
H Y P E R I O N ® S Q R ® P R O D U C T I O N R E P O R T I N G

R E L E A S E 1 1 . 1 . 1

D E V E L O P E R ’ S G U I D E

VOLUME 1: DESIGNING REPORTS WITH THE SQR PRODUCTION
REPORTING LANGUAGE

Production Reporting Developer’s Guide, 11.1.1

Copyright © 1996, 2008, Oracle and/or its affiliates. All rights reserved.

Authors: EPM Information Development Team

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable: U.S. GOVERNMENT RIGHTS: Programs, software, databases, and related
documentation and technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government
contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal
injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim
any liability for any damages caused by use of this software in dangerous applications.

This software and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with
respect to third party content, products and services. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third party content, products or services.

Contents

Part I. Production Reporting Basics . 11

Chapter 1. Introduction . 13

Chapter 2. A Simple Production Reporting Program . 15

A Sample Program . 15

Creating and Running Production Reporting Programs . 15

Production Reporting Output . 16

Chapter 3. Headings and Footings . 19

Subdividing Pages . 19

Adding Headings and Footings . 19

Page Heading . 20

Page Footing . 20

Order of Execution . 21

Chapter 4. Selecting Data . 23

Sample Code . 23

Using SELECT Statements . 24

SELECT Statement Syntax . 25

Positioning Data . 25

Chapter 5. Column Variables . 27

Using Column Variables in Conditions . 27

Changing Column Variable Names . 28

Chapter 6. Break Logic . 29

About Breaks . 29

Using ON-BREAK . 30

Skipping Lines Between Groups . 31

Arranging Multiple Break Columns . 32

Break Processing with Enhancements . 33

Handling Page Breaks . 36

Printing Dates . 36

Contents iii

Obtaining Totals . 37

Hyphens and Underscores . 37

Setting Break Procedures with BEFORE and AFTER . 38

Understanding Event Order . 38

Controlling Page Breaks with Multiple ON-BREAK Columns . 42

Saving Values When Breaks Occur . 43

Using ON-BREAK on Hidden Columns . 43

Restrictions and Limitations of ON-BREAK . 45

Chapter 7. SETUP Section . 47

About the Setup Section . 47

Creating the SETUP Section . 47

Using DECLARE-LAYOUT . 48

Overriding Default Settings . 49

Declaring Page Orientation . 50

Part II. Production Reporting Reports . 51

Chapter 8. Master/Detail Reports . 53

About Master/Detail Reports . 53

Creating Master/Detail Reports . 53

Correlating Subqueries . 55

Chapter 9. Cross-Tabular Reports . 61

About Cross-Tabular Reports . 61

Arrays . 62

Creating Arrays . 64

Grouping by Category . 65

Using Multiple Arrays . 67

Chapter 10. Printing Mailing Labels . 71

Defining Columns and Rows . 71

Running Programs . 73

Chapter 11. Creating Form Letters . 77

Using DOCUMENT Sections . 77

Using Document Markers . 77

A Simple Form Letter Program . 77

iv Contents

Chapter 12. Exporting Data to Other Applications . 81

Part III. Fonts and Graphics . 83

Chapter 13. Using Graphics . 85

A Simple Tabular Report . 85

Adding Graphics . 86

Sharing Images Among Reports . 89

Printing Bar Codes . 91

Using Color . 92

Changing Color Specifications . 92

Chapter 14. Business Charts . 95

About Business Charts . 95

Creating Charts . 95

Defining Charts . 99

Printing Charts . 99

Running Programs . 100

Passing Data to Charts . 100

Changing Colors with New Graphics . 101

Specifying Chart Data Series Colors . 101

Specifying Chart Item Colors . 102

Creating Combination Charts . 104

Sample Line Chart Over Bar Chart . 105

Sample Hi-Low Chart Over Bar Chart . 107

Creating Bubble Charts . 111

Defining Point Labels . 114

Chapter 15. Changing Fonts . 115

Selecting Fonts . 115

Positioning Text . 115

Using WRAP . 117

Chapter 16. Writing Printer-Independent Reports . 119

About Printer-Independent Reports . 119

Guidelines for Printer-Independent Reports . 119

Specifying the Printer at Run-time . 120

Part IV. Advanced Production Reporting Programming . 123

Chapter 17. Dynamic SQL and Error Checking . 125

About Dynamic SQL and Error Checking . 125

Contents v

Using Variables in SQL . 125

Dynamic SQL . 126

SQL and Substitution Variables . 128

SQL Error Checking . 129

Chapter 18. Procedures, Argument Passing, and Local Variables . 131

A Sample Program . 131

Procedures . 131

Local Variables . 131

Argument Passing . 132

Chapter 19. Multiple Reports . 137

Chapter 20. Using DML and DDL . 141

SQL Statements . 141

Using BEGIN-SQL . 141

Chapter 21. Working with Comma Separated Files (CSV) . 145

Declaring a Connection to a CSV Data Source . 145

Specifying a Separator Value for CSV File Generation . 145

Viewing CSV Metadata . 146

Creating and Executing MD Queries . 146

Chapter 22. Retrieving BINARY Column Data . 147

Defining that a Variable or Column Supports BINARY Data . 147

Defining How to Treat BINARY Data . 147

Converting Between BINARY and TEXT . 148

Processing External Files . 148

Production Reporting Commands that Support BINARY Data 148

Chapter 23. Working with Multi-Dimensional Data Sources (OLAP) . 151

Declaring a Connection to an OLAP Server . 151

Viewing Cube Metadata . 151

Creating and Executing MD Queries . 152

Measures . 152

Column Order . 152

Dimensions, Levels, and Hierarchies . 153

Chapter 24. Working with Dates . 155

Dates in Production Reporting . 155

Obtaining Date Values . 155

Date Arithmetic . 156

vi Contents

Date Formats . 157

String to Date Conversions . 158

Date to String Conversions . 158

Using Dates with the INPUT Command . 159

Date Edit Masks . 159

Declaring Date Variables . 160

Chapter 25. National Language Support . 163

Locales . 163

Available Locales . 163

Default Locale . 164

Switching Locales . 164

Modifying Locale Preferences . 165

Keywords—NUMBER, MONEY, and DATE . 165

Chapter 26. Interoperability . 167

Interoperability Diagrams . 167

Calling Production Reporting from Another Application . 168

Using the Production Reporting API . 168

Using the Production Reporting API on Windows . 168

Using the Production Reporting API on Non-windows Platforms 169

API Functions for Calling Production Reporting . 169

Relinking Production Reporting on UNIX Platforms . 170

Error Values Returned by the Production Reporting API . 171

Extending Production Reporting—UFUNC.C . 171

ufunc on the Windows Platform . 172

Implementing New User Functions on the Windows Platform 172

XML Support in Production Reporting . 172

Chapter 27. Testing and Debugging . 175

Using the Test Feature . 175

Using the #DEBUG Command . 176

Using Compiler Directives for Debugging . 176

Common Programming Errors . 177

Chapter 28. Performance and Tuning . 179

About Performance and Tuning . 179

Simplifying a Complex SELECT . 179

Using LOAD-LOOKUP to Simplify Joins . 180

Improving SQL Performance with Dynamic SQL . 181

Contents vii

Examining SQL Cursor Status . 182

Avoiding Temporary Database Tables . 183

Using and Sorting Arrays . 183

Using and Sorting Flat Files . 187

Creating Multiple Reports in One Pass . 189

Tuning Production Reporting Numerics . 189

Compiling Production Reporting Programs and Using Production Reporting
Execute . 190

Buffering Fetched Rows . 190

Executing Programs on the Database Server . 191

Part V. Running and Printing . 193

Chapter 29. Compiling Programs and Using Production Reporting Execute . 195

Chapter 30. Printing Issues . 197

Printing in Production Reporting . 197

Command-Line Flags and Output Types . 197

DECLARE-PRINTER Command . 198

Naming the Output File . 199

Print Commands by Operating System . 200

Chapter 31. Using the Production Reporting Command Line . 201

The Production Reporting Command Line . 201

Specifying Command-Line Arguments . 201

How Production Reporting Retrieves the Arguments . 202

Specifying Arguments and Argument Files . 202

Using an Argument File . 202

Passing Command-Line Arguments—Other Approaches . 203

Reserved Characters . 203

Creating an Argument File from a Report . 204

Using Batch Mode . 204

Chapter 32. Working with HTML . 205

Production Reporting Capabilities Available with HTML . 205

Producing HTML Output . 206

Specifying the Output Type . 206

Using HTML Procedures to Produce Output . 206

Viewing HTML Output . 206

Testing the Output . 207

Generating Enhanced HTML . 207

viii Contents

Setting Enhanced HTML Attributes . 208

Generating Standard HTML . 217

“Bursting” and Demand Paging . 218

Using HTML Procedures in a Production Reporting Program . 220

Using HTML Procedures . 221

Positioning Objects . 221

Defining Titles and Background Images . 223

Table Procedures . 223

Headings . 225

Highlighting . 225

Hypertext Links . 226

Images . 227

Lists . 227

Paragraph Formatting . 228

User-Defined HTML . 228

Modifying Existing Production Reporting Programs . 229

Publishing Reports . 231

Viewing Published Reports . 232

Publishing Using an Automated Process . 232

Publishing Using a CGI Script . 233

Creating the Fill-Out Form . 233

Creating the CGI Script . 234

Passing Arguments to the Production Reporting Program . 235

Chapter 33. Tables of Contents . 237

DECLARE-T0C . 237

TOC-ENTRY . 238

Cust.sqr . 238

Chapter 34. Customizing the HTML Navigation Bar . 243

Prerequisites . 243

About XML . 243

The Default Navigation Bar Template . 244

Navbar Element . 246

Messages, Locale, and Message Elements . 246

Var Element . 247

Row, Position, Icon, and Entry Elements . 247

Customizing Navigation Bar Attributes . 251

Working with Templates . 251

Specifying Navigation Bar Height and TOC Width . 252

Contents ix

Adding and Placing an Image . 252

Working with Navbar Icons . 253

Index . 261

x Contents

P a r t I

Production Reporting Basics

In Production Reporting Basics:

● Introduction
● A Simple Production Reporting Program
● Headings and Footings
● Selecting Data
● Column Variables
● Break Logic
● SETUP Section

Production Reporting Basics 11

12 Production Reporting Basics

1
Introduction

This guide is designed to help you learn the Oracle's Hyperion® SQR® Production Reporting
language, a specialized language for database processing and reporting. By working through code
examples, you will learn how to write Production Reporting programs that select data from a
database and present it in a report.

If this is your first time using Production Reporting, the first three parts of this guide (through
Chapter 16) give you everything that you need to get started. The rest of the guide discusses
advanced features and more technical issues.

This guide is filled with real examples and sample programs, and we encourage you to copy code
from it. It helps you create the kinds of Production Reporting programs that are important to
your organization.

The code examples in this guide demonstrate good Production Reporting programming style.
We recommend that you adopt this standard style because it makes your code easier for other
Production Reporting programmers to read. We encourage you to try these programs for
yourself and to experiment with them. Try making some changes to the samples and see how
they run.

To try the sample programs, you must first install Production Reporting Server. If you installed
all of the program components, the sample programs are located in:

\hyperion\products\biplus\docs\samples\Production Reporting

If you did not include the files in the original installation, you can rerun the installation program
to install just these files.

You can run the sample programs on any hardware platform, but you may find it somewhat
easier to review Production Reporting program results from the Windows platform, and using
Production Reporting Viewer or Web browser to check results.

You can run the sample programs without modification against the Oracle, Sybase, and Informix
databases. You can also run the samples against other databases with minor modifications.

To run the sample programs, you must create a sample database by running the
loadall.sqr program.

➤ To runloadall.sqr, enter the following command:

sqr loadall username/password

On Windows platforms, you can run loadall.sqr by double-clicking the Loadall icon. If your
system does not display this icon, execute loadall.sqr from \hyperion\products
\biplus\docs\Server\sample.

13

If an individual table exists, you are prompted to:

A—Abort the load

S—Skip the specified table

R—Reload the specified table

C—Reload all tables

➤ To run loadall.sqr as a batch program, enter the preferred option (A, S, R, or C) on the
command-line.

For example:

sqr loadall username/password a

You can set up the sample database and run the sample programs with any user name and
password. We recommend, however, that you use an account that does not hold important data.

The sample programs are in ASCII format. To successfully run the programs, you must specify
an ASCII-derived encoding value in your SQR.INI file. See “Encoding Keys in the [Environment]
Section” in Volume 2 of the Production Reporting Developer's Guide.

14 Introduction

2
A Simple Production Reporting

Program

In This Chapter

A Sample Program15

Creating and Running Production Reporting Programs... .15

Production Reporting Output.. .16

A Sample Program
The first sample program is the simplest Production Reporting program. It prints a text string.

Program ex1a.sqr
begin-program
 print 'Hello, World.' (1,1)
end-program

Note:

All program examples and their output files are included with the installation.

Creating and Running Production Reporting Programs
Open a text editor and enter the code printed above exactly as shown or open Program
ex1a.sqr in the \hyperion\products\biplus\docs\samples\Production Reporting
directory.

If you are writing the sample program code, save your code.Production Reporting programs are
normally given a file extension of SQR. Save this program with the name ex1a.sqr.

To run the sample program, go to the directory in which you saved the program and enter the
appropriate Production Reporting command at the command prompt or from within the
graphical user interface. (On UNIX, Production Reporting is run from the command line. On
Windows, you can run Production Reporting from the command line or from a graphical user
interface.)

If you are entering the information from the command line, include “sqr”, the Production
Reporting program name, and the connectivity string all on one line as shown here:

[sqr] [program] [connectivity] [flags ...] [args ...] [@file ...]

A Sample Program 15

See “Production Reporting Command-line Arguments” and “Production Reporting
Command-line Flags” in Volume 2 of the Production Reporting Developer's Guide for
information on connectivity, flags, and arguments.

In a common configuration, you may run Production Reporting on a Windows platform against
an Oracle database located on another machine in your network. In this case, enter the command
as:

sqr ex1a username/password@servername -KEEP

If you correctly replace username, password, and servername with the appropriate information,
you should see a command line similar to:

sqr ex1a sammy/baker@rome -KEEP

To produce the desired output file for this exercise, we used the -KEEP flag in our example. Do
not worry about its presence at this stage.

Production Reporting Output
Production Reporting normally places program output files in the directory from which you
run the program. The output file shares the Production Reporting file name, but the file
extension differs.

Output files should appear as soon as your program finishes running. If you specified -KEEP,
one output file is in SQR Portable Format (recognizable by its SPF extension). SQR Portable
Format is discussed later in this book but for now, you can easily view the sample program’s SPF
file output, ex1a.spf, on Windows platforms with the Production Reporting ViewerGUI
(sometimes referred to as an “SPF viewer”) or from within Oracle's Hyperion® SQR® Production
Reporting Studio using File, then Open. Viewer is invoked from the command line with “sqrv”.

On Windows and UNIX systems, the program also produces an output file with an LIS extension.
You can view LIS files from the command line with TYPE on Windows or CAT, MORE, and VI on
UNIX.

Output for Program ex1a.sqr
Hello, World.

^L, or <FF> at the end of the output file ejects the last page. In this book, we do not show the
form-feed characters.

Program ex1a.sqr consists of three lines of code, starting with BEGIN-PROGRAM and ending with
END-PROGRAM. These two commands and the code between them define the PROGRAM section,
which is used to control the processing order. The PROGRAM section is required, and you may
have only one. It is typically placed at or near the top of the program.

The PROGRAM section contains a PRINT command, which in this case prints “Hello,World.” This
text is enclosed in single quotation marks ('), which are used in Production Reporting to
distinguish literal text from other program elements.

16 A Simple Production Reporting Program

The last element of PRINT gives the position on the output page. Think of an output page as a
grid of lines and columns. (1,1) indicates line one, column one, which is the top left corner of
the page.

Note:

In Production Reporting, you must place each command on a new line. You can indent
Production Reporting commands.

Production Reporting Output 17

18 A Simple Production Reporting Program

3
Headings and Footings

In This Chapter

Subdividing Pages19

Adding Headings and Footings19

Subdividing Pages
Typically, every report page has some information about the report, such as the title, the date,
and the page number. In Production Reporting, the page can be subdivided into three areas.

● Heading—Generally contains the report title and date

● Body—Contains report data

● Footing—Generally contains the page number

In the following diagram, the heading, body, and footing have independent line numbers. You
can print in each page area using line numbers that are relative to the top corner of that area
without being concerned about the size of the other areas. In other words, you can print to the
first line of the body using line number 1, independent of the heading size.

Adding Headings and Footings
Program ex2a.sqr expands Program ex1a.sqr the program described in Chapter 2, “A Simple
Production Reporting Program” by adding a page heading and footing.

Program ex2a.sqr
begin-program
 print 'Hello, World.' (1,1)
end-program

Subdividing Pages 19

begin-heading 1
 print 'Tutorial Report' (1) center
end-heading
begin-footing 1
 ! print "Page n of m" in the footing
 page-number (1,1) 'Page '
 last-page () ' of '
end-footing

Output for Program ex2a.sqr
Tutorial Report
Hello, World.
Page 1 of 1

Page Heading
The HEADING section defines page heading. The section starts with BEGIN-HEADING and ends
with END-HEADING. BEGIN-HEADING is followed by the number of lines reserved for the
heading. In our example, the heading is one line and consists of the text “Tutorial Report.” The
CENTER argument centers the text on the line.

Page Footing
The FOOTING section defines the page footing. The section starts with BEGIN-FOOTING and ends
with END-FOOTING. BEGIN-FOOTING is followed by the number 1, which indicates the footing
takes one line. This line consists of the text “Page 1 of 1.”

Any space reserved for the heading and footing is taken away from the body. With one line in
the heading and footing, the maximum possible size of the report body is reduced by two lines.
Line 1 of the body is the first line after the heading.

Comments
The first line in the FOOTING is a comment. Comments are preceded by an exclamation mark,
and they extend from the exclamation mark to the end of the line. To print an exclamation mark
in report text, type it twice to tell Production Reporting not to take it as the beginning of a
comment. For example:

print 'Hello, World!!' (1,1)

Page Numbering
PAGE-NUMBER prints the text “Page” and the current page number. LAST-PAGE prints the
number of the last page, preceded by the word “of,” which is bracketed by spaces. In our example,
Production Reporting prints “Page 1 of 1” because there is only one page.

20 Headings and Footings

Print Position
Note the parentheses in the PAGE-NUMBER and LAST-PAGE commands. Numbers in these
parentheses give the position for printing. A position in Production Reporting is expressed as
three numbers in parentheses—(line,column,width)—where line is the line number, column is
the column (character position), and width is the width of the text.

In many cases, a position consists only of the line and column numbers. The width is normally
omitted because it defaults to the width of the printed text. If you omit the line and column
numbers, the print position defaults to the current position, the position following the last item
printed. In the example, LAST-PAGE has the position “()” so the current position is the position
following the page number.

Print position is a point within the area of the page, or more precisely, within the heading, body,
or footing. The position (1,1) in the heading does not share the position (1,1) in the body. Line
1 of the body is the first line below the heading. In the program, the heading has only one line,
so line 1 of the body is the second line of the page. Similarly, line 1 of the footing is at the bottom
of the page. It is the first line following the body.

Order of Execution
PRINT places text in memory, not on paper. Production Reporting prepares a page in memory
before printing it to paper, performing the body first, then the HEADING and FOOTING sections.
In this case, “Hello, World” is executed first, then “Tutorial Report” and “Page 1 of 1.”

Adding Headings and Footings 21

22 Headings and Footings

4
Selecting Data

In This Chapter

Sample Code23

Using SELECT Statements... .24

Sample Code
Following is the sample code used in this chapter. An explanation follows.

Program ex3a.sqr
begin-program
 do list_customers
end-program
begin-heading 4
 print 'Customer Listing' (1) center
 print 'Name' (3,1)
 print 'City' (,32)
 print 'State' (,49)
 print 'Phone' (,55)
end-heading
begin-footing 1
 ! Print "Page n of m" in the footing
 page-number (1,1) 'Page '
 last-page () ' of '
end-footing
begin-procedure list_customers
begin-select
name (,1)
city (,32)
state (,49)
phone (,55)
 position (+1) ! Advance to the next line
from customers
end-select
end-procedure ! list_customers

Output for Program ex3a.sqr
Customer Listing
Name City State Phone
Gregory Stonehaven Everretsville OH 2165553109
Alfred E Newman & Company New York NY 2125552311

Sample Code 23

Eliot Richards Queens NY 2125554285
Isaiah J Schwartz and Company Zanesville OH 5185559813
Harold Alexander Fink Davenport IN 3015553645
Harriet Bailey Mamaroneck NY 9145550144
Clair Butterfield Teaneck NJ 2015559901
Quentin Fields Cleveland OH 2165553341
Jerry's Junkyard Specialties Frogline NH 6125552877
Kate's Out of Date Dress Shop New York NY 2125559000
Sam Johnson Bell Harbor MI 3135556732
Joe Smith and Company Big Falls NM 8085552124
Corks and Bottles, Inc. New York NY 2125550021
Harry's Landmark Diner Miningville IN 3175550948

Page 1 of 1

The PROGRAM section consists of one DO command, which invokes the procedure
list_customers.

begin-program
 do list_customers
end-program

In Production Reporting, a procedure is a group of commands performed in sequence, like a
procedure (or subroutine) in other programming languages. A DO command invokes a
procedure.

We recommend that you break your program logic into procedures and keep the PROGRAM
section small. It should normally consist of a few DO commands for the main report components.

The HEADING section creates headings for the report columns. Four lines are reserved for the
heading.

begin-heading 4
 print 'Customer Listing' (1) center
 print 'Name' (3,1)
 print 'City' (,32)
 print 'State' (,49)
 print 'Phone' (,55)
end-heading

The title Customer Listing prints on line 1. Line 2 is blank. The first column heading, Name is
positioned at line 3 of the heading, character position 1. The rest of the column-heading
commands omit the line numbers in their positions and default to the current line. Line 4 of the
heading is blank.

Using SELECT Statements
Look again at the list_customers procedure, which starts with BEGIN-PROCEDURE and ends with
END-PROCEDURE. Note the comment following END-PROCEDURE. It shows the procedure is
being ended, which is helpful when you have a program with many procedures. (You can also
omit the exclamation point: END-PROCEDURE main.)

The procedure itself contains a SELECT paragraph, which starts with BEGIN-SELECT and ends
with END-SELECT.

24 Selecting Data

The SELECT paragraph is unique. It combines an SQL SELECT statement with Production
Reporting processing in a seamless way. The SQL statement is:

SELECT NAME, CITY, STATE, PHONE
FROM CUSTOMERS

SELECT Statement Syntax
In a Production Reporting SELECT paragraph, the word SELECT is omitted, and there are no
commas between the column names. Instead, each column is on its own line. You can place
Production Reporting commands between the column names, and these commands are
executed for every record that the SELECT fetches.

Note:

Since the SELECT * FROM statement is not allowed in Production Reporting, you must name
each individual column in a table.

Production Reporting distinguishes column names from Production Reporting commands in
a SELECT paragraph by their indentation. Place column names at the beginning of a line, and
indent Production Reporting commands at least one space. In the example under Positioning
Data, POSITION is indented to prevent it from being taken as a column name. The word
FROM must be the first word in a line. The rest of the SELECT statement is written after SQL
syntax.

Think of SELECT paragraphs as loops. Production Reporting commands, including column
printing, are executed in loops, once for each record that SELECT returns. The loop ends after
the last record is returned.

Positioning Data
In the SELECT statement, you see positioning after each column name. This positioning implies
a PRINT command for that column. As before, omitting the line number in the position lets it
default to the current line.

begin-select
name (,1)
city (,32)
state (,49)
phone (,55)
 position (+1) ! Advance to the next line
from customers
end-select

The implied PRINT command is an Production Reporting feature designed to save coding time.
It only works inside a SELECT statement.

A POSITION command: POSITION(+1) appears after the last column. The plus sign (or minus
sign) indicates relative positioning in Production Reporting. A plus sign moves the print position

Using SELECT Statements 25

forward from the current position, and a minus sign moves it back. The “+1” in the sample
program means one line down from the current line. This command advances the current print
position to the next line.

When you indicate print positions using plus or minus signs, be sure your numbers do not
specify a position outside the page boundaries.

26 Selecting Data

5
Column Variables

In This Chapter

Using Column Variables in Conditions27

Changing Column Variable Names28

Using Column Variables in Conditions
When you select columns from the database in a SELECT statement, you can immediately print
them using a position. For example:

begin-select
phone (,1)
 position (+1)
from customers
end-select

But what if you want to use the value of phone for another purpose, for example, in a condition?
The following example shows you how to do this.

begin-program
 do list_customers
end-program
begin-procedure list_customers
begin-select
phone
 if &phone = ''
 print 'No phone' (,1)
 else
 print &phone (,1)
 end-if
 position (+1)
from customers
end-select
end-procedure ! list_customers

The phone column is an Production Reporting column variable. Column variables are preceded
with an ampersand (&).

Unlike other program variables, column variables are read-only. You can use their existing value,
but you cannot assign them a new value.

In the sample program, &phone is a column variable that you can use in Production Reporting
commands as if it were a string, date, or numeric variable, depending on its contents. In the

Using Column Variables in Conditions 27

condition, &phone is compared to ' ', an empty string. If &phone is an empty string, the program
prints “No phone” instead.

Changing Column Variable Names
Note that the column variable &phone inherited its name from the phone column. This is the
default, but you can change it, as the following example demonstrates.

begin-select
phone &cust_phone
 if &cust_phone = ''
 print 'No phone' (,1)
 else
 print &cust_phone (,1)
end-if
 position (+1)
from customers
end-select

One reason to change the name of a column variable is that you may want to use a selected
column in an expression that has no name. For example:

begin-select
count(name) &cust_cnt (,1)
 if &cust_cnt < 100
 print 'Less than 100 customers'
 end-if
 position (+1)
from customers
group by city, state
end-select

In this example, the expression count(name) is selected. In the program, you store this
expression in the column variable &cust_cnt and refer to it afterwards by that name.

28 Column Variables

6
Break Logic

In This Chapter

About Breaks29

Using ON-BREAK30

Skipping Lines Between Groups31

Arranging Multiple Break Columns32

Break Processing with Enhancements33

Setting Break Procedures with BEFORE and AFTER... .38

Controlling Page Breaks with Multiple ON-BREAK Columns42

Saving Values When Breaks Occur .. .43

Using ON-BREAK on Hidden Columns43

Restrictions and Limitations of ON-BREAK45

About Breaks
A break is a change in the value of a column or variable. For example, records with the same
value for state logically belong to a group. When a break occurs, a new group begins.

Reasons to use break logic in a report include:

● Adding white space to reports

● Avoiding printing redundant data

● Performing conditional processing on variables that change

● Printing subtotals

For example, you may want to prepare a sales report with records grouped by product, region,
or salesperson. Using break logic, you can print column headings, count records, subtotal
columns, and perform additional processing on the count or subtotal.

To see how breaks work, write a program similar to the one in Chapter 4, “Selecting Data” and
then add break logic to it. The break logic makes the grouping more apparent.

Here is the program without break logic.

Program ex5a.sqr
begin-program
 do list_customers
end-program

About Breaks 29

begin-heading 2
 print 'State' (1,1)
 print 'City' (1,7)
 print 'Name' (1,24)
 print 'Phone' (1,55)
end-heading
begin-procedure list_customers
begin-select
state (,1)
city (,7)
name (,24)
phone (,55)
 position (+1) ! Advance to the next line
from customers
order by state, city, name
end-select
end-procedure ! list_customers

Output for Program ex5a.sqr
State City Name Phone
IN Davenport Harold Alexander Fink 3015553645
IN Miningville Harry's Landmark Diner 3175550948
MI Bell Harbor Sam Johnson 3135556732
NH Frogline Jerry's Junkyard Specialties 6125552877
NJ Teaneck Clair Butterfield 2015559901
NM Big Falls Joe Smith and Company 8085552124
NY Mamaroneck Harriet Bailey 9145550144
NY New York Alfred E Newman & Company 2125552311
NY New York Corks and Bottles, Inc. 2125550021
NY New York Kate's Out of Date Dress Shop 2125559000
NY Queens Eliot Richards 2125554285
OH Cleveland Quentin Fields 2165553341
OH Everretsville Gregory Stonehaven 2165553109
OH Zanesville Isaiah J Schwartz and Company 5185559813

When you sort the output by state, city, and name (note the ORDER BY clause in BEGIN-SELECT
), the records are grouped by state. To make the grouping more apparent, you can add a break.

Using ON-BREAK
In the program shown here, using ON-BREAK starts a new group each time the value of state
changes, and prints state only when its value changes. ON-BREAK works for both implicit and
explicit PRINT commands. In Program ex5a.sqr, state, city, name, and phone are implicitly printed
as part of the SELECT statement.

Program ex5b.sqr is identical to Program ex5a.sqr with the exception of the line that prints the
state column. This line appears in bold. With break processing, the state abbreviation is printed
only once for each group.

Program ex5b.sqr
begin-program
 do list_customers

30 Break Logic

end-program
begin-heading 2
 print 'State' (1,1)
 print 'City' (1,7)
 print 'Name' (1,24)
 print 'Phone' (1,55)
end-heading
begin-procedure list_customers
begin-select
state (,1) on-break
city (,7)
name (,24)
phone (,55)
 position (+1) ! Advance to the next line
from customers
order by state, city, name
end-select
end-procedure ! list_customers

Output for Program ex5b.sqr
State City Name Phone
IN Davenport Harold Alexander Fink 3015553645
 Miningville Harry's Landmark Diner 3175550948
MI Bell Harbor Sam Johnson 3135556732
NH Frogline Jerry's Junkyard Specialties 6125552877
NJ Teaneck Clair Butterfield 2015559901
NM Big Falls Joe Smith and Company 8085552124
NY Mamaroneck Harriet Bailey 9145550144
 New York Alfred E Newman & Company 2125552311
 New York Corks and Bottles, Inc. 2125550021
 New York Kate's Out of Date Dress Shop 2125559000
 Queens Eliot Richards 2125554285
OH Cleveland Quentin Fields 2165553341
 Everretsville Gregory Stonehaven 2165553109
 Zanesville Isaiah J Schwartz and Company 5185559813

Skipping Lines Between Groups
You can further enhance the visual effect of break processing by inserting one or more lines
between groups. To do so, use the SKIPLINES qualifier with ON-BREAK. Here is the
list_customers procedure from Program ex5b.sqr, with the modified line shown in bold.

begin-select
state (,1) on-break skiplines=1
city (,7)
name (,24)
phone (,55)
 position (+1) ! Advance to the next line
from customers
order by state, city, name
end-select

Skipping Lines Between Groups 31

Output for modified Program ex5b.sqr
State City Name Phone
IN Davenport Harold Alexander Fink 3015553645
 Miningville Harry's Landmark Diner 3175550948
MI Bell Harbor Sam Johnson 3135556732
NH Frogline Jerry's Junkyard Specialties 6125552877
NJ Teaneck Clair Butterfield 2015559901
NM Big Falls Joe Smith and Company 8085552124
NY Mamaroneck Harriet Bailey 9145550144
 New York Alfred E Newman & Company 2125552311
 New York Corks and Bottles, Inc. 2125550021
 New York Kate's Out of Date Dress Shop 2125559000
 Queens Eliot Richards 2125554285
OH Cleveland Quentin Fields 2165553341
 Everretsville Gregory Stonehaven 2165553109
 Zanesville Isaiah J Schwartz and Company 5185559813

Arranging Multiple Break Columns
As you can see in the previous example, you can also have multiple customers within a city. You
can apply the same break concept to the city column to make this grouping of customers more
apparent. Add another ON-BREAK to the program so that city prints only when its value changes.

Multiple breaks must be arranged in a hierarchy. In the sample program, the breaks concern
geographical units, so it is logical to arrange them according to size—first state, then city. This
sort of arrangement is called nesting.

The LEVEL keyword ensures that breaks are properly nested by numbering breaks by level and
by specifying that columns print in order of increasing break levels, from left to right. Number
breaks in the same order in which they are sorted in the ORDER BY clause. See “Understanding
Event Order” on page 38. LEVEL controls the order in which you call break procedures. See
“Setting Break Procedures with BEFORE and AFTER” on page 38.

The next example is identical to Program ex5a.sqr with the exception of the two lines that print
the state and city columns. These two lines are shown in bold.

Program ex5c.sqr
begin-program
 do list_customers
end-program
begin-heading 2
 print 'State' (1,1)
 print 'City' (1,7)
 print 'Name' (1,24)
 print 'Phone' (1,55)
end-heading
begin-procedure list_customers
begin-select
state (,1) on-break level=1
city (,7) on-break level=2
name (,24)
phone (,55)

32 Break Logic

 position (+1) ! Advance to the next line
from customers
order by state, city, name
end-select
end-procedure ! list_customers

Output for Program ex5c.sqr
State City Name Phone
IN Davenport Harold Alexander Fink 3015553645
 Miningville Harry's Landmark Diner 3175550948
MI Bell Harbor Sam Johnson 3135556732
NH Frogline Jerry's Junkyard Specialties 6125552877
NJ Teaneck Clair Butterfield 2015559901
NM Big Falls Joe Smith and Company 8085552124
NY Mamaroneck Harriet Bailey 9145550144
 New York Alfred E Newman & Company 2125552311
 Corks and Bottles, Inc. 2125550021
 Kate's Out of Date Dress Shop 2125559000
 Queens Eliot Richards 2125554285
OH Cleveland Quentin Fields 2165553341
 Everretsville Gregory Stonehaven 2165553109
 Zanesville Isaiah J Schwartz and Company 5185559813

Note that three customers are in New York, so the city name for the second and third customers
is left blank.

Break Processing with Enhancements
Break logic enhances reports by controlling page breaks or calculating counts and totals for the
ON-BREAK column. Program ex5d.sqr illustrates these techniques. The program selects the
customer's name, address, and telephone number from the database and preforms break
processing on the state column.

Program ex5d.sqr
begin-program
 do list_customers
end-program
begin-heading 4
 print 'Customers Listed by State' (1) center
 print $current-date (1,1) Edit 'DD-Mon-YYYY'
 print 'State' (3,1)
 print 'Customer Name, Address and Phone Number' (,11)
 print '-' (4,1,9) fill
 print '-' (4,11,40) fill
end-heading
begin-footing 2
 ! print "Page n of m"
 page-number (1,1) 'Page '
 last-page () ' of '
end-footing
begin-procedure state_tot
 print ' Total Customers for State: ' (+1,1)

Break Processing with Enhancements 33

 print #state_total () edit 999,999
 position (+3,1) ! Leave 2 blank lines.
 let #cust_total = #cust_total + #state_total
 let #state_total = 0
 next-listing need=4
end-procedure ! state_tot
begin-procedure list_customers
let #state_total = 0
let #cust_total = 0
begin-select
! The 'state' field will only be printed when it
! changes. The procedure 'state_tot' will also be
! executed only when the value of 'state' changes.
state (,1) on-break print=change/top-page after=state_tot
name (,11)
addr1 (+1,11) ! continue on second line
addr2 (+1,11) ! continue on third line
city (+1,11) ! continue on fourth line
phone (,+2) edit (xxx)bxxx-xxxx ! Edit for easy reading.
 ! Skip 1 line between listings.
 ! Since each listing takes 4 lines, we specify 'need=4' to
 ! prevent a customer's data from being broken across two pages.
 next-listing skiplines=1 need=4
 let #state_total = #state_total + 1
from customers
order by state, name
end-select
if #cust_total > 0
 print ' Total Customers: ' (+3,1)
 print #cust_total () edit 999,999 ! Total customers printed.
else
 print 'No customers.' (1,1)
end-if
end-procedure ! list_customers

Output for Program ex5d.sqr
29-Apr-2001 Customers Listed by State
State Customer Name, Address and Phone Number
--------- --
IN Harold Alexander Fink
 32077 Cedar Street
 West End
 Davenport (301) 555-3645
 Harry's Landmark Diner
 17043 Silverfish Road
 South Park
 Miningville (317) 555-0948
 Total Customers for State: 2
MI Sam Johnson
 37 Cleaver Street
 Sandy Acres
 Bell Harbor (313) 555-6732
 Total Customers for State: 1
NH Jerry's Junkyard Specialties
 Crazy Lakes Cottages
 Rural Delivery #27

34 Break Logic

 Frogline (612) 555-2877
 Total Customers for State: 1
NJ Clair Butterfield
 371 Youngstown Blvd
 Quit Woods
 Teaneck (201) 555-9901
 Total Customers for State: 1
NM Joe Smith and Company
 1711 Sunset Blvd
 East River
 Big Falls (808) 555-2124
 Total Customers for State: 1
NY Alfred E Newman & Company
 2837 East Third Street
 Greenwich Village
 New York (212) 555-2311
Page 1 of 2
29-Apr-2001 Customers Listed by State
State Customer Name, Address and Phone Number
--------- --
NY Corks and Bottles, Inc.
 167 East Blvd.
 Jamaica
 New York (212) 555-0021
 Eliot Richards
 2134 Partridge Ave
 Jamaica
 Queens (212) 555-4285
 Harriet Bailey
 47 Season Street
 Bellevue Park
 Mamaroneck (914) 555-0144
 Kate's Out of Date Dress Shop
 2100 Park Ave
 East Side City
 New York (212) 555-9000
 Total Customers for State: 5
OH Gregory Stonehaven
 Middlebrook Road
 Grey Quarter
 Everretsville (216) 555-3109
 Isaiah J Schwartz and Company
 37211 Columbia Blvd
 Sweet Acres
 Zanesville (518) 555-9813
 Quentin Fields
 37021 Cedar Road
 Beachwood
 Cleveland (216) 555-3341
 Total Customers for State: 3
 Total Customers: 14
Page 2 of 2

Take a close look at the code. The data prints using a select paragraph in the list_customers
procedure. The state and the customer name print on the first line. The customer's address and
phone number print on the next three lines.

Break Processing with Enhancements 35

The program also uses the argument AFTER=STATE_TOT. This argument calls the state_tot
procedure after each change in the value of state. Processing order is explained in “Setting Break
Procedures with BEFORE and AFTER” on page 38.

Handling Page Breaks
If a page break occurs within a group, you may want to reprint headings and the value of the
break column at the top of the new page.

To control the printing of the value, use PRINT=CHANGE/TOP-PAGE. With this qualifier, the
value of ON-BREAK prints when it changes and after every page break. In this example, the value
of state prints not only when it changes, but whenever the report starts a new page.

To format records, use NEXT-LISTING. This command serves two purposes. The
SKIPLINES=1 argument skips one line between records, then renumbers the current line as line
1. The NEED=4 argument prevents a listing from splitting over two pages by specifying the
minimum number of lines needed to write a new listing on the current page. In this case, if fewer
than four lines are left on a page, Production Reporting starts a new page.

Printing Dates
In the HEADING section, the reserved variable $current-date prints the date and the time. This
variable is initialized with the date and time of the client machine at the start of program
execution.Production Reporting provides predefined, or reserved, variables for a variety of uses.
For a complete listing of reserved variables, see Volume 2 of the Production Reporting Developer's
Guide.

In this example, the complete command is:

PRINT $current-date (1,1) EDIT 'DD/MM/YYYY'

This prints the date and time at position 1,1 of the heading. The EDIT argument specifies an
edit mask, or format, for printing the date. Production Reporting provides a large variety of edit
masks for use in formatting numbers, dates, and strings. See Volume 2 of the Production
Reporting Developer's Guide.

Note that the PRINT command for the report title precedes the command for the $current-
date reserved variable, even though the date is on the left and the title is on the right. Production
Reporting assembles a page in memory before printing, so the order of these commands does
not matter as long as you use the correct print position qualifiers.

The last two commands in the HEADING section print a string of hyphens under the column
headings. The FILL option in the PRINT command fills the specified width with a pattern. This
is a good way to print a line.

In the FOOTING section, we print the “Page n of m” as we did in earlier examples.

36 Break Logic

Obtaining Totals
Program ex5d.sqr prints two totals—a subtotal of customers in each state and a grand total of all
customers. These calculations are performed with two numeric variables, one for the subtotals
and one for the grand totals. Their names are #state_total and #cust_total, respectively.

Production Reporting has a small set of variable types. The most common types are numeric
variables and string variables. All numeric variables are preceded with a pound sign (#) and all
string variables are preceded with a dollar sign ($). An additional Production Reporting variable
type is the date variable (see Chapter 24, “Working with Dates.”).

In Production Reporting, numeric and string variables are implicitly defined by their first use.
All numeric variables start out as zero and all string variables start out as null, so there is normally
no need to initialize them. String variables vary in length. Assigning a new value to a string
variable automatically adjusts its length.

At the beginning of the list_customers procedure, #state_total and #cust_total are set to zero. This
initialization is optional and is done for clarity only. The variable #state_total is incremented by
1 for every row selected.

When the value of state changes, the program calls the state_tot procedure and prints the value
of #state_total. The edit mask, EDIT 999,999, formats the number.

This procedure also employs the LET command. LET is the assignment command in Production
Reporting, for building complex expressions. Here, LET adds the value of #state_total to
#cust_total. At the end of the procedure, #state_total is reset to zero.

The list_customers procedure incorporates if-then-else logic. The condition starts with IF
followed by an expression. If the expression evaluates to true or to a number other than zero,
the subsequent commands execute. Otherwise, if there is an ELSE part to the IF, those
commands execute. IF commands end with an END-IF.

In ex5d.sqr, the value of #cust_total is examined. If it is greater than zero, the query returned
rows of data, and the program prints the string Total Customers: and the value of #cust_total.

If #cust_total equals zero, the query did not return any data. In this case, the program prints the
string No customers.

Hyphens and Underscores
Many Production Reporting commands, such as BEGIN-PROGRAM and BEGIN-SELECT, use a
hyphen, whereas procedure and variable names use an underscore.

Procedure and variable names can contain either a hyphen or underscore, but we strongly
recommend you use an underscore. Using underscores in procedure and variable names helps
you distinguish them from Production Reporting commands. It also prevents confusion when
variable names and numbers are mixed in an expression, where hyphens could be mistaken for
minus signs.

Break Processing with Enhancements 37

Setting Break Procedures with BEFORE and AFTER
When you print variables with ON-BREAK, you can automatically call procedures before and
after each break in a column. The BEFORE and AFTER qualifiers give you this capability. For
example:

begin-select
state (,1) on-break before=state_heading after=state_tot

BEFORE calls the state_heading procedure to print headings before each group of records of
the same state. Similarly, AFTER calls the state_tot procedure to print totals after each group
of records.

All BEFORE procedures are invoked before each break, including the first group before the
SELECT is processed. Similarly, all AFTER procedures are invoked after each break, including
the last group upon completion of the SELECT.

Understanding Event Order
Use the LEVEL qualifier of ON-BREAK to define a hierarchy of break columns. In ex5c.sqr, state
was defined as LEVEL=1 and city as LEVEL=2.

When a break occurs at one level, it also forces breaks on variables with higher LEVEL qualifiers.
In the sample program, a break on state also means a break on city.

A break on a variable can trigger many other events. The value can be printed, lines skipped,
procedures automatically called, and the old value saved. It is important to know the order of
events, particularly where multiple ON-BREAK columns exist.

The following SELECT statement has breaks on three levels.

begin-select
state (,1) on-break level=1 after=state_tot skiplines=2
city (,7) on-break level=2 after=city_tot skiplines=1
zip (,45) on-break level=3 after=zip_tot
from customers
order by state, city, zip
end-select

The breaks are processed as follows:

1. When zip breaks, the zip_tot procedure executes.

2. When city breaks, first the zip_tot procedure executes, then the city_tot procedure executes,
and one line is skipped (SKIPLINES=1). Both city and zip print in the next record.

3. When state breaks, the zip_tot, city_tot, and state_tot procedures are processed in that order.
One line is skipped after the city_tot procedure executes, and two lines are skipped after the
state_tot procedure executes. All three columns—state, city, and zip—print in the next
record.

Program ex5e.sqr demonstrates the order of events in break processing. It has three ON-BREAK
columns, each with a LEVEL argument and a BEFORE and AFTER procedure. BEFORE and
AFTER print strings to indicate the processing order.

38 Break Logic

Program ex5e.sqr
begin-setup
 declare-Layout
 default
 end-declare
end-setup
begin-program
 do main
end-program
begin-procedure a
print 'AFTER Procedure for state LEVEL 1' (+1,40)
end-procedure
begin-procedure b
print 'AFTER Procedure city LEVEL 2' (+1,40)
end-procedure
begin-procedure c
print 'AFTER Procedure zip LEVEL 3' (+1,40)
end-procedure
begin-procedure aa
print 'BEFORE Procedure state LEVEL 1' (+1,40)
end-procedure
begin-procedure bb
print 'BEFORE Procedure city LEVEL 2' (+1,40)
end-procedure
begin-procedure cc
print 'BEFORE Procedure zip LEVEL 3' (+1,40)
end-procedure
begin-procedure main local
begin-select
 add 1 to #count
 print 'Retrieved row #' (+1,40)
 print #count (,+10)Edit 9999
 position (+1)
state (3,1) On-Break Level=1 after=a before=aa
city (3,10) On-Break Level=2 after=b before=bb
zip (3,25) On-Break Level=3 after=c before=cc Edit xxxxx
 next-listing Need=10
from customers
order by state,city,zip
end-select
end-procedure
begin-heading 3
 print $current-date (1,1) edit 'DD-MM-YYYY'
 page-number (1,60) 'Page '
 last-page () ' of '
print 'STATE' (3,1)
 print 'CITY' (3,10)
 print 'ZIP' (3,25)
 print 'Break Processing sequence' (3,40)
end-heading

Output for Program ex5e.sqr
15-10-2002 Page 1 of 3
STATE CITY ZIP Break Processing sequence
 BEFORE Procedure state LEVEL 1

Setting Break Procedures with BEFORE and AFTER 39

DE Dover 20652 BEFORE Procedure city LEVEL 2
 BEFORE Procedure zip LEVEL 3
 Retrieved row # 1
 Retrieved row # 2
IN Davenport 62130
 AFTER Procedure zip LEVEL 3
 AFTER Procedure city LEVEL 2
 AFTER Procedure for state LEVEL 1
 BEFORE Procedure state LEVEL 1
 BEFORE Procedure city LEVEL 2
 BEFORE Procedure zip LEVEL 3
 Retrieved row # 3
 Fort Wayne 40622
 AFTER Procedure zip LEVEL 3
 AFTER Procedure city LEVEL 2
 BEFORE Procedure city LEVEL 2
 BEFORE Procedure zip LEVEL 3
 Retrieved row # 4
Miningville 40622
 AFTER Procedure zip LEVEL 3
 AFTER Procedure city LEVEL 2
 BEFORE Procedure city LEVEL 2
 BEFORE Procedure zip LEVEL 3
 Retrieved row # 5
MI Bell Harbor 40674
 AFTER Procedure zip LEVEL 3
 AFTER Procedure city LEVEL 2
 AFTER Procedure for state LEVEL 1
 BEFORE Procedure state LEVEL 1
 BEFORE Procedure city LEVEL 2
 BEFORE Procedure zip LEVEL 3
 Retrieved row # 6
NH Frogline 04821
 AFTER Procedure zip LEVEL 3
 AFTER Procedure city LEVEL 2
 AFTER Procedure for state LEVEL 1
 BEFORE Procedure state LEVEL 1
 BEFORE Procedure city LEVEL 2
 BEFORE Procedure zip LEVEL 3
 Retrieved row # 7
NJ Teaneck 00355
 AFTER Procedure zip LEVEL 3
 AFTER Procedure city LEVEL 2
 AFTER Procedure for state LEVEL 1
 BEFORE Procedure state LEVEL 1
 BEFORE Procedure city LEVEL 2
 BEFORE Procedure zip LEVEL 3
 Retrieved row # 8
15-10-2002 Page 2 of 3
STATE CITY ZIP Break Processing sequence
NM Big Falls 87893
 AFTER Procedure zip LEVEL 3
 AFTER Procedure city LEVEL 2
 AFTER Procedure for state LEVEL 1
 BEFORE Procedure state LEVEL 1
 BEFORE Procedure city LEVEL 2
 BEFORE Procedure zip LEVEL 3

40 Break Logic

 Retrieved row # 9
NY Mamaroneck 10833
 AFTER Procedure zip LEVEL 3
 AFTER Procedure city LEVEL 2
 AFTER Procedure for state LEVEL 1
 BEFORE Procedure state LEVEL 1
 BEFORE Procedure city LEVEL 2
 BEFORE Procedure zip LEVEL 3
 Retrieved row # 10
 New York 10002
 AFTER Procedure zip LEVEL 3
 AFTER Procedure city LEVEL 2
 BEFORE Procedure city LEVEL 2
 BEFORE Procedure zip LEVEL 3
 Retrieved row # 11
 10134
 AFTER Procedure zip LEVEL 3
 BEFORE Procedure zip LEVEL 3
 Retrieved row # 12
 10204
 AFTER Procedure zip LEVEL 3
 BEFORE Procedure zip LEVEL 3
 Retrieved row # 13
 Queens 10213
 AFTER Procedure zip LEVEL 3
 AFTER Procedure city LEVEL 2
 BEFORE Procedure city LEVEL 2
 BEFORE Procedure zip LEVEL 3
 Retrieved row # 14
OH Cleveland 44121
 AFTER Procedure zip LEVEL 3
 AFTER Procedure city LEVEL 2
 AFTER Procedure for state LEVEL 1
 BEFORE Procedure state LEVEL 1
 BEFORE Procedure city LEVEL 2
 BEFORE Procedure zip LEVEL 3
 Retrieved row # 15
15-10-2002 Page 3 of 3
STATE CITY ZIP Break Processing sequence
 Everretsville 40233
 AFTER Procedure zip LEVEL 3
 AFTER Procedure city LEVEL 2
 BEFORE Procedure city LEVEL 2
 BEFORE Procedure zip LEVEL 3
 Retrieved row # 16
 Zanesville 44900
 AFTER Procedure zip LEVEL 3
 AFTER Procedure city LEVEL 2
 BEFORE Procedure city LEVEL 2
 BEFORE Procedure zip LEVEL 3
 Retrieved row # 17
PA Pittsburgh 90672
 AFTER Procedure zip LEVEL 3
 AFTER Procedure city LEVEL 2
 AFTER Procedure for state LEVEL 1
 BEFORE Procedure state LEVEL 1

Setting Break Procedures with BEFORE and AFTER 41

 BEFORE Procedure city LEVEL 2
 BEFORE Procedure zip LEVEL 3
 AFTER Procedure zip LEVEL 3
 AFTER Procedure city LEVEL 2
 AFTER Procedure for state LEVEL 1

These steps explain the order of processing in detail.

1. Process BEFORE procedures in ascending order by LEVEL before retrieving the first row of
the query.

If no data is selected, BEFORE procedures do not execute.

2. Select the first row of data.

3. Select subsequent rows of data.

Processing of the SELECT command continues. When a break occurs on any column, it
triggers breaks on columns at the same or higher levels.

4. Process AFTER procedures in descending order from the highest level to the level of the
current ON-BREAK column.

5. Set SAVE variables with the value of the previous ON-BREAK column. (See “Saving Values
When Breaks Occur” on page 43.)

6. Process BEFORE procedures in ascending order from the current level to the highest level.

7. If SKIPLINES was specified, advance the current line position.

8. Print the value of the new group (unless PRINT=NEVER is specified).

9. Process AFTER procedures.

After the SELECT is complete, if any rows were selected, AFTER procedures are processed in
descending order by LEVEL.

Controlling Page Breaks with Multiple ON-BREAK Columns
Where multiple columns have ON-BREAK, page breaks call for careful planning. While it may be
acceptable to have a page break within a group, you probably would not want to have one within
a record.

To prevent page breaks within a record:

● Place ON-BREAK columns ahead of other columns in the SELECT statement.

● Place lower-level ON-BREAK columns ahead of higher-level ON-BREAK columns in the
SELECT statement.

● Use the same line positions for all ON-BREAK columns.

● Avoid using WRAP and ON-BREAK together on one column.

42 Break Logic

Saving Values When Breaks Occur
In ex5d.sqr, state_tot prints the total number of customers per state. Because it is called with
the AFTER argument, this procedure executes only after the value of the ON-BREAK column,
state, changes.

Sometimes, however, you may want to print the previous value of the ON-BREAK column in the
AFTER procedure. For example, you may want to print the state name along with the totals for
each state. Simply printing the value of state does not work because its value changes by the time
AFTER is called.

The answer is to save the previous break value in a string variable. To do this, use the SAVE
qualifier of ON-BREAK. For example:

begin-select
state (,1) on-break after=state_tot save=$old_state

You can then print the value of $old_state in the state_tot procedure.

Using ON-BREAK on Hidden Columns
In some reports, you may want to use the features of break processing without printing
ON-BREAK. For example, you may want to incorporate ON-BREAK into a subheading. This format
might make your report more readable. It is also useful when you want to leave room on the
page for additional columns.

To create such a report, use PRINT=NEVER to “hide” the break variable and print it in a heading
procedure called by BEFORE.

Program ex5f.sqr is based on Program ex5b.sqr. The key lines are shown in bold.

Program ex5f.sqr
begin-program
 do list_customers
end-program
begin-procedure list_customers
begin-select
state () on-break before=state_heading print=never level=1
city (,1) on-break level=2
name (,18)
phone (,49)
 position (+1) ! Advance to the next line
from customers
order by state, city, name
end-select
end-procedure ! list_customers
begin-procedure state_heading
 print 'State: ' (+1,1) bold ! Advance a line and print 'State:'
 print &state (,8) bold ! Print the state column here
 print 'City' (+1,1) bold ! Advance a line and print 'City'
 print 'Name' (,18) bold
 print 'Phone' (,49) bold

Saving Values When Breaks Occur 43

 print '-' (+1,1,58) fill
 position (+1) ! Advance to the next line
end-procedure ! state_heading

Note that this program has no HEADING section. Instead, a procedure prints column headings
for each state rather than at the top of each page.

Note that you can reference the &state variable throughout the program, even though the
state column did not print as part of the break.

The following line from the SELECT statement defines the break processing for state. The
BEFORE qualifier specifies that the state_heading procedure is called automatically before each
change in state. In this program, this break is set to LEVEL=1.

state () on-break before=state_heading print=never level=1

PRINT=NEVER hides the state column and specifies that it does not print as part of the SELECT
statement. Instead, it prints in the state_heading procedure. In this procedure, the state column
is referred to as the column variable &state.

The city column is assigned a LEVEL=2 break.

Output for Program ex5f.sqr
State: IN
City Name Phone
--
Davenport Harold Alexander Fink 3015553645
Miningville Harry's Landmark Diner 3175550948
State: MI
City Name Phone
--
Bell Harbor Sam Johnson 3135556732
State: NH
City Name Phone
--
Frogline Jerry's Junkyard Specialties 6125552877
State: NJ
City Name Phone
--
Teaneck Clair Butterfield 2015559901
State: NM
City Name Phone
--
Big Falls Joe Smith and Company 8085552124
State: NY
City Name Phone
--
Mamaroneck Harriet Bailey 9145550144
New York Alfred E Newman & Company 2125552311
 Corks and Bottles, Inc. 2125550021
 Kate's Out of Date Dress Shop 2125559000
Queens Eliot Richards 2125554285
State: OH
City Name Phone
--
Cleveland Quentin Fields 2165553341

44 Break Logic

Everretsville Gregory Stonehaven 2165553109
Zanesville Isaiah J Schwartz and Company 5185559813

Restrictions and Limitations of ON-BREAK
You cannot use ON-BREAK with Production Reporting numeric variables. To perform break
processing on a numeric variable, move its value to a string variable and set ON-BREAK on that.
For example:

begin-select
amount_received &amount
 move &amount to $amount $$9,999.99
 print $amount (+1,1) on-break
from cash_receipts
order by amount_received
end-select

Restrictions and Limitations of ON-BREAK 45

46 Break Logic

7
SETUP Section

In This Chapter

About the Setup Section47

Creating the SETUP Section... .47

Using DECLARE-LAYOUT48

Overriding Default Settings... .49

Declaring Page Orientation... .50

About the Setup Section
The SETUP section holds all declarations. Declarations define certain report characteristics and
the source and attributes of various report components, such as charts and images. The
SETUP section is evaluated when your program is compiled. The SETUP section is not required
in a program, but it is very useful.

Creating the SETUP Section
If present, the SETUP section is typically placed at the top of the program before the PROGRAM
section. It begins with BEGIN-SETUP and ends with END-SETUP.

Commands in the SETUP section are processed at compile time, before program execution. For
more information about the commands in Table 1, see Volume 2 of the Production Reporting
Developer's Guide.

Table 1 Commands Available in the SETUP Section

Command Comments

ASK Allowed only in SETUP section

BEGIN-SQL Can also appear in a procedure Executed when a run-time file (SQT) is loaded

CREATE-ARRAY Can also appear in a procedure

DECLARE-CHART

DECLARE-COLOR-MAP

DECLARE-CONNECTION DDO only

About the Setup Section 47

Command Comments

DECLARE-IMAGE

DECLARE-LAYOUT

DECLARE-PRINTER

DECLARE-PROCEDURE

DECLARE-REPORT

DECLARE-TOC

DECLARE-VARIABLE Can also appear in a local procedure

LOAD-LOOKUP Can also appear in a procedure

USE Sybase only

Using DECLARE-LAYOUT
DECLARE-LAYOUT is commonly used in the SETUP section to set the page layout and define
paper size and margins.

In the following SETUP section, DECLARE-LAYOUT sets the paper size to 8 1/2 by 11 inches, with
all margins at 1 inch.

begin-setup
 ! Declare the default layout for this report
 declare-layout default
 paper-size=(8.5,11)
 left-margin=1 right-margin=1
 top-margin=1 bottom-margin=1
 end-declare
end-setup

In Production Reporting, data is positioned using line and character position coordinates. Think
of the page as a grid where each cell holds one character. With such a grid, in a position qualifier
consisting of (line,column,width), column and width are numbers that denote characters and
spaces.

48 SETUP Section

The diagram shows how the main attributes of DECLARE-LAYOUT affect the structure of the
page. PAPER-SIZE defines the page dimensions, including margins. TOP-MARGIN,
LEFT-MARGIN, BOTTOM-MARGIN, and RIGHT-MARGIN define the margins. In Production
Reporting, you cannot print in the margins.

In the sample code, the left margin uses 10 spaces and the top margin uses 6 lines. The page
width accommodates 65 characters (without the margins) and 54 lines.

The default mapping of characters and lines to inches is 10 CPI (characters per inch) and 6 LPI
(lines per inch). This indicates each character cell is 1/10 inch wide and 1/6 inch high. These
settings are used when a program does not contain a DECLARE-LAYOUT command.

Overriding Default Settings
You can override the default settings by using the LINE-HEIGHT and CHAR-WIDTH arguments
in DECLARE-LAYOUT. These arguments adjust the dimensions of the grid, which implies a change
in the meaning of column and line. If a DECLARE-LAYOUT paragraph includes
LINE-HEIGHT=1 and CHAR-WIDTH=1, the cells in the grid measure 1 point by 1 point (1 point
= 1/72 inch or approx. 0.35 mm). In this case, column is a dimension given in points. The length
of a string, however, is still given in characters.

You can also use the MAX-LINES and MAX-COLUMNS arguments in DECLARE-LAYOUT to specify
the number of lines on the page and the number of characters to fit across the page. Production
Reporting calculates line height and character width based on these settings and the size of the
page and margins.

Specify coordinates in terms of lines and character positions. The first line from the top is 1 and
the first column (from the left) is 1. There is no coordinate 0.

Overriding Default Settings 49

Declaring Page Orientation
DECLARE-LAYOUT allows you to declare the page orientation. This does not affect how
Production Reporting uses position coordinates. Line and character positions are not transposed
when page orientation is switched. The only effect of ORIENTATION in DECLARE-LAYOUT is to
switch the printer to the specified orientation, portrait or landscape. The default mode is portrait.

50 SETUP Section

P a r t I I

Production Reporting Reports

In Production Reporting Reports:

● Master/Detail Reports
● Cross-Tabular Reports
● Printing Mailing Labels
● Creating Form Letters
● Exporting Data to Other Applications

Production Reporting Reports 51

52 Production Reporting Reports

8
Master/Detail Reports

In This Chapter

About Master/Detail Reports .. .53

Creating Master/Detail Reports.. .53

Correlating Subqueries .. .55

About Master/Detail Reports
Master/Detail reports show hierarchical information. The information is normally retrieved
from multiple tables that have a one-to-many relationship, such as customers and orders. The
customer information is the “master” and the orders are the “detail.”

In many cases, you can obtain such information with one Production Reporting SELECT
statement. In such a program, the data from the master table is joined with data from the detail
table. You can implement break logic as described in Chapter 6, “Break Logic,” to group the
detail records for each master record.

Master/Detail reports have one major disadvantage—if a master record has no associated detail
records, it is not displayed. If you must show all master records, whether they have detail records
or not, do not use this type of report.

Creating Master/Detail Reports
You can create master/detail reports with one SELECT that retrieves records from the master
table, followed by SELECT statements that retrieve the detail records associated with each master
record.

In the code example in this chapter, one BEGIN-SELECT returns customer names. For each
customer, two additional BEGIN-SELECT commands are executed, one to retrieve order
information and another to retrieve payment information.

The following diagram depicts the BEGIN-SELECT structure in this example.

About Master/Detail Reports 53

When one query returns master information and another query returns detail information, the
detail query is nested within the master query.

In our sample program, one query returns customer names and two nested queries return detail
information. The nested queries are invoked once for each customer, each one retrieving records
that correspond to the current customer. A bind variable correlates the subqueries in the
WHERE clause. This variable correlates the customer number (cust_num) with the current
customer record. (See Chapter 17, “Dynamic SQL and Error Checking,” for information on
bind variables.)

Program ex7a.sqr
begin-program
 do main
end-program
begin-procedure main
begin-select
 Print 'Customer Information' (,1)
 Print '-' (+1,1,45) Fill
name (+1,1,25)
city (,+1,16)
state (,+1,2)
cust_num
 do cash_receipts(&cust_num)
 do orders(&cust_num)
 position (+2,1)
from customers
end-select
end-procedure ! main
begin-procedure cash_receipts (#cust_num)
 let #any = 0
begin-select
 if not #any
 print 'Cash Received' (+2,10)
 print '-------------' (+1,10)
 let #any = 1
 end-if
date_received (+1,10,20) edit 'DD-MON-YY'
amount_received (,+1,13) Edit $$$$,$$0.99
from cash_receipts a
where a.cust_num = #cust_num
end-select
end-procedure ! cash_receipts
begin-procedure orders (#cust_num)
 let #any = 0

54 Master/Detail Reports

begin-select
 if not #any
 print 'Orders Booked' (+2,10)
 print '-------------' (+1,10)
 let #any = 1
 end-if
a.order_num
order_date (+1,10,20) Edit 'DD-MON-YY'
description (,+1,20)
c.price * b.quantity (,+1,13) Edit $$$$,$$0.99
from orders a, ordlines b, products c
where a.order_num = b.order_num
 and b.product_code = c.product_code
 and a.cust_num = #cust_num
end-select
end-procedure ! orders
begin-heading 3
 print $current-date (1,1) Edit 'DD-MON-YYYY'
 page-number (1,69) 'Page '
end-heading

Correlating Subqueries
Program ex7a.sqr consists of three procedures, main, cash_receipts, and orders, which correspond
to the three queries. The procedure main is the master. It retrieves the customer names. For each
customer, cash_receipts lists existing cash receipts, and orders lists existing customer orders.

The procedures take the variable cust_num as an argument. (See Chapter 18, “Procedures,
Argument Passing, and Local Variables .”) As you can see, cash_receipts and orders are called
many times, once for each customer. Each time, the procedures perform the same query with
another value for the cust_num variable in the WHERE clause.

Note the use of the IF command and the numeric variable #any in these procedures. When the
BEGIN-SELECT command returns no records, Production Reporting does not execute the
following PRINT commands. Thus, the headings for these procedures are only displayed for
those customers who have records in the detail tables.

The procedure orders demonstrates the use of an expression in the BEGIN-SELECT. The
expression is c.price * b.quantity.

Finally, note that the format given to the dollar amount with the argument EDIT “$$$$,$$0.
99.” This format uses a “floating-to-the-right” money symbol. If fewer digits exist than the six
that we allowed here, the dollar sign floats to the right and stays close to the number. (See
Chapter 21, “Working with Comma Separated Files (CSV).”)

Output for Program ex7a.sqr
30-JAN-2003 Page 1
Customer Information

Joe Smith and Company Big Falls NM
 Cash Received

Correlating Subqueries 55

 01-JAN-2001 $519.96
 Orders Booked

 18-MAR-2001 Widgets $55.08
 18-MAR-2001 Curtain rods $480.96
 18-MAR-2002 Ginger snaps $7.38
 18-MAR-2002 Modeling clay $4,136.40
 18-MAR-2002 Hookup wire $71.82
 27-DEC-2001 Hammers $222.50
Customer Information

Corks and Bottles, Inc. New York NY
 Cash Received

 03-JAN-2001 $1,398.60
 Orders Booked

 03-MAR-2001 Thingamajigs $1,554.00
 18-JUN-2002 Hop scotch kits $7,764.75
 18-JUN-2002 Wire rings $15,898.32
 18-JUN-2002 Ginger snaps $73.80
 22-JAN-2001 Automobile Tires $372.32
 22-JAN-2001 All Leather Football $311.08
 22-JAN-2001 Air Deodorizer $88.38
 22-JAN-2001 3 Ring Binder $15.00
 22-JAN-2001 300 lb. Weight Set $481.76
Customer Information

Harry's Landmark Diner Miningville IN
 Cash Received

 07-JAN-2001 $7,964.17
 12-JAN-2001 $8,629.11
 Orders Booked

 01-JAN-2001 Widgets $18.36
 01-JAN-2001 Thingamajigs $220.15
 01-JAN-2001 Curtain rods $53.44
 01-JAN-2001 Hanging plants $36.79
 01-JAN-2001 Thimble $9.03
 01-JAN-2001 New car $8,974.87
 01-JAN-2001 Canisters $3,980.25
 01-JAN-2001 Hop scotch kits $1,725.50
 01-JAN-2001 Wire rings $1,987.29
 01-JAN-2001 Ginger snaps $3.69
 01-JAN-2001 Modeling clay $172.35
 01-JAN-2001 Hookup wire $63.84
 02-FEB-2002 Ginger snaps $3.69
30-JAN-2003 Page 2
Customer Information

Jerry's Junkyard Specialt Frogline NH
 Cash Received

 22-JAN-2001 $80,980.65
 Orders Booked

56 Master/Detail Reports

 02-FEB-2001 Curtain rods $213.76
 02-FEB-2001 New car $80,773.83
 02-MAY-2002 Thingamajigs $194.25
 02-MAY-2002 Thimble $38.70
 02-MAY-2002 Modeling clay $4,136.40
 26-NOV-2002 300 lb. Weight Set $1,324.84
Customer Information

Kate's Out of Date Dress New York NY
 Cash Received

 11-JAN-2001 $724.71
 Orders Booked

 02-FEB-2001 Hanging plants $735.80
 02-FEB-2001 Thimble $25.80
 19-FEB-2002 New car $143,597.92
 19-FEB-2002 Modeling clay $172.35
 01-DEC-2000 Widgets $4.59
 01-DEC-2000 Thingamajigs $12.95
 01-DEC-2000 Curtain rods $26.72
 01-DEC-2000 Hanging plants $36.79
 01-DEC-2000 Thimble $1.29
 01-DEC-2000 New car $8,974.87
 01-DEC-2000 Whirlybobs $34.17
 01-DEC-2000 Canisters $1,326.75
 01-DEC-2000 Hop scotch kits $862.75
 01-DEC-2000 Wire rings $1,987.29
 01-DEC-2000 Ginger snaps $3.69
 01-DEC-2000 Modeling clay $34.47
 01-DEC-2000 Hookup wire $3.99
 01-DEC-2000 Binford 4000 Power D $33.99
 01-DEC-2000 Binford Chain Saw $173.59
 01-DEC-2000 Shawnee Cross Bow $219.74
 01-DEC-2000 Big Wheel Bicycle $77.82
 01-DEC-2000 Office Partitions $29.95
 01-DEC-2000 Light Bulbs $2.99
 01-DEC-2000 Automobile Tires $46.54
 01-DEC-2000 Baseball Cards $0.35
 01-DEC-2000 All Leather Football $77.77
 01-DEC-2000 Buckeyes $1.40
 01-DEC-2000 Hammers $8.9
 01-DEC-2000 Spark Plugs $3.30
 01-DEC-2000 Air Deodorizer $9.82
 01-DEC-2000 3 Ring Binder $0.75
 01-DEC-2000 Laser Printer $174.65
 01-DEC-2000 White Board $15.80
 01-DEC-2000 Air Conditioner $324.76
 01-DEC-2000 300 lb. Weight Set $120.44
 01-DEC-2000 Reading Light $23.55
30-JAN-2003 Page 3
Customer Information

Sam Johnson Bell Harbor MI
 Cash Received

 13-FEB-2001 $136.75

Correlating Subqueries 57

 Orders Booked

 19-FEB-2001 Ginger snaps $36.90
 19-FEB-2001 Hookup wire $59.85
 19-MAY-2002 Hop scotch kits $6,902.00
 19-MAY-2002 Ginger snaps $44.28
 19-MAY-2002 Modeling clay $344.70
 19-MAY-2002 Hookup wire $59.85
 19-JUN-2002 Binford 4000 Power D $339.90
 19-JUN-2002 Binford Chain Saw $867.95
 19-JUN-2002 Shawnee Cross Bow $439.48
 01-NOV-2000 Big Wheel Bicycle $389.10
 01-NOV-2000 Light Bulbs $1,659.45
Customer Information

Harriet Bailey Mamaroneck NY
 Cash Received

 14-JAN-2001 $1,386.14
 Orders Booked

 18-JUN-2001 Thingamajigs $1,554.00
 18-JUN-2001 Curtain rods $53.44
 18-JUN-2001 Hanging plants $36.79
 03-JUN-2002 Wire rings $39,745.80
 03-JUN-2002 Ginger snaps $36.90
 03-JUN-2002 Hookup wire $59.85
 25-AUG-2001 New car $8,974.87
 25-AUG-2001 Binford 4000 Power D $67.98
 26-SEP-2002 Hanging plants $4,083.69
 16-FEB-2001 Baseball Cards $7.00
 16-FEB-2001 All Leather Football $622.16
 16-FEB-2001 Air Conditioner $649.52
 16-FEB-2001 300 lb. Weight Set $481.76
30-JAN-2003 Page 4
Customer Information

Clair Butterfield Teaneck NJ
 Cash Received

 15-JAN-2001 $3,812.79
 Orders Booked

 03-JUN-2001 Modeling clay $4,136.40
 02-MAY-2002 Canisters $3,980.25
 02-MAY-2002 Wire rings $13,911.03
 02-MAY-2002 Modeling clay $34.47
 20-JAN-2001 New car $8,974.87
 20-JAN-2001 Binford 4000 Power D $67.98
 22-JUN-2002 Canisters $45,109.50
Customer Information

Quentin Fields Cleveland OH
 Cash Received

 17-JAN-2001 $8,994.48
 Orders Booked

58 Master/Detail Reports

 01-APR-2001 Widgets $68.85
 01-APR-2001 Thimble $38.70
 01-APR-2001 New car $8,974.87
 01-JAN-2002 Hop scotch kits $3,451.00
 20-JAN-2002 Widgets $5,159.16
 20-JAN-2002 Thingamajigs $32,983.65
 20-JAN-2002 Thimble $1.29
 07-MAR-2001 Baseball Cards $3.50
 07-MAR-2001 3 Ring Binder $7.50
 07-MAR-2001 Air Conditioner $649.52
 07-MAR-2001 300 lb. Weight Set $602.20
Customer Information

Eliot Richards Queens NY
 Cash Received

 18-JAN-2001 $6,221.39
 Orders Booked

 02-MAY-2001 Whirlybobs $239.19
 02-MAY-2001 Canisters $3,980.25
 02-FEB-2002 Widgets $4.59
 02-FEB-2002 New car $26,924.61
 02-FEB-2002 Modeling clay $68.94
 02-FEB-2002 Hookup wire $3.99
 29-AUG-2002 Big Wheel Bicycle $155.64
 29-AUG-2002 Office Partitions $209.65
 29-AUG-2002 Light Bulbs $29.90
 29-AUG-2002 Automobile Tires $744.64
 30-MAR-2002 White Board $1,106.00
30-JAN-2003 Page 5
 30-MAR-2002 Air Conditioner $324.76
 07-JUL-2001 New car $8,974.87
 07-JUL-2001 Hop scotch kits $862.75
Customer Information

Isaiah J Schwartz and Com Zanesville OH
 Cash Received

 01-MAR-2001 $26,143.27
 Orders Booked

 02-MAY-2001 Hop scotch kits $6,902.00
 02-MAY-2001 Wire rings $19,872.90
 03-MAR-2002 Thingamajigs $90.65
 03-MAR-2002 Curtain rods $26.72
 03-MAR-2002 Thimble $21.93
 26-OCT-2002 Hop scotch kits $6,039.25
 25-NOV-2001 Binford 4000 Power D $407.88
 25-NOV-2001 Binford Chain Saw $2,603.85
Customer Information

Harold Alexander Fink Davenport IN
 Cash Received

 07-MAY-2001 $593.70

Correlating Subqueries 59

 Orders Booked

 19-MAY-2001 Widgets $55.08
 19-MAY-2001 Ginger snaps $44.28
 19-MAY-2001 Modeling clay $517.05
 01-APR-2002 Thingamajigs $1,554.00
 01-APR-2002 Curtain rods $53.44
 01-APR-2002 Hanging plants $36.79
 06-OCT-2002 Hanging plants $551.85
 06-OCT-2002 Wire rings $11,923.74
 06-OCT-2002 Modeling clay $68.94
 06-OCT-2002 All Leather Football $233.31
 11-NOV-2002 Whirlybobs $580.89
 11-NOV-2002 Canisters $18,574.50
 11-NOV-2002 Hookup wire $19.95
Customer Information

Gregory Stonehaven Everretsville OH
 Orders Booked

 07-MAR-2002 Office Partitions $1,707.15
 07-MAR-2002 White Board $395.00
 30-AUG-2002 Wire rings $19,872.90
 30-AUG-2002 Hookup wire $19.95
30-JAN-2003 Page 6
Customer Information

Alfred E Newman & Company New York NY
 Orders Booked

 30-JUL-2002 Air Deodorizer $98.20
 30-JUL-2002 Laser Printer $523.95
 06-OCT-2001 Light Bulbs $3,289.00
Customer Information

Hammerhead Hardware Fort Wayne IN
 Orders Booked

 02-APR-2002 Hammers $222.50
 02-APR-2002 Spark Plugs $264.00
 02-APR-2002 Air Conditioner $324.76
 30-SEP-2001 Ginger snaps $369.00
Customer Information

Lights R Us Pittsburgh PA
 Orders Booked

 22-APR-2002 All Leather Football $777.70
 22-APR-2002 Buckeyes $210.00
 22-APR-2002 300 lb. Weight Set $240.88
Customer Information

Office Building Contracto Dover De
 Orders Booked

 29-DEC-2002 Baseball Cards $70.00
 29-DEC-2002 3 Ring Binder $37.50

60 Master/Detail Reports

9
Cross-Tabular Reports

In This Chapter

About Cross-Tabular Reports.. .61

Arrays62

Creating Arrays64

Grouping by Category.. .65

Using Multiple Arrays67

About Cross-Tabular Reports
Cross-tabular reports are matrix- or spreadsheet-like reports useful for presenting summary
numeric data. Cross-tabular reports vary in format. The following example shows sales revenue
summarized by product by sales channel.

 Revenue by product by sales channel
Product Direct Sales Resellers Mail Order Total
---------- ------------ --------- ----------- -------
A $2,100 $1,209 $0 $3,309
B $120 $311 $519 $950
C $2 $0 $924 $926
---------- ------------ --------- ----------- -------
Total $2,222 $1,520 $1,443 $5,185

This report is based on many sales records. The three middle columns correspond to sales
channel categories. Each row corresponds to a product. The records fall into nine groups: three
products sold through three sales channels. Some groups have no sales (such as mail order for
Product A).

Each category can be a discrete value of some database column or a set of values. For example,
Resellers can be domestic resellers plus international distributors.

A category can also represent a range, as demonstrated here.

 Orders by product by order Size
Product
Category Less than 10 10 to 100 More than 100 Total
----------- ------------ --------- ------------- -------
Durable 200 120 0 320
Nondurable 122 311 924 1876
----------- ------------ --------- ------------- -------
Total 322 431 1443 2196

About Cross-Tabular Reports 61

In this example, the rows correspond to nondescript categories. Products are classified as durable
or nondurable. The columns represent ranges of order size.

For each record selected, the program must determine the range to which it belongs and add 1
to the count for that category. The numbers in the cells are counts, but they could be sums,
averages, or any other expression.

Cross-tabular reports become more complex when the column number is not predefined and
when more columns exist than can fit across the page.

Arrays
In many cases, the program must process all records before it can begin printing the data. During
processing, the program needs to keep the data in some buffer where it can accumulate the
numbers. This can be done in an Production Reporting array.

An array is a unit of storage that consists of rows and columns and exists in memory. An array
is similar to a database table, but it exists only in memory.

Program ex8a.sqr specifies an array called order_qty to hold the sum of the quantity of orders in
a given month. This example could be programmed without an array, however, using one can
be beneficial. Data retrieved once and stored in an array can be presented in many ways without
additional database queries. The data can even be presented in a chart, as shown later in
Chapter 14, “Business Charts.”

This example demonstrates a “three-dimensional array.” This type of array has fields (columns)
and rows, and it also has repeating fields (the third dimension). In the order_qty array, the first
field is the product description. The second field is the order quantity of each month. Three
months exist in the example; therefore, this field repeats three times.

Production Reporting references arrays in expressions such as array_name.field(sub1[,sub2]).
Sub1 is the first subscript, the row number. The row count starts with zero. The second subscript
(sub2) is specified when the field repeats. Repeating fields are also numbered starting with zero.
The subscript can be a literal or an Production Reporting numeric variable.

Program ex8a.sqr
#define max_products 100
begin-setup
 create-array
 name=order_qty size={max_products}
 field=product:char field=month_qty:number:3
end-setup
begin-program
 do select_data
 do print_array
end-program
begin-procedure print_array
 let #entry_cnt = #i
 let #i = 0
 while #i <= #entry_cnt
 let $product = order_qty.product(#i)
 let #jan = order_qty.month_qty(#i,0)

62 Cross-Tabular Reports

 let #feb = order_qty.month_qty(#i,1)
 let #mar = order_qty.month_qty(#i,2)
 let #prod_tot = #jan + #feb + #mar
 print $product (,1,30)
 print #jan (,32,9) edit 9,999,999
 print #feb (,42,9) edit 9,999,999
 print #mar (,52,9) edit 9,999,999
 print #prod_tot (,62,9) edit 9,999,999
 position (+1)
 let #jan_total = #jan_total + #jan
 let #feb_total = #feb_total + #feb
 let #mar_total = #mar_total + #mar
 let #i = #i + 1
 end-while
 let #grand_total = #jan_total + #feb_total + #mar_total
 print 'Totals' (+2,1)
 print #jan_total (,32,9) edit 9,999,999
 print #feb_total (,42,9) edit 9,999,999
 print #mar_total (,52,9) edit 9,999,999
 print #grand_total (,62,9) edit 9,999,999
end-procedure print_array
begin-procedure select_data
begin-select
order_date
! The quantity for this order
quantity
! the product for this order
description
 if #i = 0 and order_qty.product(#i) = ''
 let order_qty.product(#i) = &description
 end-if
 if order_qty.product(#i) != &description
 let #i = #i + 1
 if #i >= {max_products}
 display 'Error: There are more than {max_products} products'
 stop
 end-if
 let order_qty.product(#i) = &description
 end-if
 let #j = to_number(datetostr(&order_date,'MM')) - 1
 if #j < 3
 let order_qty.month_qty(#i,#j) =
 order_qty.month_qty(#i,#j) + &quantity
 end-if
from orders a, ordlines b, products c
where a.order_num = b.order_num
and b.product_code = c.product_code
order by description
end-select
end-procedure ! select_data
begin-heading 4
 print $current-date (1,1)
 print 'Order Quantity by Product by Month' (1,18)
 page-number (1,64) 'Page '
 print 'Product' (3,1)
 print ' January' (,32)
 print ' February' (,42)

Arrays 63

 print ' March' (,52)
 print ' Total' (,62)
 print '-' (4,1,70) Fill
end-heading

Output for Program ex8a.sqr
11-JUN-01 Order Quantity by Product by Month Page
1
Product January February March Total

Canisters 3 0 0 3
Curtain rods 2 8 18 28
Ginger snaps 1 10 0 11
Hanging plants 1 20 0 21
Hookup wire 16 15 0 31
Hop scotch kits 2 0 0 2
Modeling clay 5 0 0 5
New car 1 9 0 10
Thimble 7 20 0 27
Thingamajigs 17 0 120 137
Widgets 4 0 12 16
Wire rings 1 0 0 1
Totals 60 82 150 292

Creating Arrays
You must define the size of an array when you create it. The program creates the array
order_qty with a size of 100.

#DEFINE MAX_PRODUCTS 100 defines the constant max_products as a substitution variable. The
sample program uses this constant to define the size of the array. It is good practice to use
#DEFINE because it displays the limit at the top of the program source.

The SETUP section creates the array using the CREATE-ARRAY command. All Production
Reporting arrays are created before program execution. Their size must be known at compile
time. If you do not know the exact number of rows, over-allocate and specify an upper bound.
In the example, the array has 100 rows, even though the program only uses 12 rows to process
the sample data.

The preceding program has two procedures: select_data and print_array. Select_data performs
the database query, as its name suggests. While the database records are processed, nothing
prints, and the data accumulates in the array. When processing completes, print_array loops
through the array and prints the data and adds the month totals and prints them at the bottom.

The report summarizes the product order quantities for each month, which are the records
ordered by the product description. The procedure then fills the array one product at a time.
For each record selected, the procedure checks to see if it is a new product; if it is, the array is
incremented by row subscript #i. The procedure also adds the quantity to the corresponding
entry in the array based on the month.

To obtain the month in this program, use the datetostr function as follows:

let #j = to_number(datetostr(&order_date, 'MM')) - 1

64 Cross-Tabular Reports

This converts the order_date column into a string. (The ‘MM’ edit mask specifies that only the
month part be converted.) The resulting string is then converted to a number; if it is less than
3, it represents January, February, or March, and is added to the array.

Grouping by Category
Program ex8b.sqr is a cross-tabular report that groups the products by price range. This grouping
cannot be done using an SQL GROUP BY clause. To process the records in order of price category,
the program would have to sort the table by price. The example shows how to do it without
sorting the data.

The program uses the EVALUATE command to determine the price category and assign the array
subscript #i to 0, 1, or 2. Then it adds the order quantity to the array cell that corresponds to the
price category (row) and the month (column).

Program ex8b.sqr
#define max_categories 3
begin-setup
 create-array
 name=order_qty size={max_categories}
 field=category:char field=month_qty:number:3
end-setup
begin-program
 do select_data
 do print_array
end-program
begin-procedure print_array
 let #i = 0
 while #i < {max_categories}
 let $category = order_qty.category(#i)
 let #jan = order_qty.month_qty(#i,0)
 let #feb = order_qty.month_qty(#i,1)
 let #mar = order_qty.month_qty(#i,2)
 let #category_tot = #jan + #feb + #mar
 print $category (,1,31)
 print #jan (,32,9) edit 9,999,999
 print #feb (,42,9) edit 9,999,999
 print #mar (,52,9) edit 9,999,999
 print #category_tot (,62,9) edit 9,999,999
 position (+1)
 let #jan_total = #jan_total + #jan
 let #feb_total = #feb_total + #feb
 let #mar_total = #mar_total + #mar
 let #i = #i + 1
 end-while
 let #grand_total = #jan_total + #feb_total + #mar_total
 print 'Totals' (+2,1)
 print #jan_total (,32,9) edit 9,999,999
 print #feb_total (,42,9) edit 9,999,999
 print #mar_total (,52,9) edit 9,999,999
 print #grand_total (,62,9) edit 9,999,999
end-procedure print_array

Grouping by Category 65

begin-procedure select_data
 let order_qty.category(0) = '$0-$4.99'
 let order_qty.category(1) = '$5.00-$100.00'
 let order_qty.category(2) = 'Over $100'
begin-select
order_date
! the price / price category for the order
c.price &price
 move &price to #price_num
 evaluate #price_num
 when < 5.0
 let #i = 0
 break
 when <= 100.0
 let #i = 1
 break
 when-other
 let #i = 2
 break
 end-evaluate
! The quantity for this order
quantity
 let #j = to_number(datetostr(&order_date,'MM')) - 1
 if #j < 3
 let order_qty.month_qty(#i,#j) =
 order_qty.month_qty(#i,#j) + &quantity
 end-if
from orders a, ordlines b, products c
where a.order_num = b.order_num
and b.product_code = c.product_code
end-select
end-procedure ! select_data
begin-heading 5
 print $current-date (1,1)
 page-number (1,64) 'Page '
 print 'Order Quantity by Product Price Category by Month' (2,11)
 print 'Product Price Category' (4,1)
 print ' January' (,32)
 print ' February' (,42)
 print ' March' (,52)
 print ' Total' (,62)
 print '-' (5,1,70) Fill
end-heading

Output for Program ex8b.sqr
11-JUN-01
Page 1
 Order Quantity by Product Price Category by Month
Product Price Category January February March Total
--
$0-$4.99 28 45 12 85
$5.00-$100.00 25 28 138 191
Over $100 7 9 0 16
Totals 60 82 150 292

66 Cross-Tabular Reports

Using Multiple Arrays
Using arrays to buffer data offers several advantages. In the last example, it eliminated the need
to sort the data. Another advantage is that you can combine the two sample reports. With one
pass on the data, you can fill the two arrays and then print the two parts of the report.

Program ex8c.sqr performs the work done by the first two programs. The SETUP section specifies
two arrays—one to summarize monthly orders by product, and another to summarize monthly
orders by price range.

Program ex8c.sqr
#define max_categories 3
#define max_products 100
begin-setup
 create-array
 name=order_qty size={max_products}
 field=product:char field=month_qty:number:3
 create-array
 name=order_qty2 size={max_categories}
 field=category:char field=month_qty:number:3
end-setup
begin-program
 do select_data
 do print_array
 print '-' (+2,1,70) fill
 position (+1)
 do print_array2
end-program
begin-procedure print_array
 let #entry_cnt = #i
 let #i = 0
 while #i <= #entry_cnt
 let $product = order_qty.product(#i)
 let #jan = order_qty.month_qty(#i,0)
 let #feb = order_qty.month_qty(#i,1)
 let #mar = order_qty.month_qty(#i,2)
 let #prod_tot = #jan + #feb + #mar
 print $product (,1,30)
 print #jan (,32,9) edit 9,999,999
 print #feb (,42,9) edit 9,999,999
 print #mar (,52,9) edit 9,999,999
 print #prod_tot (,62,9) edit 9,999,999
 position (+1)
 let #i = #i + 1
 end-while
end-procedure ! print_array
begin-procedure print_array2
 let #i = 0
 while #i < {max_categories}
 let $category = order_qty2.category(#i)
 let #jan = order_qty2.month_qty(#i,0)
 let #feb = order_qty2.month_qty(#i,1)
 let #mar = order_qty2.month_qty(#i,2)
 let #category_tot = #jan + #feb + #mar
 print $category (,1,31)

Using Multiple Arrays 67

 print #jan (,32,9) edit 9,999,999
 print #feb (,42,9) edit 9,999,999
 print #mar (,52,9) edit 9,999,999
 print #category_tot (,62,9) edit 9,999,999
 position (+1)
 let #jan_total = #jan_total + #jan
 let #feb_total = #feb_total + #feb
 let #mar_total = #mar_total + #mar
 let #i = #i + 1
 end-while
 let #grand_total = #jan_total + #feb_total + #mar_total
 print 'Totals' (+2,1)
 print #jan_total (,32,9) edit 9,999,999
 print #feb_total (,42,9) edit 9,999,999
 print #mar_total (,52,9) edit 9,999,999
 print #grand_total (,62,9) edit 9,999,999
end-procedure ! print_array2
begin-procedure select_data
 let order_qty2.category(0)='$0-$4.99'
 let order_qty2.category(1)='$5.00-$100.00'
 let order_qty2.category(2)='Over $100'
begin-select
order_date
! the price / price category for the order
c.price &price
 move &price to #price_num
 evaluate #price_num
 when < 5.0
 let #x = 0
 break
 when <= 100.0
 let #x = 1
 break
 when-other
 let #x = 2
 break
 end-evaluate
! The quantity for this order
quantity
 let #j = to_number(datetostr(&order_date,'MM')) - 1
 if #j < 3
 let order_qty2.month_qty(#x,#j) =
 order_qty2.month_qty(#x,#j) + &quantity
 end-if
! the product for this order
description
 if #i = 0 and order_qty.product(#i) = ''
 let order_qty.product(#i) = &description
 end-if
 if order_qty.product(#i) != &description
 let #i = #i + 1
 if #i >= {max_products}
 display 'Error: There are more than {max_products} products'
 stop
 end-if
 let order_qty.product(#i) = &description
 end-if

68 Cross-Tabular Reports

 if #j < 3
 let order_qty.month_qty(#i,#j) =
 order_qty.month_qty(#i,#j) + &quantity
 end-if
from orders a, ordlines b, products c
where a.order_num = b.order_num
and b.product_code = c.product_code
order by description
end-select
end-procedure ! select_data
begin-heading 5
print $current-date (1,1)
 page-number (1,64) 'Page '
 print 'Order Quantity by Product and Price Category by Month' (2,10)
 print 'Product / Price Category' (4,1)
 print ' January' (,32)
 print ' February' (,42)
 print ' March' (,52)
 print ' Total' (,62)
 print '-' (5,1,70) Fill
end-heading

Output for Program ex8c.sqr
11-JUN-01 Page 1
 Order Quantity by Product and Price Category by Month
Product / Price Category January February March Total
--
Canisters 3 0 0 3
Curtain rods 2 8 18 28
Ginger snaps 1 10 0 11
Hanging plants 1 20 0 21
Hookup wire 16 15 0 31
Hop scotch kits 2 0 0 2
Modeling clay 5 0 0 5
New car 1 9 0 10
Thimble 7 20 0 27
Thingamajigs 17 0 120 137
Widgets 4 0 12 16
Wire rings 1 0 0 1
--
$0-$4.99 28 45 12 85
$5.00-$100.00 25 28 138 191
Over $100 7 9 0 16

Production Reporting arrays are also advantageous in programs that produce charts. With the
data for the chart in the array, presenting this cross-tab as a bar chart is easy. (See Chapter 14,
“Business Charts.”)

Using Multiple Arrays 69

70 Cross-Tabular Reports

10
Printing Mailing Labels

In This Chapter

Defining Columns and Rows71

Running Programs73

Defining Columns and Rows
To print labels in multiple columns, use the COLUMNS, NEXT-COLUMN, and NEXT-LISTING
commands.

Program ex9a.sqr prints mailing labels in a format of three columns by ten rows. It also counts
the number of labels printed and prints that number on the last sheet of the report.

Program ex9a.sqr
#define MAX_LABEL_LINES 10
#define LINES_BETWEEN_LABELS 3
begin-setup
 declare-layout default
 paper-size=(10,11) left-margin=0.33
 end-declare
end-setup
begin-program
 do mailing_labels
end-program
begin-procedure mailing_labels
 let #label_count = 0
 let #label_lines = 0
 columns 1 29 57 ! enable columns
 alter-printer font=5 point-size=10
begin-select
name (1,1,30)
addr1 (2,1,30)
city
state
zip
 move &zip to $zip XXXXX-XXXX
 let $last_line = &city || ', ' || &state || ' ' || $zip
 print $last_line (3,1,30)
 next-column at-end=newline
 add 1 to #label_count
 if #current-column = 1
 add 1 to #label_lines

Defining Columns and Rows 71

 if #label_lines = {MAX_LABEL_LINES}
 new-page
 let #label_lines = 0
 else
 next-listing no-advance skiplines={LINES_BETWEEN_LABELS}
 end-if
 end-if
from customers
end-select
 use-column 0 ! disable columns
 new-page
 print 'Labels printed on ' (,1)
 print $current-date ()
 print 'Total labels printed = ' (+1,1)
 print #label_count () edit 9,999,999
end-procedure ! mailing_labels

COLUMNS 1 29 57 defines the starting position for three columns. The first column starts at
character position 1, the second at character position 29, and the third at character position 57.

The program writes the first address into the first column, the second address into the second,
the third address into the third. The fourth address is written into the second row of the first
column, just below the first label. When ten lines of labels are complete, a new page starts. After
the last page of labels are printed, the program prints a summary page showing the number of
labels printed.

To print the last line of the label, the city, state, and zip columns are moved to string variables.
The command

LET $last_line = &city || ', ' || &state || ' ' || $zip

combines the city, state, and zip code, plus appropriate punctuation and spacing, into a string,
which it stores in the variable $last_line. In this way, city, state, and zip code are printed without
unnecessary gaps.

The program defines two counters, #label_count and #label_lines. The first counter,
#label_count, counts the total number of labels and prints it on the summary page. The second
counter, #label_lines, counts the number of rows of labels that were printed. When the program
has printed the number of lines defined by {MAX_LABEL_LINES}, it starts a new page and resets
the #label_lines counter.

After each row of labels, NEXT-LISTING redefines the print position for the next row of labels
as line 1. NEXT-LISTING skips the specified number of lines (SKIPLINES) from the last line
printed (NO-ADVANCE) and sets the new position as line 1.

ALTER-PRINTER changes the font in which the report is printed. (See Chapter 15, “Changing
Fonts.”)

The sample program prints the labels in 10-point Times Roman, which is a proportionally spaced
font. In Windows, you can use proportionally spaced fonts with any printer that supports fonts
or graphics. On other platforms, Production Reporting directly supports HP LaserJet printers
and PostScript printers.

Printing and printer support are explained in greater detail in Chapter 30, “Printing Issues.” For
information on using proportionally spaced fonts, see Chapter 15, “Changing Fonts.”

72 Printing Mailing Labels

In the sample program, DECLARE-LAYOUT defines a page width of 10 inches. This width
accommodates the printing of the third column, which contains 30 characters and begins at
character position 57. Production Reporting assumes a default character grid of 10 characters
per inch, which would cause the third column to print beyond the paper edge if this report used
the default font. The 10-point Times Roman used here, however, condenses the text so that it
fits on the page. The page width is set at 10 inches to prevent Production Reporting from treating
the third-column print position as an error.

Running Programs
Proportionally-spaced fonts require different techniques for running the program and viewing
the output. For UNIX platforms, specify the printer type with the -PRINTER:xx flag. For HP
LaserJet printers, enter -PRINTER:HP on the command line. For PostScript printers,
enter -PRINTER:PS .

For example:

sqr ex9a username/password -printer:hp

Use -KEEP to produce output in the SQR Portable File format (SPF) and print it using
Production Reporting Print. You still must use -PRINTER:xx when printing. SQR Portable File
format is covered in greater detail in Chapter 30, “Printing Issues.”

With SQR Production Reporting Studio , neither -PRINTER:xx nor -KEEP is required. The
output automatically appears in the Viewer window after the report is run. Here is a portion of
the output.

Running Programs 73

Output for Program ex9a.sqr

The report produces the output in three columns corresponding to the dimensions of a sheet of
mailing label stock. In the preceding example, the report prints the labels left to right, filling
each row of labels before moving down the page.

You can also print the labels from the top down, filling each column before moving to the next
column of labels. The code is shown here. The differences between this code and the previous
one are shown in bold. The output is not printed here, but you can run the file and view it using
the same procedure you used for the previous example.

Modified Program ex9a.sqr
#define MAX_LABEL_LINES 10
#define LINES_BETWEEN_LABELS 3
begin-setup
 declare-layout default
 paper-size=(10,11) left-margin=0.33
 end-declare
end-setup
begin-program
 do mailing_labels
end-program
begin-procedure mailing_labels
 let #Label_Count = 0
 let #Label_Lines = 0
 columns 1 29 57 ! enable columns
alter-printer font=5 point-size=10
begin-select
name (0,1,30)
addr1 (+1,1,30)

74 Printing Mailing Labels

city
state
zip
 move &zip to $zip xxxxx-xxxx
 let $last_line = &city || ', ' || &state || ' ' || $zip
 print $last_line (+1,1,30)
 add 1 to #label_count
 add 1 to #label_lines
 if #label_lines = {MAX_LABEL_LINES}
 next-column goto-top=1 at-end=newpage
 let #label_lines = 0
 else
 position (+1)
 position (+{LINES_BETWEEN_LABELS})
 end-if
from customers
end-select
 use-column 0 ! disable columns
 new-page
 print 'Labels printed on ' (,1)
 print $current-date ()
 print 'Total labels printed = ' (+1,1)
 print #label_count () edit 9,999,999
end-procedure ! mailing_labels

Running Programs 75

76 Printing Mailing Labels

11
Creating Form Letters

In This Chapter

Using DOCUMENT Sections77

Using Document Markers .. .77

A Simple Form Letter Program77

Using DOCUMENT Sections
The DOCUMENT sections starts with BEGIN-DOCUMENT and ends with END-DOCUMENT. Between
these commands are the form letter and the variables. Production Reporting inserts variable
values when the document prints. To leave blank lines in a letter, explicitly mark them with
a.b.

Using Document Markers
Document markers are placeholders in a DOCUMENT section where you can print data after the
DOCUMENT section. Document markers are denoted with a name preceded by the at sign (@).

Production Reporting prints variable contents in the position where it is placed in the
DOCUMENT section. For example, in the program that follows, the customer’s name is printed on
the first line.

Using document markers provides flexibility in positioning variable contents. The sample
program uses a document marker to position the city, state, and zip code because the city name
varies in length and thus affects the position of the state name and zip code.

A Simple Form Letter Program
Program ex 10a.sqr demonstrates the use of document markers in a simple form letter. First,
Production Reporting performs the main procedure and the SELECT statement. Next, it
performs the write_letter procedure and the DOCUMENT section. POSITION sets the position to
the appropriate line, which is given by @city_state_zip. The program prints the city, then
continues printing the other elements to the current position. The state name, and zip code
automatically print in the correct positions with appropriate punctuation.

Using DOCUMENT Sections 77

Program ex 10a.sqr
begin-program
 do main
end-program
begin-procedure main
begin-select
name
addr1
addr2
city
state
zip
 do write_letter
from customers
order by name
end-select
end-procedure ! main
begin-procedure write_letter
begin-document (1,1)
&name
&addr1
&addr2
@city_state_zip
.b
.b
 $current-date
Dear Sir or Madam:
.b
 Thank you for your recent purchases from ACME Inc. We would like to
tell you about our limited-time offer. During this month, our entire
inventory is marked down by 25%. Yes, you can buy your favorite merchandise
and save too.
 To place an order simply dial 800-555-ACME. Delivery is free too, so
don't wait.
.b
.b
 Sincerely,
 Clark Axelotle
 ACME Inc.
end-document
position () @city_state_zip
print &city ()
print ', ' ()
print &state ()
print ' ' ()
print &zip () edit xxxxx-xxxx
new-page
end-procedure ! write_letter

Output for Program ex 10a.sqr
Alfred E Newman & Company
2837 East Third Street
Greenwich Village
New York, NY 10002-1001
 10-MAY-2001

78 Creating Form Letters

Dear Sir or Madam:
 Thank you for your recent purchases from ACME Inc. We would like to
tell you about our limited-time offer. During this month, our entire
inventory is marked down by 25%. Yes, you can buy your favorite merchandise
and save too. To place an order simply dial 800-555-ACME. Delivery is free
too, so don't wait.
 Sincerely,
 Clark Axelotle
 ACME Inc.

Note:

For another example of a form letter, see Chapter 13, “Using Graphics.”

A Simple Form Letter Program 79

80 Creating Form Letters

12
Exporting Data to Other

Applications

This chapter describes how to create tab-delimited files for exporting data to many applications.

Program ex11a.sqr creates a file that you can load into a document such as a spreadsheet. The
tabs create columns in a spreadsheet or word processing document that correspond to the
columns in a database table.

Program ex11a.sqr
begin-setup
 ! No margins, wide enough for the widest record
 ! and no page breaks
 declare-layout default
 left-margin=0 top-margin=0
 max_columns=160 formfeed=no
 end-declare
end-setup
begin-program
 do main
end-program
begin-procedure main
encode '<009>' into $sep ! Separator character is TAB
let $cust_num = 'Customer Number'
let $name = 'Customer Name'
let $addr1 = 'Address Line 1'
let $addr2 = 'Address Line 2'
let $city = 'City'
let $state = 'State'
let $zip = 'Zip Code'
let $phone = 'Phone Number'
let $tot = 'Total'
string $cust_num $name $addr1 $addr2
 $city $state $zip $phone $tot by $sep into $col_hds
print $col_hds (1,1)
new-page
begin-select
cust_num
name
addr1
addr2
city
state
zip
phone
tot
 string &cust_num &name &addr1 &addr2

81

 &city &state &zip &phone &tot by $sep into $db_cols
 print $db_cols ()
 new-page
from customers
end-select
end-procedure ! main

ENCODE stores the ASCII code for the tab character in the variable $sep. The code (9) is enclosed
in angle brackets to indicate that it is a non-display character.Production Reporting treats it as
a character code and sets the variable accordingly. ENCODE is a useful way to place non-alpha
and non-numeric characters into variables.

LET creates variables for text strings used as column headings in export files. STRING combines
these variables in $col_hds, with each heading separated by a tab.

In the SELECT paragraph, STRING combines the records (named as column variables) in
$db_cols, with each record separated by a tab.

NEW-PAGE causes a new line and carriage return at the end of each record, with the line number
reset to 1. The page is not ejected because of the FORMFEED=NO argument in
DECLARE-LAYOUT. (Remember, this report is meant to be exported, not printed.)

You can load the output file ex11a.lis into a spreadsheet or other application.

82 Exporting Data to Other Applications

P a r t I I I

Fonts and Graphics

In Fonts and Graphics:

● Using Graphics
● Business Charts
● Changing Fonts
● Writing Printer-Independent Reports

Fonts and Graphics 83

84 Fonts and Graphics

13
Using Graphics

In This Chapter

A Simple Tabular Report .85

Adding Graphics86

Sharing Images Among Reports .. .89

Printing Bar Codes91

Using Color .. .92

A Simple Tabular Report
Program ex12a.sqr produces a simple tabular report similar to the one in Chapter 4, “Selecting
Data.”

Program ex12a.sqr
begin-setup
 declare-layout default
 end-declare
end-setup
begin-program
 do main
end-program
begin-procedure main
begin-select
name (,1,30)
city (,+1,16)
state (,+1,5)
tot (,+1,11) edit 99999999.99
 next-listing no-advance need=1
 let #grand_total = #grand_total + &tot
from customers
end-select
print '-' (,55,11) fill
print 'Grand Total' (+1,40)
print #grand_total (,55,11) edit 99999999.99
end-procedure ! main
begin-heading 5
 print $current-date (1,1) Edit 'DD-MON-YYYY'
 page-number (1,60) 'Page '
 print 'Name' (3,1)
 print 'City' (,32)
 print 'State' (,49)

A Simple Tabular Report 85

 print 'Total' (,61)
 print '-' (4,1,65) fill
end-heading

The DECLARE-LAYOUT command in the SETUP section specifies the default layout without
defining any options. The purpose of specifying the default layout is to use its margin settings,
which are defined as 1/2 inch. Without DECLARE-LAYOUT, the report would have no margins.

The FILL option in the PRINT command produces dashed lines, which is a simple way to draw
lines for a report printed on a line printer. On a graphical printer, however, it is possible to draw
solid lines. (See “Adding Graphics” on page 86.)

Output for Program ex12a.sqr
 06-JUN-01 Page 1

 Name City State Total

 Gregory Stonehaven Everretsville OH 39.00
 Alfred E Newman & Company New York NY 42.00
 Eliot Richards Queens NY 30.00
 Isaiah J Schwartz and Company Zanesville OH 33.00
 Harold Alexander Fink Davenport IN 36.00
 Harriet Bailey Mamaroneck NY 21.00
 Clair Butterfield Teaneck NJ 24.00
 Quentin Fields Cleveland OH 27.00
 Jerry's Junkyard Specialties Frogline NH 12.00
 Kate's Out of Date Dress Shop New York NY 15.00
 Sam Johnson Bell Harbor MI 18.00
 Joe Smith and Company Big Falls NM 3.00
 Corks and Bottles, Inc. New York NY 6.00
 Harry's Landmark Diner Miningville IN 9.00

 Grand Total 315.00

Adding Graphics
Program ex12b.sqr includes graphical features—a logo, solid lines, and a change of font in the
heading.

Program ex12b.sqr
begin-setup
 declare-layout default
 end-declare
end-setup
begin-program
 do main
end-program
begin-procedure main
begin-select
name (,1,30)
city (,+1,16)

86 Using Graphics

state (,+1,5)
tot (,+1,11) edit 99999999.99
 next-listing no-advance need=1
 let #grand_total = #grand_total + &tot
from customers
end-select
graphic (,55,12) horz-line 20
print 'Grand Total' (+2,40)
print #grand_total (,55,11) Edit 99999999.99
end-procedure ! main
begin-heading 11
 print $current-date (1,1)
 page-number (1,60) 'Page '
 alter-printer point-size=14 font=4 ! switch font
 print 'Name' (9,1) bold
 print 'City' (,32) bold
 print 'State' (,49) bold
 print 'Total' (,61) bold
 alter-printer point-size=12 font=3 ! restore font
 graphic (9,1,66) horz-line 20
 print-image (1,23)
 type=bmp-file
 image-size=(21,5)
 source='acmelogo.bmp'
end-heading

GRAPHIC draws solid lines with the HORZ-LINE argument. Lines are positioned using a
Production Reporting position specifier. The third number in the position specifier is the length
of the line in characters. (The width of character cells is determined by the CHAR-WIDTH or
MAX-COLUMNS arguments of DECLARE-LAYOUT. See Chapter 7, “SETUP Section.”)

The HORZ-LINE argument of the GRAPHIC HORZ-LINE command is the thickness of the line,
specified in decipoints (there are 720 decipoints per inch). For example, the command

graphic (10,1,66) horz-line 20

specifies a horizontal line below line 10 in the report starting with position 1 (the left side of the
report) and stretching for 66 character positions (at 10 characters per inch this is 6.6 inches).
The thickness of the line is 20 decipoints, which is 1/36 of an inch (about 0.7 millimeters).

You can also use the GRAPHIC command to draw vertical lines, boxes, and shaded boxes. See
sqrlaser.sqr, in the SAMPLES subdirectory, for an example.

ALTER-PRINTER command changes the heading font. When used a second time, it restores the
normal font for the rest of the report. FONT selects a font (typeface) supported by the printer.
The font is specified by number, but the number is printer-specific. On PostScript printers, for
example, font 3 is Courier, font 4 is Helvetica, and font 5 is Times Roman. See
DECLARE-PRINTER in Volume 2 of the Production Reporting Developer's Guide.

POINT-SIZE specifies type size in points. You can use whole numbers or fractions (for example,
POINT-SIZE=10.5). The following command changes the font to 14-point Helvetica:

alter-printer point-size=14 font=4 ! switch font

PRINT-IMAGE inserts the logo. PRINT-IMAGE is followed by a print position corresponding to
the top left corner of the image (line 1, column 19 in our example). The TYPE option specifies
the image file type. In our example, the image is stored in Windows bitmap format (.bmp). The

Adding Graphics 87

size of the image is specified in terms of columns (width) and lines (height). In the example, the
image is 30 characters wide (3 inches) and 7 lines high (1 1/6 inches).

In Production Reporting, images are stored in external files. The format of the image must match
that of the printer you are using. These formats are:

● Windows—BMP file images

● PostScript printer or viewer—EPS file

● HP LaserJet—HPGL file images

● HTML output—GIF, JPEG, and PNG formats

● Portable Document Format—BMP, GIF, JPEG, and PNG formats

For more information on these format options, see Chapter 30, “Printing Issues.”

The SOURCE option specifies the file name of the image file. In our example, the file is
Acmelogo.bmp. The file is assumed to reside in the current directory or in the directory where
Production Reporting is installed, but the file can reside in any directory as long a full pathname
for the image file is specified.

Output for Program ex12b.sqr

The output file now contains graphic language commands. Production Reporting can produce
output for HP LaserJet printers in a file format that uses the HP PCL language or output for
PostScript printers in a file format that uses the PostScript language. Production Reporting can
also produce printer-independent output files in a special format called SQR Portable Format
(SPF).

Production Reporting can create a printer-specific output file (LIS) or create the output in
portable format (SPF). When you create an SPF file, the name of the image file is copied into it,

88 Using Graphics

and the image is processed at print time, when printer-specific output is generated. When SPF
files are used, changes in image file contents are the next time you print or view the report. You
can create printer-specific output by using Production Reporting Execute to directly generate
an LIS file or by using Production Reporting Print to generate an LIS file from an SPF file. (See
Chapter 30, “Printing Issues.”)

Sharing Images Among Reports
You can place logos and other images in reports using only PRINT-IMAGE. If several programs
share an image definition, use DECLARE-IMAGE.

Program ex12c.sqr prints a simple form letter. It prints a logo using DECLARE-IMAGE and
PRINT-IMAGE, and it prints a signature using PRINT-IMAGE.

Because the image is shared among several reports, DECLARE-IMAGE is contained in the file
acme.inc. This file declares an image with acme-logo as the name. It specifies the logo used in
the last sample program. The declaration includes the type and source file for the image. When
the image is printed, do not respecify these attributes.

File acme.inc
declare-image acme_logo
 type=bmp-file
 image-size=(30,7)
 source='acmelogo.bmp'
end-declare

Multiple programs can share the declaration and include the file acme.inc. Change an attribute,
such as the source, in one place only. The image size is specified and provides the default.

To change the size of an image in a report, use the IMAGE-SIZE argument in PRINT-IMAGE to
overrides the image size specified in DECLARE-IMAGE.

Program ex12c.sqr
begin-setup
#include 'acme.inc'
end-setup
begin-program
 do main
end-program
begin-procedure main
begin-select
name
addr1
addr2
city
state
zip
phone
 do write_letter
from customers
order by name

Sharing Images Among Reports 89

end-select
end-procedure ! main
begin-procedure write_letter
move &city to $csz
concat ', ' with $csz
concat &state with $csz
concat ' ' with $csz
move &zip to $zip xxxxx-xxxx
concat $zip with $csz
move &phone to $phone_no (xxx)bxxx-xxxx ! Edit phone number.
begin-document (1,1,0)
&name @logo
&addr1
&addr2
$csz
.b
.b
.b
 $current-date
Dear &name
.b
 Thank you for your inquiry regarding Encore, Maestro!!, our
revolutionary teaching system for piano and organ. If you've always wanted
to play an instrument but felt you could never master one, Encore,
Maestro!! is made for you.
.b
 Now anyone who can hum a tune can play one too. Encore, Maestro!!
begins with a step-by-step approach to some of America's favorite songs.
You'll learn the correct keyboarding while hearing the sounds you make
through the headphones provided with the Encore, Maestro!! system. From
there, you'll advance to intricate compositions with dazzling melodic runs.
Encore, Maestro!! can even teach you to improvise your own solos.
.b
 Whether you like classical, jazz, pop, or blues, Encore, Maestro!! is
the music teacher for you.
.b
 A local representative will be calling you at $phone_no
to set up an in-house demonstration, so get ready to play your favorite
tunes!!
.b
 Sincerely,
 @signature
.b
.b
 Clark Axelotle
end-document
position () @logo
print-image acme-logo ()
 image-size=(16,4)
position () @signature
print-image ()
 type=bmp-file
 image-size=(12,3)
 source='clark.bmp'
new-page
end-procedure ! write_letter

90 Using Graphics

#INCLUDE, which is performed at compile time, pulls in text from another file. In this program,
#INCLUDE 'acme.inc' includes the code from the file acme.inc.

The DOCUMENT section begins with BEGIN-DOCUMENT and ends with END-DOCUMENT. It uses
variables and document markers to print inside the letter. The program uses variables for the
name and address, the date, and the phone number. It uses document markers for the logo and
signature.

Document markers are placeholders in the letter. The program uses the document markers
@logo and @signature in a POSITION command before printing each image. The document
markers make it unnecessary to specify the position of these items in PRINT-IMAGE. Instead,
you simply print to the current position.

The date is prepared with the reserved variable $current-date. It is printed directly in the
DOCUMENT section without issuing a PRINT command.

CONCAT put together the city, state, and zip code. In the DOCUMENT section, variables retain their
predefined size. A column variable, for example, will remain the width of the column as defined
in the database. You can print the date and phone number directly, however, because they fall
at the end of a line, without any following text.

Output for Program ex12c.sqr

Printing Bar Codes
Production Reporting supports a wide variety of bar code types, which you can include in your
Production Reporting report.

Printing Bar Codes 91

Use PRINT-BAR-CODE to create a bar code. Specify the position of the bar code in an ordinary
position qualifier. In separate arguments, specify the bar code type, height, text to encode,
caption, and optional check sum. For example:

print-bar-code (1,1)
 type=1
 height=0.5
 text='01234567890'
 caption='0 12345 67890'

PRINT-BAR-CODE arguments can be variables or literals. This example produces the following
bar code.

Note:

For further information, see PRINT-BAR-CODE in Volume 2 of the Production Reporting
Developer's Guide.

Using Color
This section describes CREATE-COLOR-PALETTE, DECLARE-COLOR-MAP, ALTER-COLOR-MAP,
GET-COLOR, and SET-COLOR. Use these commands to manipulate the colors of reports and
chart elements. For detailed information on these commands see Volume 2 of the Production
Reporting Developer's Guide.

Production Reporting comes with sixteen defined colors. Use DECLARE-COLOR-MAP (in the
BEGIN-SETUP section) to define individual colors and CREATE-COLOR-PALETTE to define
chart data series colors.

You can define an umlimited number of colors. For example:

begin-setup
declare-color-map
light_blue = (193, 222, 229)
pink = (221,79,200)
end-setup

Changing Color Specifications
The following commands change the Production Reporting default colors or the colors defined
by DECLARE-COLOR-MAP:

● ALTER-COLOR-MAP

● GET-COLOR

92 Using Graphics

● SET-COLOR

ALTER-COLOR-MAP
ALTER-COLOR-MAP dynamically alters a defined color; it does not define a new color.
ALTER-COLOR-MAP is allowed wherever PRINT is allowed.

GET-COLOR
GET-COLOR retrieves the current color. GET-COLOR is allowed wherever PRINT is allowed.

If the requested color setting does not map to a defined name, the name is returned as
RGBredgreenblue, where each component is a three digit number. For example,
RGB127133033. You can use this format wherever you use a color name. The color name 'none'
is returned if no color is associated with the specified area.

SET-COLOR
SET-COLOR is allowed wherever PRINT is allowed. If the specified color name is not defined,
Production Reporting uses the settings for the color name 'default'. Use the color name 'none'
to turn off the color for a specified area.

Sample Program
begin-setup
 declare-color-map
 light_blue = (193,222,229)
 end-declare
end-setup
begin-program
 print 'Hello' ()
 foreground=('green')
 background=('light_blue')
 alter-color-map name = 'light_blue' value = (193,240,230)
 print 'Red Roses' (,7)
 foreground=('red')
 background=('light_blue')
 get-color print-text-foreground=($print-foreground)
 set-color print-text-foreground=('purple')
 print 'Sammy' (+2,1)
 set-color print-text-foreground=($print-foreground)
 print 'Sammy2' (,7)
end-program

Figure 1 Output for Sample Program

Using Color 93

ALTER-COLOR-MAP changed the previously specified light blue background to be slightly darker.
SET-COLOR and GET-COLOR changed the text color.

94 Using Graphics

14
Business Charts

In This Chapter

About Business Charts .. .95

Creating Charts .. .95

Defining Charts .. .99

Printing Charts.. .99

Running Programs ... 100

Passing Data to Charts .. 100

Changing Colors with New Graphics .. 101

Creating Combination Charts .. 104

Creating Bubble Charts .. 111

Defining Point Labels .. 114

About Business Charts
Production Reporting provides two commands for creating business charts, DECLARE-CHART
and PRINT-CHART, and a rich set of chart types—line, pie, bar, stacked bar, 100% bar, overlapped
bar, floating bar, histogram, area, stacked area, 100% area, xy-scatter plot, combination, bubble,
and high-low-close.

You can customize many chart attributes by turning on three-dimensional effects or setting titles
and legends. You can also move charts from one hardware platform to another.

Like cross-tabular reports (see Chapter 9, “Cross-Tabular Reports”), business charts can be
prepared using data held in an array. If you have a cross-tabular report, just one more step creates
a chart using the data collected in the array.

Creating Charts
Program ex13a.sqr builds on Program ex8a.sqr (see Chapter 9, “Cross-Tabular Reports”).
Program ex8a.sqr combined two reports in one program. Program ex13a.sqr produces two charts
corresponding to the two cross-tabs.

Here is the code. The bold lines are the changed or added lines.

About Business Charts 95

Program ex13a.sqr
#define max_categories 3
#define max_products 100
begin-setup
 create-array
 name=order_qty size={max_products}
 field=product:char field=month_qty:number:3
 create-array
 name=order_qty2 size={max_categories}
 field=category:char field=month_qty:number:3
 declare-chart orders-stacked-bar
 chart-size=(70,30)
 title='Order Quantity'
 legend-title='Month'
 type=stacked-bar
 end-declare ! orders-stacked-bar
end-setup
begin-program
 do select_data
 do print_array
 print '-' (+2,1,70) fill
 position (+1)
 do print_array2
 new-page
 let $done = 'YES' ! Don't need heading any more
 do print_the_charts
end-program
begin-procedure print_array
 let #entry_cnt = #i
 let #i = 0
 let #prod_tot = 0
 while #i <= #entry_cnt

 let $product = order_qty.product(#i)
 let #jan = order_qty.month_qty(#i,0)
 let #feb = order_qty.month_qty(#i,1)
 let #mar = order_qty.month_qty(#i,2)
 let #prod_tot = #jan + #feb + #mar
 if #prod_tot > 0

 print $product (,1,30)
 print #jan (,32,9) edit 9,999,999
 print #feb (,42,9) edit 9,999,999
 print #mar (,52,9) edit 9,999,999
 print #prod_tot (,62,9) edit 9,999,999
 position (+1)
 end-if
 let #i = #i + 1
 end-while
end-procedure ! print_array
begin-procedure print_array2
 let #i = 0
 while #i < {max_categories}

 !if #category_tot > 0
 let $category = order_qty2.category(#i)
 let #jan = order_qty2.month_qty(#i,0)

96 Business Charts

 let #feb = order_qty2.month_qty(#i,1)
 let #mar = order_qty2.month_qty(#i,2)
 let #category_tot = #jan + #feb + #mar
 print $category (,1,31)
 print #jan (,32,9) edit 9,999,999
 print #feb (,42,9) edit 9,999,999
 print #mar (,52,9) edit 9,999,999
 !end-if
 print #category_tot (,62,9) edit 9,999,999
 position (+1)
 let #jan_total = #jan_total + #jan
 let #feb_total = #feb_total + #feb
 let #mar_total = #mar_total + #mar
 let #i = #i + 1
 end-while
 let #grand_total = #jan_total + #feb_total + #mar_total
 print 'Totals' (+2,1)
 print #jan_total (,32,9) edit 9,999,999
 print #feb_total (,42,9) edit 9,999,999
 print #mar_total (,52,9) edit 9,999,999
 print #grand_total (,62,9) edit 9,999,999
end-procedure ! print_array2
begin-procedure select_data
 let order_qty2.category(0)='$0-$4.99'
 let order_qty2.category(1)='$5.00-$100.00'
 let order_qty2.category(2)='Over $100'
begin-select
order_date
! the price / price category for the order
c.price &price
 move &price to #price_num
 evaluate #price_num
 when < 5.0
 let #x = 0
 break
 when <= 100.0
 let #x = 1
 break
 when-other
 let #x = 2
 break
 end-evaluate
! The quantity for this order
quantity
 if &quantity < 100
 let #j = to_number(datetostr(&order_date,'MM')) - 1
 if #j < 3
 let order_qty2.month_qty(#x,#j) =
 order_qty2.month_qty(#x,#j) + &quantity
 end-if
 end-if
! the product for this order
description
 if &description = 'Thingamajigs'
 goto next
 else
 if &description = 'Widgets'

Creating Charts 97

 goto next
 else
 if #i = 0 and order_qty.product(#i) = ''
 let order_qty.product(#i) = &description
 end-if
 if order_qty.product(#i) != &description
 let #i = #i + 1
 if #i >= {max_products}
 display 'Error: There are more than {max_products} products'
 stop
 end-if
 let order_qty.product(#i) = &description
 end-if
 if #j < 3
 let order_qty.month_qty(#i,#j) =
 order_qty.month_qty(#i,#j) + &quantity
 next:
 end-if
 end-if
 end-if
 from orders a, ordlines b, products c
where a.order_num = b.order_num
and b.product_code = c.product_code
order by description
end-select
end-procedure ! select_data
begin-heading 5
 if not ($done = 'YES')
 print $current-date (1,1)
 page-number (1,64) 'Page '
 print 'Order Quantity by Product and Price Category by Month' (2,10)
 print 'Product / Price Category' (4,1)
 print ' January' (,32)
 print ' February' (,42)
 print ' March' (,52)
 print ' Total' (,62)
 Print '-' (5,1,70) Fill
 end-if
end-heading
begin-procedure print_the_charts
 print-chart orders-stacked-bar (+2,1)
 item-color=('ChartBackground', (255,0,0))
 data-array=order_qty
 data-array-row-count=7
 data-array-column-count=4
 !item-color=ChartBackground 'red'
 data-array-column-labels=('Jan','Feb','Mar')

 sub-title='By Product By Month'

 new-page
 print-chart orders-stacked-bar (+2,1)
 data-array=order_qty2
 data-array-row-count=3
 data-array-column-count=4
 data-array-column-labels=('Jan','Feb','Mar')
 sub-title='By Price Category By Month'

98 Business Charts

end-procedure ! print_the_charts

Defining Charts
The two chart sections in Program ex13a.sqr are specified with DECLARE-CHART in the SETUP
section and are named orders-stacked-bar. The chart width and height is specified by character
cells. The charts are 70 characters wide, which is 7 inches on a default layout. The height (or
depth) of the charts is 30 lines, which translates to 5 inches at 6 lines per inch. These dimensions
define a rectangle that contains the chart. The box that surrounds the chart is drawn by default,
but you can disable it using BORDER=NO.

The title is centered at the top of the chart. The text generated by LEGEND-TITLE must fit in the
small legend box above the categories, so keep this description short. In general, charts look best
when the text items are short. Here is the DECLARE-CHART command.

declare-chart orders-stacked-bar
 chart-size=(70,30)
 title='Order Quantity'
 legend-title='Month'
 type=stacked-bar
 end-declare ! orders-stacked-bar

Printing Charts
The PRINT-CHART commands are based on the orders-stacked-bar chart that was declared in the
preceding section.

 print-chart orders-stacked-bar (+2,1)
 data-array=order_qty
 data-array-row-count=12
 data-array-column-count=4
 data-array-column-labels=('Jan','Feb','Mar')
sub-title='By Product By Month'
 new-page
 print-chart orders-stacked-bar (+2,1)
 data-array=order_qty2
 data-array-row-count=3
 data-array-column-count=4
 data-array-column-labels=('Jan','Feb','Mar')
 sub-title='By Price Category By Month'

The datasource is specified using DATA-ARRAY. The named array has a structure that is specified
by TYPE. For a stacked-bar chart, the first field in the array gives the names of the bar categories.
The rest of the fields are series of numbers. In this case, each series corresponds to a month.

The subtitle goes under the title and can be used as a second line of the title. A legend labels the
series. DATA-ARRAY-COLUMN-LABELS passes these labels. DATA-ARRAY-ROW-COUNT is the
number of rows (bars) to chart and DATA-ARRAY-COLUMN-COUNT is the number of fields in the
array the chart uses. The array has four fields—the product (or price category) field and the
series that specifies three months.

Defining Charts 99

Running Programs
Graphical reports require slightly different techniques for running programs and viewing
output. For UNIX, specify the printer type with the -PRINTER:xx flag. For HP LaserJet printers,
enter -PRINTER:HP on the command line. For PostScript printers, enter -PRINTER:PS. For
example:

sqr ex9a username/password -printer:hp

You can also use -KEEP to produce output in the SQR Portable File format (SPF) and print it
using Production Reporting Print. You still must use the -PRINTER:xx flag when printing. SQR
Portable File format is covered in greater detail in Chapter 30, “Printing Issues.”

With SQR Production Reporting Studio, neither -PRINTER:xx nor -KEEP is required. The
output automatically appears in the Viewer or Web browser window after the report runs. A
portion of the output is shown next. The charts appear on pages 2 and 3 of the report.

Output for Program ex13a.sqr

Passing Data to Charts
To pass data to a chart, use the first field for the bar descriptions (or lines or areas) and then use
one or more additional fields with series of numbers. This procedure is common to many chart
types, including line, bar, stacked-bar, 100% bar, overlapped bar, histogram, area, stacked-area,
and 100% area. You can omit the first field and Production Reporting uses cardinal numbers
(1, 2, 3...) for the bars. Only text fields are used for these options.

For pie charts, only one series is allowed, and you can specify which segments to “explode,” or
pull away, from the center of the pie. A third field in the array can have ‘Y’ and ‘N’ values that
indicate whether to explode the segment. If ‘Y’ is the value in the first row of the array, the pie
segment that corresponds to the first row is exploded. With pie charts, you cannot omit the first
field with the descriptions. Pie charts cannot have more than 12 segments.

100 Business Charts

Pie charts display the numeric value next to each segment. The description is displayed in the
legend. In addition, Production Reporting displays the percentage next to the value. You can
disable this feature by specifying PIE-SEGMENT-PERCENT-DISPLAY=NO.

When data is passed to an xy scatter plot or a floating-bar chart, the series are paired. A pair in
a floating-bar chart represents the base and height of the bars. A pair in an xy-scatter plot
represents x and y coordinates. In an xy-scatter plot, the first field does not have descriptions.
In a floating-bar chart, the first field may or may not have descriptions for the bars. For both
types, you can have one or more pairs of series.

Changing Colors with New Graphics
Changing colors with New Graphics involves:

● Specifying Chart Data Series Colors

● Specifying Chart Item Colors

Note:

To use New Graphics, the NewGraphics entry in the [Default-Settings] section of the
SQR.INI file must be set to TRUE (NewGraphics=True).

To use New Graphics on UNIX, an X Server is required. If your UNIX environment does not
have access to an X Server (either local or remote), there is a free X Server (called VNC) available
under the GNU General Public License at http://www.tightvnc.com. (Please note that the VNC
Server is not officially test or certified.)

Table 2 Supported Output Types for New Graphics

Output Type Supported?

HT-HTML Yes

EH-Enhanced HTML Yes

HP-Hewlett Packard No

LP - Line Printer No

PD-PDF Yes

PS-Postscript Yes

WP-Windows Printer No

Production Reporting Viewer No

Specifying Chart Data Series Colors
Color palettes in the New Graphics set the colors of each data point in a data series. Use
CREATE-COLOR-PALETTE to specify the color palette in a business chart. For example:

Changing Colors with New Graphics 101

Create-Color-Palette
 Name = 'Test-Palette'
 Color_1 = (100,133,238)
 Color_2 = (0, 0, 255)
 Color_3 = (0,255,0)
 Color_4 = (0,0,255)
 Color_5 = (0,0,0)

You can specify any number of palettes, with up to 64 colors defined in each palette. If there are
more data points in the data sets than defined colors in the palette, the palette resets and continues
to set the data point colors from Color_1 to Color_n.

After you define a color palette, you can use it in the DECLARE-CHART and PRINT-CHART
commands. The following code demonstrates the use of a color palette:

Print-Chart test_Chart
 COLOR-PALETTE = 'Test-Palette'

Note:

For now, Production Reporting for UNIX requires a x-windows server running when
NewGraphics=TRUE. This is a requirement of the New Graphics, because that is the only way
at present to run Java-based graphics on a UNIX system without a graphic display, either local
or remote.

For now, when using New Graphics in Windows, the color palette in Display property settings,
must be set to either 65536 Colors or 256 Colors.

Specifying Chart Item Colors
You can specify chart item colors in these ways:

● Use ITEM-COLOR in DECLARE-CHART and PRINT-CHART

● Use ATTRIBUTES in DECLARE-CHART and PRINT-CHART

Use ITEM-COLOR in DECLARE-CHART and PRINT-CHART
You can specify the foreground and background colors of the individual areas within a Business
Chart using ITEM-COLOR=(rgb-value) in the DECLARE-CHART and PRINT-CHART
commands. Figure 2 is an example of a business chart.

102 Business Charts

Figure 2 A Sample Business Chart

Table 3 lists chart item keywords for ITEM-COLOR.

Table 3 Chart ITEM-COLOR Keywords and Descriptions

Keyword Description

ChartBackground Background color of entire chart area

ChartForeground Text and Line color of chart area

HeaderBackground Area within the text box specified for the title and sub-title

HeaderForeground Text color of the Title and sub-title

LegendBackground Area within the box defining the legend

LegendForeground Text and Outline color of the legend

ChartAreaBackground Area that includes the body of the chart

ChartAreaForeground Text and Line colors of the chart area

PlotAreaBackground Area within the X and Y Axis of a chart

As is shown in the examples below, you can enter the syntax to define chart colors as text,
numbers, or both.

ITEM-COLOR = ('ChartAreaBackground',($green))
ITEM-COLOR = ('HeaderBackground',(255,185,5))
ITEM-COLOR = ('ChartBackground',(#red,185,5))

The following syntax defines the colors that appear in the chart in Figure 3.

ITEM-COLOR = ('ChartForeground',($blue))
ITEM-COLOR = ('ChartAreaBackground',(#red,185,5))
ITEM-COLOR = ('PlotAreaBackground',($black))
ITEM-COLOR = ('HeaderForeground',($green))
ITEM-COLOR = ('HeaderBackground',($red))
ITEM-COLOR = ('ChartBackground',($blue))

Changing Colors with New Graphics 103

Figure 3 Sample Chart Colors

Use ATTRIBUTES in DECLARE-CHART and PRINT-CHART
You can define a group of colors for an individual chart element and specify the foreground and
background colors of the individual areas in a chart using the COLOR, FOREGROUND, and
BACKGROUND declaration keywords. These declaration keywords are part of the ATTRIBUTES
argument in the DECLARE-CHART and PRINT-CHART commands.

Note:

In Production Reporting Release 9.0, the COLOR declaration keyword in the ATTRIBUTES
argument replaces the functionality provided by the ITEM-COLOR argument. As a result, values
set with the COLOR declaration keyword override the values set with ITEM-COLOR.

For additional information, see “Attributes Argument” in Volume 2 of the Production Reporting
Developer's Guide.

Creating Combination Charts
Use the Y2-Axis syntax in PRINT-CHART and DECLARE-CHART to create combination charts.
For example, you could create a Line Chart over a Bar Chart or a Hi-Low Chart over a Bar Chart.

Note:

Combination charts (and the Y2-Axis syntax used to create them) require that
NewGraphics=True in the [Default-Settings] section of the SQR.INI file.

104 Business Charts

See DECLARE-CHART and PRINT-CHART in Volume 2 of the Production Reporting
Developer's Guide for information on the Y2-Axis syntax. See “SQR.INI” in Volume 2 of the
Production Reporting Developer's Guide for information on the SQR.INI file.

Sample Line Chart Over Bar Chart
Figure 4 shows a Line Chart over Bar Chart created using Y2-Axis syntax. The Production
Reporting code used to create the chart appears after the chart.

Figure 4 Line Chart Over Bar Chart

Begin-Setup
 !Dollar-Symbol <Fr>
 Declare-Printer Default-ps
 Color = yes
 End-Declare
 Declare-Report Default
 Printer-Type = ps
 End-Declare
 Declare-Layout Default
 Max-Lines = 62
 Left-Margin = 0.10
 Right-Margin = 0.25
 End-Declare
 Create-Array ! Array of Bar Chart Values
 Name = profits
 Size = 10
 Field = date:char
 Field = profits:number
Create-Array ! This Array is passed to the Print-Chart
 Name = quotes
 Size = 10
 Field = date:char
 Field = sharePrice:number

Creating Combination Charts 105

! Declare-Chart is not necessary to print a chart. However, it can be used
as a template and its properties can be modified in each Print-Chart that
uses this chart name.
! NOTE: Declare-Chart must physically preceede Print-Chart
 Declare-Chart stock_chart
 Chart-Size = (60,30)
 Type = line
 Y-Axis-Label = 'Profits'
 End-Declare
End-Setup
Begin-Report
 Alter-Locale
 Locale = 'US-English'
 Money-Sign-Location = Right
 Money-Sign = '$$'
 Put 'April 00' 28
 Into quotes(0) date sharePrice
 Put 'May 00' 18
 Into quotes(1) date sharePrice
 Put 'June 00' 27
 Into quotes(2) date sharePrice
 Put 'July 00' 7
 Into quotes(3) date sharePrice
 Put 'August 00' 12
 Into quotes(4) date sharePrice
 Put 'September 00' 15
 Into quotes(5) date sharePrice
 Put 'April ''00' -8000
 Into profits(0) date profits
 Put 'May ''00' 25000
 Into profits(1) date profits
 Put 'June ''00' 13000
 Into profits(2) date profits
 Put 'July ''00' 7000
 Into profits(3) date profits
 Put 'August ''00' 31000
 Into profits(4) date profits
 Put 'September ''00' 42000
 Into profits(5) date profits

 Move 1 TO #x
 Move 1 TO #y
 Move 6 TO #row
 Move 2 TO #col
 Create-Color-Palette
 Name = 'Green'
 Color_1 = (0,255,0)
 Color_2 = (0,255,0)
 Create-Color-Palette
 Name = 'Red'
 Color_1 = (255,0,0)
 Color_2 = (255,0,0)
! Print the Chart
 Print-Chart stock_chart (#y, #x)
 Title = 'Kellie''s Creations Inc. (KCI) Profits Rebound'
 Sub-Title = 'Test Program'
 Fill = color

106 Business Charts

 Y-Axis-Min-Value = -20000
 Y2-Type = line
 Y2-Data-Array-Row-Count = #row
 Y2-Data-Array-Column-Count = #col
 Y2-Data-Array = quotes
 Y2-Axis-Label = 'Share Price'
 Y2-Color-Palette = 'Red'
 Y2-Axis-Max-Value = 70
 Legend = no
 Type = bar
 Data-Array = profits
 Data-Array-Row-Count = #row
 Data-Array-Column-Count = #col
 Color-Palette = 'Green'
 X-AXIS-LABEL = 'Profits recover but share price remains low'
 Item-Color = ('ChartBackground',(255,185,5))
 Item-Color = ('HeaderBackground',(255,185,5))
 Item-Color = ('ChartAreaBackground',(255,185,5))
 X-Axis-Rotate = 8000000
 Y-Axis-Mask = '$$$$,$$MI'
 Y2-Axis-Mask = '%%%.%%'
End-Report

Sample Hi-Low Chart Over Bar Chart
Figure 5 shows a Hi-Low Chart over Bar Chart created using Y2-Axis syntax. The Production
Reporting code used to create the chart appears after the chart.

Creating Combination Charts 107

Figure 5 Hi-Low Chart Over Bar Chart

Begin-Setup
 Declare-Printer Default-ps
 Color = yes
 End-Declare
 Declare-Report Default
 Printer-Type = ps
 End-Declare
 Declare-Layout Default
 Max-Lines = 62
 Left-Margin = 0.10
 Right-Margin = 0.25
 End-Declare
 Create-Array ! Array of Bar Chart Values
 Name = volume
 Size = 30
 Field = date:char
 Field = shares:number
 Create-Array ! This Array is passed to the Print-Chart
 Name = quotes
 Size = 30
 Field = dt:char
 Field = hi:number
 Field = lo:number
 Field = cl:number
 Field = op:number

108 Business Charts

! Declare-Chart is not necessary to print a chart. However, it can be used
as a template and its properties can be modified in each Print-Chart that
uses this chart name.
! NOTE: Declare-Chart must physically preceede Print-Chart
 Declare-Chart stock_chart
 Chart-Size = (60,50)
 Type = line
 Y-Axis-Label = 'Daily Volume'
 Y2-Axis-Label = 'Price'
 End-Declare
End-Setup
Begin-Report
 Put '8-1-00' 3000
 Into volume(0) date shares
 Put '8-2-00' 4000
 Into volume(1) date shares
 Put '8-3-00' 7000
 Into volume(2) date shares
 Put '8-4-00' 13000
 Into volume(3) date shares
 Put '8-7-00' 1100
 Into volume(4) date shares
 Put '8-8-00' 4000
 Into volume(5) date shares
 Put '8-9-00' 7000
 Into volume(6) date shares
 Put '8-10-00' 20000
 Into volume(7) date shares
 Put '8-11-00' 23455
 Into volume(8) date shares
 Put '8-14-00' 115488
 Into volume(9) date shares
 Put '8-15-00' 25688
 Into volume(10) date shares
 Put '8-16-00' 30000
 Into volume(11) date shares
 Put '8-17-00' 42544
 Into volume(12) date shares
 Put '8-18-00' 7000
 Into volume(13) date shares
 Put '8-21-00' 13557
 Into volume(14) date shares
 Put '8-22-00' 110100
 Into volume(15) date shares
 Put '8-23-00' 4000
 Into volume(16) date shares
 Put '8-24-00' 2568
 Into volume(17) date shares
 Put '8-25-00' 51778
 Into volume(18) date shares
 Put '8-28-00' 3000
 Into volume(19) date shares
 Put '8-29-00' 7005
 Into volume(20) date shares
 Put '8-30-00' 19286
 Into volume(21) date shares
 Put '8-31-00' 5837

Creating Combination Charts 109

 Into volume(22) date shares
! Load the array with the Chart Data. Max rows is specified in Create-Array
 Put '8-1-00' 152.717439 142.367065 148.647876 147.552826
 Into QUOTES(0) DT HI LO CL OP
 Put '8-2-00' 155.465936 113.831755 120.981495 140.450849
 Into QUOTES(1) DT HI LO CL OP
 Put '8-3-00' 147.561490 123.530081 135.420007 129.389262
 Into QUOTES(2) DT HI LO CL OP
 Put '8-4-00' 118.330161 113.513690 115.390331 115.450849
 Into QUOTES(3) DT HI LO CL OP
 Put '8-7-00' 105.544602 92.638934 105.331129 99.999999
 Into QUOTES(4) DT HI LO CL OP
 Put '8-8-00' 93.602439 71.601649 85.824579 84.549149
 Into QUOTES(5) DT HI LO CL OP
 Put '8-9-00' 81.444453 59.592125 77.575764 70.610736
 Into QUOTES(6) DT HI LO CL OP
 Put '8-10-00' 61.358504 52.099826 55.013313 59.549149
 Into QUOTES(7) DT HI LO CL OP
 Put '8-11-00' 56.085999 42.826230 49.718137 52.447174
 Into QUOTES(8) DT HI LO CL OP
 Put '8-14-00' 54.011658 43.932310 51.848875 50.000000
 Into QUOTES(9) DT HI LO CL OP
 Put '8-15-00' 62.218576 43.322100 59.696701 52.447175
 Into QUOTES(10) DT HI LO CL OP
 Put '8-16-00' 67.582572 50.516552 60.447208 59.549152
 Into QUOTES(11) DT HI LO CL OP
 Put '8-17-00' 76.107547 65.588449 67.694709 70.610740
 Into QUOTES(12) DT HI LO CL OP
 Put '8-18-00' 98.532392 77.516249 87.257549 84.549153
 Into QUOTES(13) DT HI LO CL OP
 Put '8-21-00' 119.583732 97.471240 102.172852 100.000003
 Into QUOTES(14) DT HI LO CL OP
 Put '8-22-00' 137.581958 98.422319 114.440161 115.450853
 Into QUOTES(15) DT HI LO CL OP
 Put '8-23-00' 149.576945 109.776527 147.859431 129.389266
 Into QUOTES(16) DT HI LO CL OP
 Put '8-24-00' 141.239541 131.497523 138.871749 140.450852
 Into QUOTES(17) DT HI LO CL OP
 Put '8-25-00' 154.723551 130.154680 131.220903 147.552827
 Into QUOTES(18) DT HI LO CL OP
 Put '8-28-00' 178.681600 140.426038 142.696831 150.000000
 Into QUOTES(19) DT HI LO CL OP
 Put '8-29-00' 160.592879 120.549581 143.464461 147.552824
 Into QUOTES(20) DT HI LO CL OP
 Put '8-30-00' 143.789056 124.445614 129.321174 140.450847
 Into QUOTES(21) DT HI LO CL OP
 Put '8-31-00' 142.221173 123.263141 132.305625 129.389258
 Into QUOTES(22) DT HI LO CL OP

 Move 5 TO #x
 Move 6 TO #y
 Move 22 TO #row
 Move 2 TO #col
 Move 6 TO #col2
 Create-Color-Palette
 Name = 'Test-Palette'
 Color_1 = (0,0,0) !Black

110 Business Charts

 Color_2 = (255, 50, 100) !Red
 Color_3 = (100,255,30) !Green
 Color_4 = (0,0,255) !Blue
 Color_5 = (255,255,255) !White
 Create-Color-Palette
 Name = 'Line'
 Color_1 = (4,74,148)
 Color_2 = (4,74,148)
 Create-Color-Palette
 Name = 'Blue'
 Color_1 = (0,0,255)
 Color_2 = (0,0,255)
! Print the Chart
 Print-Chart stock_chart (#y, #x)
 Fill = color
 Type = Bar
 Title = 'Kellie''s Creations Inc. (KCI)'
 Sub-Title = '30 Day Stock Performance'
 Data-Array-Row-Count = #row
 Data-Array-Column-Count = #col
 Data-Array-Column-Labels = ('Volume')
 Data-Array = volume
 Legend = yes
 Color-Palette = 'Blue'
 Y-Axis-Max-Value = 700000
 Y2-Type = high-low-close
 Y2-Data-Array = quotes
 Y2-Data-Array-Row-Count = #row
 Y2-Data-Array-Column-Count = #col2
 Y2-Data-Array-Column-Labels = ('Price')
 Y2-Color-Palette = 'Line'
End-Report

Creating Bubble Charts
Bubble charts are variations of XY charts, where data points are replaced by bubbles. The bubbles
provide a way to display a third variable in the chart. The diameter of each bubble is proportional
to the value it represents.

Note:

Bubble charts require that NewGraphics=True in the [Default-Settings] section of the SQR.INI
file. See “SQR.INI” in Volume 2 of the Production Reporting Developer's Guide for more
information.

Figure 6 is a sample Bubble chart. The Production Reporting code used to create the chart appears
after the chart.

Creating Bubble Charts 111

Figure 6 Sample Bubble Chart

Begin-Setup
 Declare-Printer Default-ps
 Color = yes
 End-Declare
 Declare-Report Default
 Printer-Type = ps
 End-Declare
 Declare-Layout Default
 Max-Lines = 62
 Left-Margin = 0.10
 Right-Margin = 0.25
 End-Declare
 Create-Array ! This Array is passed to the Print-Chart
 Name = adm_ratings
 Size = 20 ! Maximum of 20 rows of data
 Field = days:number:1 ! Fields in each row
 Field = rating:number:1
 Field = votes:number:1
! Declare-Chart is not necessary to print a chart. However, it can be used
! as a template and its properties can be modified in each Print-Chart
! that uses this chart name.
! NOTE: Declare-Chart must physically preceede Print-Chart
 Declare-Chart adm_ratings_chart
 Chart-Size = (60,40)
 Title = 'Proposal Acceptance Rates'
 Type = bubble
 X-Axis-Label = 'Days to Acceptance'
 Y-Axis-Label = 'Acceptance Rates'
 y-Axis-Min-Value = 0.01
 Legend = no
 End-Declare
End-Setup

112 Business Charts

Begin-Report
! Load the array with the Chart Data. Max rows is specified in Create-Array
 Put 0 54 10
 Into adm_ratings(0)
 days(0) rating(0) votes(0)
 Put 60 50 6
 Into adm_ratings(1)
 days(0) rating(0) votes(0)
 Put 120 45 15
 Into adm_ratings(2)
 days(0) rating(0) votes(0)
 Put 180 35 35
 Into adm_ratings(3)
 days(0) rating(0) votes(0)
 Put 210 40 44
 Into adm_ratings(4)
 days(0) rating(0) votes(0)
 Put 250 44 90
 Into adm_ratings(5)
 days(0) rating(0) votes(0)
 Put 300 54 59
 Into adm_ratings(6)
 days(0) rating(0) votes(0)
 Put 360 50 4
 Into adm_ratings(7)
 days(0) rating(0) votes(0)
 Put 400 48 99
 Into adm_ratings(8)
 days(0) rating(0) votes(0)
 Put 460 50 120
 Into adm_ratings(9)
 days(0) rating(0) votes(0)
 Put 500 54 7
 Into adm_ratings(10)
 days(0) rating(0) votes(0)
 Put 550 30 22
 Into adm_ratings(11)
 days(0) rating(0) votes(0)
 Put 600 20 30
 Into adm_ratings(12)
 days(0) rating(0) votes(0)
 Move 5 TO #x
 Move 1 TO #y
 Move 13 TO #row
 Move 3 TO #col
 Create-Color-Palette
 Name = 'Test-Palette'
 Color_1 = (100,0,100) !Purple
 Color_2 = (255, 50, 100) !Red
 Color_3 = (100,255,30) !Green
 Color_4 = (0,0,255) !Blue
 Color_5 = (255,255,255) !White
! Print the Chart
 Print-Chart adm_ratings_chart (#y, #x)
 Sub-Title = 'Bubble Chart'
 Data-Array-Row-Count = #row
 Data-Array-Column-Count = #col

Creating Bubble Charts 113

 Data-Array = adm_ratings
 Color-Palette = 'Test-Palette'
 Legend = no
End-Report

Defining Point Labels
Use CREATE-ARRAY to specify point labels as part of a data array. Each chart has seven data
points with the exception Polar charts and Radar charts.

Polar charts have two data points.

create-array name=polar_data_with_labels size=7
 field=label:char ! point label
 field=theta:number:1 ! angle
 field=radius:number:2 ! two series of point

Radar charts have three data points.

create-array multi_series_radar_data_with_labels size=7
 field=label:char ! point label
 field=radius1:number:1 ! series 1 Y-axis values
 field=radius2:number:1 ! series 2 Y-axis values
 field=radius3:number:1 ! series 3 Y-axis values

114 Business Charts

15
Changing Fonts

In This Chapter

Selecting Fonts .. 115

Positioning Text.. 115

Using WRAP ... 117

Selecting Fonts
Use DECLARE-PRINTER and ALTER-PRINTER to select a font. DECLARE-PRINTER sets the
default font for the entire report. ALTER-PRINTER changes the font anywhere in the report and
the change remains in effect until the next ALTER-PRINTER.

To set a font for the entire report, use ALTER-PRINTER (which is not printer-specific) at the
beginning of the program. For printer-independent reports, the attributes you set with
DECLARE-PRINTER only take effect when you print your report with the printer specified with
TYPE. To specify a printer at print time, use -PRINTER:xx.

Positioning Text
In Production Reporting, you position text according to a grid. The default is 10 characters per
inch and 6 lines per inch, but you can give it another definition with the CHAR-WIDTH and
LINE-HEIGHT parameters in DECLARE-LAYOUT.

Character grid and character size function independently. Fonts print in the size set by
DECLARE-PRINTER or ALTER-PRINTER, not the size defined by the grid. A character grid is best
used for positioning the first character in a string. It can only express the width of a string in
terms of the number of characters it contains, not in a linear measurement, such as inches or
picas.

When you use a proportionally spaced font, the number of letters printed may no longer match
the number of character cells that the text fills. For example, in the sample code given in the next
page, the word “Proportionally” fills only 9 cells, although it contains 14 letters.

When you print consecutive text strings, the position at the end of a string may differ from the
position Production Reporting assumes according to the grid. As a result, you should
concatenate consecutive pieces of text and print them as one.

For example, instead of writing code such as:

alter-printer font=5 ! select a proportional font

Selecting Fonts 115

print &first_name () ! print first name
print ' ' () ! print a space
print &last_name () ! print the last name
alter-printer font=3 ! restore the font

You should write code such as:

alter-printer font=5 ! select a proportional font
! concatenate the name
let $full_name = &first_name || ' ' || &last_name
print $full_name () ! print the name
alter-printer font=3 ! restore the font

WRAP and CENTER in the PRINT command require special consideration when used with
proportional fonts. They both calculate the text length based on the character count in the grid,
which is not the same as its dimensional width. The use of these options with proportional fonts
is explained after the output example.

Program ex22.sqr consists of a list of reminders from the reminders table. It is printed in a mix
of fonts—Times Roman in two sizes, plus Helvetica bold.

Program ex22.sqr
begin-setup
 declare-layout default
 paper-size=(10,11)
 end-declare
end-setup
begin-program
 do main
end-program
begin-procedure main
! Set Times Roman as the font for the report
alter-printer font=5 point-size=12
begin-select
remind_date (,1,20) edit 'DD-MON-YY'
reminder (,+1) wrap 60 5
 position (+2)
from reminders
end-select
end-procedure ! main
begin-heading 7
 print $current-date (1,1) Edit 'DD-MON-YYYY'
 page-number (1,60) 'Page '
 ! Use large font for the title
 alter-printer font=5 point-size=24
 print 'Reminder List' (3,25)
 ! Use Helvetica for the column headings
 alter-printer font=4 point-size=12
 print 'Date' (6,1) bold
 print 'Reminder' (6,22) bold
 graphic (6,1,66) horz-line
 ! Restore the font
 alter-printer font=5 point-size=12
end-heading

116 Changing Fonts

The report uses the default layout grid of 10 characters per inch and 6 lines per inch, both for
positioning the text and for setting the length of the solid line.

The font is set at the beginning of the main procedure to font 5, which is Times Roman. The
point size was not set, so it remains at the default of 12. In the HEADING section, its size is set to
24 points to print the title.

The column headings are set to 12-point Helvetica with ALTER-PRINTER FONT=4
POINT-SIZE=12. The BOLD option in the PRINT command specifies that they are printed in
bold.

Under the column headings, there is a solid line. Note that it is positioned at line 6, the same as
the column headings. Production Reporting draws the solid line as an underline. At the end the
HEADING section, the font is restored to Times Roman.

Output for Program ex22.sqr
 30-
JAN-2003
 Page 1
 Reminder List

Date Reminder 05-MAY-2000
Quarterly contract estimates are due
Friday. Be sure to include
a reference to possible overage
by Kennedy Inc on the H247 assembly.
 05-MAY-2000 Bill wants list of new equipment planned
during next 6 months. Copy to go to Sandy Hanover in purchasing.
 05-MAY-2000 Ask Bob to check results of last
HBI mailing.
 05-MAY-2000 Check results of Friday's MSDR test. Send
letter to Sue R. if positive.
 06-MAY-2000 Final for 3Q budget due tomorrow. Check
that last Q's and last year's Q numbers are accurate. Ask Bob to try
new laser printer, 5 copies.

In Production Reporting programs, the report heading is performed after the body. A font
change in the heading does not affect the font used in the body of the current page, although it
changes the font used in the body of subsequent pages. Make sure to keep track of font changes.
You should return fonts to their original settings in the same section in which you change them.

Positioning the title requires careful coding. The CENTER option of the PRINT command does
not account for text size. Instead, position the title by estimating its length. In this case, the title
should start 2 1/2 inches from the left margin. The character coordinates are (3,25), which is
line 3, character position 25. Remember that the character grid used for positioning assumes 10
characters per inch. Therefore, 25 characters translates to 2 1/2 inches.

Using WRAP
The WRAP option in PRINT prints the text of the reminder column. This option wraps text based
on a given width, which is 60 characters in the sample program.

Using WRAP 117

WRAP works only on the basis of the width in the character grid. It does not depend on the font.

Text in Times Roman takes about 30-50 percent less room than the text in Courier (the default
font, which is a fixed-size font). Thus, a column with a nominal width of 44 characters (the width
of the reminder column) can hold as many as 66 letters when printed in Times Roman. To be
conservative, specify a width of 60.

The WRAP argument is the maximum number of lines. Because the reminder column in the
database is 240 characters wide, at 60 characters per line, no more than five lines are needed.
This setting only specifies the maximum number of lines. Production Reporting does not use
more lines than necessary.

Production Reporting calculates the maximum number of characters on a line using the page
dimensions in DECLARE-LAYOUT (the default is 8 1/2 inches wide). In the sample program, 8
1/2 inches minus the inch used in the margins is 7 1/2 inches, or 75 characters at 10 CPI. Printing
60 characters starting from position 22 could exceed this maximum and cause an error or
undesirable output. To avoid this error, define the page as wider than it actually is. This definition
is given by PAPER-SIZE=(10,11) in DECLARE-LAYOUT.

118 Changing Fonts

16
Writing Printer-Independent

Reports

In This Chapter

About Printer-Independent Reports .. 119

Guidelines for Printer-Independent Reports .. 119

Specifying the Printer at Run-time... 120

About Printer-Independent Reports
Printer-independent reports can be run on any printer that Production Reporting supports or
distributed electronically. To create a printer-independent report, you must write a program
that avoids using any characteristics that are unique to your printer. Complete printer
independence may be too restrictive. However, the closer you can get to a truly printer-
independent report, the better.

Guidelines for Printer-Independent Reports
Review these guidelines when creating printer-independent reports:

● Programs should not assume or require specific printers and should be free of the following
commands: GRAPHIC FONT (use ALTER-PRINTER instead), PRINTER-INIT,
PRINTER-DEINIT, USE-PRINTER-TYPE (except for using this command to select a printer
at run time, as demonstrated in Modified Program ex3a.sqr), and the CODE-PRINTER and
CODE arguments in PRINT.

● DECLARE-PRINTER, PRINT-DIRECT, the CODE or CODE-PRINTER arguments in PRINT, and
the SYMBOL-SET argument in ALTER-PRINTER only define behavior when a specific printer
is used.

● Reports should be readable on a line printers. Graphics or solid lines printed with the
GRAHPIC command are not printed on a line printer. Test your graphical report on a line
printer.

● Use only a small set of fonts. Font numbers 3, 4, 5 and their boldface versions are the same
regardless printer type (except for line printers). Font 3 is Courier, font 4 is Helvetica, and
font 5 is Times Roman. On some HP printers, Helvetica may not be available. This reduces
the common fonts to fonts 3 and 5.

● Eps-file images can only be printed on PostScript printers. Hpgl-file images can only be
printed on HP LaserJet Series 3 or higher or printers that emulate HP PCL at that level.

About Printer-Independent Reports 119

BMP images can only be printed using Windows. GIF and JPEG images are suitable only
for HTML output. PRINT-IMAGE and PRINT-CHART may not work with older printers that
use PostScript Level 1 or HP LaserJet Series II.

Specifying the Printer at Run-time
If your report is printer-neutral and does not specify a printer, you can specify the printer at run
time in these ways:

● Use -PRINTER:xx to specify the output type:

❍ -PRINTER:LP—Line-printer output

❍ -PRINTER:PD—PDF output

❍ -PRINTER:PS—PostScript output

❍ -PRINTER:HP—HP LaserJet output

❍ -PRINTER:WP—Windows output

❍ -PRINTER:HT—HTML output

In SQR Production Reporting Studio, enter these command-line flags in the Parameters
field of the Run dialog box. If you are using the system shell, enter the following on the
command line:

sqr test username/password -printer:ps

Note:

-PRINTER:WP sends report output to the default Windows printer. To specify a non-
default Windows printer, use -PRINTER:WP:{Printer Name}. {Printer Name} can be
the name assigned to a printer; or, if the operating system permits it, the UNC name
(i.e.\\Machine\ShareName). For example, to send output to a Windows printer named
NewPrinter, you could use -PRINTER:WP:NewPrinter. If your printer name has spaces,
enclose the entire command in double quotes.

● Use the USE-PRINTER-TYPE command.

In the next example, the bold lines prompt users to select the printer type at run time.

Sample Program for Selecting a Printer at Runtime
begin-program
 input $p 'Printer type' ! Prompt user for printer type
 let $p = lower($p) ! Convert type to lowercase
 evaluate $p ! Case statement
 when = 'hp'
 when = 'hplaserjet' ! HP LaserJet
 use-printer-type hp
 break
 when = 'lp'
 when = 'lineprinter' ! Line Printer
 use-printer-type lp
 break

120 Writing Printer-Independent Reports

 when = 'ps'
 when = 'postscript' ! PostScript
 use-printer-type ps
 break
 when-other
 display 'Invalid printer type.'
 stop
 end-evaluate
 do list_customers
end-program

In this code, INPUT prompts users to enter the printer type. Because USE-PRINTER-TYPE does
not accept variables as arguments, EVALUATE is used to test for the six possible values and set
the printer type accordingly.

EVALUATE is similar to a switch statement in the C language. It compares a variable to multiple
constants and executes the appropriate code.

Specifying the Printer at Run-time 121

122 Writing Printer-Independent Reports

P a r t I V

Advanced Production Reporting
Programming

In Advanced Production Reporting Programming:

● Dynamic SQL and Error Checking
● Procedures, Argument Passing, and Local Variables
● Multiple Reports
● Using DML and DDL
● Working with Comma Separated Files (CSV)
● Retrieving BINARY Column Data
● Working with Multi-Dimensional Data Sources (OLAP)
● Working with Dates
● National Language Support
● Interoperability
● Testing and Debugging
● Performance and Tuning

Advanced Production Reporting Programming 123

124 Advanced Production Reporting Programming

17
Dynamic SQL and Error

Checking

In This Chapter

About Dynamic SQL and Error Checking... 125

Using Variables in SQL ... 125

Dynamic SQL ... 126

SQL and Substitution Variables... 128

SQL Error Checking ... 129

About Dynamic SQL and Error Checking
You can use Production Reporting to vary an SQL statement by using variables in SQL, by using
Dynamic SQL, or by using SQL and substitution variables. You can use Production Reporting
to do error checking by using ON-ERROR procedures, by using commands with ON-ERROR
options, or by using the INPUT command.

Using Variables in SQL
The SQL language supports variables. An SQL statement containing variables is considered
static. When Production Reporting executes this statement several times, it executes the same
statement, even if the values of the variables change. Because SQL only allows variables where
literals are allowed (such as in a WHERE clause or INSERT statement), the database can parse the
statement before the values for the variables are given.

Program ex16a.sqr selects customers from a state that the user specifies.

Program ex16a.sqr
begin-program
 do list_customers_for_state
end-program
begin-procedure list_customers_for_state
input $state maxlen=2 type=char 'Enter state abbreviation'
let $state = upper($state)
begin-select
name (,1)
 position (+1)
from customers
where state = $state
end-select

About Dynamic SQL and Error Checking 125

end-procedure ! list_customers_for_state

Note the use of the $state variable in the SELECT paragraph. When you use a variable in an SQL
statement in Production Reporting, the SQL statement sent to the database contains that
variable. Production Reporting “binds” the variable before the SQL is executed. In many cases,
the database only needs to parse the SQL statement once. The only thing that changes between
executions of the SELECT statement is the value of the variable. This is the most common example
of varying a SELECT statement.

In this program, INPUT prompts users to enter the value of state. MAXLEN and TYPE check the
input, ensuring that users enter strings of no more than two characters. If the entry is incorrect,
INPUT prompts again.

The program converts the contents of $state to uppercase, which allows users to input the state
without worrying about the case. In the example, state is uppercase in the database. The example
shows the LET command used with the Production Reporting upper function.

You could let the SQL convert to uppercase. You would do so by using where state = upper
($state) if you are using Oracle or Sybase or by using where state = ucase($state) if you are using
another database. However, Production Reporting allows you to write database-independent
code by moving the use of such SQL extensions to the Production Reporting code.

When you run this program, you must specify one of the states included in the sample data for
the program to return any records. At the prompt, enter IN, MI, NH, NJ, NM, NY, or OH. If
you enter NY (the state where most of the customers in the sample data reside), Production
Reporting generates the following output.

Output for Program ex16a.sqr
Alfred E Newman & Company
Eliot Richards
Harriet Bailey
Kate's Out of Date Dress Shop
Corks and Bottles, Inc.

Dynamic SQL
In some cases, you may find the restriction against using variables where only literals are allowed
too limiting. In the following example, the ordering of the records changes based on use selection.
The program runs the SELECT twice. The first time, the first column is called name and the
second column is called city, and the program sorts the records by name with a secondary sort
by city. The second time, the first column is the city and the second is name, and the program
sorts by city with a secondary sort by name. The first SELECT statement will therefore be:

select name, city
from customers
order by name, city

The second SELECT statement is:

select city, name
from customers

126 Dynamic SQL and Error Checking

order by city, name

As you can see, the statements differ. Production Reporting constructs the statement each time
before executing it. This technique is called dynamic SQL, and it is illustrated in Program
ex16b.sqr. To take full advantage of the error-handling procedure, use the command-line
flag -CB.

Program ex16b.sqr
begin-program
 let $col1 = 'name'
 let $col2 = 'city'
 let #pos = 32
 do list_customers_for_state
 position (+1)
 let $col1 = 'city'
 let $col2 = 'name'
 let #pos = 18
 do list_customers_for_state
end-program
begin-procedure give_warning
 display 'Database error occurred'
 display $sql-error
end-procedure ! give_warning
begin-procedure list_customers_for_state
 let $my_order = $col1 || ',' || $col2
begin-select on-error=give_warning
[$col1] &column1=char (,1)
[$col2] &column2=char (,#pos)
 position (+1)
from customers
order by [$my_order]
end-select
end-procedure ! list_customers_for_state

When you use variables in SQL statements to replace literals, make them dynamic variables by
enclosing them in square brackets. For example, when you use the dynamic variable
[$my_order] in the ORDER BY clause of the SELECT statement, Production Reporting places the
text from the variable $my_order in that statement. Each time the statement is executed, if the
text changes, a new statement is compiled and executed.

Other dynamic variables used are [$col1] and [$col2]. They substitute the names of the columns
in the SELECT statement. The variables &column1 and &column2 are column variables.

You can use dynamic variables to produce reports like this one. Note that the data in the first
half of the report is sorted differently than the data in the second half.

The error-handling procedure give_warning is discussed in “SQL and Substitution Variables”
on page 128.

Output for Program ex16b.sqr
Alfred E Newman & Company New York
Clair Butterfield Teaneck
Corks and Bottles, Inc. New York

Dynamic SQL 127

Eliot Richards Queens
Gregory Stonehaven Everretsville
Harold Alexander Fink Davenport
Harriet Bailey Mamaroneck
Harry's Landmark Diner Miningville
Isaiah J Schwartz and Company Zanesville
Jerry's Junkyard Specialties Frogline
Joe Smith and Company Big Falls
Kate's Out of Date Dress Shop New York
Quentin Fields Cleveland
Sam Johnson Bell Harbor
Bell Harbor Sam Johnson
Big Falls Joe Smith and Company
Cleveland Quentin Fields
Davenport Harold Alexander Fink
Everretsville Gregory Stonehaven
Frogline Jerry's Junkyard Specialties
Mamaroneck Harriet Bailey
Miningville Harry's Landmark Diner
New York Alfred E Newman & Company
New York Corks and Bottles, Inc.
New York Kate's Out of Date Dress Shop
Queens Eliot Richards
Teaneck Clair Butterfield
Zanesville Isaiah J Schwartz and Company

SQL and Substitution Variables
Production Reporting uses substitution variable values to complete the SELECT statement at
compile time. Because the SELECT statement is complete at compile time, Production Reporting
can check its syntax before execution begins. From this point on, the value of {my_order} cannot
change and the SQL statement is considered static.

In Program ex16c.sqr, the ASK command in the SETUP section prompts users at compile time.
User-entered values are placed in substitution variables, which can substitute commands,
arguments, or parts of SQL statements at compile time. This example is less common, but it
demonstrates the difference between compile-time and run-time substitutions.

Program ex16c.sqr
begin-setup
 ask my_order 'Enter the column name to sort by (name or city)'
end-setup
begin-program
 do list_customers_for_state
end-program
begin-procedure give_warning
 display 'Database error occurred'
 display $sql-error
end-procedure ! give_warning
begin-procedure list_customers_for_state
begin-select on-error=give_warning
name (,1)
city (,32)

128 Dynamic SQL and Error Checking

 position (+1)
from customers
order by {my_order}
end-select
end-procedure ! list_customers_for_state

In this example, ASK prompts users for the value of the substitution variable {my_order}, which
sorts the output. If the argument is passed on the command line, there is no prompt. When you
run this program, enter name, city, or both (in either order and separated by a comma). The
program produces a report sorted accordingly.

You can only use ASK in the SETUP section.Production Reporting executes ASK commands at
compile time before program execution begins. Therefore, ASK commands are executed before
INPUT commands.

INPUT is more flexible than ASK. You can use INPUT inside loops, validate the length and type
of data input, and prompt again if it is not valid. For an example, see “Using Variables in SQL”
on page 125.

ASK can be more powerful. Substitution variables set in an ASK command let you modify
commands that are normally quite restrictive. The following code shows this technique.

begin-setup
 ask hlines 'Number of lines for heading'
end-setup
begin-program
 print 'Hello, World!!' (1,1)
end-program
begin-heading {hlines}
 print 'Report Title' () center
end-heading

In this example, the substitution variable {hlines} defines the number of lines in the heading.
BEGIN-HEADING normally expects a literal and does not allow a run-time variable. When a
substitution variable is used, its value is modified at compile time.

For more information on ASK and INPUT, see Chapter 29, “Compiling Programs and Using
Production Reporting Execute .”

SQL Error Checking
Production Reporting checks and reports database errors for SQL statements. When an
Production Reporting program is compiled, Production Reporting checks the syntax of the
SELECT, UPDATE, INSERT, and DELETE. SQL statements in the program. Any SQL syntax error
is detected and reported at compile time, before the execution of the report begins.

With dynamic SQL, Production Reporting cannot check the syntax until run time. In that case,
the content of the dynamic variable is used to construct the SQL statement, which can allow
syntax errors to occur at run time. Errors could occur if the dynamic variables selected or used
in WHERE or ORDER BY clauses were incorrect.

Production Reporting traps and reports run-time errors and aborts the program. To change this
default behavior, use the ON-ERROR argument the BEGIN-SELECT or BEGIN-SQL paragraphs.

SQL Error Checking 129

Note:

Production Reporting invokes ON-ERROR when it safely can. If Production Reporting can
recover from a database error, users given the chance to fix the error. If Production Reporting
cannot recover from a database error, it exits.

begin-select on-error=give_warning
[$col1] &column1=char (,1)
[$col2] &column2=char (,#pos)
 position (+1)
from customers
order by [$my_order]
end-select

In this example, if a database error occurs, Production Reporting invokes a procedure called
give_warning instead of reporting the problem and aborting. Write this procedure as follows:

begin-procedure give_warning
 display 'Database error occurred'
 display $sql-error
end-procedure ! give_warning

This procedure displays the error message but does not abort program execution. Instead,
execution continues at the statement immediately following the SQL or SELECT paragraph.
$sql-error is a special Production Reporting reserved variable that contains error message
text from the database and is automatically set by Production Reporting after a database error
occurs.

Production Reporting has numerous reserved, or predefined, variables. For example,
$sqr-program contains the name of the currently-running program, $username contains the
current user name, and #page-count contains the current page number.

For a complete list of reserved variables, see “Production Reporting Reserved Variables” in
Volume 2 of the Production Reporting Developer's Guide.

130 Dynamic SQL and Error Checking

18
Procedures, Argument Passing,

and Local Variables

In This Chapter

A Sample Program 131

Procedures... 131

Local Variables ... 131

Argument Passing... 132

A Sample Program
The sample code in this chapter shows a procedure that spells out a number and a program for
printing checks that uses this procedure. When printing checks, you normally must spell out
the dollar amount.

In the sample code, Spell.inc, it is assumed that the checks are preprinted and that our program
only prints such items as the date, name, and amount.

Procedures
Production Reporting procedures containing variables that are visible throughout the program
are called global procedures. These procedures can also directly reference any program variable.

Procedures that take arguments, such as the spell_number procedure in this chapter’s check-
printing sample code, are local procedures. In Production Reporting, any procedure that takes
arguments is automatically considered local.

Variables introduced in local procedures are only readable inside the Spell.inc procedure. This
useful feature avoids name collisions. The spell_number procedure is an include file because
other reports may also want to use it.

Local Variables
When you create library procedures that can be used in many programs, make them local. Then,
if a program has a variable with the same name as a variable used in the procedure, there will
not be a collision.Production Reporting treats the two variables separately.

Declare a procedure as local even if it does not take any arguments. Simply place the keyword
LOCAL after the procedure name in BEGIN-PROCEDURE.

A Sample Program 131

To reference a global variable from a local procedure, insert an underscore between the prefix
character (#, $, or &) and the variable name. Use the same technique to reference reserved
variables such as #current-line. These variables are global, and can be referenced from local
procedures.

Production Reporting supports recursive procedure calls, but maintains only one copy of local
variables. Procedures do not allocate new instances of local variables on a stack, as C or Pascal
would.

Argument Passing
Procedure arguments are treated as local variables. Arguments can be either numeric, date, or
text variables or strings. If an argument is preceded with a colon, its value is passed back to the
calling procedure.

In the following example, spell_number takes two arguments. The first argument is the check
amount. This argument is a number, and the program passes it to the procedure. There is no
need for the procedure to pass it back.

The second argument is the result that the procedure passes back to the calling program. We
precede this variable with a colon, thus the value of this argument is copied back at the end of
the procedure. The colon is only used when the argument is declared in BEGIN-PROCEDURE.

Look at the following code. It is not a complete program, but it is the spell_number procedure
stored in spell.inc. The check-printing program includes this code using an #INCLUDE command.

File spell.inc
begin-procedure spell_number(#num,:$str)
 let $str = ''
 ! break the number to it's 3-digit parts
 let #trillions = floor(#num / 1000000000000)
 let #billions = mod(floor(#num / 1000000000),1000)
 let #millions = mod(floor(#num / 1000000),1000)
 let #thousands = mod(floor(#num / 1000),1000)
 let #ones = mod(floor(#num),1000)
 ! spell each 3-digit part
 do spell_3digit(#trillions,'trillion',$str)
 do spell_3digit(#billions,'billion',$str)
 do spell_3digit(#millions,'million',$str)
 do spell_3digit(#thousands,'thousand',$str)
 do spell_3digit(#ones,'',$str)
end-procedure ! spell_number
begin-procedure spell_3digit(#num,$part_name,:$str)
 let #hundreds = floor(#num / 100)
 let #rest = mod(#num,100)
 if #hundreds
 do spell_digit(#hundreds,$str)
 concat 'hundred ' with $str
 end-if
 if #rest
 do spell_2digit(#rest,$str)
 end-if

132 Procedures, Argument Passing, and Local Variables

 if #hundreds or #rest
 if $part_name != ''
 concat $part_name with $str
 concat ' ' with $str
 end-if
 end-if
end-procedure ! spell_3digit
begin-procedure spell_2digit(#num,:$str)
 let #tens = floor(#num / 10)
 let #ones = mod(#num,10)
 if #num < 20 and #num > 9
 evaluate #num
 when = 10
 concat 'ten ' with $str
 break
 when = 11
 concat 'eleven ' with $str
 break
 when = 12
 concat 'twelve ' with $str
 break
 when = 13
 concat 'thirteen ' with $str
 break
 when = 14
 concat 'fourteen ' with $str
 break
 when = 15
 concat 'fifteen ' with $str
 break
 when = 16
 concat 'sixteen ' with $str
 break
 when = 17
 concat 'seventeen ' with $str
 break
 when = 18
 concat 'eighteen ' with $str
 break
 when = 19
 concat 'nineteen ' with $str
 break
 end-evaluate
 else
 evaluate #tens
 when = 2
 concat 'twenty' with $str
 break
 when = 3
 concat 'thirty' with $str
 break
 when = 4
 concat 'forty' with $str
 break
 when = 5
 concat 'fifty' with $str
 break

Argument Passing 133

 when = 6
 concat 'sixty' with $str
 break
 when = 7
 concat 'seventy' with $str
 break
 when = 8
 concat 'eighty' with $str
 break
 when = 9
 concat 'ninety' with $str
 break
 end-evaluate
 if #num > 20
 if #ones
 concat '-' with $str
 else
 concat ' ' with $str
 end-if
 end-if
 if #ones
 do spell_digit(#ones,$str)
 end-if
 end-if
end-procedure ! spell_2digit
begin-procedure spell_digit(#num,:$str)
 evaluate #num
 when = 1
 concat 'one ' with $str
 break
 when = 2
 concat 'two ' with $str
 break
 when = 3
 concat 'three ' with $str
 break
 when = 4
 concat 'four ' with $str
 break
 when = 5
 concat 'five ' with $str
 break
 when = 6
 concat 'six ' with $str
 break
 when = 7
 concat 'seven ' with $str
 break
 when = 8
 concat 'eight ' with $str
 break
 when = 9
 concat 'nine ' with $str
 break
 end-evaluate
end-procedure ! spell_digit

134 Procedures, Argument Passing, and Local Variables

The result argument is reset in the procedure, because the program begins with an empty string
and keeps concatenating the parts of the number to it. The program only supports numbers up
to 999 trillion.

The number is broken into its three-digit parts: trillions, billions, millions, thousands, and ones.
Another procedure spells out the three-digit numbers such as “one hundred twelve.” Note that
the word and is inserted only between dollars and cents, but not between three-digit parts. This
format is common for check printing in dollars.

Note the use of math functions such as floor and mod.Production Reporting has a rich set of
functions that can be used in expressions. These functions are described under the LET command
in Volume 2 of the Production Reporting Developer's Guide

The series of EVALUATE commands in the number-spelling procedures are used to correlate the
numbers stored in the variables with the strings used to spell them out.

Program ex17a.sqr is the full program that prints the checks.

Program ex17a.sqr
#include 'spell.inc'
begin-setup
 declare-layout default
 end-declare
end-setup
begin-program
 do main
end-program
begin-procedure main
 alter-printer font=5 point-size=15
begin-select
name &name
sum(d.price * c.quantity) * 0.10 &refund
 do print_check(&refund)
from customers a, orders b,
 ordlines c, products d
 where a.cust_num = b.cust_num
 and b.order_num = c.order_num
 and c.product_code = d.product_code
 group by name
 having sum(d.price * c.quantity) * 0.10 >= 0.01
end-select
end-procedure ! main
begin-procedure print_check(#amount)
 print $_current-date (3,45) edit 'DD-Mon-YYYY'
 print &_name (8,12)
 move #amount to $display_amt 9,999,990.99
 ! enclose number with asterisks for security
 let $display_amt = '**' || ltrim($display_amt,' ') || '**'
 print $display_amt (8,58)
 if #amount < 1.00
 let $spelled_amount = 'Zero dollars '
 else
 do spell_number(#amount,$spelled_amount)
 let #len = length($spelled_amount)
 ! Change the first letter to uppercase

Argument Passing 135

 let $spelled_amount = upper(substr($spelled_amount,1,1))
 || substr($spelled_amount,2,#len - 1)
 concat 'dollars ' with $spelled_amount
 end-if
 let #cents = round(mod(#amount,1) * 100, 0)
 let $cents_amount = 'and ' || edit(#cents,'00') || ' cents'
 concat $cents_amount with $spelled_amount
 print $spelled_amount (12,12)
 print 'Rebate' (16,12)
 print ' ' (20)
 next-listing need=20
end-procedure ! print_check

The main procedure starts by setting the font to 15-point Times Roman. The SELECT paragraph
is a join of several tables. (A join is created when you select data from multiple database tables
in the same SELECT paragraph.) The customers table has the customer’s name. The program
joins it with the orders and ordlines tables to get the customer’s order details. It also joins with
the products table for the price.

The following expression adds all of the customer’s purchases and calculates a 10 percent rebate:

sum(d.price * c.quantity) * 0.10

The statement groups the records by the customer name, one check per customer. This is done
with the following clause:

group by name
having sum(d.price * c.quantity) * 0.10 >= 0.01

The HAVING clause eliminates checks for less than 1 cent.

The procedure print_check is a local procedure. Note the way it references the date and customer
name with &_current-date and &_name, respectively.

136 Procedures, Argument Passing, and Local Variables

19
Multiple Reports

This chapter explains how to create multiple reports from one program. You can create multiple
reports based on common data, selecting the database records only once and creating reports
simultaneously.

The alternative—writing separate programs for the reports—would require a database query
for each report. Repeated queries are costly because database operations are often the most
resource-consuming or time-consuming part of creating a report.

Program ex18a.sqr writes multiple reports with different layouts, heading, and footing sections.
The sample program prints three reports—the labels from Chapter 10, “Printing Mailing
Labels,” the form letter from Chapter 11, “Creating Form Letters,”and the listing report from
Chapter 4, “Selecting Data.” All three reports are based on identical data.

Program ex18a.sqr
#define MAX_LABEL_LINES 10
#define LINES_BETWEEN_LABELS 3
begin-setup
 declare-layout labels
 paper-size=(10,11) left-margin=0.33
 end-declare
 declare-layout form_letter
 end-declare
 declare-layout listing
 end-declare
 declare-report labels
 layout=labels
 end-declare
 declare-report form_letter
 layout=form_letter
 end-declare
 declare-report listing
 layout=listing
 end-declare
end-setup
begin-program
 do main
end-program
begin-procedure main
 do init_mailing_labels
begin-select
name
addr1
addr2
city

137

state
zip
 move &zip to $zip xxxxx-xxxx
phone
 do print_label
 do print_letter
 do print_listing
from customers
end-select
 do end_mailing_labels
end-procedure ! main
begin-procedure init_mailing_labels
 let #label_count = 0
 let #label_lines = 0
 use-report labels
 columns 1 29 57 ! enable columns
 alter-printer font=5 point-size=10
end-procedure ! init_mailing_labels
begin-procedure print_label
 use-report labels
 print &name (1,1,30)
 print &addr1 (2,1,30)
 let $last_line = &city || ', ' || &state || ' ' || $zip
 print $last_line (3,1,30)
 next-column at-end=newline
 add 1 to #label_count
 if #current-column = 1
 add 1 to #label_lines
 if #label_lines = {MAX_LABEL_LINES}
 new-page
 let #label_lines = 0
 else
 next-listing no-advance skiplines={LINES_BETWEEN_LABELS}
 end-if
 end-if
end-procedure ! print_label
begin-procedure end_mailing_labels
 use-report labels
 use-column 0 ! disable columns
 new-page
 print 'Labels printed on ' (,1)
 print $current-date ()
 print 'Total labels printed = ' (+1,1)
 print #label_count () edit 9,999,999
end-procedure ! end_mailing_labels
begin-procedure print_letter
use-report form_letter
begin-document (1,1)
&name
&addr1
&addr2
@city_state_zip
.b
.b
 $current-date
Dear Sir or Madam:
.b

138 Multiple Reports

 Thank you for your recent purchases from ACME Inc. We would like to
tell you about our limited time offer. During this month, our entire
inventory is marked down by 25%. Yes, you can buy your favorite merchandise
and save too.
 To place an order simply dial 800-555-ACME. Delivery is free too, so
don't wait.
.b
.b
 Sincerely,
 Clark Axelotle
 ACME Inc.
end-document
position () @city_state_zip
print &city ()
print ', ' ()
print &state ()
print ' ' ()
move &zip to $zip xxxxx-xxxx
print $zip ()
new-page
end-procedure ! print_letter
begin-heading 4 for-reports=(listing)
print 'Customer Listing' (1) center
 print 'Name' (3,1)
 print 'City' (,32)
 print 'State' (,49)
 print 'Phone' (,55)
end-heading
begin-footing 1 for-reports=(listing)
 ! Print "Page n of m" in the footing
 page-number (1,1) 'Page '
 last-page () ' of '
end-footing
begin-procedure print_listing
 use-report listing
 print &name (,1)
 print &city (,32)
 print &state (,49)
 print &phone (,55)
 position (+1)
end-procedure ! print_listing

The SETUP section defines the layouts and the reports that use the layouts. The labels report
requires a different layout from the default. The other two reports use a layout that is identical
to the default layout. It would be possible to save the last layout declaration and use the form-
letter layout for the listing. However, unless there is a logical reason why the two layouts should
be identical, it is better to keep separate layouts. The name of the layout indicates which report
uses it.

The main procedure performs the SELECT. It is only performed once and includes all columns
for all reports. The phone column is only used in the listing report and the addr2 column is only
used in the form-letter report. The other columns are used in multiple reports.

For each record selected, three procedures are executed. Each procedure processes one record
for its corresponding report. The print_label procedure prints one label, print_letter prints one
letter, and print_listing prints one line into the listing report. Each procedure begins by setting

139

the Production Reporting printing context to its corresponding report. Production Reporting
sets the printing context with USE-REPORT.

You can define HEADING and FOOTING sections for each report. This example only defines the
heading and footing for the listing report, because the other two reports do not use them. The
FOR-REPORTS argument in BEGIN-HEADING and BEGIN-FOOTING specifies the report name.
The parentheses are required. USE-REPORT is not needed in the heading or the footing. The
report is implied by FOR-REPORTS.

Because this program creates output with proportional fonts, you must run it with -KEEP
or -PRINTER:xx. (If you run the report with Production Reporting , you can omit -KEEP. See
Chapter 10, “Printing Mailing Labels.”)

If OUTPUT-FILE_MODE=LONG in SQR.INI (which is the default), running Example produces
three output files that match the output files for Modified Program ex9a.sqr, Program ex
10a.sqr and Program ex3a.sqr respectively. These output files have *.lis extensions. If you specify
-KEEP, the output files have *.spf. (See “[Default-Settings] Section” in the chapter titled
“SQR.INI” in Volume 2 of the Production Reporting Developer's Guide for information on setting
OUTPUT-FILE-MODE to LONG.)

In SQR Production Reporting Studio, the Viewer window opens automatically after you run the
programs, but only the first output file, ex18a.spf, is displayed. View the other output files by
selecting File, then Open.

140 Multiple Reports

20
Using DML and DDL

In This Chapter

SQL Statements ... 141

Using BEGIN-SQL ... 141

SQL Statements
Although SELECT may be the most common SQL statement, you can also perform other SQL
commands in Production Reporting. For example:

● If the program prints documents such as checks, tickets, or invoices, update the database
using a SQL UPDATE statement to indicate the document printed.

● Use Production Reporting to load data into the database, read and write external files, and
construct records. Production Reporting can insert records into the database using an SQL
INSERT statement.

● To hold intermediate results in a temporary database table, create two SQL paragraphs in
your Production Reporting program (CREATE TABLE and DROP TABLE) to create this table
at the beginning of the program and drop the table at the end.

Using BEGIN-SQL
All SQL statements other than a SELECT statement must use the BEGIN-SQL paragraph.

Program ex19a.sqr loads data from an external file into the database. It demonstrates two
important features of Production Reporting—handling external files and performing database
inserts.

Program ex19a.sqr
begin-setup
 begin-sql on-error=skip ! table may already exist
 create table customers_ext (
 cust_num int not null,
 name varchar (30),
 addr1 varchar (30),
 addr2 varchar (30),
 city varchar (16),
 state varchar (2),
 zip varchar (10),

SQL Statements 141

 phone varchar (10),
 tot int
)
 end-sql
end-setup
begin-program
 do main
end-program
begin-procedure main
#if {sqr-database} = 'Sybase'
 begin-sql
 begin transaction
 end-sql
#endif
 encode '<009>' into $sep
 open 'ex11a.lis' as 1 for-reading record=160:vary
 read 1 into $rec:160 ! skip the first record, column headings
 while 1
 read 1 into $rec:160
 if #end-file
 break
 end-if
 unstring $rec by $sep into $cust_num $name
 $addr1 $addr2 $city $state $zip $phone $tot
 move $cust_num to #cust_num
 move $tot to #tot
 begin-sql
 insert into customers_ext (cust_num, name,
 addr1, addr2, city, state, zip, phone, tot)
 values
 (#cust_num, $name, $addr1, $addr2, $city,
 $state, $zip, $phone, #tot)
 end-sql
 end-while
#if {sqr-database} = 'Sybase'
 begin-sql
 commit transaction
 end-sql
#else
#if {sqr-database} <> 'Informix'
 begin-sql
 commit
 end-sql
#endif
#endif
 close 1
end-procedure ! main

The program starts by creating the table customers_ext. If the table exists, an error message
appears. To ignore this error message, use ON-ERROR=SKIP. (See Chapter 17, “Dynamic SQL
and Error Checking.”)

The program reads the records from the file and inserts each record into the database by using
an INSERT statement inside a BEGIN-SQL paragraph. The input file format is one record per
line, with each field separated by the separator character. When the end of the file is encountered
(if #end-file), the program branches out of the loop. Note that #end-file is a Production Reporting

142 Using DML and DDL

reserved variable. For a complete list of reserved variables, see Volume 2 of the Production
Reporting Developer’s Guide.

The last step is to commit the changes to the database and close the file. You do this with a SQL
COMMIT statement inside a BEGIN-SQL paragraph. Alternatively, you can use the Production
Reporting COMMIT command. For Oracle databases, we recommend you use COMMIT.

The code may be database-specific. If you are using Informix, for example, and your database
was created with transaction logging, you must add BEGIN WORK and a COMMIT WORK, much like
the Sybase example of BEGIN TRANSACTION and COMMIT TRANSACTION.

Using BEGIN-SQL 143

144 Using DML and DDL

21
Working with Comma Separated

Files (CSV)

In This Chapter

Declaring a Connection to a CSV Data Source... 145

Specifying a Separator Value for CSV File Generation... 145

Viewing CSV Metadata ... 146

Creating and Executing MD Queries.. 146

Declaring a Connection to a CSV Data Source
To start accessing data from the CSV Data Source, DECLARE-CONNECTION must be established
to a registered data source.

➤ To establish a DECLARE-CONNECTION:

1 Enter Declare-Connection followed by a connection_name_literal CSV.

2 Enter DSN, this is the logical data source name as recorded in the DDO Registry.

(User and Password are associated with CSV data sources)

declare-connection CSV
dsn=CSVsource
end-declare

Specifying a Separator Value for CSV File Generation
By default, comma separated value (CSV) files created by Production Reporting use the comma
as a separator or delimiter. You can specify an alternate delimiter character with the
CSVSeparator value in the [Default-Settings] section of the SQR.INI file.

Entry Value Description

CSVSeparator Comma | Semicolon |Space | Tab Specifies the character used as a delimiter when creating CSV files

Note: If the CSVSeparator setting is missing from the SQRINI file, the default value
of Comma is used

For example, the following setting causes Production Reporting to use the Tab character as the
delimiter when creating CSV files:

Declaring a Connection to a CSV Data Source 145

[Default-Settings]

CSVSeparator=Tab

Note:

The SQR.INI setting to specify the CSVSeparator as a semicolon or a space is only supported
with the Production Reporting Server. Using this setting in Oracle Enterprise Performance
Management Workspace, Fusion Edition is not recommended and may create corrupted BQD
files.

Viewing CSV Metadata
When creating queries, it is often helpful to view the structure of the CSV file that you are
querying. You can browse a CSV file’s metadata (information about the file’s structure) by
running the DDO Query Editor and selecting a schema in Schema View and viewing its selectable
column list.

Creating and Executing MD Queries
You construct queries in the same manner you access relational databases. You can choose a
sample script from the SAMPLES directory and run or modify it, or construct your own. The
scripts in the SAMPLES directory are included when the Production Reporting DDO port is
installed. You can edit this file with a text editor or create files of your own. To properly access
a CSV datasource, a Data Object must be defined. The data object is declared after
BEGIN-EXECUTE and before BEGIN-SELECT. For CSV queries, use the DDO GetData paradigm
for data access.

Program Sample for Executing MD Queries
Begin-Execute
Connection=CSV
GetData='customer.csv' (Data Object)
Begin-Select
Customer_num type=number (+1,1)
Name type=char (,11)
phone type=char (,41)
addr_line1 type=char (+1,11)
addr_line2 type=char (+1,11)
city type=char (+1,11)
state type=char (+1,11)
zip type=number (,41)
From Rowsets=(1)
End-Select
End-Execute

146 Working with Comma Separated Files (CSV)

22
Retrieving BINARY Column

Data

In This Chapter

Defining that a Variable or Column Supports BINARY Data... 147

Defining How to Treat BINARY Data ... 147

Converting Between BINARY and TEXT ... 148

Processing External Files .. 148

Production Reporting Commands that Support BINARY Data ... 148

Defining that a Variable or Column Supports BINARY Data
To specify that an Production Reporting variable supports BINARY data, use the following
syntax in either the BEGIN-SETUP section or within a LOCAL procedure:

DECLARE-VARIABLE

BINARY $Binary

END-DECLARE

To specify that an Production Reporting column supports BINARY data, use the following
syntax:

BEGIN-SELECT

column_name $column_name=BINARY

END-SELECT

Defining How to Treat BINARY Data
The SQR.INI file includes two keywords in the [Default-Settings] section that you can use to
define how to treat BINARY data.

Entry Value Description

TreatBinaryColumnAsText TRUE | FALSE Defines whether to treat a BINARY column as a TEXT column

The default is True

ImageCompression 0 - 9 Defines the compression level when the PRINT-IMAGE command
references a BINARY variable

Defining that a Variable or Column Supports BINARY Data 147

Entry Value Description

The default is 6

Converting Between BINARY and TEXT
Use the LET command functions to convert information between BINARY and TEXT.

Function Description

tohex Accepts a BINARY variable and returns a string composed of uppercase hexadecimal characters that
represents the data Each byte of BINARY data consists of two hexadecimal characters

Syntax: dst_var = tohex(source_value)

● source_value = binary literal, column, variable, or expression

● dst_var = text variable

Example: let $hexchars = tohex($vargraphic)

fromhex Accepts a TEXT variable that contains a string of hexadecimal characters (case insensitive) and returns a
BINARY variable Each byte of BINARY data consists of two hexadecimal characters

Syntax: dst_var = fromhex(source_value)

● source_value = text literal, column, variable, or expression

● dst_var = binary variable

Example: let $image = fromhex($hexchars)

Processing External Files
Use the LET command function to facilitate the processing of external files.

Function Description

filesize Accepts the name of an external file and returns the number of bytes it contains If the file size cannot be
determined, a value of -1 is returned

Syntax: dst_var = filesize(source_value)

● source_value = text literal, column, variable, or expression

● dst_var = decimal, float, or integer variable

Example: let #size = filesize($file)

Production Reporting Commands that Support BINARY Data
The following commands support BINARY data. Any command not in this list produces an
error when it references a BINARY variable, column, or literal.

148 Retrieving BINARY Column Data

Note:

CREATE-ARRAY, DECLARE-VARIABLE, and OPEN include additional syntax to support
BINARY data. (The additional syntax appears in bold.) The other commands in the list do not
require additional syntax to support BINARY data.

● CONCAT

● CREATE-ARRAY

CREATE-ARRAY NAME=array_name SIZE=nn

[EXTENT=nn]

{FIELD=name:type[:occurs]
[={init_value_txt_lit|_num_lit|_binary_lit}]}...

● DECLARE-VARIABLE

DECLARE-VARIABLE

[DEFAULT-NUMERIC={DECIMAL[(prec_lit)]|FLOAT|INTEGER}]

[DECIMAL[(prec_lit)]num_var[(prec_lit)][num_var
[(prec_lit)]]...]

[FLOAT num_var[num_var]...]

[DATE date_var[date_var]...]

[INTEGER num_var[num_var]...]

[TEXT string_var[string_var]...]

[BINARY binary_var[binary_var]...]

END-DECLARE

● DO

● EVALUATE

● EXECUTE (DB2, Sybase, and Oracle only)

● EXTRACT

● GET

● IF

● LET

● MOVE

● OPEN

OPEN {filename_lit|_var|_col} AS
{filenum_num_lit|_var|_col}
{FOR-READING|FOR-WRITING|FOR-APPEND}
{RECORD=length_num_lit|_var|_col[:FIXED|:FIXED_NOLF
|:VARY|:BINARY]}]
[STATUS=num_var]]

Production Reporting Commands that Support BINARY Data 149

[ENCODING={_var|_col|ASCII|ANSI|SJIS|JEUC|EBCDIC| EBCDIK290|EBCDIK1027|
UCS-2|UTF-8|others... }]

● PRINT CODE-PRINTER

● PRINT-DIRECT

● PRINT-IMAGE

When a BINARY variable is referenced, the contents are used as the source. When a TEXT
variable is referenced, the contents refer to an external file.

● PUT

● READ

● STRING

● WHILE

● WRITE

150 Retrieving BINARY Column Data

23
Working with Multi-

Dimensional Data Sources
(OLAP)

In This Chapter

Declaring a Connection to an OLAP Server .. 151

Viewing Cube Metadata ... 151

Creating and Executing MD Queries.. 152

Measures ... 152

Column Order.. 152

Dimensions, Levels, and Hierarchies... 153

Declaring a Connection to an OLAP Server
To access data from MD Data Source, DECLARE-CONNECTION must be established to a registered
data source.

➤ To establish a DECLARE-CONNECTION:

1 Enter Declare-Connection followed by a connection_name_literal ‘OLAP’.

2 Enter DSN, the logical data source name as recorded in the DDO Registry.

3 Enter user and password.

4 Enter set-member parameter.

Declare-Connection OLAP
dsn=MSOLAP
user=Administrator
password=administrator
set-members=('product','all products.drink.alcoholic beverages.beer and
wine','time','2002.Q1')
set-levels= ('product', 2)
set-generations= ('product', 5)
End-Declare

Viewing Cube Metadata
When you create MD queries to use with multidimensional databases, it is often helpful to view
the structure of the cube you are querying.

Declaring a Connection to an OLAP Server 151

You can browse a cube’s metadata (information about the schema’s structure) by running the
DDO TestTool and selecting a schema.

Select the schema in Schema View. Explore the schema’s dimensions and measures in the tree
view and member panes below the list.

Creating and Executing MD Queries
You construct MD queries in the same manner that relational databases are accessed. You can
choose sample scripts from the SAMPLES directory and run or modify it, or construct your own.
The scripts in the SAMPLES directory are included when the Production Reporting DDO port
is installed. You can edit this file with a text editor or create files of your own. To properly access
an MD datasource, a Catalog Schema and Data Object must be defined after the
BEGIN-EXECUTE and before the BEGIN-SELECT declaration of the schema and object. For MD
queries, the DDO GetData paradigm is used for data access.

Measures
Measures are the numeric data of primary interest to MD users. Some common measures are
sales, cost, expenditures, and production count. Measures are aggregations stored for quick
retrieval by users querying cubes. Each measure is stored in a column in a fact table in the data
warehouse. A measure can contain multiple columns combined in an expression. For example,
the Profit measure is the difference of two numeric columns: Sales and Cost.

To select a measure column, the format is ‘measure’, dot, ‘measure name’ (measure.profit). This
is regardless of the name used by the data source to declare measures.

Column Order
The order in which the dimension columns are presented determines the order of the data
displayed for multiple rowset queries. The following sample program shows Profit and Store’s
Sales reports for the selected time period and product. If the order of the time and product
dimensions are reversed, then a report would be produced for each selected time period and
product. (A greatly different report).

Program Sample for Defining Column Order
Begin-Execute
Connection=OLAP
Schema='FoodMart'
GetData='Sales'
Begin-Select
Time (+1,1)
Product (,15)
Measures.Profit (,45) edit 999999.99
"Measures.Store Sales" (,60) edit 999999.99
From Rowsets=(1)

152 Working with Multi-Dimensional Data Sources (OLAP)

End-Select
End-Execute

Dimensions, Levels, and Hierarchies
Use the following arguments under the ALTER-CONNECTION command as you work the
dimensions, levels, and hierarchies in your data.

● SET-GENERATIONS—Specifies the dimension hierarchy for the previously-declared
dimension.

● SET-LEVELS—Extends the dimension hierarchy for the previous-declared dimension.

● SET-MEMBERS—Returns the set of members in a dimension, level, or hierarchy whose name
is specified by a string.

See “ALTER-CONNECTION” in Volume 2 of the Production Reporting Developer's Guide for more
information on these arguments.

Dimensions, Levels, and Hierarchies 153

154 Working with Multi-Dimensional Data Sources (OLAP)

24
Working with Dates

In This Chapter

Dates in Production Reporting ... 155

Obtaining Date Values... 155

Date Arithmetic.. 156

Date Formats ... 157

String to Date Conversions... 158

Date to String Conversions... 158

Using Dates with the INPUT Command ... 159

Date Edit Masks... 159

Declaring Date Variables ... 160

Dates in Production Reporting
Production Reporting has powerful capabilities in date arithmetic, editing, and manipulation.
A date can be represented as a character string or in an internal format using the Production
Reporting date datatype.

The date datatype allows you to store dates in the range of January 1, 4712 b.c. to December 31,
9999 a.d. It also stores the time of day with the precision of a microsecond. The internal date
representation keeps the year as a four-digit value. We strongly recommend that you keep dates
with four-digit year values (and not truncate to two digits) to avoid date problems at the turn
of the century.

Obtaining Date Values
Date values can be obtained in one of five ways:

● By selecting a date column from the database

● By using INPUT to get a date from the user

● By referencing or printing the reserved variable $current-date

● As a result of an Production Reporting date function: dateadd, datediff, datenow, or strdodate

● By declaring a date variable using the DECLARE-VARIABLE command

For most applications, it is not necessary to declare date variables. See “Declaring Date Variables”
on page 160.

Dates in Production Reporting 155

Date Arithmetic
Many applications require date calculations. To add or subtract a number of days from a given
date, subtract one date from another to find a time difference, or compare dates to find if one
date is later, earlier, or the same as another date.

Many databases allow you to perform date calculations in SQL, but that can be awkward if you
are trying to write portable code, because the syntax varies between databases. Instead, perform
those calculations in Production Reporting—your programs will be portable, because they won’t
rely on SQL syntax.

The dateadd function adds or subtracts a number of specified time units from a given date. The
datediff function returns the difference between two specified dates in the time units you specify
—years, quarters, months, weeks, days, hours, minutes, or seconds. Fractions are allowed—you
can add 2.5 days to a given date. Conversion between time units is also allowed—you can add,
subtract, or compare dates using days and state the difference using weeks.

The datenow function returns the current local date and time. In addition, Production Reporting
provides a reserved date variable, $current-date, which is automatically initialized with the
local date and time at the beginning of the program.

You can compare dates by using the usual operators (< , =, or >) in an expression. The
datetostr function converts a date to a string. The strtodate function converts a string to a date.

The following code uses functions to add 30 days to the invoice date and compare it to the current
date:

begin-select
order_num (,1)
invoice_date
 if dateadd(&invoice_date,'day',30) < datenow()
 print 'Past Due Order' (,12)
 else
 print 'Current Order' (,12)
 end-if
 position (+1)
end-select

In this example, dateadd and datenow are used to compare dates. dateadd adds 30 days to
the invoice date (&invoice_date). The resulting date is then compared with the current date,
which is returned by datenow. If the invoice is older than 30 days, the program prints the string
“Past Due Order.” If the invoice is 30 days old or less, the program prints the string “Current
Order.”

To subtract a given number of days from a date, use dateadd with a negative argument. This
technique is demonstrated in the next example. In this example, the IF condition compares the
invoice date with the date of 30 days before today. The condition is equivalent to that of the
previous example.

 if &invoice_date < dateadd(datenow(),'day',-30)

This condition can also be written as follows using datediff. Note that the comparison is now
a simple numeric comparison, not a date comparison:

 if datediff(datenow(),&invoice_date,'day') > 30

156 Working with Dates

All three IF statements are equivalent, and they demonstrate the flexibility provided by these
functions.

Here is another technique for comparing dates:

begin-select
order_date
 if &order_date > strtodate('3/1/2001','dd/mm/yyyy')
 print 'Current Order' ()
 else
 print 'Past Due Order' ()
 end-if
from orders
end-select

The IF statement has a date column on the left side and strtodate on the right side.
strtodate returns a date type, which is compared with &order_date. When the order date
is later than January 3, 2001, the condition is satisfied. If the date includes the time of day, the
comparison is satisfied for orders of January 3, 2001 with a time of day greater than 00:00.

In the next example, the date is truncated to remove the time-of-day portion of a date:

if strtodate(datetostr(&order_date,'dd/mm/yyyy'),'dd/mm/yyyy') >
 strtodate('3/1/2001','dd/mm/yyyy')

In this example, datetostr converts the order date to a string that only stores the day, month,
and year. strtodate then converts this value back into a date. With these two conversions, the
time-of-day portion of the order date is omitted. Now when it is compared with January 3, 2001,
only dates that are of January 4 or later satisfy the condition.

Date Formats
Production Reporting allows you to specify date constants and date values in a special format
that is recognized without the use of an edit mask. This is called the literal date format. For
example, you can use a value in this format in the strtodate function without the use of an edit
mask. This format has the advantage of being independent of any database or language
preference.

The literal date format is SYYYYMMDD[HH24[MI[SS[NNNNNN]]]]. The first S in this format
represents an optional minus sign. If preceded with a minus sign, the string represents a date
b.c. The digits that follow represent year, month, day, hours, minutes, seconds, and
microseconds. The literal date format assumes a 24-hour clock.

Note:

The literal date format assumes a 24-hour clock.

You can omit one or more time elements from the right part of the format. A default is assumed
for the missing elements. Here are some examples:

let $a = strtodate('20010409')

Date Formats 157

let $a = strtodate('20010409152000')

The first LET statement assigns the date of April 9, 2001 to the variable $a. The time portion
defaults to 00:00. The second LET statement assigns 3:20 in the afternoon of April 9, 2001 to
$a. The respective outputs (when printed with the edit mask ‘DD-MON-YYYY HH:MI AM’)
are:

09-APR-2001 12:00 AM
09-APR-2001 03:20 PM

You can also specify a date format with the environment variable SQR_DB_DATE_FORMAT. You
can specify this as an environment variable or in the SQR.INI file. See “SQR.INI” in Volume 2
of the Production Reporting Developer's Guide.

String to Date Conversions
If you convert a string variable or constant to a date variable without specifying an edit mask
that identifies the format of the string, Production Reporting applies a date format. This implicit
conversion occurs with the following commands:

● MOVE

● The strtodate function

● The commands DISPLAY, PRINT, or SHOW, when used to output a string variable as a date.

Production Reporting attempts to apply date formats in the following order:

1. The format specified in SQR_DB_DATE_FORMAT

2. The database-dependent format

3. The literal date format SYYYYMMDD[HH24[MI[SS[NNNNNN]]]]

Date to String Conversions
If you convert a date variable to a string without specifying an edit mask, Production Reporting
applies a date format. The conversion occurs with the datetostr function and these
commands:

● MOVE

● DISPLAY, PRINT, or SHOW, when used to output a date variable

Production Reporting attempts to apply date formats in the following order:

1. The format specified in SQR_DB_DATE_FORMAT

2. The database-dependent format

Database-dependent formats are listed in Table 52, “Default Formats by Database” in Volume
2 of the Production Reporting Developer's Guide.

158 Working with Dates

Using Dates with the INPUT Command
The INPUT command also supports dates. A date can be loaded into a date or string variable.
For string variables, use the TYPE=DATE qualifier. A format for the date should be specified. Here
is an example:

input $start_date 'Enter starting date' type=date format='dd/mm/yyyy'

In this example, the user is prompted with Enter starting date: (the colon is automatically added).
The user then types in the value, which is validated as a date using the “dd/mm/yyyy” format.
The value is loaded into the variable $start_date.

Date Edit Masks
When you print dates, you can format them with an edit mask. For example:

print &order_date () edit 'Month dd, YYYY'

This command prints the order date in the specified format. The name of the order date month
is printed followed by the day of the month, a comma, and four-digit year.Production Reporting
provides a rich set of date edit masks. See “Date Edit Format Code-RR” in Volume 2 of the
Production Reporting Developer's Guide for a complete listing.

If the value of the date value being edited is March 14, 2001 at 9:35 in the morning, the edit
masks produce the following results.

Table 4 Sample Date Edit Masks

Edit Mask Result Description

dd/mm/yyyy 14/03/2001

DD-MON-YYYY 14-MAR-2001

'Month dd, YYYY' March 14, 2001 An edit mask containing blank space must be enclosed in single quotes

MONTH-YYYY MARCH-2001 Name of the month in uppercase followed by four-digit year

HH:MI 09:35

'HH:MI AM' 09:35 AM Meridian indicators An edit mask containing blank space must be enclosed
in single quotes

YYYYMMDD 20010314

DDMMYY 140301

Mon Mar Abbreviated name of the month

Day Thursday Day of the week

DY THU Abbreviated name of day of the week

Q 1 Quarter

Using Dates with the INPUT Command 159

Edit Mask Result Description

WW 11 Week of the year

W 2 Week of the month

DDD 74 Day of the year

DD 14 Day of the month (1-31)

D 5 Day of the week (Sunday = 1)

If the edit mask contains other text, it is also printed. For example:

print &order_date () edit ’As of Month dd, YYYY’

This command prints the string “As of March 14, 2001” if the order date is March 14, 2001.
Because the words “As of” are not recognized as date mask elements, they are simply printed.

A backslash forces the character that follows into the output. This technique is useful when you
want to print text that would otherwise be recognized as a date mask element. For example, a
mask of “The \mo\nth is month” results in the output string of “The month is march”. Without
the backslashes, the output string would be “The march is march”. The second backslash is
needed because “n” is a valid date edit mask element.

In some cases, combining date edit mask elements can result in ambiguity. One example is the
mask 'DDDD', which could be interpreted as various combinations of 'DDD' (day of year),
'DD' (day of month), and 'D' (day of week). To resolve such ambiguity, use a vertical bar as a
delimiter between format elements. For example, 'DDD' followed by 'D' can be written as 'DDD|
D'.

The masks MON, MONTH, DAY, DY, AM, PM, BC, AD, and RM are case-sensitive and follow
the case of the mask entered. For example, if the month is January, the mask Mon yields “Jan”
and MON yields “JAN”. All other masks are case-insensitive and can be entered in either
uppercase or lowercase.

In addition, national language support is provided for the following masks: MON, MONTH,
DAY, DY, AM, PM, BC, and AD. See “ALTER-LOCALE” and “SQR.INI” in Volume 2 of the
Production Reporting Developer's Guide for additional information.

Declaring Date Variables
To hold date values in your program, use date variables. Like string variables, date variables are
prefixed with a dollar sign ($). You must explicitly declare date variables using
DECLARE-VARIABLE.

Date variables are useful for holding results of date calculations. For example:

begin-setup
 declare-variable
 date $c
 end-declare
end-setup

160 Working with Dates

...
let $c = strtodate('March 1, 2001 12:00','Month dd, yyyy hh:mi')
print $c () edit 'dd/mm/yyyy'

In this example, $c is declared as a date variable. Later, it is assigned the value of noon on March
1, 2001. The variable $c is then printed with the edit mask 'dd/mm/yyyy', which yields
01/03/2001.

Date variables can be initialized with date literals as shown in the following example:

begin-setup
 declare-variable
 date $c
 end-declare
end-setup
...
let $c = '20010409152000'

The LET statement assigns 3:20 in the afternoon of April 9, 2001 to $c.

Declaring Date Variables 161

162 Working with Dates

25
National Language Support

In This Chapter

Locales... 163

Available Locales ... 163

Default Locale ... 164

Switching Locales ... 164

Modifying Locale Preferences... 165

Keywords—NUMBER, MONEY, and DATE... 165

Locales
A locale is a set of local preferences for language, currency, and the presentation of dates and
numbers. For example, one locale may use English, dollar currency, dates in “dd/mm/yy” format,
numbers with commas separating the thousands, and a period for the decimal place.

A locale contains default edit masks for number, money, and date. Use these edit masks to specify
the keywords NUMBER, MONEY, and DATE, respectively. You can specify these keywords in the
INPUT, MOVE, DISPLAY, SHOW, and PRINT commands. Their use is discussed and demonstrated
in this chapter.

A locale also contains settings for currency symbol, thousands separator, decimal separator, date
separator, and time separator. A locale contains settings for N/A, AM, PM, BC, and AD in the
language of the locale.

A locale contains a setting for names of the days of the week and names of the months in the
language of the locale. It also contains settings for how to handle lower/upper case editing of
these names.

These settings are described in detail under “ALTER-LOCALE” in Volume 2 of the Production
Reporting Developer's Guide.

Available Locales
Production Reporting provides predefined locales such as US-English, UK-English, German,
French, and Spanish. You can easily define additional locales or modify existing locales by editing
the SQR.INI file. For more information about the SQR.INI file, see “SQR.INI” in Volume 2 of
the Production Reporting Developer's Guide.

Locales 163

With the ALTER-LOCALE command, you can choose a locale—at the beginning of your program
or anywhere else. You can even have parts of your program use different locales.

You can select a locale with this command:

alter-locale locale = 'German'

Default Locale
The SQR.INI file defines a default locale. Most or all of your programs can use the same locale,
and specifying the default locale in the SQR.INI file makes it unnecessary to specify the locale
in every program.

When you install Production Reporting, the default locale is set to the reserved locale called
“System.” System is not a real locale. It defines the behavior of older versions of Production
Reporting, before national language support was added. The preferences in the system locale are
hard-coded in the product and cannot be set or defined in the SQR.INI; however, System settings
can be altered at run time using ALTER-LOCALE. The date preferences are dependent on the
database you are using. Therefore, date format preferences in the system locale differ for every
database you use with Production Reporting.

Sites can have different locales as the default. For example, an office in Paris might use the
“French” locale, and an office in London might use the “UK-English” locale. To adapt your
program to any location, use the default locale. Your program automatically respects the local
preferences, which are specified in the SQR.INI file of the machine on which it is run. For
example, you can print the number 5120 using the following command:

print #invoice_total () edit '9,999,999.99'

The setting of the default locale in the SQR.INI file controls the format. In London, the result
might be 5,120.00, and in Paris 5.120,00. The delimiters for thousands and the decimal—the
comma and the period—are switched automatically according to the preferences of the locale.

Tip:

Changing the settings of the default locale can change the behavior of existing programs. For
example, if you change the default locale to French, programs that used to print dates in English
may now print them in French. Be sure that you review and test existing programs when making
a change to the default locale.

Switching Locales
You can switch from one locale to another any number of times during program execution. This
technique is useful for writing reports that use multiple currencies, or reports that have different
sections for different locales.

To switch to another locale, use the ALTER-LOCALE command. For example, to switch to the
Spanish locale:

alter-locale locale = 'Spanish'

164 National Language Support

From this point in the program, the locale is Spanish.

Consider this example:

begin-procedure print_data_in_spanish
 ! Save the current locale
 let $old_locale = $sqr-locale
 ! Change the locale to "Spanish"
 alter-locale locale = 'Spanish'
 ! Print the data
 do print_data
 ! restore the locale to the previous setting
 alter-locale locale = $old_locale
end-procedure

In this example, the locale is switched to Spanish and later restored to the previous locale before
it was switched. To do that, the locale setting before it is changed is read in the reserved variable
$sqr-locale and stored in $old_locale. The value of $old_locale is then used in the ALTER-
LOCALE command at the end of the procedure.

Modifying Locale Preferences
With ALTER-LOCALE, you can modify any individual preference in a locale. ALTER-LOCALE
only affects the current program. It does not modify SQR.INI.

Here is an example of how you can modify default preferences in a locale:

alter-locale
 date-edit-mask = 'Mon-DD-YYYY'
 money-edit-mask = '$$,$$$,$$9.99'

To restore modified locale preferences to their defaults, you can reselect the modified locale. For
example, suppose that the locale was US-English and the date and money edit masks were
modified using the preceding code. The following code resets the changed date and money edit
masks:

alter-locale locale = 'US-English'

Keywords—NUMBER, MONEY, and DATE
The commands DISPLAY, MOVE, PRINT, and SHOW allow you to specify the keywords NUMBER,
MONEY, and DATE in place of an explicit number or date edit mask. These keywords can be useful
in two cases.

The first case is when you want to write programs that automatically adapt to the default locale.
By using the keywords NUMBER, MONEY, and DATE, you tell Production Reporting to take these
edit masks from the default locale settings.

The second case is when you want to specify your number, money, and date formats once at the
top of your program and use these formats throughout your report. In this case, you define these
formats with an ALTER-LOCALE command at the top of your program. Then when you use the

Modifying Locale Preferences 165

keywords NUMBER, MONEY, and DATE later in your program, they format number, money, and
date outputs with the masks defined in the ALTER-LOCALE command.

Whether you set the locale in the SQR.INI file or in your program, these keywords have the same
effect. In the following example, these keywords are used with the PRINT command to produce
output for the US-English and French locales:

Sample Program
let #num_var = 123456
let #money_var = 123456
let $date_var = strtodate('20010520152000')
! set locale to US-English
alter-locale locale = 'US-English'
print 'US-English locale' (1,1)
print 'With NUMBER keyword ' (+1,1)
print #num_var (,22) NUMBER
print 'With MONEY keyword ' (+1,1)
print #money_var (,22) MONEY
print 'With DATE keyword ' (+1,1)
print $date_var (,22) DATE
! set locale to French
ALTER-LOCALE locale = 'French'
print 'French locale' (+2,1)
print 'With NUMBER keyword ' (+1,1)
print #num_var (,22) NUMBER
print 'With MONEY keyword ' (+1,1)
print #money_var (,22) MONEY
print 'With DATE keyword ' (+1,1)
print $date_var (,22) DATE

The output is:

US-English locale
With NUMBER keyword 123,456.00
With MONEY keyword $ 123,456.00
With DATE keyword May 20, 2001
French locale
With NUMBER keyword 123.456,00
With MONEY keyword 123.456,00 F
With DATE keyword 20 mai 2001

166 National Language Support

26
Interoperability

In This Chapter

Interoperability Diagrams... 167

Calling Production Reporting from Another Application ... 168

Using the Production Reporting API .. 168

Extending Production Reporting—UFUNC.C ... 171

XML Support in Production Reporting ... 172

Interoperability Diagrams
Applications can run Production Reporting programs using the Production Reporting API
(application program interface). A Production Reporting program can also call an external
application’s API.

This interoperability is depicted in the two diagrams shown here.

Figure 7 External Application Invoking an Production Reporting Program Using the Production Reporting API

Figure 8 A Production Reporting Program Invoking an External Application using UFUNC.C

This chapter describes how to invoke an Production Reporting program from another
application using the Production Reporting API. This API is provided through a DLL on
Windows and through an object library on other platforms.

Interoperability Diagrams 167

The chapter also explains how to invoke an external application’s API by using the UFUNC.C
interface.

Calling Production Reporting from Another Application
You can use the following techniques to invoke an Production Reporting program from another
application:

● Using the Production Reporting command line—The application initiates a process for
running Production Reporting. The Production Reporting command includes all necessary
parameters. See Chapter 31, “Using the Production Reporting Command Line.”

● Using the Production Reporting API—The application makes a call to the Production
Reporting API. This method is covered in the next section.

● Using Oracle's Hyperion® SQR® Production Reporting Activator— Oracle's Hyperion®
SQR® Production Reporting Activator runs on the Windows platform and supports
application development environments that support ActiveX. For example, Oracle
Developer/2000, VisualBasic, PowerBuilder, Delphi, and so on.

Using the Production Reporting API
This section discusses using the Production Reporting API in the following areas:

● Using the Production Reporting API on Windows

● Using the Production Reporting API on Non-windows Platforms

● API Functions for Calling Production Reporting

● Relinking Production Reporting on UNIX Platforms

● Error Values Returned by the Production Reporting API

Using the Production Reporting API on Windows
The Production Reporting API is provided on Windows through a DLL (Dynamic Link Library).
You can use the Production Reporting API from any application that is capable of calling DLL
functions. For C and C++ applications, a header file, SQRAPI.H, and an import library
(SQR.LIB) are provided.

Production Reporting requires the DLLs listed below to run. These DLL files are located in the
BINW directory.

bclw32dll btara320dll btbat320dll

btcel320dll btchi320dll btCroation320dll

btcyrillic320dll btDevangari320dll btgre320dll

btguj320dll btGurmukhi320dll btheb320dll

168 Interoperability

btice320dll btjpn320dll btkor320dll

btlat320dll btmal320dll btnordic320dll

btron320dll btsla320dll btsymbol320dll

bttha320dll bttur320dll btuc320dll

btukr320dll btvie320dll libsti32dll

sqrextdll sqrdll stimagesdll

Using the Production Reporting API on Non-windows
Platforms
On platforms other than Windows, the Production Reporting API is provided as a static library
(sqr.a or sqr.lib). For C and C++ applications, a header file, sqrapi.h, is provided. Be sure to
include the Production Reporting API library and your database library when you link your C
or C++ application. In addition, the following libraries are required:

● bcl.a

● pdf.a

● libsti.a

API Functions for Calling Production Reporting
The API functions defined for calling Production Reporting are:

Function Description

int sqr(char *) Runs an Production Reporting program Passes the address of a null terminated string
containing an Production Reporting command line, including program name, connectivity
information, flags, and arguments This is a synchronous call It returns when the Production
Reporting program has completed This function returns zero (0) if it is successful

void sqrcancel(void) Cancels a running Production Reporting program The program may not stop immediately
because Production Reporting waits for any currently pending database operations to
complete

Because the Production Reporting function does not return until the Production Reporting
program has completed, sqrcancel is called using another thread or some similar
asynchronous method

int sqrend(void) Releases memory and closes cursors Cursors can be left open to accelerate repeated
execution of the same Production Reporting program Call this function after the last program
execution, or optionally between Production Reporting program executions

This function returns zero (0)

For the benefit of C/C++ programmers, the APIs are declared in the file SQRAPI.H. Include this
header file in your source code:

Using the Production Reporting API 169

#include 'sqrapi.h'

When you call Production Reporting from a program, the most recently run Production
Reporting program is saved in memory. If the same Production Reporting program is run again
with either the same or different arguments, the program is not scanned again and the SQL
statements are not parsed again. This feature provides a significant improvement in processing
time.

To force Production Reporting to release its memory and database cursors, call sqrend() at any
time.

Although memory is automatically released when the program exits, you must call sqrend()
before the calling program exits to ensure that Production Reporting properly cleans any
database resources such as database cursors and temporary stored procedures.

Relinking Production Reporting on UNIX Platforms
To relink Production Reporting on all UNIX platforms, use the sqrmake and makefile files located
in $SQRDIR/../lib. After you invoke sqrmake and optionally select the database version to link
with, the Production Reporting executables are recreated.

Check which ‘cc’ command line gets created and invoked for Production Reporting, and adapt
it to your program. Each UNIX platform and database has its own requirements. Consult your
operating system and database product documentation for specific information.

You may see the following output when you relink with Sybase SDK 12.5 under HP/HP-UX
11.00:

cc -o {user program} {user objects} {user libraries} \
${SQRDIR}/../lib/nounilib.o ${SQRDIR}/../lib/sqr.a \
${SQRDIR}/../lib/cls.a ${SQRDIR}/../lib/lm_new.o ${SQRDIR}/../lib/liblmgr.a \
${SQRDIR}/../lib/libcrvs.a ${SQRDIR}/../lib/libsb.a ${SQRDIR}/../lib/libsti.a \
${SQRDIR}/../lib/bcl.a ${SQRDIR}/../lib/pdf.a -lcl -lrt -lpthread -ldld \
-lcres –L${SYBASE}/${SYBASE_OCS}/lib -lct -lcs -ltcl -lcomn -lintl -lcl -lm \
-lBSD -ldld –L${HYPERION}/common/JRE/HP/1.4.2/lib/PA_RISC/server \
-ljvm -Wl,-s,+s -z -Wl,-O

Check the make files or link scripts that are supplied with Production Reporting for details. You
may want to copy and modify those to link in your program.

To call Production Reporting, call sqr() and pass a command line. For example, in C:

status = sqr("myprog sammy/baker arg1 arg2 arg3");
if (status != 0)
 ...error occurred...

170 Interoperability

Error Values Returned by the Production Reporting API
Table 5 Standalone and Callable Error Values Returned by the Production Reporting API

Error Code Reason

0 Normal exit

1 Error exit

2 Cannot process SQRERRDAT

3 Command-line flag in error

4 Problem creating SQT file

5 Program did not compile

6 Problem with SQR/SQT file (open/read)

7 Problem with LIS file (create/write)

8 Problem with ERR file (create/write)

9 Problem with LOG file (create/write)

10 Problem with POSTSCRISTR file (open/read)

11 Cannot call Production Reporting recursively

12 Problem with Windows

13 Internal error occurred

14 Problem with SQRWINDLL

15 Problem with ZCF file

Note:

Error code 12 only applies to Windows.

Extending Production Reporting—UFUNC.C
The Production Reporting language can be extended by adding user functions written in
standard languages such as C. This feature allows you to integrate your own code and third-
party libraries into Production Reporting. For example, assume you had a library for
communication over a serial line, with functions for initiating the connection and sending and
receiving data. Production Reporting would allow you to call these functions from Production
Reporting programs.

To extend Production Reporting in this way, you must prepare the functions, “tell” Production
Reporting about them, and then link the objects (and libraries) with the Production Reporting
objects and libraries to form a new Production Reporting executable. The new Production

Extending Production Reporting—UFUNC.C 171

Reporting executable recognizes the new functions as if they were standard Production
Reporting functions.

For detailed information on writing custom functions using UFUNC.C, see “Writing Custom
Functions” in Volume 2 of the Production Reporting Developer's Guide.

ufunc on the Windows Platform
On the Windows platform, ufunc resides in SQREXT.DLL. You can rebuild SQREXT.DLL using
any language or tool, as long as the appropriate calling protocol is maintained. The source code
for SQREXT.DLL is included in the shipped package (EXTUFUNC.C).

When SQR.DLL and SQRT.DLL are loaded, they look for SQREXT.DLL in the same directory
and for any DLLs specified in the [SQR Extension] section in SQR.INI. If SQR.DLL and
SQRT.DLL find SQREXT.DLL and the DLLs specified in the SQR.INI file, they make the
following calls in the DLLs, passing the instance handle (of the calling module) and three function
pointers:

 void InitSQRExtension (
 HINSTANCE hInstance,
 FARPROC lpfnUFuncRegister,
 FARPROC lpfnConsole,
 FARPROC lpfnError
);

Implementing New User Functions on the Windows Platform
You can implement new user functions in SQREXT.DLL or any other extension DLL. The
extension DLLs must have the InitSQRExtension() function exported. If you choose to
implement user functions in SQREXT.DLL, you should rebuild the DLL using the supplied make
file, SQREXT.MAK. If new extension DLLs containing new user functions are to be used, they
must be listed in the [SQR Extension] section in SQR.INI in the SYSTEM directory.

For any ufunc, you must register it by making the following call in InitSQRExtension().

lpfnUFuncRegister(struct ufnns* ufunc);

The function pointer lpfnUFuncRegister is passed in from the calling module. See EXTUFUNC.C
for the definition of struct ufnns and the sample user functions.

XML Support in Production Reporting
XML support in Production Reporting is provided through the DataDirect Connect for ODBC
XML driver. This driver supports tabular and hierarchical-formatted XML documents accessed
from local file systems, web servers, and web services.

The XML driver supports three main types of tabular-formatted files; namely, Microsoft Data
Islands, ADO 2.5 persisted files, and DataDirect Formats. The XML driver runs in Windows
environments, and includes an SQL Engine that provides ANSI SQL-92 support.

172 Interoperability

For detailed information on the ODBC XML Driver provided by DataDirect, refer to the
DataDirect documentation installed with the ODBC driver. To access this documentation, open
books.pdf found in:

<hyperion_home>\common\ODBC\Merant\5.2\books\odbc

After you open books.pdf, you can access any of the following DataDirect guides:

● Installation Guide

● User's Guide

● Reference

● Troubleshooting Guide

XML Support in Production Reporting 173

174 Interoperability

27
Testing and Debugging

In This Chapter

Using the Test Feature ... 175

Using the #DEBUG Command ... 176

Using Compiler Directives for Debugging ... 176

Common Programming Errors.. 177

Using the Test Feature
During the development of an Production Reporting program, you frequently test it by running
it and examining its output. In many cases, you are only interested in the first few pages of the
report.

To speed the cycle of running and viewing a few pages, use the -T command-line flag. The -T
flag lets reports finish more quickly because all BEGIN-SELECT and ORDER BY clauses are
ignored. The database does not sort the data and the first set of records are selected sooner. Enter
the desired number of test pages after the -T flag. For example, -T6 causes the program to stop
after creating six pages of output.

Note:

If your program contains break logic, the breaks can occur in unexpected locations because the
ORDER BY clause is ignored.

To test a report file called customer.sqr, enter the following command:

sqr customer username/password -T3

The -T3 flag specifies that the program stops running after 3 pages are produced.

When the test completes successfully, check it by displaying the output file on your screen or
printing it. The default name of the output file is the same as the program file with the extension
LIS. For example, if your report is named customer.sqr, the output file is named customer.lis.

If you are using SQR Production Reporting Studio, select Limit to nn pages in the Run dialog
box.

When the development of your program is complete, run it without the -T flag. Your program
processes all ORDER BY clauses and run to completion. If the program creates multiple reports,
the -T flag restriction applies only to the first report.

Using the Test Feature 175

Using the #DEBUG Command
When debugging a program it is useful to:

● Display data or show when a procedure or query executes by using temporary SHOW or
DISPLAY commands in key places in the program.

● Isolate problem areas by temporarily skipping the parts of the program that work correctly.

● Temporarily cause additional behavior in questionable areas of the program. For example,
display or modify variables that you suspect are causing a problem.

Production Reporting provides the #DEBUG command to help you make temporary changes to
your code. You can use the #DEBUG command to conditionally process portions of your program.

Precede the command with #DEBUG, as shown here:

#debug display $s

When the #DEBUG precedes a command, that command is processed only if the -DEBUG flag is
specified on the Production Reporting command line. In this example, the value of $s is
displayed only when you run the program with -DEBUG.

You can achieve debug multiple commands by using up to 36 letters or digits to differentiate
between them. Indicate which command is to be debugged on the -DEBUG flag, as shown here:

sqr myreport username/password -DEBUGabc

In this example, commands preceded by #DEBUG, #DEBUGa, #DEBUGb, or #DEBUGc are
compiled when the program is executed. Commands preceded with #DEBUGd are not compiled
because d was not specified in the -DEBUG command-line flag.

Using Compiler Directives for Debugging
You can conditionally compile entire sections of your program using the five compiler directives:

● #IF

● #ELSE

● #END-IF or #ENDIF

● #IFDEF

● #IFNDEF

You can use the value of a substitution variable, declared by a #DEFINE command, to turn on
or off a set of statements, as shown here:

#define DEBUG_SESSION Y
#if DEBUG_SESSION = 'Y'
begin-procedure dump_array
 let #i = 0
 while #i < #counter
 ! Get data from the array
 get $state $city $name $phone from customer_array(#i)
 print $state (,1)
 print $city (,7)

176 Testing and Debugging

 print $name (,24)
 print $phone (,55)
 position (+1)
 add 1 to #i
 end-while
end-procedure ! dump_array
#end-if

The dump_array procedure is only used for debugging. By defining DEBUG_SESSION as Y, the
dump_array procedure is included in the program. Later, you can change DEBUG_SESSION to
N and exclude the dump_array procedure from the program. The #IF command in this example
is case-insensitive.

Common Programming Errors
The most common programming error using Production Reporting is mistyping variable names.
Because Production Reporting does not require variables to be declared, it does not issue an
error message when variables names are mistyped. Instead, Production Reporting considers the
mistyped variable as if it is another variable.

For example:

let #customer_access_code = 55
print #customer_acess_code ()

This example will not print 55 because we mistyped the variable name. Can you see the typo?
One c in acess on the PRINT command is missing.

Another problem relates to global versus local variables. If you refer to a global variable in a local
procedure without preceding it with an underscore, Production Reporting does not issue an
error message. Instead, it is a new local variable name. For example:

begin-procedure main
 let $area = 'North'
 do proc
end-procedure ! main
begin-procedure proc local
 print $area () ! Should be $_area
end-procedure

In this example, the local procedure proc prints the value of the local variable $area and not the
global variable $area. It prints nothing because the local $area variable did not receive a value.
To refer to the global variable, use $_area.

Such small errors are hard to detect because Production Reporting considers
#customer_acess_code as simply another variable with a value of zero.

Common Programming Errors 177

178 Testing and Debugging

28
Performance and Tuning

In This Chapter

About Performance and Tuning ... 179

Simplifying a Complex SELECT... 179

Using LOAD-LOOKUP to Simplify Joins... 180

Improving SQL Performance with Dynamic SQL... 181

Examining SQL Cursor Status ... 182

Avoiding Temporary Database Tables ... 183

Creating Multiple Reports in One Pass... 189

Tuning Production Reporting Numerics .. 189

Compiling Production Reporting Programs and Using Production Reporting Execute ... 190

Buffering Fetched Rows ... 190

Executing Programs on the Database Server .. 191

About Performance and Tuning
Performance considerations are an important aspect of application development. This chapter
examines some of the issues that affect the performance of Production Reporting programs. This
chapter also describes certain Production Reporting capabilities that can help you write high-
performance programs

Whenever your program contains a BEGIN-SELECT, BEGIN-SQL, or EXECUTE command, it
performs an SQL statement. Processing SQL statements typically consumes significant
computing resources. Tuning SQL statements typically yields higher performance gains than
tuning any other part of your program.

General tuning of SQL is outside the scope of this book. Tuning SQL is often specific to the type
of database that you are using—tuning SQL statements for an ORACLE database may differ
from tuning SQL statements for DB2. This chapter focuses on Production Reporting tools for
simplifying SQL statements and reducing the number of SQL executions.

Simplifying a Complex SELECT
With relational database design, information is often “normalized” by storing data entities in
separate tables. To display the normalized information, you must write a SELECT statement that

About Performance and Tuning 179

joins these tables together. With many database systems, performance suffers when you join
more than three or four tables in one SELECT.

With Production Reporting, you can perform multiple SELECT statements and nest them as we
saw in Chapter 8, “Master/Detail Reports.” In this way, you can break a large join into several
simpler SELECTS. For example, a SELECT statement that joins orders and products tables can be
broken into two SELECTS. The first SELECT retrieves the orders in which we are interested. For
each order retrieved, a second SELECT retrieves the products that were ordered. The second
SELECT is correlated to the first SELECT by having a condition such as:

where order_num = &order_num

This condition specifies that the second SELECT only retrieves products for the current order.

Similarly, if your report is based on products ordered, you can make the first SELECT retrieve
the products, and make the second SELECT retrieve the orders for each product.

This method improves performance in many cases, but not all. To achieve the best performance,
experiment with the alternatives.

Using LOAD-LOOKUP to Simplify Joins
Database tables often contain key columns such as a product code or customer number. To
retrieve a certain piece of information, you join two or more tables that contain the same column.
For example, to obtain a product description, you can join the orders table with the products
table, using the product_code column as the key.

With LOAD-LOOKUP, you can reduce the number of tables that are joined in one SELECT. Use
this command in conjunction with one or more LOOKUP commands.

The LOAD-LOOKUP command defines an array containing a set of keys and values and loads it
into memory. The LOOKUP command looks up a key in the array and returns the associated
value. In some programs, this technique performs better than a conventional table join.

LOAD-LOOKUP can be used in the SETUP section or in a procedure. If used in the SETUP section,
it is processed only once. If used in a procedure, it is processed each time it is encountered.

LOAD-LOOKUP retrieves two fields from the database, the KEY field and the RETURN_VALUE field.
Rows are ordered by KEY and stored in an array. The KEY field must be unique and contain no
NULL values.

When the LOOKUP command is used, the array is searched (using a “binary” search) to find the
RETURN_VALUE field corresponding to the KEY referenced in the lookup.

The following sample code illustrates LOAD-LOOKUP and LOOKUP:

begin-setup
 load-lookup
 name=prods
 table=products
 key=product_code
 return_value=description
end-setup
...

180 Performance and Tuning

begin-select
order_num (+1,1)
product_code
 lookup prods &product_code $desc
 print $desc (,15)
from orderlines
end-select

In this example, LOAD-LOOKUP loads an array with the product_code and description columns
from the products table. The lookup array is named prods. The product_code column is the key
and the description column is the return value. In the SELECT paragraph, a LOOKUP on the
prods array retrieves the description for each product_code. This technique eliminates joining the
products table in the SELECT.

If the ordlines and products tables were simply joined in the SELECT (without LOAD-LOOKUP),
the code would look like this:

begin-select
order_num (+1,1)
ordlines.product_code
description (,15)
from ordlines, products
where ordlines.product_code = products.product_code
end-select

Which is faster, a database join or LOAD-LOOKUP? It depends on your program. LOAD-
LOOKUP improves performance in the following situations:

● When it is used with multiple SELECTS

● When it keeps the number of tables being joined from exceeding three or four

● When the number of entries in the LOAD-LOOKUP table is small compared to the number
of rows in the SELECT, and they are used often

● When most entries in the LOAD-LOOKUP table are used

Tip:

You can concatenate columns if you want RETURN_VALUE to return multiple columns. The
concatenation symbol is database-specific.

Improving SQL Performance with Dynamic SQL
Chapter 17, “Dynamic SQL and Error Checking,” explained how to use dynamic SQL variables.
Dynamic SQL can also be used in some situations to simplify a SQL statement and gain
performance.

begin-select
order_num
from orders, customers
where order.customer_num = customers.customer_num
and ($state = 'CA' and order_date > $start_date
 or $state != 'CA' and ship_date > $start_date)

Improving SQL Performance with Dynamic SQL 181

end-select

In this example, a given value of $state, order_date or ship_date is compared to $start_date. The
OR operator in the condition makes such multiple comparisons possible. With most databases,
an OR operator slows processing. It can cause the database to perform more work than necessary.

However, the work can be done with a simpler SELECT. For example, if $state is ‘CA,’ the
following SELECT would work:

begin-select
order_num
from orders, customers
where order.customer_num = customers.customer_num
and order_date > $start_date
end-select

Dynamic SQL allows you to check the value of $state and create the simpler condition:

if $state = 'CA'
 let $datecol = 'order_date'
else
 let $datecol = 'ship_date'
end-if
begin-select
order_num
from orders, customers
where order.customer_num = customers.customer_num
and [$datecol] > $start_date
end-select

The substitution variable [$datecol] substitutes the name of the column to be compared with
$state_date. The SELECT is simpler and no longer uses an OR. In most cases, this use of dynamic
SQL improves performance.

Examining SQL Cursor Status
Because Production Reporting programs select and manipulate data from a SQL database, it is
helpful to understand how Production Reporting handles SQL statements and queries.

Production Reporting programs can perform multiple SQL statements. Moreover, the same SQL
statement can be executed many times.

When your program executes, a pool of SQL statement handles—called cursors—is maintained.
A cursor is a storage location for one SQL statement, for example, SELECT, INSERT, or
UPDATE. Every SQL statement uses a cursor for processing. A cursor holds the context for the
execution of a SQL statement.

The cursor pool consists of 30 cursors, and its size cannot be changed. When a SQL statement
is re-executed, its cursor can be immediately reused if it is still in the cursor pool. When your
Production Reporting program executes more than 30 SQL statements, cursors in the pool are
reassigned.

To examine how cursors are managed, use the -S command-line flag. This flag causes cursor
status information to be displayed at the end of a run.

182 Performance and Tuning

The following information is displayed for each cursor:

Cursor #nn:
SQL = <SQL statement>
Compiles = nn
Executes = nn
Rows = nn

The listing also includes the number of compiles, which vary according to the database and the
complexity of the query. With Oracle, for example, a simple query is compiled only once. With
Sybase, a SQL statement is compiled before it is first executed and recompiled for the purpose
of validation during the Production Reporting compile phase. Therefore, you may see two
compiles for a SQL statement. Later when the SQL is re-executed, if its cursor is found in the
cursor pool, it can proceed without recompiling.

Avoiding Temporary Database Tables
Programs often use temporary database tables to hold intermediate results. Creating, updating,
and deleting database temporary tables is a very resource-consuming task, however, and can
hurt your program’s performance. Production Reporting provides two alternatives to using
temporary database tables.

The first alternative is to store intermediate results in an Production Reporting array. The second
is to store intermediate results in a local flat file. Both techniques can bring about a significant
performance gain. You can use the Production Reporting language to manipulate data stored
in an array or a flat file.

These two methods are explained and demonstrated in the following sections. Methods for
sorting data in Production Reporting arrays or flat files are also explained.

Using and Sorting Arrays
Chapter 9, “Cross-Tabular Reports,” introduced the array as a means of holding data records
during program execution.

An Production Reporting array can hold as many records as can fit in memory. During the first
pass, when records are retrieved from the database, you can store them in the array. Subsequent
passes on the data can be made without additional database access.

The following code retrieves records, prints them, and saves them into an array named
customer_array:

create-array name=customer_array size=1000
 field=state:char field=city:char
 field=name:char field=phone:char
let #counter = 0
begin-select
state (,1)
city (,7)
name (,24)
phone (,55)

Avoiding Temporary Database Tables 183

 position (+1)
 put &state &city &name &phone into customer_array(#counter)
 add 1 to #counter
from customers
end-select

This example creates an array named customer_array. The array has four fields that correspond
to the four columns selected from the customers table, and it can hold up to 1,000 rows. If you
anticipate that the customers table has more than 1,000 rows, use the EXTENT argument in the
CREATE-ARRAY command to allow the ray to grow. (See “CLEAR-ARRAY” in Volume 2 of the
Production Reporting Developer's Guide.)

The SELECT prints the data. The PUT command then stores the data in the array. Chapter 9,
“Cross-Tabular Reports,” showed how to use the LET command to assign values to array fields.
The PUT command performs the same work, but with fewer lines of code. With PUT, you can
assign all four fields in one command.

The #counter variable serves as the array subscript. It starts with zero and maintains the subscript
of the next available entry. At the end of the SELECT, the value of #counter is the number of
records in the array.

The next piece of code retrieves the data from customer_array and prints it:

let #i = 0
while #i < #counter
 get $state $city $name $phone from customer_array(#i)
 print $state (,1)
 print $city (,7)
 print $name (,24)
 print $phone (,55)
 position (+1)
 add 1 to #i
end-while

In this piece of code, #i goes from 0 to #counter-1. The fields from each record are moved into
the corresponding variables $name, $city, $state, and $phone. These values are then printed.

Sorting
In many cases, intermediate results must be sorted by another field. Program ex24a.sqr shows
how to sort customer_array by name. The program uses a well-known sorting algorithm called
QuickSort. You can copy this code into your program, make appropriate changes, and use it to
sort your array. For further information on QuickSort, see the book Fundamentals of Data
Structures by Horowitz and Sahni, 1983.

Program ex24a.sqr
#define MAX_ROWS 1000
begin-setup
create-array name=customer_array size={MAX_ROWS}
 field=state:char field=city:char
 field=name:char field=phone:char
!
! Create a helper array that is used in the sort

184 Performance and Tuning

!
create-array name=QSort size={MAX_ROWS}
 field=n:number field=j:number
end-setup
begin-program
 do main
end-program
begin-procedure main
let #counter = 0
!
! Print customers sorted by state
!
begin-select
state (,1)
city (,7)
name (,24)
phone (,55)
 position (+1)
 ! Put data in the array
 put &state &city &name &phone into customer_array(#counter)
 add 1 to #counter
from customers
order by state
end-select
position (+2)
!
! Sort customer_array by name
!
let #last_row = #counter - 1
do QuickSort(0, 0, #last_row)
!
! Print customers (which are now sorted by name)
!
let #i = 0
while #i < #counter
 ! Get data from the array
 get $state $city $name $phone from customer_array(#i)
 print $state (,1)
 print $city (,7)
 print $name (,24)
 print $phone (,55)
 position (+1)
 add 1 to #i
end-while
end-procedure ! main
!
! QuickSort
!
! Purpose: Sort customer_array by name.
! This is a recursive function. Since Production Reporting does not
allocate
! local variables on a stack (they are all static), this
! procedure uses a helper array.
!
! #level - Recursion level (used as a subscript to the helper
! array)
! #m - The "m" argument of the classical QuickSort

Avoiding Temporary Database Tables 185

! #n - The "n" argument of the classical QuickSort
!
begin-procedure QuickSort(#level, #m, #n)
 if #m < #n
 let #i = #m
 let #j = #n + 1
 ! Sort key is "name"
 let $key = customer_array.name(#m)
 while 1
 add 1 to #i
 while #i <= #j and customer_array.name(#i) < $key
 add 1 to #i
 end-while
 subtract 1 from #j
 while #j >= 0 and customer_array.name(#j) > $key
 subtract 1 from #j
 end-while
 if #i < #j
 do QSortSwap(#i, #j)
 else
 break
 end-if
 end-while
 do QSortSwap(#m, #j)
 add 1 to #level
 ! Save #j and #n
 let QSort.j(#level - 1) = #j
 let QSort.n(#level - 1) = #n
 subtract 1 from #j
 do QuickSort(#level, #m, #j)
 ! restore #j and #n
 let #j = QSort.j(#level - 1)
 let #n = QSort.n(#level - 1)
 add 1 to #j
 do QuickSort(#level, #j, #n)
 subtract 1 from #level
 end-if
end-procedure ! QuickSort
!
!
! QSortSwap
!
! Purpose: Swaps records #i and #j of customer_array
!
! #i - Array subscript
! #j - Array subscript
!
begin-procedure QSortSwap(#i, #j)
 get $state $city $name $phone from customer_array(#i)
 let customer_array.state(#i) = customer_array.state(#j)
 let customer_array.city(#i) = customer_array.city(#j)
 let customer_array.name(#i) = customer_array.name(#j)
 let customer_array.phone(#i) = customer_array.phone(#j)
 put $state $city $name $phone into customer_array(#j)
end-procedure ! QSortSwap

186 Performance and Tuning

The QuickSort algorithm uses a recursive procedure, thus it calls itself. Production Reporting
maintains only one copy of the procedure’s local variables. In QuickSort the variables #j and
#n are overwritten when QuickSort calls itself.

For the algorithm to work properly, the program must save the values of these two variables
before making the recursive call, then restore those values when the call completes. QuickSort
can call itself recursively many times, so the program may save many copies of #j and #n. To do
this, add a #level variable that maintains the depth of recursion. In this example, a helper array,
Qsort, is used to hold multiple values of #j and #n.

The QuickSort procedure takes three arguments. The first is the recursion level (or depth), which
is #level, as previously described. The second and third arguments are the beginning and end of
the range of rows to be sorted. Each time QuickSort calls itself, the range gets smaller. The main
procedure starts QuickSort by calling it with the full range of rows.

The QSortSwap procedure swaps two rows in customer_array. Typically, rows with a lower key
value are moved up.

The procedures QuickSort and QSortSwap in ex24a.sqr refer to customer_array and its fields. If
you plan to use these procedures to sort an array in your applications, change these references
to the applicable array and fields. The QuickSort procedure sorts in ascending order.

QuickSort and National Language
The QuickSort procedure does not support National Language Sensitive character string sort.
The comparisons

while #i <= #j and customer_array.name(#i) < $key
and
while #j >= 0 and customer_array.name(#j) > $key

are simple string comparisons. They work well for US ASCII English, but they may not sort
correctly with other languages. For such languages, write a National Language Sensitive character
string comparison and add that to Production Reporting. Chapter 26,
“Interoperability,”explains how to add functions to Production Reporting. You can modify the
QuickSort procedure as follows.

while #i <= #j and NLS_STRING_COMPARE(customer_array.name(#i),$key)
while #j >= 0 and NLS_STRING_COMPARE($key,customer_array.name(#j))

Using and Sorting Flat Files
An alternative to an array is a flat file. You can use a flat file when the required array size exceeds
available memory. As is the case with an array, you may need a sorting utility that supports NLS.

The sample code in the previous section can be rewritten to use a file instead of an array. The
advantage of using a file is that the program is not constrained by the amount of memory that
is available. The disadvantage of using a file is that the program will perform more I/O. However,
it may still be faster than performing another SQL statement to retrieve the same data.

This program uses the UNIX sort utility to sort the file by name. This example can be extended
to include other operating systems.

Avoiding Temporary Database Tables 187

The following code is rewritten to use the file cust.dat instead of the array.

Program ex 24b.sqr
begin-program
 do main
end-program
begin-procedure main
!
! Open cust.dat
!
open 'cust.dat' as 1 for-writing record=80:vary
begin-select
state (,1)
city (,7)
name (,24)
phone (,55)
 position (+1)
 ! Put data in the file
 write 1 from &name:30 &state:2 &city:16 &phone:10
from customers
order by state
end-select
position (+2)
!
! Close cust.dat
close 1
! Sort cust.dat by name
!
call system using 'sort cust.dat > cust2.dat' #status
if #status <> 0
 display 'Error in sort'
 stop
end-if
!
! Print customers (which are now sorted by name)
!
open 'cust2.dat' as 1 for-reading record=80:vary
while 1 ! loop until break
 ! Get data from the file
 read 1 into $name:30 $state:2 $city:16 $phone:10
 if #end-file
 break ! End of file reached
 end-if
 print $state (,1)
 print $city (,7)
 print $name (,24)
 print $phone (,55)
 position (+1)
end-while
!
! close cust2.dat
close 1
end-procedure ! main

The program starts by opening a file cust.dat.

open 'cust.dat' as 1 for-writing record=80:vary

188 Performance and Tuning

The OPEN command opens the file for writing and assigns it file number 1. You can open as
many as 12 files in one Production Reporting program. The file is set to support records of
varying length with a maximum of 80 bytes (characters). For this example, you could also use
fixed-length records.

As the program selects records from the database and prints them, it writes them to cust.dat.

write 1 from &name:30 &state:2 &city:16 &phone:10

The WRITE command writes the four columns into file number 1—the currently open cust.dat.
It writes the name first, which makes it easier to sort the file by name. The program writes fixed-
length fields—for example, &name:30 specifies that the name column uses 30 characters. If the
name is shorter, it is padded with blanks. When the program has finished writing data to the
file, it closes the file using the CLOSE command.

The file is sorted with the UNIX sort utility.

call system using 'sort cust.dat > cust2.dat' #status

The command sort cust.dat > cust2.dat is sent to the UNIX system. It invokes the UNIX
sort command to sort cust.dat and direct the output to cust2.dat. The completion status is saved
in #status; a status of 0 indicates success. Because name is at the beginning of each record, the
file is sorted by name.

Next, we open cust2.dat for reading. The command

read 1 into $name:30 $state:2 $city:16 $phone:10

reads one record from the file and places the first 30 characters in $name. The next two characters
are placed in $state and so on. When the end of the file is encountered, the reserved variable
#end-file is automatically set to 1 (true). The program checks for #end-file and breaks out of the
loop when the end of the file is reached. Finally, the program closes the file using the CLOSE
command.

Creating Multiple Reports in One Pass
Sometimes you must create multiple reports that are based on the same data. In many cases,
these reports are similar, with only a difference in layout or summary. Typically, you can create
multiple programs and even reuse code. However, if each program is executed separately, the
database has to repeat the query. Such repeated processing is often unnecessary.

With Production Reporting, one program can create multiple reports simultaneously. In this
method, one program creates multiple reports, making just one pass on the data, greatly reducing
the amount of database processing. The multiple report feature of Production Reporting is
described in Chapter 19, “Multiple Reports.”

Tuning Production Reporting Numerics
Production Reporting provides three types of numeric values:

● Machine floating point numbers

Creating Multiple Reports in One Pass 189

● Decimal numbers

● Integers

Machine floating point numbers are the default. They use the floating point arithmetic provided
by the hardware. This method is very fast. It uses binary floating point and normally holds up
to 15 digits of precision.

Some accuracy can be lost when converting decimal fractions to binary floating point numbers.
To overcome this loss of accuracy, you can sometimes use the ROUND option of commands such
as ADD, SUBTRACT, MULTIPLY, and DIVIDE. You can also use the round function of LET or
numeric edit masks that round the results to the desired precision.

Decimal numbers provide exact math and precision of up to 38 digits. Math is performed in
software. This is the most accurate method, but also the slowest.

Integers can be used for numbers that are known to be integers. Several benefits exist for using
integers: They enforce the integer type by not allowing fractions, and they adhere to integer rules
when dividing numbers. Integer math is also the fastest, typically faster than floating point
numbers.

If you use the DECLARE-VARIABLE command, the -DNT command-line flag, or the DEFAULT-
NUMERIC entry in the [Default-Settings] section of the SQR.INI file, you can choose the type of
numbers that Production Reporting uses. Moreover, you can select the type for individual
variables in the program with the DECLARE-VARIABLE command. When you choose decimal
numbers, you can also specify the desired precision.

Selecting the numeric type for variables allows you to fine-tune the precision of numbers in your
program. For most applications, however, this type of tuning does not yield a significant
performance improvements and we recommend selecting decimal. The default is machine
floating point to provide compatibility with older releases of the product.

Compiling Production Reporting Programs and Using Production
Reporting Execute

Compiling your Production Reporting program can improve its performance. The compiled
program is stored in a run-time (.SQT) file. You can then run it with Production Reporting
Execute. Your program runs faster because it skips the compile phase. This method is explained
in Chapter 29, “Compiling Programs and Using Production Reporting Execute .”

Buffering Fetched Rows
When a BEGIN-SELECT command is executed, records are fetched from the database server. To
improve performance, they are fetched in groups rather than one at a time. The default is groups
of 10 records. The records are buffered, and your program processes these records one at a time.
A database fetch operation is therefore performed after every 10 records, instead of after every
single record. This is a substantial performance gain. If the database server is on another
computer, then network traffic is also significantly reduced.

190 Performance and Tuning

The number of records to fetch together can be modified using the -B command-line flag or for
an individual BEGIN-SELECT command using its -B option. In both cases, you specify the
number of records to be fetched together. For example -B100 specifies that records be fetched
in groups of 100. Thus, the number of database fetch operations is further reduced.

This feature is currently available with Production Reporting for ODBC and Production
Reporting for the Oracle or Sybase databases.

Executing Programs on the Database Server
You can reduce network traffic and greatly improve performance by running Production
Reporting programs directly on the database server machine. The Production Reporting product
is available on many server platforms including Windows and UNIX.

Executing Programs on the Database Server 191

192 Performance and Tuning

P a r t V

Running and Printing

In Running and Printing:

● Compiling Programs and Using Production Reporting Execute
● Printing Issues
● Using the Production Reporting Command Line
● Working with HTML
● Tables of Contents
● Customizing the HTML Navigation Bar

Running and Printing 193

194 Running and Printing

29
Compiling Programs and Using
Production Reporting Execute

This chapter explains how to save and run compiled versions of Production Reporting programs.

For the user, running a Production Reporting program is a one-step process. For Production
Reporting, however, there are two steps—compiling the program and executing it. When
compiling a program, Production Reporting:

● Reads, interprets, and validates the program

● “preprocesses” substitution variables and certain commands—ASK, #DEFINE, #INCLUDE,
#IF, and #IFDEF

● Validates SQL statements

● Performs the SETUP section

Production Reporting allows you to save the compiled version of a program and use it when
you rerun a report. That way, you perform the compile step only once and skip it in subsequent
runs. Note that Production Reporting does not compile the program into machine language.
Production Reporting creates a ready-to-execute version of your program that is compiled and
validated. This file is portable between hardware platforms.

The steps are simple. Run the Production Reporting executable (sqr) against your Production
Reporting program file and include the -RS command-line flag to save the run-time file.
Production Reporting creates a file with a file name extension of .sqt. You should enter something
similar to:

sqr ex1a.sqr sammy/baker@rome -RS

Run the Production Reporting executable (sqr) with the -RT command-line flag to execute the.
SQT file. Execution is faster because the program is compiled. An example of this is as follows:

sqr ex1a.sqt sammy/baker@rome -RT

The Production Reporting product distribution includes Production Reporting Execute (the
SQRT program). Production Reporting Execute is capable of running .sqt files, but does not
include the code that compiles an Production Reporting program. (This program is equivalent
to running Production Reporting with -RT.) You can run the .sqt file by invoking Production
Reporting Execute from the command line with sqrt. An example of running Production
Reporting Execute from the command line is as follows:

sqrt ex1a.sqt sammy/baker@rome

It is important to realize that after you save the run-time (.sqt) file, Production Reporting no
longer performs any compile-time steps such as executing #IF, #INCLUDE, or ASK commands

195

or performing the SETUP section. These were performed at the time that the program was
compiled and the run-time file was saved.

You must make a clear distinction between what is performed at compile time and what is
performed at run time. Think of compile-time steps as defining what the report is. Commands
such as #IF or ASK allow you to customize your report at compile time. For run-time
customization, you should use commands such as IF and INPUT.

A list of Production Reporting features that apply at compile time and their possible run-time
equivalents follows. In some cases, no equivalent exists and you have to work your way around
the limitation. For example, you may have to use substitution variables with commands that
require a constant and do not allow a variable. We demonstrated this solution in Chapter 16,
“Writing Printer-Independent Reports,” where we worked around the limitation of the
USE-PRINTER-TYPE command, which does not accept a variable as an argument.

Table 6 Compile-time Commands and Run-time Equivalents

Compile Time Run Time

Substitution variables Use regular Production Reporting variables If you are substituting parts of a SQL
statement, use dynamic SQL instead See Chapter 17, “Dynamic SQL and Error
Checking.”

ASK INPUT

#DEFINE LET

#IF IF

INCLUDE No equivalent

DECLARE-LAYOUT, margins No equivalent

Number of heading or footing lines ALTER-REPORT

DECLARE-CHART PRINT-CHART

DECLARE-IMAGE PRINT-IMAGE

DECLARE-PROCEDURE USE-PROCEDURE

DECLARE-PRINTER ALTER-PRINTER (where possible)

USE (Sybase only) -DB command-line flag

Tip:

See “Production Reporting Command-line Arguments” in Volume 2 of the Production Reporting
Developer's Guide for a list of the flags that you can use with Production Reporting Execute.

196 Compiling Programs and Using Production Reporting Execute

30
Printing Issues

In This Chapter

Printing in Production Reporting ... 197

Command-Line Flags and Output Types ... 197

DECLARE-PRINTER Command ... 198

Naming the Output File.. 199

Print Commands by Operating System.... 200

Printing in Production Reporting
This chapter discusses technical issues relevant to printing. Except on the Microsoft Windows
platform, Production Reporting does not actually print the report. Production Reporting creates
an output file that contains the report, but it does not print it directly. The output file can be a
printer-specific file or an SQR Portable File (SPF). SQR Portable Files have a default extension
of SPF or SNN (for multiple reports).

Command-Line Flags and Output Types
Table 7 summarizes Production Reporting command-line flags that produce a certain type of
output and the types of output they produce.

Table 7 Command Line Flags and Output Types

Command Line Flag Output File Extension File Format Suitable for

-PRINTER:EH htm Enhanced HTML Intranet/Internet

-PRINTER:HP lis PCL HP LaserJet printer

-PRINTER:HT htm HTML Intranet/Internet

-PRINTER:LP lis ASCII Line printer

-PRINTER:PD pdf PDF Acrobat Reader

-PRINTER:PS lis PostScript PostScript printer

-PRINTER:WP Output goes directly to the
default printer without being

 Windows

Printing in Production Reporting 197

Command Line Flag Output File Extension File Format Suitable for

saved to a file You can set
your default printer using the
Windows Control Panel

-NOLIS spf or snn SQR Portable Format Production Reporting Print
and Production Reporting
Viewer can print this file to
different printers

-KEEP spf or snn (in addition to the
lis file that is normally
created)

SQR Portable Format and
the format of the lis file

Production Reporting Print
and Production Reporting
Viewer can print this spf file to
different printers

No flag lis ASCII, PCL, or PostScript Line printer, HP LaserJet, or
PostScript, respectively

Note:

When no flags are specified, Production Reporting produces a line printer output unless
otherwise set in the Production Reporting program with DECLARE-PRINTER, USE-PRINTER-
TYPE, or the PRINTER-TYPE option of DECLARE-REPORT.

SQr portable File (spf) is a printer-independent file format that allows for the Production
Reporting graphical features, including fonts, lines, boxes, shaded areas, charts, bar codes, and
images.

This file format is very useful for saving the output of a report. SPF files can be distributed
electronically and read with the Production Reporting Viewer. Producing SPF output also allows
you to decide later where to print it. When you are ready to print an SPF file, you can do so with
the Production Reporting Viewer or Production Reporting Print.

DECLARE-PRINTER Command
DECLARE-PRINTER specifies printer-specific settings for the printers that Production Reporting
supports: line printer, PostScript, HP LaserJet, and HTML. DECLARE-PRINTER does not cause
the report to be produced for a specific printer. To specify a specific format, use one of three
methods:

● Use the -PRINTER:xx command-line flag. For example -PRINTER:PS causes Production
Reporting to produce a PostScript output. If your program creates multiple reports, such
as the program ex18a.sqr from Chapter 19, “Multiple Reports,” the -PRINTER:xx flag effects
all reports.

● Use the USE-PRINTER-TYPE command in your report. You must use this command before
you print anything because Production Reporting cannot switch printer type in the middle
of a program. USE-PRINTER-TYPE PS, for example, causes Production Reporting to
produce PostScript output.

198 Printing Issues

● Use the PRINTER-TYPE option of the DECLARE-REPORT command. DECLARE-REPORT is
normally used when your program generates multiple reports. See Chapter 19, “Multiple
Reports.”

For example:

declare-report labels
 layout=labels
 printer-type=ps
end-declare

causes Production Reporting to produce PostScript output for the labels report.

DECLARE-PRINTER defines settings for line printers, PostScript printers, or HP LaserJet printers.
Specify the type of printer using the type option in DECLARE-PRINTER or one of the predefined
printers: DEFAULT-LP, DEFAULT-PD, DEFAULT-PS, DEFAULT-HP, and DEFAULT-HT.

Your program may have multiple DECLARE-PRINTER commands if you define settings for each
of the printer types. Printer settings only take effect when output is produced. When your
program generates multiple reports, you can define settings for each printer for each report. To
make DECLARE-PRINTER apply to a report, use the FOR-REPORTS option.

Naming the Output File
The output file normally shares the name of your program, but with another file extension.

Printers File Extension

PDF (pd) pdf

PostScript (PS) lis

HP Laserjet (HP) lis

Line Printer (LP) lis

SQR Portable File spf

To define another name for the output file (including a user-defined file extension), use the -F
option on the command line. For example, to define chapter1.out as the output of the program
ex1a.sqr, enter the following command:

sqr ex1a username/password -fchapter1.out

When your program creates multiple reports, name the output file by using multiple -F flags as
follows:

sqr ex20a username/password -flabel.lis -fletter.lis -flisting.lis

Note that you cannot directly name SPF files. You can still use the -F command-line flag to name
the file, but you cannot control the file name extension. For example:

sqr ex20a username/password -flabel.lis -fletter.lis -flisting.lis -nolis

Naming the Output File 199

Note:

Output file names differ if OUTPUT-FILE-MODE is set to LONG in SQR.INI. See “[Default-
Settings] Section” in the chanpter titled “SQR.INI” in Volume 2 of the Production Reporting
Developer's Guide for information.

The -NOLIS command-line flag causes Production Reporting to produce SPF files instead of
LIS files. The file names are label.spf, letter.s01, and listing.s02. Production Reporting supplies
file extensions such as these when your program generates multiple reports.

Operating systems require different techniques for printing the output. On platforms other than
Windows, if the output is in SPF format, you first use Production Reporting Print to create the
printer-specific file. For example, the following command invokes Production Reporting Print
to create a PostScript file myreport.lis from the output file myreport.spf:

sqrp myreport.spf -printer:ps

Note that this is a one-way conversion—an SPF file can be turned into a LIS file, but a LIS file
cannot be turned into an SPF file.

Print Commands by Operating System
Table 8 summarizes the commands and command-line options used to send report output to
the printer. Consult your operating system documentation for details.

Table 8 Print Commands by Operating System

O/S Command Command-Line Options

UNIX lp myreportlis

lp myreportlis -d

Use -D for printer destination You can use the UNIX
“at” command to schedule the printing time

UNIX BSD lpr myreportlis

Windows Production Reporting prints directly You can also
use Production Reporting Print or SQR Production
Reporting Studio

Use Oracle's Hyperion® SQR® Production
Reporting Studio, Production Reporting Viewer, or
Print Setup in Production Reporting Print to choose
a printer destination Use Production Reporting
Print to print multiple copies

You can also use the File Manager Copy command
to copy the file to the printer destination (for
example, lpt1)

Check with your system administrator about other procedures or commands applicable to
printing output files at your site.

200 Printing Issues

31
Using the Production Reporting

Command Line

In This Chapter

The Production Reporting Command Line ... 201

Specifying Command-Line Arguments ... 201

Using Batch Mode .. 204

The Production Reporting Command Line
Command-line flags can be entered on the command line to modify some aspect of program
execution or output. Command-line arguments are typically answers to requests (made in the
Production Reporting program by ASK or INPUT commands) for user input.

The syntax of the Production Reporting command line:

SQR [program] [connectivity] [flags ...] [args ...] [@file ...]

See “Production Reporting Command-Line Arguments” and “Production Reporting
Command-line Flags” in Volume 2 of the Production Reporting Developer's Guide for detailed
information the command-line arguments and flags that you can use with Production
Reporting.

Specifying Command-Line Arguments
You can pass an almost unlimited number of command-line arguments to Production Reporting
at run time. On some platforms, the operating system imposes a limit on the number of
arguments or the total size of the command line. Passing arguments is especially useful in
automated reports, such as those invoked by scripts or menu-driven applications.

You can pass arguments to Production Reporting on the command line, in files, or with the
environment variable SQRFLAGS. When you pass arguments in a file, reference the file name on
the command line and put one argument on each line of the file. You thus avoid any limits
imposed by the operating system.

To reference a file on the command line, precede its name with the at sign (@) as shown here:

sqr myreport sammy/baker arg1 arg2 @file.dat

In this example, arg1 and arg2 are passed to Production Reporting, followed by the file file.dat.
Each line in file.dat has an additional argument.

The Production Reporting Command Line 201

How Production Reporting Retrieves the Arguments
When ASK and INPUT execute, Production Reporting checks to see if you entered any arguments
on the command line or if an argument file is open. If either has happened, Production Reporting
uses this input instead of prompting the user. After the available arguments are used, subsequent
ASK or INPUT commands prompt the user for input. If INPUT is used with the BATCH-MODE
argument, Production Reporting does not prompt the user, but instead returns a status meaning
"No more arguments."

Production Reporting processes all ASK commands before INPUT commands.

Note:

If you compiled your Production Reporting program into an SQT file, ASK commands will have
been processed. Use INPUT instead.

Specifying Arguments and Argument Files
You can mix argument files with simple arguments, as shown here:

sqr rep2 sammy/baker 18 @argfile1.dat "OH" @argfile2.dat "New York"

This command line passes Production Reporting the number 18, the contents of argfile1.dat,
the value OH, the contents of argfile2.dat, and the value "New York", in that order.

The OH argument is in quotes to ensure that Production Reporting uses uppercase OH. When
a command-line argument is case-sensitive or contains spaces, it must be enclosed in quotes.
Arguments stored in files do not require quotes and cannot contain them; the strings with
uppercase characters and any spaces are passed to Production Reporting.

Using an Argument File
If you wanted to print the report on another printer with different characteristics, you could
save values for the page sizes, printer initializations, and fonts in separate files and use a
command-line argument to specify which file to use. For example, the following command line
passes the value 18 to Production Reporting:

sqr myreport sammy/baker 18

An #INCLUDE command in the report file chooses file printer18.dat based on the command-line
argument:

begin-setup
 ask num ! Printer number.
 #include 'printer{num}.dat' ! Contains #DEFINE
commands for
 ! printer and paper width and length
 declare-layout report
 paper-size =({paper_width} {paper_length})
 end-declare
end-setup

202 Using the Production Reporting Command Line

In this example, the ASK command assigns the value 18 to the variable num; 18 is a compile-
time argument. The #INCLUDE command then uses the value of num to include the file
printer18.dat, which could include commands similar to the following:

! Printer18.dat-definitions for printer in Bldg 4.
#define paper_length 11
#define paper_width 8.5
#define bold_font LS12755
#define light_font LS13377
#define init HM^J73011

Passing Command-Line Arguments—Other Approaches
Production Reporting examines an argument file for a program name, user name, or password
if none is provided on the command line. The following command line omits the program name,
user name, and password:

sqr @argfile.dat

The first two lines of the argument file for this example contain the program name and user
name/password:

myreport
sammy/baker
18
OH
...

If you do not want to specify the report name, user name, or password on the command line or
in an argument file, use the question mark (?). Production Reporting prompts the user to supply
these. For example:

sqr myreport ? @argfile.dat

In this example, the program prompts the user for the user name and password instead of taking
them from the first line in the argument file.

You can use multiple question marks on the command line, as shown here:

sqr ? ? @argfile.dat

In this example, the user is prompted for the program name and user name/password.

Note:

Production Reporting for Windows does not accept the Production Reporting program name
and database connectivity to be part of the argument file.

Reserved Characters
The hyphen (-) and at sign (@) characters have special meaning on the command line. The
hyphen precedes an Production Reporting flag, and the at sign precedes an argument file name.

Specifying Command-Line Arguments 203

To use either of these characters as the first character of a command-line argument, double the
character to indicate that it is a literal hyphen or at sign, as shown here:

sqr myreport ? --17 @argfile.dat @@X2H44

In this example, the double hyphen and double at sign are interpreted as single literal characters.

Creating an Argument File from a Report
You can create an argument file for one program from the output of another program. For
example, you could print a list of account numbers to the file acctlist.dat, then run a second
report with the following command:

sqr myreport sammy/baker @acctlist.dat

End acctlist.dat with a flag such as "END," as shown here:

123344
134455
156664
 ...
END

A Production Reporting program could use the numbers in acctlist.dat with an INPUT
command, as shown here:

begin-procedure get_company
next:
input $account batch-mode status = #status
 if #status = 3
 goto end_proc
 end-if
begin-select
cust_num, co_name, contact, addr, city, state, zip
 do print-page ! Print page with
 ! complete company data
from customers
where cust_num = $account
end-select
goto next ! Get next account number
end_proc:
end-procedure !get_company

Using Batch Mode
Production Reporting lets you run reports in batch mode in UNIX and Windows based operating
systems.

You can create UNIX shell (sh, csh, ksh) scripts or Windows command (CMD or BAT) files to
run Production Reporting. Include the Production Reporting command line in the file just as
you would type it at the keyboard.

204 Using the Production Reporting Command Line

32
Working with HTML

In This Chapter

Production Reporting Capabilities Available with HTML ... 205

Producing HTML Output .. 206

Generating Enhanced HTML... 207

Generating Standard HTML ... 217

“Bursting” and Demand Paging... 218

Using HTML Procedures in a Production Reporting Program.... 220

Modifying Existing Production Reporting Programs ... 229

Publishing Reports .. 231

Production Reporting Capabilities Available with HTML
The Production Reporting language has a rich set of available features, but some of these features
are not available for HTML output due to the limitations of that format.

The Production Reporting features supported under HTML include:

● Images

● Font sizing

The Production Reporting language specifies font sizes in points. HTML specifies font sizes
in a value from one to six. A point size specified in an Production Reporting program is
mapped into an appropriate HTML font size.

● Font styles

The bold and underline font styles are supported.

● Centering.

The Production Reporting features not currently supported for HTML output include:

● Font selection

● Bar codes

● Lines and boxes (Using -PRINTER:HT)

Production Reporting Capabilities Available with HTML 205

Producing HTML Output
Production Reporting can generate two types of HTML files – standard (HTML version 2.0)
and enhanced (XHMTL version 1.1). Standard HTML is produced internally by Production
Reporting. Enhanced HTML is produced by an external Java-based process.

Specifying the Output Type
Use -PRINTER:HT and -PRINTER:EH to specify the type of HTML output to produce.

● -PRINTER:HT is controlled by the PrinterHT setting in the SQR.INI file. If the
PrinterHT setting is set to Standard, -PRINTER:HT produces version 2.0 HTML files with
the report content inside of <PRE></PRE> tags. If the PrinterHT setting is set to Enhanced,
-PRINTER:HT is mapped to -PRINTER:EH, and produces version 1.1 XHTML tags.

For additional information on the PrinterHT setting in the SQR.INI file, see
“[Default-Settings] Section” in the chapter titled “SQR.INI” in Volume 2 of the Production
Reporting Developer's Guide.

● -PRINTER:EH produces reports in which content is fully formatted with version 1.1 XHTML
tags.

Following is an example of a command that uses -PRINTER:EH:

sqr myreport.sqr sammy/baker@rome -PRINTER:EH

Using HTML Procedures to Produce Output
You can use HTML procedures to produce output with a full set of HTML features. See “Using
HTML Procedures in a Production Reporting Program” on page 220 for detailed information.

Viewing HTML Output
When you use an Production Reporting program to generate HTML output, the output contains
HTML tags. An HTML tag is a character sequence that defines how information is displayed in
a Web browser.

HTML output looks something like this:

<HTML><HEAD><TITLE>myreport.lis</TITLE></HEAD><BODY>

This code is just a portion of the HTML output that Production Reporting generates. The tags
it contains indicate the start and end points of HTML formatting.

For example, in the HTML code shown above, the tag <HTML> defines the output that follows
as HTML output. The tags <TITLE> and </TITLE> enclose the report title—in this case,
myreport.lis. The <BODY> tag indicates that the information following it comprises the body
of the report.

206 Working with HTML

Output File Types
A Production Reporting report named myreport.sqr creates a FRAME file (myreport.htm) and
report output file(s). The OUTPUT-FILE-MODE entry in the [Default-Setting] section of the
SQR.INI file controls the report output file extensions. When set to SHORT, the report output
files use the form myreport.hzz and when set to LONG, the files use the form myreport_zz.htm.
The value of zz ranges from 00 to 99 and reflects the report number.

The FRAME file shows a list (hypertext links) of report pages in one frame and the report text
in another frame. Each report output file contains a list of pages (hypertext links) at the end of
the file. If myreport.sqr created multiple reports, then the FRAME file contains a link to each
report output file. In addition, each report output file contains links to the other report output
files that were created during the program run.

Testing the Output
You can preview HTML output produced by a Production Reporting program on a local system.
This is a good way to test the output before it is published on a Web site. To test a program’s
output, open the file in the Web browser. If your Web browser supports the HTML FRAME
construct, open the FRAME file (myreport_frm.htm); otherwise open the report output file
(myreport.h00, myreport_00.htm).

Generating Enhanced HTML
As was discussed earlier, you can generate Enhanced HTML output from an Production
Reporting program (see “Specifying the Output Type” on page 206). Enhanced HTML produces
reports in which content is fully formatted with version 1.1 XHTML tags.

The version of HTML used is defined in the FullHTML parameter in the [Enhanced-HTML]
section in the SQR.INI file. (See “[Enhanced-HTML] Section” in Volume 2 of the Production
Reporting Developer’s Guide.)

If you have existing SPF files for which you want to generate Enhanced HTML output, it is not
necessary to re-run your Production Reporting program. You can invoke Production Reporting
Print (sqrp) to output Enhanced HTML from SPF files by using a command similar to:

sqrp myreport.spf -PRINTER:EH

From within the Production Reporting Viewer, you can also output this high-quality HTML by
selecting File, then Save as HTML. The HTML level output from the Production Reporting
Viewer is also determined by the your SQR.INI file settings and shares the default value.

You can also generate Enhanced HTML files with precompiled Production Reporting program
files, .sqt files. Run the SQT file against Production Reporting Execute with a command similar
to the following:

sqrt myreport.sqt sammy/baker@rome -PRINTER:EH

As is true of executing any SQT file, you can run it against Production Reporting by including
the -RT flag. To generate Enhanced HTML, use the -PRINTER:EH flag in the command:

Generating Enhanced HTML 207

sqr myreport.sqr sammy/baker@rome -RT -PRINTER:EH

Chapter 8, “Master/Detail Reports,” contains Program ex7a.sqr, which produces a simple master/
detail report. By running it using Enhanced HTML, you can produce HTML output which, when
viewed from a Web browser, is similar to the following example. Note that a “banner” frame is
produced that contains the means to navigate through the report. You can enter a specific page
number and press <Enter> on your keyboard (or click “Go!”). You can also use the navigation
links to move through the pages in any order you wish—“First”, “Last”, “Previous”, or “Next”.

Figure 9 Enhanced HTML Output Program ex7a.sqr in a Web browser

Note:

When you use the -PRINTER:EH command-line flag (or -PRINTER:HT with the PrinterHT
entry in the SQR.INI file set to Enhanced), you can also use additional flags such
as -EH_CSV, -EH_CSV:file, -EH_Icons:dir, and -EH_Scale:{nn} to modify the output. These
flags only work with -PRINTER:EH. -EH_CSV creates an additional output file in Comma
Separated Value (CSV)format. -EH_CSV:file associates the CSV icon with the specified
file. -EH_Icons:dir specifies the directory where the HTML should look for the referenced
icons. -EH_Scale:{nn} sets the scaling factor from 50 to 200.

Setting Enhanced HTML Attributes
In certain cases, you may want additional control over the Enhanced HTML code that is
generated. Production Reporting supports extensions that allow you to control the generated
HTML. By using these extensions, you can specify features such as the HTML title, background
color (or image), text color, and hyperlinks.

208 Working with HTML

Enhanced HTML extensions also allow you to include your own HTML tags in the output. These
tags are passed through to the output without change. You can use this feature to include
advanced HTML capabilities such as JavaScript and <APPLET> tags.

Review the following sections for information on:

● Specifying HTML Titles

● Specifying Background Colors

● Specifying Background Images

● Specifying Hyperlinks

● Specifying Text Color

● Specifying HTML Colors

● Including Your Own HTML Tags

● Specifying Table of Contents Attributes

● Specifying Navigation Bar Attributes

● Specifying Cell Borders

● Specifying Expand/Collapse and Filter Features

Specifying HTML Titles
The HTML page title normally appears on the caption bar of the browser window and is also
used when creating a bookmark for the page. It is placed between the <TITLE> </TITLE> HTML
tags. To specify the title of the HTML page, use the %%Title extension at the beginning of your
Production Reporting program by entering:

Print-Direct Printer=html '%%Title Monthly Sales'

Specifying Background Colors
To specify a background color, use the %%Body-BgColor extension. Enter code similar to the
following at the beginning of your program:

Print-Direct Printer=html '%%Body-BgColor #0000FF'

To set the background color for the navigation bar, enter code similar to the following:

Print-Direct Printer=html '%%Nav-Body-BgColor #0000FF'

For information about specifying colors, see “Specifying HTML Colors” on page 210.

Specifying Background Images
To use a background image for the report pages that enhanced HTML generates, insert %%
Background extension at the beginning of your program:

Print-Direct Printer=html '%%Background tile.gif'

To set the background image for the navigation bar, enter code similar to the following:

Generating Enhanced HTML 209

Print-Direct Printer=html '%%Nav-Background D:\jpegdir\house.jpg'

The background attribute can be any URL. If you do not specify Nav-Background while the
body background is specified, then the background image specified for the body is used both in
the body and in the navigation bar. If you want to prevent this and want no image to appear in
the navigation bar, then you must specify in code similar to the following:

Print-Direct printer=html '%%Nav-Background EMPTY'

Specifying Hyperlinks
To specify a hyperlink in a report, use the URL print format command. The URL print format
command creates a hypertext link to the specified address. For example:

Print "My web page" (40,10) URL="http://www.somewebhost.com/~myusername/index.htm"

Creates a link to the following ULR in your report:

http://www.somewebhost.com/~myusername/index.htm

When you click on the "My web page" your browser is directed to the page.

Note:

When you use the URL command, Production Reporting does not validate the address.

Specifying Text Color
The %%Color and %%ResetColor extensions change the color of text. The following code
example demonstrates this capability:

If &Salary > 100000
Print-Direct Printer=html '%%Color #FF0000'
End-If
Print &Salary ()
If &Salary > 100000
Print-Direct Printer=html '%%ResetColor'
End-If

In our example, when the value of the column is over 100000, we print it in red. The %%Color
extension affects all text (and number) printing from this point on. This is similar to the behavior
of the ALTER-PRINTER command. A subsequent invocation of %%Color with a different color
value sets the current color to the new color. To restore the color back to the default (normally,
black) use the %%ResetColor extension.

Specifying HTML Colors
Specifying color as an RGB hexadecimal value is the only way to designate color in Production
Reporting. Your browser documentation should contain a complete listing of supported colors
and their hexadecimal values.

210 Working with HTML

To specify color as an RGB hexadecimal value, enter a # character followed by six hexadecimal
digits. The first two digits specify the intensity of the red, the next two specify the green, and the
last two specify the blue. For example, green would be #00FF00.

Including Your Own HTML Tags
The Production Reporting PRINT command with CODE-PRINTER=HT provides a means for you
to inject any text into the HTML output. Production Reporting makes no attempt to check the
text you are printing. This text could have anything that your browser understands.

Be careful however not to try to use this hook for formatting as it is very likely that your
formatting conflicts with enhanced HTML formatting. Enhanced HTML makes extensive use
of HTML tables.

To gain full control over formatting, you can use the HTML procedures that are defined in
html.inc and are documented in this chapter and in Volume 2 of the Production Reporting
Developer's Guide.By invoking the html_on procedure, you instruct Enhanced HTML to perform
no formatting at all. Then specify all formatting using the HTML procedures in html.inc or by
using the Production Reporting PRINT command with CODE-PRINTER=HT to insert HTML
codes.

When you use PRINT with CODE-PRINTER=HT, Enhanced HTML does not translate special
symbols that are used in HTML tags such as ‘<', '>’, and ‘&’.

Note:

The HTML procedures defined in html.inc are only supported when you produce HTML 2.0
output. (Use the PRINTER:HT command-line flag and set the PrinterHT entry in the SQR.INI
file to Standard.)

Specifying Table of Contents Attributes
To specify an alternate table of contents title for the table, use the %%TOC-Title extension. Enter
code similar to the following in the TOC's BEGIN-HEADING section:

Print-Direct Printer=html '%%TOC-Title My Table of Contents'

To specify alternate colors for the TOC title's text color and background color, use the %%TOC-
Title-Color extension. Enter code similar to the following in the TOC's BEGIN-HEADING
section:

Print-Direct printer=html '%%TOC-TitleColor #FF00FF9999FF0'

To specify alternate colors for the TOC item's text color and background color, use the %%TOC-
Settings extension. Enter code similar to the following in the TOC's BEGIN-HEADING section:

Print-Direct printer=html '%%TOC-Settings #66FF33FF33660'

To specify the width of the TOC as a percentage of the entire page, use the %%TOC-WIDTH
extension. Enter code similar to the following in the TOC's BEGIN-HEADING section:

Print-Direct printer=html '%%TOC-WIDTH 15%'

Generating Enhanced HTML 211

To specify an image for the TOC background, use the %%TOC-BACKGROUND extension. Enter
code similar to the following in the TOC's BEGIN-HEADING section:

Print-Direct printer=html '%%TOC-BACKGROUND parchment.gif'

The url to image file can be relative.

To specify a color for the TOC’s background, use the %%TOC-BODY-BGCOLOR extension. Enter
code similar to the following in the TOC's BEGIN-HEADING section:

Print-Direct printer=html '%%TOC-BACKGROUND #ff0066'

Specifying Navigation Bar Attributes
To import an image to the navigation bar, enter code similar to the following:

Print-Direct Printer=html '%%NAV-IMAGE <url to image file> <X Position> <Y
position> <height in pixels> <width in pixels>'

For example:

Print-Direct Printer=html '%%Nav-Image logo.gif 15 100 20 40'

To set the background color for the navigation bar, enter code similar to the following:

Print-Direct Printer=html '%%Nav-Body-BgColor #0000FF'

To set the background image for the navigation bar, enter code similar to the following:

Print-Direct Printer=html '%%Nav-Background D:\jpegdir\house.jpg'

The background attribute can be any URL. If you do not specify Nav-Background while the
body background is specified, then the background image specified for the body is used both in
the body and in the navigation bar. If you want to prevent this and want no image to appear in
the navigation bar, then you must specify in code similar to the following:

Print-Direct printer=html '%%Nav-Background EMPTY'

Specifying Cell Borders
To specify an alternate cell border color and cell border style for an object, use the %%Border
and %%ResetBorder extensions. Enter code similar to the following before and after printing
an object:

Print-Direct printer=html '%%Border #9999FF,double,1,112'
Print 'Hello World' (1,1)
Print-Direct printer=html '%%ResetBorder'

Specifying Expand/Collapse and Filter Features
To specify HTML Expand/Collapse features on an object, use these extensions:

● %%Hide

● %%Show

To specify HTML Filter features on an object, use these extensions:

212 Working with HTML

● %%Filter-Hide

● %%Filter-Show

● %%Begin-Select

● %%End-Select

Note:

You cannot add expand/collapse or filter functionality to generic Production Reporting
reports. To use this type of streaming functionality, you must write the Production Reporting
report in a streaming fashion, which is contrary to normal Production Reporting operation.
The following guidelines apply to expand/collapse and filter features:

● Once an expand/collapse region starts, you cannot print the report by a random vertical
position.

❍ Each row must print in order from top to bottom.

❍ Be careful when using expand/collapse functionality in before and after procedures.

❍ You can print headings above the first expand/collapse region.

● Do not burst a report by page or by section.

Bursting by page or section ‘turns off’ expand/collapse functionality.

● Do not use the POSITION command to add extra vertical white space between rows for
HTML output.

❍ Some vertical white space is ignored.

❍ Vertical white space appears if other printer output types are used.

❍ Vertical white space appears if bursting is used (expand/collapse or filtering is turned
off).

● Do not create a collapsible area using multiple prints for the label row.

In version 8.0, multiple prints to one line are not concatenated into one string. To treat
multiple columns as one string, use the CONCAT command.

● Open and close each region with a hide and show extension.

❍ Production Reporting does not close any open regions at the end of the report; instead,
the program must close each region.

❍ Regions must begin with a hide extension and end with a show extension.

● Do not overlap collapsible regions or filter regions.

❍ Overlapping collapsible or filter regions are not allowed.

❍ Nesting collapsible regions is allowed.

Expand/Collapse Code Example

The following is a complete code example using Expand/Collapse features. The %%Hide
extension is used in a before procedure, and the %%Show extension is used in an after procedure.

Generating Enhanced HTML 213

Begin-Setup
 Declare-Layout Default
 Orientation = Portrait
 Paper-Size = (8.5,440)
 Top-Margin = 0.500
 Bottom-Margin = 0.500
 Left-Margin = 0.500
 Right-Margin = 0.500
 Line-Height = 1
 Char-Width = 1
 End-Declare
 Declare-TOC Default
 Entry = BRB_TOC_Proc
 End-Declare
End-Setup
Begin-Heading 24 For-Tocs=(default)
 Graphic (21,1,540) Horz-Line 20
 Alter-Printer Font=4 Point-Size=16 ! [SQR.INI] 4=Arial,proportional
 Print 'Table of Contents' (15,415,17)
 Print-Direct printer=html '%%TOC-Title Table of Contents'
 Alter-Printer Font=4 Point-Size=10
End-Heading
Begin-Procedure BRB_TOC_Proc
 Alter-Printer Font=4 Point-Size=10 ! [SQR.INI] 4=Arial,proportional
 Let #indent-size = 24
 Let #indentation = 1 + (#indent-size * (#sqr-toc-level - 1))
 Print $sqr-toc-text (12,#indentation)
 Print #sqr-toc-page (12,523)
 Next-Listing Skiplines=4 Need=14
End-Procedure
Begin-Program
 Position (1,1)
 Do Master_Query
End-Program
Begin-Procedure Master_Query
Begin-Select
 Alter-Printer Font=4 Point-Size=10 ! [SQR.INI] 4=Arial,proportional
DNAME &Master_Query_DNAME () On-Break Set=6 Level=1 Print=Never
Before=Master_QueryDNAME_BeforeProc601 After=Master_QueryDNAME_AfterProc601
 Next-Listing
DEPTNO &Master_Query_DEPTNO
 Do Emp(&Master_Query_DEPTNO)
From DEPT
Order By DNAME
End-Select
 Next-Listing
End-Procedure
Begin-Procedure Master_QueryDNAME_BeforeProc601
 Print-Direct printer=html '%%Hide'
 Next-Listing Need=12
 Alter-Printer Font=4 Point-Size=10 ! [SQR.INI] 4=Arial,proportional
 Print &Master_Query_DNAME (12,1,14)
 Toc-Entry text=&master_query_dname level=1
 Position (+12,)
 Next-Listing
 Alter-Printer Font=4 Point-Size=10 ! [SQR.INI] 4=Arial,proportional
End-Procedure

214 Working with HTML

Begin-Procedure Master_QueryDNAME_AfterProc601
 Next-Listing
 Alter-Printer Font=4 Point-Size=10 ! [SQR.INI] 4=Arial,proportional
 Print-Direct printer=html '%%Show'
End-Procedure
Begin-Procedure Emp (#P1_DEPTNO)
Begin-Select
DEPTNO &_Emp_DEPTNO=number
 Alter-Printer Font=4 Point-Size=10 ! [SQR.INI] 4=Arial,proportional
ENAME &_Emp_ENAME (17,36,10)
JOB_TITLE &_Emp_JOB_TITLE (17,146,30)
SAL &_Emp_SAL (17,362) Edit 99999.99na
 Next-Listing Need=17
From EMP
Where DEPTNO = #P1_DEPTNO
Order By ENAME
End-Select
 Next-Listing
End-Procedure
Begin-Heading 60
 Alter-Printer Font=4 Point-Size=10 ! [SQR.INI] 4=Arial,proportional
 Print $current-date (12,1) edit 'MM/DD/YYYY'
 Page-Number (12,520)
 Print 'Dname' (46,1,5) Underline Bold
 Alter-Printer Font=4 Point-Size=10
End-Heading

Filter Code Example

The following is a complete code example using Filter features. The extensions appear in bold.

Begin-Setup
 Declare-Layout Default
 Orientation = Portrait
 Paper-Size = (8.5,440)
 Top-Margin = 0.500
 Bottom-Margin = 0.500
 Left-Margin = 0.500
 Right-Margin = 0.500
 Line-Height = 1
 Char-Width = 1
 End-Declare
 Declare-TOC Default
 Entry = BRB_TOC_Proc
 End-Declare
End-Setup
Begin-Heading 24 For-Tocs=(default)
 Graphic (21,1,540) Horz-Line 20
 Alter-Printer Font=4 Point-Size=16 ! [SQR.INI] 4=Arial,proportional
 Print 'Table of Contents' (15,415,17)
 Print-Direct printer=html '%%TOC-Title Table of Contents'
 Alter-Printer Font=4 Point-Size=10
End-Heading
Begin-Procedure BRB_TOC_Proc
 Alter-Printer Font=4 Point-Size=10 ! [SQR.INI] 4=Arial,proportional
 Let #indent-size = 24
 Let #indentation = 1 + (#indent-size * (#sqr-toc-level - 1))

Generating Enhanced HTML 215

 Print $sqr-toc-text (12,#indentation)
 Print #sqr-toc-page (12,523)
 Next-Listing Skiplines=4 Need=14
End-Procedure
Begin-Program
 Position (1,1)
 Do Master_Query
End-Program
Begin-Procedure Master_Query
Begin-Select
 Alter-Printer Font=4 Point-Size=10 ! [SQR.INI] 4=Arial,proportional
DNAME &Master_Query_DNAME () On-Break Set=10 Level=1 Print=Never
Before=Master_QueryDNAME_BeforeProc1001
After=Master_QueryDNAME_AfterProc1001
 Next-Listing
DEPTNO &Master_Query_DEPTNO
 Do Emp(&Master_Query_DEPTNO)
From DEPT
Order By DNAME
End-Select
 Print-Direct printer=html '%%End-Select'
 Next-Listing
End-Procedure
Begin-Procedure Master_QueryDNAME_BeforeProc1001
 Print-Direct printer=html '%%Begin-Select'
 Print-Direct printer=html '%%Filter-Hide'
 Next-Listing Need=12
 Alter-Printer Font=4 Point-Size=10 ! [SQR.INI] 4=Arial,proportional
 Print &Master_Query_DNAME (12,1,14)
 Toc-Entry text=&master_query_dname level=1
 Position (+12,)
 Next-Listing
 Alter-Printer Font=4 Point-Size=10 ! [SQR.INI] 4=Arial,proportional
End-Procedure
Begin-Procedure Master_QueryDNAME_AfterProc1001
 Next-Listing
 Alter-Printer Font=4 Point-Size=10 ! [SQR.INI] 4=Arial,proportional
 Print-Direct printer=html '%%Filter-Show'
 Print-Direct printer=html '%%End-Select'
End-Procedure
Begin-Procedure Emp (#P1_DEPTNO)
Begin-Select
DEPTNO &_Emp_DEPTNO=number
 Alter-Printer Font=4 Point-Size=10 ! [SQR.INI] 4=Arial,proportional
ENAME &_Emp_ENAME (17,36,10)
JOB_TITLE &_Emp_JOB_TITLE (17,146,30)
SAL &_Emp_SAL (17,362) Edit 99999.99na
 Next-Listing Need=17
From EMP
Where DEPTNO = #P1_DEPTNO
Order By ENAME
End-Select
 Print-Direct printer=html '%%End-Select'
 Next-Listing
End-Procedure
Begin-Heading 60
 Alter-Printer Font=4 Point-Size=10 ! [SQR.INI] 4=Arial,proportional

216 Working with HTML

 Print $current-date (12,1) edit 'MM/DD/YYYY'
 Page-Number (12,520)
 Print 'Dname' (46,1,5) Underline Bold
 Alter-Printer Font=4 Point-Size=10
End-Heading

Generating Standard HTML
To generate a report using standard HTML, use these methods:

● Use the -PRINTER:HT command-line flag.

When you use the -PRINTER:HT command-line flag, ensure that the PrinterHT setting in
the [Default Settings] section of the SQR.INI file is set to Standard.

See “Specifying the Output Type” on page 206.

● Use the argument TYPE-HT or USE-PRINTER-TYPE HT in the DECLARE-PRINTER
command.

When you produce a report using standard HTML, Production Reporting generates HTML 2.0
files as follows:

● All output displays as preformatted text, using the HTML <PRE> </PRE> tags.

● Text is positioned on the page by the position coordinates specified in the Production
Reporting program.

● Text is displayed using a fixed-width font such as Courier.

● Font sizes are mapped to an appropriate HTML font size.

● HTML reserved characters are mapped into the corresponding HTML sequence. The
characters <, >, &, " are mapped into the character sequences <, >, &, and
", respectively. This prevents the Web browser from mistaking such output as an
HTML sequence.

Chapter 8, “Master/Detail Reports,” contains a sample program, Program ex7a.sqr, which
produces a simple master/detail report. By running it with a standard HTML setting, you can
produce HTML output which, when viewed from a Web browser, is similar to the following
example. Note that a left frame is produced with hyperlinks to each page of the report. The right
frame also features a navigation bar that appears at the top of every page in the report. The
navigation bar permits you to move the first page and last page or move one page forward or
back from your relative page viewing position.

Generating Standard HTML 217

Figure 10 Standard HTML Output Program ex7a.sqr in a Web browser

“Bursting” and Demand Paging
We have shown you how Production Reporting allows you to generate standard or enhanced
HTML reports. But what if you want your HTML files to be smaller for faster load time or divided
on the basis of report page ranges? Or, you might want to preview a report’s Table of Contents
in you Web browser without generating an entire report. You can do all of these things by
using -BURST:{xx} in conjunction with -PRINTER:EH or -PRINTER:HT.

Using -BURST:P (or BURST:P1) with -PRINTER:EH or -BURST:P1 with -PRINTER:HT, you
can generate HTML ouput files burst by report page numbers—one report page per .htm file.
(This is frequently referred to as demand paging.) So, if you have a 25 page report, it is divided
into 25 separate .htm output files. Using -PRINTER:HT, you can also specify the report page
ranges you want to see within an HTML file. For example, -BURST:P0,1,3-5 generates an
HTML file containing only report page numbers 1, 3, 4 and 5. You can then focus on information
that is truly of interest.

Similarly, if you specify -PRINTER:HT with -BURST:T, only the Table of Contents file is
generated. And, if you specify -PRINTER:HT with -BURST:S, report output is generated
according to symbolic Table of Contents entries. Using -BURST:S, you can specify the numeric
level to burst on. (for example, -BURST:S2 bursts on level 2). If you have used DECLARE-TOC
and TOC-ENTRY commands in your Production Reporting program, your Table of Contents
provides more detailed information than simple hyperlinked page numbers as illustrated in the
following example.

As an example of how simple it is to use DECLARE-TOC and TOC-ENTRY to improve the
information available in generated HTML output, we modified Program ex7a.sqr.

218 Working with HTML

We added the following code to the beginning of Program ex7a.sqr:

begin-setup
declare-toc common
 for-reports=(all)
 dot-leader=yes
 indentation=2
end-declare
end-setup

We also added code to the body of the program—in the main procedure immediately after the
begin-select and Print ‘Customer Information’ (,1)

toc-entry text = &name

The HTML ouput from the modified Program ex7a.sqr is shown in the illustrations that follow.

Figure 11 -PRINTER:HT with -BURST:T Output

“Bursting” and Demand Paging 219

Figure 12 -PRINTER:HT Output

Figure 13 -PRINTER:EH Output Table of Contents File

Using HTML Procedures in a Production Reporting Program
To enhance the appearance of the HTML output, use HTML procedures in an Production
Reporting program. Review the following sections for information on:

220 Working with HTML

● Using HTML Procedures

● Positioning Objects

● Defining Titles and Background Images

● Table Procedures

● Headings

● Highlighting

● Hypertext Links

● Images

● Lists

● Paragraph Formatting

● User-Defined HTML

Using HTML Procedures
Use these guidelines when placing HTML procedures in Production Reporting programs:

● HTML procedures are contained in a file called html.inc. To use HTML procedures, the
Production Reporting program must include the command:

#include 'html.inc'

The file html.inc is located in the SAMPLE (or SAMPLEW) directory. Use the command-
line flag -I to specify its path.

● The Production Reporting program must call the procedure html_on at the start of the
program. The command that calls this procedure is:

do html_on

● The program must specify a large page length to prevent page breaks. Production Reporting
automatically inserts the page navigation hypertext links and an HTML <HR> tag at a page
break. If a page break falls in the middle of an HTML construct, such as a table, the output
can display incorrectly. Use the command DECLARE-LAYOUT with a large MAX-LINES
setting to prevent page breaks from occurring.

Note:

When you use HTML procedures, you must run the Production Reporting program with
the command-line flag -PRINTER:HT and the PrinterHT entry in the SQR.INI file set to
Standard.

Positioning Objects
When HTML procedures are turned on:

● HTML output is generated without the <PRE></PRE> tags.

Using HTML Procedures in a Production Reporting Program 221

● All position qualifiers in the Production Reporting program are ignored, and program
output and HTML tags are placed in the output file in the order in which they are generated,
regardless of their position qualifiers.

● The text printed in a BEGIN-HEADING section does not appear at the top of the page. Since
no positioning is done, text in the heading appears at the bottom.

● White space, such as spaces between PRINT commands is removed.

Thus, the HTML procedures must be used to format the report.

The following Production Reporting code does not use the HTML procedures to format the
output.

print 'Report summary:' (1,1)
print 'Amount billed:' (3,1)
print #amount_amount (3,20)
print 'Total billed:' (4,1)
print #total_amount (4,20)

The output from the sample code, as displayed by the Web browser, follows. Note that the text
appears on the same line with no spaces between the data.

With the HTML procedures for line breaks and a table, the output can be formatted properly.

The following Production Reporting code uses the procedure html_br to separate the first two
lines of text. The procedures html_table, html_tr, html_td, and html_table_end are used to display
the totals in a tabular format. Note that an empty string is passed to each procedure as it is called.
This empty string is required if no other argument is passed.

print 'Report summary:' (1,1)
do html_br(2,'')
do html_table('')
do html_tr('')
do html_td('WIDTH=300')
print 'Amount billed:' (3,1)
do html_td('')
print #amount_amount (3,20)
do html_tr('')
do html_td('WIDTH=300')
print 'Total billed:' (4,1)
do html_td('')
print #total_amount (4,20)
do html_table_end

The output from the preceding code is displayed by the Web browser as follows.

222 Working with HTML

Defining Titles and Background Images
To define a title and background image for your HTML output, use the HTML procedures
html_set_head_tags and html_set_body_attributes. You must call these procedures at the start of
the program. For example:

do html_set_head_tags('<TITLE>Monthly Report</TITLE>')
do html_set_body_attributes('BACKGROUND="/images/mylogo.gif"')

The first line of this code causes the title “Monthly Report” to display. Specifically, the entire
sequence ‘<TITLE>Monthly Report</TITLE>’ is passed as an argument to the procedure
html_set_head_tags. Note that the argument is enclosed in single quotes.

The second line causes the background image mylogo.gif to displayed. Again, an argument is
passed to the procedure. Note that the entire argument is enclosed in single quotes, while the
file name and path are enclosed in double quotes. Together, these two lines of code generate the
following HTML output.

<HTML><HEAD><TITLE>My Report</TITLE></HEAD>
<BODY BACKGROUND="/images/mylogo.gif">

Table Procedures
When the HTML procedures are turned on, all positioning values in the Production Reporting
program are ignored. Thus, the position values cannot be used to display records in a tabular
format. To display records in a tabular format use the following procedures:

● Tables—Call html_table to start a table and html_table_end to end a table.

● Captions—Call html_caption to mark the start of a table caption and html_caption_end to
mark the end of the table caption. The end is typically implied and html_caption_end is not
needed, but it can be used for completeness.

● Rows—Call html_tr to mark the start of a new row in the table and html_tr_end to mark the
end of the row. The end is typically implied and html_tr_end is not needed, but it can be
used for completeness.

● Column headings—Call html_th to mark the start of a column heading and html_th_end
to mark the end of the column heading. The end is typically implied and html_th_end is not
needed, but it can be used for completeness.

Using HTML Procedures in a Production Reporting Program 223

● Columns—Call html_td to mark the start of a column and html_td_end to mark the end of
the column. The end is typically implied and html_td_end is not needed, but it can be used
for completeness.

Program ex28a.sqr uses these table procedures to display information in a tabular format.

Program ex28a.sqr
#include 'html.inc'
begin-program
 do main
end-program
! set a large page length to prevent page breaks
begin-setup
 declare-layout default
 max-lines=750
 end-declare
end-setup
begin-procedure main
! turn on HTML procedures
do html_on
! start the table and display the column headings
do html_table('border')
do html_caption('')
print 'Customer Records' (1,1)
do html_tr('')
do html_th('')
print 'Cust No' (+1,1)
do html_th('')
print 'Name' (,10)
! display each record
begin-select
 do html_tr('')
 do html_td('')
cust_num (1,1,6) edit 099999
 do html_td('')
name (1,10,25)
 next-listing skiplines=1 need=1
from customers
end-select
! end the table
do html_table_end
end-procedure

224 Working with HTML

Figure 14 Output for Program ex28a.sqr

Headings
The heading procedures display text using heading levels such as those used in this book. The
available heading levels range from one to six; a first-level heading is the highest. To use the
heading procedures, call the appropriate heading procedure before the text is output. After the
text is output, call the corresponding end procedure.

The following Production Reporting code displays text as a second-level heading:

do html_h2('')
print 'A Level 2 Heading' (1,1)
do html_h2_end

Highlighting
The highlighting procedures provide the ability to display text in the various HTML highlighting
styles. Highlighting is also called logical markup.

To use the highlighting procedures, call the appropriate highlighting procedure before the text
is output. After the text is output, call the corresponding end procedure.

The following highlighting procedures are available:

● Blink—Call html_blink and html_blink_end

● Citation—Call html_cite and html_cite_end

Using HTML Procedures in a Production Reporting Program 225

● Code—Call html_code and html_code_end

● Keyboard—Call html_kbd and html_kbd_end

● Sample—Call html_sample and html_sample_end

● Strike—Call html_strike and html_strike_end

● Subscript—Call html_sub and html_sub_end

● Superscript—Call html_sup and html_sup_end

The following Production Reporting code displays text in the subscript style:

print 'Here is ' (1,1)
do html_sub('')
print 'subscript' ()
do html_sub_end
print ' text' ()

Hypertext Links
The hypertext link procedures provide the ability to create hypertext links and hypertext link
anchors. When the user clicks on the hypertext link, the Web browser switches to the top of the
specified HTML document, to a point within the specified document, or to a link anchor within
the document. A hypertext link can point to the home page of a Web site, for example.

To insert a hypertext link, use the procedure html_a, output the information that is to become
the hypertext link, and use the procedure html_a_end to mark the end of the hypertext link. Two
useful attributes for the procedure html_a, are the HREF and NAME attributes. Use the HREF
attribute to specify where the hypertext link points to. Use the NAME attribute to specify an anchor
to which a hypertext link can point. These attributes are passed as arguments to the procedure
html_a.

The following Production Reporting code creates an anchor and two hypertext links. The anchor
is positioned at the top of the document. The first hypertext link points to the HTML document
home.html. The second hypertext link points to the anchor named TOP in the current document.
Note the pound sign (#) in the argument, which indicates that the named anchor is a point
within a document. The third link points to an anchor named POINT1 in the document
mydoc.html.

do html_a('HREF=home.html')
print 'Goto home page' ()
do html_a_end
do html_a('NAME=TOP')
do html_a_end
print 'At the top of document' ()
do html_br(40, '')
print 'At the bottom of document' ()
do html_p('')
do html_a('HREF=#TOP')
print 'Goto top of document' ()
do html_a_end
do html_a ('HREF=mydoc.html#POINT1')
print 'Goto point1 in mydoc.html' ()
do html_a_end

226 Working with HTML

Images
An image can be included in an HTML output with the PRINT-IMAGE command or the
procedure html_img. Both of these produce the HTML tag.

The PRINT-IMAGE command displays images for all printer types but only allows you to specify
the image type and source. The html_img procedure displays images only for HTML printer type
but it allows you to specify any of the attributes available for an HTML tag.

For HTML output, only files of the GIF or JPEG format can be used. With PRINT-IMAGE, use
the argument TYPE=GIF-FILE or TYPE=JPEG-FILE, respectively.

Lists
The list procedures display lists. To use these procedures, call the appropriate procedure before
the list is output. After the list is output, call the corresponding end procedure.

The following list procedures are available:

● Definition (for lists of terms and their definitions)—Call html_dl and html_dl_end

● Directory—Call html_dir and html_dir_end

● Menus—Call html_menu and html_menu_end

● Ordered (numbered or lettered) lists—Call html_ol and html_ol_end

● Unordered (bulleted) lists—Call html_ul and html_ul_end

To display a list, except for the definition list, call the appropriate list procedure before starting
the output. Call html_li to identify each item in the list; you can also call html_li_end for
completeness. After specifying the output, call the corresponding end procedure.

The following code displays an ordered list:

do html_ol('')
do html_li('')
print 'First item in list' (1,1)
do html_li_end
do html_li('')
print 'Second item in list' (+1,1)
do html_li_end
do html_li('')
print 'Last item in list' (+1,1)
do html_li_end
do html_ol_end

To display a definition list call html_dl before starting the output. Call html_dt to identify a term
and html_dd to identify a definition. After specifying the output, call html_dl_end. You can also
call html_dd_end and html_dt_end for completeness.

The following code displays a definition list:

do html_dl('')
do html_dt('')
print 'A daisy' (1,1)
do html_dt_end

Using HTML Procedures in a Production Reporting Program 227

do html_dd('')
print 'A sweet and innocent flower' (+1,1)
do html_dd_end
do html_dt('')
print 'A rose' (+1,1)
do html_dt_end
do html_dd('')
print 'A very passionate flower' (+1,1)
do html_dd_end
do html_ol_end

Paragraph Formatting
The HTML procedures provide various paragraph-formatting capabilities. To use these
procedures, call the appropriate paragraph procedure before the list is output.

The following procedures are available:

● Paragraph breaks—Call html_p to mark the start of a paragraph and html_p_end to mark
the end. Many HTML constructs imply an end of paragraph; thus, the procedure
html_th_end is not needed, but it can be used for completeness.

● Line breaks—Call html_br to insert a line break.

● Horizontal dividers (usually a sculpted line)—Call html_hr to insert a horizontal divider.

● Prevent line wrapping—Call html_nobr to mark the start of a section of text that cannot be
wrapped by the Web browser to fit the width of the browser window. Use the procedure
html_nobr_end to mark the end.

The following code uses the paragraph-formatting procedures to format text into paragraphs:

print 'Here is some normal text' (1,1)
do html_p('ALIGN=RIGHT')
print 'Here is right aligned text' (+1,1)
do html_br(1,'')
print 'and a line break' (+1,1)
do html_p_end
do html_hr('')
do html_nobr('')
print 'A very long line of text that cannot be wrapped' (+1,1)
do html_nobr_end

User-Defined HTML
You can incorporate your own HTML tags into the HTML output. To do so, use the PRINT
command with the argument CODE-PRINTER=HT.

Text printed with this argument is placed only in the HTML output generated when the HTML
printer type is specified. With all other printer types, the text is not placed in the output. In
addition, the specified text is placed directly in the HTML output without any modifications,
such as the mapping of reserved characters.

The following Production Reporting code uses the HTML tag to print bold text:

print '' () code-printer=ht

228 Working with HTML

print 'Bold text' ()
print '' () code-printer=ht

Modifying Existing Production Reporting Programs
In this section, an existing Production Reporting program is modified to use HTML procedures.
First, examine the output from when this program is run without modifications
using -PRINTER:HT. Three HTML files are generated. If your Web browser supports HTML
frames, you should see the following:

Program ex28b.sqr
#include 'html.inc'
begin-setup
 declare-layout default
 max-lines=10000
 end-declare
end-setup
begin-program
 do main
end-program
begin-procedure main
do html_on
print $current-date (1,1) edit 'DD-MON-YYYY'
do html_p('')
do html_table('BORDER')
do html_tr('')
do html_th('WIDTH=250')
print 'Name' (3,1)
do html_th('WIDTH=120')
print 'City' (,32)
do html_th('WIDTH=60')
print 'State' (,49)

Modifying Existing Production Reporting Programs 229

do html_th('WIDTH=90')
print 'Total' (,61)
begin-select
 do html_tr('')
 do html_td('')
name (,1,30)
 do html_td('')
city (,+1,16)
 do html_td('')
state (,+1,5)
 do html_td('ALIGN=RIGHT')
tot (,+1,11) edit 99999999.99
 next-listing no-advance need=1
 let #grand_total = #grand_total + &tot
from customers
end-select
 do html_tr('')
 do html_tr('')
 do html_td('COLSPAN=3 ALIGN=RIGHT')
print 'Grand Total' (+1,40)
 do html_td('ALIGN=RIGHT')
print #grand_total (,55,11) edit 99999999.99
do html_table_end
end-procedure ! main

In this code, a DECLARE-LAYOUT command with a large page length setting specified in the
MAX-LINES argument is issued to prevent page breaks.

The procedure html_on is used to turn on the HTML procedures.

The procedures html_table, html_tr, html_td, and html_th are used to position the information
in a tabular format. Note the arguments passed to the HTML procedures. BORDER produces the
sculpted border seen in the output that follows. WIDTH defines the width of the columns.
ALIGN right-aligns the text in the Total column. COLSPAN causes the label Grand Total to be
spanned beneath three columns of data.

Instead of using a HEADING section, the procedure tr_th is used to display column headings.

230 Working with HTML

Figure 15 Output for Program ex28b.sqr

Publishing Reports
A report generated by an Production Reporting program can be published onto the Web site.
Thereafter, the user of a Web browser can view the report over the Internet or an Intranet by
specifying the report’s URL address.

➤ To publish a report:

1 Run the Production Reporting program.

2 Determine where the report output is stored on the Web server.

The directory must be one that is pointed to by a URL on your server. See your Webmaster for
more details on creating a URL.

3 Copy the generated HTML output files to the chosen directory on the Web server.

If the output is generated on a client PC, use a utility such as FTP to transfer the HTML output
files to the Web server.

If you choose the zip file option, a zip file is created for the generated HTML output in addition
to the files being placed in the file system.

4 Create hypertext links in a home page or other Web site that point to the report files so users browsing the
network can navigate to the report and view it.

To support older Web browsers that do not support the HTML FRAME construct, create two
separate hypertext links—one pointing to the FRAME file (.htm) and labeled to indicate frame
version, and another pointing to the report output file and labeled to indicate nonframe
version. If the report was created with HTML procedures, however, it should only contain one

Publishing Reports 231

page. In that case, a listing of report pages contained in the FRAME file would not be needed.
Only the report output file would be required for publication on a Web site.

Viewing Published Reports
You use a Web browser to view a report that is published onto a Web site. To do this, specify a
URL address in your Web browser, for example:

http://www.myserver.com/myreport.htm

Publishing Using an Automated Process
The Webmaster can create a program that automates the publishing process. The program
should run the Production Reporting program and copy the output to the appropriate location.
You can even launch the program using a scheduling utility to automatically run the program
and publish it on the Web site at specified times. See the documentation of your scheduling
software for more details.

The sample Bourne shell program that follows performs these tasks:

● Sets the necessary environment variables.

● Runs the Production Reporting program /usr2/reports/myreport.sqr and generates the
output files /usr2/reports/myreport.htm and /usr2/reports/myreport.h00.

● Specifies /dev/null as the source of standard input to prevent the program from hanging if
it requires input.

● Redirects the standard output to /usr2/reports/myreport.out to capture any status messages.
The output file can be viewed at a later time to diagnose any problems.

● Copies the generated report files to the directory /usr2/web/docs to publish it on the Web
server. (Use the directory name appropriate for your server.)

Here is the code:

#! /bin/sh
set the appropriate environment values
ORACLE_SID=oracle7; export ORACLE_SID
ORACLE_HOME=/usr2/oracle7; export ORACLE_HOME
SQRDIR=/usr2/sqr/bin; export SQRDIR
invoke the Production Reporting program
sqr /usr2/reports/myreport.sqr orauser/orapasswd \
 -PRINTER:ht -I$SQRDIR \
 > /usr2/reports/myreport.out 2>&1 < /dev/null
copy over the output
cp /usr2/reports/myreport.htm /usr2/web/docs
cp /usr2/reports/myreport.h00 /usr2/web/docs

Note:

The environment variables and the file names must be adjusted to fit your environment.

232 Working with HTML

Publishing Using a CGI Script
In the CGI script method, the user of a Web browser can run an Production Reporting report
and view the output. One way to allow the user to run an Production Reporting report is by
providing a fill-out form.

When you run an Production Reporting report through a Web site, the following process occurs:

1. The user of the Web browser navigates to a fill-out form.

2. The user enters information on the fill-out form and presses a button to invoke the CGI
script.

3. The CGI script runs the Production Reporting program.

4. The CGI script copies the report output file to the standard output.

5. The user views the report.

This process requires these items:

● The fill-out form

● The CGI script

● The Production Reporting program

Creating the Fill-Out Form
This section explains how to create an HTML fill-out form that allows the user to enter some
values and launch the request.

To implement an HTML fill-out form, see HTML documentation available in print or on the
Internet.

The following HTML code defines a fill-out form with three radio buttons and a submit button.
The radio buttons allow the user to specify the sorting criteria. The submit button invokes the
CGI script.

Here is the HTML code:

<HTML>
<TITLE>View Customer Information</TITLE>
<FORM METHOD=POST ACTION="/cgi-bin/myreport.sh">
Select the Field to Sort By<P><DIR>
<INPUT TYPE="radio" NAME="rb1" VALUE="cust_num" CHECKED> Number

<INPUT TYPE="radio" NAME="rb1" VALUE="name"> Name

<INPUT TYPE="radio" NAME="rb1" VALUE="city"> City

<P><INPUT TYPE="submit" NAME="run" VALUE="Run Report"></DIR>
</FORM>
</HTML>

The FORM METHOD tag specifies that the CGI script /cgi-bin/myreport.sh is invoked when the
submit button is pressed. You must adjust the URL address of the CGI script to fit your
environment.

Publishing Reports 233

In the INPUT tags, the attribute TYPE=“radio” defines a radio button. The VALUE attribute of
the selected radio button is passed by way of the CGI script to the Production Reporting program,
as shown in the following example.

The fill-out form looks like the form shown here.

Creating the CGI Script
The CGI script is launched when a user makes a request from a fill-out form. A CGI script can
be any executable program. We do not recommend that Production Reporting be called directly
as a CGI script—a Perl script, a shell script, or a C program all provide simpler routines for
processing as a CGI script.

To implement a CGI script, see the HTML documentation available in print or on the Internet.

The CGI script performs these tasks:

● Reads the contents of the standard input stream and parses it to obtain the values entered
on the fill-out form. If the fill-out form has no input fields, this step is not required.

● Identifies the output as being in HTML format by outputting the string “Content-type: text/
html” along with an extra empty line to the standard output stream.

● Invokes the Production Reporting program. Values entered by the user on the fill-out form
are passed to the Production Reporting program by way of the CGI script and the command
line.

● Outputs the generated LIS file to the standard output stream. The HTM file is not used
because it points to the LIS file with a relative URL address. The relative address does not
tell the Web browser where to find the LIS file. We also recommend that you make provisions
within your Production Reporting program to output an error message.

The following Bourne shell is an example of a CGI script.

#! /bin/sh
set the appropriate environment values
ORACLE_SID=oracle7; export ORACLE_SID
ORACLE_HOME=/usr2/oracle7; export ORACLE_HOME
SQRDIR=/usr2/sqr/bin; export SQRDIR
identify the output as being HTML format
echo "Content-type: text/html"
echo ""
get values from fill-out form using the POST method
read TEMPSTR

234 Working with HTML

SORTBY=`echo $TEMPSTR | sed "s;.*rb1=;;
s;&.*;;"`
invoke the Production Reporting program
sqr7 /usr2/reports/myreport.sqr orauser/orapasswd \
 -PRINTER:ht -f/tmp/myreport$$.lis -I$SQRDIR "$SORTBY" \
 > /tmp/myreport$$.out 2>&1 < /dev/null
if [$? -eq 0]; then
 # display the output
 cat /tmp/myreport$$.lis
else
 # error ocurred, display the error
 echo "<HTML><BODY><PRE>"
 echo "FAILED TO RUN Production Reporting PROGRAM"
 cat /tmp/myreport$$.out
 echo "</PRE></BODY></HTML>"
fi
remove temp files
rm /tmp/myreport$$.*

This script first sets the necessary environment variables. Next, it outputs the string Content-
type: text/html along with an extra empty line to the standard output stream to identify the text
as being HTML format.

The script retrieves the value of the selected radio button into the variable SORTBY. The value
is passed to the Production Reporting program on the command line.

The script runs the Production Reporting program. The report file /usr2/reports/myreport.sqr is
used and the file /tmp/myreport$$.lis is generated. In addition, the script redirects the standard
input from /dev/null to prevent the program from hanging if the program requires any input.
It also redirects the standard output to /tmp/myreport$$.out to capture any status messages. The
$$ is the process ID of the program and is used as a unique identifier to prevent any multiuser
problems.

The script then copies the generated report file to the standard output stream. If an error occurs
it outputs the status message file instead to allow the user to view the status messages. Finally, it
deletes any temporary files.

Passing Arguments to the Production Reporting Program
The Production Reporting program must be modified to accept values entered by the user on
the fill-out form.

The following code is the procedure main from Program ex28b.sqr. It is modified to use the
SORT BY value passed from the CGI script. The $sortby variable is obtained from the command
line with an INPUT command and used as dynamic variables in the ORDER BY clause. The
modified lines are shown in bold.

begin-procedure main
input $sortby 'Sort by' type=char
do html_on
do html_table('')
do html_tr('')
do html_th('')
print 'Name' (3,1)

Publishing Reports 235

do html_th('')
print 'City' (,32)
do html_th('')
print 'State' (,49)
begin-select
 do html_tr('')
 do html_td('')
name (,1,30)
 do html_td('')
city (,+1,16)
 do html_td('')
state (,+1,5)
next-listing no-advance need=1
 let #grand_total = #grand_total + &tot
from customers
order by [$sortby]
end-select

236 Working with HTML

33
Tables of Contents

In This Chapter

DECLARE-T0C ... 237

TOC-ENTRY ... 238

Cust.sqr .. 238

DECLARE-T0C
DECLARE-TOC defines a Table of Contents and its attributes. When generating multiple reports
and Tables of Contents from one Production Reporting program, you can also use the TOC
argument in DECLARE-REPORT.

DECLARE-TOC must be issued in your program’s SETUP section similar to the following example:

begin-setup
 declare-toc toc_name
 for-reports = (all)
 dot-leader = yes
 indentation = 2
 end-declare
 .
 .
 .
end-setup

After DECLARE-TOC, specify a Table of Contents name. The FOR-REPORTS argument allows you
to specify the reports within the Production Reporting program that use this Table of Contents.
(Use (all) if you want the reports to use one Table of Contents.) Specifying individual report
names is only necessary when you are generating multiple reports with different TOCs from one
program. DOT-LEADER specifies whether or not a dot leader precedes the page number. (The
default setting is NO and the DOT-LEADER is suppressed in all HTML output except when -
BURST:T with -PRINTER:HT are also specified.) INDENTATION specifies the number of spaces
that each level is indented by. (The default setting is 4.)

DECLARE-TOC also supports procedures frequently used for setup and initialization purposes:
BEFORE-TOC, AFTER-TOC, BEFORE-PAGE, and AFTER-PAGE. BEFORE-TOC specifies a
procedure to be executed before the Table of Contents is generated. If no Table of Contents is
generated, the procedure does not execute. AFTER-TOC specifies a procedure to be executed after
the Table of Contents is generated. If no Table of Contents is generated, the procedure does not

DECLARE-T0C 237

execute. BEFORE-PAGE specifies a procedure to be executed at the start of every page. AFTER-
PAGE specifies a procedure to be executed at the end of each page.

TOC-ENTRY
TOC-ENTRY places an entry into the Table of Contents and takes the mandatory argument
TEXT which specifies the text to be placed in the Table of Contents. Legal text includes text
literals, variables, and columns. To include levels in your Table of Contents, use the LEVEL
argument, which specifies the level at which to place the text. (If this argument is not specified,
the previous level’s value is used.)

If you are writing programs that generate multiple reports, you have some options to choose
from. As previously mentioned, you can use the FOR-REPORTS argument of the DECLARE-
TOC command to identify the reports to which the DECLARE-TOC applies. Alternatively, you can
use the TOC argument of the DECLARE-REPORT command to specify the name of the Table of
Contents you want the report to use. Your program can have multiple DECLARE-TOC statements
and multiple DECLARE-REPORT statements. However, you must include the FOR-TOCS
argument in your DECLARE-TOC statements or the TOC argument in your DECLARE-REPORT
statements.

To specify the name of the Table of Contents applicable to a given report using the TOC argument
of the DECLARE-REPORT command, include code similar to the following in the SETUP section
of your program:

begin-setup
 declare-report
 toc = toc_name
 end-declare
 .
 .
end-setup

In Chapter 30, “Printing Issues,” we modified ex7a.sqr to use the DECLARE-TOC and
TOC-ENTRY commands. Then, we generated HTML output from the modified program using
the -PRINTER:EH and -PRINTER:HT command-line flags. Under HTML, the Table of
Contents file is a hyper-linked point of navigation for the online report.

But, you may also want to generate output files for printing reports on paper. And the Table of
Contents features work here as well. To test this, run the modified version of ex7a.sqr program
from Chapter 30, “Printing Issues,” and print it from a LIS file (or use -PRINTER:WP on
Windows). The Table of Contents output contain the traditional dot leaders and necessary page
numbers relating to a hardcopy report.

Cust.sqr
The following program is based on cust.sqr, which is located in the SAMPLE (or SAMPLEW)
directory. The program identifies the Table of Contents with the specific name cust_toc. The dot
leader is turned ON. Indentation is set to 3. One Table of Contents level is set using the TOC-

238 Tables of Contents

ENTRY command’s LEVEL=1 argument. The BEFORE-PAGE and AFTER-TOC arguments of the
DECLARE-TOC command are used to print simple messages here.

Table of Contents Sample Program #1
begin-setup
 declare-toc cust_toc
 for-reports=(all)
 dot-leader=yes
 indentation=3
 after-toc=after_toc
 before-page=before_page
 end-declare
end-setup
begin-program
 do main
end-program
begin-procedure after_toc
 position (+1,1)
 print 'After TOC' () bold
 position (+1,1)
end-procedure
begin-procedure before_page
 position (+1,1)
 print 'Before Page' () bold
 position (+1,1)
end-procedure
begin-procedure main
begin-select
 print 'Customer Info' ()
 print '-' (+1,1,62) Fill
name (+1,1,25)
 toc-entry text = &name level = 1
cust_num (,35,30)
city (+1,1,16)
state (,17,2)
phone (+1,1,15) edit (xxx)bxxx-xxxx
 position (+2,1)
from customers
order by name
end-select
end-procedure ! main
begin-heading 3
 print $current-date (1,1) Edit 'DD-MON-YYYY'
 page-number (1,69) 'Page '
end-heading

The following program is also based on cust.sqr. It is similar to the previous program but declares
two Table of Contents levels. This program also creates Table of Contents specific headings and
footings. The FOR-TOCS argument of the BEGIN-HEADING and BEGIN-FOOTING commands
allows you to specify, by name, the Table of Contents to which the heading or footing section
applies. So, if your program is generating multiple reports with multiple Tables of Contents, you
can apply unique or common headings and footings to reports and Tables of Contents.

Cust.sqr 239

The Table of Contents heading of this program prints Table of Contents and the page number.
The page numbers in the Table of Contents print as roman numerals. The Table of Contents
footing prints Company Confidential.

Table of Contents Sample Program #2
begin-setup
 declare-report cust
 end-declare
 declare-toc cust_toc
 for-reports=(cust)
 dot-leader=yes
 indentation=3
 after-toc=after_toc
 before-page=before_page
 end-declare
 declare-variable
 integer #num_toc
 integer #num_page
 end-declare
end-setup
begin-program
 use-report cust
 do main
end-program
begin-procedure after_toc
 position (+1,1)
 print 'After TOC' () bold
 position (+1,1)
end-procedure
begin-procedure before_page
 position (+1,1)
 print 'Before Page' () bold
 position (+1,1)
end-procedure
begin-procedure main
begin-select
 print 'Customer Info' ()
 print '-' (+1,1,62) Fill
name (+1,1,25)
 toc-entry text = &name level = 1
cust_num (,35,30)
city (+1,1,16)
state (,17,2)
phone (+1,1,15) edit (xxx)bxxx-xxxx
 position (+2,1)
 do orders(&cust_num)
 position (+2,1)
from customers
order by name
end-select
end-procedure ! main
begin-procedure orders (#cust_num)
 let #any = 0
begin-select
 if not #any

240 Tables of Contents

 print 'Orders Booked' (+2,10)
 print '-------------' (+1,10)
 let #any = 1
 end-if
b.order_num
b.product_code
order_date (+1,10,20) Edit 'DD-MON-YYYY'
description (,+1,20)
 toc-entry text = &description level=2
c.price * b.quantity (,+1,13) Edit $$$$,$$0.99
from orders a, ordlines b, products c
where a.order_num = b.order_num
 and b.product_code = c.product_code
 and a.cust_num = #cust_num
order by b.order_num, b.product_code
end-select
end-procedure ! orders
begin-footing 3
 for-tocs=(cust_toc)
 print 'Company Confidential' (1,1,0) center
print $current-date (1,1) Edit 'DD-MON-YYYY'
end-footing
begin-heading 3
 for-tocs=(cust_toc)
 print 'Table of Contents' (1,1) bold center
 let $page = roman(#page-count)
 print 'Page ' (1,69)
 print $page ()
end-heading
begin-heading 3
 print $current-date (1,1) Edit 'DD-MON-YYYY'
 page-number (1,69) 'Page '
end-heading

Figure 16 Two Level Table of Contents HTML File with PRINTER:EH Output

Cust.sqr 241

242 Tables of Contents

34
Customizing the HTML

Navigation Bar

In This Chapter

Prerequisites.. 243

About XML ... 243

The Default Navigation Bar Template ... 244

Customizing Navigation Bar Attributes ... 251

Prerequisites
Before attempting to write a custom template, read this chapter in its entirety. Also learn the
basics of Production Reporting, XML, and HTML. The following are prerequisites for starting
Navigation Bar template customizations:

● Familiarity with the Navigation Bar template elements

● Knowledge of Production Reporting, XML, and HTML

About XML
XML stands for EXtensible Markup Language. Use the following components to build an XML
document:

● Elements—Contain attributes and data. Elements have the format <element></
element>. Every XML document must have a root element, which contains all other
elements. For example, the root element of template.xml is <navbar></navbar>.

● Data—Information specified within elements. Data has the format <element>data</
element>. Some elements have no data.

● Attributes—Add extra information about elements and usually have the format
<element attribute=”value”>. Some elements have no attributes.

● Child elements—Elements that are nested within other elements. For example, the following
child element is nested in a parent element:

 <parent>
 <child>
 </child>
 </parent>

Child elements can also have their own additional child elements.

Prerequisites 243

The Default Navigation Bar Template
Production Reporting provides a template language that allows you to highly customize the
layout and functionality of the Navigation Bar in Production Reporting HTML reports. By
modifying the Template.xml file, you can quickly customize the navigation bar and table of
contents frames in Production Reporting reports.

To apply navigation bar changes, modify the defaultTemplate setting in the SQR.INI file to
include the path to the new template. If the you modify the Template.xml file without
modifying the SQR.INI defaultTemplate setting to point to that file, the template is not
applied to your output. See Volume 2 in the Production Reporting Developer's Guide for more
details on the SQR.INI file.

The default navigation bar template used by the Production Reporting HTML navigation bar is
internal to the EHTML driver. The following code example (template.xml) is a copy of the default
template located in:

\Hyperion\products\biplus\docs\samples\Production Reporting

The sections following the sample describe each of the XML elements and attributes used in
template.xml.

For detailed instructions on changing specific attributes, see “Customizing Navigation Bar
Attributes” on page 251.

template.xml
<?xml version="1.0" encoding="utf-8"?>
<navbar height="25" tocWidth="25%" frames="visible"
 xmlns="http://www.hyperion.com/Navigation Bar Template.xsd"
 xmlns:xsi="http://www.w3c.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.hyperion.com/Navigation Bar
Template.xsd">
 <messages>
 <locale language="english">
 <message name="dtoc">Display Table Of Contents</message>
 <message name="dpdf">Display PDF file</message>
 <message name="dps">Show analysis applet</message>
 <message name="dcsv">Download the data in CSV (comma-delimited)
format</message>
 <message name="dbqd">Download the data in BQD format</message>
 <message name="dxml">Display XML file</message>
 <message name="gfp">Go To First Page</message
 <message name="gpp">Go To Previous Page</message>
 <message name="gtp">Go To Page</message>
 <message name="gnp">Go To Next Page</message>
 <message name="glp">Go To Last Page</message>
 <message name="pmsg">Page number must be between 1 and {#}</
message>
 <message name="penb">Page {@} of {#}</message>
 <message name="load">Loading new page</message>
 </locale>
 <locale language="french">
 <message name="dtoc">Afficher la table des matières</message>
 <message name="dpdf">Afficher le fichier PDF</message>

244 Customizing the HTML Navigation Bar

 <message name="dps">Analyse des rapports</message>
 <message name="dcsv">Obtenir les données dans le format CSV</
message>
 <message name="dbqd">Obtenir les données dans le format BQD </
message>
 <message name="dxml">Afficher le fichier XML</message>
 <message name="gfp">Première page</message>
 <message name="gpp">Page précédente</message>
 <message name="gtp">Aller à la page</message>
 <message name="gnp">Page suivante</message>
 <message name="glp">Dernière page</message>
 <message name="pmsg">Le numéro de la page doit être entre 1 et {#}</
message>
 <message name="penb">Page {@} de {#}</message>
 <message name="load">prepare nouvelle page</message>
 </locale>
 </messages>
 <var name="controls">1</var>
 <var name="pageCount">{#}</var>
 <var name="loadMessage" src="load" />
 <var name="pageMessage" src="pmsg" />
 <row>
 <position style="top:0pt; left:20pt;" />
 <position style="top:0pt; left:50pt;" />
 <position style="top:0pt; left:80pt;" />
 <position style="top:0pt; left:110pt;" />
 <position style="top:0pt; left:140pt;" />
 <position style="top:0pt; left:170pt;" />
 <position style="top:0pt; left:200pt;" />
 <icon src="toc.gif" type="JavaScript" height="24" width="22"
message="dtoc">TOC(); return false;</icon>
 <icon src="ps.gif" type="extension" height="24" width="22"
message="dps">_A0.htm</icon>
 <icon src="ps.gif" type="extension" height="24" width="22"
message="dps">_G.htm</icon>
 <icon src="pdf.gif" type="extension" height="24" width="22"
message="dpdf">.pdf</icon>
 <icon src="bqd.gif" type="extension" height="24" width="22"
message="dbqd">.bqd</icon>
 <icon src="csv.gif" type="extension" height="24" width="22"
message="dcsv">.csv</icon>
 <icon src="xml.gif" type="extension" height="24" width="22"
message="dxml">.xml</icon>
 </row>
 <entry src="penb" message="pmsg" type="JavaScript" value="1" size="3"
style="top:0pt; right:150px;" name="go">go(); return false</entry>
 <icon src="first.gif" message="gfp" type="JavaScript" height="24"
width="22" style="top:0pt; right:138px;">go('1'); return false;</icon>
 <icon src="prev.gif" message="gpp" type="JavaScript" height="24"
width="22" style="top:0pt; right:116px;">go('-'); return false;</icon>
 <icon src="next.gif" message="gnp" type="JavaScript" height="24"
width="22" style="top:0pt; right:94px;">go('+'); return false;</icon>
 <icon src="last.gif" message="glp" type="JavaScript" height="24"
width="22" style="top:0pt; right:72px;">go(pageCount); return false;</icon>
</navbar>

The Default Navigation Bar Template 245

Navbar Element
The navbar element is the root element of template.xml, and it defines basic navigation bar
attributes. The navbar element has 6 child elements: <messages>, <var>, <row>, <entry>,
<icon>, and <image>. The first element must be <messages> then <var> followed by
<row> and <entry>. The last two tags, <icon> and <image>, can be used in any order.

Note:

The <icon> and <entry> elements also can be child elements of <row>.

Table 9 Attributes of the Navbar Element

Attribute Description

height="" Navigation bar height in pixels or percent. A value of 0 removes the navigation bar.

Default = 36 pixels

tocWidth="" Table of contents width as a percent of the total page or in pixels. A value of 0 removes
the table of contents.

Default = 20%

frames="" Visible displays frames. Invisible hides frames.

Default = visible

xmlns="" Name spaces specification.

Value must be "http://wwwhyperioncom/Navigation Bar
Templatexsd"

xmlns:xsi="" XML required name spaces specification.

Value must be "http://wwww3corg/2001/XMLSchema-instance"

xsi:schemaLocation="" Physical location of schema document.

Value must be "http://wwwhyperioncom/Navigation Bar
Templatexsd"

Messages, Locale, and Message Elements
The <messages>, <locale>, and <message> elements work together to define the language
and messages (or “mouse over” text) to be used in the Production Reporting HTML document.
As illustrated in template.xml, these three elements are part of the XML hierarchy and must be
nested in a specific order: <messages> is the parent element of <locale>, and <locale> is the
parent element of <message>. Use these elements in the following order:

<messages>
 <locale>
 <message> </message>
 </locale>
</messages>

246 Customizing the HTML Navigation Bar

The following sections describe the child elements of <messages> in more detail.

Locale Element
The <locale> element has one required attribute, language, and one child element,
<message>.

Attribute Description

Language="" Language used for all mouse over text. Although, you can store many languages in template xml
files, you can only use one at a time. In template.xml, for example, French and English mouse over
text are defined, but only English messages are used.

Message Element
A <message> element has one attribute, name, and surrounds a string of data. The data must
be a string of UTF-8 characters.

Attribute Description

name Name for a text message For example, the message “Display PDF file” is named “dpdf”, and the message
“Show analysis applet” is named “dps” The icon element uses these names to add a message to an icon.

The number of pages replaces the sequence {#} in the report. In a ten-page report for example, the
message “Page number must be between 1 and {#}” displays “Page number must be between 1 and 10”

The sequence {@} is used in conjunction with an entry tag. For example, the message “Go to page:{@}”
displays a blank area in which you can type a page number.

Var Element
The <var> element describe JavaScript variable statements to be used by the navigation bar
JavaScript functions. The <var> element has one required attribute: name. It has one optional
attribute, src, and optional string data.

Attribute Description

name="" Required. Defines a name for the variable. The following example equals the number of pages in the
report:

<var name="pageCount”>

src="" Optional. Corresponds to data in the <message> element. The following example has a src attribute
value that corresponds to data in the <message> element named “pmsg":

<var name="pageMessage" src="pmsg"/>

Row, Position, Icon, and Entry Elements
The <row> element has no attributes but does have the following three child elements:

The Default Navigation Bar Template 247

● <position>—Places the icons and entries in a specific order.

● <icon>—Imports the navbar icons.

● <entry>—Adds JavaScript or HTML widgets to the navbar.

Place the <position> elements first since they set up the places (or slots) in which to place the
icons and entries. Follow the <position> element with <icon> and <entry> elements in the
order they appear in the navigation bar. The first icon or entry in the list displays in the right-
most position of the navigation bar, and so on.

The <row> element and its child elements allow for flexible positioning of navigation bar items.
For example, if a report has no table of contents icon, the next icon in the list moves to the
position typically allotted for the table of contents icon, and the empty space becomes occupied.

Note:

In some cases, it is advantageous to have an icon or entry widget in a stationary position, so the
<icon> and <entry> tags can be added outside of the <row> element. In this case, they lose
the flexibility of being associated with the <position> element because the <position>
element cannot be placed outside of the <row> element.

Any <icon> or <entry> tag placed outside of the <row> element must have a definite,
unmoving position, which is defined with the style attribute as in the following example:

<icon src="bqd.gif" type="extension" height="24" width="22"

message="dbqd" style="top:0pt; left:20pt;">.bqd</icon>

The following sections describe the child elements of the <row> element.

Position Element
The <position> element specifies the position of each navigation bar icon and/or entry. It has
one attribute, style. The <position> element must come first followed by any <icon> or
<entry> elements.

Attribute Description

style="" Required. Position of each navigation bar icon and/or entry. Enter the number of pixels from the top
and from the left of the navigation bar.

The following example places the icon 0 points from the top and 110 points from the left:

<position style="top:0pt; left:110pt;"/>

Icon Element
The <icon> element imports, positions, sizes, and labels icons in the navigation bar. The
<icon> element has one required attribute: src. It has five optional attributes: type,
message, style, height, and width.

248 Customizing the HTML Navigation Bar

Table 10 Attributes of the Icon Element

Attribute Description

src="" URL to an image file supported by browsers through the HTML image tag (GIF, PNG, JPEG)

The default value depends on the default icon. See Table 13 for the list of default icons.

type="" Type of icon. Values include:

● extension—Matches output files in SQROutputxml or in the -eh_csv type flags. The following
example has a BQD extension in the data area:

<icon src="bqdgif" type="extension" >bqd</icon>

See “Production Reporting Command-line Flags” in Volume 2 of the Production Reporting
Developer's Guide for more details on -eh_csv

● JavaScript—Used only for page and TOC controls. The following example has a JavaScript call
in the data area:

<icon src="tocgif" type="JavaScript" >TOC(); return false;</icon>

● url—Opens a new window displaying the URL in the string data The following example has a
URLin the data area:

<icon src="imagegif" type="url" >http://wwwanotherurlcom/</icon>

Values are case sensitive. Default = extension

message="" Message name as defined in the <message> element.

Default = null.

style="" Positions the icon except when the icon tag is in a row.

If the icon is in a row, use style=" " in the <position> element as described on “Position
Element” on page 248.

If the icon is not in a row, enter the number of points from the top, left of the navigation bar. The
following example places the icon 0 points from the top and 110 points from the left:

<icon style="top:0pt; left:110pt;"/>

The default is null, which positions the icon in the upper left corner of the navigation bar.

height="" Non-negative integers that specify the height of the icon image in pixels

Default = 1.

width="" Non-negative integers that specify the width of the icon image in pixels

Default = 1.

Entry Element
The <entry> element creates entry widgets in the navigation bar. The <entry> element has
two required attributes, name and src, and surrounds a string of data. The data must be a string
that represents either a JavaScript call or a URL to use when you press the [Enter] key while the
cursor is in the entry widget. The <entry> element also has five optional attributes: type,
value, size, message, and style.

The Default Navigation Bar Template 249

Table 11 Entry Element Attributes

Attribute Description

name="" Required. String used to identify the entry widget from JavaScript. Must be unique for all
<entry> elements.

src="" Required. Names a message to use as the text surrounding the entry widget. The sequence {@} in
the message text is replaced with the HTML entry. For example,

<entry name="go" src="myentry">go(); return false</entry>

creates an entry widget on the navigation bar with the words "Go to page:" as a label before a small
box in which you type a page number.

The message is designated in the <message> element. For example, the message “Go to page:
{@}” displays when you enter a page number in the “Go to Page” entry widgit

type="" Optional. Must be either "JavaScript" or "url" depending upon the data.

● JavaScript—Used only for page and TOC controls The following example has a Java call in the
data area:

<entry src="penb" message="pmsg" type="JavaScript" value="1"

size="3" style="top:0pt; right:150px;" name="go">go(); return

false</entry>

● url—Makes an entry linked to the url from the string data The following example has a url in the
data area:

<entry name="search" src="myentry" type="url">http://wwwmysitecom/

search</entry>

Similar to JavaScript, url creates a box in which you can enter character input and press return
For url entry boxes, pressing return submits a form that passes the data as an HTTP GET request
For example, if you enter Production Reporting in the entry box and press return, the browser
opens the address: http://wwwmysitecom/search?SQR

Default = JavaScript

value="" Optional. String to display in the entry widget as a default value.

Default = null.

size="" Optional. Number of characters to display in the entry widget in non-negative integers.

Default = 1.

message="" Optional. Name of the message to display when passing the mouse over the widget. Define the
mouse over text with the <message> element as described on “Message Element” on page 247

Default = null.

style="" Optional. Used for positioning except inside a row.

If the entry is in a row, do not include the attribute here; instead use it in the <position> element
as described on “Position Element” on page 248

If the entry is not in a row, enter the number of points from the top and from the left of the navigation
bar to place the entry. The following example places the entry 0 points from the top and 110 points
from the left:

<entry style="top:0pt; left:110pt;"/>

The default is null, which positions the entry in the upper left corner of the navigation bar.

250 Customizing the HTML Navigation Bar

Image Element
The <image> element imports, positions, sizes, and labels images in the navigation bar. The
icon tag has one required attribute: src. It has five optional attributes: type, message,
style, height, and width.

Table 12 Image Element Attributes

Attribute Description

src="" Required. URL to an image file supported by browsers through the HTML image tag (GIF, PNG, JPEG).

height="" Required. Non-negative integers to specify the height of the icon image in pixels.

Default = 1

width="" Required. Non-negative integers to specify the width of the icon image in pixels

Default = 1

message="" Optional. Message name in the messages section.

Default = null

style="" Optional. Number of points from the top, left of the navigation bar. The following example places the
image 0 points from the top and 110 points from the left:

<image style="top:0pt; left:110pt;"/>

The default is null, which positions the image in the upper left corner of the navigation bar.

Note:

Since you cannot place an image element within a row, you cannot use the <position> element
to place images.

Customizing Navigation Bar Attributes
You can customize the look and functionality of your navigation bar by changing the attributes
and data of the elements in the template.xml file. Review the following topics for information
on:

● Working with Templates

● Specifying Navigation Bar Height and TOC Width

● Adding and Placing an Image

● Working with Navbar Icons

Working with Templates
You use templates to create a consistent format for all documents used with the template. You
can customize and apply a template or multiple templates to Production Reporting HTML
output.

Customizing Navigation Bar Attributes 251

Creating Custom Templates

➤ To customize the template.xml file:

1 Save a backup copy of template.xml, found in \Hyperion\products\biplus\docs\samples
\Production Reporting.

2 In a text editor, open the copy of template.xml.

3 Make any of the changes described in the following sections.

4 Save your changes.

You can save many XML templates and use them as needed. See the following section for
instructions on applying the template.

Applying an XML Template to Your Output
You can designate one XML template file as the default template for all output.

➤ To define the default template, add the path to the XML template in the DefaultTemplate
entry in the [Enhanced-HTML] section of the SQR.INI file. (See “[Enhanced-HTML] Section”
in Volume 2 of the Production Reporting Developer's Guide for more details.)

Specifying Navigation Bar Height and TOC Width
You can specify the height of the navigation bar and the width of the table of contents in the
<navbar> element of the template.xml. In the following example, the navigation bar height is
36 pixels, the table of contents width is 25 percent of the total width of the page, and the frames
are visible”

<navbar height="36" tocWidth="25%" frames="visible">

See “Navbar Element” on page 246 for a detailed description.

Adding and Placing an Image
You can embed an image, such as a company logo, and specify its horizontal and vertical location
within the Navbar frame.

In the following example, the file, logo.gif, is 24 pixels high by 250 pixels wide, it is located 0
points from the top of the navigation bar frame and 300 pixels from the right, and it has
“Company Logo” as alternate text.

<image src="logo.gif" height="24" width="250" style="top:0pt; right:300px"
alt="Company Logo"/>

See “Icon Element” on page 248.

252 Customizing the HTML Navigation Bar

Working with Navbar Icons
Production Reporting HTML navigation bar icons are used as links to navigate internally within
an Production Reporting HTML document and also as links to open Production Reporting
output in multiple file formats. For example, the TOC (table of contents) icon launches the table
of contents frame, allowing users to navigate through the HTML document, and the PDF
(Portable Document Format) icon launches an external Adobe Acrobat window displaying the
Production Reporting report in PDF format.

Review the following section for information on using navigation bar icons:

● Default Icons

● Adding Icons to the Navigation Bar

● Associating Icons with Output Files

● Changing the Default Icon Images

● Changing the Default Order of Icons

● Changing the Default Mouse Over Text

● Associating Icons with File Extensions

● Setting the Navigation Bar Language

Default Icons
Template.xml provides default icons that are associated with a specific file type and have mouse
over text that describes them.

Note:

Though default icons are associated with file types such as PDF, they are not linked to specific
output files. This linking is done with an XML file called SQROutput.xml. See “Associating
Icons with Output Files” on page 254.

You can use the default icons, replace them, or add additional icons as required. In addition,
you can write new mouse over text and associate icons with new file types.

Table 13 describes the default icons and their mouse over text provided in the Navigation Bar
template.

Table 13 Default Icons and Messages

Icon Name Message Description

dtoc Display Table of Contents Displays the Table of Contents frame

dpdf Display PDF file Displays the report in Portable Document Format
(PDF) and launches it inside a new browser
window

Customizing Navigation Bar Attributes 253

Icon Name Message Description

dcsv Download the data in CSV (comma-delimited)
format

Launches the CSV plug-in or Helper Application
in new browser window

dbqd Download the data in BQD format Launches the BQD Helper Application in a new
browser window

dxml Display XML file Launches the XML plug-in or Helper Application
in a new browser window

gfp Go To First Page Displays the first page of the report in the current
browser window

gpp Go To Previous Page Displays the previous page of the report in the
browser window

gnp Go To Next Page Displays the next page of the report in the current
browser window

glp Go To Last Page Displays the last page of the report in the current
browser window

Adding Icons to the Navigation Bar
Use the <icon> element to add new icons to the navbar. (See “Icon Element” on page 248 for
more details.)

Following are the basic steps involved in adding a new icon to the navigation bar. Each step
contains a cross reference to a section in this chapter with more detailed information.

1. Select an image and import the file. (See “Changing the Default Icon Images” on page
256.)

2. Place the icon. (See “Changing the Default Order of Icons” on page 256.)

3. Label the icon. (See “Changing the Default Mouse Over Text” on page 257.)

4. Associate the icon with a file extension. (See “Associating Icons with File Extensions” on
page 257.)

5. Link the icon with a specific output file. (See “Associating Icons with Output Files” on page
254.)

Tip:

Add only as many navigation bar icons as there are file formats published for your
Production Reporting output.

Associating Icons with Output Files
Whether you use the default icons or add custom ones, you must associate each icon with a
specific output file. Associating icons with a file enables that file to be opened in a new browser
window when you select the icon in Production Reporting HTML.

254 Customizing the HTML Navigation Bar

When you use a navigation bar template, you must also create a file named SQROutput.xml.
This file contains file names and optional mouse over text. When you run SQR to produce HTML
output, SQR uses the information in the SQROutput.xml file to associate files with the report.
If the SQROutput.xml file does not exist, then the -EH_CSV type command line flags are used.
See “Production Reporting Command-line Flags” in Volume 2 of the Production Reporting
Developer's Guide for more details.

The SQROutput.xml file reads he following icon attributes:

● File name

● File path

● File type

● Tool tip

➤ To associate an icon with an output file:

1 Use the template.xml file to associate the icon with a file extension.

The file extension is the data of the message element, so you must add it between the angled
brackets as follows:

<icon>file extension</message>

In the following example, PDF is the file extension associated with the icon:

<icon src="http://www.mydomain.com/images/myimage.png" height="24"
width="22" message="dpdf">.pdf</icon>

2 Write a file called SQROutput.xml.

SQROutput.xml is a manifest file that you must include in your output directory for linking
each icon with a specific output file. For each icon you include in your Template.xml template,
you must write a path in the data portion of the <file> element of your SQROutput.xml file.
For example, <file>customer.csv</file> links the CSV icon to the file called customer.csv.

When creating your SQROutput.xml file, write it exactly as shown in Sample SQROutput.xml
below; change only the <file> elements to match your file output. The file elements appear in
bold face.

Each <file> element tag in Sample SQROutput.xml points to a different file format of the
“customer” report. The first element points to the customer.csv file, the second element points
to the customer.bqd file, and the third element points to the customer.xml file. These files
are located in the same directory as the Production Reporting HTML file. If they were located
in another directory, a longer file path would be necessary.

The file element has one attribute, message, which is an alternate method of attaching mouse
over text to the icon. For example, the xml icon displays special xml file.

3 Save the SQROutput.xml file to your output directory.

Sample SQROutput.xml
<?xml version="1.0"?>
<output xmlns="http://www.hyperion.com"

Customizing Navigation Bar Attributes 255

 xmlns:xsi="http://www.w3c.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.hyperion.com
 SQROutput.xsd">
 <file>customer.csv</file>
 <file>customer.bqd</file>
 <file message="special xml file">customer.xml</file>
</output>

Changing the Default Icon Images
Specify images for icons in the Navbar frame by adding a URL to an image file in the src attribute
for the <icon> tag. For example, the following icon uses the default pdf.gif file available from
the images directory. The src attribute is in bold face.

<icon src="pdf.gif"type="extension" height="24" width="22"
message="dpdf">.pdf</icon>

➤ To change the default images for icons:

1 Change the src attribute in the <icon> tag of the template.xml file.

The icon tag in this example uses an icon available on an HTTP server.

<icon src="http://www.mydomain.com/images/pdf.png" height="24" width="22"
message="dpdf">.pdf</icon>

2 Change the height and width attributes in the <icon> tag to match the dimensions of the new icon.

If the dimensions of the icon change, but the height and width attributes do not, the image may
look distorted.

3 Ensure that the file type associated with the new icon is correct.

If the icon represents a PDF file, then you must type the PDF file extension in the data area of
the icon element. For example:

<icon src="http://www.mydomain.com/images/pdf.png" height="24" width="22"
message="dpdf">.pdf</icon>

4 Save your changes.

To open a file using an icon, associate the icon with a file extension. See “Associating Icons with
File Extensions” on page 257 for the next step of this process.

Changing the Default Order of Icons
You can specify horizontal placement of icons and the order in which to display the icons in
your navigation bar. If the icons are within the <row> element, use the <position> element to
place the icons.

To specify the placement of icons, use the <position> element, which is nested in the <row>
element. In the following example, the PDF icon appears to the left of the BQD icon:

<row>
 <position style="top:0pt; left:20pt;"/>
 <position style="top:0pt; left:50pt;"/>

256 Customizing the HTML Navigation Bar

 <icon src="pdf.gif" type="extension" height="24"
width="22" message="dpdf">.pdf</icon>
 <icon src="bqd.gif" type="extension" height="24"
width="22" message="dbqd">.bqd</icon>
</row>

If the icons are not nested in the <row> element, you can use the style attribute of the
<icon> element to place the icon, as in the following example.

<icon src="bqd.gif" type="extension" height="24"
width="22" message="dbqd" style="top:0pt; left:20pt;">.bqd</icon>

Changing the Default Mouse Over Text
You can create and edit mouse over text for default and new icons in the navigation bar. Mouse
over text can be used as “tool tips” that display when you pass a mouse over an icon and as
alternate text for users who use HTML screen readers.

Define mouse over text with the name attribute of the <message> element, and attach mouse
over text to an icon with the message attribute of the <icon> element.

The following example defines mouse over text in two parts:

1. The name attribute of the <message> tag defines the message text as “Display PDF file” and
gives it the name of “dpdf.”

<message name="dpdf">Display PDF file</message>

2. The message named '“dpdf” is attached to the icon with the message attribute of the
<icon> element.

<icon src="pdf.gif" type="extension" height="24" width="22"

message="dpdf">.pdf</icon>

As shown in Figure 17, the message, “Display PDF” displays when you pass the mouse over the
icon.

Figure 17 Display PDF Icon Message

See “Setting the Navigation Bar Language” on page 258.

Associating Icons with File Extensions
You can associate icons with additional file extension types for Production Reporting and non-
Production Reporting generated files. In addition Production Reporting HTML supports
multiple icons of a specific file type. For example, you could include multiple BQD and DOC
file icons in the Navbar of one Oracle's Hyperion® SQR® Production Reporting HTML report.
Example extension include:

Customizing Navigation Bar Attributes 257

● .PDF

● .BQD

● .CSV

● .XML

● .HTM

● .DOC

● .XLS

● .PPT

➤ To associate icons according to known file extension types for Production Reporting and non-
Production Reporting generated files:

1 Select the <icon> element of an icon from the default icons in the Navbar template or write an <icon>
element for a custom icon.

See “Icon Element” on page 248 for details on the attributes and data of the icon element. See
“Changing the Default Icon Images” on page 256 for information on adding custom icons.

2 Write the file extension in the data area of the <icon> element.

In the following example the PDF file extension is designated in the data area of the icon element:

<icon src="pdf.gif" type="extension" height="24" width="22"
message="dpdf">.pdf</icon>

See “Associating Icons with Output Files” on page 254 for instructions on linking the icons with
specific files.

Tip:

To identify each file when multiple files of one file type exist, use mouse over text to describe
each icon. See “Changing the Default Mouse Over Text” on page 257.

Setting the Navigation Bar Language
You can set the language used for the HTML navigation bar by using the command line flag: -
eh_language:language.

Note:

This flag is only applicable when -PRINTER:EH or -PRINTER:EP is specified.

You can choose from the following languages provided in the default template:

● English

● French

● German

258 Customizing the HTML Navigation Bar

● Portuguese

● Spanish

● Simplified Chinese

● Traditional Chinese

● Japanese

● Korean

Each of the languages in the template has its own set of messages translated for that language.
See Table 13 for a list of default messages in English. All languages have an equal number of
messages, and all corresponding messages share the name. For example, the “Display TOC”
message is named “dtoc” regardless of the locale.

Customizing Navigation Bar Attributes 259

260 Customizing the HTML Navigation Bar

Index

Symbols
! (comment character), 20
#DEBUG, 176
#DEFINE, 195
#ELSE, 176
#ENDIF, 176
#IF, 176, 195
#if, 195
#IFDEF, 176, 195
#IFNDEF, 176
#INCLUDE, 195
#include, 195
#page-count, 130
$current-date, 36
$sqr-locale, 165
$sqr-program, 130
$username, 130
-BURST

P, 218
S, 218
T, 218
{xx}, 218

-DEBUG flag, 176
-f command-line flag, 199
-KEEP command-line flag, 198
-NOLIS command-line flag, 198, 200
-PRINTER

xx command-line flag, 197, 198
-RS command-line flag, 195
-RT command-line flag, 195
-T command-line flag, 175

A
abs, 148
ALTER-COLOR-MAP, 93
ALTER-LOCALE, 164
ALTER-PRINTER, 87, 115

arguments
argument files, 202
command-line, 201
creating file from reports, 204
passing, 131
used with ASK or INPUT, 202

arrays, 62, 99
multiple, 67
performance issues, 183

ASK, 129, 195, 196, 202

B
background

color for the navigation bar, 209, 212
image for the navigation bar, 209, 212

BATCH-MODE
argument, 202
using, 204

BEGIN-FOOTING, 140, 239
BEGIN-HEADING, 140, 239
BEGIN-PROCEDURE, 24
BEGIN-SELECT

in Master/Detail reports, 53
structure, 53
with an expression, 55
with HAVING clause, 136
with ORDER BY clause, 30

BEGIN-SQL
example, 141
with ON-ERROR option, 142

bind variables, 126
bitmaps, 87, 120
bmp-file, 87, 88, 120
BOLD option, in PRINT command, 117
bottom-margin option, 49
break logic, 29
bubble charts, 111

A B C D E F G H I J L M N O P R S T U V W

Index 261

bursting, 218

C
center option, 117
CGI script, 233, 234
character grid, 17, 48, 73, 115
chart item colors, specifying, 102
charts

bubble charts, 111
combination charts, 104
creating, 95
defining, 99
passing data to, 100
printing, 99
specifying data series colors, 101
specifying item colors, 102

CODE-PRINTER qualifier, 228
colors

ALTER-COLOR-MAP, 93
changing with New Graphics, 101
chart data series, 101
chart item, 102
GET-COLOR, 93
SET-COLOR, 93
using, 92

combination charts, 104
command line

arguments, 201
flags, 197
using reserved characters, 203
using special characters, 203

comments, 20
compiling Production Reporting programs

and using Production Reporting Execute, 195
compiling SQR programs

performance issues, 190
connectivity, 15
counters, 72
CREATE-ARRAY, 64
cross-tabular reports, 61

D
data series colors, 101
DATA-ARRAY

COLUMN-COUNT argument, 99
option, 99

ROW-COUNT argument, 99
database inserts, 141
date arithmetic, 156
date variables, 160
dateadd function, 156
datediff function, 156
datenow function, 156
dates

comparing, 156
converting from strings, 156, 158
converting to strings, 156, 158
formats, 157

datetostr function, 156
DDL (Data Definition Language), 141
declarations, 47
DECLARE-CHAR, with title option, 99
DECLARE-IMAGE, 89
DECLARE-LAYOUT

defining page width with, 73
in the SETUP section, 48, 86
MAX-COLUMNS option with, 49
MAX-LINES option with, 49
orientation option with, 50
paper-size option with, 49
setting margins with, 49

DECLARE-PRINTER
FOR-REPORTS option with, 199
in printer-independent reports, 119
printer-specific settings, 198
TYPE option with, 199

DECLARE-REPORT
PRINTER-TYPE option with, 199
TOC argument with, 237

delete, 129
demand paging, 218
DML (Data Manipulation Language), 141
document markers, 77, 91
DOCUMENT section, 77, 91
dynamic SQL, 126, 129
dynamic variables, 127

E
edit masks

case sensitivity, 160
dates, 159

ELSE, 37
END-FOOTING, 20

A B C D E F G H I J L M N O P R S T U V W

262 Index

END-HEADING, 20
END-IF, 37
END-PROCEDURE, 24
END-PROGRAM, 16
END-SELECT, 24
END-SETUP, 47
Enhanced HTML, 207
eps-file, 88, 119
EVALUATE, 65
exclamation mark, 20
external files, 141

F
fill option, 36, 86
fill-out form, 233
flags, 15
floor function, 135
FONT option, 87
footing, 20
FOR-REPORTS option

definition of, 140
with DECLARE-PRINTER, 199

functions, 135

G
GET-COLOR, 93
GIF format, 227
global variables, 132
GRAPHIC, 87

H
HAVING clause, with BEGIN-SELECT, 136
heading, 20
headings with HTML, 225
highlighting with HTML, 225
horz-line option, 87
hpgl-file, 88, 119
HTML FRAME construct, 207, 231
hypertext links, 226
hyphens, 37

I
IF, 37, 55
images

in HTML output, 227

in navigation bar, 212
indentation, 25
INPUT, 121, 129, 159, 196, 202
insert, 129, 142

J
joins

definition of, 136
performance issues, 180

JPEG format, 227

L
LaserJet printers, 88, 119
LAST-PAGE, 20
left-margin option, 49
LET

definition of, 82
level keyword, 32
lists with HTML, 227
LOAD-LOOKUP, 180
local procedures, 131
local variables, 131
locales

definition of, 163
switching, 164

LOOKUP, 180
loops, 25

M
master/detail reports, 53
mod function, 135
multiple reports

how to create, 137
performance issues, 189

N
need argument, 36
NewGraphics, 101, 104, 111
no-advance option, 72
numeric functions

absolute value, 148

O
ON-BREAK

limitations, 45

A B C D E F G H I J L M N O P R S T U V W

Index 263

logic, 30
ON-ERROR option, 125, 129, 142
ORDER BY clause

with BEGIN-SELECT, 30
with SELECT, 127

P
page breaks, with ON-BREAK, 36, 42
paragraph formatting with HTML, 228
passing command-line arguments, 203
performance issues, 179
PIE-SEGMENT-PERCENT-DISPLAY qualifier, 101
POSITION, 91
position, print, 17, 21, 25, 26, 48, 87
PostScript printers, 88, 119
PRINT, 25

FILL option with, 36, 86
with BOLD, 117
WRAP option with, 117

PRINT-CHART
DATA-ARRAY option, 99
DATA-ARRAY-COLUMN-COUNT argument, 99
DATA-ARRAY-ROW-COUNT argument, 99
limitations of, 120
sub-title argument with, 99
TYPE option with, 99
using for business charts, 95

PRINT-DIRECT, 119
PRINT-IMAGE

html_img procedure with, 227
limitations of, 120
source option with, 87
type option with, 87

PRINTER-DEINIT, 119
printer-independent reports, 119
PRINTER-INIT, 119
PRINTER-TYPE option, 199
procedures, 24, 131
Production Reporting

calling from another application, 168
Production Reporting Execute, 195
Production Reporting Print, 198
Production Reporting Viewer, 198
Production Reporting.INI, 164
SQR API, 168

Production Reporting Studio, 16, 73, 100, 140, 175
PROGRAM section, 16, 24

R
reserved characters with HTML, 217
reserved variables, 130, 132
run-time arguments, 202

S
SELECT paragraph

enhancing break processing, 35
SQL error checking, 129
syntax, 25
using the SELECT statement, 24
using variables, 127

SET-COLOR, 93
SETUP section

after saving runtime files, 196
with multiple reports, 139

SKIPLINES argument
example, 72
handling page breaks, 36
skipping lines between groups, 31

SOURCE option, 88
SPF file format, 88, 89, 197, 198, 199
SPF Viewer, 16
spreadsheets, exporting to, 81
SQL

and substitution variables, 128
cursor status, 182
error checking, 129

SQROutput.xml, 255
SQT files, 195
STRING, 82
strtodate function, 156
sub-title argument, 99
substitution variables, 128, 129
symbol-set argument, 119

T
tab-delimited file, 81
temporary database tables, performance issues, 183
text, positioning, 115
title option, 99
top-margin option, 49
tuning issues, 179
type option, 87, 99, 199

A B C D E F G H I J L M N O P R S T U V W

264 Index

U
UFUNC.C, 171
underscores, 37
upper function, 126
USE-PRINTER-TYPE, 198

V
variables

common errors with, 177
defining, 37
in documents, 91
in SQL, 125

W
WRAP option, 117

A B C D E F G H I J L M N O P R S T U V W

Index 265

A B C D E F G H I J L M N O P R S T U V W

266 Index

	Contents
	Production Reporting Basics
	Introduction
	A Simple Production Reporting Program
	A Sample Program
	Creating and Running Production Reporting Programs
	Production Reporting Output

	Headings and Footings
	Subdividing Pages
	Adding Headings and Footings
	Page Heading
	Page Footing
	Order of Execution

	Selecting Data
	Sample Code
	Using SELECT Statements
	SELECT Statement Syntax
	Positioning Data

	Column Variables
	Using Column Variables in Conditions
	Changing Column Variable Names

	Break Logic
	About Breaks
	Using ON-BREAK
	Skipping Lines Between Groups
	Arranging Multiple Break Columns
	Break Processing with Enhancements
	Handling Page Breaks
	Printing Dates
	Obtaining Totals
	Hyphens and Underscores

	Setting Break Procedures with BEFORE and AFTER
	Understanding Event Order

	Controlling Page Breaks with Multiple ON-BREAK Columns
	Saving Values When Breaks Occur
	Using ON-BREAK on Hidden Columns
	Restrictions and Limitations of ON-BREAK

	SETUP Section
	About the Setup Section
	Creating the SETUP Section
	Using DECLARE-LAYOUT
	Overriding Default Settings
	Declaring Page Orientation

	Production Reporting Reports
	Master/Detail Reports
	About Master/Detail Reports
	Creating Master/Detail Reports
	Correlating Subqueries

	Cross-Tabular Reports
	About Cross-Tabular Reports
	Arrays
	Creating Arrays
	Grouping by Category
	Using Multiple Arrays

	Printing Mailing Labels
	Defining Columns and Rows
	Running Programs

	Creating Form Letters
	Using DOCUMENT Sections
	Using Document Markers
	A Simple Form Letter Program

	Exporting Data to Other Applications

	Fonts and Graphics
	Using Graphics
	A Simple Tabular Report
	Adding Graphics
	Sharing Images Among Reports
	Printing Bar Codes
	Using Color
	Changing Color Specifications

	Business Charts
	About Business Charts
	Creating Charts
	Defining Charts
	Printing Charts
	Running Programs
	Passing Data to Charts
	Changing Colors with New Graphics
	Specifying Chart Data Series Colors
	Specifying Chart Item Colors

	Creating Combination Charts
	Sample Line Chart Over Bar Chart
	Sample Hi-Low Chart Over Bar Chart

	Creating Bubble Charts
	Defining Point Labels

	Changing Fonts
	Selecting Fonts
	Positioning Text
	Using WRAP

	Writing Printer-Independent Reports
	About Printer-Independent Reports
	Guidelines for Printer-Independent Reports
	Specifying the Printer at Run-time

	Advanced Production Reporting Programming
	Dynamic SQL and Error Checking
	About Dynamic SQL and Error Checking
	Using Variables in SQL
	Dynamic SQL
	SQL and Substitution Variables
	SQL Error Checking

	Procedures, Argument Passing, and Local Variables
	A Sample Program
	Procedures
	Local Variables
	Argument Passing

	Multiple Reports
	Using DML and DDL
	SQL Statements
	Using BEGIN-SQL

	Working with Comma Separated Files (CSV)
	Declaring a Connection to a CSV Data Source
	Specifying a Separator Value for CSV File Generation
	Viewing CSV Metadata
	Creating and Executing MD Queries

	Retrieving BINARY Column Data
	Defining that a Variable or Column Supports BINARY Data
	Defining How to Treat BINARY Data
	Converting Between BINARY and TEXT
	Processing External Files
	Production Reporting Commands that Support BINARY Data

	Working with Multi-Dimensional Data Sources (OLAP)
	Declaring a Connection to an OLAP Server
	Viewing Cube Metadata
	Creating and Executing MD Queries
	Measures
	Column Order
	Dimensions, Levels, and Hierarchies

	Working with Dates
	Dates in Production Reporting
	Obtaining Date Values
	Date Arithmetic
	Date Formats
	String to Date Conversions
	Date to String Conversions
	Using Dates with the INPUT Command
	Date Edit Masks
	Declaring Date Variables

	National Language Support
	Locales
	Available Locales
	Default Locale
	Switching Locales
	Modifying Locale Preferences
	Keywords—NUMBER, MONEY, and DATE

	Interoperability
	Interoperability Diagrams
	Calling Production Reporting from Another Application
	Using the Production Reporting API
	Using the Production Reporting API on Windows
	Using the Production Reporting API on Non-windows Platforms
	API Functions for Calling Production Reporting
	Relinking Production Reporting on UNIX Platforms
	Error Values Returned by the Production Reporting API

	Extending Production Reporting—UFUNC.C
	ufunc on the Windows Platform
	Implementing New User Functions on the Windows Platform

	XML Support in Production Reporting

	Testing and Debugging
	Using the Test Feature
	Using the #DEBUG Command
	Using Compiler Directives for Debugging
	Common Programming Errors

	Performance and Tuning
	About Performance and Tuning
	Simplifying a Complex SELECT
	Using LOAD-LOOKUP to Simplify Joins
	Improving SQL Performance with Dynamic SQL
	Examining SQL Cursor Status
	Avoiding Temporary Database Tables
	Using and Sorting Arrays
	Using and Sorting Flat Files

	Creating Multiple Reports in One Pass
	Tuning Production Reporting Numerics
	Compiling Production Reporting Programs and Using Production Reporting Execute
	Buffering Fetched Rows
	Executing Programs on the Database Server

	Running and Printing
	Compiling Programs and Using Production Reporting Execute
	Printing Issues
	Printing in Production Reporting
	Command-Line Flags and Output Types
	DECLARE-PRINTER Command
	Naming the Output File
	Print Commands by Operating System

	Using the Production Reporting Command Line
	The Production Reporting Command Line
	Specifying Command-Line Arguments
	How Production Reporting Retrieves the Arguments
	Specifying Arguments and Argument Files
	Using an Argument File
	Passing Command-Line Arguments—Other Approaches
	Reserved Characters
	Creating an Argument File from a Report

	Using Batch Mode

	Working with HTML
	Production Reporting Capabilities Available with HTML
	Producing HTML Output
	Specifying the Output Type
	Using HTML Procedures to Produce Output
	Viewing HTML Output
	Testing the Output

	Generating Enhanced HTML
	Setting Enhanced HTML Attributes

	Generating Standard HTML
	“Bursting” and Demand Paging
	Using HTML Procedures in a Production Reporting Program
	Using HTML Procedures
	Positioning Objects
	Defining Titles and Background Images
	Table Procedures
	Headings
	Highlighting
	Hypertext Links
	Images
	Lists
	Paragraph Formatting
	User-Defined HTML

	Modifying Existing Production Reporting Programs
	Publishing Reports
	Viewing Published Reports
	Publishing Using an Automated Process
	Publishing Using a CGI Script
	Creating the Fill-Out Form
	Creating the CGI Script
	Passing Arguments to the Production Reporting Program

	Tables of Contents
	DECLARE-T0C
	TOC-ENTRY
	Cust.sqr

	Customizing the HTML Navigation Bar
	Prerequisites
	About XML
	The Default Navigation Bar Template
	Navbar Element
	Messages, Locale, and Message Elements
	Var Element
	Row, Position, Icon, and Entry Elements

	Customizing Navigation Bar Attributes
	Working with Templates
	Specifying Navigation Bar Height and TOC Width
	Adding and Placing an Image
	Working with Navbar Icons

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /FranklinGothic-BookCnd
 /FranklinGothic-BookCndItal
 /FranklinGothic-DemiCnd
 /FranklinGothic-DemiCndItal
 /FranklinGothic-MedCnd
 /FranklinGothic-MedCndItal
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /Minion-Black
 /Minion-Bold
 /Minion-BoldItalic
 /Minion-Italic
 /Minion-Regular
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Palatino-Roman
 /Symbol
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (This file has been modified for Distiller 7.0 PDF, as described in the Oracle Documentation Processes Guide to Creating PDF. Also, Franklin Gothic and Minion fonts are set to Always Embed.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

