HYPERION® SQR® PRODUCTION REPORTING
RELEASE 11.1.1

DEVELOPER’S GUIDE ORACLE

ENTERPRISE PERFORMANCE
VOLUME 2: LANGUAGE REFERENCE MANACEMENT. SYSTEN

Production Reporting Developer’s Guide, 11.1.1
Copyright © 1996, 2008, Oracle and/or its affiliates. All rights reserved.
Authors: EPM Information Development Team

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable: U.S. GOVERNMENT RIGHTS: Programs, software, databases, and related
documentation and technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government
contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal
injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim
any liability for any damages caused by use of this software in dangerous applications.

This software and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with
respect to third party content, products and services. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third party content, products or services.

Contents

Chapter 1. Introduction e 11
About the Production Reporting Languageottt 11

Production Reporting Language Program Structure 11

Production Reporting Language Syntax Conventions 12

Production Reporting Language Syntax Abbreviation Conventions 13

Rules for Entering Production Reporting Commands 13

Production Reporting Data Elements 14

ColUmNS . . e e 14

Literals . . o 14

Variables 14

Chapter 2. Production Reporting Command-line 21
Production Reporting Command-line Flags 21

Production Reporting Command-line Arguments 31

Chapter 3. Production Reporting Command Reference 0., 33
About Production Reporting Commands 36

AD D L 36
ALTER-COLOR-MAP . .. e e e 37
ALTER-CONNECTION . ..o e e e 39
ALTER-LOCALEo e e e 41
ALTER-PRINTERo e e e 48
ALTER-REPORT . .. e e 50
ALTER-TABLE e 55

ARRAY-ADD, ARRAY-DIVIDE, ARRAY-MULTIPLY, ARRAY-SUBTRACT 58

ASK o 60
BEGIN-DOCUMENT e e 61
BEGIN-EXECUTE e e 62
BEGIN-FOOTINGot e e e e 66
BEGIN-HEADINGo e e e e e e e 68
BEGIN-PROCEDURE et e 69
BEGIN-PROGRAM ... e e e 72

Contents jii

BEGIN-SELECTo 72

BEGIN-SETUPo 76
BEGIN-SQL . . .o 77
BREAK . 80
CALL, CALL SYSTEM .. .ottt e e 80
CLEAR-ARRAY . . 85
CLOSE . o 86
CLOSE-RS .. 86
COLUMNES o 88
COMMIT . . 88
CONCAT .« .o 89
CONNECT . e 91
CREATE-ARRAY . .. 92
CREATE-COLOR-PALETTEo e 94
CREATE-LIST ... i e e 95
CREATE-TABLE e e 96
#DEBUG . ..o 99
DECLARE-CHART . .. e 100

Attributes Argument e 112
DECLARE-COLOR-MAP e 126
DECLARE-CONNECTIONo e 128
DECLARE-IMAGE 130
DECLARE-LAYOUT e 132
DECLARE-PRINTER e 137
DECLARE-PROCEDURE e 143
DECLARE-REPORT 144
DECLARE-TABLE e 146
DECLARE-TOC i e e 148
DECLARE-VARIABLE e 150
#DEFINE . . . 153
DISP LAY . . 155
DIVIDE . . e 158
DO e 159
DRAW L 160
DUMP-TABLE 163
HELSE oo 164
ELSE o 164
ENCODE . ..o 164

iv

Contents

END-DECLARE, END-DOCUMENT, END-EVALUATE, END-FOOTING,

END-HEADING . ..o e e e e e e e e e 165
#END-IE, #ENDIF . . .o e e 166
ENDD-IF oo e e e 167
END-PROCEDURE, END-PROGRAM, END-SELECT, END-SETUP, END-SQL,
END-WHILE, END-EXECUTE e e 167
EVALUATE . .o e 168
EXECUTE . . e e 170
EXIT-SELECT . .. e e e e 175
EX T RACT . e e e 176
FILL-TABLE . . . oo e e e 177
FIN D .o 179
GET o 180
GET-COLOR . .o e e 181
GOT O o 183
B e 184
T e 186
FIEDEE . o e e 187
#IENDEF . . 188
#INCLUDE . . o e e 188
INPUT . 189
LAST-PAGE . .. e e 192
0 1 192
Operandso ottt e 193
OPerators . o o vttt e 194
FUNCHIONS . . o oot 196
LOAD-LOOKUP . .o e e e 217
LOOKUP . . e e e e e 222
LOWERCASE . . oo e e 223
MBTOSBS . . e e 224
MOVE . 224
MULTIPLY ..o e e e 228
NEW-PAGE . .. 229
NEW-REPORT . . . e e e e e e 230
NEXT-COLUMN . .o e e e e e e e e e e e 231
NEXT-LISTING . . .ottt e e e e e e 232
OPEN o 233
OPEN-RS . . 235
PAGE-NUMBER . .. e e 237

Contents v

PRINT . 239
BOLD .o 241
BOX 241
BOX-FILL-COLORo 242
BOX-LINE-COLOR . ..o e 242
CENTER . ..o 242
CENTER-WITHIN e 242
CODE-PRINTER . . oo e e 242
DATE 243
DELAY 243
EDIT o 244
FILL . o e 252
FON T 252
FOREGROUND/BACKGROUND 253
ITALLC o e 253
MATCH . .o e 253
MONEY . .o 254
NOP 254
NUMBER . .. e 254
ON-BREAK . .. 254
POINT-SIZE . .. e e e 257
SHADE . . 257
UNDERLINE . .. 257
URL .. 257
URL-TARGET 258
W R AP L 258

PRINT-BAR-CODE . . . e e 260

PRINT-CHART .. e e 263

PRINT-DIRECTo e 270

PRINT-IMAGE . .. e 271

PRINT-TABLE o e 273

PUT 274

READ o 275

ROLLBACK . . .o 277

SBTOMBS . . o 278

SECURITY . .o 278

SET-COLOR . . o 280

SET-DELAY-PRINT e e 282

vi

Contents

ST O . oo 287
STRING . . 288
SUBTRACT . .o e e e e 289
TOC-ENTRY ..o e 290
UNSTRING . .o e e e e e e e e e 291
UPPERCASE . . 292
USE o e e 293
USE-COLUMN . .. e e e e e 293
USE-PRINTER-TYPE . . . oo e e 294
USE-PROCEDUREo e e e e 295
USE-REPORT .. e 296
WHILE . .. e 297
W RITE o e 299
WRITE-RS . 300
Chapter 4. HTML Procedures it e e e e e e e e i 303
About HTML Proceduresttt e e 303
HTML General Purpose Proceduresttt 303
HTML Heading Procedurest e e s 305
HTML Highlighting Procedures e 307
HTML Hypertext Link Procedures 309
HTML List Proceduresttt 309
HTML Table Proceduresttt e e e s 312
Chapter 5. Encoding in Production Reporting e 315
Encoding Methods e 315
Encoding Keys in SQR.INIo e e 315
Encoding Keys in the [Default-Settings] Section 315
Encoding Keys in the [Environment] Section 317
Encodings Supported without Using Unicode Internally 318
Encodings Supported in Production Reporting 320
Chapter 6. SQR.INI e 327
Installation of SQR.INI e 327
For Windows Platforms Only 327

For All Other Platforms e e 328
[Default-Settings] Sectionttt 328
[Environment: environment] SECtiOnottt e 333
Using the Java Virtual Machine i, 334

Contents vii

DDO Variablesot 334

Encoding Keysot 335
[SQR EXtension] SECtiono vttt ittt et et e 335
[Locale:local-name] Section oo vttt e 335
[FONts] SECtiON . . . vttt e e e e 337
Adding [Fonts] ENtriesttt e 337
Specifying Character Setsin Windows, 338
[PDF Fonts] SeCtiOn vit ittt e e e e e e e 338
Embedding Fonts e e 338
Available FONts 339
[PDF Settings] SeCtionttt e e 340
[HTML Fonts] SeCtiono vttt ittt et e e e e e e 341
[HTML:Images] SeCtion v vttt ettt e e et e e s 342
[Enhanced-HTML] Sectionttt e e e 343
[Color Map] Sectiont e e e 344
[MAP-ODBC-DB] SeCtion . ..ot v ittt ittt et e e e e 345
[MAP-DDO-DB] SeCtionttt e e e 345
[SQR RemMOte] SECiON . . v vttt et et et e e e e e e e e 345
Chapter 7. Production Reporting Samples e 347
Chapter 8. Production Reporting Messages it 351
Unnumbered Messagesv ittt 351
Numbered MesSages v v vt vttt e e e 353
Appendix A. Production Reporting Language Quick Reference 421
Appendix B. Deprecated Information 435
Deprecated Production Reporting Command-line Flags 435
Deprecated SQRINTENtriesov ittt e e 436
Values for the FullHTML Keyword in the [Enhanced-HTML] Section 436
[Processing-Limits] SeCtionottt e 436

Values for PDFCompressionText and PDFCompressionGraphics in the [Default-
Settings] SeCtion oot e e 438
Deprecated Transformsot e 438
Deprecated Production Reporting Commands, 438
BEGIN-REPORT ... e e e e e e e 439
DATE-TIME . .. e e 440
DECLARE PRINTER e e e e 441
DECLAREPROCEDURE e e e e 445
DOLLAR-SYMBOL ... e e e e e e 446

viii Contents

GRAPHIC BOX . .o 448

GRAPHIC FONT . . e e e e e e e e e 449
GRAPHIC HORZ-LINE . .. e e e et 450
GRAPHIC VERT-LINE o e e et 450
MONEY-SYMBOL . . oo e 451
NO-FORMEEED e e e e e e 452
PAGE-SIZE . 453
PRINT ...CODE e e e e 454
PRINTER-DEINIT . .. e e e e e et 454
PRINTER-INIT L. e e et e e e et 455
INdeX . .. e e 457

Contents ix

X Contents

Introduction

1

In This Chapter
About the Production REPOIING LANBUAEEvrrit e nen 11
Production Reporting Data ElemENtS.ttt 14

About the Production Reporting Language

The Oracle's Hyperion® SQR® Production Reporting language is a specialized programming
language for accessing, manipulating, and reporting enterprise data. Using the Production
Reporting language, you can build complex procedures that execute multiple calls to multiple
datasources and implement nested, hierarchical, or object-oriented program logic.

The Production Reporting language has several key benefits:

e Flexibility and scalability

e Comprehensive facilities for combined report and data processing
e Multiple platform availability

e Multiple datasource compatibility

With the Production Reporting language, you can design custom reports by defining the page
size, headers, footers, and layout. The Production Reporting language enables you to generate
awide variety of output such as complex tabular reports, multiple page reports, and form letters.
You can display data in columns, produce special formats such as mailing labels, and create
HTML, PDF, or customized output for laser printers and phototypesetters.

The high-level programming capabilities that the Production Reporting language provides
enable you to add procedural logic and control to datasource calls. You can use the Production
Reporting language to write other types of applications, such as database manipulation and
maintenance, table load and unload, and interactive query and display.

Production Reporting Language Program Structure

The Production Reporting language processes source code from standard text files and generates
reports. Text files containing source code contain sections delimited with BEGIN-sectionand
END-sectioncommands. The following examples show the general structure of the Production
Reporting language.

The SETUP section describes overall characteristics of the report:

About the Production Reporting Language 11

BEGIN-SETUP
{setup commands}...
END-SETUP

The HEADING and FOOTING sections specify what is printed in the header and footer on each
page of the report:

BEGIN-HEADING {heading_ lines}
{heading commands}...

END-HEADING

BEGIN-FOOTING {footing lines}
{footing commands}...

END-FOOTING

The PROGRAM section executes the procedures contained in the report:

BEGIN-PROGRAM
{commands}...
END-PROGRAM

The PROCEDURE section accomplishes the tasks associated with producing the report:

BEGIN-PROCEDURE {procedure_name}
{procedure commands}...
END-PROCEDURE

Production Reporting Language Syntax Conventions

Table 1 Syntax Conventions

Symbol Description
{} Braces enclose required items.
[1 Square brackets enclose optional items.

An ellipsis shows that the preceding parameter can be repeated.

| A vertical bar separates alternatives within brackets, braces, or parentheses.

! A single quote starts and ends a literal text constant or any argument with more than one word.

Caution: If you copy codes directly from the examples in the pdf file, make sure you change the slanted
quotes to regular quotes or else you will get an error message.

! An exclamation point begins a single-line comment that extends to the end of the line. Each comment
line must begin with an exclamation point.

Do not use |=========== 10 delineate a comment block unless it starts in the first column. The
characters "!=" denotes a relational operator, and Production Reporting could confuse it with a
comment where a relational argument could occur.

, A comma separates multiple arguments.

() Parentheses must enclose an argument or element.

12 Introduction

Symbol

Description

UPPERCASE

Production Reporting commands and arguments are specified in UPPERCASE.

Italics

Information and values that you must supply are specified in italics.

Production Reporting Language Syntax Abbreviation
Conventions

Table 2 Syntax Abbreviation Conventions

Abbreviation

Description

Example

any_col A column of any type. &string &number &date
date_col Date or datetime column retrievable from a database. sdatel

num_col Numeric column retrievable from a database. &price

txt_col Text column retrievable from a database. saddress

any_lit A literal of any type. 'abc' 12

int_lit Integer literal defined in a program. 12345

num_lit Numeric literal defined in a program. 12345.67

txt_lit Text literal defined in a program. 'Company Confidential'
any_var A variable of any type. $string #number S$date
date_var A variable explicitly defined as a date variable. $datel

num_var Numeric variable defined in a program. #total_cost

txt_var String variable defined in a program. $your_name

nn Integer literal used as an argument to a command. 123

position The position qualifier, which consists of the line, column, and (5,10,30)

length specification. The minimum position, (), means to use the
current line and column position on the page for the length of the
field being printed.

Rules for Entering Production Reporting Commands

Production Reporting commands are not case sensitive. Common practice is to use upper
case for commands, but Production Reporting ignores case when compiling source code.

Separate command names and arguments by at least one space or tab character.

Begin each command on a new line; however, you can develop commands that extend

beyond one line.

About the Production Reporting Language 13

Break a line in any position between words except within a quoted string.

Use ahyphen (-) at the end of aline to indicate that it continues on the next line. (Production
Reporting ignores hyphens and carriage returns within commands.)

Begin each comment line with an exclamation point (!).

To display the ! or ' symbols in a report, type the symbols twice to indicate that they are text.
For example, DON'T is typed DON"T.

Note:

You do not need to type quotation and exclamation marks twice in the DOCUMENT section
of form letter reports

Production Reporting Data Elements

Production Reporting data elements include columns, literals, and variables. Each element
begins with a special character that denotes the type of data element.

Columns

Columns are fields defined in the database.

e & begins a database column or expression name. It can be any type of column as long as it
is a standard SQL datatype. Except for dynamic columns and database or aggregate
functions, it is declared automatically for columns defined in a query.

Literals

Literals are text or numeric constants.

e Asingle quote begins and ends a text literal. For example, 'Hello'.

e 0-9 begin any numeric literals. Numerals that include digits with an optional decimal point
and leading sign are acceptable numeric literals. For example, -543.21. Numeric literals can
also be expressed in scientific form. For example, 1.2E5.

Variables

Variables are storage places for text or numbers.

e $ begins a text or date variable

e # begins a numeric variable

e % begins a list variable

e @ begins a variable name for a marker location. Marker locations are used to identify

positions to begin printing inside a BEGIN-DOCUMENT paragraph.

14

Introduction

Variable Rules

e Variables can be almost any name of almost any length. For example, $state_name or
#total_cost. For exceptions, see “Production Reporting Reserved Variables” on page 16.

» «,»

e Donotuse“_ ”or“” as the first character of a two variable name.

e Variable names are not case sensitive. That is, you can use a name as uppercase on one line
and lowercase on the next; both refer to the same variable.

e Production Reporting initializes variables to null (text and date) or zero (numeric).
e Commands can grow to whatever length the memory of your computer can accommodate.

e Numeric variables can be FLOAT, INTEGER, or DECIMAL. See “DECLARE-VARIABLE” on
page 150 for more information.

e Variables and columns are known globally throughout a report, except if used in a local
procedure (one with arguments or declared with the LOCAL argument) in which case they
are known in that procedure only. See “BEGIN-PROCEDURE” on page 69 for more
information.

List Variables

List variables contain an ordered collection of Production Reporting variables and are
nonrecursive (you cannot nest lists within lists).

Indicate list variables with the % symbol. Create list variables with the LET command along with
a list of variables. For example,

LET $LIST1 = LIST (num varl|str varl, num var2|str var2,...)

Note:

List variables are used in Production Reporting DDO only.

You can perform the following actions with list variables:

e Define a list variable—List variables can hold multiple rows of information. Before you
assign a list variable, define it using the following syntax:

let $listname=LIST(col_var|num var|str_var|str_lit|num 1it[,...])

or

let 8listnamel[num Iit]=1list (NUMBER |DATE |TEXTScolname
| '.colname' [, ...])

e Assign a list variable—Use the following syntax:

let %listname|$%listname[num var|num lit]=1list(col_var|str_var
| num var|str_lit|num 1it[,..])

e Access a list variable—Use the following syntax:

let str_var|num var=%listnamelnum var|num lit].#colname

Production Reporting Data Elements 15

e Modify a list variable—When you moditfy a list variable, you can modify a specific row
element of any list item.

In list-variable arguments, the value between the brackets indicates either the number of rows
in the list for the definition case or the row within the list to be modified or assigned.

If no brackets exist, there is no need to predefine; assign the types based on the given variable
types. For multirow lists, the assignment must be compatible with the types given in the
definition.

A NUMBER field has the same characteristics as an undeclared #var; the underlying storage
depends on the contents, and the DEFAULT-NUMERIC setting applies.

The usual Production Reporting rules for variable assignment apply to list access. Assignment
is prohibited only between Date and Numeric types. Assignment of a numeric column to a string
variable returns the string representation of the numeric value; assignment of a date variable to
a string variable returns the default-edit-mask representation of the date.

Production Reporting Reserved Variables

When you create multiple reports, the variables apply to the current report. Production
Reporting reserves a library of predefined variables for general use.

Note:

All of Production Reporting's reserved variables are global variables. Reference reserved variables
in local procedures with a leading underscore. For example, #_sqlstatus or $_sql-error. See
“BEGIN-PROCEDURE” on page 69 for information on defining local procedures.

Table 3 Production Reporting Reserved Variables

Variable Description
#current-column Current column on the page.
$current-date Current date-time on the local machine when Production Reporting

starts running the program.

#current-line Current line on the page. This value is the physical line on the page,
not the line in the report body.

Line numbers are referenced in PRINT and other Production Reporting
commands used for positioning data on the page. Optional page
headers and footers, defined BEGIN-HEADING and BEGIN-
FOOTING, have their own line sequences. Line 2 of the heading is
different from line 2 of the report body or footing.

16

Introduction

Variable

Description

#end-file

Setto one (1) if end of file occurs when reading a flat file; otherwise,
set to zero (0). Your program should check this variable after each
READ command. (See “READ” on page 275 for more information.)

#page-count

Current page number.

#return-status

Value returned to the operating system when Production Reporting
exits. Can be set in your report. #return-status is initialized to the
“success” return value for the operating system.

#sql-count

Count of rows affected by a DML statement (INSERT, UPDATE, or
DELETE). This is equivalent to ROWCOUNT in Oracle and Sybase.

$sql-error

Text message from the database explaining an error. This variable is
rewritten when a new error is encountered.

#sql-status

Value of #SQL-STATUS set whenever BEGIN-SELECT executes.
Normally this variable is checked from within an ON-ERROR
procedure so its value describes the error condition (whereas the
$SQL-ERROR variable contains the error message). The actual
meaning of #SQL-STATUS is database dependent. Consult the proper
database manual to fully interpret its meaning.

$sql-text

Last SQL statement sent to the database by Production Reporting.

The variable contents are valid after Production Reporting processes
BEGIN-SQL, BEGIN-SELECT, or LOAD-LOOKUP , or within the
ON-ERROR-procedure for BEGIN-SQL and BEGIN-SELECT.

The variable is populated for ODBC, Sybase, Oracle, Informix,
Teradata, DB2, and DDO.

$sqr-connected-db {sqr-connected-db}

Class of the backend database from the initial connection or from
CONNECT.

For ODBC, the class is: ODBC, Sybase, Oracle, Informix, Redbrick,
Teradata, or DB2.

For DDO, the class is: XML, CSV, SAP, MSOLAP, Essbase, SQLServer,
Sybase, Oracle, Informix, or DB2.

The information is derived from $sqr-connected-db-name / {sqr-
connected-db-name}.

$sqr-connected-db-name
{sqr-connected-db-name}

Name of the database driver from the initial connection or from
CONNECT.

Production Reporting Data Elements 17

Variable

Description

For ODBC, the value is derived from the ODBC Driver Manager. For
DDO, the value is derived from the driver used. For all other
databases, the value is the same as the value in $sqr-database /
{sqr-database}.

$sqr-database {sqr-database}

Database type for which Production Reporting was compiled. Valid
values are: DB2, ODBC, Sybase, Informix, and Oracle.

$sqr-dbcs {sqr-dbcs}

Defines whether Production Reporting recognizes double-byte
character strings. The value can be either YES or NO.

$sqr-encoding {sqr-encoding}

Name of the default encoding as defined by the ENCODING
environment variable when Production Reporting is invoked.

$sqr-encoding-console
{sqr-encoding-console}

Name of encoding for character data written to the log file or console.

$sqr-encoding-database
{sqr-encoding-database}

Character data retrieved from and inserted into the database.

$sqr-encoding-file-input {sqr-encoding-file-
input}

Name of encoding for character data read from files used with
OPEN.

$sqr-encoding-file-output
{sqr-encoding-file-output}

Name of encoding for character data written to files used with
OPEN.

$sqr-encoding-report-output
{sqr-encoding-report-output}

Report generated by Production Reporting (for example, an LIS file
or a PostScript file).

$sqr-encoding-source {sqr-encoding-source}

Name of encoding for Production Reporting source files and include
files.

$sqr-hostname {sqr-hostname}

Name of the computer on which Production Reporting is currently
executing.

$sgr-locale

Name of the current locale. A + at the end of the name indicates an
argument used in the locale has changed.

#sqr-max-columns

Maximum number of columns as determined by the layout. When a
new report is selected, this variable is automatically updated to
reflect the new layout.

18

Introduction

Variable

Description

#sqr-max-lines Maximum number of lines as determined by the layout. When a new
report is selected, this variable is automatically updated to reflect
the new layout.

#sqr-pid Process ID of the current Production Reporting process. #sqr-pid is

unique for each run of Production Reporting. This variable is useful
in creating unique temporary names.

$sqr-platform {sqr-platform}

Hardware/operating system type for which Production Reporting was
compiled. Valid values are WINDOWS and UNIX.

$sqr-program Name of the Production Reporting program file.

$sqr-report Name of the report output file. $sqr-report reflects the actual name
of the file to be used (as specified by the -F flag or the NEW-
REPORT command).

$sqr-ver Text string shown with the -ID flag. Production Reporting version.

$username Database user name specified on the command line.

Production Reporting Data Elements 19

20 Introduction

Production Reporting
Command-line

In This Chapter
Production Reporting Command-lNg FIags.vuieii e 21

Production Reporting Command-line ArBUMENTSu ettt ettt et e e e e e e aaees 31

Production Reporting Command-line Flags

Production Reporting command-line flags begin with a dash (-). When a flag takes an argument,
the argument must follow the flag with no intervening space.

Table 4 Production Reporting Command-line Flags

Flag Description Program Database
-A Appends output to a file with the same name as the source. If the | Production Reporting All
file does not exist, a new one is created. Useful for running a report | Server
Itiple ti ith a sing| file.
multiple times with a single output file Production
Restrictions: Reporting Execute
o Only works with LIS files. Does not work with SPF files. Production
o Only applies to line printers (-PRINTER:LP). Ignored for other Reporting Print
printer types and output formats.
o Only applies to SQR and SQRP in non-Windows environments.
-Bnn Defines the number of rows to buffer when retrieving data. The Production Reporting ODBC Oracle
defaultis 10 rows. Regardless of the setting, all rows are retrieved. | Server Sybase
On the command line, -B controls the setting for all BEGIN-SELECT Producti
commands. In a program, each BEGIN-SELECT command can have Rro urf‘ IonEx "
its own -B flag for further optimization. eporting Execute
-BURST:{xx} Specifies the bursting type. Production Reporting All
S
® -BURST.T generates the Table of Contents. erver
: , . Production
o -BURST:S generates report output according to the symbolic Reporting Execut
Table of Contents entries defined with the level argument in eporting Execute
TOC-ENTRY. In -BURST:S[{1}], {I} is the level at which to burst. | Production
-BURST:S is equivalent to -BURST:S1. Reporting Print
® -BURST:P generates report output by report page numbers.
In -BURST:P[{1} , {s} [, {s}....] 1, {l} is the number of logical
report pages that each HTML file contains and {s} is the page
selection: {n}, {n}-{m}, -{m}, or {n}-. -BURST:P is equivalent

Production Reporting Command-line Flags 21

Flag Description Program Database
to -BURST:PO,1- when using -PRINTER:HT or -BURST:P1 when
using -PRINTER:EH.
See “Bursting and Demand Paging” in Volume 1 of the Hyperion
SQR Production Reporting Developer's Guide for more information.
Note: -BURST:P and -BURST:S require -PRINTER:EH
or -PRINTER:HT. The Page range selection feature of -BURST:P
requires -PRINTER:HT. -BURST:T requires -PRINTER:HT.
-C (Windows) Displays the Cancel dialog box while the program runs | Production Reporting All
to terminate program execution. Server
Production
Reporting Execute
-CB (Windows, Callable Production Reporting) Forces the Production Reporting All
communication box to be used. Server
-Dnn (non-Windows) Displays the report output at the same time it is Production Reporting All
written to the output file. nn is the maximum number of lines to Server
display befqre pausing. If no numberis entered after -D, the display Production
scrolls continuously. .
Reporting Execute
Note: The printer type must be LP or the display is ignored. If the .
program produces multiple reports, the display is for the first report Production
only ' Reporting Print
-DBdatabase Uses the specified database, which overrides any USE command | Production Reporting Sybase
in the Production Reporting program. Server
Production
Reporting Execute
-DEBUG[xxx] Compiles lines preceded by #DEBUG. Without this flag, Production | Production Reporting All
Reporting ignores these lines. Server
(See “#DEBUG” on page 99.)
-DNT:{xx} Defines the default behavior for numeric variables. The value for | Production Reporting All
xx can be INTEGER, FLOAT, DECIMAL, or V30. To specify a precision | Server
for DECIMAL, append it with a colon delimiter (:)—for
example, -DNT:DECIMAL:20. See the DEFAULT argument for
“DECLARE-VARIABLE” on page 150 for a detailed explanation. If
used, the DEFAULT argument in DECLARE-VARIABLE takes
precedence.
-E[file] Directs error messages to the named file, or to the default file Production Reporting All
program.err. If no errors occur, no file is created. Server
Production
Reporting Execute
Production
Reporting Print
-EH_APPLETS:dir Defines the directory for Enhanced HTML applets. (The default Production Reporting All

directory for applets is IMAGES.)
Note: Only applicable with -PRINTER:EH or -PRINTER:EP.

Server

Production
Reporting Execute

22 Production Reporting Command-line

Flag Description Program Database
Production
Reporting Print
-EH_BQD Generates a {report}.bqd file from the report data and associates | Production Reporting All
a BQD (Brio Query Format File) icon with {report}.bqd in the Server
navigation bar. .
Production
Note: Only applicable with -PRINTER:EH or -PRINTER:EP. Reporting Execute
Production
Reporting Print
-EH_BQD:file Associates BQD icons with the specified file. Production Reporting All
Note: Only applicable with -PRINTER:EH or -PRINTER:EP. Server
Production
Reporting Execute
Production
Reporting Print
-EH_BROWSER:xx Defines the browser and generates the HTML. Production Reporting All
® BASIC—Generates HTML suitable for all browsers. Server
o |E—Generates HTML for Internet Explorer. Produgtlon
Reporting Execute
o NETSCAPE —Generates HTML for Netscape.)
))) Production
o ALL—If necessary, Production Reporting generates Basic, IE, Reporting Print
and Netscape HTML files. Report_frm.htm contains Javascript
to “sense” the browser on the user's machine and display the
appropriate version. (In this case, the user's machine is the
machine of the person reading the report, not the person
writing it.)
Note: Only applicable with -PRINTER:EH or -PRINTER:EP. Only
recognized when combined with -EH_FULLHTML.
-EH_CSV Generates a {report}.csv file from report data. Production Reporting All
Note: Only applicable with -PRINTER:EH or -PRINTER:EP. Server
Production
Reporting Execute
Production
Reporting Print
-EH_CSV:file Associates the CSV icon with the specified file. Production Reporting All
Note: Only applicable with -PRINTER:EH or -PRINTER:EP. Server
Production
Reporting Execute
Production
Reporting Print
-EH_CSVONLY Creates a CSV file but does not create an HTML file. Production Reporting All

Note: Only applicable with -PRINTER:EH or -PRINTER:EP.

Server

Production
Reporting Execute

Production Reporting Command-line Flags

23

Flag Description Program Database
Production
Reporting Print
-EH_DEBUG(:0pts] Produces a DBG output file containing compiler and internal error | Production Reporting All
messages. Server
Note: Only applicable with -PRINTER:EH or -PRINTER:EP. Production
Reporting Execute
Production
Reporting Print
-EH_ICONS:dir Defines the directory where HTML should look for the referenced Production Reporting All
icons. Server
Note: Only applicable with -PRINTER:EH or -PRINTER:EP. Production
Reporting Execute
Production
Reporting Print
-EH_IMAGES:dir Defines the directory path for the GIF files used by the Navigation | Production Reporting All
Bar. Server
Note: Only applicable with -PRINTER:EH or -PRINTER:EP. Production
Reporting Execute
Production
Reporting Print
-EH_KEEP Copies (does not move) the files when used in conjunction Production Reporting All
with -EH_ZIP. Server
Note: Only applicable with -PRINTER:EH or -PRINTER:EP. Production
Reporting Execute
Production
Reporting Print
-EH_LANGUAGE:xx Defines the HTML navigation bar language. You can specify English, | Production Reporting All
French, German, Italian, Japanese, Korean, Portuguese, Spanish, | Server
SChinese, or TChinese.)
Production
Note: Only applicable with -PRINTER:EH or -PRINTER:EP. Reporting Execute
Production
Reporting Print
-EH_PDF Associates a PDF icon with {report}.pdf in the navigation bar. Production Reporting All
Note: Only applicable with -PRINTER:EH or -PRINTER:EP. Server
Production
Reporting Execute
Production
Reporting Print
-EH_SCALE:{nn} Sets the scaling factor from 50 to 200. Production Reporting All

Note: Only applicable with -PRINTER:EH or -PRINTER:EP.

Server

Production
Reporting Execute

24 Production Reporting Command-line

Flag Description Program Database
Production
Reporting Print
-EH_XIMG Specifies to not remove the directory path from the IMAGE Production Reporting All
reference. Server
Note: Only applicable with -PRINTER:EH or -PRINTER:EP. Production
Reporting Execute
Production
Reporting Print
-EH_XML:file Associates an XML icon with a file. Production Reporting All
Note: Only applicable with -PRINTER:EH or -PRINTER:EP. Server
Production
Reporting Execute
Production
Reporting Print
-EH_ZIP][:file] Moves generated files to the specified file or {report}.zip if {file} is | Production Reporting All
not specified. Server
Note: Only applicable with -PRINTER:EH or -PRINTER:EP. Production
Reporting Execute
Production
Reporting Print
-F[file | directory] Overrides the default output file name, program.lis. Production Reporting All
The default action places the program.lis file in the same directory Server
as the program.sqr file. To use the current directory, specify -F Production
without an argument. To change the name of the output file, specify | Reporting Execute
-F with the new name. If the new name does not specify a directory, Production
the file is created in the current directory. The output file is not Re ourtin Print
created until data actually prints on the page. If no data prints, no porting
output file is created.
The following shows how to specify file names and directories for
different operating systems.
Operating System | Directory Example
Character
UNIX / -F$HOME/reports/
Windows \ -FC:\Oracle\Files\
-ID (non-Windows) Displays the copyright banner. Production Reporting All
Server
Production
Reporting Execute
Production
Reporting Print
-Idir_list Specifies the directories that Production Reporting searches when | Production Reporting All

processing the #INCLUDE directive if the include file does not exist
in the current directory and no path was specified for the file. The

Server

Production Reporting Command-line Flags

25

Flag Description Program Database
directory names must be separated by either commas (,) or
semicolons (;).
In UNIX, if your shell uses semicolons as command delimiters,
precede each semicolon with a backslash (\). Always append the
directory character to the end of each directory name. See the -F
flag for a list of directory characters by operating system. For
example, under UNIX:
sgr myreport sammy/baker -I/home/sqr/inc/,/
usr/sqgr/incl/
-KEEP Creates SPF files in addition to LIS files for each report generated. | Production Reporting All
(See Chapter 28, “Printing Issues,” in Volume 1 of the Hyperion Server
SQR Production Reporting Developer's Guide for more information Producti
on LIS and SPF files.) roduction
Reporting Execute
-LL{s|dH{c]i} LOAD-LOOKUP: s = SQR, d = DB, ¢ = case-sensitive, Production Reporting All
i = case-insensitive Server
(See “LOAD-LOOKUP ” on page 217)
-NOLIS Prevents the creation of all Production Reporting output file types. | Production Reporting All
SPF output is created instead. Server
Production
Reporting Execute
-0[file] Directs log messages to the specified file or to program.log if no | Production Reporting All
file is specified. By default, the file sqr.log is used in the current | Server
king di .
working directory Production
Reporting Execute
-PB Retains trailing blanks in column data. Production Reporting Informix
Server
Production
Reporting Execute
-PRINTER:xx Uses printer type xx when creating output files. Production Reporting All

Server

Production
Reporting Execute

Production
Reporting Print

XX Printer Type Example
EH Enhanced HTML | -PRINTER:EH
EP Enhanced -PRINTER:EP

HTML/PDF
GD Generic Qutput -PRINTER:GD
-GD_DRIVER:name Driver To generate Excel documents, enter:
defines the name

-PRINTER:GD -GD_DRIVER:EXCEL

26 Production Reporting Command-line

Flag

Description

Program Database

of the Generic
Output Driver.

-GD_OPTION:opts
defines optional
parameters to pass
to the Generic
output Driver. (The
optional
parameters are
used to pass
command line data
to your personal
application. The
parameters
entered depend on
your application.)

To generate Word documents, enter:
-PRINTER:GD -GD_DRIVER:WORD

To generate Power Point documents, enter:
-PRINTER:GD -GD_DRIVER:PP

These commands create Office HTML files that can be opened by Word
2003, Word XP, Power Point 2003, Power Point XP, Excel 2003, and
Excel XP. (For Office 2000 products, you can download a Microsoft tool
to convert Office HTML files into something that Office 2000 products
can open.)

Note: You can use the -F flag to change the output file name to
report.doc, report.ppt, or report.xls.

HP HP LaserJet -PRINTER:HP
Note: Production
Reporting does not
support color
for -PRINTER:HP (HP
PCL) output
generation.

LP Line Printer -PRINTER:LP

PD PDF -PRINTER:PD

PS PostScript -PRINTER:PS

WP Windows -PRINTER:WP

Notes:

e LP, HP, and PS produce files with the .lis extension.
o EH and HT produce .htm file output.

O HTis controlled by the PrinterHT setting in the [Default-
Settings] section of SQR.INI. If PrinterHT is set to
standard, HT produces version 2.0 HTML files with the
report content inside <PRE></PRE> tags. If PrinterHT is set
to enhanced, HT is mapped to EH.

(See “[Default-Settings] Section” on page
3280on page 333 for additional information.)

O EH produces reports fully formatted with version 1.1 XHTML

tags.

o PD produces PDF 1.3 compliant files. When -PRINTER:PD is
used, PRINT-DIRECT, PRINT ...Code, and Print with CODE-
PRINTER commands are processed but ignored.

o On Windows systems, WP sends output to the default Windows
printer. To specify a non-default Windows printer, use -
PRINTER:WP:{Printer Name}. The {Printer Name} can be the
name assigned to a printer; or, if the operating system permits

Production Reporting Command-line Flags 27

Flag Description Program Database
it, the UNC name (i.e.\\Machine\ShareName). For example,
to send output to a Windows printer named NewPrinter, you
could use -PRINTER:WP:NewPrinter. If your printer name has
spaces, enclose the entire command in double quotes.
-PSnn Sets the TDS (Tabular Data Stream) packet size to the specified Production Reporting Sybase
value. Server
Production
Reporting Execute
-RS Saves the program in a run-time file. The program is scanned, Production Reporting All
compiled, and checked for correct syntax. Queries are validated Server
and compiled. Then, the executable version is saved in a file with
the name program.sqt. Note that Production Reporting does not
prompt for ASK variables after compilation.
-RT Uses the run-time file saved with -RS. Skips syntax and query Production Reporting All
checking and begins processing immediately. Note that Production | Server
Reporting does not prompt for ASK variables after compilation.
-S Displays the status of all cursors at the end of the report run. Status | Production Reporting All
includes the text of each SQL statement, the number of times each | Server
was compiled and executed, and the total number of rows Producti
selected. The output goes directly to the screen. This information RLO ourfirlonExec te
can be used for debugging SQL statements and enhancing porting u
performance and tuning.
-Tnn Specifies that you want to test your report for nn pages. To save Production Reporting All
time during testing, Production Reporting ignores all ORDER BY Server
clauses in SELECT statements. For multiple reports, Production Producti
Reporting stops after the specified number of pages defined for RLO ourfirlonExec te
the first report. porting u
-T{B} Trims trailing blanks from database character columns. Production Reporting DB2 Sybase
Server ODBC Teradata
Production
Reporting Execute
-T{Z} Trims trailing zeros from the decimal portion of numeric columns. | Production Reporting DB2 Teradata

Server

Production
Reporting Execute

-U{priv_connectivity}

Directs SQR to connect to a privileged user and then proxy as the
"user" from the normal connectivity piece.

sqgr {program} {connectivity} -
Upriv_connectivity [flags] [args]

For example:
sqgqr scott {prg} -Upriv/priv@instance

Logs in in as "priv/priv@instance" and then proxies to user "scott".
All access is then be based "scott" and not "priv".

28 Production Reporting Command-line

Flag Description Program Database
-Vserver Uses the named server. Production Reporting Sybase
Server
Production
Reporting Execute
-XB (non-Windows) Suppresses the Production Reporting banner and | Production Reporting All
the “Production Reporting... End of Run” message. Server
Production
Reporting Execute
Production
Reporting Print
-XC (Callable Production Reporting) Suppresses the database commit | Production Reporting All
when the report finishes running. Server
-XCB (Windows) Defines to not use the communication box. Requests | Production Reporting All
for input are made in Windows dialog boxes. Server
Production
Reporting Execute
-XFRM Prevents Production Reporting from creating a frame in HTML files | Production Reporting All
generated with -PRINTER:EH. Server
Production
Reporting Execute
Production
Reporting Print
Xl Prevents user interaction during a program run. If ASK or INPUT | Production Reporting All
requires user input, an error displays and the program ends. Server
Production
Reporting Execute
-XL Prevents Production Reporting from logging onto the database. Production Reporting All
Programs run in this mode cannot contain any SQL statements. -XL | Server
lets you run Production Reporting without accessing the database. .
. Production
You still must supply at least an empty slash (/) on the command Reporting Execut
line as a placeholder for the connectivity information. eporting Execute
For example: sqr myprog / Xl
-XLFF Prevents trailing form feed. Production Reporting All
Server
Production
Reporting Execute
-XMB (Windows) Disables error message display so programs can run Production Reporting All
without interruption by error messages/warnings generated by Server
Production Reporting, or by user generated messages (SHOW/
DISPLAY). All messages still go to their designated output files
(SQR.ERR or -E{filename} / SQR.LOG or -Offilename})
-XNAV Prevents Production Reporting from creating the Navigation Bar in | Production Reporting All

HTML files generated with -PRINTER:HT and -PRINTER:EH. This

Server

Production Reporting Command-line Flags

29

Flag Description Program Database
occurs when only a single HTML file is produced. Multiple HTML Production
files generated from a single report always contain the Navigation | Reporting Execute
Bar.
ar Production
Reporting Print
-XP Prevents Production Reporting from creating temporary stored Production Reporting Sybase
procedures. Server
See “BEGIN-SELECT” on page 72 for more information. Production
Reporting Execute
-XTB Preserves trailing blanks in LIS files at the end of a line. Production Reporting All
Server
Production
Reporting Execute
Production
Reporting Print
-XT0C Prevents Production Reporting from generating the Table of Production Reporting All
Contents for the report. This flag is ignored when -PRINTER:HT or - | Server
PRINTER:EP is also specified. .
Production
Reporting Execute
Production
Reporting Print
-ZEN{name} Sets the default encoding name. Production Reporting All
Server
Production
Reporting Execute
Production
Reporting Print
-ZIF{file} Sets the full path and name of the SQR initialization file, SQR.INI. | Production Reporting All
Server
Production
Reporting Execute
Production
Reporting Print
-ZIV Invokes the SPF Viewer after generating the program.spf file. Production Reporting All
Implicitly invokes -KEEP to create program.spf. For multiple output | Server
files, only the first report file passes to the Production Reporting .
. Production
Viewer. .
Reporting Execute
-ZMF{file} Defines the full path and name of the Production Reporting error | Production Reporting All

message file, sqrerr.dat.

Server

Production
Reporting Execute

Production
Reporting Print

30 Production Reporting Command-line

Flag

Description Program

Database

-ZRF{file}

registry.properties file. Following is a common default path to the | Server

registry.properties file on a Windows system: .
glstry.properties f INCOWS Sy Production

The registry.properties file lists datasources that Production
Reporting can access. The information in the registry.properties
file makes it possible for Production Reporting to access
datasources for which DDO drivers have been loaded and
configured.

c:\program files\hyperion\properties\registry.properties Reporting Execute

(DDO) Sets the full path and name of an alternate Production Reporting All

Production Reporting Command-line Arguments

Table 5 Production Reporting Command-line Arguments

Argument Description Program
program Name of the text file containing source code. The default file type or extension is .sqr. If Production Reporting Server
entered as “?” or omitted, Production Reporting prompts for the report program name. On Production Reporting Execut
UNIX, if your shell uses the question character as a WILD CARD character, precede it with roduction Reporting Execute
a backslash (\).
-flags Any flag in Production Reporting Command-line Flags. Production Reporting Server
Production Reporting Execute
Production Reporting Print
pars... Report parameters for ASK and INPUT commands. Enter the parameters on the command | Production Reporting Server
line in the same sequence they are expected by the program—first ASK parameters in order . .
and then INPUT parameters. Production Reporting Execute
@file... File containing program arguments, one argument per line. Arguments are processed one | Production Reporting Server
at a time—first ASK arguments in order and then INPUT arguments. For non-Windows Production Reporting Execut
platforms, the command-line arguments program, connectivity, and args can be specified roduction Reporting Execute
in this file.
connectivity | Information needed to connect to the database. If entered as “?” or omitted, Production | Production Reporting Server

Reporting prompts for the information.

Production Reporting Execute

DB2 [Database]/[Username]/ [Password]

o Database—Database name.

® Username—User name for the database.

® Password—Password for the database.

Informix Database[/usermname/password]

® Database—Database name.

® Username—User name for the database.

® Password—Password for the database.

ODBC Data_Source_Name/[Username]/[Password]

Production Reporting Command-line Arguments 31

Argument Description Program

® Data_Source_Name—ODBC driver name.
® Username—User name for the database.
® Password—Password for the database.

Note: This port has been certified against Microsoft SQL Server.

Oracle [Username]/[Password[@Database]]

o Database—(Optional) Database connection string (for example,
@sales.2cme.com).

® Username—Username for the database.

® Password—Password for the database.

Sybase Username/[Password]

® Username—User name for the database.

® Password—Password for the database.

Teradata [tdpid/Jusername[,password]
o tdpid—Teradata tdp name.
o username—User name for the database.

® password—Password for the database.

32 Production Reporting Command-line

Production Reporting
Command Reference

In This Chapter

About Production Reporting COMMANGS. ... vueeneteet ettt e e e 36
ADD e 36
ALTER-COLOR-MAP ..ttt ettt ettt ettt et et et et et et e e e eens 37
ALTER-CONNECTION ...ttt ettt ettt et ettt e e e et e et et et et et e e e e e e n e n e n e n e n e e e enenanana 39
ALTER-LOCALE.ttt ettt et ettt ettt ettt et e 41
ALTER-PRINTER .. . oot e e ettt e et e et e ettt et 48
ALTER-REPORT ...ttt ettt e ettt et et et et e et et et et et e e e 50
AL E R T ABLE .ottt e e 55
ARRAY-ADD, ARRAY-DIVIDE, ARRAY-MULTIPLY, ARRAY-SUBTRACTeuiuinininitiee e aananas 58
A S e e 60
BEGIN-DOCUMENTttt e e e e e et et et et e e et e e e e e e e e e e e 61
BEGIN-EXECUTE ..ttt ittt ettt ettt ettt et et e e et e e ettt e et et ettt e et e et e ea e aas 62
BEGIN-FOOTING ..ttt ettt ettt e et e et et r ettt e et e e e et et et et et e e et e et 66
BEGIN-HEADING ... ettt ettt et ettt ettt et et et e et ettt ettt et e et e et e et e e aa 68
BEGIN-PROCEDURE. ...ttt ettt ettt ettt e et e ettt ettt e e et e et e et e et e ea e anas 69
BEGIN-PROGRAM ...ttt et 72
BEGIN-SELECT ...ttt ettt ettt ettt ettt et et et e ettt e et e et aa 72
BEGIN-SETUP ...ttt e 76
BEGIN-SQL. . ettt ettt ettt e e et e et aa 77
BRE A K . ..t e 80
CALL, CALL SYSTEM L.ttt ettt ettt ettt e e et et e e e e et e ettt et e e et aaas 80
CLEAR-ARRAY ..ttt e e et 85
0 01 PP PR PPRPIN 86
CLOSE RS . . .ttt et 86
COLUMN S ettt anas 88
COMMIT ettt et ettt anas 88
CON C AT ettt e 89
10X 0 PPt 91
CREATE-ARRAY ..ottt ettt 92
CREATE-COLOR-PALETTE ...ttt sttt ettt et e e e e et e e e r e et r ettt et e e et et e et e e et et e e e e e eaeens 94
(03 Y 1 1 TP 95
L0 I Y 2 PPt 96
2110 12 P 99

33

DE L ARE-CHART ..ttt ettt et ettt 100

DECLARE-COLOR-MAP. ... e ittt 126
DECLARE-CONNECTION ...ttt a e 128
DECLARE-IMAGE ettt 130
DECLARE-LAYOUT .t 132
DECLARE-PRINTER ...ttt ettt et e e e e e e eas 137
DECLARE-PROCEDUREottt 143
DECLARE-REPORTt 144
DE L ARE-TABLE ...ttt 146
O P 148
DECLARE-VARIABLE. ...ttt ettt ettt 150
HDEFINE L. e 153
DI P LAY et 155
DIV IDE. et 158
D0 159
DR A e 160
DUMP-TABLE ..ot 163
RS . aaas 164
] 164
ENCODE. ...ttt 164
END-DECLARE, END-DOCUMENT, END-EVALUATE, END-FOOTING, END-HEADING..........couviiiiiiiiiiiieieieene 165
HEND-IF, #ENDIF ... 166
BN D IF . e 167
END-PROCEDURE, END-PROGRAM, END-SELECT, END-SETUP, END-SQL, END-WHILE, END-EXECUTE................. 167
B AL AT E e 168
B E CUTE ..t 170
R o N 175
B R A T et 176
FILLTABLE ..o 177
FIN D et 179
G 180
GET-COLOR .. 181
L0 O PPN 183
1 184
PPN 186
] 187
FHIENDEF . . .o aaas 188
FINCLUDE. .. o e 188
I P U e 189
LAST-PAGE ... e 192
L 192
LOAD-LOOKUP ...ttt ettt et e 217
LOOKUP ..o 222

34 Production Reporting Command Reference

LOWER CASE ...ttt 223

MBTOSBS .o 224
MOV e 224
VIULTIPLY . ettt 228
NEW-PAGEo 229
NEW-RE P ORT ...ttt 230
NEXT-COLUMN. ..o a e a e aas 231
NEXT-LISTING ... a e 232
PN et e 233
OPEN- RS 235
PAGE-NUMBER e ittt ettt ettt e e e e e e 237
POSITION . e 238
PRINT e 239
PRINT-BAR-CODE ... ettt ettt e e e e e e eas 260
PRINT-CHART L. et 263
PRINT-DIRECT ..ttt ettt ettt et e e e e e 270
PRINT-IMAGE ... 271
PRINT-TABLEttt ettt et 273
PUT 274
READ L. 275
ROLLBACK ..ottt e et 277
SBTOMBS ..o 278
SE U RITY e e e 278
SET-COLOR .ot e 280
SET-DELAY-PRINT Lot e 282
SHOOW e e e 283
ST 0P e 287
STRING . e e 288
SUBTRACT e 289
TOC-ENTRY .ttt 290
UNSTRING ..o 291
UPPERCASE ..o 292
USE . e e 293
USE-COLUMN L.t e 293
USE-PRINTER-TYPE ettt et 294
USE-PROCEDURE ... et 295
USE-RE P ORI ..ttt 296
WHILE .o 297
VRITE . 299
WV RITE RS e e e e 300

35

About Production Reporting Commands

ADD

This chapter describes each command in the Production Reporting lexicon. The commands
follow the conventions in Table 1, “Syntax Conventions,” on page 12 and use the abbreviations
in Table 2, “Syntax Abbreviation Conventions,” on page 13.

Caution!

If you copy codes directly from the examples in the PDF file, change the slanted quotes to regular
quotes to avoid error messages.

Note:

For information on commands that are DDO-specific or have special instructions for DDO, see
“DDO” in the index.

Function

Adds one number to another.

Syntax

ADD {src_num 1lit|_var|_col} TO dst_num var [ROUND=nn]

Arguments
src_num lit|_var|_col

Numeric source value added to dst_num var.

dst_num var

Numeric destination variable containing results after execution.

ROUND

Results rounded to the number of digits to the right of the decimal point. Float variables: valid
values are 0 to 15. Decimal variables: valid values are 0 to the precision of the variable. Integer
variables: N/A.

Description

The source value is added to the destination variable and the result is placed in the destination.
Source is always first and destination is always second. Money-related values (dollars and cents)
use decimal variables.

36 Production Reporting Command Reference

Examples

add 10 to #counter
add #counter to #new_count
add &price to #total round=2

See Also

LET for information on complex arithmetic expressions

ALTER-COLOR-MAP

Function

Dynamically alters a color.

Syntax

ALTER-COLOR-MAP
NAME={color name lit|_var|_col}
VALUE= ({color _name lit|_var|_col}|{rgh})

Arguments

NAME

Name of the color. For example, light blue.

VALUE

RGB value of the color. For example, (193, 233, 230).

{color_name lit|_var|_col}

e Includes alphanumeric characters (A-Z, 0-9), the underscore (_), and the dash (-)

e Must start with an alpha (A-Z) character

e Case insensitive

e A name in the format (RGBredgreenblue) cannot be assigned a value.

e 'None'and 'default' are reserved. 'Default' is used during execution when a referenced color
is not defined in the runtime environment.

{rgb}

red_lit|_var|_col, green_lit|_var|_col, blue_lit|_var|_col where each component is a value in the
range of 000 to 255. In BEGIN-SETUP, only literal values are allowed.

Default colors implicitly installed with Production Reporting:

black= (0,0,0)

white=(255,255,255)

gray=(128,128,128)

ALTER-COLOR-MAP 37

silver=(192,192,192)
red=(255,0,0)
green=(0,255,0)
blue=(0,0,255)
yellow=(255,255,0)
purple=(128,0,128)
olive=(128,128,0)
navy=(0,0,128)
aqua=(0,255,255)
lime=(0,128,0)
maroon=(128,0,0)
teal=(0,128,128)
fuchsia=(255,0,255)

Description

ALTER-COLOR-MAP is allowed wherever PRINT is allowed. ALTER-COLOR-MAP dynamically
alters a color; it does not define a color.

Examples

begin-setup
declare-color-map
light_blue = (193, 222, 229)
end-declare
end-setup

begin-program
alter-color-map name = 'light blue' value = (193, 233, 230)
print 'Yellow Submarine' ()

foreground = ('yellow')
background = ('light_blue')
get-color print-text-foreground = (Sprint-foreground)
set-color print-text-foreground = ('purple')
print 'Barney' (+1,1)
set-color print-text-foreground = ($print-foreground)

end-program

See Also
DECLARE-COLOR-MAP, SET-COLOR, and GET-COLOR

38 Production Reporting Command Reference

ALTER-CONNECTION

Function

Alters data source logon parameters prior to logon. Can be used to override default connection
logon parameters.

Note:
ALTER-CONNECTION is specific to Production Reporting DDO ports only.

Syntax

ALTER-CONNECTION

NAME=connection name

DSN={uqg txt_lit|_var}]

USER={uqg txt_lit|_var}]

PASSWORD={uqg txt_lit|_var}]

PARAMETERS=keyword str=attr_ str;

, keyword_ str=attr_str;...]]

NO—DUPLICATE=TRUE|FALSE]

SET-GENERATIONS=([{dimensionl, hierarchyl}

[,dimensioni, hierarchyi] ...]1)

SET-LEVELS= ([{dimensionl, levell} [,dimensioni, leveli]l ...1)
SET-MEMBERS= ([{dimensionl, levell} [,dimensioni, levelil]l ...1)

[
[
[
[
[
[

Arguments
NAME

User-defined name for describing a data source connection.

DSN

Logical data source name recorded in Registry.properties.

USER, PASSWORD

Traditional logon semantics.

PARAMETERS

Keyword-attribute pairs required by data source drivers for logon. Syntax restrictions include
delimiting semi-colons (;) and equal signs (=). Keywords must match logon property names for
data sources in property files.

NO-DUPLICATE=TRUE | FALSE (default is FALSE)

(Optional) Prevents Production Reporting from creating additional logins to data sources
handling previous queries. Creating a new login is the default behavior, allowing a single
CONNECTION declaration in a subquery. This behavior, while allowing dynamic logins as needed,
causes difficulties when doing DDL (BEGIN-SQL) and DML (BEGIN-SELECT) against
temporary tables in some data sources. In such cases, you must fetch from the temporary table

ALTER-CONNECTION 39

using the same login in which it was created. Here, you should code CONNECTION as NO-
DUPLICATE=TRUE, and then use that connection in both the table creation logic of BEGIN-
SQL and the row fetching logic of BEGIN-SELECT.

SET-GENERATIONS

Dimension hierarchy for the previously-declared dimension. In the following example:
set-generations=('product',5, 'time',1)

SET-GENERATIONS:

e Returns the members in the ‘product’ dimension at the 5 generation in the hierarchy.

For example, returns all ‘Brand Name’ members (Generation Level 5) under the product
hierarchy of ‘all products.drink.alcoholic beverages.beer and wine’. This increases the result
set to a list of beers and wines.

e Returns the members in the ‘time’ dimension at the 1% generation in the hierarchy.

For example, returns all ‘Year’ members (Generation Level 1) under the time hierarchy of
‘1997.Q.2. This reduces the result set to ‘1997’.

To clear values defined with SET-GENERATIONS, use:

set-generations=()

SET-LEVELS

Extends dimension hierarchies for previously-declared dimensions. Dimensions and hierarchies
defined with SET-LEVELS can be liferal values only. In the following example:

set-levels=('product',2)
e SET-LEVELS used with the previous SET-MEMBERS returns all members under the product

hierarchy and the next two generations (Product SubCategory and Brand Name) for the
product hierarchy of ‘all products.drink.alcoholic beverages.beer and wine’.

e SET-LEVELS used with the previous SET-MEMBERS and SET-GENERATIONS returns all
members for generation levels 5 through 7 under the product hierarchy of ‘all
products.drink.alcoholic beverages.beer and wine.’

To clear values defined with SET-LEVELS, use:

set-levels=()

SET-MEMBERS

Returns the members in a dimension, level, or hierarchy whose name is specified by a string.
Dimensions and hierarchies defined with SET-MEMBERS can be literal values only. In the
following example:

set-members=('product', 'all products.drink.alcoholic beverages.beer and
wine', 'time', '1997.01.2")

SET-MEMBERS:

40

Production Reporting Command Reference

e Returns the members in the ‘product’ dimension, at the ‘all products’ hierarchy, at the
‘drink’, ‘alcoholic beverages’, and ‘beer and wine’ levels.

e Returns the members in the ‘time’ dimension, at the ‘1997 hierarchy, at the ‘Q1’ and 2’
levels.

To clear values defined with SET-MEMBERS, use:

set-members= ()

Examples

alter-connection

name=SAPR3-1

password=psswd
parameters=logon.client=600; logon.ashost=starfish;logon.sysnr=
00; logon.language=EN;

Note:

Do not wrap the lines in the 'parameters="line. Space restrictions dictate the wrapped line in
the preceding example.

See Also
DECLARE-CONNECTION

ALTER-LOCALE

Function

Selects alocale or changes locale parameters for printing date, numeric, and money data and for
data accepted by INPUT. Locales are preferences for language, currency, and the presentation of
charts and numbers.

Syntax

ALTER-LOCALE

[LOCALE={txt_lit _var|DEFAULT|SYSTEM}]
[NUMBER-EDIT-MASK={txt_lit|_var|DEFAULT|SYSTEM}]
[MONEY-EDIT-MASK={ txt_lit|_var|DEFAULT|SYSTEM}]
[DATE-EDIT-MASK={txt_Iit|_var|DEFAULT|SYSTEM}]
[INPUT-DATE-EDIT-MASK={ txt_lit|_var|DEFAULT|SYSTEM}]
[MONEY-SIGN={txt_lit|_var|DEFAULT|SYSTEM}]
[MONEY-SIGN-LOCATION={ txt_var|DEFAULT |SYSTEM|LEFT|RIGHT}]
[THOUSAND-SEPARATOR={ txt_1it|_var|DEFAULT | SYSTEM}]
[DECIMAL-SEPARATOR={txt_lit|_var|DEFAULT|SYSTEM}]
[DATE-SEPARATOR={ txt_lit|_var|DEFAULT|SYSTEM}]
[TIME-SEPARATOR={ txt_lit|_var|DEFAULT|SYSTEM}]
[EDIT-OPTION-NA={txt_lit|_var|DEFAULT|SYSTEM}]
[EDIT-OPTION-AM={txt_Iit|_var|DEFAULT|SYSTEM}]
[EDIT-OPTION-PM={txt_Iit|_var|DEFAULT|SYSTEM}]
[EDIT-OPTION-BC={txt_Ilit|_var|DEFAULT|SYSTEM}]

ALTER-LOCALE 41

[EDIT-OPTION-AD={txt_Iit|_var|DEFAULT|SYSTEM}]
[DAY-OF-WEEK-CASE={ txt_var | DEFAULT | SYSTEM | UPPER | LOWER

| EDIT | NO-CHANGE}]

[DAY-OF-WEEK-FULL= ({txt_litl|_varl}...{txt_lit7|_var7})]

DAY-OF -WEEK-SHORT= ({ txt_Iitl|_varl}...{txt_1it7|_var7})]
MONTHS-CASE={ txt_var|DEFAULT | SYSTEM | UPPER | LOWER | EDIT | NO-CHANGE}]
MONTHS-FULL=({txt_Iitl|_varl}...{txt_1itl2|_varlZ2})]
MONTHS-SHORT= ({txt_1itl|_varl}...{txt_litl2|_varl2})]

—_ —

Arguments

Note:

Many of the settings can have a value of DEFAULT or SYSTEM. DEFAULT retrieves values from
the corresponding setting of the default locale in the [Default-Settings] section of SQR.INT.
SYSTEM retrieves values from the corresponding setting of the systerm locale. You can alter the
system locale using ALTER-LOCALE; however, you cannot define it in SQR.INT.

LOCALE

Locale name. This name must be defined in SQR.INTI. If omitted, the current locale is used. The
locale name is case-insensitive and is limited to A-Z, 0-9, underscore, or hyphen. To determine
the current locale, print the reserved variable Ssgr-locale.

NUMBER-EDIT-MASK

Numeric edit mask used with the keyword NUMBER in PRINT, MOVE, SHOW, or DISPLAY.

MONEY-EDIT-MASK

Numeric edit mask used with the keyword MONEY in PRINT, MOVE, SHOW, or DISPLAY.

DATE-EDIT-MASK

Date edit mask used with the keyword DATE in PRINT, MOVE, SHOW, or DISPLAY, or the
LET functions datetostr () or strtodate ().

INPUT-DATE-EDIT-MASK

Default date format to use with INPUT when TYPE=DATE is specified or the input variable is a
date variable.

Note:

For more information on Edit Masks, see ““Edit Masks” on page 247”.

MONEY-SIGN

Character(s) that replace $ or other currency symbols used in edit masks.

MONEY-SIGN-LOCATION

42 Production Reporting Command Reference

Where to place the MONEY-STGN character(s). Valid values are LEFT and RIGHT.

THOUSAND-SEPARATOR

Character to replace the ', edit character.

DECIMAL-SEPARATOR

Character to replace the '." edit character.

DATE-SEPARATOR

Character to replace the '/' character.

TIME-SEPARATOR

Character to replace the "' character.

EDIT-OPTION-NA
Character(s) to use with the 'na' option.

EDIT-OPTION-AM

1

Character(s) to replace 'AM’.

EDIT-OPTION-PM

Character(s) to replace 'PM'.

EDIT-OPTION-BC

Character(s) to replace 'BC'.

EDIT-OPTION-AD

Character(s) to replace 'AD'".

DAY-OF-WEEK-CASE

How the case for DAY-OF-WEEK-FULL or DAY-OF-WEEK-SHORT is affected when used with
'DAY' or 'DY'. Valid values are:

e UPPER, LOWER—Forces output to all uppercase or lowercase, ignoring the case of the format
code in the edit mask.

e EDIT—Uses the case specified with the format code in the edit mask.

e NO-CHANGE—Ignores the case of the format code and outputs the day of week defined in
DAY-OF-WEEK-FULL Or DAY -OF -WEEK - SHORT.

DAY-OF-WEEK-FULL

Full names for the days of the week. Production Reporting considers the first day to be Sunday.

You must specify all seven days.

DAY-OF-WEEK-SHORT

ALTER-LOCALE 43

Abbreviated names for the days of the week. Production Reporting considers the first day to be
Sunday. You must specify all seven abbreviations.
MONTHS-CASE

How the case for MONTHS-FULL or MONTHS-SHORT is affected when used with 'MONTH' or
'MON'. Valid values are:

e UPPER, LOWER—Forces output to all uppercase or lowercase, ignoring the case of the format
code in the edit mask.

e EDIT—Uses the case specified with the format code in the edit mask.

e NO-CHANGE—Ignores the case of the format code and outputs the month defined in
MONTHS-FULL or MONTHS-SHORT

MONTHS-FULL

Full names for the months of the year. Production Reporting considers the first month to be

January. You must specify all 12 months.

MONTHS-SHORT

Abbreviated names for the months of the year. Production Reporting considers the first month
to be January. You must specify all 12 abbreviations.

Description

When you install Production Reporting, the default locale is set to SYSTEM.

Table 6 SYSTEM Locale Settings

Keyword Value

NUMBER-EDIT-MASK PRINT prints two digits to the right of the decimal point and left justifies the number.
MOVE, SHOW, and DISPLAY format the number with six digits to the right of the decimal
point and left justifies the number.

MONEY-EDIT-MASK Same default values as those in NUMBER-EDIT-MASK.

DATE-EDIT-MASK Date formats in Table 61, “Default Formats by Database,” on page 251.

INPUT-DATE-EDIT-MASK | Date edit masks in Table 59, “Sample Date Edit Masks,” on page 247.

MONEY-SIGN '$'

MONEY-SIGN-LOCATION | LEFT

THOUSAND-SEPARATOR | '

DECIMAL-SEPARATOR A

DATE-SEPARATOR VA
TIME-SEPARATOR !
EDIT-OPTION-NA n/a'

44 Production Reporting Command Reference

Keyword Value

EDIT-OPTION-AM ‘am'

EDIT-OPTION-PM 'pm’

EDIT-OPTION-BC 'be!

EDIT-OPTION-AD ‘ad'

DAY-OF-WEEK-CASE EDIT

DAY-OF-WEEK-FULL ('Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday')

DAY-OF-WEEK-SHORT ('Sun', 'Mon', Tue', 'Wed', 'Thu', 'Fri", 'Sat')

MONTHS-CASE EDIT
MONTHS=FULL (January', 'February', 'March', 'April', 'May', 'June', 'July', 'August’, 'September', 'October’,
'November', 'December')
MONTHS-SHORT (YJan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct’, 'Nov', 'Dec')
Examples
The following code:

!

! The following program segments will illustrate the various
! ALTER-LOCALE features.

!

begin-setup

declare-variable
date Sdate $datel Sdate2 S$date3
end-declare

end-setup

!

! Set default masks

|

alter-locale

number-edit-mask
money-edit-mask

'9,999,999.99"
'$999,999,999.99"

date-edit-mask = 'Mon DD, YYYY'

let #value = 123456
let $edit = 'Mon DD YYYY HH:MI:SS'
let $date = strtodate('Jan 01 1995 11:22:33', Sedit)

show
show
show
show
show

'With NUMBER option #Value = ' #value number
'With MONEY option #Value = ' #value money
'Without NUMBER option #Value = ' #value

'With DATE option SDate = ' S$date date
'Without DATE option SDate = ' S$date

Produces the following output:

With NUMBER option #value

123,456.00

With MONEY option #Value = $123,456.00

ALTER-LOCALE 45

Without NUMBER option #Value = 123456.000000

With DATE option SDate = Jan 01, 1995
Without DATE option SDate = 01-JAN-95
The following code:

|

! Reset locale to Production Reporting defaults and assign a multi-
character

! money-sign.

|

alter-Locale

locale = 'System'

money-sign = 'AUS' ! Australian dollars

let #value = 123456
show #value edit '$999,999,999,999.99"
show #value edit '$$$S$,$$$$999,999.99°

Produces the following output:

AUS 123,456.00
AUS$123,456.00

The following code:

|

! Move the money-sign to the right side of the value. Note

! the leading space.

I

alter-locale
money-sign = ' AUS' ! Australian dollars
money-sign-location = right

let #value = 123456

show #value edit '$999,999,999,999.99"

show #value edit '$$S$$,$$$5$999,999.99"

Produces the following output:

123,456.00 AUS
123,456.00 AUS

The following code:

|
! Reset locale to Production Reporting defaults and flip the thousand and
! decimal separator characters.
|
alter-locale
locale = 'System'
thousand-separator = '.'
decimal-separator = ',

let #value = 123456
show #value edit '999,999,999,999.99"

Produces the following output:

46 Production Reporting Command Reference

123.456,00
The following code:

|
! Reset locale to Production Reporting defaults and change the date and
time
! separators
|
alter-locale
locale = 'System'
date-separator = '-'
time-separator = '.'

let $edit = 'Mon/DD/YYYY HH:MI:SS'
let $date = strtodate('Jan/01/1995 11:22:33', Sedit)
show Sdate edit :$edit

Produces the following output:

Jan-01-1995 11.22.33
The following code:

|

! Reset locale to Production Reporting defaults and change the text used
with

! the edit options 'na', 'am', 'pm', 'bc, 'ad'

|

alter-locale

locale = 'System'

edit-option-na = 'Not/Applicable’
edit-option-am = 'a.m.'
edit-option-pm = 'p.m.'
edit-option-bc = 'b.c.’
edit-option-ad = 'a.d.’

let $value = "'

let $edit = 'Mon DD YYYY HH:MI'

let $datel = strtodate('Jan 01 1995 11:59', sedit)
let $date2 = strtodate('Feb 28 1995 12:01', sedit)
show $value edit '999,999,999,999.99Na"

show S$datel edit 'Mon DD YYYY HH:MI:SS PM'

show $date2 edit 'Mon DD YYYY HH:MI:SS pm'

Produces the following output:

Not/Applicable
Jan 01 1995 11:59:00 A.M.
Feb 28 1995 12:01:00 p.m.

The following code:

|
! Input some dates using the 'system' locale and

! output using other locales from the SQR.INI file.
|

alter-locale

ALTER-LOCALE

47

locale = 'System'

let $datel = strtodate('dJan 01 1995', 'Mon DD YYYY')
let $date2 = strtodate('Feb 28 1995', 'Mon DD YYYY')
let $date3 = strtodate('Mar 15 1995', 'Mon DD YYYY')
show 'System:'
show
show $datel edit 'Month DD YYYY' ' is ' Sdatel edit 'Day'
show $date2 edit 'Month DD YYYY' ' is ' Sdate2 edit 'Day'
show $date3 edit 'Month DD YYYY' ' is ' $date3 edit 'Day'
alter-locale

locale = 'German'
show
show 'German:'
show
show $datel edit 'DD Month YYYY' ' ist ' $datel edit 'Day’
show $date2 edit 'DD Month YYYY' ' ist ' $date2 edit 'Day’
show $date3 edit 'DD Month YYYY' ' ist ' $date3 edit 'Day’
alter-locale

locale = 'Spanish'
show
show 'Spanish:'
show
show S$datel edit 'DD Month YYYY' ' es ' Sdatel edit 'Day'
show S$date2 edit 'DD Month YYYY' ' es ' Sdate2 edit 'Day'
show S$date3 edit 'DD Month YYYY' ' es ' Sdate3 edit 'Day’

Produces the following output:

System:

January 01 1995 is Sunday
February 28 1995 is Tuesday
March 15 1995 is Wednesday
German:

01 Januar 1995 ist Sonntag
28 Februar 1995 ist Dienstag
15 Marz 1995 ist Mittwoch
Spanish:

01 enero 1995 es domingo

28 febrero 1995 es martes
15 marzo 1995 es miércoles

See Also
e DISPLAY, LET, MOVE, PRINT, and SHOW
e Chapter 6, “SQR.INT”

ALTER-PRINTER

Function

Alters printer parameters at run time.

Syntax

ALTER-PRINTER

Production Reporting Command Reference

[POINT-SIZE={point_size num lit|_var}]
[FONT-TYPE={ font_type| txt_var}]
[SYMBOL-SET={symbol_set_id|txt_var}]
[FONT={ font_int_lit|_var}]
[PITCH={pitch num lit|_var}]

Arguments

POINT-SIZE

New font point size.

FONT-TYPE

New font type. (PROPORTIONAL or FIXED)

SYMBOL-SET

New symbol set identifier.

FONT

New font as a number. (For example, 3 = Courier and 4 = Helvetica.)

PITCH

New pitch in characters per inch.

Note:

See Table 32, “DECLARE-PRINTER Command Arguments,” on page 138 for more information
on ALTER-PRINTER arguments.

Description

You can place ALTER-PRINTER in any part of an Production Reporting program except the
SETUP section.

ALTER-PRINTER changes the attributes of the current printer for the current report. Attributes
that do not apply to the current printer, are ignored. For example, ALTER-PRINTER is ignored
if it specifies proportional fonts for a report printed on a line printer. When a program creates
multiple reports and shares the printer with another report, the attributes are changed for that
report as well.

Examples

Change the font and symbol set for the current printer.

alter-printer
font=4 ! Helvetica
symbol-set=12U ! PC-850 Multilingual

If the output prints to a PostScript printer, SYMBOL-SET ignored; however, if the SPF file is kept
(see the -KEEP command line flag) and later printed on an HP LaserJet, the symbol set 12U can
be used.

ALTER-PRINTER 49

See Also
DECLARE-PRINTER

ALTER-REPORT

Function

Alters report-specific functionality.

Syntax

ALTER-REPORT

[HEADING={heading name_txt_lit|_var|_coll]
[HEADING-SIZE={heading size int_lit|_var|_col]
[FOOTING={ footing name_txt_lit|_var|_coll]
[FOOTING-SIZE={footing size int_lit|_var|_col}]
[PDF-APPEARANCE= (appearance_lit|_var|_col)]

[PDF-INFORMATION= (information 1it|_var|_col, value lit|_var|_col
[

[

[

[

[

,information_lit|_var|_col, value lit|_var|_coll...)]
PDF-OPEN-ACTION= (openaction_lit|_var|_col,
,name_lit|_var|_col,value 1lit|_var|_col]l...)]
PDF-PAGE-TRANSITION= (transition lit|_var|_col, duration lit|_var|_col)]
PDF-SECURITY= (security lit|_var|_col, value lit|_var|_coll,security lit|
_var|_col, value lit|_var|_coll...)]
[PDF-VIEWER-PREFERENCE= (preference lit|_var|_col, value 1lit|_var|_col
[.preference lit|_var|_col, value lit|_var|_col]l...)]
Arguments
HEADING

Name of the BEGIN-HEADING section.

HEADING-SIZE

Amount of space occupied by the BEGIN-HEADING section.

FOOTING

Name of the BEGIN-FOOTING section.

FOOTING-SIZE

Amount of space occupied by the BEGIN-FOOTING section.

PDF-APPEARANCE

Appearance of the document when opened.

50

Production Reporting Command Reference

Table 7 Appearance Values

Appearance | Description

None Neither bookmarks nor thumbnails are visible. (Default value when the document does not contain
bookmarks.)

Bookmarks | Opens documents with bookmarks visible. (Default value when the document contains bookmarks.)

Thumbnails | Opens documents with thumbnails visible.

Fullscreen Opens in full-screen mode. (This value does not work in the browser.)

For example:

ALTER-REPORT
PDF-APPEARANCE= ('None')

PDF-INFORMATION

The information name to address and the data to apply to the information parameter. You can
specify any of the standard information names shown in Table 8, or you can specify any user-
defined name with the exception of the following names which are reserved by the PDFlib:
CreationDate, Producer, ModDate, or Trapped.

Table 8 Standard PDF Information Names

Name Description

Subject Document subject.

Title Document title. (The default is the product name and version string.)

Creator Software used to create the document.

Author Document author.

Keywords | Keywords describing the document contents.

For example:

ALTER-REPORT
PDF-INFORMATION=('Author', 'Peter Burton',6 'Keywords',
'Sample Private')

PDF-OPEN-ACTION

Action the PDF viewer takes when opening a file, name of the additional value, and value to
apply.

Table 9 Open Actions

Open Action | Description

Fixed Use a fixed destination view defined with Zoom, Left, and Top.

ALTER-REPORT 51

Open Action | Description

Window Fit the complete page to the window.
Width Fit the page width to the window defined with Top.
Height Fit the page height to the window defined with Left.

Rectangle Fit the rectangle defined with Left, Bottom, Right, and Top.

Visible Fit the visible contents of the page to the window.

VisibleWidth | Fit the visible contents of the page to the window defined with Top.

VisibleHeight | Fit the visible contents of the page to the window defined with Left.

Table 10 Additional Values

Value Description

Page Initial page to display. (default = 1)

Zoom Zoom factor to use when the page displays. (default =100)

Left Column number of the page to position at the left edge of the window. (default = 1)

Top Line number of the page that will be positioned at the top edge of the window. (default = 1)

Bottom | Last line of the page to display. (default = entire page)

Right Last column of the page to display. (default = entire page)

For example:

ALTER-REPORT
PDF-OPEN-ACTION=('Fixed', 'Zoom, 75, 'Page',6 2)

PDF-PAGE-TRANSITION

Page transition for current and future pages and the duration (in seconds) for the transition.

Table 11 Transitions

Transition | Description

Split Two lines sweeping across the screen reveal the page.
Blinds Multiple lines sweeping across the screen reveal the page.
Box A box reveals the page.

Wipe A single line sweeping across the screen reveals the page.

Dissolve The old page dissolves to reveal the new page.

Glitter The dissolve effect moves from one screen edge to another.

52 Production Reporting Command Reference

Transition | Description

Replace The old page is replaced by the new page. (default value)

For example:

ALTER-REPORT

PDF-PAGE-TRANSITION=('Wipe', 3.25)

PDF-SECURITY

Security parameter to address and value to apply to the security parameter.

Table 12 Security Parameters

Security Description
User-Password User level password applied to the generated PDF. Up to 32 characters. Needed to open the
document.

Master-Password | Master level password applied to the generated PDF. Up to 32 characters. Used to open

documents or override the permissions.

Permissions Permissions applied to the generated PDF.

NoPrint—Prevents printing the file.
NoModify—Prevents users from adding form fields or making any other changes.

NoCopy—Prevents copying and extracting text and graphics and disables the accessibility
interface.

NoAnnots—Prevents adding or changing comments or form fields.

NoForm—Prevents form field filling, even if NoAnnots is not specified. (Requires Acrobat 5
or higher)

NoAccessible—Prevents extracting text or graphics for accessibility purposes. For example,

a screen reader program.(Requires Acrobat 5 or higher)

NoAssemble—Prevents inserting, deleting, or rotating pages and creating bookmarks and
thumbnails, even if NoModify is not specified. (Requires Acrobat 5 or higher)

NoHiResPrint—Prevents high-resolution printing. If NoPrint is not specified, printing this
setting is restricted to the Print As Image feature, which prints a low-resolution rendition o
the page. (Requires Acrobat 5 or higher)

f

Note:

Default documents have no passwords and all permissions.

For example:

ALTER-REPORT

PDF-SECURITY=('User-Password', $User_Password,
'Master-Password', &Master_Password, 'Permissions', 'NoPrint NoCopy')

PDF-VIEWER-PREFERENCE

Viewer preference to address and value to apply to the preference.

ALTER-REPORT

53

Table 13 Viewer Preferences

Preference Description

Toolbar True hides Acrobat’s tool bar. Default = False

MenuBar True hides Acrobat’s menu bar. Default = False

WindowUI True hides Acrobat’s windows controls. Default = False

FitWindow True resizes the document’s window to the size of the first page. Default = False
CenterWindow True positions the document’s windows in the center of the screen. Default = False
DisplayDocTitle True displays the document information field in Acrobat’s title bar; False displays the

file name. Default = False

NonFullscreen-PageMode | How to display the document on exiting full-screen mode:

o UseOutlines-Displays page and document outlines.
o UseThumbs-Displays page and thumbnails.
o UseNone-Displays neither document outlines nor thumbnails.

Default = UseNone

Direction Reading order of the document. (Affects scroll ordering in double-page view.)

® [2R-Left to right
o R2L-Right to left (including vertical writing systems).

Default = L2R
For example:
ALTER-REPORT
PDF-VIEWER-PREFERENCE= ('Direction', 'R2L')

Description

ALTER-REPORT dynamically changes how much space active heading and/or footing sections
occupy for the current report. For PDF reports, you can add information about the report,
control the display and appearance of the report, and control security settings.

If HEADING or FOOTING = ‘NONE’, the section is disabled for the current report.

If HEADING or FOOTING = ‘DEFAULT’, the section reverts to whatever was in effect when the
report was initiated.

If no HEADING or FOOTING value is set HEADING-SIZE and/or FOOTING-SIZE values affect the
HEADING/FOOTING currently used.

When HEADING, HEADING-SIZE, FOOTING, or FOOTING-SIZE is defined: the command is not
invoked in a BEGIN-HEADING and/or BEGIN-FOOTING section, the page is not written to, and
the assignment takes effect immediately. Otherwise, it takes effect for the next page.

Examples

begin-footing 2 name=confidental

54 Production Reporting Command Reference

print 'Company Confidential' (1,1,0) center
page-number (2,37,0)
end-footing

begin-footing 2 name=proprietary
print 'Company Proprietary' (1,1,0) center
page-number (2,37,0)

end-footing

begin-program

alter-report
footing = 'Proprietary'
footing-size = 6 ! Increase depth

end-program

See Also
BEGIN-FOOTING and BEGIN-HEADING

ALTER-TABLE

Function

Manipulates table attributes.

Syntax

ALTER—TABLE

NAME=table name_var|_lit|_col

ACTION=action 1it

[COUNT=count_var|_lit|_col]

[ROW=row_var|_lit|_col]

[ATTRIBUTES= ({ keywordl}, {valuel}, ..., {keywordn}, {valuen})]
Arguments

NAME

Name of the table created by CREATE-TABLE.

ACTION
Action to perform on thee table.

e When ACTION=ERASE, the underlying table data is removed from memory. When this
action is specified, no other keywords can be specified.

e WhenACTION=INFO, table information will be retrieved as defined. The following keywords
are allowed (you must specify at least one):

ALTER-TABLE 55

o ROW-The last table row acted upon.

o COUNT-Number of rows in the table.

When ACTION=ATTRIBUTES, table rows will have all unassigned columns set to the specified
attributes. If an attribute is not specified, the current setting is retained. The following

o COUNT-Number of rows. (Default=1)

O ATTRIBUTES-Attributes to apply to the rows.

°
keywords are allowed:
o ROW-The row to be affected.
COUNT

Number of affected rows.

ROW

The insertion row.

ATTRIBUTES

Attributes to apply to the row.

Table 14 ALTER-TABLE Attributes

Attribute Description

DEFAULT Causes all attributes to be set to their default values as defined by DECLARE-
TABLE and CREATE-TABLE before applying any other attributes.

BACKGROUND Background color name or RGB triplet

BOLD YES | NO

CENTER YES | NO

COLUMN-LEADING

Expressed in decipoints

COLUMN-LINE COLOR

Color name or RGB triplet

COLUMN-LINE-THICKNESS

Expressed in decipoints

COLUMN-LINE-STYLE

SOLID | SQUARE-DOT | DASH | DASH-DOT | LONG-DASH | LONG-DASH-DOT | LONG-
DASH-DOT-DOT

HEADER YES | NO

FILL-COLOR Fill color name or RGB triplet. Default=NONE
FONT Font number

FOOTER YES | NO

FOREGROUND Foreground color name or RGB triplet
GROUP-HEADER YES | NO

Production Reporting Command Reference

Attribute Description
GROUP-FOOTER YES | NO

ITALIC YES | NO

POINT-SIZE Point size of the font
ROW-BORDER-COLOR Color name or RGB triplet

ROW-BORDER-LINE-STYLE

SOLID | SQUARE-DOT | DASH | DASH-DOT | LONG-DASH | LONG-DASH-DOT | LONG-
DASH-DOT-DOT

ROW-BORDER-THICKNESS

Expressed in decipoints

ROW-LINE-COLOR

Color name or RGB triple

ROW-LINE-STYLE

SOLID | SQUARE-DOT | DASH | DASH-DOT | LONG-DASH | LONG-DASH-DOT | LONG-
DASH-DOT-DOT

ROW-LINE-THICKNESS

Expressed in decipoints

UNDERLINE YES | NO

WRAP YES | NO | maximum number of lines

WRAP-HEIGHT Number of lines between each wrapped line

WRAP-ON Characters on which to force a wrap

WRAP-STRIP Characters to change to a space before the WRAP is done
Description

Use ALTER-TABLE in any section except BEGIN-SETUP, BEGIN-SQL, and BEGIN-DOCUMENT to

manipulate table objects.

Example

alter-table name='customers'

action='attributes' count=1 row=1

attributes=('foreground', ('green'), 'background', ('red'"),

'center', 'no',

'italic', 'yes', 'row-border-color', 'black’,

'row-border-thickness', 4, 'fill-color', 'yvellow', 'point-size', 8,

'bold', 'yes')

See Also

CREATE-TABLE, DECLARE-TABLE, DUMP-TABLE, FILL-TABLE, PRINT-TABLE

ALTER-TABLE 57

ARRAY-ADD, ARRAY-DIVIDE, ARRAY-MULTIPLY,
ARRAY-SUBTRACT

Function

Performs arithmetic on array elements.

Syntax

ARRAY-ADD{src_num 1it|_var|_col}...TO

dst_array _name (element_lit|_var|_col)[field

[(occurs_lit|_var|_col)l]...
ARRAY-DIVIDE{src num lit|_var|_col}...INTO
dst_array name (element_int_lit|_var|_col) [field
[(occurs_lit|_var|_col)l]...
ARRAY-MULTIPLY{src_num lit|_var|_col}...TIMES
dst_array name (element_int_lit|_var|_col)[field
[(occurs_lit|_var|_col)]]l...
ARRAY-SUBTRACT{src_num lit|_var|_col}...FROM
dst_array name (element_int_lit|_var|_col)[field
[(occurs_lit|_var|_col)]]l...

Arguments

src_num lit|_var|_col

Source value(s) are added, divided, multiplied, or subtracted from the respective destination
array fields. All variables must be numeric.

dst_array name (element_int lit|_var|_col)[field [(occurs_lit|_var|
_col)]]

Destination array field(s) contain the results after the operation. All variables must be numeric.

Description

The following information applies to the array arithmetic commands:

The array must be created with CREATE-ARRAY.

Array arithmetic commands perform on one or more source numbers and place the result
into the corresponding array field.

Array element and field occurrence numbers can be numeric literals (123) or numeric
variables (#7) and can be from zero (0) to one less than the size of the array.

If fields are not listed, the results are placed into consecutively defined fields in the array. If
fields are listed, results are placed into those fields, at the specified occurrence of the field.
If an occurrence is not specified the zeroth (0) occurrence is used.

All fields must be of the type NUMBER, DECIMAL, FLOAT, or INTEGER. They cannot be of type
DATE, CHAR, Or TEXT.

If division by zero is attempted, a warning message is displayed, the result field is unchanged,
and Production Reporting continues executing.

58

Production Reporting Command Reference

Examples

array-add &salary #comm to emps (#3j)

Adds &salary and #comm to the first two fields defined in the emps array. The #3j'th element
of the array is used.

array-subtract #lost #count 1 from stats(#j2) loses tot sequence
Subtracts #1ost, #count, and 1 from the fields 1oses, tot and sequence of the #52'th element
of the stats array.

array-multiply 2 2 2 times percentages (#i) p(0) p(l) p(2)

Multiplies occurrences 0 through 2 of the field p in the #1'th element of the percentages array
by 2.

array-divide 100 into commissions (#j) salesman (#1i2)

Divides the #i2'th occurrence of the salesman field of the #7'th element of the
commissions array by 100.

The following example uses ARRAY-ADD in an Production Reporting program.

begin-setup
! declare arrays

create-array name=emps size=1 ! one row needed for this example
field=Salary:number=35000 ! initialize to 35,000
field=Comm:number=5000 ! initialize to 5,000

end-setup

begin-program
do Main
end-program

begin-procedure Main local
! Show original contents of the arrays, then the modified arrays
! array-add
! retrieve values from the only row of array "emps"
get #sal #com FROM emps (0) Salary Comm

print 'Array-Add’ (+1, 1)
print 'Add 1000 to each column' (+1, 1)
print 'Salary' (+1, 3) bold underline
print 'Comm' (,25) bold underline
print #sal (+1, 1) money

print #com (,22) money

let #salary = 1000

let #commission = 1000

let #j = 0 ! address the array row with variable "#3j"

! Add 1000 (in variables) to each column of row 0 (the 1lst and only row)
array-add #salary #commission TO emps (#3)

! retrieved the new "added" values

get #sal #com FROM emps (0) Salary Comm

print #sal (+1,1) money

print #com (,22) money

ARRAY-ADD, ARRAY-DIVIDE, ARRAY-MULTIPLY, ARRAY-SUBTRACT 59

ASK

end-procedure

See Also
e CREATE-ARRAY for information on creating an array.
e CLEAR-ARRAY for information on clearing or initializing an array.

e GET, PUT, and LET for information on using arrays.

Function

Retrieves values for compile-time substitution variables. Retrieval can be by user input,
command-line arguments, or as entries in @file on the command line. (See .“Production
Reporting Command-line Arguments” on page 31 for more information.)

Syntax

ASK substitution variable [prompt]

Arguments
substitution_variable

Variable to use as the substitution variable.

prompt

(Optional) Literal text string displayed as a prompt if the substitution variable value is not
entered on the command line or in an argument file.

Description

The value of the substitution variable replaces the reference variable in the program. Variables
are referenced by enclosing the variable name in braces, for example, '{state_name} '. If the
substitution variable is text or date, surround the brackets by single quotes. Substitutions are
made as the program is compiled and are saved in the SQT file. Each variable can be referenced
multiple times.

ASK is used only in the SETUP section and must appear prior to any substitution variable
references.

You cannot break ASK across program lines.

Examples

In the following example, state takes the user-supplied value in response to the prompt Enter
state for this report.

begin-setup
ask state 'Enter state for this report'
end-setup

60 Production Reporting Command Reference

begin-select

name, city, state, zip

from customers where state = '{state}'
end-select

See Also
e INPUT for information on input at run time

e “Compiling Programs and using Production Reporting Execute” in Volume 1 of the
Hyperion SQR Production Reporting Developer's Guide

BEGIN-DOCUMENT

Function

Begins a DOCUMENT paragraph. Document paragraphs allow you to write free-form text (for
example, form letters and invoices).

Syntax

BEGIN-DOCUMENT position

END-DOCUMENT

Arguments
position

Location on the page where the document begins. Can be fixed or relative to the current position.

Description

Database columns, Production Reporting variables, and document markers can be referenced
within documents. Their location determines where they are printed. Do not use tabs in
document paragraphs. To indent text or fields, use the spacebar. If variables printed inside a
document paragraph are variable in length, manipulate the variables outside the DOCUMENT
paragraph.

Note:

Documents must be executed before referencing their document markers. Since documents can
be printed at relative positions on the page, the location of document markers may not be known
by Production Reporting until the document is executed.

Examples

begin-document (1,1)

BEGIN-DOCUMENT 61

.b
Dear Sfirstname

end-document

See Also
e END-DOCUMENT

e “Creating Form Letters” in Volume 1 of the Hyperion SQR Production Reporting Developer's
Guide for a full example of BEGIN-DOCUMENT

BEGIN-EXECUTE

Note:
BEGIN-EXECUTE is specific to Production Reporting DDO ports only.

Function

Begins a new query or procedure execution. BEGIN-EXECUTE is only required when additional
information about the DDO datasource or query is needed. In a BEGIN-EXECUTE paragraph,
the syntax of BEGIN-SELECT varies as shown below.

Syntax

BEGIN-EXECUTE
[CONNECTION=uqg txt_lit]
[ON-ERROR=sqr._procedurel (argll,argil...) 1]
[RSV=num var]
[STATUS=1ist_var|num var|txt_var]
[PROPERTIES= ({key txt_lit|_var}={{value txt_lit|_var| _col}|{num lit|_var|
_col},...)]
[SCHEMA={txt_lit|_var}]
[
PROCEDURE={txt_lit|_var}

[PARAMETERS= ({{argl [IN|INOUT]}|NULL} [[,argi [IN|INOUT]]|NULL] ...)]
(or)
COMMAND={ txt_Ilit|_var}
(or)

GETDATA={ txt_lit|_var}
]
[BEGIN-SELECT [BEFORE=sqr_procedurel (argll,argi]...) 1]
[AFTER=sqr._procedurel (argl[,argil...)11]
col-name TYPE=CHAR |TEXT |NUMBER |DATE [edit-mask]
[on-break] ...
[{FROM ROWSETS=({m|m-n|m-|-n} [,...1}|{ALL})}|
{FROM PARAMETER={txt_lit|_var}}|
{FROM {table name}}]
END-SELECT]
END-EXECUTE

62

Production Reporting Command Reference

Arguments
CONNECTION

Name previously defined using DECLARE-CONNECTION. If not specified, Production Reporting
uses the default connection defined by the command-line entries for data source (DSN),
username (USER), and password (PASSWORD). Name is not case-sensitive.

ON-ERROR

Procedure to execute if errors occur.

RSV

Row Set Variable. Global Production Reporting variable containing the row set retrieved.

STATUS

List or scalar variable that receives the stored procedure status.

PROPERTIES

Keyword/value pair(s) that represent modifications made to the Properties of the data source
(defined by CONNECTION=).

SCHEMA
Data source location of the object queried. Valid options include:

e PROCEDURE—Name of the data source/stored procedure to execute. If the data source is
SAP R/3, this procedure is a BAPI. The name can include spaces.

e PARAMETERS—Scalar and/or list variables of the form 1ist_var|num 1it|txt 1it|
txt_var|num var|any_col.If you do not specify the keywords IN or INOUT, IN is the
default. Define all parameters in order; leaving any parameters unnamed causes a syntax
error. To ignore a parameter, fill its position with the keyword NULL.

e COMMAND—Text string passed to the data source without modification by Production
Reporting. Can include embedded Production Reporting variables.

e GETDATA—Supports the Java (DDO) GetData paradigm for data access.
BEFORE/AFTER

Production Reporting procedure to execute before or after the row set. The procedure is not
performed unless at least one row is returned from the specified rowset(s).

FROM ROWSETS

Special case addition to BEGIN-SELECT. Available for use with all data source types, including
SAP R/3 and JDBC. Names the rowset(s) from which to retrieve the column variables. For
multiple row sets, use identical column name/type signatures. Row set numbers must be
sequential from left-to-right within the parentheses, and they must not overlap as in this
example: (1-3, 2-4). Numeric literals or #variables are allowed.

In FROM ROWSETS, “m” and “n” are integer values (1, 2, 3, 4, 5). “m-n” is 3-5 (rowsets 3, 4, 5).

<« b}

m-" is 4- (rowsets 4, 5). “-n” is -3 (rowset 1, 2, 3).

BEGIN-EXECUTE 63

FROM PARAMETER

Special case addition to BEGIN-SELECT. Available only for SAP R/3 data sources. Use only with
thePROCEDURE keyword. Names an output parameter containing one or more rows from which
column variables are to retrieve.

Note:

This is similar to the PARAMETERS= statement in DECLARE-CONNECTION and ALTER-
CONNECTION, except the properties specified here alter the flow of returned information, as
opposed to simply setting login properties. Can be used with any data-access model (Procedure,
Command, Getdata). An application of this statement would be in the MDB setting, where it
might be used to specify such things as Level, Generation, or Include-Column. For example,
PROPERTIES = (‘SetColumn’ =5)

FROM {table name}

Relational data source table name. Literals or variables are not allowed.

Examples

begin-setup
declare-variable
date swhen_ordered
text $ship_method
integer #theRow
integer #theStatus
integer #howMany
end-declare
end-setup

input #howMany type=integer
input Spword
let %$parml = list(Swhen_ordered, $ship_method, #howMany)

declare-connection SAPR3
user=scott
parameters=clientno=5;node=starfish;
end-declare

alter-connection
name=SAPR3
password=Spword

begin-execute
connection=SAPR3
rsv=#theRow
status=#theStatus
on-error=it_failed(#theStatus)
procedure='CreditHistory version 5'
parameters= (%parml, 'recalculate')
print 'proc ran OK, status is '(+1,1)
print #theStatus (,+5) edit 999

64 Production Reporting Command Reference

begin-select before=do_eject after=cleanup
city &col=char (1,1) on-break level=1 after=city-tot
keyval type=number (1,+1)
rcvd type=date (0,+2)
from Rowsets=(1)
end-select
end-execute

Tip:

When you set up DECLARE-CONNECTION, you must use the same name defined in
Registry.properties. For example, if Registry.properties contains:

XML,_DATA.desc=Sample XML files
XML_DATA.class=com.sgribe.xmlacc.XMLDataSource
XML,_DATA.lib=

XML_DATA. load=
XML_DATA.conn=D:\\SampleData\\XML_DATA

Then the Production Reporting code should look similar to:

begin-setup
declare-connection default

DSN=XMIL,_DATA ! Use the same name as specified in the
end-declare ! Registry.properties file. Case sensitive.
end-setup

begin-procedure domystuff
begin-execute

GetData='sample' ! The filename is sample.xml. Substitute
the ! filename of your xml file here. The path to
the ! file is in the Registry.properties file.

begin-select
CUSTOMERS.cust_num type=num (+1,1) edit 099999
CUSTOMERS .name type=char (,30)
from customers
end-select
end-execute
end-procedure

The previous Production Reporting code produces the following output:

<CUSTOMERS>
<Customer cust_num='100013"'>
<CUSTOMERS.CUST _NUM>100013</CUSTOMERS.CUST_ NUM>
<CUSTOMERS .NAME>Gregory Stonehaven</CUSTOMERS.NAME>
<CUSTOMERS .ADDR1>Middlebrook Road</CUSTOMERS.ADDR1>
<CUSTOMERS .ADDR2>Grey Quarter</CUSTOMERS.ADDR2>
<CUSTOMERS.CITY>Everretsville</CUSTOMERS.CITY>
<CUSTOMERS . STATE>0OH</CUSTOMERS . STATE>
<CUSTOMERS.ZIP>402331000</CUSTOMERS.ZIP>
<CUSTOMERS . PHONE>2165553109</CUSTOMERS . PHONE>
<CUSTOMERS.TOT>39</CUSTOMERS . TOT>
</Customer>
</CUSTOMERS>

BEGIN-EXECUTE

65

Tip:

BEGIN-EXECUTE is only required when additional information about the DDO data source or
query is needed, such as 'Connection’, 'Schema’, 'Command’,'GetData', 'Procedure’, or
'Parameters'. The following example does not require BEGIN-EXECUTE since it does not require
information about the DDO datasource or query.

begin-setup
page-size 58 80
declare-connection ORACLE_CONNECTION
dsn=saw806
user=jerryh
password=canttellyou
end-declare
end-setup

begin-procedure print_customers
print 'FULL CUSTOMER LIST BY Customer Number' (+1) center

begin-select

cust_num +1,1,6) edit 099999

(
name (0,+2,30)
addrl (+1,12,30)
addr?2 (0,+4,30)
city (+1,12,16)
state (0,+2,2)
zip (0,+2,10)
phone (0, +2, 0) edit (xxx)bxxx-xXxXXX

'Edit phone number for’ easy reading.
next-listing skiplines=2 need=3

ISkip 2 lines between listings. Since each listing takes 3 lines,
we Ispecify 'need=3' to prevent a customer's data from being broken !
across two pages.

from customers
order by cust_num
end-select

end-procedure

See Also
EXECUTE

BEGIN-FOOTING

Function

Begins the FOOTING section.

66 Production Reporting Command Reference

Syntax

BEGIN-FOOTING footing lines int_1it
[FOR-REPORTS= (report_namel|[, report_namei] ...)]
[FOR-TOCS= (toc_namell, toc_namei]...)]

[NAME={ footing_name}]

END-FOOTING

Arguments

footing lines int_1lit

Number of lines to reserve at the bottom of each page.

FOR-REPORTS

Reports to which this footing applies. Required only for programs with multiple reports.

FOR-TOCS

Table of Contents to which this heading applies.

NAME

Name associated with this footing section. Used with ALTER-REPORT. Cannot be NONE or
DEFAULT.

Description
FOOTING sections define and control information printed at the bottom of each page.

Define report_name in DECLARE-REPORT. If you do not use DECLARE-REPORT, the footing is
applied to all reports. You can also specify FOR-REPORTS= (ALL) . (The parentheses are
required).

There can only be one BEGIN-FOOTING section for each report. A BEGIN-FOOTING section with
FOR-REPORTS= (ALL) can be followed by other BEGIN-FOOTING sections for specific reports,
which override ALL.

Define toc_name in DECLARE-TOC. You can also specify FOR-TOCS= (ALL) . (The parentheses
are required.)

There can only be one BEGIN-FOOTING section for each Table of Contents. A BEGIN-
FOOTING section with FOR-TOCS=(ALL) can be followed by other BEGIN-FOOTING sections
for a specific Table of Contents, which override ALL.

BEGIN-FOOTING sections can be shared between reports and Table of Contents.

You can print outside the Footing area of the report from the Footing, but you cannot print into
the Footing area from the body.

Examples

begin-footing 2 for-reports=(customer, summary)
print 'Company Confidential' (1,1,0) center
page-number (2,37,0)

end-footing

BEGIN-FOOTING 67

begin-footing 2 ! For all reports
print 'Division Report' (1,1,0) center
page-number (2,37,0)

end-footing

begin-footing 2 for-tocs=(all)
print 'Table of Contents' (2,1)
let $page = roman (#page-count) ! ROMAN numerals
print S$page (,64)

end-footing

See Also

e ALTER-REPORT for information on dynamic headings/footings

e DECLARE-LAYOUT for information on page layout

e DECLARE-REPORT for information on programs with multiple reports
e DECLARE-TOC for information on Table of Contents

e END-FOOTING

BEGIN-HEADING

Function

Begins a HEADING section.
Syntax

BEGIN-HEADING heading lines_int_1it
[FOR-REPORTS= (report_namel|[, report_nameil]...)]
[FOR-TOCS=(toc_namell, toc_nameil...)]

[NAME={ heading_name}]

END-HEADING

Arguments
heading lines int_1lit

Number of lines to reserve at the top of each page.

FOR-REPORTS

Reports to which this heading applies. Only required for programs with multiple reports.

FOR-TOCS

Table of Contents to which this heading applies.

NAME

Name associated with this heading section. Cannot use if FOR-REPORTS or FOR-TOCS is also
defined. Used in conjunction with ALTER-REPORT. Cannot be NONE or DEFAULT.

68 Production Reporting Command Reference

Description
The HEADING section defines and controls information printed at the top of each page.

Define report_name in DECLARE-REPORT. If you do not use DECLARE-REPORT, the heading
is applied to all reports. You can also define FOR-REPORTS= (ALL) . (The parentheses are
required.)

There can only be one BEGIN-HEADING section for each report. A BEGIN-HEADING section with
FOR-REPORTS= (ALL) can be specified followed by other BEGIN-HEADING sections for specific
reports, which override ALL.

Define toc_name in DECLARE-TOC. You can also specify FOR-TOCS= (ALL) . (The parentheses
are required.)

There can only be one Table of Contents for each BEGIN-HEADING section. A BEGIN-
HEADING section with FOR-TOCS= (ALL) can be specified followed by other BEGIN-HEADING
sections for specific Table of Contents, which override ALL.

BEGIN-HEADING sections can be shared between reports and Table of Contents.

You can print outside the heading area of the report from the heading, but you cannot print
into the heading area from the body.

Examples
begin-heading 2 ! Use 2 lines for heading,
print Scurrent-date (1,1) edit MM/DD/YY ! 2nd is blank.

print 'Sales for the Month of ' (1,30)

print Smonth ()
end-heading

begin-heading 2 for-tocs=(all)
print 'Table of Contents' (1,1) bold center
end-heading

See Also

e ALTER-REPORT for information about dynamic headings/footings

e DECLARE-LAYOUT for information on page layout

e DECLARE-REPORT for information on programs with multiple reports
e DECLARE-TOC for information on Table of Contents

e END-HEADING

BEGIN-PROCEDURE

Function

Begins a procedure.

BEGIN-PROCEDURE 69

Syntax

BEGIN-PROCEDURE procedure_name [LOCAL| (argll, argil...)]
END-PROCEDURE

Arguments
procedure_name

Procedure name. Not case-sensitive.

LOCAL

Defines that this is a local procedure.

argl [, argi]...

Arguments passed to or returned from the procedure. Can be string variables ($arg), numeric
variables (#arg), or date variables ($arg). To return a value passed back to the calling DO, place
a colon (:) before the variable name. Arguments in BEGIN-PROCEDURE and DO must match
in number, order, and type.

Description

The procedure name must be unique. The name is referenced in DO. Procedures contain other
commands and paragraphs (for example, SELECT, SQL, DOCUMENT).

By default, procedures are global. That is, variables or columns defined within a procedure are
known and can be referenced outside the procedure.

A procedure is local when the word LOCAL appears after the procedure name or when the
procedure is declared with arguments. That is, variables declared within the procedure are
available only within the procedure, even when the same variable name is used elsewhere in the
program. Queries defined in a local proceduresl have local database column variable names
assigned that do not conflict with similarly named columns defined in queries in other
procedures.

Production Reporting procedures can be called recursively. However, unlike C or Pascal,
Production Reporting only maintains one copy of the local variables and they are persistent.

Arguments passed by DO to a procedure must match in number:

e Database text or date columns, string variables, and literals can be passed to procedure string
arguments. If passing a date string to a date argument, the date string must be in the format
specified by SQR_DB_DATE_FORMAT, a database dependent format (see Table 61, “Default
Formats by Database,” on page 251), or the database-independent format SYYYYMMDD
[HH24 [MI[SS[NNNNNN]]]1].

e Database numeric columns, numeric variables, and numeric literals can be passed to
procedure numeric arguments.

e Numeric variables (DECIMAL, INTEGER, FLOAT) can be passed to procedure numeric
arguments without regard to the argument type of the procedure. Production Reporting
automatically converts the numeric values upon entering and leaving the procedure as
required.

70

Production Reporting Command Reference

e Date variables or columns can be passed to procedure date or string arguments. When
passing a date variable or column to a string argument, the date is converted to a string
according to the following rules:

o For DATETIME columns and Production Reporting DATE variables, Production
Reporting uses the format specified by SQR_DB_DATE_FORMAT. If not set, Production
Reporting uses the first database-dependent format in Table 61, “Default Formats by
Database,” on page 251.

o For DATE columns, Production Reporting uses the format specified by
SQR_DB_DATE_ONLY_FORMAT. If not set, Production Reporting uses the format in
Table 62, “DATE Column Formats,” on page 252.

o For TIME columns, Production Reporting uses the format specified by
SQR_DB_TIME_ONLY_FORMAT. If not set, Production Reporting uses the format in
Table 63, “TIME Column Formats,” on page 252.

To reference or declare global variables from local procedures, add a leading underscore to the
variable name, after the initial $, #, or &. (Example: #_amount)

Note:

All Production Reporting reserved variables, such as #sql-status and $sql-error, are global
variables. Within local procedures, they must be referenced using the leading underscore:
#_sql-status or $_sql-error.

Examples

The following example shows a BEGIN-PROCEDURE MAIN, that also executes the procedure
PRINT-LIST, for each row returned from the SELECT statement. No parameters are passed to
PRINT-LIST.

begin-procedure main
begin-select
name
address
phone
do print_list
from custlist order by name
end-select
end-procedure ! main

In the following example, five arguments are passed to the CALC procedure:

do Calc (&tax, 'OH', &county name, 12, #amount)

begin-procedure Calc (#rate, S$state, Scounty, #months, :#answer)

let #answer =
end-procedure

In the preceding example the value for : #answer is returned to #amount in the DO command.

BEGIN-PROCEDURE 71

The following example references global variables:

begin-procedure print-it ($Sa, $b)

print $_deptname (+2,5,20) ! S$Sdeptname is
print S$Sa (,+1) ! declared outside
print $b (,+1) ! this procedure

end-procedure

See Also
DO and END-PROCEDURE

BEGIN-PROGRAM

Function

Begins the program section of an Production Reporting program.

Syntax

BEGIN-PROGRAM
END-PROGRAM

Description

After processing the commands in SETUP, Production Reporting starts program execution at
BEGIN-PROGRAM. The PROGRAM section typically contains a list of DO commands, though other
commands can be used. This is the only required section in an Production Reporting program.

Examples

begin-program
do startup
do main
do finish
end-program

See Also
BEGIN-SETUP and END-PROGRAM

BEGIN-SELECT

Function

Begins a SELECT paragraph. A SELECT paragraph is the principal means of retrieving data from
the database and printing it in a report. A SELECT paragraph must be inside a PROCEDURE or

BEGIN-PROGRAM section.

72

Production Reporting Command Reference

Syntax

BEGIN-SELECT[DISTINCT] [-Cnn] [-Bnn] [-XP] [-NR] [-SORTnn]
[-LOCK{RR|CS|RO|RL|XX}] [-DBdatabase]
[-DBconnectionstring]

[LOOPS=nn] [ON-ERROR=procedure| (argl[,argil...)]]
{column} [&synonym]

{expression &synonym}

{ [$columnname] &synonym = (char|number|date)}

[sqr_commands]

FROM {table,...|[table:S$tablename]}
[additional SQL]
[Svariable]

END-SELECT

Arguments

Note:

Arguments can span multiple lines; however, do not use the first character position unless the
continuation character terminated the previous line. Otherwise, the argument will be
misconstrued as a SELECT column.

DISTINCT

Eliminates duplicate query rows.

-Cnn

(Oracle) Sets the context area size (buffer size for query) to larger or smaller than the default.

-Bnn

(ODBC, Oracle, Sybase) Sets the number of rows to retrieve at once. For performance purposes
only. Regardless of this setting, all rows are selected. The default, without using -B, is 10 rows.
An overall setting for a program can be indicated on the Production Reporting command line
with -B, which can be overridden by a separate -B flag on each BEGIN-SELECT command.

-XP

(Sybase) Prevents the creation of stored procedures for the SELECT paragraph. When specified,
Production Reporting generates a new SQL statement using the current value of any bind
variables each time BEGIN-SELECT is executed.

Use -xP if you change variables frequently during execution and do not want Production
Reporting to automatically create stored procedures. You can also use -XP if users do not have
permission to create stored procedures. If you do not change variables frequently during
execution, stored procedures may optimize program performance. In this case, do not use -
XP.

-XP improves performance when using bind variables and dynamic query variables in the same
query. Each time the dynamic query variable changes in value, a new stored procedure is created.

BEGIN-SELECT 73

If the dynamic query variable changes often and the query contains bind variables, you create
many stored procedures if you do not use -X».

-XP is available as a command-line flag.

-DBconnectionstring

(ODBC) The ODBC connection string for this SELECT paragraph only. A connection string has
the following syntax:

DSN=data_source_name [; keyword=value[; keyword=value [;...]]]

Combines data from multiple databases in one program. For example, a connection string for
an Oracle database named “ora8” might look like the following:

'DSN=ora7;UID=scott;PWD=tiger"
where DSN, UID, and PWD are keywords common to all drivers (representing: name, user ID, and
password, respectively). Connection string options are always separated by a semicolon (;).

Other driver-specific options may be added to the connection string using driver-defined
keywords. See your ODBC driver documentation for available options.

LOOPS

Number of rows to retrieve. After processing the specified number, the SELECT loop exits.

ON-ERROR

Procedure to execute if errors occur due to incorrect SQL syntax. Use error trapping with
dynamic query variables. SELECT paragraphs without dynamic variables are checked for errors
before programs are processed and do not require special error procedures.

You can optionally specify arguments to pass to the ON-ERROR procedure. Arguments can be
any variable, column, or literal.

Note:

Production Reporting invokes ON-ERROR when it safely can. If Production Reporting can
recover from a database error, users are given the chance to fix the error. If Production Reporting
cannot recover from a database error, it will exit the program.

Description

BEGIN-SELECT can be placed inside a BEGIN-PROGRAM section. Note that SELECT * FROM is
not a valid Production Reporting SQL statement.

Note:

In Production Reporting DDO, you can name data source-specific aggregation functions in
place of column names in a BEGIN-SELECT block. This shifts the processing burden from
Production Reporting to the data' source host and usually improves performance. The
aggregation function feature also makes it possible to use literals (such as empty column) and
simple mathematical operations (such as 5+10) in place of column names.

74

Production Reporting Command Reference

In Production Reporting DDO-SAP, the TYPE=datatype qualifier used in a BEGIN-SELECT
block is optional. When you report on data sources that provide adequate metadata (such as
SAP), withholding the TYPE qualifier allows Production Reporting to generate code that is more
efficient and portable than it would be otherwise.

You can use the intersect, union, and minus SQL operators in Production Reporting queries
by adding them to the SQL statement that follows the FROM and WHERE clauses.

The SELECT list for the secondary SQL statement in the union, intersect, or minus query
must match the data type, number of columns, and length of columns selected in the first query.
If you select string expressions or literals, ensure that the lengths of the fields in both SELECT
lists are the same.

Note that intersect and minus are not available with SYBASE's Transact SQL.

Enter the part of the SQL statement following the union, minus, or intersect clauses
normally; that is, with commas between column names and without alias names, as shown below:

begin-select

cust_num (1,1) edit 099999

Cco_name (,9,30)

name (,+2,25)

city (,+2,18)

state (,+2,2)

zip (,+1) edit XXXXX-XXXX

next-listing

from customers where state in ('OH', 'IN', 'MI')
union select cust_num, co_name, name, city, state, zip
from prospects where state in ('OH', 'IN', 'MI')
and first_contact >= '01-JAN-88'

order by 2

end-select

Examples

In this example, duplicate rows are not selected for the city, state, and zip columns because of
the “distinct” keyword. The numbers within parentheses accompanying City, State, and Zip
define the column positions of these rows. Column names can not have spaces in front of them.
See “Column Variables” in Volume 1 of the Hyperion SQR Production Reporting Developer's
Guide.

begin-select distinct

city (1,1,30)
state (0,+2,2)
zip (1,+3,6)

from custlist order by city
end-select

In this example, the first two columns may, or may not, be present when the statement is
compiled. The column cust_id is declared to be a number. A runtime error is produced if the
database table, as identified by the variable $table_name, declares it to be something other than
a number.

begin-select loops=100
[Scol_var_char] &coll=char

BEGIN-SELECT 75

[Scol_var_ num] &col2=number
cust_id &id=number
from [$table_name]
[Swhere clause]
[Sorder_by_clause]

end-select

See Also

e “Selecting Data” and “Dynamic SQL and Error Checking” in Volume 1 of the Hyperion SQR
Production Reporting Developer's Guide

e END-SELECT and EXIT-SELECT

BEGIN-SETUP

Function

Begins a SETUP section. This section is optional, but if included, it is processed prior to BEGIN-
PROGRAM, BEGIN-HEADING, and BEGIN-FOOTING.

Syntax

BEGIN-SETUP
END-SETUP

Description

SETUP should be the first section in the program. It contains commands that determine overall
program characteristics. The commands used in SETUP cannot be used elsewhere unless
specified. SETUP can include the following commands:

ASK

BEGIN-SQL (can also be used in BEGIN-PROCEDURE.)

CREATE-ARRAY (can also be used in other Production Reporting programs sections)
DECLARE-CHART

DECLARE-IMAGE

DECLARE-LAYOUT

DECLARE-PRINTER

DECLARE-PROCEDURE

DECLARE-REPORT

DECLARE-TOC

DECLARE-VARIABLE (can also be used in LOCAL)

LOAD-LOOKUP (can also be used in the other Production Reporting program sections)

USE (Sybase and ODBC only)

76 Production Reporting Command Reference

Examples

begin-setup
declare-layout customer_list
paper-size=(8.5, 11)
left-margin=1.0
right-margin=1.0
end-declare
end-setup

See Also
ASK, BEGIN-SQL, CREATE-ARRAY, LOAD-LOOKUP , and USE

BEGIN-SQL

Function

Begins an SQL paragraph, which can reside in BEGIN-PROCEDURE, BEGIN-SETUP, or BEGIN-
PROGRAM.

Syntax

BEGIN-SQL[-Cnn] [-XP] [-NR] [-SORTnn]
[-LOCK{RR|CS|RO|RL|XX}]
[-DBdatabase] [-DBconnectionstring]

[ON-ERROR=procedurel (argll[,argil]l ...)] (non-setup)
| [ON-ERROR={ STOP |WARN | SKIP}] (SETUP)

END-SQL

Arguments

-Cnn

(Oracle) Sets the context area size (buffer size for query) to larger or smaller than the default.

-XP

(Sybase) Prevents the creation of stored procedures for SQL paragraphs. When specified,
Production Reporting generates a new SQL statement using the current value of the bind
variables each time BEGIN-SQL is executed. This disables the performance optimization created
by stored procedures.

Use -xP if you change variables frequently during execution and do not want Production
Reporting to automatically create stored procedures. You can also use -xP if users do not have
permission to create stored procedures. If you do not change variables frequently during
execution, stored procedures may optimize program performance. In this case, do not use -
XP.

-XP improves performance when using bind variables and dynamic query variables in the same
query. Each time the dynamic query variable changes in value, a new stored procedure is created.
If the dynamic query variable changes often and the query contains bind variables, you create
many stored procedures if you do not use -Xp.

BEGIN-SQL 77

-DBconnectionstring

(ODBC) The ODBC connection string for this SQL paragraph only. A connection string has the
following syntax:

DSN=data_ source_name| ; keyword=valuel ; keyword=valuel;...]11]

Combines data from multiple databases in one program. For example, a connection string for
an Oracle named “ora8” might appear as:

'DSN=ora8;UID=scott; PWD=tiger'

where DSN, UID, and PwD are keywords common to all drivers (representing name, user ID, and
password, respectively). Connection string options are always separated by a semicolon (;).
Other driver-specific options may be added to the connection string using driver-defined
keywords. See your ODBC driver documentation for available options.

Connection=connstr

Used with Production Reporting DDO. The name of a data source previously declared using
DECLARE-CONNECTION. If not specified, the default connection is used. (See BEGIN-EXECUTE
for the behavior of the default connection.)

ON-ERROR

Procedure to execute if an error occurs due to incorrect SQL syntax except when executed in a
BEGIN-SETUP section. By default, Production Reporting reports any error and then halts. If an
error procedure is declared, you can trap errors, report or log them, and continue processing.
The procedure is invoked when an error occurs in any SQL statement in the paragraph. After
the error procedure ends, control returns to the next SQL statement, if any.

You can optionally specify arguments to pass to ON-ERROR. Arguments can be any variable,
column, or literal.

If ON-ERROR is used in SETUP, it is a condition flag supporting the following conditions:
e STOP—Do not run the program.
e WARN—Run the program with a warning message.

e SKIP—Ignore any errors and run the program.

Note:

Production Reporting invokes the ON-ERROR procedure when it safely can. If Production
Reporting can recover from a database error, users are given the chance to fix the error. If
Production Reporting cannot recover from a database error, it will exit from the program.

Description

BEGIN-SQL starts all SQL statements except SELECT, which has its own BEGIN-SELECT
paragraph. If a single paragraph contains more than one SQL statement, terminate each
statement (except the last) by a semicolon (;).

78

Production Reporting Command Reference

If a single paragraph contains more than one SQL statement, and the -C flag is used, all are
assigned the same context area size or logical connection number.

Only non-SELECT statements can be used (except SELECT INTO for Sybase and Microsoft SQL
Server backends). Reference columns and variables in SQL statements.

Examples

begin-sqgl
update orders set invoice_num = #next_invoice_num
where order_num = &order_num

end-sqgl

begin sql

delete orders

where order_num = &order_num;

insert into orders values (Scustomer_name, #order_num, ...)
end-sgl

Stored Procedures

For Sybase, and Microsoft SQL Server, Production Reporting supports stored procedures with
EXECUTE. For Oracle, stored procedures are implemented using PL/SQL in the BEGIN-SQL
paragraph.

For some databases such as ORACLE, using DDL statements in BEGIN-SQL causes a commit of
outstanding inserts, updates, and deletes and releases cursors. For this reason, ensure that these
are done in the proper order or unpredictable results may occur.

Oracle PL/SQL

For Oracle, PL/SQL is supported in a BEGIN-SQL paragraph. This requires an additional
semicolon at the end of each PL/SQL statement.

For Oracle PL/SQL:

begin-sqgl
declare
varpl varchar2 (25);;
var2 number (8,2);;
begin
varpl :='abcdefg';;
svl :=varpl;;
Sv2 :='123089%4asd';;
var2 :=1234.56;;
#v :=var2;;
end; ;
end-sqgl

For Oracle stored procedures:

begin-sqgl
begin
#dept_number :=get_dept_no (Sdept_name) ;;
end; ;

end-sqgl

BEGIN-SQL 79

BREAK

See Also

e “Dynamic SQL and Error Checking” and “Using DML and DDL” in Volume 1 of the
Hyperion SQR Production Reporting Developer's Guide

e END-SQL, BEGIN-PROCEDURE, and EXECUTE

e The -s command-line flag.

Function

Exits from EVALUATE or WHILE and continues to the command immediately following END-
WHILE or END-EVALUATE.

Syntax

BREAK

Description

BREAK is used inside a WHILE. .. END-WHILE loop or within an EVALUATE command.

See Also
WHILE and EVALUATE

CALL, CALL SYSTEM

Function

Issues an operating system command or calls a subroutine written in another language such as
C or COBOL and passes the specified parameters.

Note:

CALL is available in all Production Reporting environments except Oracle's Hyperion® SQR®
Production Reporting Studio. With Oracle's Hyperion® SQR® Production Reporting Studio,
use CALL SYSTEM instead.

Syntax

CALL subroutine USING {src_txt lit|_var|_col}|{src_num lit|_var|_col}
{dst_txt_var|_num var} [param]

To issue operating system commands in an Production Reporting program, use the following
syntax:

CALL SYSTEM USING command status [WAIT|NOWAIT]

80 Production Reporting Command Reference

Arguments
subroutine

Name of the subroutine.

src_txt_lit|_var|_col

Text column, variable, or literal to input into the called subroutine.

src_num _1lit|_var|_col

Numeric column, variable (decimal, float, or integer), or literal to input into the called
subroutine.

dst_txt_var|_num_var

Text or numeric variable (decimal, float, or integer) into which the called subroutine places the
return result. (See Table 16 on page 82 .)

param

(Optional) Alphanumeric string of characters passed as a parameter to the subroutine.

SYSTEM

Defines that this CALL command issues an operating system command.

command

Operating system command to execute. The command can be a quoted string, string variable, or
column.

status

Status returned by the operating system. The status must be a numeric variable. The value
returned in status is system-dependent as shown in Table 15.

Table 15 Operating System Status Values for the CALL Command

System Value Returned

UNIX Zero (0) indicates success. Any other value is the system error code.

PC/Windows | A value less than 32 indicates an error.

WAIT|NOWAIT

(Windows) - WAIT suspends execution until CALL SYSTEM finishes processing. NOWAIT starts
CALL SYSTEM while continuing its own processing.

For Windows, the default is NOWAIT. On UNIX operating systems the behavior is always
WATIT.

CALL, CALL SYSTEM 81

Description

You can write your own subroutines to perform tasks that are awkward in Production Reporting.
Subroutines can be written in any language.

Caution!

If ucall uses database calls, it may cause erroneous results.

Used in an Production Reporting program, CALL has the following format:

CALL your_sub USING source destination [param literall
CALL SYSTEM USING command status [WAIT|NOWAIT]

CALL SYSTEM is a subroutine provided with Production Reporting to allow the program to issue
operating system commands. Its arguments, command, status, and WAIT |NOWAIT are
described above.

The values of the source and destination variables and the parameter's literal value are passed
to the subroutine. Upon return from the subroutine, a value is placed in the destination variable.
If the arguments passed to the function are longer than the limit, they are truncated. (No warning
message displays, but the call proceeds.)

Write the subroutine and call it in one of the supplied ucall routines. (Optionally, you could
rewrite ucall in another language).

The source file UCALL . C contains sample subroutines written in C. :

Table 16 UCALL Subroutine Arguments

Argument | Description How Passed

callname | Subroutine name. By reference with a maximum of 31 characters, null
terminated.

strsrc Source string. By reference with a maximum of 511 characters, null
terminated.

strdes Destination string. By reference with a maximum of 511 characters, null
terminated.

dbisrc Source double floating point. By reference.

dbldes Destination double floating point. By reference.

param Subroutine parameter string. It must be a literal. | By reference with a maximum of 2047 characters,
null terminated.

CALL arguments are handled as follows:

e Arguments are copied into variables depending on argument type. Strings are placed in
strsrc, and numerics are placed in dblsrc.

82 Production Reporting Command Reference

e Return values are placed in strdes or dbldes depending on whether the destination
argument for CALL is a string or numeric variable.

e Destination arguments can be used to pass values to a subroutine.
e Toaccess asubroutine, add a reference to it in UCALL, passing along the needed arguments.

e Relink Production Reporting to CALL after compiling a user-defined function that becomes
another Production Reporting function.

e Add subroutines to the link command file (UNIX: SQRMAKE, Windows: SQREXT . MAK) for
new object files. (Alternatively, you could add the routine to the bottom of the UCALL source
module included in the link).

e Subroutines and calling Production Reporting programs are responsible for passing correct
string or numeric variables and optional parameter strings to the subroutine. No checking
is performed.

Examples

Sample subroutines included in the UCALL source file:
e TODASH shows how strings can be manipulated.

e SOROOT demonstrates how to access numerics.

e SYSTEM invokes a secondary command processor.

The following code calls these subroutines:

call todash using $addr $newaddr '/.',6! Convert these to dashes

call sgroot using #n #n2 ! Put square root of #n into #n2
call sgroot using &hnvr #3j ! Hnvr is numeric database column
call system using 'dir' #s ! Get directory listing

The following example uses the SYSTEM argument to issue an operating system command. Some
operating systems let you invoke a secondary command processor to enter one or more
commands and then return to Production Reporting.

! Unix (Type 'exit' to return to Production Reporting)
I
let $shell = getenv('SHELL')
if isblank(Sshell)
let $shell = '/bin/sh'
end-1if
call system using $shell #unix_status
'Windows 98/NT (Type 'exit' to return to Production Reporting)
I
let Scomspec = getenv ('COMSPEC')
let $cmd = comspec || '/¢' ||S$comspec || ' /k!
call system using Scmd #win_status wait

The following example adds a user-defined subroutine to Production Reporting so that it can
be invoked using CALL. For this example, the C function initcap, which uppercases the first
letter of a string, is added. The function accepts two parameters. The first parameter is the string
to which initcap is applied. The second is the resultant string.

1. Add the initcap prototype

CALL, CALL SYSTEM 83

static void initcap CC_ARGS((char *, char *));

2. Modifyucall in UCALL.C. Specifically, add an else if statement at the end of the 1 £
statement to check for initcap:

void ucall CC_ARGL((callname, strsrc, strdes, dblsrc, dbldes, params))

/* If other subroutines, add "else if..." statement for each */
else if (strcmp(callname, "initcap") == 0)

initcap(strsrc, strdes);
else

5999 ("Unknown CALLed subroutine: %s\n", callname);
return;
}

3. AttheendofUCALL.C,add the initcaproutinelisted in the following example. The routine
name must be lower case; however, in your Production Reporting program it can be
referenced with either upper or lower case.

static void initcap CC_ARGL((strsrc, strdes))
CC_ARG(char *, strsrc) /* Pointer to source string */
CC_LARG(char *, strdes) /* Pointer to destination string */
{
int nIndex;
int nToUpCase;
char cChar;

nToUpCase = 1;

for (nIndex = 0; cChar = strsrc[nIndex]; nIndex++)
{
if (isalnum(cChar))

{
if (nToUpCase)

strdes[nIndex] = islower (cChar) ? toupper (cChar) : cChar;
else
strdes[nIndex] = isupper (cChar) ? tolower (cChar) : cChar;

nToUpCase = 0;
}
else
{
nToUpCase = 1;
strdes [nIndex]

cChar;

}
strdes[nIndex] = '\0';

}

Note:

CC_ARG macros are defined in the UCALL.C source module. The macros allow you to define
a fully prototyped function without having to worry if the C compiler supports the feature.

After these modifications, recompile UCALL. C and relink Production Reporting. See
“Interoperability” in Volume 1 of the Hyperion SQR Production Reporting Developer's Guide for
details.

84 Production Reporting Command Reference

The following is an example of a simple Production Reporting program using initcap:

begin-program
input S$name 'Enter the first name '
! Get the first name from the user

lowercase S$name
! Set the first name to all lower case

call initcap using $name S$capname
! Now set the first character to upper case

input $last 'Enter the last name '
! Get the last name from the user

lowercase S$last
! Set the last name to all lower case

call initcap using S$last Scaplast
! Now set the first character to upper case

See Also

LET for information on user-defined functions using UFUNC . C that can be used in the context
of an expression and that can pass and/or return any number of arguments.

CLEAR-ARRAY

Function

Resets array fields to their initial values.

Syntax

CLEAR-ARRAY NAME=array name

Arguments
NAME

Name of array to clear.

Description

CLEAR-ARRAY resets each field of the named array to its initial value specified in CREATE-
ARRAY. If no initial value was specified, numeric fields are reset to zero, text fields are reset to
null, and date fields are reset to null. CLEAR-ARRAY releases all memory used by the specified
array.

Examples

clear—array name=custs

CLEAR-ARRAY 85

CLOSE

See Also
CREATE-ARRAY

Function

Closes a file, specified by its file number.

Syntax

CLOSE {filenum_lit|_var|_col}

Arguments
filenum lit|_var|_col

Number assigned to the file in OPEN.

Description

Closes flat files previously opened with OPEN.

Examples

close 5
close #j

See Also
OPEN, READ, and WRITE

CLOSE-RS

Function

Closes a row set.

Syntax

CLOSE-RS
NAME=row_set_name var|_lit|_col

Arguments
NAME

Name of the row set.

86 Production Reporting Command Reference

Description

CLOSE-RS can reside in any section except BEGIN-SETUP, BEGIN-SQL, and BEGIN-
DOCUMENT. The row set specified by row_set_name must be active, or an exception is thrown.

The row set file is an XML file. You can define whether to create the XML file in a BI Publisher
(BIP) format or an SQR format in the FormatForRowsetXML entry in the [Default-Settings]
section of SQR.INI.

Example

Begin-Report
Open-RS Name='customer' FileName='customer.xml'

Column = ('cust_num', 'integer')
Column = ('name', 'string')
Column = ('addrl', 'string')
Column = ('addr2', 'string')
Column = ('city', 'string')
Column = ('state',6 'string')
Column = ('zip', 'string')
Column = ('phone',6 'string')
Column = ('tot', 'integer')

Begin-Select
cust_num
name
addrl
addr2
city
state
zip
phone
tot

Write-RS Name='customer'

Value = 'cust_num', &cust_num)
Value = ('name', &name)
Value = ('addrl', &addrl)

(
(
(
Value = ('addr2', &addr2)
(
(
(
(

Value = ('city', &city)
Value = ('state', &state)
Value = ('zip', &zip)
Value = ('phone', &phone)

Value = ('tot', &tot)
from customers

order by cust_num
End-Select

Close-RS Name='customer'
End-Report

See Also
OPEN-RS, WRITE-RS

CLOSE-RS 87

COLUMNS

COMMIT

Function

Defines logical columns to use for PRINT commands.

Syntax

COLUMNS {int lit|_var|_col}[int_lit|_var|_col]...

Arguments
int 1it|_var|_col

Left margin position of each column.

Description

COLUMNS defines the left-most position of one or more columns in the page layout. It sets the
first column as current.

COLUMNS can be used for printing data either down the page or across the page, depending on
how you use NEXT-COLUMN and USE-COLUMN.

COLUMNS only applies to the current report. To print columns in multiple reports, specify
COLUMNS for each report.

USE-COLUMN O turns off columns.

See Also
NEXT-COLUMN, NEXT-LISTING, NEW-PAGE, USE-COLUMN, and USE-REPORT

Function

Causes a database commit.

Syntax

COMMIT

Description

coMMIT is useful for multiple inserts, updates, or deletes in SQL paragraphs. A database commit
releases the locks on inserted, updated, or deleted records. If used in an active SELECT paragraph,
unpredictable results may occur.

When the application completes, COMMIT is performed automatically unless ROLLBACK was done
or, for callable Production Reporting, the -XC flag was set.

88 Production Reporting Command Reference

CONCAT

Other commands or options, such as CONNECT and the use of DDL statements for some databases
with a BEGIN-SQL paragraph, can also cause the database to do a commit.

COMMIT is an Production Reporting command and should not be used within an SQL paragraph.
If used in an SQL paragraph, unpredictable errors can occur.

Note:

COMMIT can be used with DB2, ODBC, DDO, Teradata, and Oracle. For Sybase, use BEGIN
TRANSACTION and COMMIT TRANSACTION within SQL paragraphs as in the following
code segment.

Examples

add 1 to #updates_done
if #updates_done > 50
commit
move 0 to #updates_done
end-if

For Sybase:

.. ! Begin Transaction occurred previously
begin-sqgl
insert into custlog values (&cust_num, &update date)
end-sgl
add 1 to #inserts
if #inserts >= 50
begin-sqgl
commit transaction;! Commit every 50 rows
begin transaction ! Begin next transaction
end-sqgl
move 0 to #inserts
end-if

! One more Commit Transaction is needed

Caution!

Any data changed by a current transaction is locked by the database and cannot be retrieved in
a SELECT paragraph until the transaction is completed by a COMMIT or ROLLBACK statement (or
COMMIT TRANSACTION or ROLLBACK TRANSACTION statement for Sybase and Microsoft SQL
Server backends).

Function

Concatenates variables, columns, or literals with string variables.

CONCAT 89

Syntax

CONCAT {src_any lit|_var|_col} WITH dst_txt_var[[:$]edit_mask]

Arguments
src_any lit|_var|_col

Source field to concatenate with dst_txt var.

dst_txt_var

Result after execution.

edit_mask

Optional edit mask.

Description
The contents of the source field are appended to the end of the destination field.

CONCAT can optionally edit the source field before appending it. To dynamically change an edit
mask, place it in a string variable and reference the variable name preceded by a colon (:). (See
“Edit Masks” on page 247.)

The source can be a date variable or column. If an edit mask is not specified, the date is converted
to a string according to the following rules:

e For DATETIME columns and Production Reporting DATE variables, Production Reporting
uses the format specified by SQR_DB_DATE_FORMAT. If not set, Production Reporting uses
the first database-dependent format in Table 61, “Default Formats by Database,” on page
251.

e For DATE columns, Production Reporting uses the format specified by
SQR_DB_DATE_ONLY_FORMAT. Ifnot set, Production Reporting uses the format in Table 62,
“DATE Column Formats,” on page 252.

e For TIME columns, Production Reporting uses the format specified by
SQR_DB_TIME ONLY_ FORMAT. Ifnotset, Production Reporting uses the format in Table 63,
“TIME Column Formats,” on page 252.

Examples

concat &zip_plus_4 with $zip '-xxxx' ! Edit zip plus 4.
concat &descrip with $Srec :$desc_edit ! Edit mask in variable.
concat $datel with S$string ! Concatenate a date.
See Also

e PRINT or information on edit masks
e LET for string functions.

e STRING and UNSTRING

90 Production Reporting Command Reference

CONNECT

Function

Logs off the database and logs on under a new user name and password.

Syntax

CONNECT {txt_lit|_var|_col} [ON-ERROR=procedurel (argl
[, argil...)]1]

Arguments

txt_lit|_var|_col

Username and password for logon.

ON-ERROR

Procedure to execute logon fails. If no ON-ERROR procedure is specified and the logon fails,
Production Reporting halts with an error message.

You can optionally specify arguments to pass to ON-ERROR. Arguments can be any variable,
column, or literal.

Note:

CONNECT is the same as the {connectivity} portion of the Production Reporting command
line as follows:

DB2: DB[/username/password]

DDO: DSN[/username/password]

INFORMIX: DB|/username/password] [@InformixServer]
ODBC: DSN|/username/password]

ORACLE: [username/password][@OracleServer]
TERADATA: [TDPID/]username[,password]

Description
New connectivity information can be stored in a string variable, column, or literal.
After each CONNECT, the reserved variable Susername is set to the new username.

All database cursors or logons are closed before the CONNECT occurs. Do not issue a CONNECT
within a SELECT or an SQL paragraph while a query is actively fetching or manipulating data
from the database.

Examples

connect S$Snew-user on-error=bad-logon ($new_user)

CONNECT 91

connect 'sqgr/test'

Caution!

Connectivity information is not encrypted, so beware of security issues.

CREATE-ARRAY

Function

Creates an array of fields to store and process data.

Syntax

CREATE-ARRAY NAME=array name SIZE=nn

[EXTENT=nn]

{FIELD=name: typel : occurs]

[={init_value txt_lit|_num 1it|_binary 1it}]1}...
Arguments

NAME

Name of the array. Referenced in other array commands.

SIZE

Number of array elements.

EXTENT

Number of array elements used to incrementally extend the array size beyond the initial
allocation defined in STIZE. The value entered for EXTENT must be a numeric literal.
FIELD

Defines each field or column in the array.

e DECTIMAL[(p)]—Decimal numbers with an optional precision (p).

e FLOAT—Double precision floating point numbers.

e INTEGER—Whole numbers.

e NUMBER—Uses the DEFAULT-NUMERIC type. (See DECLARE-VARIABLE.)

e CHAR (or TEXT)—Character string.

e DATE—Same as date variable.

You can specify an initialization value for each field. Each field is set to this value when the array
is created and when CLEAR-ARRAY is executed. If no initialization value is specified, numeric

fields (DECIMAL, FLOAT, INTEGER) are set to zero, character fields are set to null, and date fields
are set to null. All occurrences of a multiple occurring field are set to the same value. For dates,

92

Production Reporting Command Reference

the initialization string must be formatted as 'SYYYYMMDD [HH24 [MI [SS [NNNNNN]]]]". See
Table 57 on page 245 for a description of the format codes.
OCCURS

Fields can optionally have a number of occurrences (occurs), that is, they can be repeated any
number of times.

Description

You can define arrays to store intermediate results or data retrieved from the database. For
example, a SELECT paragraph can retrieve data, store it in an array, and gather statistics all at
the same time. When the query finishes, a summary could be printed followed by the data
previously stored in the array.

Production Reporting creates arrays before a program starts to execute. CREATE-ARRAY can be
used in any section of a program.

Commands to process arrays include:
CREATE-ARRAY

CLEAR-ARRAY

GET

PUT

ARRAY-ADD

ARRAY-SUBTRACT
ARRAY-MULTIPLY

ARRAY-DIVIDE

LET

The maximum number of arrays in a program is 128; the maximum number of fields per array
is 200.

Figure 1 Sample Array with Three Fields

Emps(l) Name Rate(0] Fate(1) Phone

Emps(1)

Emp(9)

The following CREATE-ARRAY command defines the array:

create-array name=emps size=10
field=name:char="'Unknown'

CREATE-ARRAY 93

field=rate:number:2=10.50
field=phone:char="'None'

The name is a simple field (one occurrence), rate has two occurrences, and phone is a simple
field. Both array elements and field occurrences are referenced beginning with zero (0). The
rate is referenced by rate(0) or rate(1). The emps array contains 10 elements, 0 through 9. All
name fields are initialized to “Unknown”, all phone fields are initialized to “None”, and all rate
fields are initialized to 10.50.

Examples

The following example defines an array names custs with 100 elements that can be incrementally
extended by 25 elements:

create-array name=custs size=100 extent=25
field=name:char
field=no:number
field=state:char
field=zip:char
field=contacts:char:5
field=last-contacted:date

The following example defines point labels as part of a data array.

create-array name=multi_series_radar_data_with_labels size=7
field=label:char ! point label
field=theta:number:1 ! angle
field=radius:number:2 ! two series of point

See Also

e The sample report CUSTOMRA4.SQR included with Production Reporting

e LOAD-LOOKUP for an alternative way to store database table(s) in memory

e DECLARE-VARIABLE, ARRAY-ADD, ARRAY-DIVIDE, ARRAY-MULTIPLY,
ARRAY-SUBTRACT, GET, PUT, LET, and CLEAR-ARRAY

CREATE-COLOR-PALETTE

Function

Create a color palette.
Syntax

CREATE-COLOR-PALETTE
NAME={palette name_txt_1lit}
COLOR_1={rgb}

COLOR_2={rgb}
[COLOR_n]={rgb}

94 Production Reporting Command Reference

Arguments
NAME

Name of the color palette.

COLOR_1

First color in the palette.

COLOR_2

Second color in the palette.

COLOR_n

The n’th color in the palette. You can specify up to 64 colors in the palette.

{rgb}

A color reference. This can be expressed as (r,g,b) where r, g, and b are either a numeric literal
(0 to 255), a numeric variable, or a numeric column. It can also be expressed as a (c) where c is
a string literal, column, or variable that is the name of a color.

Description

This command creates a palette of colors. There is no limit to the number of palettes that can
be defined in a program. No gaps are permitted in the palette.

Examples

begin-report
create-color-palette
name = 'funky'
color_1 = ('blue')
color 2 = ('red')
color_ 3 = ('orange')
print-chart Groovy
color-palette = 'Funky'
end-report

See Also
e DECLARE-CHART
e PRINT-CHART

CREATE-LIST

Function

Creates a named list.

CREATE-LIST 95

Syntax

CREATE-LIST
NAME=1ist_name_txt_lit|_var|_col
LIST=(value lit|var|_col|(r,g,b)...)
Arguments

NAME

Name of the list.

LIST

Values included in the list.

Description

This command creates named lists of items. This command may be used anywhere within an
Production Reporting program and will override a previously declared named list. The list and
internal copies of the variables placed into the structure used to maintain the list are established
at run-time. Updates to the elements used to define the list do not change the contents of the
list after the list has been established. To add an item to a list, reenter the complete list.

Examples

begin-report

create-list name='linestyle’
list=('solid', 'longdash', 'dot")

end-report

CREATE-TABLE

Function

Creates a table from a template.
Syntax

NAME=table name_var|_lit|_col

USING=table template var|_lit|_col
[COLUMN-COUNT=number_of_columns_var|_Ilit|_col]

[COLUMN-ATTRIBUTES= ({ column—number} , { keywordl}, {valuel}, ..., {keywordn},
{valuen})]

[ROW-ATTRIBUTES= ({ keywordl}, {valuel}, ..., {keywordn}, {valuen})]
[TABLE-ATTRIBUTES= ({ keywordl}, {valuel}, ..., {keywordn}, {valuen})]
Arguments

NAME

Table name used by ALTER-TABLE, DUMP-TABLE, FILL-TABLE, and PRINT-TABLE. Valid
values include alphanumeric characters(A-Z, 0-9), underscore (_), and dash (-).

96

Production Reporting Command Reference

USING

Name of the table template. The template must be defined with DECLARE-TABLE. NONE indicates
that the table is defined solely by CREATE-TABLE parameters.

COLUMN-COUNT

Number of table columns.

COLUMN-ATTRIBUTES

Attributes to apply to column cells. The values defined are only applicable when USING=NONE.

Table 17 Column Attributes

Attribute Description

BACKGROUND Background color name or RGB triplet. Default=NONE.

BOLD YES | NO

CENTER YES | NO

DEFAULT When the USING argument is anything other than NONE, this attribute causes all the attributes
to be set to default values prior to applying any other attributes.

FILL-COLOR Fill color name or RGB triplet. Default=NONE

FONT Font number. (Must be defined.)

FOREGROUND Foreground color name or RGB triplet. Default=BLACK.

ITALIC YES | NO

LEADING Expressed in decipoints

LINE-COLOR Color name or RGB triplet of column line (line after column). Default=NONE (no line).

LINE-STYLE Column line style (SOLID, SQUARE-DQT, DASH, DASH-DQT, LONG-DASH, LONG-DASH-

DOT,LONG-DASH-DOT-DOT). Default=SOLID.

LINE-THICKNESS

Column line thickness expressed in decipoints. Default=two decipoints.

POINT-SIZE Point size of the font. (Must be specified.)

UNDERLINE YES | NO

WIDTH Width expressed in coordinate units. (Must be specified.)

WRAP YES | NO | maximum number of lines

WRAP-HEIGHT Number of lines between each wrapped line. Default=one line.

WRAP-ON Characters on which to force a wrap. The default is not to force a WRAP.

WRAP-STRIP Characters to change to a space before the wrap is done. The default is not to strip any characters.

CREATE-TABLE 97

ROW-ATTRIBUTES

Attributes to apply to rows.

Table 18 Row Attributes

Attribute

Description

BORDER-COLOR

Color name or RGB triplet. Default=NONE (no border)

BORDER-LINE-STYLE

The border line style (SOLID, SQUARE-DOT, DASH, DASH-DOT, LONG-DASH, LONG-DASH-
DOT, LONG-DASH-DOT-DOT). Default=SOLID

BORDER-THICKNESS

Border thickness expressed in decipoints. Default=two decipoints

DEFAULT When the USING argument is anything other than NONE, this attribute causes all the
attributesto be set to default values prior to applying any other attributes.

FILL-COLOR Fill color name or RGB triplet. Default=NONE

HEIGHT Number of lines between each printed row. Default=one line

LINE-COLOR Color name or RGB triplet. Default=NONE (no line)

LINE-STYLE The line style (SOLID, SQUARE-DQOT, DASH, DASH-DOT, LONG-DASH, LONG-DASH-

DOT,LONG-DASH-DOT-DOT). Default=SOLID

LINE-THICKNESS

Line thickness expressed in decipoints. Default=two decipoints

TABLE-ATTRIBUTES

Attributes for the appearance of the table.

Table 19 Table Attributes

Attribute

Description

BORDER-COLOR

Color name or RGB triplet. Default=NONE (no border)

BORDER-LINE-STYLE

The border line style (SOLID, SQUARE-DOT, DASH, DASH-DOT, LONG-DASH, LONG-DASH-
DOT, LONG-DASH-DOT-DOT). Default=SOLID

BORDER-THICKNESS

Border thickness expressed in decipoints. Default=two decipoints

DEFAULT When the USING argument is anything other than NONE, this attribute causes all the
attributesto be set to default values prior to applying any other attributes.
FILL-COLOR Fill color name or RGB triplet. Default=NONE
LEADING Expressed in decipoints. Default=0 decipoints
Description

Use CREATE-TABLE in any section except BEGIN-SETUP, BEGIN-SQL, and BEGIN-DOCUMENT
to create a table from a template.

98

Production Reporting Command Reference

#DEBUG

Example

create-table

name="'tab2"'

using='templated’

column-count=4

table-attributes=('border-thickness',&int4 'leading', &int2,
'border-color', (&red), 'border-line-style', 'square-dot')

row-attributes=('fill-color', (230,240,255))

column-attributes=(0, 'italic', &yes, 'bold', &yes,
'center', &no, 'font', &int3, 'point-size', &intl0,

'foreground', 'white', 'background', (&blue), 'width', &int25)
column-attributes=(1,default, 'background', ('red'),
'foreground', ('blue'))

See Also
ALTER-TABLE, DECLARE-TABLE, DUMP-TABLE, FILL-TABLE, PRINT-TABLE

Function

Causes the current command to process during a debugging session.

Syntax

#DEBUGI x. . .] sgr__command

Arguments
X

Any letter or digit.

Description

A -DEBUG|xx] flag in the Production Reporting command line allows conditional compilation
of Production Reporting commands. When this flag is used, any command (including other
compiler directives) preceded by the word #DEBUG is processed; otherwise, the command is
ignored.

This is useful for placing DISPLAY, SHOW, PRINT or other commands in your program for testing
and for deactivating them when the report goes into production.

The -DEBUG flag can be suffixed by up to 36 letters or digits. These characters are used to match
any letters or digits appended to the #DEBUG preprocess command inside the program.
#DEBUG commands with one or more matching suffix characters are processed; other commands
are ignored. Commands without any suffix always match.

In addition, for each -DEBUGxx letter, a substitution variable is defined. For example, if the flag
-DEBUGab is used on the command line, three substitution variables are defined: debug,
debuga, and debugb. These variables can be referenced in #IFDEF commands to turn whole
sections of code on or off for debugging.

#DEBUG 99

Examples

The following Production Reporting command line contains the -DEBUG flag with no suffixes:

sqr myprog sammy/baker -debug

The following SHOW command in the program executes if invoked with the previous command
line because the -DEBUG flag was used:

#debug show 'The total is ' #grand-tot 999,999,999

In the following example, the command line contains the -DEBUG flag with the suffixes a, b,
and c:

sgr myprog sammy/baker -debugabc

In the following program segment, the first three #DEBUG commands are compiled, but the
fourth, beginning “#debuge”, is not since its suffix does not match any of the suffixes on
the -DEBUG flag:

#debuga show 'Now selecting rows...'
#debug show 'Finished query.'
#debugb show 'Inserting new row.'
#debuge show 'Deleting row.'

The following example shows the use of an #IF with a #DEBUG:

#debuga #if {platform}='unix'
#debuga show 'Platform is UNIX'
#debuga #endif

See Also
#IF, #IFDEF, and #IFNDEF

DECLARE-CHART

Function

Defines the attributes of a chart that you can later display using PRINT-CHART.

Syntax

DECLARE-CHART chart_name

TYPE=chart_type_ 1it]

CHART-SIZE= (chart_width_int_1lit,chart_depth int_1it)]

TITLE=title txt 1it]

SUB-TITLE=subtitle txt_ 1it]

FILL=f111 1it]

3D-EFFECTS=3d_effects 1it]

BORDER=border 1it]

COLOR-PALETTE=color_palette_lit]

POINT-MARKERS=point_markers_1lit]

ATTRIBUTES={selector_lit]|
LIST:{selector;list_name;lit|(selector;lit,...)},

— e, e e e

100 Production Reporting Command Reference

{decl key 1it,{decl_value 1it|

LIST:{decl val list _name lit|(decl_val 1it,...)}|

PALETTE: {color_palette_lit}}},...}}]
[DATA-ARRAY=array._ name]
[DATA-ARRAY-ROW-COUNT=row_count_num 1it]
[DATA-ARRAY-COLUMN-COUNT=column_count_num 1it]
[DATA-ARRAY-COLUMN-LABELS={NONE | array_name| (txt_1it,...)}]
[DATA-LABELS=data_labels_1lit]
[FOOTER—TEXT=NONE| text_1it]
[SUB—FOOTER—TEXT=NONE| text_1it]
[ITEM-COLOR= (item color_keyword 1lit,{color_value 1lit | (r,g,b)})1
[ITEM-SIZE=(item size keyword lit,item size num 1it)]
[LEGEND=1egend_ 1it]
[LEGEND-TITLE=1egend title txt_1it]
[LEGEND-PLACEMENT=1egend_placement_1lit]
[LEGEND-PRESENTATION=1egend presentation_ 1lit]
[PIE-SEGMENT-QUANTITY-DISPLAY=pie segment_quantity display. lit]
[PIE-SEGMENT-PERCENT-DISPLAY=pie_segment_percent_display 1lit]
[PIE-SEGMENT-EXPLODE=pie_segment_explode 1lit]
[X-AXIS-GRID=x_axis grid 1it]
[X-AXIS-LABEL=x_axis label_ txt_ 1it]
[X-AXIS-MIN-VALUE={x axis_min value_ lit | _num 11it}]
[X-AXIS-MAX-VALUE={x_axis max_value_lit|_num 1it}]
[X-AXTIS-MAJOR-INCREMENT={x axis major_increment_lit | _num 1it}]
[X-AXIS-MINOR-INCREMENT=x_axis minor._increment_num 1it]
[X-AXTIS-MAJOR-TICK-MARKS=x_axis major._tick marks 1it]
[X-AXTIS-MINOR-TICK-MARKS=x_axis minor. tick marks 1it]
[X-AXTIS-TICK-MARK-PLACEMENT=x axis_tick mark_ placement_ 1it]
[X-AXIS-ROTATE=x_axis_rotate num 1it]
[X-AXIS-SCALE=x_axis scale 1it]
[Y-AXIS-GRID=y axis grid 1it]
[Y-AXIS-LABEL=y axis_label_1it]
[Y-AXIS-MASK=mask_ txt_1it]
[Y-AXIS-MIN-VALUE={y axis_min value_ lit | _num 11it}]
[Y-AXIS-MAX-VALUE={y axis max value lit|_num 1it}]
[Y-AXTIS-MAJOR-INCREMENT={y axis major_increment_lit | _num 1it}]
[Y-AXIS-MINOR-INCREMENT=y axis minor.increment_num 1it]
[Y-AXTIS-MAJOR-TICK-MARKS=y axis major._tick marks 1it]
[Y-AXTIS-MINOR-TICK-MARKS=y axis minor. tick marks 1it]
[Y-AXIS-TICK-MARK-PLACEMENT=y axis_ tick _mark placement_1lit]
[Y-AXIS-SCALE=y axis_scale 1it]
[Y2-AXIS-LABEL=y2 axis label_1it]
[Y2-AXIS-MASK=mask_ txt_1it]
[Y2-AXIS-MIN-VALUE={y2 axis_min_value lit|_num 1it}]
[Y2-AXIS-MAX-VALUE={y2 axis max value lit|_num 1it}]
[Y2-AXIS-MAJOR-INCREMENT={y2 axis_major_increment_lit | _num 1it}]
[Y2-AXIS-MINOR-INCREMENT=y2 axis_minor_increment_num 1it]
[Y2-AXIS-MAJOR-TICK-MARKS=y2 axis_major_tick marks_1it]
[Y2-AXIS-MINOR-TICK-MARKS=y2 axis_minor_tick _marks_1it]
[Y2-AXIS-SCALE=y2 axis scale 1it]
[Y2-COLOR-PALETTE=color _palette 1it]
[Y2-DATA-ARRAY=array. name]
[Y2-DATA-ARRAY-ROW-COUNT=row_count_num 1it]
[Y2-DATA-ARRAY-COLUMN-COUNT=column_count_num_ lit]
[Y2-DATA-ARRAY-COLUMN-LABELS={NONE | array name| (txt_lit,...)}]
[Y2-TYPE=chart_type 1it]
END-DECLARE

DECLARE-CHART 101

Note:

If you do not define the CHART-SIZE in DECLARE-CHART, you must define it in PRINT-
CHART.

Arguments

Table 20 describes the DECLARE-CHART arguments. (These arguments are also valid for
PRINT-CHART.) Default values are underlined.

Note:

Several of the arguments in Table 20 refer to NewGraphics. To invoke NewGraphics, change the
NewGraphics entry in the [Default-Settings] section of SQR.INIto TRUE (NewGraphics=True).
(See NewGraphics under “[Default-Settings] Section” on page 328 for more information.)

When you use NewGraphics, font values are interpreted as HTML text size values (not point
size values). For example, assume you have the following point values:

ITEM-SIZE= ('Title',12)
ITEM-SIZE= ('SubTitle',10)
ITEM-SIZE= ('XAxisLabel',8)

In this example, if NewGraphics=True, you would convert the points size values to HTML text
size values similar to the following:

ITEM-SIZE= ('Title',3)
ITEM-SIZE= ('SubTitle',2)
ITEM-SIZE= ('XAxisLabel',1)
HTML text size values are:

1- very small

2 - small

3 - normal size

4 - large

5 - larger

6 - very large

7 - largest

Table 20 DECLARE-CHART Arguments

Argument ‘ Choices ‘ Description

3D-EFFECTS YES | NO YES gives your chart depth. NO displays the

chart in a two-dimensional mode.

102 Production Reporting Command Reference

Argument

Choices

Description

Must be set to YES for other 3D parameters
to function.

ATTRIBUTES

See “Attributes Argument” on page
112 for information on the valid
choices.

Defines the appearance of a chart.

Production Reporting reads and processes
the keywords in the ATTRIBUTES argument
left-to-right and first-to-last. As a result, a
subsequent value setting overrides a
previously-established value. Values
assigned with DECLARE-CHART are
overridden by values assigned with PRINT-
CHART.

Setting the ATTRIBUTES for the ALL selector
establishes a default value for all property
values within a chart. Any subsequent entry
for a specific area, such as Header, overrides
the value previously established by the ALL
selector. Any invalid combination of
selectors, sub-selectors, or declarations
produce an error.

Note: Some of the keywords in the
ATTRIBUTES argument replace the
functionality previously provided by the ITEM-
COLOR, ITEM-SIZE, LEGEND-PLACEMENT,
FILL, and COLOR-PALETTE arguments.
Production Reporting processes all old style
keyword, value parameters prior to the new
ATTRIBUTES argument. This may result in the
new ATTRIBUTES argument overriding a value
previously established with the old style
keyword, value parameter pairs.

BORDER

YES | NO

Defines whether to draw a border around the
chart.

chart_name

User defined chart name.

Name for referencing a chart.

CHART-SIZE

User defined chart size.

Size of the chart frame in standard
Production Reporting coordinate units.

COLOR-PALETTE

palette_name

Defines the color of the individual data points
in charts (for example, bar, slice, point). Use
CREATE-COLOR-PALETTE to define a valid
Production Reporting color palette to use.

Note: The defined color palette is only valid
when NewGraphics=TRUE.

Note: The FOREGROUND and BACKBROUND
declaration keywords in the ATTRIBUTES
argument replace the functionality provided
by COLOR-PALETTE . As a result, a value set
with FOREGROUND or BACKGROUND
overrides a value set with COLOR-PALETTE.

DECLARE-CHART 103

Argument

Choices

Description

DATA-ARRAY Y2-DATA-ARRAY

array_name

Name of the array containing the data to plot.
This must be the name of an array defined
with CREATE-ARRAY.

Use DATA-ARRAY to define the data array for
the Y-Axis.

Use Y2-DATA-ARRAY to define the data array
for the Y2-Axis. (Y2-Axis values are ignored
for pie charts.) Y2-DATA-ARRAY is only
available with NewGraphics.

DATA-ARRAY-ROW-COUNT

row_count

Number of rows or sets of data to use from
the DATA-ARRAY. If DATA-ARRAY has a
greater number of rows, only
DATA-ARRAY-ROW-COUNT is included in the
chart.

Y2-DATA-ARRAY-ROW-COUNT

row_count

(NewGraphics) Number of rows or sets of
data to use from Y2-DATA-ARRAY. If
Y2-DATA-ARRAY has a greater number of
rows, only Y2-DATA-ARRAY-ROW-COUNT is
included in the chart.

DATA-ARRAY-COLUMN-COUNT

column_count

Number of columns to use from
DATA-ARRAY. If the DATA-ARRAY has a
greater number of columns, only DATA-
ARRAY-COLUMN-COUNT is included in the
chart.

Y2-DATA-ARRAY-COLUMN-COUNT

column_count

(New Graphics) Number of columns to use
from the Y2-DATA-ARRAY. If Y2-DATA-ARRAY
has a greater number of columns, only
Y2-DATA-ARRAY-COLUMN-COUNT is
included in the chart.

DATA-ARRAY-COLUMN-LABELS

NONE | array_name |
(labell,label2, ...)

Labels for each Y-Axis value of the data set
(fields) in DATA-ARRAY. Labels are displayed
in the legend box. Column labels are ignored
for pie charts. See Table 65 on page 266 for
applicable fields for each type of chart.

Y2-DATA-ARRAY-COLUMN-LABELS

NONE | array_name| (labell,label2,
)

(New Graphics) Labels for each Y2-Axis value
of the data set (fields) in Y2-DATA-ARRAY.
Labels are displayed in the legend box.
Column labels are ignored for pie charts.
SeeTable 65 on page 266 for applicable
fields for each type of chart.

DATA-LABELS YES | NO (NewGraphics) If YES, Production Reporting
prints the numeric value above the individual
data points. If NO, no numeric values are
displayed.

FILL GRAYSCALE | COLOR | Type of filling applied to the shapes (for

CROSSHATCH | NONE

example, bars, pie-segments) that represent
the data loaded in the chart. GRAYSCALE
varies the density of black dots. COLOR

104 Production Reporting Command Reference

Argument Choices Description
sends color instructions to the current
printer. If the current printer does not support
color, then it could appear in GRAYSCALE.
CROSSHATCH uses patterns to fill the shapes
representing each data set. With NONE all
graph shapes are filled with white.
Note: The STYLE declaration keyword in the
ATTRIBUTES argument replaces the
functionality provided by FILL. As a result, a
value set with STYLE overrides a value set
with FILL.
FOOTER-TEXT NONE | text Footer text for the chart. The text is placed at
the bottom of the chart.
Default value is NONE.
ITEM-COLOR ChartBackground—Background color | (NewGraphics) Color for individual chart
of entire chart area. items. Specify a chartitem and a valid (r,g,b)
I he color of the chart item.
ChartForeground—Text and Line color color to set the color of the chart item
of chart area. Note: The COLOR declaration keyword in the
.- ATTRIBUTES argument replaces the
't"ei‘gerBaCkgfr?‘é”fd‘t’;reﬁt;”'th'z thi functionality provided by ITEM-COLOR. As a
t?t)l(oxspecitied forthe titie and sub- result, a value set with COLOR overrides a
e value set with ITEM-COLOR.
HeaderForeground—Text color of the
Title and sub-title.
LegendBackground—Area within the
box defining the legend.
LegendForeground—Text and Outline
color of the legend.
ChartAreaBackground—Area that
includes the body of the chart.
ChartAreaForeground—Text and Line
colors of the chart area.
PlotAreaBackground—Area within the
X and Y Axis of a chart.
Note: For more information see,
“Changing Colors with New Graphics”
in Volume 1 of the Hyperion SQR
Production Reporting Developer's
Guide.
ITEM-SIZE Title | SubTitle | XAxisLabel | (NewGraphics) Size of the following chart

XAxisMarkers | YAxisLabel |
YAxisMarkers | Y2AxisLabel |
Y2AxisMarkers | LegendText |
LegendTitle

objects. The value is based on HTML text
sizes.

o Title—Chart title

ITEM-SIZE=('Title',value)
o SubTitle—Chart subtitle

[TEM-SIZE= ('SubTitle',value)

DECLARE-CHART 105

Argument Choices

Description

® XAxisLabel—Label below the X Axis of the
chart

ITEM-SIZE= ('XAxisLabel',value)
o XAxisMarkers—Point labels on the X Axis

ITEM-SIZE= ('XAxisMarkers',value)

o YAxisLabel—Rotated label to the left of
the chart

ITEM-SIZE= ('YAxisLabel',value)
o YAxisMarkers—Point labels on the Y Axis
ITEM-SIZE= ('YAxisMarkers',value)

® Y2AxisLabel—Rotated Label to the right
of the chart

ITEM-SIZE= ('Y2AxisLabel',value)
® Y2AxisMarkers—Point labels on the Y Axis
ITEM-SIZE= ('Y2AxisMarkers',value)
o LegendText—Legend text
ITEM-SIZE= ('LegendText',value)
e LegendTitle—Legend title
ITEM-SIZE= ('LegendTitle',value)

Note: If you do not define an ITEM-SIZE
value, Production Reporting uses the HTML
text value of 3 (normal size).

Note: The POINT-SIZE declaration keyword in
the ATTRIBUTES argument replaces the
functionality provided by ITEM-SIZE. As a
result, values set with POINT-SIZE override
values set with ITEM-SIZE.

LEGEND YES | NO

Defines whether to display a legend.

LEGEND-PLACEMENT CENTER-RIGHT | CENTER-LEFT |
UPPER-RIGHT | UPPER-LEFT |
UPPER-CENTER | LOWER-RIGHT |
LOWER-LEFT | LOWER-CENTER

Places the legend in the specified location
on the chart. The first portion of the
placement parameter (CENTER, UPPER, or
LOWER) is the vertical position, and the
second portion is the horizontal.

Note: The LOCATION declaration keyword in
the ATTRIBUTES argument replaces the
functionality provided by LEGEND-
PLACEMENT. As a result, values set with
LOCATION override values set with LEGEND-
PLACEMENT.

LEGEND-PRESENTATION INSIDE | OUTSIDE

If INSIDE, then the legend is presented inside
the area defined by the two axes. If OUTSIDE,
then the legend is presented within the chart
border, but outside of the region represented
by the two axes.

106 Production Reporting Command Reference

Argument Choices Description

LEGEND-TITLE NONE | text Title for the legend. If NONE, then no title is
displayed in the legend box.

PIE-SEGMENT-EXPLODE NONE | MAX |MIN | USE-3RD-DATA- | Controls what pie segments are exploded

COLUMN

(selected) within the pie chart. MAX selects
the largest segment. MIN selects the
smallest segment. If USE-3RD-DATA-
COLUMN, then the third field in the DATA-
ARRAY is used to determine which pie
segments are exploded. This third field
should be a CHAR and values of 'YES' or'Y'
indicate that the segment should be
exploded.

PIE-SEGMENT-PERCENT-DISPLAY

YES | NO

If YES, then percent-of-total figures is
presented for each pie segment.

PIE-SEGMENT-QUANTITY-DISPLAY

YES | NO

IfYES, then the quantity is presented for each
pie segment.

POINT-MARKERS

YES | NO

If YES, then point markers are displayed for
line charts. If NO, then point markers are not
displayed.

SUB-FOOTER-TEXT

NONE | text

Sub-footer text for the chart. The text is
placed below the footer regardless of
whether the FOOTER-TEXT is specified.

Default value is NONE.

SUB-TITLE

NONE | text

Subtitle for the chart. Text is placed below
the title regardless of whether or not TITLE is
specified.

TITLE

NONE | text

Chart title. Text is placed at the top of the
chart.

TYPE Y2-TYPE (no pie charts)

PIE | BAR | AREA | LINE |
STACKED-BAR | OVERLAPPED-BAR |
FLOATING-BAR | HISTOGRAM |
100%-BAR | 100%-AREA |
STACKED-AREA | HIGH-LOW-CLOSE
| COMBO | XY-SCATTER-PLOT |
BUBBLE | RADAR | POLAR |
CANDLE-STICK | AREA-RADAR |
NONE

Note: NONE is only valid for Y2-TYPE.

Chart type. See “Business Charts” in Volume
1 of the Hyperion SQR Production Reporting
Developer's Guide

(Y2-TYPE is only available with
NewGraphics.)

Y2-AXIS-COLOR-PALETTE

palette_name

(NewGraphics) Color palette used to color
data points in charts (for example, bar, slice,
point). You must define a valid Production
Reporting color-palette with CREATE-COLOR-
PALETTE.

X-AXIS-GRID Y-AXIS-GRID Y2-AXIS-GRID

YES | NOYES | NO YES | NO

If YES, then a dashed grid line is drawn for
each major tick-mark on the axis. If NO, then
no grid line is drawn on this axis.

DECLARE-CHART 107

Argument

Choices

Description

X-AXIS-LABEL Y-AXIS-LABEL Y2-AXIS-LABEL

NONE | text

Line of text to display below (or alongside)
the tick-mark labels on the axis.

(Y2-AXIS-LABEL is only available with
NewGraphics.)

X-AXIS-MAX-VALUE

AUTOSCALE | number

Maximum value on the X axis. Data values
greater than X-AXIS-MAX-VALUE are not
displayed. AUTOSCALE calculates an
appropriate maximum value.

Y-AXIS-MAX-VALUE

AUTOSCALE | number

Maximum value on the Y axis. Data values
greater than Y-AXIS-MAX-VALUE are not
displayed. AUTOSCALE calculates an
appropriate maximum value.

Y2-AXIS-MAX-VALUE

AUTOSCALE | number

(NewGraphics) Maximum value on the Y2
axis. Data values greater than Y2-AXIS-MAX-
VALUE are not displayed. AUTOSCALE
calculates an appropriate maximum value.

X-AXIS-MIN-VALUE

AUTOSCALE | number

Minimum value on the X axis. Data values
less than X-AXIS-MIN-VALUE are not
displayed. AUTOSCALE calculates an
appropriate minimum value.

Y-AXIS-MIN-VALUE

AUTOSCALE | number

Minimum value on the Y axis. Data values
less than Y-AXIS-MIN-VALUE are not
displayed. AUTOSCALE calculates an
appropriate minimum value.

Y2-AXIS-MIN-VALUE

AUTOSCALE | number

(NewGraphics) Minimum value on the Y2
axis. Data values less than Y2-AXIS-MIN-
VALUE are not displayed. AUTOSCALE
calculates an appropriate minimum value.

X-AXIS-MAJOR-TICK-MARKS

YES | NO

YES displays tick-marks along the axis
between X-AXIS-MIN-VALUE and
X-AXIS-MAX-VALUE, according to the
X-AXIS-SCALE setting spaced by
X-AXIS-MAJOR-INCREMENT.

Y-AXIS-MAJOR-TICK-MARKS

YES | NO

YES displays tick-marks along the axis
between Y-AXIS-MIN-VALUE and
Y-AXIS-MAX-VALUE, according to the
Y-AXIS-SCALE setting spaced by
Y-AXIS-MAJOR-INCREMENT.

Y2-AXIS-MAJOR-TICK-MARKS

YES | NO

(NewGraphics) YES displays tick-marks
along the axis between Y2-AXIS-MIN-VALUE
and Y2-AXIS-MAX-VALUE, according to the
Y2-AXIS-SCALE setting spaced by
Y2-AXIS-MAJOR-INCREMENT.

Y-AXIS-MASK

‘$999,999.99’

Numeric mask used to format the Y Axis.
Follows the edit mask rules defined in
Table 56.

108 Production Reporting Command Reference

Argument

Choices

Description

Y2-AXIS-MASK

‘099999’

(NewGraphics) Numeric mask used to format
the Y2 Axis. Follows the edit mask rules
defined in Table 56.

X-AXIS-MINOR-TICK-MARKS

YES | NO

YES displays tick-marks along the axis
between X-AXIS-MIN-VALUE and
X-AXIS-MAX-VALUE, according to the
X-AXIS-SCALE setting spaced by
X-AXIS-MINOR-INCREMENT.

Y-AXIS-MINOR-TICK-MARKS

YES | NO

YES displays tick-marks along the axis
between Y-AXIS-MIN-VALUE and
Y-AXIS-MAX-VALUE, according to the
Y-AXIS-SCALE setting spaced by
Y-AXIS-MINOR-INCREMENT.

Y2-AXIS-MINOR-TICK-MARKS

YES | NO

(NewGraphics) YES displays tick-marks
along the axis between Y2-AXIS-MIN-VALUE
and Y2-AXIS-MAX-VALUE, according to the
Y2-AXIS-SCALE setting spaced by
Y2-AXIS-MINOR-INCREMENT.

X-AXIS-MAJOR-INCREMENT Y-AXIS-MAJOR-
INCREMENT Y2-AXIS-MAJOR-INCREMENT

AUTOSCALE | number

Increment used to space major tick-marks on
the axis. AUTOSCALE calculates an
appropriate increment.

(Y2-AXIS-MAJOR-INCREMENT is only
available with NewGraphics)

X-AXIS-MINOR-INCREMENT Y-AXIS-MINOR-
INCREMENT Y2-AXIS-MINOR-INCREMENT

number

Increment used to space minor tick-marks on
the axis. This must be set for the X-AXIS-
MINOR-TICK-MARKS, the Y-AXIS-MINOR-
TICK-MARKS, or the Y2-AXIS-MINOR-TICK-
MARKS to display.

(Y2-AXIS-MINOR-INCREMENT is only
available with NewGraphics)

X-AXIS-ROTATE

X-Axis-Rotate = O No Rotation
X-Axis-Rotate = 1 Always Rotate

X-Axis-Rotate = n Rotate Labels if:

Data-Array-Row-Count > n

Defines the X Axis rotation of Markers.

The default value is 5.

X-AXIS-TICK-MARK-PLACEMENT Y-AXIS-TICK-
MARK-PLACEMENT

INSIDE | OUTSIDE | BOTH

INSIDE (or OUTSIDE) directs Production
Reporting to place the tick marks on the
inside (or outside) of the axis only. BOTH
directs Production Reporting to draw the tick-
marks such that they appear on both sides
of the axis.

These arguments have no meaning in
NewGraphics.

X-AXIS-SCALE Y-AXIS-SCALE Y2-AXIS-SCALE

LOG | LINEAR

LOG specifies a logarithmic scale for the axis.
Otherwise, the scale is LINEAR.

(Y2-AXIS-SCALE is only available with
NewGraphics)

DECLARE-CHART 109

Description

DECLARE-CHART defines the attributes of a chart to print as part of a report. You can use the
attributes in any order, with the exception of chart-name, which must follow the DECLARE-
CHART keyword. DECLARE-CHART can only appear in the SETUP section.

A chart defined with DECLARE-CHART prints by referencing its name in PRINT-CHART. You can
override some or all of the chart attributes at run-time with PRINT-CHART. As such, DECLARE-
CHART is useful when the basic properties of a chart are common to many PRINT-CHART

commands.

Tip:

All values declared for a chart in the DECLARE-CHART section of an Production Reporting
program become the default values for that chart. To override an assigned value, you must set
the value in the PRINT-CHART section of the Production Reporting program. The following
example illustrates this functionality.

begin-setup
declare-chart

default-chart

attributes= ('All', 'Font',b 31, 'Font-Style', 'Plain', 'Point-Size',12)

attributes= ('Header', 'Font',b 31, 'Font-Style', 'Bold', 'Point-Size',18)

attributes= ('chartl', 'start-angle',0,''threshold-method', 'percent',
'threshold-value',20)

attributes= ('chartl', '3d-depth',5, '3d-rotation', 65,
'3d-elevation', 85)

attributes= ('chartl', 'cluster-width',75, 'cluster-overlap', 65)

attributes= ('legend', 'location', 'lower-center')

attributes= ('chartl.fill', 'style',LIST: ('25per', '50per', '75per'))

attributes= ('chartl.line', 'style',LIST:'linestyle"')

attributes= ('all.line', 'size',2)

attributes= ('all.line', 'color',LIST:(('red'), ('green'), ('blue')))

attributes= ('chartl', 'sort-order', 'Largest')

attributes= ('chartl', 'Background', (230,230,255))

attributes= ('all-axis.marker', 'foreground', (230,0,100))

end-declare
create-array
name = emp_sales
size = 20
field = col_name:char:1
field = sales:number:3
end-setup

begin-report
create-list
name="'1linestyle’
list=('longdash', 'shortdash', 'dashdot', 'longshort"')
put 'Madeline' 10 12 12

into emp_sales(0) col_name(0) sales(0) sales(l) sales (2)
put 'Jacob' 25 35 45

into emp_sales(l) col_name(0) sales(0) sales(l) sales (2)
put 'Evan' 18 28 38

into emp_sales(2) col_name(0) sales(0) sales(l) sales (2)
put 'Claire' 60 70 80

into emp_sales(3) col_name(0) sales(0) sales(l) sales (2)

110 Production Reporting Command Reference

print-chart default-chart (4,1)
chart-size = (50,50)

title =

'Employee Sales'

type = overlapped-bar

3D-effects = yes

x-axis-label = 'Employees'
y-axis-label = 'Sales (in thousands)'
sub-yitle = 'Overlapped-Bar Chart'
data-array-row-count = 4
data-array-column-count = 4

data-array-column-labels = ('June', 'July', 'August')
data-array = emp_sales

footer-text = 'Keep up the good work'

sub-footer-text = 'my team'

attributes= (LIST: ('header', 'footer'), 'Font',32,

'font-style', 'bold italic', 'Point-Size',18)

end-report

The FILL specification in DECLARE-PRINTER can influence the appearance of the chart.
Table 21 lists the final appearance of the chart with a combination of values for
PRINTER.COLORjuuiCHART.FILEJopﬁon&

Table 21 PRINTER.COLOR Setting Effect on CHART.FILL

CHART.FILL= | PRINTER.COLOR=Y PRINTER.COLOR=N
GRAYSCALE GRAYSCALE GRAYSCALE
COLOR COLOR GRAYSCALE
CROSSHATCH | COLOR-CROSSHATCH | CROSSHATCH
NONE NONE NONE

Examples

This example declares a basic sales chart using DECLARE-CHART. Then, for each region, the
SUB-TITLE, DATA-ARRAY, and other elements are overridden to provide the chart with the
specific features desired.

begin-setup

declare-chart base_sales_chart

chart-size

(30, 20)

title = 'Quarterly Sales'
sub-title = none

fill = color

3d-effects = yes

type = stacked-bar
legend-title = 'Product’
x-axis-grid = yes

end-declare

end-setup

begin-program

print-chart base_sales_chart

sub-title

= 'Region I'

DECLARE-CHART 111

data-array = regl_sales
data-array-row-count = #rows_regl
data-array-column-count = 2

y-axis-max-value = #max_of_all_regions
y-axis-min-value = #min_of_all_regions
legend = no

print-chart base_sales_chart
sub-title 'Region ITI'
data-array reg2_sales
data-array-row-count = #rows_reg?2
data-array-column-count = 2

y-axis-max-value = #max_of_all_regions
y-axis-min-value = #min_of_all_regions
legend = no

end-program

begin-procedure chart_region_sales ($sub, Sary,
#rows, #cols,
#max_of_all_regions,
#min_of_all_regions)

print-chart base_sales_chart (20, 15)

sub-title = S$sub

data-array = all sales
data-array-row-count = f#irows
data-array-column-count = #cols
data-array-column-labels = ('Ql', 'Q2', 'Q3', 'Q4')
y-axis-max-value = #max_of_all_regions
y-axis-min-value = #min_of_all_regions
chart-size = (50, 30)

end-procedure

Attributes Argument

The Attributes argument allows you to override the individual default values of most chart
elements. It consists of two sub-parameters: selector and declaration. The simplest form of the
Attributes argument is:

ATTRIBUTES= (selector, declaration, declaration value)
The selector identifies an element of the chart, the declaration identifies a property, and the

declaration value identifies the property’s value. For example, the following statement sets the
text point-size for the entire chart:

ATTRIBUTES=('all', 'point-size',12)

If desired, you can override a specific chart element. For example, to override the point-size for
the title, you could specify the following:

ATTRIBUTES=('title', 'point-size',16)

You can specify multiple selectors (use either an inline list, or a named list created with

CREATE-LIST) and multiple declarations. For example, the following statement sets the point-
size and foreground text color for Title and Sub-Title.

112 Production Reporting Command Reference

ATTRIBUTES=(LIST: ('title', 'sub-title'), 'point-size', 16, foreground, ('red'))
Review the following topics for information on the selector and declaration sub-parameters.

e Selector/Sub-Selector Keywords

e Declaration Keywords

Selector/Sub-Selector Keywords

The combination of selector and sub-selector identifies specific chart elements. The format is
selector.sub-selector where a period is used as the delimiter. In most cases, each component is
optional. If you do not specify a selector, ALL is assumed. (ALL implies the complete set of
selectors.)

Possible selector values include: ALL, CHART1, CHART2, HEADER, TITLE, SUB-TITLE, FOOTER,
FOOTER-TEXT, SUB-FOOTER-TEXT, CHART-AREA, PLOT-AREA, LEGEND, LEGEND-SYMBOL,
LEGEND-TITLE, ALL-AXIS, X-AXIS, Y-AXIS, and Y2-AXIS.

Note:

For Combination charts, use CHART1 and CHART?2 selectors to identify chart elements for the
primary and secondary charts, respectively. For example, to set the grid color for the primary
chart to red, enter: ATTRIBUTES=('chartl.grid', 'color', ('red'))

Possible sub-selector values include: FILL, GRADIENT, GRID, HILO-LINE, LABEL, LINE,
MARKER, OTHER, OUTLINE, RISING-FILL/FALLING-FILL, and SYMBOL.

Table 22 Sub-selector Descriptions

Sub_Selector Description
FILL Color of the fill area on a chart.
Example:

ATTRIBUTES=('fill', 'style', 'verticalstripe')

Creates a fill style of VerticalStripe for all charts.

GRADIENT Color of the gradient fill area on a chart.

Example:
ATTRIBUTES=('chartl.gradient', 'color', 'none')
Declares that fill areas are not gradient.
ATTRIBUTES=('chart2.gradient', 'color', 'black"')

Declares that fill areas are gradient and that black will be used to create the fill area.

GRID Grid attributes (color, style, and line thickness) on a chart.
Example:
ATTRIBUTES=('x-axis.grid', 'style', 'solid"')

Sets the style of the x-axis grid to a solid line.

DECLARE-CHART 113

Sub_Selector Description

HILO-LINE For HiLo and Candle charts, defines color, style, and line thickness of the Hi-Low line.
Example:
ATTRIBUTES=('chartl.hilo-1line', 'color', ('blue'))

Sets the HILO-LINE (line) color to blue.

LABEL Label attributes.
Example:
ATTRIBUTES=('x-axis.label', 'foreground', ('vellow'))

Sets the X-Axis label to the colors specified for all charts.

LINE For Line charts, defines color, style, and thickness of data lines.
Example:
ATTRIBUTES=('chartl.line', 'color',6list:(('red'),
('blue'), ' (green'))

Sets the first, second, and third data lines to red, blue, and green, respectively.

MARKER Marker label attributes.
Example:
attributes=('X-axis.marker', 'point-size', .10)

Sets the point size for X-axis markers to ten.

OTHER For Pie charts, defines the “Other” pie chart slice.
Example:
attributes=('other', 'color', ('red'))

Sets the “Other” pie slice to red.

OUTLINE Attributes (color, style, border thickness) for outlines (bars, pie slices, legend, and
legend symbols).

Example:
ATTRIBUTES=('chartl.outline', 'style', 'shortdash')

Sets the outline of chart areas to be a short dashed line.

RISING-FILL/FALLING-FILL | For Candle charts, attributes (fill pattern, color, width of candle) for the fill area in the
rising and falling candle.

Example:
ATTRIBUTES=('rising-fill', 'size"',5)

Sets the Rising Fill size to 5 pixels.

SYMBOL For Line charts, defines the symbols that appear.
Example:

attributes=('chartl.symbol', 'style',list:
('diamond', 'circle', 'square'), 'size',20)

114 Production Reporting Command Reference

Sub_Selector Description

Identifies the symbols to be used for data points in a line chart. Diamonds, circles and
squares are used for first, second and third data line, respectively. Each symbol is
20x20 pixels.

Table 23 Valid Selector/Sub-selector Combinations

HILO- | RISING- | FALLING-

MARKER | LABEL | LINE | GRID | SYMBOL | OTHER | OUTLINE | GRADIENT | FILL | LINE | FILL FILL
ALL - -
CHART1 - .
CHART2 - .
ALL- . . .
AXIS
X-AXIS - . -
Y-AXIS - - -
Y2-AXIS . . .
LEGEND -
LEGEND- -
SYMBOL

Some examples of valid combinations using the selectors/sub-selectors in Table 23 include
Chartl.Line, X-Axis.Marker, and Y2-Axis.Label.

Declaration Keywords

A declaration identifies a chart property followed by its value. Table 24 lists the declaration
keywords available for the ATTRIBUTES argument.

Table 24 ATTRIBUTES Declaration Keywords

Declaration Keyword Choices Description
3D-DEPTH 0-100 Depth of the three-dimensional display in
Default = 10 percent.

Note: You must set the 3d-EFFECTS argument
to YES for this keyword to work.

Example:

ATTRIBUTES=('All', '3D-DEPTH',
15)

Displays all three-dimensional charts with a
depth of 15 percent.

DECLARE-CHART 115

Declaration Keyword Choices Description
3D-ELEVATION 0-180 Elevation of the three-dimensional display in
Default = 45 degrees.
Note: You must set the 3D-EFFECTS argument
to YES for this keyword to work.
Example:
ATTRIBUTES=('All"', '3D-
ELEVATION',45)
Displays all three-dimensional charts with an
elevation of 45 degrees.
3D-ROTATION 0-90 Rotation of the three-dimensional display in
Default = 40 degrees.
Note: You must set the 3D-EFFECTS argument
to YES for this keyword to work.
Example:
ATTRIBUTES= ('All', '3D-
ROTATION',50)
Displays all three-dimensional charts with a
rotation of 50 degrees.
BACKGROUND Named color or value in the range of RGB. Background color of a selected chart area.
Default = Transparent Example:
See “DECLARE-COLOR-MAP” on page 126 for an ATTRIBUTES=('All', 'BackGround',
explanation of RGB values. ('White'))
Sets the background color for all charts to
white.
Note: Along with FOREGROUND,
BACKGROUND replaces the functionality
provided by COLOR-PALETTE.
CLUSTER-OVERLAP -100 - 100 Percentage of bar overlap. Negative values
Default = 0 add space between bars. Positive values
etau cause bars to overlap.
Example:
ATTRIBUTES= ('All', 'CLUSTER-
OVERLAP', 45)
Displays all bar charts with a cluster overlap
of 45 percent.
CLUSTER-WIDTH 0-100 Percentage of available space between each
bar cluster.
Default = 80

Example:

ATTRIBUTES=('All', 'CLUSTER-
WIDTH', 60)

Displays all bar charts with a width of 60
percent between each bar cluster.

116 Production Reporting Command Reference

Declaration Keyword

Choices

Description

COLOR List generated from CREATE-LIST, or an in-line list of values. | Defines a single color or a group of colors for
. . . an individual chart element.
When referencing a list, the keyword LIST: must prefix the indvidu
name of the list. When using a named_color_palette, the COLOR values are used in presentation order
keyword PALETTE: must prefix the name of the color palette. | and are reused once the current list is
exhausted. The COLOR keyword overrides the
default values established for the color
property of a chart.
An error occurs if the contents of the list do
not match the data type expected.
COLOR can reference a color palette or a
single color.
Example:
ATTRIBUTES=
('CHART2.LINE', 'COLOR', LIST:
(('red'), ('yvellow'),
('maroon')))
Creates a group of line colors of ‘red’, ‘yellow’
and ‘maroon’ for chart2.
ATTRIBUTES= ('OTHER', 'COLOR',
('red'))
Sets the color for the 'Other’ pie chart slice to
'red’ for all pie charts.
Note: COLOR replaces the functionality
provided by ITEM-COLOR.
FONT Values specified under [Fonts] in SQR.INI. Font for all text and/or for specific text areas
.) i hart i .
Each entry consists of a font number assigned to a named In a chart Image
font. For example, 3 may represent Courier. Example:
Default = Times New Roman ATTRIBUTES= ('ALL', 'Font',
3, 'Point-Size',12)
Sets the font typeface to the corresponding
value from SQR.INI in the [Fonts] section for
value 3 and the size to 12 point for all text
items for all charts.
FONT-STYLE PLAIN | BOLD | ITALIC | UNDERLINE Style of the font for all text and/or for specific
_ text areas in a chart image. Separate multiple
Default = PLAIN values with a space.
Example:
ATTRIBUTES= ('Title', 'Font-
Style', 'Bold Underline')
Sets the font style to ‘BOLD’ and ‘Underline’
for all charts.
FOREGROUND Named color or values in the range of RGB. Text, outline, and line color for a chart area.

Default = Black

Example:

DECLARE-CHART 117

Declaration Keyword

Choices

Description

See “DECLARE-COLOR-MAP” on page 126 in the for an
explanation of RGB values.

ATTRIBUTES=('X-
Axis.Label', 'ForeGround',
('Yellow'))

Sets the X-Axis label for all charts to yellow.

Note: Along with BACKGROUND,
FOREGROUND replaces the functionality
provided by COLOR-PALETTE.

HALF-RANGE

YES | NO
Default = NO

Determines how the x-axis is displayed in
Polar charts.

NO—X-axis is displayed as one full range fro 0
to 360 degrees.

YES—X-axis is displayed as two half-ranges
from —180 to 180 degrees.

Example:

ATTRIBUTES=('Chartl', 'HALF-
RANGE', 'Yes')

Sets the axis label range from -180 to 180
degrees.

HOLE-VALUE

A value between the following minimum and maximum
values:

Min Value: -1.7976931348623157E+308
Max Value: 1.7976931348623157E+308

Default = None

Value in the data to ignore. You can only have
one HOLE-VALUE per chart.

Example:

ATTRIBUTES=('All', 'HOLE-
VALUE', -1)

Sets the HOLE-VALUE to -1. This means that
if DECLARE-CHART or PRINT-CHART finds a
value of -1 in the data to chart, the -1 value
is ignored.

LABEL-LOCATION

INNER | OUTER | AUTO
Default = AUTO

Location of labels in pie charts.

INNER—Labels are placed within the chart
area.

OUTER-Labels are placed outside the chart
area.

AUTO—The label location is controlled by the
charting application.

Example:

ATTRIBUTES=('All', 'LABEL-
LOCATION’ ', 'OUTER')

Displays the pie chart labels outside of the
chart area.

LEGEND-COLUMNS

Any numeric value.

Default = 0

A value of 0 means the charting application will determine

the proper value.

Number of columns to use when generating
the chart legend. You can only have one
LEGEND-COLUMNS value per chart.

Example:

118 Production Reporting Command Reference

Declaration Keyword

Choices

Description

ATTRIBUTES=('All', 'LEGEND-
COLUMNS ', 4)

Displays the chart legend with four columns.

LEGEND-ROWS

Any numeric value.
Default = 0

A value of 0 means the charting application will determine
the proper value.

Number of rows to use when generating the
chartlegend. You can only have one LEGEND-
ROWS value per chart.

Example:

ATTRIBUTES=('All', 'LEGEND-
ROWS', 2)

Displays the chart legend with two rows.

LOCATION

LOWER-RIGHT | CENTER-RIGHT | UPPER-RIGHT | LOWER-
LEFT | CENTER-LEFT | UPPER-LEFT | LOWER-CENTER |
UPPER-CENTER

Note:CENTER-CENTER is reserved for ChartArea.

Positions the main chart elements of the
Header, Footer, and Legend in pixels, or
controls the specific location for the Legend.

Each positional object is considered a
rectangle, and the (x,y) pixel location of (1,1)
relates to the upper left-hand coordinate of an
image. The charting application positions the
upper left-hand corner of the rectangle at the
pixel location specified.

Example:

ATTRIBUTES=
('Legend’ ', 'LOCATION', 'CENTER-
RIGHT')

Positions the chart legend in the center
vertical and right horizontal location of the
chart.

Note: LOCATION replaces the functionality
provided by LEGEND-PLACEMENT.

ORIGIN-BASE-ANGLE

0-360
Default = 0

Position of the x-axis for Polar, Radar, and
Area Radar charts in degrees.

Example:

ATTRIBUTES=('CHART1', 'ORIGIN-
BASE-ANGLE', '90")

Sets the ORIGIN-BASE-ANGLE to 90 degrees.

OTHER-LABEL

Any value.

Default = Other

Name of the label used for the “Other” pie
chart segment.

Example:

ATTRIBUTES=('ALL', 'OTHER-
LABEL', 'OTHER-PRODUCTS')

Declares the label used for the “Other” pie
chart segment is “Other-Products”.

PATTERN

CIRCULAR | WEBBED
Default = CIRCULAR

Sets the gridlines in Radar and Area Radar
charts to circular or webbed.

DECLARE-CHART 119

Declaration Keyword

Choices

Description

Example:

ATTRIBUTES=
('CHART1.GRID', 'PATTERN', 'WEBBE
D')

Sets the Radar chart grid to webbed..

PERCENTAGE-PRECISION

0-15
Default = 2

Number of digits to the right of the decimal
point in a pie chart.

Example:

ATTRIBUTES=('All', 'PERCENTAGE-
PRECISION',5)

Displays the pie chart percentage with five
digits to the right of the decimal point.

POINT-SIZE Any point size. Font size (in points) for all areas in a chart
Default = 12 image. Control can be for all text on a chart
elau and/or for specific text areas on a chart.
Example:
ATTRIBUTES=
('Title', 'Style', 'Bold
Underline', 'Point-Size',16)
Sets the font style to ‘Bold’ and ‘Underline’
and font size to 16 point for the ‘Title text item
for all charts.
Note: POINT-SIZE replaces the functionality
provided by ITEM-SIZE.
SIZE Depends on the SUB-SELECTOR: Size of the lines, symbols, and grids fora chart
| .
o LINE -1 to 10 pixels element
e SYMBOL - 1 to 100 pixels The SI;E keyword ovgmdes the default values
established for the size property of a chart.
e GRID - 1 to 10 pixels
The default line and grid width is 1 pixel. The
default symbol width is a bounding box of 6x6
pixels.
Example:
ATTRIBUTES=
('CHART1.LINE', 'SIZE',2)
Sets the line size for all lines to 2 pixels for
chartl.
SORT-ORDER LARGEST | SMALLEST | DATAORDER Defines whether to display pie-chart slices

Default = DATAORDER

largest-to-smallest, smallest-to-largest, or the
order they appear in the data.

® LARGEST—Largest-to-smallest
SMALLEST—Smallest-to-largest

o DATAORDER-Order they appear in the
data.

120 Production Reporting Command Reference

Declaration Keyword Choices Description
Example:
ATTRIBUTES=('All"', 'SORT-
ORDER', 'Largest’"')
Sets the display order of the pie slices from
largest to smallest for all charts.
START-ANGLE 0-359 For Pie Charts:
Default = 0 Position in the pie chart where the first pie
slice is drawn.
Avalue of zero degrees represents a horizontal
line from the center of the pie to the right-hand
side of the pie chart.
A value of 90 degrees represents a vertical
line from the center to the top of the pie.
Slices are drawn clockwise from the specified
angle.
The default position for the first pie segment
is 90 degrees.
Example:
ATTRIBUTES=('All"', 'START-
ANGLE', 45)
Sets the starting location of the first pie slice
to a line 45 degrees to the right and down of
a horizontal line.
For Polar, Radar, and Area Radar Charts:
Angle that the y-axis makes with the ORIGIN-
BASE-ANGLE.
Example:
ATTRIBUTES= ('Chartl', 'START-
ANGLE', 135)
Sets the START-ANGLE to 135 degrees.
STYLE Depends on the SUB-SELECTOR: Group of styles for an individual chart

e LINE - Solid | LongDash | ShortDash | LongShort |
DashDot

e SYMBOL - None | Dot | Box | Triangle | Diamond |
Star | VerticalLine | HorizontalLine | Cross | Circle |
Square

® FILL - None | Solid | 25Per | 50Per | 75Per |

HorizontalStripe | VerticalStripe | 45Stripe | 135Stripe
| DiagonalHatch | CrossHatch

element.

This keyword can use the list generated from
CREATE-LIST, or you can enter an in-line list
of values. When using a named list, the
keyword LIST: must prefix the name of the list.
An error occurs if the contents of the list do
not match the data type expected.

STYLE values are used in presentation order
and are reused once the current list is
exhausted. The STYLE keyword overrides the
default values established for the style
property of a chart.

The default line and fill style is Solid. The
default symbol style is Dot.

DECLARE-CHART 121

Declaration Keyword Choices Description

Example:

ATTRIBUTES=

('Chartl.Line', 'Style',LIST:
('shortdash', 'longdash', 'solid"
))

Creates a group of line styles of ‘shortdash’,
"longdash’, and ‘solid’ for chart1.

Note: STYLE replaces the functionality
provided by FILL.

THRESHOLD-METHOD VALUE | PERCENT Grouping method to use for the Other slice in

Default = VALUE a pie chart.

o VALUE —Use when you know the data
value to group into the Other slice. Value
places only those items that are less than
the Threshold-Value into the Other slice.

o PERCENT—Use when you want to devote
a certain percentage of the pie to the
Other slice. Percent places only those
items that are accumulatively less than
the Threshold-Value into the Other slice.

Example:

ATTRIBUTES=('All"', 'THRESHOLD-
METHOD', 'Value')

Sets the THRESHOLD-METHOD to indicate
that the THRESHOLD-VALUE is a data value for

all charts.
THRESHOLD- VALUE Depends on the THRESHOLD-METHOD: Data value to group into the Other slice in a

e When THRESHOLD-METHOD s set to Value, valid values | P C"

are numbers greater than or equal to 0. Example:
® When THRESHOLD-METHQOD is set to Percent, valid ATTRIBUTES=('All', ' THRESHOLD-
values are from 0 to 100. VALUE', 10)

Default = 0 (No Other Slice) Together with THRESHOLD-MEHTOD
establishes that values less than 10 will be
grouped into the ‘Other’ pie slice for all charts.

UNITS DEGREES | RADIANS | GRADS Angular units used for Polar, Radar, and Area

Radar charts. Affects the ORIGIN-BASE-

Default = DEGREES ANGLE and START-ANGLE.
Example:

ATTRIBUTES=
('Chartl', 'UNITS', 'Radians')

Displays the ORIGIN-BASE-ANGLE and START-
ANGLE in radians.

In certain instances, the declaration value must be a list (either an inline list, or a named list
previously created using CREATE-LIST).

122 Production Reporting Command Reference

ATTRIBUTES=('Chartl.Fill"',

ATTRIBUTES=('Chart2.Line"',

ATTRIBUTES=('Symbol"',

ATTRIBUTES=('Chartl.Symbol",

'Style’,

A list is always required for the STYLE declaration. For example:

LIST: ('Solid', '45Stripe', 'DiagonalHatch'))

'Style’,

LIST: ('LongDash', 'DashDot', 'Solid"))

'Style',

LIST: ('Square', 'Diamond', 'Triangle'))

FILL sub-selector. For example:

Selector/Sub-Selector - Declaration Keyword Combinations

LIST:(('Red"),

'Color’',
('Blue'), (100,

200, 130)))

A list can also be specified for the COLOR declaration when used with the LINE, SYMBOL, or

Table 25 and Table 26 show which selectors/sub-selectors are valid for each declaration keyword.
(The selectors and sub-selectors are listed in the first column, and the declaration keywords are

listed in the first row.) Production Reporting does not allow invalid combinations of selectors,

sub-selectors, and declarations.

Table 25 Valid Selector/Sub-selector -Declaration Keyword Combinations

Font
Font Style
Color | Style | Size | Pattern | Point Size | Sort Order | Background Colors | ForeGround Colors

Selectors
ALL - .
CHART1 . .
CHART2 . .
HEADER -
SUBTITLE
FOOTER -
FOOTER-TEXT
SUB-FOOTER-TEXT
CHART-AREA -
PLOT-AREA -
LEGEND .

DECLARE-CHART 123

Font
Font Style

Color | Style | Size | Pattern | Point Size | Sort Order | Background Colors | ForeGround Colors

LEGEND-TITLE - -
LEGEND-SYMBOL

ALL-AXIS . -
X-AXIS . -
Y-AXIS . -
Y2-AXIS . -

Sub-selectors

MARKER - -
LABEL - .
LINE - L .

GRID . . - -

SYMBOL - L .

FILL . .

OTHER -

Table 26 Valid Selector/Sub-selector -Declaration Keyword Combinations

3d-
Depth
3d- Cluster- | Threshold
Elevation | Width Value Origii
Start | 3d- Cluster- | Threshold Hole | Legend Legend | Percentage | Label Other Base
Angle | Rotation | Overlap | Method Location | Value | Columns | Rows Precision Location | Label | Units | Angle
ALL - - - - - - - - - - - -
CHART1 - - - . - - - - . . - .
CHART2 - - - . . - .
HEADER .
FOOTER .
LEGEND .

124 Production Reporting Command Reference

3d-
Depth
3d-
Elevation

Start | 3d-
Angle | Rotation

Cluster- | Threshold
Width Value

Cluster- | Threshold Hole | Legend Legend | Percentage | Label Other
Overlap | Method Location | Value | Columns | Rows Precision Location | Label

Units

Y-AXIS .

Sub-Selector - Declaration Keyword Value Ranges

Table 27 shows the value ranges for sub-selector - declaration keywords. These are the values
assigned for each property not defined in DECLARE-CHART.

Table 27 Sub-selector - Declaration Keyword Value Ranges

Sub-selector | Declaration | Value
LINE STYLE Solid, LongDash, ShortDash, LongShort, Dot, DashDot
Default value = Solid
LINE SIZE 1 - 10 pixels
Default value = 1
LINE COLOR Named colors or values in the range of RGB.
See “DECLARE-COLOR-MAP” on page 88 in the for an explanation of RGB values.
SYMBOL STYLE None, Dot, Box, Triangle, Diamond, Star, VerticalLine, HorizontalLine, Cross, Circle, Square
Default value = Dot
SYMBOL SIZE 1 - 100 pixels
Default value = bounding box 6x6
SYMBOL COLOR Named color or Values in the range of RGB.
See “DECLARE-COLOR-MAP” on page 88 in the for an explanation of RGB values.
FILL STYLE None, Solid, 25Per, 50Per, 75Per, HorizontalStripes, VerticalStripe, 45Stripe, 135Stripe, DiagonalHatch,
CrossHatch
Default value = Solid
FILL COLOR Named color or values in the range of RGB.
See “DECLARE-COLOR-MAP” on page 88 in the for an explanation of RGB values.
GRID SIZE 1 - 10 pixels
Default value = 1
GRID COLOR Named color or values in the range of RGB.
See “DECLARE-COLOR-MAP” on page 88 in the for an explanation of RGB values.
GRID STYLE None, Solid, LongDash, ShortDash, LongShort, DashDot

DECLARE-CHART 125

Sub-selector | Declaration | Value

Default value = Solid

OUTLINE STYLE None, Solid, LongDash, ShortDash, LongShort, DashDot

Default value = Solid

OUTLINE SIZE 1 - 10 pixels

Default value = 1

OUTLINE COLOR Named color or values in the range of RGB.
See “DECLARE-COLOR-MAP” on page 88 in the for an explanation of RGB values.

OTHER COLOR Named color or values in the range of RGB. See SQR Language Reference/Declare-Color-Map for
explanation of RGB values.

Default value = Purple - RGB(170,00,255)

See Also
PRINT-CHART

DECLARE-COLOR-MAP

Function

Defines colors in an Production Reporting report.

Syntax

In the SETUP section:

DECLARE-COLOR-MAP
color_name= ({rgb})

color_name= ({rgb})

END-DECLARE

Arguments
color_name

A color_name is composed of the alphanumeric characters (A-Z, 0-9), the underscore (_)
character, and the dash (-) character. It must start with an alpha (A-Z) character. It is case
insensitive. The name 'none' is reserved and cannot be assigned a value. A name in the format
(RGBredgreenblue) cannot be assigned a value. The name 'default’ is reserved and can be

126 Production Reporting Command Reference

assigned a value. 'Default’ is used during execution when a referenced color is not defined in the

runtime environment.

{rgb}

red_lit|_var|_col, green_lit _var|_col, blue_lit|_var|_col where each component is a value in the
range of 000 to 255. In the BEGIN-SETUP section, only literal values are allowed.

Default colors implicitly installed with Production Reporting include:

black = (0,0,0)
white=(255,255,255)
gray=(128,128,128)
silver=(192,192,192)
red=(255,0,0)
green=(0,255,0)
blue=(0,0,255)
yellow=(255,255,0)
purple=(128,0,128)
olive=(128,128,0)
navy=(0,0,128)
aqua=(0,255,255)
lime=(0,128,0)
maroon=(128,0,0)
teal=(0,128,128)
fuchsia=(255,0,255)

Description

DECLARE-COLOR-MAP in the BEGIN-SETUP section defines or redefines colors in an Production

Reporting report. You can define an endless number of entries.

Examples

begin-setup

declare-color-map

light_blue =
end-declare
end-setup

See Also

ALTER-COLOR-MAP, GET-COLOR, and SET-COLOR

DECLARE-COLOR-MAP 127

DECLARE-CONNECTION

Function

Defines data source logon parameters prior to logon. Can be used to override default connection
logon parameters.

Note:
DECLARE-CONNECTION is specific to Production Reporting DDO ports only.

Syntax
In the SETUP section:

DECLARE-CONNECTION connection_name

DSN={uqg txt_1lit}

[USER={uqg txt_1it}]

[PASSWORD={uqg txt_1lit}]

[PARAMETERS=keyword_str=attr_str; [keyword str=attr_str;...]1]
[NO-DUPLICATE=TRUE | FALSE]

SET-GENERATIONS= ({dimensionl, hierarchyl}|[,dimensioni, hierarchyi] ...)
SET-LEVELS= ({dimensionl, levell} |[,dimensioni, leveli] ...)
SET-MEMBERS= ({dimensionl, levell} [,dimensioni, leveli] ...)
END-DECLARE

Arguments

connection_name

User-defined name for describing a datasource connection.

DSN

Logical datasource name recorded in the DDO Registry (Registry.properties file).

USER, PASSWORD

Traditional logon semantics.

PARAMETERS=keyword str=attr_ str;

List of keyword-attribute pairs required by a datasource driver for logon. There is no syntax
restriction on these entries apart from the delimiting semi-colons (;) and equal signs (=). The
keywords must match the logon property names listed for a datasource.

NO—DUPLICATE=TRUE|FALSE (default is FALSE)

(Optional) Prevents Production Reporting from automatically creating additional logins to
datasources that are busy handling a previous query. Creating a new login in such cases is the
default behavior for Production Reporting, which allows a single CONNECTION declaration to
use in a subquery. This behavior, while allowing dynamic logins as-needed, causes difficulties
when doing both DDL (BEGIN-SQL) and DML (BEGIN-SELECT) against temporary tables in
certain vendors datasources. In such cases, you must fetch from the temporary table using the

128 Production Reporting Command Reference

same login in which it was created. Here, you should code the CONNECTION as NO-
DUPLICATE=TRUE, and then use that connection in both the table creation logic of BEGIN-
SQL and the row fetching logic of BEGIN-SELECT.

SET-GENERATIONS

Dimension hierarchy for the previously-declared dimension. The dimension and hierarchy
defined with SET-GENERATIONS can be a literal value only. Consider the following example:

set-generations=('product',5, 'time',1)

In this example, SET-GENERATIONS:

See

Returns the set of members in the ‘product’ dimension that are at the 5th generation in the
dimension’s hierarchy.

For example, returns all ‘Brand Name” members (Generation Level 5) under the product
hierarchy of ‘all products.drink.alcoholic beverages.beer and wine’. This would increase the
result set to a list of beers and wines.

Returns the set of members in the ‘time’ dimension that are at the 1st generation deep into
the dimension.

For example, returns all ‘Year’ members (Generation Level 1) under the time hierarchy of
‘1997.Q.2. This reduces result set to ‘1997,

“Set Generations” in Volume 3 of the Hyperion SQR Production Reporting Developer's

Guide for detailed examples of SET-GENERATIONS.

SET-LEVELS

Extends the dimension hierarchy for the previously-declared dimension. The dimension and
hierarchy defined with SET-LEVELS can be a literal value only. Consider the following example:

set-levels=('product',2)

In this example:

See

SET-LEVELS used with only the previous SET-MEMBERS returns all members under the
product hierarchy and the next two generations (Product SubCategory and Brand Name)
for the product hierarchy of ‘all products.drink.alcoholic beverages.beer and wine’.

SET-LEVELS used with the previous SET-MEMBERS and SET-GENERATIONS returns all
members for generation levels 5 through 7 under the product hierarchy of ‘all
products.drink.alcoholic beverages.beer and wine.’

“Set Levels” in Volume 3 of theHyperion SQR Production Reporting Developer's Guide detailed

examples of SET-LEVELS.

SET-MEMBERS

Returns the set of members in a dimension, level, or hierarchy whose name is specified by a
string. The dimension and hierarchy defined with SET-MEMBERS can be a literal value only.
Consider the following example:

set-members=('product', 'all products.drink.alcoholic beverages.beer and
wine', 'time', '1997.01.2")

DECLARE-CONNECTION 129

In this example, SET-MEMBERS:

e Returns the set of members in the dimension ‘product’ at the specific hierarchy of ‘all
products’, at a specific level of ‘drink’, at a specific level of ‘alcoholic beverages’, at a specific
level of ‘beer and wine’.

e Returns the set of members in the dimension ‘time’ at the specific hierarchy of ‘1997’, at the
specific level of ‘QUT’, at the specific level of 2’.

See “Set Members” in Volume 3 of the Hyperion SQR Production Reporting Developer's Guide

for detailed examples of SET-MEMBERS.

Examples

declare-connection SAPR3-1
dsn=SAPR3
username=guest
password=guest
end-declare

See Also
ALTER-CONNECTION

DECLARE-IMAGE

Function

Declares the type, size, and source of an image to print.

Syntax

DECLARE-IMAGE image_name

[TYPE=image type 1lit]

[IMAGE-SIZE=(width_num 1lit,height_num 1it)]

[SOURCE=file name 1it]

[[FOR-PRINTER= ({ POSTSCRIPT | HPLASERJET | HTML | PDF | WINDOWS |PS|HP|HT|PD]|
WP}, image_type lit,file name 1it) . . .]

END-DECLARE

Note:

DECLARE-IMAGE and PRINT-IMAGE work together to identify information about the image.
The IMAGE-SIZE argument is required and must be defined in either DECLARE-IMAGE or
PRINT-IMAGE. The SOURCE and TYPE arguments are optional; however, if you define one
you must define the other.

Arguments
image name

Unique name for referencing the image declaration.

130 Production Reporting Command Reference

TYPE

Image type. Types can be EPS-FILE, HPGL-FILE, GIF-FILE, JPEG-FILE, BMP-FILE, PNG-
FILE, or AUTO-DETECT.

IMAGE-SIZE

Width and height of the image in Production Reporting coordinates.

SOURCE

Name of a file containing the image. The file must be in the SQRDIR directory, or you must
specify the full path.

FOR-PRINTER

Separate image file for each report output type.

Tip:

The TYPE and SOURCE arguments contain the default values. You can override these defaults for
a specific printer by using the FOR-PRINTER argument.

Note:

If the file is not in the SQRDIR directory, the full path or no path should be given. A relative
path will not do, because you need to know where you execute the file from.

Description

DECLARE-IMAGE defines and names an image. This image can then be placed in a report at the
position specified with PRINT-IMAGE.

If an image has not been declared, or if the image type is not supported for a particular report
output type, or if the image file has incomplete header information, then a box (either shaded
for HP printers or with a diagonal line through it for Postscript printers) appears where the
image is expected. Table 28 illustrates the valid relationships between image type and report

output type.

Table 28 Valid Images Types

BMP | EPS | GIF | HPGL | JPEG | PNG
HPLaserJet X
HTML X X X X X X
PDF X X X X
Postscript X
Windows X

DECLARE-IMAGE 131

Examples

declare-image officer-signature
type= eps-file
source= 'off_sherman.eps'
image-size= (40, 5)
end-declare

declare-image oracle-logo
type="'auto-detect'
image-size=(40,10)
source=$BLOB_Column

The following example defines separate image files for different printer types:

begin-setup
declare-image oracle_logo
type=GIF-FILE
Image-size=(40,10)
source=oracle.gif
for-printer=(PS, EPS-FILE, 'oracle.eps')
for-printer=(HP, HPGL-FILE, 'oracle.hpgl')
end-declare
end-setup

begin-report

move 'hyperion.bmp' to $image_src

print-image oracle_logo (10,15)

for-printer= (WP, BMP-FILE, S$image_src)

end-report
In this example, the image file used for each printer type is:
e HP—‘oracle.hpgl’ (Identified using FOR-PRINTER in DECLARE-IMAGE)
e PS—‘oracle.eps’ (Identified using FOR-PRINTER in DECLARE-IMAGE)
e PD—‘oracle.gif’ (Declared as default using SOURCE= in DECLARE-IMAGE)
e HT—'oracle.gif’ (Declared as default using SOURCE= in DECLARE-IMAGE)

e WP—‘oracle.bmp’ (Identified using FOR-PRINTER in PRINT-IMAGE)

See Also
e PRINT-IMAGE

e “Adding Graphics” in Volume 1 of the Hyperion SQR Production Reporting Developer's
Guide.

DECLARE-LAYOUT

Function

Defines the attributes for the layout of an output file.

132 Production Reporting Command Reference

Syntax

DECLARE-LAYOUT layout_name

[PAPER-SIZE= ({paper _width_num 1it[uom], paper_depth num 1it[uom]} |
{paper_name})]

[FORMFEED=form feed 1it]
[ORIENTATION=orientation_1lit]
[LEFT-MARGIN=left_margin_num 1it[uom]]
[TOP-MARGIN=top_margin num_ 1it[uom]]
[RIGHT-MARGIN=right_margin num 1it[uom]

| LINE-WIDTH=1ine_width num 1it[uom]

| MAX-COLUMNS=columns_int_ 1it]
[BOTTOM-MARGIN=bottom_margin_num_1it[uom]
| PAGE-DEPTH=page_depth_num 1it[uom]
|MAX-LINES=1ines_int_lit]
[CHAR-WIDTH=char_width num 1it[uom]]
[LINE-HEIGHT=1ine height_num 1it[uom]]
END-DECLARE

Arguments
layout_name

Unique layout name used to reference the layout and its attributes.

uom

Optional suffix which denotes the unit of measure applied to the preceding value.

Table 29 Valid uom Suffixes

Suffix | Meaning Definition

dp decipoint | 0.001388 inch

pt point 0.01388 inch

mm millimeter | 0.03937 inch

cm centimeter | 0.3937 inch

in inch 1.0000 inch

paper._name

An option of PAPER-SIZE. This name is associated with predefined dimensions.

Table 30 Valid Paper Names

Name Width Depth Orientation

Letter 8.51in 11in Portrait

Legal 8.5in 14 in Portrait

Ad 8.27in 11.69 in | Portrait

DECLARE-LAYOUT 133

Name Width Depth Orientation
A3 11.69in | 16.54in | Portrait
Executive | 7.25in 10.5in Portrait
B5 7.17in 10.12 in | Portrait
Com-10 4.125in | 9.5in Landscape
Monarch | 3.875in | 7.5in Landscape
DL 4.33in 8.66 in Landscape
C5 6.378in | 9.016 in | Landscape
Table 31 DECLARE-LAYOUT Command Arguments
Argument Choice or Default vom | Default Value | Description
PAPER-SIZE inches 8.5in,11in Physical size of the page. The first parameter is the width of the page.
The second parameter is the depth or length. It may also be a predefined
name. (See Table 30.) Note: When ORIENTATION= LANDSCAPE the
default values are 11 in, 8.5 in.
FORMFEED YES, NO YES Whether to write form feeds at the end of each page.
ORIENTATION PORTRAIT, LANDSCAPE | PORTRAIT Portrait = vertical. Landscape = horizontal. Printing in landscape for the
printer type HPLASERJET requires landscape fonts.
LEFT-MARGIN inches 0.5in Amount of blank space to leave at the left side of the page.
TOP-MARGIN inches 0.5in Amount of blank space to leave at the top of the page.
RIGHT-MARGIN inches 0.51n Amount of blank space to leave at the right side of the page. If you specify
LINE-WIDTH or MAX-COLUMNS, you cannot use this parameter.
LINE-WIDTH inches 7.51in Length of the line. If you specify RIGHT-MARGIN or MAX-COLUMNS, you
cannot use this parameter.
MAX-COLUMNS 75 Maximum number of columns in a line. If you specify RIGHT-MARGIN or
LINE-WIDTH, you cannot use this parameter.
BOTTOM-MARGIN | inches 0.5in Amount of blank space to leave at the bottom of the page. If you specify
PAGE-DEPTH or MAX-LINES, you cannot use this parameter.
PAGE-DEPTH inches 10 in Depth of the page. If you specify BOTTOM-MARGIN or MAX-LINES, you
cannot use this parameter.
MAX-LINES 60 Maximum number of lines printed on the page. If you specify
PAGE-DEPTH or BOTTOM-MARGIN, you cannot use this parameter.
LINE-HEIGHT points 12 pt Size of each line on the page. There are 72 points perinch. If LINE-HEIGHT
is not specified, it follows the value for POINT-SIZE, if specified. The
default value of 12 points yields 6 lines per inch. For the printer type
LINEPRINTER, this value is used only to calculate the TOP-MARGIN and
BOTTOM-MARGIN (for example, not in computing the position on the
page).

134 Production Reporting Command Reference

Argument

Choice or Default vom | Default Value | Description

CHAR-WIDTH

points 7.2 pt Size of each horizontal character column on the page (for example, the
distance between the locations (1, 12) and (1, 13)). For the printer type
LINEPRINTER, this value is used only to calculate the TOP-MARGIN and
BOTTOM-MARGIN (not in computing the position on the page).

Description

DECLARE-LAYOUT describes the characteristics of a layout to use for an output file. A layout can
be shared by more than one report. You can define as many layouts as are necessary for the
requirements of the application. You can override the default layout attributes by defining a
layout called DEFAULT in your program. Each layout name must be unique.

Production Reporting maps its line and column positions on the page by using a grid determined
by the LINE-HEIGHT and CHAR-WIDTH arguments. That is, Production Reporting calculates the
number of columns per row by dividing the LINE-WIDTH by the CHAR-WIDTH and calculates
the number of lines by dividing the PAGE-DEPTH by the LINE-HEIGHT. Each printed segment
of text is placed on the page using this grid. Because the characters in proportional fonts vary in
width, it is possible that a word or string is wider than the horizontal space you have allotted,
especially in words containing uppercase letters or bold characters. To account for this behavior,
you can either move the column position in the PRINT or POSITION statements or indicate a
larger CHAR-WIDTH in DECLARE-LAYQUT.

The ORIENTATION parameter selects the proper fonts. In addition, the parameter interacts with
PAPER-SIZE as follows:

e When you do not specify ORIENTATION=LANDSCAPE or the PAPER-SIZE dimensions,
Production Reporting creates a page with the dimensions set to 11 inch by 8.5 inch. This
results in a page of 100 columns by 45 lines with 0.5 inch margins.

e When you specify PAPER-SIZE= (paper_name), the page orientation is set according to
the paper_name specified. If you also specify ORIENTATION and the value differs from the
PAPER-SIZE value, the ORIENTATION value overrides the PAPER-SIZE value.

e When you specify PAPER-SIZE= (page_width, page_depth), Production Reporting does
not swap the page width and page depth if ORIENTATION=LANDSCAPE.

Note:

If none of the following commands are present in an Production Reporting report, none of
the default values in Table 31 take effect, and the report is created with 62 lines by 132
characters.

DECLARE-REPORT (Setup)
DECLARE-LAYOUT (Setup)
DECLARE-PRINTER(Setup)
DECLARE-PROCEDURE (Setup)
DECLARE-TOC (Setup)
USE-REPORT (Body)

DECLARE-LAYOUT 135

USE-PROCEDURE (Body)
USE-PRINTER-TYPE (Body)

TOC-ENTRY (Body)

ALTER-PRINTER (Body)

BEGIN-HEADING For-Tocs=() (Construct)
BEGIN-FOOTING For-Tocs=() (Construct)
BEGIN-HEADING For-Reports=() (Construct)
BEGIN-FOOTING For-Reports=() (Construct)

Examples

The following example illustrates the ability to specify parameters using a metrics measurement
system. (The syntax results in a paper size of 210mm by 297mm, a top margin of 12.7mm, a left
margin of 12.7mm, a right margin of 25.4mma bottom margin of 12.7mm, a portrait orientation,
67 columns, and 63 lines.

declare-layout my-layout
paper-size=(a4)
left-margin=12.7 mm
right-margin=25.4 mm
end-declare

The following example changes the page dimensions. It also changes the left and right margins
to one inch. (The syntax results in a paper size of 14 inches by 11 inches, a top margin of 0.5
inches, a left margin of one inch, a right margin of one inch, a bottom margin of 0.5 inches, a
portrait orientation, 120 columns, and 60 lines.)

declare-layout large-paper
paper-size=(14, 11)
left-margin=1
right-margin=1
end-declare

The following example retains the default page dimensions and changes the left and right margins
to one inch. (The syntax results in a paper size of 8.5 inches by 11 inches, a top margin of 0.5
inches, a left margin of one inch, a right margin of one inch, a bottom margin of 0.5 inches, a
portrait orientation, 65 columns, and 60 lines.)

declare-layout default
left-margin=1
right-margin=1

end-declare

The following example changes the orientation to landscape. The columns and rows are
recalculated. All other values remain the same. (The syntax results in a paper size of 11 inches
by 8.5 inches, a top margin of 0.5 inches, a left margin of 0.5 inches, a right margin of 0.5 inches,
a bottom margin of 0.5 inches, 100 columns and 45 lines.)

declare-layout default
orientation=landscape

136 Production Reporting Command Reference

end-declare

The following example changes the orientation to landscape. In addition the top margin is set
to one inch. (The syntax results in a paper size of 11 inches by 8.5 inches, a top margin of 0.5
inches, a left margin of 0.5 inches, a right margin of 0.5 inches, a bottom margin of 0.5 inches,
a landscape orientation, 100 columns and 43 lines.)

declare-layout my_landscape
orientation=1andscape
top-margin=1

end-declare

The following example specifies the page dimensions using a predefined name. Note that the
orientation changes since this example is an envelope.(The syntax results in a paper size of 4.125
inches by 9.5 inches,. a top margin of 0.5 inches, a left margin of 0.5 inches, a right margin of
0.5 inches, a bottom margin of 0.5 inches, a landscape orientation, 85 columns and 18 lines.)

declare-layout envelope
paper-size=(com-10)
end-declare

See Also
DECLARE-REPORT

DECLARE-PRINTER

Function

Overrides the printer defaults for specified printer type.

Syntax

DECLARE-PRINTER printer. name

[FOR-REPORTS= (report_namel|[, report_namei] ...)]
[TYPE=printer type_ 1lit]
[INIT-STRING=initialization string txt_1it]
[RESET-STRING=reset_string txt_1it]
[COLOR=color_1it]
[POINT-SIZE=point_size num 1it]
[FONT-TYPE=font_type_int_1it]
[SYMBOL-SET=symbol_set_id 1it]
[STARTUP-FILE=file name_ txt_Ilit]
[PITCH=pitch num 1it]

[FONT=font_int_ 1it]
[BEFORE-BOLD=before bold string txt_1it]
[AFTER-BOLD=after_bold string txt_1it]
END-DECLARE

Arguments

printer._name

DECLARE-PRINTER 137

Unique name used to reference a printer definition and its attributes.

Table 32 describes the other DECLARE-PRINTER arguments.

Description
Each printer has a set of defaults in Table 32. DECLARE-PRINTER overrides these defaults.

Use DECLARE-PRINTER in the SETUP section to define the characteristics of the printer or
printers to use. If you need to change some of the arguments depending on the run-time
environment, you can use ALTER-PRINTER in any part of the program except the PROGRAM and
SETUP sections.

A program can contain no more than one DECLARE-PRINTER command for each printer type
for each report. If you do not provide a printer declaration, the default specifications are used.
The default printer attributes can be overridden by providing a DECLARE-PRINTER specification
for each printer. Their names are: DEFAULT-LP for line printer, DEFAULT-HP for HP Laser]et,
DEFAULT-HT for HTML, and DEFAULT-PS for PostScript.

Table 32 describes each of the arguments, the possible choices, and the default values.

Table 32 DECLARE-PRINTER Command Arguments

Argument Choice or Measure Default Description
AFTER-BOLD any string (none) See BEFORE-BOLD.
BEFORE-BOLD | any string (none) BEFORE-BOLD and AFTER-BOLD are for line

printers only. They specify the character string
to turn bolding on and off. If the string contains
blank characters, enclose it in single quotes
(“..).

To specify non-printable characters, such as

ESC, enclose the decimal value inside angle
brackets as follows:

BEFORE-BOLD=<27>[r ! Turn on
bold AFTER-BOLD=<27>[u ! Turn it
off

These arguments work with the BOLD argument

of PRINT.
COLOR Yes, No No Defines whether the printer can print in color.
FONT font_number 3 Font number of the typeface to use. For HP

LASERJET printers, this is the typeface value as
defined by Hewlett-Packard. Fora complete list
of the typeface numbers, see the HP LaserJet
Technical Reference Manual. For POSTSCRIPT
printers, Production Reporting supplies a list of
fonts and arbitrary font number assignments in
the file POSTSCRI.STR.

The font numbers are the same as those for HP
Laserlet printers, wherever possible. You can
modify the font list in POSTSCRI.STR to add or
delete fonts. Read the POSTSCRI.STR file for

138 Production Reporting Command Reference

Argument

Choice or Measure

Default

Description

instructions. Table 33 lists the fonts available
in Production Reporting internally. This table
lists the fonts available in the Production
Reporting POSTSCRI.STR file.

FONT-TYPE

PROPORTIONAL, FIXED

Depends on the font

Applies only to HP LASERJET printers and
needs to be specified only for font types not
defined in Table 33.

FOR-REPORTS

ALL

Name of the reports that use this printer
definition (default = ALL). Required only for
programs with multiple reports. Ignore this
argument for programs that produce a single
report..

INIT-STRING

(none)

Sends control or other characters to the printer
at the beginning of the report. Designed
primarily for line printers and has limited use
with other printer types. Specify non-display
characters by placing their decimal values
inside angle brackets. Forexample, <27> is the
ESC or escape character.

PITCH

characters/inch

10

Required for HPLASERJET printers and SPF
Viewer. Fixed—pitched fonts should indicate
the pitch.

POINT-SIZE

points

12

Beginning size of the font. Does not apply to
line printers

RESET-STRING

(none)

Sends control or other characters to the printer
at the end of the report. Designed primarily for
line printers and has limited use with other
printer types. Specify non-display characters
by placing their decimal values inside angle
brackets. For example, <27> is the ESC or
escape character.

STARTUP-FILE

filename

POSTSCRI.STR

POSTSCRIPT printers only. Defines an alternate
startup file. Unless otherwise specified, the
default startup file is located in the directory
pointed to by the environment variable
SQRDIR.

SYMBOL-SET

HP defined sets

ou

HP LASERJET printers only. The default value of
“OU” is for the ASCII symbol set. Fora complete
list of the symbol sets, see the HP Laseret
Technical Reference Manual.

TYPE

LINEPRINTER, POSTSCRIPT, HPLASERJET,
HTML, LP, PS, HP, HT

LP

Production Reporting creates output specific to
each printer.

o LINEPRINTER (LP) files generally consist of
ASCII characters and can be viewed by a
text editor.

® POSTSCRIPT (PS) files consist of ASCII
characters, but you need to know

DECLARE-PRINTER 139

Argument Choice or Measure

Default

Description

PostScript to understand what is shown on
the printer.

o HPLASERJET (HP) files are binary files and

cannot be edited or viewed.

o HTML (HT) files consist of ASCII characters

and can be viewed by a browser.

Table 33 lists the fonts available in Production Reporting for use with the FONT argument for
HPLaser]Jet printer types.

Table 33 Fonts Available for HP LaserJet Printers in Production Reporting

Value | Typeface Style
0 Line printer Fixed
1 Pica Fixed
2 Elite Fixed
3 Courier Fixed
4 Helvetica Proportional
5 Times Roman Proportional
6 Letter Gothic Fixed
8 Prestige Fixed
11 Presentations Fixed
17 Optima Proportional
18 Garamondi Proportional
19 Cooper Black Proportional
20 Coronet Bold Proportional
21 Broadway Proportional
22 Bauer Bodini Black Condensed | Proportional
23 Century Schoolbook Proportional
24 University Roman Proportional

The font you choose—in orientation, typeface, and point size—must be an internal font,
available in a font cartridge, or downloaded to the printer.

For fonts not listed in Table 33, indicate the font style using the FONT-TYPE argument, or the

correct typeface cannot be selected by the printer.

140 Production Reporting Command Reference

Table 34 lists the fonts available in Production Reporting for use with the FONT argument for
PostScript printer types. Those for which bold face types are available are indicated by a “Y” in
the Bold column.

Table 34 Fonts Available for PostScript Printers

Value | Typeface Bold
3 Courier Y

4 Helvetica Y

5 Times Roman Y

6 Avant Garde Book

8 Palatino Roman Y
11 Symbol

12 Zapf Dingbats

17 Zapf Chancery Medium Italic

18 Bookman Light

23 New Century Schoolbook Roman | Y

30 Courier Oblique Y
31 Helvetica Oblique Y
32 Times ltalic Y

33 Avant Garde Demi

34 Avant Garde Book Oblique

35 Avant Garde Demi Oblique

36 Palatino Oblique Y

37 New Century Schoolbook Italic Y

38 Helvetica Narrow Y
39 Helvetica Narrow Oblique Y
40 Bookman Demi

41 Bookman Light Italic

42 Bookman Demi Italic

Other type faces can be added to POSTSCRI.STR.

Table 35 lists the fonts available in Production Reporting when printing on Windows printer
drivers using -PRINTER : WP. When you use -PRINTER : WP, your report is sent directly to the

DECLARE-PRINTER 141

default Windows printer. To specify a non-default Windows printer, use -PRINTER : WP :
{Printer Name}.The {Printer Name} can be the name assigned to a printer; or, if the operating
system permits it, the UNC name (i.e.\\Machine\ShareName). For example, to send output to
a Windows printer named NewPrinter, you could use -PRINTER: WP :NewPrinter. If your
printer name has spaces, enclose the entire command in double quotes.

Fonts are specified in the ALTER-PRINTER FONT qualifier by their number.

Table 35 Fonts Available for Windows Printers

Value | Windows Font/Name | Style

3 Courier New Fixed
300 | Courier New Bold
4 Arial Proportional
400 | Arial Bold
5 Times New Roman Proportional

500 Times New Roman Bold

6 AvantGarde Proportional

8 Palatino Proportional

800 Palatino Bold

11 Symbol Proportional
Note:

Fonts 6, 8, and 800 are not supplied with Windows. You can get these fonts by purchasing the
ADOBE Type Manager (ATM). The advantage of using ATM fonts is the compatibility for
PostScript printer fonts.

The Symbol font uses the SYMBOL_CHARSET instead of the usual ANSI_CHARSET character
set.

To add more fonts, edit the [Fonts] section in SQR.INI.

Examples

Default HP definition
for all reports
Helvetica

PC-850 Multilingual

declare-printer HP-definition
type=HP
font=4
symbol-set=12U

end-declare

declare-printer PS-Sales ! PS definition

for-reports=(sales) ! for the Sales report
type=PS
font=5 ! Times-Roman

142 Production Reporting Command Reference

end-declare

See Also
ALTER-PRINTER and DECLARE-REPORT

DECLARE-PROCEDURE

Function

Declares procedures triggered when a specified event occurs.

Syntax

DECLARE-PROCEDURE

[FOR-REPORTS= (report_namell, report_nameil...)
[BEFORE-REPORT=procedure_name| (argl[,argil ...
[AFTER-REPORT=procedure_namel (argl[,argil...)
[BEFORE-PAGE=procedure_namel (argl[,argil...)]
[AFTER-PAGE=procedure_namel[(argl[,argi] ...) 1]
END-DECLARE

Arguments

FOR-REPORTS

Reports that use the given procedures. Required only for programs with multiple reports.

BEFORE-REPORT

Procedure executed at the time of the execution of the first command which causes output to
be generated (PRINT). It can be used, for example, to create a report heading.

AFTER-REPORT

Procedure executed just before the report file is closed at the end of the report. It can be used to
print totals or other closing summary information. If no report was generated, the procedure
does not execute.

BEFORE-PAGE

Procedure executed at the beginning of every page, just before the first output command for the
page. It can be used, for example, to set up page totals.

AFTER-PAGE

Procedure executed just before each page is written to the file. It can be used, for example, to
display page totals.

You can optionally specify arguments to pass to any of the procedures. Arguments can be any
variable, column, or literal.

DECLARE-PROCEDURE 143

Description

DECLARE-PROCEDURE can be used to define Production Reporting procedures to invoke before
or after a report is printed or before the beginning or end of each page.

Issue DECLARE-PROCEDURE in the SETUP section. For multiple reports, you can use the
command as often as required to declare procedures required by all the reports. If you issue
multiple DECLARE-PROCEDURE commands, the last one takes precedence. In this way, you can
use one command to declare common procedures for ALL reports and others to declare unique
procedures for individual reports. The referenced procedures can accept arguments.

If no FOR-REPORTS is specified, ALL is assumed. Initially, the default for each of the four
procedure types is NONE. If a procedure is defined in one DECLARE-PROCEDURE for a report,
that procedure is used unless NONE is specified.

Use the USE-PROCEDURE command to change the procedures to use at run-time. To turn a
procedure off, specify NONE in the USE-PROCEDURE statement.

Examples

declare-procedure ! These procedures will
before-report=report_heading ! be used by all reports
after-report=report_footing

end-declare

declare-procedure ! These procedures will
for-reports=(customer) ! be used by the customer
before-page=page_setup ! report

after-page=page_totals
end-declare

See Also
USE-PROCEDURE

DECLARE-REPORT

Function

Defines reports and their attributes.

Syntax

DECLARE-REPORT report_name
[TOC=toc_name]
[LAYOUT=1ayout_name]
[PRINTER-TYPE=printer_type]
END-DECLARE

Arguments
report_name

Report name.

144 Production Reporting Command Reference

TOC

Name of the Table of Contents.

LAYOUT

Layout name. If none is specified, the default layout is used.

PRINTER-TYPE

Type of printer. If none is specified, the default is the LINEPRINTER. If no
DECLARE-PRINTER is specified, DEFAULT-LP is used. Valid values for PRINTER-TYPE are HT,
HP, PD, PS, LP, HTML, HPLASERJET, POSTSCRIPT, and LINEPRINTER.

Description

Issue DECLARE-REPORT in the SETUP section.

You can use DECLARE-REPORT to declare one or more reports to be produced in the application.
You must use this command when developing applications to produce more than one report.

Multiple reports can share the same layout and the same printer declarations or each report can
use its own layout or printer definitions if the report has unique characteristics.

When you are printing multiple reports, unless report names are specified using the -F
command-line flag, the first report declared is generated with the name of program.lis, where
program is the application name.

Additional reports are generated with names conforming to the rules dictated by the SQR.INI
OUTPUT-FILE-MODE setting.

When the -KEEP or -NOLIS flags are used, the first intermediate print file (SPF file) is generated
with a name of program.spf and additional reports are generated with names conforming to the
rules dictated by the SQR.INI OUTPUT-FILE-MODE setting.

Examples

declare-layout customer_layout
left-margin
right-margin

end-declare

declare-layout summary_layout
orientation=1andscape
end-declare

declare-report customer_detail
toc=detailed
layout=customer_layout
printer-type=postscript
end-declare

declare-report customer_summary
layout=summary_layout
printer-type=postscript
end-declare

DECLARE-REPORT 145

use-report customer_detail
...print customer detail...
use-report customer_summary
...print customer summary.. .

See Also
USE-REPORT, DECLARE-LAYOUT, DECLARE-PRINTER, and DECLARE-TOC

DECLARE-TABLE

Function

Defines a template for a table.

Syntax

DECLARE-TABLE table template name
COLUMN-COUNT=number._of_columns

[COLUMN-ATTRIBUTES= ({column number}, {keywordl}, {valuel}, ..., {keywordn},
{valuen})]

[ROW-ATTRIBUTES= ({ keywordl}, {valuel}, ..., {keywordn}, {valuen})]
[TABLE-ATTRIBUTES= ({ keywordl}, {valuel}, ..., {keywordn},{valuen})]
Arguments

table template_name

Name of the table template. Valid values include alphanumeric characters (A-Z, 0-9),
underscore (_), and dash (-). Do not use the reserved word NONE.

COLUMN-COUNT

Number of columns in the table.

COLUMN-ATTRIBUTES

Attributes to apply to column cells.

Table 36 Column Attributes

Attribute Description

BACKGROUND Background color name or RGB triplet. Default=NONE

BOLD YES | NO
CENTER YES | NO
FILL-COLOR Fill color name or RGB triplet. Default=NONE

146 Production Reporting Command Reference

Attribute Description

FONT Font number. Cannot specify a default value

FOREGROUND Foreground color name or RGB triplet. Default=BLACK

ITALIC YES | NO

LEADING Expressed in decipoints

LINE-COLOR Color name or RGB triplet of column line (line after column). Default=NONE (no line)
LINE-STYLE Column line style (SOLID, SQUARE-DQT, DASH, DASH-DQT, LONG-DASH, LONG-DASH-

DOT,LONG-DASH-DOT-DOT). Default=SOLID

LINE-THICKNESS | Thickness of the column line expressed in decipoints. Default=two decipoints

POINT-SIZE Point size of the font. Cannot specify a default value.

UNDERLINE YES | NO

WIDTH Width expressed in coordinate units. Cannot specify a default value
WRAP YES | NO | maximum number of lines

WRAP-HEIGHT Number of lines between each wrapped line. Default=one line

WRAP-ON Characters on which to force a WRAP. The default is not to force a WRAP

ROW-ATTRIBUTES

Attributes to apply to rows.

Table 37 Row Attributes

Attribute Description

BORDER-COLOR Color name or RGB triplet. Default=NONE (no border)

BORDER-LINE-STYLE | The border line style (SOLID, SQUARE-DOT, DASH, DASH-DOT, LONG-DASH, LONG-DASH-
DOT, LONG-DASH-DOT-DOT). Default=SOLID

BORDER-THICKNESS | Border thickness expressed in decipoints. Default=two decipoints

FILL-COLOR Fill color name or RGB triplet. Default=NONE

HEIGHT Number of lines between each printed row. Default=one line

LINE-COLOR Color name or RGB triplet. Default=NONE (no line)

LINE-STYLE Row line style (SOLID, SQUARE-DOT, DASH, DASH-DQOT, LONG-DASH, LONG-DASH-

DOT,LONG-DASH-DOT-DOT). Default=SOLID

LINE-THICKNESS Line thickness expressed in decipoints. Default=two decipoints

TABLE-ATTRIBUTES

DECLARE-TABLE 147

Attributes for the appearance of the table.

Table 38 Table Attributes

Attribute Description

BORDER-COLOR Color name or RGB triplet. Default=NONE (no border)

BORDER-LINE-STYLE | The border line style (SOLID, SQUARE-DOT, DASH, DASH-DOT, LONG-DASH, LONG-DASH-
DOT, LONG-DASH-DOT-DOT). Default=SOLID

BORDER-THICKNESS | Border thickness expressed in decipoints. Default=two decipoints

FILL-COLOR Fill color name or RGB triplet. Default=NONE
LEADING Expressed in decipoints. Default=0 decipoints
Description

Use DECLARE-TABLE in the BEGIN-SETUP section to define a template for a table.

Example

declare-table templated

column-count=3

column-attributes=(0, 'line-color', ('blue'))

column-attributes=(2, 'point-size', 16, 'font"', 4,
'bold', 'No', 'italic', 'yes', 'center', 'yes',
'fill-color', ('red'))

column-attributes=(3, 'point-size', 8, 'font',300,
'bold', 'YES', 'italic', 'yes', 'center', 'yes')

row-attributes=('line-color', ('green'), 'height',5)

end-declare

See Also

ALTER-TABLE, CREATE-TABLE, DUMP-TABLE, FILL-TABLE, PRINT-TABLE,

DECLARE-TOC

Function

Defines the Table of Contents and its attributes.

Syntax

DECLARE-TOC toc_name

[FOR-REPORTS= (report_namel |, report_namei] ...)]
[DOT-LEADER=YES |NO]

[INDENTATION=position_count_num 1it]
[BEFORE-TOC=procedure_name[(argl[,argi] ...)
[AFTER-TOC=procedure_namel (argll,argil...)]
[BEFORE-PAGE=procedure _namel (argll,argi]...
[AFTER-PAGE=procedure_namel| (argl[,argil...)

148 Production Reporting Command Reference

[ENTRY=procedure-name [(argi [,argi] ...)1]
END-DECLARE

Arguments
toc_name

Name of the Table of Contents.

FOR-REPORTS

One or more reports that use this Table of Contents.

DOT-LEADER

Whether a dot leader precedes the page number. The default is NO.

INDENTATION

Number of spaces to indent each level. The default is 4.

BEFORE-TOC

Procedure executed before generating the Table of Contents. If no Table of Contents is generated,
the procedure does not execute.

AFTER-TOC

Procedure executed after generating the Table of Contents. If no Table of Contents is generated,
the procedure does not execute.

BEFORE-PAGE

Procedure executed at the start of every page.

AFTER-PAGE

Procedure executed at the end of each page.

ENTRY

Procedure that is executed to process each Table of Contents entry (instead of Production
Reporting doing it for you). When this procedure is invoked, the following Production
Reporting-reserved variables are populated with data about the TOC entry:

#SQR-TOC-LEVEL

Contains the level

$SQR-TOC-TEXT

Contains the text

#SQR-TOC-PAGE

Contains the page number

DECLARE-TOC 149

These are global variables. If the procedure is local, you must precede it with an underscore (for
example, #_sqr-toc-page). These three Production Reporting-reserved variables are only valid
within the scope of the ENTRY procedure. They can be referenced outside the scope, but their
contents are undefined.

Description
Use DECLARE-TOC in the SETUP section.
You can use DECLARE-TOC to declare one or more Table of Contents for the application.

A Table of Contents can be shared between reports.

Example

begin-setup
declare-toc common
for-reports=(all)
dot-leader=yes
indentation=2
end-declare
end-setup

toc-entry level=1 text=$Chapter
toc-entry level=2 text=$Heading

See Also
BEGIN-FOOTING, BEGIN-HEADING, DECLARE-REPORT, and TOC-ENTRY

DECLARE-VARIABLE

Function

Explicitly declares a variable type.

Syntax

DECLARE-VARIABLE

[DEFAULT-NUMERIC={DECIMAL[(prec_lit)] |FLOAT | INTEGER}]

[DECIMAL[(prec_lit) lnum var[(prec_1lit)] [num var| (prec_1it)]]...]
[FLOAT num var|[num var]...]

[DATE date_var[date_var]...]

[INTEGER num var|[num var]...]

[TEXT string var[string var]...]

[BINARY binary. var[binary var]...]

END-DECLARE

150 Production Reporting Command Reference

Arguments
DEFAULT-NUMERIC

Default type for numeric variables. Unless explicitly declared otherwise, a numeric variable
assumes the variable type. This qualifier overrides any setting from the command-line

flag -DNT or the DEFAULT-NUMERIC entry in the [Default-Settings] section of SQR.INT.

If -DNT was not specified on the command line and SQR.INT has no DEFAULT-NUMERIC entry,
then the default numeric type is FLOAT.

DECIMAL

Defines that the numeric variables that follow are decimal variables with a precision specified
with prec_lit. The precision can be assigned to the group of variables or to each individual
variable. The precision is the total number of digits used to represent the number. This precision
can range from 1 to 38. The default value is 16. The range of decimal numbers is

from -9.9999999999999999999999999999999999999E+4096 to
+9.9999999999999999999999999999999999999E+4096

FLOAT

Defines that the numeric variables that follow are used as double precision floating point. The
range and precision of these numbers are machine- dependent.

DATE

Defines that the date variables that follow can contain a date in the range of January1,4713 BC
to December 31, 9999 AD.

INTEGER

Defines that the numeric variables that follow are used as integers with a range of -2147483648
to +2147483647.

TEXT

Defines that the string variables that follow are text (character) variables.

BINARY

Defines that the variables that follow support BINARY data.

Description

You can set the default numeric type externally, using the -DNT command-line flag or the
DEFAULT-NUMERIC setting in the [Default-Settings] section of SQR.INI. However, the setting
in DECLARE-VARIABLE takes precedence over all other settings. If the command has not been
used, then the -DNT command-line flag takes precedence over the setting in SQR.INI.

Besides FLOAT, INTEGER, or DECIMAL, the DEFAULT-NUMERIC setting in SQR.INI and -DNT
command-line flag can be set to v30. With v30, the program acts in the same manner as in pre-
version 4.0 releases; that is, all variables are FLOAT. Incidentally, V30 is not a valid setting for the
DEFAULT-NUMERIC setting in DECLARE-VARIABLE.

DECLARE-VARIABLE 151

DECLARE-VARIABLE allows the user to determine the type of variables to use to fit their needs.
This command can only appear in the SETUP section or as the first statement of a local procedure.
The placement of the command affects its scope. When used in the SETUP section, it affects all
variables in the entire program. Alternately, when it is placed in a local procedure, its effect is
limited to the scope of the procedure. If the command is in both places, the local declaration
takes precedence over the SETUP declaration.

In addition to declaring variables, the command allows the default numeric type to be specified
using the DEFAULT-NUMERIC setting as FLOAT, INTEGER, or DECIMAL. When dealing with
money or where more precision is required, you can use the DECIMAL qualifier.

DECLARE-VARIABLE, the -DNT command-line flag, and the DEFAULT-NUMERIC setting in
SQR.INT affects the way numeric literals are typed. If v30 is specified, then all numeric literals
are FLOAT (just as in pre-version 4.0 releases); otherwise, the use or lack of a decimal point
determines the type of theliteral as either FLOAT or INTEGER, respectively. Finally, not specifying
DECLARE-VARIABLE, the -DNT command-line flag, and the DEFAULT-NUMERIC setting in
SQR.INT is the same as specifying v30.

Note:

In Production Reporting DDO, list variables should not be declared using this construct.

Example

begin-setup
declare-variable
default-numeric=float
decimal #decimal (10)
integer #counter
date Sdate
end-declare
end-setup

let $date = strtodate('Jan 01 1995', 'Mon DD YYYY')
print Sdate (1,1)
position (+2,1)

let #counter = 0
while #counter < 10

let #decimal = sqgrt (#counter)

add 1 to counter

print #decimal (+1,1) 9.999999999
end-while

do subl ($date, 'day', 10)

do sub2

begin-procedure subl (:$dvar, Sunits, #uval)
declare-variable
date Sdvar

152 Production Reporting Command Reference

#DEFINE

integer #uval
end-declare
let $dvar = dateadd($dvar, Sunits, #uval)
print $dvar (+1,1)
position (+2,1)
end-procedure

begin-procedure sub2 LOCAL
declare-variable
date Smydate
end-declare
let $Smydate = dateadd($_date, 'year',6 5)
print Smydate (+1,1)
position (+2,1)
end-procedure

See Also
e The -DNT command-line flag, described in Chapter 1, “Introduction.”

e The [Default-Settings] section of SQR.INT described in Chapter 6, “SQR.INI.”

Function

Declares a value for a substitution variable within the body of the report (rather than using
ASK).

Syntax

#DEFINE substitution variable value

Arguments

substitution_variable

Variable to use as the substitution variable. The substitution variable is used to substitute any
command, argument, or part of a SQL statement at compile time.

value

Value to substitute.

Description

#DEFINE is useful for specifying constants such as column locations, printer fonts, or any
number or string that is used in several locations in the program. When the value of the number
or string must be changed, you need only change your #DEFINE command. All references to
that variable change automatically, which makes modifying programs much simpler.

#DEFINE 153

If ASK is used to obtain the value of a substitution variable that has already been defined, ASk
uses the previous value and the user is not prompted. This gives you the flexibility of being able
to predefine some variables and not others. When the report runs, ASK requests values for only
those variables that have not had a value assigned.

You can use #DEFINE commands inside an include file. This is a method of gathering commonly
used declarations into one place, and reusing them for more than one report.

The valuein the #DEFINE command can have embedded spaces, and needs no enclosing quotes.
The entire string is used as is.

The #DEFINE command cannot be broken across program lines.

Examples

The following code defines several constants:

#define page_width 8.5

#define page_depth 11

#define 1light LS”*10027

#define Dbold LS”03112

#define coll 1

#define col2 27

#define col3 54

#define order_by state, county, city, co_name

The following excerpt from a report uses the preceding definitions:

begin-setup
declare-printer contacts
type=hp
paper-size=({page_width}, {page_depth})
end-declare
end-setup

begin-heading 5
print 'Company Contacts' (1,1) center
print 'Sort: {order_by}' (2,1) center
print 'Company' (4, {coll})
print 'Contact' (4, {col2})
print 'Phone'’ (4, {col3})

end-heading

begin-procedure main
begin-select

company (1, {coll})
print '{bold}' (0,{col2} ! Print contact in boldface.
contact ()
print '{light}' () ! Back to lightface.
phone (0, {col3}) ! Note:There must be enough
next-listing ! space between col2
from customers ! and col3 for both
order by {order_ by} ! font changes and the
end-select ! contact field.

end-procedure

154 Production Reporting Command Reference

DISPLAY

See Also
ASK

Function

Displays the specified column, variable, or literal.

Syntax

DISPLAY {any lit|_var|_col}
[[:$]edit_mask|NUMBER |MONEY | DATE] [NOLINE]

Arguments
any 1lit|_var|_col

Text, number, or date to display.

edit_mask

Edits the field before displaying it. (see “Edit Masks” on page 247)

NUMBER

Formats any._1it|_var|_col with the NUMBER-EDIT-MASK of the current locale. This option
is not legal with date variables.

MONEY

Formats any._1it|_var|_col with the MONEY-EDIT-MASK of the current locale. This option
is not legal with date variables.

DATE

Formats any._1it|_var|_col with the DATE-EDIT-MASK of the current locale. This option is
not legal with numeric variables. If DATE-EDIT-MASK has not been specified, then the date is
displayed using the default format for that database (see Table 61 on page 251).

NOLINE

Suppresses the carriage return after displaying the field.

Description

DISPLAY can display data to a terminal. The data is displayed to the current location on the
screen. If you wish to display more than one field on the same line, use NOLINE on each display
except the last.

DISPLAY 155

Dates can be contained in a date variable or column, or a string literal, column, or variable.
When a date variable or column is displayed without an edit mask, the date appears in the
following manner:

e For DATETIME columns and Production Reporting DATE variables, Production Reporting
uses the format specified by SQR_DB_DATE_FORMAT. If not set, Production Reporting uses
the first database-dependent format in Table 61, “Default Formats by Database,” on page
251.

e For DATE columns, Production Reporting uses the format specified by
SQR_DB_DATE_ONLY_FORMAT. If this is not set, Production Reporting uses the format in
Table 62, “DATE Column Formats,” on page 252.

e For TIME columns,Production Reporting uses the format specified by
SQR_DB_TIME_ONLY_ FORMAT. Ifnot set, Production Reporting uses the format in Table 63,
“TIME Column Formats,” on page 252.

When displaying a date in a string literal, column, or variable using EDIT or DATE, the string
uses the format specified by SQrR_DB_DATE_FORMAT, one of the database-dependent formats in
Table 61 on page 251, or the database-independent format SYYYYMMDD [HH24 [MI [SS
[NNNNNN] 1] 1].

If you require more control over the display, use SHOW.

Examples
The following segments illustrate the various features of DISPLAY:
The following code:

!

! Display a string using an edit mask
|

display '123456789' XXX-XX-XXXX
Produces the following output:

123-45-6789

The following code:

!

! Display a number using an edit mask
|

display 1234567.89 999,999,999.99

Produces the following output:
1,234,567.89

The following code:

!

! Display a number using the default edit mask (specified in SQR.INI)
|

display 123.78

Produces the following output:

156 Production Reporting Command Reference

123.780000
The following code:

!

! Display a number using the locale default numeric edit mask
|

alter-locale number-edit-mask = '99,999,999.99"
display 123456.78 number

Produces the following output:

123,456.78
The following code:

!

! Display a number using the locale default money edit mask
|

alter-locale money-edit-mask = '$$,$$5,$$9.99"
display 123456.78 money

Produces the following output:

$123,456.78
The following code:

!

! Display a date column using the locale default date edit mask
I

begin-select
dcol
from tables
end-select
alter-locale date-edit-mask = 'DD-Mon-YYYY'
display &dcol date

Produces the following output:

01-Jan-1999
The following code:

!

! Display two values on the same line
|

display 'Hello' noline
display ' World'

Produces the following output:
Hello World

The following code:

!

! Display two values on the same line with editing of the values
|

DISPLAY 157

DIVIDE

alter-locale money-edit-mask = '$$,$$5,$$9.99"
let #taxes = 123456.78

display 'You owe ' noline

display #taxes money noline

display ' in back taxes.'

Produces the following output:

You owe $123,456.78 in back taxes.

See Also

e SHOW for information on screen control

e LET for information on copying, editing, or converting fields
e The EDIT parameter of PRINT for edit mask descriptions

e ALTER-LOCALE for descriptions of NUMBER-EDIT-MASK, MONEY-EDIT-MASK, and DATE-
EDIT-MASK

Function

Divides one number into another.

Syntax

DIVIDE {src_num lit|_var|_col} INTO dst_num var
[ON-ERROR={HIGH | ZERO}] [ROUND=nn]

Arguments

src_nunLlitLyaﬂ_aﬂ

Divided into the contents of dst_num var.

dst_num var

Result after execution.

ON-ERROR

Sets the result to the specified number when a division by zero is attempted. If ON-ERROR is
omitted and a division by zero is attempted, Production Reporting halts with an error message.
ROUND

Rounds the result to the specified number of digits to the right of the decimal point. For float
variables, this value can be from 0 to 15. For decimal variables, this value can be from 0 to the
precision of the variable. For integer variables, this argument is not appropriate.

158 Production Reporting Command Reference

DO

Description

The source field is divided into the destination field and the result is placed in the destination.
The source is always first, the destination always second.

When dealing with money-related values (dollars and cents), use decimal variables rather than
float variables. Float variables are stored as double precision floating point numbers, and small
inaccuracies can appear when dividing many numbers in succession. These inaccuracies can
appear due to the way different hardware and software implementations represent floating point
numbers.

Examples

divide 37.5 into f#price ! #price / 37.5
divide &rate into #tot on-error=high
divide #j into #subtot on-error=zero

Note:

High in the preceding example is the “Maximum Value,” while zero is the “Lowest Value.”

See Also
e LET for a discussion of complex arithmetic expressions

e ADD

Function

Invokes the specified procedure.

Syntax

DO procedure_namel (argl[, argil...)]

Arguments
procedure name

Name of the procedure to execute.

argl [, argi]

Arguments to pass to the procedure. Arguments can be any type of variable or constant value.

Description

When the procedure ends, processing continues with the command following DO. You can use
arguments to send values to or receive values from a procedure.

Arguments passed by DO to a procedure must match in number:

DO 159

e Database text columns, string variables, and literals can be passed to procedure string or
date arguments.

e Database numeric columns, numeric variables, and numeric literals can be passed to
procedure numeric arguments.

e Numeric variables (DECIMAL, INTEGER, FLOAT) can be passed to procedure numeric
arguments without regard to the argument type of the procedure. Production Reporting
automatically converts the numeric values upon entering and leaving the procedure as
required.

e Date variables can be passed to procedure date or string arguments.

When a field in DO receives a value back from a procedure (a colon indicates it is a back value—
that is, a value that’s being returned), it must be a string, numeric, or date variable, depending
on the procedure argument; however, a date can be returned to a string variable and vice versa.

When a date is passed to a string, the date is converted to a string according to the following
rules:

e For DATETIME columns and Production Reporting DATE variables, Production Reporting
uses the format specified by SQR_DB_DATE_FORMAT. If not set, Production Reporting uses
the first database-dependent format in Table 61, “Default Formats by Database,” on page
251.

e For DATE columns, Production Reporting uses the format specified by
SQR_DB_DATE_ONLY_FORMAT. Ifnot set, Production Reporting uses the format in Table 62,
“DATE Column Formats,” on page 252.

e For TIME columns, Production Reporting uses the format specified by
SOR_DB_TIME_ ONLY_ FORMAT. Ifnotset, Production Reporting uses the format in Table 63,
“TIME Column Formats,” on page 252.

Examples

do get_names
do add_to_1list ($name)
do print_list ('A', #total, &co_name, S$Sname)

See Also
BEGIN-PROCEDURE for information on passing arguments

DRAW

Function

Draws an object.

Syntax

DRAW {position}
TYPE={type 1it_|_var|_col}

160 Production Reporting Command Reference

HEIGHT={height_lit_|_var|_col}]

WIDTH={width 1it_|_var|_col}]
RULE={rule_lit_|_var|_col}]
FILL-COLOR=({color_name_lit|_var|_col}|{rgb})]
LINE-COLOR= {color_name_lit|_var|_col}|{rgb})]
CAP={cap_lit_|_var|_col}]

LINE-STYLE={line style 1it_|_var|_col}]

END-POINT=(row 1it_|_var|_col, column_ lit_|_var|_col)]

— — s e

Arguments
position

Starting position of the object.

TYPE

Type of object to draw. The value can be BOX, HORZ-LINE, VERT-LINE, LINE, or OVAL
(LINE and OVAL are not supported with —-PRINTER: LP, —-PRINTER: HP, or PRINTER: PS.)
HEIGHT

Object’s vertical length. Applies to BOX, VERT-LINE, and OVAL.

WIDTH

Object’s horizontal length. Applies to BOX, HORZ-LINE, and OVAL.

RULE

Line thickness. Applies to BOX, HORZ-LINE, VERT-LINE, LINE, and OVAL. This value is expressed
in decipoints. (There are 720 decipoints per inch.) The default value is two decipoints.
FILL-COLOR

Color used to fill the object. Applies to BOX and OVAL. The default value is the FILL COLOR value
In SET-COLOR.

LINE-COLOR

Color of the lines in the object. Applies to BOX, HORZ-LINE, VERT-LINE, LINE, and OVAL. The
default value is the LINE COLOR value in SET-COLOR.

CAP

Type of cap used with an object. Applies to BOX, HORZ-LINE, VERT-LINE, and LINE. BOX CAP
values can ROUND, BEVEL, or MITER HORZ-LINE, VERT-LINE, and LINE CAP values can be
ROUND, SQUARE, Or FLAT.

Note:

CAP settings are ignored with -PRINTER:HT and -PRINTER:EH. When using -PRINTER:WP,
MITER is substituted for BEVEL. CAP is ignored unless the LINE-SYTLE is set to SOLID.

DRAW 161

LINE-STYLE

Line style of the object. Applies to HORZ-LINE, VERT-LINE, LINE, BOX, and OVAL.

Table 39 LINE-STYLE Values

Line Style Value

SOLID

SQUARE-DOT EsmmmsmEEmE
DASH — -
DASH-DOT -
LONG-DASH — —
LONG-DASH-DOT — —
LONG-DASH-DOT-DOT | mmmmm = = mm

Note:

LINE STYLE settings are ignored with -PRINTER:LP, -PRINTER:HP, or PRINTER:PS. If you
use one of these flags, the default value of SOLID is applied to the line.

END-POINT

The object’s ending coordinate. Applies to LINE.

Description

Draws the specified object on the page. For horizontal lines (TYPE=HORZ-LINE), the line is
drawn just below the base of the line. For vertical lines (TYPE=VERT-LINE), the line is drawn
just below the base of the starting line position to just below the base of the ending line position.
After DRAW executes, Production Reporting changes the current print location to the starting
location of the object. (This is different from the way PRINT works.)

Examples

Draw a wide box around the page:

DRAW (1,1) TYPE='BOX' WIDTH=78 HEIGHT=66 RULE=20

Draw a five-line shaded box without a border:

DRAW (1,1) TYPE='BOX' WIDTH=66 HEIGHT=5 RULE=0 FILL COLOR=(204,204,204)

Draw a line under the page heading:

DRAW (1,1) TYPE='HORZ LINE' WIDTH=66 RULE=10

Redline the paragraph:

DRAW (+3,+2) TYPE='VERT LINE' HEIGHT=4 RULE=6

162 Production Reporting Command Reference

Draw a blue circle with a red border (assumes that the layout line height and character width
are the same value)

DRAW (1,1) TYPE='OVAL' HEIGHT=10 WIDTH=10 RULE=20 FILL COLOR=(’'BLUE’) LINE
COLOR=('RED")

Draw a box using a dashed line

DRAW (1,1) TYPE='BOX' WIDTH=78 HEIGHT=66 RULE=20 LINE STYLE='DASH'

See Also
GET-COLOR, PRINT, and SET-COLOR

DUMP-TABLE

Function

Dumps table data into an SPF file.

Syntax

DUMP—TABLE

NAME=table name_var|_lit|_col
[CONTINUATION=continuation var|_lit|_col]
Arguments

NAME

Name of the table created by CREATE-TABLE.

CONTINUATION

Defines whether the table data is a continuation of a previous DUMP-TABLE command. Valid
values are YES and NO. The default is NO.

Description

Use DUMP-TABLE in any section except BEGTN-SETUP, BEGTN-SQL, and BEGIN-DOCUMENT. The
data dumped into the SPF file will be in a format that the Enhanced HTML or Generic Driver
can use to provide coherent output such as XML, BQD, and CSV.

Example

dump-table
name='customers'
continuation='yes'

See Also
ALTER-TABLE, CREATE-TABLE, DECLARE-TABLE, FILL-TABLE, PRINT-TABLE

DUMP-TABLE 163

#ELSE

Function

Compiles the code following #ELSE when a preceding #IF, #IFDEF, or # IFNDEF is FALSE.
(#ELSE is a compiler directive that works with the #IF, #TFDEF, and # TFNDEF compiler
directives.)

Syntax

#ELSE

See Also
#IF, #IFDEF, and #IFNDEEF for descriptions of compiler directives

ELSE

Function

An optional command in TF.

Syntax

ELSE

See Also

IF for a description and example.

ENCODE

Function

Assigns a non-display or display character to a string variable.

Syntax

ENCODE src_code string 1it INTO dst_txt_var

Arguments
src_code string 1it

String of characters to encode and place in dst_txt_var.

dst_txt_var

Result after execution.

164 Production Reporting Command Reference

Description

ENCODE can define nondisplay characters or escape sequences sent to an output device. These
characters or sequences can perform complex output device manipulations. ENCODE also
displays characters not in the keyboard. If your keyboard does not have the Euro symbol, use
the Encode feature to create a string variable for it.

The encode characters can be included in a report at the appropriate location using PRINT or
PRINT-DIRECT.

Only values <001> to <255> can be defined in ENCODE.
Examples

encode '<27>L11233' into S$bold ! Code sequence to turn bold on.
print $bold () code-printer=I1lp

See Also

e The chr function described in Table 52 on page 212 under LET

e PRINT and PRINT-DIRECT

e “Encode Variables” in Volume 1 of the Production Reporting User's Guide

END-DECLARE, END-DOCUMENT, END-EVALUATE,
END-FOOTING, END-HEADING

Function

Completes a section or paragraph.
Syntax

END-DECLARE
END-DOCUMENT
END-EVALUATE
END-FOOTING
END-HEADING
Description
END-DECLARE completes a paragraph started with:
e DECLARE-CHART

e DECLARE-IMAGE

e DECLARE-LAYOUT
e DECLARE-PRINTER

e DECLARE-PROCEDURE

e DECLARE-REPORT

END-DECLARE, END-DOCUMENT, END-EVALUATE, END-FOOTING, END-HEADING 165

#END-IF,

e DECLARE-VARIABLE

Other END-section commands complete the corresponding BEGIN-section command:
e BEGIN-DOCUMENT

e EVALUATE

e BEGIN-FOOTING

e BEGIN-HEADING

Each command must begin on its own line.

Examples

begin-footing 2

print 'Company Confidential' (1) center
end-footing

See Also
e DECLARE-paragraph

® BEGIN-section

#ENDIF

Function

Ends an #IF, #IFDEF, or #IFNDEF command. (#END-IF is a compiler directive.)

Syntax

#END-IF

Description

#ENDIF (without the dash) is a synonym for #END-IF.

Examples

#ifdef debuga

show 'DebugA: #j = ' #j edit 9999.99
show 'Cust_num = &cust_num

#end-if

See Also

#IF, #IFDEF, and #IFNDEF for a descriptions of compiler directives

166 Production Reporting Command Reference

END-IF

Function

Ends an IF command.

Syntax

END-IF

See Also

IF

END-PROCEDURE, END-PROGRAM, END-SELECT, END-SETUP,

END-SQL, END-WHILE, END-EXECUTE

Function

Completes the corresponding section or paragraph.

Syntax

END-PROCEDURE
END-PROGRAM
END-SELECT
END-SETUP
END-SQL
END-WHILE
END-EXECUTE

Description

Each END-section command completes the corresponding BEGIN-section command:

Each command must begin on its own line.

BEGIN-PROCEDURE
BEGIN-PROGRAM
BEGIN-SELECT
BEGIN-SETUP
BEGIN-SQL
WHILE

BEGIN-EXECUTE

END-IF 167

Note:

END-EXECUTE (and BEGIN-EXECUTE) is only required when additional information about
the datasource or query is needed, such as 'Connection', 'Schema’, 'Command' ,'GetData',
'Procedure’, or 'Parameters’.

Examples

begin-program
do main
end-program
See Also
® BEGIN-section

e WHILE

EVALUATE

Function

Determines the value of a column, literal, or variable and takes action based on that value.

Syntax

EVALUATE {any_lit|_var|_col}

This command is equivalent to case/switch in C or Java. The general format of EVALUATE is:

EVALUATE {any_lit|_var|_col}

WHEN comparison_operator {any lit|_var|_col}
SOR_Commands. . .

[BREAK]

[WHEN comparison_operator {any_ lit|_var|_col}
SOR_Commands. . .

[BREAK]]

[WHEN-OTHER SQR_Commands. . .

[BREAK]]

END-EVALUATE

Arguments

any 1lit|_var|_col

A text or numeric column; a text, numeric, or date variable; or a text or numeric literal to use
in the evaluation. In short, an evaluation argument.

comparison_operator

Any valid comparison operator. See comparison operators in Table 45 on page 194.

WHEN

168 Production Reporting Command Reference

Evaluation expression. The evaluation argument is compared with the argument, beginning
from the first WHEN. If the expression is TRUE, Production Reporting processes the commands
after the WHEN. If the expression is FALSE, Production Reporting processes the next WHEN
expression. Each WHEN must be on its own line.

If more than one WHEN expression appears directly before a set of commands, any one of them,
if TRUE, causes the commands to execute.

BREAK

Immediately exits EVALUATE. Use BREAK at the end of a set of commands.

WHEN-OTHER

Signifies the start of default commands to process if all other WHEN expressions are FALSE.
WHEN-OTHER must appear after all other WHEN expressions.

Description

EVALUATE is useful for branching to different commands depending on the value of a specified
variable or column.

EVALUATE commands can be nested.

Evaluating a date variable or column with a string results in a date comparison (chronological,
not a byte by byte comparison as is done for strings). The string must be in the proper format
as follows:

e For DATETIME columns and Production Reporting DATE variables, Production Reporting
uses the format specified by SOR_DB_DATE_FORMAT, one of the database-dependent formats
(see Table 61, “Default Formats by Database,” on page 251), or the database-independent

1

format 'SYYYYMMDD [HH24 [MI [SS[NNNNNN]]1]11".

e For DATE columns, Production Reporting uses the format specified by
SOR_DB_DATE_ONLY_FORMAT. If not set, Production Reporting uses the format inTable 62,
“DATE Column Formats,” on page 252.

e For TIME columns, Production Reporting uses the format specified by
SQR_DB_TIME_ ONLY_ FORMAT. Ifnotset, Production Reporting uses the format in Table 63,
“TIME Column Formats,” on page 252.

Examples

evaluate &code
when = 'A'
move 1 to #j
break
when = 'B'
when = 'C'
move 2 to #j ! Will happen if &code is B or C.
break
when > 'D'
move 3 to #j ! Move 3 to #j and continue checking.
when > 'H'
add 1 to #j ! Add 1 to #j and continue checking.

EVALUATE 169

when > 'W'
add 2 to #j
break
when-other
if isnull (&code)
do null_code
else
move 0 to #j ! Unknown code.
end-if
break
end-evaluate

See Also
IF and LET

EXECUTE

Function

Executes a stored procedure. EXECUTE is available with the DB2, ODBC, Oracle, and Sybase
versions of Production Reporting. (For DB2, Production Reporting does not support overloaded
stored procedures.)

Syntax

EXECUTE [-XC] [ON-ERROR=procedure| (argl[,argil...)]1]
[DO=procedurel (argll,argil...) 1]

{ [@#status_var=]stored procedure name} |

{[@Sreturn var=]stored procedure name}

[[@param=] {any col|_var|_1it}[OUTPUT][,...]]

[INTO any. coldata_typel (length int 1it)]
[,...]][WITH RECOMPILE]

The syntax of EXECUTE roughly follows that of the Sybase Transact-SQL EXECUTE command,
with the exception of optional arguments and the INTO argument.

Arguments

-XC

(Sybase only) Specifies that EXECUTE shares the same connection as the DO= procedure it can
invoke. This argument is required to share Sybase temporary tables.

ON-ERROR

Production Reporting procedure to execute if an error occurs. If ON-ERROR is omitted and an
error occurs, Production Reporting halts with an error message. For severe errors (for example,
passing too few arguments) Production Reporting halts, even if an error procedure is specified.

You can specify arguments to pass to the ON-ERROR procedure. Arguments can be any variable,
column, or literal.

170 Production Reporting Command Reference

DO

Production Reporting procedure to execute for each row selected in the query. Processing
continues until all rows are retrieved.

You can specify arguments to pass to the procedure. Arguments can be any variable, column,
or literal.

@#status_var

The procedure’s status in the specified numeric variable. The status is returned only after selected
rows are retrieved.

@Sreturn_var

(Oracle only) The called stored function's return value into the specified variable. Oracle stored
functions can return any column data type. No procedure status is returned for Oracle stored
procedures.

stored _procedure_name

Stored procedure or function to execute.

For Oracle installations only, you can add schema and package information to the stored
procedure name as follows: [[schema.][package.]] . stored_procedure_name.

@param

Parameter passed to the stored procedure. Parameters can be passed with or without names. If
used without names, they must be listed in the same sequence as defined in the stored procedure.

any 1lit|_var|_col
Value passed to the stored procedure. It can be a string, numeric, or date variable, a previously
selected column, a numeric literal, or a string literal.

OUTPUT

Indicates that the parameter receives a value from the stored procedure. The parameter must be
a string, numeric, or date Production Reporting variable. Output parameters receive their values
only after rows selected have been retrieved. If you specify multiple output parameters, they
must be in the same sequence as defined in the stored procedure.

INTO

Where to store rows retrieved from the stored procedure's SELECT statement. The INTO
argument contains the names of the columns with data types and lengths (if needed). You must
specify the columns in the same sequence and match the data type used in the stored procedure's
SELECT statement.

Table 40 lists the valid data types for each database.

EXECUTE 171

Table 40 Valid Data Types

Database | Valid Data Types

Oracle CHAR[(n)]

DATE
DECIMAL[(p[,s])]
FLOAT[(b)]
INTEGER

LONG
NCHAR[(n)]
NVARCHAR2[(n)]
NUMBER[(p[,s])]
NUMERIC[(p[,s])]
REAL

ROWID
SMALLINT
VARCHAR[(n)]
VARCHAR2[(n)]

0DBC BIT

TINYINT
SMALLINT

INT

CHAR[(n)]
NCHAR[(n)]
VARCHAR[(n)]
NVARCHAR[(n)]
NTEXT

TEXT

REAL

FLOAT[(b)]
IMAGE
SMALLMONEY
MONEY
DECIMAL[(p[,sD]
NUMERIC [(p[,s])]
SYSNAME
SMALLDATETIME
DATETIME
TIMESTAMP

172 Production Reporting Command Reference

Database

Valid Data Types

BINARY
VARBINARY

Sybase

BIT
TINYINT
SMALLINT

INT

CHAR[(n)]
NCHAR[(n)]
VARCHAR[(n)]
NVARCHAR[(n)]
TEXT

REAL

FLOAT[(b)]
IMAGE
SMALLMONEY
MONEY
DECIMAL[(p[,S])]
NUMERIC [(p[,S])]
SYSNAME
SMALLDATETIME
DATETIME
TIMESTAMP
BINARY
VARBINARY
UNICHAR[(n)]
UNIVARCHAR([(n)]

DB2

CHAR[(n)]
VARCHAR[(n)]
DATE

TIME
TIMESTAMP
FLOAT
DOUBLE
NUMERIC
DECIMAL[(p[,s])]
INTEGER
GRAPHIC[(n)]

EXECUTE 173

Database | Valid Data Types
VARGRAPHIC[(n)]

If the stored procedure contains more than one result set, only the first query is described with
the INTO argument. Rows from subsequent queries are ignored.

WITH RECOMPILE

(Sybase and ODBC only) Causes the query to recompile each time it executes rather than using
the plan stored with the procedure. Normally, this is not required or recommended.

Description

If the stored procedure specified in stored procedure name contains a SELECT query,
EXECUTE must specify an INTO argument in order to process the values from the query. If no
INTO argument is specified, then the values from the query are ignored.

EXECUTE retrieves just the first row when the following instances are true:

e The DO procedure is not specified.

e The stored procedure, stored procedure name selects one or more rows.
e An INTO argument is specified.

This is useful for queries returning a single row.

Note:

Oracle stored functions can return any column data type. ODBC, Sybase and DB2 can only
return a numeric status.

Note:

If you are using Oracle or DB2 keep in mind the following:

e Oracle and DB2 can return multiple Result Sets of data; however, Production Reporting
only processes the first Result Set returned from a stored procedure or function. After
processing the first Result Set, all other Result Sets are ignored.

e When Oracle or DB2 encounters an INTO clause, an implied Result-Set handle is created.
The implied Result-Set handle processes an open cursor returned from a stored procedure
or function. The procedure or function is “described” to ensure that the stored object returns
a handle to a result set. The data returned from the “describe” is then used to validate the
data types declared for each column contained in the INTO clause of the EXECUTE
command.

Examples

The following example invokes the stored procedure get_total with two parameters: a string
literal and a string variable. The result from the stored procedure is stored in the variable
#total.

174 Production Reporting Command Reference

execute get_total 'S. Q. Reporter' S$State #Total Output

The following example invokes the stored procedure get_products with two parameters. The
stored procedure selects data into five column variables. The Production Reporting procedure
print_products is called for each row retrieved. The return status from the stored procedure
is placed in the variable #proc_return status

execute do=print_products
@#proc_return_status=
get_products
@prodcode=&code, @max=#maximum
INTO &prod_code int,
&description char (45),
&discount float,
&restock char,
&expire_date datetime
begin-procedure print_products
print &prod_code(+1,1)
print &description(+5,45)
print &discount (+5) edit 99.99
print &restock(+5) match Y 0 5 Yes N 0 5 No
print &expire_date(+5,) edit 'Month dd, yyyy'
end-procedure

EXIT-SELECT

Function

Exits a SELECT paragraph immediately.

Syntax

EXIT-SELECT

Description
Jumps to the command immediately following END-SELECT.

Use EXIT-SELECT when you need to end a query before all rows are retrieved.

Examples

begin-select
cust_num, co_name, contact, city, state, zip, employees
add &employees to #tot_emps
if #tot_emps >= 5000
exit-select ! Have reached required total emps.
end-if
do print_company
from customers order by employees desc
end-select

EXIT-SELECT 175

See Also
BEGIN-SELECT

EXTRACT

Function

Copies a portion of a string into a string variable.

Syntax

EXTRACT {dst_txt_var|date_var} FROM
{{src_txt_lit|_var|_col}|{src_date var|_col}}
{start_num 1lit|_var}{length num lit|_var}
Arguments

dst_txt_var|date_var

Text or date variable into which the extracted string is placed.

{src_txt_lit|_var|_col}|{src_date_var|_col}

Text or date variable, column, or literal from which to extract the string.

start_num lit|_var

Starting location of the string.

length num lit|_var

Length of the string.

Description

You must specify the starting location of the string as an offset from the beginning of the string
and its length. An offset of zero (0) begins at the left-most character; an offset of 1 begins one
character beyond that, and so on.

Ifthe source is a date variable or column, it is converted to a string before the extraction according
to the following rules:

e For DATETIME columns and Production Reporting DATE variables, Production Reporting
uses SQR_DB_DATE_FORMAT. If not set, Production Reporting uses the first database-
dependent format in Table 61, “Default Formats by Database,” on page 251.

e For DATE columns, Production Reporting uses the format specified by
SQR_DB_DATE_ONLY_FORMAT. Ifnot set, Production Reporting uses the format in Table 62,
“DATE Column Formats,” on page 252.

e For TIME columns, Production Reporting uses the format specified by
SQR_DB_TIME_ONLY_ FORMAT. Ifnot set, Production Reporting uses the format in Table 63,
“TIME Column Formats,” on page 252.

176 Production Reporting Command Reference

If the destination is a date variable, the string extracted from the source must be in one of the
following formats:

e The format specified by SOR_DB_DATE FORMAT.

e One of the database-dependent formats (see Table 61, “Default Formats by Database,” on
page 251)

e The database-independent format 'SYYYYMMDD [HH24 [MI [SS [NNNNNN] 111"

Examples

extract S$state from Srecord 45 2

extract $foo from “Oracle Rocks” 0 4 ! $foo='Oracle’
extract $zip_four from &zip 5 4

extract S$rec from Stape_block #loc #rec_len

See Also
e The substr function described in Table 52 on page 212 under LET
e FIND

FILL-TABLE

Function

Manipulates table attributes.

Syntax

FILL-TABLE

NAME=table_name_var|_lit|_col

VALUE=value_var|_lit|_col

LOCATION= (row var|_lit|_col, column var|_lit[,length var|_1it])
[ATTRIBUTES= ({ keywordl}, {valuel}, ..., {keywordn},{valuen})]
Arguments

NAME

Name of the table created by CREATE-TABLE.

VALUE

Value to insert into the table.

LOCATION

Where to place the data in the table. The row and column elements define where to place the
data. The length element, expressed in coordinate units, temporarily overrides the width of the
column and allows data to span multiple columns.

ATTRIBUTES

FILL-TABLE 177

Attributes to apply to the specified location. If an attribute is not specified, the current value as
defined by CREATE-TABLE and ALTER-TABLE is used.

Table 41 FILL-TABLE Attributes

Attribute Description

ANNOTATION Arbitrary text string associated with the specified location. SQR passes the data to the
backend printer driver-it does not validate the data.

BACKGROUND Background color name or RGB triplet

BOLD YES | NO

CENTER YES | NO

COLUMN-LEADING Expressed in decipoints

COLUMN-LINE-COLOR Color name or RGB triplet

COLUMN-LINE-STYLE SOLID | SQUARE-DOT | DASH | DASH-DOT | LONG-DASH | LONG-DASH-DOT | LONG-

DASH-DOT-DOT

COLUMN-LINE-THICKNESS | Expressed in decipoints

EDIT-MASK Edit mask or keyword to use

FILL-COLOR Fill color name or RGB triplet. Default=NONE

FONT Font number

FOREGROUND Foreground color name or RGB triplet

FORMULAE Arbitrary formula associated with the specified location. SQR passes the data to the

backend printer driver - it does not validate the data.

ITALIC YES | NO

POINT-SIZE Point size of the font

ROW-LINE-COLOR Color name or RGB triplet

ROW-LINE-STYLE SOLID | SQUARE-DOT | DASH | DASH-DOT | LONG-DASH | LONG-DASH-DOT | LONG-
DASH-DOT-DOT

ROW-LINE-THICKNESS Expressed in decipoints

UNDERLINE YES | NO

URL Specifies the hypertext link for the specified location. SQR does not validate the
address.

URL-TARGET Specifies the target within the URL. SQR does not validate the target.

WRAP YES | NO | maximum number of lines

WRAP-HEIGHT Expressed as the number of lines between each wrapped line.

178 Production Reporting Command Reference

FIND

Attribute Description

WRAP-ON Characters on which to force a WRAP
WRAP-STRIP Characters to change to a space before the WrRaP is done
Description

Use FILL-TABLE in any section except BEGIN-SETUP, BEGIN-SQL, and BEGIN-DOCUMENT to
manipulate table attributes.

Example

fill-table
name="'tab2"'
value=$Scolumnl
location=(3,2)
attributes=('column-line-color', ('green'), 'row-line-color',
('black'), 'font',5)

See Also
ALTER-TABLE, CREATE-TABLE, DECLARE-TABLE, DUMP-TABLE, PRINT-TABLE

Function

Determines the location of a character sequence within a string.

Syntax

FIND {{obj_txt_lit|_var|_col}|{date var|_col}} IN
{{src_txt_var|_col}|{date_var|_col}}
{start_int 1lit|_var} dst_location int_var

Arguments
{obj_txt_lit|_var|_col}|{date var|_col}

Text variable, column, or literal in src_txt_var|_col.

{src_txt_var|_col}|{date_var|_col}

Text variable or column to search.

start_int_lit|_var

Starting location of the search.

dst_location int_var

FIND 179

GET

Returned starting location of the left-most character of the matching text in {src_txt_var|
_col|date_var|_col}.

Description

FIND searches the specified string for a character sequence and, if the string is found, returns its
location as an offset from the beginning of the specified string. If the sequence is not found,
FIND returns -1 in dst_location int_var.

You must specify an offset from which to begin the search and supply a numeric variable for the
return of the location.

If the source or search object is a date variable or column, it is converted to a string before the
search according to the following rules:

e For DATETIME columns and Production Reporting DATE variables, Production Reporting
uses the format specified by SQR_DB_DATE_FORMAT. If not set, Production Reporting uses
the first database-dependent format in Table 61, “Default Formats by Database,” on page
251.

e For DATE columns, Production Reporting uses the format specified by
SQR_DB_DATE_ONLY_FORMAT. Ifnot set, Production Reporting uses the format in Table 62,
“DATE Column Formats,” on page 252.

e For TIME columns, Production Reporting uses the format specified by
SQR_DB_TIME_ONLY_ FORMAT. Ifnot set, Production Reporting uses the format in Table 63,
“TIME Column Formats,” on page 252.

Examples

find ‘'aw.2' 1in &code5 0 #loc
find ',' in &name 0 #comma_loc
if #comma_loc = -1

...comma not found...

See Also
e The instr function described in Table 52 on page 212 under LET
e EXTRACT

Function

Retrieves data from an array and places it into a date, string, or numeric variable.

Syntax

GET dst_any var...FROM src_array. name(element)
[field[(occurs)]]...

180 Production Reporting Command Reference

Arguments
dst_any_var

Dates, strings, or numeric variables (not database columns) can be destination variables.
Numeric variables (decimal, float, integer) are copied from number fields. String variables are
copied from char, text, or date fields. Date variables are copied from char, text, or date fields.

When a date field is copied to a string variable, Production Reporting converts the date to a
string in the format specified by SOR_DB_DATE FORMAT. If not set, Production Reporting uses
the first database-dependent format in Table 61 on page 251.

If the destination is a date variable, the string extracted from the source must be in the format
specified by SOR_DB_DATE_FORMAT, one of the database-dependent formats (see Table 61 on

page 251), or the database-independent format 'SYYYYMMDD [HH24 [MI [SS [NNNNNN] 111"

src_array. name (element)

If the array's field names are listed, Production Reporting takes the values from the fields and
occurrences specified. If the array's field names are not listed, the values are taken from
consecutively defined fields in the array.

field[(occurs)]

Array element and field occurrence numbers can be numeric literals (such as 123) or numeric
variables (such as #j). If no field occurrence is stated, occurrence zero is used.

Examples

The following example copies $name, Sstart_date, and #salary from the first three fields in
the #7'th element of the emps array.

get $name Sstart_date #salary from emps (#3)

The following example copies #city tot and #county tot from the fields cities and
counties in the #7'th element of the states array.

get #city_tot #county_tot from states(#j) cities counties

The following example copies Scode from the #5'th occurrence of the code field in the #n'th
element of the codes array.

get $code from codes (#n) code (#3)

See Also
e LET for information on assigning the value of an expression

e PUT for information on moving data into an array

GET-COLOR

Function

Retrieves the current colors.

GET-COLOR 181

Syntax

GET-COLOR
[PRINT-TEXT-FOREGROUND= ({ color_name_var})]
[PRINT-TEXT-BACKGROUND= ({ color_name_var})]
[PRINT-PAGE-BACKGROUND= ({ color_name_var})]
[LINE-COLOR=({color_name_var})]
[FILL-COLOR=({color_name_var})]

Arguments

PRINT-TEXT-FOREGROUND

Color in which the text prints.

PRINT-TEXT-BACKGROUND

Background color behind the text.

PRINT-PAGE-BACKGROUND

Page background color.

LINE-COLOR

Line color used in DRAW and PRINT BOX.

FILL-COLOR

Fill color used in DRAW (TYPE=BOX) and PRINT BOX.

{color _name var}

Text variable that receives the name of the specified color.

Description

GET-COLOR is allowed wherever PRINT or DRAW is allowed. It is used to retrieve certain attributes
of PRINT and DRaw. If the requested attribute does not map to a defined color name, then the
name is returned as RGBredgreenblue, where each component is a three digit number. For
example, RGB127133033. You can use this format wherever you use a color name. The color
name 'none' is returned if no color is associated with the requested attribute.

begin-setup

lighter_unknown = (93,122,129)

set-color print-text-foreground=('lighter unknown')
get-color print-text-foreground=($print-foreground)
print S$print-foreground (+2,7)

end-setup

Examples

begin-program
declare-color-map
light_blue = (193, 222, 229)
end-declare

182 Production Reporting Command Reference

end-program

begin-program
alter-color-map name = 'light_blue' value = (193, 233, 230)
print 'Yellow Submarine' ()
foreground = ('yellow')
background = ('light_blue')
get-color print-text-foreground = ($print-foreground)
set-color print-text-foreground ('purple")
print 'Barney' (+1,1)
set-color print-text-foreground = ($print-foreground)
end-program

begin-program
get-color line-color=($line-color)
set-color line-color=('purple')
draw (5,5) type='horz-line' width=10
set-color line-color=($line-color)
end-program
begin-program
get-color fill-color=($£fill-color)
set-color fill-color=('light grey')
draw (5,5) type='box' width=10 height=10
set-color fill-color=($fill-color)
end-program

See Also
DECLARE-COLOR-MAP, ALTER-COLOR-MAP, and SET-COLOR

GOTO

Function

Skips to the specified label.

Syntax
GOTO label

Arguments
label

A label in the same section or paragraph.

Description

Labels must end with a colon (:) and can appear anywhere within the same section or paragraph
as GOTO.

Examples

begin-select

GOTO 183

price
if &price < #o0ld_price
goto next
end-if
print &price (2,13,0) edit 999,999.99

next:
add 1 to #count

from products
end-select

#IF

Function

Indicates that the commands following are to be compiled when the expression is TRUE.
(#IF is a compiler directive.)

Syntax

#IF {txt_lit|num_lit}comparison_operator

{txt_lit|num lit}

Arguments

txt_lit|num lit

Any text or numeric literal.

comparison_operator

Any of the following comparison operators:

Operator | Description

= Equal

I= Not Equal

<> Not Equal

< Less than

> Greater than

<= Less than or equal

>= Greater than or equal
Description

Production Reporting has five compiler directives that allow different pieces of Production
Reporting code to be compiled, depending on the existence or value of substitution variables
(not program variables, such as, string, numeric, or date).

184 Production Reporting Command Reference

Substitution variables defined automatically for each -DEBUGxxx letter can also be used with the
#IF, #IFDEF, and # IFNDEF directives. They can turn entire sections of an Production Reporting
program on or off from the command line, depending on the -DEBUGxxx flag.

You can nest #IF, #IFDEF, or #IFNDEF directives to a maximum of 10 levels.
The #IF, #IFDEF, or #IFNDEF directives cannot be broken across program lines.

Table 42 lists the compiler directives.

Table 42 Production Reporting Compiler Directives

Directive | Example Description

#IF #IF {option}='A" | Compiles the commands following the #IF directive if the substitution variable
option is equal to 'A'. The test is case-insensitive. Only one simple expression is
allowed per #IF command.

#ELSE #ELSE Compiles the commands following the #ELSE directive when the #IF expression
is FALSE.

#ENDIF #ENDIF Ends the #IF directive. #ENDIF can also be typed #END-IF (with a hyphen).

#IFDEF #IFDEF option Compiles the commands following the #IFDEF directive if the substitution variable

option is defined.

#IFNDEF | #IFNDEF option Compiles the command following the #IFNDEF directive if the substitution variable
option is not defined.

Examples
begin-setup
ask type 'Use Male, Female or Both (M,F,B)'

end-setup

begin-procedure Main

#if {type} = 'M'
...code for M here
#else
#if {type} = 'F’'
...code for F here
#else
#if {type} = 'B’
...code for B here
#else
show 'M, F or B not selected. Report not created.'
stop
#endif ! for B
#endif ! for F
#endif ! for M

#ifdef debug
show 'DEBUG: Cust_num = ' &cust_num edit 099999
#endif

#ifndef debugB ! DebugB turned on with -DEBUGB on
do test_procedure! Production Reporting command line.
#endif

#IF 185

IF

See Also

#DEBUG for information on the -DEBUG command-line flag

Function

Executes commands depending on the value of a condition.

Syntax

IF logical_expression

IF commands have the following structure:

IF logical_expression
sqr._commands. . .

[ELSE

sqr._commands. . .]
END-IF

Arguments

logical_expression

Any valid logical expression. See LET for a description of logical expressions.

Operators

See “Bit-Wise Operators” on page 195 for information on the bit-wise operators supported by
IF.

Description

The expression is evaluated as a logical TRUE or FALSE. A value or expression that evaluates to
nonzero is TRUE.

Each IF must have a matching END-IF.
IF commands can be nested.

Comparing a date variable or column with a string, results in a date comparison (chronological,
not a byte by byte comparison as is done for strings). The string must be in the proper format
as follows:

e For DATETIME columns and Production Reporting DATE variables, Production Reporting
uses the format specified by SOR_DB_DATE_FORMAT, one of the database-dependent formats
(see Table 61, “Default Formats by Database,” on page 251), or the database-independent

1

format 'SYYYYMMDD [HH24 [MI [SS [NNNNNN] 111"

e For DATE columns, Production Reporting uses the format specified by
SQR_DB_DATE_ONLY_FORMAT. Ifnot set, Production Reporting uses the format in Table 62,
“DATE Column Formats,” on page 252.

186 Production Reporting Command Reference

e For TIME columns, Production Reporting uses the format specified by
SQR_DB_TIME_ONLY_ FORMAT. Ifnot set, Production Reporting uses the format in Table 63,
“TIME Column Formats,” on page 252.

Examples

if &price > &old_price and instr(&code, 'M', 1) > 0
add 1 to #price_count
if #price_count > 50
show 'More than 50 prices found.' noline
input $x 'Continue? (Y/N)'
if upper ($x) = 'N'
stop
end-if
end-if
else
add 1 to #o0ld_price_count
end-if

if #rows ! Will be TRUE if #rows is non-zero.
do print-it

end-if

if Sdatel > 'Apr 21 1996 23:59°'
do past_due
end-if
See Also
e LET for a description of logical expressions

e EVALUATE

#IFDEF

Function

Indicates that the following commands are to be compiled when the substitution variable has
been declared by an ASK or #DEFINE command, or by the -DEBUG flag on the Production
Reporting command line. (#IFDEF is a compiler directive.)

Syntax

#IFDEF substitution variable

Arguments
substitution_variable

Variable used as the substitution variable.

See Also

#IF for a description of each compiler directive

#IFDEF 187

#IFNDEF

Function

Indicates that the following commands are to be compiled when the substitution variable has
not been declared by an ASK or #DEFINE command, or by the -DEBUG flag on the Production
Reporting command line. (# IFNDEF is a compiler directive.)

Syntax

#IFNDEF substitution variable

Arguments
substitution_variable

Variable used as the substitution variable.

See Also

#IF for descriptions of compiler directives

#INCLUDE

Function

Includes an external source file into the Production Reporting report specification.

Syntax

#INCLUDE filename_ 1lit

Arguments
filename 1it

A valid filename for the platform on which this application is compiled.

Description

You may want to keep commonly used routines in a single file and reference or “include” that
file in programs that use the routine. For example, you might have a set of #DEFINE commands
for different printers to control initialization, font changes, and page size declarations. You can
reference the appropriate include file depending on which printer you want to use.

INCLUDE files can be nested up to four levels.

Variable substitution scanning takes place before the #INCLUDE command is processed. This
allows you to substitute all or part of the INCLUDE file name at run time, adding flexibility to
controlling which file is included for the run.

188 Production Reporting Command Reference

INPUT

Examples

#include 'gethours.dat' ! Common procedure.

#include 'XYZheader.dat' ! Common report heading for XYZ Company.

#include 'printer{num}.dat'! Include printer definitions for
! printer {num},which is passed
! on the command line:
! SQR REP1A SAM/JOE 18
! where 18 is the arbitrary
! number assigned your printer
! definition file, 'printerl8.dat'.
! The report would contain the
! command: ASK num
! in the SETUP section, preceding
! this #include statement.

Function

Accepts data entered by the user at a terminal.

Syntax

INPUT input_var[MAXLEN=nn] [prompt]
[TYPE={CHAR | TEXT | NUMBER | INTEGER | DATE}]
[STATUS=num_var] [NOPROMPT] [BATCH-MODE]
[FORMAT={txt_lit|_var|_col}]

Arguments
input_var

Text, numeric, or date variable for the input data.

MAXLEN

Maximum length for the data.

prompt

Prompt (literal not variable) displayed to the user.

TYPE

Datatype required for the input.

STATUS

Numeric variable for a return status code.

NOPROMPT

Prevents the prompt from displaying before INPUT is processed.

INPUT 189

BATCH-MODE

If BATCH-MODE is specified and no more arguments are in the command line, a value of 3 is
returned in the STATUS variable and the user is not prompted for input.

FORMAT

Format for entering a date (see Table 57, “Date Edit Format Characters,” on page 245).

Description

Use MAXLEN to prevent entering data that is too long. If INSERT or UPDATE references a variable
whose length is greater than that defined in the database, the SQL is rejected and Production
Reporting halts. If the maximum length is exceeded, the terminal beeps (on some systems, this
may cause the screen to flash instead).

If prompt is omitted, Production Reporting uses the default prompt, Enter [$| #] var:.Inany
case, a colon (:) and two spaces are added to the prompt.

Specifying TYPE causes data type checking to occur. If the string entered is not the type specified,
the terminal beeps and an error message is displayed. INPUT is then re-executed. If
TYPE=DATE is specified, then input_var can be a date or text variable; however, TYPE=DATE
is optional if input_var is a date variable. If a numeric variable is used, it is validated as a
numeric variable. CHAR, TEXT, and DATE are invalid types.

Table 43 Data Types Supported by INPUT

Datatype Description

CHAR, TEXT | Any character. This is the default datatype.

NUMBER A floating point number in the format [+]-]9999.999[E[+]-]99]

INTEGER An integer in the format [+|-]99999

DATE A date in one of the following formats:

MM/ DD/YYYY [BC|AD] [HH:MI[:SS.NNNNNN]] [AM | PM]]

MM-DD-YYYY [BC | AD] [HH:MI[:SS[.NNNNNN]] [AM | PM]]

MM.DD.YYYY [BC | AD] [HH:MI[:SS[.NNNNNN]] [AM | PM]]

SYYYYMMDD[HH24[MI[SS[NNNNNN]]]]

Specifying STATUS causes INPUT to complete regardless of what the user enters. No error
message is displayed. A nonzero error code is stored in the indicated numeric variable if the
length or datatype entered is incorrect.

Table 44 Values of the STATUS Argument of the INPUT Command

Status Value | Indicates

0 Successful.

190 Production Reporting Command Reference

Status Value | Indicates

1 Bad type (did not match the datatype of TYPE).

2 Too long (longer than MAXLEN or the input for an INTEGER variable is < -2147483648 or
> +2147483647).

3 No arguments remain on the command line. The command was ignored.

By using NOPROMPT and STATUS with SHOW, you can write a sophisticated data entry routine.

FORMAT can only be used with dates. It can be a date edit mask or the keyword DATE. Use the
keyword DATE if the date must be in the format as specified with INPUT-DATE-EDIT-MASK for
the current locale. If FORMAT has not been set, use a database-independent format for the data
in Table 43 on page 190.

Examples

The following example shows several INPUT commands:

input $state maxlen=2 'Please enter state abbreviation'
input #age 'Enter lower age boundary' type=integer

input S$start_date 'Enter starting date for report' type=date
input $date_in format='Mon dd yyvy'

input S$date format=date

The following example shows another INPUT command:

show clear-screen (5,32) reverse 'CUSTOMER SUMMARY' normal
Try_again:

show (12,20) 'Enter Start Date: ' clear-line
input S$start-date noprompt status=#istat type=date
if #istat !'= 0

show (24,1) 'Please enter date in format DD-MON-YY' beep
goto try_again

end-if

show (24,1) clear-line! Clear error message line.

The following example illustrates the use of BATCH-MODE:

begin-program
while (1)
input S$A status=#stat batch-mode
if #stat = 3
break
else
do procedure (S$Sa)
end-if
end-while
end-program

See Also
e ALTER-LOCALE

e The INPUT-DATE-EDIT-MASK setting in Chapter 6, “SQR.INIL.”

INPUT 191

LAST-PAGE

LET

Function

Places the last page number on each page, as in “page n of m”.

Syntax
LAST-PAGE position [pre txt_ lit[post_txt_1it]]

Arguments
position

Position for printing the last page number.

pre_txt_1it

Text string printed before the last page number.

post_txt_1it

Text string printed after the last page number.

Description

The text strings specified in pre_txt_I1itand post_txt_1it are printed immediately before
and after the number.

Using LAST-PAGE causes the SQR and SQRT executables to delay printing until the last page
has been processed so that the number of the last page is known.

Examples
begin-footing 1
page-number (1,37) 'Page ' Will appear as

last-page () "of ' '." I "Page 12 of 25."
end-footing

See Also
PAGE-NUMBER, BEGIN-HEADING, and BEGIN-FOOTING

Function

Assigns the value of an expression to a string, numeric, date, or list (DDO only) variable.

Syntax

LET dst_var=expression

192 Production Reporting Command Reference

Arguments

dst_var

String, numeric, date, or list (DDO only) variable or array field to which the result of the
expression is assigned.

expression

Expression to evaluate.

Description

Valid expressions are formed as a combination of:
e Operands

e Operators

e Functions

String, numeric, date, and array field operands can be used in an expression as well as embedded
functions. Production Reporting supports a standardized set of mathematical operators and
logical comparison operators working within a carefully defined set of precedence rules.
Production Reporting also provides the user with a rich set of numeric, string, date, unicode,
and file manipulation functions along with a number of special purpose utility functions. All
combined, the Production Reporting expression provides the user with a very powerful tool that
can be tailored to suit any information processing need. (Note that all string indices are one-
based, not zero-based.)

Examples

The following examples show some complex expressions:

let #3 = ((#a + #b) * #c) ~ 2

if #j > 2 and sqgrt(#j) < 20 or #1 + 2 > 17.4

while upper (substr (&descrip, 1, #j+2)) != 'XXXX'

and not isnull (&price)

let #len = length(&fname || &initial || &lname) + 2

let $s = edit(&price * &rate, '99999.99')

let summary.total (#j) = summary.total(#j) + (&price * &rate)

if summary.total (#3j) > 1000000
let store.total (#store_id, #dept)
= store.total (#store_id, #dept) + #total
let #diff = datediff (datenow(), strtodate('1995','YYYY'), 'day"')
let sSnewdate = dateadd(datenow(), 'month',50)
let sdatel = datetostr(strtodate(&sale_date), 'Day Month DD, YYYY')

Production Reporting analyzes LET, IF, and WHILE expressions when it compiles code and saves
the result in an internal format so that repetitive execution is at maximum speed.

Operands

Operands form the backbone of an Production Reporting expression. Operands do not have to
be the same type. You can combine string, numeric and array field operands to form a valid

LET 193

expression. Production Reporting performs a sequence of automatic operand conversions as it
evaluates expressions that contain dissimilar operand types. As the expression is evaluated,
operands of lower precision are converted to match the operand of higher precision. Consider
the following example:

let #answer = #float * #decimal / #integer

Since the multiply and divide operators are equal in precedence, the expression is evaluated as
(#float* #decimal) | #integer. Working from the inside out, the #f1oat variable is
converted to a decimal type where a multiply is performed yielding the simplified expression,
(#decimal)/#integer. Production Reporting now converts the #integer operand to a
decimal type before performing the final divide. When finished with the expression evaluation,
Production Reporting converts the result to match the type of the #answer variable.

Converting operands of lower precision to operands of higher precision preserves the number
of significant digits. The number of significant digits is not lost when an integer is converted to
float or decimal. In a similar manner, the number of significant digits is preserved when floating
point operands are converted to the decimal type. The number of significant digits is only
sacrificed when the final result is converted to match the type of the #answer variable and this
variable is less precise than the highest of the operands being evaluated. In the example, precision
is not lost if the #answer is declared as a decimal type. Production Reporting considers integer
variables as the lowest in the precision hierarchy, followed by float and then decimal.

Here are a few simple expression examples:

let #discount=round (&price * #rate / 100, 2)
let $name=$first name || ' ' || $last_name
let customer.total (#customer_id) =
customer.total (#customer_id) + #invoice_total
if not range(upper($code), 'A', 'G')
...processing when out of range...
let store.total (#store_id, #gtr) =
store.total (#store_id, #gtr) + #invoice_total
let $datel = strtodate ('Apr 10 1996', 'MON DD YYYY')

The following sections list operators and functions supported in expressions.

Operators

Table 45 lists operators in descending order of precedence. Operators listed in the same row
within the table have the same precedence (the operators *,/,% are equal in precedence).

Operators of the same precedence are processed in the sequence they appear in the expression,
from left to right. Use parentheses to override the normal precedence rules. All numeric types
(decimal, float, integer) are supported for all operators.

Table 45 Operators

Operator Explanation

1 Concatenate two strings or dates

194 Production Reporting Command Reference

Operator Explanation

+, - Sign prefix (positive or negative)

A Exponent

*/ % Multiply, divide, remainder: a % b = mod(a,b) for integers
+, - Plus, minus

Note: Production Reporting distinguishes between a sign prefix and arithmetic operation
by the context of the expression.

>, &, >=,<=,<>, I=, = | Comparison operators: greater than, less than, greater or equal to, less than or equal to,
not equal (!= or <>), equal

not Logical NOT
and Logical AND
or, xor Logical OR, XOR (exclusive OR)

Bit-Wise Operators
Bit-Wise operators allow you to utilize bitmasks within your program.

Bit-Wise operators act just like their logical counterparts (AND, OR, XOR) except that instead of
returning TRUE or FALSE, they return the actual result.

To facilitate the use of these operators, LET recognizes the hexadecimal notation of 0X? for
expressing a numerical constant. The ? character is from 1 to 8 hexadecimal characters (0-F).

Table 46 Bit-Wise Operators

Operator | Explanation

BitAND Acts just like Logical AND except returns the actual result instead of TRUE or FALSE

BitOR Acts just like Logical OR except returns the actual result instead of TRUE or FALSE

BitXOR Acts just like Logical XOR except returns the actual result instead of TRUE or FALSE

Note:

In addition to BitAND, BitOR, and BitXOR, you can use the HEX function. The HEX function
takes a numerical argument and returns a string, in the form of 0X?, which is the hexadecimal
representation of the argument.

To prevent any loss of precision, declare the arguments to the Bit-Wise operators and the HEX
function as an INTEGER.

Sample program:
|

! Validation test for Bit-Wise LET operators

LET 195

|
begin-setup
declare-variable
integer #mask
end-declare
end-setup

begin-program
let #mask = 0x1000
if not (#mask BitAND 0x1000)
let $mask = hex (#mask)

show 'impossible ' Smask ' BitAND 0x1000 failed'

end-if
if (#mask BitOR 0x1000) <> 0x1000
let S$mask = hex (#mask)

show 'impossible ' $mask ' BitOR 0x1000 failed'

end-if
if (#mask BitXOR 0x1000)
let S$mask = hex (#mask)

show 'impossible ' Smask ' BitXOR 0x1000 failed'

end-if

let #Mask = 0

if (#mask BitXOR 0x1000) <> 0x1000
let $mask = hex(#Mask)

show 'impossible ' $mask ' BitXOR 0x1000 failed'

end-if
let Smask = hex(Oxffffffff)
if Smask <> 'Oxffffffff:

show 'impossible ' Smask ' <> Oxffffffff’

end-if
let Smask = hex(0x12345678)
If $Mask <> '0x12345678"

show 'impossible ' Smask ' <> 0x12345678'

end-if
let $mask = hex(Oxabcdefl2)
if Smask <> 'Oxabcdefl2’

show 'impossible ' Smask ' <> Oxabcdefl2'

end-if
end-program

Functions

Production Reporting functions include:
e Numeric Functions

e File-Related Functions

e String Functions

e Date Functions

e Unicode Functions

e Miscellaneous Functions

196 Production Reporting Command Reference

Function arguments are enclosed in parentheses and can be nested. Arguments referenced as x,
y, or z indicate the first, second, or third argument of a function. Otherwise, functions take a
single argument or no arguments. All arguments are evaluated before a function is evaluated.

Not all functions support all numeric types (decimal, float, integer). Certain functions do not
support the decimal type directly, but convert input decimal operand(s) to the float type before
the function is evaluated. Table 47 annotates the functions that directly support the decimal type
and which ones do not.

Use parentheses to override the normal precedence rules.

Note:

In functions where a string argument is expected and a date variable, column, or expression is
entered, Production Reporting converts the date to a string according to the following rules:

e For DATETIME columns and Production Reporting DATE variables, Production Reporting
uses the format specified bySQr_DB_DATE_FORMAT. If not set, Production Reporting uses
the first database-dependent format in Table 61, “Default Formats by Database,” on page
251.

e For DATE columns, Production Reporting uses the format specified by
SQR_DB_DATE_ONLY_FORMAT. Ifnot set, Production Reporting uses the format in Table 62,
“DATE Column Formats,” on page 252.

e For TIME columns, Production Reporting uses the format specified by
SQR_DB_TIME_ONLY_ FORMAT. Ifnot set, Production Reporting uses the format in Table 63,
“TIME Column Formats,” on page 252.

On the other hand, except where noted in an individual function, if a string variable, column,
or expression is entered where a date argument is expected, then the string must be in the format
specified by SQR_DB_DATE_FORMAT, one of the database-dependent formats in Table 61,
“Default Formats by Database,” on page 251, or the database-independent format 'SYYYYMMDD
[HH24 [MI[SS[NNNNNN]]]1]'

Numeric Functions

Table 47 Numeric Functions

Function | Description

abs Returns the absolute value of num_value.
Value type: Same as num_value
Syntax: dst_var = abs(num_value)

® num_value = decimal, float, or integer literal, column, variable, or expression.

e dst_var = decimal, float, or integer variable.

Example: |et#dabsvar = abs(#dvar)

LET 197

Function

Description

acos

Returns the arccosine of num_value in the range of 0 to p radians. The value of num_value must be
between -1 and 1.

Value type: float
Syntax: dst_var = acos(num_value)

e num_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to float.

e dst_var = decimal, float, or integer variable.

Example: let #facosvar = acos(#fvar)

asin

Returns the arcsine of num_value in the range of -p/2 to p/2 radians. The value of num_value must be
between -1 and 1.

Value type: float
Syntax: dst_var = asin(num_value)

® num_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to float.

e dst_var = decimal, float, or integer variable.

Example: let #fasinvar = asin(#fvar)

atan

Returns the arctangent of num_value in the range of -p/2 to p/2 radians. The value of num_value must
be between -1 and 1.

Value type: float
Syntax: dst_var = atan(num_value)

® num_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to float.

e dst_var = decimal, float, or integer variable.

Example: let #fatanvar = atan(#fvar)

ceil

Returns a value representing the smallest integer that is greater than or equal to num_value.
Value type: Same as num_value.

Syntax: dst_var = ceil(num_value)

e num_value = decimal, float, or integer literal, column, variable, or expression.

® dst_var = decimal, float, or integer variable.

Example: let #fceilvar = ceil(#fvar)

Ccos

Returns the cosine of num_value.
Value type: float
Syntax: dst_var = cos(num_value)

® num_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to float.

e dst_var = decimal, float, or integer variable.

Example: let #fcosvar = cos(#fvar)

cosh

Returns the hyperbolic cosine of num_value. This function returns a float value.

198 Production Reporting Command Reference

Function | Description

Syntax: dst_var = cosh(num_value)

® num_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to float.

e dst_var = decimal, float, or integer variable.

Example: let #fcoshvar = cosh(#fvar)

deg Returns a value expressed in degrees of num_value which is expressed in radians.
Value type: float
Syntax: dst_var = deg(num_value)

e num_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to float.

@ dst_var = decimal, float, or integer variable.

Example: let #fdegvar = deg(#fvar)

el0 Returns the value of 10 raised to num_value.
Value type: float
Syntax: dst_var = e10(num_value)

® num_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to float.

e dst_var = decimal, float, or integer variable.

Example: let #felOvar = e10(#fvar)

exp Returns the value of e raised to num_value.
Value type: float
Syntax: dst_var = exp(num_value)

® num_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to float.

® dst_var = decimal, float, or integer variable.

Example: let #fexpvar = exp(#fvar)

floor Returns a value representing the largest integer that is less than or equal to num_value.
Value type: Same as num_value
Syntax: dst_var = floor(num_value)

e num_value = decimal, float, or integer literal, column, variable, or expression.

@ dst_var = decimal, float, or integer variable.

Example: let #ffloorvar = floor(#fvar)

hex Returns a string, in the form of 0x?, which is the hexadecimal representation of the argument
Syntax: dst_var = hex(num_value)

® num_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to an integer.

® dst_var = string variable.

Example: let $hexvar = hex(#fvar)

LET 199

Function

Description

log

Returns the natural logarithm of num_value.
Value type: float
Syntax: dst_var = log(num_value)

® num_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to float.

e dst_var = decimal, float, or integer variable.

Example: let #flogvar = log(#fvar)

log10

Returns the base-10 logarithm of num_value.
Value type: float
Syntax: dst_var = log10(num_value)

e num_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to float.

@ dst_var = decimal, float, or integer variable.

Example: let #flog10var = log10(#fvar)

mod

Returns the fractional remainder, f, of x_value/ y_value such that x_value =i * y_value + f, where i is an
integer, f has the same sign as x_value, and the absolute value of f is less than the absolute value of
y_value. The arguments are promoted to the type of the greatest precision and the function returns a
value of that type.

Syntax: dst_var = mod(x_value, y_value)

o x_value = decimal, float, or integer literal, column, variable, or expression.
e y_value = decimal, float, or integer literal, column, variable, or expression.

e dst_var = decimal, float, or integer variable.

Example: let #fmodvar = mod (#fxvar, #fyvar)

power

Returns the value of x_value raised to the power of y_value.
Value type: float
Syntax: dst_var = power(x_value, y_value)

® x_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to float.

e y_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to float.

@ dst_var = decimal, float, or integer variable.

Example: let #fpowervar = power(#fxvar, #fyvar)

rad

Returns a value expressed in radians of num_value which is expressed in degrees.
Value type: float
Syntax: dst_var = rad(num_value)

® num_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to float.

e place_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to float.

200 Production Reporting Command Reference

Function | Description

@ dst_var = decimal, float, or integer variable.

Example: let #fradvar = rad(#fvar)

round Returns a value that is num_value rounded to place_value digits after the decimal separator.
Value type: Same as num_value
Syntax: dst_var = round(num_value, place_value)

® num_value = decimal, float, or integer literal, column, variable, or expression.

e place_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to float.

® dst_var = decimal, float, or integer variable.

Example: let #frndvar = round(#fvar, #fplace)

sign Returns a -1, 0, or +1 depending on the sign of num_value.

Value type: float

Syntax: dst_var = sign(num_value)

® num_value = decimal, float, or integer literal, column, variable, or expression.
® dst_var = decimal, float, or integer variable.

Example: let #fsignvar = sign(#fvar)

sin Returns the sine of num_value.
Value type: float
Syntax: dst_var = sin(num_value)

e num_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to float.

@ dst_var = decimal, float, or integer variable.

Example: let #fsinvar = sin(#fvar)

sinh Returns the hyperbolic sine of num_value.
Value type: float
Syntax: dst_var = sinh(num_value)

® num_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to float.

e dst_var = decimal, float, or integer variable.

Example: let #fsinhvar = sinh(#fvar)

sqrt Returns the square root of num_value..
Value type: float
Syntax: dst_var = sqrt(num_value)

® num_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to float.

® dst_var = decimal, float, or integer variable.

Example: let #fsqrtvar = sqrt(#fvar)

LET 201

Function | Description

tan Returns the tangent of num_value.
Value type: float
Syntax: dst_var = tan(num_value)

® num_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to float.

e dst_var = decimal, float, or integer variable.

Example: let #ftanvar = tan(#fvar)

tanh Returns the hyperbolic tangent of num_value.
Value type: float
Syntax: dst_var = tanh(num_value)

e num_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to float.

@ dst_var = decimal, float, or integer variable.

Example: let #ftanhvar = tanh(#fvar)

trunc Returns a value that is num_value truncated to place_value digits after the decimal separator.
Value type: Same as num_value
Syntax: dst_var = trunc(num_value, place_value)

e num_value = decimal, float, or integer literal, column, variable, or expression.

place_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to float.

e dst_var = decimal, float, or integer variable.

Example: let #ftruncvar = trunc(#fvar, #fplace)

The transcendental functions sin, cos, tan, sinh, cosh, and tanh take their arguments in
radians. The functions asin, acos, and atan return radian values. To convert from radians to
degrees or degrees to radians, use the rad or deg functions as follows:

let #x = sin(rad(45)) ! Sine of 45 degrees.
let #y = deg(asin(#x))! Convert back to degrees.

If arguments or intermediate results passed to a numeric function are invalid for that function,
Production Reporting halts with an error message.

For example, passing a negative number to the sqrt function causes an error. Use the cond
function described in Table 52 to prevent division by zero or other invalid function or operator
argument values.

File-Related Functions

Note:

File-related functions return zero (0) if successful; otherwise, they return the system error code.

202 Production Reporting Command Reference

Table 48 File-Related Functions

Function

Description

delete

Deletes filename.
Syntax: stat_var = delete(filename)

e filename = text literal, column, variable, or expression.

e stat_var = decimal, float, or integer variable.

Example: let #fstatus = delete($filename)

exists

Determines if filename exists.
Syntax: stat_var = exists(filename)

o filename = text literal, column, variable, or expression.

e stat_var = decimal, float, or integer variable.

Example: let #fstatus = exists($filename)

filesize

Accepts the name of an external file and returns the number of bytes it contains. If the file size cannot be

determined, -1 is returned.
Syntax: dst_var = filesize(source_value)

® source_value = text literal, column, variable, or expression

@ dst_var = decimal, float, or integer variable

Example: let #size = filesize($file)

rename

Renames old_filename to new_filename.
Syntax: stat_var = rename(old_filename, new_filename)

o old_filename = text literal, column, variable, or expression
o new_filename = text literal, column, variable, or expression

e stat_var = decimal, float, or integer variable

Example: let #fstatus = rename($old_filename, $new_filename)

String Functions

Table 49 String Functions

Function

Description

ascii

Returns the ASCII value for the first character in str_value.

Value type: float

Syntax: ascii_var = ascii(str_value)

o str_value = date or text literal, column, variable, or expression
e ascii_var = decimal, float, or integer variable

Example: let #fascii = ascii($filename)

asciic

Syntax: ascii_var = asciic(str_value)

Returns the numeric value for the first character (rather than byte) of the specified string.

LET

203

Function

Description

e str_value = date or text literal, column, variable, or expression

® ascii_var = decimal, float, or integer variable

Example: let #fascii = asciic($filename)

chr

Returns a string composed of a character with the ASCII value of num_value.
Syntax: dst_var = chr(num_value)

e num_value = decimal, float, or integer literal, column, variable, or expression. The value is
always converted to float.

® dst_var = text variable

Example: let $svar = chr(#num)

edit

Formats source_value according to edit_mask and returns a string containing the result.
Syntax: dst_var = edit(source_value, edit_mask)

@ source_value = Any literal, column, variable, or expression

@ edit_mask = text literal, column, variable, or expression

® dst_var = text variable

Example: let $phone = edit(&phone, '(xxx) xx-xxxxx') let $price = edit(#price, '999.99') let $today
= edit($date, 'DD/MM/YYYY')

fromhex

Accepts a TEXT variable that contains a string of hexadecimal characters (case insensitive) and
returns a BINARY variable. Each byte of BINARY data consists of two hexadecimal characters.

Syntax: dst_var = fromhex(source_value)

® source_value = text literal, column, variable, or expression

® dst_var = binary variable

Example: let $image = fromhex($hexchars)

instr

Returns the numeric position of sub_value in source_value or zero (0) if not found. The search
begins at offset offset_value.

Value type: float

Syntax: dst_var = instr(source_value, sub_value, offset_value)

® source_value = date or text literal, column, variable, or expression
sub_value = text literal, column, variable, or expression

o offset_value = decimal, float, or integer literal, column, variable, or expression. The value is
always converted to integer.

® dst_var = decimal, float, or integer variable

Example: let #offset = instr(&description, 'auto’, 10)

instrb

Performs the same functionality as the instxr function except that the starting point and returned
value are expressed in bytes rather than characters.

Syntax: dst_var = instrb(source_value, sub_value, offset_value)
® source_value = date or text literal, column, variable, or expression
sub_value = text literal, column, variable, or expression

o offset_value = decimal, float, or integer literal, column, variable, or expression. The value is
always converted to integer.

204 Production Reporting Command Reference

Function

Description

@ dst_var = decimal, float, or integer variable
Example: let #offset = instrb(&description, 'auto’, 10)

Note: instrb does not allow you to specify the target encoding. If you are using Unicode internally,
specify the target encoding with 1engthp, lengtht, substrp, substrt, Or transform.

isblank

Returns a value of one (1) if source_val is an empty string, null string, or composed entirely of
whitespace characters; otherwise, returns a value of zero (0).

Syntax: dst_var = isblank(source_value)

® source_value = date ortext literal, column, variable, or expression (character data type columns
only, no numeric data type columns)

® dst_var = decimal, float, or integer variable
Example: let #blank = isblank(&description)

Note: isblank can only be used for character data type columns.

length

Returns the number of characters in source_value.
Syntax: dst_var = length(source_value)

@ source_value = date or text literal, column, variable, or expression

@ dst_var = decimal, float, or integer variable

Example: let #length = length(&description)

lengthb

Same functionality as 1ength except that the return value is expressed in bytes, rather than
characters.

Syntax: dst_var = lengthb(source_value)

@ source_value = date or text literal, column, variable, or expression
@ dst_var = decimal, float, or integer variable

Example: let #length = lengthb(&description)

Note: 1engthb does not allow you to specify the target encoding. If you are using Unicode
internally, specify the target encoding with 1engthp, lengtht, substrp, substrt, or
transform.

lower

Converts the contents of source_value to lowercase and returns the result.
Syntax: dst_var = lower(source_value)

® source_value = date or text literal, column, variable, or expression

® dst_var = text variable

Example: let $lower = lower(&description)

Ipad

Pads the source_value on the left to a length of length_value using pad_value and returns the
result.

Syntax: dst_var = Ipad(source_value, length_value, pad_value)

® source_value = date or text literal, column, variable, or expression

o length_value = decimal, float, or integer literal, column, variable, or expression. The value is
always converted to integer

pad_value = text literal, column, variable, or expression

® dst_var = text variable

LET 205

Function

Description

Example: let $Ipad = Ipad($notice, 25, '.")

Itrim

Trims characters in source_value from the left until a character is not in set_value and returns the
result.

Syntax: dst_var = Itrim(source_value, set_value)
@ source_value = date or text literal, column, variable, or expression
o set_value = text literal, column, variable, or expression

® dst_var = text variable

Example: let $ltrim = Itrim(&description, '.")

replace

Inspects the contents of source_value and replaces all occurrences of from_string with to_string
and returns the modified string.

Syntax: dst_var = replace(source_value, from_string, to_string)

source_value = date or text literal, column, variable, or expression
from_string = text literal, column, variable, or expression

to_string = text literal, column, variable, or expression

dst_var = text variable

Example: let $replaced = replace($paragraph, ‘good’, ‘excellent’)

rpad

Pads the source_value on the right to a length of length_value using pad_value and returns the
result.

Syntax: dst_var = rpad(source_value, length_value, pad_value)

® source_value = date or text literal, column, variable, or expression

o length_value = decimal, float, or integer literal, column, variable, or expression. The value is
always converted to integer.

® pad_value = text literal, column, variable, or expression

® dst_var = text variable

Example: let $rpad = rpad($notice, 25, '.')

rtrim

Trims characters in source_value from the right until a character is not in set_value and returns the
result.

Syntax: dst_var = rtrim(source_value, set_value)

® source_value = date, or text literal, column, variable, or expression
® set_value = text literal, column, variable, or expression

® dst_var = text variable

Example: let $rtrim = rtrim(&description, '.")

substr

Extracts the specified portion source_value. The extraction begins at offset_value (origin is 1) for
a length of length_value characters.

Syntax: dst_var = substr(source_value, offset_value, length_value)

@ source_value = date or text literal, column, variable, or expression

o offset_value = decimal, float, or integer literal, column, variable, or expression. The value is
always converted to integer.

206 Production Reporting Command Reference

Function

Description

o length_value = decimal, float, or integer literal, column, variable, or expression. The value is
always converted to integer.

® dst_var = text variable

Example: let $piece = substr(&record, 10, #len)

substrb

Has the same functionality as substr except that the starting point and length are expressed in
bytes, rather than in characters.

Syntax: dst_var = substrb(source_value, offset_value, length_value)

® source_value = date or text literal, column, variable, or expression

offset_value = decimal, float, or integer literal, column, variable, or expression. The value is
always converted to integer.

o length_value = decimal, float, or integer literal, column, variable, or expression. The value is
always converted to integer.

® dst_var = text variable
Example: let $piece = substrb(&record, 10, #len)

Note: substrb does not allow you to specify the target encoding. If you are using Unicode
internally, specify the target encoding with lengthp, lengtht, substrp, substrt, oOf
transform.

to_char

Converts source_value to a string, using maximum precision.
Syntax: dst_var = to_char(source_value)

e source_value = decimal, float, or integer literal, column, variable, or expression

® dst_var = text variable

Example: let $string = to_char(#number)

tohex

Accepts a BINARY variable and returns a string composed of uppercase hexadecimal characters
that represents the data. Each byte of BINARY data consists of two hexadecimal characters.

Syntax: dst_var = tohex(source_value)

® source_value = binary literal, column, variable, or expression

® dst_var = text variable

Example: let $hexchars = tohex($vargraphic)

to_multi_byte

Converts the specified string as follows: any occurrence of a single-byte character that also has a
multi-byte representation (numerals, punctuation, roman characters, and katakana) is converted.

Syntax: dst_var = to_multi_byte (source_value)
® source_value = date or text literal, column, variable, or expression
® dst_var = text variable

Example: let $multi = to_multi_byte (&text)

to_number

Converts source_value to a number.
Value type: float
Syntax: dst_var = to_number(source_value)

e source_value = decimal, float, or integer literal, column, variable, or expression

@ dst_var = decimal, float, or integer variable

LET 207

Function

Description

Example: let #value = to_number($number)

to_single_byte

Converts the specified string as follows: any occurrence of a multi-byte character that also has a
single-byte representation (numerals, punctuation, roman characters, and katakana) is converted.

This function also converts a sequence of kana characters followed by certain grammatical marks
into a single-byte character that combines the two elements. For all other encodings, the string is
not modified.

Note: If you are running Production Reporting without the use of Unicode
(UseUnicodelnternal=FALSE in SQR.INI), this conversion only occurs when the database encoding
(ENCODING-DATABASE setting in SQR.INI) is set to SJIS, EBCDIK290, and EBCDIK1027.

Syntax: dst_var = to_single_byte (source_value)
@ source_value = date or text literal, column, variable, or expression
® (Jst_var = text variable

Example: let $single = to_single_byte (&text)

translate

Inspects the contents of source_value and converts characters that match those in from_set to the
corresponding character in to_set and returns the translated string.

If to_set does not contain a matching translation character in the corresponding from_set, then
the original is left unchanged with regard to that character. If the translation string in to_set is
empty, then all characters specified in the from_set string are removed.

Syntax: dst_var = translate(source_value, from_set, to_set)

@ source_value = date or text literal, column, variable, or expression
o from_set = text literal, column, variable, or expression

o to_set = text literal, column, variable, or expression

@ dst_var = text variable

Example: let $translated = translate(edit(&price, '999,999.99", ',.", .,)

upper

Converts the contents of source_value to uppercase and returns the result.
Syntax: dst_var = upper(source_value)
® source_value = date or text literal, column, variable, or expression

® dst_var = text variable

Example: let $upper = upper(&description)

Date Functions

Table 50 Date Functions

Function | Description

dateadd | Returns a date after adding (or subtracting) the specified units to the date_value.

Syntax: date_var = dateadd(date_value, units_value, quantity_value)

® date_value = date variable or expression

units_value = text literal, column, variable, or expression. Valid units are 'year', 'quarter', 'week',
'month’, 'day', 'hour', 'minute', and 'second'

208 Production Reporting Command Reference

Function

Description

® quantity_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to float.

@ date_var = date variable

Example: let $date = dateadd($startdate, 'day’, 7.5)

datediff

Returns the difference between the specified dates expressed in units_value. The function returns a float
value. The result can be negative if the first date is earlier than the second date.

Syntax: dst_var = datediff(datel1_value, date2_value, units_value)
e datel_value = date variable or expression

e date2_value = date variable or expression

® units_value = text literal, column, variable, or expression. Valid units are 'year', 'quarter', 'week',
‘month’, 'day', 'hour', 'minute’, and 'second’

® dst_var = decimal, float, or integer variable

Example: let #diff = datediff($date1, $date2, 'hour')

datenow

Returns the current local date and time from the client machine.
Syntax: dst_var = datenow()
® dst_var = date variable

Example: let $date = datenow()

datetostr

Converts the date date_value to a string in the format format_mask.
Syntax: dst_var = datetostr(date_value, [format_mask])

® date_value = date variable or expression

e format_mask = text literal, column, variable, or expression. DATE can be used to specify
DATE-EDIT-MASK from the current locale. If this argument is not specified, then the format specified
by SOR_DB_DATE_FORMAT is used. If this has not been set, then the first database-dependent
format in Table 61, “Default Formats by Database,” on page 251 is used.

® dst_var = text variable

Example: let $formdate = datetostr($date, 'Day Mon DD, YYYY') let $localedate = datetostr($date, DATE)

strtodate

Converts the string source_value in the format format_mask to a date type.
Syntax: dst_var = strtodate(source_value [, format_mask])

® source_value = text literal, column, variable, or expression

o format_mask = text literal, column, variable, or expression that describes the exact format of the
source_value. DATE can specify the DATE-EDIT-MASK setting from the current locale. If not
specified, then source_value must be in the format specified by SQrR_DB_DATE_FORMAT, one of
the database-dependent formats (see Table 61, “Default Formats by Database,” on page 251), or
the database-independent format 'SYYYYMDD[HH24[MI[SS[NNNNNN]]]]". Valid format codes are
specified in Table 57 on page 245. See “PRINT” on page 239 for information regarding the default
date-time components as a result of converting an incomplete date.

® Jdst_var = date variable

Example: let $date = strtodate($str_date, 'Mon DD, YYYY') let $date = strtodate($str_date, DATE)

LET 209

Unicode Functions

Note:

Unicode functions are only allowed when converting to Unicode internally.

Table 51 Unicode Functions

Function

Description

lengthp

Returns the string length in print position. Half-width characters take one print position, full-width
characters take two, and combining characters take zero.

Syntax: dst_var = lengthp(source_value)

® source_value = date or text literal, column, variable, or expression

e dst_var = decimal, float, or integer variable

Example: let #printLen = lengthp($string))

lengtht

Returns the string length in bytes when converted (transformed) to a specified encoding. Encoding names
are the same as those allowed in OPEN or in SQR.INI. String and column variables can be used in place
of the literal encoding name.

Syntax: dst_var = lengtht(source_value, encoding_value)

® source_value = date or text literal, column, variable, or expression
® encoding_value = text literal, column, variable, or expression

@ dst_var = decimal, float, or integer variable

Example: let #sjisLen = lengtht($string, ‘shift-jis’)

substrp

(Returns a substring of a given string starting at a specified print position into the string and of a specified
print length. When #printPos is in the middle of a full-width character, Production Reporting “rounds up”
to the next character. When #printLen ends in a partial character, Production Reporting “rounds down”
to the previous character.

Syntax: dst_var = substrb(source_value, offset_value, length_value)

source_value = date or text literal, column, variable, or expression.

o offset_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to integer.

® length_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to integer.

® dst_var = text variable

Example: let $sub = substrp(&string, #printPos, #printlen)

substrt

Returns a Unicode string equivalent to a byte level substring of a given string after converting
(transforming) the given string to a given encoding. If the substring of the converted string yields a partial
character, that character will be truncated.

Syntax: dst_var = substrb(source_value, offset_value, length_value, encoding_value))

® source_value = date or text literal, column, variable, or expression

o offset_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to integer.

210 Production Reporting Command Reference

Function

Description

length_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to integer.

encoding_value = text literal, column, variable, or expression

dst_var = text variable

Example: let $sjisPrep = SUBSTRT ($string, 1, 10, ‘Shift-JIS’)

transform

Returns a Unicode string which is specified transform of a given string.

Syntax: dst_var = transform (source_value, transform_value)

source_value = date or text literal, column, variable or expression
transform_value = text literal, column, variable, or expression

dst_var - text variable

Example: let $hiragana = transform (&string, ‘ToHiragana’)

Production Reporting supports the following transforms:

(***Source: Rosette API Reference)

ToLowercase—Transforms all uppercase Latin letters to lowercase (this includes both "half-width"
and "full-width" Latin characters).

ToUppercase—Transforms all lowercase Latin letters to uppercase (this includes both "half-width"
and "full-width" Latin characters).

ToFullwidth—Transforms all half-width characters that also have a full-width representation to their
full-width form.

Characters with full-width representations are: Roman alphabet characters (A-z), digits (0-9),
Japanese katakana characters, and the most commonly used punctuation characters (including
Space).

ToHalfwidth —ransforms all full-width characters that also have a half-width representation to their
half-width form.

Characters with half-width representations are: Roman alphabet characters (A-z), digits (0-9),
Japanese katakana characters, and the most commonly used punctuation characters (including
Space).

ToHiragana—Transforms all full-width katakana characters to hiragana.

To convert half-width katakana characters to hiragana, you must first convert the characters to full-
width using the FullWidth transform.

ToParagraphSeparator—Standardizes the line/paragraph separators in the text according to the
following standards:

Standard Code Point Line/Paragraph Separator
Windows 0xODOA 0xODOA

Macintosh 0xOD ToCR

UNIX OxOA ToLF

Unicode U+2028 ToLineSeparator

Unicode U+2029 ToParagraphSeparator
EBCDIC Ox15 ToEBCDICNewLine

HankakuKatakanaToZenkaku—Converts half-width (hankaku) Japanese katakana characters to the
full-width (zenkaku) form.

LET 211

Function | Description

This conversion is almost identical to ToFullwidth, except that it automatically composes and
combines katakana "accent" marks (dakuten and handakuten) appropriately, whereas ToFullwidth
does not provide any special treatment for these marks.

ZenkakuKatakanaToHankaku—Converts full-width (zenkaku) Japanese katakana characters to the
half-width (hankaku) form.

This conversion is almost identical to ToHalfwidth, except that it automatically decomposes and
separates katakana "accent" marks (dakuten and handakuten) appropriately, whereas ToHalfwidth
does not provide any special treatment for these marks.

unicode Returns a Unicode string from the string of hexadecimal values provided. The syntax of the literal for

UNICODE is
' [whitespace | U+ | \u]XXXX.'

where X is a valid hexadecimal digit: 0-9, a-f, or A-F. The hexadecimal value will always be in big-endian
form.

Syntax: dst_var = unicode(source_value)

® source_value = text literal, column, variable or expression

® dst_var = text variable

Example: let $uniStr = unicode ('U+5E73 U+2294")

Miscellaneous Functions

Note:

Miscellaneous functions return a string value unless otherwise indicated.

Table 52 Miscellaneous Functions

Function

Explanation

array

Returns a pointer to the starting address of the specified array field. The value returned can only
be used by a user-defined function. See printarray in UFUNC.C.

Syntax: array_var = array(array_name, field_name)

® array_name = text literal, column, variable, or expression
e field_name = text literal, column, variable, or expression

® array_var = text variable

Example: let #fstatus = printarray(array('products', 'name'), 10, 2, 'c')

command_line

Returns command line arguments passed to SQR (or SQRT).
Syntax: dst_var = command_line()
® (dst_var = text variable

Example: let $cmdline = command_line()

cond

Returns y_value if x_value is nonzero (0); otherwise, returns z_value. If y_value is numeric, then
z_value must also be numeric; otherwise, date and textual arguments are compatible. If either

212 Production Reporting Command Reference

Function

Explanation

y_value or z_value is a date variable, column, or expression, a date is returned. The return value
of the function depends on which value is returned.

Syntax: dst_var = cond(x_value, y_value, z_value)

e x_value = decimal, float, or integer literal, column, variable, or expression. The value is always
converted to float.

® y_value = Any literal, column, variable, or expression
® Z_value = Any literal, column, variable, or expression

® dst_var = Any variable

Example: let #avg = #total / cond(&rate != 0, &rate, 1)

getenv

Returns the value of the environment variable. If the environment variable does not exist, an empty
string is returned.

Syntax: dst_var = getenv(env_value)

® env_value = text literal, column, variable, or expression

® Jdst_var = text variable

Example: let $myuser = getenv('USER')

getfilemapname

Returns the mapped filename. In Oracle Enterprise Performance Management Workspace, Fusion
Edition, if the filename has a mapped equivalent the mapped filename is returned; otherwise, the
filename is returned unchanged. Outside of EPM Workspace, the filename is returned unchanged.

Syntax: dst_var = getfilemapename(source_value)

® source_value = text literal, column, variable, or expression

® Jdst_var = text variable

Example: let $realfile = getfilemapname('data.fil')! get real filename is run under EPM Workspace
let #Status = System('cp ' | | $RealFile || ' /tmp') ! Copy to temp directory

isnull

Returns one (1) if source_val is null; otherwise, returns zero (0).
Syntax: dst_var = isnull(source_value)

® source_value = date or text literal, column, variable, or expression

® dst_var = decimal, float, or integer variable

Example: let #null = isnull($date)

isnumber

Returns one (1) if source_value is a number; otherwise, returns zero (0). A number is defined to
be of the form: [Sign] [Digits] [.Digits] [E] e [Sign] Digits]. Leading and trailing blanks are ignored.

Syntax: dst_var = isnumber(source_value)

® source_value = text literal, column, variable, or expression

e dst_var = decimal, float, or integer variable

Example: let #isnumber = isnumber($string)

nvl

Returns y_value if the x_value is null; otherwise, returns x_value. If x_value is numeric, y_value
must also be numeric; otherwise, date and textual arguments are compatible. In any case, the
X_value determines the type of expression returned. The return value of the function depends on
which value is returned.

Syntax: dst_var = nvl(x_value, y_value)

® x_value = Any literal, column, variable, or expression

LET 213

Function Explanation

® y_value = Any literal, column, variable, or expression

® dst_var = Any variable
Example: let $city = nvl(&city, '-- not city --')

If x_value is a date and y_value is textual, then y_value is validated according to the following
rules:

e ForDATETIME columns and Production Reporting DATE variables, Production Reporting uses
the format specified by SQR_DB_DATE_FORMAT, one of the database-dependent formats
(see Table 61, “Default Formats by Database,” on page 251), or the database-independent
format 'SYYYYMDD[HH24[MI[SS[NNNNNN]]]]'".

e For DATE columns, Production Reporting uses the format specified by
SQR_DB_DATE_ONLY_FORMAT, or the format in Table 62, “DATE Column Formats,” on page
252.

e For TIME columns, Production Reporting uses the format specified by
SQR_DB_TIME_ONLY_FORMAT, or the format in Table 63, “TIME Column Formats,” on page
252.

range Returns one (1) if x_value is between y_value and z_value; otherwise, returns zero (0). If the first
argument is text or numeric, the other arguments must be of the same type. If the first argument
is a date, the remaining arguments can be dates and/or text. It is also possible to perform a date
comparison on a mix of date and text arguments, for example, where x_value is a date and y_value
and z_value are text arguments. In a comparison of this sort, y_value must represent a date that
is earlier than that of z_value.

Syntax: dst_var = range(x_value, y_value, z_value)

@ Xx_value = Any literal, column, variable, or expression
® y_value = Any literal, column, variable, or expression
® Z_value = Any literal, column, variable, or expression

e dst_var = decimal, float, or integer variable

Example: let #inrange = range(&grade, 'A', 'D') let #inrange = range($date, $startdate, $enddate)
let #inrange = range($date, $startdate, '15-Apr-97') let #inrange = range(#price, #low, #high)

Ifx_value is a date and y_value and/or z_value is textual, then y_value and/or z_value is validated
according to the following rules:

e ForDATETIME columns and Production Reporting DATE variables, Production Reporting uses
the format specified by SQR_DB_DATE_FORMAT, one of the database-dependent formats
(see Table 61, “Default Formats by Database,” on page 251), or the database-independent
format 'SYYYYMMDD[HH24[MI[SS[NNNNNN]]]]'.

e For DATE columns, Production Reporting uses the format specified by
SQR_DB_DATE_ONLY_FORMAT, or the format inTable 62, “DATE Column Formats,” on page
252.

e For TIME columns, Production Reporting uses the format specified by
SQR_DB_TIME_ONLY_FORMAT, or the format in Table 63, “TIME Column Formats,” on page
252.

roman Returns a string that is the character representation of source_value expressed in lower case
roman numerals.

Syntax: dst_var = roman(source_value)

® source_value = text literal, column, variable, or expression.

® Jdst_var = text variable

214 Production Reporting Command Reference

Function Explanation

Example: let $roman = roman(#page-count)

wrapdepth Returns the number of print lines required by source_value. See the WRAP argument in PRINT for
detailed descriptions of the parameters to this function. This function returns a float value.

Syntax: dst_var = wrapdepth(source_value, wrap_width, line_height, on, strip)

® source_value = text literal, column, variable, or expression wrap_width = decimal, float, or
integer literal, column, variable, or expression

line_height = decimal, float, or integer literal, column, variable, or expression
on = text literal, column, variable, or expression.

strip = text literal, column, variable, or expression

dst_var = decimal, float, or integer variable

Example: /et #depth = wrapdepth(&description,40,1,'<13>",")

Writing Custom Functions

Inaddition to using Production Reporting’s built-in functions, you can write your own functions
in C using the supplied source file UFUNC.C (or EXTUFUNC.C on Windows). If the C routine
accesses a C++ routine, rename the file to UFUNC.CPP. (This enables the C++ compiler to
recognize that it is a C++ source file.) The supplied UFUNC.C source file is compatible with
both C and C++ compilers.

You can pass any number if arguments to your function. Values can be returned by the function
or passed back in variables. Arguments and return values can either be numeric, single byte
character strings, or UTF-8 encoded character strings. The specifics on how to specify the various
argument and return types are explained in the UFUNC.C module. When using UTF-8 encoded
strings, set UseUnicodeInternal=TRUE in SQR.INI.

After editing and recompiling the UFUNC.C module, you must recreate the Production
Reporting executables. For UNIX, execute the sgrmake script located in the 1ib directory. For
Windows, use the sqrext .mak make file located in the 1ib directory to recreate the DLL
module.

When adding a new user-defined function to UFUNC.C, follow these rules:

e For routines that return a string value, define the routine to take the following arguments:
o (int) Number of arguments
o (char *) or (double *) Array of argument pointers, to either char[] or double.
o (char *) Address of the result string. If unchanged, the function returns a NULL string.
o (int) Maximum length of the result string, in bytes.

e For routines that return a numerical value, define the routine to take the following
arguments:

o (int) Number of arguments
o (char *) or (double *) Array of argument pointers, to either char[] or double.

o (double *) Address of the result value. If unchanged, the function returns a zero.

LET 215

Following is an example of how to add a user-defined function to Production Reporting so that
is can be invoked using LET, IF, or WHILE. The example adds a new function called rand, which
returns a random number. The function accepts a single parameter used as the seed to start a
new sequence of numbers. If the seed is zero, the same sequence is used.

To add the rand function to the UFUNC.C module, make the following modifications:
1. Add the prototype for the function.

LINKAGE void sgr_ufunc_rand CC_ARGS((int, double *[], double *));
2. Add the function name to the declaration table.

e The name in the table must be in lower case; however, you can reference it in either
upper case or lower case in your Production Reporting program.

e The name of the function called from Production Reporting is rand.

e The return type is n for numeric, the number of arguments is “1”, and the argument
type is n for numeric.

o The function name in the UFUNC.C module is sqr_ufunc_rand.

e You must enter the characters “PVR” before the function name.

Name Return_Type | Number of Arguments | Arg Types Function

{(char *)"max", 'n', 0, (char *)"n", PVR sgr_ufunc_max},

{(char *)"split", 'n', 0, (char *)"C", PVR sgr_ufunc_split},

{ (char 'n', 4, (char *)"cnnc", PVR

*) "printarray", sqgr_ufunc_printarray}

{(char *)"system", 'n', 1, (char *)"c", PVR sqgr_ufunc_sys},

{(char *)"sleep", 'n', 1, (char *)"n", PVR sqgr_ufunc_sleep},

{(char *)"rand", 'n', 1, (char *)"n", PVR sqgr_ufunc_rand},

{(char *)"unitest", 'u', 2, (char *)"uu", PVR
sqgr_ufunc_unitest},

/* Last entry must be NULL -- do not change

*/

{(char *)uu, |\0|, 0, (char *)nnl 0}

3. At the end of the UFUNC.C module add the sqr ufunc_rand routine.

* RandNumb function -- Get random number and optionally set seed

* Usage: LET #Number = rand (#Seed)

*/

LINKAGE void sqgr_ufunc_rand CC_ARGL((argc, argv, result))
CC_ARG(int, argc) /* Number of actual arguments */
CC_ARG(double *, argvl]) /* Pointers to arguments */

216 Production Reporting Command Reference

CC_LARG (double *, result) /* Where to store result */

{
#1if defined (UNIX)

if (*argv[0] > 0) /* If seed > 0 then set it */
srand48 ((unsigned int) *argv[0]);
result = drand48(); / Get random number */
#else
if (*argv[0] > 0)
srand ((unsigned int) *argv[0]) ;
*result = (double)rand()/ (double) (RAND_MAX) ;
#endif
return;

}

4. After you make these modifications, compile the UFUNC.C module and recreate the
Production Reporting executables.

The following is an example of a simple Production Reporting program that uses the newly
added function:

BEGIN-PROGRAM
DO Get-Random-Number
DO Process-Calculations
END-PROGRAM

BEGIN-PROCEDURE Get-Random-Number
LET #Seed = 44
LET #Ran = RAND (#Seed)
END-PROCEDURE

BEGIN-PROCEDURE Process-Calculations

END-PROCEDURE

LOAD-LOOKUP

Function

Loads an internal table with columns from the database. Allows for quick search using
LOOKUP.

Syntax

In the SETUP section:

LOAD-LOOKUP

NAME=I1ookup_table name
TABLE=database_table name
KEY=key._column_name
RETURN_VALUE=return column_name
[ROWS=initial row estimate int_1it]
[EXTENT=size to_grow by int_ 1it]
[WHERE=where clause_ txt_1it]

LOAD-LOOKUP 217

[SORT=sort_mode]

[QUIET]
[SCHEMA=schema_txt_1it]
[

PROCEDURE=proc_txt_1it

[PARAMETERS= ({{argl [IN|INOUT]} |NULL} [[,argi [IN| INOUT]] |
NULL] ...)]
(or)
COMMAND=command_txt_1it
(or)

GETDATA=getdata_txt_1it
]
[{FROM-ROWSETS= ({m|m-n|m-|-n} [,...]1}|{ALL})}|
{FROM-PARAMETER=parameter txt_1it}]

In the body of the report:

LOAD-LOOKUP

NAME=I1ookup table name
TABLE=database_table name

KEY=key. column_ name
RETURN_VALUE=return_column_name
[ROWS=initial row_estimate 1lit|_var|_coll]
[EXTENT=size to_grow by lit|_var|_coll]
[WHERE=where_clause txt_lit|_var|_col]
[SORT=sort_mode]
[QUIET]

[SCHEMA={txt_lit|_var}]

[

PROCEDURE={txt_1lit|_var}

[PARAMETERS= ({{argl [IN|INOUT]}|NULL} [I[,argi [IN|INOUT]] |
NULL] ...)]
(or)
COMMAND={ txt_Ilit|_var}
(or)

GETDATA={txt_lit|_var}
]
[{FROM-ROWSETS= ({m|m-n|m-|-n} [,...1}|{ALL})}|
{FROM-PARAMETER={ txt_lit|_var}}]

Note:

The following LOAD-LOOKUP elements are specific to Production Reporting DDO:

e SCHEMA

e PROCEDURE

e COMMAND

e GETDATA

e FROM ROWSETS

e FROM PARAMETER

The following LOAD-LOOKUP elements are not supported (processed but not used) in Production
Reporting DDO:

218 Production Reporting Command Reference

e TABLE

e WHERE

e SORT-DC
e SORT-DI

Arguments
NAME

Name of the lookup table referenced in LOOKUP.

TABLE

Name of the table in the database, where the KEY and RETURN_VALUE columns or expressions
are stored (not supported for DDO).

KEY

Name of the column used as the key in the array that is used for looking up the information.
Keys can be character, date, or numeric data types. If numeric, Production Reporting permits
only integers 12 digits or less for the KEY column. Keys can be any database-supported
expression. See the RETURN_VALUE argument.

RETURN_VALUE

Name of the column (expression) returned for each corresponding key.

You can combine several columns into an expression if you need several fields returned for each
lookup. You can do this by concatenating columns. (This is not supported for DDO.)

The following example is for ORACLE. See your database manual for the correct syntax.
RETURN_VALUE='name| |''-'"'||country||''-'"'||population’
ROWS

(Optional) Initial size of the lookup table. If not specified, a value of 100 is used.

EXTENT

(Optional) Amount to increase the array when it becomes full. If not specified, a value of 25%
of the ROWS value is used.

WHERE

WHERE clause used to select a subset of all the rows in the table. If specified, the selection begins
after the word WHERE. The WHERE clause is limited to 255 characters (not supported for DDO).
SORT

Sorting method.

e DC—Database sorts data, case-sensitive sort (not supported for DDO)

e DI—Database sorts data, case-insensitive sort (not supported for DDO)

LOAD-LOOKUP 219

e SC—Production Reporting sorts data, case-sensitive sort
e SI—Production Reporting sorts data, case-insensitive sort

The default is SC or the method specified by the -LL command-line flag. The DT method is
applicable only to databases that provide this feature and have been installed in that manner.

QUIET

Suppresses the message Loading lookup array... when the command executes. The warning
message stating the number of duplicate keys found is also suppressed.

SCHEMA (DDO only)

Identifies the location in the datasource of the object being queried. You can enter the following
options under SCHEMA:

e PROCEDURE—Name of datasource-stored procedure to execute. If the datasource is SAP R/
3, this procedure is a BAPIL. The name may include spaces.

e PARAMETERS—Scalar and/or list variables of the form 1ist_var|num 1it|txt 1it|
txt_var| um_var|any_col. If you do not specify the keywords IN or INOUT, IN is the
default. Specify all parameters in order; leaving any parameters unnamed causes a syntax
error. To ignore a parameter, fill its position with the keyword NULL. This results in a Null
value for that parameter position.

e COMMAND—Text string passed to the datasource without modification by Production
Reporting. This string can include embedded Production Reporting variables.

e GETDATA—Supports the Java (DDO) GetData paradigm for data access.

FROM-ROWSETS (DDO only)

Special case addition to the LOAD-LOOKUP syntax. Available for use with all datasource types,
including SAP R/3 and JDBC. Names the rowset(s) from which to retrieve the column variables.
For multiple row sets, use identical column name/type signatures. Row set numbers must be
sequential from left-to-right within the parentheses, and must not overlap as in this example:
(1-3, 2-4). Numeric literals or #variables are allowed.

«__» .

In the FROM ROWSETS argument, “m” and “n” are integer values (1, 2, 3, 4, 5). “m-n” is 3-5
(rowsets 3, 4, 5). “m-"is 4- (rowsets 4, 5). “-n” is -3 (rowset 1, 2, 3).

FROM-PARAMETER (DDO only)

Special case addition to the LOAD-LOOKUP syntax. Available only for SAP R/3 datasources.Use
only in conjunction with the PROCEDURE keyword. This argument names an output parameter
containing one or more rows from which the column variables are retrieved.

Note:

This is a similar concept to the PARAMETERS = statement in DECLARE-CONNECTION and
ALTER-CONNECTION, execpt that the properties specified here alter the flow of returned

information, as opposed to simply setting login properties. Can be used in conjunction with any
data-access model (Procedure, Command, Getdata). An application of this statement would be

220 Production Reporting Command Reference

in the MDB setting, where it might be used to specify such things as Level, Generation, or Include-
Column. For example, PROPERTIES = (‘SetColumn’ =5)

Description
Use LOAD-LOOKUP with one or more LOOKUP commands.

LOAD-LOOKUP retrieves two columns from the database, the KEY field and the RETURN_VALUE
field. Rows are ordered by KEY and stored in an array.

LOAD-LOOKUP commands specified in the SETUP section are always loaded and cannot reference
variables for the ROWS, EXTENT, and WHERE arguments.

When you use LOOKUP, Production Reporting searches the array (with a “binary” search) to find
the RETURN_VALUE corresponding to the KEY referenced in the lookup.

Usually this type of lookup can be done with a database join, but joins take substantially longer.
However, if your report is small and the number of rows joined is small, using a lookup table
can be slower, since the entire table has to be loaded and sorted for each report run.

By default, Production Reporting lets the database sort the data. This works fine if the database
and Production Reporting both use the same character set and collating sequence. The SORT

argument allows you to specify the sorting method if this is not true. Additionally, if the machine
that Production Reporting is running on is faster than the machine the database is running on,
letting Production Reporting perform the sort could decrease the execution time of the report.

The onlylimit to the size of alookup table is the amount of memory your computer has available.
You could conceivably load an array with many thousands of rows. The binary search is
performed quickly regardless of how many rows are loaded.

Except for the amount of available memory, there is no limit to the number of lookup tables
that can be defined.

Examples

The following command loads the array states with the columns abbr and name from the
database table stateabbrs where countryis “USA.”

load-lookup
name=states
rows=50
table=stateabbrs
key=abbr
return_value=name
where=country="'USA"

The preceding array is used in the example for LOOKUP to retrieve the full text of a state name
from the abbreviation.

The following example uses LOOKUP to validate data entered by a user using INPUT:

get_state:

input S$state 'Enter state abbreviation'
uppercase $state

lookup states S$state $name

if Sname = '' ! Lookup didn't find a match

LOAD-LOOKUP 221

show 'No such state.'
goto get_state
end-if

Surround any command argument with embedded spaces by single quotes, as shown here:
where='country='"'USA'' and region = ''NE'"'
The entire WHERE clause is surrounded by quotes. The two single quotes around USA and NE

are translated to one single quote in the SQL statement.

The following example uses joins in LOAD-LOOKUP by including two tables in TABLE and the
join in WHERE:

load-lookup
name=states

rows=50

sort=sc

table='stateabbrs s, regions r'

key=abbr

return_value=name

where='s.abbr = r.abbr and r.location = ''ne''’

The following example uses multiple columns as the KEY for LOAD-LOOKUP:

begin-program
load-lookup
name=emp
table=emp
key='ename||'',"''||job_title'
return_value=comm
do main
end-program

begin-procedure main
lookup emp 'Martin,Salesperson' $comm
print Scomm (+1,1)

end-procedure

See Also
LOOKUP

LOOKUP

Function

Searches a lookup table (an array) for a key value and returns the corresponding text string.
Syntax

LOOKUP lookup_table name {key_any lit|_var|_col}
{ret_txt_var|_date|_var}

222 Production Reporting Command Reference

Arguments
lookup_ table name

Name of the lookup table. This table must be previously loaded with LOAD-LOOKUP.

key_any_lit|_var|_col

Key used for the lookup.

ret_txt_var|_date|_var

String variable into which to return the corresponding value.

Description

Speeds up processing for long reports. For example, to print the entire state name rather than
the abbreviation, use LOAD-LOOKUP followed by LOOKUP.

Examples
The following example works in conjunction with the example for LOAD-LOOKUP:
lookup states &state _abbr $state_name

This example searches the states lookup table for a matching &state_abbr value; if found,
it returns the corresponding state name in Sstate_name. If not found, a null is placed in
Sstate_name.

See Also

LOAD-LOOKUP

LOWERCASE

Function

Converts a text variable to lowercase.

Syntax

LOWERCASE txt_var

Arguments
txt_var

Text variable to convert to lowercase.

Description

Converts the contents of a text variable to lowercase.

LOWERCASE 223

Examples

input Sanswer 'Type EXIT to stop'

lowercase Sanswer ! Allows user to enter upper or lowercase.
if S$Sanswer = 'exit'

.etc. ..
See Also

The lower function listed in Table 52, “Miscellaneous Functions,” on page 212.

MBTOSBS

Function

Converts a double-byte string to its single-byte equivalent.

Syntax

MBTOSBS {txt_var}

Arguments
txt_var

String to convert.

Description

Converts the specified string as follows: Any occurrence of a double-byte character that also has
a single-byte representation (numerals, punctuation, roman characters, and katakana) is
converted.

See Also

The TO_SINGLE_ BYTE function of LET

MOVE

Function

Moves one field to another field and optionally edits the field.

Syntax

MOVE {src_any lit|_var|_col} TO dst_any_var
[[:$] format_mask|NUMBER | MONEY | DATE]

Arguments

src_any lit|_var|_col

224 Production Reporting Command Reference

Specifies any source column, variable, or literal.

Note:

A date can be stored in a date variable or column, or a string literal, column, or variable. When
using a date format_mask or the keyword DATE with MOVE, the source, if a string literal,
column, or variable, must be in the format specified by SQR_DB_DATE_FORMAT, one of the
database-dependent formats in Table 61, “Default Formats by Database,” on page 251, or the
database-independent format 'SYYYYMMDD [HH24 [MI[SS[NNNNNN]]]]'.

When numerical precision is important, use LET. When no edit mask is specified, MOVE uses the
6 digit precision default mask.
dst_any var

A destination variable.

format_mask

Optional format mask. (see “Edit Masks” on page 247)

NUMBER

Formats src_any_lit|_var|_col with the NUMBER-EDIT-MASK from the current locale. Not legal
with date variables. (see “Edit Masks” on page 247)

MONEY

Formats src_any_lit|_var|_col with the MONEY-EDIT-MASK from the current locale. Not legal
with date variables. (see “Edit Masks” on page 247)

DATE

Formats src_any_lit|_var|_col with the DATE-EDIT-MASK from the current locale. Not legal
with numeric variables. (see “Edit Masks” on page 247)

Description

Moves the source field to the destination field. Optionally, you can reformat the field using the
format_mask argument. Source and destination fields can be different types, numeric, text, or
date. MOVE is also useful for converting from one type to another; however, date and numeric
variables are incompatible.

When a date variable or column is moved to a string variable, the date is converted according
to the following rules:

e For DATETIME columns and Production Reporting DATE variables, Production Reporting
uses the format specified by SQR_DB_DATE_FORMAT. If not set, Production Reporting uses
the first database-dependent format in Table 61, “Default Formats by Database,” on page
251.

MOVE 225

e For DATE columns, Production Reporting uses the format specified by
SQR_DB_DATE_ONLY_FORMAT. Ifnot set, Production Reporting uses the format in Table 62,
“DATE Column Formats,” on page 252.

e For TIME columns, Production Reporting uses the format specified by
SQR_DB_TIME_ ONLY_ FORMAT. Ifnotset, Production Reporting uses the format in Table 63,
“TIME Column Formats,” on page 252.

Finally, as this example shows, the edit mask can be contained in a string variable.

Examples
This example illustrates the various features of MOVE:

The following code:

!

! Convert a string in place
I

move '123456789' to $ssn
move $ssn to $SSn XXX-XX-XXXX
show '$SSN = ' $ssn

Produces the following output:

$SSSN = 123-45-6789
The following code:

!

! Convert a number to a string using an edit mask
|

move 1234567.89 to #value
move #value to $value 999,999,999.99
show '$Value = ' S$Svalue

Produces the following output:

SValue = 1,234,567.89
The following code:

!

! Convert a number to a string using a variable edit mask
I

move 123 to #counter

move '099999' to Smask

move f#counter to $Scounter :S$Smask
show '$Counter = ' S$Scounter

Produces the following output:
$Counter = 000123
The following code:

!

! Convert a number to a string using the default edit mask

226 Production Reporting Command Reference

|
! Production Reporting, by default, ouputs six digits of precision.

! If you require more or less precision, specify an edit mask.
I

move 123.78 to #defvar
move #defvar to $defvar
show '$DefVar = ' S$Sdefvar

Produces the following output:

$Defvar = 123.780000
The following code:

|
! Convert the number to a string using the locale default

! numeric edit mask
1

alter-locale number-edit-mask = '99,999,999.99"
move 123456.78 to #nvar

move #nvar to $nvar number

show 'SNVar = ' S$nvar

Produces the following output:

SNVar = 123,456.78
The following code:

|
! Convert the money value to a string using the locale default

! money edit mask
|

alter-locale money-edit-mask = '$9,999,999.99'
move 123456.78 to #mvar

move #mvar to $mvar money

show 'SMVar = ' Smvar

Produces the following output:

SMvar = $ 123,456.78
The following code:

|
! Convert the date column to a string using the locale default
! date edit mask
|
begin-select
dcol
from tables
end-select

alter-locale date-edit-mask = 'Mon-DD-YYYY'
move &dcol to Sdvar date
show 'S$DVar = ' S$dvar

Produces the following output:

SsDVar = Jan-01-1999

MOVE 227

The following code:

I
! Reset date to first day of the month

! (Sdatel and $date2 have been defined as date variables)
|

let $datel = datenow()

move S$datel to $date2 'MMYYYY'

show '$Date2 = ' $date2 edit 'MM/DD/YY HH:MI'

Produces the following output if the report was run in October of 1995.

$Date2 = 10/01/95 00:00
The following code:

|
! Convert date to a string

! (Sdatel has been defined as a date variable)
I

move S$datel to $str_date 'DD-MON-YYYY'
show '$Str_Date = ' $str_date

Produces the following output.

$Str_Date = 01-DEC-1995
The following code:

!

! Convert string (in partial format of SYYYYMMDDHHMISSNNN) to a
! date

|

move '19951129' to $datel
show '$Datel = ' $datel edit 'Mon DD YYYY HH:MI'

Produces the following output.

$Datel = Nov 29 1995 00:00

See Also
e LET for information on copying, editing, or converting fields
e The EDIT parameter of PRINT for edit mask descriptions

e ALTER-LOCALE for descriptions of NUMBER-EDIT-MASK, MONEY-EDIT-MASK, and
DATE-EDIT-MASK

e PRINT for the default date-time components as a result of moving an incomplete date to a
date variable

MULTIPLY

Function

Multiplies one number by another.

228 Production Reporting Command Reference

Syntax

MULTIPLY {src_num 1lit|_var|_col} TIMES dst_num var
[ROUND=nn]

Arguments

src_num 1it|_var|_col

Numeric source column, variable, or literal.

dst_num var

Destination numeric variable.

ROUND

Rounds the result to the specified number of digits to the right of the decimal point. For float
variables, this value can be from 0 to 15. For decimal variables, this value can be from 0 to the
precision of the variable. For integer variables, this argument is not appropriate.

Description

MULTIPLY multiplies the first field by the second and places the result into the second field.

When dealing with money-related values (dollars and cents), use decimal variables rather than
float variables. Float variables are stored as double precision floating point numbers, and small
inaccuracies can appear when multiplying many numbers in succession. These inaccuracies can
appear due to the way different hardware and software implementations represent floating point
numbers.

Examples

multiply &quantity times #cost
multiply 1.5 times #result

See Also
e ADD

e LET for a discussion of complex arithmetic expressions

NEW-PAGE

Function

Writes the current page and begins a new one.

Syntax

NEW-PAGE [erase_from line num lit|_var|_coll

NEW-PAGE 229

Arguments
erase_from line num lit|_var|_col

Numeric column, variable, or literal for line printers.

Description

For line printers, NEW-PAGE can optionally erase the old page starting at a specified line. After
this action is performed, the location on the page is unchanged—that is, the value of
#CURRENT-LINE is the same. The default action is to erase the entire page and reset
#CURRENT-LINE to its initial value for the page.

In reports where an overflow page is needed, sometimes it is useful to retain information from
the first page on succeeding pages.

Each NEW-PAGE occurrence adds a form feed character to the output file unless you specify
FORMFEED=NO in the DECLARE-LAYOUT for this program in the SETUP section.

Note:

A NEW-PAGE automatically occurs if page overflow is detected. Tabular reports do not require
explicit NEW-PAGE commands; use NEXT-LISTING instead.

Examples

new-page 5
! Write current page, then erase it beginning at line 5.

NEW-REPORT

Function

Closes the current report output file and opens a new one with the specified filename.

Syntax

NEW-REPORT {report_filename_txt_lit|_var|_col}

Arguments
report_filename_ txt_lit|_var|_col

A new file name.

Description

NEW-REPORT is normally used with single reports. When used with multiple report declarations,
NEW-REPORT affects the current report only.

The internal page counter is reset to 1 when NEW-REPORT is executed.

230 Production Reporting Command Reference

Note:

Production Reporting does not actually create a report output file until the first page is
completed. It is possible that NEW-REPORT will not create a new file, for example, if no data
is selected and nothing is printed on the page.

Examples

The following example shows the NEW-REPORT command:

new-report ‘'rep2a.lis'
new-report Snext-file

You can assign the report filename within an Production Reporting report by issuing
NEW-REPORT before printing. You might even prompt for the filename to use, as shown here:

begin-report
input S$file 'Enter report filename'
new-report S$file

After NEW-REPORT executes, the reserved variable $sgr-report updates to reflect the new
report name.

See Also

e DECLARE-REPORT and USE-REPORT

e The -F command-line flag

NEXT-COLUMN

Function

Sets the current position on the page to the next column defined with COLUMNS.

Syntax

NEXT-COLUMN [AT-END={NEWLINE |NEWPAGE}]
[GOTO-TOP={num 1it|_var|_col}]
[ERASE-PAGE={num_lit|_var|_col}]
Arguments

AT-END

Takes effect if the current column is the last one defined when NEXT-COLUMN is invoked.

GOTO-TOP

Causes the current line in the next column to be num_lit|_var|_col. This argument is useful when
printing columns down the page.

NEXT-COLUMN 231

ERASE-PAGE

Where to begin erasing the page when an AT-END=NEWPAGE occurs.

Examples

The following example prints columns across the page:

columns 10 50! Define two columns
begin-select
name (0,1,20)

phone (0,+3,0) edit (xxx)bxxx-XxxX
next-column at-end=newline ! Print names across the page
order by name ! from phonelist within two columns.

end-select
The following example prints columns down the page:

columns 10 50
move 55 to #bottom_ line
begin-select
name (0,1,20)
phone (0,+43,0) edit (xxX)bxxx-xXXX
if #current-line >= #bottom line
next-column goto-top=1 at-end=newpage
else
position (+1,1)
end-if
from phonelist
order by name
end-select

See Also
COLUMNS and USE-COLUMN

NEXT-LISTING

Function

Ends the current set of detail lines and begins another.

Syntax

NEXT-LISTING [NO-ADVANCE]
[SKIPLINES={num lit|_var|_col}]
[NEED={num 1it|_var|_col}]

Arguments

NO-ADVANCE

Suppresses any line movement when no printing has occurred since the previous NEXT-
LISTING or NEW-PAGE. The defaultincrements the line position even when nothing was printed.

232 Production Reporting Command Reference

SKIPLINES

Number of lines to skip before setting up the new offset.

NEED

Minimum number of lines needed to begin a new listing or set of detail lines. If this number of
lines does not exist, a new page is started. You can use NEED to prevent a group of detail lines
from being broken across two pages.

Description
Used in tabular reports, NEXT-LISTING causes a new vertical offset in the page.

After NEXT-LISTING executes, line 1 is reset one line below the deepest line previously printed
in the page body. That s, if you then write PRINT (1, 5), the string is printed on the next available
line starting in column 5. Note that the Production Reporting reserved variable #current-
line still reflects the actual line number within the page body.

SKIPLINES must be a nonnegative integer. If it is less than 0, then 0 is assumed.

NEED must be an integer greater than 0. If it is less than or equal to 0, then 1 is assumed.

Examples

begin-select

cust_num (1,1)edit 099999 ! Each detail group prints
city (,+3) ! starting on line 1 since
name (2,10,30) ! NEXT-LISTING keeps
address (,+2) ! moving line 1 down the
next-listing skiplines=1 need=2 | page. NEED=2 keeps 2
from customers order by cust_num ! line detail groups from
end-select ! breaking across
! pages.
Note:

NEXT-LISTING automatically issues a Use-Column 1 command if columns are active.

OPEN

Function

Opens an operating system file for reading or writing.

Syntax

OPEN {filename lit|_var|_col} AS

{filenum num 1it|_var|_col}

{FOR-READING | FOR-WRITING | FOR-APPEND}

{RECORD=length num lit|_var|_col[:FIXED|:FIXED_NOLF | :VARY:BINARY]}]
[STATUS=num_ var]]

[ENCODING={_var|_col|ASCII|ANSI|SJIS|JEUC|EBCDIC| EBCDIK290|EBCDIK1027|
UCS-2 |UTF-8|others... }]

OPEN 233

Note:

The ENCODING directive is only allowed when converting to Unicode internally.

Arguments

filename_lit|_var|_col

The file name. The file name can be literal, variable, or column. This makes it easy to prompt
for a file name at run time.

filenum num 1it|_var|_col

Number that identifies the file in the application. All file commands use the file number to
reference the file. File numbers can be numeric variables as well as literals. The number can be
any positive integer less than 64,000.

FOR-READING

When a file is opened for reading, Production Reporting procures all data sequentially.
Production Reporting does not allow for random access of information.

FOR-WRITING

When a file is opened for writing, a new file is created. If a file of the same name already exists,
it can be overwritten (this depends on the operating system).

FOR-APPEND

When a file is opened in append mode, the current file contents are preserved. All data written
is placed at the end of the file. Production Reporting creates the file if one does not already exist.
For existing files, make sure the attributes used are the same as those used when the file was
created. Failure to do this can produce unpredictable results.

RECORD

For the VARY file type, this is the maximum size for a record. For the FIXED file type, this is the
size of each record without the line terminator. For the FIXED_NOLF file type, this is the size of
each record.

FIXED

Defines that all records contained within the file are the same length. Terminate each record by
a line terminator (system dependent). You can use this file type when writing or reading binary
data.

FIXED_NOLF

Defines that all records contained within the file are the same length with no line terminators.
When writing records, Production Reporting pads short records with blank characters to ensure
each record is the same length. This file type can be used when writing or reading binary data.

VARY

234 Production Reporting Command Reference

Defines that the records can be of varying length. Each record is terminated by a line terminator
(system-dependent). Only records containing display characters (no binary data) can be used

safely. When reading records, any data beyond the maximum length specified is ignored. This
is the default file type.

STATUS

Sets the numeric variable to zero if OPEN succeeds and to -1 if it fails. Without the STATUS
argument, a failure on OPEN causes Production Reporting to halt. By using a STATUS variable,
you can control what processing should occur when a file cannot be opened.

ENCODING

Allows differently encoded files to be managed in a single run of Production Reporting. When
no encoding is specified, Production Reporting uses the file input or output encoding specified
in the INT file unless the file is UCS-2 encoded and auto-detection of UCS-2 files is enabled.
Encoding is only allowed when converting to Unicode internally.

Description

Afterafileis opened, it remains open until explicitly closed by the CLOSE command. A maximum
of 256 files can be opened at one time.

Examples

open 'stocks.dat' as 1 for-reading record=100

open 'log.dat' as 5 for-writing record=70
open S$filename as #j for-append record=80:fixed
open S$filename as 2 for-reading record=80:fixed _nolf
open S$filename as 6 for-reading record=132:vary status=#filestat
if #filestat !'= 0
. error processing ...
end-if
See Also

READ, WRITE, and CLOSE for information about using files

OPEN-RS

Function

Opens a row set.

Syntax

OPEN-RS

NAME=row_set_name var|_lit|_col
FILENAME=file name var|_lit|_col

COLUMN= ({name_var|_lit|_col}, {type_var|_lit|_col})

OPEN-RS 235

Arguments
NAME

Name of the row set.

FILENAME

Name of the external file used to hold the row set.

COLUMN

Column name and data type. Can be repeated as many times as needed. The column name is
case-sensitive.

Description

OPEN-RS is used to instantiate the specified row set. When executed, the specified external file
is created. Ifit already exists, the current contents are replaced. OPEN-RS can reside in any section
except BEGIN-SETUP, BEGIN-SQL, and BEGIN-DOCUMENT. Validation rules include:

e The row set specified by row_set_name must not be active, or an exception is thrown.

e The external file specified by file_name must be writable. An exception is thrown if the file
cannot be created or written to.

e Column names must be unique within the row set.
e The data type must be Integer, Double, Decimal, String, Date, Time, DateTime, or Binary.

e Ifboth the name and data type for a column are empty strings, then the corresponding
COLUMN entry is ignored.

e You must define at least one active COLUMN entry, or an exception is thrown.

The row set file is an XML file. You can define whether to create the XML file in a BI Publisher
(BIP) format or an SQR format in the FormatForRowsetXML entry in the [Default-Settings]
section of SQR.INI.

Example

Begin-Report
Open-RS Name='customer' FileName='customer.xml'

Column = ('cust_num', 'integer')
Column = ('name', 'string')
Column = ('addrl', 'string')
Column = ('addr2', 'string')
Column = ('city', 'string"')
Column = ('state',6 'string')
Column = ('zip', 'string')
Column = ('phone',6 'string')
Column = ('tot', 'integer')

Begin-Select
cust_num
name
addrl
addr2
city

236 Production Reporting Command Reference

state

zip

phone

tot

Write-RS Name='customer'

Value = ('cust_num', &cust_num)
Value = ('name', &name)

Value = ('addrl', &addr2)

Value = ('addr2', &addr2)

Value = ('city', &city)

Value = ('state', &state)

Value = ('zip', &zip)

Value = ('phone', &phone)

Value = ('tot', &tot)

from customers

order by cust_num
End-Select

Close-RS Name='customer'
End-Report

See Also
CLOSE-RS, WRITE-RS

PAGE-NUMBER

Function

Places the current page number on the page.

Syntax

PAGE-NUMBER position [pre_txt_lit [post_txt_1it]]

Arguments
position

Position of the page number.

pre_txt_1it

Text string to print before the page number.

post_txt_1it

Text string to print after the page number.

Description

The text specified in pre_txt_1itand post_txt_1it are printed immediately before and
after the number.

PAGE-NUMBER 237

Examples

begin-footing 1
page-number (1,37) 'Page '! Will appear as
last-page () ' of '.'! "pPage 12 of 25."
end-footing

See Also
LAST-PAGE

POSITION

Function

Sets the current position on a page.
Syntax

POSITION position

[@document_marker [COLUMNS{num_ lit|_var|_col}

[num 1it|_var|_coll...]]

Arguments

@document_marker

A location defined in a DOCUMENT paragraph. In this case, the position used is the location of
that marker in the text of the document.

COLUMNS

The columns beginning at thelocation of the document marker. The columns defined are relative
to the position of the document marker.

When COLUMNS is used, the entire command cannot be broken across more than one program
line.

Examples

position (12,5)! Set current position to line 12, column 5.
position (+42,25)! Set position 2 lines down, at 25th column.

position () @total_location! Set position to document
print #total () edit 999,999,999! marker @total_location.
position () @name_loc columns 1 30

print name ()! Columns are defined at @name_loc and

next-column! 29 characters to the right of @name_loc
print title ()

See Also
e COLUMNS

238 Production Reporting Command Reference

PRINT

e The examples with the description of a DOCUMENT paragraph in “Creating Form Letters” in
Volume 1 of the Hyperion SQR Production Reporting Developer's Guide

Function

Prints data on the page at a specified position.

Syntax

PRINT {any_lit|_var|_col} position[format_command| format_cmd params]...]...

Arguments
any 1lit|_var|_col

Data to print.

position

Position where the data is printed. (For additional information, see “Changing Fonts” in Volume
1 of the Hyperion SQR Production Reporting Developer's Guide.)

format_command|[format_cmd_params]

Optional formatting commands and parameters.

Note:

Dates can be contained in a date column or variable, or in a string literal, column, or variable.
When using EDIT or DATE with PRINT, a date in a string literal, column, or variable must be
in an acceptable format. See the description for “EDIT” on page 244 for further details.

Note:

Production Reporting DDO does not support printing of List variables.

Description

PRINT has the following format commands:

BACKGROUND EDIT POINT-SIZE
BOLD FILL SHADE

BOX FONT UNDERLINE
BOX-FILL-COLOR FOREGROUND URL
BOX-LINE-COLOR ITALIC URL-TARGET
CENTER MATCH WRAP

PRINT 239

CENTER-WITHIN

CODE-PRINTER

DATE

DELAY

MONEY

NOP

NUMBER

ON-BREAK

Some format commands can be used with others and some are mutually exclusive. In

Table 53, “ ®* ” indicates which format commands can be used together.

Table 53 Valid Print Format Command Combinations

EDIT
BOX- BOX- NUMBER IT
FILL- LINE- CENTER- | CODE- MONEY Fl F/ | AL
BOLD | BOX | COLOR | COLOR | CENTER | WITHIN PRINTER | DELAY | DATE LL FONT | B I1C | MATCH

BOLD . . - . - - . - - - - -
BOX - . - . - - . - - - -
BOX- - . - . - - . - - - -
FILL-
COLOR
BOX- - - - - - - - - - . . .
LINE-
COLOR
CENTER - - - - . - - - -
CENTER- - . . - . - - - -
WITHIN
CODE-
PRINTER
DELAY - . . - . - - -
EDIT - . . - . - - - -
NUMBER
MONEY
DATE
FILL - . . - . - - - -
FONT - . . - . - . - - - -
F/B - . .
ITALIC - . . - . - - . - - - -
MATCH - & & - & - . .
NOP - & & - & - & - & - . . .

240 Production Reporting Command Reference

EDIT
BOX- BOX- NUMBER IT
FILL- LINE- CENTER- | CODE- MONEY Fl F/ | AL
BOLD | BOX | COLOR | COLOR | CENTER | WITHIN PRINTER | DELAY | DATE LL FONT | B I1C | MATCH
ON- - . . - . - . - - - -
BREAK
POINT- - . . - . - . - - - - -
SIZE
SHADE - . - . - - . - - - -
UNDER- - . - . . - - - - -
LINE
URL - - - - - - - - - - . . .
URL-
TARGET
WRAP - . . - - - -
Note:

In the above table, F/B stands for FOREGROUND/BACKGROUND.

The following topics describe these format commands.

BOLD

Causes the string or number to print in bold type.
For HP Laser]Jets, the appropriate boldface font must be loaded in the printer.

For PostScript printers, the appropriate boldface must be defined in the PostScript startup file,
POSTSCRI.STR. See Table 32, “DECLARE-PRINTER Command Arguments,” on page 138 for
information on which fonts you can bold.

For line printers, when DECLARE-PRINTER uses the BEFORE-BOLD and AFTER-BOLD
arguments, the specified strings are added before and after the data to bold. If BEFORE-BOLD
and AFTER-BOLD are not specified, then BOLD has no effect.

For example:

print &name (+1, 20) bold
print 'Your account is in arrears' (1,1) bold

BOX

Draws a one-line deep graphical box around printed data. BOX has no effect for line printers.
For example:

PRINT 241

print &grand_total (+5, 20) box
print 'Happy Birthday !!' (1,1) box
Note:

For HP Laser]Jets using proportional fonts, BOX and SHADE cannot determine the correctlength
of the box since it varies with the width of the characters printed. BOX and SHADE work well
with fixed-pitch fonts and with all PostScript fonts.

BOX-FILL-COLOR

The fill color used when BOX is specified. The default value is the FILL-COLOR value from the
SET-COLOR command. You cannot use BOX-FILL-COLOR with SHADE.

print 'Hello World' (5,5) box box-fill-color=('green')

BOX-LINE-COLOR

The line color used when BOX is specified. The default value is the LINE-COLOR value from the
SET-COLOR command.

print 'Hello World' (5,5) box box-line-color=('red')

CENTER

Centers the field on a line. The position qualifier for column is ignored. For example:

print 'Quarterly Sales' (1) center

CENTER-WITHIN

Centers the field within the specified number of characters. The centered text is relative to the
column value in the position qualifier. For example:

print 'Hello World' (+5,10) center-within=40

CODE-PRINTER

Adds nondisplay characters to the program for sending a sequence to the printer.
Syntax
CODE-PRINTER printer. type

Valid values for printer_type are HT, HP, PS, LP, HTML, HPLASERJET, POSTSCRIPT, and
LINEPRINTER.

242 Production Reporting Command Reference

CODE-PRINTER places the string “behind” the page buffer, rather than within it, so alignment
of printed data is not thrown off by the white space consumed by the nondisplay characters.
Only strings can be printed using CODE-PRINTER.

Since the report might be printed on different types of printers, you should specify for which
type this data is used. The report is ignored if printed to a different type. If necessary, you can
send a different sequence to another type with a second PRINT statement.

For example:

encode '<27>[5U' into S$big_font
encode '<27>[6U' into S$normal_font

print $big font (0, +2) code-printer=1lp
print &phone () edit ' (XXX) XXX-XXXX'
print S$normal_font () code-printer=lp

In the previous example, the two CODE-PRINTER arguments put the $big font and
$normal_font sequences into the output, without overwriting any data in the page buffer.
Sequences printed with the CODE-PRINTER argument are positioned using the regular line and
column positioning. However, unlike PRINT, the current print location after execution is the
beginning location where the CODE-PRINTER string was placed. Multiple coded strings printed
using the same line and column location appear in the output in the same sequence in which
they were printed.

DATE

Formats the field using the DATE-EDIT-MASK from the current locale. (See “ALTER-LOCALE”
on page 41.) If not defined, the date prints according to the rules in Table 54.

Table 54 Date Formats if Column Type Not Set

Column Type | Default Mask If not set

DATETIME SQR_DB_DATE_FORMAT See Table 61, “Default Formats by Database,” on page 251 for
the format.

DATE SQR_DB_DATE_ONLY_FORMAT | See Table 61, “Default Formats by Database,” on page 251 for
the format.

TIME SQR_DB_TIME_ONLY_FORMAT | See Table 63, “TIME Column Formats,” on page 252 for the
format.

You cannot use DATE with numeric columns or variables.

DELAY

Delays the printing of the data until a SET-DELAY-PRINT command is issued against the
variable used in PRINT. For example:

PRINT S$Last_User (1,10) Delay

PRINT 243

SET-DELAY-PRINT S$Last_User with &Username

EDIT

Syntax

EDIT=edit_format

Edits each field before printing it. The three types of edits are:

e Text edit (see Table 55 on page 244)

e Numeric edit (see Table 56 on page 244)

e Date edit (see Table 57 on page 245)

Text Edit Format Characters

Table 55 Text Edit Format Characters

Character

Description

X

Use character in field.

Insert blank.

~ (tilde)

Skip character in field.

R[n]

Reverse sequence of string, for languages such as Hebrew. The optional number indicates right
justification within length indicated.

Any other character (for example, punctuation) in a text edit mask is treated as a constant and
is included in the edited field.

The characters 8, 9, 0, V, and $ are illegal in a text edit mask because they are used to indicate
that the mask is for a numeric edit.

Numeric Edit Format Characters

Table 56 Numeric Edit Format Characters

Character

Description

8

Digit, zero fill to the right of the decimal point, trim leading blanks (left justify the number).

Digit, zero fill to the right of the decimal point, space fill to the left.

Digit, zero fill to the left.

Dollar sign, optionally floats to the right.

244 Production Reporting Command Reference

Character | Description

B Treated as a “9”, but if a value is zero, the field is converted to blanks.

c Entered at the end of the mask, causes the comma and period characters to be transposed when the
edit occurs. This is to support monetary values where periods delimit thousands and commas delimit
decimals. (Example: 1.234,56).

E Scientific format. The number of 9s after the decimal point determines the number of significant digits
displayed. The “E” can be upper or lower case; the display follows the case of the mask.

v Implied decimal point.

Mi Entered at the end of the mask, causes a minus to display at the right of the number.

PR Entered at the end of the mask, causes angle brackets (< >) to display around the number if the number
is negative.

PS Entered at the end of the mask, causes parentheses to display around the number if the number is
negative.

PF Entered at the end of the mask, causes floating parentheses to display around the number if the number
is negative.

NA Entered at the end of the mask, causes “N/A” to display if the numeric column variable is null. The case
of N/A follows that of the mask.

NU Entered at the end of the mask, causes blanks to display if the numeric column variable is null.
Decimal point.

' Comma.

Note:

Characters other than those listed in Table 56 are illegal for numeric edit masks and cause errors

during processing.

Date Edit Format Characters

Table 57 Date Edit Format Characters

Character Description

YYY YY Y Last 3, 2, or 1 digit(s) of year. On input, for calculating the 4-digit year, the
current century and/or decade are used. For example, a ‘9" using the 'Y" mask
would result in 1999 as the year if the current year is in the 1990s.

YYYY SYYYY 4 digit year, “S” prefixes BC dates with “”.

RR Last 2 digits of year; for years in other centuries. See Table 58 on page 247.

CC or SCC Century; “S” prefixes BC dates with “-”.

BC AD BC/AD indicator.

PRINT 245

Character

Description

Q Quarter of year (1,2,3,4; JAN-MAR=1).

RM Roman numeral month (I-XII; JAN=I).

ww Week of year (1-53) where week 1 starts on the first day of the year and
continues to the seventh day of the year.

w Week of the month (1-5) where week 1 starts on the first day of the month and
ends on the seventh.

DDD Day of year (1-366).

DD Day of month (1 - 31).

D Day of week (1-7). Sunday is first day of week.

DAY Name of day.

DY Abbreviated name of day.

ER Japanese Imperial Era. Returns the name of the of the Japanese Imperial Era
in the appropriate kanji (‘Heisei' is the current era).

EY Year of the Japanese Imperial Era. Returns the current year within the Japanese
Imperial Era.
Note: The common Japanese date format is:
'YYYY<nen>MM<gatsu>DD<nichi>' where <nen>, <gatsu>, and <nichi> are
the kaniji strings for year, month, and day respectively.

J Julian day; the number of days since Jan 1, 4713 BC. Numbers specified with
'J' must be integers.

AM PM Meridian indicator.

HH Assumes 24 hour clock unless meridian indicator specified.

HH12 Hour of day (1-12).

HH24 Hour of day (0-23).

SSSSS Seconds past midnight (0-86399).

Fractions of a second. Precise to microseconds; however, for most hardware
and databases, this much accuracy will not be attainable.

MONTH Name of month.

MON Abbreviated name of month.
MM Month (01-12; JAN=01).
Mi Minute (0-59).

SS Second (0-59).

Used to concatenate different masks.

246 Production Reporting Command Reference

Table 58 Date Edit Format Code-RR

Last 2 digits of current year | 2-digit year is 00 - 49 2-digit year is 50 - 99

00-49 The return date is in the current century. | The return date is in the century before

the current one.

50-99 The return date is in the century after the | The return date is in the current century.

current one.

Edit Masks

As you work with edit masks, keep in mind the following:

When using text, date, and numeric scientific edit masks with PRINT, the specified width
value of PRINT sets the length allocated for the data displayed. For all other numeric edit
masks, the edit mask sets the allocated length.

All masks can be used by the strtodate function except for CC, SCC, Q, W, and Ww.

A backslash forces the next character into the output from the mask. For example, a mask
of “The cu\rre\nt \mo\nth is Month” results in the output string of “The current month is
January”. Without the backslashes the output string would be “The cu95e7t january is
January”.

You can use a vertical bar as a delimiter between format codes; however, in most cases the
bar is not necessary. For example, the mask 'yyyy |MM|DD' is the same as 'YYyYMMDD'.

Any other character (for example, punctuation) in a date edit mask is treated as a constant
and is included in the edited field. If the edit mask contains spaces, you must enclose it in
single quotes (').

The masks MON, MONTH, DAY, DY, AM, PM, BC, AD, and RM are case-sensitive and follow the
case of the mask entered. For example, if the month is January, the mask Mon yields “Jan”
and MON yields “JaN”. All other masks are case-insensitive and can be entered in either
uppercase or lowercase.

National Language Support is provided for the following masks: MON, MONTH, DAY, DY, AM,
PM, BC, and AD. See “ALTER-LOCALE” on page 41 or in Chapter 7, “Production Reporting
Samples” for additional information.

If the value of the date field being edited is “Mar 14 1996 9:35”, the edit masks produce the
results in Table 59.

Table 59 Sample Date Edit Masks

Edit Mask Result

dd/mm/yy 14/03/96

DD-MON-YYYY 14-MAR-1996

'Month dd, YYYY' | March 14, 1996

MONTH-YYYY MARCH-1996

PRINT 247

Edit Mask Result

HH:MI 09:35
'HH:MI PM' 09:35 AM
YYYYMMDD 19960314

MM.DD.YYYY 03.14.1996

Mon Mar

DD|D|DDD 143073

e In addition to the EDIT argument, you can use edit masks with MOVE, CONCAT, DISPLAY,
and sHOW, and with the edit function of LET. Edit the field using the supplied mask before
storing or displaying it.

e When a date with missing date and/or time components displays or prints, the defaults are
as follows:

o The default year is the current year.

o The default month is the current month.

o The default day is one.

o The default time is zero (00:00:00.000000).

For example, assuming today is September 7, 1996, the following assignment would
produce an equivalent date-time of September 1, 1996 13:21:00.000000:
let $datel = strtodate('13:21', '"HH:MI')

e You can dynamically change edit masks by storing them in a string variable and referencing
the variable name preceded by a colon (:).

For example:

move '$999,999.99' to Smask
print #total (5,10) edit :Smask
show #total edit :Smask

e When a date stored in a string literal, column, or variable prints with an edit mask, it must
be in one of the following formats:

o The format specified by SQrR_DB_DATE_FORMAT, or the corresponding setting in
SQR.INI.

o One of the database-dependent formats in Table 61, “Default Formats by Database,” on
page 251.

o The database-independent format, 'SYYYYMMDD[HH24[MI[SS[NNNNNN]]]]'.

e When a date column or variable prints without an edit mask, the date prints in the format
specified by SOR_DB_DATE_FORMAT or the corresponding setting in SQR.INT. If this is not
set, the date prints in the primary database format (the first entry) in Table 61.

This applies to DISPLAY, MOVE, and SHOW as well as PRINT.

248 Production Reporting Command Reference

Sample Edit Masks

Table 60 Sample Edit Masks and Resulting Fields

Mask Value Display
999.99 34.568 34.57
9,999,999V9999 | 123,456.7890 | 123,4567890
8,888,888.888 123,456.789 | 123,456.789
9,999 1234 1,234

9,999 123 123

09999 1234 01234

9999 -123 -123

9999 -1234 *xk

9999 12345 *xk
9999mi -123 123-

9999pr -123 < 123>
999999ps -123 (123)
999999pf -123 (123)
9999na (null) n/a

9999nu (null) (blank)
$$9,999.99¢ 1234.56 $1.234,56
$$9,999.99 1234.56 $1,234.56
$$9,999.99 12.34 $12.34
$$$,$$9.99 12.34 $12.34
9.999¢ 123456 1.235e+05
B9,999 0 (blank)
B9,999 12345 12,345

(x00¢) byoox-3000¢ 2169910551 | (216)991-0551
XOOK-XX-XXKK 123456789 123-45-6789
~~XX~XX ABCDEFGHLJ CDFG

r10 ABCDEFG GFEDCBA

PRINT 249

Uses of Edit Masks

The following example shows some uses of edit masks:

print #total (7,55,0)
print #total (7,55,0)
print #total (7,55,0)
! neg)

print #comm (7,55,0)
print &cnum (16,1,0)
print #cat (5,10,0)
print #phone (16,60,0)
print #total (7,55,0)

edit
edit
edit

edit
edit
edit
edit
edit

$999,999.99 I $ 12,345.67
$5$9,999.99 ! $12,345.67
999,999.99%pr! < 12,345.67>(1f

099,999.99! Blank if zero
099999! 001234

9.999E! 1.235E+04

(xxx) bxxx-xxxx ! (216) 397-0551
£££9,999.99! Dollar-Symbol £

Edit Masks with Specified Width Value

The following examples show some uses of edit masks with a specified width value.

e Text Edit Masks — Print width sets the length allocated.

Print Statement Display | Current Position
Print ‘ABCDEFGHI)’ (1,1,5) | ABCDE | (1,1,6)
Edit 00000000
Print ‘ABCDEFGHL’ (1,1,5) | ABCDE | (1,1,6)
Edit xxxxx
Print ‘ABCDE’ (1,1,10) ABCDE | (1,1,11)
Edit xx0000000x
Print ‘ABCDE’ (1,1,10) ABCDE | (1,1,11)
Edit xxxxx

e Date Edit Masks — Print width sets the length allocated.

Print Statement Display Current Position
Print $current-date (1,1,5) 16/05 (1,1,6)
Edit DD/MM/YYYY
Print $current-date (1,1,5) 16/05 (1,1,6)
Edit DD/MM
Print $current-date (1,1,10) | 16/05/2003 | (1,1,11)
Edit DD/MM/YYYY
Print $current-date (1,1,10) | 16/05 (1,1,11)
Edit DD/MM

o Numeric Scientific Edit Masks — Print width sets the length allocated.

250 Production Reporting Command Reference

Print Statement Display Current Position

Print 1234567890 (1,1,5) | 1.23 (1,1,6)
Edit 96999999

Print 1234567890 (1,1,10) | 1.234568¢ (1,1,11)
Edit 96999999

Print 1234567890 (1,1,20) | 1.234568e+009 | (1,1,21)
Edit 9999999

e All other Numeric Edit Masks — Edit mask sets the length allocated.

Print Statement Display Current Position

Print 1234567890 (1,1,5) | 12345 (1,1,11)
Edit 9999999999

Print 1234567890 (1,1,5) | ***** (1,1,6)
Edit 99999

Print 12345 (1,1,10) 12345 | (1,1,11)
Edit 9999999999

Print 12345 (1,1,10) 12345 (1,1,6)
Edit 99999

Print 1234567890 (1,1,5) | 12345 (1,1,11)
Edit 8888888888

Print 1234567890 (1,1,5) | 12345 (1,1,6)
Edit 88888

Print 12345 (1,1,10) 12345 (1,1,6)
Edit 8888888888

Print 12345 (1,1,10) 12345 (1,1,6)
Edit 88888

Default Formats

Review the following tables for information on default formats by database, date column
formats, and time column formats.

Table 61 Default Formats by Database

Database | Default Formats

DB2 YYYY-MM-DD-HH:MI:SS.NNNNNN YYYY-MM-DD

PRINT 251

Database | Default Formats

Informix | YYYY-MM-DD HH:MI:SS.NNN MM/DD/YYYY MM-DD-YYYY MM.DD.YYYY

0DBC 'MON DD YYYY HH:MIPM'

Oracle DD-MON-YY

Sybase | MON DD YYYY HH:MIPM MON DD YYYY [HH:MI[:SS:NNN]][PM] MON DD YYYY [HH:MI[:SS[.NNN]][PM]
YYYYMMDD [HH:MI[:SS:NNN]J]PM] YYYYMMDD [HH:MI[:SS[.NNN]]PM]

Table 62 DATE Column Formats

Database | DATE Column Formats

DB2 YYYY-MM-DD

Informix | MM/DD/YYYY

0DBC DD-MON-YYYY

Table 63 TIME Column Formats

Database | TIME Column Formats

DB2 HH24.MI.SS

0DBC HH24:MI:SS

FILL

Fills the page with the specified character or string as indicated by the print position and length.

The following example prints a line of stars and then a line of dashes followed by stars:

print '*! (1,1,79) £ill ! Fill line with *'s
print '-*' (+1,20,40) fill ! Fill with '-*' characters.

Note:

When using the Text, Numeric, and Date edit masks with PRINT, the specified width value of
PRINT determines the length allocated for the displayed data. For all other "Numeric" edit masks,
the edit mask sets the allocated length.

FONT

Prints the string in the specified font. For example:

print 'Hello world' (3,3) font=5

252 Production Reporting Command Reference

FOREGROUND/BACKGROUND

When you specify a color in PRINT, it has the same scope as PRINT. If you do not define the
specified color name, then the setting for “default” is used. Use the color name “none” to turn
off color for the specified area.

Syntax

PRINT {any lit|_var|_col}
[FOREGROUND= ({color _name lit|_var|_col}|{rgb})]

[BACKGROUND= ({color_name lit|_var|_col}|{rgb})]

Note:

See the example in “ALTER-COLOR-MAP” on page 37 to better understand the
FOREGROUND and BACKGROUND commands.

ITALIC

Prints a string or number in italic type. For example:
print &name (+1, 20) italic
print 'Your account is in arrears' (1,1) bold

Note:

Italic is not applicable for Line and PostScript printers.

MATCH

Compares a field to a list of key values and if a match is found, prints the corresponding string
at the specified line and column.

If the match_text contains white space, it must be enclosed in single quotes ().

Any number of match text(s) can be tested, but each must have its own line, column, and
print_text.

Ifamatch is not found, the unmatched field is printed at the position specified in the parentheses.
Line and column positions for each matched string are treated as fixed or relative positions
depending on the type of positioning used in the position qualifier for the PRINT command.
Syntax

MATCH match_text {line num lit|_var|_col}

{column_num_lit|_var|_col} print_text...

For example:

print &type_buyer (20,12) match

PRINT 253

A 20 12 Casual

B 20 22 Impulsive
C 21 12 Informed
D 21 22 Choosey

To use relative line and fixed column positioning, you could enter:

print S$state (0,25) match
OH 0 25 Ohio
MI 0 37 Michigan
NY 0 25 'New York'

The column positions are treated as fixed locations due to the fixed “25” position declared in
parentheses.

MONEY

Formats the column or variable using the MONEY-EDIT-MASK from the current locale. (See
“ALTER-LOCALE” on page 41.) MONEY can only be used with a numeric column or variable.

NOP

Suppresses the print command, causing “no operation” to execute. NOP is useful for temporarily
preventing a field from printing.

For example:

print &ssn (1,1) nop ! Hide the social security number.

NUMBER

Formats the column or variable using the NUMBER-EDIT-MASK from the current locale. (See
“ALTER-LOCALE” on page 41.) NUMBER can only be used with a numeric column or variable.

ON-BREAK

Causes the specified action in a tabular report when the value of a field changes (a break occurs).
The default action prints the field only when its value changes (PRINT=CHANGE).

Syntax

ON-BREAK [PRINT={ALWAYS | CHANGE | CHANGE/TOP-PAGE |NEVER}]
[SKIPLINES={num lit|_var|_col}]
[PROCEDURE=procedure_name| (argl[,argi]...)]1]
[AFTER=procedure_namel (argl[,argil...)]]
[BEFORE=procedure_name| (argl[,argil]...)]1]
[SAVE=txt_var]

[LEVEL=nn]

[SET=nn]

254 Production Reporting Command Reference

ON-BREAK has the following qualifiers:

PRINT—Specifies when the break field prints.
o ALWAYS duplicates the break field for each detail group.
o CHANGE prints the value only when it changes. This is the default.

o CHANGE/TOP-PAGE prints the value both when it changes and at the top of each new
page.

o NEVER suppresses printing.

SKIPLINES—Specifies how many lines to skip when the value changes.

PROCEDURE—Specifies the procedure to invoke when the value changes. This qualifier
cannot be used with either the AFTER or BEFORE qualifiers.

AFTER/BEFORE—Specifies procedures to invoke either after or before the value changes.
If no rows are fetched, neither procedure executes. You can only use AFTER and BEFORE
within a SELECT paragraph.

Following is the sequence of events:

o SAVE—Indicates a string variable where the previous value of a break field is stored.

o LEVEL—Specifies the level of the break for reports containing multiple breaks. For
example, a report sorted by state, county, and city might have three break levels: state
is level 1 (the most major), and city is level 3 (the most minor). When a break occurs,
other breaks with equal or higher level numbers are cleared. The level number also affects
the sequence in which AFTER and BEFORE procedures are processed.

o SET—Assigns a number to the set of leveled breaks in reports with more than one set
of independent breaks.

The sequence of events for a query containing ON-BREAK fields is:

1.

Any BEFORE procedures are processed in ascending LEVEL sequence before the first row of
the query is retrieved.

When a break occurs in the query, the following happens:

a. AFTER procedures are processed in descending sequence from the highest level to the
level of the current break field.

b. SAVE variables are set with the new value.

c. BEFORE procedures are processed in ascending sequence from the current level to the
highest level break.

d. Any breaks with the same or higher level numbers are cleared so they do not break on
the next value.

e. Ifa PROCEDURE has been declared, the procedure is invoked.
f. If SKIPLINES was specified, the current line position is advanced.
g. The value is printed (unless PRINT=NEVER was specified).

After the query finishes (at END- SELECT) any AFTER procedures are processed in descending
level sequence.

PRINT 255

For example:

begin-select

state (+1,1,2) on-break level=1 after=state-tot skiplines=2
county (,+2,14) on-break level=2 after=county-tot skiplines=1
city (,+2,14) on-break level=3 after=city-tot

end-select
Breaks are processed as follows:

e When city breaks, the city-tot procedure is executed.

e When county breaks, first the city-tot procedure is executed, then the county-tot
procedure is executed.

e When state breaks, the city-tot, county-tot, and state-tot procedures are processed
in that sequence.

If any BEFORE breaks were indicated, they are processed automatically, after all of the AFTER
breaks and in sequence from lower to higher level numbers.

For example:

begin-select

state (+1,1,2) on-break level=1 before=bef-state after=state-tot
county (,+2,14) on-break level=2 before=bef-cnty after=cnty-tot
city (,+2,14) on-break level=3 before=bef-city after=city-tot

end-select
Now when state breaks, the sequence of procedures executed is as follows:
1. City-tot

Cnty-tot

State-tot

2

3

4. Bef-state
5. Bef-cnty
6

Bef-city

Upon entering the query at BEGIN-SELECT, the three BEFORE procedures are executed in

sequence:

1. Bef-state

2. Bef-cnty

3. Bef-city

After the last row is retrieved, at END- SELECT, the three AFTER procedures are executed in
sequence:

1. City-tot

2. Cnty-tot

3. State-tot

256 Production Reporting Command Reference

The saVE qualifier saves the previous break value in the specified string variable for use in an
AFTER procedure. You may want to print the previous break field with a summary line:

print &state (+1,1) on-break after=state-tot save=S$old-state

The SET qualifier allows you to have sub-reports with leveled breaks. By separating the
ON-BREAKSs into sets, the associated leveled breaks in each set will not interfere with each other.

begin-select
state (+1,1,2) on-break set=1 after=state-tot level=1

SET=1 associates this leveled break with other breaks having the same set number.

POINT-SIZE

Prints the string in the specified point size. For example:

print 'This is large text' (5,5) point-size=36

SHADE

Draws a one-line deep, shaded graphical box around printed data. For line printers this argument
has no effect.

print 'Company Confidential' (1,1) shade
print &state (+2, 40) shade
Note:

For HP LaserJets using proportional fonts, BOX and SHADE are not able to determine the
correctlength of the box since it varies with the width of the characters printed. BOX and SHADE
work well with fixed pitch fonts and with all PostScript fonts.

UNDERLINE

Prints the specified data with underlined characters. For line printers, UNDERLINE causes
backspace and underscore characters to output, which emulates underlining.

For example:

print &name (+1, 45) underline
print 'Your account is in arrears' (1,1) underline

URL

Creates a hypertext link to the specified address. (Production Reporting does not validate the
address.) For example:

Print "My web page" (40,10) URL="http://www.somewebhost.com/~myusername/index.htm"

Creates a link to the following URL in your report:

PRINT 257

http://www.somewebhost.com/~myusername/index.htm

When you click on the "My web page" your browser is directed to the page.

URL-TARGET

The target within the specified URL. (Production Reporting does not validate the target.) For
example:

Print SURL (40,10)
Point-Size=#Font
Font=8
URL=$URL
URL-TARGET=$Target
Background = (255, 0, 0)
Foreground = ('yellow')
Underline

WRAP

Wraps text at word spaces and moves additional text to a new line.

Syntax

WRAP {line length lit|_var|_col}
{max_lines lit|_var|_col} [KEEP-TOP]
[STRIP=strip chars] [ON=break chars] [R]
[LINE-HEIGHT={line height_lit|_var|_col}]

line length lit|_var|_col

The maximum paragraph width in characters.

Note:

After a string wraps, the current position is one character to the right of the last character in the
column. When a string ends on the last position of a line, an implicit line feed causes the new
current position to be the first character of the following line. In the SETUP section, use
DECLARE-LAYOUT to make the page width one character wider than the right edge of the
wrapped text to avoid generating an implicit line feed.

For example:

print &comment (48,20,0) wrap 50 3

print ¬el (1,20,30) wrap 30 4
print ¬e2 (1,+2,30) wrap 30 4
print ¬e3 (1,+2,30) wrap 30 4

In this example, the paragraph is 50 characters wide with a maximum depth of 3 lines..The line
position is 1 for each of the three wrapped fields: notel, note2, and note3. The current print
position after a wrap occurs at the bottom right edge of the wrapped paragraph. To continue
printing on the same line, you must use a fixed line number for the next field.

258 Production Reporting Command Reference

max_lines 1it|_var|_col

Specifies the maximum paragraph depth in lines.Usually, the line length and maximum lines
are indicated with numeric literals. However, WRAP can also reference numeric variables or
columns. This is useful when you want to change the width or depth of a wrapped paragraph
during report processing. The numeric variable can optionally be preceded by a colon (:).

For example:

print Scomments (1,30) wrap #wrap_width 6
print Smessage (5,45) wrap #msg_wid #msg_lines

KEEP-TOP retains the current line position except if a page break occurs, in which case, line 1 is
used as the current line position. The default action is to set the next print position at the bottom
of the wrapped data.

In the following example, the column &resolution prints on the same line as the first line of
the column &instructions:

print &phone (+1,10) edit ' (xXXX) XXX-XXXX'
print &instructions (+1,10,30) wrap 6 10 keep-top
print &resolution (0,+3,25)

The STRIP and ON arguments affect which characters are to convert before wrapping, and which
characters force a wrap to occur.

e Characters in the STRIP string argument are converted to spaces before the wrap occurs.

e Characters in the ON string argument cause a wrap at each ON character found. The ON
character is not printed.

Both arguments accept regular characters and nondisplay characters whose ASCII values are
surrounded by angled brackets, <nn>.

For example, to print a long data type that contains embedded carriage returns, the setup would
be:

print &long_field (5,20) wrap 42 30 on=<13>

The paragraph wraps at each carriage return, rather than at the usual word boundaries. If the
ON character is not found within the width specified for the paragraph, the wrap occurs at a word
space.

The following example converts the STRIP characters to spaces before wrapping on either a line
feed <10> or a space (the default):

print &description (20,10) wrap 50 22 strip=/\"@<13> on=<10>

WRAP can also be used to print reversed characters, for support of languages such as Hebrew. An
R after the length and max_1ines arguments causes the field to be reversed before the wrap
takes place. In addition, the entire paragraph is right-justified within the length indicated.

! Reverse wrap, in 30 character field.
print &comment (2,35) wrap 30 5 r
print $notes (1,50) wrap 50 7 r

LINE-HEIGHT specifies the number of lines to skip between each line of the wrapped data. By
default a value of 1 (single space) is assumed.

PRINT 259

The following example prints the comment column with one blank line between each printed
line for a maximum of four printed lines:

print &comment (1,1) wrap 40 4 line-height = 2

See Also
e LET for information on copying, editing, or converting fields

e ALTER-LOCALE for a description of NUMBER-EDIT-MASK, MONEY-EDIT-MASK, and
DATE-EDIT-MASK

e DISPLAY and SHOW

PRINT-BAR-CODE

Function

Prints bar codes.
Syntax

PRINT-BAR-CODE position

{TYPE={bar_code_type num lit|_var|_col}}
{HEIGHT={bar code_height num lit|_var|_col}}
{TEXT={bar_code_txt_1lit|_var|_col}}
[CAPTION={bar_code caption txt_lit|_var|_col}]
[CHECKSUM= {bar_code_checksum_ txt_lit|_var|col}]

Arguments
position

Position of the upper left corner. Position parameters can be relative. See POSTTION for examples
of relative positioning. Document markers are not allowed. After execution, the current position
is returned to this location; however, the next listing line is the next line below the bottom of
the bar code. (This is different than the way PRINT works.)

TYPE

Type of bar code to print. (See Table 64, “Bar Code Types,” on page 261.)

HEIGHT

Height of the bar code in inches. The height must be between 0.1 and 2 inches. The code prints
to the nearest one-tenth of an inch. For Zip+4 Postnet, the height of the bar code is fixed. The
height should be between 0.2 and 2.0 for Zip+4 Postnet. If it is less than 0.2, the bar code extends
above the position specified.

TEXT

Text to encode and print. The number and type of text characters permitted or required depends
on the bar code type. See Table 64, “Bar Code Types,” on page 261 for specifications.

260 Production Reporting Command Reference

CAPTION

Optional text to print under the bar code in the current font. Production Reporting attempts to
center the caption under the bar code; however, for proportional fonts this may vary slightly.

CAPTION is not valid for Zip+4 Postnet. If specified, it is ignored.

CHECKSUM

Optional check sum to compute and print in the bar code. Valid values are YES and NO, where
NO is the default.

Note:

Some bar code types ignore the CHECKSUM qualifier. See Table 64 for those bar code types for
which CHECKSUM is relevant.

Description

PRINT-BAR-CODE prints industry standard bar codes. Production Reporting supports the bar
code types listed in Table 64.

Table 64 Bar Code Types

Type | Description Text Length Text Type* | CHECKSUM RECOGNIZED
1 UPC-A 11,13,0r16 | 9

2 UPC-E 11,13,0r16 | 9

3 EAN/JAN-13 12,14,0r17 | 9

4 EAN/JAN-8 7,9,0r12 9

5 3 0f9 (Code 39) | 1to 100 9, X, p y

6 Extended 3 of 9 1to 100 9, X% p,Cc|y

7 Interleaved 2 of 5 | 2 to 100 9 y

8 Code 128 1to 100 9, X, % p,C

9 Codabar 1to 100 9,p y

10 Zip+4 Postnet 59,0or11 9

11 MSI Plessey 1to 100 9 y
12 Code 93 1to 100 9,Xp y
13 Extended 93 1to 100 9, X, x, p y
14 | UCC-128 19 9

15 HIBC 1to 100 9 y

*9- Numbers (0-9) X- Upper Case Letters (A-Z) x- Lower Case Letters (a-z) p- Punctuation c- Control Characters

PRINT-BAR-CODE 261

Note:

Production Reporting does not check bar code syntax. (For example, with bar code type 9,
Codabar, you must add your own start/stop character to the text argument.) See your bar code
documentation for the proper formatting of certain bar codes.

Examples

This example shows how to use PRINT-BAR-CODE to create a UPC-A bar code.

begin-program
print-bar-code (3,1)
type=1 ! UPC-A
height=0.3
text='01234567890"
caption='0 12345 67890"
end-program

0 12345 67890

This example shows how to use PRINT-BAR-CODE to create a ZIP+4 Postnet code.

begin-program

print 'John Q. Public' (3,1)
print '1234 Main Street' (4,1)
print 'AnyTown, USA 12345-6789' (5,1)
print-bar-code (7,1)
type=10
height=0.2

text='12345678934"
end-program

John Q. Public
1234 Main Street
AnyTown, USA 12345-678%

This example references the last page value from within a bar code. When the report runs, the
meta sequence $LAST-PAGES will be replaced with the value of the last page of the report. This
functionality is not available with bar code types 1,2,3,4,10 and 14.

begin-report

let $Caption = 'Page ' || Edit(#Page-Count, '88888') || ' of $LAST-PAGE%'
let S$Text = Edit (#Page-Count, '88888') || ' %LAST-PAGE%'
print-bar-code (,30)

type=5

height=0.3

text=$Text

caption=S$Caption
checksum=Yes
end-report

262 Production Reporting Command Reference

PRINT-CHART

Function

Prints a chart. Only PostScript printers or HP printers that support HPGL (generally, this is
HPLaserJet 3 and higher) render chart output.

Syntax

PRINT-CHART [chart_name] position

TYPE={chart_type txt_lit|_var|_col}]

CHART-SIZE= (chart_width num lit|_var|_col, chart_depth num lit|_var|_col)]
TITLE={title txt_lit|_var|_col}]

SUB-TITLE={subtitle_txt_lit|_var|_col}]

FILL={fill txt 1it|_var|_col}]
3D-EFFECTS={3d_effects_txt_lit|_var|_col}]

BORDER={border txt_lit|_var|_col}]
COLOR-PALETTE=color_palette_lit|_var|_coll]
POINT-MARKERS={point_markers_txt_lit|_var|_col}]

ATTRIBUTES={selector lit|_var|_col|
LIST:{selector list name_lit|_var|_col|
(selector lit|_var|_col,...)},{decl_key lit|_var|_col,
{decl_value lit|_var|_col]
LIST:{decl_val list name lit|_var|_col]
(decl_val lit|_var|_col,...)}|
PALETTE: {color palette lit|_var|_col}}},...}}]

DATA-ARRAY=array. name]

DATA-ARRAY-ROW-COUNT={x_num lit|_var|_col}]

DATA-ARRAY-COLUMN-COUNT={x_num _lit|_var|_col}]
DATA-ARRAY-COLUMN-LABELS={NONE | array_name| ({txt_lit|
_var|_col},...)}]

[DATA-LABELS={data_labels txt_lit|_var|_col}]

[FOOTER-TEXT=NONE| text_lit|_var|_1lit]

[SUB-FOOTER-TEXT=NONE| text_1it|_var|_coll]

[ITEM-COLOR= (item color keyword|_lit|_var|_col,

{color txt_lit var|_col}|(r,g,b))]

[ITEM-SIZE= (item size keyword 1it|_var|_col,
item size num 1lit|_var|_col)]

[LEGEND={legend txt_lit|_var|_col}]
LEGEND-TITLE={legend_title_txt_lit|_var|_col}]
LEGEND-PLACEMENT={ legend placement_txt_lit|_var|_col}]
LEGEND-PRESENTATION={legend presentation_ txt_lit| _var|_col}]
PIE-SEGMENT-QUANTITY-DISPLAY={pie_segment_quantity.
display txt_1lit|_var|_col}]

[PIE-SEGMENT-PERCENT_ DISPLAY={pie segment_percent_
display txt_1lit|_var|_col}]

[PIE-SEGMENT-EXPLODE={pie segment_explode txt_lit| _var|_col}]
[X-AXIS-GRID={x_axis grid txt_lit|_var|_col}]
[X-AXIS-LABEL={x_axis_label_txt_lit|_var|_col}]

[X-AXIS-MIN-VALUE={x axis min value num lit|_var|_col}]
[X-AXIS-MAX-VALUE={x_axis max value num lit|_var|_col}]
[
[
[
[

— s e e

—_ ——

[
[
[
[

X-AXIS-MAJOR_INCREMENT={x axis_major_increment num lit|_var|_col}]
X-AXIS-MINOR-INCREMENT={x axis minor increment_num lit|_var|_col}]
X-AXIS-MAJOR-TICK MARKS={x_axis major tick marks_txt_1lit|_var|_col}]
X-AXIS-MINOR-TICK-MARKS={x_axis minor tick marks_txt_1lit|_var|_col}]

PRINT-CHART 263

[X-AXTIS-TICK-MARK-PLACEMENT={x axis tick mark placement
_txt_lit|_var |_col}]

[X-AXIS-ROTATE={x_num lit|_var|_col}]

[X-AXIS-SCALE={x_axis_scale txt_ lit|_var|_col}]

[Y-AXIS-GRID={y axis grid txt_lit|_var|_col}]

[Y-AXIS-LABEL={y axis_label txt lit|_var|_col}]

[Y-AXIS-MASK={mask txt_lit|_var|_col}]

[Y-AXIS-MIN-VALUE={y axis min_value num lit|_var|_col}]

[Y-AXIS-MAX-VALUE={y axis max value num lit|_var|_col}]

[Y-AXIS-MAJOR-INCREMENT={y axis major increment_num lit|_var|_col}]

[Y-AXIS-MINOR_INCREMENT={y axis minor increment_num lit|_var|_col}]

[Y-AXIS-MAJOR-TICK-MARKS={y axis major_ tick marks txt_lit|_var|_col}]

[Y-AXIS-MINOR-TICK-MARKS={y_axis_minor_tick_marks txt_lit|_var|_col}]

[Y-AXTIS-TICK-MARK-PLACEMENT={y axis tick mark placement
_txt_lit|_var|_col}]

[Y-AXIS-SCALE={y axis_scale txt_ lit|_var|_col}]

[Y2-AXIS-LABEL={y2 axis_label txt_lit|_var|_col}]

[Y2-AXIS-MASK={mask txt_ lit|_var|_col}]

[Y2-AXIS-MIN-VALUE={y2 axis min value num 1lit| _var|_col}]

[Y2-AXIS-MAX-VALUE={y2_ axis max value_num 1it|_num 1it| _var|_col}]

[Y2-AXIS-MAJOR-INCREMENT={y2 axis major_ increment_num lit|_var|_col}]

[Y2-AXIS-MINOR-INCREMENT={y2 axis minor_increment_num lit|_var|_col}]

[Y2-AXIS-MAJOR-TICK-MARKS={y2 axis _major_tick marks
_txt_lit|_var|_col}]

[Y2-AXIS-MINOR-TICK-MARKS={y2 axis_minor_tick marks
_txt_lit|_var|_col}]

[Y2-AXIS-SCALE={y2 axis_scale txt_lit|_var|_col}]

[Y2-COLOR-PALETTE=color_palette_lit|_var|_col]

[Y2-DATA-ARRAY=array. name]

[Y2-DATA-ARRAY-ROW-COUNT={x_num lit|_var|_col}]

[Y2-DATA-ARRAY-COLUMN-COUNT={x_num I1it|_var|_col}]

[Y2-DATA-ARRAY-COLUMN-LABELS={NONE | array_name |

({txt_lit|_var|_col},...)}]

[Y2-TYPE={chart_type txt_lit|_var|_col}]

Note:

If you do not define CHART-SIZE with this command, you must define it with
DECLARE-CHART.

Arguments
chart_name

Name of the chart defined in DECLARE-CHART. This name is not necessary if you specify the
CHART-SIZE and all other pertinent attributes in PRINT-CHART.

position

(row, column) Position of the upper left corner. Position parameters can be relative. See
POSITION for examples of relative positioning. Document markers are not allowed. After
execution, the current position is returned to this location; however, the next listing line is the
next line below the bottom of the chart area. (This is different than the way the PRINT command
works.)

264 Production Reporting Command Reference

Note:

For definitions of the other arguments in PRINT-CHART, see “DECLARE-CHART” on page
100. For information on NewGraphics, see NewGraphics under “[Default-Settings] Section” on
page 328.

Description

PRINT-CHART directs Production Reporting to output a chart according to the named chart, if
any, and the overridden attributes, if any.

As you use PRINT-CHART, keep in mind the following:

e All the arguments defined for DECLARE-CHART are valid for PRINT-CHART. (See
Table 20 on page 102 for argument descriptions.) The only exception is the position
argument, which specifies the position of the chart. This argument is required and is only
valid for PRINT-CHART.

e The data that supports the charts is defined in the following arguments: (Y2 arguments are
for combination charts.)

O DATA-ARRAY

O DATA-ARRAY-ROW-COUNT

O DATA-ARRAY-COLUMN-COUNT

O DATA-ARRAY-COLUMN-LABELS

O Y2-DATA-ARRAY

O Y2-DATA-ARRAY-ROW-COUNT

O Y2-DATA-ARRAY-COLUMN-COUNT

O Y2-DATA-ARRAY-COLUMN-LABELS
e The following arguments must be specified in either DECLARE-CHART or PRINT-CHART:

O DATA-ARRAY

O DATA-ARRAY-ROW-COUNT

O DATA-ARRAY-COLUMN-COUNT

e Thefollowing arguments are required for combination charts and must be specified in either
DECLARE-CHART or PRINT-CHART:

O Y2-DATA-ARRAY

O Y2-DATA-ARRAY-ROW-COUNT

O Y2-DATA-ARRAY-COLUMN-COUNT
O Y2-TYPE

e PRINT-CHART can be used without referencing a named chart if all required attributes for
the DECLARE-CHART are supplied in addition to all its required parameters.

PRINT-CHART 265

PRINT-CHART directs Production Reporting to display the chart on the current page using
the attribute values at the moment the command is executed. Manipulation of chart attribute
values has no effect on the appearance of the chart after PRINT-CHART is executed.

For example, if you execute a PRINT-CHART with TITLE=$ttl and $ttl="Encouraging
Results', and then change the value of $ttl to 'Discouraging Results' immediately afterward,
then the chart is printed with first value, 'Encouraging Results'.

PRINT-CHART expects the DATA-ARRAY to be organized in a particular way. See Table 65
on page 266 for details.

PRINT-CHART fills the area defined by CHART-SIZE as much as possible while maintaining
an aesthetically pleasing ratio of height to width. In cases where the display area is not well
suited to the chart display, the chart is centered within the specified region, and the
dimensions are scaled to accommodate the region. Therefore, do not be alarmed if the chart
does not fit exactly inside the box you have specified. It simply means that Production
Reporting has accommodated the shape of the region to provide the best looking chart
possible.

Chart commands used to send output to a line printer are ignored. Only PostScript printers
or HP printers that support Hewlett Packard's HPGL (generally, this is HP LaserJet model
3 and higher) render chart output. If you attempt to print a chart to a LASERJET printer
that does not support HPGL, the HPGL command output will likely become part of your
output, leaving one or more lines of meaningless data across your report.

If the first field in the array designated by DATA-ARRAY is of type CHAR, then the value on
the x-axis is the contents of that column. If the first field is not of type CHAR, then the value
of the x-axis is the row number of the array designated by DATA-ARRAY, beginning with
1. Pie charts show the character value in the legend area. Histograms show the character
value on the y-axis. XY-Scatter charts do not use the character value and none is needed in
the array.

If a PIE chart contains many small slices, the user must set the PTE- SEGMENT-QUANTITY-
DISPLAY and/or PIE-SEGMENT-PERCENT-DISPLAY arguments to NO to prevent the values
from one slice overwriting the values of another slice.

As was mentioned earlier, each chart type meets a specific organizational requirement.
Table 65 and Table 66 describe these requirements.

Table 65 Chart Array Field Types (fewer than four fields)

Chart Type Field 0 Field 1 Field 2 Field 3
BUBBLE Type=num Type=num Type=num

X-Axis values Y-Axis values radius of bubble at (x,y)
PIE Type=char Type=num (Optional)

Pie segment labels, the names | The value associated with each | Type=char

associated with each segment | pie segment Pie segment explode flag

setting, 'Y" or 'N'

LINE BAR Type=char Type=num (Optional) (Optional)

266 Production Reporting Command Reference

Chart Type Field 0 Field 1 Field 2 Field 3
STACKED-BAR X-Axis values Series 1 Type=num Series 2 Type=num
100%-BAR Y-Axis values Y-Axis values Series 3...
OVERLAPPED-BAR Y-Axis values
HISTOGRAM
AREA
STACKED-AREA
100%-AREA
XY-SCATTER-PLOT | Type=num Type=num (Optional) (Optional)
Series 1 Series 1 Type=num Type=num
X-Axis values Y-Axis values Series 2 Series 2 ...
X-Axis values Y-Axis values
FLOATING-BAR Type=char Type=num Type=num (Optional)
X-Axis values Series 1 Series 1 Type=Num
Y-Axis offset Y-Axis duration Series 2 ...
Y-Axis offset
Table 66 Chart Array Field Types for HIGH-LOW-CLOSE
Chart Type Field 0 Field 1 Field 2 Field 3 Field 4
HIGH-LOW-CLOSE | Type=char X-Axis Type=num High Type=num Low value | Type=num Closing (Optional)

values value value Type=num Opening
value
Examples
Employea Sales
Orerlapped-Bar Chart
ad -

§

£ w

i

& o -

w

o
n

[IJ
ek

-

sk B
Empioyeas

|

PRINT-CHART 267

Employes Sales

Histogram

W oa W om oW
Saea n ousencio)

]

Summears Anraes the LIS

Fioaling Bar Crarl

T T T
Lom snpess Mo

Crinapa

ewn T

O

Proposal Acceptance Rates

wv-Boalter-Piot Chart

S,

268 Production Reporting Command Reference

Proposal Acceptance Rates
Bubble Chart

Acceptance Rates

0 100 200 300 400 500 600
Days to Acceptance

Note:

See “Creating Bubble Charts” in Volume 1 of the Hyperion SQR Production Reporting Developer's
Guide for information on creating a Bubble Chart.

See”Use ATTRIBUTES in DECLARE-CHART and PRINT-CHART” in Volume 1 of the
Production Reporting Developer's Guide for information on combination charts created using the
Y2-Axis syntax in DECLARE-CHART and PRINT-CHART.

In the “Sales by Region for the Year” example below, a pie chart is printed without explicit
reference to a chart declared with DECLARE-CHART.

Sales by Region for the Year

Regicn
Marthwest
Central
Southwest
Southeost
MNortheost
Midwest
Agzia Pacific
Eurape

19%
13%

3%
&%

17%
2%

gaaganna

12%
21%

You must supply all necessary arguments in PRINT-CHART as shown in the following code:

create-array
name=q_four
size=8
field=name:char
field=num:number=0.

print-chart (,1)
title = 'Sales by Region for the Year'
sub-title = NONE

PRINT-CHART 269

chart-size = (40, 20)

type = pie

3d-effects = yes
legend-title = 'Region’
legend = yes

border = no
pie-segment-quantity-display = no
pie-segment-explode = max
data-array = g _four
data-array-column-count = 3
data-array-row-count = 8

See Also

DECLARE-CHART

PRINT-DIRECT

Function

Writes directly to the print output file without using the Production Reporting page buffer.

Syntax

PRINT-DIRECT

[NOLF]

[PRINTER={LINEPRINTER | POSTSCRIPT | HPLASERJET |HTML | LP | PS |HP |HT}]
{txt_lit|_var|_col}...

Arguments

NOLF

Defines that no carriage return and line feed is to print. By default, printed text is followed by a
carriage return and line feed character.

PRINTER

Type of printer to which this text applies.

txt_lit|_var|_col

Text to print.

Description

PRINT-DIRECT can be used for special applications that cannot be accomplished directly with
PRINT commands, such as initializing a page with graphics or other special sequences. Since this
text is often printer-dependent and since the report can be printed on different types of printers
that require different control characters, you can use the PRINTER qualifier to specify the printer
type. If no PRINTER qualifier is specified, the command applies to all printer types.

When using PRINT-DIRECT with PRINT, the Production Reporting page buffer is copied to the
output file only when each page is full or when a NEW-PAGE command is issued. One approach

270 Production Reporting Command Reference

is to use PRINT-DIRECT commands inside a BEFORE-PAGE or AFTER-PAGE procedure (declared
with the DECLARE-PROCEDURE command), so they are coordinated with the information
coming out of the page buffer.

Examples

print-direct printer=ps '$%Page: ' S$page-number
print-direct nolf printer=1lp reset

PRINT-IMAGE

Function

Prints an image.

Syntax

PRINT-IMAGE [image name] position

[TYPE={image type lit|_var|_col}]

[IMAGE-SIZE= (width num lit|_var|_col, height_num 1it|_var|_col)]
[SOURCE={file name 1lit|_var|_col}]

[[FOR-PRINTER= ({ POSTSCRIPT | HPLASERJET | HTML | PDF | WINDOWS |PS|HP|HT|PD|WP |
printer type 1lit|_var|_col}, {image type lit|_var|_col},{file name 1lit
_var|_col})]...]

Note:

DECLARE-IMAGE and PRINT-IMAGE work together to identify information about the image.
The IMAGE-SIZE argument is required and must be defined in either DECLARE-IMAGE or
PRINT-IMAGE. The SOURCE and TYPE arguments are optional; however, if you define one
you must define the other.

Arguments
image name

Name of an image specified by a DECLARE-IMAGE.

position

(row, column) Position of the upper left corner. Position parameters can be relative. See the

POSITION command for examples of relative positioning. Document markers are not allowed.
After execution, the current position is returned to this location; however, the next listing line
is the next line below the bottom of the image area. (This is different from the way PRINT works.)

TYPE

hnagetype.Typescm1beEPS—FILE,HPGL—FILE,GIF—FILE,JPEG—FILE,BMP—FILEqPNG—
FILE, or AUTO-DETECT.

IMAGE-SIZE

PRINT-IMAGE 271

Width and height of the image in Production Reporting coordinates.

SOURCE

Name of a file containing the image. The file must be in the SQRDIR directory, or you must
specify the full path.

FOR-PRINTER

Specific image file for each report output type.

Tip:

The TYPE and SOURCE arguments contain the default values. You can override these defaults for
a specific printer by using the FOR-PRINTER argument. (See the second example under
DECLARE-IMAGE.)

Description

PRINT-IMAGE can be placed in any section of a report except the SETUP section. The image file
pointed to can be any file of the proper format.

PRINT-IMAGE can be used without referencing a named image if all required attributes for
DECLARE-IMAGE are supplied in addition to all its required parameters.

If an image has not been declared, or if the image type is not supported for a particular report
output type, or if the image file has incomplete header information, then a box (either shaded
for HP printers or with a diagonal line through it for Postscript printers) appears where the
image is expected. Table 28, “Valid Images Types,” on page 131 illustrates the valid relationships
between image type and report output type.

Examples

For PostScript:

print-image office-signature (50, 20)
print-image (50, 20)

type = eps-file

source = 'sherman.eps'

image-size = (10, 3)

For Windows:

print-image company-logo (+21, 25)
type=bmp-file
source='m:\logos\gustavs.bmp'
image-size=(75,50)

print-image (1,1)
type="'auto-detect'
image-size=(30,15)
source=$Binary_Variable

272 Production Reporting Command Reference

Note:

For an example of the FOR-PRINTER argument used with DECLARE-IMAGE and
PRINT-IMAGE, see the example under “DECLARE-IMAGE” on page 130.

See Also
e DECLARE-IMAGE
e “Adding Graphics” in Volume 1 of the Hyperion SQR Production Reporting Developer's Guide

PRINT-TABLE

Function

Prints a table.

Syntax

PRINT-TABLE [{position}]
NAME=table_name_var|_ 1it|_col
[CONTINUATION=continuation var|_lit|_coll]
Arguments

NAME

Name of the table created with CREATE-TABLE.

CONTINUATION

Whether the table is a continuation of a previous PRINT-TABLE command. Valid Values are
YES and NO. The default is NO.

Description
Use PRINT-TABLE in any section except BEGIN-SETUP, BEGIN-SQL, and BEGIN-DOCUMENT to

print a table at the specified location. PRINT-TABLE also performs the functionality of £i11.

Example

print-table (+1,10)
name=S$table-name
continuation="'yes'

See Also
ALTER-TABLE, CREATE-TABLE, DECLARE-TABLE, DUMP-TABLE, FILL-TABLE

PRINT-TABLE 273

PUT

Function

Moves data into an array.
Syntax

PUT {src_any lit|_var|_col}...
INTO dst_array._name(element) [field[(occurs)]]...

Arguments
src_any 1lit|_var|_col

Source variable or literal to move into the array. Numeric variables, literals, and database
columns can be put into number (decimal, float, integer) fields. String variables, literals, and
database columns can be put into char, text, or date fields. Date variables can be put into date,
char, or text fields.

When a date variable or column is moved into a text or char array field, the date is converted to
a string according to the following rules:

e For DATETIME columns and Production Reporting DATE variables, Production Reporting
uses the format specified by SQR_DB_DATE_FORMAT. If not set, Production Reporting uses
the first database-dependent format in Table 61, “Default Formats by Database,” on page
251.

e For DATE columns, Production Reporting uses the format specified by
SQR_DB_DATE_ONLY_FORMAT. If not set, Production Reporting uses the format in Table 62,
“DATE Column Formats,” on page 252.

e For TIME columns, Production Reporting uses the format specified by
SOR_DB_TIME_ ONLY_ FORMAT. Ifnotset, Production Reporting uses the format in Table 63,
“TIME Column Formats,” on page 252.

When a string variable, column, or literal is moved to a date array field, the string must be in
the format specified by SQR_DB_DATE_FORMAT, one of the database-dependent formats in
Table 61, “Default Formats by Database,” on page 251, or the database-independent format

'SYYYYMMDD [HH24 [MI [SS[NNNNNN] 1171

dst_array name (element)

Ifarray fields are listed, data is placed into each field in the sequence it is listed, in the occurrence
specified of that field.

If array fields are not listed, data is placed into consecutive fields in the order they were defined
in CREATE-ARRAY; data is copied into occurrence zero of each field of the element specified in
the array.

field[(occurs)]

Array element and field occurrence numbers can be numeric literals (123) or numeric variables
(#).

274 Production Reporting Command Reference

READ

If no occurrence is specified, occurrence zero is used.

Description

Columns retrieved from the database and Production Reporting variables or literals can be
moved into an array. The array must have been created previously using CREATE-ARRAY.

Examples

In the following example, the four variables &name, #count, $datel, and $code is placed into the
first four fields defined in the names array. The data is put into the #7'th element of the array.

put &name #count $Sdatel S$Scode into names(#3j)

The following command places #72, #73, and #74 into the zero through 2nd occurrences of the
tot field in the #7'th element of the totals array.

put #j2 #j3 #j4 into totals(#j) tot(0) tot(l) tot(2)

The following command copies #count into the #72'th occurrence of the count field in the
#7'th element of the states array.

put #count into states(#j) count(#j2)

Function

Reads the next record of a file into the specified variables.

Syntax

READ {filenum lit|_var|_col} INTO {any var:length_ int_lit|_var|_col}...
[STATUS=status_num_var]

Arguments

filenum lit|_var|_col

Number assigned in OPEN to the file to be read.

any_var:length_int_lit|_var/|_col

One or more variables into which data from the record read are to be put. length int_Iit|
_var|_col specifies the length of each field of data.

STATUS

Optional variable into which a read status is returned.

Description

Text and binary data is parsed according to the following:

READ 275

e Text data is any string of characters. The length of the variable name indicates how many
characters to place into the variable. After being transferred, trailing blanks in the variable
are omitted.

o Ifthe field was written as a date variable, then it may be read into a date variable or text
variable. When reading a date into a date variable, it must be in the format specified by
SQR_DB_DATE_FORMAT, one of the database-dependent formats in Table 61 on page 251 or
the database-independent format 'SYYYYMMDD [HH24 [MI [SS [NNNNNN] .

e Binary numbers, maybe 1, 2, or 4 bytes in length. They must be read into numeric variables.
Note that the bytes making up the binary number must be in the standard sequence expected
by your operating system.

e When reading binary data the file must be opened with the FIXED or FIXED-NOLF qualifier.

e Only the integer portion of the number is represented with binary numbers. To maintain
the decimal portion of the number convert the number to a string variable.

e Ifyou use binary numbers, the file is not portable across platforms. This is because different
hardware represents binary numbers differently.

The total length indicated for the variables must be less than or equal to the length of the record
being read.

If there are no more records to read, the #end-file reserved variable is set to 1; otherwise, it
is set to 0 (zero). Your program should check this variable after each READ command.

If STATUS is specified, Production Reporting returns 0 if the read is successful; otherwise, it
returns the value of errno, which is system-dependent.

Examples

The following example shows several READ commands:

read 1 into S$Sname:30 S$addr:30 S$city:20 S$state:2 $zip:5
read 3 into Stype:2 #amount:2 #rate:1 Scode:5 $date:11l
read #j into #sequence:2 $name:20 S$title:15

The following example shows a READ command that reads two dates. One is loaded into a date
variable; the other is loaded into a string variable, which is then converted to a date using the
strtodate function.

declare-variable
date Sdatel S$date2
text Stext

end-declare

read 4 into $datel:18 Stextl:18

let $date2 = strtodate(Stextl, 'SYYYYMMDDHHMISSNNN')
or

let $date2 = strtodate($Stextl)

276 Production Reporting Command Reference

The following example shows a READ command with an INSERT loop:

begin-sqgl
begin transaction
end-sqgl
while 1 ! Infinite loop, exited by BREAK, below.

read 10 into Scompany:40 S$Sparent:30 S$location:50
if #end-file
break ! End of file reached.
end-if
begin-sgl
insert into comps (name, parent, location)
values (Scompany, Sparent, S$Slocation)
end-sqgl
add 1 to #inserts
if #inserts >= 100
begin-sqgl
end transaction;
begin transaction
end-sqgl
move 0 to #inserts
end-if
end-while

begin-sql
end transaction
end-sgl

See Also
OPEN, CLOSE, and WRITE for information on files

ROLLBACK

Function

Causes a database rollback to the last commit.

Syntax

ROLLBACK

Description

An automatic rollback is performed whenever Production Reporting aborts due to program
errors. ROLLBACK is useful in testing or in certain error conditions.

ROLLBACK is an Production Reporting command and should not be used inside an SQL
paragraph.

ROLLBACK 277

Note:

ROLLBACK can be used with DB2, ODBC, DDO, Teradata, and Oracle. For Sybase, use BEGIN
TRANSACTION and ROLLBACK TRANSACTION within SQL paragraphs as in the following
example. See the COMMIT command for an example of ROLLBACK.

Examples

if #error-status =1
rollback
stop

end-if

See Also
COMMIT

SBTOMBS

Function

Converts a single-byte character into a multi-byte equivalent.

Syntax

SBTOMBS {txt_var}

Arguments
txt_var

String to convert.

Description

Converts the specified string as follows: Any occurrence of a single-byte character that also has
a multi-byte representation (numerals, punctuation, roman characters and katakana) is
converted. SBTOMBS also converts a sequence of a kana character followed by certain
grammatical marks into a single multi-byte character that combines the two elements.

See Also

The To_ MULTI_BYTE function of LET

SECURITY

Function

Marks sections of a report for security purposes.

278 Production Reporting Command Reference

Syntax

SECURITY

[SET=(sid [,sid]...)]

[APPEND=(sid [,sid]...)]

[REMOVE= (sid [,sid]...)]

[MODE=mode]

Arguments

SET

List of security IDs for subsequent commands. The previous list of security IDs is replaced by
the specified security IDs. This argument is optional and can only be used once.

sid

Any string literal, column, or variable. The value is case sensitive.

APPEND

Appends the specified security IDS to the current list. This argument is optional and can be used
multiple times.

REMOVE

Removes the specified security IDS from the current list. This argument is optional and can be
used multiple times.

MODE

Turns on (reactivates) or turns off (suspends) the security feature for the current report. This
argument is optional and can only be used once.

mode

Any string literal, column, or variable. The value is not case sensitive and can be either ON or
OFF.

Description

SECURITY can be repeated as many times as desired for the current report. After SECURITY is
executed, all subsequent commands for the current report are constrained by the designated
Security IDS (SIDs) until the report ends or another SECURITY command executes.

You can use multiple SECURITY commands with the SET, APPEND, and REMOVE options. When
a SECURITY command with MODE=0N is processed, the resultant access control list (as built by
the previous and current command) is used.

Note:

SECURITY is useful only when used in conjunction with EPM Workspace. The Security IDs
refer to EPM Workspace groups. To have the Security ID refer to a specific user, prefix it with
U#. For example:

SECURITY 279

sales, marketing, u#King

refers to the sales group, the marketing group, and the user King.
You can use SECURITY wherever you use PRINT.

Examples

Begin-Report
Security Mode='On' Set=('Directors', 'Vice-Presidents')

. ! Only Directors and VPS can see this
Seéurity Mode='On' Remove=('Directors')
; ! Only VPS can see this
Seéurity Mode="'0Off"
: ! Anybody can see this
Seéurity Mode='0On' Append=('Managers')
. ! Only VPs and Managers can see this
Seéurity Mode='On' Append=('Engineers')
. ! Only VPs, Managers, and Engineers can see this

End-report

SET-COLOR

Function

Defines default colors.

Syntax

SET-COLOR

[PRINT-TEXT-FOREGROUND= ({color_name_lit|_var|_col}|{rgb})]
[PRINT-TEXT-BACKGROUND= ({color_name_lit|_var|_col}|{rgb})]
[PRINT-PAGE-BACKGROUND= ({color_name_lit|_var|_col}|{rgb})]
[LINE-COLOR= ({color_name lit|_var|_col}|{rgb})]
[FILL-COLOR=({color_name lit|_var|_col}|{rgb})]

Arguments

PRINT-TEXT-FOREGROUND

Color in which the text is printed.

PRINT-TEXT-BACKGROUND

Background color behind the text.

280 Production Reporting Command Reference

PRINT-PAGE-BACKGROUND

Page background color.

LINE-COLOR

Line color used in DRAW and PRINT BOX. If not specified, the default is BLACK.

FILL-COLOR

Fill color used in DRAW (TYPE=BOX) and PRINT BOX. If not specified, the default is NONE.

{color_name lit|_var|_col}

A color_name is composed of the alphanumeric characters (A-Z, 0-9), the underscore (_)
character, and the dash (-) character. It must start with an alpha (A-Z) character. It is case
insensitive. The name 'none' is reserved and cannot be assigned a value. A name in the format
(RGBredgreenblue) cannot be assigned a value. The name 'default’ is reserved and may be
assigned a value. 'Default’ is used during execution when a referenced color is not defined in the
runtime environment.

{rgb}

red_lit _var|_col, green_lit|_var|_col, blue_lit|_var|_col where each component is a value in the
range of 000 to 255. In the BEGIN-SETUP section, only literal values are allowed.

The default colors implicitly installed with Production Reporting include:
black = (0,0,0)
white=(255,255,255)
gray=(128,128,128)
silver=(192,192,192)
red=(255,0,0)
green=(0,255,0)
blue=(0,0,255)
yellow=(255,255,0)
purple=(128,0,128)
olive=(128,128,0)
navy=(0,0,128)
aqua=(0,255,255)
lime=(0,128,0)
maroon=(128,0,0)
teal=(0,128,128)
fuchsia=(255,0,255)

SET-COLOR 281

Description

SET-COLOR is allowed wherever PRINT or DRAW is allowed. It is used to set certain attributes of
PRINT and DRAW. If the specified color name is not defined, then the setting for the color name
'default’ is used. Use the color name 'none' to turn off color for the specified attribute.

Examples

begin-setup
declare-color-map
light_blue = (193, 222, 229)
end-declare
end-setup

begin-program

alter-color-map name = 'light_blue' value = (193, 233, 230)
print 'Yellow Submarine' ()

foreground = ('yellow')

background = ('light_blue')
get-color print-text-foreground = ($print-foreground)
set-color print-text-foreground = ('purple')
print 'Barney' (+1,1)
set-color print-text-foreground = ($print-foreground)

end-program

begin-program
get-color line-color=($line-color)
set-color line-color=('purple')
draw (5,5) type='horz-line' width=10
set-color line-color=($line-color)
end-program

begin-program
get-color fill-color=($fill-color)
set-color fill-color=('light grey')
draw (5,5) type='box' width=10 height=10
set-color fill-color=($fill-color)
end-program

See Also
DECLARE-COLOR-MAP, ALTER-COLOR-MAP, and GET-COLOR

SET-DELAY-PRINT

Function

Sets the values of a DELAY variable.

Syntax

SET-DELAY-PRINT delay_var WITH {src_lit|_var|_col}

282 Production Reporting Command Reference

SHOW

Arguments
delay. var

Affected delay variable.

{src_lit|_var|_col}

Source variable.

Description
Replaces each reference of delay_var with the specified value. The data is formatted according

to the PRINT command parameters.

Examples

print SLast_User (1,10) Delay

set-delay-print S$Last_User with &Username

See Also

The DELAY parameter under PRINT

Function
Displays one or more variables or literals on the screen. Cursor control is supported for ANSI

terminals.

Syntax

SHOW [cursor_position]

[CLEAR-SCREEN |CS |CLEAR-LINE|CL] [any _lit|_var|_col]
[EDIT edit_mask|NUMBER |MONEY |DATE] [BOLD] [BLINK]
[UNDERLINE] [REVERSE] [NORMAL] [BEEP] [NOLINE] . ..

Arguments
cursor._position

Position to begin the display.

CLEAR-SCREEN or CS

Clears the screen and sets the cursor position to (1,1).

CLEAR-LINE or CL

Clears a line from the current cursor position to the end of the line.

SHOW 283

any 1lit|_var|_col

Information to display.

EDIT

Variables under an edit mask. If the mask contains spaces, enclose it in single quotes. For
additional information regarding edit masks, see PRINT.

NUMBER

Formats any._1it/_var/_col with the NUMBER-EDIT-MASK from the current locale. (See
ALTER-LOCALE.) Not legal for date variables.

MONEY

Formats any._1it/_var/|_col with the MONEY-EDIT-MASK from the current locale. (See
ALTER-LOCALE.) Not legal for date variables.

DATE

Formats any._1it/_var/_col with the DATE-EDIT-MASK from the current locale. (See
ALTER-LOCALE.) Not legal for numeric variables. If DATE-EDIT-MASK is not specified, the
date is displayed using the default format for that database (see Table 61 on page 251).
BOLD, BLINK, , UNDERLINE, and REVERSE

Changes the display of characters. Some terminals support two or more characteristics at the
same time for the same text. To turn all special display characteristics off, use NORMAL.
NORMAL

Turns off all special display characteristics set with BOLD, BLINK, UNDERLINE, and REVERSE.

BEEP

Causes the terminal to beep.

NOLINE

Inhibits a line advance.

Description

Any number of variables and screen positions can be used in a single command. Each one is
processed in sequence.

Screen locations can be indicated by either fixed or relative positions in the format (A,B), where
A is the line and B is the column on the screen. A and B can also be numeric variables. Relative
positions depend on where the previous SHOW command ended. If the line was advanced, the
screen cursor is usually immediately to the right of the previously displayed value and one line
down.

Fixed or relative cursor positioning can be used only within the boundaries of the terminal
screen. Scrolling off the screen using relative positioning, for example (+1,1), is not supported.

284 Production Reporting Command Reference

Instead, use SHOW without any cursor position when you want to scroll. You cannot mix SHOW
and DISPLAY while referencing relative cursor positions.

SHOW does not advance to the next line if a cursor location (...), CLEAR-SCREEN, CLEAR-LINE,
or BEEP is used. (SHOW without any of these arguments automatically advances the line.) To add
a line advance, add (+1,1) to the end of the line or use an extra empty SHOW command.

Only ANSI terminals are supported for cursor control, screen blanking, line blanking, and
display characteristics.

Dates can be contained in a date variable or column, or a string literal, column, or variable.
When displaying a date variable or column, without an edit mask, the date is displayed according
to the following rules:

e For DATETIME columns and Production Reporting DATE variables, Production Reporting
uses the format specified bySOrR_DB_DATE FORMAT. If not set, Production Reporting uses
the first database-dependent format in Table 61, “Default Formats by Database,” on page
251.

e For DATE columns, Production Reporting uses the format specified by
SQR_DB_DATE_ONLY_FORMAT. Ifnot set, Production Reporting uses the format in Table 62,
“DATE Column Formats,” on page 252.

e For TIME columns, Production Reporting uses the format specified by
SQR_DB_TIME_ ONLY_ FORMAT. Ifnotset, Production Reporting uses the format in Table 63,
“TIME Column Formats,” on page 252.

When displaying a date in a string literal, column, or variable using EDIT or DATE, the string
must be in the format specified by SOR_DB_DATE_FORMAT, one of the database-dependent
formats in Table 61 on page 251, or the database-independent format 'SYYYYMMDD [HH24 [MI
[SS[NNNNNN]1]1.

Examples

The following code:

!

! Show a string using an edit mask
I

let $ssn = '123456789"
show S$ssn edit XXX-XX-XXXX

Produces the following output:

123-45-6789
The following code:

!

! Show a number using an edit mask
I

show 1234567.89 edit 999,999,999.99

Produces the following output:

1,234,567.89

SHOW 285

The following code:

!

! Show a number using the default edit mask
|

show 123.78

Produces the following output:

123.780000
The following code:

!

! Show a number using the locale default numeric edit mask
|

alter-locale number-edit-mask = '99,999,999.99"
show 123456.78 number

Produces the following output:

123,456.78
The following code:

!

! Show a number using the locale default money edit mask
I

alter-locale money-edit-mask = '$$,$$$,$$8.99"
show 123456.78 money

Produces the following output:

$123,456.78
The following code:

!

! Show a date column using the locale default date edit mask
I

begin-select
dcol
from tables
end-select
alter-locale date-edit-mask = 'DD-Mon-YYYY'
show &dcol date

Produces the following output:
01-Jan-1999

The following code:

!

! Show two values on the same line
|

show 'Hello' ' World'

Produces the following output:

286 Production Reporting Command Reference

STOP

Hello World
The following code:

!

! Show two values on the same line with editing of the values
I

let #taxes = 123456.78
show 'You owe ' #taxes money ' in back taxes.'

Produces the following output:

You owe $123,456.78 in back taxes.

The following program illustrates the usage of additional options of SHOW. Only terminals that
support the ANSI escape characters can use the cursor control, screen blanking, line blanking
and display attributes.

begin-program
|
! Produces a menu for the user to select from
|
show clear-screen
(3,30) bold 'Accounting Reports for XYZ Company' normal

(+2,10) 'l. Monthly Details of Accounts'
(+1,10) '2. Monthly Summary'

(+1,10) '3. Quarterly Details of Accounts'
(+1,10) '4d. Quarterly Summary'

!

! Show a line of text and numerics combined
1

show (+2,1)
'The price is ' #price edit 999.99
'Total = ' #total edit 99999.99

!

! Put an error message on a particular line
I

show (24,1) clear-line 'Error in SQL. Please try again.' beep
end-program
See Also
e LET for information on copying, editing, or converting fields
e The EDIT parameter of PRINT for edit mask descriptions

e ALTER-LOCALE for a description of NUMBER-EDIT-MASK, MONEY-EDIT-MASK, and
DATE-EDIT-MASK

e DISPLAY

Function

Halts Production Reporting.

STOP 287

STRING

Syntax

STOP [QUIET]

Arguments
QUIET

Completes the report with the “Production Reporting: End Of Run” message, instead of aborting
with an error message.

Description

STOP halts Production Reporting and executes a ROLLBACK command (not in Sybase, ODBC,
or Informix). All report page buffers are flushed if they contain data; however, no headers or
footers are printed and the AFTER-PAGE and AFTER-REPORT procedures are not executed.

STOP is useful in testing.
Examples

if #error-status =1
rollback
stop
else
commit
stop quiet
end-if

Function

Concatenates a list of variables, columns, or literals into a single text variable. Each member of
the list is separated by the specified delimiter string.

Syntax

STRING {src_any lit|_var|_col}...BY {delim txt_lit|_var|_col}
INTO dst_txt_var

Arguments

src_any lit|_var|_col

One or more fields to concatenate, separated by the delim_txt_lit|_var|_col character or
characters, and placed into the dst_txt_var variable.

If the source is a date variable or column, it is converted to a string according to the following
rules:

e For DATETIME columns and Production Reporting DATE variables, Production Reporting
uses the format specified by SQR_DB_DATE_FORMAT. If not set, Production Reporting uses

288 Production Reporting Command Reference

the first database-dependent format in Table 61, “Default Formats by Database,” on page
251.

e For DATE columns, Production Reporting uses the format specified by
SQR_DB_DATE_ONLY_FORMAT. Ifnot set, Production Reporting uses the format in Table 62,
“DATE Column Formats,” on page 252.

e For TIME columns, Production Reporting uses the format specified by
SQR_DB_TIME_ ONLY_ FORMAT. Ifnotset, Production Reporting uses the format in Table 63,
“TIME Column Formats,” on page 252.

delim txt_lit|_var|_col
Characters used as separators between source fields.

dst_txt_var

The destination field for the concatenated result.

Description

Do no include the destination string in the list of source strings.

Examples

string &name &city &state &zip by ' - ' into $show-info
! Result: Sam Mann - New York - NY - 11287

string &cust_num &entry-date &total by ',' into $cust-data
! Result: 100014,12-MAR-89,127

! Use null delimiter.

string &codel &code2 &code3 by '' into S$Scodesl23
! Result: AGL

See Also
e UNSTRING

e The “| |” concatenation operator in Table 45 on page 194under LET

SUBTRACT

Function

Subtracts one value from another.
Syntax
SUBTRACT {src_num lit|_var|_col} FROM dst_num var[ROUND=nn]

Arguments

src_num lit|_var|_col

SUBTRACT 289

Subtracted from the contents of dst_num_var.

dst_num var

The result after execution.

ROUND

Rounds the result to the specified number of digits to the right of the decimal point. For float
variables this value can be from 0 to 15. For decimal variables, this value can be from 0 to the
precision of the variable. For integer variables, this argument is not appropriate.

Description
Subtracts the first value from the second and moves the result into the second field.

When dealing with money-related values (dollars and cents), use decimal variables rather than
float variables. Float variables are stored as double precision floating point numbers, and small
inaccuracies can appear when subtracting many numbers in succession. These inaccuracies can
appear due to the way floating point numbers are represented by different hardware and software

implementations.
Examples
subtract 1 from #total ! #total - 1

subtract &discount from #price ! #price - &discount

See Also
e ADD

e LET for information on complex arithmetic expressions

TOC-ENTRY

Function

Places an entry into the Table of Contents.
Syntax

TOC-ENTRY
TEXT={src_txt_lit|_var|_col}
[LEVEL={level num lit|_var|_col}]
Arguments

TEXT

Text to place in the Table of Contents.

LEVEL

290 Production Reporting Command Reference

Level at which to place the text. If this argument is not specified, the value of the previous level
is used.

Description

Enter the text in the Table of Contents at the desired level.

Examples

toc-entry text = &heading
toc-entry text = &caption level=2

See Also
DECLARE-TOC

UNSTRING

Function

Copies portions of a string into one or more text variables.

Syntax

UNSTRING {{src_txt_lit|_var|_col}|{src_date var|_col}}
BY {delim txt_lit|_var|_col}

INTO dst_txt_var...

Arguments

{src_txt_lit|_var|_col}|{src_date var|_col}

Source field to parse.

delim txt_lit|_var|_col

Characters used to delimit the fields in {src_txt_lit|_var|_col}|{src_date var
_col}

dst_txt_var

Destination fields to receive the results.

Description

Each substring is located using the specified delimiter. The source string must not be included
in the list of destination strings.

If more destination strings than substrings are found in the source strings, the extra destination
strings are each set to an empty string.

If more substrings are found in the source string than in the destination strings, the extra
substrings are not processed. Itis up to the programmer to ensure that enough destination strings
are specified.

UNSTRING 291

If the source is a date variable or column, it is converted to a string according to the following
rules:

e For DATETIME columns and Production Reporting DATE variables, Production Reporting
uses the format specified by SQR_DB_DATE_FORMAT. If not set, Production Reporting uses
the first database-dependent format in Table 61, “Default Formats by Database,” on page
251.

e For DATE columns, Production Reporting uses the format specified by
SQR_DB_DATE_ONLY_FORMAT. Ifnot set, Production Reporting uses the format in Table 62,
“DATE Column Formats,” on page 252.

e For TIME columns, Production Reporting uses the format specified by
SOR_DB_TIME ONLY_ FORMAT. Ifnotset, Production Reporting uses the format in Table 63,
“TIME Column Formats,” on page 252.

Examples

unstring $show-info by ' - ' into $name Scity S$state $zip
unstring Scust-data by ',' into Scust_num Sentry-date Stotal
See Also

e STRING and EXTRACT

e The substr and instr functions in Table 52, “Miscellaneous Functions,” on page 212
underLET

UPPERCASE

Function

Converts a string variable to uppercase.

Syntax

UPPERCASE txt_var

Arguments
txt_var

The field to convert.

Examples

input $state 'Enter state abbreviation'
uppercase Sstate ! Force uppercase.

See Also

The upper function in Table 52, “Miscellaneous Functions,” on page 212 under LET

292 Production Reporting Command Reference

USE

Function

Uses the named database, rather than the default database associated with your user name.
(Sybase and ODBC only)

Syntax

USE database

Arguments
database

The name of the database to use.

Description

Use USE in the SETUP section only. When used, it must appear at the top of your report, before
any queries are defined.

To reference more than one database in a program, specify secondary databases explicitly. For
example:

from sgdb.sgr.customers

You cannot issue the Sybase or ODBC USE command from within an SQL paragraph.
Examples

begin-setup
use pubs
end-setup

See Also

The -DB command-line flag described in “Production Reporting Command-line Flags” on page
21.

USE-COLUMN

Function

Sets the current column.

Syntax

USE-COLUMN {column_number_ int_lit|_var|_col}

Arguments

column _number_int_lit|_var|_col

USE 293

Number of the defined column (not the location on the page). For example, if five columns are
defined, then the column_number_int_lit|_var|_col can be 1 to 5.

Description

The column must be previously defined with the coLuMNS.

To stop printing within columns, use a column number of 0 (zero). Printing returns to normal;
however, the columns remain defined for subsequent NEXT-COLUMN or USE-COLUMN

commands.

Examples

use-column 3 ! Print total in 3rd column.
print #total () 999,999

use-column 0 ! End of column printing.

USE-PRINTER-TYPE

Function

Sets the printer type to use for the current report.

Syntax

USE-PRINTER-TYPE printer-type

Arguments
printer-type

Printer type to use for the current report. See DECLARE-PRINTER for valid types.

Description

Sets or alters the printer type used for the current report. USE-PRINTER-TYPE must appear
before the first output is written to that report. If output has already been written to the report
file, USE- PRINTER-TYPE is ignored.

Examples

use-report customer_orders
use-printer-type PostScript
print (1, 1) 'Customer Name: '
print () Scustomer_name

See Also
DECLARE-PRINTER, DECLARE-REPORT, and USE-REPORT

294 Production Reporting Command Reference

USE-PROCEDURE

Function

Changes the procedure usage.

Syntax

USE-PROCEDURE

[FOR-REPORTS= (report_namell[, report_namei] ...)
[BEFORE-REPORT=procedure_name| (argl[,argil ...
[AFTER-REPORT=procedure_namel (argl[,argil...)
[BEFORE-PAGE=procedure_namel (argl[,argil...)]
[AFTER-PAGE=procedure_namel[(argl[,argi]...) 1]

Arguments

FOR-REPORTS

Reports that use the procedures. This argument is required only for a program with multiple
reports. If you are writing a program that produces a single report, you can ignore this argument.
BEFORE-REPORT

Procedure to execute when the first command execute, which causes output to be generated.
For example, you can use the command to create a report heading.

AFTER-REPORT

Procedure to execute just before the report file is closed at the end of the report. This argument
can be used to print totals or other closing summary information. If no report was generated,
the procedure does not execute.

BEFORE-PAGE

Procedure to execute at the beginning of every page, just before the first output command for
the page. It can be used, for example, to set up page totals.

AFTER-PAGE

Procedure to execute just before each page is written to the file. This argument can be used, for
example, to display page totals.

You can also specify arguments to pass to the procedure. Arguments can be any variable, column,
or literal.

Description

USE-PROCEDURE must be issued in the PROGRAM or PROCEDURE sections of an Production
Reporting program. USE-PROCEDURE is a run-time command; its compile-time equivalent is
DECLARE-PROCEDURE. You can use the command as often as required to change to the necessary
procedures required by the reports. If you issue multiple USE- PROCEDURE commands, each
remains in effect for that report until altered by another USE-PROCEDURE command for that
report. In this way, you can use one to change common procedures for ALL reports and others

USE-PROCEDURE 295

to change unique procedures for individual reports. The referenced procedures can accept
arguments.

If no FOR-REPORTS is specified, ALL is assumed. Initially, the default for each of the four
procedure types is NONE. If a procedure is defined in one DECLARE-PROCEDURE for a report,
that procedure is used unless NONE is specified.

You can change BEFORE-REPORT only before the first output is written to that report, since that
causes the BEFORE-REPORT procedure to execute.

Examples
use-procedure ! These procedures will
for-reports=(all) ! be used by all reports.

before-report=report_heading
after-report=report_footing

use_procedure ! These procedures will
for-reports=(customer) ! be used by the customer report.
before-page=page_setup

after-page=page_total

use-procedure ! The after-report procedure will be
for-reports= (summary) ! disabled for the summary report.
after-report=none

See Also
DECLARE-PROCEDURE

USE-REPORT

Function

For programs with multiple reports, allows the user to switch between reports.

Syntax

USE-REPORT {report_name lit|_var|_col}

Arguments

report_name_lit|_var|_col

The report to become the “current” report. All subsequent PRINT and PRINT-DIRECT
statements are written to this report until the next USE-REPORT is encountered.
Description

Defines to which report file(s) the subsequent report output is to be written. An application can
contain several USE-REPORT statements to control several reports.

296 Production Reporting Command Reference

WHILE

You must specify the report name and report characteristics in a DECLARE-REPORT paragraph
and in the associated DECLARE-LAYOUT and DECLARE-PRINTER paragraphs.

Examples

use-report customer_orders
use-printer-type PostScript
print (1, 1) 'Customer Name:
print () Scustomer_name

See Also
DECLARE-REPORT, DECLARE-LAYOUT, DECLARE-PRINTER, and USE-PRINTER-TYPE

Function

Begins a WHILE ... END-WHILE loop.

Syntax
WHILE logical expression
The general format of WHILE is as follows:

WHILE logical_expression
SQR_commands. . .

[BREAK]

[CONTINUE]
SQR_commands. . .
END-WHILE

Arguments

logical_expression

A valid logical expression. See LET for a description of logical expressions.

Operators

See “Bit-Wise Operators” on page 195 for information on the bit-wise operators supported by
WHILE.

Description
The WHILE loop continues until the condition being tested is FALSE.
An expression returning 0 (zero) is considered FALSE; an expression returning nonzero is TRUE.

BREAK causes an immediate exit of the WHILE loop; Production Reporting continues with the
command immediately following END-WHILE.

CONTINUE ends the current iteration of a loop. Program control passes from the CONTINUE
parameter to the end of the WHILE loop body.

WHILE 297

WHILE commands can be nested to any level and can include or be included within IF and
EVALUATE commands.

Examples

The following example shows an IF nested within a WHILE:

while #count < 50
do get_statistics
if #stat_count = 100
break ! Exit WHILE loop.
end-if
add 1 to #count
end-while

You can use single numeric variables in your expression to make your program more readable,
for example when using flags.

move 1 to #have_data

while #have_data
...processing. ..
end-while

The following example sets up an infinite loop:

while 1
...processing. ..
if ...
break ! Exit loop
end-if
end-while

You can use any complex expression in WHILE as shown in the following example:

while #count < 100 and (not #end-file or isnull (&state))
end-while
The following example shows the use of CONTINUE in a WHILE loop:

while #count < 50
if #count = 10
continue
end-if
do get-statistics (#count)
add 1 to #count
end-while

See Also

LET for a description of expressions

298 Production Reporting Command Reference

WRITE

Function

Writes a record to a file from data stored in variables, columns, or literals.

Syntax

WRITE {filenum lit|_var|_col} FROM
{{{txt_lit|_var|_col}|{date_var|_col}|num col}
[:len_int_lit|_var|_coll}|{num lit|_var:len_int_lit|_var|_col}}...
[STATUS=status_num_var]

Arguments

filenum lit|_var|_col

Number assigned in OPEN to the file to write.

{{txt_lit|_var|_col} |{date_var|_col}|num_col} [:len int_lit|_var|
_coll}|{num_lit|_var:len int lit|_var|_col}

Specifies one or more variables to write. Ilen_int_lit|_var|_col specifies the length of each
field of data.

STATUS

An optional variable into which a write status is returned.

Description
The file must already be opened for writing.

Iflength is specified, the variable is either truncated at that length or padded with spaces to that
length. Iflength is not specified (for string variables or database columns), the current length of
the variable is used.

When writing numeric variables, the length argument is required. Only 1, 2, or 4 byte binary
integers are written. Floating point values are not supported directly in WRITE. However, you
can first convert floating point numbers to strings and then write the string.

When writing binary data the file must be open using the FIXED or FIXED-NOLF qualifiers. The
file is not portable across platforms since binary numbers are represented differently.

When writing a date variable or column, the date is converted to a string according to the
following rules:

e For DATETIME columns and Production Reporting DATE variables, Production Reporting
uses the format specified by SQR_DB_DATE_FORMAT. If not set, Production Reporting uses
the first database-dependent format in Table 61, “Default Formats by Database,” on page
251.

e For DATE columns, Production Reporting uses the format specified by
SQR_DB_DATE_ONLY_FORMAT. Ifnot set, Production Reporting uses the format in Table 62,
“DATE Column Formats,” on page 252.

WRITE 299

e For TIME columns, Production Reporting uses the format specified by
SQR_DB_TIME_ONLY_ FORMAT. Ifnot set, Production Reporting uses the format in Table 63,
“TIME Column Formats,” on page 252.

Text literals take the length of the literal.

Files opened for writing are treated as having variable-length records. If you need a fixed-length
record, specify a length for each variable written to the file.

The total length of the variables and literals being written must not be greater (but can be less)
than the record length specified when the file was opened. Records are not padded, but are
written with the total length of all variables in WRITE.

If STATUS is specified, Production Reporting returns 0 if the write is successful; otherwise, it
returns the value of errno, which is system-dependent.

Examples

write 5 from S$name:20 S$Scity:15 S$Sstate:2

write 17 from S$Scompany ' - ' Scity ' - ' S$state ' ' $zip
write #3j2 from #rate:2 #amount:4 #quantity:1
move #total to S$tot 99999.99 ! Convert floating point to

! string.

write 1 from S$tot

let $datel = datenow() ! Put the current date and time
! into DATE variable

write 3 from S$datel:20

See Also
OPEN, CLOSE, and READ

WRITE-RS

Function

Writes values to the specified row set.

Syntax

WRITE-RS

NAME=row_set_name var|_lit|_col

VALUE= ({name_var|_1it|_col}, {data_var|_1lit|_col})
Arguments

NAME

Name of the row set.

VALUE

Column name and value. Can be repeated as many times as needed to satisfy the row set
definition.

300 Production Reporting Command Reference

Description

WRITE-RS can reside in any section except BEGIN-SETUP, BEGIN-SQL, and BEGIN-
DOCUMENT. Validation rules include:

e The row set specified by row_set_name must be active, or an exception is thrown.

e IfNAME is an empty string, then VALUE is ignored.

e IfNAME is not an empty string, then it must be defined in OPEN-RS.

e Thedatatype should match the type specified for the column. If needed, implicit conversions
are performed according to SQR rules. If a required conversion cannot be done, an exception

is thrown (for example, a numeric value specified for a DATE column).

e Based on the row set definition in OPEN-RS, if a column is not specified with a VALUE entry,
it is assumed to be a NULL value.

The row set file is an XML file. You can define whether to create the XML file in a BI Publisher
(BIP) format or an SQR format in the FormatForRowsetXML entry in the [Default-Settings]

section of SQR.INI.

Example

Begin-Report

Open-RS Name='customer'

Column = ('cust_num', 'integer')
Column = ('name' 'string')
Column = ('addrl' 'string')
Column = ('addr2' 'string')
Column = ('city' 'string"')
Column = ('state' 'string')
Column = ('zip' 'string')
Column = ('phone' 'string')
Column = ('tot', 'integer')

Begin-Select
cust_num
name
addrl
addr2
city
state
zip
phone
tot

Write-RS Name='customer'

Value = ('cust_num', S$cust_num)
Value = ('name', &name)

Value = ('addrl', &addrl)

Value = ('addr2', &addr2)

Value = ('city', &addr3)

Value = ('state', &addr4)

Value = ('zip', &zip)

Value = ('phone', &phone)

Value = ('tot', S$&tot)

from customers
order by cust_num
End-Select

FileName="'customer.xml'

WRITE-RS 301

Close-RS Name='customer'
End-Report

See Also
OPEN-RS, CLOSE-RS

302 Production Reporting Command Reference

HTML Procedures

In This Chapter

ADOUL HTML PrOCEAUIES ... ettt ettt e e et et et et e e n e e e et e e enenes 303
HTML General PUIPOSE PrOCEAUIES. .. . v ittt ettt ettt e e e et e e et e e et et e et e e e e e e e aaens 303
HTML HEAdING PrOCEAUIES .. uettiteetet ettt et et e e e e et e et e e e et e e e et et et e et e ae e e aaens 305
HTML Highlihting PrOCEAUIESttt ettt neeees 307
HTML Hypertext LinK PrOCEAUIES.t sttt e ittt et e e e et e et et et e et e e r e e e e neaaens 309
HTML LIST PrOCEAUIES ...ttt et ettt e e ettt et e neeees 309
HTML TADIE PrOCEAUIES. ...ttt ettt ettt e e e e 312

About HTML Procedures

HTML procedures enable Production Reporting to generate HTML output. For information
on using HTML procedures, see “Working with HTML” in Volume 1 of the Hyperion SQR

Production Reporting Developer's Guide.

HTML General Purpose Procedures

Table 67 HTML General Purpose Procedures

Procedure

Description

html_br

Line break in a paragraph.

Syntax: html_br(number count, string attributes)
e count = Number of
 tags

e attributes = HTML attributes inside

Example:

print 'Here is some text' ()
do html_br(3,'")
print 'Here is some three lines down' ()

html_center

Start of centered text. (You can also use PRINT and specify CENTER in the code.)
Syntax: html_center(string attributes)

e® attributes = HTML attributes inside <CENTER>

Example:

About HTML Procedures 303

Procedure Description

do html_center('")
print 'Here is some text' ()
do html_center_end

html_center_ end End of centered text.

Syntax: html_center_end

html_hr Horizontal divider between sections of text.
Syntax: html_hr(string attributes)

e attributes = HTML attributes inside <HR>
Example::

print 'Here is some text' ()
do html_hr('")
print 'And some more text' ()

html_img Image. (You can also use PRINT-IMAGE; however, html_img allows you to define the full set of available
HTML attributes.)

Syntax: html_img(string attributes)
e attributes = HTML attributes inside

Common attributes:src-URL of image (Example: src=/images/abc.gif)
height-Image height in pixels (Example: height=200)
width-Image width in pixels (Example: width=400)

Example:

do html_img('src="/images/stop.gif""')

html_nobr Start of text that cannot be wrapped.
Syntax: html_nobr
Example:

do html_nobr('"')
print 'Here's long text that should not wrap' ()
do html_nobr_end

html_nobr_end End of text that cannot be wrapped.

Syntax: html_nobr_end

html_on Turns on HTML procedures. Called at the start of Production Reporting programs.
Syntax: html_on
Example

do html_on

html_p Start of a paragraph.
Syntax: html_p(string attributes)
e® attributes = HTML attributes inside <P>

Some common attributes:

align = left| right | center-Alignment of the paragraph.

304 HTML Procedures

Procedure

Description

Example:

do html_p ('ALIGN=RIGHT')

print 'Right aligned text' (1,1)
do html_p_end

print 'Normal text' (+1,1)

html_p_end

End of a paragraph. Typically implied; however, can be defined for completeness.

Syntax: html_p_end

html_set_body_attributes

Attributes inside <BODY>. Called at the start of Production Reporting programs.
Syntax: html_set_body_attributes(string attributes)

e attributes = HTML attributes inside <BODY>

Common attributes:

background-Image displayed on the background of the Web page.

(Example: background=/images/logo.gif)

bgcolor=#rrggbb-Background color of the Web page.

(Example: bgcolor=#80FFF)

Example:

do html_set_body_attributes ('BACKGROUND="/images/x.gif"")

html_set_head_tags

Tags between <HEAD> and </HEAD>. (Empty by default.) Called at the start of Production Reporting
programs.

Syntax: html_set_head_tags(string attributes)
e attributes = HTML attributes between <HEAD> and </HEAD>
Example:

do html_set_head tags('<TITLE>My Report</TITLE>')

HTML Heading Procedures

Table 68 HTML Heading Procedures

Procedure Description

html_h1 Start of heading level one text.

Syntax: html_h1(string attributes)
o attributes = HTML attributes inside <H1>

Example::
do html_hi('")
print 'This is a heading' ()

do html_hl_ end

html_h1_end | End of heading level one text.

Syntax: html_h1_end

HTML Heading Procedures 305

Procedure Description

html_h2 Start of heading level two text.

Syntax: html_h2(string attributes)

e attributes = HTML attributes inside <H2>
Example:

do html_h2('")
print 'This is a heading' ()
do html_h2_end

html_h2_end | End of heading level two text.
Syntax: html_h2_end

htmi_h3 Start of heading level three text. (This heading is the default.)
Syntax: html_h3(string attributes)
e attributes = HTML attributes inside <H3>

html_h3_end | End of heading level three text.
Syntax: html_h3_end

htmi_h4 Start of heading level four text.
Syntax: html_h4(string attributes)
@ attributes = HTML attributes inside <H4>

html_h4_end | End of heading level four text.
Syntax: html_h4_end

html_h5 Start of heading level five text.
Syntax: html_h5(string attributes)
e attributes = HTML attributes inside <H5>

html_h5_end | End of heading level five text.
Syntax: html_h5_end

html_h6 Start of heading level six text.
Syntax: html_h6(string attributes)
@ attributes = HTML attributes inside <H6>

html_h6_end | End of heading level six text.
Syntax: html_h6_end

306 HTML Procedures

HTML Highlighting Procedures

Table 69 HTML Highlighting Procedures

Procedure

Description

html_blink

Start of blinking text.

Syntax: html_blink(string attributes)

e attributes = HTML attributes inside <BLINK>
Example:

do html_blink('")
print 'This is blinking' ()
do html_blink end

html_blink_end

End of blinking text.
Syntax: html_blink_end

html_cite

Start of citation text.

Syntax: html_cite(string attributes)

e attributes = HTML attributes inside <CITE>
Example:

do html_cite('"')
print 'This is a citation' ()
do html_cite_end

html_cite_end

End of citation text.

Syntax: html_cite_end

html_code

Start of code text.

Syntax: html_code(string attributes)

e attributes = HTML attributes inside <CODE>
Example:

do html_code('"')
print 'Here is the code' ()
do html_code_end

html_code_end

End of code text.

Syntax: html_code_end

htmi_kbd

Start of keyboard input text.

Syntax: html_kbd(string attributes)

e attributes = HTML attributes inside <KBD>
Example:

do html_kbd('")
print 'Here is keyboard' ()
do html_kbd _end

HTML Highlighting Procedures 307

Procedure

Description

html_kbd_end End of keyboard input text.
Syntax: html_kbd_end
html_samp Start of sample text.

Syntax: html_samp(string attributes)
e attributes = HTML attributes inside <SAMP>
Example:

do html_samp('"')
print 'Here is sample' ()
do html_samp_end

html_samp_end

End of sample text.

Syntax: html_samp_end

html_strike

Start of strike-through text.

Syntax: html_strike(string attributes)

e attributes = HTML attributes inside <STRIKE>
Example:

do html_strike('")
print 'Here is strike-through' ()
do html_strike_end

html_strike_end

End of strike-through text.

Syntax: html_strike_end

html_sub

Start of subscript text.

Syntax: html_sub(string attributes)

e attributes = HTML attributes inside <SUB>
Example:

print 'Here is' ()

do html_sub('")

print 'subscript text' ()
do html_sub_end

html_sub_end

End of subscript text.
Syntax: html_sub_end

html_sup

Start of superscript text.

Syntax: html_sup(string attributes)

e attributes = HTML attributes inside <SUP>
Example:

print 'Here is' ()

do html_sup('")

print 'superscript text' ()
do html_sup_end

308 HTML Procedures

Procedure Description

html_sup_end End of superscript text.
Syntax: html_sup_end

HTML Hypertext Link Procedures

Table 70 HTML Hypertext Link Procedures

Procedure Description

html_a Start of a hypertext link.

Syntax: html_a(string attributes)

o attributes = HTML attributes inside <A>. At a minimum, define HREF, which specifies the URL of HTML documents.
Common attributes:

href-Where the hypertext link points. (Example: href=home.html)

name-Anchor to which a hypertext link can point. (Example: name=marker1)

Example: Create an anchor with two hypertext links. Position the anchor at the top of the document. Point the first hypertext
link to otherdoc.html. Point the second hypertext link to the anchor named TOP.

do html_a ('NAME=TOP')
do html_a_end

print 'At the top of document' ()
do html_br (20, '')

do html_a('HREF=otherdoc.html')
print 'Goto other document' ()
do html_a_end

do html_p('")

do html_a ('HREF=#TOP"')

print 'Goto top of document' ()
do html_a_end

html_a_end | End of a hypertext link.

Syntax: html_a_end

HTML List Procedures

Table 71 HTML List Procedures

Procedure Description

html_dd Start of a definition in a definition list.
Syntax: html_dd(string attributes)
e® attributes = HTML attributes inside <DD>

HTML Hypertext Link Procedures 309

Procedure Description

html_dd_end End of a definition in a definition list. Typically implied; however, can be defined for completeness.

Syntax: html_dd_end

html_dir Start of a directory list.

Syntax: html_dir(string attributes)

e attributes = HTML attributes inside <DIR>
Example:

do html_dir('"')

do html_1i('")

print 'First item' ()
do html_1i('")

print 'Second item' ()
do html_1i('"')

print 'Last item' ()
do html_dir_ end

html_dir_end End of a directory list.
Syntax: html_dir_end

htmi_dl Start of a definition list. Terms display above and to the left of definitions. htm1_dt displays terms. htm1_dd displays
definitions.

Syntax: html_dI(string attributes)
e attributes = HTML attributes inside <DL>
Example: Definition list with two terms and definitions:

do html _di('")

do html _dt('")

print 'A Daisy' ()

do html_dd('")

print 'A sweet and innocent flower.' ()
do html_dt('")

print 'A Rose' ()

do html_dd('")

print 'A very passionate flower.' ()

do html_dl_end

html_dl_end End of a definition list.

Syntax: html_dI_end

html_dt Start of a term in a definition list.
Syntax: html_dt(string attributes)
e® attributes = HTML attributes inside <DT>

html_dt_end End of a term in a definition list.

Syntax: html_dt_end

html_li Start of a list item.

Syntax: html_li(string attributes)

310 HTML Procedures

Procedure

Description

e® attributes = HTML attributes inside

html_li_end End of a list item. Typically implied; however, can be defined for completeness.
Syntax: html_li_end
html_menu Start of a menu. html_11i identifies menu items.

Syntax: html_menu(string attributes)
e attributes = HTML attributes inside <MENU>
Example:

do html_menu('')

do html_1i('"')

print 'First item' ()
do html_1i('"')

print 'Second item' ()
do html_1i('"')

print 'Last item' ()
do html_menu_end

html_menu_end

End of a menu.

Syntax: html_menu_end

html_ol

Start of an ordered list. List items typically display indented to the right with a number to the left. htm1_11i identifies

list items.

Syntax: html_ol(string attributes)

e attributes = HTML attributes inside
Example:

do html_ol('")

do html_1i('"')

print 'First item' ()
do html_1i('"')

print 'Second item' ()
do html_1i('"')

print 'Last item' ()
do html_ol_end

html_ol_end

End of an ordered list.

Syntax: html_ol_end

html_ul

Start of an unordered list. List items typically display indented to the right with a bullet to the left. htm1_1i identifies

list items.

Syntax: html_ul(string attributes)

e attributes = HTML attributes inside
Example:

do html_ul('"')

do html_1i('")

print 'First item' ()
do html_1i('"')

print 'Second item' ()

HTML List Procedures 311

Procedure Description

do html_1i('")
print 'Last item' ()
do html_ul_end

html_ul_end End of an unordered list.

Syntax: html_ul_end

HTML Table Procedures

Table 72 HTML Table Procedures

Procedure Description

html_caption Start of a table caption.
Syntax: html_caption(string attributes)

@ attributes = HTML attributes inside <CAPTION>

html_caption_end | End of a table caption. Typically implied; however, can be defined for completeness.

Syntax: html_caption_end

html_table Start of a table.

Syntax: html_table(string attributes)

e attributes = HTML attributes inside <TABLE>
Common attributes:

border—Displays a border around each table cell.
width—Table width in pixels.

cols—Number of table columns. (Example: COLS=4)

Example: Database records in a tabular format. html_caption_end, html_tr_end, html_td_end, and
html_th_end are used for completeness; however, they are typically implied.

Istart the table & display the column headings
do html_table('border"')

do html_caption('")

print 'Customer Records' (1,1)
do html_caption_end

do html_tr('")

do html_th('"')

print 'Cust No' (+1,1)

do html_th_end

do html_th('")

print 'Name" (,10)

do html_th_end

do html_tr_end

! display each record
begin-select

do html_tr('")

do html_td('"')

cust_num (1,1,6) edit 099999

312 HTML Procedures

Procedure Description

do html_td_end

do html_td('")

name (1,10,25)

do html_td_end

do html_tr_ end

next-listing skiplines=1 need=1
from customers

end-select

! end the table

do html_table_end

html_table_end End of a table.
Syntax: html_table_end

htmi_td Start of a new column in a table row. The text that follows displays within the column.
Syntax: html_td(string attributes)
e attributes = HTML attributes inside <TD>

html_td_end End of a column in a table. Typically implied; however, can be defined for completeness.

Syntax: html_td_end

htmi_th Start of a new column header in a table row. The text that follows displays as the column header.
Syntax: html_th(string attributes)
e attributes = HTML attributes inside <TH>

htmi_th_end End of a column header in a table. Typically implied; however, can be defined for completeness.

Syntax: html_th_end

html_tr Start of a new table row.
Syntax: html_tr(string attributes)
@ attributes = HTML attributes inside <TR>

html_tr_end End of a table row. Typically implied; however, can be defined for completeness.

Syntax: html_tr_end

HTML Table Procedures 313

314 HTML Procedures

Encoding in Production
Reporting

In This Chapter

ENCOTING METNOGS . ..o et 315
ENCOdiNg Keys iN SQR.INI .. . uit i e et et 315
Encodings Supported without Using Unicode INtermally...........ouvieiriiiiiii e 318
Encodings Supported in ProduCtion REPOMINGvuei ittt et aes 320

Encoding Methods

You can setup Production Reporting to:

e Read character streams into the system by "widening" them into 16-bit character strings.

e Use Unicode internally to normalize data.

The default method is to read character streams into the system. To override the default and use
Unicode internally, set the following in SQLINI:

UseUnicodeInternal=TRUE

When UseUnicodeInternal=TRUE, any combination of encodings is valid in a single
Production Reporting run, including ASCII and EBCDIC.

Encoding Keys in SQR.INI

You can define encoding keys in the following sections of SQR.INTI:
e [Default-Settings]

e [Environment]

Encoding Keys in the [Default-Settings] Section

Table 73 Encoding Keys in the [Default-Settings] Section

Encoding Key Description

UseUnicodeInternal TRUE uses Unicode internally.

AutoDetectUnicodeFiles | TRUE automatically detects UCS-2 encoded files.

Encoding Methods 315

Encoding Key Description

Substitution-Character | Defines a substitution character on a character set by character set basis.

UseUnicodelnternal Key

Forces the use of Unicode internally. When UseUnicodeInternal =TRUE, any combination of
encodings is valid in a single Production Reporting run, including ASCII and EBCDIC.

AutoDetectUnicodeFiles Key

By convention, all UCS-2 encoded files start with a Byte Order Mark (BOM). The BOM is the
Unicode character ZERO WIDTH NO-BREAK SPACE that has a hexadecimal value of 0OXFEFF.
The BOM serves two purposes:

e Indicates that the file is encoded as UCS-2 (two bytes per character)

e Indicates the order in which the individual bytes of each Unicode character are written to
the file.

On little-endian architectures such as Intel, the high order byte is written first so the BOM is
physically recorded in the file as 0xFFFE. On big-endian architectures, the BOM is recorded as
OxXFEFF.

If auto-detection of UCS-2 encoded files is enabled, Production Reporting checks whether the
first two bytes of each file that it opens equal either 0OxFEFF or OxFFFE. If so, the file reads as a
UCS-2 encoded file.

If an ENCODING directive is specified on an OPEN statement, Production Reporting does not
attempt to auto-detect. It uses the encoding specified.

The BOM is not considered part of the file when performing fixed field width file I/O. In other
words, reading 2 bytes from a UCS-2 file after it is opened returns the first Unicode character
after the BOM, not the BOM itself.

When creating a UCS-2 output file, Production Reporting writes a BOM to the file as the file's
first two bytes.

Substitution-Character Key

Allows for the substitution character to be defined on a character set by character set basis. The
substitution character is the character placed in the output when a Unicode character does not
exist in the target encoding. For readability's sake and to avoid character conversion problems
when moving INI files between platforms, specify the substitution character as a hexadecimal
string.

The format of the entry is:

[Default-Settings]
SUBSTITUTION-CHARACTER=XX EncodingNamel [, XX EncodingName2...]

316 Encoding in Production Reporting

where XX is the complete hexadecimal representation of the substitution character and
EncodingName is a valid encoding name. Additionally, you can use the encoding name Default
to specify the substitution character for all the encodings not explicitly listed. A default
substitution character is used whenever no substitution character is explicitly or implicitly
specified in the Default settings.

Encoding Keys in the [Environment] Section

Table 74 describes the encoding keys in the [Environment] section of SQR.INI. All of these
encoding settings will accept as valid values any of the encoding literals. Any encoding can be
specified for any encoding setting entry.

Table 74 Encoding Keys in the [Environment] Section

Encoding Key Description

Encoding Default encoding.

Encoding-Console Encoding used for console input and output.

Encoding-Database Encoding used for interfacing with the database.
Encoding-File-Input Default encoding used for “OPEN” for-reading files and argument files.
Encoding-File-Output Default encoding used for “OPEN” for-writing files.
Encoding-Report-Output | Default encoding used for report output, such as, SPF, LIS, HTM, etc.
Encoding-SQR-Source Encoding used for Production Reporting source and include files.

The following is an example of encoding settings in the [Environment] section:

[Environment : Common]
Encoding=IS0-8859-1
Encoding-File-Output=Greek
Encoding-File-Input=Shift-Jis
Encoding-Report-Output=UCS-2
Encoding-database=utf-8
Encoding-console=ascii
Encoding-SQR-Source=ucs-2

If these keys are not specified, encodings default to ASCII. The Encoding setting, which specifies
the default encoding, can be overridden by the other encoding settings.

As with other [Environment] section settings, Production Reporting first checks the
[Environment] section ofits database type and then checks the [Common Environment] section.
For example, an ODBC version of Production Reporting first checks the [Environment:ODBC]
section of SQR.INI for a setting and, if not found, then checks the [Environment:Common]
section.

To access these encoding settings within an Production Reporting program, use the following
reserved variables.

Encoding Keys in SQR.INI 317

$SQR-ENCODING-REPORT-OUTPUT
{SQR-ENCODING-REPORT-OUTPUT}
$SQR-ENCODING-FILE-INPUT
{SQR-ENCODING-FILE-INPUT}
$SQR-ENCODING-FILE-OUTPUT
{SQR-ENCODING-FILE-OUTPUT}
$SQR-ENCODING-CONSOLE
{SQR-ENCODING-CONSOLE}
$SQR-ENCODING-SOURCE
{SQR-ENCODING-SOURCE}
$SQR-ENCODING-DATABASE
{SQR-ENCODING-DATABASE}

Encodings Supported without Using Unicode Internally

When you do not use Unicode internally (UseUnicodeInternal=FALSE), Production
Reporting supports the following encodings:

ASCII
EBCDIC
Shift-JIS
EUC-]
EBCDIK290
EBCDIK1027
UTEF-8
UCS-2

When you do not use Unicode internally, Production Reporting does not perform character
conversion. As a result, you can only mix encodings that are logical supersets or subsets of each
other. For example, you can combine Shift-JIS and ASCII or EBCDIC and EBCDIK1027;
however, you cannot combine Shift-JIS with EBCDIC or UTF-8.

Table 75 identifies a valid set of encoding settings for an Production Reporting run. For
simplicity, ENCODING-SQR-SOURCE and ENCODING-CONSOLE have not been specified and are
assumed to be either ASCII or EBCDIC, depending on the platform.

Table 75 Compatible Encodings without Unicode

Encoding-File-Input | Encoding-Database | Encoding-File-Output

Encoding-Report-Output

ASCII ASCII ASCII

ASCII

318 Encoding in Production Reporting

Encoding-File-Input | Encoding-Database | Encoding-File-Output | Encoding-Report-Output
AsCIl ASClI AsCIl Shift-JIS
ASCII ASCII ASCII JEUC
AsCIl ASClI AsCIl UTF-8/UCS-2
AsCIl Shift-JIS AsCIl AsCII
ASCII Shift-JIS ASCII Shift-JIS
ASCII JEUC ASCII ASCII
AsCIl JEUC AsCIl JEUC
AsCIl UTF-8/UCS-2 AsCIl AsCII
ASCII UTF-8/UCS-2 ASCII UTF-8/UCS-2
AsCIl Shift-JIS Shift-JIS Shift-JIS
AsCIl JEUC JEUC JEUC
ASCII UTF-8/UCS-2 UTF-8/UCS-2 UTF-8/UCS-2
EBCDIC EBCDIC EBCDIC EBCDIC
EBCDIC EBCDIC EBCDIC EBCDIK290 or 1027
EBCDIC EBCDIK290 or 1027 | EBCDIC EBCDIC
EBCDIC EBCDIK290 or 1027 | EBCDIC EBCDIK290 or 1027
EBCDIC EBCDIK290 or 1027 | EBCDIK290 or 1027 | EBCDIK290 or 1027
EBCDIK290 or 1027 | EBCDIK290 or 1027 | EBCDIC EBCDIK290 or 1027
EBCDIK290 or 1027 | EBCDIK290 or 1027 | EBCDIK290 or 1027 EBCDIK290 or 1027
Shift-JIS Shift-JIS ASCII Shift-JIS
Shift-JIS Shift-JIS Shift-JIS Shift-JIS
JEUC JEUC ASCII JEUC
JEUC JEUC JEUC JEUC
UTF-8/UCS-2 UTF-8/UCS-2 AsCIl UTF-8/UCS-2
UTF-8/UCS-2 UTF-8/UCS-2 UTF-8/UCS-2 UTF-8/UCS-2

Note:

Production Reporting works differently on EBCDIC platforms than in ASCII. Specifically, the
UseUnicodeInternal setting has no effect on EBCDIC platforms. Instead, the distribution

Encodings Supported without Using Unicode Internally 319

media contains two sets of executables (SQR, SQRT, and SQRP), where one set works with non-

unicode processing and the other works for unicode processing.

Encodings Supported in Production Reporting

Table 76 Production Reporting-Supported Encodings

Vendor / Standard Acceptable Production

Encoding Character Set Also Known As Body Reporting Names

CP10004 Arabic Macintosh Arabic Microsoft & IBM CP10004

CP1256 Arabic Microsoft & IBM CP1256

CP20420 Arabic (with fullwidth Latin & Microsoft & IBM CP20420

punctuation)

CP28596 Arabic Arabic Alphabet (I1SO) Microsoft & IBM CP28596

CP720 Arabic Transparent ASMO Microsoft & IBM CP720

CP864 Arabic Microsoft & IBM CP864

ISO 8859-6 Arabic ISOLatinArabic International or National | Arabic
Standard

CP708 Arabic ASMO708 Microsoft & IBM CP708

CP1257 Baltic Microsoft & IBM CP1257

CP28594 Baltic Baltic Alphabet (ISO) Microsoft & IBM CP28594

CP775 Baltic Microsoft & IBM CP775

ISO 8859-4 Baltic Latin4 International or National | Latin4, ISO-8859-4
Standard

ISO 8859-13 Baltic Latin7 International or National | Latin7, ISO-8859-13
Standard

ISO 8859-14 Celtic Latin8 International or National | 1SO-8859-14
Standard

ISO 2022-CN Chinese International or National | 1SO-2022-CN
Standard

GB18030 Chinese International or National | GB18030
Standard

HKSCS Chinese Bigh-HKSCS International or National | Bigh-HKSCS
Standard

CP936 Chinese, Simplified GBK Microsoft & IBM CP936

GB2312 Chinese, Simplified EUC-CN, EUC-SC International or National | GB2312, EUC-CN
Standard

320 Encoding in Production Reporting

Vendor / Standard

Acceptable Production

Encoding Character Set Also Known As Body Reporting Names
HZ-GB-2312 Chinese, Simplified HZ-GB-2312 International or National | HZ
Standard
Bigh Chinese, Traditional International or National | Bigb
Standard
BIG5+ Chinese, Traditional International or National | BIG5+
Standard
CNS-11643-1986 | Chinese, Traditional EUC-TW International or National | CNS-11643-1986
Standard
CNS-11643-1992 | Chinese, Traditional EUC-TW International or National | CNS-11643-1992

Standard

EUC-TW Chinese, Traditional CNS-11643-1986, UNIX CNS-11643-1992
CNS-11643-1992

GB12345 Chinese, Traditional International or National | GB12345

Standard

CP10002 Chinese, Traditional Macintosh Traditional Chinese | Microsoft & IBM CP10002

CP950 Chinese, Traditional Microsoft & IBM CP950

CP10007 Cyrillic Macintosh Cyrillic Microsoft & IBM CP10007

CP1251 Cyrillic MS Windows Cyrillic (Slavic) Microsoft & IBM CP1251

CP20866 Cyrillic Cyrillic Alphabet, KOI8-R Microsoft & IBM CP20866

CP20880 Cyrillic (with fullwidth Latin & Microsoft & IBM CP20880
punctuation)

CP21025 Cyrillic (with fullwidth Latin & Microsoft & IBM CP21025
punctuation)

CP21866 Cyrillic Ukrainian KOI8-RU Microsoft & IBM CP21866

CP28595 Cyrillic Cyrillic Alphabet (ISO) Microsoft & IBM CP28595

CP855 Cyrillic IBM Cyrillic Microsoft & IBM CP855

CP866 Cyrillic MS DOS Russian Microsoft & IBM CP866

ISO 8859-5 Cyrillic ISOLatinCyrillic International or National | ISOLatinCyrillic

Standard

CP10006 Greek Macintosh Greek 1 Microsoft & IBM CP10006

CP1253 Greek Microsoft & IBM CP1253

CP20423 Greek (with fullwidth Latin & Microsoft & IBM CP20423

punctuation)

Encodings Supported in Production Reporting 321

Vendor / Standard

Acceptable Production

Encoding Character Set Also Known As Body Reporting Names
CP28597 Greek Greek Alphabet (1SO) Microsoft & IBM CP28597
CP737 Greek Microsoft & IBM CP737
CP869 Greek IBM Modem Greek Microsoft & IBM CP869
ISO 8859-7 Greek ISOLatinGreek International or National | Greek
Standard
CP10010 Gurmukhi Macintosh Gurmukhi Microsoft & IBM CP10010
CP10005 Hebrew Macintosh Hebrew Microsoft & IBM CP10005
CP1255 Hebrew Microsoft & IBM CP1255
CP28598 Hebrew Hebrew Alphabet (I1SO) Microsoft & IBM CP28598
CP38598 Hebrew ASCII + Hebrew and private Microsoft & IBM CP38598
use characters
CP862 Hebrew Microsoft & IBM CP862
ISO 8859-8 Hebrew ISOLatinHebrew International or National | Hebrew
Standard
CP10079 Icelandic Macintosh Icelandic Microsoft & IBM CP10079
CP861 Icelandic MS DOS Icelandic Microsoft & IBM CP861
CCSID 1027 Japanese EBCDIK Microsoft & IBM CCSID-1027, EBCDIK1027
CCSID 290 Japanese EBCDIK Microsoft & IBM CCSID-290, EBCDIK290
CCSID 942 Japanese Microsoft & IBM CCSID-942
CP10001 Japanese Macintosh Japanese Microsoft & IBM CP10001
CP20290 Japanese (full/half width Latin & Microsoft & IBM CP20290
halfwidth katakana)
CP21027 Japanese (halfwidth Latin, halfwidth Microsoft & IBM CP21027
katakana&private use)
CP932 Japanese Microsoft & IBM CP932
EUC-JP Japanese UNIX EUC-J, JEUC
EUC-JP- Japanese UNIX EUC-JP-
JISROMAN JISROMAN
IS0-2022-JP Japanese International or National | 1SO-2022-JP
Standard
JIS_X_0201 Japanese HalfWidthKatakana International or National | JIS_X_0201, IBM897

Standard

322 Encoding in Production Reporting

Vendor / Standard

Acceptable Production

Encoding Character Set Also Known As Body Reporting Names
JIS_X_0208 Japanese International or National | JIS_X_0208
Standard
Shift-JIS Japanese MS_Kaniji Microsoft & IBM Shift-JIS, SJIS
CP10003 Korean Macintosh Korean Microsoft & IBM CP10003
CP1361 Korean Korean Johab (based on KSC | Microsoft & IBM CP1361
5861-1992)
CP949 Korean Microsoft & IBM CP949
EUC-KR Korean KS_C_5861-1992 UNIX EUC-KR, EUC-K
IS0-2022-KR Korean KS_C_5601-1987 International or National | 1SO-2022-KR
Standard
Johab Korean International or National | Johab
Standard
CP10000 Latin Macintosh Roman Microsoft & IBM CP10000
CP10029 Latin Macintosh Latin2 Microsoft & IBM CP10029
CP10082 Latin (with mathematical symbols) Microsoft & IBM CP10082
CCsID1047 Latin EBCDIC (for IBM Open Microsoft & IBM CCSID1047
Systems platform)
CP20261 Latin (with private use characters) Microsoft & IBM CP20261
CP20269 Latin Microsoft & IBM CP20269
CP20273 Latin (with fullwidth Latin & Microsoft & IBM CP20273
punctuation)
CP20277 Latin (with fullwidth Latin & Microsoft & IBM CP20277
punctuation)
CP20278 Latin (with fullwidth Latin & Microsoft & IBM CP20278
punctuation)
CP20280 Latin (with fullwidth Latin & Microsoft & IBM CP20280
punctuation)
CP20284 Latin (with fullwidth Latin & Microsoft & IBM CP20284
punctuation)
CP20285 Latin (with fullwidth Latin & Microsoft & IBM CP20285
punctuation)
CP20297 Latin (with fullwidth Latin & Microsoft & IBM CP20297

punctuation)

Encodings Supported in Production Reporting 323

Vendor / Standard Acceptable Production
Encoding Character Set Also Known As Body Reporting Names
CP20833 Latin (with fullwidth Latin & Microsoft & IBM CP20833
punctuation)
CP20871 Latin (with fullwidth Latin & Microsoft & IBM CP20871
punctuation)
CP28591 Latin ASCII + Latin accented vowels | Microsoft & IBM CP28591
CP28593 Latin Latin 3 Alphabet (ISO) Microsoft & IBM CP28593
CP850 Latin MS DOS Multilingual, MS-DOS | Microsoft & IBM CP850
Latinl
CP870 Latin (with fullwidth punctuation) Microsoft & IBM CP870
HP-ROMAN8 Latin csHPRoman§, r8, roman8 HP HP-ROMANS8
ISO 8859-1 Latin Latin1 International or National | Latin1, ISO-8859-1
Standard
ISO 8859-15 Latin Latin1 + Euro symbol & International or National | 1SO-8859-15
accented characters Standard
ISO 8859-2 Latin Latin2 International or National | Latin2, ISO-8859-2
Standard
UTF8-EBCDIC Latin Unicode UTF8-EBCDIC
CP863 Latin, Canadian MS DOS Canadian French Microsoft & IBM CP863
French
CP28592 Latin, Central Central European Alphabet Microsoft & IBM CP28592
European (1ISO)
CP1250 Latin, Eastern Europe Microsoft & IBM CP1250
CP20905 Latin, Esperanto (with fullwidth Latin & Microsoft & IBM CP20905
punctuation)
CP860 Latin, Portuguese MS DOS Portuguese Microsoft & IBM CP860
ISO 8859-3 Latin, Southeast Latin3 International or National | Latin3, ISO-8859-3
European Standard
ASCII Latin, US English US-ASCII, CP367 International or National | ASCII, ANSI
Standard
CP037 Latin, US English EBCDIC Microsoft & IBM CP037
CP1026 Latin, US English EBCDIC Microsoft & IBM CP1026
CP1252 Latin, US English MS Windows Latin1 (ANSI) Microsoft & IBM CP1252
CP20105 Latin, US English US ASCII Microsoft & IBM CP20105

324 Encoding in Production Reporting

Vendor / Standard

Acceptable Production

Encoding Character Set Also Known As Body Reporting Names

CP437 Latin, US English MS-DOS Latin US Microsoft & IBM CP437

CP500 Latin, US English EBCDIC Microsoft & IBM CP500

CP875 Latin, US English EBCDIC Microsoft & IBM CP875

CP10017 Malayan Macintosh Malayan Microsoft & IBM CP10017

CP865 Nordic MS DOS Nordic Microsoft & IBM CP865

ISO 8859-10 Nordic Latin6 International or National | Latin6, 1ISO-8859-10

Standard

CP852 Slavic MS DOS Slavic Microsoft & IBM CP852

Adobe-Symbol- Symbol (used in PS printers) Adobe Adobe-Symbol-Encoding

Encoding

CP10008 Symbol Macintosh RSymbol (Right-left | Microsoft & IBM CP10008
symbol)

CP20838 Thai (with fullwidth Latin & Microsoft & IBM CP20838
punctuation)

CP874 Thai IBMThai Microsoft & IBM CP874

ISO 8859-11 Thai ISOLatinThai International or National | Thai

(draft) Standard

CP10081 Turkish Macintosh Turkish Microsoft & IBM CP10081

CP1254 Turkish Microsoft & IBM CP1254

CP28599 Turkish Turkish (1SO) Microsoft & IBM CP28599

CP857 Turkish IBM Turkish Microsoft & IBM CP857

ISO 8859-9 Turkish Latinb International or National | Latin5, 1ISO-8859-9

Standard

BMP Unicode Unicode BMP

Java Unicode (way of representing Unicode | Sun Java
chars in ASCII)

ucs2 Unicode I1S0-10646-UCS2, UTF16 Unicode ucs2

Unicode Big- Unicode Unicode big-endian

endian

Unicode Little- Unicode Unicode little-endian

endian

UTF7 Unicode Unicode UTF7

Encodings Supported in Production Reporting 325

Vendor / Standard

Acceptable Production

Encoding Character Set Also Known As Body Reporting Names
UTF8 Unicode Unicode UTF8
UTF8-EBCDIC Unicode Unicode UTF8-EBCDIC
CP1258 Vietnamese Microsoft & IBM CP1258

326 Encoding in Production Reporting

SQR.INI

In This Chapter

INStAllAtion OF SQR.INI. ... ini e e e e e 327
LG e TT L G T u T B 1= o] | P PP 328
[Environment: @NVIFONMENT] SECHION ... u .t ettt et e e et e e e et et e e aeas 333
[SQR EXIENSION] SECHOM . euvuetenetetett et te et et et et et ettt e e e e e et et et et et e e e e e e e e et et e e ae e es 335
[IOTore | Lo (oo T e T g ST U4 PP 335
LTS IR o 2 337
L D 0 1Y RS- (T PPt 338
L5 DL 1= L =y =T o] 340
L 0T 1Y =T (o 341
LT I L B 2oy IS T=T o110 o PPt 342
g Tot T B ST 1o 343
O] Lo =T o3 IR PPt 344
[MAP-ODBC-DB] SECHON. ... e e, 345
[MAP-DDO-DB] SECON ...ttt ettt ettt ettt e ettt ettt et e et e et e et et e e eaas 345
[SQR REMOTE] SBCHION ...ttt et e e e et et et et e e et e e e e e e aeas 345

Installation of SQR.INI

The installation process installs a default initialization file called SQR.INI. This file contains
settings and parameters that Production Reporting uses during the compile and execution
phases.

On Windows platforms, SQR.INT is placed in the main Windows directory. (On Windows XP,
the default directory name is "WINDOWS." On Windows 2000, the default directory name is
"WINNT.") On all other platforms, SQR.INT is placed in the same directory as the executable
images (where SQRDIR points).

For Windows Platforms Only

Production Reporting looks for the initialization file in the following locations:
1. The file name specified by -zIF{file}.

2. The directory where the executable image resides.

Installation of SQR.INI 327

3. The Windows system directory.

Since the required environment variable SORDIR is defined in the initialization file, Production
Reporting produces an error message if it cannot find the file.

For All Other Platforms

Production Reporting looks for the initialization file in the following order:
1. The file name specified by -zIF{file}.

2. The current working directory.

3. The directory specified with SQRDIR.

Since the required environment variable SORDIR is defined at the operating system level, the
initialization file does not need to be available.

You can make changes or additions to SQR.INT if desired.

The format of the file is as follows:

; Comments are lines which start with a semicolon. The semicolon
; must be the first character of the line and therefore cannot be
; part of another line.

; Leading and trailing space characters are ignored. To preserve

; the space characters you must surround the value with either

; single (') or double (") quote characters. Production Reporting will ; ;
remove them when the entry is processed.

[Section_Name]

Entry = Value

[Another_Section_Name]
Entry = Value

[Default-Settings] Section

[Default-Settings] defines Production Reporting default actions.

Table 77 Entries in [Default-Settings]

Entry Value Description

AllowDateAsChar TRUE | FALSE By default, Production Reporting produces
Default = FALSE an errf)r vs{hen a dynamic column]
specification does not match the column’s
database definition. That is, character
equals character, date equals date, and
numeric equals numeric. When set to TRUE,

328 SQR.INI

Entry

Value

Description

Production Reporting allows characters to
equal either character or date columns.

When a date column is “type cast” as a
character, Production Reporting creates the
string according to the following rules:

o For DATETIME columns, Production
Reporting uses the first database-
dependent format in Table 61 on page
251.

o For DATE columns, Production Reporting
uses the format in Table 62 on page
252.

e ForTIME columns, Production Reporting
uses the format in Table 63 on page
252.

In the following example,
AllowDateAsChar=True. This allows $Col1 to
be either date or text.

Begin-Select
[SColl] &coll=Text
[$SCol2] &col2=Date
[$SCo0l13] &col3=Number
from MyTable
End-Select

AutoDetectUnicodeFiles

TRUE | FALSE
Default = FALSE

When set to TRUE, Production Reporting
auto-detects UCS-2 encoded files.

See “AutoDetectUnicodeFiles Key” on page
316 for more information.

CSVSeparator

Comma | Semicolon | Space | Tab

Default = Comma

Defines the character used as a delimiter
when creating CSV files.

If the CSVSeparator setting is missing from
SQR.INI, the default value of Comma is
used.

Note: Specifying the CSVSeparator as a
semicolon or a space is only supported with
the Production Reporting Server. Using this
setting in Oracle Enterprise Performance
Management Workspace, Fusion Edition is
not recommended and may create corrupt
files.

DEFAULT-NUMERIC

INTEGER | FLOAT | DECIMAL[(p)]
| V30

Specifies the default numeric type for
variables. -DNT and
DECLARE-VARIABLE override this setting.
(See “DECLARE-VARIABLE” on page 150.)

ExpirationWarningMessage

TRUE | FALSE
Default = TRUE

Controls whether to print the license
expiration warning message.

[Default-Settings] Section 329

Entry Value Description
FormatforRowsetXML BIP | SQR Format in which to create the XML file
Default = SOR defined with OPEN-RS, WRITE-RS, and
efault = SQ CLOSE-RS.
ImageCompression 0-9 Defines the compression level when
Default = 6 PRINT-IMAGE references a BINARY

variable.

LOCALE

Name of a locale defined in

SQR.INI or the name SYSTEM.

Defines the initial locale that Production
Reporting loads when the program starts to
execute. The value of SYSTEM is used to
reference the default locale. (See “ALTER-
LOCALE” on page 41.)

NewGraphics

TRUE | FALSE
Default = FALSE

When set to FALSE, Production Reporting
uses Grafsman chart package. When set to
TRUE, Production Reporting uses Jchart
chart package.

Set NewGraphics=TRUE to use the following
features:

® COLOR-PALETTE (See “Specifying Chart
Data Series Colors” in Volume 1 of the
Hyperion SQR Production Reporting
Developer's Guide.)

o [TEM-COLOR (See “Specifying Chart
Item Colors” in Volume 1 of the Hyperion
SQR Production Reporting Developer's
Guide.)

o [TEM-SIZE (See “DECLARE-CHART” on
page 100 and “PRINT-CHART” on page
263.)

o Y-AXIS-MASK and Y2-AXIS-MASK (See
“DECLARE-CHART” on page 100 and
“PRINT-CHART” on page 263.)

@ Y2 Syntax (See “DECLARE-CHART” on
page 100 and “PRINT-CHART” on page
263.)

e Combination Charts (See “Creating
Combination Charts” in Volume 1 of the
Hyperion SQR Production Reporting
Developer's Guide.)

@ Bubble Charts (See “Creating Bubble
Charts” in Volume 1 of the Hyperion SQR
Production Reporting Developer's
Guide.)

0DBCExecuteRetry

TRUE | FALSE
Default = FALSE

Describes whether to retry an EXECUTE
command.

FALSE, retries EXECUTE and returns an error
from the database.

TRUE does not attempt to retry.

330 SQR.INI

Entry

Value

Description

OracleWeakCursor

STOP | WARN | SKIP
Default = WARN

Describes what to do when a 'Weak'
reference cursor is processed.

STOP displays an error or waming message
and terminates the Production Reporting
procedure.

WARN displays an error or warning message,
and the Production Reporting procedure
continues.

SKIP does not display an error or warning
message, and the Production Reporting
procedure continues.

OUTPUT-FILE-MODE

LONG | SHORT
Default = LONG

Specifies the filename convention used for
HTML output. SHORT specifies DOS style
(8.3) and LONG specifies UNIX style (non
8.3). (Ignored on 16-bit platforms)
DECLARE-TOC and -Burst force Output-
File-Mode = LONG.

The following represent the file formats for
UNIX, DOS, and Windows.

SQR and SQRT: {Program} is the name of
the SQR/SQT file without the extension

For Qutput-File-Mode = SHORT, SQR-
generated filenames are limited to a DOS
8.3 format

o OQutput file = {Program}.LIS for first, and
{Program}.Lnn for multi-reports

e SFP file = {Program}.SFP for first, and
{Program}.Snn for multi-reports

o PDF file = {Program}.PDF for first; and
{Program}.Pnn for multi-reports

o HTM file = {Program}.HTM for “frame,
and {Program}.Hbb for report bodies

e GIF file={Program}.Gxx for all reports

bb ranges from 00 to 99 and represents the
report number.

nn ranges from 01 to 99 and represents the
report number.

xx ranges from 00 to ZZ and represents the
graphic number.

For Output-File-Mode = LONG, SQR-
generated filenames are not constrained to
a DOS 8.3 format. {Output}={Program} of
first report and {Program}_nn for multi-
reports.

e Output file = {Output}.LIS
e SPF file = {Output}.SPF
e PDF file = {Output}.PDF

[Default-Settings] Section 331

Entry

Value

Description

o GIF file = {Output}_zz.SPF

o HTM files = {Output}.HTM, {Output}
_bb.HTM, {Output}_frm.HTM, {Output}
_toc.HTM, {Output}_nav.htm

bb ranges from 01 to ZHJOZI and represents
the bursted page group number in radix 36.

nn ranges from 01 to 99 and represents the
report number.

zz ranges from 01 to ZHJOZI and represents
the graphic number in radix 36.

SQRP: {Filename} is the name of the SPFfile
without the extension

For Qutput-File-Mode = SHORT, SQR-
generated filenames are limited to a DOS
8.3 format.

Output file = {Filename}.LIS

GIF file = {Filename}.Gxx

PDF file = {Filename}.PDF

HTM file = .HTM and {Filename}.HOO

xx ranges from 00 to ZZ and represents the
graphic number.

For Output-File-Mode = LONG, SQR-
generated filenames are not limited to a
DOS 8.3 format.

Output file = {Filename}.LIS
PDF file = {Filename}.PDF
GIF file = {Filename}_zz.SPF

HTM files = {Filename}.HTM, {Filename}
_bb.HTM, {Filename}_frm.HTM,
{Filename}_toc.HTM, {Filename}
_nav.htm

bb ranges from 01 to ZHJOZI and represents
the bursted page group number in radix 36.

zz ranges from 01 to ZHJOZI and represents
the graphic number in radix 36.

OutputFormFeedWithDashD

TRUE | FALSE
Default = FALSE

When set to TRUE, -Dnn outputs the Form-
Feed character that denotes a page break.

OutputTwoDigitYearWarningMsg

TRUE | FALSE
Default = TRUE

When set to TRUE, Production Reporting
generates a warning message (sent to the
warning file) when a YY or RR date edit mask
is encountered during a program run. This
affects only Production Reporting code that
is processed.

332 SQR.INI

Entry

Value

Description

PrinterHT

Standard | Enhanced

Default = Enhanced

Controls the HTML output produced
by -PRINTER:HT.

Standard produces version 2.0 HTML files
with report content inside<PRE></PRE>
tags.

Enhanced maps -PRINTER : HT
to -PRINTER: EH and produces content
formatted with version 1.1 XHTML tags.

SUBSTITUTION-CHARACTER=XX EncodingName1
[,xx EncodingName2...]

XX is the hexidecimal
representation of the substitution
variable

Allows substitution characters to be defined
on a character set by character set basis.

See “Substitution-Character Key” on page
316 for more information.

TreatBinaryColumnAsText

TRUE | FALSE
Default = TRUE

Defines whether to treat BINARY columns as
TEXT columns.

UseUnicodelnternal

TRUE | FALSE
Default = FALSE

By default, Production Reporting reads
character streams into the system by
“widening” them into 16-bit character
strings.

When set to TRUE, Production Reporting
uses Unicode internally to normalize the
data.

UseY2kCenturyAlgorithm TRUE | FALSE When set to TRUE, Production Reporting
Default = FALSE treats the.YY date edit mask as though it is
an RR edit mask.
Note:

Use the setting V30 to handle numbers in the same manner as in prior releases (before V4.0).
Specifically, all numeric variables and literals are declared as FLOAT, including integer literals.

[Environment: environment] Section

[Environment:{ Common | DB2 | Informix | ODBC | Oracle | Sybase | DDO}] defines
environment variables used by Production Reporting. An environment variable can be defined
in multiple environment sections; however, a definition in a database-specific environment

section takes precedence over an assignment in [Environment:Common].

The following environment variables can be set:

e SQRDIR—Default directory for all invocations of Production Reporting.

e SQRFLAGS—Default command-line flags for all invocations of Production Reporting.
e DSQUERY (Sybase only)—Default Sybase server to use.

[Environment: environment] Section 333

On Windows systems, SORDIR is required and is automatically defined in the appropriate
database-specific environment section during the Production Reporting installation. The other
environment variables are optional.

Using the Java Virtual Machine

When you use Production Reporting to produce reports with HTML files or charts, Production
Reporting must make several calls to Java routines. The number of HTML reports and charts to
produce can affect the runtime of Production Reporting programs. To reduce the total runtime
of an Production Reporting program, embed the Java Virtual Machine (JVM) directly into
Production Reporting.

Table 78 Java Virtual Machine Environment Variable

Entry

Value Description

SQR_USEJVM

TRUE | FALSE | If TRUE, Production Reporting uses the JVM for Enhanced HTML and JClass charting applications
Default = TRUE (NewGraphics). The JVM is embedded directly into Production Reporting.

If FALSE, Production Reporting invokes separate subprocesses for Enhanced HTML and JClass charting
applications (NewGraphics).

Note: Callable Production Reporting uses the JVM only when this entry equals TRUE.

DDO Variables

Table 79 DDO Variables in the [Environment] Section

DDO Variable Description

SQR_DDO_JRE_CLASS Classpath for DDO drivers and support files.
SQR_DDO_JRE_CLASSn (Optional) Additional entries to the classpath.
SQR_DDO_JRE_PATH Classpath information for the local JRE.

SQR_DDO_JRE_INIT_HEAP Initial Java heap size.

SQR_DDO_JRE_MAX_HEAP Maximum Java heap size.

SQR_DDO_JRE_NOCLASSGC | Disables class garbage collection.

SQR_DDO_JRE_NOJIT Disables the JIT compiler (same as Java.compiler=NONE)

SQR_DDO_JRE_VERBOSE Logs Java class loading and garbage collection events into the vm. out output file.

Each of these entries is automatically entered upon product installation (Windows only). You
can specify additional classpath entries using up to nine SQR_DDO_JRE_CLASSn variables,
where n is a number from 1-9. These additional variables are available to augment the normal
512-character line limit for entries in SQR.INI.

334 SQR.NI

Encoding Keys

For detailed information about encoding keys in the [Environment] section SQR.INI, see
“Encoding Keys in the [Environment] Section” on page 317.

[SQR Extension] Section

On Windows systems only, [SQR Extension] defines DLLs containing new user functions
(ufunc) and user calls (ucall). Ufunc and ucall reside inside SQREXT.DLL and/or other
DLLs.

When SQR.DLL and SQRT.DLL are loaded, they look for SQREXT.DLL in the same directory,
and for any DLLs specified in [SQR Extension] such as:

[SOR Extension]

c:\sgrexts\sgrextl.dll=
c:\sqgrexts\sqgrext2.dll=
c:\sqgrexts\sqgrext3.dll=

Any new extension DLLs containing new user functions must be listed in [SQR Extension] in
SQR.INI. For more information, see “Interoperability” in Volume 1 of the Hyperion SQR
Production Reporting Developer's Guide.

For Windows/Oracle, Production Reporting uses dynamic binding of Oracle routines. When
Production Reporting tries to access an Oracle database, it searches for the Oracle DLL as follows:

e The file described by the value of ORACLE_DLL in [Environment:Oracle].
e OCIW32.DLL (Oracle supplied)

[Locale:local-name] Section

[Locale:locale-name] defines the default settings for the locale identified by locale-name (which
can consist of A-Z, 0-9, hyphen, or underscore). A number of locales are predefined in SQR.INT.
Depending on your application, the settings for these locales may have to be altered or new
locales may have to be added. A locale can be referenced or altered at run time using
ALTER-LOCALE.

Note:

The SYSTEM locale is provided for your reference, but is commented out. The settings for the
SYSTEM locale, if set, are ignored. Use ALTER-LOCALE to change the SYSTEM locale settings
at run time.

[SQR Extension] Section 335

Table 80 Entries in [Locale:locale-name]

Entry

Description

NUMBER-EDIT-MASK

Default numeric edit mask format when the keyword NUMBER accompanies DISPLAY, MOVE, PRINT, or
SHOW.

MONEY-EDIT-MASK Default numeric edit mask format when the keyword MONEY accompanies DISPLAY, MOVE, PRINT, or SHOW.

DATE-EDIT-MASK Default date edit mask format when the keyword DATE accompaniesDISPLAY, MOVE, PRINT, or SHOW, or the
LET datetostr() or strtodate() functions.

INPUT-DATE-EDIT-MASK | Default date format to use with the INPUT command when TYPE=DATE is specified with the command or the
input variable is a DATE variable. If this entry is not specified, then the date must be entered in one of the
formats in Table 62 on page 252.

MONEY-SIGN Character(s) to replace the '$' edit character.

MONEY-SIGN-LOCATION

MONEY-SIGN character(s) location. Valid values are LEFT and RIGHT.

THOUSAND-SEPARATOR | Character to replace the ',' edit character.
DECIMAL-SEPARATOR Character to replace the '." edit character.
DATE-SEPARATOR Character to replace the '/' character.
TIME-SEPARATOR Character to replace the ':' character.

EDIT-OPTION-NA

Character(s) to replace the 'na' option.

EDIT-OPTION-AM

Character(s) to replace 'AM'.

EDIT-OPTION-PM

Character(s) to replace 'PM'.

EDIT-OPTION-AD

Character(s) to replace 'AD'.

EDIT-OPTION-BC

Character(s) to replace 'BC'.

DAY-OF-WEEK-CASE

How the case for the DAY-OF-WEEK-FULL or DAY-OF-WEEK-SHORT entries are affected when used with the
format codes 'DAY' or 'DY'. Valid values are UPPER, LOWER, EDIT, and NO-CHANGE. UPPER and LOWER forces
the output to either all uppercase or lowercase, ignoring the case of the format code in the edit mask. Use
EDIT to follow the case as specified with the format code in the edit mask. Use NO-CHANGE to ignore the case
of the format code and output the day of week as explicitly listed in the DAY-OF-WEEK-FULL or DAY-OF-WEEK-
SHORT entries.

DAY-OF-WEEK-FULL

Full names for the days of the week. Production Reporting considers the first day of the week to be Sunday.
All seven days must be specified.

DAY-OF-WEEK-SHORT

Abbreviated names for the days of the week. Production Reporting considers the first day of the week to be
Sunday. All seven abbreviations must be specified.

MONTHS-CASE

How the case for the MONTHS-FULL or MONTHS-SHORT entries is affected when used with the format codes
'MONTH' or 'MON'. Valid values are UPPER, LOWER, EDIT, and NO-CHANGE. UPPER and LOWER force the output
to either all uppercase or lowercase, ignoring the case of the format code in the edit mask. Use EDIT to follow
the case as specified with the format code in the edit mask. Use NO-CHANGE to ignore the case of the format
code and output the month as explicitly listed in the MONTHS-FULL or MONTHS-SHORT entries.

MONTHS-FULL

Full names for the months of the year. Production Reporting considers the first month of the year to be January.
All 12 months must be specified.

336 SQR.INI

Entry

Description

MONTHS-SHORT

Abbreviated names for the months of the year. Production Reporting considers the first month of the year to
be January. All 12 abbreviations must be specified.

Table 81 Date Column Formats

Database | DATE Column Formats

DB2 YYYY-MM-DD

INFORMIX | MM/DD/YYYY

0DBC DD-MON-YYYY

Table 82 Time Column Formats

Database | TIME Column Formats

DB2 HH24.MI.SS

0DBC HH24:MI:SS

[Fonts] Section

[Fonts] lists the fonts available to Production Reporting when printing on Windows printer
devices (using-PRINTER:WP). This section does not apply to PostScript or HP Laser]Jet printer
types. See DECLARE-PRINTER for available fonts for alternate printer types.

Adding [Fonts] Entries

[Fonts] includes several predefined font entries. Add entries by using the font numbers 900
through 999. Each entry includes a font name, a font style (fixed or proportional), and a bold
indicator. For example:

4=Arial,proportional
or
300=Courier New, fixed,bold

Note:

Proportional is assumed if the second parameter starts with "P". Bold is assumed if a third
parameter is supplied.

Use ALTER-PRINTER and DECLARE-PRINTER to reference a font style.

[Fonts] Section 337

Specifying Character Sets in Windows

For Windows, use CharacterSet to determine the Windows default character set or to specify
a character set. This allows you to print any standard character set to a Windows printer
(-PRINTER:WP) or to view an SPF file displaying the appropriate character set.

Syntax

CharacterSet=DEFAULT|AUTO | character_set

Arguments

DEFAULT

Reflects current Production Reporting functionality.

AUTO

Automatically senses the default character set of the Windows installation and uses the default
set when generating reports.

character_set

Specifies one of these keywords: ANST, ARABIC, BALTIC, CHINESEBIGS, EASTEUROPE,

GB2312, GREEK, HANGUL, HEBREW, JOHAB, MAC, OEM, RUSSIAN, SHIFTJIS, SYMBOL, THAT,
TURKISH, VIETNAMESE.

[PDF Fonts] Section

[PDF Fonts] defines whether to embed fonts into PDF documents. In addition, it lists the
available fonts for Production Reporting when printing using -PRINTER : PD. Fonts are case
sensitive.

Embedding Fonts

Table 83 [PDF Fonts] Entry

Entry Value Description

Embed | All |{font numbers} | Whether to embed fonts; and if so, what fonts to embed. Enter one of the following
values:

e ALL
For example: Embed=All

o Alist of fonts numbers to embed. (Font numbers must be separated by spaces.)
For example: Embed=1 3 5 8 64

If you do not specify a value, Production Reporting does not embed any fonts in the
PDF file. This is the default action.

338 SQR.NI

Available Fonts
Each entry in [PDF Fonts] is defined to be:

font_number=Roman_Typefacel, COK_Typeface, Character_Map]

The following describes each part of the entry:

font_number

Font number used within the Production Reporting program

Roman_Typeface

Name of the typeface (font) for non-Chinese/Japanese/Korean characters

CJK_Typeface

Name of the typeface (font) for Chinese/Japanese/Korean characters

Character_Map
Name of the character map

Table 84 Legal Chinese, Japanese, and Korean Typeface - Character Map Combinations

Local CJK Typeface Character Map Encoding Supported
Simplified Chinese | STSong-Light GB-EUC-H GB2312
STSongStd-Light-Acro GBpc-EUC-H GB2312
GBK-EUC-H CP936
GBKp-EUC-H CP936
GBK2K-EUC-H GB18030
UniGB-UCS2-H ucs-2
Traditional Chinese | MHei-Medium B5pc-H Bigh
MSung-Light HKscs-B5-H Bigh-HKSCS
MSung-Std-Light-Acro Bigh Bigh
ETen-B5-H EUC-TW
ETenms-B5-H UCs-2
CNS-EUC-H

UniCNS-UCS2-H

Korean HYGoThic-Medium KSC-EUC-H EUC-KR
HYSMyeongJo-Medium KSCms-UHC-H JOHAB
HYSMyeongJoStd-Medium-Acro | KSCms-UHC-HW-H | JOHAB

KSCpc-EUC-H EUC-KR
UniKS-UCS2-H ucs-2

Japanese HeiseiKakuGo-W5 83pv-RKSJ-H Shift-JIS

HeiseiMin-W3 90ms-RKSJ-H Shift-JIS

[PDF Fonts] Section 339

Local CJK Typeface Character Map Encoding Supported

KozMinPro-Regular-Acro 90msp-RKSJ-H Shift-JIS
90pv-RKSJ-H Shift-JIS
Add-RKSJ-H Shift-JIS
EUC-H JEUC
Ext-RKSJ-H Shift-JIS
H IS0-2022-JP
UniJIS-UCS2-H ucs-2
UniJIS-UCS2-HW-H | UCS-2

Note:

You must install the required font packs (available from www.Adobe.com) to view PDF
documents which reference Chinese/Japanese/Korean fonts on non-localized platforms.

[PDF Settings] Section

[PDF Settings] lists the available PDF settings for Production Reporting when producing PDF
output.

Table 85 Entries in [PDF Settings]

Entry Value Description
Bookmarks True| False True creates PDF bookmarks for Table of Contents entries. False disables
Default = False bookmarks.
Compatibility 4-6 Minimum Acrobat version required to read PDF documents.
Default =5
CompressionText 0-9 Amount of compression applied to text in PDF documents.
Default = 6 0 = no compression, 9 = maximum compression
The default value or 6 is the best value for compression versus speed.
CompressionGraphics 0-9 Amount of compression applied to graphics in PDF documents
Default = 6 0 = no compression, 9 = maximum compression
The default value of 6 is the best value for compression versus speed.
EmbedAction Stop | Wam | Skip | Action to take when errors occur trying to embed fonts:
Default = Stop o Stop—An error message is issued, and program execution stops.
e Warn—A warning message is issued, and the font is used without being
embedded.
® Skip—No message is issued and the font is used without being embedded.
EncodingNotinFontAction Stop | Warn | Skip | Action to take when fonts do not support an encoding.

340 SQR.NI

Entry Value Description
Default = Warn ® Stop—An error message is issued and program execution stops.
o Wam—A wamning message is issued and CP1252 is used.
® Skip—No message is issued and CP1252 is used.
Subsetting True | False True enables subsetting for all fonts where subsetting is possible. False disables
Default = True subsetting,
SubsetLimit 1-100 If a document uses more than the specified percentage of glyphs in a font, then
subsetting is disabled for that particular font, and the complete font is embedded.
Default = 100
SubsetMinSize Numbers > zero If the original font file is smaller than the specified size (in KB), then font subsetting
is disabled for that particular font.
Default = 100

UnsupportedEncodingAction | Stop | Wam | Skip | Action to take when an unsupported ENCODING-REPORT-OUTPUT value is set. (The

Default = Ski ENCODING-REPORT-OUTPUT value is the value set as the encoding for non-CJK
elault = Skip fonts in the [Environment] section.)

o Stop—An error message is issued and program execution stops.

o Warn—A warning message is issued and CP1252 is used.

o Skip—No message is issued and CP1252 is used.

Note:

Production Reporting Release 9.x and above supports interlaced GIF images when creating PDF
files.

[HTML Fonts] Section

[HTML Fonts] lists available fonts for Production Reporting when printing
using -PRINTER: EH. Fonts are case sensitive.

Each entry is defined to be:

font_number=CSS_Style

The following describes each part of the entry:

font_number

Font number used within the Production Reporting program

CSS_Style

A modified CSS style added to the reports style sheet that describes the corresponding font
number. The CSS style is used to help browsers with font matching when rendering HTML. The
modifications to the normal CSS rules for font specification are to disallow use of the font-size
or font-size-adjust properties and to disallow any values of 'inherit' for properties that would
normally allow the 'inherit' keyword. Production Reporting appends the font-size automatically
when adding the font rule to the CSS file (see the ALTER-PRINTER command).

[HTML Fonts] Section 341

A CSS style is useful for a font that is normally considered italic or oblique since Production
Reporting does not support the use of italic or oblique fonts through language constructs and

cannot always generate a correct style entry automatically.

For example, assume that you define font 901 to be 'Arial Italic'. This is a valid font name;
however, the CSS specification will not allow 'Arial Italic' as a font family. Instead, you need
need to add an entry to the [HTML Fonts] section as follows:

90l1=Font-family: Arial,

Note:

sans-serif; Font-style: Italic;

You must put quotes around values for a Font-family that contain white space. For example,

“Times New Roman”.

Note:

A Font-family entry contains a list of fonts that the browser searches from left to right until it
finds a match. It is a good idea to end each list with a "generic family" such as sans-serif or
monospace to ensure a more reasonable approximation is made during rendering if the specified
font is not available to the browser.

For more information on CSS rules for Fonts, the allowed syntax of such rules, and the list of
"generic family" fonts (and their descriptions) see:

http://www.w3.org/TR/REC-CSS2/fonts.html#font-specification?

[HTML:Images] Section

[HTML:Images] defines parameters that Production Reporting uses when generating HTML
report output files.

Table 86 Entries in [HTML:Images]

Entry Value Default Value Description

FIRST-PAGE | HEIGHT, WIDTH, NAME | 60,60,firstpg.gif | NAME of the graphic image file that accesses the first page of the report.
Specify HEIGHT and WIDTH values in pixels.

PREV-PAGE | HEIGHT, WIDTH, NAME | 60,60,prevpg.gif | NAME of the graphic image file that accesses the previous page of the report.
Specify HEIGHT and WIDTH values in pixels.

NEXT-PAGE | HEIGHT, WIDTH, NAME | 60,60,nextpg.gif | NAME of the graphic image file that accesses the next page of the report.
Specify HEIGHT and WIDTH values in pixels.

LAST-PAGE | HEIGHT, WIDTH, NAME | 60,60,lastpg.gif | NAME of the graphic image file that accesses the last page of the report.
Specify HEIGHT and WIDTH values in pixels.

WALLPAPER | NAME NAME of the graphic image file used as the reports's background image.

342 SQR.NI

Note:

Production Reporting does not perform any validation of the graphic image filenames provided.
The user is responsible for ensuring that the graphic image files are in a location that the browser
can access.

[Enhanced-HTML] Section

[Enhanced-HTML | defines default actions that Production Reporting takes when generating
HTML output with -EH.

Table 87 Entries in [Enhanced-HTML]

Entry Value Description
Browser BASIC | IE | NETSCAPE | ALL Specifies the browser and generates the appropriate HTML.
Default = BASIC ® BASIC—Production Reporting generates HTML suitable for
all browsers.

o IE—Production Reporting generates HTML designed for
Internet Explorer.

® NETSCAPE—Production Reporting generates HTML
designed for Netscape.

o ALL-If necessary, Production Reporting generates Basic,
IE, and Netscape HTML files. Report_frm.htm contains
Javascript to “sense” the browser on the user's machine
and displays the appropriate version. (In this case, the
user's machine is the machine of the person reading the
report, not the person writing it.)

DefaultTemplate | Path to default template. Specifies the location of the default template for Production
Reporting HTML output. Production Reporting provides a
Template.xml file that you can customize and use as the
default for all Production Reporting HTML output. See
“Customizing the HTML Navigation Bar” in Volume 1 of the
Hyperion SQR Production Reporting Developer's Guide for

more details.
IncludePDFInZip | TRUE | FALSE Defines whether to include the PDF file in the ZIP file Production
Default = FALSE Eﬁp;lrgng creates when -PRINTER:EP is combined with -

® TRUE—Includes the PDF file in the ZIP file.
® FALSE—Does not include the PDF file in the ZIP file.

Language English | French | German | Portuguese | Spanish | Sets the language used for the HTML navigation bar.
Default = English

FullHTML 3.2 Specifies the level of HTML that the browser supports so
appropriate Enhanced HTML code is generated.

There is no default value. If you do not specify a value, XHTML
1.1 is produced. If you specify 3.2, HTML version 3.2 in
produced.

[Enhanced-HTML] Section 343

Entry Value Description

Note: For information on deprecated values for the FullHTML
keyword see “Deprecated SQR.INI Entries” on page 436.

[Color Map] Section

[Color Map] defines the default colors in Production Reporting reports. Enter the default colors
in the format of:

[Color Map]
color_name= ({rgb})

color_name= ({rgb})

color_name=({rgb})
The default colors implicitly installed are:
black = (0,0,0)
white=(255,255,255)
gray=(128,128,128)
silver=(192,192,192)
red=(255,0,0)
green=(0,255,0)
blue=(0,0,255)
yellow=(255,255,0)
purple=(128,0,128)
olive=(128,128,0)
navy=(0,0,128)
aqua=(0,255,255)
lime=(0,128,0)
maroon=(128,0,0)
teal=(0,128,128)
fuchsia=(255,0,255)

344 SQRINI

[MAP-ODBC-DB] Section

[MAP-ODBC-DB] maps unknown ODBC driver names (using $sqr-connected-db-name) to a
valid $sqr-connected-db setting.

For example:

[MAP-ODBC-DB]
MyDriver=SYBASE

Note:

See Table 3 for additional information on the Production Reporting reserved variables
referenced in [MAP-ODBC-DB].

[MAP-DDO-DB] Section

[MAP-DDO-DB] maps unknown DDO driver names (using $sqr-connected-db-name) to a valid
$sqr-connected-db class.

For example:

[MAP-DDO-DB]
NewOracleDriver=0Oracle

Table 88 Entry in [MAP-DDO-DB]

Entry Valid Values Description

driver_name | CSV | DB2 | ESSBASE | INFORMIX | MSOLAP | | Database classto which the unknown driver name
ORACLE | SAP | SQLSERVER | SYBASE | XML | is mapped.

Note:

See $sqr-connected {sqr-connected-db} and $sqr-connected-db-name {sqr-connected-db-
name} in Table 3, “Production Reporting Reserved Variables,” on page 16 for additional
information on the Production Reporting reserved variables referenced from the [MAP-DDO-
DB] section.

[SQR Remote] Section

[SQR Remote] defines default settings for running Production Reporting programs remotely.

Table 89 Entries in [SQR Remote]

Entry Description

HostName | Default host name.

UserName | Default username used to log into the host.

[MAP-ODBC-DB] Section 345

Entry Description

TimeOut Timeout duration in seconds.

Default = 30

Passive Whether the FTP transfer is in (#0) passive or (0) non-passive mode.
Default =0

346 SQR.NI

Production Reporting Samples

Production Reporting provides a library of sample Production Reporting programs you can use
to customize and experiment with. If you installed Production Reporting in the default directory,
the sample programs are in:

C:\Hyperion\products\biplus\docs\samples\Production Reporting
Modify these programs any way you like to create customized Production Reporting reports.

Table 90 lists the sample Production Reporting programs and provides a brief description of
each. Each program consists of a report specification and a sample of the output.

Table 90 Production Reporting Sample Reports

Name Description

.DAT Data files used by the LOADALL.Production Reporting programs

.MEM Startup files to run tiny, medium, and big Production Reporting programs

APPEND.SQR Demonstrates the append and fixed-nolf commands

APTDIARY.SQR Demonstrates columns, text wrapping

AREA100.SQR Demonstrates a 100% area chart

BAR100.SQR Demonstrates a 100% bar chart

BARCODE.SQR Demonstrates printing a bar code

CALENDAR.SQR Demonstrates nondatabase formatting

COMP_FOR.SQR | Prints a graph of the forecasted and actual sales for a given employee

COMP_F_G.SQR | Prints a graph of the forecasted and actual sales for month or quarter

COMP_PLN.SQR | Prints a graph of the planned and actual sales for a given employee

COMP_P_G.SQR | Prints a graph of the planned and actual sales for month or quarter

COVLET02.SQR Uses Production Reporting to input data from user, enter data in the database, and write a form
letter using a DOCUMENT paragraph

CRUPSAL.SQR (Oracle) Creates stored functions and procedures for Oracle Version 7

CUST.SQR Prints a list of all of the customers bursted by page

CUSTLBLS.SQR Demonstrates printing mailing labels within columns

347

Name

Description

CUSTOMER.SQR

Demonstrates multiple detail lines, NEXT-LISTING command

CUSTOMR2.SQR

Demonstrates the use of the ON-BREAK argument to the PRINT command

CUSTOMR3.SQR | Demonstrates the use of the INPUT command to change report output
CUSTOMR4.SQR | Demonstrates the use of arrays
CUSTOMR5.SQR | Demonstrates dynamic queries to allow user to qualify a report as it runs

CUST_SUM.SQR

Prints and charts on a bar chart information about each customer in the customer table

CUSTTAPE.SQR Demonstrates the flat file output for magnetic tape or other post-processing

DATAA.DAT Needed for append. sqr

DATAB.DAT Needed for append. sqr

DROPALL.SQR Drops all the Production Reporting sample tables created by the LOADALL program

DROPPROC.SQR | (Sybase) Deletes leftover temporary stored procedures belonging to the user

DYNAMCOL.SQR Demonstrates use of dynamic columns, dynamic tables and variables passed to ON-ERROR
procedure

EMP.SQR Prints a list of all of the employees bursted by page

EMP_COMM.SQR

Calculates each employee's commission based on sales

EMP_P_Q.SQR List all employee quotas for a given month or quarter

ENVELOPE.SQR Demonstrates use of printing envelope with proper bar code

EXPORT.SQR Creates two Production Reporting reports: one to export a database table, the second to import
that table. Data from the table is stored in an external operating system file in compressed format,
with trailing blanks removed.

FLATFILE.SQR Creates a Production Reporting report to extract a database table and place it into a flat file

FLOATBAR.SQR Demonstrates a floating bar chart

FOR_CUST.SQR

Sales forecast for given customer grouped by month or quarter

FOR_EMP.SQR

Sales forecast for given employee grouped by month or quarter

FOR_PROD.SQR

Sales forecast for given product grouped by month or quarter

FOR_REG.SQR Sales forecast for given region grouped by month or quarter
FOR_SUM.SQR Creates a table of projected product sales with links to more information
FORMLETR.SQR Demonstrates form letters using a DOCUMENT paragraph

HILO.SQR Demonstrates a high-low-close chart

HISTGRAM.SQR

Demonstrates a histogram chart

348 Production Reporting Samples

Name

Description

INQUIRY.SQR Creates an Production Reporting program to display rows at your terminal selected from a
database table you specify. The resulting Production Reporting program prompts you to qualify
rows to be selected, display those rows, then repeat.

INVOICE.SQR Demonstrates multiple reports, printing invoices, and printing envelopes

LOADALL.SQR Creates and loads sample tables used in the above Production Reporting programs
Note: The sample tables are in ASCII format. As a result, you must specify a valid ASCll-derived
encoding value in SQR.INI. For more information on encoding values, see “Encoding Keys in the
[Environment] Section” on page 317.

MAKEDATA.SQR | Creates a data file with fixed length and NOLF attributes

MAKEREPT.SQR Helps you create Production Reporting reports more quickly

MITI1.EPS Needed for sqrlogo.sqr

MULTIPLE.SQR Demonstrates creating multiple reports

NESTREPT.SQR Demonstrates nesting of procedures

ORDERS.SQR Lists all the orders and the orderlines associated with them

ORD_MONG.SQR

List all orders for a given month and group them by employee number

ORD_M_Q.SQR

List all orders for a given month or quarter

ORD_PROD.SQR

List all orders for a given product

ORD_REGG.SQR

Creates a report of all orders from a given region grouped by month or grouped by quarter

ORD_SUM.SQR Displays an order's summary by month

ORD_S_Q.SQR Prints a graph of the percent of orders for each region (in a year) and four graphs of the percent
of orders for each region (one for each quarter of that year)

OVERBAR.SQR Demonstrates an overlapped bar chart

PHONELST.SQR Demonstrates printing within columns, page headings, and page footings

PLN_EMP.SQR Sales plan for given employee grouped by month or quarter

PLN_GEN.SQR Sales plan grouped by month or quarter

PLN_REG.SQR Sales plan for given region grouped by month or quarter

PRODUCT.SQR List of products and their prices and a graph of orders of products

SALELEAD.SQR Demonstrates DOCUMENT paragraphs

SALES.SQR Demonstrates charting from stored data and printing several charts on one page

SCATTER.SQR Demonstrates a scatter chart

SHOWPROC.SQR | (Sybase) Shows any leftover temporary stored procedures belonging to the user

349

Name

Description

STCKAREA.SQR

Demonstrates a stacked area chart

SQR3DBAR.SQR

Demonstrates a 3D bar chart

SQRLASER.SQR

Demonstrates graphic and file I/0 commands

SQRLINE.SQR

Demonstrates a line chart

SQRLOGO.SQR

Demonstrates printing images

SQRPIE.SQR

Demonstrates a pie chart

TABREP.SQR

Creates a tabular Production Reporting report for a table you choose

UPDATE.SQR

Generates an Production Reporting program that allows you to query and update database tables.
The created program uses the SHOW command to simulate a menu interface.

UPDSAL.SQR

A sample report that demonstrates use of stored functions and procedures in Oracle

350 Production Reporting Samples

Production Reporting Messages

In This Chapter

Unnumbered Messages

Numbered MessSagesocovvvvvnnnn.

Unnumbered Messages

Note:

Two digits (nn) appear as replacement markers in the messages. Descriptions of these
replacement markers are listed with the message. The messages contain the proper value when

they appear on the screen.

Table 91 Unnumbered Messages

Error Message

Suggestion/Interpretation

Out of memory.

Occurs when a call to the C routine 'malloc()' fails.

e PC - Use the -Mfile to reduce memory requirements. Remove
unneeded TSRs

® UNIX - Increase the size of the system swap file.

® VAX - Increase the amount of memory allowed for that user.

No cursors defined.

From the -S command line flag. The Production Reporting program did
not contain any commands that required a database cursor.

Not processed due to report errors.

From the -S command line flag. Production Reporting cannot provide
information about the cursor due to errors in the program.

Enter “01°02

Type the value to assign to the specified variable.
01 = First character of the variable name

*02 = Rest of the variable name

NOPROMPT used - Enter value below

(Windows) Appears when an INPUT command is defined with the
NOPROMPT argument.

Enter “01

Type the value to assign to the specified substitution variable.

“01 = Name of the substitution variable

Unnumbered Messages 351

Error Message

Suggestion/Interpretation

Enter this run's parameters:

Enter the values for the parameters defined in the program.

Error on line “01:

"02

Production Reporting detected an error while processing the report file.
Correct the error and rerun.

*01 = Source line number

02 = Source line

Error in include file "~ 01" on line ~02:

03

Production Reporting detected an error while processing the report file.
Correct the error and rerun.

“01 = Name of the include file
02 = Source line number

03 = Source line

Warning on line “01:

"02

Production Reporting detected a non-fatal error while processing the
report file.

*01 = Source line number

*02 = Source line

Warning in include file "~ 01" on line " 02:

03

Production Reporting detected a nonfatal error while processing the
report file.

“01 = Name of the include file
02 = Source line number

03 = Source line

Type RETURN for more, C to continue w/ o display, X to exit run:

Informational message used with the -D command line flag.

Loading Oracle DLL Failed!!!

(Oracle) Title for the dialog box that informs the user that Production
Reporting could not load the Oracle DLL.

Errors were found in the program file.

Correct the errors and rerun.

Errors were found during the program run.

Correct the errors and rerun.

“01: End of Run.

Informational message.

01 = Image name (for example, SQR)

Enter report name:

Enter the name of the report (.SQR or .SQT) to run.

Enter database name:

Enter the name of the database.

Enter Username:

Enter the user name to log onto the database.

Enter Password:

Enter the password. For security reasons, the password is not echoed.

Customer ID:

Text message

Press Enter to close...

Text message

Enter Subsystem Name:

Enter the subsystem name.

“01: Program Aborting

Informational message. ~ 01 = Image name (for example, SQR)

352 Production Reporting Messages

Error Message Suggestion/Interpretation

*** Internal Coding Error *** Informational message.

SQL DataServer Message (Windows) Title for the error message dialog box.

Operating-System error (Windows) Title for the error message dialog box.

DB-Library error (Windows) Ttle for the error message dialog box.

01 is running. (Windows) This is the body of the -C cancel dialog box. The user can

Click the Cancel button to interrupt it.

click the Cancel button to abort the program run.

Table of Contents Text for HTML driver
Previous Text for HTML driver
Next Text for HTML driver
First Page Text for HTML driver
Last Page Text for HTML driver
PAGE Text for HTML driver

Numbered Messages

Note:

Two digits (nn) appear as replacement markers in the messages. Descriptions of these
replacement markers are listed with the message. The messages contain the proper value when

they appear on the screen.

Table 92 Numbered Messages 000001 to 000999

Error Number | Error Message

Suggestion/Interpretation

000001 Error while opening the message file: '"01' (*02): ~03

Try reloading sgrerr . dat from the release media. If the
error persists, contact technical support. “01 = Name of
the error message file ~02 = System error code ~03 =
System error message

000002 Error while reading the message file. (*01): ~02

Try reloading sgrerr . dat from the release media. If the
error persists, contact technical support. “01 = Name of
the error message file ~02 = System error code ~03 =
System error message

000004 Error while seeking the message file. (*01): ~02

Try reloading sgrerr . dat from the release media. If the
error persists, contact technical support. “01 = Name of
the error message file ~02 = System error code ~03 =
System error message

Numbered Messages 353

Error Number

Error Message

Suggestion/Interpretation

000005

Corrupt message file: Invalid header information.

Try reloading sgrerr . dat from the release media. If the
error persists, contact technical support.

000006

Corrupt message file: Invalid count (Got ~ 01, Should be
02).

The header contains an invalid entry count. Ensure
SQRDIR points to the correct directory. Try reloading
sqgrerr .datfrom the release media. If the error persists,
contact technical support. ~ 01 = The value read from the
header ~ 02 = What the value should be

000010

Invalid SEMCode encountered: ~01.

Aninvalid code was passed to the error message handler.
Try reloading the files from the release media. If the error
persists, contact technical support. ~01 = Invalid code

000011

Unknown conversion type (*01) for code ~02.

Try reloading sqrerr . dat from the release media. If the
error persists, contact technical support. 01 = Invalid
type ~02 = Internal error code

000012

Message ~01 must be either Preload or Builtin.

The type error code is not correct. Try reloading
sarerr.dat from the release media. If the error
persists, contact technical support. ~ 01 = Error code

000013

Cannot point to message ~01.

The error handler cannot position to the desired error
code. Try reloading sqgrerr . dat from the release media.
I the error persists, contact technical support. ~ 01 = Error
code

000014

The required environment variable ~ 01 has not been defined.

Define the named environment variable and restart
Production Reporting. ~01 = Environment variable name

000015

The Meta ESC characters do not match (Got ' 01', Should
be '~ 02").

The meta escape character defined in the header does
not match what the error message handler expects. Try
reloading sqgrerr.dat from the release media. If the
error persists, contact technical support. 01 = What was
found in the header ~ 02 = What was expected to be found

000016

*01() called to process (~02) and the message file is not
open.

The specified error routine was called but the error
message file was not open. Try reloading the files from the
release media. If the error persists, contact technical
support. 01 = Name of the routine ~ 02 = Error code

000017

Message ~ 01 must be ReportParameters or CopyrightNotice.

Try reloading sqrerr . dat from the release media. If the
error persists, contact technical support. ~ 01 = Error code

000028

Cannot access the initialization file: ~01 (*02): “03

The initialization file specified by the -ZIF command line
flag cannot be accessed. ~ 01 = Name of the file “02 =
System error code 03 = System error message

000029

Unknown encoding name: ~01

The encoding name specified by the -ZEN command line
flag is not valid ~01 = Encoding name

000202

DPUT: Bad field number.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

000203

DARRAY: Unknown command number.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

354 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

000204

*01: Cannot find ~ 02 command.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support. ~ 01 = Name of the routine ~ 02
= Name of the command

000205

DDO: DO arguments do not match procedure's.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

000206

SDO: Bad params for DO command.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

000207

SDO: Bad params for BEGIN-PROCEDURE command.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

000209

SGOTO: Bad goto function parameters.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

000210

SGOTO: Could not find beginning of section or paragraph.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

000211

SGOTO: Bad label: from parameters.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

000212

COMPAR: Unknown relational (numeric) operator.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

000213

COMPAR: Unknown relational (string) operator.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

000214

DONBRK: Unknown case for putlin.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

000216

GARRAY: Unknown command number.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

000217

GCMDS: No Gfunc found.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

000218

GDOC: Unknown document type.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

000219

GLET: Bad operator.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

Numbered Messages 355

Error Number

Error Message

Suggestion/Interpretation

000220

GLET: Stack incorrect for expression - arg ~01.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support. ~ 01 = Number of the argument

000221

GLET: Unknown operator type.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

000222

GLET: Unknown operator in expression.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

000223

GPARS:

Column not SCOL, TCOL, or NCOL type.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

000224

GPARS:

Bad parameter format: ~01 =" 02=

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support. ~01 = Internal command
format string ~ 02 = Bad format field found

000225

GPARS:

No end of required word in parfmt: “01

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support. ~01 = Internal command
format string

000226

GPARS

: Bad parfmt entry: “01

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support. 01 = Internal command
format string

000227

GPARS:

Bad parameter string.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

000228

GPARS:

Repeat count bad: “01

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support. ~01 = Internal command
format string

000229

GPARS:

Only a,b,8,9 allowed for repeats: “01

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support. ~01 = Internal command
format string

000230

GPARS:

Missing required x: ~01

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support. 01 = Internal command
format string

000231

GPARS:

Bad type in "ckvrpr()".

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

000232

GPROC:

No Gfunc found.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

356 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

000233

GRDWRT: Unknown command number.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

000234

GSHOW: Unknown SHOW option.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

000235

PGMPARS: 'addvar()' passed maxlen but not column.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

000238

PGMPARS: ' 01' passed invalid parameter number; "~ 02.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support. ~01 = Routine name ~02 =
Invalid parameter number

000239

PGMPARS: 'fxclrf()' encountered bad column reference type:
01,

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support. ~01 = Internal variable type
code

000240

PLCMNT: 'getplc()' passed invalid element number: *01.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support. 01 = Invalid element number

000241

RDPGM: Command array size exceeded (change COMDMAX
to at least ~01).

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support. ~01 = Maximum internal
command number supported.

000242

RDPGM: Bad match adding internal variable: “01

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support. 01 = Internal variable name

000243

RDPGM: No cmdget function found for BEGIN_S.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

000244

Function ~01 not included in run-time package.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support. ~ 01 = Name of the SQR routine

000245

SETSQL: Could not find variable '~ 01', in Run Time.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support. 01 = Variable name

000249

SPINIT: Bad parameters.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

000251

DBFFIX: DBDATLEN returned out of range status.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

Numbered Messages 357

Error Number

Error Message

Suggestion/Interpretation

000252

DPRPST: Error converting Sybase type for EXECUTE.

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support.

000254

SETSQL: Could not find variable entry in list.

(Oracle) Internal error that should never occur during
normal operations. Record the steps leading up to the
error and contact technical support.

000255

DBDESC: SQLD not = number of select columns.

(DB2 and Informix) Internal error that should never occur
during normal operations. Record the steps leading up to
the error and contact technical support.

000256

DBFETCH: Unknown variable dbtype encountered: “01 ("~ 02)

(DB2 and Informix) Internal error that should never occur
during normal operations. Record the steps leading up to
the error and contact technical support. “01 = Variable
name " 02 = Unknown database type

000257

WRITE_SPF: Unknown code encountered: ~01

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support. 01 = Unknown SPF code

000258

*01: Cannot find LOAD-LOOKUP table: 02

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support. ~ 01 = Name of the routine ~ 02
= Name of the table

000259

PGMPARS: '" 01' called with wrong variable '~ 02"

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support. ~ 01 = Name of the routine ~ 02
= Name of the variable

000261

MODIFYVAR: Attempt to change variable which is not xVAR
(Co1).

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support. ~01 = name of the variable

000262

MODIFYVAR: Incompatible variable types (*01) and (" 02).

Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support. ~ 01 = Variable type (from) ~ 02
= Variable type (t0)

Table 93 Numbered Messages 001000 to 001999

Error Number

Error Message

Suggestion/Interpretation

001201 Cannot open the argument file: '~ 01'. (*02): ~03 Depends on the system error message. ~01 = Name of
the file 02 = System error code ~ 03 = System error
message

001202 Cannot close the Depends on the system error message. ~ 01 = System

argument file. (*01): 02 error code ~ 02 = System error message

001203 Cannot open the -MFile: ' 01'. (" 02): “03 Depends on the system error message. ~01 = Name of

the file 02 = System error code ~ 03 = System error
message

358 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

001204 Minimum value for '~ 01" in the -MFile is ~ 02. Correct the -Mfile entry. ~01 = Keyword in question ~ 02
= Minimum value allowed

001205 Maximum value for '~ 01" in the -Mfile is ~02. Correct the -Mfile entry. ~01 = Keyword in question ~ 02
= Maximum value allowed

001206 Invalid -MFile entry: '~ 01" Correct the -Mfile entry. ~01 = The line from the -Mfile

001207 Cannot close the -MFile. (*01): ~02 Depends on the system error message. ~ 01 = System
error code ~ 02 = System error message

001209 The minimum value for '"01' (" 02) is "~ 03. Value out of range. ~01 = Entry name "~ 02 = Specified
value ~03 = Minimum value

001210 The maximum value for '"01' (*02) is ~03. Value out of range. ~01 = Entry name "~ 02 = Specified
value ~ 03 = Maximum value

001211 The value for '~ 01' (" 02) is not an integer number. Value must be a integer value. “01 = Entry name ~02 =
Specified value

001300 Bind list does not match query (do not use '@__p' string). Production Reporting reserves the variable names that
start with "@__p" for internal use. Edit the source code
and use different variable names.

001301 Forward references not permitted in select list bind variables. | Within the body of BEGIN-SQL paragraphs, forward
references to &column names are not permitted. Move
the BEGIN-SQL paragraph after the &column definition.

001303 Error in SQL (perhaps missing &name after expression): The database server has determined that the SQL
statement is in error. The actual error text from the server
follows this message. Correct the SQL statement.

001304 Check SELECT columns, expressions and 'where' clause for | The database server has determined that the SQL

syntax. statement is in error. The actual error text from the server
follows this message. Correct the SQL statement.

001305 CMPSQL: Unknown data type in database: ~01. Contact technical support with the version of the
database you are connected to. ~01 = Datatype in
question

001307 CMPSQL: DBDEFN failed. (ODBC, Oracle, Informix) Internal error that should never
occur during normal operations. Record the steps leading
up to the error and contact technical support.

001308 *01: Could not bind column ~02. (ODBC, Oracle, Informix) Internal error that should never
occur during normal operations. Record the steps leading
up to the error and contact technical support. *01 =
Name of the SQR routine ~02 = Name of the column

001309 The type for '& 01' (" 02) does not match the type from the | Correct the source code. ~01 = Name of the column/

database (" 03). expression pseudonym " 02 = User specified type ~03 =
Database type
001400 Only numerics allowed for arithmetic. Only #numeric variables, &columns, and literals are

permitted in the arithmetic commands. Correct the source
code.

Numbered Messages 359

Error Number

Error Message

Suggestion/Interpretation

001401 Optional qualifier is ROUND=n (0-"01). Correct the syntax. ~01 = Maximum value for ROUND=
001402 Optional qualifiers for DIVIDE are ON-ERROR={HIGH |ZERO} | Correct the syntax.
and ROUND=n.
001403 Attempting division by zero. Use the ON-ERROR = HIGH | ZERO option to prevent this
error from halting the program.
001404 Bad number of digits to ROUND or TRUNC (0-15). Correct the syntax.
001405 WARNING: The ROUND or TRUNC qualifier is greater than the | Correct the syntax.
number's precision.
001500 Array element out of range (* 01) for array '~ 02' on line “03. | Correct the source logic. ~ 01 = Element number passed
“02 = Name of the array ~03 = Program line number
001501 Field element out of range (*01) for array ' 02", field " 03', | Correct the source logic. ~01 = Element number passed
on line " 04. 02 = Name of the array ~ 03 = Name of the field ~04 =
Program line number
001502 WARNING: Attempting division by zero on line ~ 01. Array field | The ARRAY-DIVIDE command has attempted division by
'*02' unchanged. Run continuing... zero. The division has been ignored; the result field is
unchanged. Add logic to account for this possibility. ~01
= Program line number ~ 02 = Name of field
001601 'FILL' not appropriate for numeric data. The FILL argument to the PRINT command may be used
only fortext fields. Move the #numeric variable to a $string
variable, and then print the string variable.
001700 Report' 01': Columns must be between 1 and the page width | The specified value is wider than the width of the page.
(°02). Correct the source line. ~ 01 = Name of the current report
02 = Page width
001702 Report '"01': GOTO-TOP="02 must be between 0 and the The value specified on the GOTO-TOP argument of the
page depth (*03). NEXT-COLUMN command was either less than 1 or greater
than the page depth. Correct the source line. 01 = Name
of the current report ~ 02 = Goto-Top value ~ 03 = Page
width
001703 Report ' 01': ERASE-PAGE="02 must be between 0 and the | The line number specified on the ERASE-PAGE argument
page depth (" 03). of the NEXT-COLUMN command is greater than the page
depth. Correct the source line. ~ 01 = Name of the current
report ~ 02 = Erase-Page value ~ 03 = Page width
001704 Report '~ 01'": The NEXT-COLUMN command is not legal inthe | Correct the source line. ~ 01 = Name of the current report
* 02 section with the qualifier AT-END=NEWPAGE. " 02 = Name of the section
001705 Report '~ 01": Column number ~ 02 is not defined. The column number specified with the USE-COLUMN
command is greater than the highest column defined in
the COLUMNS command. Correct the source line. “01 =
Name of the current report ~ 02 = Column number
001800 Format for CONNECT: username/password [ON- Correct the syntax.

ERROR=procedure[(arg1[,argi]...)]]

360 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

001801 Cannot use CONNECT while SQL statements are active. Correct the program logic to ensure that all BEGIN-SELECT
paragraphs have completed before executing the
CONNECT command.

001802 Logoff failed prior to CONNECT. The database server returned an error while trying to log
off from the database. SQR aborts the program run since
it cannot continue.

001803 CONNECT failed. Perhaps username/password incorrect. The specified connectivity information is incorrect or there
might have been a network failure. Use the ON-ERROR
flag to trap any errors during the program run; otherwise
SQR aborts the program run.

001804 Sybase extensions SET and SETUSER not permitted in SQR. | Remove SET and SETUSER from the source.

001805 USE allowed once in SETUP section only, not in BEGIN-SQL. | Correct the source.

Elsewhere, specify db.[user].table...

001807 The requested database connection (*01) is already active. | The -Cnn value specified is being used by another BEGIN-
SELECT paragraph that is currently selecting data. Use
another connection number. ~01 = Connection number

001808 Cannot find inactive database cursor. Program too large. Too many BEGIN-SELECT and BEGIN-SQL paragraphs are
active at the same time. Reduce the complexity of the
program.

001809 Database commit failed. (DB2, ODBC, Oracle) Should never occur during normal
operations. Record the steps leading up to the error and
contact your system administrator.

001810 Database rollback failed. (DB2, ODBC, Oracle) Should never occur during normal
operations. Record the steps leading up to the error and
contact your system administrator.

001811 Cannot open database cursor. (ODBC, Oracle) Should never occur during normal
operations. Record the steps leading up to the error and
contact your system administrator.

001901 Variable for date-time must begin with '&'. Correct the syntax.

001913 Format code must be SYYYY when specifying signed year. Correct the edit mask.

001914 Bad input data (" 01) for edit mask: '~ 02" Correct the input. 01 = Data being converted ~ 02 = Edit
mask

001915 Year cannot be zero. Correct the date.

001916 Year must be between -4713 and 9999 inclusive. Correct the date.

001917 Ambiguous date-time. Correct the date.

001918 '*01'is not a valid date part. Correct the date part. ~01 = Date part.

001919 Invalid day of week. Correct the date.

001920 Format code cannot appear in date input format: '~ 01'. Correct the edit mask. ~ 01 = Improper format characters.

Numbered Messages 361

Error Number

Error Message

Suggestion/Interpretation

001921 Bad date mask starting at: '~ 01". Correct the edit mask. ~ 01 = Improper format characters.
001922 Seconds past midnight must be between 0 and 86399. Correct the date.
001923 Seconds must be between 0 and 59. Correct the date.
001924 Minutes must be between 0 and 59. Correct the date.
001925 Month must be between 1 and 12. Correct the date.
001926 Day must be between 1 and " 01. Correct the date.
001927 Hour must be between 1 and 12. Correct the date.
001928 Hour must be between 0 to 23. Correct the date.
001929 HH24 precludes the use of meridian indicator. Correct the edit mask.
001930 HH12 requires meridian indicator. Correct the edit mask.
001931 Day of year must be between 1 and 365 (366 for leap year). | Correct the date.
001932 Date string too long. Correct the date.
001933 The month (" 01) is not valid for the current locale or Correct the date. ~01 = Name of the month.
database.
001934 The format mask must be a literal when the date-time is not | Correct the format mask. The format mask must be a
loaded into a variable. literal when the date-time is not loaded into a variable.
001935 Date-time format too long. Correct the format mask.
001936 Bad date-time format. Correct the format mask.
001937 Bad SQL for default date-time. (Table DUAL required for (Oracle) Possibly the format mask needs to be corrected;
syntax.) otherwise, there is a problem with the database server.
001937 Bad SQL for default date-time. (Table DUAL required for (DB2) Possibly the format mask needs to be corrected;
syntax.) otherwise, there is a problem with the database server.
001938 Cannot recompile sql. A fatal error relating to the SQL statement used to retrieve
the date-time was encountered. Record the steps leading
up to the error and contact your system administrator.
001939 Problem executing cursor. A fatal error relating to the SQL statement used to retrieve
the date-time was encountered. Record the steps leading
up to the error and contact your system administrator.
001940 Error fetching row. A fatal error relating to the SQL statement used to retrieve
the date-time was encountered. Record the steps leading
up to the error and contact your system administrator.
001941 Cannot redefine variable addresses. A fatal error relating to the SQL statement used to retrieve

the date-time was encountered. Record the steps leading
up to the error and contact your system administrator.

362 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

001942

The date '" 01" is not in the format:

SYYYYMMDD[HH24[MI[SS[NNNNNNI]]].

When specifying an SQR date, at a minimum, the date
must be specified; the time is optional. ~01 = The invalid
date.

001943

The date '"01' is not in one of the accepted formats listed
below:

MM/DD/YYYY [BC | AD] [HH:MI[:SS[.NNNNNN]] [AM | PM]]
MM-DD-YYYY [BC | AD] [HH:MI[:SS[.NNNNNN]] [AM | PM]]
MM.DD.YYYY [BC | AD] [HH:MI[:SS[.NNNNNN]] [AM | PM]]
SYYYYMMDD[HH24[MI[SSINNNNNN]]]]

The date specified with the INPUT command was not in
one the default formats. Please re-enter the date in a valid
format. 01 = The invalid date.

001944

The date '" 01' is not in the format specified by
SQR_DB_DATE_FORMAT or in one of the accepted formats
listed below:

DD-MON-YY
SYYYYMMDD[HH24[MI[SS[NNNNNN]]]]

(Oracle) The date was not in one of the expected formats
for this database. “01 = The invalid date.

001944

The date '"01' is not in the format specified by
SQR_DB_DATE_FORMAT 0r in one of the accepted formats
listed below:

Mon DD YYYY [HH:MI[:SS[.NNN]][AM | PM]]
Mon DD YYYY [HH:MI[:SS[:NNN]][AM | PM]]
YYYYMMDD [HH:MI[:SS[.NNN]]J[AM | PM]]
YYYYMMDD [HH:MI[:SS[:NNN]]J[AM | PM]]
SYYYYMMDD[HH24[MI[SSINNNNNN]1]]

(Sybase) The date was not in one of the expected formats
for this database. “01 = The invalid date.

001944

The date '"01' is not in the format specified by
SQR_DB_DATE_FORMAT or in one of the accepted formats
listed below:

Mon DD YYYY [HH:MI[:SS[.NNN]][AM | PM]]
Mon DD YYYY [HH:MI[:SS[:NNN]][AM | PM]]
YYYYMMDD [HH:MI[:SS[.NNN]J[AM | PM]]
YYYYMMDD [HH:MI[:SS[:NNN]J[AM | PM]]
SYYYYMMDD[HH24[MI[SS[NNNNNN]]]]

(ODBC) The date was not in one of the expected formats
for this database. “01 = The invalid date.

001944

The date '"01' is not in the format specified by
SQR_DB_DATE_FORMAT or in one of the accepted formats
listed below:

Mon DD YYYY [HH:MI[:SS[.NNN]][AM | PM]]
Mon DD YYYY [HH:MI[:SS[:NNN]][AM | PM]]
YYYYMMDD [HH:MI[:SS[.NNN]]J[AM | PM]]
YYYYMMDD [HH:MI[:SS[:NNN]]J[AM | PM]]
SYYYYMMDD[HH24[MI[SSINNNNNN]1]]

(DDO) The date was notin the one of the expected formats
for this database.

“01 = The invalid date.

Numbered Messages 363

Error Number

Error Message

Suggestion/Interpretation

001944

The date '"01' is not in the format specified by
SQR_DB_DATE_FORMAT or in one of the accepted formats
listed below:

YYYY-MM-DD HH:MI:SS.NNN
SYYYYMMDD[HH24[MI[SS[NNNNNN]]]]

(Informix) The date was not in one of the expected formats
for this database. “01 = The invalid date.

001944

The date '"01' is not in the format specified by
SQR_DB_DATE_FORMAT or in one of the accepted formats
listed below:

YYYY-MM-DD[-HH.MI.SS[.NNNNNN]]
MM/ DD/YYYY

DD.MM.YYYY
SYYYYMMDD[HH24[MI[SSINNNNNN]1]]

(DB2) The date was not in one of the expected formats
for this database. “01 = The invalid date.

001944

The date '" 01' is not in the format specified by
SQR_DB_DATE_FORMAT or in one of the accepted formats
listed below:

YYYY-MM-DD
SYYYYMMDD[HH24[MI[SS[NNNNNN]]]]

(Teradata) The date was not in the one of the expected
formats for this database.

“01 = The invalid date

001946

The date variables are incompatible with each other.

The SQR function references two date variables which
cannot be logically be used together (for example,
DateDiff of 'date-only' and 'time-only' dates).

Table 94 Numbered Messages 002000 to 002999

Error Number

Error Message

Suggestion/Interpretation

002000 Procedure name used more than once: ' 01'. Give the procedure a unique name. ~01 = Procedure name

002001 Could not find procedure: '~ 01". Check for a misspelled procedure name. ~01 = Procedure
name

002002 DO arguments do not match procedure's. The argument lists for the DO and BEGIN-PROCEDURE
commands must match in both type and count. Correct the
source line.

002003 DO argument must be $string or #number to accept Correct the syntax.

returned value.

002100 Edit string too long. The edit mask must be less than 255 characters. Reduce
the length of the edit mask.

002101 Bad numeric 'edit' format: ~01 The numeric edit mask contains an invalid character. See
the PRINT command for the valid numeric edit mask
characters. 01 = Invalid character

002103 DOLLAR-SYMBOL must be a single alphanumeric character | Correct the syntax.

or its decimal value enclosed in brackets: <nnn>.
002104 DOLLAR-SYMBOL cannot be any of the following characters: | Correct the syntax. ~01 = List of invalid characters

01

364 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

002106 MONEY-SYMBOL must be a single alphanumeric character | Correct the syntax.
or its decimal value enclosed in brackets: <nnn>.
002107 MONEY-SYMBOL cannot be any of the following characters: | Correct the syntax.
01
002200 ENCODE string too large; maximum is ~01. Break up the ENCODE command. ~01 = Maximum length
of an ENCODE string supported by this version of SQR
002300 EXIT-SELECT failed. The database command to cancel the query returned an
error. Try running the SQR program again. The error could
be related to a network or server problem. If the error
persists, contact your system administrator.
002301 EXIT-SELECT valid only within SELECT paragraph. Remove the EXIT-SELECT command.
002400 Duplicate label's - do not know which one to GOTO. Labels must be unique within the section or paragraph
where they are defined. Give each label a unique name.
002401 (Labels must be in same section or paragraph as GOTO.) | Check the source code.
Cannot find a matching label for GOTO command.
002500 Error getting INPUT. The C routine "fgets()" returned an error and SQR aborts the
program run.
002501 Unknown INPUT datatype: type={char | number|integer| Correct the syntax.
date}
002502 INPUT STATUS= must reference #variable. Correct the syntax.
002503 Unknown qualifier for INPUT. Correct the syntax.
002506 Too long. Maximum " 01 characters. The response to the INPUT statement was too long. Re-enter
the data. 01 = Maximum characters allowed
002507 Incorrect. Format for floating point number: [+]-]99.99 Invalid number was entered for an INPUT request. Re-enter
[E99] the data.
002508 Incorrect. Format for integer: [+|-]999999 Invalid integer was entered for an INPUT request. Re-enter
the data.
002510 A format mask can only be specified when TYPE=DATE is Correct the syntax.
used.
002511 The format mask cannot be stored in a date variable. Correct the syntax.
002512 The input variable type does not match the TYPE qualifier. | Correct the syntax.
002513 Numbertoo large for INTEGER. Valid range is-2147483648 | The number was too large to be stored as an integer. Values
t0 2147483647. are from -2147483648 to 2147483647. Re-enter the
data.
002514 Enter a date in one of the following formats: The date cannot be blank. Enter a date in one of the

MM,/ DD/YYYY [HH:MI[:SS[.NNNNNN]] [AM | PM]]
MM-DD-YYYY [HH:MI[:SS[.NNNNNN]] [AM | PM]]

specified formats.

Numbered Messages 365

Error Number

Error Message

Suggestion/Interpretation

MM.DD.YYYY [HH:MI[:SS[.NNNNNN]] [AM | PM]]
SYYYYMMDD[HH24[MI[SS[NNNNNN]]]]

002515 01 required user interaction but user interaction was The specified command required user interaction, but user
disabled by the -XI command line flag. interaction was disabled by the -XI command line flag. ~ 01
= Name of the command
002600 LOAD-LOOKUP table '~ 01' has not been defined. Add a LOAD-LOOKUP command. ~01 = Load lookup table
name
002601 Missing value for ~01= in LOAD-LOOKUP. Correct the syntax. ~ 01 = Name of missing required
parameter
002602 Bad value for “01= in LOAD-LOOKUP. Correct the syntax. ~ 01 = Name of the parameter
002603 LOAD-LOOKUP " 01= cannot reference a variable in the Either move the LOAD-LOOKUP command from the Setup
Setup section. section or remove the variable reference. 01 = Name of
the parameter
002604 LOAD-LOOKUP names must be unique. Give each LOAD-LOOKUP array a unique name.
002605 Cannot compile SQL for LOAD-LOOKUP table '" 01" The database server returned an error while trying to
compile the SQL statement needed to process the LOAD-
LOOKUP command. Check the column and table names.
Also check the WHERE= clause for errors. “01 = Load
lookup table name
002606 Could not set up cursor for LOAD-LOOKUP table '~ 01'. The database server returned an error while trying to
compile the SQL statement needed to set up the LOAD-
LOOKUP command. Check the column and table names.
Also check the WHERE= clause for errors. “01 = Load
lookup table name
002607 Problem executing the cursor for LOAD-LOOKUP table " 01'. | The database server returned an error while trying to execute
the SQL statement needed to process the LOAD-LOOKUP
command. ~01 = Load lookup table name
002609 Integers only allowed in numeric lookup keys. Correct the source line.
002610 Numeric lookup keys must be <= " 01 digits. Correct the source line. ~01 = maximum length supported
002611 Bad return fetching row from database in LOAD-LOOKUP The database server returned an error while fetching the
table '~ 01'. data. ~01 = Load lookup table name
002613 Loading '~ 01' lookup table ... This message can be inhibited by using the QUIET argument
on the LOAD-LOOKUP command. ~01 = Name of the load
lookup table ~02 = Number of rows loaded
002615 Warning: ~ 01 duplicate keys found in '~ 02' lookup table. | This message can be inhibited by using the QUIET argument
on the LOAD-LOOKUP command. ~01 = Number of
duplicate keys ~ 02 = Name of the load lookup table
002616 LOAD-LOOKUP " 01= must reference a numeric variable or | Correct the source line. 01 = Name of the parameter
literal.
002617 LOAD-LOOKUP " 01= must reference a string variable or Correct the source line. ~01 = Name of the parameter

literal.

366 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

002618 LOAD-LOOKUP " 01= variable '~ 02' has not been defined. | Correct the source line. ~01 = Name of the parameter * 02
= Name of the undefined variable

002619 LOAD-LOOKUP cannot support ~01 rows; maximumis ~02. | Reduce the ROWS= value. 01 = ROWS= value “02 =
Maximum value allowed

002620 01 command not allowed with -XL option in effect. Either use the #IF command to conditionally compile the
program when -XL is being used or do not execute this SQR
report with the -XL option. ~01 = SQR command

002700 Line to stop erasing for 'NEW-PAGE' is larger than the page | Correct the source line.

depth.

002800 'ON-BREAK' not appropriate for numeric data. The ON-BREAK argument to the PRINT command may be
used only for text fields. Move the #numeric variable to a
$string variable, and then print the $string variable.

002801 SET= and LEVEL= must be >= zero when indicated. Correct the source line.

002802 Cannot use old style PROCEDURE= with BEFORE= or Correct the syntax.

AFTER=.

002804 SET= must be same for all ON-BREAKs in Select. All the ON-BREAKS in a query must belong to the same SET.
Use SET= to differentiate between ON-BREAKs in different
queries. Correct the source line.

002805 ON-BREAK with BEFORE or AFTER must be inside Select. Correct the source line.

002806 SAVE= must be a $string variable. Correct the syntax.

002900 Record :types are FIXED, VARY, or FIXED_NOLF (defaultis | Correct the syntax.

VARY).
002901 STATUS variable for “01 must be #Numeric. Correct the syntax. ~01 = SQR command affected
002902 OPEN missing required qualifiers: RECORD={rec_len} FOR- | Correct the syntax.

READING | FOR-WRITING | FOR-APPEND

002903 Too many external files opened; maximum is ~01. Reduce the number of open external files needed by the
program. ~ 01 = Maximum number of open external files
supported by this version of SQR

002904 File number already opened. Check your program logic.

002905 Cannot open file '~ 01' AS ~02.(°03): “04 SQR aborts. ~01 = Filename "~ 02 = File number ~03 =
System error code ~ 04 = System error message

002906 Cannot close file *01 (*02): 03 SQR aborts. ~01 = File number ~02 = System error code
" 03 = System error message

002907 Problem closing user file(s) at the end of run. This message may indicate system problems.

002908 Warning: Cannot CLOSE file ~ 01 -- file not opened. While not an error, this message indicates a problem with
your SQR code. ~01 = File number.

002909 Missing or invalid character set encoding; '~ 01". Specify a valid encoding: UCS-2, ASCII, EBCDIK1027, etc.

Numbered Messages 367

Error Number

Error Message

Suggestion/Interpretation

002910 This has been declared a UCS-2 file; however, the Byte- A UCS-2 file must contain a Byte-Order-Mark.
Order-Mark is missing or invalid.

002911 Cannot use 01 without setting UseUnicodelnternal to The UseUnicodelnternal setting in the DEFAULT-SETTINGS
TRUE in SQR.INI. section of the SQR.INI must be set to TRUE in order to use

this functionality.

002912 The encoding ~01 cannot be supported without the use of | The UseUnicodelnternal setting in the DEFAULT-SETTINGS
unicode. Set the UseUnicodelnternal setting in SQR.INI to | section of SQR.INI must be set to TRUE in order to use this
TRUE. encoding.

002913 Invalid Unicode character representation used in the The string of hex characters representing a set of Unicode
UNICODE Let function. characters must be in the format '[whitespace | U+ | u]XXXX'

for the UNICODE Let function.

002914 The encoding ~01 is not compatible with ~02 unless Certain encodings are not compatible unless unicode is
unicode is used internally. Set the UseUnicodelnternal used. The UseUnicodelnternal setting in the DEFAULT-
setting in the INI file to TRUE and rerun. SETTINGS section of SQR.INI must be set to TRUE in order

to use these encodings in the same run.

002915 The file encoding " 01 is not compatible with ~02 unless Certain encodings are not compatible unless unicode is
unicode is used internally. Set the UseUnicodelnternal used. The UseUnicodelnternal setting in the DEFAULT-
setting in the INI file to TRUE and rerun. SETTINGS section of SQR.INI must be set to TRUE in order

to use these encodings in the same run.

002916 The SQT encoding ~ 01 is not compatible with ~02. Set the | Certain encodings are not compatible unless unicode is
UseUnicodelnternal setting in the INI file to TRUE and rerun. | used. The SQT was not generated using unicode; therefore,

the encodings specified are incompatible.

Reset the encoding in conflict or regenerate the SQT with
the UseUnicodelnternal setting in the DEFAULT-SETTINGS
section of SQR.INI to TRUE in order to use these encodings
in the same run.

002917 The SQT file was created using an SQR executable that does | (EBCDIC) The SQT file was created using SQR that does not
not support unicode. Please run the SQT using the support unicode. Therefore, it must be run with a non-
appropriate executable. unicode SQR or SQRT executable.

002918 An operation was detected that requires unicode; however, | Unicode processing is required; however, the executable
this executable cannot perform unicode processing. Relink | has not been linked with the Rosette Unicode library. Either
or use the appropriate executable. relink the executable with the Rosette library or, for EBCDIC

platforms, use the alternate executable that supports
unicode processing.

002919 The field length ~01 is invalid for I/0 with UCS-2 data. By definition, UCS-2 requires two bytes per character;
however, the length specifier was odd. Make the length a
multiple of two.

002920 :length must be a numeric literal, variable, or column. Correct the syntax.

002921 Bad :length (" 01) for OPEN command. The length must be greater than zero.

01 = Length value

368 Production Reporting Messages

Table 95 Numbered Messages 003000 to 003999

Error Number

Error Message

Suggestion/Interpretation

003000 PAGE-NUMBER strings too long. The pre-and post-PAGE-NUMBER strings must be less
than 74 characters. Correct the source line.
003100 Cannot find document marker referenced in POSITION Defines the specified @ marker in a BEGIN-DOCUMENT
command. paragraph. Check for a misspelled @ marker name.
003101 Only 'COLUMNS nn..." allowed after document marker in Correct the syntax.
POSITION command.
003200 Specified file number not opened for reading. Files must be opened for reading in order to use the READ
command with them. Correct the program logic.
003201 Line ~01: Error reading the file. (*02): ~03 01 =Program line number ~ 02 = System error code ~ 03
= System error message
003202 Specified file number not opened for writing. Files must be opened for writing in order to use the WRITE
command with them. Correct the program logic.
003203 Line "~ 01: Error writing the file. (*02): ~03 01 =Program line number ~ 02 = System error code ~ 03
= System error message
003204 Length of variables exceeds record length. The total of the lengths indicated in the command must
be less than the RECORD= argument used on the OPEN
command. Check for a typographical error or recalculate
the RECORD= value.
003205 Numeric binary transfer allowed with FIXED or FIXED_NOLF By default, all files are opened in VARY (variable length)
records only. mode, thus prohibiting the transfer of numeric binary
data. Add the:FIXED or FIXED_NOLF option to the
RECORD= argument on the appropriate OPEN command.
003206 Command not complete. Correct the syntax.
003207 File number must be a numeric literal, variable, or column. Correct the syntax.
003208 Missing required :length in READ command. Correct the syntax.
003209 Bad :length (" 01) for READ or WRITE command. The length must not be less than zero.
“01 = Length value
003210 $String or #numeric variables required for READ. Correct the syntax.
003211 #Numeric variables and literals must have :length of 1, 2 or | Correct the syntax.
4 bytes.
003212 #Numeric variables and literals on CDC may only have :length | Correct the syntax.
of 1 or 3 bytes.
003214 :length must be a numeric literal, variable, or column. Correct the syntax.
003300 Unknown qualifier for STOP. Correct the syntax.
003301 Program stopped by user request. Informational message.

Numbered Messages 369

Error Number

Error Message

Suggestion/Interpretation

003400

Wrap not appropriate for numeric data.

The WRAP argument to the PRINT command may be used
only for text fields. Move the #numeric variable to a $string
variable first, and then print the $string variable.

003401

Max 01 chars/line for reverse WRAP.

Reduce the number of characters specified. “01 =
Maximum number of characters supported by this version
of SQR.

003402

Max " 01 chars/line for WRAP with ON= or STRIP=

Reduce the number of characters specified. “01 =
Maximum number of characters supported by this version
of SQR

003403

Bad <number> in WRAP qualifier.

The number inside the angled brackets must be a valid
ASCII number (1 - 255). Correct the source line.

003404

Missing ">' in WRAP qualifier.

Aleading "<" in the ON= or STRIP= qualifier indicates that
a numeric value is following, which must be ended by a
closing ">". Correct the source line.

003405

The value for '~ 01' (" 02) must be ~03 0.

The value specified for the specified qualifier is invalid.
Correct the program logic. ~ 01 = Qualifier name ~02 =
Value encountered ~ 03 = Relation to zero (<,<=,=,>=,>)

003500

PUT, GET or ARRAY-xxxx command incomplete. Required word
missing.

Correct the syntax.

003501

Did not find end of literal.

The ending quote character (') was not found at the end
of the literal. Add the ending quote character.

003502

Literal too long.

Literal strings can be up to 256 characters long. Break up
the literal into smaller pieces and combine using the LET
command.

003503

Unknown variable type.

Variable names must begin with $, #, or &. Correct the
source line.

003504

Cannot find 'array_name (#element)'".

The element number was not specified. Correct the source
line.

003505

'(#Element)' variable not found for array.

Each GET or PUT command must indicate the element or
row number to access in the array. Correct the source line.

003506

Array specified not defined with CREATE-ARRAY.

Use the CREATE-ARRAY command to define each array
before referencing that array in other commands. Check
for a misspelled array name.

003507

Bad element reference for array (#variable | 123).

The element number is larger than the number of rows
defined in the CREATE-ARRAY command. Check program
logic to make sure that the element number was not
inadvertently changed.

003508

Did not find ending ')' for field.

The "occurs" number for an array field is missing a right
parenthesis. Correct the source line.

003509

Field not defined in array: ~01

Check for a misspelled field name against the CREATE-
ARRAY command. ~01 = Undefined field name

370 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

003510 More variables than fields specified in array command. The ARRAY command must not have more variables listed
to the left of the array name than there are matching fields
defined for the array. Check against the CREATE-ARRAY
command.

003511 More variables in command than fields in array. The ARRAY command must not have more variables listed
to the left of the array name than there are matching fields
defined for the array. Check against the CREATE-ARRAY
command.

003512 Only numeric variables and fields allowed with array The ARRAY-ADD, ARRAY-SUBTRACT, ARRAY-MULTIPLY,

arithmetic commands. and ARRAY-DIVIDE commands may have only numeric
variables or literals as the source fields. Move the string
data into a #numeric variable and then reference the
#numeric variable.

003513 GET can only be used with $string or #numeric variables. You can move array fields only into $string variables or
#numeric variables. Correct the source line.

003514 PUT and GET variables must match array field types. When moving data into or out of arrays, the source or
destination variables must match the array fields in type.
CHAR fields can be stored into/from strings, NUMBER
fields into/from numeric variables. Check the CREATE-
ARRAY command.

003515 More fields than variables found in array command. The ARRAY command must not have more variables listed
to the left of the array name than there are matching fields
defined for the array. Check against the CREATE-ARRAY
command.

003516 Too many arrays defined; maximum is ~01. Reduce the number of arrays needed by the program. ~ 01
= Maximum number of arrays supported by this version
of SQR

003517 Missing '=specifier' in qualifier: 01 Correct the syntax. 01 = Name of missing required
parameter

003518 Duplicate array name: ~01 Change the name of the array. ~01 = Array name in
question

003519 Too many fields defined; maximum is ~01. Reduce the number of fields. ~ 01 = Maximum number of
fields allowed per array

003520 Missing ":type' in CREATE-ARRAY FIELD= " 01 Correct the syntax. ~ 01 = The name of the field

003521 Duplicate FIELD name: “01 Change the name of one of the fields. *01 = The name
of the field

003522 Optional :nn for FIELD must be between 1 and 64K. Correct the source line.

003523 CREATE-ARRAY FIELDS :type must be one of the following: Correct the syntax.

01
003525 Missing NAME= in CREATE-ARRAY. Correct the syntax.
003526 Missing or incorrect SIZE= in CREATE-ARRAY. Correct the syntax.

Numbered Messages 371

Error Number

Error Message

Suggestion/Interpretation

003527 Missing FIELD= statements in CREATE-ARRAY. Correct the syntax.

003529 Missing or invalid initialization value for field ~01. Correct the syntax. 01 = Name of the field

003530 Invalid EXTENT= value in CREATE-ARRAY. Correct the syntax.

003600 Missing 'ask' variable name. Correct the syntax.

003603 WARNING: Substitution variables do not vary when saved with | Informational message.

run-time.

003605 No substitution variable entered. The C routine "fgets()" returned an error and SQR aborts
the program run.

003700 Did not find end of paragraph: ~01 Missing the END-paragraph command to match the
specified paragraph. Correct the source file. ~01 =
BEGIN-paragraph in question

003701 Invalid command. Check for a misspelled command.

003702 Command not allowed in this section: ~01 Correct the syntax. ~01 = Offending command name

003703 Paragraph not allowed inside procedure. The BEGIN-paragraph command is not allowed here.
Check your SQR code for a misplaced paragraph.

003704 Missing procedure name. Correct the syntax.

003705 Extra argument found. Correct the syntax.

003706 Missing Comma. Correct the syntax.

003707 Bad Argument List. The DO or BEGIN-PROCEDURE command has an error in
its argument list, possibly extra characters after the final
right parentheses. Correct the source line.

003708 Empty Argument. The DO or BEGIN-PROCEDURE command has an error in
its argument list, possibly two commas in a row inside the
parentheses. Correct the source line.

003709 Only $string and #number variables allowed for BEGIN- Correct the syntax.

PROCEDURE parameters.

003710 Unknown argument type. An argument in a DO or BEGIN-PROCEDURE command is
incorrect. Check for a misspelled variable type.

003711 Indicate :$string or :#number returned values in BEGIN- Correct the syntax.

PROCEDURE only.

003712 Missing). Correct the syntax.

003713 " 01 paragraph not allowed with -XL option in effect. Either use the #IF command to conditionally compile the
program when -XL is being used or do not execute this
SQR report with the -XL option. ~ 01 = Name of the BEGIN-
paragraph

003714 Bad database connection number. The -Cnn value must be a non-zero value. Correct the

source line.

372 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

003715 Did not find end of paragraph: ~01 (No 'from..." clause Correct the source code. ~ 01 = BEGIN-command in
found.) question
003716 Error in SQL statement. The database server has determined that the SQL
statement is in error. The actual error text from the server
follows this message. Correct the SQL statement.
003717 Extra characters after expression continuation. Remove the extra characters after the dash.
003718 Did not find end of expression. An expression in a SELECT list must end with either a
&column variable or a position parameter
"(Row,Col,Len)". Correct the source line.
003719 Columns names and expressions must be unique or be given | Columns retrieved from the database are assigned names
unique pseudonyms (&name). by prepending an "&" to the beginning of the name. You
are trying to select the same &column name more than
once. Change the assigned &column name by using an
alias after the name.
003720 Bad number specified for 'LOOPS="on 'BEGIN-SELECT; If your program logic requires that you stop processing
Maximum is 32767". after more than 32767 rows have been retrieved, you
could count the rows manually and use the EXIT-SELECT
command to break out of the SELECT loop.
003721 Bad param found on 'BEGIN-SELECT' line; Format is: BEGIN- | (DB2) Correct the syntax.
SELECT [DISTINCT] [-Cnn] [-Bnn] [LOOPS=nn] [ON-
ERROR=procedure[(argl[,argi]...)]]
003721 Bad param found on 'BEGIN-SELECT' line; Format is: BEGIN- | (Informix) Correct the syntax.
SELECT [DISTINCT] [-Cnn] [LOOPS=nn] [ON-
ERROR=procedure[(argl[,argi]...)]]
003721 Bad param found on 'BEGIN-SELECT' line; Format is: BEGIN- | (ODBC) Correct the syntax.
SELECT [DISTINCT] [-Cnn] [LOOPS=nn] [ON-
ERROR=procedure[(arg1[,argi]...)]] [-DB=database]
003721 Bad param found on 'BEGIN-SELECT' line; Format is: BEGIN- | (DDO) Correct the syntax.
SELECT [LOOPS=nn] [ON-ERROR=procedure[(argl
[,argi]...)]] [BEFORE=procedure[(arg1[,argi]...)]]
[AFTER=procedure[(argl[,argi]...)]]
003721 Bad param found on 'BEGIN-SELECT' line; Format is: BEGIN- | (Oracle) Correct the syntax.
SELECT [DISTINCT] [-Cnn] [-Bnn] [LOOPS=nn] [ON-
ERROR=procedure[(argl[,argi]...)]]
003721 Bad param found on 'BEGIN-SELECT' line; Format is: BEGIN- | (Sybase) Correct the syntax.
SELECT [DISTINCT] [-Cnn] [-XP] [LOOPS=nnn] [ON-
ERROR=procedure[(arg1[,argi]...)]]
003721 Bad param found on 'BEGIN-SELECT' line; Format is: -SELECT | (Teradata) Correct the syntax.
[DISTINCT] [-Cnn] [-Bnn] [LOOPS=nn] [ON-
ERROR=procedure[(argl[,argi]...)]]
003722 Could not set up cursor. An error occurred while trying to compile the SQL

statement. Look closely at any $string variable
references. Correct the SQL statement or use the ON-
ERROR= option to trap the error during the program run.

Numbered Messages 373

Error Number

Error Message

Suggestion/Interpretation

003723 Problem executing cursor. An error occurred while trying to execute the SQL
statement. Look closely at any $string variable
references. Correct the SQL statement or use the ON-
ERROR= option to trap the error during the program run.

003724 Could not exit query loop. The database command to cancel the query returned an
error. Try running the SQR program again. The error could
be related to a network or server problem. If the error
persists, contact your system administrator.

003725 Bad return fetching row from database. The database returned an error status for the last row that
was fetched, commonly due to the buffer not being large
enough. If selecting expressions, make sure that the
length of the first expression will be adequate for all rows
selected.

003726 Literal in SQL expression missing closing quote. Literals must be surrounded by single quotes (‘). To
embed a quote within a literal use two single quotes in
sequence ("). Correct the source line.

003727 SQL expression not ended, perhaps parentheses not An expression in a SELECT list must end with either a

balanced. &column variable or a position parameter
"(Row,Col,Len)". Correct the source line.
003728 SQL expression not ended, perhaps missing &name. An expression in a SELECT list must end with either a
&column variable or a position parameter
"(Row,Col,Len)". Correct the source line.
003729 SQL expression is missing &name or has unbalanced An expression in a SELECT list must end with either a
parentheses. &column variable or a position parameter
"(Row,Col,Len)". Correct the source line.

003730 Incorrect arguments for BEGIN-SQL: [-Cnn] [ON- (DB2) Correct the syntax.
ERROR=procedure[(arg1[,argi]...)]]

003730 Incorrect arguments for BEGIN-SQL: [-Cnn] [ON- (Informix) Correct the syntax.
ERROR=procedure[(argl[,argi]...)]]

003730 Incorrect arguments for BEGIN-SQL: [-Cnn] [-NR] [ON- (ODBC) Correct the syntax.
ERROR=procedure(argl[,argi]...)]] [-DB=]

003730 Incorrect arguments for BEGIN-SQL: [-Cnn] [ON- (Oracle) Correct the syntax.
ERROR=procedure[(arg1[,argi]...)]]

003730 Incorrect arguments for BEGIN-SQL: [-Cnn] [ON- (DDO) Correct the syntax.
ERROR=procedure[(arg1[,argi]...)]] [-Connection=]

003730 Incorrect arguments for BEGIN-SQL: (Sybase) Correct the syntax.
[-Cnn] [-XP] [ON-ERROR=procedure[(arg1[,argil...)]]

003730 Incorrect arguments for BEGIN-SQL: [-Cnn] [ON- (Teradata) Correct the syntax.
ERROR=procedure[(argl[,argi]...)]]

003731 Did not find 'END-SQL' after 'BEGIN-SQL'. Correct the source file.

374 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

003732 ON-ERROR= for 'BEGIN-SQL' in SETUP section must be STOP, | Correct the syntax.
WARN or SKIP.

003733 Could not create procedure for SQL. (Sybase) SQR could not create a stored procedure for the
SQL statement. The most likely cause for failure is that
the user name you are using to run the report under does
not have the proper privileges. Either grant the user
CREATE PROCEDURE privilege or use the -XP command
line option to inhibit SQR from creating temporary stored
procedures for SQL statements.

003734 Could not compile SQL. Correct the SQL statement or use the ON-ERROR= option
to trap the error during the program run.

003735 Could not execute SQL. An error occurred while trying to compile the SQL
statement. Correct the SQL statement or use the ON-
ERROR= option to trap the error during the program run.

003736 Please use BEGIN-SELECT - END-SELECT section for SELECT | (Informix, ODBC, Oracle, DDO) Correct the source code.

statements.

003737 Bad fetch buffer count. (Oracle, Sybase) The -B flag specifies an illegal value.
Correct the source code.

003738 Report interrupted by request. Informational message.

003741 Dynamic column must be $string variable. Correct the syntax.

003742 Dynamic column missing '~ 01'. Correct the syntax. ~01 = Missing character

003743 Dynamic columns must have a &pseudonym. Correct the syntax.

003745 Only a variable name may be between the '~ 01' and '~ 02' Correctthe syntax. ~ 01 = Leading character ~ 02 = Trailing

characters. character

003746 When dynamic columns are used all non-dynamic columns | Add &name=type to all expressions and non-dynamic

and expressions must be defined with &name=type. columns.

003747 When the table name is dynamic each column and expression | Add &name=type to all expressions and non-dynamic

must be defined with &name=type. columns.

003748 When selecting multiple rowsets, they must have the same Non-contiguous rowsets selected in ROWSETS=().

columns (order, type, width).

003749 The highest numbered rowset named in ROWSET=() must be | Rowset upper bound exceeded in ROWSETS=().

less than 10.
003750 Correct syntax is ROWSETS=(-n,m,n-m,i-) or (all). Correct the syntax in ROWSETS=().
003751 Cannot select more than 25 Rowsets in a single BEGIN- Correct the syntax in ROWSETS=().
SELECT.
003752 One of the selected fields ('~ 01') was not found in the Field not found in BEGIN-SELECT.
specified row set(s). The available fields are: '~ 02'.
003755 Rowsets must be listed in ascending order, and may not Bad rowset numbering sequence in BEGIN-SELECT.

include duplicates.

Numbered Messages 375

Error Number

Error Message

Suggestion/Interpretation

003800 Too many document paragraphs; maximum is ~01. There are too many BEGIN-DOCUMENT paragraphs.
Reduce the number of DOCUMENT paragraphs needed by
the program. ~01 = Maximum number supported by this
version of SQR

003801 Too many document markers; maximum is ~01. There are too many BEGIN-DOCUMENT paragraphs.
Reduce the number of DOCUMENT paragraphs needed by
the program. ~01 = Maximum number supported by this
version of SQR

003802 Duplicate document marker. Give the document marker a unique name.

003803 Did not find 'END-DOCUMENT" after 'BEGIN-DOCUMENT". The BEGIN-DOCUMENT paragraph must end with END-
DOCUMENT. Correct the source code.

003900 EXECUTE command is incomplete. Correct the syntax.

003901 Bad -Cnn connection number for EXECUTE. The -Cnn value must be a nonzero value. Correct the
source line.

003902 @#Return_status must be #numeric (missing #). (Sybase) Correct the source line.

003902 @#Return_status must be #numeric (missing #). (ODBC) Correct the source line.

003902 @(# or $)Return_status must be #numeric or $variable. (Oracle) Correct the source line.

003902 @#Return_status must be #numeric (missing #). (DB2) Correct the source line.

003903 Missing '=' after “01. Correct the source line. ~ 01 = The parameter in question

003904 Unknown variable type. Variable names must begin with $, #, or &. Correct the
source line.

003905 OUT[PUT] variables for EXECUTE may only be $variable or Correct the syntax.

#variable.

003906 The only EXECUTE option is WITH RECOMPILE. Correct the syntax.

003907 You must EXECUTE ... INTO &columns. Correct the syntax.

003908 Unknown datatype for EXECUTE...INTO &columns. Check for a misspelled data type. If the data type is
correct, then contact customer technical support so SQR
can be updated.

003909 EXECUTE...INTO &columns must be unique. The &column name assigned to the column must be
unique throughout the report. Give the column a unique
name.

003910 Missing (length) for datatype in EXECUTE. Correct the source line.

003911 Datatype should not have (length) in EXECUTE. Correct the source line.

003912 DO=in EXECUTE requires INTO... variables. Correct the syntax.

003913 Could not EXECUTE stored procedure. (Sybase) Record the database error message displayed

with this message. If needed, contact your system
administrator.

376 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

003913 Could not EXECUTE stored procedure. (ODBC) Record the database error message displayed
with this message. If needed, contact your system
administrator.

003913 Could not EXECUTE stored procedure or function. (Oracle) Record the database error message displayed
with this message. If needed, contact your system
administrator.

003913 Could not EXECUTE stored procedure or function. (DB2) Record the database error message displayed with
this message. If needed, contact your system
administrator.

003914 Bad return fetching row from database. Record the database error message displayed with this
message. If needed, contact your system administrator.

003915 Could not set up EXECUTE cursor. The database server returned an error while trying to
compile the SQL statement needed to set up the EXECUTE
command.

003918 Missing Stored Procedure or Function - '~ 01" (Oracle) A describe of the store procedure or function
could not be performed.

01 = Procedure or function name

003918 Missing Stored Procedure - '~ 01". (DB2) A describe of the store procedure or function could
not be performed.

“01 = Procedure or function name

003920 The EXECUTE command had an erroneous return status data | (Oracle) The wrong data type has been specified for the

type of '~ 02' declared. The Stored Function expects a return | return status of a Stored Function.
f' 01" N
status of 0 01 = Expected Data Type
" 02 = Return Data Type
003921 The EXECUTE command detected an erroneous data type of | (Oracle) The wrong data type has been specified for the
'~ 02' declared for the IN/OUT parameter - name/position: return variable of a Stored Procedure.
*03/° 04. The Stored Function or Procedure expects a Chq
parameter data type of '~ 01'. 01 = Expected Data Type
*02 = Return Data Type
“03 = Name of Parameter
04 = Position of Parameter
003921 The EXECUTE command detected an erroneous data type of | (DB2) The wrong data type has been specified for the
'*02' declared for the IN/OUT parameter - name/position: return variable of a Stored Procedure.
“03/° 04. The Stored Procedure expects a parameter data Chq
type of " 01" 01 = Expected Data Type
" 02 = Return Data Type
“03 = Name of Parameter
04 = Position of Parameter
003922 The maximum number of allowable IN/QUT parameters was | (DB2) The maximum number of allowable IN/OUT

reached. No more than '~ 01' can be processed by the
EXECUTE command.

parameters was reached.

“01 = Maximum Number of Parameters

Numbered Messages 377

Error Number

Error Message

Suggestion/Interpretation

003923 The procedure was found in multiple schemas and will not be | (DB2) The request procedure was found in multiple
processed. The '~ 01.” 02' procedure was also found in the | schemas and can not be processed.
03" schema. *01 = Schema Name
02 = Stored Procedure Name
03 = Alternate Schema Name
003924 No match was found for the named parameter - '~ 01" (Oracle, DB2) No match was found for one of the input
or output parameters with those returned from the
describe of the stored procedure or function.
Check the names of the stored procedure's or function's
input or output parameters and make the necessary
corrections.
“01 = Parameter Name
003925 The EXECUTE command detected a data type of '~ 02" (Oracle) The wrong data type has been specified for the
declared for the INTO parameter - name/position: '~ 03 / INTO variable of a Stored Procedure.
*04'. The Stored Function or Procedure expects a parameter | . .
data type of " 01", 01 = Expected Data Type
" 02 = Return Data Type
" 03 = Parameter Name
04 = Parameter Position
003926 The EXECUTE command detected that '~ 02' INTO parameters | (Oracle) The maximum number of allowable INTO
were requested. No more than '~ 01' can be processed by this | parameters was exceeded.
Stored Function or Procedure. “01 = Number of Allowable Parameters
“02 = Number of Parameters Entered
003927 The EXECUTE command detected a weak reference cursor. (Oracle) A weak reference cursor has been detected. No
validation on the data types for the INTO parameters is
made.
003928 The wrong number of IN/INOUT parameters were found. (DB2) The wrong number of IN/INOUT parameters were

found. This Stored Function or Procedure requires that
""01' parameters be entered.

*01 = Required Number of Parameters

Table 96 Numbered Messages 004000 to 004999

Error Number

Error Message

Suggestion/Interpretation

004000 Result #variabe or $variable or '=' missing in expression. The LET command is not properly formatted. Correct the
source line.

004001 Expression too complex. The expression is either too long or is too deeply nested.
Break the expression into smaller expressions.

004002 Parentheses unbalanced in expression. A left or right parenthesis is missing. Correct the source
line.

004003 Too many variables; maximum is ~01. Break the expression into smaller expressions. ~01 =

Maximum number supported by this version of SQR

378 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

004004 Empty expression. The expression is invalid. Correct the source line.

004005 Extra comma in expression. An argument is missing after a comma in the expression.
Correct the source line.

004006 Unknown operator '"01'. Do you mean "~ 02 ? The concatenation operatoris | |. Correct the source line.

004007 Too many &column forward references in expression; The expression contains too many forward references.

maximum is ~01. Break the expression into smaller expressions. ~01 =

Maximum number supported by this version of SQR

004008 Unknown function or variable in expression: ~01 The specified function is not an SQR built-in function nor
does it exist in the user-modifiable file UFUNC.C. Check
for a misspelled function name. ~01 = Function name

004009 Function " 01' missing parentheses. All functions in an expression must be followed by their
arguments enclosed in parentheses. Correct the source
line.

004010 Empty parentheses or expression. A pair of parentheses were found with nothing inside
them. Remove the () in question from the source line.

004011 User function '~ 01' has incorrect number of arguments. Look at the file UFUNC.C to determine the correct number
and type of arguments required for the specified function.
01 = User function name

004012 Function '*01' has incorrect number of arguments. Correct the syntax of the function. Functions are described
under the LET command. ~01 = SQR function name

004013 Missing operator in expression. Correct the source line.

004014 Operator '~ 01' missing argument. Correct the syntax of the function. Functions are described
under the LET command. 01 = Operator

004015 Function ' 01" missing argument. Correct the syntax of the function. Functions are described
under the LET command. ~01 = SQR function name

004016 Function or operator '" 01' missing arguments. Correct the syntax of the function. Functions are described
under the LET command. ~01 = SQR function name

004017 User function '~ 01' requires character argument. Look at the file UFUNC.C to determine the correct number
and type of arguments required for the specified function.
01 = User function name

004018 User function '~ 01' requires numeric argument. Look at the file UFUNC.C to determine the correct number
and type of arguments required for the specified function.
01 = User function name

004019 User function '~ 01' requires $string variable. Look at the file UFUNC.C to determine the correct number
and type of arguments required for the specified function.
01 = User function name

004020 User function '~ 01' requires #numeric variable. Look at the file UFUNC.C to determine the correct number

and type of arguments required for the specified function.
*01 = User function name

Numbered Messages 379

Error Number

Error Message

Suggestion/Interpretation

004021 User function '~ 01' has incorrect argument type list. Must be | The UFUNC.C file has a bad definition for the specified
of: ¢,n,C,N function. Correct the UFUNC.C program file; recompile
UFUNC.C; and recreate the SQR executable. “01 = User
function name
004022 User function '~ 01' missing arguments. Look at the file UFUNC.C to determine the correct number
and type of arguments required for the specified function.
01 = User function name
004023 User function '~ 01" has incorrect return type. Must be ¢ orn. | The UFUNC.C file has a bad definition for the specified
function. Correct the UFUNC.C program file; recompile
UFUNC.C; and recreate the SQR executable. ~01 = User
function name
004024 "isnull' requires a &column, $string, or $date argument. #numeric variables cannot be NULL. Correct the source
line.
004025 nvl' requires a &column, $string, or $date as its first #numeric variables cannot be NULL. Correct the source
argument. line.
004026 Function or operator '~ 01' requires character argument. Correct the source line. ~01 = Function or operator
004027 Function or operator '~ 01' requires numeric argument. Correct the source line. ~01 = Function or operator
004028 IF or WHILE expression must return logical result. The expression used must evaluate a statement that will
be TRUE or FALSE. Correct the source line.
004029 Attempting division by zero in expression. The expression tried to divide a number by zero. Use the
COND() function to check if the divisor is zero; then divide
by something else (for example, 1).
004030 Attempting division by zero with '%". An attempt was made to divide a number using the " %"
operator. Use the COND() function to check if the divisor
is zero; then divide by something else (for example, 1).
004031 The number used with '%' (" 01) is out of range. The "%" operator works with integers only. Correct the
program logic. ~ 01 = Maximum value allowed
004032 User function has unknown return type -- expecting n or ¢ -- | SQR detected an error while processing a user defined
need to recompile Run-Time file? function. If you are running an .sqt file, it probably needs
to be recompiled because the user function has changed
its definition. If you are running an .sqr file, then you need
to correct the UFUNC.C program file; recompile UFUNC.C,
and recreate the SQR executable.
004033 In user function use C type with allocated string to change SQR detected an error while processing a user defined
$variable. function. Correct the UFUNC.C program file recompile
UFUNC.C and recreate the SQR executable.
004034 Could not find array '~ 01' in ARRAY function. Check for a misspelled array name. ~01 = Array name
004035 Could not find array field '~ 01' in ARRAY function. Check for a misspelled array field name. ~ 01 = Array field
name
004036 Math error in expression (usually over- or under-flow). Most of the SQR mathematical built-in functions have a

corresponding C library routine. One returned an error.

380 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

Break the expression into discrete expressions in order to
identify the function that caused the error.

004037 Error executing expression. Record the steps leading up to the error and contact
technical support.

004038 Out of space while processing expression; The expression requires more temporary string storage

) . than is currently allocated. Use the -Mfile flag on the
Use -Mifile to increase EXPRESSIONSPACE. command line to specify a file that contains an entry that
increases by a greater value than is currently defined.

004039 '~01' assumed to be a variable name, not an expression. Warning message. ~ 01 = Expression in question

004040 The array '" 01' has not been defined. Define the array using the CREATE-ARRAY command. ~ 01
= Array name

004041 The field '~ 01" is not valid for array ' 02". Correct the source code. ~01 = Field name ~02 = Array
name

004042 The array reference '~ 01' has an incorrect number of Correct the source code. ~01 = Array name

parameters specified.

004043 The array reference '~ 01' requires numeric parameters forthe | Correct the source code. ~01 = Array name.

element and occurs arguments.

004045 Function or operator '~ 01' requires date argument. Correct the source code. ~01 = Array name

004046 Incompatible types between expression and variable. Correct the source code.

004047 The field '~ 01" is must be 'char' or 'float'. Correct the source code. ~01 = Field name

004048 Function or operator '~ 01' must be a string or date argument. | Correct the source line. ~01 = Function or operator

004049 Unknown transform value '~ 01' in TRANSFORMATION Check for a misspelled transform value. ~ 01 = Transform

function. value

004100 Use "print' command to format data outside SELECT query. | You must precede PRINT command arguments (WRAP,
ON-BREAK.) with an explicit PRINT command when
outside of a BEGIN-SELECT paragraph. Correct the source
line.

004101 Cannot find required parameter. Correct the syntax.

004102 Bad number found. A command expecting a numeric literal or :#numeric
variable reference found an illegal number definition or a
reference to a string variable or column. Correct the
source line.

004103 Cannot find required numeric parameter. Correct the syntax.

004104 Cannot find placement parameters. The position qualifier "(Row,Col,Len)" was not found.
Check for a missing parentheses.

004105 Placement parameter incorrect. The "Row", "Column" or "Length" fields are invalid or ill-

formed. Correct the source line.

Numbered Messages 381

Error Number

Error Message

Suggestion/Interpretation

004106 Invalid second function on line. An SQR command used as a qualifier for a primary
command (for example, PRINT) is incorrect. Correct the
source line.

004107 Second function must be FORMAT type. The PRINT command may have format command
qualifiers such as WRAP, CENTER, or FILL. Other qualifier
commands are not permitted.

004108 Missing operator =, <, >, ... Correct the source line.

004109 Invalid operator. Correct the source line.

004110 Missing variable. Correct the syntax.

004111 Please give this expression a &pseudonym. Expressions selected in BEGIN-SELECT should be given
an &Name or be followed by a print position
"(Row,Col,Len)". Correct the source line.

004112 Wrong variable type. Correct the syntax.

004113 Command incomplete, expected '~ 01'. Correct the syntax. ~ 01 = What was expected

004114 Expecting '~ 01', found ' 02'. Correct the syntax. ~ 01 = What was expected ~ 02 = What
was encountered

004115 Unknown command or extra parameters found (missing Correct the syntax.

quotes?).

004116 Duplicate references to parameter '~ 01'. Correct the syntax. ~ 01 = Duplicated parameter

004117 Unexpected equal sign found with '* 01" Correct the syntax. ~ 01 = Parameter name

004118 Qualifier '~ 01' cannot be used with the following qualifiers: | Correct the syntax. ~01 = Qualifier name

004119 Expecting numeric column, found string column. Correct the syntax.

004120 Date variables (*01) cannot be used with this command. Correct the syntax. ~ 01 = Parameter name

004200 Page width and depth must be > 0 and < 32767. The values specified with PAGE-SIZE are out of bounds.
Specify legal values.

004300 Missing end of placement (...) in SHOW. The placement parameter is ill-formed. Correct the source
line.

004301 Bad (...) location in SHOW. Screen positions must be valid numbers. Correct the
source line.

004302 Missing literal or variable name to EDIT in SHOW. The literal or variable name must immediately precede
the EDIT, NUMBER, MONEY, or DATE keywords.

004303 Missing edit mask in SHOW. The word EDIT must be followed by a valid edit mask.
Correct the source line.

004304 Only string variable allowed for dynamic edit mask. Dynamic edit masks may only be stored in $Variables.

Correct the line.

382 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

004305 Unknown option for SHOW. Correct the syntax.
004406 Number "~ 01 not allowed. Use a different value. ~01 = Internal number
004407 Referenced variables not defined: References were made to column variables (&var) that
were not defined in the program. The list of variable names
follows this message.
004501 Use '+' and negate variable for reverse relative placement. The use of "-#Variable" is not legal here. Negate the
#Variable value and use "+#Variable".
004503 Fixed line placement #variable must be > 0. Use relative Correct the source line as indicated.
positioning, (+#line,10,0).
004504 Fixed column placement #variable must be > 0. Use relative | Correct the source line as indicated.
positioning, (5,+#col,0).
004505 Length placement #variable must be >= 0. The length field cannot be a negative value. Correct the
source line.
004600 CODE not appropriate for numeric data. The CODE qualifie rin PRINT may only be used for text
fields. Move “#Variable” to “$Variable” first and then print
“$Variable”.
004601 Unknown option for GRAPHIC command: BOX, HORZ-LINE, Correct the syntax.
VERT-LINE or FONT
004602 GRAPHIC BOX out of bounds. Row: ~ 01, Column; ~ 02, Width: | SQR aborts the program run. ~01 = Row ~02 = Column
" 03, Depth: " 04 03 = Width ~ 04 = Depth
004603 GRAPHIC VERT-LINE out of bounds. Row: ~ 01, Column: 02, | SQR aborts the program run. ~01 = Row ~02 = Column
Length: " 03 " 03 = Length
004604 GRAPHIC HORZ-LINE out of bounds. Row: ~01, Column: ~02, | SQR aborts the program run. ~01 = Row ~02 = Column
Length: " 03 " 03 = Length
004605 Cannot draw the box; values are out of bounds. Row: ~01, SQR aborts the program run 01 = Row 02 = Column
Column: 02, Width: ~ 03, Height: ~ 04 " 03 = Width 04 = Height
004606 Cannot draw the vertical line; values are out of bounds. Row: | SQR aborts the program run 01 = Row ~02 = Column
01, Column: " 02, Height: “03 " 03 = Height
004607 Cannot draw the horizontal line; values are out of bounds. SQR aborts the program run 01 = Row " 02 = Column
Row: “01, Column: ~02, Width: ~03 *03 = Width
004700 Cannot open the program file: '"01' (" 02): ~03 Depends on the system error message. ~ 01 = Name of
the program file 02 = System error code ~ 03 = System
error message
004701 Cannot logon to the database. Connectivity information is either incorrect or the
database server is unavailable. Check connectivity
information and the server availability.
004702 Line found outside paragraph. All commands must be within BEGIN-... END statements.

Correct the source code.

Numbered Messages 383

Error Number

Error Message

Suggestion/Interpretation

004703 Cannot close the program file. (*01): ~02 Depends on the system error message. ~ 01 = System
error code ~ 02 = System error message

004704 #ENDIF not found for #IF. Missing an #ENDIF to complete conditional compilation.
Correct the source code.

004705 Program line too long; maximum is ~01. Break the program line into smaller lines. 01 = Maximum
line length supported by this version of SQR

004706 Substitution variable {* 01} would cause this line to exceed | The substitution variable value would cause this line to

the maximum line length of ~ 02 characters. exceed the maximum line size. Break the program line

into smallerlines. ~ 01 = Name of the substitution variable
*02 = Maximum line length supported by this version of
SQR

004707 No value found for substitution variable: {" 01} An empty value was found for the substitution variable.
Check for a misspelled name. ~01 = Name of the
substitution variable

004708 #ELSE without preceding #IF. Missing an #IF or #IFDEF or #|IFNDEF to begin conditional
compilation. Correct the source code.

004709 #ENDIF without preceding #IF. Missing an #IF or #IFDEF or #IFNDEF to begin conditional
compilation. Correct the source code.

004710 #1F's nested too deeply; maximum is ~01. Reduce the number of nested #IF directives. ~01 = The
maximum depth supported by this version of SQR

004711 #INCLUDE files nested too deeply; maximum is ~01. Reduce the number of nested #INCLUDE directives. ~01
= The maximum depth supported by this version of SQR

004712 Include file name too long; Modify -l flag. The combined -I directory name with the #INCLUDE file
name exceeds the maximum length permitted for a
complete pathname. Check the spelling of both the -I
command flag and the #INCLUDE filename.

004713 Cannot open the #INCLUDE file: '"01' (*02): 03 *01 = Include file name "~ 02 = System error code ~03 =
System error message

004714 Cannot close the #INCLUDE file: '~ 01' (*02): ~03 *01 = Include file name 02 = System error code ~03 =
System error message

004716 'BEGIN-PROGRAM' command not found in program. This section is required for all reports. Correct the source
code.

004717 Cannot open the report output file: '"01' (*02): ~03 01 = Output file name ~ 02 = System error code ~03 =
System error message

004719 Cannot logoff the database. The database server returned an error while trying to log
off from the database. SQR aborts the program run.

004720 Cannot open the run-time file: '~ 01'. (*02): ~03 SQR aborts the program run. ~ 01 = Run-Time file name
" 02 = System error code ~ 03 = System error message

004721 Cannot close the run-time file. (" 01): 02 SQR aborts the program run. ~01 = System error code

" 02 = System error message

384 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

004722 Error reading the run-time file. (*01): ~02 SQR aborts the program run. ~01 = System error code
" 02 = System error message

004723 Run time file must be recreated for this version of SQR. The run-time file was created by a earlier version of SQR
and is incompatible with the current version. Recreate
the .sqt (run-time) file.
004724 The -XL option cannot be specified with this run-time file Do not use the -XL option.
because access to the database is required.
004725 Cannot open cursor. The database server returned an error indicating that a
new database cursor or logon could not be completed.
See the error message from the database server.

004726 Cannot create procedure for SQL statement. (Sybase) SQR could not create a stored procedure for the
SQL statement. The most likely cause for failure is that
the user name you are running the report under does not
have the proper privileges. Either grant the user CREATE
PROCEDURE privilege or use the -XP command line option
to inhibit SQR from creating temporary stored procedures
for SQL statements.

004727 Error writing the run-time file. (" 01): ~ 02 01 = System error code ~ 02 = System error message

004729 Cannot find inactive database cursor. Program too large. (DB2, Oracle) The program has too many concurrent

database cursors. Reduce the complexity of the program.

004730 Run-time saved in file: ~01 Informational message. ~ 01 = Name of the .sqt file

created

004735 Unknown variable type encountered in run-time file: 01 SQR aborts loading the run-time file. ~ 01 = Variable type

004736 Unexpected End-Of-File while processing the run-time file. SQR aborts loading the run-time file.

004737 Cannot load the run-time file because it was built for the SQR aborts loading the run-time file. ~ 01 = Database
" 0ldatabase and "~ 02 is built for the ~03 database. name from run-time file ~ 02 = SQR image name " 03 =

Database that SQR is built for

004738 'END-REPORT' not paired with 'BEGIN-REPORT'. Correct the source code.

004739 'END-PROGRAM' not paired with 'BEGIN-PROGRAM'. Correct the source code.

004743 #INCLUDE filename must be enclosed in quotation marks. Correct the syntax.

004744 #INCLUDE command format is: #Include 'filename'. Correct the syntax.

004747 The SQT file is corrupted and cannot be processed. SQR aborts loading the run-time file.

004748 The user function '~ 01' needs to be defined as entry ~02 in | The SQT file requires that the specified user function be
the user function table. It requires a definition of: Return Type | defined. ~01 = User function name ~ 02 = Entry in the
="'"03' Arg Count = ~ 04 Arg Types = "* 05" user function table 03 = Return type 04 = Argument

count ~05 = Argument types

004749 An attempt was made to move "~ 01 charactersinto ' 02'. The | An attempt was made to move too much data into an SQR

maximum allowed is ~ 03 characters.

string variable. ~ 01 = Number of characters to be moved
* 02 = Variable name ~ 03 = Maximum characters allowed

Numbered Messages 385

Error Number

Error Message

Suggestion/Interpretation

004750 SQR has reached the architectural limit for '~ 01' (" 02). While attempting to increase an internal table, SQR
reached its architectural limit for that table. Processing
will stop as SQR cannot continue.

01 = Internal table classification
" 02 = Architectural limit
004802 PRINTER TYPE must be HTML, HPLASERJET, POSTSCRIPT, or | Correct the syntax.
LINEPRINTER.

004805 Both BEFORE-BOLD and AFTER-BOLD must be specified. Correct the syntax.

004807 Unknown DECLARE qualifier. Correct the syntax.

004901 Date variables (" 01) cannot be used in BEGIN-SQL or BEGIN- | Correct the source code. ~01 = Variable name

SELECT paragraphs.

Table 97 Numbered Messages 005000 to 005999

Error Number

Error Message

Suggestion/Interpretation

005000 Report '" 01' heading section size exceeds the page depth. | Reduce the size of the heading or increase the page depth.

005001 Report '* 01' footing location must be less than the page Reduce the size of the footing or increase the page depth.
depth.

005002 Check 'BEGIN-HEADING' commands: Discovered 2nd page- | The BEGIN-HEADING procedure either caused an overflow
initialization while heading in progress. of the current page or it issued a command that caused a

page eject to occur. Check any procedure invoked by the
BEGIN-HEADING section to ensure that the commands do
not overflow the page or cause a page eject.

005003 Check 'BEGIN-FOQTING' commands; perhaps number of The BEGIN-FOOTING procedure either caused an overflow
footing lines is too small. Discovered 2nd page-write while | of the current page or it issued a command that caused a
footing in progress. page eject to occur. Check any procedure invoked by the

BEGIN-FOOTING section to ensure that the commands do
not overflow the page or cause a page eject.

005004 Attempt to execute the “ 01 command while processing the | Change the SQR program logic to prevent the command
* 02 section. from executing while the specified section is active. ~01 =

Command name " 02 = Section name
005005 Report '~ 01' already has been assigned a ~ 02 section. Correct the source code. “01 = Report name 02 =
Duplicated section name

005006 You cannot define more than one default '~ 01' section. Correct the source code. ~01 = Duplicated section name

005007 Report " 01" has overlapping heading and footing sections. | Correct the source code. ~01 = Report name

005008 TOC " 01' already has been assigned a ~ 02 section. Correct the source code. “01 = Table of Contents name

02 = Duplicated section name

005009 The name can only contain characters [0-9 A-Z _ -]. Correct the source code.

005010 The name cannot be the reserved names 'none' or 'default’. | Correct the source code.

386 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

005011 This name has already be used. Correct the source code.
005012 The specified “01 (" 02) does not exist. Correct the source code.
01 = Heading or Footing
* 02 = Heading/Footing name
005013 FOR-REPORTS and FOR-TOC cannot be specified when Correct the source code.
NAME= is used.
005014 TOC (" 01) has already been defined as the default. Correct the source code.
01 = Default TOC name
005100 'IF', '"WHILE', 'EVALUATE' commands nested too deeply; Reduce the nested commands. ~ 01 = Maximum depth
maximum is ~01. allowed by this version of SQR
005101 'BREAK' found outside 'WHILE' or 'EVALUATE' statement. The BREAK command is valid only in the context of a WHILE
or EVALUATE statement. Correct the source code.
005103 END-WHILE found without matching '"WHILE". Correct the source code.
005104 'IF' or 'EVALUATE' command not completed before 'END- Correct the syntax.
WHILE'.
005105 'ELSE' found without matching 'IF'. ELSE can be used only within the context of an IF command.
Correct the source code.
005106 Single 'ELSE' found inside 'WHILE' or 'EVALUATE' statement. | ELSE can be used only within the context of an IF command.
Correct the source code.
005107 Only one 'ELSE' allowed per 'IF". Rewrite the source code to use nested IF statements.
005108 Found 'END-IF' without matching 'IF'. Each IF command must have a matching END-IF command.
Correct the source code.
005109 'WHILE' or 'EVALUATE' command not completed before You are missing a closing END-WHILE or END-EVALUATE
'END-IF'. command before END-IF. IF, WHILE, and EVALUATE
statements can be nested, but they cannot cross each
other's boundaries. Each inner statement must be
complete before a closing statement is ended. Correct the
source code.
005110 EVALUATE statements nested too deep; maximum is “01. | Reduce the number of nested statements. 01 = Maximum
depth supported by this version of SQR
005111 'WHEN' found outside 'EVALUATE' clause. WHEN may be used only in the context of an EVALUATE
clause. Correct the source code.
005112 'IF' or 'WHILE' not completed before 'WHEN' statement. Correct the syntax.
005114 Incorrect types for comparison. Both must be of the same | Correct the source line.
type (string, numeric or date).
005115 'When-other' found outside 'Evaluate' statement. WHEN can be used only in the context of an EVALUATE

statement. Correct the source code.

Numbered Messages 387

Error Number

Error Message

Suggestion/Interpretation

005116 'IF* or 'WHILE' not ended before 'WHEN-OTHER' command. | Correct the syntax.

005117 Only one 'WHEN-OTHER' allowed per 'EVALUATE'. Correct the syntax.

005118 Found 'END-EVALUATE' without matching 'EVALUATE'. Each EVALUATE command must have a matching END-
EVALUATE command. Correct the source code.

005119 'IF' or 'WHILE' command not completed before 'END- Correct the syntax.

EVALUATE'.

005120 'WHEN-OTHER' must be after all 'WHEN's. Correct the syntax.

005121 No 'WHEN's found inside 'EVALUATE' statement. Correct the syntax.

005122 'IF', 'EVALUATE' and '"WHILE' statements cannot cross These commands must be contained within a single section

sections or paragraphs. or paragraph. Correct the source code.

005123 'CONTINUE' found outside 'WHILE' statement. The CONTINUE command is valid only in the context of a
WHILE statement. Correct the source code.

005200 Did not find >' after <.... A leading left angled bracket "<" indicates that you are
beginning an ASCII value, which must be ended by a right
angled bracket ">". Correct the source line.

005201 Bad ascii character in <...>. Numbers in angled brackets <> must be between 1 and
255. Correct the source line.

005202 Bad ascii number in <...>. Numbers in angled brackets <> must be between 1 and
255. Correct the source line.

005203 <...> string is too long; maximum is ~ 01 characters. Reduce the length of the string. If this is not possible, use
PRINT-DIRECT in BEGIN-REPORT Of END-REPORT .
01 = Maximum number of characters supported by this
version of SQR

005300 Did not find '=" after qualifier: ~01 Correct the syntax. ~ 01 = Qualifier name

005301 Qualifier '~ 01' requires a numeric value. Correct the syntax. ~ 01 = Qualifier name

005302 Incorrect value for qualifier '~ 01'. Valid values are: Correct the source line. 01 = Qualifier name

005303 Invalid qualifier '~ 01'. Valid qualifiers are: Correct the source line. ~01 = Qualifier name

005304 Qualifier '~ 01' requires a numeric literal, variable, or Correct the source line. ~ 01 = Qualifier name

column.

005305 Qualifier '~ 01' references a numeric variable that has not | Correct the source line. ~01 = Qualifier name

been defined.

005306 Qualifier '~ 01' requires a string literal, variable, or column. | Correct the source line. ~01 = Qualifier name

005307 List not terminated. Correct the syntax.

005308 Missing comma in list. Correct the syntax.

005309 Required argument '~ 01' was not specified. Correct the source line. 01 = Qualifier name

388 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

005310 Qualifier '~ 01' has already been specified. Correct the source line. ~01 = Qualifier name
005311 Qualifier '~ 01" requires a string literal. Correct the source line. 01 = Qualifier name
005312 Qualifier '~ 01' requires a list of values: (val [,val]...). Correct the source line. ~01 = Qualifier name
005313 Qualifier '~ 01' requires a integer value. Correct the source line. ~01 = Qualifier name
005314 Invalid character in variable name '~ 01". Correct the source line. ~01 = Invalid character
005315 Qualifier '~ 01' references a string variable that has not been | Correct the source line. ~01 = Qualifier name
defined.
005316 Qualifier '~ 01" uses an invalid Unit-Of-Measure suffix. Valid | Correct the source line. ~01 = Qualifier name
suffixes are: dp pt mm cm in
005317 Qualifier " 01' can only reference string literals or variables. | Correct the source line. ~01 = Qualifier name
005318 Qualifier '~ 01' can only reference string or numeric literals. | Correct the source line. ~01 = Qualifier name
005319 Qualifier '~ 01' requires a valid position value. Correct the source line. ~01 = Qualifier name
005320 Qualifier '~ 01" is not allowed. Correct the source line. 01 = Qualifier name
005400 Second page write attempted while writing current page. Check any procedure invoked by BEFORE-PAGE Or
Check BEFORE-PAGE, AFTER-PAGE procedures. AFTER-PAGE to ensure that the commands do not
overflow the page or cause a page eject.
005402 String cannot be placed on page: ~01 -- placement Ensure the values are within the page limits. ~ 01 = Text
specified is out of range. (" 02, 03, 04) value ~02 = Row 03 = Column "~ 04 = Length
005403 Error writing the output file. (*01): ~02 01 = System error code ~ 02 = System error message
005404 Cannot open the Postscript startup file: ~01 (7 02): " 03 “01 = Name of the file ~ 02 = System error code ~03 =
System error message
005405 SQR trial copy exiting after ~ 01 pages. 01 = Number of pages.
005406 Exiting after requested number of test pages (T 01). 01 = Number of pages
005408 Program stopped by user request. Informational message.
005500 Cannot set parse_only option. (Sybase) The DB-Library routine dbsetopt() returned an
error. This should never happen. Contact technical support.
005501 Cannot reset parse_only option. (Sybase) The DB-Library routine dbclropt() returned an
error. This should never happen. Contact technical support.
005502 Cannot drop SQR generated stored procedure: ~01. (Sybase) See the database server error message that was
also output. This should never happen. Contact technical
support. ~01 = Stored procedure name
005503 Cannot use ~ 01 datatype as bind variable. (Sybase) Use another database column. ~01 = The

database datatype.

Numbered Messages 389

Error Number

Error Message

Suggestion/Interpretation

005504 Unknown datatype for bind variable: 01 Cannot create (Sybase) Please contact technical support. “01 =

stored procedure. Unknown database datatype

005505 SQL too large to create stored procedure. (Sybase) The size of the SQL text needed to create the
stored procedure is too large for SQR to handle. Add -xp
to BEGIN-SQL Of BEGIN-SELECT.

005506 SQR's EXECUTE command not available for this version of | (Sybase) Some early versions of Sybase SQL Server or

Sybase. Microsoft SQL Server do not support Remote Procedure
Calls (RPCs). Update your database server.

005507 Could not add param to remote procedure call. (Sybase) A DB-Library routine returned an unexpected
error. See the error message from the database.

005508 The number of EXECUTE...INTO &columns does not match | (Sybase) Check the definition for the stored procedure you

the procedure. are referencing.

005509 Incorrect number of INTO &columns defined in EXECUTE. (Sybase) Check the definition for the stored procedure you
are referencing.

005510 Error converting OUTPUT Sybase type for EXECUTE. (Sybase) The DB-Library routine dbconvert() failed to
convert the data from the stored procedure. Contact
technical support.

005511 Number of OUTPUT parameters from EXECUTE is incorrect. | (Sybase) Check the definition for the stored procedure you
are referencing.

005512 Missing default database name for USE. (Sybase) Correct the syntax.

005512 Missing default database name for USE. (ODBC) Could not connect to the specified datasource.

005513 You may only specify 'USE db' once, before any SQL (Sybase) Only one USE command is allowed in a report.

statements are executed. Place the SETUP section at the beginning of the SQR report.

005515 Undefined variable referenced in -DB flag: ~ 01 (ODBC) Check for a misspelling. ~01 = Variable name

005523 Database commit failed. The database command to perform a commit returned an
error. Try running the SQR program again. The error could
be related to a network or server problem. If the error
persists, contact your system administrator.

005524 Cannot close database cursor. The database command to close the database cursor
returned an error. Try running the SQR program again. The
error could be related to a network or server problem. If the
error persists, contact your system administrator.

005528 DB2 SQL " 01 error ~02 in cursor ~03: (DB2) “01 = Routine name " 02 = Error code ~03 = SQR

cursor number

INFORMIX SQL " 01 error ~02 (ISAM: "~ 03) in cursor ~04:
"05

(Informix) ~01 = Routine name ~ 02 = Error code 03 =
ISAM code " 04 = SQR cursor number ~ 05 = Error message
from database

ODBC SQL "01 error “02 in cursor ~03: ~04

(ODBC) " 01 = Routine name ~ 02 = Error code 03 = SQR
cursor number "~ 04 = Error message from database

ODBC SQL 01 error “02 in cursor ~03: ~04

(DDO)

390 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

*01 = Routine name
02 = Error code
03 = SQR cursor number

" 04 = Error message from database

ORACLE " 01 error 02 in cursor ~03: 04

(Oracle) "~ 01 = Routine name ~ 02 = Error code ~ 03 = SQR
cursor number "~ 04 = Error message from database

Sybase " 01 error in cursor ~02: ~03

(Sybase) ~01 = Routine name ~02 = SQR cursor number
" 03 = Error message from database

Teradata SQL 01 error 02 in cursor ~03:

(Teradata)
*01 = Routine name
02 = Error code

03 = SQR cursor number

005532 System 10 files are missing. (Sybase) Contact your system administrator.

005533 Not a System 10 SQL Server. (Sybase) The CT-Library version of SQR can only connect
to a System 10 server. Use the DB-Library version of SQR
to connect to a pre-System 10 server.

005534 SQL too long for PREPARE/DECLARE; maximum ~01 (Teradata) The SQL statement is too large.

h
characters 01 = Maximum number of characters supported by this
version of SQR

005536 Unknown error message number: ~01. (DB2) 01 = Error message number

005537 Empty error message returned from system for error number; | (DB2) “01 = Error message number
"01.

005538 Invalid SELECT statement; COMPUTE clauses are not (Sybase) The select statement contains a COMPUTE clause
supported. that is not supported.

005539 Could not connect to datasource specified in -db variable: | (ODBC) Could not connect to the specified datasource.
01"

005540 Not connected to a database, database access is not The SQR program is no longer connected to a database.
allowed. Commands that access the database can no longer be

used. This situation can occur if the CONNECT fails and the
ON-ERROR option was used.

005543 Specify the Oracle DLL name in SQR.INI in (Oracle) SQR was unable to load the Oracle DLL. By default,
[Environment:Oracle] section for ORACLE_DLL entry, such | SQR looks first for “ociw32.dll” or the DLL specified by the
as ORACLE_DLL=orant71.dll ORACLE_DLL entry in the [Environment:Oracle] section of

SQR.INL If that DLL could not be loaded, then SQR
attempts to load 'orant71.dll'.

005600 GETWRD: Word too long; maximum is ~01. Reduce the length of the "word". “01 = Maximum size of
a "word" supported by this version of SQR

005700 Cannot call SQR recursively. SQR cannot be called recursively. This error can only occur

if a User Function from either UFUNC.C or UCALL.C calls

Numbered Messages 391

Error Number

Error Message

Suggestion/Interpretation

the sqr() routine. Do not call sqr() from a UFUNC.C or
UCALL.C routine.

005701

Too many SQR command line arguments; maximum is ~01

To pass more than this number of arguments, use a @file
argument file containing one argument per line. ~01 =
Maximum number supported by this version of SQR.

005702

Log file name specified is too long.

Reduce the length of the log file name.

005703

Error opening the SQR log file: '~ 01' (*02): ~03

“01 = Name of the file ~ 02 = System error code ~03 =
System error message

005704

Missing program name.

The name of the program file was not found on the
command line. The program name must be the first
parameter on the command line.

005705

Program file name specified is too long.

Reduce the length of the program file name.

005707

Error opening the -E error file: '~ 01' (*02): “03

01 = Name of the file ~02 = System error code ~03 =
System error message

005708

Cannot find ~01 in SQRDIR, PATH or \SQR.

The specified file cannot be located in any of the directories
pointed to by the mentioned environment variables or
default directories. Make sure the "file" is present in one
of the locations searched. ~01 = File name

005709

01 environment variable is not defined.

As of version 2.5, the environment variable SQRDIR must
be defined. ~01 = Name of the environment variable

005710

" 01 path too long.

The length of the directory path plus the length of the file
name to be opened is too long for SQR to handle. Reduce
the length of the directory path. ~ 01 = Environment variable
name

005711

Bad number in -T test flag.

The number specified must be > zero. Correct the value.

005712

-G option requires arguments.

(VAX) The command line option is ill-formed. Correct the
syntax.

005713

Too many arguments to -G option; maximum is ~01.

(VAX) The command line option is ill-formed. Correct the
syntax. ~01 = Maximum number of arguments supported
by this version of SQR

005714

-G attribute too long; maximum is ~01.

(VAX) The command line option is ill-formed. Correct the
syntax. ~01 = Maximum number of each attribute
supported by this version of SQR

005716

Unknown flag on command line: ~01

Correct the syntax. =01 = Unknown command line flag

005717

Cannot open channel to TT; status = ~01

(VAX) Should never occur during normal operations. Record
the steps leading up to the error and contact your system
administrator. ~ 01 = System status

005718

Cannot read from TT; status = “01

(VAX) Should never occur during normal operations. Record
the steps leading up to the error and contact your system
administrator. ~ 01 = System status

392 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

005719 Cannot close channel to TT; status = ~ 01 (VAX) Should never occur during normal operations. Record
the steps leading up to the error and contact your system
administrator. ~ 01 = System status

005720 Error opening tty. (*01): 02 (DG, UNIX) Should never occur during normal operations.
Record the steps leading up to the error and contact your
system administrator. ~ 01 = System error code ~02 =
System error message

005721 Error with "ioctl()'. (" 01): 02 (DG, UNIX) Should never occur during normal operations.
Record the steps leading up to the error and contact your
system administrator. ~01 = System error code ~02 =
System error message

005722 Error reading tty. (*01): ~02 (DG, UNIX) Should never occur during normal operations.
Record the steps leading up to the error and contact your
system administrator. ~ 01 = System error code " 02 =
System error message

005723 Error closing tty. (*01): ~ 02 (DG, UNIX) Should never occur during normal operations.
Record the steps leading up to the error and contact your
system administrator. ~ 01 = System error code " 02 =
System error message

005724 Bad number in -B flag. (Oracle, Sybase) The number specified must be > zero.
Correct the value.

005734 No program name given. The report name must be the first command line argument.

005737 Unknown printer type specified with -PRINTER: switch. The printer type can be EH, HT, LP, HP, PS, or WP. WP is
valid only with PC/Windows.

005738 Database name needs to be included with -DB switch. (ODBC) Could not connect to the specified datasource.

005738 Database name needs to be included with -DB switch. (Sybase) Supply the database name.

005739 Too many -F switches; maximum is ~01. Reduce the number of -F switches. ~01 = Maximum
number allowed

005742 Attempt to invoke viewer (using WinExec) failed; error code | (Windows) ~01 = System error code

="01.

005743 Unknown numeric type specified with -DNT; switch. Correct the command line.

005744 -DNT:Decimal precision (" 01) is out of range (02 - ~03). | Correct the command line. ~ 01 = Specified precision ~02
= Minimum allowed 03 = Maximum allowed

005745 The specified default numeric type '~ 01 = “02'is invalid. | Correct the SQR.INI file entry. 01 = Entry ~ 02 = Value

005746 The decimal precision '"01 = ~02' is out of range (~ 03 - Correct the SQR.INI file entry. ~ 01 = Entry ~ 02 = Value “03

04). = Minimum allowed 04 = Maximum allowed

005747 The following error(s) occurred while processing the [T 01] | See the error message(s) that follow. 01 = Name of the

section from SQR.INI. section

005750 The -Burst switch is not properly formatted. The “Burst” command line flag is not properly formatted.

Numbered Messages 393

Error Number

Error Message

Suggestion/Interpretation

005751 The -Burst switch cannot be used with the -NOLIS switch. The “Burst” command line flag cannot be specified when

the -NOLIS command line flag is also specified.

005752 The -Burst switch requires either the -Printer:HT or - The “Burst” command line flag is applicable only when
Printer;EH switch to be specified. HTML code is produced. You must specify either the -

PRINTER:HT or -PRINTER:EH switch.

005754 The -Burst switch caused no output to be generated. The “Burst” command line flag was specified with a set of
page ranges that prevented any output to be created.
Change the page ranges.

005755 The -Printer:HT switch does not support UTF-8 encoded data. | Spf_ht.c can't handle UTF-8
Use the -Printer:EH switch instead.

005756 The -EH_FullHTML switch support the following values: 30, | The 'EH_FullHTML' command line flag is not properly
32, and 40. formatted.

005757 The -EH_Browser switch can be specified with one of the The 'EH_Browser' command line flag is not properly
following values: Basic, Netscape, IE, or ALL. formatted.

005758 The -EH_Language switch can be specified with one of the | The 'EH_Language' command line flag is not properly
following values: English, French, German, Portuguese, formatted.

Spanish, SChinese, TChinese, or Japanese.

005781 An ASClI-based encoding (ASCII, CP1252, etc) must be An ASClI-based encoding must be specified for the
specified in order to generate barcodes for HPLaserJet ENCODING-REPORT-OUTPUT setting in the INI file when
output. generating barcodes for HPLaserJet (-printer:hp)

005900 Bad numberin -* 01 (Windows) Specify a valid number. 01 = Command line

option

005901 Bad filename in -~ 01 (Windows) Specify a valid file name. ~ 01 = Command line

option

005902 Bad directory in -~ 01 (Windows) Specify a valid directory path. ~01 = Command

line option

005903 Cannot access the @ parameter file (*01): ~02 (Windows) Depends on the system error message. ~01 =

System error code ~ 02 = System error message
005904 The argument list is too long; maximum is ~01. (Windows) To pass more than this number of arguments,
use a @file argument file containing one argument per line.
01 = Maximum number supported by this version of SQR.
005905 Cannot open the report file (*01): ~02 (Windows) Depends on the system error message. ~01 =

System error code ~ 02 = System error message

Table 98 Numbered Messages 006000 to 006999

Error Number

Error Message

Suggestion/Interpretation

006000

Error writing the printer file. ("01): ~02

Can occur during normal operations due to the system
environment (for example, file locking, permissions). Record
the steps leading up to the error and contact your system
administrator. ~ 01 = System error code ~ 02 = System error
message

394 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

006001 Error reading the printer file. (" 01): 02 Can occur during normal operations due to the system
environment (for example, file locking, permissions). Record
the steps leading up to the error and contact your system
administrator. ~ 01 = System error code ~ 02 = System error
message

006002 Cannot open the printer file: 01 (*02): " 03 Can occur during normal operations due to the system
environment (for example, file locking, permissions). Record
the steps leading up to the error and contact your system
administrator. ~01 = Name of the file ~02 = System error
code " 03 = System error message

006003 Unexpected End-Of-File while processing the printer file. Possibly the file got corrupted. Try to recreate the .spf file. If
the error persists, contact technical support.

006004 Encountered unknown SPF code (" 01) while reading the | Possibly the file got corrupted. Try to recreate the .spf file. If

printer file. the error persists, contact technical support. ~ 01 = Unknown
SPF code

006100 Duplicate chart (*01). Each chart must be given a unique name. ~ 01 = Chartname

006101 Unknown chart (" 01). Chart could not be found. “01 = Chart name

006104 Too many pie segments (" 01). Max is ~02. Correct the source code. ~01 = Number of segments ~02 =
Maximum allowed segments

006105 Chart module is not initialized. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.

006106 XY charts may have only numeric columns. Correct the syntax.

006107 The 3rd column in the data array must be a character Correct the syntax.

column to specify USE-3RD-DATA-COLUMN.

006120 INTERNAL: Bad chart index from stack (*01). Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support. ~01 = Chart index

006122 INTERNAL: Unsupported Grafsman chart type (*01). Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support. 01 = Chart type

006123 INTERNAL: Unsupported pie-explode setting (" 01). Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support. ~ 01 = Setting value

006124 INTERNAL: Unsupported tick-mark placement (" 01). Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support. 01 = Placement value

006125 Grafsman interface message ("~ 01) not supported. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
“01 = Message code

006126 Unrecognized return code (" 01) from Grafsman command | Should never occur during normal operations. Record the

message (" 02).

steps leading up to the error and contact technical support.
“01 = Return code " 02 = Message code

Numbered Messages 395

Error Number | Error Message Suggestion/Interpretation
006127 Cannot fit Chart/Image into the current page. Position: Correct the source code. Production Reporting aborts the
(01, “02) Size: (" 03, “04) program run. ~01 = Row ~ 02 = Column "~ 03 = Width ~04
= Depth

006140 Duplicate image ("~ 01). Images must be given unique names. ~01 = Image name

006141 Unknown image (" 01). Image name could not be found. ~01 = Image name

006142 Cannot open image file (*01). (02): 03 “01 = Name of the file ~ 02 = System error code ~03 =
System error message

006143 Unknown or missing image type (*01). Enter a valid image type.

“01 = Image type

006144 Unknown or missing printer type (01). Enter a valid Printer type.
“01 = Printer type

006145 Duplicate FOR-PRINTER entries for printer (*01). Only a single FOR-PRINTER can be specified for a printer
type .

" 01 = Printer type
006146 The image type (*01) is not supported by printer type The image, based on its type is invalid for the printer
(" 02). specified. For example, an EPS image is only valid for
Postscript printer.
“01 =The image type
" 02 = The printer type

006147 Invalid number of items in FOR-PRINTER list. Too few or too many items in the FOR-PRINTER list. Correct
the syntax.

006150 INTERNAL: Bad image index from stack (" 01). Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support. ~01 = Image name

006200 This report has already been defined. Each report must be given a unique name.

006201 This layout has already been defined. Each layout must be given a unique name.

006202 This printer has already been defined. Each printer must be given a unique name.

006203 The values for '~ 01' must be > 0. Correct the syntax. ~01 = Qualifier name

006204 Qualifiers "~ 01" and '" 02' are mutually exclusive. Correct the syntax. ~01 = Qualifier name ~ 02 = Qualifier
name

006205 Qualifier '~ 01" is not applicable with a 'default' printer. Correct the syntax. 01 = Qualifier name

006206 The list must contain report names or ALL. Correct the syntax.

006207 'ALL" must be specified by itself. Correct the syntax.

006208 No report name was specified. Correct the syntax.

006209 No layout name was specified. Correct the syntax.

396 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

006210 No printer name was specified. Correct the syntax.
006211 The name cannot be 'ALL". Correct the syntax.
006212 The name can only contain characters [0-9 A-Z _ -]. Correct the syntax.
006213 Report '~ 01' is referenced by multiple '~ 02' printers. Correct the syntax. ~01 = Report name ~ 02 = Printer type
006214 Qualifier '~ 01" is not allowed with a '~ 02' printer. Correct the syntax. ~01 = Qualifier name "~ 02 = Printer type
006215 The value for '~ 01' must be ** 02 0. Correct the syntax. ~ 01 = Qualifier name ~ 02 = Relation to
Zero (<l<=!=!>=l>)
006216 Report '"01' does not exist. Correct the syntax. ~01 = Report name
006217 The report name can be a string literal, variable, or column. | Correct the syntax. ~ 01 = Report name
006218 Referenced layouts not defined: A list of undefined layouts follows this message.
006219 Referenced reports not defined: A list of undefined reports follows this message.
006220 Referenced printers not defined: A list of undefined printers follows this message.
006221 The following SQR commands (listed below) cannot be Correct the syntax.
used when any of the following NEW SQR commands are
also used in the same report:
006224 No printer type was specified. Correct the syntax.
006225 Incorrect value for printer type. Valid values are: Correct the syntax. A list of valid printer types follows this
message.
006226 Attempt to execute the ~ 01 command while processingthe | SQR aborts the program run. ~01 = SQR command “02 =
" 02 procedure. Procedure name
006227 Incorrect value for 'paper-size'. Specify the actual Correct the syntax. A list of valid predefined paper-size
dimensions or one of the following names: names follows this message.
006228 Referenced TOC (Table Of Contents) not defined: A list of undefined Table of Contents follows this message.
006229 This TOC (Table Of Contents) has already been defined. Each Table of Contents must be given a unique name.
006230 The list must contain TOC (Table of Contents) names or Correct the syntax.
ALL.
006231 The TOC (Table Of Contents) entry cannot be positioned The Table of Contents entry will not fit given the specified
given the LEVEL (*01) and INDENTATION (" 02) values. level and current indentation values. ~01 = Specified
LEVEL= value ~ 02 = Current INDENTATION= value
006232 01 command not allowed while generating the Table of | The specified command cannot be used while the Table of
Contents. Contents is being generated. ~01 = SQR command
006233 The TOC (Table of Contents) entry "A" cannot be processed | Correct the program logic to eliminate the conflict between

because the existing entry "B" is positioned below it. A:
Line = 01, Level = 02, Text ="~ 03" B: Line = ~ 04, Level
="05, Text =""06'

the two TOC (Table of Contents) entries. ~01 = A: Line
number ~ 02 = A: Level value ~03 = A: Text value ~04 = B:
Line number ~ 05 = B: Level value ~ 06 = B: Text value

Numbered Messages 397

Error Number

Error Message

Suggestion/Interpretation

006303 Parameter (" 01) is required, but has not been specified. | Correct the syntax. ~01 = Parameter name
006304 Parameter (" 01) already specified. Correct the syntax. 01 = Parameter name
006308 Missing part of specification for parameter (*01). Correct the syntax. ~01 = Parameter name
006309 Parameter (01) requires literal. Correct the syntax. ~01 = Parameter name
006352 INTERNAL: Unsupported option/request (*01) in (" 02). Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact technical support. ~01 = Option/request code "~ 02
= Function name
006400 Unsupported background color. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006401 Unsupported border color. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006402 Border width out of range. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006403 X position out of range. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006404 Y position out of range. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006405 X size out of range. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006406 Y size out of range. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006407 Unsupported font. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006408 Unsupported font style. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006409 Unsupported font color. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006410 Unsupported horizontal text justification value. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006411 Unsupported vertical text justification value. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006412 Unsupported font path. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006413 Unsupported font rotation. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006414 Font size out of range. Should never occur during normal operations. Record the

steps leading up to the error and contact technical support.

398 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

006415 Text line id# out of range. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006416 Unsupported chart type. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006417 Unsupported chart sub-type. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006418 Unsupported chart orientation (not H or V). Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006419 Unsupported perspective (not 2D or 3D). Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006420 Unsupported axis (not X or Y). Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006421 Unsupported axis label data type. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006422 Dataset id# out of range. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006423 Unsupported dataset type. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006424 Unsupported dataset color. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006425 Unsupported dataset line style. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006426 Unsupported dataset fill pattern. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006427 Unsupported dataset marker. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006428 Chart type does not support Y-axis datasets. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006429 Pie-chart segment id# is out of range. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006430 Unsupported pie-segment color. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006431 Unsupported pie-segment border color. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006432 Unsupported pie-segment pattern. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006433 Unsupported pie-segment explode setting. Should never occur during normal operations. Record the

steps leading up to the error and contact technical support.

Numbered Messages 399

Error Number

Error Message

Suggestion/Interpretation

006434 Command only valid for charts of type 'pie'. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.

006435 Pie-chart radius out of range. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.

006436 Pie-chart starting angle out of range. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.

006437 Unsupported pie-chart fill direction. Must be clockwise or | Should never occur during normal operations. Record the
counter-clockwise. steps leading up to the error and contact technical support.

006438 Unsupported pie-segment label position. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.

006439 Unsupported pie-segment quantity display position. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.

006440 Unsupported pie-segment per-cent display position. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.

006441 Unsupported legend style. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.

006442 Unsupported legend horizontal position. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.

006443 Unsupported legend vertical position. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.

006444 Text charts do not support legend. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.

006445 Number of datasets specified does not match data. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.

006446 Unsupported axis label position. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.

006447 Unsupported axis type (not LINEAR or LOG). Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.

006448 Pie and text charts do not support axis control. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.

006449 Unsupported axis min scaling. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.

006450 Unsupported axis max scaling. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.

006451 Unsupported axis max scaling. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.

006452 Beginning of tickmarks is after end. Should never occur during normal operations. Record the

steps leading up to the error and contact technical support.

400 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

006453 Unsupported tickmark type. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006454 Unsupported grid type. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006455 Unsupported grid color. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006456 Grid line width out of range. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006457 Unable to open grafcap file. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006458 Unsupported grafcap device. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006459 Error in grafcap entry specification. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006460 Unable to open chart output destination. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006461 Internal error during ggDraw. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006462 Improper parameters passed to gscale. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
006463 The shared library specified in the grafcap file could not be | Should never occur during normal operations. Record the
found. steps leading up to the error and contact technical support.
006464 A function called from the shared library specified in the | Should never occur during normal operations. Record the
grafcap file could not be found. steps leading up to the error and contact technical support.
006500 The bar code could not be positioned on the page. Row: Correct the source code. 01 = Row ~02 = Column ~03 =
01, Column: " 02, Height: “03 Height
006501 Unknown BCL error (" 01) encountered. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.
“01 = BCL error code
006502 Invalid bar code type (* 01): Valid values are from 1to 15. | Correct the source code. ~01 = Bar code type.
006503 The length of the bar code text ‘01' must be between 1 and | Correct the source code. “01 = Bar code text
30 characters.
006504 The length of the caption text '01' must be between 1 and | Correct the source code. “01 = Caption text
30 characters.
006505 Invalid printer type (" 01): Valid values are from O to 13. | Correct the source code. ~ 01 = Printer type
006506 Invalid offset: Valid values are from 0 to 250. Correct the source code.
006507 Invalid height (*01): Valid values are from 0.1 to 2.0 Correct the source code. ~01 = Height

inches.

Numbered Messages 401

Error Number

Error Message

Suggestion/Interpretation

006508 Invalid checksum: Valid values are from O to 2. Correct the source code.

006509 Invalid pass: Valid values are from 1 to 6. Correct the source code.

006510 The bar code text '01' is not valid for the type of bar code | Correct the source code. ~01 = Bar code text ~ 02 = Bar

(*02) selected. code type

006511 Internal error: Could not generate the bar code. Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.

006512 Internal error: Bar code buffer required too large (>32K). | Should never occur during normal operations. Record the
steps leading up to the error and contact technical support.

006601 Cannot allocate the device context for the default printer. | (Windows) Can occur due to lack of system resources.
Record the steps leading up to the error and contact your
system administrator.

006602 Failed to start printing the document. (Windows)Can occur due to lack of system resources or a
problem with the printer. Record the steps leading up to the
error and contact your system administrator.

006603 New-page (start) failed on page ~01. (Windows) Can occur due to lack of system resources or a
problem with the printer. Record the steps leading up to the
error and contact your system administrator. ~ 01 = Page
number

006604 New-page (end) failed on page ~01. (Windows) Can occur due to lack of system resources or a
problem with the printer. Record the steps leading up to the
error and contact your system administrator. 01 = Page
number

006605 End document failed. (Windows) Can occur due to lack of system resources or a
problem with the printer. Record the steps leading up to the
error and contact your system administrator.

006606 Error reading font information from the [Fonts] section in | (Windows) Correct the [Fonts] section in SQR.INI.

SQR.INI. Using the default font.

006607 Failed to create a brush for shading. (Windows) Can occur due to lack of system resources.
Record the steps leading up to the error and contact your
system administrator.

006608 Failed to select font “01. (Windows) Can occur due to lack of system resources.
Record the steps leading up to the error and contact your
system administrator. ~ 01 = Font name

006609 Failed to modify font ~01. (Windows) Can occur due to lack of system resources.
Record the steps leading up to the error and contact your
system administrator. ~ 01 = Font name

006610 Failed to create a pen that was required to draw a box. (Windows) Can occur due to lack of system resources.
Record the steps leading up to the error and contact your
system administrator.

006612 Failed to create a pen that was required to draw a vertical | (Windows) Can occur due to lack of system resources.

line.

Record the steps leading up to the error and contact your
system administrator.

402 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

006613

Failed to open the image bitmap file (" 01). (" 02): “03

(Windows) Can occur during normal operations due to the
system environment (file locking, permissions). Record the
steps leading up to the error and contact your system
administrator. ~01 = Name of the file ~02 = System error
code " 03 = System error message

006614

The file (" 01) does not contain a valid bitmap.

(Windows) Specify a valid bitmap file. 01 = Name of the
file

006615

Failed to create the palette for image (" 01).

(Windows) Can occur due to lack of system resources or an
invalid bitmap. Record the steps leading up to the error and
contact your system administrator. ~01 = Name of the file

006616

Failed to load RLE into memory for image (" 01).

(Windows) Can occur due to lack of system resources.
Record the steps leading up to the error and contact your
system administrator. ~01 = Name of the file

006617

Failed to convert DIB to DDB for image (" 01).

(Windows) Can occur due to lack of system resources.
Record the steps leading up to the error and contact your
system administrator. ~01 = Name of the file

006618

Failed to draw the bitmap image (" 01).

(Windows) Can occur due to lack of system resources.
Record the steps leading up to the error and contact your
system administrator. ~01 = Name of the file

006619

Cannot access the default printer's driver.

(Windows) Can occur due to lack of system resources or a
problem with the printer. Record the steps leading up to the
error and contact your system administrator.

006620

Cannot select the charting clip area onto the printers DC.

(Windows) Can occur due to lack of system resources or a
problem with the printer. Record the steps leading up to the
error and contact your system administrator.

006621

Cannot select create a metafile required for business
graphics.

(Windows) Can occur due to lack of system resources.
Record the steps leading up to the error and contact your
system administrator.

006622

Cannot create a region required for business graphics.

(Windows) Can occur due to lack of system resources.
Record the steps leading up to the error and contact your
system administrator.

006623

Cannot create a DC required for business graphics.

(Windows) Can occur due to lack of system resources.
Record the steps leading up to the error and contact your
system administrator.

006624

Cannot create a bitmap required for business graphics.

(Windows) Can occur due to lack of system resources.
Record the steps leading up to the error and contact your
system administrator.

006625

Business graphics failed while setting up the device
(ggWinDevice).

(Windows) Can occur due to lack of system resources.
Record the steps leading up to the error and contact your
system administrator.

006626

Cannot draw business graphics.

(Windows) Can occur due to lack of system resources or it
can be due to a damaged LIBSTLINI file. The LIBSTLINI file
resides in the Windows main directory. Make sure that the
GPATH= and IPT= entries point to a valid SQR bin directory.

Numbered Messages 403

Error Number

Error Message

Suggestion/Interpretation

Record the steps leading up to the error and contact your
system administrator.

006700

SQRDIR is not defined.

(Windows) The variable SQRDIR must be defined in SQR.INI.

006701

Could not allocate memory while attempting to register
the .spf filename extension.

(Windows) Can occur due to lack of system resources.
Record the steps leading up to the error and contact your
system administrator.

006704

Cannot open or read file ("01) (*02): 03

(Windows) Can occur during normal operations due to the
system environment (e.g. file locking, permissions, etc.).
Record the steps leading up to the error and contact your
system administrator. ~ 01 = Name of the file ~ 02 = System
error code "~ 03 = System error message

006705

File (" 01) is not in SPF packet format.

(Windows) The file was not produced by SQR or it has been
corrupted. ~ 01 = Name of the file

006706

Failed to identify the start of the report (" 01).

(Windows) The file was not produced by SQR or it has been
corrupted. ~01 = Name of the file

006707

An invalid seek was made for page ~01.

(Windows) Internal error which should not occur under
normal operations. Contact technical support. 01 = Page
number

006708

Too many errors were encountered while processing the
file. Processing has been stopped.

(Windows) Can occur due to lack of system resources.
Record the steps leading up to the error and contact your
system administrator.

006709

Failed to open the image bitmap file (" 01). (" 02): “03
This message is displayed only once per SPF file.

(Windows) Can occur during normal operations due to the
system environment (e.g. file locking, permissions, etc.).
Record the steps leading up to the error and contact your
system administrator. ~ 01 = Name of the file ~ 02 = System
error code "~ 03 = System error message

006800

" 01: Detected internal program error.

Internal error that should never occur during normal
operation. Record the steps leading up to the error and
contact technical support. ~01 = Name of the routine

006801

*01: Null Operand Passed as input.

Internal error that should never occur during normal
operation. Record the steps leading up to the error and
contact technical support. ~01 = Name of the routine

006802

*01: Decimal Exponent Under/Overflow.

Exponent Under/Overflow: Exponent of decimal number has
exceeded the valid boundaries established for the decimal
type. Check the documentation for the current upper and

lower bounds of a decimal object. ~ 01 = Name of the routine

006803

" 01: Decimal to Integer Conversion Under/Overflow.

Integer Under/Overflow: Cannot convert input decimal
object into a valid integer number. Decimal object exceeds
the established integer boundaries for this machine
architecture. Check the magnitude and sign of the decimal
object to ensure that it falls within the upper and lower
bounds of an integer number. 01 = Name of the routine

006805

" 01: Decimal Precision Under/Overflow.

Decimal Precision Under/QOverflow: Attempt made to
initialize decimal object with an invalid precision. Check the

404 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

input precision value against the documented upper and
lower boundaries for a decimal object. ~01 = Name of the
routine

006806

" 01: String to Decimal Object Conversion Error.

String To Decimal Conversion Error: Length of input string is
greater than precision of underlying decimal object. Either
increase the precision of the decimal object or reduce the
size of the input mantissa to match the decimal object
precision. ~01 = Name of the routine

006807

*01: Truncation/Rounding Error - Outside Valid Range for
Decimal Object.

Truncation/Rounding Error: Input truncation or round value
is outside the valid range for this decimal object. Please
ensure that the truncation/round value is greater than or
equal to zero and less than the precision of the underlying
decimal object. ~01 = Name of the routine

006808

" 01: Decimal Error: Cannot Divide by Zero.

Decimal Math Divide by Zero Error: Attempt made to divide
a decimal object by zero. Please check divisor to ensure that
it does not equal zero before attempting to divide. “01 =
Name of the routine

006900

There is no default printer set up on your system. Use the
Control Panel "Printers" applet to define it.

(Windows) SQR Print requires that a default printer be
defined. Use the "Printers" applet in the Control Panel to
define one.

Table 99 Numbered Messages 007000 to 007999

Error Number

Error Message

Suggestion/Interpretation

007000 The locale ' 01" is not defined in SQR.INI. Check for a misspelled locale name and/or the SQR.INI file. “01
= Locale name

007001 At least one qualifier must be specified. Correct the source code.

007002 The value for '01' must be a list of 02 string literals, | Correct the source code. ~ 01 = Qualifier ~ 02 = Number of entities
variables or columns. in list

007003 The values for '01' and '02' cannot be the same. Correct the source code. ~01 = Qualifier ~02 = Qualifier

007004 The value for '01' (" 02) must be a single character | Correct the source code. ~01 = Qualifier 02 = Value ~03 = List
which is not in the list: "03". of invalid characters

007005 The value for " 01' (* 02) is invalid. Valid values are: | Correct the source code. ~01 = Qualifier ~02 = Value

007006 The last character of the '~ 01' value (" 02) cannot | Correct the source code. ~01 = Qualifier 02 = Invalid character
be a digit or the minus sign or the same as either of
the separators.

007007 The first character of the '~ 01' value (" 02) cannot | Correct the source code. ~01 = Qualifier 02 = Invalid character
be a digit or the minus sign or the same as either of
the separators.

007008 The following errors occurred while processing the This message precedes error messages encountered while
(*01) locale from SQR.INI. processing the SQR.INI file. “01 = Locale name

007009 The value for' 01' cannot be 'DEFAULT' or 'SYSTEM'. | Correct the syntax. ~01 = Qualifier

Numbered Messages 405

Error Number

Error Message

Suggestion/Interpretation

007010 The value for '~ 01' (02) is not properly formatted: | Correct the syntax. ~01 = Qualifier ~02 = Value
Did not find the ">' for the '<nnn>' construct.

007011 The value for '~ 01' (" 02) is not properly formatted: | Correct the syntax. ~01 = Qualifier ~02 = Value
The value of an '<nnn>' construct must be from 1 to
255.

007012 The default locale (* 01) specified in the [~ 02] Correct the syntax. ~01 = Locale name ~ 02 = Section name
section of SQR.INI has not been defined.

007013 The value for " 01' (* 02) must be a list of 03 Correct the syntax. ~ 01 = Qualifier 02 = Value ~ 03 = Number of
quoted string literals. entities in list

007014 The entry (" 01 = ~02) is not valid. Correct the SQR.INI entry. ~ 01 = Qualifier from the SQR.INI file

02 = Qualifier's value

007100 The use of an edit mask or the keywords NUMBER, | Correct the source code.
MONEY, or DATE is not legal when storing numeric
variables.

007101 The last keyword is not '~ 01". Correct the source code. ~01 = Keyword

007102 Incompatible source and destination variable types. | Correct the source code.

007103 The keyword (*01) is not compatible with the Correct the source code. ~01 = Keyword ~ 02 = Variable name
variable (" 02).

007104 The use of an edit mask or the keyword DATE is not | Correct the source code.
legal if both variables are date variables.

007200 The specified precision (*01) is out of range (02 - | Correct the source code. ~ 01 = Specified precision ~02 =
*03). Minimum precision ~03 = Maximum precision

007201 The precision is specified by a value from ~01to ~02 | Correct the source code. ~01 = Minimum precision ~02 =
surrounded by parentheses. Maximum precision

007202 Variable (" 01) is not a decimal variable and cannot | Correct the source code. ~01 = Variable name
have a precision associated with it.

007203 A string variable name is required here. Correct the source code.

007204 A numeric variable name is required here. Correct the source code.

007205 Thevariable (" 01) has already been definedas'~ 02' | Correct the source code. ~ 01 = Variable name ~ 02 = Variable type
and may not be redefined.

007206 The variable type has not been specified. Correct the source code.

007207 This command is only allowed within local Correct the source code.
procedures.

007208 This command must be before all other commands | Correct the source code.
in the procedure.

007209 Only string ($) and numeric (#) variables may be Correct the source code.

declared.

406 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

007210 Invalid variable name specified. Correct the source code.

007211 You cannot declare a global variable from within a Correct the source code.

procedure.

007400 The specified character is invalid in the current Correct the program logic.

character set.

007401 '*01'"is not a valid value for the ENCODING The specified encoding scheme is not known by SQR. “01 =

environment variable. ENCODING environment variable setting.

007403 The Double-Byte SQR command ' 01' is not The SQT file contains a reference to an SQR command, which is

supported in this version of SQR. not supported by this version of SQR. “01 = SQR command name

007405 The barcode text '~ 01' cannot contain double-byte | Correct the source code. ~01 = Bar code text

characters.

007501 Using " 01 edit mask from (* 02) against ("~ 03) A date edit mask element was detected which could cause date
data to be incorrectly interpreted. This warning message can be
turned off by setting the “OutputTwoDigitYearWamingMsg” entry
to the [Default-Settings] section of SQR.INI to FALSE. ~01 = Edit
mask element ~ 02 = Edit mask being used * 03 = Value being
applied to the edit mask

007601 Cannot access the Java file ("01) (*02): “03 SQR cannot access the required file. ~01 = Name of the file 02
= System error code ~03 = System error message

007602 -EH_Scale: value (" 01) is out of range (" 02 - “03). | Correct the command line. ~01 = Specified scale ~ 02 = Minimum
allowed "~ 03 = Maximum allowed

007603 -Printer:EH functionality is not available on this Enhanced HTML functionality is not available on this platform.

platform.

007604 -Printer:PD functionality is not available on this PDF functionality is not available on this platform.

platform.
007605 Cannot support Unicode internally. Please reset the | Cannot support Unicode internally. Reset the UseUnicodelnternal
UseUnicodelnternal setting in SQR.INI to FALSE. setting in SQR.INI to FALSE.
007702 Invalid entry for keyword, '~ 01="02' Correct the source code.
007703 May only specify either PROCEDURE=, or Correct the source code.
COMMAND=, or GETDATA=, exclusive.
007704 Must specify a SCHEMA. Correct the source code.
007705 Must specify either a PROCEDURE, COMMAND, or Correct the source code.
GETDATA.
007706 CONNECTION '" 01" not found. No such connection. | Correct the source code.
007707 The returned set of Procedure parameters (INOUT Stored procedure error.

and OUT) (length = ~01 items) did not include one
or more of the specified items.

Numbered Messages 407

Error Number

Error Message

Suggestion/Interpretation

007708

Encountered a parameter of type '~ 01'. Valid types
are either IN, OUT, or INOUT. If no type is entered,
the type defaults to IN.

Stored procedure error.

007709

The datasource failed to provide the expected return
status value. Verify the query metadata.

Datasource error.

007711

Failed to login to the requested datasource
(Connection=""01', username="'"02"). DETAILS:
03

Logon failed.

007712

The requested rowset (~ 01) was not available. Verify
the query metadata.

Not enough rowsets.

007713

Missing or invalid Registry.properties file. Verify that
the CLASSPATH includes SQRDIR, that SQRDIR
contains the folder with the Registry.properties file,
and that the Registry.properties file is valid.

Incorrect environment setup.

007714

The datasource ('~ 01') does not support the
requested capability ('” 02'). Check the capabilities
list for the datasource, located in the Properties
folder.

Invalid query for datasource.

007715

Failed to start the Java Virtual Machine (JVM).
Possible causes are: missing or invalid jdk files,
incorrect CLASSPATH, or insufficient resources.

Incorrect environment setup.

007717

The query failed. DETAILS: "~ 01

Query failed.

007718

Failure setting property '~ 01'. DETAILS: ~ 02

Property-set failed.

007721

Parameter ~01 (" 02) was passed to the
PROCEDURE as data type " 03; expected (~ 04) type
*05. Verify the query metadata.

A failure occurred during row fetch.

007722

Invalid query parameter: Reason: ~01

Bad procedure parameter.

007723

Too many parameters (= ~01) were supplied to the
query. Verify the query metadata.

Bad procedure parameter.

007724

Parameter ~01 (" 02) was passed to the
PROCEDURE as type " 03; expected type ~04. Verify
the query metadata.

Bad procedure parameter.

007725

Parameter ~01 ('~ 02', JDO-type " 03), specified
'NULL', is a required-parameter. Specify a value or
variable name.

Bad procedure parameter.

007727

Unable to retrieve metadata for Procedure="01,
Schema="02. DETAILS: “03

Metadata check failed.

007728

Parameter list type mismatch (#° 01, SQR type =
*02). The datasource expected a parameter of type
*03. Verify the query metadata.

Parameter list mismatch.

408 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

007729

List size mismatch detected while fetching data of
type ROW, " 01 items, into SQR list-variable, ~02
items. Fetching will proceed to the smaller size.

List size mismatch.

007730

Incorrect syntax for BEGIN-SELECT ... FROM. Options
are: FROM ROWSETS=... FROM PARAMETER= $strvar
| strit

Bad begin-select syntax.

007732

Attempt to use a scalar SQR variable ('01') to
reference a ROWSET procedure parameter ('02').
Use either the keyword 'NULL', or an SQR LIST
variable (%var). Verify the query metadata.

Bad proc parameter.

007733

The list of keywords entered to the PARAMETERS
keyword must be terminated with a semicolon.

Bad proc parameter. Correct the source code.

007734

Datasource '01' not found. The Connection being
used by this query specifies a datasource which is
not listed in the DDO Registry ('02'). DETAILS: " 03.

Bad proc parameter. Correct the source code.

007735

Missing one or more DDO {fname} .jar files. Verify
the location of the original-installation files, and that
they are accessible. Error code: ~01. Classpath:
*02.

Bad environment.

007736

Unable to open Connection ('01') to datasource
('02"). Possible causes: (a) the Declare- or Alter-
connection specification is invalid, or (b) the

datasource is no longer available. DETAILS: " 03.

Bad environment.

007738

At least one JNI method pointer was lost. This should
never occur: record the steps leading up to this
failure, and contact Technical Support. DETAILS:
Schema='"01", Proc=""02".

Bad environment.

007739

Unable to locate query object '~ 01' in the specified
schema ("~ 02). DETAILS: " 03.

Bad environment.

007740

Invalid &pseudonym or 'TYPE=' data-type specified
for a begin-select column-variable. Valid types are:
CHAR, TEXT, DATE, NUMBER, BINARY.

Correct the syntax.

007741

lllegal attempt to fetch a non-scalar field into a
column variable. Correct the query.

Correct the syntax.

007742

The output parameter specified in 'Begin-Select ...
From Parameter = “01' is not available. Available
parameters: ~02.

Bad command.

007743

The output parameter specified in 'Begin-Select ...
From Parameter = "~ 01" is not of type ROWSET. Verify
the query metadata.

Bad command.

007744

lllegal attempt to assign an SQR variable ('01') of
type '02' the value from a DDO object ('03') of type
'04". Verify the query metadata.

Bad var assignment.

Numbered Messages

409

Error Number

Error Message

Suggestion/Interpretation

007745 lllegal attempt to assign an SQR column variable Bad var assignment.
('01') of type '02' the value from a DDO object of
type '03'. Verify the query metadata.
007746 Failed to locate the requested Rowset (* 01) while Not enough RowSets.
processing the query. The last available Rowset
number is ~02. Verify the query metadata.
007747 The query raised a DDO exception. DETAILS: "01. Bad query.
007748 A BEGIN-SELECT paragraph was coded, but the No data warning.
query returned no Rows.
007749 Invalid syntax for PARAMETERS=(...) statement. Use: | Incorrect syntax.
PARAMETERS=(%v | $v | #v | &v | NULL | SKIP |
numlit | datelit | textlit [IN | INOUT], ...) All
parameters must be specified. Optional parameters
which are to be ignored may be specified by the
keyword 'NULL' or 'SKIP'". Correct the syntax.
007750 FATAL: Failure creating Java object. General failure.
007751 Attempt to create a List variable of size greater than | General failure.
the maximum size of ~ 01 items.
007753 Attempt to access List-row (* 01) beyond the List size | Bad list assignment/setup.
(* 02 rows).
007754 Attempt to assign/modify a List row is not Bad list assignment/setup.
compatible with the List definition.
007755 Attempt to assign a row to a non-existant List Bad list assignment/setup.
variable. Define the List first, using the syntax: let %
Iname[size] = list(NUMBER | DATE | TEXT #var |
$var[, ...])
007756 Incorrect syntax for List-variable reference. Use: let | Bad list assignment/setup.
[$ | #]var = %listname[nlit | #var].colname
007757 Alter-connection statement missing 'DSN=...". Improper alter-conn.
007758 List-definition size specifier must be literal. Improper alter-conn.
007759 Attempt to access a non-existent List-column ('01'). | No such list column name.
007760 Must specify one of the keywords, FROM-ROWSETS | Incorrect syntax for Load-lookup.
or FROM_PARAMETER.
007761 Incorrect syntax to Load-lookup 'PARAMETERS=' Incorrect syntax for Load-lookup.
keyword. Use: PARAMETERS=(slit | nlit | $var | #var
| %var | &var, ...) No line wrapping is allowed for
this usage.
007762 Too many parameters (~ 02) entered to Load-Lookup | Incorrect syntax for Load-lookup.

command. Max parameters is ~01.

410 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

007763 Problem executing the cursor for LOAD-LOOKUP The database server returned an error while trying to execute the

table '~ 01'. DETAILS: " 02. SQL statement needed to process the LOAD-LOOKUP command.
“01 = Load lookup table name

007764 Bad return fetching row from database in LOAD- The database server returned an error while fetching the data. “ 01
LOOKUP table '"01'. DETAILS: " 02 = Load lookup table name

007765 DC, DI sort options not supported with this SQR Database sort not supported for Load-Lookup with DDO.
version. To sort, use SORT=SC or SORT=SI.

007766 Must specify a query keyword; PROCEDURE=, Incorrect syntax for Load-lookup. Specify a keyword representing
COMMAND= or GETDATA=. the query.

007767 Unknown column variable type. Unknown data type returned by the server.

007768 The property “01" was not found in the property Verify the metadata and correct the syntax.
sheet for the specified datasource ("~ 02). Available
property names are: "~ 03. The datasource property
sheet does not include the named property.

007771 Did not find value after '" 01 =' The code specified a Connection = keyword, but no matching

literal. Correct the syntax.

007774 Invalid attempt to establish a second connection to | Duplicate logins specified as not allowed. Correct the source code,
datasource '~ 02', using Connection '~ 01'. The declare a new Connection, or omit the use of no-duplicate in the
Connection ' 01'is declared to allow only one active | subject Connection
login (no-duplicate=TRUE).

007775 Bad value ('*01') for Alter-connection keyword Bad keyword value. Refer to the language reference and correct
(*02). valid values are: ~03. the syntax.

007778 Datasource login not available. Connection non-existant. Correct the source. Possible causes: No

BEGIN-EXECUTE statement.

007779 Unable to verify ResultSet column types due to use | Can't verify colvar types with variable entry; use literals or define
of variable. Variables are not allowed either for column types. Correct the source.
CONNECTION, SCHEMA, PROCEDURE, From-

Parameter, or the first element of the From-Rowsets.
Use literals or define column types using
'type=<datatype>'.

007780 Unable to verify ResultSet column types. Must Can't verify colvar types with for COMMAND, GETDATA or from
specify column types using 'type=CHAR | NUMBER | [TABLES]. Use type=<datatype> on select variables. Correct the
| DATE' construct when selecting from datasources | source.
which do not supply metadata, or when using the
COMMAND= and GETDATA= keywords.

007781 Unable to log onto datasource to obtain query Must declare a complete connection if use early binding of select
metadata. Specify the Connection for this query column variables.
using a complete Declare-Connection statement, or
specify type=<datatype> for each column variable in
the Begin-Select.

007783 Could not execute SQL. An error occurred while trying to compile the SQL statement.

DETAILS: "01

Correct the SQL statement or use the ON-ERROR= option to trap
the error during the program run.

Numbered Messages 411

Error Number

Error Message

Suggestion/Interpretation

007784 Bad CONNECTION specification ('~ 01'). The OLAP-related members of the named CONNECTION could not
. . . be processed, either due to syntax or no such name.
Possible causes: Syntax error, Dimension name not
found, Dimension attributes not found, Dimension
name not found in Begin-Select list. DETAILS: ~ 02
007785 The column specified ('~ 01') is ambiguous. It A column specified in the query appears multiple times in the data.
appears more than once in the data. Change the query to avoid that column, or rename the column in
the data.
01 = The column name
007786 Column (' 01') not found. A column specified in the query was not found in the data.
01 = The column name
007787 Unsupported datatype (‘" 02') found in column A column specified in the query contained values which are not
("~ 01"). Only Text, Numeric, and Date are currently | currently supported. Change the query to use a different column.
supported. *01 = The column name
02 = The unsupported datatype
007789 The query is improperly specified. The result would | The columns specified in the query are found in different branches
involve a Cartesian Join which is not currently of a heirarchical tree in the data. Computing result rows would
supported. Rewrite the query to involve only columns | require a Cartesian Join, which is not currently supported. Rewrite
in the same branch of the tree. the query to involve only columns on the same branch of the tree.
007790 Must specify PROCEDURE= to use PARAMETERS=in | Parameters may only be specified for PROCEDURE queries, not for
BEGIN-EXECUTE. COMMAND or GETDATA queries. Remove the PARAMETERS= line,
or specify PROCEDURE= instead.
007791 Unable to locate one or more JAVA classes in the Verify that the original installation files are not corrupted.
DDO JAR file.
007792 Unable to locate one or more JAVA methods in the | Verify that the original installation files are not corrupted.
DDO JAR file.
007793 An incompatible version of the DDO JAR file was Verify that the original installation files are not corrupted.

found.

Table 100 Numbered Messages 008000 to 009999

Error Number

Error Message

Suggestion/Interpretation

008000 Delay not appropriate for database columns or literals. The DELAY argument to the PRINT command can only be
used with SQR #variables or $variables.

008001 The width must also be specified when DELAY is used. The DELAY argument to the PRINT command requires that
the width argument be specified.

008003 The SET-PRINT-DELAY command cannotfind a pending PRINT | An attempt was made to process an SET-DELAY-PRINT

DELAYstatement. command against an SQR variable for which there was no

pending PRINT DELAY statement.

008004 The PRINT DELAY statement did not have an SET-PRINT- This PRINT DELAY statement did not have an SET-DELAY-

DELAY command executed against it.

PRINT command executed against it when SQR ended its
run.

412 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

008005 The variable (01" 02) was referenced by a PRINT DELAY The referenced variable was used with a PRINT DELAY
statement but the SQR program does not contain a matching | statement but the SQR program did not contain a SET-
SET-PRINT-DELAY command. PRINT-DELAY command for that variable.

008006 The variable (" 01" 02) was referenced by a SET-PRINT- The referenced variable was used with a SET-PRINT-DELAY
DELAY command but the SQR program does not contain a command but the SQR program did not contain a PRINT
matching PRINT DELAY statement. DELAY statement for that variable.

008101 The specified MODE value ' 01' is not legal. Legal values are | The MODE= qualifier values are ON or OFF.

ON" or "OFF" *01 = Invalid value

008102 At least one qualifier must be specified. Correct the source line.

008200 The specified color ('~ 01') is not defined. The specified color is not defined in the color map.
“01 = Undefined color

008201 Qualifier '~ 01' has a malformed color reference. The specified color reference is not properly formed. It can
reference a single string literal, column, or variable (i.e.
($name)) or it can reference three numeric literals,
columns, or variables (i.e. (10,20,30)) which represent
the Red, Green, and Blue components of the color.

008202 Qualifier '~ 01' must reference SQR variables only. The specified color reference is not properly formed. It can

reference a single string variable (i.e. ($name)) or it can
reference three numeric variables (i.e. (#R,#G,#B)) which
represent the Red, Green, and Blue components of the
color.

008203 Invalid RGB value (" 01,02, 03) The RGB values are out of range. Each value can be from

0 to 255.

“01 = Red value
“02 = Green value
“03 = Blue value

008204 At least one qualifier must be specified. Correct the source line.

008205 The Declare-Color-Map entry is not properly defined. The Declare-Color-Map is not properly defined:

1) The color name can only contain characters [0-9 A-Z _
]

2) The color name cannot be 'none’

3) The RGB values are not valid (each can be 0 to 255)

008206 Duplicate palette name: ~01 Change the name of the palette.

“01 = Palette name in question
008207 The name can only contain characters [0-9 A-Z _ -]. Correct the syntax.
008208 The palette cannot have gaps. All colors up to the highest An SQR palette cannot have gaps. Correct the source

one defined (*01) must be specified.

code.

“01 = Highest color defined for this palette

Numbered Messages 413

Error Number

Error Message

Suggestion/Interpretation

008209 The specified palette (*01) does not exist. Change the name of the palette.
“01 = Palette name in question
008300 For font (" 01) the specified typeface ("~ 02) is not legal. Correct the name of the CJK typeface
"01 =Fontid
02 = Typeface name
008301 Forfont (" 01) the specified character map ("~ 02) is not legal. | Correct the name of the CJK character map
"01 = Fontid
*02 = Character map name
008302 For font (" 01) both a typeface and character map must be | If a CJK typeface is specified with a font then a character
specified. map must also be specified.
“01 =Fontid
008304 The current report encoding ("~ 01) requires that a typeface | PDF support requires that a proper typeface and character
and a character map be specified with each font. map be associated with a font in order to generate a PDF
file with the following output encodings:
e Simplified Chinese: EUC-CN, GBK (CP936), UCS-2
e Traditional Chinese: EUC-TW, BIG5, USC-2
e Korean: EUC-KR, UHC (Johab), UCS-2
e Japanese: EUC-JP, Shift-JIS, 1ISO-2022-JP, UCS-2
008305 For font (" 01) the encoding (~ 02) is incompatible with the | The encoding for the current font is incompatible with the
report output encoding (" 03). encoding used for the PDF file.
“01 =Fontid
“02 = Font encoding
" 03 = Report output encoding
008400 The table name (" 01) can only contain the following The specified table name contains invalid characters.
characters [0-9 A-Z _ -]. “01 = Table name
008401 The table name (~ 01) is already being used. The specified table name is already being used.
“01 =Table name
008402 The table definition (" 01) is already being used. The specified table definition is already being used.
“01 = Table definition name
0008403 The table definition (*01) does not exist. The specified table definition does not exist.
“01 = Table definition name
008404 The table (* 01) does not exist. The specified table does not exist.
“01 = Table name
008405 No table definition name was specified. Correct the source line.
008406 When ACTION=ERASE no other parameters are allowed. Correct the source line.

414 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

008407 When ACTION=INFO only the ROW and COUNT parameters Correct the source line.
are allowed. At least one must be specified.
008408 When ACTION=GET only the following combination of Correct the source line.
parameters are allowed:
® ARRAY with optional ROW and COUNT
o VALUES with optional ROW
008409 When ACTION=REPLACE only the following combination of Correct the source line.
parameters are allowed:
o ARRAY with optional FIRST, ROW and COUNT
o BLANK with optional ROW and COUNT
o VALUES with optional ROW
008410 When ACTION=INSERT only the following combination of Correct the source line.
parameters are allowed:
o ARRAY with optional MODE, FIRST, ROW and COUNT
o BLANK with optional MODE, ROW and COUNT
® VALUES with optional MODE and ROW
008411 When ACTION=DELETE only the ROW and COUNT parameters | Correct the source line.
are allowed.
008412 When ACTION=APPEND only the following combination of Correct the source line.
parameters are allowed:
® ARRAY with optional FIRST, and COUNT
o BLANK with optional COUNT VALUES
008413 Qualifier '~ 01' requires a numeric variable. Correct the source line.
008414 The value for '~ 01' (" 02) must be “03 ~04 and “05 “06. | Correct the source line.
“01 = Qualifer name
“02 = Value
*03 = Minimum value relation
“04 = Minimum value
“05 = Maximum value relation
“06 = Maximum value
008415 The first argument in '~ 01' must be the column number (>= | Correct the source line.
0and <= "02) *01 = Qualifier name
*02 = Maximum value
008416 The specified column number (" 01) exceeds the number of | Correct the source line.
columns for this table as specified by the COLUMN-COUNT | .
o 01 = Column number
qualifier.
008417 The specified column number (" 01) has already been Correct the source line.

defined by another ~ 02 qualifier.

Numbered Messages

415

Error Number

Error Message

Suggestion/Interpretation

“01 = Column number

“02 = Qualifier name

008418 Incorrect value (" 01) for qualifier '~ 02'. Valid values are: Correct the source line.
“01 = Value
“02 = Qualifier name
008419 Unknown keyword (" 01) for qualifier '~ 02'. Valid keywords | Correct the source line.
are: *01 = Value
02 = Qualifier name
008420 Incorrect value (" 01) for qualifier'” 02'. It must be an integer | Correct the source line.
value > 0. 01 = Value
“02 = Qualifier name
008421 Incorrect value (* 01) for qualifier'” 02'. It must be a numeric | Correct the source line.
>
value > 0. 01 = Value
02 = Qualifier name
008422 Incorrect value (" 01) for qualifier '~ 02'. It must be a string | Correct the source line.
literal. “01 = Value
02 = Qualifier name
008423 Incorrect value (* 01) for qualifier'” 02'. It must be either YES | Correct the source line.
or NO. *01 = Value
“02 = Qualifier name
008424 Incorrect value (~ 01) for qualifier '~ 02'. It must be either Correct the source line.
YES, NO, or the number of lines. N
01 = Value
02 = Qualifier name
008425 Qualifier '~ 01" has already been defined. Correct the source line.
“01 = Qualifier name
“02 = List Keyword
008426 There are TABLE-FORMAT entries for column numbers which | Correct the source line.
exceed the number of columns as defined by the COLUMN-
COUNT qualifier.
008427 The value for SIZE= (" 01) must be > 0. Correct the source line.
008428 The value for EXTENT= (" 01) must be > 0. Correct the source line.
008429 Encountered an invalid VALUES= argument. Legal aruments | Correct the source line.

types are $Variable and #Variable.

416 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

008430 Encountered an invalid (*01) VALUES= argument. Legal Correct the source line.
argumgnttypes are $Variable, #Variable, &Variable, 'Literal', | . 01 = List contents
Numerics, and the word NULL.
008431 The type of VALUES= parameter ("~ 01) is not compatible with | The VALUES= parameter type is not compatible with the
the corresponding table column (" 02) defined as ' 03'. corresponding TABLE column type.
“01 = VALUES parameter
02 =Table column number
03 = Table column type
008432 The number of parameters in the VALUES= list exceeds the | The number of parameters in the VALUES= list exceeds
number of columns (~01) for table (* 02). the number of columns defined in the table.
“01 = Table column count
"02 =Table name
008433 The value for MODE= (" 01) must be either BEFORE or AFTER. | Correct the source line.
008434 Cannot perform GET because the specified table (*01) is The ACTION=GET option cannot be used against an empty
empty. table.
"01 =Table name
008435 The number of columns (" 01) defined for array (" 02) does | The number of columns defined for the specified array
not match the number of columns (* 03) defined for table must be the same as the number of columns defined for
(" 04). the specified table.
“01 = Array column count
“02 = Array name
" 03 =Table column count
04 =Table name
008436 Column type mismatch in column (" 01): Array (*02) is The column types for the specified array must be
defined as (*03) and Table (" 04) is defined as ("~ 05) compatible with the columns types for the specified table.
“01 = Column number
“02 = Array name
03 = Array column type
04 =Table name
05 = Table column type
008437 Cannot perform GET from table (*01) for ~ 02 rows because | The ACTION=GET option cannot be used to increase the
the array ("~ 03) can only support (" 04) rows. size of array.
"01 =Table name
02 =Table rows
“03 = Array name
" 04 = Array size
8600 Binary variables (" 01) cannot be used with this command. | Correct the source syntax.

*01 = Variable name

Numbered Messages 417

Error Number | Error Message Suggestion/Interpretation
8601 The use of an edit mask or the keywords NUMBER, MONEY | Correct the source code.
or DATE is not legal when storing numeric or binary variables.
8602 Binary variables (*01) cannot be used in BEGIN-SQL or Correct the source code.
BEGIN-SELECT paragraphs. “01 = Variable name

8603 The use of an edit mask is not legal with binary variables. Correct the source code.

8604 All variables must be binary if one variable is binary. Correct the source code.

8605 COMPAR: Unknown relational (binary) operator. Internal error that should never occur during normal
operations. Record the steps leading up to the error and
contact customer support.

8606 Incorrect relational operator for binary variables. Only =and ! | Correct the source code.

= allowed.

8607 The ENCODING qualifier is not allowed when the record type | Correct the source code.

is binary.

8608 The record type of the file is not binary. Files must be opened for BINARY access when binary
variables are used. Correct the program logic.

8609 The CODE-PRINTER qualifier is required when binary The CODE-PRINTER qualifier is required to PRINT binary

variables are used. variables. Correct the source code.

8610 Function or operator '~ 01' requires binary argument. Correct the source line.

“01 = Function or operator

8611 Function or operator '~ 01' does not support binary Correct the source line.

arguments. “01 = Operator

8612 Function or operator '" 01' must be a binary or string Correct the source line.

argument. “01 = Function or operator

8613 Qualifier '~ 01' requires a binary literal. Correct the source line.

“01 = Qualifier name
8614 Qualifier '~ 01' requires a binary literal, variable, or column. | Correct the source line.
“01 = Qualifier name

8615 Qualifier '~ 01" requires a binary or string literal, variable, or | Correct the source line.

column. “01 = Qualifier name

8616 Error creating the image: '~ 01" SQR aborts the program run.

(02): “03 *01 = Image file name
" 02 = System error code
03 = System error message
8617 Error closing the image: '~ 01". SQR aborts the program run.
(02):°03 *01 = Image file name

418 Production Reporting Messages

Error Number

Error Message

Suggestion/Interpretation

" 02 = System error code

" 03 = System error message

8618 Error writing the image: ' 01" SQR aborts the program run.
(02): “03 “01 = Image file name
" 02 = System error code
03 = System error message
8619 Error opening the image: '~ 01". SQR aborts the program run.
(02): “03 “01 = Image file name
" 02 = System error code
03 = System error message
8620 Error reading the image: '~ 01" SQR aborts the program run.
(02): “03 *01 = Image file name
" 02 = System error code
03 = System error message
8621 The SQR compression logic failed, reason ~01. The SQR compression logic failed while compressing an
image.
“01 = Reason code
8622 The SQR decompression logic failed, reason ~01. The SQR decompression logic failed while decompressing
an image.
“01 = Reason code
8623 The embedded BMP image is not valid, reason ~01. (Windows) The embedded bitmap image is not valid.
“01 = Reason code
009999 The printer (" 01) specified with the -Printer:WP command (Windows) The specified printer is not valid.

line flag is invalid.

Numbered Messages 419

420 Production Reporting Messages

Production Reporting Language
Quick Reference

Table 101 Production Reporting Commands

COMMAND SYNTAX
ADD {src_num lit|_var|_col} TO dst_num var [ROUND=nn]
ALTER-COLOR-MAP NAME={color_name lit|_var|_col}

VALUE= ({color _name lit|_var|_col}|{rgh})

ALTER-CONNECTION NAME=connection name

[DSN=or [USER=0r [PASSWORD={ug_txt_lit|_var}]
[PARAMETERS=keyword str=attr_ str;

[, keyword str=attr _str;...]]

[NO-DUPLICATE=TRUE | FALSE]

SET-GENERATIONS= ([{dimensionl, hierarchyl}

[,dimensioni, hierarchyi] ...1)

SET-LEVELS=([{dimensionl, levell} [,dimensioni, leveli] ...1)
SET-MEMBERS= ([{dimensionl, levell} [,dimensioni, leveli] ...1)

ALTER-LOCALE [LOCALE=or [NUMBER-EDIT-MASK=or [MONEY-EDIT-MASK=

or [DATE-EDIT-MASK=or [INPUT-DATE-EDIT-MASK=or [MONEY-SIGN=
{txt_lit|_var|DEFAULT|SYSTEM}]
[MONEY-SIGN-LOCATION={ txt_var |DEFAULT|SYSTEM|LEFT|RIGHT}]
[THOUSAND-SEPARATOR=0r [DECIMAL-SEPARATOR= or
[DATE-SEPARATOR=0r [TIME- SEPARATOR=

or [EDIT-OPTION-NA, AM, PM, BC, AD=
{txt_lit|_var|DEFAULT|SYSTEM}]

[DAY-OF-WEEK-CASE= or [MONTHS-CASE=
{txt_var|DEFAULT | SYSTEM | UPPER | LOWER | EDIT | NO-CHANGE}]
[DAY-OF-WEEK-FULL= or [DAY-OF-WEEK-SHORT=
({txt_1itl|_varl}...{txt_1it7| _var7})]

[MONTHS-FULL= or [MONTHS-SHORT=
({txt_1itl|_varl}...{txt_1itl2|_varl2})]

ALTER-PRINTER [POINT-SIZE={point_size num 1lit | _var}]
[FONT-TYPE={ font_type| txt_var}]
[SYMBOL-SET={symbol_set_id|txt_var}]
[FONT={ font_int_lit|_var}]

[

PITCH={pitch num lit|_var}]

ALTER-REPORT HEADING={heading name_txt_lit|_var|_col]
HEADING-SIZE={heading size_int_ lit|_var|_col]
FOOTING={footing name txt_lit|_var|_col]
FOOTING-SIZE={footing size_ int lit|_var|_col}]
PDF-APPEARANCE= (appearance_lit|_var|_col)]

[
[
[
[
[
[PDF-INFORMATION= (information_ lit|_var|_col, value_lit|_var|_col

421

COMMAND SYNTAX

[,information lit|_var|_col, value lit|_var|_col]l...)]
[PDF-OPEN-ACTION= (openaction lit|_var|_col, [,name _lit|_var|
_col,value lit|_var|_col]l...)]

[PDF-PAGE-TRANSITION= (transition_lit|_var| _col, duration_lit|
_var|_col)]

[PDF-SECURITY= (security lit|_var|_col, value lit|_var|_col
[,security 1lit|_var|_col, value_ lit|_var|_col]l...)]
[PDF-VIEWER-PREFERENCE= (preference _lit|_var|_col, value lit|_var|
_coll,preference 1lit|_var| _col, value lit|_var|_coll...)]

ALTER-TABLE NAME=table_name_var|_lit|_col

ACTION=action_lit

[COUNT=count_var|_lit|_col]

[ROW=row_var|_lit|_col]

[ATTRIBUTES= ({ keywordl}, {valuel}, ..., {keywordn}, {valuen})]

ARRAY-ADD {src_num lit|_var|_col}...TO
dst_array name (element_lit|_var|_col)
[field[(occurs_lit|_var|_col)]]...

ARRAY-DIVIDE {src_num lit|_var|_col}...INTO
dst_array name (element_int lit|_var|_col)
[field [(occurs_lit|_var|_col)]]...

ARRAY-MULTIPLY {src_num lit|_var|_col}...TIMES
dst_array name (element_int_lit|_var|_col)
[field [(occurs_lit|_var|_col)]ll...

ARRAY-SUBTRACT {src_num lit|_var|_col}...FROM
dst_array name (element_int_lit|_var|_col)
[field [(occurs_lit|_var|_col)]]...

ASK substitution_variable [prompt]

BEGIN-DOCUMENT {position}
END-DOCUMENT

BEGIN-EXECUTE [CONNECTION=uqg txt_Ilit]

[ON-ERROR=sqr._procedurel (argll,argil...) 1]

[RSV=num_var]

[STATUS=1ist_var|num_var|txt_var]

[PROPERTIES= ({key txt_lit|_var}={{value txt_lit|_var|_col} |
{num_lit| _var|_col},...)]

[SCHEMA={txt_lit|_var}]

[PROCEDURE={ txt_lit|_var}

[PARAMETERS= ({{argl [IN|INOUT]}|NULL} [[,argi [IN|INOUT]] |
NULL] ...)]

(or)

COMMAND={ txt_Ilit|_var}

(or)

GETDATA={txt_lit|_var}]

[BEGIN-SELECT [BEFORE=sqgr._procedurel (argll,argil...)]]
[AFTER=sqr_procedurel (argll,argi]...)11]

col-name TYPE= CHAR|TEXT|NUMBER|DATE [edit-mask] [on-break]..
[{FROM ROWSETS=({m|m-n|m-|-n} [,...]1}|{ALL})}|

422 Production Reporting Language Quick Reference

COMMAND

SYNTAX

{FROM PARAMETER={txt_lit|_var}}
{FROM {table name}}]

END-SELECT]

END-EXECUTE

BEGIN-FOOTING

footing lines_int_1it

[FOR-REPORTS= (report_namel|[, report_namei] ...)]
[FOR-TOCS= (toc_namell[, toc_namei] ...)]

[NAME={ footing_ name}]

END-FOOTING

BEGIN-HEADING

heading lines_int_1it

[FOR-REPORTS= (report_namel|[, report_namei] ...)]
[FOR-TOCS= (toc_namel[, toc_namei] ...)]

[NAME={ heading_ name}]

END-HEADING

BEGIN-PROCEDURE

procedure_name [LOCAL| (argl [, argil...)]
END-PROCEDURE

BEGIN-PROGRAM

END-PROGRAM

BEGIN-SELECT

[DISTINCT] [-Cnn] [-Bnn] [-XP] [-NR] [-SORTnn]
[-LOCK{RR|CS|RO|RL|XX}] [-DBdatabase]
[-DBconnectionstring]

[LOOPS=nn] [ON-ERROR=procedurel (argll,argil...) 1]
{column} [&synonym]
{expression &synonym}

[Scolumnname] &synonym=(char|number|date)}

[sgr_commands]

FROM {table, ...|[table:$tablename]}
[additional SQL]
[Svariable]
END-SELECT
BEGIN-SETUP END-SETUP
BEGIN-SQL [-Cnn] [-XP] [-NR] [-SORTnn]
[-LOCK{RR|CS|RO|RL|XX}]
[-DBdatabase] [-DBconnectionstring]
[ON-ERROR=procedurel[(argl[,argi]...)] (non-SETUP) |
[ON-ERROR={ STOP | WARN | SKIP}] (inSETUP)
END-SQL
BREAK BREAK
CALL subroutine USING
{src_txt_lit|_var|_col}|{src_num lit|_var|_col}
{dst_txt_var|_num var} [param]
CALL SYSTEM Same as CALL
CLEAR-ARRAY NAME=array._name
CLOSE {filenum lit|_var|_col}

423

COMMAND

SYNTAX

CLOSE-RS NAME=row_set_name var|_lit|_col

COLUMNS {int_lit|_var|_col}[int_lit|_var|_col]...

COMMIT COMMIT

CONCAT {src_any lit|_var|_col} WITH dst_txt_var[[:$]edit_mask]
CONNECT {txt_1it|_var|_col} [ON-ERROR=procedurel (argl [, argil...)]]
CREATE-ARRAY NAME=array_name SIZE=nn

[EXTENT=nn]
{FIELD=name: typel : occurs]
[={init_value txt 1it|_num lit|_binary 1it}1}...

CREATE-COLOR-PALETTE

NAME={palette name_txt_1it}
COLOR_1={rgb}

COLOR_2={rgb}
[COLOR_n]={rgb}

CREATE-LIST

NAME=1ist name_ txt_lit|_var|_col
LIST=(value_lit|var|_col|(r,g,b)...)

CREATE-TABLE

NAME=table name var|_lit|_col
USING=table template var|_lit|_col
[COLUMN-COUNT=number_of_columns _var|_lit|_coll]
[COLUMN-ATTRIBUTES= ({ column—number} , { keywordl}, {valuel}, ...,
{keywordn}, {valuen})]
[ROW-ATTRIBUTES= ({ keywordl}, {valuel}, ...,
[TABLE-ATTRIBUTES= ({ keywordl}, {valuel},

{keywordn}, {valuen})]
., {keywordn}, {valuen})]

#DEBUG

[x...]

sqr._command

DECLARE-CHART

chart_name
Type=chart_type 1it]
CHART-SIZE= (chart_width_int_lit,chart_depth int_1it)]
TITLE=title txt_1lit]
SUB-TITLE=subtitle txt_ 1it]
FILL=fil11_ 1it]
3D-EFFECTS=3d _effects_1it]
BORDER=border 1it]
COLOR-PALETTE=color _palette 1it]
POINT-MARKERS=point_markers_1lit]
ATTRIBUTES={selector_lit]|
LIST: {selector_list_name_lit| (selector_1it,...)},
{decl _key 1it,{decl_value lit|
LIST:{decl val list name lit| (decl _val 1it, ...
PALETTE: {color_palette_lit}}},..}}]
[DATA-ARRAY=array. name]
[DATA-ARRAY-ROW-COUNT=row_count_num 1it]
[DATA-ARRAY-COLUMN-COUNT= column_count_num 1it]
[DATA-ARRAY-COLUMN-LABELS={NONE | array_name| (txt_1it, ...
[
[
[

[
[
[
[
[
[
[
[
[
[

DATA-LABELS=data_labels 1it]
FOOTER-TEXT=NONE | text_1it]
SUB-FOOTER-TEXT=NONE | text_1it]

424 Production Reporting Language Quick Reference

COMMAND

SYNTAX

ITEM-COLOR= (chart_item keyword lit, color value lit|(r,g,b)]
ITEM-SIZE={item size keyword keyword 1lit, item size num 1it}]
LEGEND=1egend_ 1it]

LEGEND-TITLE=1egend title txt_1it]

LEGEND-PLACEMENT=1egend _placement_1lit]

LEGEND-PRESENTATION= Iegend presentation 1lit]
PIE-SEGMENT-QUANTITY-DISPLAY=pie segment_quantity _display 1it]
PIE-SEGMENT-PERCENT-DISPLAY=pie segment_percent_display 1it]
PIE-SEGMENT-EXPLODE=pie segment_explode_lit]

X-AXIS-GRID=x axis_grid 1it]

X-AXIS-LABEL=x axis_label txt_1it]

X-AXIS-MIN-VALUE={x axis min value lit | _num 11it}]
X-AXIS-MAX-VALUE={x_axis max _value_lit|_num 1it}]
X-AXIS-MAJOR-INCREMENT={x axis major_increment_1lit | _num 1it}]
X-AXIS-MINOR-INCREMENT=x axis_minor_increment_num 1it]
X-AXIS-MAJOR-TICK-MARKS=x axis major_tick marks 1it]
X-AXIS-MINOR-TICK-MARKS=x axis minor_tick marks 1it]
X-AXIS-TICK-MARK-PLACEMENT=x_ axis tick mark placement_1lit]
X-AXIS-ROTATE=x rotate num 1it]

X-AXIS-SCALE=x_axis scale_1lit]

Y-AXIS-GRID=y axis_grid 1it]

Y-AXIS-LABEL=y axis label_1it]

Y-AXIS-MASK=mask_ txt_1it]

Y-AXIS-MIN-VALUE={y axis min_value 1lit | _num 1it}]
Y-AXIS-MAX-VALUE={y axis max value 1lit | _num 11it}]
Y-AXIS-MAJOR-INCREMENT={y axis major_increment_1lit | _num 1it}]
Y-AXIS-MINOR-INCREMENT=y axis minor_increment_num 1it]
Y-AXIS-MAJOR-TICK-MARKS=y axis major_tick marks 1it]
Y-AXIS-MINOR-TICK-MARKS=y axis minor_tick marks 1it]
Y-AXIS-TICK-MARK-PLACEMENT=y axis tick mark placement_1lit]
Y-AXIS-SCALE=y axis scale 1lit]

Y2-AXIS-LABEL=y2 axis_label_ 1it]

Y2-AXIS-MASK=mask_ txt_1it]

Y2-AXIS-MIN-VALUE={y2_ axis min value_lit | _num _1it}]
Y2-AXIS-MAX-VALUE={y2_ axis max value_lit | _num 1it}]

=

2-AXIS-MINOR-INCREMENT=y2 axis_minor_increment_num 1it]
Y2-AXIS-MAJOR-TICK-MARKS=y2 axis major._tick _marks 1it]
Y2-AXIS-MINOR-TICK-MARKS=y2 axis minor. tick_marks 1it]
Y2-AXIS-SCALE=y2 axis scale_1it]
Y2-AXIS-COLOR-PALETTE=color _palette_1lit]
Y2-DATA-ARRAY=array. name]
Y2-DATA-ARRAY-ROW-COUNT=row_count_num_1it]
Y2-DATA-ARRAY-COLUMN-COUNT=column_count_num 1it]
Y2-DATA-ARRAY-COLUMN-LABELS={NONE | array name| (txt_I1it,..)}]
Y2-TYPE=chart_type_1lit]

END-DECLARE

e e s e e e Ras e e e e e Ras e R e e e e e R s s e e e il i e e i e e e e i e s i s i e e s e s M)

Y2-AXIS-MAJOR-INCREMENT={y2 axis_major_increment_1lit | _num 1it}]

DECLARE-COLOR-MAP

color_name=({rgb})
color_name=({rgb})

END-DECLARE

425

COMMAND SYNTAX

DECLARE-CONNECTION connection_name

DSN={uqg txt_1lit}

[USER= or [PASSWORD={uqg txt_1it}]
[PARAMETERS=keyword_str=attr_str; [keyword str=attr_str;...]1]
[NO—DUPLICATE=TRUE|FALSE]

SET-GENERATIONS= ({dimensionl, hierarchyl}[,dimensioni,
hierarchyi] ...)

SET-LEVELS= ({dimensionl, levell} [,dimensioni, leveli] ...)
SET-MEMBERS= ({dimensionl, levell} [,dimensioni, leveli] ...)
END-DECLARE

DECLARE-IMAGE image_name
[TYPE=image type 1it]
[IMAGE-SIZE=(width num 1lit,height_num 1it)]
[SOURCE=file name 1it]
[[FOR-PRINTER= ({ POSTSCRIPT | HPLASERJET |

HTML | PDF | WINDOWS | PS |HP |HT | PD | WP},
image type_lit,file name_1it) . . .]
END-DECLARE

DECLARE-LAYOUT DECLARE-LAYOUT layout_name

[PAPER-SIZE= ({paper width num lit[uom],paper_depth num 1it[uom]} |
{paper_name})]

[FORMFEED=form feed 1it]
ORIENTATION=orientation_1lit]

LEFT-MARGIN=Ileft _margin_num 1it[uom]]
TOP-MARGIN=top_margin num_ lit[uom]]
RIGHT-MARGIN=right_margin_num 1it[uom] | LINE-
WIDTH=1ine width num_ lit[uom] |
MAX-COLUMNS=columns_int_1it]

[BOTTOM-MARGIN= bottom margin num 1it[uom] | PAGE-
DEPTH=page_depth_num 1it[uom] |

MAX-LINES=lines int_1it]

[CHAR-WIDTH=char width_num l1it[uom]]
[LINE-HEIGHT=1ine_height_num_ lit[uom]]
END-DECLARE

— = .

DECLARE-PRINTER printer_name

[[TYPE=printer_ type 1it]FOR-REPORTS= (report_namel
[, report_namei]...)]
[INIT-STRING=initialization_string txt_1it]
[RESET-STRING=reset_string txt_1lit]
[COLOR=color_ 1it]

[POINT-SIZE=point_size num 1it]
[FONT-TYPE=font_type_int_1it]
[SYMBOL-SET=symbol_set_id 1it]
[STARTUP-FILE=file name txt_1lit]
[PITCH=pitch num 1it]

[FONT=font_int_1it]

[BEFORE-BOLD=before bold string txt_1it]
[AFTER-BOLD=after. _bold string txt_1it]
END-DECLARE

DECLARE-PROCEDURE [FOR-REPORTS= (report_namell[, report_nameil...)]
[BEFORE-REPORT=procedure_namel (argl[,argil...)]1]

426 Production Reporting Language Quick Reference

COMMAND

SYNTAX

[AFTER-REPORT=procedure_namel (argl([,argil...)]]
[BEFORE-PAGE=procedure_namel (argl[,argil...) 1]
[AFTER-PAGE=procedure_name| (argl[,argil ... 11
END-DECLARE

DECLARE-REPORT

report_name
[TOC=toc_name]
[LAYOUT=1ayout_name]
[PRINTER-TYPE=printer._type]
END-DECLARE

DECLARE-TABLE

NAME=table_template name

COLUMN-COUNT=number._of_columns

[COLUMN-ATTRIBUTES= ({column number}, {keywordl}, {valuel}, ...,
{keywordn}, {valuen})]

[ROW-ATTRIBUTES= ({ keywordl}, {valuel}, ..., {keywordn},{valuen})]
[TABLE-ATTRIBUTES= ({keywordl}, {valuel}, ..., {keywordn},{valuen})]

DECLARE-TOC

toc_name
[FOR-REPORTS= (report_namel |, report_namei] ...)]
[DOT-LEADER=YES |NO]

[INDENTATION=position count_num 1it]
[BEFORE-TOC=procedure_namel[(argl|,argi]...)
[

[

[

[

BEFORE-PAGE=procedure_namel| (argll[,argil...

AFTER-PAGE=procedure_namel (argll,argil...)

ENTRY=procedure-name [(argi [,argi] ...)]]
END-DECLARE

]
AFTER-TOC=procedure_namel (argll,argil...) 1]
)
1

DECLARE-VARIABLE

[DEFAULT-NUMERIC= {DECIMAL[(prec_lit)]|FLOAT|INTEGER}]

[DECIMAL[(prec_1lit) lnum var|[(prec_1lit)] [num var| (prec_1it)]1]...]
[FLOAT num var[num var]...]

[DATE date_var(date_var]...]

[INTEGER num var|[num var]...]

[TEXT string var[string var]...]

[BINARY binary_var|[binary var]...]

END-DECLARE

#DEFINE

substitution_variable value

DISPLAY

{any 1it|_var|_col}
[[:$]edit_mask|NUMBER |MONEY | DATE] [NOLINE]

DIVIDE

{src_num lit|_var|_col} INTO dst_num var
[ON—ERROR={HIGH|ZERO}][ROUNDZHH]

DO

procedure_namel (argl[, argil...)]

DRAW

DRAW {position}

TYPE={type 1lit_|_var|_col}
[HEIGHT={height_lit_|_var|_col}]
[WIDTH={width 1it_|_var|_col}]

[RULE={rule 1it_|_var|_col}]

[FILL COLOR=({color name lit|_var|_col}|{rgh})]
[LINE COLOR= {color name lit|_var|_col}|{rgh})]

427

COMMAND

SYNTAX

[CAP={cap_1lit

[LINE-STYLE={line style lit_|_var|_col}]
[END-POINT=(row_lit

var|_c

ol}]

var|_col, column 1it_|_var|_col)]

DUMP-TABLE NAME=table name var|_lit|_col
[CONTINUATION=continuation var|_lit|_coll

#ELSE #ELSE

ELSE ELSE

ENCODE src_code_string 1it INTO dst_txt_var

END-DECLARE END-DECLARE

END-DOCUMENT

END-DOCUMENT

END-EVALUATE

END-EVALUATE

END-EXECUTE END-EXECUTE
END-FOOTING END-FOOTING
END-HEADING END-HEADING
#END-IF #END-IF
#ENDIF #ENDIF

END-IF END-IF

END-PROCEDURE

END-PROCEDURE

END-PROGRAM END-PROGRAM
END-SELECT END-SELECT
END-SETUP END-SETUP
END-SQL END-SQL
END-WHILE END-WHILE
EVALUATE {any lit|_var|_col}
WHEN comparison_operator {any lit|_var|_col}
sqgr._commands. . .
[BREAK]
[WHEN-OTHER sqr._commands. . .
[BREAK]]
END-EVALUATE
EXECUTE [-XC] [ON-ERROR=procedurel (argll,argil...) 1]

[DO=procedurel (argll,argil...) 1]
{[@fstatus_var=]stored procedure_name} |
{[@Sreturn var=]stored procedure_name}

428 Production Reporting Language Quick Reference

COMMAND

SYNTAX

[[@param=]{any_col|_var|_1lit}[OUTPUT][,...]]

[INTO any. coldata typel (length int_1it)] [,...]1]1[WITH RECOMPILE]
EXIT-SELECT EXIT-SELECT
EXTRACT {dst_txt_var|date var} FROM
{{src_txt_1it|_var|_col}|{src_date var|_col}}
{start_num 1lit|_var}{length num lit|_var}
FILL-TABLE NAME=table_name_var|_lit|_col
VALUE=value var|_lit|_col
LOCATION= (row _var|_lit|_col, column_var|_lit[,length var|_I1it])
[ATTRIBUTES= ({ keywordl}, {valuel}, ..., {keywordn}, {valuen})]
FIND {{obj_txt_1it|_var|_col}|{date_var|_col}} IN
{{src_txt_var|_col}|{date var|_col}}
{start_int_1lit | _var} dst_location int_var
GET dst_any_var...FROM src_array_name(element) [field[(occurs)]]...
GET-COLOR [PRINT-TEXT-FOREGROUND= ({color_name_var})]
[PRINT-TEXT-BACKGROUND= ({color_name_var})]
[PRINT-PAGE-BACKGROUND= ({ color. _name_var})]
[LINE-COLOR=({color _name_var})]
[FILL-COLOR=({color _name_var})]
GOTO label
#IF {txt_lit|num lit}comparison_operator {txt_lit|num 1it}
IF logical_expression
sqgr._commands. . .
[ELSE
sqr._commands. . .]
END-IF
#IFDEF substitution_variable
#IFNDEF
#INCLUDE filename 1it
INPUT input_var[MAXLEN=nn] [prompt]
[TYPE={CHAR | TEXT | NUMBER | INTEGER | DATE}]
[STATUS=num var] [NOPROMPT] [BATCH-MODE]
[FORMAT={txt_Ilit|_var|_col}]
LAST-PAGE position[pre_txt_litl[post_ txt_1it]]
LET dst_var=expression

LOAD-LOOKUP

In the SETUP section:
NAME=I1ookup_table_name
TABLE=database_table_name
KEY=key. column_name
RETURN_VALUE=return_column_name

429

COMMAND SYNTAX

[ROWS=initial row estimate_ int_1lit]
[EXTENT=size to_grow by int I1it]
[WHERE=where clause_ txt_1it]
[SORT=sort_mode]

[QUIET]

[SCHEMA=schema_txt_1it]
[PROCEDURE=proc_txt_1it

[PARAMETERS= ({{argl [IN|INOUT]}|NULL} [[,argi [IN|INOUT]] |
NULL] ...)]
(or)
COMMAND=command_txt_1lit
(or)
GETDATA=getdata_txt_1it]
[{FROM-ROWSETS= ({m|m-n|m-|-n} [,...1}|{ALL})}|

{FROM-PARAMETER=parameter txt_1it}]

In the body of the report:

NAME=I1ookup table_name
TABLE=database_table name

KEY=key_ column_name
RETURN_VALUE=return_column_name
[ROWS=initial row estimate 1lit|_var|_coll]
[EXTENT=size to_grow by lit|_var|_coll]
[WHERE=where_clause_txt_lit|_var|_col]
[SORT=sort_mode]

[QUIET]

[SCHEMA={txt_lit|_var}]

[PROCEDURE={ txt_lit|_var}

[PARAMETERS= ({{argl [IN|INOUT]}|NULL} [[,argi [IN|INOUT]] |
NULL] ...)]
(or)
COMMAND={ txt_Ilit|_var}
(or)
GETDATA={txt_lit|_var}]
[{FROM-ROWSETS= ({m|m-n|m-|-n} [,...1}|{ALL})}|

{FROM-PARAMETER={txt_Ilit |_var} 1]

LOOKUP lookup_table name {key any lit|_var|_col} {ret_txt_var|_date|_var}
LOWERCASE txt_var

MBTOSBS {txt_var}

MOVE {src_any lit|_var|_col} TO dst_any var

[[:$] format_mask|NUMBER | MONEY | DATE]

MULTIPLY {src_num lit|_var|_col} TIMES dst_num var
[ROUND=nn]

NEW-PAGE lerase_from line num 1lit|_var|_col]

NEW-REPORT {report_filename_txt_lit|_var|_col}

430 Production Reporting Language Quick Reference

COMMAND

SYNTAX

NEXT-COLUMN

[AT-END={NEWLINE | NENPAGE}]
[GOTO-TOP={num lit|_var|_col}]
[ERASE-PAGE={num_lit|_var|_col}]

NEXT-LISTING

[NO-ADVANCE
[SKIPLINES={num lit|_var|_col}]
[NEED={num 1it|_var|_col}]

OPEN

{filename lit|_var|_col} AS

{filenum num 1it|_var|_col}
{FOR-READING | FOR-WRITING | FOR-APPEND}

{RECORD=length_num lit[:FIXED|:FIXED _NOLF|:VARY|:BINARY]}]
[STATUS=num var]]
[ENCODING={_var|_col|ASCII|ANSI|SJIS|JEUC|EBCDIC|EBCDIK290 |
EBCDIK1027|UCS-2|UTF-8|others... }]

OPEN-RS

OPEN-RS
NAME=row_set_name var|_lit|_col
FILENAME=file_name var|_Ilit|_col

COLUMN= ({name_var|_1lit|_col},{type var|_lit|_col})

PAGE-NUMBER

position [pre txt_lit[post_txt_1it]]

POSITION position
[@document_marker [COLUMNS {num_lit|_var|_col}
[num 1it|_var|_col]l...]]

PRINT {any_lit|_var|_col} position|format_command

[format_cmd params]...]...

PRINT-BAR-CODE

position

{TYPE={bar_code_type num_lit|_var|_col}}
{HEIGHT={bar code height num lit|_var|_col}}
{TEXT={bar_code_txt_lit|_var|_col}}
[CAPTION={bar_code caption_ txt_lit|_var|_col}]
[CHECKSUM={bar_code_checksum txt_1lit|_var|_col}]

PRINT-CHART

PRINT-CHART [chart_name]position
[TYPE={chart_type txt lit|_var|_col}]
[CHART-SIZE=(chart_width_num lit|_var|_col,
chart_depth_num_lit|_var|_col)]
TITLE={title txt_lit|_var|_col}]
SUB-TITLE={subtitle txt_lit|_var|_col}]
FILL={fi11_txt_1it|_var|_col}]
3D-EFFECTS={3d _effects_txt_1lit|_var|_col}]
BORDER={border txt_lit|_var|_col}]
COLOR-PALETTE=color_palette_lit|_var|_coll]
POINT-MARKERS={point_markers_txt_lit|_var|_col}]
ATTRIBUTES={selector_lit|_var|_col|

— — s

LIST: {selector list name lit|_var|_col| (selector_lit|_var]|

col,...)},{decl _key _1lit|_var|_col, {decl_value_ lit|_var|_col|

LIST:{decl val list name lit|_var|_col| (decl_val_ lit|_var]|

431

COMMAND SYNTAX

_col,...)}]|

PALETTE: {color palette lit|_var| _col}}},...}}]
DATA-ARRAY=array name]
DATA-ARRAY-ROW-COUNT={x_num lit|_var|_col}]
DATA-ARRAY-COLUMN-COUNT={x_num lit|_var|_col}]
DATA-ARRAY-COLUMN-LABELS={NONE | array_name| ({txt_lit|var]|
_col},...)}]
[DATA-LABELS={data_labels txt_lit|_var|_col}]
[FOOTER-TEXT=NONE | text_Ilit|_var|_1it]
[
[

[
[
[
[

SUB-FOOTER-TEXT=NONE | text_lit|_var|_col]
ITEM-COLOR= (item color_keyword|_lit|_var|_col,{color_txt_lit_var|

_col}|(r,g,b))]

[ITEM-SIZE=(item size keyword 1lit|_var|_col, item size num lit|_var]|
_col)]

[LEGEND={legend txt_lit|_var|_col}]

[LEGEND-TITLE={legend title_txt_lit|_var|_col}]

[LEGEND-PLACEMENT={ Ilegend placement_txt_lit|_var|_col}]

[LEGEND-PRESENTATION={legend presentation txt_lit| _var|_col}]]

[PIE-SEGMENT-QUANTITY-DISPLAY={pie segment guantity display txt_ lit|
_var|_col}]

[PIE-SEGMENT-PERCENT DISPLAY={pie segment_ percent_display txt lit|
_var|_col}]

PIE-SEGMENT-EXPLODE={pie segment_explode txt_lit|_var|_col}]
X-AXIS-GRID={x axis_grid txt_lit|_var|_col}]
X-AXIS-LABEL={x axis_label txt_lit|_var|_col}]
X-AXIS-MIN-VALUE={x_axis min value num lit|_var|_col}]
X-AXIS-MAX-VALUE={x_axis max value num lit|_var|_col}]
X-AXIS-MAJOR_INCREMENT={x axis_major_ increment_num lit|_var|_col}]
X-AXIS-MINOR-INCREMENT={x axis_minor increment_num lit| _var|_col}]

[
[
[
[
[
[
[
[X-AXIS-MAJOR-TICK_MARKS={x_axis_major_tick_marks_txt_lit| _var]

_col}]
[X-AXIS-MINOR-TICK-MARKS={x axis minor_ tick marks txt_lit|_var]|
_col}]

X-AXIS-TICK-MARK-PLACEMENT={x axis_tick_mark placement_ txt_1lit |
_var| _col}]

X-AXIS-ROTATE={x num lit|_var|_col}]
X-AXIS-SCALE={x axis_scale_ txt_lit|_var|_col}]
Y-AXIS-GRID={y_axis_grid txt lit|_var|_col}]
Y-AXIS-LABEL={y_axis_label_txt_lit|_var|_col}]
Y-AXIS-MASK={mask_txt_lit|_var|_col}]
Y-AXIS-MIN-VALUE={y_axis min value num lit|_var|_col}]
Y-AXIS-MAX-VALUE={y_axis max value num lit|_var|_col}]
Y-AXIS-MAJOR-INCREMENT={y axis_major_ increment_num lit|_var|_col}]
Y-AXIS-MINOR_INCREMENT={y axis minor_ increment_num lit|_var|_col}]
Y-AXIS-MAJOR-TICK-MARKS={y axis major tick marks_txt_lit|_var|
_col}]

[Y-AXIS-MINOR-TICK-MARKS={y axis minor_ tick marks txt_lit|_var]|
_col}]

[Y-AXIS-TICK-MARK-PLACEMENT={y axis_tick mark placement_txt_1lit |
_var|_col}]

[Y-AXIS-SCALE={y_axis scale txt_lit|_var|_col}]
[Y2-AXIS-LABEL={y2 axis label_ txt_lit|_var|_col}]
[Y2-AXIS-MASK={mask_txt_lit|_var|_col}]
[
[

[
[
[
[
[
[
[
[
[
[

Y2-AXIS-MIN-VALUE={y2_axis_min value_num lit|_var|_col}]
Y2-AXIS-MAX-VALUE={y2_ axis max value num Ilit|_num lit|_var|_col}]

432 Production Reporting Language Quick Reference

COMMAND

SYNTAX

[Y2-AXIS-MAJOR-INCREMENT={y2_axis major_increment_num 1it | _var |
_col}]

[Y2-AXIS-MINOR-INCREMENT={y2 axis minor_increment_num lit|_var|
_col}]
[Y2-AXIS-MAJOR-TICK-MARKS={y2 axis major tick marks_ txt_lit|_var]
_col}]
[Y2-AXIS-MINOR-TICK-MARKS={y2 axis minor_tick_marks_txt_lit|_var|
_col}]

[Y2-AXIS-SCALE={y2 axis_scale_ txt_lit|_var|_col}]
[Y2-COLOR-PALETTE=color palette lit|_var|_coll
[Y2-DATA-ARRAY=array. name]

[Y2-DATA-ARRAY-ROW-COUNT={x_num lit|_var|_col}]
[Y2-DATA-ARRAY-COLUMN-COUNT={x_num lit|_var/|_col}]
[Y2-DATA-ARRAY-COLUMN-LABELS={NONE |array_name| ({txt_lit|_var]
_col},...)}]

[Y2-TYPE={chart_type_txt_lit|_var|_col}]

PRINT-DIRECT [NOLF]
[PRINTER={LINEPRINTER | POSTSCRIPT | HPLASERJET |HTML | LP | PS|HP |HT}]
{txt_lit|_var|_col}...

PRINT-IMAGE [image_name] position
[TYPE={image type lit|_var|_col}]

[IMAGE-SIZE= (width num lit|_var|_col, height_num 1it|_var|_col)]
[SOURCE={file name lit|_var|_col}]
[[FOR-PRINTER= ({ POSTSCRIPT | HPLASERJET | HTML | PDF | WINDOWS |
PS|HP |HT |PD|WP|
printer type lit|_var|_col}, {image_ type lit|_var|_col},
{file name 1it _var|_col})]..]

PRINT-TABLE NAME=table_name_var|_ 1it|_col
[CONTINUATION=continuation var|_lit|_coll]

PUT {src_any lit|_var|_col}...

INTO dst_array._name(element) [field[(occurs)]]...

READ {filenum lit|_var|_col} INTO {any var:length_int_lit}...
[STATUS=status _num var]

ROLLBACK ROLLBACK

SBTOMBS {txt_var}

SECURITY [SET=(sid [,sid]...)]

[APPEND= (sid [,sid]...)]
[REMOVE= (sid [,sid]...)]
[MODE=mode]
SET-COLOR PRINT-TEXT-FOREGROUND= ({color_name_lit|_var|_col|{rgb})]

[
[PRINT-TEXT-BACKGROUND= ({color_name_lit|_var|_col|{rgh})]
[PRINT-PAGE-BACKGROUND= ({color_name_lit|_var|_col|{rgb})]
[LINE-COLOR= ({color _name lit|_var|_col}|{rgh})]
[FILL-COLOR= ({color _name lit|_var|_col}|{rgh})]

SET-DELAY-PRINT

delay var WITH {src_lit|_var|_col}

433

COMMAND SYNTAX

SHOW [cursor_position
[CLEAR-SCREEN | CS |CLEAR-LINE |CL] [any_lit|_var|_col]
[EDIT edit_mask|NUMBER |MONEY |DATE] [BOLD] [BLINK]
[UNDERLINE] [REVERSE] [NORMAL] [BEEP] [NOLINE].. .

STOP [QUIET]

STRING {src_any lit|_var|_col}...

BY {delim txt_lit|_var|_col}

INTO dst_txt_var
SUBTRACT SUBTRACT {src_num lit|_var|_col} FROM dst_num var[ROUND=nn]
TOC-ENTRY TEXT={src_txt_lit|_var|_col}

[LEVEL={level num lit|_var|_col}]
UNSTRING {{src_txt_lit|_var|_col}|{src_date var|_col}}

BY {delim txt_lit|_var|_col}

INTO dst_txt_var...

UPPERCASE txt_var

USE database

USE-COLUMN {column_number int_lit|_var|_col}

USE-PRINTER-TYPE printer-type
See DECLARE-PRINTER for valid types.

USE-PROCEDURE [FOR-REPORTS= (report_namel |, report_namei] ...)]
[BEFORE-REPORT=procedure_namel (argll,argil...)]1]
[AFTER-REPORT=procedure_namel (argll,argil...)]]
[BEFORE-PAGE=procedure_namel (argll,argil...) 1]
[AFTER-PAGE=procedure_name| (argll,argil...) 1]

USE-REPORT {report_name_lit|_var|_col}

WHILE logical_expression
sqgr._commands. . .

[BREAK]
[CONTINUE}
sqgr._commands. . .
END-WHILE

WRITE {filenum 1lit|_var|_col} FROM
{{{ext_lit|_var|_col}|{date_var|_col}| num col}

[:len int 1it|_var|_col}]}|{num lit|_var:len int 1it|_var|_col}}...
[STATUS=status_num var)

WRITE-RS NAME=row_set_name_var|_lit|_col

VALUE= ({name var|_lit|_col},{data_var|_lit|_col})

434 Production Reporting Language Quick Reference

Deprecated Information

In This Appendix

Deprecated Production Reporting Command-line FIags.ovvriiinii e 435
DeEPrecated SQR.INI ENLNES . . ettt ettt ettt e 436
Do (=0t 1 (oo I =0 1) 0 PP 438
Deprecated Production Reporting COMMANASuueie ittt ae e ees 438
BEGIN-REPORT ...ttt ettt et et et ettt ettt e e e et et et e 439
DY PP PP 440
DECLARE PRINTERttt ettt ettt et e ettt et ettt et e et et et et et e e e eaeenns 441
DECLARE PROCEDUREueietttititet et et et et et ettt et e e et et e e ettt e e e e e e e e e e e e es 445
DOLLAR-SYMBOL. . . ettt ettt et e e et ettt a e 446
GRAPHIC BOX ..ttt ettt ettt et ettt ettt ettt et ettt e 448
LT O 0 PPt 449
GRAPHIC HORZ-LINE. .. ettt ettt ettt ettt et et et et et e e e e eeans 450
GRAPHIC VERT-LINE .. ettt ettt et e e e et e et et e e et et ettt et e e e et et et e e et e e e e e e eneens 450
IMONEY-SYMBOL ...ttt ettt ettt ettt et et ettt ettt et e e et et et et et 451
NO-FORMEEED ...ttt ettt et et ettt et et e e et e et et et e e e e aeeans 452
PAGE-SIZE ... e e 453
PRINT LeiCODE ...ttt ettt ettt et ettt e 454
PRINTER-DEINIT L. ettt et ettt e e et et ettt et e et et e et et e et e e e e ae e e aens 454
PRINTER-INIT .ttt ettt ettt ettt et et et et et e et et e et e eaeenns 455

Deprecated Production Reporting Command-line Flags

Table 102 Deprecated Production Reporting Command-line Flags

Flag Description

-EH_FULLHTML:xx | Specifies the level of HTML that your browser supports so appropriate Enhanced HTML code is
generated. Acceptable values for this flag are:

o 40—Generates XHTML 1.1

o 32—Generates HTML 3.2

The following values are deprecated (no longer valid but still accepted for upward compatibility):
e 30—Was used to specify HTML 3.0

o TRUE—Was used to specify HTML 3.2

Deprecated Production Reporting Command-line Flags 435

Flag Description

o FALSE—Was used to specify HTML 3.0

Note: This flag is only applicable when either the -PRINTER:EH or the -PRINTER:EP flag is
specified. Only use this flag when needed. Reports that require this flag should be migrated to
use the XHTML 1.1 generator as soon as possible.

-Mfile Defines a startup file containing sizes to be assigned to various internal parameters—extremely
small, large, or complex reports.

-Mfiles are text files that have individual switches in the INI files unique to a specific run. (See
“Deprecated SQR.INI Entries” on page 436 for more information.)

-PRINTER:HT Uses HTML 2.0 when creating output files.

Deprecated SQR.INI Entries

The following SQR.INI entries are deprecated:
e Values for the FullHTML Keyword in the [Enhanced-HTML] Section
e [Processing-Limits] Section

e Values for PDFCompressionText and PDFCompressionGraphics in the [Default-Settings]
Section

Values for the FullHTML Keyword in the [Enhanced-HTML]
Section

Table 103 lists the deprecated values for the FullHTML keyword. (See “Deprecated Production
Reporting Command-line Flags” on page 4350n page 435 for more information.)

Table 103 Deprecated Values for the FullHTML Keyword

Entry Deprecated Values Description

FullHTML | 3.0—Was used to generate HTML 3.0. Specifies the level of HTML that the browser supports so
TRUE—Was used to generate HTML 3.2. appropriate Enhanced HTML code is generated.

Note: See FullHTML under the “[Enhanced-HTML] Section”
FALSE—Was used to generate HTML 3.0. on page 343 for more information on current values.

[Processing-Limits] Section

Production Reporting has built-in default values as to how much memory to allocate to certain
Production Reporting internal structures. In versions of Production Reporting prior to 8.0, you
were required to specify how much memory to allocate for some of these internal structures.
Starting with version 8.0, Production Reporting automatically adjusts the internal structures
until the architectural limit is reached.

The sizes and limitations of Production Reporting’s internal structures are defined in the
[Processing-Limits] section in SQR.INI. Processing limits will still be supported in this release.

436 Deprecated Information

Unlike previous releases, however, you can only increase the default values (you cannot decrease
them).

The following internal structures will now have their default sizes increased as indicated in
Table 104.

Table 104 Entries for [Processing-Limits] Section

Old New

Entry Default | Default | Maximum Value | Description

BREAKS 100 1024 65535 Number of BREAK arguments allowed per EVALUATE command.

DYNAMICARGS 70 4096 32767 Maximum number of dynamic SQL arguments.

EXPRESSIONSPACE | 8192 65535 | 65535 Maximum length, in bytes, of temporary string storage used during LET
operations.

FORWARDREFS 200 1024 32767 Maximum number of column forward references.

ONBREAKS 30 1024 65535 Maximum number of ON-BREAK LEVEL=values per SET.

POSITIONS 1800 32767 | 65535 Maximum number of placement parameters, "(10,5,30)".

PROGLINEPARS 18000 | 32767 | 65535 Maximum number of arguments for all program lines.

PROGLINES 5000 16384 | 32767 Maximum number of program lines (Production Reporting commands).

QUERIES 60 1024 32767 Maximum number of BEGIN-SQL and BEGIN-SELECT paragraphs.

QUERYARGS 240 4096 65535 Maximum number of arguments (bind variables) for all BEGIN-SQL or
BEGIN-SELECT paragraphs.

SQLSIZE 4000 16384 | 65535 Maximum length of an SQL statement in characters.

STRINGSPACE 15000 | 32767 | 65535 Maximum size of string space for program line arguments, in bytes.

SUBVARS 100 4096 32767 Maximum number of substitution variables.

VARIABLES 1500 16384 | 32767 Maximum number of variables (string, float, integer, decimal, date),
literal values, and database columns.

WHENS 70 1024 65535 Maximum number of WHEN arguments allowed per EVALUATE command.

Note:

The entries in the [Processing-Limits] section are the same as those specified with the -Mfile
command line flag. If the -M£i e command line flag is used, then the [Processing-Limits]
section in SQR.INT is not processed.

Deprecated SQR.INI Entries 437

Values for PDFCompressionText and
PDFCompressionGraphics in the [Default-Settings] Section

The PDFCompressionText and PDFCompressionGraphics settings in the [Default-Settings]
section now appear in the [PDF Settings] section as CompressionText and
CompressionGraphics. See “[PDF Settings] Section” on page 340 for more information.

Table 105 Deprecated Entries in the [Default-Settings] Section

Entry Value | Description
PDFCompressionText 0-9 | Each of these entries specifies the amount of compression to apply. The values range from 0 (no
PDFCompressionGraphics compression) to 9 (maximum compression).

The default value for both is 6, which is the best value for the compression verses speed.

Deprecated Transforms

Table 106 Deprecated Transforms

Transform Description

ToCanonical Transforms Unicode "compatibility characters" to their standard equivalents.

ToTraditionalChinese | Converts all Simplified Chinese characters to their Traditional Chinese equivalent.

ToSimplifiedChinese | Converts all Traditional Chinese characters to their Simplified Chinese equivalent.

Note:

A transform is a function of the LET command. See “Unicode Functions” on page
2100n page 211 for information on the available transforms.

Deprecated Production Reporting Commands

If you still have older Production Reporting commands in your program code, refer to
Table 107 to replace them with their updated alternatives. Even though the commands are
technically supported in this release, they do not interact well with the current Production
Reporting lexicon. Incorporating the deprecated commands into your Production Reporting
code can cause unpredictable results.

Table 107 Deprecated Production Reporting Commands

0ld Commands Use Instead

BEGIN-REPORT (END-REPORT) | BEGIN-PROGRAM (END-PROGRAM)

DATE-TIME datenow function

438 Deprecated Information

0ld Commands Use Instead
DECLARE PRINTER DECLARE-PRINTER
DECLARE PROCEDURE DECLARE-PROCEDURE
DOLLAR-SYMBOL ALTER-LOCALE
GRAPHIC FONT ALTER-PRINTER
GRAPHIC-BOX DRAW
GRAPHIC HORZ-LINE DRAW
GRAPHIC VERT-LINE DRAW
MONEY-SYMBOL ALTER-LOCALE
NO-FORMFEED DECLARE-LAYOUT
PAGE-SIZE DECLARE-LAYOUT
PRINTER-DEINIT DECLARE-PRINTER
PRINTER-INIT DECLARE-PRINTER
PRINT...CODE PRINT...CODE-PRINTER
Note:

Two older commands, DECLARE PRINTER and DECLARE PROCEDURE, do not contain
hyphens. The new commands, DECLARE-PRINTER and DECLARE-PROCEDURE, contain
hyphens.

BEGIN-REPORT

Note:

This command may be discontinued in a future release. We highly recommend that you no

longer use this command. To take advantage of newer Production Reporting functionality, use
BEGIN-PROGRAM.

Function

Begins a report.

Syntax

BEGIN-REPORT

BEGIN-REPORT 439

Description

After processing the commands in the SETUP section, Production Reporting starts program
execution at the BEGIN-REPORT section. The PROGRAM section typically contains a list of DO
commands, though other commands can be used. This is the only required section in an
Production Reporting program.

Examples

begin-report
do startup
do main
do finish
end-report

DATE-TIME

Note:

This command may be discontinued in a future release. We highly recommend that you no
longer use this command. To take advantage of newer Production Reporting functionality, use
the datenow function in the LET command.

Function

Retrieves the current date and/or time from the local machine (or from the database for Oracle
and some DB2 platforms) and places it in the output file at the specified position or into a column
variable.

Syntax

DATE-TIME position [date format[col_var]]

Arguments
position
The position for printing the date.

date format

A string literal containing the date format mask.

col_var

Places the retrieved date-time into a column variable rather than in the output file.

Description

If col_varis specified, a date_format must be supplied and the current date and time is
retrieved each time this command is executed. Otherwise, the date is retrieved only at program
start and the same date and/or time is printed each time.

440 Deprecated Information

If a date_format is not specified, then the date is returned in the default format for that
database.

Table 108 Default Date-Time Formats

Database | Default Date-Time Format

DB2 YYYY-MM-DD-HH:MI
YYYY-MM-DD-HH:MI:SS.NNNNNN

Informix YYYY-MM-DD HH:MI
YYYY-MM-DD HH:MI:SS.NNN

Oracle DD-Mon-YYYY HH:MI PM

Sybase DD-MON-YYYY HH:MI

For some databases, there are two default formats. The first format prints the date-time, as in
the following example:

date-time (+1,1)
The second format retrieves the date-time into a column variable, as follows:

date-time () '' &datel

Obviously, for those databases with only one default format, that format is always used in either
of these cases.

For information on the valid edit mask format codes, see Table 52, “Miscellaneous Functions,”
on page 212.

Examples

date-time ,5
date-time ,1) 'Day Mon DD, YYYY'

(1,50) MM/DD/YY
(1
date-time () HH:MI &time
(+
(#

date-time 1,70) 'MON DD YYYY HH24:MI' &datetime

date-time i, #3j) 'YYYY-MM-DD' &datel

DECLARE PRINTER

Note:

This command may be discontinued in a future release. We highly recommend that you no
longer use this command. To take advantage of newer Production Reporting functionality, use
DECLARE-LAYOUT and DECLARE-PRINTER.

Function

Specifies the printer type and sets printer characteristics.

DECLARE PRINTER 441

Syntax

DECLARE PRINTER
TYPE=printer type 1it]

ORIENTATION=orientation 1it]
LEFT-MARGIN=left _margin num 1it]
TOP-MARGIN=top_margin num 1it]
LINE-SIZE=1ine size num 1it]
CHAR-SIZE=char_size num 1it]
LINES-INCH=1ines inch int_1lit]

POINT-SIZE=point_size num 1it]
FONT-TYPE=font_type_ txt_1it]
SYMBOL-SET=symbol_set_id 1it]
STARTUP-FILE=file name txt_1lit]

FONT=font_int_1it]

BEFORE-BOLD=before bold string txt_1it]
AFTER-BOLD=after bold string txt_1lit]

Arguments

[
[
[
[
[
[
[
[CHARS-INCH=chars_inch num 1it]
[
[
[
[
[
[
[

Table 109 describes the arguments for the DECLARE PRINTER command.

Table 109 DECLARE PRINTER Command Arguments

Argument

Choice or Measure

Default Value

Description

TYPE

LINEPRINTER, POSTSCRIPT, HPLASERJET

LINEPRINTER

Production Reporting creates output specific to each
printer.

LINEPRINTER files generally consist of ASCII
characters and can be viewed by a text editor.

POSTSCRIPT files consist of ASCII characters, but you
need to know PostScript to understand what will be
shown on the printer.

HP Laserjet files are binary files and cannot be edited
or viewed.

ORIENTATION

PORTRAIT, LANDSCAPE

PORTRAIT

Portrait pages are printed vertically.
Landscape pages are printed horizontally.

Printing in landscape on HP Laserjet printers requires
landscape fonts.

LEFT-MARGIN

inches

0.5

This argument does not apply to LINEPRINTER
printers.

This is the amount of blank space to leave at the left
side of the page.

TOP-MARGIN

inches

0.5

This argument does not apply to LINEPRINTER
printers.

This is the amount of blank space to leave at the top
of the page.

LINE-SIZE

points

12

This argument does not apply to LINEPRINTER
printers.

442 Deprecated Information

Argument

Choice or Measure

Default Value

Description

This is the size of each Production Reporting line on
the page. There are 72 points per inch.

If LINE-SIZE is not specified, it follows the value for
POINT-SIZE, if specified. The default value of 12
points yields 6 lines per inch.

CHAR-SIZE

points

7.2

This argument does not apply to LINEPRINTER
printers.

This is the size of each Production Reporting
horizontal character column on the page (for
example, the distance between the locations (1,12)
and (1,13)). If CHAR-SIZE is not specified and the
POINT-SIZE is less than 8.6, CHAR-SIZE is set to 4.32,
which yields 16.6 characters per inch. The default
value of 7.2 yields 10 characters per inch.

LINES-INCH

lines

This argument does not apply to Lineprinter printers.

This is an alternate way of indicating the line size, in
lines perinch, rather than in points for the LINE-SIZE.

CHARS-INCH

characters

10

This argument does not apply to LINEPRINTER
printers.

This is an alternate way of indicating the width of each
Production Reporting character column, in characters
per inch, rather than points for CHAR-SIZE.

POINT-SIZE

points

12

This argument does not apply to Lineprinter printers.

This is the beginning size of the selected font.

FONT-TYPE

PROPORTIONAL, FIXED

Depends on the font

This argument applies only to HP Laserjet printers and
needs to be specified only for font types not defined
in Table 33, “Fonts Available for HP LaserJet Printers
in Production Reporting,” on page 140.

SYMBOL-SET

HP defined sets

ou

This argument applies only to HP Laserjet printers.

The default value of "OU" is for the ASCII symbol set.
For a complete list of the symbol sets, see the HP
Laserjet Technical Reference Manual.

STARTUP-FILE

filename

POSTSCRI.STR

This argument applies only to PostScript printers.

This is used to specify an alternate startup file. Unless
otherwise specified, the default startup file is located
in the directory specified by the environment variable
SQRDIR.

FONT

font_number

This is the font number of the typeface to use. For HP
Laserjet printers, this is the typeface value as defined
by Hewlett-Packard. For a complete list of the
typeface numbers, see the HP Laserjet Technical
Reference Manual. For PostScript printers,
Production Reporting supplies a list of fonts and
arbitrary font number assignments in the file

DECLARE PRINTER 443

Argument Choice or Measure Default Value Description

POSTSCRI.STR. The font numbers are the same as
those for HP Laserjet printers, wherever possible, so
that you can use the same font number for reports to
be printed on both types of printers. You can modify
the font list in POSTSCRI.STR to add or delete fonts.
Read the POSTSCRI.STR file for instructions.

Table 33, “Fonts Available for HP LaserJet Printers in
Production Reporting,” on page 140 lists the fonts
available in Production Reporting internally.

Table 34, “Fonts Available for PostScript Printers,” on
page 141 lists the fonts available in the Production
Reporting POSTSCRI.STR file.

BEFORE-BOLD | any string (none) The BEFORE-BOLD and AFTER-BOLD arguments are
for Lineprinter printers only. They specify the
character string to turn bolding on and off. If the string
contains blank characters, enclose it in single quote
marks ('). To specify non-printable characters, such
as ESC, enclose the decimal value inside angle
brackets as follows:

BEFORE-BOLD=<27>[r ! Turn on bold
AFTER-BOLD=<27>[u ! Turn it off

These arguments work in conjunction with the BOLD
argument of the PRINT command.

AFTER-BOLD any string (none) See BEFORE-BOLD.

The font you choose—in orientation, typeface, and point size—must be an internal font,
available in a font cartridge, or downloaded to the printer.

For fonts not listed in Table 33, “Fonts Available for HP Laser]et Printers in Production
Reporting,” on page 140, you must indicate the font style using the FONT-TYPE argument, or
the correct typeface cannot be selected by the printer.

Description

DECLARE PRINTER can be used in either the SETUP section or in the body of the report. Generally,
you should use it in the SETUP section. However, if you do not know what type of printer you
will be using until the report is run, or if you need to change some of the arguments depending
on user selection, you could put several DECLARE PRINTER commands in the body of the report
and execute the one you need.

The following arguments take effect only once, upon execution of the first PRINT command,
and thereafter have no effect even if changed:

e LINE-SIZE
e CHAR-SIZE
e LINES-INCH
e CHARS-INCH

e ORIENTATION

444 Deprecated Information

Production Reporting maps its line and column positions on the page by using a grid determined
by the LINE-SIZE and CHAR-SIZE (or LINES-INCH and CHARS-INCH) arguments. Each
printed piece of text is placed on the page using this grid. Because the characters in proportional
fonts vary in width, it is possible that a word or string is wider than the horizontal space you
have allotted, especially in words containing uppercase letters. To account for this behavior, you
can either move the column position in the PRINT statement or indicate a larger CHAR-SIZE in
the DECLARE PRINTER command.

DECLARE PROCEDURE

Note:

This command may be discontinued in a future release. We highly recommend that you no
longer use this command. To take advantage of newer Production Reporting functionality, use
DECLARE-PROCEDURE.

Function

Defines specific event procedures.

Syntax

DECLARE PROCEDURE
[BEFORE-REPORT=procedure_name]
[AFTER-REPORT=procedure_name]
[BEFORE-PAGE=procedure_name]
[AFTER-PAGE=procedure_name]

Arguments

BEFORE-REPORT

A procedure to execute at the time of the first PRINT command. It may be used, for example, to
create a report heading.

AFTER-REPORT

A procedure to execute just before the report file is closed at the end of the report. It can be used

to print totals or other closing summary information. If no report was generated, the procedure
does not execute.

BEFORE-PAGE

A procedure to execute at the beginning of every page, just before the first PRINT command for
the page. It can be used, for example, to set up page totals.

AFTER-PAGE

A procedure to execute just before each page is written to the file. It can be used, for example,
to display page totals.

DECLARE PROCEDURE 445

Description

DECLARE PROCEDURE can be issued either in the SETUP section or in the body of the report. You
can use the command as often as you like.

If you issue multiple DECLARE PROCEDURE commands, the last one takes precedence. In this
way, you can turn procedures on and off while the report is executing. The referenced procedures
do not take any arguments; however, the variables can be local by using the LOCAL argument.
In addition, they can only PRINT into the body of the report, that is, they cannot PRINT into the
header and/or footer areas.

Examples

declare procedure
before-page=page_setup
after-page=page_totals

DOLLAR-SYMBOL

Note:

This command may be discontinued in a future release. We highly recommend that you no
longer use this command. To take advantage of newer Production Reporting functionality, use
ALTER-LOCALE.

Function

Redefines the currency symbol within numeric edit masks.

Syntax

DOLLAR-SYMBOL new_symbol

Arguments

new_symbol

A new, single character to be used in edit masks instead of the dollar sign ($).

Description

The dollar sign ($) is the default currency symbol for coding edit masks in the program that
prints on report listings. The DOLLAR-SYMBOL provides a way to change that symbol for both
the edit mask and for printing.

If you wish to change the symbol that prints on the report, use MONEY-SYMBOL in the
PROCEDURE section. DOLLAR-SYMBOL and MONEY-SYMBOL can be used together to customize
your Production Reporting programs and the reports they produce.

This command is used only in the SETUP section.

446 Deprecated Information

Note:

MONEY-SYMBOL has the same effect as these options of the ALTER-LOCALE command:

MONEY-SIGN and MONEY-SIGN-LOCATION=LEFT.

Table 110 lists the characters that DOLLAR-SYMBOL cannot take.

Table 110 Characters Disallowed in the DOLLAR-SYMBOL Command

Type Characters
Numbers 0,829
Alphabetical | b B
e E
n N
r R
v Vv
Symbols ,
- +
I *
< >
()
Examples

The following example shows how to use the DOLLAR-SYMBOL command:

begin-setup

dollar-symbol £

end-setup

begin-procedure

! Define £ as the currency symbol

print #amount () edit £££,999.99

end-procedure

In the previous example, if you used the dollar sign in the edit mask after defining the dollar

symbol as £, the following error message appears:

Bad numeric

'edit’

format:

$55,999.99

DOLLAR-SYMBOL 447

GRAPHIC BOX

Note:

This command may be discontinued in a future release. We highly recommend that you no
longer use this command. To take advantage of newer Production Reporting functionality, use
the DRAW command.

Function

Draws a box.

Syntax

GRAPHIC ({line int_Ilit|_var},{column int_Ilit|_var},
{width_int_ 1lit|_var}) BOX {depth int_lit|_var}
[rule width_int_lit|_var [shading int_lit|_var]]

Arguments

width and depth

The width is the horizontal size in character columns; depth is the vertical size in lines. The top
left corner of the box is drawn at the line and column specified. The bottom right corner is
calculated using the width and depth. You can specify relative placement with (+), (-), or numeric
variables, as with regular print positions.

rule_width

The default rule width is 2 decipoints (there are 720 decipoints per inch). The top horizontal
line is drawn just below the base of the line above the starting point. The bottom horizontal line
is drawn just below the base of the ending line. Therefore, a one-line deep box surrounds a single
line.

shading

A number between 1 and 100, specifying the percentage of shading to apply. 1 is very light, and
100 is black. If no shading is specified, the box is blank. Specify a rule-width of zero, if a border
is not desired.

Description

Draws a box of any size at any location on the page. Boxes can be drawn with any size rule and
can be shaded or left empty. After GRAPHIC commands execute, Production Reporting changes
the current print location to the starting location of the graphic. (This is different than the way
the PRINT command works.)

Examples

graphic (1,1,66) box 58 20! Draw box around page

graphic (30,25,10) box 10! Draw a 1l0-characters-wide-by-10- characters-long
box

graphic (1,1,66) box 5 0 8! Draw 5 line shaded box (without ! border)

448 Deprecated Information

graphic (50,8,30) box 1! Draw box around 1 line

GRAPHIC FONT

Note:

This command may be discontinued in a future release. We highly recommend that you no
longer use this command. To take advantage of newer Production Reporting functionality, use
ALTER-PRINTER and DECLARE-PRINTER to set the FONT, FONT-TYPE, POINT-SIZE,
and PITCH.

Function

Changes a font.

Syntax

GRAPHIC ()

FONT {font_number_ int_lit|_var} [point_size int lit|_var[{1]|0}
[pitch_int 1it|_var]]]

Arguments

font_number

For HP Laser]Jet printers, the specified font must be installed in the printer. For PostScript
printers, the font must be defined in the POSTSCRI.STR file.

point_size

If the point_sizeis omitted, the size from the most recent DECLARE-PRINTER Or GRAPHIC
FONT command is used.

[1]0]

This argument is for HP Laser]et printers only. It is needed only if you are using a font that
Production Reporting does not know about. (See Table 34, “Fonts Available for PostScript

Printers,” on page 141 under the DECLARE-PRINTER command.) 1 indicates a proportional
font, and 0 indicates a fixed pitch font. The default is proportional.

pitch

If the specified font is fixed pitch, you should also indicate the pitch in characters per inch.

Examples

The following example shows the GRAPHIC FONT command:

graphic () font 23 8.5
graphic () font 6 12 0 10
graphic () font :#font_number :#point_size

GRAPHIC FONT 449

GRAPHIC HORZ-LINE

Note:

This command may be discontinued in a future release. We highly recommend that you no
longer use this command. To take advantage of newer Production Reporting functionality, use
the DRAW command.

Function

Draws a horizontal line.

Syntax
GRAPHIC ({line int_Ilit|_var},{column int_Ilit|_var},
{length_int_lit|_var}) HORZ-LINE [rule width_int lit |_var]

Arguments

rule width

The default rule width is 2 decipoints.

Description

Draws a horizontal line from the location specified, for the length specified. Horizontal lines are
drawn just below the base. After GRAPHIC commands execute, Production Reporting changes
the current print location to the starting location of the graphic. (This is different than the way
the PRINT command works.)

Examples

graphic (4,1,66) horz-line 10! Put line under page heading
graphic (+1,62,12) horz-line! Put line under final total

GRAPHIC VERT-LINE

Note:

This command may be discontinued in a future release. We highly recommend that you no
longer use this command. To take advantage of newer Production Reporting functionality, use
the DRAW command.

Function

Draws a vertical line.

450 Deprecated Information

Syntax
GRAPHIC ({line_int_lit|_var},{column_int_lit|_var},
{length_int_lit|_var}) VERT-LINE [rule width int 1it|_var]

Arguments

rule width

The default rule width is 2 decipoints.

Description

Draws a vertical line from the location specified for the length (in lines) specified. Vertical lines
are drawn just below the base line of the line position specified to just below the base line of the
line reached by the length specified. To draw a vertical line next to a word printed on line 27,
position the vertical line to begin on line 26, for a length of 1 line.

After GRAPHIC commands execute, Production Reporting changes the current print location to
the starting location of the graphic. (This is different than the way the PRINT command works.)

Examples

graphic (1,27,54) vert-line! Draw lines between columns
graphic (1,52,54) vert-line
graphic (3,+2,4) vert-line 6! Red line the paragraph

MONEY-SYMBOL

Note:

This command may be discontinued in a future release. We highly recommend that you no
longer use this command. To take advantage of newer Production Reporting functionality, use
the ALTER-LOCALE command.

Function

Redefines the currency symbol to be printed.

Syntax

MONEY-SYMBOL new_symbol
Arguments
new_symbol

A new, single character to replace the dollar sign ($) or DOLLAR-SYMBOL character on the printed
report.

MONEY-SYMBOL 451

Description

To change the symbol that prints on the report, use the MONEY-SYMBOL in the programs
PROCEDURE sections. When the MONEY-SYMBOL is set, that value is used until the next
MONEY-SYMBOL command executes.

The DOLLAR-SYMBOL and MONEY-SYMBOL can be used together to customize your Production
Reporting application programs and the reports they produce.

To indicate a non-edit character, surround its decimal value with angle brackets (<>). Refer to
Table 110 under Table 110 for characters that cannot be used with MONEY - SYMBOL.

Note:

MONEY-SYMBOL has the same effect as these options of the ALTER-LOCALE command:
MONEY-SIGN and MONEY-SIGN-LOCATION=LEFT.

Examples

The following example shows how to use the DOLLAR-SYMBOL and MONEY-SYMBOL commands:

begin-setup
dollar-symbol £ ! Define £ as the
! currency symbol
end-setup
begin-procedure ! If #Amount=1234.56

money-symbol £
print #Amount () Edit £££,999.99 ! Prints as: £1,234.56

money-symbol $
print #Amount () Edit £££,999.99 ! Prints as: $1,234.56

money-symbol
print #Amount () Edit £££,999.99 ! Prints as: 1,234.56

end-procedure

NO-FORMFEED

Note:

This command may be discontinued in a future release. We highly recommend that you no
longer use this command. To take advantage of newer Production Reporting functionality, use
the FORMFEED parameter of the DECLARE-LAYOUT command.

Function

Prevents form feed characters from being written to the output file.

452 Deprecated Information

Syntax

NO-FORMFEED

Description

NO-FORMFEED is useful for certain types of reports; for example, flat file output. It is used only
in the SETUP section.

Do not write form feed control characters directly into the output file between pages.

Examples

begin-setup
no-formfeed
end-setup

PAGE-SIZE

Note:

This command may be discontinued in a future release. We highly recommend that you no
longer use this command. To take advantage of newer Production Reporting functionality, use
the MAX-LINES and MAX-COLUMNS parameters of the DECLARE-LAYOUT command.

Function

Sets the page size.

Syntax

PAGE-SIZE page depth num 1it page width num 1it

Description

If you are printing multiple reports, you must use the PAPER-SIZE parameter of the DECLARE-
LAYOUT command .

This command is used in the SETUP section only.

Specify the page_depth in lines and the page_width in columns. An average report printed
on 8 1/2 by 11 inch paper might have a page size of 60 lines by 80 columns. A 3 inch by 5 inch
sales lead card might have a size of 18 by 50.

If the page size is not specified, the default of 62 lines by 132 columns is used.

For line printers, Production Reporting stores one complete page in a buffer before writing the
page to the output file when you issue a NEW-PAGE command or when a page overflow occurs.

You could define a page to be 1 line deep and 4,000 characters wide. This could be used for
writing large flat files, perhaps for copying to magnetic tape. Each time a NEW-PAGE occurs, one
record would be written. The NO-FORMFEED command in the SETUP section can be used to
suppress form feed characters between pages.

PAGE-SIZE 453

Use a page width at least one character larger than the right-most position that will be written.
This prevents unwanted wrapping when printing. When the last column position on a line is
printed, the current position becomes the first position of the next line. This can cause confusion
when using relative line positioning with the NEXT-LISTING command. Having a wider page
than necessary does not waste any file space since Production Reporting trims trailing blanks
on each line before writing the report file.

The size of the internal page buffer used to store a complete page in memory can be determined
by multiplying the page depth by the width in the PAGE-SIZE command. For PCs, the page
buffer is limited to 64K bytes. On other computers, the page buffer is limited only by the amount
of memory available.

Examples

begin-setup
page-size 57 132 ! 57 lines long by 132 columns wide
end-setup

PRINT ...CODE

The PRINT command has the following format option :
CODE
CODE is a qualifier that may be discontinued in a future release. Use CODE-PRINTER instead.

If you use CODE, the sequence is assumed to be for the printer type specified in the DECLARE-
REPORT or default printer, if none is specified.

PRINTER-DEINIT

Note:

This command may be discontinued in a future release. We highly recommend that you no
longer use this command. To take advantage of newer Production Reporting functionality, use
the RESET-STRING parameter of the DECLARE-PRINTER command.

Function

Sends control or other characters to the printer at the end of a report.

Syntax

PRINTER-DEINIT initialization_string

Description

Specify nondisplay characters by placing their decimal values inside angled brackets. For
example, <27> is the ESC or escape character.

454 Deprecated Information

PRINTER-DEINIT is used only in the SETUP section and is designed for use with Line-Printer
style output. It has limited functionality with HP Laser]et and PostScript printers.

Examples

begin-setup
printer-deinit<27>[7J ! Reset the printer
end-setup

PRINTER-INIT

Note:

This command may be discontinued in a future release. We highly recommend that you no
longer use this command. To take advantage of newer Oracle's Hyperion® SQR® Production
Reporting functionality, use the INIT-STRING parameter of the DECLARE-PRINTER
command.

Function

Sends control or other characters to the printer at the beginning of a report.

Syntax

PRINTER-INIT initialization_string

Description

Specify non-display characters by placing their decimal values inside angled brackets. For
example, <27> is the ESC or escape character.

PRINTER-INIT is used only in the SETUP section and is designed for use with Line-Printer
output. It has limited functionality with HP LaserJet and PostScript printers.

Examples

begin-setup
printer-init<27>[7J ! Set the printer
end-setup

PRINTER-INIT 455

456 Deprecated Information

A B C D E F

M N O

P Q R S T U V W Z

Index

Symbols
#character, defined, 14

#current-column, 16
#current-line, 16

#DEFINE, 153, 187, 188
#ELSE, 164, 185

#end-file, 17, 276

#END-IF, 166

#ENDIF, 166, 185

#IF, 184, 185

#IFDEF, 187

#IFNDEF, 185, 188
#INCLUDE, 25, 188
#page-count, 17
#return-status, 17
#sql-count, 17

#sql-status, 17
#sqr-max-columns, 19
#sqr-max-lines, 19

#sqr-pid, 19

$character, defined, 14
$current-date, 16

$sql-error, 17

$sql-test, 17
$sqr-connected-db, 17
$sqr-connected-db-name, 18
$sqr-database, 18

$sqr-dbcs, 18
$sqr-encoding, 18
$sqr-encoding-console, 18
$sqr-encoding-database, 18
$sqr-encoding-file-input, 18
$sqr-encoding-file-output, 18
$sqr-encoding-hostname, 18
$sqr-encoding-report-output, 18
$sqr-encoding-source, 18
$sqr-locale, 18
$sqr-platform, 19

$sqr-program, 19

$sqr-report, 19

$sqr-ver, 19

$username, 19

&character, defined, 14

-A, 21

-Bnn
BEGIN-SELECT command, 73
definition, 21

“BURST, {xx}, 21

-G, 22

-CB, 22

-Cnn argument
BEGIN-SELECT command, 73
BEGIN-SQL command, 77

-DBconnectionstring argument, BEGIN-SELECT, 74,

78
-DBdatabase, 22
-DEBUG, 22, 185, 187, 188
-Dnn, 22
-DNT, 22
-E, 22
-EH_APPLETS, dir, 22
-EH_BQD, 23
“EH_BQD, file, 23
-EH_BROWSER, xx, 23
-EH_CSV, 23
-EH_CSV, file, 23
-EH_CSVONLY, 23
-EH_DEBUG, 24
-EH_FULLHTML, xx, 435
-EH_ICONS, dir, 24
-EH_IMAGES, dir, 24
-EH_KEEP, 24
-EH_LANGUAGE, xx, 24
-EH_PDF, 24
-EH_SCALE, nn, 24
-EH_XIMG, 25

Index 457

A B C D E F G

-EH_XML, file, 25
-EH_ZIP, file, 25
-F, 25
-1D, 25
-KEEP, 26, 145
-1dir_list, 25
-LL, 26
-Mfile, 436
-NOLIS, 26, 145
-0, 26
-PB, 26
-PRINTER
EH, 26
EP, 26
GD, 26
HP, 27
LP, 27
PD, 27
PS, 27
WP, 27,141
XX, 26, 436
-RS, 28
-RT, 28
-S, 28
-Tnn, 28
-T{B}, 28
-T{Z}, 28
-U, 28
-Vserver, 29
-XB, 29
-XC
definition of, 29
in the EXECUTE command, 170
-XCB, 29
-XFRM, 29
-X1, 29
-XL, 29
-XLFF, 29
-XMB, 29
-XNAV, 29
-XP
BEGIN-SELECT command, 73
BEGIN-SQL command, 77
definition of, 30
-XTB, 30
-XTOCG, 30
-ZEN{name}, 30

L

M N O P Q R S T UV W Z

-ZIF{file}, 30

-Z1V, 30

-ZMF{file}, 30, 31
-ZRF{file}, 31
@character, defined, 14

A

abs, 197, 207

acos, 198

ADD, 36

AFTER, 62, 63

AFTER qualifier, ON-BREAK argument, 255

AFTER-BOLD argument
DECLARE-PRINTER command, 138, 444
PRINT command, 241

AFTER-PAGE argument
DECLARE PROCEDURE command, 445
DECLARE-PROCEDURE command, 143
DECLARE-TOC command, 149
USE-PROCEDURE command, 295

AFTER-REPORT argument
DECLARE PROCEDURE command, 445
DECLARE-PROCEDURE command, 143
USE-PROCEDURE command, 295

AFTER-TOC argument
DECLARE-TOC command, 149

ALTER-COLOR-MAP, 37

ALTER-CONNECTION, 38

ALTER-LOCALE, 41

ALTER-PRINTER, 48, 138, 142

ALTER-REPORT, 50

ALTER-TABLE, 55

arccosine, 198

arcsine, 198

arctangent, 198

array
defined, 212
elements, 94

arrays
ARRAY-ADD command, 58
ARRAY-DIVIDE, 58
ARRAY-MULTIPLY, 58
ARRAY-SUBTRACT command, 58
maximums, 93

ascii, 203

asciic, 203

asin, 198

458 Index

A B €C D E F G H I K

ASK, 60, 187, 188
AT-END argument, NEXT-COLUMN command,
231
atan, 198
ATTRIBUTES argument
declaration keywords, 115
definition of, 112
selector/sub-selector keywords, 113

B
bar codes, 260
BATCH-MODE, INPUT command, 190
BEEP argument, SHOW command, 284
BEFORE, 62, 63
BEFORE qualifier, ON-BREAK argument, 255
BEFORE-BOLD argument
DECLARE-PRINTER command, 138, 444
PRINT command, 241
BEFORE-PAGE argument
DECLARE PROCEDURE command, 445
DECLARE-PROCEDURE command, 143
DECLARE-TOC command, 149
USE-PROCEDURE command, 295
BEFORE-REPORT argument
DECLARE PROCEDURE command, 445
DECLARE-PROCEDURE command, 143
USE-PROCEDURE command, 295
BEFORE-TOC argument, DECLARE-TOC
command, 149
BEGIN-DOCUMENT, 61
BEGIN-EXECUTE, 62
BEGIN-FOOTING, 66
BEGIN-HEADING, 68. See also Page Header
BEGIN-PROCEDURE, 69
BEGIN-PROGRAM, 72
BEGIN-REPORT, 439
BEGIN-SELECT, 62, 72
BEGIN-SETUP, 76
BEGIN-SQL, 77
bind variables, 73
BLINK argument, SHOW command, 284
BOLD argument
PRINT command, 241
SHOW command, 284
BOTTOM-MARGIN argument
DECLARE-LAYOUT command, 134
BOX and SHADE, 242

L

M N O

P Q R S T UV W Z
BOX argument

GRAPHIC command, 448, 450

PRINT command, 241
BREAK, 80
BREAK argument, EVALUATE command, 169
break processing, field changes, 254

C
CALL, 80
CALL-SYSTEM, 80
callable Production Reporting, 22, 29
cancel dialog box, 22
CAPTION argument, PRINT-BAR-CODE, 261
ceil, 198
CHAR-SIZE argument, DECLARE-PRINTER
command, 443
CHAR-WIDTH argument, DECLARE-LAYOUT
command, 135
CHARS-INCH argument, DECLARE-PRINTER
command, 443
charts, 263
CHECKSUM argument, PRINT-BAR-CODE, 261
chr, 204
CLEAR-ARRAY, 85, 92
CLEAR-LINE argument, SHOW command, 283
CLEAR-SCREEN argument, SHOW command, 283
CLOSE, 86
CLOSE-RS, 86
COLOR argument
ALTER-COLOR-MAP command, 37
DECLARE-COLOR-MAP command, 126
DECLARE-PRINTER command, 138
GET-COLOR command, 181
SET-COLOR command, 280
COLUMNS, 14, 88, 293
COLUMNS argument, POSITION command, 238
COMMAND, 62, 63, 218, 220
command line
flags, 21
command_line, 212
COMMIT, 88
compiler directives, 164, 166, 185, 187, 188
CONCAT, 89
concatenation, 288
cond, 212
conditional processing, 168, 186, 297
CONNECT, 91

Index 459

A B €C D E F G H I K

CONNECTION, 62, 63
connection_name, 37, 39, 128, 182, 280
copyright banner, 25

cosh, 198

cosine, 198

cosValue type, 198
CREATE-ARRAY, 92, 274
CREATE-COLOR-PALETTE, 94
CREATE-LIST, 95
CREATE-TABLE, 96

csv file, 23

csvicon, 23

currency symbol, 446, 451

D
data input, 189
database cursors, 91
database type, 18
DATE argument
DECLARE-VARIABLE command, 151
DISPLAY command, 155
MOVE command, 225
SHOW command, 284
date edit format characters, 247
date functions
dateadd, 208
datediff, 209
datenow, 209
datetostr, 209
strtodate, 209
DATE-EDIT-MASK argument, ALTER-LOCALE
command, 42
DATE-SEPARATOR argument, ALTER-LOCALE
command, 43
DATE-TIME, 440
dateadd, 208
datediff, 209
datenow, 209
datetostr, 209

DAY-OF-WEEK-CASE argument, ALTER-LOCALE

command, 43

DAY-OF-WEEK-FULL argument, ALTER-LOCALE

command, 43, 336
DAY-OF-WEEK-SHORT argument, ALTER-
LOCALE command, 43, 336
DB2, 441
DDO, 219, 239

L

M N O

P Q R S T U V W Zz
ALTER-CONNECTION command, 39
BEGIN-EXECUTE command, 62
BEGIN-SELECT command, 74
BEGIN-SQL command, 78
COMMIT command, 89
CONNECT command, 91
DECLARE-CONNECTION command, 128
DECLARE-VARIABLE command, 152
LET command, 192
LOAD-LOOKUP command, 218
PRINT command, 239
ROLLBACK command, 278
variables in the Environment section, 334

DECIMAL argument, DECLARE-VARIABLE

command, 151
DECIMAL-SEPARATOR argument, ALTER-
LOCALE command, 43

DECLARE PRINTER, 441

DECLARE PROCEDURE, 445

DECLARE-CHART, 100, 265
ATTRIBUTES argument, 112

DECLARE-COLOR-MAP, 126

DECLARE-CONNECTION, 63, 128

DECLARE-IMAGE, 130

DECLARE-LAYOUT, 132
PAPER-SIZE parameter, 453

DECLARE-PRINTER, 111, 137

DECLARE-PROCEDURE, 143

DECLARE-REPORT, 144

DECLARE-TABLE, 146

DECLARE-TOC, 148

DECLARE-VARIABLE, 150

DEFAULT-NUMERIC argument, 151

Default-Settings section, in SQR.INI, 328

deg, 199

delete, 203

destination field, 225

DISPLAY, 155

DISTINCT argument, BEGIN-SELECT command,

73

DIVIDE, 158

DO, 72, 159, 440

DO argument, EXECUTE command, 171

document marker, 61, 238

DOCUMENT paragraphs, 348

DOLLAR-SYMBOL, 446, 452

460 Index

A B €C D E F G H I K

DOT-LEADER argument, DECLARE-TOC
command, 149

DSN, 37, 39, 126, 128

DSQUERY, 333

DUMP-TABLE, 163

dynamic query variables, 73

E
edit, 204
EDIT argument
SHOW command, 284
edit masks
case sensitivity, 247
default formats, 251
description of, 247
samples, 249
uses, 250
with specified width values, 250
edit types, 244
EDIT-OPTION-AD argument, ALTER-LOCALE
command, 43, 336
EDIT-OPTION-AM argument, ALTER-LOCALE
command, 42, 43
EDIT-OPTION-BC argument, ALTER-LOCALE
command, 43, 336
EDIT-OPTION-NA argument, ALTER-LOCALE
command, 43
EDIT-OPTION-PM argument, ALTER-LOCALE
command, 43
ELSE, 164
ENCODE, 164
Encoding, 210, 211, 212, 234
END-DECLARE, 126, 165
END-DOCUMENT, 165
END-EVALUATE, 165
END-EXECUTE, 62
END-FOOTING, 165
END-HEADING, 165
END-IF, 167
END-PROCEDURE, 167
END-PROGRAM, 167
END-SELECT, 62, 167
END-SETUP, 167
END-SQL, 167
END-WHILE, 167
ending a query, 175
Enhanced-HTML, 343, 345

L

M N O

P Q R S T U V W Zz

environment variables, 333

Environment, Common, 333

ERASE-PAGE argument, NEXT-COLUMN
command, 232

error message file, 30

EVALUATE, 80, 168

Examples, 38

EXECUTE, 170

exists, 203

EXIT-SELECT, 175

exp, 199

exponents, 199

expressions, 192, 193

EXTENT argument, LOAD-LOOKUP command,
219

external source files, 188

EXTRACT, 176

F
FIELD argument, CREATE-ARRAY command, 92
fields See columns, 92
file number, 234
file-related functions
delete, 203
exists, 202, 203
rename, 203
files, reading, 275
FILL-TABLE, 177
FIND, 179
FIXED argument, OPEN command, 234
FIXED_NOLF argument, OPEN command, 234
flags, in the Production Reporting command line, 21
FLOAT argument, DECLARE-VARIABLE command,
151
floor, 199
FONT argument, DECLARE-PRINTER command,
139, 444
FONT-TYPE argument, DECLARE-PRINTER
command, 139, 443
fonts
HP Laser Jet, 140
PostScript, 141
Windows printers, 141
Fonts section, in SQR.INI file, 337
FOOTING, 66
footings, 66
FOOTING section, 12

Index 461

A B €C D E F G H I K L

FOR-APPEND argument, OPEN command, 234
FOR-READING argument, OPEN command, 234
FOR-REPORTS argument

DECLARE-PRINTER command, 139

DECLARE-PROCEDURE command, 143

DECLARE-TOC command, 149

USE-PROCEDURE command, 295
FOR-REPORTS, BEGIN-HFADING command, 68
FOR-WRITING argument, OPEN command, 234
FORMEFEED argument, DECLARE-LAYOUT

command, 134

FROM PARAMETER, 64, 220
FROM ROWSET, 63, 220
functions

date, 208

file-related, 203

miscellaneous, 212

numeric, 197

string, 203

transcendental, 202

unicode, 210

writing custom functions, 215

G

general purpose procedures, in HTML, 303

GET, 180

GET-COLOR, 181

GETDATA, 62, 63, 218, 220

getenv, 213

getfilemapname, 213

global variables, 15

GOTO, 183

GOTO-TOP argument, NEXT-COLUMN command,
231

GRAPHIC BOX, 448

GRAPHIC FONT, 449

GRAPHIC HORZ-LINE, 450

GRAPHIC VERT-LINE, 450

H

halting Production Reporting, 287
hardware/operating system, 19
HEADING, 68

heading procedures, in HTML, 305
Hebrew language support, 259

M N O

P Q R S T U V w Z
HEIGHT argument, PRINT-BAR CODE command,
260
hex, 199
highlighting procedures, in HTML, 307
HOLE-VALUE, 118
HORZ-LINE argument, GRAPHIC command, 450
HPLASERJET, 139
HTML
general purpose procedures, 303
heading procedures, 305
highlighting procedures, 307
hypertext link procedures, 309
list procedures, 309
table procedures, 312
HTML-Images, 342
hyperbolic cosine, 199
hyperbolic sine, 201
hyperbolic tangent, 202
hypertext link procedures, in HTML, 309

|
IF, 186
IF nested within a WHILE loop, 298
IFDEF, 185
IMAGE-SIZE argument
DECLARE-IMAGE command, 131
PRINT-IMAGE command, 271
images
DECLARE-IMAGE command, 130
printing, 271
INDENTATION argument, DECLARE-TOC
command, 149
Informix, 31, 288, 441
INIT-STRING argument, DECLARE-PRINTER
command, 139
INPUT, 189
instr, 204
instrb, 204
INTEGER argument, DECLARE-VARIABLE
command, 151
INTO argument, EXECUTE command, 171
isblank, 205
isnull, 213

K
KEY argument, LOAD-LOOKUP command, 219

462 Index

A B €C D E F G H I K L

L

labels, 183

LAST-PAGE, 192

LAYOUT argument, DECLARE-REPORT command,
145

LEFT-MARGIN argument

DECLARE-LAYOUT command, 134
DECLARE-PRINTER command, 442

length, 205

lengthb, 205

lengthh, 210

lengthp, 210

LET, 192

LEVEL argument, TOC-ENTRY command, 290

LEVEL qualifier, ON-BREAK argument, 255

LINE-HEIGHT argument, DECLARE-LAYOUT
command, 134

LINE-INCH argument, DECLARE-PRINTER
command, 443

LINE-SIZE argument, DECLARE-PRINTER
command, 443

LINE-WIDTH argument, DECLARE-LAYOUT
command, 134

LINEPRINTER, 139

list procedures, in HTML, 309

literals, 14

LOAD-LOOKUP, 26, 217, 223

loading an internal table, 217

local procedures, 70

local variables, 15

LOCALE, 335

LOCALE argument, ALTER-LOCALE command, 42

log, 200

log10, 200

logical expressions, 186

LOOKUP, 221, 222

LOOPS argument, BEGIN-SELECT command, 74

lower, 205

LOWERCASE, 223

Ipad, 205

ltrim, 206

M

MAX-COLUMNS argument, DECLARE-LAYOUT
command, 134

MAX-LINES argument, DECLARE-LAYOUT
command, 134

M N O

P Q R S T U V W Zz
MAXLEN arguments, INPUT command, 189
MBTOSBS, 224
Microsoft SQL Server, 32
miscellaneous functions
array, 212
command_line, 212
cond, 212
getenv, 213
getfilemapname, 213
isnull, 213
nvl, 213
range, 214
roman, 214
wrapdepth, 215
mod, 200
MONEY argument
DISPLAY command, 155
MOVE command, 225
PRINT command, 254
SHOW command, 284
MONEY-EDIT-MASK argument, ALTER-LOCALE
command, 42
MONEY-SIGN argument, ALTER-LOCALE
command, 42
MONEY-SIGN-LOCATION argument, ALTER-
LOCALE command, 42
MONEY-SYMBOL, 446, 451
MONTHS-CASE argument, ALTER-LOCALE
command, 44
MONTHS-FULL argument, ALTER-LOCALE
command, 44, 336
MONTHS-SHORT argument, ALTER-LOCALE
command, 44
MOVE, 224
multiple reports, 49
MULTIPLY, 228

N
NAME, 39
NAME argument, 85
CREATE-ARRAY command, 92
LOAD-LOOKUP command, 219
natural log base e raised to x power, 199
NEED argument, NEXT-LISTING command, 233
nesting
arguments, 197
IF command, 186

Index 463

A B €C D E F G H I K L

nesting levels, #AINCLUDE command, 188
NEW-PAGE, 229, 453
NEW-REPORT, 230
NewGraphics, 102, 330
NEXT-COLUMN, 88, 231
NEXT-LISTING, 232, 454
no logon, 29
NO-ADVANCE argument, NEXT-LISTING
command, 232

NO-DUPLICATE, 39, 128
NO-FORMFEED, 452, 453
NOLINE argument

DISPLAY command, 155

SHOW command, 284
non-Windows, 22, 29
NOPROMPT arguments, INPUT command, 189
NORMAL argument, SHOW command, 284
NOWAIT, CALL command, 81
NUMBER argument

DISPLAY command, 155

MOVE command, 225

PRINT command, 254

SHOW command, 284
NUMBER-EDIT-MASK argument, ALTER-LOCALE

command, 42

numeric functions

10 raised to x power, 199

absolute value, 197, 207

arccosine, 198

arcsine, 198

arctangent, 198

cosine, 198

degrees, 199

hyperbolic cosine, 199

hyperbolic sine, 201

hyperbolic tangent, 202

largest integer, 199

log base 10, 200

log base e, 200

natural log base e raised to x power, 199

power, 200

radians, 201

round, 201

sign, 201

sine, 201

square root, 201

tangent, 202

M N O

P Q R S T U V W Z

nvl, 213

0

ODBC, 31

ON-BREAK
AFTER qualifier, 255
BEFORE qualifier, 255
in PRINT command, 254
SET qualifier, 255

ON-ERROR argument, 348
BEGIN-EXECUTE command, 62
BEGIN-SELECT command, 74
BEGIN-SQL command, 78
CONNECT command, 91
DIVIDE command, 158
EXECUTE command, 170

OPEN, 233

open a new report, 230

OPEN-RS, 235

operands, 193

operators, 194

Oracle, 32, 73, 441

ORIENTATION argument
DECLARE-LAYOUT command, 134
DECLARE-PRINTER command, 442

OUTPUT argument, EXECUTE command, 171

output file, 25

P

page numbering, 192

page overflow, 230

PAGE-DEPTH argument, DECLARE-LAYOUT
command, 134

PAGE-NUMBER, 237

PAGE-SIZE, 453

PAPER-SIZE argument, DECLARE-LAYOUT
command, 134, 453

PARAMETER_LIST, 63, 220

PARAMETERS, 39, 128

PASSWORD, 39, 128

PC, 81

PDF, 340

PITCH argument, DECLARE-PRINTER command,
139

PL/SQL, 79

point labels, 94

464 Index

A B €C D E F G H I K

POINT-SIZE argument, DECLARE-PRINTER
command, 139, 443
POSITION, 238
position, PRINT-IMAGE command, 271
POSTSCRIPT, 139
power, 200
precision, 194
PRINT
BOLD format command, 241
BOX format command, 241
CENTER format command, 242
CODE-PRINTER format command, 242
DATE format command, 243
definition, 239
DELAY format command, 243
EDIT format command, 244
FILL format command, 252
FONT format command, 252
FOREGROUND/BACKGROUND format
command, 253
format commands, 239, 454
MATCH format command, 253
MONEY format command, 254
NOP format command, 254
NUMBER format command, 254
ON-BREAK format command, 254
POINT-SIZE format command, 257
SHADE format command, 257
UNDERLINE format command, 257
URL format command, 257
URL-TARGET format command, 258
WRAP format command, 258
PRINT qualifier, ON-BREAK argument, 255
PRINT-BAR-CODE, 260
PRINT-CHART, 110, 263
PRINT-DIRECT, 270
PRINT-IMAGE
definition, 271
position, 271
PRINT-TABLE, 273
PRINTER qualifier, 270
printer type, 27, 294
PRINTER-DEINIT, 454
PRINTER-INIT, 455
PRINTER-TYPE argument, DECLARE-REPORT
command, 145
printing

L

M N O P Q R S T UV W Z
Hebrew, 244
on Windows, 26, 142, 436
PRINT...\;CODE, 454
PROCEDURE, 62, 63, 218, 220
PROCEDURE section, 12
procedures
running, 159
USE-PROCEDURE command, 295
process ID, 19
Production Reporting
banner suppression, 29
page bulffer, 270
program structure, 11
version, 19
PROGRAM section, 12
prompt, 190
PUT, 274

Q

QUIET argument
LOAD-LOOKUP command, 220
STOP command, 279, 288

R

rad, 200

range, 214

READ, 275

RECORD argument, OPEN command, 234

rename, 203

replace, 206

report arguments file on command line, 31

report layout, 132

report output file, 19

reserved variables
#current-column, 16
#current-line, 16
#end-file, 17
#INCLUDE, 25
#max-columns, 19
#page-count, 17
#return-status, 17
#sql-count, 17
#sql-status, 17, 71
#sqr-max-lines, 19
#sqr-pid, 19
$current-date, 16

Index 465

A B €C D E F G H I K L

$sql-error, 17,71
$sql-text, 17
$sqr-connected-db, 17
$sqr-connected-db-name, 18
$sqr-database, 18
$sqr-dbcs, 18
$sqr-encoding, 18
$sqr-encoding-console, 18
$sqr-encoding-database, 18
$sqr-encoding-file-input, 18
$sqr-encoding-file-output, 18
$sqr-encoding-hostname, 18
$sqr-encoding-report-output, 18
$sqr-encoding-source, 18
$sqr-local, 18
$sqr-platform, 19
$sqr-program, 19
$sqr-report, 19
$sqr-ver, 19
$username, 19, 91
RESET-STRING argument, DECLARE-PRINTER
command, 139
RETURN_VALUE argument, LOAD-LOOKUP
command, 219
REVERSE argument, SHOW command, 284
reversed characters, 259
RIGHT-MARGIN argument, DECLARE-LAYOUT
command, 134
ROLLBACK, 277, 288
roman, 214
round, 201
ROUND argument
ADD command, 158, 229
SUBTRACT command, 290
row set
close, 86
open, 235
SQR.INI setting, 330
write, 300
ROWS argument, LOAD-LOOKUP command, 219
ROWSET, 63, 220
rpad, 206
RSV, 62, 63
rtrim, 206
run-time report files, 28

M N O

P Q R S T U V W Z

S
SAVE qualifier, ON-BREAK argument, 255
SBTOMBS, 278
SCHEMA, 63, 220
screen 1/0, 283
SECURITY, 278
security issues, username/password, 92
sequential processing, FOR-READING, 234
SET qualifier, ON-BREAK argument, 255
SET-COLOR, 280
SET-DELAY-PRINT, 282
SETUP, 126, 128
SETUP section, 11, 76
SHADE argument, PRINT command, 257
SHOW, 283
sign, 201
sin, 201
sine, 201
sinh, 201
SIZE argument, CREATE-ARRAY command, 92
SKIPLINES argument, NEXT-LISTING command,
233
SKIPLINES qualifier, ON-BREAK argument, 255
SORT argument, LOAD-LOOKUP command, 219
SOURCE argument
DECLARE-IMAGE command, 131
PRINT-IMAGE command, 272
source field, 225
SPF files, 26
SQR Extension, 335
SQR Remote section, in SQR.INI, 345
SQRDIR, 333
SQRFLAGS, 333
sqrt, 201
square root, 201
starting, 439
startup file, 436
STARTUP-FILE argument, DECLARE-PRINTER
command, 139, 443
STATUS, 62, 63
STATUS argument
INPUT command, 189
OPEN command, 235
STOP, 287
stored procedures
-XP, 30
Oracle, 79

466 Index

A B C D E F G

STRING, 288
string functions
ascit, 203
asciic, 203
chr, 204
edit, 204
instr, 204
instrb, 204
isblank, 205
length, 205
lengthb, 205
lower, 205
Ipad, 205
ltrim, 206
replace, 206
rpad, 206
rtrim, 206
substr, 207
substrb, 207
to_char, 207
to_multi_byte, 207
to_number, 207
to_single_byte, 208
translate, 208
upper, 208
string values, 212
strtodate, 209
structure, 11
STRUCTURE, See List Variable, 15
subroutines
calling, 81
writing, 82
substitution variables
#DEFINE command, 153
#IF command, 184
#IFDEF command, 187
#IFNDEF command, 188
ASK command, 60
substring, 176, 291
substringb, 207
substrp, 210
substrt, 210
SUBTRACT, 289
SYBASE, 73
Sybase
Default Date-Time Format, 441
Description, 32

H

K

L

M N O

P Q R S T U V W Zz
server, 29
STOP command, 288
USE command, 293

Sybase DB-Lib, 73, 77

SYMBOL-SET argument, DECLARE-PRINTER

command, 139, 443
syntax conventions, 12
SYSTEM argument, CALL command, 83

T
TABLE argument, LOAD-LOOKUP command, 219
Table of Contents file, 21
table procedures, in HTML, 312
tabular reports
NEXT-LISTING command, 232
ON-BREAK argument, 254
tan, 202
tangent, 202
tanh, 202
testing, 28
TEXT argument
DECLARE-VARIABLE command, 151
PRINT-BAR-CODE, 260
TOC-ENTRY command, 290
THOUSAND-SEPARATOR argument, ALTER-
LOCALE command, 43
time, 440
TIME-SEPARATOR argument, ALTER-LOCALE
command, 43
to_char, 207
to_multi_byte, 207
to_number, 207
to_single_byte, 208
TOC argument, DECLARE-REPORT command, 145
TOC-ENTRY, 290
TOP-MARGIN argument
DECLARE-LAYOUT command, 134
DECLARE-PRINTER command, 442
trailing blanks, 30
transcendental functions, 202
transform, 211
translate, 208
trunc, 202
truncate, 202
TYPE argument
DECLARE-IMAGE command, 131, 271
DECLARE-PRINTER command, 140, 442

Index 467

A B €C D E F G H I K L

INPUT command, 189
PRINT-BAR-CODE, 260

U
ucall, 335

UCALL.C, 82, 83
Ufunc, 335
UNDERLINE argument
SHOW command, 284
unicode, 212
unicode functions
lengthp, 210
lengtht, 210
substrp, 210
substrt, 210
transform, 211
unicode, 212
Unix, 25, 81
UNSTRING, 291
upper, 208
UPPERCASE, 292
USE, 293
USE-COLUMN, 293
USE-PRINTER-TYPE, 294
USE-PROCEDURE, 295
USE-REPORT, 296
USER, 39, 128

V
valid uom suffixes, 133
value determination, 168
variables, 14
global, 15
local, 15
rules, 15
VARY argument, OPEN command, 234
VERT-LINE argument, GRAPHIC command, 451

w

WAIT, CALL command, 81

WHEN argument, EVALUATE command, 168

WHEN-OTHER argument, EVALUATE command,
169

WHERE argument, LOAD-LOOKUP command, 219

WHILE, 80, 297

Windows

M N O P QR S T UV W Z

-G, 22

-XCB, 29

CALL command, 81

log messages, 26
WITH RECOMPILE argument, EXECUTE

command, 174

WRAP argument

ON, 259
wrapdepth, 215
WRITE, 299
WRITE-RS, 300
writing to a page, 239

Y4
ZIP+4 Postnet, 262

468 Index

	Contents
	Introduction
	About the Production Reporting Language
	Production Reporting Language Program Structure
	Production Reporting Language Syntax Conventions
	Production Reporting Language Syntax Abbreviation Conventions
	Rules for Entering Production Reporting Commands

	Production Reporting Data Elements
	Columns
	Literals
	Variables

	Production Reporting Command-line
	Production Reporting Command-line Flags
	Production Reporting Command-line Arguments

	Production Reporting Command Reference
	About Production Reporting Commands
	ADD
	ALTER-COLOR-MAP
	ALTER-CONNECTION
	ALTER-LOCALE
	ALTER-PRINTER
	ALTER-REPORT
	ALTER-TABLE
	ARRAY-ADD, ARRAY-DIVIDE, ARRAY-MULTIPLY, ARRAY‑SUBTRACT
	ASK
	BEGIN-DOCUMENT
	BEGIN-EXECUTE
	BEGIN-FOOTING
	BEGIN-HEADING
	BEGIN-PROCEDURE
	BEGIN-PROGRAM
	BEGIN-SELECT
	BEGIN-SETUP
	BEGIN-SQL
	BREAK
	CALL, CALL SYSTEM
	CLEAR-ARRAY
	CLOSE
	CLOSE-RS
	COLUMNS
	COMMIT
	CONCAT
	CONNECT
	CREATE-ARRAY
	CREATE-COLOR-PALETTE
	CREATE-LIST
	CREATE-TABLE
	#DEBUG
	DECLARE-CHART
	Attributes Argument

	DECLARE-COLOR-MAP
	DECLARE-CONNECTION
	DECLARE-IMAGE
	DECLARE-LAYOUT
	DECLARE-PRINTER
	DECLARE-PROCEDURE
	DECLARE-REPORT
	DECLARE-TABLE
	DECLARE-TOC
	DECLARE-VARIABLE
	#DEFINE
	DISPLAY
	DIVIDE
	DO
	DRAW
	DUMP-TABLE
	#ELSE
	ELSE
	ENCODE
	END-DECLARE, END-DOCUMENT, END-EVALUATE, END‑FOOTING, END‑HEADING
	#END-IF, #ENDIF
	END-IF
	END-PROCEDURE, END-PROGRAM, END-SELECT, END‑SETUP, END-SQL, END‑WHILE, END-EXECUTE
	EVALUATE
	EXECUTE
	EXIT-SELECT
	EXTRACT
	FILL-TABLE
	FIND
	GET
	GET-COLOR
	GOTO
	#IF
	IF
	#IFDEF
	#IFNDEF
	#INCLUDE
	INPUT
	LAST-PAGE
	LET
	Operands
	Operators
	Functions

	LOAD‑LOOKUP
	LOOKUP
	LOWERCASE
	MBTOSBS
	MOVE
	MULTIPLY
	NEW-PAGE
	NEW-REPORT
	NEXT-COLUMN
	NEXT-LISTING
	OPEN
	OPEN-RS
	PAGE-NUMBER
	POSITION
	PRINT
	BOLD
	BOX
	BOX-FILL-COLOR
	BOX-LINE-COLOR
	CENTER
	CENTER-WITHIN
	CODE-PRINTER
	DATE
	DELAY
	EDIT
	FILL
	FONT
	FOREGROUND/BACKGROUND
	ITALIC
	MATCH
	MONEY
	NOP
	NUMBER
	ON-BREAK
	POINT-SIZE
	SHADE
	UNDERLINE
	URL
	URL-TARGET
	WRAP

	PRINT-BAR-CODE
	PRINT-CHART
	PRINT-DIRECT
	PRINT-IMAGE
	PRINT-TABLE
	PUT
	READ
	ROLLBACK
	SBTOMBS
	SECURITY
	SET-COLOR
	SET-DELAY-PRINT
	SHOW
	STOP
	STRING
	SUBTRACT
	TOC-ENTRY
	UNSTRING
	UPPERCASE
	USE
	USE-COLUMN
	USE-PRINTER-TYPE
	USE-PROCEDURE
	USE-REPORT
	WHILE
	WRITE
	WRITE-RS

	HTML Procedures
	About HTML Procedures
	HTML General Purpose Procedures
	HTML Heading Procedures
	HTML Highlighting Procedures
	HTML Hypertext Link Procedures
	HTML List Procedures
	HTML Table Procedures

	Encoding in Production Reporting
	Encoding Methods
	Encoding Keys in SQR.INI
	Encoding Keys in the [Default-Settings] Section
	Encoding Keys in the [Environment] Section

	Encodings Supported without Using Unicode Internally
	Encodings Supported in Production Reporting

	SQR.INI
	Installation of SQR.INI
	For Windows Platforms Only
	For All Other Platforms

	[Default-Settings] Section
	[Environment: environment] Section
	Using the Java Virtual Machine
	DDO Variables
	Encoding Keys

	[SQR Extension] Section
	[Locale:local-name] Section
	[Fonts] Section
	Adding [Fonts] Entries
	Specifying Character Sets in Windows

	[PDF Fonts] Section
	Embedding Fonts
	Available Fonts

	[PDF Settings] Section
	[HTML Fonts] Section
	[HTML:Images] Section
	[Enhanced-HTML] Section
	[Color Map] Section
	[MAP-ODBC-DB] Section
	[MAP-DDO-DB] Section
	[SQR Remote] Section

	Production Reporting Samples
	Production Reporting Messages
	Unnumbered Messages
	Numbered Messages

	Production Reporting Language Quick Reference
	Deprecated Information
	Deprecated Production Reporting Command-line Flags
	Deprecated SQR.INI Entries
	Values for the FullHTML Keyword in the [Enhanced-HTML] Section
	[Processing-Limits] Section
	Values for PDFCompressionText and PDFCompressionGraphics in the [Default-Settings] Section

	Deprecated Transforms
	Deprecated Production Reporting Commands
	BEGIN-REPORT
	DATE-TIME
	DECLARE PRINTER
	DECLARE PROCEDURE
	DOLLAR-SYMBOL
	GRAPHIC BOX
	GRAPHIC FONT
	GRAPHIC HORZ-LINE
	GRAPHIC VERT-LINE
	MONEY-SYMBOL
	NO-FORMFEED
	PAGE-SIZE
	PRINT …CODE
	PRINTER-DEINIT
	PRINTER-INIT

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /FranklinGothic-BookCnd
 /FranklinGothic-BookCndItal
 /FranklinGothic-DemiCnd
 /FranklinGothic-DemiCndItal
 /FranklinGothic-MedCnd
 /FranklinGothic-MedCndItal
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /Minion-Black
 /Minion-Bold
 /Minion-BoldItalic
 /Minion-Italic
 /Minion-Regular
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Palatino-Roman
 /Symbol
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (This file has been modified for Distiller 7.0 PDF, as described in the Oracle Documentation Processes Guide to Creating PDF. Also, Franklin Gothic and Minion fonts are set to Always Embed.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

