values are not undefined or null, including Boolean objects whose values are false,
evaluate to true when passed to conditional statements, for example:

var b = new Boolean(false);
if (b) // this condition evaluates to true

Note: If you use an initial capital letter for if or else or type the word then, you receive an error
message. A then statement is implied for values enclosed in braces { }.

246 Dashboard Scripting

You can use an if...else statement to stop a script when the script encounters a selected
condition, for example:

if(cellvalue==0){ Alert("Cell has no value") }
else{ (execute remainder of code here) }

Inline if Statements
Inline if statements are alternatives to if...else statements. They use the conditional
operator (?) to represent if statements and a colon (:) to representelse clauses. Such statements
require three operands:

condition ? expr1 : expr2

l condition—An expression that evaluates to true or false

l expr1, expr2—Expressions with values of any type

If condition is true, the value of expr1 is returned; if condition is false, the value of
expr2 is returned.

You should place the condition in parentheses and each expression in single or double quotes:

((condition == value)?'expr1':'expr2')

Note: You can safely eliminate the condition parentheses, but omitting the quotes can cause
problems.

Numbers do not require quotes.

(condition?2:10)

For example, to display one message if a variable is true and another message if the variable is
false, you can use this statement:

(isMember ? 'Member' : 'Not a member')

In this case, if isMember is true, Member is returned. If isMember is false, Not a Member is
returned.

You can also use the comparison operator:

((isMember == 'Yes') ? 'Member' : 'Not a member')

In this case, if isMember equals the string Yes,Member is returned. If isMember does not equal
the string Yes, Not a Member is returned.

If you want to nest inline if statements, (that is, use one inline if statement as an expression
for another inline if statement), enclose the nested inline if statements in parentheses:

(1 != 1 ? 'Not Equal' : (1 < 1 ? 'Less Than': 'Equal'))

In this case, if 1 does not equal 1, the second inline if statement is evaluated as part of the
else clause of the first inline if statement. If 1 evaluates as less than 1, the string Less Than

Using JavaScript Statements 247

is returned. Because 1 equals 1, the string Equal is returned from the else clause of the second
inline if statement.

Note: If you open a Release 5.5 document in Interactive Reporting Release 6.x and the document
contains computed columns with nested if...else statements, the Interactive
Reporting JavaScript engine converts the if...else syntax to the inline if statement
syntax. The conversion process does not change the meaning or value of the original
if...else statement.

switch Statements
switch statements evaluate expressions and match the values of the expressions to case labels.
If a match is found, the associated statement executes.

Example—switch statement:

switch (expression){
 case label :
 statement;
 break;
 case label :
 statement;
 break;
 ...
 default : statement;
}

The program searches for a label that matches the value of the expression and then executes the
associated statement. If no match is found, the program searches for the optional default
statement. If a match is found, the program executes the associated statement. If no default
statement is found, the program executes at the statement following the end of switch.

Break statements, which are optional, are associated with case labels. Break statements ensure
that, after matched statements execute, programs leave switch and continue execution at the
statement following switch. If break is omitted, the program continues execution at the next
statement of the switch statement.

In the following example, if expr evaluates to Bananas, the program matches the value with
case Bananas and executes the associated statement. When break is encountered, the
program terminates switch and executes the statement following is.

switch (expr) {
 case "Oranges" :
 Console.Writeln("Oranges are $0.59 a pound.");
 break;
 case "Apples" :
 Console.Writeln("Apples are $0.32 a pound.");
 break;
 case "Bananas" :
 Console.Writeln("Bananas are $0.48 a pound.");
 break;
 case "Cherries" :
 Console.Writeln("Cherries are $3.00 a pound.");

248 Dashboard Scripting

 break;
 default :
 Console.Writeln("Sorry, we are out of " + i + ".");
}
Console.Writeln("Is there anything else you'd like?");

Loop Statements
Loop statements are sets of commands that execute repeatedly, until a specified condition is met.
JavaScript supports five loop statements:

l for Statements

l do...while Statements

l while Statements

l label Statements

l continue Statements

Note: label, although not a loop statement, is frequently used with loop statements.
break and continue statements are also used within loop statements.

Note: for...in statements, which also execute statements repeatedly, are used for object
manipulation. See “Manipulating Objects with JavaScript” on page 253.

for Statements
for loops repeat until a specified condition evaluates to false. The JavaScript for loop is similar
to the Java and C for loop.

for loop syntax:

for ([initialExpression]; [condition];
[incrementExpression]) {
 statements
}

When a for loop executes, the following occurs:

1. The initializing expression initialExpression, if any, is executed. This expression
usually initializes one or more loop counters, but the syntax accepts expressions of any degree
of complexity.

2. The condition expression is evaluated. If the value of condition is true, the loop statements
execute. If the value of condition is false, the for loop terminates.

3. The statements execute.

4. The update expression incrementExpression executes and control returns to step 2.

Using JavaScript Statements 249

do...while Statements
do...while statements repeat until a specified condition evaluates to false.

do {
 statement
} while (condition)

The statement executes once before the condition is evaluated. If the condition returns true, the
statement executes again. At the end of every execution, the condition is evaluated. When the
condition returns false, execution of the statement stops, and the statement following
do...while executes.

Example—do...while statement that iterates at least once and reiterates until it is greater than
five:

do {
 i+=1;
 Console.Writeln(i);
} while (i<5);

while Statements
while statements execute as long as a specified condition evaluates to true:

while statement syntax:

while (condition) {
 statements
}

If the condition becomes false, the statements within the loop stop executing and control passes
to the statement following the loop.

The condition test occurs before the loop statements are executed. If the condition returns true,
the loop statements are executed, and the condition is re-tested. If the condition returns false,
loop execution stops, and the statement following while executes.

Example—while loop that repeats as long as n < 3:

n = 0
x = 0
while(n < 3) {
 n ++
 x += n
}

With each iteration, the loop increments n and adds that value to x. Therefore, x and n obtain
the following values:

l After the first pass: n = 1, and x = 1

l After the second pass: n = 2, and x = 3

l After the third pass: n = 3, and x = 6

250 Dashboard Scripting

After the third pass, the condition n < 3 is no longer true, so the loop terminates.

Example—while loop that never terminates; that is, the loop executes forever because the
condition never becomes false:

while (true) {
 Alert("Hello, world") }

label Statements
label statements refer to statements in other locations. For example, you can use label to
identify a loop and then use break to interrupt execution of the loop.

label statement syntax:

label :
 statement

label can be any JavaScript identifier that is not a reserved word, and the statement identified
by label can be any type.

Example—markLoop (the label identifier) identifies a while loop:

markLoop:
while (theMark == true){
 doSomething();
}

continue Statements
continue statements can be used to restart while, do...while, for, and label statements.

l Forwhile and for, continue terminates the current loop and continues execution of the
loop with the next iteration

l For while, continue returns to the condition

l For for, continue moves to the increment expression

l For label, continue restarts the statement or continues execution of a labeled loop with
the next iteration. The continue statement must be in a looping statement that is identified
by the label that continue uses.

Note: In contrast to the break statement, continue does not entirely terminate the execution
of the loop.

continue statement syntax: continue or continue [label]

Example—A while loop with a continue statement that executes when the value of i is 3.
Thus, n obtains the values 1, 3, 7, and 12.

i = 0
n = 0
while (i < 5) {

Using JavaScript Statements 251

 i++
 if (i == 3)
 continue
 n += I
}

Example—A statement labeled checkiandj that contains a statement labeled checkj:

checkiandj :
 while (i<4) {
 Console.Writeln(i + "");
 i+=1;
 checkj :
 while (j>4) {
 Console.Writeln(j + "");
 j-=1;
 if ((j%2)==0);
 continue checkj;
 Console.Writeln(j + " is odd.");
 }
 Console.Writeln("i = " + i + "");
 Console.Writeln("j = " + j + "");
 }

If continue is encountered, the current iteration of checkj terminates, and the next iteration of
checkj begins. Iterations continue until the checkj condition returns false. When false is returned,
the remainder of checkiandj is complete and checkiandj reiterates until its condition returns false.
When false is returned, the statement following checkiandj executes. If continue had a label of
checkiandj, checkiandj would re-execute.

break Statements
break statements terminate loop, switch, or label statements.

When using break with a while, do...while, for, or switch statement, break terminates
the innermost enclosing loop or switch immediately and transfers control to the following
statement.

When using break within an enclosing label statement, it terminates the statement and
transfers control to the following statement. If a label is specified when the break is issued,
the break statement terminates the specified statement.

break statement syntax:break or break [label]

Example—Iteration through array elements until the index of an element with the value of
theValue is found:

for (i = 0; i < a.length; i++) {
 if (a[i] = theValue);
 break;
}

252 Dashboard Scripting

Manipulating Objects with JavaScript
JavaScript uses for...in and with statements to manipulate objects.

l for...in Statements

l with Statements

for...in Statements
for...in statements iterate specific variables over all properties of an object. For each property,
JavaScript executes the specified statements.

for...in statements syntax:

for (variable in object) {
 statements }

Example—An object and its name used as the argument, iteration over all properties of the
object, and return of a string that lists property names and values:

function dump_props(obj, obj_name) {
 var result = ""
 for (var i in obj) {
 result += obj_name + "." + i + " = " + obj[i] + ""
 }
 result += "<HR>"
 return result
}

Example—Car (as the object) with properties make and model:

car.make = Ford
car.model = Mustang

with Statements
with statements establish default objects for sets of statements. JavaScript reviews unqualified
names to determine whether the names are properties of the default object. If an unqualified
name matches a property, the property is used in the statement; otherwise, a local or global
variable is used.

with statement syntax:

with (object){
 statements
}

Example—Math is specified as the default object; the PI property and the cos and sin methods
are referenced, but no object is specified for the references; therefore, Math is assumed to be the
object of the references:

var a, x, y

Manipulating Objects with JavaScript 253

var r=10
with (Math) {
 a = PI * r * r
 x = r * cos(PI)
 y = r * sin(PI/2)
}

Microsoft Automation Interfaces and the Object Model
Typically, you use JavaScript to manipulate the object model from within a dashboard section
to build self-contained analytical applications. Because Interactive Reporting Studio is an OLE
Automation server, on Windows systems, you can use Microsoft Automation Interfaces to work
with the object model and with Interactive Reporting Studio in external applications such as
Excel, Visual Basic, C++, or any application that can make OLE Automation calls. The object
model is exposed through the brioqry.tlb file located in the system32 directory.

OLE Automation Controller within JavaScript (JOOLE)
Interactive Reporting Studio is an OLE Automation controller. On Windows systems,
Interactive Reporting Studio can control external applications (that is, programmable ActiveX
objects) that are OLE Automation servers. By making OLE Automation calls, Interactive
Reporting Studio can access functionality exposed by other OLE Automation Servers. Examples
of OLE Automation Servers, such as Excel and Visual Basic.

ä To define a JOOLE object reference, use var <variableName> = new
JOOLEObject(<ProgId>).

<ProgID> is a string that indicates the object to be referenced. Interactive Reporting Studio or
Interactive Reporting Web Client passes the string as a reference to the object; for example,
Excel.Application. <ProgID> is stored in the registry and contains a string defined as
Project.ClassName.

JOOLE works on Windows systems only.

Note: It is recommended that JOOLE calls stored in plug-in scripts be implemented on Internet
Explorer.

Tip: You cannot embed OLE objects inside Interactive Reporting documents. Likewise,
Interactive Reporting Studio and Interactive Reporting Web Client are not OLE servers that
produce OLE objects that you can embed in OLE containers.

Example—Invoking an Excel worksheet from a command button created in a dashboard section
and writing “Hello World” to rows of a column.

Excel = new JOOLEObject("Excel.Application");
Excel.Visible = true;

254 Dashboard Scripting

Excel.Workbooks.Add;
Excel.Sheets.Item(1).Cells.Item(2).Item(2).Value = "Hello";
Excel.Sheets.Item(1).Cells.Item(2).Item(3).Value = "World";
Print(Excel.Sheets.Item(1).Cells.Item(2).Item(2).Value);

Example—Invoking Outlook from a command button created in a dashboard section and
writing a message in the body of the e-mail message:

var olApp = new JOOLEObject("Outlook.Application")
var olNote = olApp.CreateItem(0)
olNote.To = "yourname@Hyperion.com"
olNote.Subject = "JOOLEObject mail Example"
olNote.Body = "This is an automatically generated note."
//olNote.Attachments.Add (filepath)
olNote.Send

Example—Using JOOLE to start Outlook on Windows XP:

var obj = Application.Shell("c:\\program Files\\outlook express\\msimn.exe")

Example—Invoking, displaying, and printing a Word document (Hello.doc) from a command
button created in a dashboard section:

/Create Word Object
word = new JOOLEObject("Word.Application");
// Make is Visible
word.Visible = true;
//Open the desired file
word.Documents.Open("c:\\Hyperion\\Hello.doc");
// Set Options
word.Options.PrintBackground = false;
//Start Printing
word.ActiveDocument.PrintOut();

Example—Creating and writing text to a text file from an Interactive Reporting document file,
appending the characters “_trace” to the document name and replacing the document extension
with .TXT:

var oleApp = new JOOLEObject("Scripting.FileSystemObject")
var myPath=ActiveDocument.Path.slice(0,-4)+"_trace.txt"
var traceDoc=oleApp.CreateTextFile(myPath)
traceDoc.WriteLine("hello from Hyperion")
traceDoc.Close()

For example if the Interactive Reporting document is named DashboardText.bqy, Interactive
Reporting Studio or Interactive Reporting Web Client creates the text file named
DashboardText_trace.txt.

Exporting Scripts to Text Files
You use the Export Scripts To Text File feature to export JavaScript scripts from Interactive
Reporting documents to text files. Interactive Reporting Studio categorizes text files by object
name and events and includes document and custom menu-item scripts.

Exporting Scripts to Text Files 255

ä To export scripts to text files:

1 Select File, then Export, and then Script To Text File, .

Export Script is displayed.

2 Specify the file name and location, and click Save.

256 Dashboard Scripting

10
Object Model Map

In This Chapter

Object Model Hierarchy... 257

Application Level Hierarchy ... 258

ActiveDocument Level Hierarchy ... 259

Sections... 260

Query Section ... 261

Dashboard Section ... 261

Chart Section ... 262

Results, Report, and Pivot Sections ... 263

Table and OLAPQuery Sections ... 264

Object Model Hierarchy
The object model map provides an expanded view of the object model hierarchy, as seen in Script
Editor. It begins at the highest level, Application, and drills down through the hierarchy. The
object model hierarchy:

l Application Level Hierarchy

l ActiveDocument Level Hierarchy

l Sections

Object Model Hierarchy 257

Table 33 Object Model Hierarchy

Number Hierarchy

1 Application

2 ActiveDocument

3 Sections

4 Section specific

Application Level Hierarchy
Objects subordinate to the Application level:

258 Object Model Map

ActiveDocument Level Hierarchy
Objects subordinate to the ActiveDocument level:

ActiveDocument Level Hierarchy 259

Sections
Objects subordinate to Sections:

l Query Section

l Dashboard Section

l Chart Section

l Results, Report, and Pivot Sections

l Table and OLAPQuery Sections

260 Object Model Map

Query Section
Objects subordinate to Query Section:

Dashboard Section
Objects subordinate to Dashboard Section:

Query Section 261

Chart Section
Objects subordinate to Chart Section:

262 Object Model Map

Results, Report, and Pivot Sections
Objects subordinate to Results, Reports, and Pivot sections:

Results, Report, and Pivot Sections 263

Table and OLAPQuery Sections
Objects subordinate to Table and OLAPQuery Sections:

264 Object Model Map

Table and OLAPQuery Sections 265

266 Object Model Map

11
JavaScript Examples

In This Chapter

Displaying and Entering Values in Text Boxes ... 267

Retrieving and Setting Object Properties .. 268

Object Model Placement and Sizing ... 269

Placement Node ... 269

Creating and Deleting Shapes ... 270

Using the Placement Properties and Method ... 270

Using CreateShape and RemoveShape... 272

Verify CreateShape and RemoveShape Functionality .. 273

Enabling and Disabling Controls.. 273

Controlling the Visibility of Graphics and Controls .. 274

Creating Interactive Reporting Database Connection Files (OCEs).. 274

Displaying a Connection Login Box... 275

Downloading Data Models .. 275

Displaying Table Catalogs ... 275

Adding Topics To Data Model Sections ... 275

Setting Up Topic Object Variables ... 275

Adding Joins ... 275

Adding Items to the Request Line ... 276

Adding Computed Columns to Query Request Lines ... 276

Creating and Setting Variable Filters (Limits).. 276

Using a BrioQuery 5.5 Limit Dialog Box to Store Values ... 276

Turning Off Page Headers on Report First Page ... 277

Turning Off the Prompt to Save Dialog Box ... 277

Displaying and Entering Values in Text Boxes
You use Interactive Reporting Studio text boxes to display output to and gather input from the
application.

Ways in which, in Run mode, you can use text boxes:

l Entering values

l Displaying values

Displaying and Entering Values in Text Boxes 267

l Displaying read-only information

l Validating data

l Calculating data

Text boxes are associated with three events: OnEnter, OnChange, and OnExit.

Example—For OnEnter, attach a JavaScript script

/* OnEnter Event—enables CommandButton */
var sect_name=’Dashboard’;
var ctrl_name=’CommandButton1’;
ActiveDocument.Sections[sect_name].Shapes[ctrl_name].Enabled = true;

Example—For OnChange, attach a JavaScript script

/* OnChange Event- validates changes*/
var sect_name=’Dashboard’;
var ctrl_name=’TextBox1’;
if (ActiveDocument.Sections[sect_name].Shapes[ctrl_name].Text==’Hello’)
{
Alert(‘Hello is an Invalid Entry’);
}

Example—For OnExit, attach a Javascript script

/* OnExit Event- increments variable counter */
var sect_name=’Dashboard’;
var ctrl_name=’TextBox1’;
if (ActiveDocument.Sections[sect_name].Shapes[ctrl_name].Text==’2’)
{
x=x+1;
}

Retrieving and Setting Object Properties
Interactive Reporting objects have associated properties, which represent attributes such as
name, visible, enabled, and text. Most properties can be set using the Properties dialog box in
the dashboard section.

Example—Get a ListBox property

/* Get the value of the ListBox MultiSelect property*/
var sect_name=’Dashboard’;
var ctrl_name=’ListBox1’;
TextBox1.Text =
ActiveDocument.Sections[sect_name].Shapes[ctrl_name].MultiSelect;

Example—Set a CheckBox property

/* Set the value of the CheckBox Checked property */
var sect_name=’Dashboard’;
var ctrl_name=’CheckBox1’;
ActiveDocument.Sections[sect_name].Shapes[ctrl_name].Checked = true;

268 JavaScript Examples

Example—Get a RadioButton group property

/* Get the value of the RadioButton Group property */
var sect_name=’Dashboard’;
var ctrl_name=’CheckBox1’;
TextBox1.Text =
ActiveDocument.Sections[sect_name].Shapes[ctrl_name].Group;

Object Model Placement and Sizing
All shapes and controls on a dashboard have a node called Placement, which contains properties
and a method to enable the shape or control to be moved or resized.

The Shapes collection contains two methods, CreateShape and RemoveShape, to enable shapes
to be created and deleted using COM or JavaScript.

Placement Node
The Placement node has four properties and one method that enable the parent shape or control
to be moved or resized.

All values given to and supplied from the Placement properties and methods are pixel values.

Placement Properties
These are the Placement properties.

XOffset—Sets or returns the position of the left-hand edge of a shape

YOffset—Sets or returns the position of the top of a shape

Width—Sets or returns the width of a shape

Height—Sets or returns the height of a shape

Placement Method
The Placement method, Modify(XOffset, YOffset, Width, Height), changes the origin and size
of the shape.

All parameters must be supplied. If YOffset, Width, or Height are not supplied, YOffset has a
value of zero, and Width and Height have a value one.

Using this method is a quick way to set all Placement properties at once.

Note: To keep the current position or size of a shape when using the Placement.Modify method,
supply the current values using the Placement properties.

Object Model Placement and Sizing 269

Creating and Deleting Shapes
The Shapes collection includes two methods (CreateShape and RemoveShape) that enable
shapes and controls to be created and deleted using COM or JavaScript.

CreateShape Function
To programmatically create a shape on a dashboard, use CreateShape(bqShapeType,
[sectionName]). The first parameter specifies the sort of shape or control to be created and must
be one of the values of the bqShapeType enumeration.

If the shape being created is an embedded section, the section parameter must be the name of
the section to be embedded. This must be a chart, pivot, result set, or table. If the name of any
other section type is supplied the function fails and an exception is thrown.

When creating shapes using COM, you must supply a value for the second parameter. You can
supply the empty string “” for this value for shapes and controls other than embedded sections.

Shapes are created at the top-left of the dashboard section, with a default size based on type of
shape or control. The default size is the size used when the shape is dragged onto the dashboard
in Design mode.

A reference to the newly created shape is returned from this function. You can use the reference
to set the Placement of the shape using the Placement properties or functions, see “Placement
Node” on page 269, and you can set the name of the shape using the Name property.

Note: Using more than 1,021 shapes is not supported in a Dashboard section.

RemoveShape Function
RemoveShape(shapeName) can be used to delete a shape from a dashboard using COM or
JavaScript. Pass the name of the shape to be deleted as the shapeName parameter.

Caution! The RemoveShape operation cannot be undone.

Using the Placement Properties and Method
In the procedural example, an object; for example, a graphic of a ball, is moved across a screen
by using the Placement properties and method.

Note: Modify the example to suit your requirements.

Placing Objects
Example—Using the properties and method of the Placement node.

270 JavaScript Examples

ä To move an object (graphic) across a dashboard frame:

1 In Interactive Reporting Studio, select File, then New

New File is displayed.

2 Select Other, then A Blank Document, and then click OK.

The document opens in Design mode.

3 From Elements, expand Graphics, drag the rectangle onto the dashboard and resize it to be bigger.

4 Right-click the rectangle, and select Properties.

Properties is displayed.

5 In Properties, enter a Name for the rectangle, and click OK.

For example, type Field. The rectangular shape is the area that the ball graphic moves across.

6 Optional: Select Border and Background, and change the background color.

7 From Graphics, drag a picture onto the dashboard, and then navigate to and select an image of a ball.

8 Right-click the ball graphic, and select Properties.

9 In Properties, enter a Name for the graphic, and click OK.

For example, type Ball.

10 From Elements, expand Controls, and drag an option button onto the dashboard.

With the option button selected, drag a copy to the right to create a duplicate.

11 Right-click the first option button, and select Properties.

12 In Properties, enter a Name, Title, and Group Name, and then click OK.

For example, type Left as the Name, Move Left 100 as the Title, and LeftRight as the Group
Name.

13 Repeat step 12 for the second option button with alternate data.

For example, type Right as the Name, Move Right 100 as the Title, and LeftRight as the
Group Name.

14 From Controls, drag a command button onto the dashboard, right-click, and select Properties.

15 In Properties, enter a Title, and click OK.

For example, type Move Ball.

16 Right-click Move Ball again, and select Scripts.

Script Editor is displayed.

17 Copy and paste this script into the editor. You can modify the script to suit your requirements.

var moveHoriz
if (Right.Checked){
 moveHoriz = 100
}else{
 moveHoriz = (-100)
}
var left = Ball.Placement.XOffset

Using the Placement Properties and Method 271

var top = Ball.Placement.YOffset
var width = Ball.Placement.Width
var height = Ball.Placement.Height

if (moveHoriz > 0){
 if (left+width+moveHoriz > Field.Placement.XOffset + Field.Placement.Width){
 Alert ("Reached the right end of the field","Goal !!! Yay!!!")
 Ball.Placement.XOffset = Field.Placement.XOffset + Field.Placement.Width -
Ball.Placement.Width
 Left.Checked = true
 return
 }
}else{
 if (left+moveHoriz < Field.Placement.XOffset){
 Alert ("Reached the left end of the field","Goal !!! Yay!!!")
 Ball.Placement.XOffset = Field.Placement.XOffset
 Right.Checked = true
 return
 }
}
Ball.Placement.Modify(left + moveHoriz, top, width, height)

18 Click OK to close Script Editor.

19 Press Ctrl+D to exit Design mode, and save the dashboard.

Verifying Functionality
When the objects and the script are added to the dashboard, verify that the code is functioning
correctly.

Test the functionality by clicking Move Ball. The ball moves 100 pixels at a time. When it reaches
the edge of the rectangle, an alert is displayed.

Using CreateShape and RemoveShape
You use the CreateShape method to add a shape to a dashboard; for example, a goal for football,
and you use the RemoveShape method to remove the shape of the goal. To perform the physical
adding and removing of the shape, configure two command buttons.

Note: Modify the example to suit your requirements.

ä To configure two command buttons:

1 In Interactive Reporting Studio, use the dashboard from the Placing Objects procedure.

2 Press Ctrl+D to enter Design mode.

3 From Elements, expand Controls, and drag two command buttons onto the dashboard.

4 Right-click CommandButton2, and select Properties.

5 In Properties, enter a Name and Title.

272 JavaScript Examples

For example, type AddGoal as the Name, and Add a Goal as the Title.

6 Repeat steps 4-5 for CommandButton3 with alternate data.

For example, type DelGoal as the Name, and Delete the Goal as the Title.

7 From Graphics, drag a rectangle onto the dashboard, right-click, and select Properties.

The rectangle will be added or removed by the command buttons.

8 In Properties, enter a Name.

For example, type LeftGoal.

9 Select Add a Goal, right-click, and select Scripts.

10 In Script Editor, copy and paste this code, or modify to suit your requirements.

var objRect = ActiveSection.Shapes.CreateShape(bqRectangle)
objRect.Name = "LeftGoal"
objRect.Placement.XOffset = Field.Placement.XOffset - 10
objRect.Placement.YOffset = Field.Placement.YOffset - 10
objRect.Placement.Width = Ball.Placement.Width - 60
objRect.Placement.Height = Field.Placement.Height + 20
objRect.Fill.Color = bqBlack

11 Click OK to close Script Editor.

12 Right-click Delete the Goal, and select Scripts.

13 In Script Editor, copy and paste this code, or modify to suit your requirements.

try{
 Shapes.RemoveShape("LeftGoal")

}catch(e){} // no worries it does not exist

14 Click OK to close Script Editor.

15 Press Ctrl+D to exit Design mode, and save the dashboard.

Verify CreateShape and RemoveShape Functionality
Test the functionality by clicking Add a Goal. The goal shape is displayed. Click Delete the Goal,
and the goal shape is removed.

Enabling and Disabling Controls
Dashboard graphics and controls have an Enable property that determines whether, in Run
mode, they are enabled or disabled. Users can use enabled objects to trigger events. Users cannot
use disabled objects (which are displayed as dimmed) to trigger events. The Enable property is
available, for graphics and controls, from the Object tab in the Properties dialog box.

Example—Enable a control

/* Enables controls */
var sect_name=’Dashboard’;
var ctrl_name=’TextBox1’;

Verify CreateShape and RemoveShape Functionality 273

ActiveDocument.Sections[sect_name].Shapes[ctrl_name].Enabled = true;

Example—Disable a control

/* Disables controls */
var sect_name=’DashboardDashboard’;
var ctrl_name=’TextBox1’;
ActiveDocument.Sections[sect_name].Shapes[ctrl_name].Enabled = false;

Controlling the Visibility of Graphics and Controls
Dashboard graphics and controls have a Visible property that determines whether, in Run mode,
they are displayed. Users can use only visible objects to trigger events. The Visible property is
available, for graphics and controls, from the Object tab in the Properties dialog box.

Example—Make a control visible

/* Makes control Visible */
var sect_name=’Dashboard’;
var ctrl_name=’TextBox1’;
ActiveDocument.Sections[sect_name].Shapes[ctrl_name].Visible = true;

Example—Make a control invisible

/* Makes control Invisible */
var sect_name=’Dashboard’;
var ctrl_name=’TextBox1’;
ActiveDocument.Sections[sect_name].Shapes[ctrl_name].Visible = false;

Creating Interactive Reporting Database Connection
Files (OCEs)
Example—Create an Interactive Reporting database connection file (OCE)

// try to create sample.oce from scratch.
// create SQLNet-Oracle8 oce - save as sample.oce
MyConnection = ActiveDocument.Sections["Query"].DataModel.Connection
MyConnection.Open("c:\\OCEs\\Sample.oce")
MyConnection.Username = "hyperion"
MyConnection.SetPassword("hyperion")
MyConnection.Connect()
MyConnection.SaveAs("c:\\temp\\sample.oce")

ActiveDocument.Sections["DataModel"].DataModel.Connection.Open("c:\\temp\\astro8.oce")
// need to connect ?
ActiveDocument.Sections["DataModel"].DataModel.Connection.UserName = "hyperion"
ActiveDocument.Sections["DataModel"].DataModel.Connection.SetPassword("hyperion")
ActiveDocument.Sections["DataModel"].DataModel.Connection.Connect()

274 JavaScript Examples

Displaying a Connection Login Box
Example—Display a connection login box

ExecuteBScript(“set logon root, 'OCENAME', 'd:\\programfiles\\hyperion\\oces\\Astro
SQLNet Oracle8.oce': connect logon root”)

Downloading Data Models
Example—Download from the repository a data model, standard query, or standard query with
report

//download a data model, standard query or standard query with reports //from a local
repository
//(document name to gain the download), (type of document), (repository //owner) (group
with access), (name of document)
ExecuteBScript("download doc root, 'SQR', 'ts', 'PUBLIC', 'Sales")

Displaying Table Catalogs
Example—Display a list of tables available on the database

// display table catalog
ActiveDocument.Sections["DataModel"].DataModel.Catalog.Refresh()

Adding Topics To Data Model Sections
Example—Add topics to a data model section

// add topics to DataModel section
CatItem =
ActiveDocument.Sections["DataModel"].DataModel.Catalog.CatalogItems["PCW_ITEMS"]
ActiveDocument.Sections["DataModel"].DataModel.Topics.Add(CatItem)

Setting Up Topic Object Variables
Example—Set up topic object variables

// setting up topic objects variables...
PCWItems = ActiveDocument.Sections["DataModel"].DataModel.Topics["PCW_ITEMS"]
PCWSales = ActiveDocument.Sections["DataModel"].DataModel.Topics["PCW_SALES"]
PCWCustomers = ActiveDocument.Sections["DataModel"].DataModel.Topics["PCW_CUSTOMERS"]
PCWPeriods = ActiveDocument.Sections["DataModel"].DataModel.Topics["PCW_PERIODS"]

Adding Joins
Example—Add a join

Displaying a Connection Login Box 275

// add join between PCW_PERIODS (Day) and PCW_SALES (Order_Date)
PCWPeriods_Day = PCWPeriods.TopicItems["Day"]
PCWSales_OrderDate = PCWSales.TopicItems["Order_Date"]
Day_OrderDate_Join =
ActiveDocument.Sections["DataModel"].DataModel.Joins.Add(PCWPeriods_Day,PCWSales_OrderDa
te,
bqJoinSimpleEqual)

Adding Items to the Request Line
Example—Add items to the request line

// add items to the request line
ActiveDocument.Sections["Query"].Requests.Add("PCW_CUSTOMERS", "Store")
ActiveDocument.Sections["Query"].Requests.Add("PCW_SALES", "Store_Id")
ActiveDocument.Sections["Query"].Requests.Add("PCW_SALES", "Order_Date")
ActiveDocument.Sections["Query"].Requests.Add("PCW_SALES", "Delivery_Date")
ActiveDocument.Sections["Query"].Requests.Add("PCW_SALES", "Units")
ActiveDocument.Sections["Query"].Requests.Add("PCW_SALES", "Amount")
ActiveDocument.Sections["Query"].Requests.Add("PCW_CUSTOMERS", "City")
ActiveDocument.Sections["Query"].Requests.Add("PCW_CUSTOMERS", "State")
ActiveDocument.Sections["Query"].Requests.Add("PCW_PERIODS", "Year")

Adding Computed Columns to Query Request Lines
Example—Add a computed column to a query request line

// add computed column to Query request line - Amount/Units
ActiveDocument.Sections["Query"].Requests.AddComputedItem
("CompItem","Amount/Units",3)

Creating and Setting Variable Filters (Limits)
Example—Create and set variable filters

// create and set variable limit - Store_Id
mylimit = ActiveDocument.Sections["Query"].Limits.CreateLimit("PCW_SALES.Store_Id")
mylimit.Operator = bqLimitOperatorLessThanOrEqual
mylimit.CustomValues.Add(10)
mylimit.SelectedValues.Add(10)
ActiveDocument.Sections["Query"].Limits.Add(mylimit)
mylimit.VariableLimit = true

Using a BrioQuery 5.5 Limit Dialog Box to Store Values
Example—Use a BrioQuery 5.5 Limit dialog box to store values in a text box

ExecuteBScript("modify limit root.'Pcw Customers'.'Store Type'.'Store Type'")
var limit = ActiveDocument.Sections["Query"].Limits["Store Type"]
var TextBox = ActiveSection.Shapes["TextBox1"]

276 JavaScript Examples

if (!limit.Ignore)
{
TextBox.Text = limit.SelectedValues[1]
}
else
{
TextBox.Text =""
}

Turning Off Page Headers on Report First Page
Example—For the first page of a report, turn off page headers

if (PageNm==1)
{' '}
else
{"Query Processed: "+ Format(new Date(), "d-mmm-yyyy")}

Turning Off the Prompt to Save Dialog Box
Example—On an OnShutdown event, shut down the Interactive Reporting application

Application.Quit(false)

Turning Off Page Headers on Report First Page 277

278 JavaScript Examples

12
Troubleshooting Scripts

In This Chapter

Identifying Errors .. 279

Space-Saving Variables ... 279

Case-Sensitive Code... 280

Assignment Operators Versus Comparison Operators .. 280

Conditional Tests.. 281

Syntax Displayed in the Description Pane ... 282

Recalculating Results.. 283

Designing Scripts .. 283

Code Entry .. 284

Bypass Errors .. 284

Getting Assistance with Problem Scripts.. 285

Identifying Errors
When syntax or runtime errors occur and scripts fail to execute, you must debug the code.
Preventing errors is preferable to finding and fixing errors. Therefore, observe carefully the
protocols required by JavaScript.

Space-Saving Variables
Exception to the code-entry rule: If you plan to use an object model path repeatedly, define it
as a variable, to save space and create a compact script.

Example—What not to type:

ActiveDocument.Sections["Query"].DataModel.Connection.Username = "hyperion"
ActiveDocument.Sections["Query"].DataModel.Connection.SetPassword("hyperion")ActiveDocum
ent.Sections["Query"].DataModel.Connection.Connect

Example—What to type:

DMPath = ActiveDocument.Sections["Query"].DataModel.Connection
DMPath.Username = "hyperion"
DMPath.SetPassword("hyperion")
DMPath.Connect

Identifying Errors 279

Treat space-saving variables as object model paths. That is, insert periods between object model
segments, and do not add unnecessary spaces.

Also, include only objects in the path; that is, do not include methods or property segments for
the objects:

Example—Incorrect script, because ActiveDocument.Sections["Query"].Limits does
not have an Activate() method:

LPath = ActiveDocument.Sections["Query"].Limits
LPath.Activate()

Example—Correct script:

LPath = ActiveDocument.Sections["Query"]
LPath.Activate()

Case-Sensitive Code
JavaScript is case-sensitive.

Case-related rules:

l JavaScript statements (for example, var, if…else, while, switch, and so on) begin with
lowercase letters. The script Var StringName = "John Smith" fails because Var is
capitalized.

l JavaScript core operators start with uppercase letters, for example, new Date(). The script
new date() fails because date is not capitalized.

l Object model path segments begin with uppercase letters; for example,
ActiveDocument.Sections["Dashboard"].Activate(). Both
activeDocument.Sections["Dashboard"].Activate() and
Activedocument.Sections["Dashboard"].Activate() fail because the
ActiveDocument is not properly capitalized.

l You must refer to variables as you define them. For example, if you define a variable as
var StringName, you must refer to it as StringName, not Stringname or
stringName or stringname.

Assignment Operators Versus Comparison Operators
JavaScript distinguishes between assignment and comparison operators.

Example—Assignment operator:

myvar = 5

Example—Comparison operator:

if (myvar == 5)

Be careful with operators, particularly when assigning argument values to methods.

280 Troubleshooting Scripts

Example—Syntax that assigns hyperion to DMPath.SetPassword.

DMPath = ActiveDocument.Sections[”Query”].DataModel.Connection
//This works…
DMPath.SetPassword(“hyperion”)

//This does not!!!!
DMPath.SetPassword = "hyperion"

Conditional Tests
When using if statements, avoid impossible conditional tests.

Example— A incorrect script, which returns myvar is not 5!, even though myvar is 5,
because 5 is not the same as five:

var myvar = 5
if (myvar == "five")
 {
 Alert("myvar = 5!")
 }
else
 {
 Alert("myvar is not 5!")
 }

You need to know how variables report in various situations. The Console.Writeln() and
Alert() methods are especially useful in diagnosing problems related to inaccurate reporting
of variables.

Example—A correct script, in which the JavaScript core operator String is used to format
myvar for the Console window:

var myvar = 5
Console.Writeln(String(myvar))
if (myvar == "five")
 {
 Alert("myvar = 5!")
 }
else
 {
 Alert("myvar is not 5!")
 }

If you are comparing a value that you selected in a list or drop-down list to another value, verify
the retrieved value before you compare it. You want to avoid confusing the placement of the
selected item with the value of the selected item.

For example, if a drop–down list contains 4, 9, 15, 25, and 36 and you select 36, the following
script returns myvar is 5!:

var myvar = DropDown1.SelectedIndex
Console.Writeln(String(myvar))
if (myvar == 5)
 {

Conditional Tests 281

 Alert("myvar = 5!")
 }
else
 {
 Alert("myvar is not 5!")
 }

The result occurs because DropDown1.SelectedIndex returns the placement, not the value,
of 36.

Consider another example: A drop-down list contains one, two, three, four and five. When you
select five, the following script returns myvar = five!

DropDown1 = ActiveDocument.Sections["Dashboard"].Shapes.DropDown1
var myvar = DropDown1.SelectedIndex
Console.Writeln(String(myvar))
if (myvar == 5)
 {
 Alert("myvar = five!")
 }
else
 {
 Alert("myvar is not five!")
 }

Five is returned because five is the fifth item. You receive the correct result, but for the wrong
reason.

Consider another example: The drop-down list contains the values one, two, three, four, and
five. When you select five, the following script returns the value that is displayed in the drop-
down list (the correct value, five):

DropDown1 = ActiveDocument.Sections["Dashboard"].Shapes.DropDown1
var myvar = DropDown1[DropDown1.SelectedIndex]
Console.Writeln(String(myvar))
if (myvar == "five")
 {
 Alert("myvar = 5!")
 }
else
 {
 Alert("myvar is not 5!")
 }

Syntax Displayed in the Description Pane
On the bottom left of the Script Editor, directly above the Help button, is the Description pane.
The Description pane shows you the necessary syntax for any item you select in the Object
browser.

For example, if, in the Object browser, you navigate to Application, then ActiveDocument, then
Sections, then Query, and then Methods and select Activate(), the description pane reads
void Activate().

This display indicates that the Activate() method does not accept arguments.

282 Troubleshooting Scripts

If you select Export(), the description pane reads

void Export(String Filename, BqExportFileFormat FileFormat, [optional] Boolean
IncludeHeaders)

This display indicates that Export() accepts three arguments, two required and one optional.

Recalculating Results
Scripts that include limits (filters) may execute slowly because the scripts must recalculate the
data set each time a limit is modified. You can use the SuspendRecalculate property to
prevent a results limit from forcing recalculations.

Example—Limit values are dynamically selected from a list, but recalculation occurs only after
the last value is selected:

Sections[sect_name].Limits[limit_col].SuspendRecalculation = true;
Sections[sect_name].Limits[limit_col].SelectedValues.RemoveAll();
for(I = 1; I <= ListBox2.SelectedList.Count;I++)
{
 NewLimitValue = ListBox2.SelectedList[I];
 newname += ListBox2.SelectedList[I]
 Sections[sect_name].Limits[limit_col].SelectedValues.Add(NewLimitValue);
}
Sections["Results"].Limits["1"].SuspendRecalculation = false;
Sections[sect_name].Limits[limit_col].Ignore=false; // Trigger recalculation now

Designing Scripts
JavaScript is an interpreted, not a compiled, language that evaluates and runs code line in
sequence. If JavaScript finds a problem with a code line, it stops. Although the syntax checker
of Interactive Reporting Studio Script Editor identifies some obvious syntax errors, many errors
are not noticed until runtime.

Identifying whether each line of code executes or fails, as you develop scripts, is a time-effective
way to identify and avoid problems.

The Console window displays error messages and alert values that are generated by the JavaScript
interpreter. During script debugging cycles, you can write messages to the Console window to
track the state of variables and the progress of the script. If a syntax error is detected, the error
and the line number in which it occurs are displayed. You can use the line number to move
directly to the error in the Script Editor.

You use one of three methods to write to the Console window: Console.Write(),
Console.Writeln(), or Alert().Console.Write() and Console.Writeln()are
essentially identical. Console.Write() does not add carriage returns at the ends of lines, and
Console.Writeln() does add carriage returns.

Console.Writeln() is usually, but not always, the preferred technique. It enables the script
to run without user interaction, and the Console window records each line as it is written to the
Console.

Recalculating Results 283

Note: Console.Writeln()is spelled with a lowercase l and n.

The Console window also displays the buffer that contains messages about the errors that occur
from when Interactive Reporting Studio starts. Thus, the Console window may display
information that is no longer of value.

ä To clear the error buffer, select Edit, then Clear.

You can access the Console window from any section within a document; it remains open until
you close it. When the Console window is closed, the buffer size is 1,000 bytes. When the Console
window is open, the buffer size is 641 bytes.

To work through a challenging section of code, you should use Alert().

Whatever method you use, you must identify the beginning and end of each script and each
code line before the script or each code line executes.

Example—A script that moves to the query section and removes limits:

Console.Writeln("Start Query Script")
Console.Writeln("Step1")
ActiveDocument.Sections["Query"].Activate()
Console.Writeln("Step2")
ActiveDocument.Sections["Query"].Limits.RemoveAll()
Console.Writeln("Step3")
Console.Writeln("End Query Script")

For the example script, the Console window displays the following message:

Start Query Script
Step1
Step2
Step3
End Query Script

Code Entry
To avoid errors, add code to the Script Editor scripting pane by double-clicking an object in the
Object browser or by cutting and pasting rather than by typing.

Bypass Errors
The try-catch block, which is borrowed from Java, is used to bypass errors.

General syntax for a try-catch block:

try
{do something}
catch(errorname)
{do something with the error}
finally

284 Troubleshooting Scripts

{do something else}

Example of a try-catch block:

QPath = ActiveDocument.Sections["Query"].Limits
try
{QPath.Activate()}
catch(e)
{Alert(e.toString())}
finally
{Alert("We're Done!")}

The try-catch block does not usually identify definition errors but does identify errors such
as use of a lowercase d in date():

try
{Alert(new date())}
catch(e)
{Alert(e.toString())}
finally
{Alert("We're Done!")}

Getting Assistance with Problem Scripts
If you follow all recommended practices and your script does not function properly, consider
opening a call with Hyperion Solutions Customer Support at 1-877-901-4975 or visit the
Hyperion Web site (http://www.hyperion.com).

When you contact Hyperion Solutions Customer Support, be prepared to show the Interactive
Reporting document that contains the problem script and to specify the section and control
within which the script resides.

If your data is confidential, consider using the sample script that ships with Interactive Reporting
Studio to duplicate your Interactive Reporting document, saving your document file without
results, or limiting the results sets.

ä To set results options, select Query, then Query Option.

Problems in one script may result from problems in another script. Therefore, Hyperion
Solutions Customer Support may also need to evaluate your startup scripts and your dashboard
section scripts. For this reason, it is recommended that you use the Console.Writeln()
method to identify each code line to the Console window.

Getting Assistance with Problem Scripts 285

http://www.hyperion.com

286 Troubleshooting Scripts

13
Designing for EPM Workspace

In This Chapter

Architecture of EPM Workspace ... 287

Interactive Reporting Features Supported in EPM Workspace ... 289

EPM Workspace Limitations—Designing and Using Interactive Reporting Document Sections
... 290

Creating Predefined Drill-Down Paths... 294

Chart Sizing ... 295

Locating Errors .. 296

Controls .. 296

Control Object Properties.. 297

Graphics ... 297

Borders, Background, and Fonts .. 298

Events .. 298

Client-Side JavaScript .. 298

Alert Dialog Box ... 300

Toolbars .. 301

Accessibility .. 304

Guided Analysis and Reporting ... 305

Object Model Items Excluded from EPM Workspace ... 306

Object Model Properties Irrelevant to EPM Workspace That Must Be Retained... 307

User Embedded HTML ... 309

BQY-XML Formatting ... 310

User Credentials in Scripting... 310

Fixing Scripted Credentials Errors .. 311

PrintOut() Method Support in EPM Workspace ... 311

Anti-Aliasing and Charts.. 312

Architecture of EPM Workspace
EPM Workspace generates dynamic HTML, enabling users to interact with Interactive Reporting
documents from browser interfaces. Users perform actions such as drilling into and processing
data, changing chart types, and swinging pivots, and EPM Workspace generates HTML pages
on demand.

Architecture of EPM Workspace 287

EPM Workspace Components
l Interactive Reporting HTML Servlet—An information broker between the browser and

Interactive Reporting

l Interactive Reporting Service—The back-end component that opens, manages, and renders
HTML versions of Interactive Reporting documents (The HTML documents are returned
to Interactive Reporting HTML Servlet.)

l Data Access Service (DAS)—The component that is responsible for and manages all
database requests

EPM Workspace Performance-Enhancing Features
EPM Workspace offers several performance-enhancing features:

l Partial Document Loading

l Multithreading

l Distributed Components

l Disk Caching Of Interactive Reporting Documents

Partial Document Loading
Only required sections of Interactive Reporting documents, rather than whole documents, are
loaded.

Multithreading
Rather than one process executing serially on one thread or several processes executing on
multiple individual threads (requiring greater memory overhead), one process executes
concurrently on multiple threads (in a multitasking or multiprocessing environment).

Distributed Components
Rather than software components being centralized within a system, they are modularized and
deployed anywhere within a network, with communication coordinated by messages passed
among components.

Disk Caching Of Interactive Reporting Documents
Rather than disk access being required for everyInteractive Reporting document request, data
read from disk is stored in memory and thus is readily available to the next request.

288 Designing for EPM Workspace

Interactive Reporting Features Supported in EPM
Workspace
Interactive Reporting sections:

l Drill down and drill into (chart and pivot)

l Drill anywhere (chart and pivot)

l Swing pivots

l Add and remove totals (pivot)

l Add and remove items (results, chart, and pivot)

l Data functions (chart, pivot)

l Add, remove, and modify cume (cumulative) (chart and pivot)

l Surface values (pivot)

l Show and hide items

l Sort

l Grouping labels (chart and pivot)

l Add and remove grand and break totals (results)

l Specify chart type (chart)

l Set legend on XYZ Axis (chart)

l Show values (bar, pie, and line charts)

l Process relational and OLAP queries

l Recognition of document and dashboard section events

l Blank content areas for empty sections

Interactive Reporting graphics and control objects:

l Recognition of most dashboard object events

l Interaction with dashboard controls

l Most embedded dashboard section objects

l Most dashboard and report graphics objects

Interactive Reporting object model:

l Most functions of the object model

l Definition and manipulation of filters (limits) through the object model

Interactive Reporting Web Client features:

Four of the six Interactive Reporting Web Client adaptive states. See Behaviors specific to
Interactive Reporting features supported in EPM Workspace.

Behaviors specific to Interactive Reporting features supported in EPM Workspace:

Interactive Reporting Features Supported in EPM Workspace 289

l For Interactive Reporting Web Client—Adaptive States Query and Analyze and Data Model
and Analyze are not completely available, because only their view, process, and analyze
portions are honored. Adaptive States override defined roles.

l When Process All occurs (dashboard and report) or when the ProcessAll() method is called,
users are prompted for connection information prior to processing, not following each query
process.

l All errors are handled by log files. There is no feature equivalent to the Console window,
but most errors are displayed.

l If no data items are supplied for a section, the browser pop-up menu is overwritten with
one “add item” pop-up menu.

EPM Workspace Limitations—Designing and Using
Interactive Reporting Document Sections
Because of limitations of the HTML standard or a user set specification, some Interactive
Reporting functions are not supported in EPM Workspace, and some functions behave
differently in EPM Workspace.

l General Functions—EPM Workspace Limitations

l Query and Data Model Sections—EPM Workspace Limitations

l Results and Table Sections—EPM Workspace Limitations

l Pivot Sections—EPM Workspace Limitations

l Chart Sections—EPM Workspace Limitations

l Dashboard Sections—EPM Workspace Limitations

l Report Sections—EPM Workspace Limitations

General Functions—EPM Workspace Limitations
General Interactive Reporting functions that cannot be performed in EPM Workspace:

l Define layout

l Format (Format defined in the published document is displayed, format is applied only
through the object model.)

l Hide and show, insert and delete, and duplicate and rename sections (The functions can be
performed through the object model.)

l Set or read tools options (for example, default formats)

l Export to text, Excel, Lotus, or JPEG formats

l Export scripts to text

l Use native print (can print using the browser, Acrobat (PDF format), or through Scheduler)

l Password-protect documents

290 Designing for EPM Workspace

l Create or use custom menus

l Insert, delete, or show page headers and footers

From the user interface, for OLAP sections, EPM Workspace supports only sort, drill-up, drill-
down, and auto-size width. However, additional OLAP functionality is available through the
object model.

Query and Data Model Sections—EPM Workspace Limitations
Interactive Reporting functions related to query and data model sections that EPM Workspace
does not support:

l Access to data model sections from the user interface (Sections can be accessed through the
object model.)

l Programmatic application of variable filters (Filters can be applied non-programmatically.)

l Query canceling

l Query log and custom SQL options

l Addition of subqueries

l Creation of local result tables or derived queries (Local results and derived queries can be
displayed.)

l Creation of union queries

Ways in which Interactive Reporting functions related to query and data model sections behave
differently in EPM Workspace.

l For Interactive Reporting documents that contain union queries, the first query is displayed.
For union queries, the request and filter panes in data layout are read-only, and there is no
union controller line.

l Subqueries are indented in the Sections pane but displayed as regular queries in the content
area.

l For queries that contain multiple join paths, EPM Workspace defaults to the first join path.

l Users cannot open Interactive Reporting document (BQY) in EPM Workspace bthat
contains only a data model section.

OLAPQuery Sections—EPM Workspace Limitations
Interactive Reporting functions related to OLAPQuery sections that EPM Workspace does not
support:

l Drill through

l Ad hoc OLAPQuery capabilities from the user interface (OLAPQuery building is available
through the object model.)

EPM Workspace Limitations—Designing and Using Interactive Reporting Document Sections 291

l Access to OLAPQuery sections from the user interface (Sections can be accessed through
the object model.)

l Filters from the user interface (Filters are supported through the object model.)

l Programmatic application of variable filters (Filters can be applied non-programmatically.)

l Query canceling

Results and Table Sections—EPM Workspace Limitations
Interactive Reporting functions related to results and table sections that cannot be performed
in EPM Workspace:

l Import results sets

l Sort computed columns based on order functions

l Show or hide row numbers

l Insert, delete, or modify computed columns (Columns can be inserted, deleted, and
modified through the object model.)

l Group columns

l Suppress duplicates

l Set conditional formatting conditions

l Enable grid lines, borders, or background

For format-related items (conditional formatting, grid lines, border, and background), format
can be displayed in EPM Workspace and set through the object model.

Pivot Sections—EPM Workspace Limitations
Interactive Reporting functions related to pivot sections that cannot be performed in EPM
Workspace:

l Drill to detail

l Insert, delete, or modify computed columns (Sections can be accessed through the object
model.)

l Change or restore pivot-label names

l Manually refresh data (Sections can be accessed through the object model.)

l Pivot data labels or corner labels

l Use the Chart-This-Pivot function

l Set or remove pivot page breaks

292 Designing for EPM Workspace

Chart Sections—EPM Workspace Limitations
Interactive Reporting functions related to chart sections that cannot be performed in EPM
Workspace:

l Drill to detail

l Resize individual chart components

l Insert, delete, or modify computed columns (Sections can be accessed through the object
model.)

l Manually refresh data (Sections can be accessed through the object model.)

l Use the Pivot-This-Chart function

l Select or specify the location of chart legends

l Reorder chart items

l Change or restore chart-label names

l Rotate pie charts

Dashboard Sections—EPM Workspace Limitations
Interactive Reporting functions related to dashboard sections that cannot be performed in EPM
Workspace:

l Access dashboard design mode

l Define dashboard tab order

l Perform OnRowDoubleClick (Active ESOs), DoubleClick (ListBox), OnChange (TextBox),
or OnEnter (TextBox)

l Use diagonal lines, round rectangles, or ovals

l Align or rotate text label objects

Interactive Reporting functions related to dashboard sections that behave differently in EPM
Workspace:

l Active objects embedded in dashboard sections behave like hyperlinks

l View-only objects with AutoSize=Off that are embedded in dashboard sections behave like
hyperlinks

l For unsupported graphics objects (diagonal lines, round rectangles, and ovals), other
graphics objects are substituted (lines, rectangles, and rectangles, respectively).

l For the DropDown control, the OnSelection event is not executed if the first selection is the
first list item—an HTML limitation. To resolve the problem, users must select another item
prior to selecting the first item or developers must make the first item a blank entry.

l Command-button text wrap is available only through Internet Explorer, and not when the
508 accessibility feature is enabled.

EPM Workspace Limitations—Designing and Using Interactive Reporting Document Sections 293

Report Sections—EPM Workspace Limitations
Interactive Reporting functions related to report sections that cannot be performed in EPM
Workspace:

l Enable users to build or lay out reports

l Use diagonal lines, round rectangles, or ovals

l Align or rotate text label objects

Interactive Reporting functions related to report sections that behave differently in EPM
Workspace:

l The Data Path field is set to local path.

l For unsupported graphics objects (diagonal lines, round rectangles, and ovals), other
graphics objects are substituted (lines, rectangles, and rectangles, respectively).

Computed Items EPM Workspace Limitations
Special characters must not be used in column or control names in Interactive Reporting
documents files to be deployed in the EPM Workspace. These characters include:

l |

l $

l €

l \

l half width Yen

l half width Won

Using these characters in controls is not supported, and can contribute to rendering issues.

Creating Predefined Drill-Down Paths
For EPM Workspace, you can create predefined drill-down paths that move through the levels
of detail that are defined in the data model. Drill-down paths are associated with dimensional
tables, which consist of numerous attributes about business processes, such as about product
lines or geographical locations. As the designer, you specify the items and the order of items
through which users drill down when they perform chart or pivot analysis.

Within dimensional tables, topic items are included in drill-down paths, and fact values are
excluded from drill-down paths. Thus, if you want to exclude items from drill-down paths, you
tag them as fact values. In EPM Workspace, unlike in Interactive Reporting Studio, you cannot
use missing items that are not defined in the drill-path as pivot and chart items.

In EPM Workspace, drill-down paths are accessed from a shortcut-menu option: “Drilldown
into (ITEM_NAME).” In EPM Workspace, unlike in Interactive Reporting Studio, drill-down
paths are not context-sensitive. When users select from the shortcut menu, all available drill-

294 Designing for EPM Workspace

down paths are displayed. Each path shows the topic item that is being drilled and the label item
from which it is drilled. Drilled items add their return values as pivot-label or chart-label items.

Drill-down-path definitions originate in the data model or in query tables. All pivots and charts
sections derived from data models that include drill-down paths inherit the drill-down-path
definitions. This capability can be used to augment the Drill Anywhere option in Interactive
Reporting Studio and Interactive Reporting Web Client, or the administrator can disable Drill
Anywhere and permit users to drill on only one predefined path.

ä To define drill-down paths in query or data model sections:

1 Click the topic window header.

2 Select View, then Properties.

Topic Properties is displayed. By default, topic items are displayed in the order in which
they are defined in the underlying table. You can hide or show selected items (click Hide All
or Show All), or you can alphabetize items (click Sort).

3 Define the drill path:

l Click Sort to arrange items alphabetically

l Click Hide All and Show All to toggle the display of items in the topic

4 Click Set as Dimension to establish the item order in which a user can drill-down when charts or pivots
are analyzed.

The drill path is defined under Items to Display.

5 Optional: Move selected items up or down in the topic list by clicking Up or Down.

6 Click OK.

If you intend to use a topic item on the request line but eliminate it from the drill-down path,
add the item to the request line before completing the following procedure.

ä To remove items from the drill-down path:

1 Select the table to which the item belongs, right-click, and selectProperties.

Topic Item Properties is displayed.

2 From Items to Display, double-click an item

The asterisk (*) displayed to the left of the topic item is removed.

3 Click OK.

Chart Sizing
When you work with Interactive Reporting charts, you see multiple rectangular regions. By
default, there is one global rectangular region, called size object. Typically, the graphic object
(which contains the chart) and other objects (such as the objects holding the chart legend and
the chart labels) fit inside the size object.

Chart Sizing 295

When you manipulate the sizes of objects, you may affect the rendering of the chart in HTML
format and cause elements to be clipped. To avoid clipping elements rendered in HTML-
rendered charts, ensure that all chart elements fit inside the global object. (You can see the
rectangular outlines of the objects by clicking various parts of the chart.)

Locating Errors
When syntax or runtime errors occur and scripts fail to execute, you must debug the code.
Preventing errors is preferable to finding and fixing errors. Therefore, observe carefully the
protocols required by JavaScript. See Chapter 12, “Troubleshooting Scripts”.

Console Window
The Console window, which displays the error buffer, is not available from EPM Workspace.

Error Logs
The EPM Workspace displays errors to an HTML dialog box or generates entries to error logs:

l Interactive Reporting BI1 [server] log

l Interactive Reporting Data Access Service [server] log

l Interactive Reporting DAServlet log

l Interactive Reporting HTMLServlet message log

For information about interpreting the logs, consult Hyperion Solutions Customer Service.

try-catch Block
You can use try_catch blocks to test the usefulness of syntax or, within scripts, to isolate a
sequence of steps. See “Bypass Errors” on page 284.

Controls
Controls, inserted into dashboard sections, enable users to interact with the application
dynamically. Display-related controls supported for Interactive Reporting document files:

l Command button

l Radio button

l Check box

l List box

l Drop down

296 Designing for EPM Workspace

l Text box

l Embedded browser

l Hyperlink

Note: Using Interactive Reporting reserved keywords (such as ActiveSection) can result in
unpredictable behavior.

Control Object Properties
Basic control properties such as name, visible, auto-size, and so on are accessible through the
object model, but not through the EPM Workspace user interface. Some limitations apply to
control properties.

Table 34 Control Limitations in EPM Workspace

Control Limitation in EPM Workspace

Command
button

Text wrap is available only in Internet Explorer and not available when the 508 accessibility feature is enabled.

Drop down The OnSelection event does not fire when the first selection from the down-down list is the first item on the list. You
must enter a blank for the first item or instruct users to select some other list item before selecting the first list item.

Text box The OnEnter and OnChange events do not fire.

Note: In Netscape, dashboard text boxes with the password property set to TRUE display only the bottom half of the
cursor at the very top of the text box. The issue is visual only; functionality is intact.

Graphics
From EPM Workspace, users can display graphics in documents but cannot insert graphics into
dashboard sections.

The graphics available for you, as a designer, to use in EPM Workspace documents:

l Text label—Overline effect; double-overline effect; vertical and horizontal rotation; vertical
and horizontal, up and down rotation

l Line

l Horizontal line

l Rectangle

l Round rectangle

l Oval

l Picture—Picture clip effect (upper left corner clip of the image), picture tile effect

If you are working with graphics that EPM Workspace does not support, substitute supported
graphics or omit the graphics.

Control Object Properties 297

Note: All graphics support the OnClick event.

Borders, Background, and Fonts
EPM Workspace enables you to apply border, background, and font properties for graphic
objects in the object model but does not enable users viewing the document in EPM Workspace
to modify the properties.

Events
Interactive Reporting Studio and Interactive Reporting Web Client have events (document
events, dashboard-section events, and dashboard-object events) that can fire in Interactive
Reporting documents, generally in response to user actions.

Within EPM Workspace, all document events (including OnStartUp, OnShutDown,
OnPreProcess, and OnPostProcess) and all dashboard section events (including OnActivate and
OnDeActivate) are supported. Two dashboard object events (OnClick and OnExit—for text
boxes only) are supported, and four dashboard object events (OnRowDoubleClick;
OnDoubleClick; OnChange; and OnEnter) are not supported.

Note: Document events can be turned on or off.

When deploying documents for use on the Web, you must evaluate how events behave within
Interactive Reporting documents.

Client-Side JavaScript
You can use client-side JavaScript to designate scripts to run in client-browser sessions. Because
JavaScript enables fast responses to mouse clicks, form inputs, and page-navigation actions, it
is useful for validating form information.

For example, you can script a JavaScript function on the HTML page to confirm that users
entered required information, such as address and telephone number. If required information
was not supplied, the embedded script displays a dialog box. Thus, server response is required
only for non-scriptable browser functions, and, by using JavaScript, you avoid form redrawing,
server processing and download of invalid data.

Note: Object model methods that are not supported and properties that are associated with
OnClientXXX event scripts are ignored by Internet Explorer and Safari. When, in a script,
Netscape 7 and Mozilla encounter non-supported object model methods and properties,
execution stops. Only some object model methods and properties can be associated with
OnclientXXX scripts: TextBox.Text, TextBox.Enable, TextBox.Visible, TextBox.Font,
TextBox.Scrollable, TextBox.Name, TextBox.Password, and TextBox.Type.

298 Designing for EPM Workspace

Client Status
Status indicators that client-side JavaScript uses to instruct server code to run or not run:

l ActiveSection.ClientScriptStatus

l Object.ClientScriptStatus

For example, if a client-side JavaScript script (which might be activated by a command button)
determines that a user entered alphabetic rather than numeric data, the server-side JavaScript
script does not run until the user enters the data correctly.

You use ActiveSection.ClientScriptStatus indicators, which take Boolean values, to coordinate
actions between objects.

You use Object.ClientScriptStatus indicators, which take Boolean values, to initiate actions for
objects. Object is a placeholder for the object name; for example,
CommandButton1.ClientScriptStatus is a valid status indicator. Independent objects are subject
to the script status settings of ActiveSection.

Table 35 Behavior of Status-Indicator Settings in EPM Workspace

Indicator
Value ActiveSection.ClientScriptStatus Object ClientScriptStatus

True Server-side scripts are initialized when client-side script
execution concludes.

Client-side scripts are initialized when the browser page is
refreshed.

Client-side scripts are initialized when users perform
a required action, such as clicking a button.

False No server-side script is executed. No server-side script is executed.

For example, consider a dashboard that contains a password field and Submit and Cancel
buttons. The password field contains a client-side script that requires an alphanumeric password
of at least 6 characters. If ActiveSection.ClientScriptStatus is false (the user entered the password
incorrectly) and the user clicks Submit, the password is not sent to the server. However, the
Cancel button can reset ActiveSection.ClientScriptStatus to true and enable cancel logic, that is
implemented at the server level, to run.

Client-Side Events
Client-side events are displayed in the Event Trigger drop-down list of Script Editor. All events
are executed in the EPM Workspace browser, not on the server.

Client-Side JavaScript 299

Table 36 Client-Side Events Associated with Controls

Event
Controls That Support the
Event Action That Invokes Event

OnClientClick Command button, radio
button, check box, list box,
drop-down list, text box

Clicking a control

Note: Using the Euro symbol or other special characters in
control names for the OnClient script causes a JavaScript error
in the EPM Workspace. Dashboard control names must not
contain these characters: %, #, &, *, !, €, \, /

OnClientDoubleClick List box Clicking a control

OnClientEnter Text box Entering a text box

OnClientExit Text box Leaving a text box

OnCliehttp://
wealthtrack.com/
ntSelection

Drop down Selecting an item from a drop-down list

Text Box Events and Properties
When creating client-side JavaScript, designers can use text box events and properties. In EPM
Workspace, for text box events, both client-side and server-side components run, but server-
side components do not execute.

Text box properties that can be used in client-side JavaScript:

l TextBox.Text

l TextBox.Enable

l TextBox.Visible

l TextBox.Font

l TextBox.Scrollable

l TextBox.Name

l TextBox.Password

l TextBox.Type

Alert Dialog Box
EPM Workspace supports use of alert dialog boxes, modal windows that display messages and
are displayed as full Web pages. When a box is displayed, to continue working on the browser,
users must dismiss the box (by clicking OK).

The Alert() method can be called from any supported event, except OnStartUp and
OnShutDown.

300 Designing for EPM Workspace

Up to three custom-named buttons can be displayed on alert dialog boxes. When users select a
button, the integer associated with the button is returned. For example, if the user selects button
#1, the number 1 is returned.

Syntax used, in the object model, to create the alert dialog box:

Expression.Alert(Prompt As String, [Title As String],
[Button1Text As String], [Button2Text As String],
[Button3Text As String]) As Integer

Toolbars
Control of which toolbars are displayed for EPM Workspace versions of Interactive Reporting
documents is determined in the Interactive Reporting object model. Toolbars can be hidden, to
limit user control of Interactive Reporting documents. For example, the standard and formatting
toolbars can be hidden when documents are opened. Toolbars can be displayed as needed. For
example, the navigation toolbar can be displayed, to extend the users' ability to navigate.

All methods and properties, including all individual toolbar properties, of the toolbar collection
in the Interactive Reporting object model are available to you.

Properties of the standard, paging, and navigation toolbars:

l Name

l Type

l Visible

Note: Paging toolbar properties are available as constant values in the BqToolbars group. If you
try to access the paging toolbar in Interactive Reporting Studio or Interactive Reporting
Web Client, the script command is ignored, no exception is recorded, and the script
continues.

Toolbars Not Required in EPM Workspace
Toolbars that are not required in EPM Workspace:

l Formatting—If, from EPM Workspace, a script attempts to access associated properties for
a toolbar, the script command is ignored, no exceptions are recorded, and the script
continues.

l Paging and Navigation—If the standard Interactive Reporting toolbar is enabled, these
toolbars are not enabled because they are subsets of the standard toolbar.

Standard Interactive Reporting Toolbar
The icons of the Interactive Reporting toolbar are specific to features used exclusively for
Interactive Reporting document files:

Toolbars 301

Table 37 Standard Interactive Reporting Toolbar options EPM Workspace

Number Name Description

1 Save Saves the file locally and launches the Interactive Reporting document file in the Interactive Reporting Web
Client so you can view the document and save it to your desktop for offline viewing (Interactive Reporting
document files can be viewed only by the full desktop or Interactive Reporting Web Client. If the Interactive
Reporting Web Client is not installed, the browser is launched automatically.)

Tip: If you want to save the Interactive Reporting document file to the repository, select File, then Save
or File, and then Save As.

2 Export to XLS Exports a section to Excel and launches it inside your browser, if the MIME type is set to recognize the XLS
file extension (Thereafter, the file is saved locally and manipulated through Excel. If the MIME type is not
set to recognize the XLS file extension, a Save As dialog box is displayed, to enable you to save to a local
location.)

3 Export to PDF Exports a section to Portable Document Format (PDF) and launches it inside your browser, if the PDF MIME
type is set in your browser (If the PDF MIME type is not set in your browser, the browser Save As dialog box
is invoked.)

4 Refresh In all but dashboard and report sections, refreshes the current section against the database server, to
retrieve the most current data set

In dashboard and report sections, refreshes all queries, in the order in which they are displayed in the
Sections catalog of the full client (For example, in an Interactive Reporting document file with Query1,
Query2, and Query3, Query1 is executed first, Query2 is executed second, and so on.)

5 Page Right In report and chart sections, moves one page or one view to the right, respectively (To move to the first
page or view to the right, select Shift+Click+right arrow.)

6 Page Down In report and chart sections, moves one page or one view down, respectively (To move to the bottom page
or view, select Shift+Click+down arrow.)

7 Page Up In report and chart sections, moves one page or one view up, respectively (To move to the top page or view,
select Shift+Click+up arrow.)

8 Page Left In report and chart sections, moves one page or one view, respectively, to the left (To move to the first page
or view to the left, press Shift+Click+left arrow.)

302 Designing for EPM Workspace

Number Name Description

9 Current Page On the tooltip, displays the number of the current page

For chart types, except pie, scatter, and bubble, tooltips display data points on the x and y axes (Based on
the Maximum Bars Displayed property in the Label Axis dialog box.)

10 Dashboard
Home

Displays the dashboard Home section

11 Navigate
Forward

Moves to the next section

12 Navigate Back Returns to the last viewed section

13 Data Layout Enables the Data Layout feature

Event Controls for Toolbar Display
You use object model commands to determine which toolbars are displayed in EPM Workspace
and which toolbars are defined for embedded sections in personal pages.

Within EPM Workspace, script commands that display toolbars and that are executed through
trigger events supported by the object model:

l Document Scripts Trigger Events (used with OnStartup, On Shutdown, OnPreProcess, and
OnPostProcess)

l Dashboard Section Display Trigger Events (used with OnActivate and OnDeactivate)

l Dashboard Object Trigger Events (used with OnClick, OnSelection, and OnExit)

Rules for Toolbars in EPM Workspace
Rules for the display, in EPM Workspace, of the standard and paging toolbars:

l Only one toolbar can be displayed at one time.

l If a script sets the Visible property of both toolbars to true, the toolbar latest in the script
execution is displayed, and the Visible property of the toolbar earlier in the execution is set
to false.

l EPM Workspace may display no toolbars.

l The Page x of y field displays the current page number and an unknown y value until you
navigate to the last page. From the time that you first arrive at the last page and for the
remainder of the session, the Page x of y field displays the current page number and the
total-number-of-pages number. Section fields that display Page x of y values match the Page
x of y tooltip. If an Interactive Reporting document file contains a section with page
information and the file is saved without the results from the section, when the Interactive
Reporting document file is processed, only the first page of the section is generated

These EPM Workspace toolbar rules are consistent with the rules enforced by the Personal Page
Display Properties option buttons.

Toolbars 303

Personal Pages
For personal pages, toolbar display settings that are specified through object model script
commands supersede toolbar display settings that are specified by owners. Therefore, the
designer of the Interactive Reporting document file, not the personal pages owner, determines
which functions and options are available to users, and script commands to show or hide toolbars
for embedded sections are executed even if they alter the owner's toolbar selections.

For personal pages, if an Interactive Reporting document file contains no object model script
commands that govern toolbar display, the owner's toolbar-display selections are enforced.

Section 508 Compliance
Section 508 compliance behavior for toolbars in Interactive Reporting document files:

l The first line of the page (invisible link) is reached by pressing Alt+H, regardless of which
toolbar is displayed on the page

l An invisible link enables a user to skip the paging toolbar

l ALT text for all paging toolbar buttons is provided

l When in 508 compliant mode, the toolbar property Visible must show or hide the correct
version of the standard or paging toolbar

Accessibility
The Accessibility property enables designers of dashboard sections to display dashboard sections
and objects that are more accessible to disabled users.

The Accessibility property is a read-only Boolean (true or false) value that exists as a document-
collection-object property:

Document[<collection index value or document file name>].Accessibility
ActiveDocument.Accessibility

To set the Accessibility property, users use the 508 Compliance Preferences setting, which is
within the Browse Publish application. The setting persists only for the duration of an Interactive
Reporting document session, not for the duration of an Interactive Reporting document file.
Users with the Accessibility property enabled set the property by selecting from the document
list, an Interactive Reporting document file to display in EPM Workspace. Rules governing which
Boolean value applies to the property:

l If the Accessibility property is enabled in the Browse Publish application, the property is set
to true

l If the Accessibility property is disabled, the default, which is false, applies

The property is not set for document-link selections on Interactive Reporting Web Client,
regardless of the user's Accessibility status, as Interactive Reporting Web Client is not Section
508 compliant.

304 Designing for EPM Workspace

Guided Analysis and Reporting
Guided analysis and reporting enables you to select a point of view (POV) from one Hyperion
product and seamlessly pass it to another Hyperion product. Guided analysis and reporting
focuses the second product on the POV of the first product and eliminates the need for you to
launch the second product and drill down to the preferred POV.

For example, if you are navigating through a bar chart in Web Analysis and require information
from a relational data source, you select a bar on the chart (as the POV) and select the Related
Content option. EPM Workspace launches the relevant Interactive Reporting document file and
displays a relational chart that is based on the POV sent from Web Analysis.

Note: Depending upon the type of link established at design time, you may be prompted to
navigate to the preferred Interactive Reporting document file.

In the background, in Oracle's Hyperion® Web Analysis, a direct or embedded link is defined,
and the Interactive Reporting document file to which to send the POV is selected. When an
Interactive Reporting document file is selected, a SmartCut (a link—URL—to an item in the
Hyperion Foundation repository) is created, and the EPM Workspace client is invoked. The
Smartcut includes the parameters that define the POV.

 http://aserver.hyperion.com/workspace/browse/get/AFolder/Test.bqy?
store=21&product=A&year=2003

Processing the POV
As a designer of POV-linked Interactive Reporting document files, you provide a script to parse
the SmartCut, identify the relevant POV information, navigate the Interactive Reporting object
model, and apply the POV values where and if appropriate.

ä To process POVs:

1 Retrieve the SmartCut for the document.

2 Create an OnStartUp script that performs these actions:

l Parses the SmartCut, using JavaScript and the object-model-sessions object

l Identifies the POV parameters and assigns to them to global variables

l Traverses the object model tree and applies applicable values where and if appropriate

Parsing SmartCuts and Storing Data in Global Variables
Use the sessions object of the object model to parse the SmartCut.

Extract all relevant data and store it in global variables.

Example of using the sessions object to extract values from a SmartCut:

var store_id = Session.URL.Item(‘store’);

Guided Analysis and Reporting 305

var product_id= Session.URL.Item(‘product’);
var year_id= Session.URL.Item(‘year’);

Traversing the Object Model Tree
Starting from the root of the object model tree, traverse relevant branches and nodes.

Apply values to relevant properties.

The best place to apply the property-value code is the OnStartUp script.

Example of traversing a query section branch of the object model tree and applying Store as the
query limit:

//gets the store id value from the SmartCut
var A_Limit=Session.URL.Item('store_id');

//identifies query section to work with
var QuerySect=ActiveDocument.Sections["Query"];

//checks all limits till the appropriate one is found and applies limit
for (i=1; i<=QuerySect.Limits.Count; i++)
{
 if (QuerySect.Limits[i].Name=="Store")
 QuerySect.Limits[i].SelectedValues.Add(A_Limit)
}
ActiveDocument.Sections["Query"].Process()

Object Model Items Excluded from EPM Workspace
Some objects, methods, and properties of the object model do not affect the EPM Workspace
environment. Therefore, when designing an Interactive Reporting document file for use with
EPM Workspace, you must exclude (not reference) some objects, methods, and properties.

If a script encounters an excluded method or property, a warning is entered in an error log, and
script execution continues, if possible. If you must include excluded methods or properties,
include them in Interactive Reporting document files that are designed for desktop viewing.

Object model items that are excluded from EPM Workspace (applicable to all operations that
depend on Interactive Reporting Service, including Interactive Reporting document jobs):

l ActiveDocument.Close()

l ActiveDocuments.Modified()

l ActiveDocument.PromptToSave()

l ActiveDocument.SetODSPassword()

l ActiveDocument.ODSUsername (Set only)

l ActiveDocument.Save()

l ActveDocument.SaveAs()

l ActiveDocument.Sections[“SectionName”].Copy()

306 Designing for EPM Workspace

l ActiveDocument.Sections[“Chart”].XLabels.DrillInto()

l ActiveDocument.Sections[“Dashboard”].Shapes[“TextBox1”].OnChange()

l ActiveDocument.Sections[“Dashboard”].Shapes[“TextBox1”].OnEnter()

l ActiveDocument.Sections[“Dashboard”].Shapes[“ListBox1”].OnDoubleClick()

l ActiveDocument.Sections[“Dashboard”].Shapes[“Results1”].OnRowDoubleClick()

l ActiveDocument.Sections[“OLAPQuery”].Slicers.Add()—Only the case where the last
argument VariableSlicer=TRUE. Ignores the last argument, always defaulting to
VariableSlicer=FALSE

l ActiveDocument.Sections["Query"].DataModel.Connection.DBLibAllowChangeDatabase

l ActiveDocument.Sections["Query"].DataModel.Connection.DBLibApiSeverity

l ActiveDocument.Sections["Query"].DataModel.Connection.DBLibDatabaseCancel

l ActiveDocument.Sections["Query"].DataModel.Connection.DBLibPacketSize

l ActiveDocument.Sections["Query"].DataModel.Connection.DBLibServerSeverity

l ActiveDocument.Sections["Query"].DataModel.Connection.DBLibUseQuotedIdentifiers

l ActiveDocument.Sections["Query"].DataModel.Connection.DBLibUseSQLTable

l ActiveDocument.Sections["Query"].DataModel.Connection.SaveWithoutUsername

l ActiveDocument.Sections["Query"].SaveResults

l ActiveSection.Shapes["Pivot1"].CellValue

l Application.CreateConnection()

l Application.DoEvents()

l Application.LoadSharedLibrary()

l Application.Shell()

l Application.Quit()

l Console.Write() (writes content to log)

l Console.WriteLn() (writes content to log)

l Documents.Add()

l Documents.New()

l Documents.Open()

l JOOLE Objects

l Dashboard Export to HTML (Dashboards only exports JPG in other client applications)

Object Model Properties Irrelevant to EPM Workspace
That Must Be Retained
Some object model methods and properties do not affect the EPM Workspace user interface,
but the values that they set must be retained within Interactive Reporting document files. When

Object Model Properties Irrelevant to EPM Workspace That Must Be Retained 307

scripts encounter the irrelevant methods and properties, no error log entry is recorded, and
script execution continues.

Note: In the EPM Workspace, an Interactive Reporting document file is saved locally for use
with other Interactive Reporting applications, EPM Workspace changes are saved.

Object model items that are irrelevant to EPM Workspace but must be retained:

l ActiveDocument.ShowSectionTitleBar

l ActiveDocument.Sections["Query"].DataModel.Connection.SaveWithoutUsername

l ActiveDocument.Sections["Query"].DataModel.Connection.ShowMetadata

l ActiveDocument.Sections["Query"].DataModel.MetaDataConnection.SaveWithoutUsern
ame

l ActiveDocument.Sections["Query"].DataModel.MetaDataConnection.ShowMetadata

l ActiveDocument.Sections["Query"].DataModel.ShowIconJoins

l ActiveDocument.Sections["Query"].Limits["Quarter"].VariableLimit

l ActiveDocument.Sections["Query"].SaveResults

l ActiveDocument.Sections["DataModel"].DataModel.AutoJoin

l ActiveDocument.Sections["DataModel"].DataModel.Connection.SaveWithoutUsername

l ActiveDocument.Sections["DataModel"].DataModel.Connection.ShowMetadata

l ActiveDocument.Sections["DataModel"].DataModel.Limits["Year"].VariableLimit

l ActiveDocument.Sections["DataModel"].DataModel.MetaDataConnection.SaveWithout
Username

l ActiveDocument.Sections["DataModel"].DataModel.MetaDataConnection.ShowMetadat
a

l ActiveDocument.Sections["DataModel"].DataModel.ShowIconJoins

l ActiveDocument.Sections["Dashboard"].Shapes["EmbeddedSection"].ScrollbarsAlwaysSh
own

l ActiveDocument.Sections["Dashboard2"].Shapes["EmbeddedSectionResults"].ShowOutli
ner

l ActiveDocument.Sections["Dashboard2"].Shapes["Embedded"].ShowRowNumbers

l Application.ShowMenuBar

l Application.ShowStatusBar

l Application.StatusText

l Application.Visible

l Application.WindowState

l BqFontEffectOverDouble

l BqFontEffectOverLine

308 Designing for EPM Workspace

l BqFontEffectStrikeThru

l BqFontEffectSuperScript

l BqFontEffectSubScript

l Toolbars["Formatting"].Name

l Toolbars["Formatting"].Type

l Toolbars["Formatting"].Visible

Note: Some object model methods invoke (or can be set to invoke) a dialog box. EPM Workspace
suppresses most dialog prompts and assumes the default selection. Three dialog boxes
are supported Logon, Variable Filter, and Alert.

Note: Users must provide absolute network paths for object-model methods that require local-
path information.

Note: If an explicit prompt for information from the user (that is, Connect() is not called, user
names and passwords associated with OCEs are used regardless of scripted values. If an
explicit prompt is called, user-supplied, scripted values are used. If scripted values are not
available when an explicit prompt is called, the process behaves as if no user name or
password is provided.

User Embedded HTML
You can embed images, such GIF or JPEG, and hypertext links in the cells of tables and pivots.
Embedded data can be viewed in EPM Workspace and in Interactive Reporting document files
to be exported to HTML pages.

User embedded HTML is written “as is” in the EPM Workspace source code wherever the text
would normally use the function wrapper @HTML(<html image/link>).

How function wrappers are added to text is a customer-implementation choice. For example,
if the HTML that you want to use is stored in an Oracle database column titled HTMLDATA,
you might add ‘@HTML(’ || HTMLDATA || ‘)’ to the request line, where || is the Oracle string-
concatenation operator. This method can also be used to generate a computed item in results.

If you want report headers or dashboard pages to contain hard coded links, such as to a corporate
home page, you can enter, into a text label field, a literal string.

Example: @HTML(Company Web site)

Interactive Reporting Studio and Interactive Reporting Web Client cannot guarantee the format
or appearance of cell data that is adjacent to cells that contain user-defined HTML. When viewed
in a non-HTML context (such as Interactive Reporting Web Client or Interactive Reporting
Studio), embedded, user-defined HTML information is displayed as text.

User Embedded HTML 309

ä To embed images or hyperlinks into table or pivot cells:

1 Select the cell in which to embed the image or hyperlink.

2 n the cell, type @HTML(<HTML image/link>).

When Interactive Reporting Studio and Interactive Reporting Web Client encounter the
@HTML wrapper, it is deleted from the cell and the content up to but not including the
wrapper is exported “as is,” without character substitutions. The parentheses () is also
deleted.

BQY-XML Formatting
EPM Workspace can read and view BQY-XML documents. The BQY-XML format is defined
by the XML Schema, that is provided by Hyperion in the workspace\xml\IHTMLServlet
installation folder. The BQY-XML format supports dashboard sections only, with a limited set
of controls:

l Text label

l Hyperlink

l Embedded browser

l Picture

The BQY-XML format is not fully functional with equivalent objects and controls in Interactive
Reporting document files. To create a BQY-XML document, use an external editor (Oracle
Hyperion Enterprise Performance Management System does not provide an editing tool).
Design your Interactive Reporting document file after the following XML Schemas provided in
the workspace\xml\IHTMLServlet installation folder:

l common.xsd

l brioquery.xsd

l eis.xsd

Verify the format of BQY-XML documents before importing them into the repository. See the
bq.bqxml bq.template and bqxmlample files in the workspace\xml\IHTMLServlet folder, for
information about working with or modeling an XML Schema.

User Credentials in Scripting
When scripting includes supplied credentials (through the SetPassword (Method) and
Username (Property), the credentials are used in establishing an Interactive Reportingdatabase
connection file. If no credentials are supplied with the script, the behavior follows the settings
used by the Interactive Reporting database connection file and section mapping, together with
the options of the Connect method.

310 Designing for EPM Workspace

Fixing Scripted Credentials Errors
Script-provided credentials that are not used as expected, cause Interactive Reporting documents
files to be unusable without modification to the scripts.

When using scripted credentials, if database login failures occur, administrators can configure
the system to take remedial action. Errors are reported to the user by default, and no further
action is taken.

When the remedial action option is enabled, if the scripted credentials fail again to log into the
database, retry the login using settings from the Interactive Reporting database connection file
and section mapping, together with the options of the Connect method.

A login failure due to incorrectly scripted credentials will always be logged. The remedial action
only affects users of Interactive Reporting Web Client, but does not affect EPM Workspace or
Interactive Reporting Studio usage.

When the failure is logged, stop the Web server and enter
WebClient.Applications.DAServlet.RetryUsingDefaultDBCredential = true in
the ws.conf file. Save ws.conf and restart the Web server.

PrintOut() Method Support in EPM Workspace
The PrintOut() method is an Interactive Reporting document and section level function, that
is available regardless of the state of the application. As long as the application is running,
PrintOut() method is available through scripting, and in Oracle's Hyperion® Interactive
Reporting Studio or Oracle's Hyperion® Interactive Reporting Web Client, prints the Interactive
Reporting document file according to the arguments provided, or opens a standard Print dialog
box.

If EPM Workspace users encounter PrintOut() method in scripts, the data received in the
browser includes a PDF file.

Note: Script run in full before the PDF data is returned to the browser. This may cause some
unexpected behavior with Interactive Reporting document files, such as those that display
an alert that printing is complete, when in fact it has not yet started. Script authors should
be aware of these factors when designing applications.

Caution! In Adobe Acrobat Reader, the default print settings are set to first page only. Reset
the print range options to print the full document.

PrintOut() method is prevented from executing in Interactive Reporting documents displayed
in EPM Workspace if an Alert method is used after PrintOut() method. In EPM Workspace
optional parameters of the method; for example, pages to print and number of copies are ignored,
use the Adobe Acrobat Reader Print dialog box to specify those options.

PrintOut() method is not supported:

Fixing Scripted Credentials Errors 311

l In scripts that run as the result of Document events (such as OnStartup)

l For section-level activation and deactivation events

l When used as a method of query or data model type sections

PrintOut() method has no effect on jobs; therefore, no printout occurs.

PrintOut() method takes five optional arguments:

l Start page—A number, equivalent to setting the first number to print in a print dialog box,
and must represent the first page to print in the document. This value is ignored in EPM
Workspace.

l End page—A number, equivalent to setting the last number to print in a print dialog box,
and must represent the last page to print in the document. This value is ignored in EPM
Workspace.

l Number of copies—A number, equivalent to setting the print dialog box option for number
of copies, and must represent 1 to n copies. This value is ignored in EPM Workspace.

l PrintOut filename—A string, equivalent to setting the filename for printing to file, and
should have a printer extension; for example, PRN or PS. The file is generated by the default
printer driver, and requires that a default printer be available. The value must represent a
properly formatted local or UNC path. URL syntax is not supported. This value is ignored
in the Oracle Enterprise Performance Management Workspace, Fusion Edition.

l Prompt for dialog box—A Boolean, equivalent to displaying or hiding the print dialog box.
The value must be false (0) or true (a number other than 0). The method does not persist
with the Oracle's Hyperion® Interactive Reporting document file or application.

Note: The placeholder empty string; for example, (“”,””,””,””, “”) must be used to pass no value.
If insufficient arguments are passed to the method, the PrintOut dialog box opens in a
set location that cannot be programmatically changed.

Anti-Aliasing and Charts
Anti-aliasing improves chart images by displaying jagged lines as smooth, and affects
performance. In applications where performance is critical, use the server.xml setting to prevent
charts from being anti-aliased.

ä To disable anti-aliasing:

1 In a text editor, open server.xml.

2 Search and locate the section <SERVICES app="bq">.

3 Search and locate the section <service type="BrioQuery">.

4 In the section <properties>, copy and paste the string:

<property defid="0ad70321-0001-08aa-000000e738090110"
name="DISABLE_ANTIALIASING">true</property>

 <SERVICES app="bq">

312 Designing for EPM Workspace

...
 <service type="BrioQuery">
...
 <properties>
...
 <property defid="0ad70321-0001-08aa-000000e738090110"
name="DISABLE_ANTIALIASING">true</property>
...
 </properties>
 </service>
 </SERVICES>

Anti-Aliasing and Charts 313

314 Designing for EPM Workspace

A
Abbreviations and Acronyms

Abbreviation Meaning

ABC activity-based costing

ABM Activity-Based Management

ADO ActiveX Data Object

AE accountability element

AJP Apache JServ Protocol

AJAX Asynchronous JavaScript and XML

API application programming interface

ASMTP Authenticated SMTP

ASP Active Server Pages

BAT batch file extension

BI Business Intelligence

BPM Business Performance Management

CA certificate authority

CMD command file extension

CN common name

COGS cost of goods sold

CORBA Common Object Request Broker Architecture

CPM corporate performance management

CSC custom calculation scripts file extension

DBCS double-byte character set

DBMS database management system

DC domain component

DCOM Distributed Component Object Model

315

Abbreviation Meaning

DHTML Dynamic Hypertext Markup Language

DIT directory information tree

DLL dynamic link library

DN distinguished name

DNS Domain Name System

DOM Document Object Model

DSN data source name

DTD Document Type Definition

EAR enterprise application archive file

EIS executive information system

EJB Enterprise JavaBeans

EPB Enterprise Planning and Budgeting

EPM Enterprise Performance Management

ERP enterprise resource planning

ESM editable source master

ESMTP Extended SMTP

FP fix pack

FTP File Transfer Protocol

GAAP generally accepted accounting principles

GIF Graphics Interchange Format

GSKit7 IBM Global Security Kit 7

GUI graphical user interface

GSM Global Service Manager

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol layered over the SSL protocol; secure HTTP

ID identification

I/O input/output

316 Abbreviations and Acronyms

Abbreviation Meaning

IP Internet Protocol

JAIN Java APIs for Integrated Networks

JDBC Java Database Connectivity

JDK Java Development Kit

J2EE Java 2 Platform, Enterprise Edition

JFC Java Foundation Classes

JRE Java Runtime Environment

JSP JavaServer Pages

JSSE Java Secure Socket Extension

JVM Java Virtual Machine

KPI key performance indicator

LAN local area network

LCM Life Cycle Management

LDAP Lightweight Directory Access Protocol

LRO linked reporting object

LSC Local Service Configurator

LSM Local Service Manager

MDDB multidimensional database

MDX Multidimensional Expression Language

MIME Multipurpose Internet Mail Extensions

MSAD Microsoft Active Directory

ND Network Deployment

NFS network file system

NTFS New Technology file system

NTLM Windows NT LAN Manager

OCI Oracle Call Interface

ODBC open database connectivity

OLAP online analytical processing

317

Abbreviation Meaning

OLE Object Linking and Embedding

ORA Oracle file name extension

ORB Object Request Broker

OTL outline file extension (Oracle Essbase)

PDF Portable Document Format

P&L profit and loss

POV point of view

PRX Adapter icon file name extension

PV present value

RAM random access memory

RDBMS relational database management system

REP report scripts file extension

RMI Remote Method Invocation

ROM read-only memory

RPC Remote Procedure Call

RSC Remote Service Configurator

RTP runtime prompt

RUL Business Rules file extension

SAP JCo, JCo SAP Java Connector

SDK Software Development Kit

SE strategy element

SEM Strategic Enterprise Management

SID (Oracle) System Identification value (database instance)

SMTP Simple Mail Transfer Protocol

SOAP Simple Object Access Protocol

SP service pack

SPM Strategic Performance Management

SQL structured query language

318 Abbreviations and Acronyms

Abbreviation Meaning

SSAS SQL Server Analysis Services

SSL Secure Sockets Layer

SSO token single sign-on token

STP Summary Time Period

TAR tape archive (UNIX archive file)

TBH To be hired

TCP/IP Transmission Control Protocol based on Internet Protocol

UDA user-defined attribute; Universal Data Access

UDL Universal Data Link

UI user interface

UID user identification

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

UTF-8 8-bit Unicode Transformation Format

UUID universally unique identifier

VBIS Vignette Business Integration Studio

VNC Virtual Network Computing

WAN wide area network

WAR WebARchive file

W3C World Wide Web Consortium

WWW World Wide Web

XML Extensible Markup Language

Xvfb X virtual frame buffer

XREF cross reference; Data reference source to a remote cube

ZIP data compression and archival file format

319

320 Abbreviations and Acronyms

Glossary

! See bang character (!).

#MISSING See missing data (#MISSING).

access permissions A set of operations that a user can

perform on a resource.

accessor Input and output data specifications for data

mining algorithms.

account A dimension that represents an accounting

container that identifies the location and primary nature of

the data.

account blocking The process by which accounts accept input

data in the consolidated file. Blocked accounts do not

receive their value through the additive consolidation

process.

account eliminations Accounts which have their values set to

zero in the consolidated file during consolidation.

account type How an account's value flows over time, and its

sign behavior. Account type options can include expense,

income, asset, liability, and equity.

accountability map A visual, hierarchical representation of

the responsibility, reporting, and dependency structure of

the accountability teams (also known as critical business

areas) in an organization.

accounts dimension A dimension type that makes accounting

intelligence available. Only one dimension can be defined

as Accounts.

active service A service whose Run Type is set to Start rather

than Hold.

active user A user who is entitled to access the system.

active user/user group The user or user group identified as

the current user by user preferences. Determines default

user preferences, dynamic options, access, and file

permissions. You can set the active user to your user name

or any user group to which you belong.

activity-level authorization Defines user access to

applicationsand the types of activities they can perform on

applications, independent of the data that will be operated

on.

ad hoc report An online analytical query created on-the-fly

by an end user.

adaptive states Interactive Reporting Web Client level of

permission.

adjustment See journal entry (JE).

Advanced Relational Access The integration of a relational

database with an Essbase multidimensional database so that

all data remains in the relational database and is mapped to

summary-level data residing in the Essbase database.

agent An Essbase server process that starts and stops

applications and databases, manages connections from

users, and handles user-access security. The agent is referred

to as ESSBASE.EXE.

aggregate cell A cell comprising several cells. For example, a

data cell that uses Children(Year) expands to four cells

containing Quarter 1, Quarter 2, Quarter 3, and Quarter 4

data.

aggregate function A type of function, such as sum or

calculation of an average, that summarizes or performs

analysis on data.

aggregate limit A limit placed on an aggregated request line

item or aggregated metatopic item.

Glossary 321

aggregate storage database The database storage model

designed to support large-scale, sparsely distributed data

which is categorized into many, potentially large

dimensions. Upper level members and formulas are

dynamically calculated, and selected data values are

aggregated and stored, typically with improvements in

overall aggregation time.

aggregate view A collection of aggregate cells based on the

levels of the members within each dimension. To reduce

calculation time, values are pre-aggregated and stored as

aggregate views. Retrievals then start from aggregate view

totals and add up from there.

aggregation The process of rolling up and storing values in

an aggregate storage database; the stored result of the

aggregation process.

aggregation script In aggregate storage databases only, a file

that defines a selection of aggregate views to be built into an

aggregation.

alias An alternative name. For example, for a more easily

identifiable column descriptor you can display the alias

instead of the member name.

alias table A table that contains alternate names for

members.

alternate hierarchy A hierarchy of shared members. An

alternate hierarchy is based upon an existing hierarchy in a

database outline, but has alternate levels in the dimension.

An alternate hierarchy allows the same data to be seen from

different points of view.

ancestor A branch member that has members below it. For

example, the members Qtr2 and 2006 are ancestors of the

member April.

appender A Log4j term for destination.

application (1) A software program designed to run a specific

task or group of tasks such as a spreadsheet program or

database management system. (2) A related set of

dimensions and dimension members that are used to meet

a specific set of analytical and/or reporting requirements.

application currency The default reporting currency for the

application.

Application Migration Utility A command-line utility for

migrating applications and artifacts.

area A predefined set of members and values that makes up

a partition.

arithmetic data load A data load that performs operations on

values in the database, such as adding 10 to each value.

artifact An individual application or repository item; for

example, scripts, forms, rules files, Interactive Reporting

documents, and financial reports. Also known as an object.

asset account An account type that stores values that

represent a company's assets.

attribute Characteristics of a dimension member. For

example, Employee dimension members may have

attributes of Name, Age, or Address. Product dimension

members can have several attributes, such as a size and

flavor.

attribute association A relationship in a database outline

whereby a member in an attribute dimension describes a

characteristic of a member of its base dimension. For

example, if product 100-10 has a grape flavor, the product

100-10 has the Flavor attribute association of grape. Thus,

the 100-10 member of the Product dimension is associated

with the Grape member of the Flavor attribute dimension.

Attribute Calculations dimension A system-defined dimension

that performs these calculation operations on groups of

members: Sum, Count, Avg, Min, and Max. This dimension

is calculated dynamically and is not visible in the database

outline. For example, using the Avg member, you can

calculate the average sales value for Red products in New

York in January.

attribute dimension A type of dimension that enables analysis

based on the attributes or qualities of dimension members.

attribute reporting A reporting process based on the attributes

of the base dimension members. See also base dimension.

attribute type A text, numeric, Boolean, date, or linked-

attribute type that enables different functions for grouping,

selecting, or calculating data. For example, because the

Ounces attribute dimension has the type numeric, the

number of ounces specified as the attribute of each product

can be used to calculate the profit per ounce for that

product.

322 Glossary

authentication Verification of identity as a security measure.

Authentication is typically based on a user name and

password. Passwords and digital signatures are forms of

authentication.

authentication service A core service that manages one

authentication system.

auto-reversing journal A journal for entering adjustments that

you want to reverse in the next period.

automated stage A stage that does not require human

intervention, for example, a data load.

axis (1) A straight line that passes through a graphic used

for measurement and categorization. (2) A report aspect

used to arrange and relate multidimensional data, such as

filters, pages, rows, and columns. For example, for a data

query in Simple Basic, an axis can define columns for values

for Qtr1, Qtr2, Qtr3, and Qtr4. Row data would be retrieved

with totals in the following hierarchy: Market, Product.

backup A duplicate copy of an application instance.

balance account An account type that stores unsigned values

that relate to a particular point in time.

balanced journal A journal in which the total debits equal the

total credits.

bang character (!) A character that terminates a series of

report commands and requests information from the

database. A report script must be terminated with a bang

character; several bang characters can be used within a

report script.

bar chart A chart that can consist of one to 50 data sets, with

any number of values assigned to each data set. Data sets are

displayed as groups of corresponding bars, stacked bars, or

individual bars in separate rows.

base currency The currency in which daily business

transactions are performed.

base dimension A standard dimension that is associated with

one or more attribute dimensions. For example, assuming

products have flavors, the Product dimension is the base

dimension for the Flavors attribute dimension.

base entity An entity at the bottom of the organization

structure that does not own other entities.

batch calculation Any calculation on a database that is done

in batch; for example, a calculation script or a full database

calculation. Dynamic calculations are not considered to be

batch calculations.

batch file An operating system file that can call multiple

ESSCMD scripts and run multiple sessions of ESSCMD. On

Windows-based systems, batch files have BAT file

extensions. On UNIX, batch files are written as a shell script.

batch POV A collection of all dimensions on the user POV of

every report and book in the batch. While scheduling the

batch, you can set the members selected on the batch POV.

batch processing mode A method of using ESSCMD to write

a batch or script file that can be used to automate routine

server maintenance and diagnostic tasks. ESSCMD script

files can execute multiple commands and can be run from

the operating system command line or from within

operating system batch files. Batch files can be used to call

multiple ESSCMD scripts or run multiple instances of

ESSCMD.

block The primary storage unit which is a multidimensional

array representing the cells of all dense dimensions.

block storage database The Essbase database storage model

categorizing and storing data based on the sparsity of data

values defined in sparse dimensions. Data values are stored

in blocks, which exist only for sparse dimension members

for which there are values.

Blocked Account An account that you do not want calculated

in the consolidated file because you want to enter it

manually.

book A container that holds a group of similar Financial

Reporting documents. Books may specify dimension

sections or dimension changes.

book POV The dimension members for which a book is run.

bookmark A link to a reporting document or a Web site,

displayed on a personal page of a user. The two types of

bookmarks are My Bookmarks and image bookmarks.

bounding rectangle The required perimeter that encapsulates

the Interactive Reporting document content when

embedding Interactive Reporting document sections in a

personal page, specified in pixels for height and width or

row per page.

Glossary 323

broadcast message A simple text message sent by an

administrator to a user who is logged on to a Planning

application. The message displays information to the user

such as system availability, notification of application

refresh, or application backups.

budget administrator A person responsible for setting up,

configuring, maintaining, and controlling an application.

Has all application privileges and data access permissions.

build method A method used to modify database outlines.

Choice of a build method is based on the format of data in

data source files.

business process A set of activities that collectively

accomplish a business objective.

business rules Logical expressions or formulas that are

created within an application to produce a desired set of

resulting values.

cache A buffer in memory that holds data temporarily.

calc script A set of commands that define how a database is

consolidated or aggregated. A calculation script may also

contain commands that specify allocation and other

calculation rules separate from the consolidation process.

Calculated Accounts You cannot alter the formulas in

Calculated Accounts. These formulas are fixed in order to

maintain the accounting integrity of the model you are

building. For example, the formula for Net Income, a

Calculated Account, is modeled into Strategic Finance and

can not be changed in either historical or forecast periods.

calculated member in MaxL DML A member designed for

analytical purposes and defined in the optional WITH

section of a MaxL DML query.

calculation The process of aggregating data, or of running a

calculation script on a database.

calculation status A consolidation status that indicates that

some values or formula calculations have changed. You

must reconsolidate to get the correct values for the affected

entity.

calendar User-defined time periods and their relationship

to each other. Q1, Q2, Q3, and Q4 comprise a calendar or

fiscal year.

cascade The process of creating multiple reports for a subset

of member values.

categories Groupings by which data is organized. For

example, Month

cause and effect map Depicts how the elements that form

your corporate strategy relate and how they work together

to meet your organization's strategic goals. A Cause and

Effect map tab is automatically created for each Strategy

map.

CDF See custom-defined function (CDF).

CDM See custom-defined macro (CDM).

cell (1) The data value at the intersection of dimensions in

a multidimensional database; the intersection of a row and

a column in a worksheet. (2) A logical group of nodes

belonging to one administrative domain.

cell note A text annotation for a cell in an Essbase database.

Cell notes are a type of LRO.

CHANGED status Consolidation status that indicates data for

an entity has changed.

chart A graphical representation of spreadsheet data. The

visual nature expedites analysis, color-coding, and visual

cues that aid comparisons.

chart template A template that defines the metrics to display

in Workspace charts.

child A member with a parent above it in the database

outline.

choice list A list of members that a report designer can

specify for each dimension when defining the report's point

of view. A user who wants to change the point of view for a

dimension that uses a choice list can select only the members

specified in that defined member list or those members that

meet the criteria defined in the function for the dynamic list.

clean block A data block that where the database is fully

calculated, if a calculation script calculates all dimensions at

once, or if the SET CLEARUPDATESTATUS command is

used in a calculation script.

cluster An array of servers or databases that behave as a

single resource which share task loads and provide failover

support; eliminates one server or database as a single point

of failure in a system.

clustered bar charts Charts in which categories are viewed

side-by-side; useful for side-by-side category analysis; used

only with vertical bar charts.

324 Glossary

code page A mapping of bit combinations to a set of text

characters. Different code pages support different sets of

characters. Each computer contains a code page setting for

the character set requirements of the language of the

computer user. In the context of this document, code pages

map characters to bit combinations for non-Unicode

encodings. See also encoding.

column A vertical display of information in a grid or table.

A column can contain data from one field, derived data from

a calculation, or textual information.

committed access An Essbase Kernel Isolation Level setting

that affects how Essbase handles transactions. Under

committed access, concurrent transactions hold long-term

write locks and yield predictable results.

computed item A virtual column (as opposed to a column

that is physically stored in the database or cube) that can be

calculated by the database during a query, or by Interactive

Reporting Studio in the Results section. Computed items

are calculations of data based on functions, data items, and

operators provided in the dialog box and can be included in

reports or reused to calculate other data.

configuration file The security platform relies on XML

documents to be configured by the product administrator

or software installer. The XML document must be modified

to indicate meaningful values for properties, specifying

locations and attributes pertaining to the corporate

authentication scenario.

connection file See Interactive Reporting connection file

(.oce).

consolidated file (Parent) A file into which all of the business

unit files are consolidated; contains the definition of the

consolidation.

consolidation The process of aggregating data from

dependent entities to parent entities. For example, if the

dimension Year consists of the members Qtr1, Qtr2, Qtr3,

and Qtr4, its consolidation is Year.

consolidation file (*.cns) The consolidation file is a graphical

interface that enables you to add, delete or move Strategic

Finance files in the consolidation process using either a

Chart or Tree view. It also enables you to define and modify

the consolidation.

consolidation rule Identifies the rule that is executed during

the consolidation of the node of the hierarchy. This rule can

contain customer specific formulas appropriate for the

correct consolidation of parent balances. Elimination

processing can be controlled within these rules.

content Information stored in the repository for any type of

file.

context variable A variable that is defined for a particular task

flow to identify the context of the taskflow instance.

contribution The value added to a parent from a child entity.

Each child has a contribution to its parent.

conversion rate See exchange rate.

cookie A segment of data placed on your computer by a Web

site.

correlated subqueries Subqueries that are evaluated once for

every row in the parent query; created by joining a topic item

in the subquery with a topic in the parent query.

Cost of Debt Value determined by using a weighted average

Yield to Maturity (YTM) of a company's entire debt

portfolio. Use is the current YTM rate rather than the

nominal cost of debt. The coupon rate determines the

interest payment, but it does not always reflect the actual

cost of the company's debt today. As required returns

change, the price of a debt issue also changes so that the

actual interest payments and anticipated proceeds, at

maturity, yield the investors their revised required return.

Therefore, the YTM fully reflects the current return

demanded by debt holders and the rate at which existing

debt would have to be replaced.

Cost of Equity The return an investor expects to earn on an

individual stock. Using the CAPM method, the Cost of

Equity is equal to:

Cost of Preferred Represents the expected return to preferred

stockholders. Like debt, you need to enter the yield to

maturity on preferred stock, but without the tax shielding.

critical business area (CBA) An individual or a group

organized into a division, region, plant, cost center, profit

center, project team, or process; also called accountability

team or business area.

Glossary 325

critical success factor (CSF) A capability that must be

established and sustained to achieve a strategic objective;

owned by a strategic objective or a critical process and is a

parent to one or more actions.

crosstab reporting Categorizes and summarizes data in table

format. The table cells contain summaries of the data that

fit within the intersecting categories. For example, a crosstab

report of product sales information could show size

attributes, such as Small and Large, as column headings and

color attributes, such as Blue and Yellow, as row headings.

The cell in the table where Large and Blue intersect could

contain the total sales of all Blue products that are sized

Large.

cube A block of data that contains three or more

dimensions. An Essbase database is a cube.

currency conversion A process that converts currency values

in a database from one currency into another. For example,

to convert one U. S. dollar into the European euro, the

exchange rate (for example, 0.923702) is multiplied with the

dollar (1* 0.923702). After conversion, the European euro

amount is .92.

Currency Overrides In any input period, the selected input

method can be overridden to enable input of that period's

value as Default Currency/Items. To override the input

method, enter a pound sign (#) either before or after the

number.

currency partition A dimension type that separates local

currency members from a base currency, as defined in an

application. Identifies currency types, such as Actual,

Budget, and Forecast.

custom calendar Any calendar created by an administrator.

custom dimension A dimension created and defined by users.

Channel, product, department, project, or region could be

custom dimensions.

custom property A property of a dimension or dimension

member that is created by a user.

custom report A complex report from the Design Report

module, composed of any combination of components.

custom-defined function (CDF) Essbase calculation functions

developed in Java and added to the standard Essbase

calculation scripting language using MaxL. See also custom-

defined macro (CDM).

custom-defined macro (CDM) Essbase macros written with

Essbase calculator functions and special macro functions.

Custom-defined macros use an internal Essbase macro

language that enables the combination of calculation

functions and they operate on multiple input parameters.

See also custom-defined function (CDF).

cycle through To perform multiple passes through a database

while calculating it.

dashboard A collection of metrics and indicators that

provide an interactive summary of your business.

Dashboards enable you to build and deploy analytic

applications.

data cache A buffer in memory that holds uncompressed

data blocks.

data cell See cell.

data file cache A buffer in memory that holds compressed

data (PAG) files.

data form A grid display that enables users to enter data into

the database from an interface such as a Web browser, and

to view and analyze data or related text. Certain dimension

member values are fixed, giving users a specific view into

the data.

data function That computes aggregate values, including

averages, maximums, counts, and other statistics, that

summarize groupings of data.

data load rules A set of criteria that determines how to load

data from a text-based file, a spreadsheet, or a relational data

set into a database.

data lock Prevents changes to data according to specified

criteria, such as period or scenario.

data mining The process of searching through an Essbase

database for hidden relationships and patterns in a large

amount of data.

data model A representation of a subset of database tables.

data value See cell.

database connection File that stores definitions and

properties used to connect to data sources and enables

database references to be portable and widely used.

326 Glossary

Default Currency Units Define the unit scale of data. For

example, If you select to define your analysis in Thousands,

and enter “10”, this is interpreted as “10,000”.

dense dimension In block storage databases, a dimension

likely to contain data for every combination of dimension

members. For example, time dimensions are often dense

because they can contain all combinations of all members.

Contrast with sparse dimension.

dependent entity An entity that is owned by another entity in

the organization.

descendant Any member below a parent in the database

outline. In a dimension that includes years, quarters, and

months, the members Qtr2 and April are descendants of the

member Year.

Design Report An interface in Web Analysis Studio for

designing custom reports, from a library of components.

destination currency The currency to which balances are

converted. You enter exchange rates and convert from the

source currency to the destination currency. For example,

when you convert from EUR to USD, the destination

currency is USD.

detail chart A chart that provides the detailed information

that you see in a Summary chart. Detail charts appear in the

Investigate Section in columns below the Summary charts.

If the Summary chart shows a Pie chart, then the Detail

charts below represent each piece of the pie.

dimension A data category used to organize business data for

retrieval and preservation of values. Dimensions usually

contain hierarchies of related members grouped within

them. For example, a Year dimension often includes

members for each time period, such as quarters and months.

dimension build The process of adding dimensions and

members to an Essbase outline.

dimension build rules Specifications, similar to data load rules,

that Essbase uses to modify an outline. The modification is

based on data in an external data source file.

dimension tab In the Pivot section, the tab that enables you

to pivot data between rows and columns.

dimension table (1) A table that includes numerous attributes

about a specific business process. (2) In Essbase Integration

Services, a container in the OLAP model for one or more

relational tables that define a potential dimension in

Essbase.

dimension type A dimension property that enables the use of

predefined functionality. Dimensions tagged as time have a

predefined calendar functionality.

dimensionality In MaxL DML, the represented dimensions

(and the order in which they are represented) in a set. For

example, the following set consists of two tuples of the same

dimensionality because they both reflect the dimensions

(Region, Year): { (West, Feb), (East, Mar) }

direct rate A currency rate that you enter in the exchange

rate table. The direct rate is used for currency conversion.

For example, to convert balances from JPY to USD, In the

exchange rate table, enter a rate for the period/scenario

where the source currency is JPY and the destination

currency is USD.

dirty block A data block containing cells that have been

changed since the last calculation. Upper level blocks are

marked as dirty if their child blocks are dirty (that is, they

have been updated).

display type One of three Web Analysis formats saved to the

repository: spreadsheet, chart, and pinboard.

dog-ear The flipped page corner in the upper right corner of

the chart header area.

domain In data mining, a variable representing a range of

navigation within data.

drill-down Navigation through the query result set using the

dimensional hierarchy. Drilling down moves the user

perspective from aggregated data to detail. For example,

drilling down can reveal hierarchical relationships between

years and quarters or quarters and months.

drill-through The navigation from a value in one data source

to corresponding data in another source.

duplicate alias name A name that occurs more than once in

an alias table and that can be associated with more than one

member in a database outline. Duplicate alias names can be

used with duplicate member outlines only.

Glossary 327

duplicate member name The multiple occurrence of a member

name in a database, with each occurrence representing a

different member. For example, a database has two

members named “New York.” One member represents New

York state and the other member represents New York city.

duplicate member outline A database outline containing

duplicate member names.

Dynamic Calc and Store members A member in a block storage

outline that Essbase calculates only upon the first retrieval

of the value. Essbase then stores the calculated value in the

database. Subsequent retrievals do not require calculating.

Dynamic Calc members A member in a block storage outline

that Essbase calculates only at retrieval time. Essbase

discards calculated values after completing the retrieval

request.

dynamic calculation In Essbase, a calculation that occurs only

when you retrieve data on a member that is tagged as

Dynamic Calc or Dynamic Calc and Store. The member's

values are calculated at retrieval time instead of being

precalculated during batch calculation.

dynamic hierarchy In aggregate storage database outlines

only, a hierarchy in which members are calculated at

retrieval time.

dynamic member list A system-created named member set

that is based on user-defined criteria. The list is refreshed

automatically whenever it is referenced in the application.

As dimension members are added and deleted, the list

automatically reapplies the criteria to reflect the changes.

dynamic reference A pointer in the rules file to header records

in a data source.

dynamic report A report containing data that is updated when

you run the report.

Dynamic Time Series A process that performs period-to-date

reporting in block storage databases.

dynamic view account An account type indicating that

account values are calculated dynamically from the data that

is displayed.

Elements Displays a list of elements available to the active

section. If Query is the active section, a list of database tables

is displayed. If Pivot is the active section, a list of results

columns is displayed. If Dashboard is the active section, a

list of embeddable sections, graphic tools, and control tools

are displayed.

Eliminated Account An account that does not appear in the

consolidated file.

elimination The process of zeroing out (eliminating)

transactions between entities within an organization.

employee A user responsible for, or associated with, specific

business objects. Employees need not work for an

organization; for example, they can be consultants.

Employees must be associated with user accounts for

authorization purposes.

encoding A method for mapping bit combinations to

characters for creating, storing, and displaying text. Each

encoding has a name; for example, UTF-8. Within an

encoding, each character maps to a specific bit combination;

for example, in UTF-8, uppercase A maps to HEX41. See

also code page and locale.

ending period A period enabling you to adjust the date range

in a chart. For example, an ending period of “month”,

produces a chart showing information through the end of

the current month.

Enterprise View An Administration Services feature that

enables management of the Essbase environment from a

graphical tree view. From Enterprise View, you can operate

directly on Essbase artifacts.

entity A dimension representing organizational units.

Examples: divisions, subsidiaries, plants, regions, products,

or other financial reporting units.

Equity Beta The riskiness of a stock, measured by the

variance between its return and the market return, indicated

by an index called “beta”. For example, if a stock's return

normally moves up or down 1.2% when the market moves

up or down 1%, the stock has a beta of 1.2.

essbase.cfg An optional configuration file for Essbase.

Administrators may edit this file to customize Essbase

Server functionality. Some configuration settings may also

be used with Essbase clients to override Essbase Server

settings.

328 Glossary

EssCell A function entered into an Essbase Spreadsheet

Add-in to retrieve a value representing an intersection of

specific Essbase database members.

ESSCMD A command-line interface for performing Essbase

operations interactively or through batch script files.

ESSLANG The Essbase environment variable that defines the

encoding used to interpret text characters. See also

encoding.

ESSMSH See MaxL Shell.

exceptions Values that satisfy predefined conditions. You

can define formatting indicators or notify subscribing users

when exceptions are generated.

exchange rate A numeric value for converting one currency

to another. For example, to convert 1 USD into EUR, the

exchange rate of 0.8936 is multiplied with the U.S. dollar.

The European euro equivalent of $1 is 0.8936.

exchange rate type An identifier for an exchange rate.

Different rate types are used because there may be multiple

rates for a period and year. Users traditionally define rates

at period end for the average rate of the period and for the

end of the period. Additional rate types are historical rates,

budget rates, forecast rates, and so on. A rate type applies to

one point in time.

expense account An account that stores periodic and year-

to-date values that decrease net worth if they are positive.

Extensible Markup Language (XML) A language comprising a set

of tags used to assign attributes to data that can be

interpreted between applications according to a schema.

external authentication Logging on to Oracle's Hyperion

applications with user information stored outside the

applications, typically in a corporate directory such as

MSAD or NTLM.

externally triggered events Non-time-based events for

scheduling job runs.

Extract, Transform, and Load (ETL) Data source-specific

programs for extracting data and migrating it to

applications.

extraction command An Essbase reporting command that

handles the selection, orientation, grouping, and ordering

of raw data extracted from a database; begins with the less

than (<) character.

fact table The central table in a star join schema,

characterized by a foreign key and elements drawn from a

dimension table. This table typically contains numeric data

that can be related to all other tables in the schema.

field An item in a data source file to be loaded into an

Essbase database.

file delimiter Characters, such as commas or tabs, that

separate fields in a data source.

filter A constraint on data sets that restricts values to specific

criteria; for example, to exclude certain tables, metadata, or

values, or to control access.

flow account An unsigned account that stores periodic and

year-to-date values.

folder A file containing other files for the purpose of

structuring a hierarchy.

footer Text or images at the bottom of report pages,

containing dynamic functions or static text such as page

numbers, dates, logos, titles or file names, and author

names.

format Visual characteristics of documents or report

objects.

formula A combination of operators, functions, dimension

and member names, and numeric constants calculating

database members.

frame An area on the desktop. There are two main areas: the

navigation and workspace frames.

free-form grid An object for presenting, entering, and

integrating data from different sources for dynamic

calculations.

free-form reporting Creating reports by entering dimension

members or report script commands in worksheets.

function A routine that returns values or database members.

generation A layer in a hierarchical tree structure that defines

member relationships in a database. Generations are

ordered incrementally from the top member of the

dimension (generation 1) down to the child members.

generation name A unique name that describes a generation.

generic jobs Non-SQR Production Reporting or non-

Interactive Reporting jobs.

Glossary 329

global report command A command in a running report script

that is effective until replaced by another global command

or the file ends.

grid POV A means for specifying dimension members on a

grid without placing dimensions in rows, columns, or page

intersections. A report designer can set POV values at the

grid level, preventing user POVs from affecting the grid. If

a dimension has one grid value, you put the dimension into

the grid POV instead of the row, column, or page.

group A container for assigning similar access permissions

to multiple users.

GUI Graphical user interface

highlighting Depending on your configuration, chart cells or

ZoomChart details may be highlighted, indicating value

status: red (bad), yellow (warning), or green (good).

Historical Average An average for an account over a number

of historical periods.

holding company An entity that is part of a legal entity group,

with direct or indirect investments in all entities in the

group.

host A server on which applications and services are

installed.

host properties Properties pertaining to a host, or if the host

has multiple Install_Homes, to an Install_Home. The host

properties are configured from the LSC.

Hybrid Analysis An analysis mapping low-level data stored in

a relational database to summary-level data stored in

Essbase, combining the mass scalability of relational systems

with multidimensional data.

hyperlink A link to a file, Web page, or an intranet HTML

page.

Hypertext Markup Language (HTML) A programming language

specifying how Web browsers display data.

identity A unique identification for a user or group in

external authentication.

image bookmarks Graphic links to Web pages or repository

items.

IMPACTED status Indicates changes in child entities

consolidating into parent entities.

implied share A member with one or more children, but only

one is consolidated, so the parent and child share a value.

inactive group A group for which an administrator has

deactivated system access.

inactive service A service suspended from operating.

INACTIVE status Indicates entities deactivated from

consolidation for the current period.

inactive user A user whose account has been deactivated by

an administrator.

income account An account storing periodic and year-to-

date values that, if positive, increase net worth.

index (1) A method where Essbase uses sparse-data

combinations to retrieve data in block storage databases. (2)

The index file.

index cache A buffer containing index pages.

index entry A pointer to an intersection of sparse dimensions.

Index entries point to data blocks on disk and use offsets to

locate cells.

index file An Essbase file storing block storage data retrieval

information, residing on disk, and containing index pages.

index page A subdivision in an index file. Contains pointers

to data blocks.

input data Data loaded from a source rather than calculated.

Install_Home A variable for the directory where Oracle's

Hyperion applications are installed. Refers to one instance

of Oracle's Hyperion application when multiple

applications are installed on the same computer.

integration Process that is run to move data between Oracle's

Hyperion applications using Shared Services. Data

integration definitions specify the data moving between a

source application and a destination application, and enable

the data movements to be grouped, ordered, and scheduled.

intelligent calculation A calculation method tracking updated

data blocks since the last calculation.

Interactive Reporting connection file (.oce) Files encapsulating

database connection information, including: the database

API (ODBC, SQL*Net, etc.), database software, the

database server network address, and database user name.

Administrators create and publish Interactive Reporting

connection files (.oce).

330 Glossary

intercompany elimination See elimination.

intercompany matching The process of comparing balances

for pairs of intercompany accounts within an application.

Intercompany receivables are compared to intercompany

payables for matches. Matching accounts are used to

eliminate intercompany transactions from an

organization's consolidated totals.

intercompany matching report A report that compares

intercompany account balances and indicates if the

accounts are in, or out, of balance.

interdimensional irrelevance A situation in which a dimension

does not intersect with other dimensions. Because the data

in the dimension cannot be accessed from the non-

intersecting dimensions, the non-intersecting dimensions

are not relevant to that dimension.

intersection A unit of data representing the intersection of

dimensions in a multidimensional database; also, a

worksheet cell.

Investigation See drill-through.

isolation level An Essbase Kernel setting that determines the

lock and commit behavior of database operations. Choices

are: committed access and uncommitted access.

iteration A “pass” of the budget or planning cycle in which

the same version of data is revised and promoted.

Java Database Connectivity (JDBC) A client-server

communication protocol used by Java based clients and

relational databases. The JDBC interface provides a call-

level API for SQL-based database access.

job output Files or reports produced from running a job.

job parameters Reusable, named job parameters that are

accessible only to the user who created them.

jobs Documents with special properties that can be

launched to generate output. A job can contain Interactive

Reporting, SQR Production Reporting, or generic

documents.

join A link between two relational database tables or topics

based on common content in a column or row. A join

typically occurs between identical or similar items within

different tables or topics. For example, a record in the

Customer table is joined to a record in the Orders table

because the Customer ID value is the same in each table.

journal entry (JE) A set of debit/credit adjustments to account

balances for a scenario and period.

JSP Java Server Pages.

latest A Spreadsheet key word used to extract data values

from the member defined as the latest time period.

layer (1) The horizontal location of members in a

hierarchical structure, specified by generation (top down)

or level (bottom up). (2) Position of objects relative to other

objects. For example, in the Sample Basic database, Qtr1 and

Qtr4 are in the same layer, so they are also in the same

generation, but in a database with a ragged hierarchy, Qtr1

and Qtr4 might not be in same layer, though they are in the

same generation.

legend box A box containing labels that identify the data

categories of a dimension.

level A layer in a hierarchical tree structure that defines

database member relationships. Levels are ordered from the

bottom dimension member (level 0) up to the parent

members.

level 0 block A data block for combinations of sparse, level 0

members.

level 0 member A member that has no children.

liability account An account type that stores “point in time”

balances of a company's liabilities. Examples of liability

accounts include accrued expenses, accounts payable, and

long term debt.

life cycle management The process of managing application

information from inception to retirement.

line chart A chart that displays one to 50 data sets, each

represented by a line. A line chart can display each line

stacked on the preceding ones, as represented by an absolute

value or a percent.

line item detail The lowest level of detail in an account.

link (1) A reference to a repository object. Links can

reference folders, files, shortcuts, and other links. (2) In a

task flow, the point where the activity in one stage ends and

another begins.

link condition A logical expression evaluated by the taskflow

engine to determine the sequence of launching taskflow

stages.

Glossary 331

linked data model Documents that are linked to a master copy

in a repository

linked partition A shared partition that enables you to use a

data cell to link two databases. When a user clicks a linked

cell in a worksheet, Essbase opens a new sheet displaying the

dimensions in the linked database. The user can then drill

down those dimensions.

linked reporting object (LRO) A cell-based link to an external

file such as cell notes, URLs, or files with text, audio, video,

or pictures. (Only cell notes are supported for Essbase LROs

in Financial Reporting.)

local currency An input currency type. When an input

currency type is not specified, the local currency matches

the entity's base currency.

local report object A report object that is not linked to a

Financial Reporting report object in Explorer. Contrast with

linked reporting object (LRO).

local results A data model's query results. Results can be used

in local joins by dragging them into the data model. Local

results are displayed in the catalog when requested.

locale A computer setting that specifies a location's

language, currency and date formatting, data sort order, and

the character set encoding used on the computer. Essbase

uses only the encoding portion. See also encoding and

ESSLANG.

locale header record A text record at the beginning of some

non-Unicode-encoded text files, such as scripts, that

identifies the encoding locale.

location alias A descriptor that identifies a data source. The

location alias specifies a server, application, database, user

name, and password. Location aliases are set by DBAs at the

database level using Administration Services Console,

ESSCMD, or the API.

locked A user-invoked process that prevents users and

processes from modifying data

locked data model Data models that cannot be modified by a

user.

LOCKED status A consolidation status indicating that an

entity contains data that cannot be modified.

Log Analyzer An Administration Services feature that enables

filtering, searching, and analysis of Essbase logs.

LRO See linked reporting object (LRO).

LSC services Services configured with the Local Service

Configurator. They include Global Services Manager

(GSM), Local Services Manager (LSM), Session Manager,

Authentication Service, Authorization Service, Publisher

Service, and sometimes, Data Access Service (DAS) and

Interactive Reporting Service.

managed server An application server process running in its

own Java Virtual Machine (JVM).

manual stage A stage that requires human intervention to

complete.

Map File Used to store the definition for sending data to or

retrieving data from an external database. Map files have

different extensions (.mps to send data; .mpr to retrieve

data).

Map Navigator A feature that displays your current position

on a Strategy, Accountability, or Cause and Effect map,

indicated by a red outline.

Marginal Tax Rate Used to calculate the after-tax cost of debt.

Represents the tax rate applied to the last earned income

dollar (the rate from the highest tax bracket into which

income falls) and includes federal, state and local taxes.

Based on current level of taxable income and tax bracket,

you can predict marginal tax rate.

Market Risk Premium The additional rate of return paid over

the risk-free rate to persuade investors to hold “riskier”

investments than government securities. Calculated by

subtracting the risk-free rate from the expected market

return. These figures should closely model future market

conditions.

master data model An independent data model that is

referenced as a source by multiple queries. When used,

“Locked Data Model” is displayed in the Query section's

Content pane; the data model is linked to the master data

model displayed in the Data Model section, which an

administrator may hide.

mathematical operator A symbol that defines how data is

calculated in formulas and outlines. Can be any of the

standard mathematical or Boolean operators; for example,

+, -, *, /, and %.

332 Glossary

MaxL The multidimensional database access language for

Essbase, consisting of a data definition language (MaxL

DDL) and a data manipulation language (MaxL DML). See

also MaxL DDL, MaxL DML, and MaxL Shell.

MaxL DDL Data definition language used by Essbase for batch

or interactive system-administration tasks.

MaxL DML Data manipulation language used in Essbase for

data query and extraction.

MaxL Perl Module A Perl module (essbase.pm) that is part of

Essbase MaxL DDL. This module can be added to the Perl

package to provide access to Essbase databases from Perl

programs.

MaxL Script Editor A script-development environment in

Administration Services Console. MaxL Script Editor is an

alternative to using a text editor and the MaxL Shell for

administering Essbase with MaxL scripts.

MaxL Shell An interface for passing MaxL statements to

Essbase Server. The MaxL Shell executable file is located in

the Essbase bin directory (UNIX: essmsh, Windows:

essmsh.exe).

MDX (multidimensional expression) The language that give

instructions to OLE DB for OLAP- compliant databases, as

SQL is used for relational databases. When you build the

OLAPQuery section's Outliner, Interactive Reporting

Clients translate requests into MDX instructions. When you

process the query, MDX is sent to the database server, which

returns records that answer your query. See also SQL

spreadsheet.

measures Numeric values in an OLAP database cube that are

available for analysis. Measures are margin, cost of goods

sold, unit sales, budget amount, and so on. See also fact

table.

member A discrete component within a dimension. A

member identifies and differentiates the organization of

similar units. For example, a time dimension might include

such members as Jan, Feb, and Qtr1.

member list A named group, system- or user-defined, that

references members, functions, or member lists within a

dimension.

member load In Essbase Integration Services, the process of

adding dimensions and members (without data) to Essbase

outlines.

member selection report command A type of Report Writer

command that selects member ranges based on outline

relationships, such as sibling, generation, and level.

member-specific report command A type of Report Writer

formatting command that is executed as it is encountered

in a report script. The command affects only its associated

member and executes the format command before

processing the member.

merge A data load option that clears values only from the

accounts specified in the data load file and replaces them

with values in the data load file.

metadata A set of data that defines and describes the

properties and attributes of the data stored in a database or

used by an application. Examples of metadata are

dimension names, member names, properties, time

periods, and security.

metadata sampling The process of retrieving a sample of

members in a dimension in a drill-down operation.

metadata security Security set at the member level to restrict

users from accessing certain outline members.

metaoutline In Essbase Integration Services, a template

containing the structure and rules for creating an Essbase

outline from an OLAP model.

metric A numeric measurement computed from business

data to help assess business performance and analyze

company trends.

migration audit report A report generated from the migration

log that provides tracking information for an application

migration.

migration definition file (.mdf) A file that contains migration

parameters for an application migration, enabling batch

script processing.

migration log A log file that captures all application migration

actions and messages.

migration snapshot A snapshot of an application migration

that is captured in the migration log.

Glossary 333

MIME Type (Multipurpose Internet Mail Extension) An

attribute that describes the data format of an item, so that

the system knows which application should open the object.

A file's mime type is determined by the file extension or

HTTP header. Plug-ins tell browsers what mime types they

support and what file extensions correspond to each mime

type.

mining attribute In data mining, a class of values used as a

factor in analysis of a set of data.

minireport A report component that includes layout,

content, hyperlinks, and the query or queries to load the

report. Each report can include one or more minireports.

missing data (#MISSING) A marker indicating that data in the

labeled location does not exist, contains no value, or was

never entered or loaded. For example, missing data exists

when an account contains data for a previous or future

period but not for the current period.

model (1) In data mining, a collection of an algorithm's

findings about examined data. A model can be applied

against a wider data set to generate useful information about

that data. (2) A file or content string containing an

application-specific representation of data. Models are the

basic data managed by Shared Services, of two major types:

dimensional and non-dimensional application objects. (3)

In Business Modeling, a network of boxes connected to

represent and calculate the operational and financial flow

through the area being examined.

monetary A money-related value.

multidimensional database A method of organizing, storing,

and referencing data through three or more dimensions. An

individual value is the intersection point for a set of

dimensions.

named set In MaxL DML, a set with its logic defined in the

optional WITH section of a MaxL DML query. The named

set can be referenced multiple times in the query.

native authentication The process of authenticating a user

name and password from within the server or application.

nested column headings A report column heading format that

displays data from multiple dimensions. For example, a

column heading that contains Year and Scenario members

is a nested column. The nested column heading shows Q1

(from the Year dimension) in the top line of the heading,

qualified by Actual and Budget (from the Scenario

dimension) in the bottom line of the heading.

NO DATA status A consolidation status indicating that this

entity contains no data for the specified period and account.

non-dimensional model A Shared Services model type that

includes application objects such as security files, member

lists, calculation scripts, and Web forms.

non-unique member name See duplicate member name.

note Additional information associated with a box,

measure, scorecard or map element.

null value A value that is absent of data. Null values are not

equal to zero.

numeric attribute range A feature used to associate a base

dimension member that has a discrete numeric value with

an attribute that represents a value range. For example, to

classify customers by age, an Age Group attribute dimension

can contain members for the following age ranges: 0-20,

21-40, 41-60, and 61-80. Each Customer dimension

member can be associated with an Age Group range. Data

can be retrieved based on the age ranges rather than on

individual age values.

ODBC Open Database Connectivity. A database access

method used from any application regardless of how the

database management system (DBMS) processes the

information.

OK status A consolidation status indicating that an entity has

already been consolidated, and that data has not changed

below it in the organization structure.

OLAP Metadata Catalog In Essbase Integration Services, a

relational database containing metadata describing the

nature, source, location, and type of data that is pulled from

the relational data source.

OLAP model In Essbase Integration Services, a logical model

(star schema) that is created from tables and columns in a

relational database. The OLAP model is then used to

generate the structure of a multidimensional database.

334 Glossary

online analytical processing (OLAP) A multidimensional,

multiuser, client-server computing environment for users

who analyze consolidated enterprise data in real time. OLAP

systems feature drill-down, data pivoting, complex

calculations, trend analysis, and modeling.

Open Database Connectivity (ODBC) Standardized application

programming interface (API) technology that allows

applications to access multiple third-party databases.

organization An entity hierarchy that defines each entity and

their relationship to others in the hierarchy.

origin The intersection of two axes.

outline The database structure of a multidimensional

database, including all dimensions, members, tags, types,

consolidations, and mathematical relationships. Data is

stored in the database according to the structure defined in

the outline.

outline synchronization For partitioned databases, the process

of propagating outline changes from one database to

another database.

P&L accounts (P&L) Profit and loss accounts. Refers to a

typical grouping of expense and income accounts that

comprise a company's income statement.

page A display of information in a grid or table often

represented by the Z-axis. A page can contain data from one

field, derived data from a calculation, or text.

page file Essbase data file.

page heading A report heading type that lists members

represented on the current page of the report. All data values

on the page have the members in the page heading as a

common attribute.

page member A member that determines the page axis.

palette A JASC compliant file with a .PAL extension. Each

palette contains 16 colors that complement each other and

can be used to set the dashboard color elements.

parallel calculation A calculation option. Essbase divides a

calculation into tasks and calculates some tasks

simultaneously.

parallel data load In Essbase, the concurrent execution of

data load stages by multiple process threads.

parallel export The ability to export Essbase data to multiple

files. This may be faster than exporting to a single file, and

it may resolve problems caused by a single data file

becoming too large for the operating system to handle.

parent adjustments The journal entries that are posted to a

child in relation to its parent.

parents The entities that contain one or more dependent

entities that report directly to them. Because parents are

both entities and associated with at least one node, they have

entity, node, and parent information associated with them.

partition area A subcube within a database. A partition is

composed of one or more areas of cells from a portion of

the database. For replicated and transparent partitions, the

number of cells within an area must be the same for the data

source and target to ensure that the two partitions have the

same shape. If the data source area contains 18 cells, the data

target area must also contain 18 cells to accommodate the

number of values.

partitioning The process of defining areas of data that are

shared or linked between data models. Partitioning can

affect the performance and scalability of Essbase

applications.

pattern matching The ability to match a value with any or all

characters of an item entered as a criterion. Missing

characters may be represented by wild card values such as a

question mark (?) or an asterisk (*). For example, “Find all

instances of apple” returns apple, but “Find all instances of

apple*” returns apple, applesauce, applecranberry, and so

on.

percent consolidation The portion of a child's values that is

consolidated to its parent.

percent control Identifies the extent to which an entity is

controlled within the context of its group.

percent ownership Identifies the extent to which an entity is

owned by its parent.

performance indicator An image file used to represent

measure and scorecard performance based on a range you

specify; also called a status symbol. You can use the default

performance indicators or create an unlimited number of

your own.

Glossary 335

periodic value method (PVA) A process of currency conversion

that applies the periodic exchange rate values over time to

derive converted results.

permission A level of access granted to users and groups for

managing data or other users and groups.

persistence The continuance or longevity of effect for any

Essbase operation or setting. For example, an Essbase

administrator may limit the persistence of user name and

password validity.

personal pages A personal window to repository

information. You select what information to display and its

layout and colors.

personal recurring time events Reusable time events that are

accessible only to the user who created them.

personal variable A named selection statement of complex

member selections.

perspective A category used to group measures on a

scorecard or strategic objectives within an application. A

perspective can represent a key stakeholder (such as a

customer, employee, or shareholder/financial) or a key

competency area (such as time, cost, or quality).

pie chart A chart that shows one data set segmented in a pie

formation.

pinboard One of the three data object display types.

Pinboards are graphics, composed of backgrounds and

interactive icons called pins. Pinboards require traffic

lighting definitions.

pins Interactive icons placed on graphic reports called

pinboards. Pins are dynamic. They can change images and

traffic lighting color based on the underlying data values and

analysis tools criteria.

pivot The ability to alter the perspective of retrieved data.

When Essbase first retrieves a dimension, it expands data

into rows. You can then pivot or rearrange the data to obtain

a different viewpoint.

planner Planners, who comprise the majority of users, can

input and submit data, use reports that others create,

execute business rules, use task lists, enable e-mail

notification for themselves, and use Smart View.

planning unit A data slice at the intersection of a scenario,

version, and entity; the basic unit for preparing, reviewing,

annotating, and approving plan data.

plot area The area bounded by X, Y, and Z axes; for pie

charts, the rectangular area surrounding the pie.

plug account An account in which the system stores any out

of balance differences between intercompany account pairs

during the elimination process.

POV (point of view) A feature for working with dimension

members not assigned to row, column, or page axes. For

example, you could assign the Currency dimension to the

POV and select the Euro member. Selecting this POV in data

forms displays data in Euro values.

precalculation Calculating the database prior to user

retrieval.

precision Number of decimal places displayed in numbers.

predefined drill paths Paths used to drill to the next level of

detail, as defined in the data model.

presentation A playlist of Web Analysis documents, enabling

reports to be grouped, organized, ordered, distributed, and

reviewed. Includes pointers referencing reports in the

repository.

preserve formulas User-created formulas kept within a

worksheet while retrieving data.

primary measure A high-priority measure important to your

company and business needs. Displayed in the Contents

frame.

product In Shared Services, an application type, such as

Planning or Performance Scorecard.

Production Reporting See SQR Production Reporting.

project An instance of Oracle's Hyperion products grouped

together in an implementation. For example, a Planning

project may consist of a Planning application, an Essbase

cube, and a Financial Reporting Server instance.

promote The action to move a data unit to the next review

level, allowing a user having the appropriate access to review

the data. For example, an analyst may promote the data unit

to the next level for his supervisor's review.

336 Glossary

promotion The process of transferring artifacts from one

environment or machine to another; for example, from a

testing environment to a production environment.

property A characteristic of an artifact, such as size, type, or

processing instructions.

provisioning The process of granting users and groups

specific access permissions to resources.

proxy server A server acting as an intermediary between

workstation users and the Internet to ensure security.

public job parameters Reusable, named job parameters

created by administrators and accessible to users with

requisite access privileges.

public recurring time events Reusable time events created by

administrators and accessible through the access control

system.

PVA See periodic value method (PVA).

qualified name A member name in a qualified format that

differentiates duplicate member names in a duplicate

member outline. For example, [Market].[East].[State].

[New York] or [Market].[East].[City].[New York]

query Information requests from data providers. For

example, used to access relational data sources.

query governor An Essbase Integration Server parameter or

Essbase Server configuration setting that controls the

duration and size of queries made to data sources.

range A set of values including upper and lower limits, and

values falling between limits. Can contain numbers,

amounts, or dates.

reconfigure URL URL used to reload servlet configuration

settings dynamically when users are already logged on to the

Workspace.

record In a database, a group of fields making up one

complete entry. For example, a customer record may

contain fields for name, address, telephone number, and

sales data.

recurring template A journal template for making identical

adjustments in every period.

recurring time event An event specifying a starting point and

the frequency for running a job.

redundant data Duplicate data blocks that Essbase retains

during transactions until Essbase commits updated blocks.

regular journal A feature for entering one-time adjustments

for a period. Can be balanced, balanced by entity, or

unbalanced.

Related Accounts The account structure groups all main and

related accounts under the same main account number. The

main account is distinguished from related accounts by the

first suffix of the account number.

relational database A type of database that stores data in

related two-dimensional tables. Contrast with

multidimensional database.

replace A data load option that clears existing values from

all accounts for periods specified in the data load file, and

loads values from the data load file. If an account is not

specified in the load file, its values for the specified periods

are cleared.

replicated partition A portion of a database, defined through

Partition Manager, used to propagate an update to data

mastered at one site to a copy of data stored at another site.

Users can access the data as though it were part of their local

database.

Report Extractor An Essbase component that retrieves report

data from the Essbase database when report scripts are run.

report object In report designs, a basic element with

properties defining behavior or appearance, such as text

boxes, grids, images, and charts.

report script A text file containing Essbase Report Writer

commands that generate one or more production reports.

Report Viewer An Essbase component that displays complete

reports after report scripts are run.

reporting currency The currency used to prepare financial

statements, and converted from local currencies to

reporting currencies.

repository Stores metadata, formatting, and annotation

information for views and queries.

resources Objects or services managed by the system, such

as roles, users, groups, files, and jobs.

Glossary 337

restore An operation to reload data and structural

information after a database has been damaged or

destroyed, typically performed after shutting down and

restarting the database.

restructure An operation to regenerate or rebuild the

database index and, in some cases, data files.

result frequency The algorithm used to create a set of dates to

collect and display results.

review level A Process Management review status indicator

representing the process unit level, such as Not Started, First

Pass, Submitted, Approved, and Published.

Risk Free Rate The rate of return expected from “safer”

investments such as long-term U.S. government securities.

role The means by which access permissions are granted to

users and groups for resources.

roll-up See consolidation.

root member The highest member in a dimension branch.

row heading A report heading that lists members down a

report page. The members are listed under their respective

row names.

RSC services Services that are configured with Remote

Service Configurator, including Repository Service, Service

Broker, Name Service, Event Service, and Job Service.

rules User-defined formulas.

runtime prompt A variable that users enter or select before a

business rule is run.

sampling The process of selecting a representative portion

of an entity to determine the entity's characteristics. See also

metadata sampling.

saved assumptions User-defined Planning assumptions that

drive key business calculations (for example, the cost per

square foot of office floor space).

scale The range of values on the Y axis of a chart.

scaling Scaling determines the display of values in whole

numbers, tens, hundreds, thousands, millions, and so on.

scenario A dimension for classifying data (for example,

Actuals, Budget, Forecast1, and Forecast2).

schedule Specify the job that you want to run and the time

and job parameter list for running the job.

scope The area of data encompassed by any Essbase

operation or setting; for example, the area of data affected

by a security setting. Most commonly, scope refers to three

levels of granularity, where higher levels encompass lower

levels. From highest to lowest, these levels are as follows: the

entire system (Essbase Server), applications on Essbase

Server, or databases within Essbase Server applications. See

also persistence.

score The level at which targets are achieved, usually

expressed as a percentage of the target.

scorecard Business Object that represents the progress of an

employee, strategy element, or accountability element

toward goals. Scorecards ascertain this progress based on

data collected for each measure and child scorecard added

to the scorecard.

scorecard report A report that presents the results and

detailed information about scorecards attached to

employees, strategy elements, and accountability elements.

secondary measure A low-priority measure, less important

than primary measures. Secondary measures do not have

Performance reports but can be used on scorecards and to

create dimension measure templates.

Section pane Lists all sections that are available in the current

Interactive Reporting Client document.

security agent A Web access management provider (for

example, Netegrity SiteMinder) that protects corporate

Web resources.

security platform A framework enabling Oracle's Hyperion

applications to use external authentication and single sign-

on.

serial calculation The default calculation setting Essbase

divides a calculation pass into tasks and calculates one task

at a time.

services Resources that enable business items to be

retrieved, changed, added, or deleted. Examples:

Authorization and Authentication.

servlet A piece of compiled code executable by a Web server.

Servlet Configurator A utility for configuring all locally

installed servlets.

session The time between login and logout for a user

connected to Essbase Server.

338 Glossary

set In MaxL DML, a required syntax convention for

referring to a collection of one or more tuples. For example,

in the following MaxL DML query, SELECT { [100-10] }

ON COLUMNS FROM Sample.Basic { [100-10] } is a set.

shared member A member that shares storage space with

another member of the same name, preventing duplicate

calculation of members that occur multiple times in an

Essbase outline.

Shared Services Application enabling users to share data

between supported Oracle's Hyperion products by

publishing data to Shared Services and running data

integrations.

sibling A child member at the same generation as another

child member and having the same immediate parent. For

example, the members Florida and New York are children

of East and each other's siblings.

single sign-on Ability to access multiple Oracle's Hyperion

products after a single login using external credentials.

slicer In MaxL DML, the section at the end of a query that

begins with and includes the keyword WHERE.

smart tags Keywords in Microsoft Office applications that

are associated with predefined actions available from the

Smart Tag menu. In Oracle's Hyperion applications, smart

tags can also be used to import Reporting and Analysis

content, and access Financial Management and Essbase

functions.

SmartCut A link to a repository item, in URL form.

snapshot Read-only data from a specific time.

source currency The currency from which values originate

and are converted through exchange rates to the destination

currency.

sparse dimension In block storage databases, a dimension

unlikely to contain data for all member combinations when

compared to other dimensions. For example, not all

customers have data for all products.

SPF files Printer-independent files created by a SQR

Production Reporting server, containing a representation

of the actual formatted report output, including fonts,

spacing, headers, footers, and so on.

SQL spreadsheet A data object that displays the result set of

a SQL query.

SQR Production Reporting A specialized programming

language for data access, data manipulation, and creating

SQR Production Reporting documents.

stacked charts A chart where the categories are viewed on

top of one another for visual comparison. This type of chart

is useful for subcategorizing within the current category.

Stacking can be used from the Y and Z axis in all chart types

except pie and line. When stacking charts the Z axis is used

as the Fact/Values axis.

stage A task description that forms one logical step within

a taskflow, usually performed by an individual. A stage can

be manual or automated.

stage action For automated stages, the invoked action that

executes the stage.

standard dimension A dimension that is not an attribute

dimension.

standard journal template A journal function used to post

adjustments that have common adjustment information for

each period. For example, you can create a standard

template that contains the common account IDs, entity IDs,

or amounts, then use the template as the basis for many

regular journals.

Standard Template The Standard template is the basis for the

basic Strategic Finance file. The Standard template contains

all default settings. All new files are created from the

Standard template unless another template is selected.

Start in Play The quickest method for creating a Web

Analysis document. The Start in Play process requires you

to specify a database connection, then assumes the use of a

spreadsheet data object. Start in Play uses the highest

aggregate members of the time and measures dimensions to

automatically populate the rows and columns axes of the

spreadsheet.

Status bar The status bar at the bottom of the screen displays

helpful information about commands, accounts, and the

current status of your data file.

stored hierarchy In aggregate storage databases outlines only.

A hierarchy in which the members are aggregated according

to the outline structure. Stored hierarchy members have

certain restrictions, for example, they cannot contain

formulas.

Glossary 339

strategic objective (SO) A long-term goal defined by

measurable results. Each strategic objective is associated

with one perspective in the application, has one parent, the

entity, and is a parent to critical success factors or other

strategic objectives.

Strategy map Represents how the organization implements

high-level mission and vision statements into lower-level,

constituent strategic goals and objectives.

structure view Displays a topic as a simple list of component

data items.

Structured Query Language A language used to process

instructions to relational databases.

Subaccount Numbering A system for numbering subaccounts

using non-sequential, whole numbers.

subscribe Flags an item or folder to receive automatic

notification whenever the item or folder is updated.

Summary chart In the Investigates Section, rolls up detail

charts shown below in the same column, plotting metrics at

the summary level at the top of each chart column.

super service A special service used by the

startCommonServices script to start the RSC services.

supervisor A user with full access to all applications,

databases, related files, and security mechanisms for a

server.

supporting detail Calculations and assumptions from which

the values of cells are derived.

suppress rows Excludes rows containing missing values, and

underscores characters from spreadsheet reports.

symmetric multiprocessing (SMP) A server architecture that

enables multiprocessing and multithreading. Performance

is not significantly degraded when a large number of users

connect to an single instance simultaneously.

sync Synchronizes Shared Services and application models.

synchronized The condition that exists when the latest

version of a model resides in both the application and in

Shared Services. See also model.

system extract Transfers data from an application's metadata

into an ASCII file.

tabs Navigable views of accounts and reports in Strategic

Finance.

target Expected results of a measure for a specified period

of time (day, quarter, etc.,)

task list A detailed status list of tasks for a particular user.

taskflow The automation of a business process in which

tasks are passed from one taskflow participant to another

according to procedural rules.

taskflow definition Represents business processes in the

taskflow management system. Consists of a network of

stages and their relationships; criteria indicating the start

and end of the taskflow; and information about individual

stages, such as participants, associated applications,

associated activities, and so on.

taskflow instance Represents a single instance of a taskflow

including its state and associated data.

taskflow management system Defines, creates, and manages

the execution of a taskflow including: definitions, user or

application interactions, and application executables.

taskflow participant The resource who performs the task

associated with the taskflow stage instance for both manual

and automated stages.

Taxes - Initial Balances Strategic Finance assumes that the

Initial Loss Balance, Initial Gain Balance and the Initial

Balance of Taxes Paid entries have taken place in the period

before the first Strategic Finance time period.

TCP/IP See Transmission Control Protocol/Internet Protocol

(TCP/IP).

template A predefined format designed to retrieve particular

data consistently.

time dimension Defines the time period that the data

represents, such as fiscal or calendar periods.

time events Triggers for execution of jobs.

time scale Displays metrics by a specific period in time, such

as monthly or quarterly.

time series reporting A process for reporting data based on a

calendar date (for example, year, quarter, month, or week).

Title bar Displays the Strategic Finance name, the file name,

and the scenario name Version box.

token An encrypted identification of one valid user or group

on an external authentication system.

340 Glossary

top and side labels Column and row headings on the top and

sides of a Pivot report.

top-level member A dimension member at the top of the tree

in a dimension outline hierarchy, or the first member of the

dimension in sort order if there is no hierarchical

relationship among dimension members. The top-level

member name is generally the same as the dimension name

if a hierarchical relationship exists.

trace level Defines the level of detail captured in the log file.

traffic lighting Color-coding of report cells, or pins based on

a comparison of two dimension members, or on fixed limits.

transformation (1) Transforms artifacts so that they function

properly in the destination environment after application

migration. (2) In data mining, modifies data

(bidirectionally) flowing between the cells in the cube and

the algorithm.

translation See currency conversion.

Transmission Control Protocol/Internet Protocol (TCP/IP) A

standard set of communication protocols linking

computers with different operating systems and internal

architectures. TCP/IP utilities are used to exchange files,

send mail, and store data to various computers that are

connected to local and wide area networks.

transparent login Logs in authenticated users without

launching the login screen.

transparent partition A shared partition that enables users to

access and change data in a remote database as though it is

part of a local database

triangulation A means of converting balances from one

currency to another via a third common currency. In

Europe, this is the euro for member countries. For example,

to convert from French franc to Italian lira, the common

currency is defined as European euro. Therefore, in order

to convert balances from French franc to Italian lira,

balances are converted from French franc to European euro

and from European euro to Italian lira.

triggers An Essbase feature whereby data is monitored

according to user-specified criteria which when met cause

Essbase to alert the user or system administrator.

trusted password A password that enables users

authenticated for one product to access other products

without reentering their passwords.

trusted user Authenticated user

tuple MDX syntax element that references a cell as an

intersection of a member from each dimension. If a

dimension is omitted, its top member is implied. Examples:

(Jan); (Jan, Sales); ([Jan], [Sales], [Cola], [Texas], [Actual])

two-pass An Essbase property that is used to recalculate

members that are dependent on the calculated values of

other members. Two-pass members are calculated during a

second pass through the outline.

unary operator A mathematical indicator (+, -, *, /, %)

associated with an outline member. The unary operator

defines how the member is calculated during a database roll-

up.

Unicode-mode application An Essbase application wherein

character text is encoded in UTF-8, enabling users with

computers set up for different languages to share

application data.

unique member name A non-shared member name that exists

only once in a database outline.

unique member outline A database outline that is not enabled

for duplicate member names.

upper-level block A type of data block wherein at least one of

the sparse members is a parent-level member.

user directory A centralized location for user and group

information. Also known as a repository or provider.

user variable Dynamically renders data forms based on a

user's member selection, displaying only the specified

entity. For example, user variable named Department

displays specific departments and employees.

user-defined attribute (UDA) User-defined attribute,

associated with members of an outline to describe a

characteristic of the members. Users can use UDAs to return

lists of members that have the specified UDA associated with

them.

user-defined member list A named, static set of members

within a dimension defined by the user.

validation A process of checking a business rule, report

script, or partition definition against the outline to make

sure that the object being checked is valid.

value dimension Used to define input value, translated value,

and consolidation detail.

Glossary 341

variance Difference between two values (for example,

planned and actual value).

version Possible outcome used within the context of a

scenario of data. For example, Budget - Best Case and

Budget - Worst Case where Budget is scenario and Best Case

and Worst Case are versions.

view Representation of either a year-to-date or periodic

display of data.

visual cue A formatted style, such as a font or a color, that

highlights specific types of data values. Data values may be

dimension members; parent, child, or shared members;

dynamic calculations; members containing a formula; read

only data cells; read and write data cells; or linked objects.

Web server Software or hardware hosting intranet or

Internet Web pages or Web applications.

weight Value assigned to an item on a scorecard that

indicates the relative importance of that item in the

calculation of the overall scorecard score. The weighting of

all items on a scorecard accumulates to 100%. For example,

to recognize the importance of developing new features for

a product, the measure for New Features Coded on a

developer's scorecard would be assigned a higher weighting

than a measure for Number of Minor Defect Fixes.

wild card Character that represents any single character (?)

or group of characters (*) in a search string.

WITH section In MaxL DML, an optional section of the query

used for creating re-usable logic to define sets or members.

Sets or custom members can be defined once in the WITH

section, and then referenced multiple times during a query.

workbook An entire spreadsheet file with many worksheets.

write-back The ability for a retrieval client, such as a

spreadsheet, to update a database value.

ws.conf A configuration file for Windows platforms.

wsconf_platform A configuration file for UNIX platforms.

XML See Extensible Markup Language (XML).

Y axis scale Range of values on Y axis of charts displayed in

Investigate Section. For example, use a unique Y axis scale

for each chart, the same Y axis scale for all Detail charts, or

the same Y axis scale for all charts in the column. Often,

using a common Y axis improves your ability to compare

charts at a glance.

Zero Administration Software tool that identifies version

number of the most up-to-date plug-in on the server.

zoom Sets the magnification of a report. For example,

magnify a report to fit whole page, page width, or percentage

of magnification based on 100%.

ZoomChart Used to view detailed information by enlarging

a chart. Enables you to see detailed numeric information on

the metric that is displayed in the chart.

342 Glossary

Index

Symbols
!, 116
!=, 80, 115
$&, 230
$', 230
$*, 230
$+, 230
$1, ..., $9, 229
$_, 230
%, 79, 112
%=, 79, 112
&, 113
&&, 80, 116
&=, 112
(Live) Charts, 34, 40

(Live) Bar Chart properties, 46
(Live) Block Chart properties, 50
(Live) Funnel Chart properties, 51
(Live) Line Chart properties, 47
(Live) Pie Chart properties, 49
(Live) Radar Chart properties, 49
adding, 44
Bar, 41
Block, 43
Funnel, 44
Line, 42
Pie, 41
properties, 45
Radar, 43

*, 79, 112
*=, 79, 112
+, 79, 111, 117
++, 79, 111
+=, 79, 112, 117
,, 118
, (comma operator), 117
-, 79, 112
--, 79, 112

-=, 79, 112
-jscriptcmd, 241
. separator, 78
/, 79, 80, 112
/=, 79, 112
/>, 80
/>=, 80
<< , 115
=, 79, 112
==, 79, 115
>>, 114, 115
>>>, 114, 115
?: (Conditional operator, 117
\<, 116
\<=, 116
\>, 115
\>=, 115
\>>=, 113
\>>>=, 113
^, 113
^=, 112
|, 114
|=, 113
||, 116
~, 114

A
abs, 170, 171
accessibility, 304
accessing

drop-down selections, 91
acos, 170, 172
ActiveDocument level, 259
adding

computed columns to query request lines, 276
concatenating versus, 84
in JavaScript, 84

A B C D E F G H I J L M N O P Q R S T U V W X

Index 343

items to the request line, 276
joins, 275
topics to a data model section, 275

addition operator, 79, 111
alert dialog box, 300
ampersand, 80
anchor, 200
and operator, 80
anti-aliasing

charts, 312
Application level, 258
architecture of EPM Workspace, 287
arguments, 158, 159
arithmetic operators, 79, 111
arity, 158, 160
Array object

JavaScript, 126
methods, 129
properties, 128

asin, 170, 173
assigning

chart types, 81
values, 87

assignment operators
definition, 79
description, 112
versus comparison operators, 280

assistance
with problem scripts, 285

associating scripts
with check boxes, 72
with command buttons, 68
with list boxes, 74
with radio buttons, 70

asterisk, 79, 112
atan, 170, 173
atan2, 170, 174
automation controller, OLE, 254

B
backgrounds, borders, fonts, 298
big, 201
bitwise operators

definition, 113
logical, 114
shift, 115

blink, 202

bold, 202
Boolean object

JavaScript, 140
methods, 142
properties, 141

Boolean operators, 80
borders, backgrounds, fonts, 298
BQY-XML formatting, 310
break statements, 252
brioquery 5.5 limit dialog box

store values
in text boxes, 276

browser, object, 63
browsing repository, 19
buttons

command, 15, 68
option, 15
radio, 15, 70

bypassing errors, 284

C
c++

OLE automation calls, 254
caching

disk, 288
caller, 158, 161
calling functions, 242
case-sensitive code, 280
ceil, 170, 175
change modes

design mode, 14
run mode, 14

changing
control object titles, 67

changing function parameters and object properties,
242

charAt, 203
charCodeAt, 204
chart facts

controlling with if...else, 107
controlling with switch, 108
setting, 98

charts
anti-aliasing, 312
section hierarchy level, 262
sizing, 295

check boxes

A B C D E F G H I J L M N O P Q R S T U V W X

344 Index

using, 72
check boxes, definition, 15
check syntax, 64
client status, 299
client-side events, 299
client-side JavaScript, 298

client status, 299
client-side events, 299
text box events and properties, 300

code entry, 284
code structure, in JavaScript, 78
code, case-sensitive, 280
collection, definition, 60
command buttons

using, 68
command buttons, definition, 15
comparison operators, 79

list of, 115
versus assignment operators, 280

compile, 234
components of EPM Workspace, 288
concat, 130, 204
concatenate operator, 79
concatenation, 84
conditional statements, 246
conditional tests, 281
Interactive Reportingconnection files (OCEs),

scripting, 274
connection login

display, 275
console window

locating errors, 296
reviewing error messages, 65

constant, definition, 60
constructor, 190
continue statements, 251
control events, 300
control objects

changing titles, 67
events associated with, 300
list of, 15
scripting, 67

control structures, 101, 102, 105
controller, OLE automation, 254
controls, 296

controlling visibility of, 274
enabling and disabling, 273

objects properties, 297
scripting Dashboard, 67

converting data types, 88
copy script, 64
Core object

array, 125
boolean, 125
date, 125
function, 125
math, 125
number, 125
object, 125
regular expression, 126
string, 126

core objects
Array, 126
Boolean, 140
Date, 142
Function, 157
Math, 166
Number, 184
Object, 189
Regular Expression, 224
String, 197

cos, 170, 175
createshape, 270
creating

Dashboard sections, 67
dashboard sections, 14
Interactive ReportingDatabase Connection Files

(OCES)), 274
predefined drill-down path, 294
shapes, 270
variable filters (limits), 276

cut script, 64
cut, copy, and paste dashboard objects, 64

D
Dashboard controls, scripting, 67
dashboard home

embedded browser, preload, 23
preload, 23
setting, 23

dashboard objects, 15
delete, 16
embed objects, 16
insert, 16

A B C D E F G H I J L M N O P Q R S T U V W X

Index 345

working with, 15
dashboard scripting, 241
dashboard sections, 13

change modes, 14
control objects, 15
controlling visibility of controls, 274
creating, 14
default mode, 15
deleting, 14
enabling and disabling controls, 273
hierarchy level, 261
inserting, 14
layout tools in, 55
naming, 14
properties, 54
renaming, 14
switch modes, 14
toolbar, 56
working with, 13

dashboard sections toolbar
using, 56

dashboards, 13
external content, 16

data models
add topics, 275
download, 275

Date object
JavaScript, 142
methods, 143
properties, 143

declaring variables
dynamically, 87
global, 87
local, 86

decrement operator, 79, 112
default

run mode, 15
defining functions, 242

examples, 244
in different scopes, 243

delete, 118
delete operator, 119
deleting

dashboard objects, 16
dashboard sections, 14
embedded sections, 16
shapes, 270

description pane, 64
syntax reference, 282

design considerations
embedded objects, 33

design guides, 55
using, 55

design mode, 14
design tools, 55
designing for EPM Workspace, 287
designing scripts, 283
disabling controls, 273
disk caching in EPM Workspace, 288
displaying

connection login boxes, 275
table catalogs, 275

distributed components in EPM Workspace, 288
division operator, 79, 112
do...while statements, 250
document options

properties, 20
document options dialog box, 20
document types, 20
document variables

using, 245
document-level events, 62

associate, 62
downloading data models, 275
drill-down path

create, 294
drop-down boxes

accessing selections, 91
in the Limits Dashboards section, 94
typical use, 91

drop-down list boxes, definition, 15
dynamically declaring variables, 87

E
E, 167
E math property, 166
Elements

in design mode, 14
in run mode, 14

embed objects, 16
embedded browser controls

dashboards, 17
working with, 17

embedded objects, 26

A B C D E F G H I J L M N O P Q R S T U V W X

346 Index

design considerations, 33
paging, 32
view-only

behaviors, 27
properties, 27

embedded pivot section
dashboards, 33
interactivity, 33

Embedded Section Object Shortcut Menus, 28
embedded sections

delete, 16
enabling controls, 273
entering code, 284
equal sign assignment operator, 79
equal test operator, 79
errors

bypassing, 284
identifying, 279
locating, 296

console window, 296
logs, 296
try-catch block, 296

review in console window, 65
scripted credentials

fixing, 311
eval, 191
evaluations, short-circuit, 117
event controls

for toolbar display, 303
events, 60, 298

document-level, 62
document-level, associate, 62
object-level, 60
section-level, 61

events menu, 64
example

controlling graphics and controls visibility, 274
defining functions, 244
JjavaScript, 267
scripts, 274

excel, 254
OLE automation calls, 254

exec, 235
execution window, using to test scripts, 65
exercises

Adding Comparison and Assignment Buttons, 81
Associating a Script with a List Box, 75

Concatenating Values, 84
Declaring a Variable, 93
Summing Values, 85
Using a switch Statement to Change Chart Types,

106
Using an if...else Statement to Change Chart Types,

103
Using Operators as Characters, 83
Using the Assignment Operator, 82
Using the Comparison Operator, 81

exp, 170, 176
export

scripts, 255
to pdf, 302
to xls, 302

external content
dashboards, 16

F
files

export scripts to text, 255
find and replace within scripts, 65
find scripts, 64
fixed, 205
fixing

scripted credentials errors, 311
floor, 171, 177
fontcolor, 206
fonts, backgrounds, borders, 298
fontsize, 207
for statements, 249
for...in statements, 253
formatting

BQY-XML, 310
forward slash, 79, 112
fromCharCode, 208
Function object

JavaScript, 157
methods, 164
properties, 158

functions, 241
calling, 242
change parameters and object properties, 242
define, 242
define in different scopes, 243

examples, 244
document variables, 245

A B C D E F G H I J L M N O P Q R S T U V W X

Index 347

global variables, 245
scope, 243
section variables, 245
variables, 245

G
Gauges, 34

adding, 36
Bullet, 36
properties, 38
Speedometer, 35
Thermometer, 36
Traffic Light, 36

getDate, 144, 145
getDay, 144, 145
getFullYear, 144, 149
getHours, 144, 146
getMinutes, 144, 146
getMonth, 144, 147
getSeconds, 144, 148
getTime, 144, 148
getTimezoneOffset, 144, 149
global property, 230
global variables, 245
global variables, declaring, 87
graphic objects

associated events, 61
list of, 15

graphics, 297
controlling visibility of, 274

graphics objects, 297
greater than, 80
greater than or equal to, 80
grids, 56
guided analysis, 305
guided analysis and reporting, 305
guides, design, 55

H
headers

page, turning off, 277
help

online, 64
with problem scripts, 285

hiding toolbars, 99
hierarchy level

ActiveDocument, 259
Application, 258
chart section, 262
dashboard section, 261
query section, 261
results, reports, pivots sections, 263
sections, 260

chart, 262
dashboard, 261
query, 261
results, reports, pivots, 263
table and OLAPQuery, 264

table and OLAPQuery sections, 264
hierarchy, object model, 257
HTML

user embedded, 309
Hyperion support for problem scripts, 285
hyperlink controls

dashboards, 24
working with, 24

I
identifying errors, 279
if...else statements, 246

controlling chart facts with, 107
stop script, 247
using, 102

if...elsestatements
control structure syntax, 102

if...statements, 101
ignoreCase, 231
II, 80
including

operators in strings, 82
increment operator, 79, 111
index, 128
indexOf, 208
inline if statements, 247
input, 128, 231
insert

dashboard objects, 16
dashboard sections, 14

Interactive Reporting
charts

EPM Workspace limitations, 293
dashboard scripting, 241
dashboard sections

A B C D E F G H I J L M N O P Q R S T U V W X

348 Index

EPM Workspace limitations, 293
document sections

EPM Workspace limitations, 290
features

supported in EPM Workspace, 289
general functions

EPM Workspace limitations, 290
object model. See object model
OLAPQueries

EPM Workspace limitations, 291
pivots

EPM Workspace limitations, 292
queries and data models

EPM Workspace limitations, 291
reports

EPM Workspace limitations, 294
results and tables

EPM Workspace limitations, 292
italics, 210

J
JavaScript

basic syntax, 77
basics, 91
case-sensitivity, 77, 280
client-side, 298

client status, 299
text box events and properties, 300

code structure, 78
concatenating versus adding, 84
control structures, 101
core objects, 125
entering syntax, 284
examples, 267
improving performance, 283
manipulating objects, 253
objects. . See core objects.
OLE automation controller within, 254
operators, 79, 111

arithmetic, 111
logical, 116
string, 117

reserved words, 88
sample, 65
statements, 246
syntax, 77

javascript

client-side
events, 299

join, 130, 131
joins

add, 275
JOOLE, 254

L
label statements, 251
lastIndex, 232
lastIndexOf, 210
lastMatch, 232
lastParen, 233
launch scripts

command line, 241
layout tools, 55
leftContext, 233
length, 129, 198
less than or equal to, 80
limit values in urls submitted to ODS, 277
limitations

EPM Workspace
Interactive Reporting charts, 293
Interactive Reporting dashboard sections, 293
Interactive Reporting documents, 290
Interactive Reporting general functions, 290
Interactive Reporting OLAPQueries, 291
Interactive Reporting pivots, 292
Interactive Reporting queries and data models,

291
Interactive Reporting reports, 294
Interactive Reporting results and tables, 292

limits
modifying, 94
Query, modifying, 98
Results, modifying, 95

line number, go to, 64
link, 211
list box

using, 74
list boxes, definition, 15
LN10, 166, 167
LN2, 166, 168
local variables, declaring, 86
locating errors, 296

console window, 296
logs, 296

A B C D E F G H I J L M N O P Q R S T U V W X

Index 349

try-catch block, 296
log, 171, 178
log into repository, 19
LOG10E, 166, 168
LOG2E, 166, 168
logical operators, 80, 116
logical operators, bitwise, 114
logs

locating errors, 296
loop statements, 249

M
manipulating objects with JavaScript, 253
map, object model, 257
match, 212
Math object

JavaScript, 166
methods, 170
properties, 166

max, 171, 178
MAX_VALUE, 185
MAX_Value, 185
methods

Array object, 129
Boolean object, 142
Date object, 143
Function object, 164
Math object, 170
Number object, 188
Object object, 190
Regular Expression object, 234
String object, 199

methods, definition, 59
Microsoft automation interfaces, 254
min, 171, 179
MIN_Value, 185
minimum sign, 112
minus sign, 79
modifying

limits, 94
Query limits, 98
Results limits, 95

modulus operator, 79, 112
multiline, 233
multiplication operator, 79, 112
multithreading in EPM Workspace, 288

N
naming

dashboard sections, 14
NaN, 185, 186
navigation toolbar, 57
navigation, object model, 257
NEGATIVE_INFINITY, 185, 187
new, 118, 119
not equal test operator, 80
Number object

JavaScript, 184
methods, 188
properties, 185

O
object browser, 63
object level events, 300
object model

description pane, 64
hierarchy, 257, 258

ActiveDocument level, 259
Application level, 258
chart section, 262
dashboard section, 261
query section, 261
results, reports, pivots sections, 263
sections, 260
table and OLAPQuery sections, 264

irrelevant to EPM Workspace but must be retained,
307

items excluded from EPM Workspace, 306
map, 257
Microsoft automation interfaces, 254
navigating, 257
online help, 64
processing povs, 306
terminology, 59
tree

traversing, 306
Object object

JavaScript, 189
method, 190
properties, 189

object properties
retrieving, 268
setting, 268
setting with JavaScript, 268

A B C D E F G H I J L M N O P Q R S T U V W X

350 Index

object-level events, 60
objects

controls, 15
core, 125
embedded, 26
embedded sections, controls, graphics

delete, 16
Function, 157
graphics, 15
in Elements, 14
insert, embed, 16
manipulating with JavaScript, 253
placement and sizing, 269
resources, 16
scripting control, 67
sections, 15
using variables for, 97

objects, definition, 59
objects, embedded

design considerations, 33
paging, 32
view-only behaviors, 27
view-only properties, 27

OCEs
create, 274
script, 274

OLE automation calls
c++, excel, visual basic, 254

OLE automation controller, 254
OnCellDoubleClick, 61
OnChange, 61
OnClick, 61
OnClientClick, 61
OnClientDoubleClick, 61
OnClientEnter, 61
OnClientExit, 61
OnDoubleClick, 61
OnEnter, 61
OnExit, 61
online help, 64
OnRowDoubleClick, 61
OnSelection, 61
operators

assignment, 112
bitwise, 113, 114, 115
comparison, 115
conditional, 118

JavaScript, 79
logical, 116
short-circuit evaluation, 117
special, 117
string, 82, 117

option buttons, definition, 15
or operator, 80
outlook, 254

P
page headers

turning off for first page in reports, 277
paging

embedded objects, 32
pane

description, 64
scripting, 63

parse, 144, 150
parsing smartcuts and storing data in global variables

povs, processing, 305
partial document loading in EPM Workspace, 288
paste script, 64
pdf, export to, 302
percent sign, 79, 112
performance-enhancing features of EPM Workspace,

288
disk caching, 288
distributed components, 288
multithreading, 288
partial document loading, 288

periods, as separators, 78
personal pages, 304
PI, 166, 169
pipe, 80
pivots

results and reports sections hierarchy level, 263
placement and sizing

objects, 269
placement node, 269

method, 269
method, using, 270
placing objects, 270
properties, 269
properties, using, 270

placing objects, 270
plus sign, 79
pop, 130, 132

A B C D E F G H I J L M N O P Q R S T U V W X

Index 351

POSITIVE_INFINITY, 185, 187
povs processing, 305

parsing smartcuts and storing data in global
variables, 305

traversing the object model tree, 306
pow, 171, 180
predefined drill-down path

creating, 294
printout() method

support in EPM Workspace, 311
processing povs, 305

parsing smartcuts and storing data in global
variables, 305

traversing the object model tree, 306
processing queries

using prompt for database logon, 277
prompt to save dialog box, turning off, 277
properties

Array object, 128
Boolean object, 141
control objects, 297
Date object, 143
definition, 60
Function object, 158
Math object, 166
Number object, 185
Object object, 189
Regular Expression object, 228
setting for dashboards, 54
String object, 198

Prototype, 185
prototype, 159

Array property, 129
Boolean property, 141
Date property, 157
Function property, 163
Number property, 188
Object property, 190
String property, 198

push, 130, 132

Q
Query limits, modifying, 98
query request line

add computed columns, 276
query section hierarchy level, 261
quotation marks, strings and, 77

R
radio buttons

using, 70
radio buttons, definition, 15
random, 171, 180
recalculating results, 283
reference

syntax, 282
Regular Expression

$, 225
(n), 226
(n,), 226
(n,m), 226
(x), 226
*, 225
+, 225
., 226
?, 226
[\b], 226
[^xyz], 226
\, 225, 227
\B, 226
\b, 226
\c, 226
\D, 226
\d, 226
\f, 227
\n, 227
\ooctal \xhex, 227
\r, 227
\S, 227
\s, 227
\t, 227
\v, 227
\W, 227
\w, 227
^, 225
x,y,z, 226
x|y, 226

Regular Expression object
JavaScript, 224
methods, 234
properties, 228

removeshape, 270
removing shapes, 270
rename dashboard sections, 14
replace, 213

A B C D E F G H I J L M N O P Q R S T U V W X

352 Index

replace scripts, 64
reporting, 305
reporting and guided analysis, 305
reports

results and pivots sections hierarchy level, 263
turning off page headers for first page, 277

repository
browsing, 19
embed an object, 19
log in, 19

request line, add items, 276
reserved words, 88
resources objects

images, 16
results

recalculating, 283
reports and pivots sections hierarchy level, 263

Results limits
modifying, 95

retrieve
object properties, 268

reverse, 130, 133
reviewing error messages in console window, 65
rightContext, 234
round, 171, 181
rulers, 56

using, 56
run mode, switching to, 14

S
sample JavaScript, 65
sample scripts

add
computed column to a query request line, 276
items to the request line, 276
joins, 275
topics to data model sections, 275

create an OCE, 274
display table catalog, 275
setup topic objects variables, 275
turn off page headers for the first page in reports,

277
using a brioquery 5.5 limit dialog box to store

values in text boxes, 276
scope, function, 243
script commands, launching, 241
script editor

description pane, 282
using, 63

scripted credentials errors
fixing, 311

scripting
control objects, 67
Dashboard controls, 67
user credentials, 310

scripting pane, 63
scripts, 241

designing, 283
export to text files, 255
find and replace, 65
launch from command line, 241
testing using execution window, 65
troubleshooting, 279

search, 214
section objects, 15
section variables, 245
section-level events, 61

active, 61
sections hierarchy level, 260
selections

accessing with drop-down boxes, 91
using variables for, 93

separators, statement, 78
set

object properties, 268
setDate, 144, 151
setHours, 144, 151
setMinutes, 144, 152
setMonth, 144, 152
setSeconds, 144, 153
setTime, 153
setting

chart facts, 98
dashboard properties, 54
topic object variables, 275
variable filters (limits), 276

setYear, 154
shapes

create, 270
remove, 270

shapes collection
createshape method, 270
removeshape method, 270

shift, 130, 134

A B C D E F G H I J L M N O P Q R S T U V W X

Index 353

shift operators, bitwise, 115
short-circuit evaluation operator, 117
Shortcut Menus

for embedded Chart Section object, 31
for embedded OLAPQuery Section object, 31
for embedded Pivot Section object, 30
for embedded Results/Table Section object, 29

sin, 171, 182
sizing

charts, 295
slice, 130, 135, 215
Slider

properties, 53
Sliders, 52

adding, 52
small, 216
sort, 130, 137
source, 234
space-saving variables, 279
special operators, 117
splice, 130, 136
split, 216
sqrt, 171, 182
SQRT1_2, 167, 169
SQRT2, 167, 170
standard Interactive Reporting toolbar, 301
statement separators, 78
statements

break, 252
conditional, 246
continue, 251
do...while, 250
for, 249
for...in, 253
if...else, 102, 246
inline if, 247
JavaScript, 246
label, 251
loop, 249
switch, 102, 105, 248
while, 250
with, 253

stop a script
if...else statements, 247

storing data in global variables and parsing smartcuts
povs, processing, 305

strike, 218

String
anchor, 199
big, 199
blink, 199
bold, 199
charAt, 199
charCodeAt, 199
concat, 199
fixed, 199
fontcolor, 199
fontsize, 199
fromCharCode, 199
indexOf, 199

String object
JavaScript, 197
methods, 199
properties, 198

string operators, 117
strings, concatenation and addition of, 84
sub, 219
substr, 220
substring, 221
subtraction operator, 79, 112
sup, 222
switch modes

design mode, 14
run mode, 14

switch statements, 248
control structures, 102
controlling chart facts with, 108
controlling statement execution, 105

switchstatements
definition, 105

syntax, 77
syntax reference, 282

T
table and OLAPQuery sections hierarchy level, 264
table catalogs

display, 275
tan, 171, 183
test, 238
test if operators, 80
testing scripts using the execution window, 65
tests, conditional, 281
text boxes, 16

displaying values, 267

A B C D E F G H I J L M N O P Q R S T U V W X

354 Index

entering values, 267
events and properties, 300

text files, export scripts, 255
this, 118, 121
toggle modes

design mode, 14
run mode, 14

toGMTString, 144, 154
toLacaleString, 145
toLocaleString, 155
toLowerCase, 223
toolbars, 301

dashboard sections, 56
event controls for display, 303
navigation, 57
not required in EPM Workspace, 301
rules in EPM Workspace, 303
standard Interactive Reporting, 301
EPM Workspace personal pages, 304

toolbars, hiding, 99
tools, layout, 55
topic object variables

setting, 275
topics, add to data models, 275
toString, 139, 142, 165, 188, 191, 192
tostring, 130
ToString() (Function), 157
ToString() (Method), 184
toUpperCase, 223
traversing the object model tree

povs, processing, 306
troubleshooting scripts, 279
try-catch block, locating errors, 296
turning off

page headers, 277
prompt to save dialog box, 277

typeof, 118, 121

U
unary negation operator, 112
understanding

control structure syntax, 101
functions, 241
Interactive Reporting events, 60
Interactive Reporting object model, 59

unshift, 130, 140
unwatch, 191, 194

user credentials in scripting, 310
user embedded HTML, 309
using

assignment versus comparison operators, 80
brioquery 5.5 limit dialog box, 276
console window, to review error messages, 65
drop-down boxes, 91
execution window to test scripts, 65
JjavaScript statements, 246
ODS user name as limit, 276
script editor, 63
variables

for objects, 97
for selections, 93

UTC, 145, 156

V
valueOf, 191, 195
variable filters (limits)

create, 276
set, 276

variables
assigning values, 87
characteristics, 93
creating function components, 245
declaring global, 87
declaring local, 86
definition, 86
document, 245
dynamically declaring, 87
global, 245
section, 245
space-saving, 279
using for a drop down selection, 93
using for objects, 97

view-only behaviors
embedded objects, 27

view-only properties
embedded objects, 27

visual basic
OLE automation calls, 254

void, 118, 122

W
watch, 191, 196
while statements, 250

A B C D E F G H I J L M N O P Q R S T U V W X

Index 355

window
console, 65
execution, 65

with statements, 253
words, reserved, 88
EPM Workspace

architecture, 287
components, 288
designing, 287
disk caching, 288
distributed components, 288
excluded object model items, 306
irrelevant object model properties, 307
multithreading, 288
partial document loading, 288
performance-enhancing features, 288

disk caching, 288
distributed components, 288
multithreading, 288
partial document loading, 288

personal pages, toolbars, 304
printout() method support, 311
supported Interactive Reporting features, 289
toolbar rules, 303

EPM Workspace limitations
Interactive Reporting charts, 293
Interactive Reporting dashboard sections, 293
Interactive Reporting documents, 290
Interactive Reporting general functions, 290
Interactive Reporting OLAPQueries, 291
Interactive Reporting pivots, 292
Interactive Reporting queries and data models,

291
Interactive Reporting reports, 294
Interactive Reporting results and tables, 292

X
x %= y , 113
x &= y, 113
x *= y , 113
x += y, 113
x -= y , 113
x /= y , 113
x <<= y , 113
x >>= y, 113
x >>>= y, 113
x ^= y, 113

x |= y, 113
xls, export to, 302

A B C D E F G H I J L M N O P Q R S T U V W X

356 Index

	Contents
	Overview
	Working with Dashboard Sections
	Dashboard Sections
	Inserting, Renaming, Deleting, and Changing Mode of Dashboard Sections
	Inserting Dashboard Sections
	Renaming Dashboard Sections
	Deleting Dashboard Sections
	Switching Between Design and Run Modes

	Working with Dashboard Objects
	Inserting Dashboard Objects
	Deleting Dashboard Objects

	External Content in Dashboards
	Working with Embedded Browser Controls
	Referencing A Name With A Single-Byte Character
	Browsing the Repository
	Document Options
	Setting Dashboard Home Sections
	Working with HyperLink Controls

	Embedded Section Objects
	Embedded Section Object Scrollbar and Auto-Sizing Properties
	Embedded Section Object View Only Behavior
	Embedded Section Object Active Mode in the EPM Workspace
	Embedded Section Object Paging
	Embedded Section Object Design Considerations
	Embedded Pivot Section Object Interactivity

	Gauges and (Live) Charts
	Gauges
	Adding Gauges to the Dashboard
	Gauge Properties
	(Live) Charts
	Adding (Live) Charts to the Dashboard
	(Live) Chart Properties

	Sliders
	Adding a Slider to the Dashboard
	Slider Properties

	Setting Dashboard Properties
	Using Design Tools
	Layout Tools
	Using the Navigation Toolbar

	Working with the Interactive Reporting Object Model
	The Object Model
	Interactive Reporting Events
	Object-Level Events
	Active Section-Level Events
	Document-Level Events

	Using Script Editor
	Using the Object Browser
	Using the Scripting Pane
	Using the Events Menu
	Cutting, Copying and Pasting Dashboard Objects
	Using the Description Pane and Online Help

	Using a Sample JavaScript Script
	Testing Scripts Using the Interactive Reporting Execution Window
	Reviewing Error Messages in the Interactive Reporting Console Window
	Finding and Replacing Within Scripts

	Scripting Dashboard Controls
	Scripting Control Objects
	Creating a New Dashboard Section
	Changing a Control Object Title

	Associating Scripts with Command Buttons
	Creating a Custom Button

	Associating Scripts with Radio Buttons
	Associating Scripts with Check Boxes
	Associating Scripts with List Boxes
	Exercise: Associating a Script with a List Box

	JavaScript Syntax
	Basic JavaScript Syntax
	JavaScript Code Structure
	JavaScript Operators
	Using Assignment versus Comparison Operators
	Including Operators in Strings
	Concatenating versus Adding

	Variables
	Declaring Local Variables
	Declaring Global Variables
	Dynamically Declaring Variables
	Assigning Values

	Reserved Words

	JavaScript Basics
	Using Drop-Down Boxes
	Accessing a Drop-Down Selection
	Using a Variable for the Selection

	Modifying Filters
	Modifying a Results Filter
	Using a Variable for an Object
	Modifying a Query Filter

	Finishing the Interactive Reporting Document File
	Setting a Chart Fact
	Hiding Toolbars

	JavaScript Control Structures
	Understanding Control Structure Syntax
	About if...else Statements
	Exercise: Using an if...else Statement to Change Chart Types
	Exercise

	About switch Statements
	Exercise: Using a switch Statement to Change Chart Types

	Controlling Chart Facts with if...else
	Controlling Chart Facts with switch

	JavaScript Operators
	Arithmetic Operators
	Assignment Operators
	Bitwise Operators
	Bitwise Logical Operators
	Bitwise Shift Operators

	Comparison Operators
	Logical Operators
	Short-Circuit Evaluation

	String Operators
	Special Operators
	?: (Conditional operator)
	, (comma operator)
	delete
	new
	this
	typeof
	void

	Core Objects
	Array
	Array Properties
	Array Methods

	Boolean
	Boolean Properties
	Boolean Methods

	Date
	Date Properties
	prototype

	Function
	Function Properties
	Function Methods

	Math
	Math Properties
	Math Methods

	Number
	Number Properties

	Object
	Object Properties
	Object Methods

	String
	String Properties
	String Methods

	Regular Expression
	Regular Expression Properties
	Regular Expression Methods

	Scripting Reference
	Dashboard Scripting
	About Scripts
	Understanding Functions
	Defining Functions
	Changing Function Parameters and Object Properties
	Calling Functions
	Function Scope
	Using Variables

	Using JavaScript Statements
	Conditional Statements
	Loop Statements
	break Statements

	Manipulating Objects with JavaScript
	for...in Statements
	with Statements

	Microsoft Automation Interfaces and the Object Model
	OLE Automation Controller within JavaScript (JOOLE)
	Exporting Scripts to Text Files

	Object Model Map
	Object Model Hierarchy
	Application Level Hierarchy
	ActiveDocument Level Hierarchy
	Sections
	Query Section
	Dashboard Section
	Chart Section
	Results, Report, and Pivot Sections
	Table and OLAPQuery Sections

	JavaScript Examples
	Displaying and Entering Values in Text Boxes
	Retrieving and Setting Object Properties
	Object Model Placement and Sizing
	Placement Node
	Placement Properties
	Placement Method

	Creating and Deleting Shapes
	CreateShape Function
	RemoveShape Function

	Using the Placement Properties and Method
	Placing Objects
	Verifying Functionality

	Using CreateShape and RemoveShape
	Verify CreateShape and RemoveShape Functionality
	Enabling and Disabling Controls
	Controlling the Visibility of Graphics and Controls
	Creating Interactive Reporting Database Connection Files (OCEs)
	Displaying a Connection Login Box
	Downloading Data Models
	Displaying Table Catalogs
	Adding Topics To Data Model Sections
	Setting Up Topic Object Variables
	Adding Joins
	Adding Items to the Request Line
	Adding Computed Columns to Query Request Lines
	Creating and Setting Variable Filters (Limits)
	Using a BrioQuery 5.5 Limit Dialog Box to Store Values
	Turning Off Page Headers on Report First Page
	Turning Off the Prompt to Save Dialog Box

	Troubleshooting Scripts
	Identifying Errors
	Space-Saving Variables
	Case-Sensitive Code
	Assignment Operators Versus Comparison Operators
	Conditional Tests
	Syntax Displayed in the Description Pane
	Recalculating Results
	Designing Scripts
	Code Entry
	Bypass Errors
	Getting Assistance with Problem Scripts

	Designing for EPM Workspace
	Architecture of EPM Workspace
	EPM Workspace Components
	EPM Workspace Performance-Enhancing Features

	Interactive Reporting Features Supported in EPM Workspace
	EPM Workspace Limitations—Designing and Using Interactive Reporting Document Sections
	General Functions—EPM Workspace Limitations
	Query and Data Model Sections—EPM Workspace Limitations
	OLAPQuery Sections—EPM Workspace Limitations
	Results and Table Sections—EPM Workspace Limitations
	Pivot Sections—EPM Workspace Limitations
	Chart Sections—EPM Workspace Limitations
	Dashboard Sections—EPM Workspace Limitations
	Report Sections—EPM Workspace Limitations
	Computed Items EPM Workspace Limitations

	Creating Predefined Drill-Down Paths
	Chart Sizing
	Locating Errors
	Console Window
	Error Logs
	try-catch Block

	Controls
	Control Object Properties
	Graphics
	Borders, Background, and Fonts
	Events
	Client-Side JavaScript
	Client Status
	Client-Side Events
	Text Box Events and Properties

	Alert Dialog Box
	Toolbars
	Toolbars Not Required in EPM Workspace
	Standard Interactive Reporting Toolbar
	Event Controls for Toolbar Display
	Rules for Toolbars in EPM Workspace
	Personal Pages
	Section 508 Compliance

	Accessibility
	Guided Analysis and Reporting
	Processing the POV
	Parsing SmartCuts and Storing Data in Global Variables
	Traversing the Object Model Tree

	Object Model Items Excluded from EPM Workspace
	Object Model Properties Irrelevant to EPM Workspace That Must Be Retained
	User Embedded HTML
	BQY-XML Formatting
	User Credentials in Scripting
	Fixing Scripted Credentials Errors
	PrintOut() Method Support in EPM Workspace
	Anti-Aliasing and Charts

	Abbreviations and Acronyms
	Glossary
	Index

