
H Y P E R I O N ® S Q R ® P R O D U C T I O N R E P O R T I N G

R E L E A S E 1 1 . 1 . 1

D E V E L O P E R ’ S G U I D E

VOLUME 3: ACCESSING DATA WITH SQR PRODUCTION
REPORTING DDO

Production Reporting Developer’s Guide, 11.1.1

Copyright © 1996, 2008, Oracle and/or its affiliates. All rights reserved.

Authors: EPM Information Development Team

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable: U.S. GOVERNMENT RIGHTS: Programs, software, databases, and related
documentation and technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government
contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal
injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim
any liability for any damages caused by use of this software in dangerous applications.

This software and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with
respect to third party content, products and services. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third party content, products or services.

Contents

Part I. Understanding Production Reporting . 9

Chapter 1. Production Reporting Basics . 11

About Production Reporting DDO . 11

Production Reporting DDO Software Development Kit . 11

Advantages of Production Reporting DDO Interfaces . 12

Production Reporting DDO Architecture . 12

Establishing a Data Source Connection . 13

Supporting Transactions . 14

Obtaining Metadata . 14

Obtaining Data . 15

Processing Results . 15

Implementing Production Reporting DDO Interfaces with Drivers 16

Data Access Strategies . 17

Chapter 2. Creating Production Reporting DDO Applications . 19

About the Production Reporting DDO API . 19

A Simple Code Example . 19

Managing Data Sources . 20

Registry Files . 21

The DataSourceManagerAdmin Class . 21

Defining a New Data Source . 22

Establishing a Connection . 25

Processing Logon Properties . 25

Discovering Capabilities . 28

Checking for a Capability . 29

Obtaining Metadata . 30

Obtaining Schema Information . 31

Listing Data Objects in a Schema . 32

Obtaining Information about Data Objects . 33

Retrieving Column Metadata . 34

Obtaining Metadata About Procedures . 35

Contents iii

Determining the Return Value . 36

Requesting Data . 38

Retrieving Data with getData . 39

Executing Commands . 42

Calling Procedures and Processing Call Results . 44

Performing Transactions . 46

Obtaining Hierarchical and Multidimensional Data . 47

Retrieving Multidimensional Data Using a Regular Selector . 50

Retrieving Multidimensional Data Using MDSelector . 51

Chapter 3. Writing a Production Reporting DDO Driver . 55

About Writing a Driver . 55

Summary of Steps . 55

Step 1: Create the Properties, Capabilities, and Message Files . 56

Creating the Properties Files . 56

Creating the Capabilities Files . 56

Creating the Messages File . 57

The CSV Interface . 58

Step 2: Implement the DataSource Interface . 59

Step 3: Implement the Connection Interface . 60

Providing Column Metadata . 62

Implementing getData . 66

Implementing getData with Selector . 66

CSVFile Class . 67

Step 4: Implementing Rowset . 69

Chapter 4. Programming Considerations . 73

Production Reporting DDO Adapters . 73

Driver Organization Tips . 73

Registy Editor . 74

Messages and Exceptions . 75

CSV Example . 76

Message Forms . 76

Properties and Capabilities . 77

Descriptions . 78

Localization . 78

Hierarchical Structure . 78

Internationalization . 80

Message Editor . 80

Loading Messages . 81

iv Contents

Adding Messages . 82

Editing Message Contents . 82

Property Editor . 83

Loading Properties . 83

Testing and Debugging Drivers . 84

Using the Query Editor to Test and Debug Drivers . 84

Chapter 5. Managing Data Sources . 87

Data Source Specifications . 87

Adding a Data Source Specification in the Registry Editor . 88

Data Source Descriptions and Templates . 88

Hyperion Essbase . 89

SAP R/3 and SAP BW . 90

Microsoft OLEDB for OLAP . 94

Microsoft OLEDB . 94

JDBC . 95

XML . 102

Delimiter Separated Values . 103

OMG Corba Sample . 103

Microsoft DCOM Sample . 104

CSV Sample . 104

Chapter 6. Utilities Package and Common Facilities . 107

About the Utilities Package . 107

Common Components of the Utilities Package . 107

Naming Scheme . 107

Property Resource Bundles . 108

Instrumentation . 109

Message Facility . 110

Message Text . 110

Message Property Files . 110

Localization Example . 111

Services . 112

Property Facility . 112

DataSource Class . 113

Property Descriptions . 114

Property Sheets . 115

Retrieving Properties and Capabilities . 117

Secure Properties and Capabilities . 118

Property Auxiliary Services . 118

Contents v

Property Validators . 119

Part II. Using Production Reporting DDO to Access Data . 121

Chapter 7. Using Production Reporting DDO to Access SAP R/3 Data . 123

Data Access Requirements . 123

Using the Registry Editor to Make an SAP R/3 Connection . 123

Using the Query Editor to See the SAP Tree Structure . 124

Using SQR Production Reporting Studio to Build a Report with a BAPI 125

Understanding the Production Reporting Code for SAP R/3 . 126

Chapter 8. Using Production Reporting DDO to Access an SAP BW Data Source . 131

Accessing the SAP BW OLAP Server . 131

Supported Platforms . 131

Copying Files to the /lib Directory . 132

Adding the SAP BW Data Source to the Registry.properties File 132

The Hierarchical Structure of Objects for an SAP BW Data Source 133

SAP BW and the Production Reporting Language . 135

Accessing Dimension Properties . 135

Specifying Dimension Members . 136

Specifying the Order in Which to Return Dimension Members 137

Restricting the Returned Result Set . 139

Limiting the Set of Values Used for a Dimension . 141

Using SAP BW Variables . 142

Returning a Set of Descendants . 143

Finding a Dimension’s Ancestor . 144

Defining Calculated Key Figures, Restricted Key Figures, and Calculated Members . . 145

Accessing SAP BW Data from SQR Production Reporting Studio 148

Chapter 9. Using Production Reporting DDO to Access Essbase Cubes . 151

Overview of Cubes . 151

Viewing Cubes . 152

Using Cube Commands in Production Reporting . 153

SET-MEMBERS . 154

SET-GENERATIONS . 156

SET-LEVELS . 157

Displaying Report Data . 159

Measures . 159

Aliases . 159

Column Order . 160

vi Contents

Accessing Cubes: An Example . 162

The Cube . 162

The Production Reporting Code Needed to Access the Cube 163

An Explanation of the Code . 165

Chapter 10. Using Production Reporting DDO to Access MSOLAP Cubes . 167

Overview of Cubes . 167

Viewing Cubes . 168

Using Cube Commands in Production Reporting . 169

SET-MEMBERS . 170

SET-GENERATIONS . 171

SET-LEVELS . 173

Displaying Report Data . 175

Measures . 175

Aliases . 175

Column Order . 176

Accessing Cubes: An Example . 178

The Cube . 178

The Production Reporting Code Needed to Access the Cube 179

An Explanation of the Code . 180

Part III. Appendices . 183

Appendix A. Sample Resource Files . 185

SAP DataSource Property Description . 185

SAP DataSource Messages . 190

Appendix B. Using the HTTP-enabled XML DDO Driver . 195

Usage . 195

Define a Registry Entry . 195

Declare a Connection . 196

Use Getdata= in the Begin-Execute Section . 196

An Alternate Method . 196

Specifying URLs at Runtime . 197

Accessing XML Files via HTTP Using the Production Reporting DDO Query Editor 197

Limitation . 197

Index . 199

Contents vii

viii Contents

P a r t I

Understanding Production Reporting

In Understanding Production Reporting:

● Production Reporting Basics
● Creating Production Reporting DDO Applications
● Writing a Production Reporting DDO Driver
● Programming Considerations
● Managing Data Sources
● Utilities Package and Common Facilities

Understanding Production Reporting 9

10 Understanding Production Reporting

1
Production Reporting Basics

In This Chapter

About Production Reporting DDO.... .11

Production Reporting DDO Software Development Kit .11

Advantages of Production Reporting DDO Interfaces... .12

Production Reporting DDO Architecture... .12

Data Access Strategies17

About Production Reporting DDO
Oracle's Hyperion® SQR® Production Reporting DDO defines an open interface for data access,
allowing applications to extract data from vastly different data sources. The Production
Reporting DDO Software Development Kit provides the technical resources for building drivers
with the special interface knowledge to access data sources, such as relational databases using
JDBC, delimiter-separated values files (CSV), and XML data sources that can read XML directly
from any Web input stream.

Production Reporting DDO Software Development Kit
The Production Reporting DDO Software Development Kit provides classes that make it easier
to write drivers for application business objects using COM or CORBA interfaces. Each driver
provides an implementation of the Production Reporting DDO interface for a specific data
source. The developer only needs to invoke functionality that is specific to a given data source.

While accessing a data source through an Production Reporting DDO driver, application
developers use the Production Reporting DDO Software Development Kit to extend base
Production Reporting DDO classes to rapidly implement access to their objects. The base classes
provide the necessary infrastructure of describing properties and capabilities, providing localized
messages, and default behavior.

To use the Production Reporting DDO Software Development Kit, you need:

● Basic Java programming skills

● Workstation with a Windows platform

● Java programming tool such as Symantec Visual Café, Visual J++, Visual Age for Java, or
JBuilder

About Production Reporting DDO 11

Advantages of Production Reporting DDO Interfaces
Production Reporting DDO interfaces and their relationships are similar to those found in JDBC
or ADO. Production Reporting DDO is an application layer interface to heterogeneous data
sources.Production Reporting DDO drivers provide high-performance access to any data
source, including relational and non-relational database systems, custom business objects, and
more.

More importantly, unlike JDBC and ADO, Production Reporting DDO uses a rich bi-directional
capabilities-and-properties model to enable transparency between applications and drivers. This
allows a single application to access heterogeneous data sources without prior knowledge of the
capabilities and properties of that data source.

Production Reporting DDO provides these advantages:

● Application Security—Embraces Enterprise Resource Planning (ERP) and other multi-tier
applications in which real objects in the business world, such as employees or purchase order
requisitions, are modeled as business objects and data abstracted from these business objects.
Information access through business objects enforces application security and encapsulates
business rules.

● Open System—Makes no assumptions about applications and data sources. Provides an
open interface for query or reporting tools to access both relational and non-relational data
sources. Provides access to application business objects, multi-dimensional and hierarchical
data, XML data, and arbitrarily complex data.

● Metadata Access—Provides rich access to metadata, allowing applications to interactively
discover information objects and data source capabilities. Reporting applications can select
data and build queries without intimate knowledge of the data source. They can make
selections and build queries in a generic manner without having to separately support each
data source.

● SDK—Makes it easy to add new data sources by implementing a driver. The driver declares
the capabilities and properties of the data source. Most Production Reporting DDO
capabilities are optional and the driver simply specifies which capabilities are supported.

● Remote Data Access—Sends data access requests to a Production Reporting DDO server
and returning results back to the client. This allows the distribution of Production Reporting
DDO drivers and clients.

Production Reporting DDO Architecture
Production Reporting DDO provides a Java interface that conforms to the JavaBeans
specification for reusable software components. You can access Production Reporting DDO
from other programming languages using Component Object Model (COM) and Common
Object Request Broker Architecture (CORBA) object-access methods. The interface keeps track
of available data sources, connects to data sources to obtain metadata and data, and provides
access to return results. Production Reporting DDO provides access to any object that holds
data, not just databases.

12 Production Reporting Basics

Figure 1 Production Reporting DDO Architecture

Establishing a Data Source Connection
Production Reporting DDO provides the necessary resources to establish a data source
connection. These resources (also referred to as “interfaces”) are components of the Production
Reporting DDO interface and are described below:

● DataSourceManager—Maintains a list of available data sources in persistent registries from
which the application locates and loads the data source.

Registering a new data source involves saving the name of the data source, the name of its
implementation class (the driver), and a connection string. Multiple data sources of the
same type can use the same driver.

● DataSource—Describes the data sources’s capabilities and properties and allows the
application to create a connection for the data source. Maintains a property sheet
(PropertySheet) that describes the specific data source properties and capabilities, such as
the properties required to open a data source connection.

Data sources can implement different query languages. Data source support for a query
language is optional. Data sources that do not support a query language may still support
data filtering through a simple selector interface, thereby reducing the amount of data
retrieved.

● Connection—The main Production Reporting DDO interface. Provides methods that
obtain metadata and data. (Metadata describe the object hierarchy, the fields that the object
provides, and the parameters.) Data can be obtained from a data source by executing a
command, calling a procedure, or naming an object and requesting its data.

Production Reporting DDO Architecture 13

Figure 2 Establishing a Data Source Connection

Supporting Transactions
The transaction interface provides methods for beginning a transaction, commit, and rollback.
A data source is not required to support transactions and will indicate whether it supports
transactions. The scope of a transaction is one data source. Production Reporting DDO does
not coordinate transactions between multiple data sources.

Obtaining Metadata
A data source holds schemas that can contain data objects and procedures. Depending on the
data source requirements, the application uses the appropriate method of the Production
Reporting DDO connection interface to retrieve metadata.

● Data object—A generalized abstraction for any object that can provide its data on request.
Includes tables, views, files, and business objects.This metadata describes all the data objects
available through the established data source connection.

● Procedure—A generalized abstraction for any callable procedure or method that can be
executed at the data source. Includes stored procedures and methods on business objects.
A procedure can have parameters, a return value, and zero or more result sets.

14 Production Reporting Basics

Figure 3 Obtaining Metadata

Obtaining Data
Production Reporting DDO can obtain data using three methods:

● Executing a command—A reporting application executes a command by passing command
text and associated parameters. The command contains a statement that the data source can
recognize along with any parameters. Results are returned via the Rowset interface.

The result is a Rowset. The command can be anything that the data source understands. For
example, a data source might specify that it can accept SQL and indicate the level of SQL
that it understands. This allows reporting applications to send standard SQL to any data
source that understands SQL as well as to pass-through data-source specific commands.

● Using getData—A data source that typically does not support a command language can
return data from an information object. All that the application needs is the name of the
object. The application names the information object from which data is requested and
optionally specifies some selection criteria. The data source returns data as a Rowset
interface.

● Calling a Procedure—The Procedure interface abstracts any parameterized object, remote
procedure call, stored database procedure, or any object that behaves like a procedure. An
application specifies the procedure it wants to execute and supplies any IN and IN/OUT
parameters. The result object may contain a status and any number of Rowset objects
representing multiple result sets. This interface allows the application to obtain output
parameters, a return value, and any number or rowsets via the Rowset interface.

Processing Results
The CallResults interface allows access to the results of a procedure call. This includes the return
value, output parameters, and the Rowset objects that the procedure returns.

Production Reporting DDO Architecture 15

The Rowset interface is the main interface for processing results in Production Reporting DDO.
It provides methods that retrieve the results a row at a time. Each Row contains Field objects.
These are typed objects that are derived from the abstract Field class. The Rowset, Row, and
Field objects are all self-describing. They provide information about the number, type, size, and
name of the data items that they hold.

Rowset represents a forward-only read-only set of rows. It does not cache the entire set in
memory. Once the next row is retrieved, the previous row may be discarded. A row may be
retrieved from the database just in time for it to be retrieved. This allows the Rowset
implementation to only keep a small number of rows in memory at any given time and therefore
can handle very large results.

Field objects contain runtime metadata. This metadata is sufficient to process a field value
without referencing the object metadata.

Implementing Production Reporting DDO Interfaces with
Drivers
In addition to defining an interface for applications, Production Reporting DDO provides a
plug-and-play architecture for Production Reporting DDO drivers. Each driver provides an
implementation of the Production Reporting DDO interface for its data source.

A major design objective of Production Reporting DDO is to make the task of writing an
Production Reporting DDO driver as easy as possible:

● Production Reporting DDO only requires a driver to implement a minimal set of interfaces.
Many of the interfaces are optional. In particular, an Production Reporting DDO data source
is not required to support a query language or procedure calling, and it is not required to
support transactions.

● An Production Reporting DDO driver declares its capabilities in a Capabilities resource file.
No coding is required.

● Production Reporting DDO provides base classes that implement all the interfaces. These
classes provide more than just default behavior. They provide all the functionality of
managing Production Reporting DDO metadata. They also provide much of the common
code that all drivers would otherwise have to implement.

● Production Reporting DDO provides a framework for exceptions and localized error
messages. The messages are easily organized in resource files and can be managed using the
tools that are included with the Production Reporting DDO SDK.

● Production Reporting DDO provides tools for logging messages and timing information.
The driver can easily provide debugging information.

The driver developer need only write the code that is specific to the data source and the
functionality that you wish to expose through the Production Reporting DDO API.

16 Production Reporting Basics

Driver Manager
The Production Reporting DDO interface includes a driver manager that allows applications to
list the available data sources and dynamically select them. Production Reporting DDO provides
out-of-the-box support for common data sources by including a driver for relational databases
using JDBC and drivers for delimiter-separated values files (CSV). In addition, Production
Reporting DDO provides an XML driver, permitting access and interchange of intelligent data
through XML. The driver can read XML directly from any web resource or an input stream.

An Production Reporting DDO driver developer only needs to implement functionality that is
specific to the data source. The SDK provides classes that make it easier to write drivers for
application business objects that use COM or CORBA interfaces.

Data Access Strategies
To provide uniform data access for vastly different data sources, the Production Reporting DDO
interface employs strategies that relieve the application from having to know each data source.

● High Level of Abstraction—TheProduction Reporting DDO interface reflects consistent
patterns of data access. An application establishes a connection to the data source by
specifying logon properties. The connection allows the application to obtain metadata, to
retrieve data, and to perform transactions.

The metadata describes information objects. These objects are grouped under schemas and
organized as a hierarchy. Data from these objects can be obtained in one of three ways. First,
the application can send commands and parameters to the data source. A command could
use a query language to select data from one or more information objects. Second, the
application can execute remote procedures. Third, the application can select an information
object, select some or all of the fields that it provides, and specify selection criteria and
ordering.

The Production Reporting DDO interface hides implementation details. Performance
optimizations such as pooling connections and commands, reading ahead, and caching are
performed “under the cover” and are transparent to the application.

● Descriptive Properties and Capabilities—To provide uniform data access for vastly
different data sources without resorting to a common denominator, Production Reporting
DDO allows drivers to pick and choose which capabilities are relevant to their data source
and which capabilities they will implement. For example, a driver can declare that it supports
SQL commands and specify the version of SQL that it supports. The driver declares its
capabilities in a resource file. There’s no need to write code to describe capabilities. This
simplifies the process of writing a driver. Applications can interrogate capabilities through
the Production Reporting DDO data source interface.

In addition to capabilities, drivers also declare properties. For example, the driver declares
the properties that are used for logon, specify which are required, and which are secure. The
reporting application can dynamically adapt to the capabilities of the data source.

● Rich Metadata—Production Reporting DDO allows applications to discover all the
information objects that are accessible through a connection to a data source. It provides
information about these objects, their types, and how they are organized. It describes

Data Access Strategies 17

procedures, their input and output parameters, and the results they will provide once
executed.

● Mapping of Data Types—Production Reporting DDO maps database data types to
Production Reporting DDO Field objects. The Field object is an abstract object from which
typed Field objects are derived. A Field object has a name, size, and value. The value of the
field can be Null. Production Reporting DDO provides typed fields such as Text, Date,
Number, Integer, Decimal, Long Binary, Object, Row, and Rowset.

Production Reporting DDO offers automatic type conversions. For example, most of the
basic types support a useful conversion of their value to and from text. All the numeric fields
are special types of the Number field. This allows applications to treat all numeric data
uniformly and, for example, convert their value to decimal. An application can choose which
Production Reporting DDO types it recognizes. It does not need to know the data source’s
native data types.

● Use of Hierarchies—Production Reporting DDO draws a great degree of flexibility from
supporting hierarchical structures. This comes into play in both metadata and data.
Production Reporting DDO supports data sources that organize business intelligence (BI)
objects in an arbitrarily deep hierarchy.

The fields of a BI object can represent hierarchical dimensions. This is typical in multi-
dimensional databases. You can traverse a dimension and obtain information about its levels
and members. You can use members in making data selections from the object.

Production Reporting DDO does not assume that data is flat or normalized. A Rowset can
hold complex objects. In particular, a Rowset can hold additional Rowset objects.

● Use of Procedures—Production Reporting DDO supports the concept of a procedure,
allowing data sources to expose their objects as procedures rather than tables, defining an
interface for parameter passing without a query language, and enabling multiple Rowset
retrieval.

● Self-Describing Result Objects—Production Reporting DDO result objects are self-
describing. An application can determine the number of Rowset objects that are being
returned as a result of executing a command or procedure. The Rowset object describes its
fields. Fields describe their name, type, size, and precision.

● Focus on Query and Reporting—By focusing on query and reporting, the Data Access
interface is simplified and, thus, is easier to implement. Rowset objects are read-only. A great
degree of complexity involved in caching a Rowset, allowing bi-directional scrolling,
allowing updates, and synchronization with the database has been eliminated. Updates to
the databases are still supported through executing commands and procedures.

18 Production Reporting Basics

2
Creating Production Reporting

DDO Applications

In This Chapter

About the Production Reporting DDO API.. .19

A Simple Code Example .. .19

Managing Data Sources20

Establishing a Connection .. .25

Discovering Capabilities .. .28

Obtaining Metadata .. .30

Requesting Data38

About the Production Reporting DDO API
The Production Reporting DDO API defines Java interfaces that represent data sources,
connections, information objects, result sets, and metadata. An application can enumerate the
available data sources and create connections to them.TheProduction Reporting DDO API also
allows applications to request data and process the results and includes a driver manager that
can support multiple drivers that connect to data sources.

This chapter provides a code example that steps through locating, connecting and accessing a
data source, and then processing data obtained. It then discusses how Production Reporting
DDO supports and maintains these processes.

A Simple Code Example
Program ex1.sqr demonstrates locating a data source, establishing a connection, retrieving data,
and processing data. (The code omits some error checking.) The fields returned are implicitly
converted to text. This program shows how to take advantage of the Rowset being self-describing
to obtain the names of the columns returned.

The Java package com.sqribe.access implements the Production Reporting DDO API.

Program ex1.sqr
import com.sqribe.access.*;
...
try {
 DataSource ds = DataSourceManager.getDataSource("accounting");
 ds.getPropertySheet().setProperty("user", "scott");

About the Production Reporting DDO API 19

 ds.getPropertySheet().setProperty("password", "tiger");
 Connection c = ds.open();
 Rowset rs = c.getData(c.getSchemaObject("Employee"));
 System.out.println("<table><tr>");
 // print headings
 for (int i = 0; i < rs.getFieldCount(); i++)
 System.out.println("<td>" + rs.getField(i).getName() + "</td>");
 while (rs.next()) {
 // print data
 System.out.println("</tr><tr>");
 for (int i = 0; i < rs.getFieldCount(); i++)
 System.out.println("<td>" + rs.getField(i) + "</td>");
 }
 System.out.println("</tr></table>");
 c.close(); // close the connection to the data source

Managing Data Sources
The DataSourceManager maintains a cache of available data sources called the Registry. The list
identifies the data sources by name. Using the Registry, the DataSourceManager can locate and
instantiate a data source and return a DataSource interface to the application.

To locate a data source using its name and obtain a DataSource interface, an application calls
the DataSourceManager.getDataSource() method. For example:

DataSource ds;
ds = DataSourceManager.getDataSource("accounting");
if (ds == null) {
 System.out.println("The accounting data source is unavailable.");

In this code example, the DataSourceManager searches the Registry for a data source called
accounting. If it locates the driver, DataSourceManager loads the driver for this data source and
returns its DataSource interface. If it does not find the data source in the Registry, or if the data
source entry in the Registry is improperly configured, the DataSourceManager returns a null
reference.

Note:

Multiple calls to getDataSource() with the same name return the same object.

You can use the DataSourceManage.getDataSources() method to obtain a list of the
available data sources in the current registry.

import com.sqribe.access.*;
import java.util.Enumeration;
...
Enumeration enum;
enum = DataSourceManager.getDataSources();
while (enum.hasMoreElements()) {
 DataSource ds = (DataSource)enum.nextElement();
 System.out.println(ds.getName());

20 Creating Production Reporting DDO Applications

By default, the registry contains entries that are stored in the file Registry.properties. This
file can be found in the properties folder.

Registry Files
This section shows how to manage multiple registries. If your application always uses the default
registry (the file Registry.properties), then you can skip this section and proceed directly
to “Defining a New Data Source” on page 22.

The Registry is a cache of data sources maintained by the DataSourceManager. The first time
you use DataSourceManager, it loads the Registry from a file. The default Registry file is
Registry.properties. This file resides in the Production Reporting DDO properties
folder.

Your application can load the Registry from alternative sources using the DataSourceAdmin
class. This class provides static methods for loading DataSource definitions from a file or
InputStream.

A registry file contains a list of registered data sources along with a short description for the data
source, the name of its implementation class, and a connection string.

You can use the same DataSource implementation class to implement multiple data sources.
Each data source is registered separately.

The following code example loads the Registry from a file called
MyDataSources.properties. This file is located in the properties folder.

try {
DataSourceManager.getDataSourcesAdmin().load("MyDataSources");
} catch (DataAccessException e) {
 e.printStackTrace();

Note that the .properties extension of the registry file is assumed and should not be specified
in the load() call. Also note that like most of Production Reporting DDO calls, this call can fail
with a DataAccessException.

In addition to loading registry entries from a properties file in the properties folder, the
DataSourcesAdmin class allows you to load registry entries from any file or InputStream. You
can perform multiple loads. The effect is cumulative. The DataSourcesAdmin class also allows
you to save the current registry into a file or OutputStream.

The DataSourceManagerAdmin Class
The DataSourceManager uses the DataSourceManagerAdmin class to maintain its properties in
a file named:

com_sqribe_access_DataSourceManager_Properties

This file is located in the Production Reporting DDO properties folder.

Within this properties file, there is a property called DataSources.files:

DataSources.files = <list of data sources property files>

Managing Data Sources 21

For example:

DataSources.files = Registry MyDataSources

The DataSourceManagerAdmin allows you to enumerate these names and subsequently use
them in DataSourcesAdmin.load() calls. This allows an application to deal with multiple
registries. For example, you have a restricted registry with only a few data sources and a power
user’s registry with all available data sources. The class also allows an administrative tool to obtain
the list of usable registries.

Defining a New Data Source
You define a data source in a registry file. You can either use the tool that is supplied with the
Production Reporting DDO SDK or edit the registry file directly.

Creating a New Data Source by Editing a Registry File
To understand how to add a new data source to a registry file, let’s go through an example. This
example adds a data source called HelpDesk to the default registry file,
Registry.properties. The HelpDesk data source is an Oracle database. Access to this
database is through the Production Reporting DDO JDBC Access driver using a JDBC driver
from Oracle.

We will go through the following steps:

● Identifying the packages to add to the CLASSPATH

● Editing the Registry.properties file

● Specifying the name of the data source

● Specifying the Production Reporting DDO driver

● Specifying loading of the JDBC driver

● Specifying the JDBC URL

➤ To add a new data source to a registry file:

1 Identify the packages to add to the CLASSPATH.

We will access the database via JDBC using the JDBC Access Production Reporting DDO driver.
This driver is implemented in the package com.sqribe.jdbcacc and distributed in the file
ddo11.zip. If this file is not already part of your CLASSPATH environment variable, then add
it to the CLASSPATH now.

The example uses a JDBC driver for connecting to Oracle. At the time of writing this book,
Oracle is providing a JDBC driver in a file called “classes111.zip”. This file includes the package
oracle.jdbc.driver that implements the JDBC driver. Include this ZIP file as part of your
CLASSPATH.

2 Edit the Registry.properties file.

22 Creating Production Reporting DDO Applications

Edit the Registry.properties file using a text editor such as Notepad. The following lines
are the entry for our HelpDesk data source, which you can insert these lines at the end of the
file.

HelpDesk.desc=Technical Support HelpDesk
HelpDesk.class=com.sqribe.jdbcacc.JDBCDataSource
HelpDesk.lib=oracle.jdbc.driver.OracleDriver
HelpDesk.load=
HelpDesk.conn=jdbc:oracle:oci7:@TechSupport.World

3 Specify the name of the data source.

In the example above, the name of the data source, HelpDesk, forms part of the property name.

Table 1 Properties of the HelpDesk Data Source

Property Purpose

HelpDesk.desc Description of this data source.

HelpDesk.class Class name of the Production Reporting DDO driver. This is the name of the Java class that
implements the DataSource interface.

HelpDesk.lib List of Java classes to load as part of the initialization of this data source.

HelpDesk.load List of native libraries to load as part of the initialization of this data source.

HelpDesk.conn Connection string that the Production Reporting DDO driver understands. In the case of the JDBC
Access driver, this is a JDBC URL.

4 Specify the Production Reporting DDO Driver.

An Production Reporting DDO driver is a Java class that implements the DataSource interface.
For the JDBC Access driver, this class is com.sqribe.jdbcacc.JDBCDataSource. This class
is packaged in the ddo11.zip file. Specifying the name of the class as the value of the
HelpDesk.class property tells the DriverManager how to start this Production Reporting
DDO driver.

5 Specify loading of the JDBC driver.

The Production Reporting DDO JDBC Access driver can use any JDBC driver to access a
relational data source. A URL specifies the relational data source. The Java JDBC driver manager
uses the URL to locate a suitable JDBC driver from among the drivers that are currently in
memory (loaded by the JVM class loader).

Ensuring the availability of a suitable driver often requires explicitly loading the JDBC driver
into memory. Production Reporting DDO allows specifying a list of Java classes to load in the
HelpDesk.lib property. In our example, we specify the name of the Oracle JDBC driver’s class,
oracle.jdbc.driver.OracleDriver. By loading this driver explicitly, we make sure that
the JDBC driver manager will successfully resolve the JDBC URL for the HelpDesk data source.

6 Specify the JDBC URL.

The HelpDesk.conn specifies the data source-specific connection string. In the case of the
Production Reporting DDO JDBC Access driver, this is a JDBC URL. The URL always start with
jdbc:. The rest of the URL selects Oracle and identifies the specific Oracle database and the

Managing Data Sources 23

connectivity method. For more information about constructing the URL, refer to the JDBC
driver documentation.

Following is another example using the Sun JDBC-ODBC bridge. The Registry in the example
configures the HelpDesk data source to use the Sun JDBC-ODBC bridge. The example assumes
an ODBC data source configured under the name HelpDesk.

HelpDesk.desc=Technical Support HelpDesk
HelpDesk.class=com.sqribe.jdbcacc.JDBCDataSource
HelpDesk.lib=sun.jdbc.odbc.JdbcOdbcDriver
HelpDesk.load=
HelpDesk.conn=jdbc:odbc:HelpDesk

Note that the HelpDesk.class property did not change. It is still the Production Reporting
DDO JDBC Access driver. The HelpDesk.conn URL changed to specify odbc with the DSN
(data source name) of HelpDesk (the name does not have to be HelpDesk. It can be any name
that was given to this ODBC data source). The HelpDesk.lib loads the Sun JDBC-ODBC
bridge driver.

Creating a New Data Source at Run-Time
The Data Source Manager manages a registry of data sources to which an application can add a
new data source using the add() method. You can obtain a reference to this object using the
getRegistry() method of the DataSourceManager class.

The example code below defines the HelpDesk data source.

// Create a data source
DataSourceManager.getRegistry().add(
 "HelpDesk", // name
 " Technical Support HelpDesk ", // desc
 "com.sqribe.jdbcacc.JDBCDataSource", // class
 "oracle.jdbc.driver.OracleDriver", // lib
 "", // load
 " jdbc:oracle:oci7:@TechSupport.World "); // conn

After successfully registering the HelpDesk data source, an application can obtain the
DataSource interface by calling

DataSourceManager.getDataSource(HelpDesk).

Tip:

Loading a data source using the add() method of the Registry class might prevent the automatic
load of Registry.properties. This is because Registry.properties only loads if the
registry is empty. To load Registry.properties, use one of the following options:

● Explicitly load it with the following: DataSourceManager.getDataSourcesAdmin
().load(Registry)

● Have it automatically load before you add the new data source by calling the
getDataSource() or getDataSources() method of the DataSourceManager class.

24 Creating Production Reporting DDO Applications

Calling these methods before adding the new data source (while the registry is empty) causes
Registry.properties load.

Establishing a Connection
Once your application locates a data source and obtains a DataSource interface, it can establish
a connection to the data source using the open() call. This call returns a Connection interface.

We start by setting the logon properties required to connect to this data source. Typically, these
are the user and password properties. However, Production Reporting DDO does not assume
that this is always the case. Production Reporting DDO allows the data source to specify the
logon properties and allows your application to discover these properties at run-time.

The code example below shows how Production Reporting DDO sets the user and
password properties and how the open() call establishes a connection.

import com.sqribe.access.*;

try {
 DataSource ds = DataSourceManager.getDataSource("accounting");
 if (ds == null) ...
 ds.getPropertySheet().setProperty("user", "scott");
 ds.getPropertySheet().setProperty("password", "tiger");
 Connection c = ds.open();
} catch (Exception e) {
 e.printStackTrace();

After locating the data source and obtaining a DataSource interface, we set the user and
password properties. The example obtains the DataSource PropertySheet and uses the
setProperty() method of the PropertySheet class to set the user and password properties.
Note that these calls would fail with a PropertyException if the data source does not recognize
a user or password property. An application must be ready to handle this exception. The
PropertySheet and PropertyException classes are defined in the common utilities package
(com.sqribe.comutil). This package contains the general-purpose classes that are used by
Production Reporting DDO.

Having set the required logon properties, our example uses an open() call to establish a
connection. The open() call does not take any arguments. It returns a Connection interface.
The application will use this interface to access the data source.

If the open() call fails, a DataAccessException is thrown.

An application cannot assume that user and password are the logon properties for any arbitrary
data source.

Processing Logon Properties
This section examines the general case in which the application checks for the logon properties
for the given data source.

An Production Reporting DDO data source can be any application object that holds data—not
necessarily a traditional DBMS. Therefore, one cannot assume that a logon requires only a user

Establishing a Connection 25

name and password. In fact, a data source can require any number of items to establish a
connection. These items can be anything that identifies the data to be accessed and the user who
wants to access the data. These items can include an account number, folder name, identification
code, certificate and digital signature, to name a few examples.

An interactive application can obtain the list of logon properties from a data source at run-time
and prompt the user for these properties. For each property, the application can obtain a
description of the property, type, valid values, whether the property is required and whether it
is secure. Properties can be grouped. For example, the logon property groups all logon
properties.

One can program a batch application to pass properties to a data source based on prior
knowledge of the specific data source. You have seen an example of that earlier with the user
and password properties.

The PropertySheet class provides access to PropertyDescription objects that describe its valid
properties. PropertyDescription objects can be nested to represent grouped or nested properties.

Start by reviewing Program ex2.sqr.

Program ex2.sqr
import com.sqribe.access.*;
import com.sqribe.comutil.*;
public class Example {
 public static void main(String[] args) {
 try {
 DataSource ds = DataSourceManager.getDataSource("accntng");
 PropertySheet prop = ds.getPropertySheet();
 list(prop.getPropertyDescription("logon"));
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 static void list(PropertyDescription pd) {
 PropertyDescription l[] = pd.getIndexes();
 if (l != null)
 for (int x = 0; x < l.length; x++) list(l[x]);
 else
 System.out.println(pd.getName());
}

Code

DataSource ds = DataSourceManager.getDataSource("accntng");

Description

Locates the accounting data source and obtain a DataSource interface to it.

Code

PropertySheet prop = ds.getPropertySheet();

26 Creating Production Reporting DDO Applications

Description

Obtains the DataSource PropertySheet object.

Code

list(prop.getPropertyDescription("logon"));

Description

Calls the getPropertyDescription() method of PropertySheet to obtain a
PropertyDescription object for logon, which groups the logon properties, then calls the list
() method of our Example class to list the PropertyDescription. A PropertyDescription can be
nested to group additional PropertyDescription objects.

Code

PropertyDescription l[] = pd.getIndexes();
 if (l != null)
 for (int x = 0; x < l.length; x++) list(l[x]);
 else
 System.out.println(pd.getName());

Description

The list() method checks to see if there are any nested PropertyDescription objects by calling
getIndexes() and then checking to see if it’s null. A null value means that there are no nested
PropertyDescription objects for this PropertyDescription.

If there are nested objects, the example code calls list() recursively for each nested object.

Otherwise, the example code prints the property name. Recursive traversal eventually locates all
the properties that are nested under logon.

The application can prompt the user for a value for each property. To do so, the application
obtains additional attributes from the PropertyDescription objects. These attributes provide all
the necessary information for the application to obtain logon attribute from the user and pass
them to Production Reporting DDO. These attributes are summarized in Table 2.

Table 2 Attributes Derived from Property Description Objects

Attribute Purpose

Label Prompts the user for this property.

Description Description of the property offered to users as a help message.

Required Whether users must supply a value for this property.

Secured Whether the value of this property is secured. This is for properties such as password that should
not be echoed on the screen and should be encrypted. Production Reporting DDO performs the
encryption automatically.

Validator Name of a class that implements the PropertyValidator interface. An application does not need
to worry about this property since the Validator is typically supplied by either Production Reporting
DDO or the DataSource driver.

Establishing a Connection 27

Attribute Purpose

ValidationType Type of validation for the value of the property: This is a numeric value, 0 means no validation,
1 means that the value must fall inside a range (inclusive), and 2 means that the value must be
picked from a list. The validation is performed by the validator class specified in the Validator
attribute.

ValidationValues This is a list. If the ValidationType is range then the first item on the list is the minimum value and
the second is the maximum value. Otherwise the items represent the valid choices for the value
for this property. An application can use these values to populate a list box.

Discovering Capabilities
Capabilities are read-only properties that describe capabilities and attributes of the data source.
Like properties they can be grouped and nested. As with properties, access to capabilities is
through the PropertySheet class and one describes them using the PropertyDescription class.
Their main use is to describe the data-access interfaces that the data source supports.

If an application is familiar with the data source, it probably already knows its capabilities.
However, if you are building an ad-hoc application that can connect to various data sources, it
is important to be able to discover the capabilities of the data source at runtime. To support a
great variety of data sources and to ease the task of writing an Production Reporting DDO driver,
the Production Reporting DDO specification defines a minimal mandatory interface. Beyond
the minimum, the driver is free to decide which interfaces to support—as long as it declares its
capabilities.

Table 3 lists examples of data source capabilities. Production Reporting DDO allows your
application to check if a data source supports each one of these capabilities.

Table 3 Data Source Capabilities

Capability Description

command.supported Indicates that the data source supports the execution of commands. A
data source is not required to support any command language.

call.supported Indicates that the data source supports the execution of procedures. A
data source is not required to support procedures.

selector.supported The data source has the option of supporting the getData(Selector)
method that allows your application to pass a Selector object to the
getData() method in order to qualify the data retrieval.

transaction.supported Indicates that the data source supports the Transaction interface. If it
does not support the Transaction interface then a commit and rollback
calls will be silently ignored.

md.supported Indicates that the data source is multidimensional. You can pass a
MDSelector object on the getData(Selector) call. MDSelector is a
special kind of selector for multidimensional data sources. You can also
obtain hierarchical dimension metadata by fetching child members
using the getChildren() method of SchemaObjectColumn. This is useful
for multidimensional databases. If the data source does not support

28 Creating Production Reporting DDO Applications

Capability Description

this capability then a call to getChildren() on a SchemaObjectColumn
would return null. The data source also supports the MDSchemaObject
interface.

concurrent.connection.supported Indicates whether or not the concurrent use of a connection is
supported by the data source. When supported, multiple calls can be
active through the same connection. The kind of concurrency supported
is delineated by the specifications of the call, execute, selector, and
transaction concurrency settings.

A call is said to be active if any of the Rowset objects that it returns are
still active (still hold results pending).

JDBC.Database.get-IdentifierQuoteString Example of a driver-specific capability. If your application is talking to
the JDBC Access driver, it can obtain JDBC-specific capabilities.

The JDBC.Database.getIdentifierQuoteString capability tells your
application what character to use for identifiers in SQL such as a column
name that contains a space. Typically this is either single quote or
double quote.

Checking for a Capability
Program ex3.sqr checks to see if the data source supports the Transaction interface.

Program ex3.sqr
boolean checkTransactionSupport(DataSource ds) {
 PropertySheet prop = ds.getPropertySheet();
 Boolean supported =
 (Boolean)prop.getCapability("transaction.supported");
 if (supported == null) return false; // capability is not defined
 return supported.booleanValue();
}
The following example checks for the "JDBC.Database.getIdentifierQuoteString" capability
and uses it to compose an SQL statement.
try {
 // connect to the HelpDesk database
 DataSource ds = DataSourceManager.getDataSource("HelpDesk");
 PropertySheet prop = ds.getPropertySheet();
 prop.setProperty("user", "scott");
 prop.setProperty("password", "tiger");
 Connection c = ds.open();
 // check for the JDBC.Database.getIdentifierQuoteString
 prop = c.getPropertySheet();
 String quote = (String)prop.getCapability(
 "JDBC.Database.getIdentifierQuoteString");
 // use the quote string to construct the SQL
 String sql = "select " + quote + "Employee Name" +
 quote + " from " + quote + "Employees" + quote;
 // Based on the data source, the following should display either
 // select 'Employee Name' from 'Employees'
 // or
 // select "Employee Name" from "Employees"
 System.out.println(sql);

Discovering Capabilities 29

 c.close();
} catch ...

Obtaining Metadata
Using the Production Reporting DDO API, an application can obtain rich metadata about the
data objects at the data source without any prior knowledge of the data objects. The metadata
provides a complete description of how to access these objects, their parameters, and the data
they provide.

To provide uniform metadata for very different data sources, Production Reporting DDO uses
the following abstraction:

● A data source has one or more schemas. A schema is a grouping of data objects, procedures,
or additional schemas.

Some databases organize schemas within catalogs. Production Reporting DDO reflects these
as schemas within schemas. Other data sources organize data objects and procedures in a
hierarchy that can have any number of levels. Production Reporting DDO supports
hierarchy levels with its recursive notion of schemas.

● Production Reporting DDO imposes no limit on the level of nesting of schemas within
schemas.

● A data object is a generalized abstraction for any object that can provide its data on request.
This includes tables, views, files, and business objects.

● A data object has a set of columns.

● A procedure is a generalized abstraction for any callable procedure or method that can be
executed at the data source. This includes stored procedures and methods on business
objects.

● A procedure can have parameters, a return value, and zero or more result sets.

● A procedure’s result set has a set of columns.

● A column of a data object or a procedure’s result set could represent a scalar item such as a
date field, or a complex item such as a structure. The same is true for procedure parameters
and return value.

● A column, parameter, or return value can have children that are themselves columns. This
represents a hierarchy.

● A column hierarchy could represent a “dimension” in multidimensional (OLAP)
terminology. It means that the column represents a hierarchy of members (for example
departments in a hierarchical organization). By recursively enumerating the children of the
column you can traverse the outline of a dimension.

● A column hierarchy could represent a structure or a table. In these cases by enumerating
the children of this column you can list the fields of the structure or table. In the most general
case this could also be a recursive process (nested structures and tables).

This is fairly abstract, but it will become clearer as we discuss the API and give example of its
usage.

30 Creating Production Reporting DDO Applications

Obtaining Schema Information
The Connection interface allows the listing of objects that are available at the data source.
Production Reporting DDO groups these objects into schemas. A data source will always have
at least one schema that groups the data objects and procedures that it provides. In the most
general case, Production Reporting DDO organizes multiple schemas as a hierarchy. Each
schema in the hierarchy can hold additional schemas as well as data objects and procedures.

The getSchemas() method of the Connection interface accesses the top of that hierarchy. This
methods returns a Schemas object, which holds a list of the objects contained within the current
schema. The list can contain data objects, procedures, or additional schemas.

Program ex4.sqr is a function that takes a Connection interface as a parameter and lists all the
objects starting with the top of the hierarchy and recursively listing the schemas. Program
ex4.sqr demonstrates the most general case in which the application has no knowledge of the
data source and has to traverse the schemas to discover all the objects.

Program ex4.sqr
static void listConnection(Connection c) throws DataAccessException
{
 list(c.getSchemas(), 0);
}
static void list(Schemas schemas, int level)
{
 Enumeration enum;
 enum = schemas.elements();
 while (enum.hasMoreElements()) {
 Schema schema = (Schema)enum.nextElement();
 if (level > 0) indent(level);
 if (schema instanceof SchemaObject)
 System.out.println("data object: " + schema.getName());
 else if (schema instanceof SchemaProcedure)
 System.out.println("procedure: " + schema.getName());
 else {
 Schemas children = schema.getChildren();
 if (children != null)
 list(children, level + 1);
 }
 }
}
static void indent(int level)
{
 while (level-- > 0) System.out.print(" ");
}

Code

list(c.getSchemas(), 0);
}
 static void list(Schemas schemas, int level)
 {
 Enumeration enum;
 enum = schemas.elements();
 while (enum.hasMoreElements())

Obtaining Metadata 31

Description

Recurses through the schema hierarchy. The list() function takes an object of type
Schemas as an argument. The Schemas class is a collection of schema elements—objects of type
Schema—data objects, procedures, and schemas. The other argument of the list() function
is the level of recursion, which is used for indentation when listing objects.

list() starts at the top of the hierarchy by calling getSchemas() on the Connection interface.
getSchemas() returns a Schemas object that holds all the top-level schemas and objects for
this data source. We then call list() to list the schema recursively.

The list() function enumerates the items in the Schemas object. These items are of type
Schema, which includes data objects and procedures that are abstracted in the SchemaObject
and SchemaProcedure classes, respectively. The SchemaObject and SchemaProcedure classes
are subclasses of the Schema class.

Code

if (schema instanceof SchemaObject)

System.out.println("data object: " + schema.getName());

Description

Checks if the Schema object is a data object by checking if it is an instance of the
SchemaObject class. If the object is of type SchemaObject, then we list it as a data object.

Code

else if (schema instanceof SchemaProcedure)
 System.out.println("procedure: " + schema.getName());

Description

Checks the Schema object to see if it is a procedure by checking if it is an instance of the
SchemaProcedure class. If the object is of type SchemaProcedure, then we list it as a procedure.

Code

 else {
 System.out.println("schema: " + schema.getName());
 Schemas children = schema.getChildren();
 if (children != null)
 list(children, level + 1);

Description

Lists the SchemaObject as a schema and further lists its contents by making a recursive call to
list() after having accounted for the cases of data objects or procedures.

Listing Data Objects in a Schema
Program ex5.sqr connects to an Oracle database and lists the tables and views that are accessible
under user SCOTT.

32 Creating Production Reporting DDO Applications

Program ex5.sqr
try {
 DataSource ds = DataSourceManager.getDataSource("HelpDesk");
 PropertySheet prop = ds.getPropertySheet();
 prop.setProperty("user", "scott");
 prop.setProperty("password", "tiger");
 Connection c = ds.open();
 Schemas schemas = c.getSchemaObjects(c.getSchema("SCOTT"));
 Enumeration enum;
 enum = schemas.elements();
 while (enum.hasMoreElements()) {
 SchemaObject obj = (SchemaObject)enum.nextElement();
 System.out.println(obj.getType() + ": " + obj.getName());
 }
} catch (Exception e) {
 e.printStackTrace();
}

The example creates a Connection to the HelpDesk database. It then calls the
getSchemaObjects() method of the Connection interface to get a list of the objects in the
schema named SCOTT and enumerates the elements in the schema. Each element is a
SchemaObject. The example prints its type and its name. The type is a database specific name
that represents the type of object, for example TABLE or VIEW.

In a similar manner, we list the stored procedure under the schema named SCOTT by making
the following call:

 Schemas schemas = c.getSchemaProcedures(c.getSchema("SCOTT"));

Obtaining Information about Data Objects
Because Production Reporting DDO must deal with very different data sources, it must provide
a generalized abstraction of what a data source holds. As you have seen in the previous section,
a data source holds schemas that contain data objects and procedures.

This section focuses on these data objects. Here are a few examples of data objects:

● Tables and Views in a relational database. Basically any object from which you can “select”
data.

● A “cube” in a multidimensional database.

● A data file in a data source that provides access to files.

● An XML document.

● An object representing a collection of objects in an object database or application. For
example, a list of employee objects.

Production Reporting DDO provides methods that allow you to list data objects and obtain
metadata for each object using a SchemaObject reference.

Obtaining Metadata 33

Data Sources With No Query Language Support
If the data source doesn’t support SQL or any other query language, an application can obtain
data from it by using the getData() method of the Connection interface.

Data Sources That Support a Query Language
If the data source supports a query language, an application can retrieve data from it by sending
queries that name this object. It also accepts DML (data manipulation) commands. For example,
an application can send an UPDATE statement to a data source that supports SQL.

Table 4 lists the attributes of a SchemaObject.

Table 4 Attributes of a SchemaObject

Attribute Description

Name Object name.

Description Description or comment associated with this object.

Type Object type. This is a data source--specific string such as TABLE, or VIEW.

Parent Schema that holds this object (if available).

Retrieving Column Metadata
An application can also obtain information about the columns of this data object. To do this,
call the getSchemaObjectColumns() method of the Connection interface. This method takes
a reference to a SchemaObject and returns a SchemaObjectColumns reference. Another way to
get column metadata is to call the getMetaData() method of SchemaObject.

Here is an example.

void listColumns(SchemaObject obj) throws DataAccessException {
 SchemaObjectColumns cols = obj.getMetaData().getSchemaObjectColumns();
 for (int i = 0; i < cols.size(); i++) {
 SchemaObjectColumn col = (SchemaObjectColumn)cols.elementAt(i);
 System.out.println(" " + col.getName() +
 ", " + col.getDBTypeName());

The function listColumns in the example takes a SchemaObject as an argument and lists its
columns. We obtain a SchemaObjectColumns reference for this object using the
obj.getMetaData().getSchemaObjectColumns() call, where SchemaObjectColumns
object is a vector of SchemaObjectColumn objects. The count() method returns the number
of columns in this object and the elementAt() method returns each column. Note that we cast
the result of the elementAt() call to SchemaObjectColumn. For each column
(SchemaObjectColumn), we print the name and database datatype name.

34 Creating Production Reporting DDO Applications

Obtaining Metadata About Procedures
Procedures are very powerful objects in Production Reporting DDO. They provide an
abstraction for information objects that are parameterized.

The following are examples of procedures.

● Stored database procedures and functions in a relational database.

● Remote procedure calls (RPCs).

● Method invocation on objects in object databases and applications.

● Method invocation of COM or CORBA interfaces to business objects.

You can pass input parameters and receive values back on output parameters. The same
parameter applies to both input and output (INOUT parameter). Procedures can return a value.
This is similar to a function call. Most of all, procedures can return data in multiple sets and
Production Reporting DDO allows the retrieval of descriptions for the columns of each such
result set.

Production Reporting DDO provides robust support for procedure calls by allowing parameters
to be complex structures. Similarly, result sets are not limited to flat tables and can hold complex
structures.

Table 5 lists attributes of a SchemaProcedure.

Table 5 Attributes of a SchemaProcedure

Attribute Description

Name Procedure name.

Description Description or comment associated with this object.

Type Object type. This is a data source--specific string such as “Procedure”, or “Function.”

Parent Schema that holds this object (if available).

To get the metadata describing parameters, return value, and columns, you can call the
getProcedureMetaData() method of the Connection interface. This method takes a reference
to a SchemaProcedure and returns a ProcedureMetaData reference. You can also get metadata
by calling getMetaData().getProcedureMetaData() on SchemaProcedure.

Listing Procedure Parameters
Program ex6.sqr demonstrates listing the parameters of a procedure and displaying each
parameter, whether it is input, output, or both.

Program ex6.sqr
void listParameters(ProcedureMetaData meta) {
 SchemaProcedureColumns params = meta.getParameters();
 if (params == null)
 System.out.println(" No parameters for this procedure.");

Obtaining Metadata 35

 else
 for (int i = 0; i < params.size(); i++) {
 SchemaProcedureColumn col = meta.getParameter(i);
 String kind = null;
 switch (col.getUse()) {
 case SchemaProcedureColumn.PARMIN:
 kind = "IN";
 break;
 case SchemaProcedureColumn.PARMOUT:
 kind = "OUT";
 break;
 case SchemaProcedureColumn.PARMINOUT:
 kind = "INOUT";
 break;
 }
 System.out.println(" parameter: " + col.getName()
 + " - " + kind);
 }
}

The listParameters() method takes a ProcedureMetaData object as an argument. Calling
the getParameters() method on this object retrieves a SchemaProcedureColumns object
representing the parameters list of this procedure. If the procedure has no parameters,
getParameters() returns null. Otherwise, it lists each parameter. The getUse() method of
SchemaProcedureColumn returns the kind of parameter—input, output, or both.

Determining the Return Value
The code example below demonstrates how to check for the procedure’s return value.

void listReturnValue(ProcedureMetaData meta) {
 SchemaProcedureColumn retValue = meta.getReturnValue();
 if (retValue == null)
 System.out.println(" No return value for this procedure.");
 else
 System.out.println(" return Value: " + retValue.getName()
 + " - " + retValue.getDBTypeName());
}

The listReturnValue() method takes a ProcedureMetaData object as an argument. Calling
the getReturnValue() on this object retrieves a SchemaProcedureColumn object
representing the return value of this procedure. The call returns a null when the procedure has
no return value or it displays a return value along with its data source-specific type name.

Listing Procedure Result Sets
Program ex7.sqr demonstrates listing the result sets of a procedure and listing the columns of
each result set.

Program ex7.sqr
void listResultSets(ProcedureMetaData meta) {

36 Creating Production Reporting DDO Applications

 Vector resultSets = meta.getResultSets();
 if (resultSets == null)
 System.out.println(" No result sets for this procedure.");
 else
 for (int i = 0; i < resultSets.size(); i++) {
 System.out.println(" Result set " + i + ":");
 listResultSet(meta, i);
 }
}
void listResultSet(ProcedureMetaData meta, int i) {
 int columnCount = meta.getResultSet(i).size();
 for (int j = 0; j < columnCount; j++) {
 SchemaProcedureColumn col = meta.getResultSetColumn(i,j);
 System.out.println(" column: " + col.getName()
 + " - " + col.getDBTypeName());
 }
}

The listResultSets() method takes a ProcedureMetaData object as an argument. Calling
the getResultSets() on this object retrieves a Vector (java.util.Vector) object representing
an array of one or more result sets. The call returns a null when the procedure has no result sets.
Otherwise, it calls listResultSet() to list the columns for each result set.

The listResultSet() method takes a ProcedureMetaData object and a result set number as
arguments. Calling getResultSet(i).size() retrieves the number of columns in this result
set, then displays metadata for each column using the getResultSetColumn(i, j) call. In
this call, “i” represents the result set number and “j” represents the column within that result
set.

Columns
Columns describe data items in data objects and in procedure result sets. Columns also describe
procedure parameters and return value. In previous sections, we saw how to obtain columns for
data objects and procedures. These columns are abstracted in the SchemaObjectColumn and
ProcedureObjectColumn classes. SchemaProcedureColumn is a subclass of
SchemaObjectColumns. It shares all the attributes of SchemaObjectColumns. It also provides
additional attributes.

Table 6 lists the attributes that are common to all columns.

Table 6 Attributes Common to All Columns

Column Description

Name Name of the Column

Size Width of the field.

Precision Precision for numeric columns.

Scale Scale for numeric columns.

DBType Data source--specific number representing the data source--specific datatype.

Obtaining Metadata 37

Column Description

DBTypeName Data source--specific datatype name.

FieldType Production Reporting DDO datatype for this column. When data is retrieved from the data source,
this column will return a field of this type. The FieldType is an integer number that is one of the
constants that are defined in the Field class.

Field.Text Text string field.

Field.Number Numeric field. This can be an integer, double, or Decimal.

Field.Date A date or date and time field.

Field.Boolean A true or false value.

Field.Binary Binary raw data (stream of bytes).

Field.Row A structure.

Field.Rowset A table.

Field.Object An arbitrary object.

SchemaProcedureColumn, which has a dilatational attribute, describes procedure parameters
and return values, as shown in Table 7.

Table 7 Additional Attribute of SchemaProcedure Column

Attribute Description

Use Use of this column. This is an integer number that is one of the constants that are defined in the
SchemaProcedureColumn class.

 Constant Description

 PARMIN Input parameter.

 PARMINOUT Parameter used for both input and output.

 PARMOUT Output parameter.

 RESULTCOLUMN Column in a result set.

 RETURNVALUE Procedure’s return value.

 UNDEFINED Undefined.

Requesting Data
There are three fundamental ways of requesting data in Production Reporting DDO:

● getData—Names an object and requests its data. Data sources that do not support any query
language or procedure-call mechanism can use this method.

38 Creating Production Reporting DDO Applications

● execute—Executes a command such as a SQL SELECT statement. The command is a text
string that is passed through to the data source driver. The command takes parameters using
“?” in the command text.

● call—Calls a procedure. You can call procedures directly; pass parameters when calling
procedures; and obtain output parameters, return values, and multiple result data sets.

The following section describes the getData() method and the associated Selector class. Using
the selector class, you can specify the columns that should be returned.

Retrieving Data with getData
The most basic method of data retrieval in Production Reporting DDO is getData(). This
method takes the name of a data object as an argument, where the name can be a string or a
SchemaObject reference. getData() retrieves all the data for the named object and returns a
Rowset, as shown in Program ex8.sqr.

Program ex8.sqr
try {
 DataSource ds = DataSourceManager.getDataSource("HelpDesk");
 PropertySheet prop = ds.getPropertySheet();
 prop.setProperty("user", "scott");
 prop.setProperty("password", "tiger");
 Connection c = ds.open();
 Rowset rowset =
 c.getData(c.getSchemaObject(new String[] { "SCOTT", "EMP"}));
 // print headings
 for (int i = 0; i < rowset.getFieldCount(); i++)
 System.out.print(rowset.getField(i).getName()+ ",");
 System.out.println("");
 while (rowset.next()) {
 // print data
 for (int i = 0; i < rowset.getFieldCount(); i++)
 System.out.print(rowset.getField(i) + ",");
 System.out.println("");
 }
 c.close(); // close the connection to the data source
} catch (Exception e) {
 e.printStackTrace();
}

The example uses getData() with a reference to the object. getSchemaObject()of
connection SCOTT, followed by EMP, defines the path to the object. The interpretation of this
path is specific to the data source. Assuming that the data source has a flat set of schemas
containing tables, the path would be a schema SCOTT with a table EMP. The getData() method
will return a Rowset interface with all the data in the EMP table. This is equivalent to executing
the command SELECT * FROM SCOTT.EMP.

Requesting Data 39

Processing Results Using the Rowset Interface
Production Reporting DDO does not prescribe the implementation of a Rowset. This gives the
data source driver great flexibility in handling data while providing the application a consistent
interface.

In particular, the driver is free to implement just-in-time retrieval. This means that the Rowset
does not actually hold all the data. The driver can fetch a record when the application calls the
next() method. The benefit of this behavior is that the driver does not need to hold the entire
result set in memory and can handle very large result sets.

The Rowset is self-describing. Using getFieldCount(), you can determine the number of
fields in the Rowset. Each field is an instance of the abstract Field class. A Field object describes
its type, size, and structure. In particular, a Field can be a complex structure, such as a Row or
Rowset.

The benefit of Rowset being self-describing is that an application does not need to hardcode the
expected type and sizes of each field. It can discover these attributes at run-time. Program
ex9.sqr demonstrates how the datatype of the fields can be determined while processing a Rowset.

Program ex9.sqr
static void printRowset(Rowset rs) throws DataAccessException {
 // write results in an HTML table
 System.out.println("<table><tr>");
 int fieldCount = rs.getFieldCount();
 // DateFormat object for printing dates
 DateFormat df = DateFormat.getDateInstance(DateFormat.LONG);
 // print headings
 for (int i = 0; i < fieldCount; i++)
 System.out.println("<td>" + rs.getField(i).getName() + "</td>");
 // print the data row by row
 while (rs.next()) {
 System.out.println("</tr><tr>");
 for (int i = 0; i < fieldCount; i++) {
 Field f = rs.getField(i);
 if (f.isNull()) {
 System.out.println("<td> </td>");
 continue;
 }
 switch (f.getType()) {
 case Field.Boolean:
 case Field.Text:
 System.out.println("<td align=left>" + f + "</td>");
 break;
 case Field.Number:
 if (f instanceof DecimalField &&
 ((DecimalField)f).isCurrency())
 System.out.println("<td align=right>$" + f + "</td>");
 else
 System.out.println("<td align=right>" + f + "</td>");
 break;
 case Field.Date:
 System.out.println("<td align=left>"
 + df.format(((DateField)f).dateValue()) + "</td>");

40 Creating Production Reporting DDO Applications

 break;
 case Field.Row:
 case Field.Rowset:
 case Field.Object:
 case Field.Binary:
 System.out.println("<td align=center>n/a</td>");
 break;
 }
 }
 }
 System.out.println("</tr></table>");
 rs.close(); // close the result set
}

printRowset() in the example takes a Rowset as an argument. It has no knowledge of how the
Rowset was obtained. The Rowset can be the result of getData(), the result of executing a
command such as an SQL statement, or it could be a result set from an execution of a stored
procedure. In all cases, the Rowset is processed in the same manner.

The Rowset maintains a current row with a fixed number of fields. A call to the next() method
of the Rowset will populate the current row with the next row of data. next() returns a boolean
value of true for as long as records are available. Calling next() after the last row returns
false.

For each row, process each field. Start by checking the value for null using isNull(). If the field
is null print an empty cell and proceed to the next field.

Check the field type using the following statement:

switch (f.getType()) {

getType() returns an integer that matches one of the constants that are defined in the Field
class. The example takes different actions depending on the type of the field, although you could
simply print all fields as strings using the toString() method of the Field class.

Table 8 summarizes field types.

Table 8 Field Types

Type Description

Boolean True/false value. The field is an instance of BooleanField.

Binary Array/stream of bytes. The field is an instance of BinaryField. It can also be an instance of LongBinaryField.

Date java.util.Date value. The field is an instance of DateField.

Number Numeric value. The field is an instance of a subclass of the abstract NumberField class. This means that
the field is an instance of IntegerField, DoubleField, or DecimalField.

Object Arbitrary Java Object. The field is an instance of ObjectField.

Row Instance of RowField.

Rowset Instance of RowsetField.

Text String: instanc of TextField.

Requesting Data 41

Selecting and Filtering
Using getData()to retrieve data from an object is very simple. Often, too simple. To allow for
a more selective retrieval without requiring the data source to support a full-blown command
language, Production Reporting DDO introduces the concept of a Selector.

A Selector specifies the columns that an application wishes to retrieve (rather than
unconditionally retrieving all the columns) as well as simple selection criteria. In version 1 of
Production Reporting DDO, only limited filtering capabilities are provided. These are discussed
in “Obtaining Hierarchical and Multidimensional Data ” on page 47.

For now, let’s see how to use a Selector to pick the desired columns.

 DataSource ds = DataSourceManager.getDataSource("CSVFiles");
 Connection c = ds.open();
 Selector selector = new Selector();
 selector.setObject(c.getSchemaObject("Employee.csv"));
 selector.includeColumn("Name");
 selector.includeColumn("Salary");
 selector.includeColumn("HireDate");
 Rowset rs = c.getData(selector);
 printRowset(rs);

In this example you use the Production Reporting DDO CSV Access driver. This driver allows
access to CSV (comma separated values) files. While this driver does not support SQL, it does
support the selector interface.

The code example above demonstrates how we use the Selector class to specify the data desired.
Start by instantiating an empty selector. Then set the Object attribute to the desired CSV file.
Pass a SchemaObject to setObject(). Obtain this object using the getSchemaObject()
method of the Connection interface. Note that the Registry already contains information for
this data source. The information includes a starting disk folder. This defined the default schema
for this object. In other words, the code requests data from an object named Employee.csv
that resides in the default schema.

Additionally, the example requests the columns that should be included with the getData()
call and passes this selector. Note the requirement to specify the object before specifying the
columns so that the Selector is able to look up the columns. The result is a Rowset containing
the three fields requested.

The Selector class provides an SQL-like syntax for making the same request. This is demonstrated
in the example code that follows. By passing the select statement on the Selector constructor, we
have defined both the desired object name and the desired columns. We also pass the Connection
interface to allow the Selector to look up objects. Note the use of double quotes around column
or object names that can contain spaces or a dot.

Selector selector = new Selector(c,
 "select Name, Salary, HireDate from \"Employee.csv\"");

Executing Commands
If the data source supports the command interface, then an application can send command
statements to the data source for execution. This is most powerful for data sources that support

42 Creating Production Reporting DDO Applications

rich command language, such as SQL. Using a language, you can specify complex queries that
include data selection, aggregation, and composition. For example, if your database supports
SQL, you can perform joins and group and sort the results.

Remember that you can check that a data source supports the command interface by checking
for that capability. Please refer to “Discovering Capabilities” on page 28 for how to check for a
specific capability.

A command can be parameterized and your application can supply values for these parameters
at run time. This is demonstrated in the following example.

Connection c = ds.open();
 Command command = new Command("select empno, ename, hiredate from " +
 "emp where deptno = ?");
 command.setParameter(0, new IntegerField(20));
 Rowset rs = c.execute(command);

The example constructs a Command object with an SQL statement. Note the use of the ? symbol
as a marker for a parameter in the statement. Passing a Field object to the setParameter()
method of the Command class supplies a value to the parameter. Actually, the setParameter
() method belongs to the ParameterList class from which Command is derived.

The setParameter() method takes two arguments. The first is the parameter number, zero
being the first. The second argument is a Field with a value for this parameter. In this example
we construct an IntegerField with a value of 20 for department 20. Using a Field object to supply
the value is most useful when you bind the result of one command as a parameter to another
command.

The execute() method of the Connection interface executes the command. The method
returns a Rowset object. The Rowset is processed as described in the “Processing Results Using
the Rowset Interface” on page 40.

A command can return a single row or even a single value. Production Reporting DDO still
returns a Rowset; however, the Rowset can have a single row and a single field. For example,
consider an SQL Update statement. The only information returned from an Update is the
number of database rows that were effected by the update. Here is the code:

Connection c = ds.open();
 Command command = new Command("update emp set sal = sal * 1.1");
 Rowset rs = c.execute(command);
 rs.next();
 System.out.println(rs.getField("COUNT") + " records were updated.");
 c.close(); // close the connection to the data source

This example executes an Update SQL statement. This statement does not return data, but it
does return a row count for the number of rows processed. The Production Reporting DDO
JDBC Access driver will return the row count in a Rowset that has a single row and a single field.
The field is named COUNT. The call to getField(COUNT) retrieves that field and then we print
it. This variant of getField() locates a field by name. A faster way to get a field is by position
number where zero is the first field. Alternatively, we could code the print statement as follows:

System.out.println(rs.getField(0) + " records were updated.");

Requesting Data 43

Note About Database Cursors
The Production Reporting DDO JDBC Access driver uses database cursors in a way that is
completely transparent to the application. The driver maintains a pool of cursors (JDBC
PreparedStatement objects). Executing a command causes the driver to check if a cursor already
exists for this command. The cursor pool improves performance by avoiding repeated
preparatory <<?>> operations of the same SQL statement.

Production Reporting DDO expects that drivers implement such performance optimizations in
a manner that is transparent to the application. This is important for delivering excellent
performance without cluttering the API with data source-specific methods such as cursor
management methods.

Calling Procedures and Processing Call Results
The call() method of the Connection interface executes a procedure. An application will pass
an argument that identifies the procedure and can optionally pass a parameter list. The parameter
list holds values for the input parameters of the procedure. Each parameter in the list is an object
of type Field. This is useful when you want to pass a field that you just retrieved from the data
source as an input parameter to the procedure call.

If the value to pass as a parameter is not a Field, you will need to construct a Field to hold that
value. Production Reporting DDO provides several methods for constructing a field.

● An application can use the “new” operator to construct a field such as BooleanField,
BinaryField, or DateField. Many of these methods can construct a field and set its value at
once.

● An application can use the static methods of the ParameterFactory class to create Fields and
supply them with the actual value.

Once you construct the parameter list, you can perform the call() method and obtain the results,
as shown in Program ex10.sqr.

Program ex10.sqr
 public static void main(String[] args) {
 try {
 DataSource ds = DataSourceManager.getDataSource("Sales");
 Connection c = ds.open();
 // prepare the parameter list
 ParameterList params = new ParameterList(new Field[] {
 new DateField("1/1/98"), new DateField("12/31/98") });
 // call the procedure
 SchemaProcedure proc = c.getSchemaProcedure("Sales by Year");
 CallResults results = c.call(proc, params);
 // process all rowsets
 Rowset rs;
 while ((rs = results.getOutputRowset()) != null)
 printRowset(rs);
 // check for return value
 Row retval = results.getReturnValue();
 if (retval != null) printRow(retval);

44 Creating Production Reporting DDO Applications

 // check for output parameters
 Row outparams = results.getOutputParams();
 if (outparams != null) printRow(outparams);
 // close the call results
 results.close();
 c.close(); // close the connection to the data source
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 static void printRow(Row row) throws DataAccessException {
 for (int i = 0; i < row.getFieldCount(); i++) {
 Field f = row.getField(i);
 System.out.println(" " + f.getName() + ": " + f);
 }
 }

Code

 ParameterList params = new ParameterList(new Field[] {
 new DateField("1/1/98"), new DateField("12/31/98") });
 // call the procedure

Description

Constructs the parameter list after connecting to the Sales data source. Assumes that the
procedure to be called takes two date input parameters. Constructs a ParameterList object by
passing an array of fields to the constructor. The fields hold the actual values for the parameters
for this procedure call.

Code

SchemaProcedure proc = c.getSchemaProcedure("Sales by Year");

Description

Locates the procedure and obtains a SchemaProcedure object for it. Uses the
getSchemaProcedure() method of Connection. If a procedure with this name does not exist,
the method will throw a DataAccessException.

Code

CallResults results = c.call(proc, params);
// process all rowsets
Rowset rs;

Description

Makes the call and obtains a CallResults object. The CallResults allows the application to
obtain all the data that is returned from the procedure. This includes multiple result sets, output
parameters, and a return value. Note the processing of the result sets before obtaining the values
for the output parameters and the return value.

Requesting Data 45

Code

while ((rs = results.getOutputRowset()) != null)
printRowset(rs);
// check for return value

Description

Processes the result sets. In general, a procedure can return any number of result sets. It can
return no result sets, it can return a single result set, or it can return multiple result sets. The
example makes repeated calls to the getOutputRowset() method of the CallResults class
until there are no more result sets.

Code

Row retval = results.getReturnValue();
if (retval != null) printRow(retval);
// check for output parameters

Description

Processes the return value. CallResults returns this value as a Row. This is useful when the
value being returned is a structure. If you know that your procedure will return a scalar value
(a single field), then you can use the following code instead:

Row retval = results.getReturnValue();
if (retval != null)
System.out.println("return value: " + retval.getField(0));

Code

Row outparams = results.getOutputParams();

Description

Processes output parameters. CallResults returns output parameters as a row in which each
field represents a single output parameter. The ordering of the fields corresponds to the order
of the output parameters of the procedure.

Code

results.close();

Description

Closes the CallResults object. This signals the driver that the execution context of this
procedure call can be released.

Performing Transactions
Business Intelligence applications do more than read data. They often update request tables, log
tables, status fields, and more. Moreover, an application can stage data into intermediary storage
to perform multiple passes and generate multiple reports.

46 Creating Production Reporting DDO Applications

Production Reporting DDO supports update activity to the database in several ways:

● Executing a command via the execute() method of Connection can perform any operation
on the data source. In particular, it can create new objects and populate them with data.

● Calling a procedure via the call() method of Connection imposes no limit to what a
procedure can do. The data source can allow the user to call procedures that update data
and manipulate objects.

● To group data changes into transactions, Production Reporting DDO provides the
transaction interface. If the data source supports transactions, the call to the
getTransaction() method of the Connection interface returns a Transaction interface.
Using this interface, an application can start a transaction and complete a transaction with
either a commit or a rollback.

Program ex11.sqr is a simple example. In this example, “c” is a Connection reference for a valid
connection to the HelpDesk Oracle database.

Program ex11.sqr
try {
 c.getTransaction().beginTransaction();
 c.execute(
 new Command("update emp set sal = sal * 1.1 where job = 'CLERK'"));
 c.execute(
 new Command("update emp set sal = sal * 1.1 where job = 'MANAGER'"));
 c.getTransaction().commit();
 c.close();
 } catch (DataAccessException e) {
 try {
 if (c != null) c.getTransaction().rollback();
 } catch (Exception e2) {
 e2.printStackTrace();
 }
 e.printStackTrace();
}

The example starts by calling beginTransaction() on the transaction interface. This call is
always required. It then executes two update statements. If an error occurs during the updates,
then we catch an exception and rollback all the changes by calling the rollback() method of
the Transaction interface. Otherwise, if the two updates are successful, we call the commit()
method. In this example, we did not have to call commit() because the close() method on
the connection will also commit any pending transaction.

Obtaining Hierarchical and Multidimensional Data
Production Reporting DDO directly supports multidimensional databases (also called OLAP
servers). These databases organize data to support multi-level aggregation and analysis. They
define a data set—also called a hypercube—in terms of multiple dimensions. Each dimension
represents a key aspect of the data. For example, in sales, data dimensions typically include
product, territory, organization units, and time. These represent what was sold, where it was
sold, who sold it, and when. Sales data can therefore be analyzed along these dimensions.

Requesting Data 47

Each dimension typically defines a hierarchical structure. This is key for data aggregation. For
example, territory can define a hierarchy or geographical regions. At the top of the hierarchy,
data is summarized for all regions. Going one level down, for example, can divide the world into
North America, Europe, and so on. North America can further be divided into countries and
then states.

Table 9 shows the Production Reporting DDO mapping of multidimensional concepts to
Production Reporting DDO objects.

Table 9 Mapping Multidimensional Concepts to Production Reporting DDO Objects

Concept Production Reporting DDO Objects

Hypercube Data object (SchemaObject).

Dimension Column (SchemaObjectColumn).

Dimension Hierarchy Hierarchy of SchemaObjectColumn object. At the top of the hierarchy there is a SchemaObjectColumn object for
each dimension. A getChildren() call on this column returns the first-generation members of that dimension
hierarchy. A getChildren() call on a first-generation member returns second-generation members. You can continue
down the hierarchy until getChildren() returns null.

You can also obtain information about levels and generations using the MDSchemaObject interface.

Measures Numeric column (SchemaObjectColumn).

Using Production Reporting DDO, your application can “walk” the dimension and discover all
the members, generations, and levels, as shown in Program ex12.sqr.

Program ex12.sqr
import com.sqribe.access.*;
import com.sqribe.comutil.*;
import java.util.Enumeration;
public class test19 {
 public static void main(String[] args) {
 try {
 DataSource ds = DataSourceManager.getDataSource("Essbase");
 PropertySheet prop = ds.getPropertySheet();
 prop.setProperty("user", args[0]);
 prop.setProperty("password", args[1]);
 Connection c = ds.open();
 Enumeration enum = c.getAllSchemasObjects().elements();
 while (enum.hasMoreElements()) {
 SchemaObject cube = (SchemaObject)enum.nextElement();
 listCube(cube);
 }
 c.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 static void listCube(SchemaObject cube) throws DataAccessException {
 System.out.println("-----------------------");
 System.out.println(cube.getName());
 System.out.println("-----------------------");

48 Creating Production Reporting DDO Applications

 SchemaObjectColumns cols = cube.getMetaData().getSchemaObjectColumns();
 listColumns(cols, 1);
 }
 static void listColumns(SchemaObjectColumns cols, int level) {
 for (int i = 0; i < cols.size(); i++) {
 SchemaObjectColumn col = (SchemaObjectColumn)cols.elementAt(i);
 indent(level);
 printCol(col);
 SchemaObjectColumns children =
 (SchemaObjectColumns)col.getChildren();
 if (children != null)
 listColumns(children, level + 1);
 }
 }
 static void printCol(SchemaObjectColumn col) {
 String name = col.getName();
 String desc = col.getDesc();
 if (desc != null && desc.length() > 0)
 System.out.println(name + " (" + desc + ")");
 else
 System.out.println(name);
 }
 static void indent(int level) {
 while (level-- > 0)
 System.out.print(" ");
 }
}

Program ex12.sqr begins by obtaining a list of all the data objects in this data source using the
getAllSchemasObjects() method of the Connection interface. Then it goes through the list
and call listCube() for each data object. Remember that each data object in a
multidimensional database represents a hypercube.

The listCube() method prints the name of the hypercube and then calls listColumns() to lists
the columns of the hypercube. Each column represents a dimension except for the last column
that represents the numeric data.

The listColumns() method is a recursive method that recurse through the hierarchy of
members within a dimension. The child members of a dimension or a member are obtained
with a getChildren() call. Note that in the case of a SchemaObjectColumn, getChildren
() will always return SchemaObjectColumns.

The printCol() method prints the name of each column. This is the name of the dimension
or member of the dimension. Note that some multidimensional databases use the name of the
member as a unique identifier. The member can also have an alias that is more suitable for display
in a report and can use a localized language. If such an alias is available, you will find it in the
description attribute of the column (see col.getDesc()). If a description is available,
printCol() will display it along with the column name.

So far, you have seen how to get metadata for a multidimensional database. Next, you will see
how to retrieve the data.

Production Reporting DDO applications do not have to be familiar with multidimensional
concepts or even be aware that the data source is multidimensional. Therefore, Production
Reporting DDO provides two modes for data retrieval:

Requesting Data 49

● Regular Selector for an application that is not “multidimensional aware.”

● Multidimensional Selector (MDSelector) for an application that is “multidimensional
aware.”

Retrieving Multidimensional Data Using a Regular Selector
The previous section showed that listing the objects in a multidimensional data is exactly the
same as listing the objects in any data source. Moreover, listing the dimensions and measures of
a hypercube object is identical to listing columns of a table object.

Therefore, an application can retrieve data from a multidimensional data source by simply
naming an object in a getData() call, or constructing a Selector object that names the hypercube
object and includes selected dimensions using the includeColumn() method of Selector.

In both cases, Production Reporting DDO obtains the data as a rowset in which every dimension
and measure is a field. The data is down to the lowest level (level 0) and there is a row for every
intersection of the given dimensions (every cell in the hypercube). If you use a selector to pick
specific dimensions, then the data is summarized across the other dimensions, as shown in
Program ex13.sqr.

Program ex13.sqr
import com.sqribe.access.*;
import com.sqribe.comutil.*;
import java.util.Enumeration;
public class test21 {
 public static void main(String[] args) {
 try {
 DataSource ds = DataSourceManager.getDataSource("Essbase");
 PropertySheet prop = ds.getPropertySheet();
 prop.setProperty("user", args[0]);
 prop.setProperty("password", args[1]);
 Connection c = ds.open();
 SchemaObject cube =
 c.getSchemaObject(new String [] { "Sample", "Basic" });
 Selector selector = new Selector();
 selector.setObject(cube);
 selector.includeColumn("Year");
 Rowset rs = c.getData(selector);
 printRowset(rs);
 c.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 static void printRowset(Rowset rs) throws DataAccessException {
 int fieldCount = rs.getFieldCount();
 // print the data row by row
 for (int rowCount = 0; rs.next(); rowCount++) {
 StringBuffer line = new StringBuffer();
 for (int i = 0; i < fieldCount; i++) {
 line.append(rs.getField(i).toString());
 line.append('\t');

50 Creating Production Reporting DDO Applications

 }
 System.out.println(line);
 }
 rs.close(); // close the rowset
 }

Code

Selector selector = new Selector();

Description

Creates a Selector object and set its object to the hypercube and pick one dimension called “Year.”

And here is the output:

Jan 8024.0
Feb 8346.0
Mar 8333.0
Apr 8644.0
May 8929.0
Jun 9534.0
Jul 9878.0
Aug 9545.0
Sep 8489.0
Oct 8653.0
Nov 8367.0
Dec 8780.0

In this example, level 0 of the ”Year” dimension is the month. Since this is the only dimension
selected, the data is summarized along this dimension.

Retrieving Multidimensional Data Using MDSelector
When retrieving data from a multidimensional database, there are several things to specify:

● Dimensions and measures to include.

● Members to include. This is the multidimensional way of restricting the data to a subset.
For example, to get the data from a single month, you can select the “March, 1999” member
of the time dimension.

● Level of aggregation. For example, you may want the data summarized into weekly number,
monthly numbers, or quarterly numbers. The weeks, months, and quarters are levels in the
time dimension hierarchy.

Production Reporting DDO supports these kind of selections using a specialized kind of a
Selector object called a MDSelector. The MDSelector class is a subclass of Selector. It builds on
the Selector class’s capability to select an object and columns. It adds the ability to select members
and level of aggregation.

Here is an example.

 SchemaObject cube =
 c.getSchemaObject(new String [] { "Sample", "Basic" });
 MDSelector selector = new MDSelector();

Requesting Data 51

 selector.setObject(cube);
 selector.includeColumn("Year");
 selector.includeColumn("Product");
 selector.setColumnLevel(0, 1);
 selector.setColumnGeneration(1, 2);
 Rowset rs = c.getData(selector);
 printRowset(rs);

This example instantiates a MDSelector instead of a Selector. We setObject() to our
hypercube (Basic in schema Sample) and select the Year and Product dimensions. So far,
this is no different than selector. Now, we choose the level of aggregation. The statement
setColumnLevel(0, 1) sets the level for the first column (column 0—Year) to be level 1. This
means one level higher than the most detailed level. If you think of the dimension hierarchy as
a tree, then level 0 is the leaves of the tree and level 1 is their immediate parents. The statement
setColumnGeneration(1, 2) sets the level for the second column (column 1—Product) to
be generation 1.

Specifying the aggregation in terms of generation is useful, especially if the hierarchy tree is not
balanced with some leaves deeper than others. Generation 1 is the top, generation 2 is the
immediate children of the root of the tree.

And here is the output:

Qtr1 100 7048.0
Qtr1 200 6721.0
Qtr1 300 5929.0
Qtr1 400 5005.0
Qtr1 Diet 7017.0
Qtr2 100 7872.0
Qtr2 200 7030.0
Qtr2 300 6769.0
Qtr2 400 5436.0
Qtr2 Diet 7336.0
Qtr3 100 8511.0
Qtr3 200 7005.0
Qtr3 300 6698.0
Qtr3 400 5698.0
Qtr3 Diet 7532.0
Qtr4 100 7037.0
Qtr4 200 7198.0
Qtr4 300 6403.0
Qtr4 400 5162.0
Qtr4 Diet 6941.0

Now suppose that we only wanted to see the first two quarters. Moreover, we only want to see
product groups 100, 200, 300, and 400 (“Diet” is a grouping of products that are already counted
under 100, 200, 300, or 400). To restrict a selection to specified members, Production Reporting
DDO allows the use of the MDSelector setColumnMembers() method.

Here is an example:

SchemaObject cube =
 c.getSchemaObject(new String [] { "Sample", "Basic" });
MDSelector selector = new MDSelector();
selector.setObject(cube);
selector.includeColumn("Year");

52 Creating Production Reporting DDO Applications

selector.includeColumn("Product");
selector.setColumnLevel(0, 1);
selector.setColumnGeneration(1, 2);
selector.setColumnMembers(0,
 new String[] { "Qtr1", "Qtr2" });
selector.setColumnMembers(1,
 new String[] { "100", "200", "300", "400" });
Rowset rs = c.getData(selector);
printRowset(rs);
c.close();

We used the version of the setColumnMembers() method that takes member names as strings.
This assumes that member names are unique. Otherwise, the application must obtain the outline
metadata for the dimension and pass members to the setColumnMembers() method as
SchemaObjectColumn objects.

And here is the output:

Qtr1 100 7048.0
Qtr1 200 6721.0
Qtr1 300 5929.0
Qtr1 400 5005.0
Qtr2 100 7872.0
Qtr2 200 7030.0
Qtr2 300 6769.0
Qtr2 400 5436.0

Requesting Data 53

54 Creating Production Reporting DDO Applications

3
Writing a Production Reporting

DDO Driver

In This Chapter

About Writing a Driver .. .55

Summary of Steps55

Step 1: Create the Properties, Capabilities, and Message Files.. .56

Step 2: Implement the DataSource Interface59

Step 3: Implement the Connection Interface... .60

Step 4: Implementing Rowset .. .69

About Writing a Driver
This chapter shows how to write a driver that provides access to data in flat files stored in a folder.
The data in the files, commonly-called CSV files, is comma-delimited and values are optionally
enclosed in quotes. The first line in the file provides the names of the fields.

Any Production Reporting DDO application can use the Production Reporting DDO CSV driver
that we develop. To the application, the CSV data source would look just like any other data
source.

Summary of Steps

➤ To write an Production Reporting DDO driver:

1 Create the necessary properties, capabilities, and message files.

2 Implement the DataSource interface.

3 Implement the Connection interface.

4 Write code that implements the Rowset interface for data returned by the driver.

5 If the data source supports procedure calls, implement the call results interface.

6 If the data source supports transactions, implement the transaction interface.

The example in this chapter shows the first four steps. The CSV driver will not implement
procedure-calling or transactions.

About Writing a Driver 55

Step 1: Create the Properties, Capabilities, and Message Files
Begin by deciding on a package name for the driver implementation. This is important because
Production Reporting DDO uses class names to locate its property files. The name of the sample
package is demo.csv. The DataSource implementation class is CSVDataSource.

Creating the Properties Files
Based on the package name and the DataSource class name, the properties files take the names
shown in Table 10.

Table 10 Names of the Properties Files

File Type File Name

Property values demo_csv_CSVDataSource_Properties.properties

Property descriptions demo_csv_CSVDataSource_PropertyDescriptions.properties

Production Reporting DDO allows a driver to inherit properties and property descriptions from
Production Reporting DDO by implementing the inheritance using the class and interface
hierarchy. Specifically, inherited properties are from the
com_sqribe_access_DataAccess_Properties.properties and
com_sqribe_access_DataAccess_PropertyDescriptions.properties files. These files define the
logon property and its user and password properties. These files reside in a folder called
properties on the Java CLASSPATH.

We create an empty file for the property values because the driver has no special properties.

For the property description, we modify the logon property. The default logon property has two
properties associated with it, user and password. Our example logon has none because it will
access CSV files on a local drive. Here is the property descriptions file
(demo_csv_CSVDataSource_PropertyDescriptions.properties):

override the default logon property
logon.Name=Logon
logon.Description=Logon properties.
logon.Indices=
logon.Required=false

Setting logon.Indices to none eliminates the logon attributes.

Creating the Capabilities Files
Based on the package name and the DataSource class name, the capabilities files take the names
shown in Table 11.

56 Writing a Production Reporting DDO Driver

Table 11 Names of the Capabilities Files

File Type File Name

Capability values demo_csv_CSVDataSource_Capabilities.properties

Capability descriptions demo_csv_CSVDataSource_CapabilityDescriptions. properties

The driver inherits the contents of the corresponding files in Production Reporting DDO:

com_sqribe_access_DataSourceAccess_Capabilities.properties
com_sqribe_access_DataSourceAccess_CapabilityDescriptions.properties

These files define common capabilities such as interfaces, command, call, selector, and
transaction.

Since the driver inherits these capability descriptions, the capability descriptions file is empty.
The driver also inherits default values for these capabilities. For now, we leave the capabilities
file empty as well.

Creating the Messages File
The driver can throw DataAccessExceptions with specific error messages and it can have other
localizable text. Leveraging the facilities provided with Production Reporting DDO, we can let
Production Reporting DDO ook up the message. We can reuse messages that are stored in the
Production Reporting DDO essage files. Moreover, we can use the interactive tools that come
with the Production Reporting DDO SDK to manage the message file.

The Production Reporting DDO message facility uses the class hierarchy to locate messages. It
works by looking for a message file for the class that calls it. If the message file is not found, or
if the specific message is not found in that file, then it goes on to look in the message files that
correspond to super-classes of the specified class. It also looks at interfaces that the class
implements and follows that hierarchy as well.

One file can store all the messages for all the classes in a driver when all the classes implement
the same interface. This common interface can extend the Production Reporting DDO Access
and Util interfaces, such that if a message is not found in the driver’s file, then Production
Reporting DDO will look for the message in its own files. In the section “The CSV Interface” on
page 58 that follows, we create this common interface.

The message file is demo_csv_CSV.properties and is located in a msgs folder on the Java
CLASSPATH. The message file contains entries for messages that are specific to the CSV driver.
Program ex14.sqr shows an example of the file:

Program ex14.sqr
The number of column headings doesn't match the number of data columns
0 class name
1 method name
2 heading count
3 data count
HeadingCountMismatch.text={0}.{1}(): The number of heading columns, \

Step 1: Create the Properties, Capabilities, and Message Files 57

{2}, does not match the number of data columns, {3}.
End of file encountered while looking for end quote
0 class name
1 method name
2 "file" name
3 line where quoted string started
MissingQuote.text={0}.{1}(): End of file encountered while \
searching for ending quote; file= {2}, line={3}.
Unknown column name
0 class name
1 method name
2 column name
InvalidColumnName.text={0}.{1}(): Unknown column name, \
{2}, in selector specification.

The file has the same format as property files. The lines that begin with “#” are comments. The
entries have the form <message id>.text. The Message ID is a unique key used in the code
to identify a message. The Message ID is not displayed and does not need to be localized. The
message text may contain special markers for variables. These markers are denoted by {0},
{1}, and so on. By convention, every message will have at least the first two markers. The markers
will hold the value of the class name and method name where the message is generated. For a
long message broken over multiple lines, place a backslash at the place where the line breaks.

The implementation code that we develop in the example in this chapter uses the messages in
the file.

The CSV Interface
Production Reporting DDO uses the class hierarchy to locate messages and properties. It works
by walking up the class hierarchy, looking at the message or properties file that corresponds to
each class and continuing up if the file or the entry is not found. It also walks up the interface
hierarchy for the interfaces that your class implements.

The first Java file in our driver is the CSV interface, shown in Program ex15.sqr. This interface
is empty, simply marking the classes that implement it in order to keep track of messages and
properties. The CSV interface implements the Production Reporting DDO Access interface. This
implementation directs the message and property facilities to look at the Production Reporting
DDO files if these do not find a message or property in your driver’s files.

Program ex15.sqr
package demo.csv;
import com.sqribe.access.*;
/**
 * CSV is a holder interface, allowing properties, messages, etc,
 * common to the csvacc package to be specified once, e.g.,
 * demo_csv_CSV.properties.
 * @see com.sqribe.comutil.PropertySheet
 * @see com.sqribe.comutil.PropertyDescription
 * @see com.sqribe.comutil.Msg
 */
public interface CSV extends Access {
}

58 Writing a Production Reporting DDO Driver

Step 2: Implement the DataSource Interface
In the section “Managing Data Sources,” you saw the attributes that define a data source: name,
description, class, required Java and native libraries, and the connection string. For CSV, the
class attribute will be demo.csv.CSVDataSource. This is the name of the DataSource
implementation in our example. The lib and load attributes are empty, since we don’t need to
load any Java or native libraries for the CSV driver. Finally, we define the connection string
attribute to point to a folder on the disk where the CSV files are found. Here is an example for
a registry entry for a data source “DataFiles” that we will use:

DataFiles.desc=Current and historical sales data
DataFiles.class=demo.csv.CSVDataSource
DataFiles.lib=
DataFiles.load=
DataFiles.conn=c:\\data

Program ex16.sqr is the start of the implementation code:

Program ex16.sqr
package demo.csv;
import com.sqribe.access.*;
import com.sqribe.comutil.*;
public class CSVDataSource extends DataSourceAdapter implements CSV {
 private static final String classname = CSVDataSource.class.getName();
 public CSVDataSource(String pName, String pDesc, String pConn) {
 super(pName, pDesc, pConn, classname);
 }
 public Connection open() throws DataAccessException {
 String folder = getConnectString();
 AccessIO io = AccessIO.createAccessIO("File", folder);
 return new CSVConnection(io, getPropertySheet());
 }
}

The CSVDataSource class implements the DataSource interface by extending the
DataSourceAdapter class. The DataSourceAdapter class is an abstract class that provides
implementation for most of the DataSource interface. We only need to implement the
constructor and the open() method. The DataSourceAdapter provides the implementation
for all the other methods of the DataSource interface.

The class defines a static data member called classname. All the classes in the driver use
classname. For example, the message facility uses it to display the class name that generated the
message. The constructor does nothing special but simply hands off its arguments to the
constructor of its super class.

The open() method creates a new connection to our data source. It retrieves the folder name
(for example, c:\data) from the registry (from the Data Source Manager) by calling the
getConnectionString() method. This method is part of the DataSource interface and is
already implemented for us in DataSourceAdapter.

To access files on the disk, we use the AccessIO class. This class is part of Production Reporting
DDO. It provides IO access to the file system as well as other storage systems. In version 1 of

Step 2: Implement the DataSource Interface 59

Production Reporting DDO , only file IO is supported, but the same mechanism can be extended
to allow access to remote files over HTTP or other transport mechanisms.

To open a connection, we instantiate an AccessIO object using the File protocol and a folder
name. The AccessIO.createAccessIO() method will create a file AccessIO object and
validate that the folder is accessible. We pass this object on the constructor to the connection
object.

Step 3: Implement the Connection Interface
The connection interface is the main interface in Production Reporting DDO. We will need to
implement several methods, starting with the methods contained in Program ex17.sqr.

Program ex17.sqr
package demo.csv;
import com.sqribe.access.*;
import com.sqribe.comutil.*;
import java.util.*;
public class CSVConnection extends ConnectionAdapter implements CSV {
 private static final String classname = CSVConnection.class.getName();
 private AccessIO dir; // folder with CSV files
 private static final String fileTerm = "Table";
 public CSVConnection(AccessIO pDir,
 PropertySheet pSheet) throws DataAccessException {
 super(pSheet);
 dir = pDir;
 if (dir.isLeaf())
 DataAccessException.rethrow("NotDirectory",
 new Object[] { classname, "CSVConnection", pDir.getName() });
 }
 private void createSchemas() throws DataAccessException {
 Schemas schemas = new Schemas();
 Vector names = dir.listDir();
 for (int idx=0; idx < names.size(); idx++) {
 String name = (String)names.elementAt(idx);
 if (dir.isLeaf(name))
 schemas.add(new SchemaObject(null, name, "", fileTerm, this));
 }
 setSchemas(schemas);
 }
 public Schemas getSchemas() throws DataAccessException {
 createSchemas(); // refresh the list of objects
 return getSchemasRoot();
 }
 public void close() {
 dir.close();
 }
}

The CSVConnection class implements the Connection interface by extending
ConnectionAdapter. This abstract class provides default implementation for many of the
methods of Connection. It also provides useful helpful functions that aid in the implementation
of the CSVConnection class.

60 Writing a Production Reporting DDO Driver

CSVConnection has a private data member, dir, that holds a reference to the AccessIO object
that represents the folder on the disk containing the CSV files.

The CSVConnection constructor calls the constructor of ConnectionAdapter. That constructor
takes the DataSource property sheet and copies its entries into the connection property sheet.
It then validates the folder name where the CSV file exists. That is, it determines that it is not a
regular file; thus, it must be a folder.

Here we see an example of throwing a DataAccessException using its static rethrow() method.
This method re-throws exceptions in the driver (such as database, IO, and network exceptions)
and turns them into a DataAccessException. The rethrow() method can also throw a new
exception, as demonstrated here. The rethrow() method takes a message ID as its first
argument. The NotDirectory message is already defined in Production Reporting DDO. We
can use it here without having to define it in your message file.

The next argument to the rethrow() method of DataAccessException is an array of objects
(typically String objects) that become part of the message. This example includes the name of
the CSVConnection class and the CSVConnection constructor as well as the name of the folder.

The createSchemas() method generates the top-level (root) metadata (Schemas). In the
driver, this is the list of the CSV files in the folder. Note that we do not assume that the CSV file
has a .csv filename extension. Instead, we assume that all the files in the folder are CSV files.
The code for a createSchemas() example follows.

private void createSchemas() throws DataAccessException {
 Schemas schemas = new Schemas();
 Vector names = dir.listDir();
 for (int idx=0; idx < names.size(); idx++) {
 String name = (String)names.elementAt(idx);
 if (dir.isLeaf(name))
 schemas.add(new SchemaObject(null, name, "", fileTerm, this));
 }
 setSchemas(schemas);
 }

The example allocates an empty Schemas object. Next, we obtain the list of CSV files in the folder
using the listDir() method of AccessIO. For each file name in the list, we check that it is a
file (and not a folder), then create a SchemaObject instance for it and add it to the Schemas
object. When done, we call setSchemas(schemas). The setSchemas() method is a method
of the ConnectionAdapter class. It registers the top-level Schemas object. This is the object that
is returned to the application when it calls getSchemas() on the Connection.

We override getSchemas() in the code to generate the root Schemas. As implemented, each
time the application calls getSchemas(), we list the directory again. The effect is that the list
of objects in our data source gets refreshed. If a CSV file was added to the folder, a call to
getSchemas() adds it to the metadata.

The application calls the close() method. The ConnectionAdataper implementation of
close() does nothing. In the case of a folder, close() actually does nothing, because there is
no file to close. Nevertheless, the example demonstrates this cleanup as a good practice for
close(). We override it here to close the AccessIO object.

Step 3: Implement the Connection Interface 61

Providing Column Metadata
Information about columns, their name and type, is derived from the CSV file itself. For that
purpose, we write a class called CSVFile. This class encapsulates the implementation of reading
a CSV file. It deals with reading lines, dealing with delimiters, obtaining column names from
the first line, sampling the data to guess the type of the column by looking at the next 5 lines,
and finally reading the data. The source for CSVFile is listed later in this chapter. For now, we
focus on the Production Reporting DDO part of things: creating the SchemaObjectColumns
and implementing the getSchemaObjectColumns() method of Connection.

Before continuing, let’s review the methods of the CSVFile class that you will use, as shown in
Table 12.

Table 12 CSVFile Class Methods

Method Description

Constructor Creates a new CSVFile object for this AccessIO.

getLineTokens Peels off the delimiters and returns the items on a line.

getSampleData Returns tokenized data for the first few lines in the file.

To keep things simple, our driver only supports three data types: date, number, and text. Program
ex18.sqr adds implementation for getSchemaObjectColumns() to the CSVConnection class.

Program ex18.sqr
 public SchemaObjectColumns getSchemaObjectColumns(
 SchemaObject pSchema) throws DataAccessException {
 CSVFile csvfile =
 new CSVFile(dir.createAccessIO(pSchema.getName()));
 Vector headingsLine = csvfile.getLineTokens(); // Get the headings
 Vector dataLine[] = csvfile.getSampleData(); // Sample data
 csvfile.close();
 int headingsCount = headingsLine.size();
 int dataCount = dataLine[0].size();
 if (headingsCount != dataCount) { // Must be the same number
 DataAccessException.rethrow("HeadingCountMismatch",
 new Object[] { classname, "createMetaData",
 new Integer(headingsCount), new Integer(dataCount) });
 }
 SchemaObjectColumns columnMetaData = new SchemaObjectColumns();
 for (int idx = 0; idx < headingsCount; idx++) {
 String name = (String) headingsLine.elementAt(idx);
 int prev = 0, curr = 0; // type of previous and current value
 int size = 0; // size of this coulum
 int scale = 0, prec = 0; // precision and scale (numeric)
 for (int i = 0; i < dataLine.length; i++) {
 if (dataLine[i] != null) {
 String sample = (String) dataLine[i].elementAt(idx);
 Field field = getField(sample);
 curr = field.getType();
 if (prev != 0 && prev != curr)
 curr = Field.Text;

62 Writing a Production Reporting DDO Driver

 prev = curr;
 size = Math.max(size, sample.length());
 if (curr == Field.Decimal) {
 scale = Math.max(scale,
 ((DecimalField)field).decimalValue().scale());
 prec = size;
 }
 }
 }
 SchemaObjectColumn soc = new SchemaObjectColumn(
 pSchema, name, curr, curr,
 getDBTypeName(curr),
 size, prec, scale, "");
 columnMetaData.add(soc);
 }
 return columnMetaData;
 }

The Connection interface and the base implementation class define the
ConnectionAdaptermethod signature for getSchemaObjectColumns(). We override the
method to provide appropriate implementation for CSV files.

The purpose of the getSchemaObjectColumns() method is to describe the columns of a data
object—a CSV file. This includes the number of columns, their name, type, and size.

Code

 CSVFile csvfile =
 new CSVFile(dir.createAccessIO(pSchema.getName()));

Description

Constructs an AccessIO object for the object represented by the pSchema argument. The
AccessIO object allows one to read the file. Next, we construct a CSVFile object for this file. The
CSVFile object allows parsing of the CSV file. The implementation source-code for the CSVFile
class is provided in the section “CSVFile Class” on page 67 later in this chapter.

Now that we have a CSVFile object for the CSV file, we read the heading line (the first line in
the CSV file contains the column headings).

Code

Vector headingsLine = csvfile.getLineTokens(); // Get the headings

Description

These headings are the column names.

Code

Vector dataLine[] = csvfile.getSampleData(); // Sample data
 csvfile.close();
 int headingsCount = headingsLine.size();
 int dataCount = dataLine[0].size();
 if (headingsCount != dataCount) { // Must be the same number

Step 3: Implement the Connection Interface 63

 DataAccessException.rethrow("HeadingCountMismatch",
 new Object[] { classname, "createMetaData",
 new Integer(headingsCount), new Integer(dataCount) });
 }

Description

Reads the sample data, which are the first 5 data lines in the file. We use this data to guess the
data type of each column. CSV files really do not have type information. Looking at the first few
values of each column, we can see if they are all valid dates or numbers. Otherwise, we take the
column as text.

We validate that the number of headings matches the number of values in the data lines (we
compare the number of headings to the number of items on the first line of data). If they don’t
match, we throw an exception. The Message ID used here HeadingCountMismatch refers to
an entry in the message file demo_csv_CSV.properties.

Code

 SchemaObjectColumns columnMetaData = new SchemaObjectColumns();
 for (int idx = 0; idx < headingsCount; idx++) {
 String name = (String) headingsLine.elementAt(idx);
 int prev = 0, curr = 0;//type of previous and current value
 int size = 0; // size of this coulum
 int scale = 0, prec = 0; // precision and scale (numeric)
 for (int i = 0; i < dataLine.length; i++) {
 if (dataLine[i] != null) {
 String sample = (String) dataLine[i].elementAt(idx);
 Field field = getField(sample);
 curr = field.getType();
 if (prev != 0 && prev != curr)
 curr = Field.Text;
 prev = curr;
 size = Math.max(size, sample.length());
 if (curr == Field.Decimal) {
 scale = Math.max(scale,
 ((DecimalField)field).decimalValue().scale());
 prec = size;

Description

Constructs a new SchemaObjectColumns object. This object holds the collection of
SchemaObjectColumn objects that describe the columns of our CSV file.

Next, we process the columns one by one, going over the sample data for each column to
determine the type of the column. We do this using the getField() method. The getField
() method returns a typed field (DateField, DecimalField, or TextField) using the getType()
method of the Field class. We compare that type against the type of previous columns. If there
is a conflict, then we resolve this column to be a text column. However, if all the values in the
column are valid date values, we resolve this column to be a date column. We apply the same
rule for columns if all values are valid numeric values.

We use the sample data to determine the size of the column as well as precision and scale for
decimal columns.

64 Writing a Production Reporting DDO Driver

Code

 SchemaObjectColumn soc = new SchemaObjectColumn(
 pSchema, name, curr, curr,
 getDBTypeName(curr),
 size, prec, scale, "");
 columnMetaData.add(soc);
 }
 return columnMetaData;

Description

Constructs the SchemaObjectColumn for the column name, type, and size. We set the parent
attribute of the column to point to the data object (the CSV file SchemaObject), then pass the
name and the type. The driver uses the Production Reporting DDO field type as the database
type as well. The getDBTypeName() method provides a descriptive name for the type. We add
SchemaObjectColumn to the SchemaObjectColumns variable.

Next, let’s look at the getField() and getDBTypeName() methods, shown in Program
ex19.sqr.

Program ex19.sqr
 private Field getField(String sample) {
 Field field;
 field = new DateField(sample); // see if valid date value
 if (field.isNull()) {
 field = new DecimalField(sample); // see if valid number
 if (field.isNull())
 field = new TextField(sample); // default is text
 }
 return field;
 }
 private String getDBTypeName(int pType) {
 String typeName;
 switch(pType) {
 case Field.Number:
 typeName = "NUMERIC";
 break;
 case Field.Date:
 typeName = "DATE";
 break;
 default:
 typeName = "VARCHAR";
 break;
 }
 return typeName;
 }

The getField() method returns a typed field for the given value. It starts by attempting to
construct a DateField from the given value. If the value is not a valid date this would fail and
return a value of the DateField as null. In such case, try a DecimalField. If that fails, take the
value as a TextField. The function returns the typed field object.

Step 3: Implement the Connection Interface 65

The getDBTypeName() method returns a name for the type of the field. Production Reporting
DDO does not define the DBTypeName. This is at the discretion of the data source. We return
NUMERIC for a decimal number, DATE for a Date field, and VARCHAR for anything else.

Implementing getData
To complete the implementation of the Connection interface in our CSVConnection class, we
implement the getData() methods. We start by looking at the simpler getData() that takes
a SchemaObject argument. The following section discusses the implementation of getData
() with a Selector.

Rowset is an interface for processing a result set. The getData() method returns a Rowset
interface. The driver must implement this interface. In this example, the CSVRowset implements
the Rowset interface for processing a CSV file. Since most of the logic is in the CSVRowset, the
getData() implementation is easy.

public Rowset getData(SchemaObject schema) throws DataAccessException {
 CSVFile csvfile = new CSVFile(dir.createAccessIO(schema.getName()));
 return new CSVRowset(csvfile, getSchemaObjectColumns(schema));
}

We construct a CSVFile object for reading the data from the file. The CSVRowset class uses the
CSVFile object to read the data. The CSVRowset constructor takes two arguments.

● CSVFile object

● Column metadata (a SchemaObjectColumns) for this object

In “Step 4: Implementing Rowset” on page 69, you will see how the CSVRowset implements
the Rowset interface for processing results of getData().

Implementing getData with Selector
A Selector provides a flexible means of retrieving data from an object. In the current version of
Production Reporting DDO, the selector allows the application to specify the desired columns
and their order. In future versions of Production Reporting DDO, the selector may specify
filtering, sorting, and join criteria as well.

Production Reporting DDO provides a class RowsetFilter that applies a selector to a Rowset to
yield a new Rowset. The new Rowset will have the fields specified in the Selector and in the order
that is specified in the Selector.

The ConnectionAdapter class provides a default implementation for getData(Selector). The
implementation uses the RowsetFilter to apply the selector to the Rowset that the simpler
getData() returns. The code in ConnectionAdapter looks like this:

public Rowset getData(Selector selector) throws DataAccessException {
 return new RowsetFilter(getData(selector.getObject()), selector);
}

For the CSV driver, this implementation is satisfactory. Therefore, we do not need to provide
an implementation for getData(Selector), as the base implementation will do.

66 Writing a Production Reporting DDO Driver

Before proceeding to “Step 4: Implementing Rowset” on page 69 examine the code for the
CSVFile class. This class encapsulates reading and parsing a CSV file.

CSVFile Class
This implementation uses the CSVFile class. The source code is in Program ex20.sqr.

Program ex20.sqr
package demo.csv;
import com.sqribe.access.*;
import com.sqribe.comutil.*;
import java.util.Vector;
import java.io.IOException;
public class CSVFile implements CSV {
 private static final String classname = CSVFile.class.getName();
 private AccessIO access;
 private String delimiters = "\",";
public CSVFile(AccessIO pAccess) {
 access = pAccess;
 }
 public Vector getLineTokens() throws DataAccessException {
 String line = readLine();
 Vector tokens = null;
 if (line != null) {
 int start, end;
 tokens = new Vector();
 for (start=0; start < line.length(); start=end+1) {
 end = getDelimiter(line, start);
 if (start != end) {
 String token = line.substring(start, end);
 if (token.length() != 0) tokens.addElement(token);
 }
 if (end < line.length() && line.charAt(end) == '\"') {
 line = line.substring(++end);
 start = 0;
 end = getQuotedString(line, start);
 if (start<=end) {
 tokens.addElement(line.substring(start, end++));
 } else {
 DataAccessException.rethrow("MissingQuote",
 new Object[] { classname, "getLineTokens",
 access.getName(), line });
 }
 } else if (start==end) {
 tokens.addElement(null);
 }
 }
 }
 return tokens;
 }
 public Vector[] getSampleData() throws DataAccessException {
 Vector[] dataLine = new Vector[5];
 int idx;
 for (idx=0; idx<dataLine.length; ++idx) {

Step 3: Implement the Connection Interface 67

 dataLine[idx] = getLineTokens();
 if (dataLine[idx]==null) break;
 }
 return dataLine;
 }
 private int getDelimiter(String pLine, int pIdx) {
 int idx = pIdx;
 for (; idx<pLine.length(); ++idx) {
 char c = pLine.charAt(idx);
 if (delimiters.indexOf(c) != -1) break;
 }
 return idx;
 }
 private int getQuotedString(String pLine, int pIdx) {
 int idx;
 if ((idx=pLine.indexOf('"', pIdx))==-1) {
 try {
 String line = readLine();
 if (line!=null) {
 idx = pLine.length();
 pLine.concat(line);
 idx = getQuotedString(pLine, idx);
 }
 } catch (DataAccessException e) { }
 }
 return idx;
 }
 private String readLine() throws DataAccessException {
 StringBuffer line = new StringBuffer();
 while(true) {
 int token = read();
 if (token == -1) break;
 if (token=='\r') {
 token = read();
 break;
 }
 line.append((char)token);
 }
 String ret = line.toString();
 if (ret.length()==0) ret = null;
 return ret;
 }
 private int read() throws DataAccessException {
 int token = 0;
 try {
 token = (access.accessReader()).read();
 if (token == -1) access.closeReader();
 } catch (IOException e) {
 DataAccessException.rethrow("IOError",
 new Object[] { classname, "read", e.toString() });
 }
 return token;
 }
}

68 Writing a Production Reporting DDO Driver

Step 4: Implementing Rowset
The Rowset interface is a key interface in Production Reporting DDO. The way you implement
this interface has great implications for the performance of your driver. Before implementing
the CSVRowset class, let’s review some of the theory behind the Rowset interface and its
implications on performance.

● Rowset is an interface. You are expected to provide an implementation that optimizes
performance for data retrieval from your data source.

● The Rowset interface supports very large result sets. You should not hold the entire result
set in memory unless you can be sure that the result set is a single row or contains very few
rows. Production Reporting DDO provides an implementation of Rowset, VectorRowset,
that uses a Java Vector. You can use it for the case of a single row or very few rows. However,
you should not use the VectorRowset class if you are retrieving a result set.

● An implementation of Rowset can hold off fetching the data until it is actually requested via
the next() method. Take advantage of this to improve performance by fetching rows just
in time. Of course, an application can perform some “fetch ahead” or buffering, but it should
not retrieve all the data up front.

● The application using Rowset is not required to fetch all the data. The close() method
signals that the application will not fetch any results that are still outstanding. Your
implementation should respect the close() method. If your data source requires that all
the data be processed, you can silently skip the data in your driver, rather than force the
application to retrieve all the data.

● To minimize object creation, use the same record and the same fields when next() is called.
Rather than allocate new fields, the driver can respond to next() by populating the same
fields with new data. If the application wants to hold references to multiple records, it is the
application’s responsibility to make copies of rows. For most applications, this is not
required, so why do all the extra work?

With this in mind, we are ready to review the CSVRowset implementation of the Rowset
interface. The example provides methods that implement all the methods of the Rowset interface.
We will hold a single row in memory and populate it with new values in the next() method.

Program ex21.sqr
package demo.csv;
import com.sqribe.access.*;
import com.sqribe.comutil.*;
import java.util.*;
public class CSVRowset implements CSV, Rowset {
 private static final String classname = CSVRowset.class.getName();
 private CSVFile csvfile;
 private SchemaObjectColumns soc;
 private VectorRow currentRow;
 public CSVRowset(CSVFile pCSVFile, SchemaObjectColumns pSoc)
 throws DataAccessException {
 csvfile = pCSVFile;
 soc = pSoc;
 currentRow = new VectorRow();
 allocateFields();

Step 4: Implementing Rowset 69

 csvfile.getLineTokens(); // Position past the headings
}
 public Row getRow() {
 return currentRow;
 }
 public int getFieldCount() {
 return currentRow.getFieldCount();
 }
 public Field getField(int index) throws DataAccessException {
 return currentRow.getField(index);
 }
 public Field getField(String name) throws DataAccessException {
 return currentRow.getField(name);
 }
 public void close() {
 try {
 csvfile.close();
 } catch (Exception e) { }
 }

The constructor takes the two arguments shown in Table 13.

Table 13 Constructor Arguments

Argument Description

CSVFile pCSVFile Provides an abstraction of a CSV file. Allows us to parse the file and obtain the data
it holds.

SchemaObjectColumns pSoc Column metadata for this CSV file. Provides column names, size, and type.

The constructor creates a Row to hold one record using the VectorRow class in Production
Reporting DDO. This class provides a simple implementation of a Row that uses a Java Vector
to hold the fields. A driver can provide its own implementation of the Row interface.

Next, we allocate the fields based on the column metadata using the allocateFields()
method. The example reads the first line from the CSV file. This line has the column headings.
We don’t need that, as we already have this information in the column metadata. We simply
skip this first record.

After the constructor, note the getRow(), getFieldCount(), and getField() methods. The
implementation of these methods is quite simple. The close() method will close the AccessIO
object and close the file. The Rowset interface does not allow for errors during close() so we
silently ignore any errors during the close() method.

Now let’s see the next() method.

 public boolean next() throws DataAccessException {
 Vector tokens = csvfile.getLineTokens();
 if (tokens==null) return false; // end of file reached
 for (int i=0; i < getFieldCount(); i++) {
 String value = (String)tokens.elementAt(i);
 Field f = getField(i);
 if (value.length()==0) f.setNull(true);
 else f.setValue(value);
 }

70 Writing a Production Reporting DDO Driver

 return true;
 }

We start by reading a line from the CSV file. We get the line broken into fields according to the
number of fields and their order in the file. We then go through the fields. We set the value of
appropriate field to either null (if the file has no value for this field) or to the actual value using
the setValue() method of Field. Note that Field may by a DecimalField, DateField, or
TextField, the appropriate setValue() will be called (this is the essence of polymorphism).

The next()method returns true when you process a record and false when no more records
are available and the end of the file has been reached.

Now let’s see the allocateFields() method.

 private void allocateFields() throws DataAccessException {
 Enumeration enum = soc.elements();
 SchemaObjectColumn col;
 while (enum.hasMoreElements()) {
 col = (SchemaObjectColumn)enum.nextElement();
 currentRow.addField(Field.createField(col.getName(),
 col.getFieldType(), col.getSize(), true));
 }
 }

allocateFields() goes through the column metadata and allocates a field for each column.
The createField() method of the Field class creates a typed field based on the specified field
type (second argument). In this case it returns one of DateField, DecimalField, or Text Field.
Then add the field to our Row.

Step 4: Implementing Rowset 71

72 Writing a Production Reporting DDO Driver

4
Programming Considerations

In This Chapter

Production Reporting DDO Adapters .. .73

Driver Organization Tips73

Messages and Exceptions... .75

Properties and Capabilities .. .77

Internationalization80

Message Editor .. .80

Property Editor.. .83

Testing and Debugging Drivers .. .84

Production Reporting DDO Adapters
Production Reporting DDO adapters provide default methods for features that drivers do not
implement. They also provide an array of helper methods to perform common functions. For
a list of the methods and a description of their functions, see the Production Reporting DDO
API javadoc.

Driver Organization Tips
In many respects, your driver represents a bi-directional gateway. On the one hand, it
communicates with the data source. On the other, it presents metadata, results, and execution
operations to the application, using the Production Reporting DDO interfaces. The operations
translate to invocation sequences recognized by your data source.

● DataSourceAdapter—Handles common data source implementation methods.

When writing your driver, you only need to implement the open()method, which creates
a connection to the data source using the given properties. Use the methods of this adapter
class to provide default behavior.

● ConnectionAdapter—Handles common connection implementation methods.

For simple drivers, you can place most of the operational methods in your Connection class.
For complex drivers, the Connection class can become too large and complex. In this case,
delegating the functions to specialized worker objects will make the driver easier to
understand and maintain. You may want to add specialized worker classes for object or

Production Reporting DDO Adapters 73

procedure processing. Or, you may want to handle the formation of the metadata hierarchy
in a specific class.

Registy Editor
Production Reporting DDO provides a number of tools to assist in application deployment. One
such tool is the Registry Editor. The Registry Editor is a data-driven application. Driver writers
should add connection-specification information for their drivers to enable configuration
through the Registry Editor tool.

Note:

For detailed information on the Registry Editor, see Chapter 5, “Managing Data Sources.”

➤ To add connection specification information:

1 Add the common name and descriptive name of your driver to the DataSources.drivers property in properties/
com_sqribe_access_DataSourceManager_Properties.properties.

In the property file snippet that follows, we see six drivers identified. The templates for these
drivers exist in the corresponding DataSourceManager message file.

● A semicolon (;) separates each pair.

● White space separates the name and description. If the description contains white space, it
must be enclosed in quotes (“”).

❍ Strings to build the property descriptions are held in the message file
com_sqribe_access_DataSourceManager.properties.

❍ The message file contains resource strings (like those used to create labels for UI dialogs)
and message text.

❍ The resource strings that begin with the names listed in this property create property
descriptions from the pseudo property descriptions for class, lib, load, and so on,
provided in the com_sqribe_access_
DataSourceManager_PropertyDescriptions.properties file, as shown in the following
example.

These are the names, with their descriptions, that we will use to build
property descriptions and entries for the driver templates.
Registry administration tools use these names to provide driver
configuration information.
See the API documentation for com.sqribe.access.Registry for more information.
#
DataSources.drivers= \
csvacc "CSV driver"; \
essacc "Essbase driver"; \
jdbcacc "JDBC driver"; \
msmdacc "Microsoft ADO MD driver"; \
psacc "PeopleSoft driver"; \
sapr3acc "SAP R/3 driver"

74 Programming Considerations

2 Add the template description for your driver to the message file msgs/
com_sqribe_access_DataSourceManager.properties.

The CSV driver template, shown in Code ex4b, mirrors the information required in the registry
data source entries. The difference is in the connection string, which has bracketed (< >) entries
for each substitution value in the connection string. The label in the brackets is used as the
parameter label in the registry editor.

A driver can have multiple connection string templates. These can correspond to multiple lib
entries. In the case of the Production Reporting DDO relational database driver, the
corresponding entries represent related JDBC driver and connection strings.

CSV driver template
csvacc.name.string=CSV DataSource Template
csvacc.class.string=com.sqribe.csvacc.CSVDataSource
csvacc.lib.string=
csvacc.load.string=
csvacc.conn.string="CSV:File:<Fully Qualified Directory Path Name>"
csvacc.desc.string=This data source represents a directory tree rooted in a file system.
\
Files in the tree having the file extension, ".csv", are interpreted as delimiter \
separated files. These files represent objects to this driver.
#
JDBC datasource driver template
jdbcacc.name.string=JDBC DataSource Template
jdbcacc.class.string=com.sqribe.jdbcacc.JDBCDataSource
jdbcacc.lib.string=sun.jdbc.odbc.JdbcOdbcDriver \
oracle.jdbc.driver.OracleDriver \
com.sqribe.License.SQRIBE970801Ora \
com.sybase.jdbc.SybDriver \
com.sqribe.License.SQRIBE970801MSsqlSybase
jdbcacc.load.string=
jdbcacc.conn.string="JDBC:ODBC:<ODBC DSN>" \
"jdbc:oracle:oci7:@<Oracle TNS Name>" \
"jdbc:Weblogic:@<Oracle TNS Name>" \
"jdbc:sybase:Tds:<Host Name>:<Port Address>/<Database Name>" \
"jdbc:Weblogic:Tds:<Host Name>:<Port Address>/<Database Name>"
jdbcacc.desc.string=This driver provides data source access through JDBC. \
The JDBC driver name, e.g., com.sybase.jdbc.SybDriver, is given in the "lib" \
resource. Only a single name should be specified. This JDBC driver name must \
have a corresponding connection specification, given in the "conn" resource. \
The relative entries of the "lib" and "conn" resource lists are correlated, e.g., \
the "oracle.jdbc.driver.OracleDriver" corresponds to the \
"jdbc:oracle:oci7:@<Oracle TNS Name>" connection template. \
This Production Reporting DDO driver provides support to RDBMS tables and stored
procedures.

Messages and Exceptions
To provide each class with access to messages, place the messages that your driver generates in
a single file for the driver package.

Messages and Exceptions 75

CSV Example
For example, if your driver was in the package, demo.csv, create an empty interface called CSV.
Each class in your driver package would implement the CSV interface. As a result, each class
would have access to the messages for CSV.

Further, the CSV interface would extend the com.sqribe.access.Access empty interface, making
Access messages available to your driver. Since Access extends the com.sqribe.comutil.Util
interface, your driver also has access to the common utility messages. The CSV empty interface
would look like:

package demo.csv;
import com.sqribe.access.*;
/**
 * CSV is a holder interface, allowing properties, messages, etc, common
 * to the csv package to be specified once
 */
public interface CSV extends Access {
}

Message Forms
The message facility supports user and log messages. The log messages provide more information
than the user messages. While there is no requirement to have both, and in some situations it
does not make sense to have both, it is a good idea to provide both message forms.

The message facility provides automatic logging of messages. Hence, when a message is written,
the facility looks for a log message pattern and, if so, generates a log entry.

Message Conventions
User and log messages follow specific conventions. While there is no requirement to follow these
conventions, the Production Reporting DDO exceptions, for example, DataAccessException,
provide convenience methods, such as rethrow that anticipate the use of these conventions:

● The first substitution argument is the name of the class requesting the message.

● The second substitution argument is the name of the method requesting the message.

● The remaining substitution arguments, if any, provide specific details for the message.

There are no object names in the from clause of the select statement
0 The class reporting the error
1 The method reporting the error
2 The from clause
ObjectNameMissing.text=There are no object names in the FROM clause: "{2}".
ObjectNameMissing.logtext={0}.{1}(): There are no object names in the \
FROM clause: "{2}".

As you can see, the difference between the user and log message pattern is the prepending of
“{0}.{1}(): ” for the class and method name. It is not necessary to add message substitutions for
a stack trace or exception string. These are available through the rethrow convenience methods,
as shown in Program ex22.sqr.

76 Programming Considerations

Program ex22.sqr
/**
 * Throw an exception after logging entry
 * @exception UtilException
 * A general exception for data source
 * operations such as
 * making a connection or performing a command.
 * @see ApplicationLog#logMsg
 */
public static void rethrow(String pMsgId, Object[] pArgs) throws
 UtilException {
throw new UtilException((String)pArgs[0], pMsgId, pArgs);
}
/**
 * Rethrow exception after logging entry. A stack trace is logged
 * with the message.
 * @param pMsgId The message identifier
 * @param pArgs The substitution arguments for the message,
 * pArgs[0] is the classname
 * @param pExc The exception to be recorded
 * @exception UtilException
 * A general exception for data source
 * operations such as
 * making a connection or performing a command.
 * @see ApplicationLog#logException
 */
public static void rethrow(String pMsgId, Object[] pArgs,
 Throwable pExc) throws UtilException {
if (pExc instanceof UtilException)
 throw new UtilException((String)pArgs[0], pMsgId, pArgs);
else throw new UtilException((String)pArgs[0], pMsgId, pArgs,
 pExc);
}

Exceptions
Error notification is through exceptions. This allows application developers to organize error
handling on the edges rather than in the main code path. Exceptions are often generated using
the rethrow methods. Use of the getMsg method in the Message Facility, for example, is when
all of the messages pertaining to an operation need to be gathered before raising an exception.

Object[] objs = new Object[]
 { classname, "bindParameters", new Integer(0), new Integer(parmcount) };
addErrorMsg(ApplicationLog.getMsg().getMsg(classname, "TooManyParameters", objs));

Properties and Capabilities
In Production Reporting DDO, properties and capabilities are in separate name spaces, though
they are processed in much the same way. This means that a property and capability may have
the same name but be treated as distinct entities. The rationale for a separate name space and
form is purely pragmatic and is rooted in the perceived usage patterns. From an application
perspective, capabilities are read-only object properties. From a driver perspective, they are

Properties and Capabilities 77

object properties. From a driver developer’s perspective, an attribute should be stipulated as a
capability, if and only if, the application should not change the value.

Descriptions
All properties and capabilities must have associated descriptions. If you feel that a description
is not warranted for a capability that is a string and is not computed at runtime, then you should
make it a message string type.

Localization
Properties, capabilities, their values, and their descriptions may be localized. You can choose to
localize at the granularity of an attribute; that is, a single property attribute within a property
resource bundle may be translated, placing it in a localized property resource bundle. You could
translate the property description names, and nothing else. Or, you may choose to translate the
name and descriptive name.

Hierarchical Structure
Property and capability descriptions can be hierarchical. The application can use this hierarchical
structure to create property pages. The logon property is a hierarchical structure. The Registy
Editor tool uses this structure to create a logon panel.

In Figure 4, Client, User, Password, and Language are first-level leaf attributes. Gateway, Load
Balancing, No Load Balancing, Advanced, and Miscellaneous are first-level indices. This logon
property description is in the property resources bundle
com_sqribe_sapr3ace_DataSourcePropertyDescription.properties. The dialog box in Figure 4 is
part of the com.sqribe.accessui package. While the Registry Editor knows that the property,
logon, is for logon attributes, it has no knowledge of any driver specific logon semantics.

Figure 4 Logon Dialog Box

78 Programming Considerations

Program ex23.sqr shows that the default values for Client and Language are part of the connection
string, while the default values for logon.type and logon.trace are in the
com_sqribe_sapr3ace_DataSourcePropertyDescription.properties file. By convention the
connection string attributes are merged into the default values.

Example

Connect string in the registry.properties file:

SAPR3.conn=SAPR3:JNI:ASHOST=sundance SYSNR=00 CLIENT=800 LANG=EN

Example

Property description in:

com_sqribe_sapr3acc_SAPR3DataSource_PropertyDescriptions.properties

Program ex23.sqr
logon.Name=Logon
logon.Description=Logon is required to establish a connection with an SAP R3 data
source. \
The SAP R3 data source takes a number of parameters as part of the connection string. \
Included among these are the operator (or user) identification and the operator (or
user) \
password. The user identification and password are included as logon information. The
remaining \
connection attributes are part of the connection string provided with the data source \
description (see the SAP R3 DataSource interface documentation for a complete
description). \
To summarize, the SAP R3 connection string may have a form similar to: \
SAPR3:JNI:ASHOST=hs0311 SYSNR=53. \
Where the ASHOST would be replaced by the data source host identifier; the
SYSNR would be replaced by \
the system number for the host. \
The client (CLIENT=), user identification (USER=), password (PASSWD=) and
language (LANG=) \
are appended to the connection string. These are usually retained as
properties. A user \
interface will normally prompt for these values.
logon.Indices=logon.client \
user \
password \
logon.language \
logon.gateway \
......
logon.client.Name=Client
logon.client.Description=SAP logon client identifier.
logon.advanced.Indices=logon.type \
logon.check \
logon.trace
logon.type.Name=RFC Server Type
logon.type.Description=The RFC server type. This parameter should be left
empty or set to 3, the default.
.....

Properties and Capabilities 79

Example

Property values in:

com_sqribe_sapr3acc_SAPR3DataSource_Properties.properties
logon.client=
logon.language=
logon.type=3
logon.check=1
logon.trace=0
logon.dest=
logon.gwhost=
logon.gwserv=
logon.mshost=
logon.r3name=
logon.group=
logon.ashost=
logon.sysnr=

Internationalization
Production Reporting DDO is fully internationalized. The message and property facilities use
property resource bundles as the vehicle to support localization. Applications and driver
developers are encouraged to use these facilities as the foundation for internationalizing their
packages. The message and property facility are described further in the next chapter.

Message Editor
Use the Message Editor to create message properties files for Production Reporting DDO drivers.

80 Programming Considerations

Figure 5 Message Editor Main Window

The Message Editor contains:

● Message Files—All the message files. The root node is the message file name. Each leaf node
represents a message file, which takes its name from the message ID. Each message ID can
include messages of different types.

● Messages—Information about the selected message file. If the selected message contains
other messages, an expanded tree appears.

● Message Content—The contents of the selected message. You can add header information
or edit file contents.

● Comments—Comments about the message. You can add one comment for all messages
with the same Message ID.

Loading Messages

➤ To load messages:

1 Select File > Load Message Files.

2 Enter information in the Load Messages dialog box and click Load.

Message Editor 81

Note:

If there is no msgs directory in the Java class path, an error message appears, prompting you to
create such a directory.

Table 14 Ways to Load Message Files

Option Description

System Default Load the messages files stored in the msgs directory included in the classpath.

Load by Class Enter theProduction Reporting DDO driver class name to load the corresponding message file. For
example, entering com.sqribe.xmlacc loads the com_sqribe_xmlacc_XMLacc.properties from
the msgs directory.

Load by Folder Enter the path to a folder that you provide.

Load by File Load a message property file.

a. Click the small button beside the text field to display a file dialog box.

b. Select a message file from the msgs directory. (The file dialog box points to the msgs directory
included in the class path.)

c. Enter a message file name and click Open.

This copies the new message file name to the text field.

d. Click Load to create the message file.

The file creation time is saved to the newly created message file’s header section.

Adding Messages

➤ To add a new message ID:

1 Select the root node under Messages.

The name of the root node is the message file name.

2 Click Add to display the Add New Message dialog box.

3 Enter the new name and select a message type.

Editing Message Contents

➤ To change the content of a message:

1 Select a message.

2 Edit the text under Message Content and select File > Save.

82 Programming Considerations

Property Editor
Use the Property Editor to create and edit property, capability, property description, and
capability description files for Production Reporting DDO drivers.

Figure 6 Property Editor Main Window

The Property Editor contains:

● PropertySheet—The DataSource class names of the Production Reporting DDO driver. To
edit properties and capabilities, you must select the Production Reporting DDO driver’s
class name first.

● Information—The classname and directory for the selected property sheet.

● Description—The property names in the description files. The root node is the name of the
driver’s DataSource class. Non-leaf nodes are properties whose indices are not equal to null.
Leaf nodes are properties whose indices equals null.

● Properties/Capabilities—Depending on the tab selected (Property or Capability), the
properties or capabilities in the driver’s property or capability file.

● Description Content—The attributes of the property or capability selected under
Description.

● Property Content—The name and value of the property or capability selected under
Description. Click Edit, to edit the value.

Loading Properties

➤ To load properties:

1 Select File > Open.

Property Editor 83

2 Enter information in the Load PropertySheet dialog box and click Load.

Note:

If there is no properties directory in the Java class path, an error message appears, prompting you
to create such a directory.

Table 15 Ways to Load Property Files

Option Description

System Default Load the property files from the properties directory included in the classpath.

Load by Class Provide the Production Reporting DDO driver’s DataSource class name.

For example, entering com.sqribe.xmlacc.XMLDataSource loads the DDO xml driver
property files from the properties directory.

Testing and Debugging Drivers
Three command line sample programs and a graphical query editor are available for driver
development. The command line sample programs are located in: \hyperion\products
\biplus\docs\Server\DDO\Test

● AccessMeta—Used to test metadata hierarchy driver functionality. Takes a schema name
as an argument and produces an HTML report displaying the metadata for the subtree whose
root is the named schema.

● AccessObjects—Used for drivers supporting the Production Reporting DDO object
retrieval interface. Given a qualified object name, produces an HTML report displaying the
object’s result set.

● AccessProcs—Used for drivers supporting the Production Reporting DDO call retrieval
interface. Given a qualified procedure name and a parameter list, produces an HTML report
displaying the in/out and output parameters, the return value, and the result sets.

Using the Query Editor to Test and Debug Drivers
Use the Production Reporting DDO Query Editor to debug your drivers. The Query Editor
works the same way as a database query editor, allowing you to look at tables, run procedures
to see what they return, test commands or SQL statements, and retrieve row sets.

84 Programming Considerations

➤ To use the Query Editor for testing and debugging:

1 Select Start > Programs > Oracle EPM System> Reporting and Analysis > Production Reporting for
DDO > Query Editor.

2 Select File > Open to display the Open Data Source window.

3 Select and log onto a data source.

4 Select the Meta Data tab to display the contents.

5 Select the desired node.

Figure 7 shows the Query Editor displaying objects in an SAPBW data source.

Figure 7 Displaying a Schema Object View in the Query Editor

Testing and Debugging Drivers 85

86 Programming Considerations

5
Managing Data Sources

In This Chapter

Data Source Specifications87

Adding a Data Source Specification in the Registry Editor.. .88

Data Source Descriptions and Templates88

Data Source Specifications
A data source specification consists of:

● Data source name (required)—Logical name for the data source. Production Reporting
DDO applications associate this name with the connection.

● Description (optional)—Used to assist the user in selecting a data source. Production
Reporting DDO applications can display the descriptive name along with the data source
name. Alternatively, an application can display the descriptive name as a tooltip.

● Class (required)—Class name loaded by the Production Reporting DDO data source
manager for a selected data source.

● Variants—An Production Reporting DDO driver supports one or more data source
variants. The JDBC driver, for example, supports a number of database vendors. Each
database is reflected as a variant.

● Java libraries (may be required by the driver)—The driver may require additional classes
to be loaded prior to the instantiation of the data source driver class. The driver provides
the classes and they appear when you select the driver in the registry editor. You should not
have to provide additional information here.

● Native libraries (may be required by the driver)—The driver may require platform-specific
Java Native Interface (JNI) libraries to be loaded, prior to the instantiation of the data source
driver class. The driver provides these classes and they appear when you select the driver in
the registry editor. You should not have to provide additional information here.

● Connection string (optional)—All drivers require connection information, for some
drivers, you can supply this information with the connection request. Other drivers require
some information in advance. The drivers supply templates for connection information that
the Registry Editor uses in a dialog box for the connection string.

Data Source Specifications 87

Adding a Data Source Specification in the Registry Editor
The Production Reporting DDO Registry Editor provides a graphical interface for managing
data sources. Production Reporting DDO allows multiple registries, with each registry
containing multiple data sources. Each data source defines the objects and connection
specifications for the source.

You can quickly create and update registries using the Production Reporting DDO Registry
Editor. In addition, the editor’s test connection function helps you ensure that the data source
specification is correct before trying it in your application.

In the following example, we show the use of the Production Reporting DDO Registry Editor
to add a specification for an Oracle Data Source

➤ To add a specification in the registry:

1 Start the Registry Editor by selecting Start > Programs > Oracle EPM System > Reporting and Analysis >
Production Reporting > DDO > Registry Editor.

2 Select File > Open.

3 Select Registry in the Open Registry window and click Open.

Registry is the default registry and should always appear.

4 Click Add in the Registry Editor main window.

5 Select a driver name in the Create New Data Source dialog box and click OK.

This is the Production Reporting DDO driver needed to connect to the data source.

6 Enter the data source information in the Setup Data Source dialog box that appears.

7 Click Build to display the Build Connection String window; and enter the requested information.

8 Click OK to return to the Setup Data Source dialog box; then, click Test to ensure that the data source
specification is correct.

If the data source specification is correct, a message appears indicating that the connection test
succeeded and the Logon dialog box appears. (In our example, you would enter an Oracle user
name and password in the Logon dialog box and click OK.)

If the data source specification is not correct, an error message appears and you must re-enter
the data source specification.

9 Click OK to return to the main window; then, save the information by clicking the Save Registry toolbar button.

After you save data source information, the Registry Editor remains open to make additional
data source specifications or changes. If you do not wish to make further changes, select File >
Exit to close the Registry Editor.

Data Source Descriptions and Templates
The following sections provide data source and parameter descriptions for each supported driver
connection. The following data source drivers are available:

88 Managing Data Sources

● Hyperion Essbase

● SAP R/3 and SAP BW

● Microsoft OLEDB for OLAP

● Microsoft OLEDB

● JDBC

● XML

● Delimiter Separated Values

● OMG Corba Sample

● Microsoft DCOM Sample

● CSV Sample

Hyperion Essbase
This data source represents an Essbase database. Essbase is a multidimensional database, where
objects represent cubes. You must have an Essbase client library installed to use this driver.

The following Hyperion Essbase connections are supported:

● Host Name

● IP Address

Note:

When you connect to an Essbase data source with Production Reporting DDO, you must
add the ARBORPATH variable to the Essbase client, and add the location of the Essbase
shared library files to the path.

Host Name

Template

<Host Name>

Parameters

Host Name

Default host name of the Essbase server.

Example

Essbase.acme.com

Data Source Descriptions and Templates 89

IP Address

Template

<IP Address>

Parameters

IP Address

Default IP address of the Essbase server.

Example

129.3.4.50

SAP R/3 and SAP BW
This driver provides access to SAP R/3 and SAP BW data sources. The following SAP connections
are supported:

● Unbalanced/Direct Connection

● Balanced Connection

● External Gateway Connection

● Single Hop SAPRouter Connection

The connection string can contain any of the SAP logon parameters, including:

CLIENT—Client number.

LANG—User language.

TYPE—RFC server type. Should be left empty or set to the default value of 3.

CHECK—SAP logon check during Open. The default is 1 and should always be used.

TRACE—Establishes an RFC trace log. The default is 0, do not establish a trace log.

DEST—Destination in saprfc.ini, when using saprfc.ini.

GWHOST—Host name of the SAP gateway, when the server is R/2 or External.

GWSERV—Service of the SAP gateway, when the server is R/2 or External.

MSHOST—Host name of the SAP message server, when using load balancing.

R3NAME—Name of the R/3 system, when using load balancing.

GROUP—Name of the group of application servers, when using load balancing. A name
containing embedded blanks must be enclosed in quotes, for example, “Finance Group”.

ASHOST—Host name of a specific application server, when using R/3 without load balancing.

SYSNR—SAP system number of a specific application server, when using R/3 without load
balancing.

TPHOST—Host name of a specific external RFC program server.

90 Managing Data Sources

TPNAME—Path and name of the external RFC server program or Program ID of a registered
RFC server program.

Unbalanced/Direct Connection

Template

SAPR3:JNI:ASHOST=<Host Name> SYSNR=<SAP System Number> CLIENT=<Client
Number> LANG=<Language>

SAPBW:JNI:ASHOST=<Host Name> SYSNR=<SAP System Number> CLIENT=<Client
Number> LANG=<Language>

Parameters

Host Name

Default host name of a specific application server. This may be specified as a host name (for
example, ws1.acme.com) or an IP address (for example, 129.3.4.50).

SAP System Number

Default system number of the R/3 or SAP BW application server. This is typically a two or three
digit value.

Client Number

Default client number for users of this connection. This is typically a three digit value.

Language

Default language for users of this connection. This is either the SAP language code or the ISO
language code.

Example

SAPR3:JNI:ASHOST=R3Server SYSNR=01 CLIENT=850 LANG=EN

SAPBW:JNI:ASHOST=BWServer SYSNR=03 CLIENT=800 LANG=EN

Balanced Connection

Template

SAPR3:JNI:MSHOST=<Message Server> R3NAME=<R/3 System Name>
GROUP=<Application Group> CLIENT=<Client Number> LANG=<Language>

SAPBW:JNI:MSHOST=<Message Server> BWNAME=<SAPBW System Name>
GROUP=<Application Group> CLIENT=<Client Number> LANG=<Language>

Parameters

Message Server

Default host name of a specific message server. This may be specified as a host name (for example,
ws1.acme.com) or an IP address (for example, 129.3.4.50).

Data Source Descriptions and Templates 91

R/3 System Name or SAP BW System Name

Default name of the R/3 or SAP BW application server, when using load balancing. This
parameter value should only be specified when the server is R/3 or SAP BW and load balancing
is used; otherwise, it should be left empty.

Application Group

Default name of the group of application servers, when using load balancing. A name containing
embedded blanks must be enclosed in quotes. For example, “Finance Group.” This parameter
value should only be specified when the server is R/3 or SAP BW and load balancing is used;
otherwise, it should be left empty.

Client Number

Default client number for users of this connection. This is typically a three digit value.

Language

Default language for users of this connection. This is either the SAP language code or the ISO
language code.

Example

SAPR3:JNI:MSHOST=R3MSGSVR R3NAME=FINANCE GROUP=PUBLIC CLIENT=850 LANG=EN

SAPBW:JNI:MSHOST=BWMSGSVR R3NAME=FINANCE GROUP=PUBLIC CLIENT=850 LANG=EN

External Gateway Connection

Template

SAPR3:JNI:TYPE=E TPHOST=<Server Host Name> TPNAME=<Server Program Name>
GWHOST=<Gateway Host> GWSERV=<Gateway Server> CLIENT=<Client Number>
LANG=<Language>

SAPBW:JNI:TYPE=E TPHOST=<Server Host Name> TPNAME=<Server Program Name>
GWHOST=<Gateway Host> GWSERV=<Gateway Server> CLIENT=<Client Number>
LANG=<Language>

Parameters

Server Host Name

Default host name of a specific external RFC program server. This may be specified as a host
name (for example, ws1.acme.com,)or an IP address (for example, 129.3.4.50).

Server Program Name

Default path and name of the external RFC server program or Program ID of a registered RFC
server program. This parameter value should only be specified when the server is External;
otherwise, it should be left empty.

Gateway Host

Host name of IP address (most likely an IP address) of the gateway host that is the partner of
the client for this connection.

92 Managing Data Sources

Gateway Server

Host name of IP address (most likely an IP address) of the gateway server that is the partner of
the gateway host for this connection.

Client Number

Default client number for users of this connection. This is typically a three digit value.

Language

Default language for users of this connection. This is either the SAP language code or the ISO
language code.

Example

SAPR3:JNI:TPHOST=R3EXTSVR TPNAME=R3EXTPGM CLIENT=850 LANG=EN GWHOST=204.79.
199.5 GWSERV=207.213.200.19

SAPBW:JNI:TPHOST=BWEXTSVR TPNAME=BWEXTPGM CLIENT=850 LANG=EN GWHOST=204.79.
199.5 GWSERV=207.213.200.19

Single Hop SAPRouter Connection

Template

SAPR3:JNI:ASHOST=/H/<SAP Router Host>/H/<Gateway Host>/H/<Host Name>
SYSNR=<SAP System Number> CLIENT=<Client Number> LANG=<Language>

SAPBW:JNI:ASHOST=/H/<SAP Router Host>/H/<Gateway Host>/H/<Host Name>
SYSNR=<SAP System Number> CLIENT=<Client Number> LANG=<Language>

Parameters

SAP Router Host

Host name or IP address for the SAPRouter application.

Gateway Host

Host name or IP address (most likely an IP address) of the gateway host that is the partner of
the SAPRouter for this connection.

Host Name

Default host name of a specific application server. This may be specified as a host name (for
example, ws1.acme.com) or an IP address (for example, 129.3.4.50).

SAP System Number

Default system number of the R/3 application server. This is typically a two or three digit value.

Client Number

Default client number for users of this connection. This is typically a three digit value.

Language

Data Source Descriptions and Templates 93

Default language for users of this connection. This is either the SAP language code or the ISO
language code.

Example

SAPR3:JNI:ASHOST=/H/10.213.33.238/H/204.79.199.5/H/

207.213.200.19 SYSNR=01 CLIENT=850 LANG=EN

SAPBW:JNI:ASHOST=/H/10.213.33.238/H/204.79.199.5/H/

207.213.200.19 SYSNR=01 CLIENT=850 LANG=EN

Microsoft OLEDB for OLAP
This data source represents a Microsoft OLAP server, where objects represent cubes. You must
have an Microsoft SQLServer OLAP client library installed to use this driver. You can connect
to Microsoft OLEDB for OLAP through the provider.

Provider

Template

Data Source=<Server Name>;Provider=<Driver Provider Name>{msolap};
Initial Catalog=<Catalog Name>

Parameters

Server Name

ODBC logical data source name.

Driver Provider Name

Name of the driver provider. The default is msolap. There is no need to change the default.

Catalog Name

Name of the catalog containing the cubes to be analyzed.

Example

Data Source=JAWS;Provider=msolap;Initial Catalog=Food Mart

Microsoft OLEDB
This driver provides data source access through Microsoft ADO. There is an OLE DB provider
with ADO MSDASQL for ODBC databases, MSIDXS for Microsoft Index Server,
ADSDSOObject for Microsoft Active Directory Service, Microsoft.Jet.OLEDB.3.51 for
Microsoft Jet databases, SQLOLEDB for Microsoft SQL Server, MSDAORA for Oracle databases.

You can connect to Microsoft OLEDB through the provider.

94 Managing Data Sources

Provider

Template

Data Source=<Data Source Name>;Provider=<Driver Provider Name>{MSDASQL
SQLOLEDB MSDAORA Microsoft.Jet.OLEDB.3.51 MSIDXS ADSDSOObject };Initial
Catalog=<Database Name>

Parameters

Data Source Name

ODBC logical data source name.

Driver Provider Name

Name of the driver provider. The choices are: MSDASQL, SQLOLEDB, MSDAORA,
Microsoft.Jet.OLEDB.3.51, MSIDXS, and ADSDSOObject.

Database Name

Name of the database within the given data source.

Example

Data Source=JAWS;Provider=MSDASQL;Initial Catalog=Food

JDBC
This driver provides data source access through JDBC. The JDBC driver name, for example,
com.sybase.jdbc.SybDriver, is given in the lib resource. Only a single name should be
specified. This JDBC driver name must have a corresponding connection specification, given in
the conn resource. This driver provides support for RDBMS tables and stored procedures.

The following JDBC connections are supported:

● JDBCODBC

● Oracle Thin Client

● Oracle OCI Client

● Sybase Thin Client

● DB/2 Thin Client

● DB/2 Local Client

● Informix Thin Client

● Hyperion DB2 Client

● Hyperion Informix Client

● Hyperion Oracle Client

● Hyperion SQL Server Client

● Hyperion Sybase Client

Data Source Descriptions and Templates 95

JDBCODBC

Template

JDBC:ODBC:<ODBC DSN>

Parameters

ODBC DSN

ODBC logical data source name.

Example

JDBC:ODBC:Northwind

Oracle Thin Client

Environment Variables

CLASSPATH=<ORAHOME>/jdbc/lib/classes111.zip;

Template

jdbc:oracle:thin:@<Host Name>:<Port Address>:<Oracle TNS Name>

Parameters

Host Name

Host name of the Oracle database server. This may be specified as a host name (for example,
ws1.acme.com) or an IP address (for example, 129.3.4.50).

Port Address

Port number at the host name of the Oracle database server. This is a value between 0 and 64565,
inclusive.

Oracle TNS Name

Oracle logical network name for the connection.

Example

jdbc:oracle:thin:@swhale:1521:Oracle.World

Oracle OCI Client

Environment Variables

CLASSPATH=<ORAHOME>/jdbc/lib/classes111.zip;

Template

jdbc:oracle:oci<Oracle Version>{7 8}:@<Oracle TNS Name>

96 Managing Data Sources

Parameters

Oracle Version

Oracle version number of the client library for the database server. Valid values are: 7 and 8.

Oracle TNS Name

Oracle logical network name for the connection.

Example

jdbc:oracle:oci8:@Oracle.World

Sybase Thin Client

Environment Variables

CLASSPATH=<SYBHOME>/jConnect-4_2/classes;

Template

jdbc:sybase:Tds:<Host Name>:<Port Address>/<Database Name>

Parameters

Host Name

Host name of the Sybase database server. This may be specified as a host name (for example,
ws1.acme.com) or an IP address (for example, 129.3.4.50).

Port Address

Port number at the host name of the Sybase database server. This is a value between 0 and 64565,
inclusive.

Database Name

Sybase database name.

Example

jdbc:sybase:Tds:swhale:2545/SWHALE11

DB/2 Thin Client

Environment Variables

CLASSPATH=<DB2HOME>/java/db2java.zip;

PATH=<DB2HOME>/bin;%PATH%

Template

jdbc:db2:<Host Name>:<Port Address>/<Database Name>

Data Source Descriptions and Templates 97

Parameters

Host Name

Host name of the DB/2 database server. This may be specified as a host name (for example,
ws1.acme.com) or an IP address (for example, 129.3.4.50).

Port Address

Port number at the host name of the DB/2 database server. This is a value between 0 and 64565,
inclusive.

Database Name

DB/2 database name.

Example

jdbc:db2:mooneye:50000/db2inst

DB/2 Local Client

Environment Variables

CLASSPATH=<DB2HOME>/java/db2java.zip;

PATH=<DB2HOME>/bin;%PATH%

Template

jdbc:db2:<Database Name>

Parameters

Database Name

DB/2 database name.

Example

jdbc:db2:db2inst

Informix Thin Client

Environment Variables

CLASSPATH=<IFXHOME>/1.4/lib/ifxjdbc.jar;

Template

jdbc:informix-sqli://<Host Name>:<Port Address>/<Database
Name>:INFORMIXSERVER=<Server Name>

Parameters

Host Name

98 Managing Data Sources

Host name of the Informix database server. This may be specified as a host name (for example,
ws1.acme.com) or an IP address (for example, 129.3.4.50).

Port Address

Port number at the host name of the Informix database server. This is a value between 0 and
64565, inclusive.

Database Name

Informix database name.

Server Name

Informix server name.

Example

jdbc:informix-sqli://swhale:1521/nickldb:INFORMIXSERVER=server01;

Hyperion DB2 Client

Template

jdbc:hyperion:db2://<Host Name>:<Port Address>; databaseName=<Database
Name>

Parameters

Host Name

Host name of the DB2 database server. This may be specified as a host name (for example,
ws1.acme.com) or an IP address (for example, 129.3.4.50).

Port Address

Port number for the named DB2 database server. This is a value between 0 and 64565, inclusive.

Database Name

DB/2 database name.

Example

jdbc:hyperion:db2://bass:50002;databaseName=JH71DB

Hyperion Informix Client

Template

jdbc:hyperion:informix://<Host Name>:<Port Address>;
informixserver=<server name>;databaseName=<Database Name>; DBDate=<Date
Format>{MDY4/MDY4-MDY4.MDY2/MDY2-MDY2.YMD4/YMD4- YMD4.YMD2/YMD2-YMD2.}

Data Source Descriptions and Templates 99

Parameters

Host Name

Host name of the Informix database server. This may be specified as a host name (for example,
ws1.acme.com) or an IP address (for example, 129.3.4.50).

Port Address

Port number for the named Informix database server. This is a value between 0 and 64565,
inclusive.

Server Name

Informix server name.

Database Name

Informix database name.

DBDate

Informix environment variable used to format the output when DATE values are displayed. With
standard formats, you can specify the following attributes:

● The order of the month, day, and year in a date format.

● Whether the year is printed with two digits (Y2) or four digits (Y4).

● The separator between the month, day, and year.

The format string can include the following characters:

● - (hyphen), . (dot), / (slash)—Separator characters used in a date format.

The separator always goes at the end of the format string (for example, Y4MD-). If no
separator or an invalid character is specified, the slash (/) character is the default.

● 0—Indicates that no separator is displayed.

● D,M—Characters that represent the day and the month.

● Y2,Y4—Characters that represent the year and the number of digits in the year.

Valid DBDATE formats include:

● DMY2

● DMY4

● MDY4

● MDY2

● Y4MD

● Y4DM

● Y2MD

● Y2DM

100 Managing Data Sources

Note:

For the U.S. ASCII English locale, the default setting for DBDATE is Y4MD-, where Y4
represents a four-digit year, M represents the month, D represents the day, and hyphen (-)
is the separator. For example, 1998-10-08.

Example

jdbc:hyperion:informix://sandtiger:4111/jerryh_db;
INFORMIXSERVER=sandtiger920;databaseName=jerryh_db;DBDate=MDY4/

Hyperion Oracle Client

Template

jdbc:hyperion:oracle://<Host Name>:<Port Address>; SID=<Oracle SID>

Parameters

Host Name

Host name of the Oracle database server. This may be specified as a host name (for example,
ws1.acme.com) or an IP address (for example, 129.3.4.50).

Port Address

Port number for the named Oracle database server. This is a value between 0 and 64565, inclusive.

Oracle SID

Oracle logical network name for the connection.

Example

jdbc:hyperion:oracle://swhale:1521;SID=swhale817

Hyperion SQL Server Client

Template

jdbc:hyperion:sqlserver://<Host Name>:<Port Address>

Parameters

Host Name

Host name of the SQL Server database server. This may be specified as a host name, for example,
ws1.acme.com, or an IP address, for example, 129.3.4.50.

Port Address

Port number for the named SQL Server database server. This is a value between 0 and 64565,
inclusive.

Data Source Descriptions and Templates 101

Example

jdbc:hyperion:sqlserver://Glass:1433

Hyperion Sybase Client

Template

jdbc:hyperion:sybase://<Host Name>:<Port Address>

Parameters

Host Name

Host name of the Sybase database server. This may be specified as a host name, for example,
ws1.acme.com, or an IP address, for example, 129.3.4.50.

Port Address

Port number for the named Sybase database server. This is a value between 0 and 64565, inclusive.

Example

jdbc:hyperion:sybase://Perch:4110

XML
This data source represents a directory tree rooted in a file system. Files in the tree having the
file extension .xml are interpreted as delimiter separated files. These files represent objects to
this driver. Be sure that ddo11.zip and xml4j.jar are in your classpath.

You can connect to XML through the directory path name.

Directory Path Name

Template

<Fully Qualified Directory Path Name>

Parameters

Fully Qualified Directory Path Name

Fully qualified path name for a directory forms the root of a tree containing XML files. There is
no defined limit to the number of subdirectories beneath the root. XML files may appear
anywhere within the tree. The directories may contain other kinds of files. These will be ignored
by the driver.

Example

D:\\Projects\\Data Access\\Test\\XmlTest

102 Managing Data Sources

Delimiter Separated Values
This data source represents a directory tree rooted in a file system. Files in the tree having the
file extension .csv are interpreted as delimiter separated files. These files represent objects to
this driver.

You can connect to delimiter separated values through the directory path name.

Directory Path Name

Template

CSV:File:<Fully Qualified Directory Path Name>

Parameters

Fully Qualified Directory Path Name

Fully qualified path name for a directory forms the root of a tree containing CSV files. There is
no defined limit to the number of subdirectories beneath the root. CSV files may appear
anywhere within the tree. The directories may contain other kinds of files. These will be ignored
by the driver.

Example

CSV:File:d:\\Projects\\Data Access\\Test

OMG Corba Sample
This sample data source represents a CORBA server that resides on a remote host. The CORBA
server can be a wrapper for a legacy system on a remote host. To use this driver the northwind.jar
has to be in the classpath path. The java runtime environment should have support for the
JavaIDL.

You can connect to the OMG Cobra Sample through the sample data source.

Sample Data Source

Environment Variables

CLASSPATH=<AVALANCHE_HOME>/Documentation/SQR/Server/DDO/demo/CORBA
/CORBADemoSvr.jar;%CLASSPATH%

Template

HOST=<Host Name> PORT=<Port Number>

Parameters

Host Name

Data Source Descriptions and Templates 103

Host name of the Corba server. This may be specified as a host name, for example, ws1.acme.com,
or an IP address, for example, 129.3.4.50.

Port Number

Port number at the host name of the Corba server. This is a value between 0 and 64565, inclusive.

Example

HOST=JAGUAR;PORT=1080

Microsoft DCOM Sample
This sample data source represents a DCOM server that resides on a remote host. The DCOM
server can be a wrapper for a legacy system on a remote host. To use this driver the northwind.jar
has to be in the classpath path.

You can connect to the Microsoft DCOM Sample through the sample data source.

Sample Data Source

Template

HOST=<Host Name> PORT=<Port number>

Parameters

Host Name

Host name of the DCOM server. This may be specified as a host name (for example,
ws1.acme.com) or an IP address (for example, 129.3.4.50).

Port Address

Port number at the host name of the DCOM server. This is a value between 0 and 64565, inclusive.

Example

HOST=JAGUAR;PORT=1080

CSV Sample
This data source represents a directory tree rooted in a file system. Files in the tree with the file
extension .csv are interpreted as delimiter separated files. These files represent objects to this
driver.

You can connect to the CSV Sample through the directory path name.

104 Managing Data Sources

Directory Path Name

Template

CSV:File:<Fully Qualified Directory Path Name>

Parameters

Fully Qualified Directory Path Name

Fully qualified path name for a directory forms the root of a tree containing CSV files. There is
no defined limit to the number of subdirectories beneath the root. CSV files may appear
anywhere within the tree. The directories may contain other kinds of files. These will be ignored
by the driver.

Example

CSV:File:d:\\Projects\\Data Access\\Test

Data Source Descriptions and Templates 105

106 Managing Data Sources

6
Utilities Package and Common

Facilities

In This Chapter

About the Utilities Package ... 107

Common Components of the Utilities Package ... 107

Message Facility .. 110

Property Facility .. 112

About the Utilities Package
Production Reporting DDO includes a common utilities package (com.sqribe.comutil).
Components of this utilities package provide an infrastructure that supports properties,
messages, logs, and exceptions. This chapter provides information on the common components
of the utilities package, the message facility, and the property facility.

Common Components of the Utilities Package
The message and property facilities use a similar naming scheme, use Java property resource
bundles, and use common instrumentations.

Naming Scheme
The message and property facilities use naming schemes that ensure that class name collisions
do not occur. The naming schemes implement the following:

● Placing property resource bundles in a separate directory:

❍ Message facility: msgs directory

❍ Properties and capabilities facility: properties directory

● Including in the CLASSPATH the directory that contains msgs and properties directories.

● Change the separators (‘.’) of the fully qualified class name (<package name>.<class name>)
to underscores (_) to produce a file name. For the properties facility, append the type suffix.

● Complete the file name with the extension .properties.

About the Utilities Package 107

Table 16 Message and Property Facilities File Names

File Name Comment

com_sqribe_access_Access.properties Message facility file name: resides in the msgs directory

 Property facility file names: reside in the properties directory

com_sqribe_access_DataSource_Properties.properties Contains property attribute values

com_sqribe_access_DataSource_PropertyDescriptions. properties Contains property attribute metadata

com_sqribe_access_DataSource_Capabilities.properties Contains capability attribute values

com_sqribe_access_DataSource_CapabilityDescriptions.properties Contains capability attribute metadata

Property Resource Bundles
A property resource bundle is a special type of Java resource bundle that stores its values in a
property file. The message facility stores messages in the bundle. The property facility stores
properties and capabilities values and metadata in the bundle.

Property Resource Bundle Processing
Java encourages the use of packages, which contain autonomous components that form closely
knit set of relationships. Classes within packages could share the same messages and the same
properties and capabilities. In order to keep together messages or attributes and values that might
be shared by classes, component users can extend classes or implement interfaces prescribed in
a package.

The message and property facilities recognize class relationships and use them to locate
properties. Here is a message facility example:

● The Production Reporting DDO relational database driver is in the package
com.sqribe.jdbcacc.

● Within this package, com.sqribe.jdbcacc.JDBCacc is an empty interface, extending the
interface com.sqribe.access.Access.

● Other classes in the com.sqribe.jdbcacc package implement the JDBCacc interface.

● The com.sqribe.access.Access interface extends the com.sqribe.comutil.Util interface. Like
the JDBCacc interface, these are also empty interfaces.

Locating Property Resource Bundles
To retrieve a property resource bundle, the common utility facility needs two pieces of
information: a fully-qualified base name and a locale identifier

Production Reporting DDO uses a combination of introspection and Java
ResourceBundle.getBundle invocation to retrieve resource bundles. The Java ResourceBundle
class concatenates the two strings, separating them by an underscore to form a class name. It

108 Utilities Package and Common Facilities

then attempts to load a class with that name using the default system loader. If a class with the
name cannot be loaded, then the name is successively shortened until a resource bundle class is
successfully loaded and instantiated. The getBundle() method will look for a property resource
bundle whenever a class name fails to produce a resource bundle object. In particular, the class
name is appended with the string “.properties”. If such a file exists, a PropertyResourceBundle
object is created for that properties file.

Instrumentation
The Production Reporting DDO common utilities packages includes common mechanisms, or
instrumentations, that are available to applications.

Diagnostic Exits
The message facility provides a mechanism for invoking diagnostic classes.that may be associated
with a message. Requesting the message instantiates the diagnostic class. The common utilities
package provides an empty interface, Diagnostic, and instructions for constructor signatures.

Driver developers are encouraged to use the Debug class in conjunction with the toString method
for the classes comprising their driver package. The Debug class is a specialization of the
StringBuffer class, focused upon dumping class state information. Production Reporting DDO
makes extensive use of these classes for runtime diagnostic information.

Timing
There is a set of monitor properties that provide timing instrumentation. These are based on a
simple common utility stopwatch class called Monitor, which provides start and stop timing
methods. The Access package includes a DataSourceMonitor class that uses this mechanism for
medium level timing statistics. Data Source Monitor provides a convenience mechanism for
presenting the settings for various monitoring states.

The monitoring states are set from properties when this singleton class is instantiated by the
DriverSourceManager. The DataSourceMonitorAuxProc class registered for the monitor
properties updates property descriptions for these states.

It is possible to override monitoring states associated with a specific driver through the use of
virtual properties.

For more information on the individual monitors refer to the monitor property descriptions.

While the monitors are setup as a hierarchy, querying the monitors is flat. Here are the relevant
retrieval/loading monitoring points:

● retrievalExecute—Execute monitoring is active.

● retrievalCall—Call monitoring is active.

● retrievalGetData—GetData monitoring is active.

● metadataSchema—Schema names monitoring is active.

● metadataSchemaObjects—Schema objects monitoring is active.

Common Components of the Utilities Package 109

● metadataSchemaObjectColumns—Schema object columns monitoring is active.

● metadataSchemaProcedures—Schema procedures monitoring is active.

● metadataSchemaProceduresMeta—Schema procedures metadata monitoring is active.

● propertysheetLoad—Propertysheet load monitoring is active.

● drivermanagerLoad—Data source manager load monitoring is active.

Message Facility
The message facility uses java.text.MessageFormat to produce language-specific user
messages that contain number, currency, percentages, date, time, and string variables. As a result,
it provides full Java message formatting facilities. In addition, the message facility:

● Obtains message patterns from java.util.PropertyResourceBundle instances.

● Uses introspection to obtain inheritance and implementation graphs to locate a message
pattern, thus minimizing message duplication.

● Provides message-triggered diagnostic aids.

Message Text
The message facility provides full Java message formatting facilities, supporting three kinds of
message patterns.

● String—A string is a message text having no substitution elements. A string may be used as
a substitution element or may appear in a user interface as a resource. The Java message
format class is not used to process message strings. These are likely candidates for
localization.

● Text—A text message is a message pattern used for a user message or the string returned
from java.lang.Throwable getMessage(). The Java message format class is used to process
substitution elements appearing in the message pattern. These are likely candidates for
localization.

● LogText—A logtext message is a message pattern used for application log messages. These
message patterns contain detailed information that may be used for security, diagnostics,
or support. The Java message format class is used to process substitution elements appearing
in the message pattern. These are not likely candidates for localization.

Message Property Files
A property consists of a property name and a property value. Message property files, shown in
Table 17, are Java property resource bundles. The message facility interprets a property name
as a message identifier plus a message type extension. In the following table, the message identifier
is indicated by msg. The identifier can constitute a hierarchical name.

110 Utilities Package and Common Facilities

Table 17 Message Property Files

Name Value Description

Msg.string Localized message label String indicates a localized string constant.

Msg.text Localized message format text Text indicates a message requiring formatting, while string
indicates a localized string constant (that may be used as a
substitution in a formatted message).

Msg.logtext Localized log message format text Logtext indicates a log message requiring formatting.

Msg.diagnostic Fully qualified class name Diagnostic is used to instantiate a class to perform diagnostics
as a consequence of the given message.

Msg.exception Fully qualified class name Exception is used to create an Exception object to be thrown
by the message facility.

Message Property Search Example

➤ To search for the message property, SchemaException.text.

1 Look in com_sqribe_jdbcacc_JDBCConnection*.properties.

2 Look in com_sqribe_jdbcacc_JDBCacc*.properties.

The asterisk (‘*’) in the name indicates where the resource bundle search appends the localization
suffix. Since message property files only exist for the packages, only one message property file is
searched:

com_sqribe_jdbcacc_JDBCacc*.properties

Had the message property been “DescriptionNotDefined.text,” then the search would have
continued and these message property files would have been included in the search:

com_sqribe_access_Access*.properties.

com_sqribe_comutil_Util*.properties.

Localization Example
Let’s look at the effect of adding a French localization (without the country identifier) to the
message property search. For this localization, we have translated the user message properties,
for example, SchemaException.text, but not the log message properties, for example,
SchemaException.logtext. A search for SchemaException.text results in a search of the
message property file:

com_sqribe_jdbcacc_JDBCacc_fr.properties

On the other hand, a search for SchemaException.logtext results in a search of the following
message property files:

com_sqribe_jdbcacc_JDBCacc_fr.properties

com_sqribe_jdbcacc_JDBCacc.properties

Message Facility 111

The French message property file extends the default message property file, supplying localized
user message patterns.

Services
In addition to message processing, the message facility offers diagnostic support. The writing of
a message triggers support. The support tags are:

● Diagnostics—Instantiates a class to perform diagnostics related to the cause of the message.
This may be used in a production or debugging mode to capture information affiliated with
a message, where insufficient log information would be available.

The value of this property is the fully qualified class name of the diagnostic object. The class
must have a public constructor of the form: classname(String pMsgid, Object[] pSubs). The
constructor should perform the diagnostics and clean up its resources. The message facility
does not retain a reference to the instantiated diagnostic class.

You would use this feature to report supplemental diagnostic information as the result of a
message and continue the normal processing flow for the message. This kind of support is
useful when the condition causing the message is intermittent, environment specific, or
timing related. In such cases it may be impractical to run an application trace or change the
executable.

● Exception—Throws an exception for the given class name. This may be used to drive a
specific form of error recovery. The compiler will not be able to detect the throw class. The
class must have a constructor of the form: classname(String pMsgid, Object[] pSubs). You
can use this tag to override the application behavior associated with a message. For example,
to obtain a stack trace and terminate the application: nest a throw inside the exception
constructor, catching the resulting exception, and use the printStackTrace() method to
send the trace to System.err. Subsequently, the message facility will throw this exception.

Property Facility
The property facility is part of the common utility component. Properties and capabilities act
like java.util.Properties and java.util.PropertyResourceBundles with these notable additions.
The property facility

● Retains capability values as objects, rather than strings.

● Can secure property and capability values.

● Has associated properties and capabilities metadata, providing a mechanism for applications
to use and manipulate them without prior knowledge.

● Can be hierarchically structured properties and capabilities; for example, the logon property
is a structured property whose default attributes are user and password.

● Can compute properties and capabilities on the fly; for example, retrieve the value from the
data source or represent a virtual or class attribute.

● Can associate properties and capabilities with user dialogs.

112 Utilities Package and Common Facilities

Properties and capabilities are value and metadata components stored in property resource
bundles. Both the values and the metadata component attributes can be localized. The property
facility provides for get and set accessor methods. Drivers use these methods to reflect its
capabilities. However, applications should not use the capabilities set accessor methods.

Capabilities are read-only properties, including:

● Static attributes of the underlying data source; for example, the maximum length of a
command or the maximum number of columns in a select statement.

● Drive attributes; for example, a driver supports the procedure interface or a driver supports
concurrent operations within a connection. Locating Properties and Capabilities

DataSource Class
Scanning through the properties directory, you will notice that many of the properties and
capabilities refer to the DataSource class. The DataSourceAdapter provides default processing
for data sources. Each driver extends the DataSourceAdapter and may have additional or
overriding properties and capabilities. The DataSourceAdapter creates a property sheet for the
data source. To create the property sheet, it generates a copy of the basic properties and
capabilities and then augments the copy with the driver specific properties and capabilities. We
say the driver data source inherits the basic data source properties and capabilities.

A driver connection uses a copy of the properties and capabilities for the data source. This is
done in an analogous manner to data source property sheet creation. There is a Connection
interface, a ConnectionAdapter, and each driver implements a connection object that extends
the ConnectionAdapter. The driver connection objects may provide specific properties and
capabilities. This pattern is followed throughout Production Reporting DDO.

While the driver usage pattern is different than that used for the message facility, the property
resource bundle processing for the property facility is the same. Given a class, say
com.sqribe.jdbcacc.JDBCDataSource, in a driver, the properties facility will fabricate a property
resource bundle file name from this fully qualified class name. The fabricated name is given to
the resource bundle to locate a property resource bundle. If the property resource bundle was
located, then a property adapter is used to merge the contents of the bundle into the given
property container. The StringPropertyAdapter is used to merge properties. The
ObjectPropertyAdapter is used to merge capabilities. These adapters implement the
PropertyAdapter interface. The ObjectPropertyAdapter creates objects for attribute values, while
the StringPropertyAdapter uses strings for attribute values.

Given a class, say com.sqribe.jdbcacc.JDBCDataSource, in a driver, the properties facility will
fabricate a property resource bundle file name from this fully qualified class name. The fabricated
name is given to the resource bundle to locate a property resource bundle. If the property
resource bundle was located, then a property adapter is used to merge the contents of the bundle
into the given property container. The StringPropertyAdapter is used to merge properties. The
ObjectPropertyAdapter is used to merge capabilities. These adapters implement the
PropertyAdapter interface. The ObjectPropertyAdapter creates objects for attribute values, while
the StringPropertyAdapter uses strings for attribute values.

Property Facility 113

Property Descriptions
A PropertyDescription describes the attributes of a property. Property descriptions are common
to both property and capability metadata. A property may be required or optional. The property
has a name, which is its key. A property has a descriptive name. This is a short explanation of
the property that may be appropriate for a tooltip. A property takes a value or value set. A
property value may be secured; for example, a passphrase. This means that the value is stored
in memory and transferred in an encrypted form. These values are always passed as Strings.
Values are expressed as type specific Java objects, for example, java.lang.Boolean. A value may
have domain requirements in the form of a range or list. The value may be indexed, that is, it
may have multiple values, or be transferred as an array of objects. A value may have an associated
description. Hence, indexed values may have indexed descriptions.

The design goal for the property facility is to eliminate the need for a client to have prior
knowledge of a data source driver to establish driver properties. That is, the client may present
the property descriptions to the user to complete. The description content should contain
sufficient information to present and validate a property.

Table 18 Attribute Descriptions and Use

Name Description Required Explanation

Name The fully qualified name of the property Yes

Description The descriptive name of the property (for example, help,
tooltip)

No

ClassName The class name of the value type, for example, Integer,
Boolean

No Must agree with indices

AuxProc The class name of the class providing virtual fetch and post
processing of a property or capability. This class implements
the PropertyAuxProc interface.

No Must agree with indices

Required Whether a value is required for this property No Default: not required

Secured Whether the value for this property must be encrypted No Default: not secured

ValidationType The type of validation: none, range, or list No Default: no validation

ValidationValues The validation values: none:null; range: 0(min), 1(max); list:
discrete values. Note: values are specified as strings and are
converted by the validator to the proper type

No Must agree with validation type

Validator The class name of the validation implementation of the
interface, PropertyValidator. See Also PropertyValidator

No Default: no validator

Indices The property descriptions of the indexed values. When there
are indexed values, then classname is ignored; otherwise
classname must be specified

No Must be consistent with validation values

Dialog The class name of a custom property dialog to display (and,
optionally, validate) this property and its property subtree.

No Default: no custom dialog

The attribute keys are scoped names whose final component represents one of the names in the
table. The only required attribute is the key with the Name extension. Other attributes are context

114 Utilities Package and Common Facilities

sensitive. When the Indices extension is specified, indicating a structured property non-leaf
node, then these attributes should not be specified: ClassName, AuxProc, Secured,
ValidationType, ValidationValues, and Validator. For a leaf node, the ClassName is required.
This indicates the type of object the value should represent.

For example, ClassName with a value of java.lang.Integer, indicates that integer values (or a
numeric string) will be acceptable. This provides syntactic validation of the value. Adding a
ValidationType and ValidationValues, provides some simple semantic checks. A Validator may
be associated with the property to perform the checks specified in the ValidationType and
ValidationValues. Validators are provided for Java primitive types and selected objects.

Property Description Merge
Let’s follow the property description merge for the class,
com.sqribe.jdbcacc.JDBCDataSource.

1. Obtain the class name.

2. Descend the implementation graph for the class:

● Look in the class, com.sqribe.jdbcacc.JDBCacc

● Look in the class, com.sqribe.access.Access

● Look in the class, com.sqribe.comutil.Util

● Merge property descriptions while ascending this graph.

3. Descend the inheritance graph for the class:

● Look in the class, com.sqribe.access.DataSourceAdapter

● Look in the class, com.sqribe.access.DataSource

● Look in the class, com.sqribe.access.Access

● Look in the class, com.sqribe.comutil.Util

● Merge property descriptions while ascending this graph.

Each time a class is considered for a property merge, the class name is converted to a property
resource bundle name. In this example, com.sqribe.jdbcacc.JDBCacc would be converted to
properties.com_sqribe_jdbcacc_JDBCacc_PropertyDescriptions*. The asterisk (‘*’) in the name
indicates where the resource bundle search appends the localization suffix.

Property Sheets
So, far we have discussed properties, capabilities, and property sheets, but have not described
their usage. Let’s focus on the how to access property sheets. A PropertySheet encapsulates the
behaviors for properties, capabilities and their descriptions. A PropertySheet is a composite
object. The secure property and capability descriptions and values are accessible through a
property sheet.

Properties, capabilities, and their descriptions are stored in property resource bundles. These
files are relative to the directory containing the class whose properties or capabilities were

Property Facility 115

requested. Specifically, they are located in the directory “properties” which is in the directory
where the class (or jar) was loaded. The resource bundle path name is of the form:

properties/<package name with '.' replaced by '_'>_<class
name>_<type>.properties

For example, the property file for com.sqribe.access.DataSource would be:

properties/com_sqribe_access_DataSource_Properties.properties

Where:

com_sqribe_access is the package name,

DataSource is the class name, and Properties is the type.

The types are:

● Properties—Property values for the given class. Properties are configurable attributes of a
feature or facility.

● PropertyDescriptions—Property descriptions for the given class. Property descriptions
define the characteristics of a property. There is sufficient information in a description to
formulate and syntactically validate a property. That is, the description provides information
and classes for explaining the use of a property and methods to create and validate the
property value.

● Capabilities—Capability values for the given class. Capabilities are (read only) configured
attributes of a feature or facility.

● CapabilityDescriptions—Capability descriptions for the given class. Capability descriptions
define the characteristics of a capability. There is sufficient information in a description to
formulate and syntactically validate a capability. That is, the description provides
information and classes for explaining the use of a capability and methods to create and
validate the capability value.

Property Sheet Methods
Property sheet instance methods available to applications include:

● copy—Merge the given property sheet into the current property sheet.

● getProperty—Retrieve the named property value.

● setProperty—Change or add a property value. While getProperty takes the property name
as the key, this polymorphic method takes either the property description object or the
property name as the key. This allows property descriptions to be added on the fly.

● getPropertyNames—Retrieve an enumeration of the property names. This list is derived
from the property values, rather than the property descriptions, container.

● getPropertyDescription—Retrieve the named property description.

● setPropertyDescription—Add or replace a property description with the given property
description.

● getPropertyDescriptionNames—Retrieve an enumeration of the property description
names.

116 Utilities Package and Common Facilities

● getCapability—Retrieve the named capability. While retrieving a property value will return
a string or null, retrieving a capability will return an object or null.

● getCapabilityNames—Retrieve an enumeration of the capability names. This list is derived
from the capability values, rather than the capabilities descriptions, container.

● getCapabilityDescription—Retrieve the named capability description.

● getCapabilityDescriptionName— Retrieve an enumeration of the capability description
names.

Retrieving Properties and Capabilities
Let’s look at the flow for retrieving the properties and capabilities for a connection to an Oracle
database through the Production Reporting DDO relational database driver. The processing for
four resource bundle types, which are properties, property descriptions, capabilities, and
capability descriptions. The result is a new property sheet for the data source.

1. Process a class interface merge:

● An application uses the data source class name of the Production Reporting DDO
relational database driver, com.sqribe.jdbcacc.JDBCDataSource as the basis for locating
properties and capabilities.

● The property facility descends the interface graph for this class.

● Once at the leaf, the facility descends the inheritance graph for the leaf class.

● Once at the inheritance leaf, the facility obtains the property resource bundle for the
leaf class.

● The facility ascends the inheritance graph, merging attributes from the property
resource bundles.

● Once at the root of the inheritance graph for the leaf in, the facility ascends to the
interface graph, performing the inheritance graph merge for each interface.

2. Process an attribute merge:

● The facility moves to the inheritance graph.

● Make a complete descent and perform a bottom-up attribute merge. Note, an inherited
class may implement interfaces; hence, interface merge processing occurs while
ascending the inheritance graph.

● Merge the attributes contained in the com.sqribe.jdbcacc.JDBCDataSource.

3. At this point the driver may merge data source specific attributes.

In our example, the driver would be merging attributes specific to an Oracle data source.
This is not done for the Production Reporting DDO relational database driver.

4. The application may alter or augment the properties contained in the new property sheet.

The modifications are scoped to the given property sheet. In this example, the data source
is associated with a specific Oracle database instance. It may, for example, be reasonable to
use a single user name and password for all connections to this data source for the life of
this DataSource object. In this case these logon properties would be set once and used for

Property Facility 117

all connections; that is, all connections would be opened using the same user name and
password properties.

On the other hand, the application may need a different user name and password for each
connection. This is done by setting the user name and password properties prior to opening
a specific connection.

What makes both of these scenarios possible, is the copy of the property sheet made for the
connection instance. This way property sheet changes made through the connection object
do not affect the data source object and vice versa.

The Production Reporting DDO relational driver supports concurrent operations on a given
connection, when the underlying relational database supports this level of concurrence. The
property sheet for the connection is shared by all threads. Hence, changes to the connection
property sheet will be observed by all threads.

Localization Example
Let’s look at the effect of adding a French localization (without the country identifier) to the
property search. For this localization, we have translated the logon property descriptions. When
we instantiate the Production Reporting DDO relational database driver, these property
descriptions are merged into the property sheet.

com_sqribe_access_DataSource_PropertyDescriptions

com_sqribe_access_DataSource_PropertyDescriptions_fr

com_sqribe_jdbcacc_JDBCDataSource_PropertyDescriptions

com_sqribe_jdbcacc_JDBCDataSource_PropertyDescriptions_fr

The French property description files extend the default property description files, supplying in
this case localized description text. This algorithm is different from simple
java.util.ResourceBundle processing, where a localized resource bundle represents a complete
replacement of the less specific resource bundle. Here, the localized resource bundle extends the
less specific bundle.

Secure Properties and Capabilities
A distinguishing characteristic of the property facility is the encryption of secret values. One of
the attributes given in a property (or capability description) is whether the associated value
should be secured. If so, the value is retained in an encrypted form. When a get accessor method
requests the attribute, a decrypted copy is made. The decrypted copy should be a temporary
(local) variable, discarded when the containing block goes out of scope.

Property Auxiliary Services
The PropertyAuxProc interface is used to implement specialized runtime processing. These
methods are used to obtain driver attributes (either properties or capabilities) that are not part
of the property/capability resource bundles, per se; rather, these properties or capabilities are

118 Utilities Package and Common Facilities

supported through some other mechanism; for example, they may be attributes of the underlying
data source that cannot (or should not) be persistent in a property/capability resource bundle.

The get and set methods of this interface are independent. The use of the get method to obtain
a virtual property does not imply the use of the set method to post process the property. Likewise,
employing the set method to update class attributes does not imply that the get method is used
to create those attributes.

While the get method, typically, acquires the information, it should arrange for caching the value
in the hash table. This implies that the get method should have some first time logic. Further,
properties (and capabilities) utilizing this interface are not saved, that is, made persistent. This
implies that the get method could test for the presence of the property in the hash table as the
first time logic, suffering the cost of a hash table lookup for each test.

Property Validators
A PropertyValidator provides an interface to property validation classes. In addition, the
AbstractPropertyValidator class implements major portions of the interface, reducing the effort
to two methods: createValue and compare. Program ex24.sqr shows the BigDecimalValidator to
provide a feel for validators.

Program ex24.sqr
public class BigDecimalValidator extends AbstractPropertyValidator {
 /**
 * Create the value from a string
 * @param pValue The value to be converted
 * @return The converted value
 * @exception PropertyException
 * Generic exception indicating that the value
 * could not be converted
 */
 public Object createValue(String pValue) throws PropertyException {
 try {
 return new BigDecimal(pValue);
 } catch (Throwable e) {
 throw new PropertyException(e.getMessage());
 }
 }

 /**
 * Compare to values
 * @param pValue1 First comparand
 * @param pValue2 Second comparand
 * @return First<Second==-1;
 * First==Second==0;
 * First>Second==1
 * @exception PropertyException
 * Generic exception indicating that the value
 * was not the correct data type
 */
 public int compare(Object pValue1, Object pValue2) throws
 PropertyException {

Property Facility 119

 return (((BigDecimal)pValue1).compareTo((BigDecimal)pValue2));
 }
}

The common utilities package provides implementations for Java primitives and Java SQL types.
These validators extend AbstractPropertyValidator:

● BigDecimalValidator

● BooleanValidator

● ByteValidator

● CharacterValidator

● DateValidator

● DoubleValidator

● FloatValidator

● IntegerValidator

● LongValidator

● ShortValidator

● StringValidator

120 Utilities Package and Common Facilities

P a r t I I

Using Production Reporting DDO to
Access Data

In Using Production Reporting DDO to Access Data:

● Using Production Reporting DDO to Access SAP R/3 Data
● Using Production Reporting DDO to Access an SAP BW Data Source
● Using Production Reporting DDO to Access Essbase Cubes
● Using Production Reporting DDO to Access MSOLAP Cubes

Using Production Reporting DDO to Access Data 121

122 Using Production Reporting DDO to Access Data

7
Using Production Reporting
DDO to Access SAP R/3 Data

In This Chapter

Data Access Requirements ... 123

Using the Registry Editor to Make an SAP R/3 Connection... 123

Using the Query Editor to See the SAP Tree Structure... 124

Using SQR Production Reporting Studio to Build a Report with a BAPI.. 125

Understanding the Production Reporting Code for SAP R/3... 126

Data Access Requirements
Before accessing SAP R/3 data, ensure that you have:

● Connectivity values

● BAPI parameters

For a typical BAPI, you need:

❍ Host Name (IP Address)

❍ System Number

❍ Client Name

❍ Language

❍ User Name

❍ Password

In addition, BAPIs usually have their own individual parameters. Contact your SAP R/
3 Administrator for parameter information and values.

● Software

❍ Production Reporting DDO

❍ Oracle's Hyperion® SQR® Production Reporting Studio

Using the Registry Editor to Make an SAP R/3 Connection
The Production Reporting DDO Registry Editor allows you to make your SAP R/3 connection
work like an ODBC connection.

Data Access Requirements 123

➤ To use the Production Reporting DDO Registry Editor:

1 Select Start > Programs > Oracle EPM System > Reporting and Analysis > Production Reporting for
DDO > Registry Editor.

2 Select File > Open or click the Open button on the toolbar.

3 Highlight Registry and click Open.

4 Click Add.

5 Highlight sapr3acc and click OK.

6 Do the following in the Setup Data Source dialog box that appears.

a. Enter a name and description for the data source.

b. Click Build, enter the following parameters, and click OK.

● Host—IP address where SAP R/3 system data resides

● System #—Get from SAP R/3 Administrator

● Client—Get from SAP R/3 Administrator

● Language—Get from SAP R/3 Administrator

7 Click Test.

8 Enter your username and password in the Logon dialog box.

If you do not know your username and password, contact your SAP Administrator.

Using the Query Editor to See the SAP Tree Structure
The Production Reporting DDO Query Editor allows you to see the SAP tree structure as well
as the parameters and return variables SAP requires/passes.

➤ To use the Production Reporting DDO Query Editor:

1 Select Start > Programs > Oracle EPM System > Reporting and Analysis > Production Reporting for
DDO > Query Editor.

2 Select File > Open or click the Open button on the toolbar.

3 Highlight the data source under the Registry folder and click Open.

4 Enter your username and password.

You may have to double click the Meta Data folder, but it should automatically display the SAP
tree structure

By clicking the desired folders, you can see how BAPIs and their variables relate.

124 Using Production Reporting DDO to Access SAP R/3 Data

Using SQR Production Reporting Studio to Build a Report with a
BAPI

➤ To create a report using a BAPI:

1 Select Start > Programs > Oracle EPM System > Reporting and Analysis > Production Reporting Studio.

2 Select a report type to access the Query Builder..

3 Click New on the Connection tab and enter the data source name.

4 Click DDO.

5 In the Registry folder, find your Production Reporting DDO source.

If it is not there, you will have to re-enter some parameters based on your creation of the Registry
Editor.

6 Enter your username and password in the DDO Logon dialog box

You may need to get this from your SAP administrator.

7 Build a query on the remaining tabs in the Query Builder.

As you open folders in the Query Builder, you will be able to see inside BAPIs. BAPIs usually
require parameters, RETURN variables and TABLES of variables.

The ‘ReadJobLog’ BAPI, shown in the following figure, includes:

● Parameters: Jobname, Jobcount, ExternalUserName

● Parameters: TABLE: JobLog

● Return Values: TABLE: Return

Using SQR Production Reporting Studio to Build a Report with a BAPI 125

➤ To select the ‘ReadJobLog’ BAPI:

1 Highlight ReadJobLog, click Add, and click Next.

You can only add one BAPI at a time.

2 Advance through the remaining Query Builder pages until you get to the Layout window.

3 Process and save the report.

Note:

For more information on using BAPIs to create reports in SQR Production Reporting Studio,
see “Creating SAP R/3 Reports” in the Hyperion SQR Production Reporting Studio User's
Guide.

Understanding the Production Reporting Code for SAP R/3
Following is the code built with SQR Production Reporting Studio in the earlier example.

!--
! Generated on Sun Mar 03 23:52:30 2002 by SQR Production Reporting Studio 9.0
!
! Filename: C:\Documents and Settings\nmoscaritolo.NICOLAS2K\Desktop\Untitled.sqr
! Format : Tabular
! Username: Oracle
!--
Begin-Setup
 Declare-Layout Default
 Orientation = Portrait
 Paper-Size = (Letter)

126 Using Production Reporting DDO to Access SAP R/3 Data

 Top-Margin = 0.500
 Bottom-Margin = 0.500
 Left-Margin = 0.500
 Right-Margin = 0.500
 Line-Height = 1
 Char-Width = 1
 End-Declare
! procedure parameters
!***** These are ALL of the parameters and return variables within the selected BAPI.
Declare-Variable
 date $job_protocol_entertime !type=date(Time),width=8,size=6,precision=0
 date $job_protocol_enterdate !type=date(Date),width=10,size=8,precision=0
 text $job_protocol_msgid !type=char(Char),width=20,size=20,precision=0
 decimal #job_protocol_msgno !type=decimal(Number),width=3,size=3,precision=0
 text $job_protocol_text !type=char(Char),width=200,size=200,precision=0
 text $job_protocol_rabaxkey !type=char(Char),width=64,size=64,precision=0
 decimal #job_protocol_rabaxkeyln !type=decimal
(Integer),width=10,size=4,precision=0
 text $job_protocol_msgv1 !type=char(Char),width=50,size=50,precision=0
 text $job_protocol_msgv2 !type=char(Char),width=50,size=50,precision=0
 text $job_protocol_msgv3 !type=char(Char),width=50,size=50,precision=0
 text $job_protocol_msgv4 !type=char(Char),width=50,size=50,precision=0
 text $job_protocol_program !type=char(Char),width=40,size=40,precision=0
 text $job_protocol_pfkey !type=char(Char),width=20,size=20,precision=0
 text $job_protocol_dynpro !type=char(Char),width=4,size=4,precision=0
 text $return_type !type=char(Char),width=1,size=1,precision=0
 text $return_id !type=char(Char),width=20,size=20,precision=0
 decimal #return_number !type=decimal(Number),width=3,size=3,precision=0
 text $return_message !type=char(Char),width=220,size=220,precision=0
 text $return_log_no !type=char(Char),width=20,size=20,precision=0
 decimal #return_log_msg_no !type=decimal(Number),width=6,size=6,precision=0
 text $return_message_v1 !type=char(Char),width=50,size=50,precision=0
 text $return_message_v2 !type=char(Char),width=50,size=50,precision=0
 text $return_message_v3 !type=char(Char),width=50,size=50,precision=0
 text $return_message_v4 !type=char(Char),width=50,size=50,precision=0
 text $return_parameter !type=char(Char),width=32,size=32,precision=0
 decimal #return_row !type=decimal(Integer),width=10,size=4,precision=0
 text $return_field !type=char(Char),width=30,size=30,precision=0
 text $return_system !type=char(Char),width=10,size=10,precision=0
 End-Declare
End-Setup

Begin-Program
 Position (1,1)
 Do Master_Query
End-Program

Begin-Procedure Master_Query
! ***** This is not needed but it demonstrates how you could ALTER your DDO connection
Alter-connection
 Name=default

Parameters=logon.trace=0;logon.client=850;logon.check=1;logon.type=3;logon.sysnr=00;logo
n.language=EN;logon.ashost=/H/10.215.22.227/H/204.79.199.244/H/172.20.11.6;
! ***** These three parameters are REQUIRED from you and your SAP Administrator
! list and user assigned input parameters
 let $jobname = '123ewqsa' !type=char(Char),width=32,size=32,precision=0

Understanding the Production Reporting Code for SAP R/3 127

 let $jobcount = '123123' !type=char(Char),width=8,size=8,precision=0
 let $external_user_name = 'Oracle' !type=char(Char),width=16,size=16,precision=0
! ***** This new ‘%’ variables collect all of the returned data into a LIST variable for
later use
let %job_protocol = list($job_protocol_entertime, $job_protocol_enterdate,
$job_protocol_msgid,
 #job_protocol_msgno, $job_protocol_text,
$job_protocol_rabaxkey,
 #job_protocol_rabaxkeyln, $job_protocol_msgv1,
$job_protocol_msgv2,
 $job_protocol_msgv3, $job_protocol_msgv4,
$job_protocol_program,
 $job_protocol_pfkey, $job_protocol_dynpro)
 let %return = list($return_type, $return_id, #return_number, $return_message,
$return_log_no,
 #return_log_msg_no, $return_message_v1, $return_message_v2,
 $return_message_v3, $return_message_v4, $return_parameter,
#return_row,
 $return_field, $return_system)

! ***** BEGIN-EXECUTE is required for DDO
 Begin-Execute
! ***** SCHEMA can be retrieved from your SAP Administrator. SAP calls it Business
Object Type
 SCHEMA='XBPJOB' ! Basis Components(BC);Computing Center Management System(BC-
CCM);Application Programming Interfaces(BC-CCM-API);Complementary Software Interfaces
(BC-CCM-API-CSI);BackgroundJob(XBPJOB)
! ***** PROCEDURE is the BAPI name
 PROCEDURE='READJOBLOG' ! ReadJoblog[READJOBLOG]
! ***** PARAMETERS are found in the parameter section of the BAPI
 PARAMETERS=($jobname IN, $jobcount IN, $external_user_name IN, NULL)
! ***** STATUS return the SQR return LIST variables which contains valuable debugging
values and messages
 STATUS=%return
 Print-Direct printer=html '%%ResetColor'
 Print-Direct printer=html '%%ResetBorder'
! ***** BEGIN-SELECT is used to select the SAP TABLE structure where the FROM PARAMETER
command uses the TABLE !NAME within the BAPI
Begin-Select
 Alter-Printer Font=901 Point-Size=10 ! [SQR.INI] 901=MS Shell Dlg,proportional
ENTERTIME &Master_Query_ENTERTIME=date (12,1) Edit MM/DD/YYYY !type=date
(Time),width=8,size=6,precision=0
ENTERDATE &Master_Query_ENTERDATE=date (12,129) Edit MM/DD/YYYY !type=date
(Date),width=10,size=8,precision=0
 Print-Direct printer=html '%%ResetColor'
 Next-Listing Need=12
From Parameter = 'JOB_PROTOCOL'
End-Select
 End-Execute
 Next-Listing
 Print-Direct printer=html '%%ResetColor'
 Print-Direct printer=html '%%ResetBorder'
End-Procedure
Begin-Heading 48
 Print-Direct printer=html '%%ResetColor'
 Print-Direct printer=html '%%ResetBorder'
 Alter-Printer Font=901 Point-Size=10 ! [SQR.INI] 901=MS Shell Dlg,proportional

128 Using Production Reporting DDO to Access SAP R/3 Data

 Print $current-date (12,1) edit 'MM/DD/YYYY'
 Page-Number (12,517)
 Print 'Entertime' (42,1,9) Underline Bold
 Print 'Enterdate' (42,129,9) Underline Bold
 Alter-Printer Font=901 Point-Size=10
End-Heading

Understanding the Production Reporting Code for SAP R/3 129

130 Using Production Reporting DDO to Access SAP R/3 Data

8
Using Production Reporting

DDO to Access an SAP BW Data
Source

In This Chapter

Accessing the SAP BW OLAP Server .. 131

Supported Platforms... 131

Copying Files to the /lib Directory.. 132

Adding the SAP BW Data Source to the Registry.properties File .. 132

The Hierarchical Structure of Objects for an SAP BW Data Source... 133

SAP BW and the Production Reporting Language ... 135

Accessing SAP BW Data from SQR Production Reporting Studio ... 148

Accessing the SAP BW OLAP Server
The DDO SAP BW driver is built using the SAP Java Connector JAR file and shared libraries,
and the SAP RFC shared libraries. These components, necessary to access the SAP BW OLAP
server, are not distributed with Production Reporting DDO. To obtain copies of these files, go
to the SAP official connector’s site at https://websmp104.sap-ag.de/connectors.

Supported Platforms
The DDO SAP BW driver is supported on the following platforms:

Table 19 Supported Platforms

Platform Operating System

Windows Windows 2000, Windows 2000 Server, Windows XP, Windows 2003 Server

Solaris 5.8 and 5.9

HP-UX B.11.11

HP/Itanium B.11.23

IBM-AIX 5.1 and 5.2

Linux AS 3.0 and 4.0

Accessing the SAP BW OLAP Server 131

Copying Files to the /lib Directory
Before connecting to SAP BW, you need to copy some files to the /lib directory of your
installation.

● For Windows platforms:

After you install Production Reporting DDO, copy the following files to the %
HYPERION_BIPLUS_HOME%/lib directory:

❍ sapjco.jar

❍ sapjocrfc.dll

❍ librfc32.dll (version 6.20.6 or greater of the librfc32.dll is required)

● For UNIX platforms:

After you install Production Reporting DDO, copy the following files to the
$HYPERION_BIPLUS_HOME/lib directory:

❍ sapjco.jar

❍ libsapjcorfc.<so, sl>

❍ librfccm.<so, sl, o> (version 6.20.6 or greater of the librfccm shared library is
required)

For UNIX platforms, you must update the following environment variable to include
the /lib directory:

LD_LIBRARY_PATH/SHLIB_PATH/LIBPATH

Adding the SAP BW Data Source to the Registry.properties File
To use the DDO SAP BW driver, you must first add a SAP BW data source to the
Registry.properties file in the DDO Registry Editor.

Note:

The DDO Registry Editor provides a graphical interface for managing data sources. For more
information, see Chapter 5, “Managing Data Sources.”

➤ To add the SAP BW data source to the Registry.properties file:

1 Start the Registry Editor by selecting Start > Programs > Oracle EPM System > Reporting and Analysis
> Production Reporting for DDO > Registry Editor to display the editor’s main window; then, select File >
Open or click the Open button on the toolbar.

2 Select Registry in the Open Registry window and click Open.

3 Click Add in the Registry Editor main window.

4 Click the bwacc (SAP BW OLAP) driver name in the Create New Data Source window and click OK.

5 Enter the SAP BW data source information in the Setup Data Source dialog box and click Build.

132 Using Production Reporting DDO to Access an SAP BW Data Source

6 Enter the information in the Build Connection String dialog box and click OK.

7 The connection string appears in the Setup Data Source dialog box. Click Test to test the connection.

8 Enter a valid username and password in the Logon dialog box and click OK.

9 If the connection succeeded, a Test Data Source dialog box appears. Click OK to view the SAPBW data source
in the Registry Editor

10 Select File > Save or click the Save button to save the data source.

The Hierarchical Structure of Objects for an SAP BW Data Source
Figure 8 shows the hierarchical structure of the objects for an SAP BW Data Source.

Figure 8 Hierarchical Structure of Objects for an SAP BW Data Source

Information Providers

-----InfoCubes

-----QueryCubes

-----ODS Objects

-----InfoSets

---------Characteristics

-----------------CharacteristicLevels

--------------------------CharacteristicLevelMembers

-----------------------------------CharacteristicChildMembers

-----------------CharacteristicMembers

--------------------------CharacteristicChildMembers

-----------------Properties (Optional)

--------------------------Property

-------------------------------------PropertyMembers

--------------------------MandatoryProperty

---------NavigationalAttribute

-----------------NavigationalAttributeLevels

--------------------------NavigationalAttributeLevelMembers

-----------------------------------NavigationalAttributeMember

-----------------NavigationalAttributeMembers

--------------------------NavigationalAttributeMember

-----------------Hierarchy

The Hierarchical Structure of Objects for an SAP BW Data Source 133

--------------------------HierarchyLevels

--------------------------------------HierarchyLevelMembers

--HierarchyChildMembers

--------------------------HierarchyMembers

--------------------------------------HierarchyChildMembers

--------------------------Properties (Optional)

--------------------------------------Mandatory Properties

---------Key Figures

-----------------Key Figure Attributes

---------SAP Variables (QueryCubes only)

-----------------SAP Variable—Single

-----------------SAP Variable—Interval

-----------------SAP Variable—Single Mandatory

-----------------SAP Variable—Interval Mandatory

-----------------SAP Variable—Single MandatoryNol

-----------------SAP Variable—Interval MandatoryNol

--------------------------SAPVariableMembers

Figure 9 shows the hierarchies for a single characteristic.

Figure 9 Hierarchies for a Single Characteristic

134 Using Production Reporting DDO to Access an SAP BW Data Source

SAP BW and the Production Reporting Language
The Production Reporting language includes the following functionality to enable SAP BW
processing.

● Accessing Dimension Properties

● Specifying Dimension Members

● Specifying the Order in Which to Return Dimension Members

● Restricting the Returned Result Set

● Limiting the Set of Values Used for a Dimension

● Using SAP BW Variables

● Returning a Set of Descendants

● Finding a Dimension’s Ancestor

● Defining Calculated Key Figures, Restricted Key Figures, and Calculated Members

Note:

The SET-GENERATIONS and SET-LEVELS arguments in the DECLARE-CONNECTION and
ALTER-CONNECTION commands are not supported when using the DDO SAP BW driver.
Production Reporting ignores these arguments when it is connected to a SAP BW data source.

Note:

The Production Reporting language syntax in this section refers to characteristics as dimensions
and key figures as measures.

Accessing Dimension Properties
Use the following syntax in BEGIN-SELECT to select a dimensions’ property values.

Note:

See BEGIN-SELECT in Volume 2 of the Production Reporting Developer's Guide.

Syntax

{[$Dimension.Propertyname] $synonym = (char|number|date)}

Arguments

Dimension.Propertyname

The dimension’s’ property value. You cannot request a dimension’s property value without first
requesting the dimension.

SAP BW and the Production Reporting Language 135

Example

This example illustrates what is returned from the select of a dimension property. The screen
below shows a small set of the available properties for the 0APO_LOCNO dimension.

The following returns the 0APO_LOCNO, the 0APO_LOCNO address key, and the selected
measures.

begin-select
 0APO_LOCNO
 0APO_LOCNO.20ADDR_NUMBER
 Measures.D5XK1R2CAGKTXDWNCTIDVK8RI
 from SAP BW
end-select

The result set from this request is:

0APO-LOCNO 20ADDR_NUMBER Measures.D5XK1R2CAGKTXDWNCTIDVK8RI

All APO Locations 210.720

New York 10294 210.720

Specifying Dimension Members
Use the WHERE clause to specify the dimension members to use in the query.

Syntax

WHERE VAR [VAR]=(txt_var|_col|_lit)

Arguments

VAR

The string variable, column, or literal that represents a legal dimension or measure.

136 Using Production Reporting DDO to Access an SAP BW Data Source

Description

● WHERE must immediately follow FROM.

● You can only have one WHERE in each select statement.

● If VAR names contain a space, surround the name with double quotes.

● The contents of WHERE must specify a valid dimension and one of its members.

● WHERE can specify a dimension previously declared by SET-MEMBERS to further restrict the
selection.

● Only expressions that resolve to a single column and row intersect are allowed.

● WHERE implicitly supports logical AND operations involving members across different
dimensions. To support logical AND operations involving members within a single
dimension, declare SET-MEMBERS.

● You can use standard Production Reporting variable references ($, #, &) where appropriate.

● Standard Production Reporting variable replacement ([$xxx]) is supported.

Example

The following returns the selected 0APO_LOCNO and measures for the 38th week of 2001.

begin-select
 0APO_LOCNO
 Measures.D5XK1R2CAGKTXDWNCTIDVK8RI
 From SAP BW
 WHERE 0CALWEEK.200138
end-select

The result set from the above request without the WHERE clause is:

0APO_LOCNO Measures.D5XK1R2CAGKTXDWNCTIDVK8RI

All APO Locations 210.720

New York 210.720

The result set from the above request with the WHERE clause is:

0APO_LOCNO Measures.D5XK1R2CAGKTXDWNCTIDVK8RI

All APO Locations 17.861

New York 17.861

Specifying the Order in Which to Return Dimension Members
Use the ORDER BY clause to specify the order the selected Measure’s dimension members are
returned for the requested dimension members. You can sort by a dimension property or by a
selected measure.

SAP BW and the Production Reporting Language 137

Syntax

ORDER BY [(DIM, EXPRESSION)] {SO} [(DIM, EXPRESSION) {SO}]…

Arguments

DIM

A string variable, column, or literal that represents a legal dimension or hierarchy.

EXPRESSION is of the form:

(MEASURE[.VALUE])

or

(Dimension[.Dimension Property])

SO

A literal value of one of the following:

● ASC—Sort in ascending order and preserve the hierarchy.

● BASC—Sort in ascending order and break the hierarchy.

● DESC—Sort in descending order and preserve the hierarchy.

● BDESC—Sort in descending order and break the hierarchy.

SO cannot be a bind variable.

Description

● ORDER BY must follow FROM.

● You can only have one ORDER BY within each select statement.

● ORDER BY must include a value indicating the sort order and mode.

● You can sort data in ascending or descending order, and either break or preserve the
hierarchy.

Example

The following sorts the selected measure by a specific dimension property (0APO_RTYPE,
0APO_RTYPE.20APO_RTYPE) in ascending order and breaking the hierarchy (BASC).

begin-select
 0APO_RTYPE
 Measures.D5XK1R2CAGKTXDWNCTIDVK8RI
 From SAP BW
 ORDER BY (0APO_RTYPE, 0APO_RTYPE.20APO_RTYPE) BASC
end-select

Example

The following sorts the selected measure by two dimension properties (ZN_STATE,
ZN_STATE.1ZN_STATE) and (ZN_SKU, ZN_SKU.1ZN_SKU) in ascending order and breaking
the hierarchy (BASC).

138 Using Production Reporting DDO to Access an SAP BW Data Source

begin-select
 ZN_STATE
 ZN_SKU
 Measures.ZN_ADDTNS
 Measures.ZN_CLINV
 Measures.ZN_COGS
 Measures.ZN_MISC
 Measures.ZN_MRKTNG
 Measures.ZN_OPINV
 Measures.ZN_PROLL
 Measures.ZN_SALES
 From SAP BW
 ORDER BY (ZN_STATE, ZN_STATE .1ZN_STATE) BASC
 (ZN_SKU, ZN_SKU.1ZN_SKU) BASC
end-select

Example

The following sorts the selected measure by a specific dimension property (ZN_STATE,
Measures.ZN_ADDTNS) in ascending order without breaking the hierarchy (ASC).

begin-select
 ZN_STATE
 Measures.ZN_ADDTNS
 Measures.ZN_CLINV
 Measures.ZN_COGS
 Measures.ZN_MISC
 Measures.ZN_MRKTNG
 Measures.ZN_OPINV
 Measures.ZN_PROLL
 Measures.ZN_SALES
 From SAP BW
 ORDER BY (ZN_STATE, Measures.ZN_ADDTNS) ASC
end-select

Restricting the Returned Result Set
Use the FILTER clause to restrict the returned result set.

Syntax

FILTER (DIM, {Boolean Expression} [{Relation} {Boolean Expression}]...)

Arguments

DIM

A string variable, column, or literal that represents a legal dimension.

Boolean Expression

The Boolean Expression is of the form:

(MEASURE[.VALUE] {Operator} VALUE [SLICED BY DIM[.VALUE] [DIM[.VALUE]...])

or

SAP BW and the Production Reporting Language 139

(Dimension[.Dimension Property] {Operator} “VALUE” [SLICED BY DIM[.VALUE]
[DIM[.VALUE]...])

Where operator is one of the following:

< > <= >= = !=

BottomCount

BottomSum

BottomPercent

TopCount

TopSum

TopPercent

Relation

The keyword AND or OR.

Description

● FILTER can have any number of boolean expressions.

● You can have multiple FILTER clauses; however, you can only have one FILTER clause for
a single Dimension.

● If dimension or variable names contain a space, surround the name with double quotes.

● You can use standard Production Reporting variable references ($, #, &) where appropriate.

● Standard Production Reporting variable replacement ([$xxx]) is supported.

Example

The following returns the result set where the returned value is greater than 60 and less than
200.

declare-connection
 set-members('APO_RTYPE','0APO_RTYPE'.'LEVEL01')
 end-connection
 begin-select
 0APO_RTYPE
 Measures.D5XK1R2CAGKTXDWNCTIDVK8RI
 From SAP BW
 FILTER (0APO_RTYPE,
 (Measures.D5XK1R2CAGKTXDWNCTIDVK8RI > 60.00) AND
 (Measures.D5XK1R2CAGKTXDWNCTIDVK8RI < 200.00))
 end-select
end-declare

The result set from the above request without the FILTER clause is:

0APO_RTYPE Measures.D5XK1R2CAGKTXDWNCTIDVK8RI

4 57.759

140 Using Production Reporting DDO to Access an SAP BW Data Source

0APO_RTYPE Measures.D5XK1R2CAGKTXDWNCTIDVK8RI

5 152.961

8

9

Not Assigned

The result set from the above request with the FILTER clause is:

0APO_RTYPE Measures.D5XK1R2CAGKTXDWNCTIDVK8RI

5 152.961

All Resource types 210.720

Limiting the Set of Values Used for a Dimension
Use the EXCEPT clause to provide additional filtering capability by limiting the set of values used
for a selected dimension.

Syntax

EXCEPT (DIM [,DIM]...)

Arguments

DIM

A string variable, column, or literal that represents a legal dimension.

Description

● You can have multiple EXCEPT clauses.

● If dimension names contain a space, surround the name with double quotes.

● You can use standard Production Reporting variable references($, #, &) where appropriate.

● Standard Production Reporting variable replacement ([$xxx]) is supported.

Example

The following removes Resource Type 5 from the types returned by SET-MEMBERS.

declare-connection
 set-members=('0APO_RTYPE','0APO_RTYPE.LEVEL01')
 end-connection
 begin-select
 0APO_RTYPE
 Measures.D5XK1R2CAGKTXDWNCTIDVK8R
 From SAP BW
 Except (0APO_RTYPE.5)

SAP BW and the Production Reporting Language 141

 end-select
end-declare

The result set from the above request without the EXCEPT clause is:

0APO_RTYPE Measures.D5XK1R2CAGKTXDWNCTIDVK8RI

4 57.759

5 152.961

8

9

Not Assigned

The result set from the above request with the EXCEPT clause is:

0APO_RTYPE Measures.D5XK1R2CAGKTXDWNCTIDVK8RI

4 57.759

8

9

Not Assigned

Using SAP BW Variables
Use the SAPVARIABLES clause to create an SAP BW QueryCube.

Syntax

SAPVARIABLES

(Variable_Name {Inclusion/Exclusion Expression}

Single_Variable_Value)...|

(Variable_Name {Inclusion/Exclusion Expression}

Low_Variable_Value...)

(Variable_Name {Inclusion/Exclusion Expression}

High_Variable_Value...)

Arguments

Variable_Name

A string variable, column, or literal that represents a legal SAP variable name.

Inclusion/Exclusion Expression

142 Using Production Reporting DDO to Access an SAP BW Data Source

An expression in the form of INCLUDING or EXCLUDING.

Single_Variable Value, Low_Variable_Value, High_Variable_Value

A string variable, column, or literal that represents a legal SAP variable value.

Description

● Multiple SAPVARIABLES clauses are permitted but are not required.

● You can only use SAPVARIABLES clauses with SAP BW QueryCubes.

Example

The following processes the selected QueryCube including Resource Type 5 and Resource Types
8 -15. It excludes Resource Type 10.

declare-connection
 set-members=('0APO_RTYPE','0APO_RTYPE.LEVEL01')
 end-connection
begin-select
 0APO_RTYPE
 Measures.D5XK1R2CAGKTXDWNCTIDVK8R
 From SAP BW
SAPVARIABLES
(0APORTYPE INCLUDING 0APO_RTYPE.5)
(0APORTYPE INCLUDING 0APO_RTYPE.8 0APO_RTYPE.15)
(0APORTYPE EXCLUDING 0APO_RTYPE.10)
end-select

Returning a Set of Descendants
Use the DESCENDANTS clause to return a set of descendants for a dimension using a level as a
reference point. If no level or descendant flag is provided, the dimension and all of its descendants
are returned.

Syntax

DESCENDANTS (DIM DIM_LEVEL DESCENDANT_FLAG)

Arguments

DIM

A string variable, column, or literal that represents a legal SAP dimension name.

DIM_LEVEL

A string variable, column, or literal that represents a legal SAP dimension level name.

DESCENDANT_FLAG

One of the following values:

● Self

● After

SAP BW and the Production Reporting Language 143

● Before

● Before_and_After

● Self_and_After

● Self_and_Before

● Self_Before_After

● Levels

Description

● You can have multiple DESCENDANTS clauses, but only a single parameter for each
dimension.

● The DESCENDANTS and ANCESTORS clauses are mutually exclusive.

Example

The following returns only the members “AFTER” the “State” level (All Cities).

begin-select
 0APO_LOCATION
 Measures.D5XK1R2CAGKTXDWNCTIDVK8R
 From SAP BW
DESCENDANTS("0APO_LOCATION" "0APO_LOCATION.STATE" AFTER)
end-select

Example

The following returns the “State” members (All States) and all members “AFTER” the “State”
level (All Cities).

begin-select
 0APO_LOCATION
 Measures.D5XK1R2CAGKTXDWNCTIDVK8R
 From SAP BW
DESCENDANTS("0APO_LOCATION" "0APO_LOCATION.STATE" SELF_and_AFTER)
end-select

Finding a Dimension’s Ancestor
Use the ANCESTOR clause to find a source dimensions’ ancestor at the target level. If no level is
provided, the source dimension is returned.

Syntax

ANCESTORS (DIM DIM_LEVEL)

Arguments

DIM

A string variable, column, or literal that represents a legal SAP dimension name.

DIM_LEVEL

144 Using Production Reporting DDO to Access an SAP BW Data Source

A string variable, column, or literal that represents a legal SAP dimension level name.

Description

● You can have multiple ANCESTORS clauses, but only a single parameter for each dimension.

● The ANCESTORS and DESCENDANTS clauses are mutually exclusive.

Example

The following returns the State member for the city of Dayton (Ohio).

begin-select
 0APO_LOCATION
 Measures.D5XK1R2CAGKTXDWNCTIDVK8R
 From SAP BW
ANCESTORS ("0APO_LOCATION.DAYTON" "0APO_LOCATION.STATE")
end-select

Defining Calculated Key Figures, Restricted Key Figures, and
Calculated Members
Use the WITH MEMBER clause to define calculated key figures, restricted key figures, and
calculated members.

Syntax

WITH MEMBER "MemberName.CalculationName" AS ("member-formula")

Arguments

MemberName

Any valid dimension or hierarchy or the key “measures”.

CalculationName

A unique name to identify the calculation.

member-formula

Any valid MDX expression.

Description

● WITH MEMBER must immediately follow FROM.

● More than one calculated member can be defined in a WITH section.

● Accepted functions are: Aggregate(), Avg(), Max(), Median(), Min(), Sum(), Count() for
standard dimensions, including TIME. Additional functions for properly constructed TIME
dimensions are Ytd(), Qtd(), Mtd(), Wtd(), OpeningPeriod(), ClosingPeriod(),
Periodstodate(), Parallelperiod().

SAP BW and the Production Reporting Language 145

● Member functions include: Ancestor(), Cousin(), Item(), Lag(), Lead
(), .CurrentMember, .FirstChild, .LastChild, .FirstSibling, .LastSibling, .NextMember, .Par
ent, and .PrevMember

● Set functions include: Ancestors(), Ascendants(), BottomCount(), BottomPercent(),
BottomSum(), CrossJoin(), Descendants(), Except(), Filter(), TopCount(), TopPercent(),
TopSum(), Union(), Head(), Tail(), Distinct(), .AllMembers, .Children, .Members,
and .Siblings

● To specify left and right curly brackets, use of ^| and |^ in place of the actual brackets. For
example:

MEMBER 0APO_RTYPE.NEWAGGR AS
AGGREGATE (^| "0APO_RTYPE.05","0APO_RTYPE.04" |^)
MEMBER 0D_VENDOR.Aggr AS
 'AVG(^| 0D_VENDOR.0000001000 ,
 0D_VENDOR.0000001001,
 0D_VENDOR.0000001050 |^)'
MEMBER 0CALMONTH.Agg AS
'AGGREGATE(
^|
0CALMONTH 0YEA_MON.1999 0CALYEAR.Children 0CALMONTH
0YEA_MON.2001 0CALYEAR.Children
|^)'

● All literal values (both numeric and string) must be wrapped around single quotes. For
example:

WITH
MEMBER Measures.EMPLOYEECHANGE AS
"(Measures.BCU2WEMLJL5ZK9N1F3ZRDUXS7 -
(Measures.BCU2WEMLJL5ZK9N1F3ZRDUXS7, 0CALMONTH.LAG(‘12’)))"

Example

In the following example, at runtime, the calculated key figure PROFIT CHANGE is calculated
by subtracting the profit for the previous month from the profit for the current month.

begin-select
 Measures.CKF_SI_PROFIT
 Measures.Profit Change
 FROM 0D_SD_C03/SAP_DEMO_ODBO
 WITH MEMBER Measures.Profit Change AS
 '((Measures.CKF_SI_PROFIT)-(Measures.CKF_SI_PROFIT,
 0CALMONTH.PREVMEMBER))'
end-select

The result set from the above request shows both the profit and the profit change against the
previous month for all months in the year 2001.

 Profit Profit Change

JAN 2001 11.324.466.00* 11.324.466.00*

FEB 2001 7.767.949.00* -3.556.517.00*

146 Using Production Reporting DDO to Access an SAP BW Data Source

MARCH 2001 9.598.544.00* 1.830.595.00*

APRIL 2001 7.225.499.00* -2.373.045.00*

MAY 2001 9.216.444.00* 1.990.945.00*

JUNE 2001 12.050.631.00* 2.834.187.00*

JULY 2001 14,757,033.00* 2.706.402.00*

AUG 2001 558.144.00 MIX -14198889.00

SEP 2001 14,834.377.00* 14276233.00

OCT 2001 13,158.103.00* -1.676.274.00*

NOV 2001 17.673.019.00* 4.514.916.00*

DEC 2001 13.833.383.00* -3.839.636.00*

Example

In the following example, at runtime, the calculated key figure EMPLOYEECHANGE is
calculated by subtracting the number of employees for the previous month from the number of
employees for the current month using the PrevMember function.

begin-select
 Measures.BCU2WEMLJL5ZK9N1F3ZRDUXS7,
 Measures.EMPLOYEECHANGE
 0CALMONTH.MEMBERS
 FROM 0PA_C01/0PA_C01_Q024
 WITH MEMBER Measures.EMPLOYEECHANGE AS
 '(Measures.BCU2WEMLJL5ZK9N1F3ZRDUXS7 -
 (Measures.BCU2WEMLJL5ZK9N1F3ZRDUXS7, 0CALMONTH.PREVMEMBER))'
end-select

The result set from the above request is:

All Calendar Year/Month Number of Employees Employee Change

JAN 2003 1,232 1,232

FEB 2003 1,232 0

MARCH 2003 1,238 6

APRIL 2003 1,239 1

MAY 2003 1,239 0

JUNE 2003 1,239 0

JULY 2003 1,239 0

AUG 2003 1,239 0

SAP BW and the Production Reporting Language 147

SEP 2003 1,239 0

OCT 2003 1,239 0

NOV 2003 1,239 0

DEC 2003 1,240 1

JAN 2004 1,243 3

FEB 2004 1,243 0

MARCH 2004 1,243 0

APRIL 2004 1,243 0

MAY 2004 1,247 4

JUNE 2004 1,247 0

JULY 2004 1,247 0

AUG 2004 1,247 0

Accessing SAP BW Data from SQR Production Reporting Studio
You can use SQR Production Reporting Studio to retrieve data and create reports using data
from an SAP BW OLAP data warehouse.

➤ To create a report using data from an SAP BW OLAP data warehouse:

1 Open SQR Production Reporting Studio by selecting Start > Programs > Oracle EPM System > Reporting
and Analyasis > Production Reporting Studio.

2 Select the desired type of report and click New to create a new data connection.

3 On the first page of the Data Connection wizard, enter a name for the SAP BW data source.

4 On the second page of the wizard, select DDO to identify the data source provider.

5 On the third page of the wizard, select an SAP BW data source.

6 On the fourth page of the wizard, enter the requested login parameters and select Enable Properties
Attributes.

This option appears only if you selected a valid SAP BW data source (see step 5).

7 Click Finish to exit from the Data Connection wizard.

8 Build the query using the SQR Production Reporting Studio Query Builder.

9 Create the report in the SQR Production Reporting Studio Layout window.

10 Process and save the report.

148 Using Production Reporting DDO to Access an SAP BW Data Source

Note:

For detailed information on how to use Oracle's Hyperion® SQR® Production Reporting Studio
to create reports using SAP BW data, see "Creating SAP BW Reports" in the Hyperion SQR
Production Reporting Studio User's Guide.

Accessing SAP BW Data from SQR Production Reporting Studio 149

150 Using Production Reporting DDO to Access an SAP BW Data Source

9
Using Production Reporting

DDO to Access Essbase Cubes

In This Chapter

Overview of Cubes ... 151

Viewing Cubes... 152

Using Cube Commands in Production Reporting ... 153

Displaying Report Data ... 159

Accessing Cubes: An Example ... 162

Overview of Cubes
Cubes contain multidimensional database components supporting multiple data views. The
components, arranged in a “hierarchical tree” (outline) structure, include:

● Dimensions—Information categories, such as Location, Products, Stores, and Time.

Essbase dimensions include:

Standard—Core dimensions often relating to departmental functions such as product line
or division.

Attribute dimensions—Further group and analyze standard dimension members. For
example, you could compare a certain aspect of a product line with another aspect of that
same product line.

● Members—Dimension content values. A Location dimension for example, could contain
members such as USA, France, San Francisco, Paris, and 35 Main Street.

● Generations—Consolidation of dimension levels. Starting at Generation 1, the generations
count down toward each dimension member.

● Levels—Groups of similar member types. For example, USA and France could belong to
the Country level, San Francisco and Paris could belong to the City level, and 35 Main Street
could belong to the Address level. Levels are counted in reverse order of generations and
start at zero.

● Aliases—Optional, descriptive names given to members and stored in alias tables. In report
output, aliases can be used instead of member names when member names are
non-descriptive.

● Measures—Aggregations stored in columns in fact tables for quick retrieval by users
querying cubes. Measures are numeric data displayed in reports.

Overview of Cubes 151

Figure 10 illustrates a folder tree containing the Location dimension members in a cube. In this
example, Location is the dimension, and USA, France, and all other branches are its members.
Location is generation 1, USA and France are generation 2, San Francisco and Paris are
generation 3, and 35 Main St. and 30 rue St. Jacques are generation 4. Levels refer to dimension
branches and are in reverse order of generations.

Figure 10 Location Dimension Hierarchy

Location 0 3
USA 1 2

 2 1
 2 1
 3 0
 3 0
 1 2France

 2 1
 3 0
 3 0

Normandy
30 rue St. Jacques
25 rue Dr Roux

Denver
35 Main St.
100 High St.

San Francisco

 2 1Paris

Generations Levels Dimension/Members

Viewing Cubes
To write Production Reporting programs to access Essbase cubes, you must specify the correct
dimension, member names, and hierarchies used by the database. The Production Reporting
DDO Query Editor displays Essbase tree structures as well as member names and aliases. Member
names appear under the Subtype Information column, and member aliases appear under the
Name column.

Caution!

When referencing members in Production Reporting DDO code, use the member name in the
DDO Query Editor’s Subtype Information column.

Figure 11 displays member names and aliases in the Production Reporting DDO Query Editor.
Notice that the name of the Period member is Year, but the alias is Period. In the Production
Reporting DDO code, for example, you would use Year (member name) under DECLARE-
CONNECTION, but the word Period (member alias) would display in your report if you had the
alias parameter enabled. (See “Aliases” on page 159.)

Note:

If no alias is specified for a member, the member name is used in both columns. This is the case
for the Market member in Figure 11. The member name “Market” is used in both columns
because no alias is specified in the Essbase alias table.

152 Using Production Reporting DDO to Access Essbase Cubes

Figure 11 Production Reporting DDO Query Editor

Note:

To view database content with the DDO Query Editor, you must first add a data-source
specification in the Registry Editor. See “Data Source Specifications” on page 87.

➤ To use the Production Reporting DDO Query Editor to view dimensions and members:

1 Select Start > Programs > Oracle EPM System > Reporting and Analysis > SQR Production Reporting
> DDO > Query Editor.

2 Select File > Open or click the Open button on the toolbar.

3 Highlight the data source under the Registry folder and click Open.

4 Enter your username and password.

You may have to double click the Meta Data folder to view the hierarchy.

5 Use the name supplied under Subtype Information in the Production Reporting program.

Using Cube Commands in Production Reporting
The following Production Reporting commands access cubes:

● SET-MEMBERS

● SET-GENERATIONS

● SET-LEVELS

Use these commands under DECLARE-CONNECTION or ALTER-CONNECTION in your Production
Reporting program.

Review the following sections for information on each of these commands. The information is
based on the same sample code used to access the Product, Year, and Market Dimension Folder
Tree in Figure 12, which displays a hierarchy of members in a multidimensional database.

Using Cube Commands in Production Reporting 153

Note:

The sample data used in this section is from the Demo application included with the Essbase
OLAP Server. Refer to the Hyperion Essbase Installation Notes for installation instructions.

Figure 12 Product, Year, and Market Dimension Folder Tree

Product 1 2

Stereo 3 0
Compact_disc 3 0

Visual 2 1

Audio 2 1

Generation Level Dimensions/Members

Television 3 0
VCR 3 0
Camera 3 0

3 0

2 1
3 0

1 2Year

1 2Market

2 1Qtr1

Qtr2

3 0Jan
Feb
Mar

3 0
3 0

3 0Apr
May
Jun

3 0

2 1
3 0

2 1Qtr3

Qtr4

3 0Jul
Aug
Sep

3 0Oct
Nov
Dec 3 0

2 1East

3 0
3 0

3 0New_York
Boston
Chicago

3 0

2 1

3 0

2 1West

South

3 0San_Francisco
Seattle
Denver

3 0Los_Angeles

3 0Dallas
Houston
Phoenix 3 0

3 0

3 0

SET-MEMBERS
Selects a specific dimension hierarchy. Using dot notation with the alpha name of dimensions
and members, you can use SET-MEMBERS to retrieve specific information for one or more data
items.

154 Using Production Reporting DDO to Access Essbase Cubes

Note:

A program that does not use SET-MEMBERS returns all of the dimensions within a declared
column.

Program ex25.sqr uses SET-MEMBERS to access information in the Product, Year, and Market
Dimension Folder Tree in Figure 12.

In this example, SET-MEMBERS:

● returns the set of members in the dimension Product at the specific hierarchy of Audio.

● returns the set of members in the dimension Year at the specific hierarchy of Qtr1.

● returns the set of members in the dimension Market at the specific hierarchy of West.

Program ex25.sqr
Begin-Setup
 Declare-Connection ESSConnection
 DSN=Essbase6
 User='Oracle User'
 Password=dbadmin1
 Parameters=member.alias=true;
 set-members=('Year','Qtr1','Product','Audio','Market','West')
 End-Declare
End-Setup

Begin-Program
 print 'Quarter Product Region' (+2,1)
 print 'Total Expenses Cost of Goods' (0,40)
 do Read_Cube
end-program

Begin-Procedure Read_Cube
 Begin-Execute
 Connection=ESSConnection
 schema='Demo'
 getdata='Basic'
Begin-select loops=5000
Year &year (+1,1)
Product &prod (0,10)
Market &mkt (0,20)
Measures.Profit.Total_Expenses.Marketing &exp (0,40) edit $99,999,999.
99
Measures.Profit.Margin.Cost_of_Goods_Sold &cogs (0,60) edit $99,999,999.
99
From Essbase
End-select
 End-Execute
End-Procedure

In the output for Program ex25.sqr, the alias “Q1” appears instead of the name “Qtr1”.
(See“Aliases” on page 159 for information on using aliases.)

Using Cube Commands in Production Reporting 155

Output for Program ex25.sqr
 Quarter Product Region Total Expenses Cost of Goods
 Q1 Audio West $ 1,465.00 $ 12,259.00

SET-GENERATIONS
SET-GENERATIONS selects a specific point within the hierarchy for the previously-declared
dimension. You can use SET-GENERATIONS to set an exact location within the dimension
declared by SET-MEMBERS. The dimension and hierarchy defined with SET-GENERATIONS can
be a literal value only.

Program ex26.sqr uses SET-GENERATIONS to access the information in the Product, Year, and
Market Dimension Folder Tree in Figure 12. The example builds on Program ex25.sqr, and uses
SET-GENERATIONS to retrieve more specific information.

In this example, SET-GENERATIONS:

● requests a specific generation for Product.

SET-MEMBERS narrows the range to Audio, and SET-GENERATIONS requests all members
at the third generation within Audio (Stereo and Compact_Disc).

● requests a specific generation for Market.

SET-MEMBERS narrows the range to West, and SET-GENERATIONS requests all members at
the third generation within West (San_Francisco, Seattle, Denver, and Los_Angeles).

Program ex26.sqr
Begin-Setup
 Declare-Connection ESSConnection
 DSN=Essbase6
 User='Oracle User'
 Password=dbadmin1
 Parameters=member.alias=true;
 set-members= ('Year','Qtr1','Product','Audio','Market','West')
 set-generations=('Product',3,'Market',3)
 End-Declare
End-Setup

Begin-Program
 print 'Quarter Product Region' (+2,1)
 print 'Total Expenses Cost of Goods' (0,40)
 do Read_Cube
end-program

Begin-Procedure Read_Cube
 Begin-Execute
 Connection=ESSConnection
 schema='Demo'
 getdata='Basic'
Begin-select loops=5000
Year &year (+1,1)
Product &prod (0,10)
Market &mkt (0,20)

156 Using Production Reporting DDO to Access Essbase Cubes

Measures.Profit.Total_Expenses.Marketing &exp (0,40) edit
 $99,999,999.99
Measures.Profit.Margin.Cost_of_Goods_Sold &cogs (0,60) edit
 $99,999,999.99
From Essbase
End-select
 End-Execute
End-Procedure

As shown in “Output for Program ex26.sqr”, adding SET-GENERATIONS produces a much larger
report than using SET-MEMBERS alone, but it excludes the levels in Output for Program
ex25.sqr.

Output for Program ex26.sqr
 Quarter Product Region Total Expenses Cost of Goods
 Q1 Stereo San_Francisco $ 304.00 $ 2,246.00
 Q1 Stereo Seattle $ 124.00 $ 1,356.00
 Q1 Stereo Denver $ 130.00 $ 1,461.00
 Q1 Stereo Los_Angeles $ 225.00 $ 1,747.00
 Q1 Compact_Disc San_Francisco $ 155.00 $ 1,558.00
 Q1 Compact_Disc Seattle $ 56.00 $ 1,258.00
 Q1 Compact_Disc Denver $ 208.00 $ 1,249.00
 Q1 Compact_Disc Los_Angeles $ 263.00 $ 1,384.00

SET-LEVELS
SET-LEVELS extends the dimension hierarchy for the previously-declared dimension. After
declaring the starting point with SET-MEMBERS, use SET-LEVELS to specify how many levels to
move down the hierarchy. The dimension and hierarchy defined with SET-LEVELS can be a
literal value only.

Program ex27.sqr uses SET-LEVELS with SET-MEMBERS to access the information in the Product,
Year, and Market Dimension Folder Tree in Figure 12.

In this example, SET-LEVELS:

● requests additional levels for Product.

SET-MEMBERS sets the starting point to Audio, and SET-LEVELS requests Audio (level 1)
plus the next level below (Stereo and Compact_Disc).

● requests additional levels for Market.

SET-MEMBERS sets the starting point to West (level 1), and SET-LEVELS requests West plus
the next level below (San_Francisco, Seattle, Denver, and Los_Angeles).

Program ex27.sqr
Begin-Setup
 Declare-Connection ESSConnection
 DSN=Essbase6
 User='Oracle User'
 Password=dbadmin1
 Parameters=member.alias=true;

Using Cube Commands in Production Reporting 157

 set-members= ('Year','Qtr1','Product','Audio','Market','West')
 set-levels= ('product', 1,'market', 1)
 End-Declare
End-Setup

Begin-Program
 print 'Quarter Product Region' (+2,1)
 print 'Total Expenses Cost of Goods' (0,40)
 do Read_Cube
end-program

Begin-Procedure Read_Cube
 Begin-Execute
 Connection=ESSConnection
 schema='Demo'
 getdata='Basic'
Begin-select loops=5000
Year &year (+1,1)
Product &prod (0,10)
Market &mkt (0,20)
Measures.Profit.Total_Expenses.Marketing &exp (0,40) edit
 $99,999,999.99
Measures.Profit.Margin.Cost_of_Goods_Sold &cogs (0,60) edit
 $99,999,999.99
From Essbase
End-select
 End-Execute
End-Procedure

As shown in Output for Program ex27.sqr, adding SET-LEVELS produces a larger report than
SET-GENERATIONS, and it includes the levels requested by SET-MEMBERS.

Output for Program ex27.sqr
 Quarter Product Region Total Expenses Cost of Goods
 Q1 Audio West $ 1,465.00 $ 12,259.00
 Q1 Audio San_Francisco $ 459.00 $ 3,804.00
 Q1 Audio Seattle $ 180.00 $ 2,614.00
 Q1 Audio Denver $ 338.00 $ 2,710.00
 Q1 Audio Los_Angeles $ 488.00 $ 3,131.00
 Q1 Stereo West $ 783.00 $ 6,810.00
 Q1 Stereo San_Francisco $ 304.00 $ 2,246.00
 Q1 Stereo Seattle $ 124.00 $ 1,356.00
 Q1 Stereo Denver $ 130.00 $ 1,461.00
 Q1 Stereo Los_Angeles $ 225.00 $ 1,747.00
 Q1 Compact_Disc West $ 682.00 $ 5,449.00
 Q1 Compact_Disc San_Francisco $ 155.00 $ 1,558.00
 Q1 Compact_Disc Seattle $ 56.00 $ 1,258.00
 Q1 Compact_Disc Denver $ 208.00 $ 1,249.00
 Q1 Compact_Disc Los_Angeles $ 263.00 $ 1,384.00

158 Using Production Reporting DDO to Access Essbase Cubes

Displaying Report Data
Once you decide what data to access and which commands to use, you can display the
information in a report. Review the following sections to understand some aspects of report
layout.

● Measures

● Aliases

● Column Order

Measures
Measures are the numeric data displayed in reports. Some common measures are sales, cost,
expenditures, and production count. Measures are aggregations stored for quick retrieval by
users querying cubes. Each measure is stored in a column in a fact table in a cube. Measures can
contain multiple columns combined in expressions. For example, the Profit measure is the
difference of two numeric columns: Sales and Cost.

The format for measure columns is ‘measures’, dot, ‘measure name’ (for example,
measures.profit). Use this format regardless of the name used by the data source to declare
measures.

Program ex30.sqr displays a measure, which cannot be included in SET-MEMBERS,
SET-GENERATIONS, or SET-LEVELS but is written under BEGIN-SELECT.

Aliases
Aliases are optional, descriptive names given to members and stored in alias tables. In report
output, you can use aliases instead of member names when member names are non-descriptive.
For example, a member name could be a number while its alias could be a noun such as Sales.
Use the parameters property in the setup section of your Production Reporting program to
specify whether to use names or aliases in your output.

➤ To use aliases in Production Reporting output, write the following line in the setup section of
your Production Reporting program:

Parameters=member.alias=true;

Including this statement displays the aliases in the Name column of the Production Reporting
DDO Query Editor. (See “Viewing Cubes” on page 152 for more information.)

➤ To use names in your Production Reporting DDO output, do not include the following statement
in your Production Reporting program:

Parameters=member.alias=true;

If you do not include this statement, the output displays the member names under the Subtype
Information column of the Production Reporting DDO Query Editor. (See “Viewing Cubes” on
page 152 for more information.)

Displaying Report Data 159

Note:

Regardless of whether you display aliases in report output, you must use member names when
referencing the members in the SET-UP section of your Production Reporting program.

Column Order
The order in which dimension columns display in the BEGIN-SELECT section determines the
order the data displays in multiple rowset queries. Program ex28.sqr shows Total_Expenses
and Cost_of_Goods_Sold for the selected Year, Market, and Product.

Program ex28.sqr
Begin-Setup
 Declare-Connection ESSConnection
 DSN=Essbase6
 User='Oracle User'
 Password=dbadmin1
 Parameters=member.alias=true;
 set-members=('Year','Qtr1','Market','West')
 set-generations=('Year', 2,'Product',1)
 set-levels= ('Year',1,'Product', 3)
 End-Declare
End-Setup

Begin-Program
 print 'Quarter Product Region' (+2,1)
 print 'Total Expenses Cost of Goods' (0,40)
 do Read_Cube
end-program

Begin-Procedure Read_Cube
 Begin-Execute
 Connection=ESSConnection
 schema='Demo'
 getdata='Basic'
Begin-select loops=5000
Year &year (+1,1)
Market &mkt (0,25)
Product &prod (0,10)
Measures.Profit.Total_Expenses.Marketing &exp (0,45) edit $99,999,999.99
Measures.Profit.Margin.Cost_of_Goods_Sold &cogs (0,65) edit $99,999,999.99
From Essbase
End-select
 End-Execute
End-Procedure

In Output for Program ex29.sqr, the rows are sorted first by Year: All the Q1 rows are first,
followed by the Jan, Feb, and Mar rows. The Quarter column sets the order of the rows because
Year is listed first under BEGIN-SELECT.

Output for Program ex29.sqr
 Quarter Product Region Total Expenses Cost of Goods

160 Using Production Reporting DDO to Access Essbase Cubes

 Q1 Stereo West $ 783.00 $ 6,810.00
 Q1 Compact_Disc West $ 682.00 $ 5,449.00
 Q1 Television West $ 1,669.00 $ 6,676.00
 Q1 VCR West $ 438.00 $ 5,408.00
 Q1 Camera West $ 1,051.00 $ 3,160.00
 Jan Stereo West $ 278.00 $ 2,385.00
 Jan Compact_Disc West $ 231.00 $ 1,847.00
 Jan Television West $ 527.00 $ 2,451.00
 Jan VCR West $ 145.00 $ 1,833.00
 Jan Camera West $ 354.00 $ 1,146.00
 Feb Stereo West $ 260.00 $ 2,181.00
 Feb Compact_Disc West $ 220.00 $ 1,768.00
 Feb Television West $ 628.00 $ 2,102.00
 Feb VCR West $ 146.00 $ 1,812.00
 Feb Camera West $ 360.00 $ 999.00
 Mar Stereo West $ 245.00 $ 2,244.00
 Mar Compact_Disc West $ 231.00 $ 1,834.00
 Mar Television West $ 514.00 $ 2,123.00
 Mar VCR West $ 147.00 $ 1,763.00
 Mar Camera West $ 337.00 $ 1,015.00

To change the look of the output, modify the dimension order under BEGIN-SELECT. If the
order of the Product, Year, and Market dimensions is reversed (as in Program ex29.sqr) then you
get a report with columns displayed in a different sorting order.

Program ex29.sqr
Begin-select loops=5000
Product &prod (+1,10)
Market &mkt (0,25)
Year &year (0,1)
Measures.Profit.Total_Expenses.Marketing &exp (0,45) edit $99,999,999.99
Measures.Profit.Margin.Cost_of_Goods_Sold &cogs (0,65) edit $99,999,999.99
From Essbase
End-select

In the Output for Program ex29.sqr, the rows are sorted first by Product: All the Stereo rows are
first, followed by the Compact_Disc, Television, VCR, and Camera rows. The Product column
sets the row order because Product is listed first under BEGIN-SELECT.

Output for Program ex29.sqr
 Quarter Product Region Total Expenses Cost of Goods
 Q1 Stereo West $ 783.00 $ 6,810.00
 Jan Stereo West $ 278.00 $ 2,385.00
 Feb Stereo West $ 260.00 $ 2,181.00
 Mar Stereo West $ 245.00 $ 2,244.00
 Q1 Compact_Disc West $ 682.00 $ 5,449.00
 Jan Compact_Disc West $ 231.00 $ 1,847.00
 Feb Compact_Disc West $ 220.00 $ 1,768.00
 Mar Compact_Disc West $ 231.00 $ 1,834.00
 Q1 Television West $ 1,669.00 $ 6,676.00
 Jan Television West $ 527.00 $ 2,451.00
 Feb Television West $ 628.00 $ 2,102.00
 Mar Television West $ 514.00 $ 2,123.00
 Q1 VCR West $ 438.00 $ 5,408.00

Displaying Report Data 161

 Jan VCR West $ 145.00 $ 1,833.00
 Feb VCR West $ 146.00 $ 1,812.00
 Mar VCR West $ 147.00 $ 1,763.00
 Q1 Camera West $ 1,051.00 $ 3,160.00
 Jan Camera West $ 354.00 $ 1,146.00
 Feb Camera West $ 360.00 $ 999.00
 Mar Camera West $ 337.00 $ 1,015.00

Accessing Cubes: An Example
This section gives an example of a cube and discusses the Production Reporting code necessary
to access the cube. Review this section for information on:

● The Cube

● The Production Reporting Code Needed to Access the Cube

● An Explanation of the Code

Note:

Essbase includes the DECIMAL function within the Report Script generated by DDO to
access data from Essbase cubes. The default number of decimals to the right of the decimal
point is 6.

To change the default value:

1. Open the com_sqribe_essacc_EssDataSource_Properties file.

2. Change the decimal.points=6 entry to the desired number of decimals.

3. Save your changes.

The Cube
Figure 13 shows a cube with three dimensions: Product (Y-axis), Year (X-axis), and Market (Z-
axis). This example illustrates only a small part of an entire cube. For example, the Year
dimension could have four quarters while only the first three quarters are illustrated here. In
addition, dimensions such as Location or Salesperson, could also be added to this cube.

Each cell of the cube represents a data value in a database. For example, one cell might hold a
value of Audio products for the Western market region in Qtr1. In addition to being divided by
cells, the cube can also be sliced into small segments, such as all products for the Western region
in the first quarter.

162 Using Production Reporting DDO to Access Essbase Cubes

Figure 13 Three-Dimensional Data Cube

East

West

Audio

Visual

Qtr1 Qtr2 Qtr3

Figure 14 reveals the dimensions and levels of the cube in Figure 13. Audio and Visual are
members of the Product dimension, Qtr1, Qtr2, Qtr3, and Qtr4 are members of the Year
dimension, and East, West, and South are members of the Market dimension. Each dimension
corresponds to a cube axis.

Figure 14 Hierarchy of a Data Cube

Product 1 2 Y-axis

Stereo 3 0
Compact_disc 3 0

Visual 2 1

Audio 2 1

Generation Level AxisDimensions/Members

Television 3 0
VCR 3 0
Camera 3 0

3 0

2 1
3 0

1 2 X-axisYear

1 2 Z-axisMarket

2 1Qtr1
3 0Jan

Feb
Mar

2 1
2 1

2 1

2 1
2 1

Qtr2
Qtr3
Qtr4

East
West
South

The Production Reporting Code Needed to Access the Cube
The Production Reporting code in Program ex30.sqr accesses the Essbase cube discussed in the
previous section. The code uses the three commands for accessing a cube: SET-MEMBERS, SET-
GENERATIONS, and SET-LEVELS.

Program ex30.sqr
Begin-Setup
 Declare-Connection ESSConnection
 DSN=Essbase6
 User='Oracle User'
 Password=dbadmin1
 Parameters=member.alias=true;

Accessing Cubes: An Example 163

 set-members=('Year','Qtr1','Market','West')
 set-generations=('Year', 2,'Product',1)
 set-levels= ('Year',1,'Product', 3)
 End-Declare
End-Setup

Begin-Program
 print 'Quarter Product Region' (+2,1)
 print 'Total Expenses Cost of Goods' (0,40)
 do Read_Cube
end-program

Begin-Procedure Read_Cube
 Begin-Execute
 Connection=ESSConnection
 schema='Demo'
 getdata='Basic'
Begin-select loops=5000
Product &prod (+1,10)
Market &mkt (0,25)
Year &year (0,1)
Measures.Profit.Total_Expenses.Marketing &exp (0,45) edit $99,999,999.99
Measures.Profit.Margin.Cost_of_Goods_Sold &cogs (0,65) edit $99,999,999.99
From Essbase
End-select
 End-Execute
End-Procedure

Note:

The order in which the columns and rows in your output appear depends on the order in which
the dimensions are listed under BEGIN-SELECT. The columns in Program ex30.sqr are listed in
Product-by Market-by Year order. To change the look of the output, modify the dimension
order under BEGIN-SELECT.

Output for Program ex30.sqr
 Quarter Product Region Total Expenses Cost of Goods
 Q1 Stereo West $ 783.00 $ 6,810.00
 Jan Stereo West $ 278.00 $ 2,385.00
 Feb Stereo West $ 260.00 $ 2,181.00
 Mar Stereo West $ 245.00 $ 2,244.00
 Q1 Compact_Disc West $ 682.00 $ 5,449.00
 Jan Compact_Disc West $ 231.00 $ 1,847.00
 Feb Compact_Disc West $ 220.00 $ 1,768.00
 Mar Compact_Disc West $ 231.00 $ 1,834.00
 Q1 Television West $ 1,669.00 $ 6,676.00
 Jan Television West $ 527.00 $ 2,451.00
 Feb Television West $ 628.00 $ 2,102.00
 Mar Television West $ 514.00 $ 2,123.00
 Q1 VCR West $ 438.00 $ 5,408.00
 Jan VCR West $ 145.00 $ 1,833.00
 Feb VCR West $ 146.00 $ 1,812.00
 Mar VCR West $ 147.00 $ 1,763.00
 Q1 Camera West $ 1,051.00 $ 3,160.00
 Jan Camera West $ 354.00 $ 1,146.00

164 Using Production Reporting DDO to Access Essbase Cubes

 Feb Camera West $ 360.00 $ 999.00
 Mar Camera West $ 337.00 $ 1,015.00

An Explanation of the Code
Table 20 explains the code necessary to access the example Essbase cube.

Table 20 Code Explanation

Code Explanation

Begin-Setup

 Declare-Connection ESSConnection

 DSN=Essbase6

 User='Oracle User'

 Password=dbadmin1

 Parameters=member.alias=true;

 set-
members= ('Year','Qtr1','Market'
,'West')

 set-generations
= ('Year', 2,'Product',1)

 set-levels= ('Year',1,'Product', 3)

 End-Declare

End-Setup

The setup section of the Production Reporting program.

● Declare-Connection—User-defined name for describing a cube
connection. In this case, we used EssConnection.

● DSN—Essbase connection. Enter the DDO registry name in the DDO
registry.

For Essbase, enter the name of your database as the DSN.

● User—User name for the Essbase connection.

● Password—Password for the user.

You can also connect from the command line using the following
syntax:

SQR [program] DSN/[username]/[password]

● Parameters—Optional parameters. Declares whether to use an
alias table.

If you include this statement, aliases instead of names are displayed
in the output.

● set-members—The name of the dimension at the specific
hierarchical level.

● set-levels—Extends the dimension hierarchy for the previously-
declared dimension.

● set-generations—Overrides the specific hierarchical level
declared by set-members.

Begin-Program

 print 'Quarter Product Region' (+2,1)

 print 'Total Expenses Cost of Goods'
(0,40)

 do Read_Cube

end-program

end-program

The program section of the Production Reporting program.

● print—Prints column header text.

In this example, the program prints the headings Quarter, Product,
Region, Total Expenses, and Cost of Goods.

● do Read_Cube—Directs Production Reporting to read the cube.

Begin-Procedure Read_Cube

 Begin-Execute

 Connection=ESSConnection

Begins the new query or procedure execution.

● Connection—Points to the information in
Declare-Connection.

● schema—Name of the cube.

Accessing Cubes: An Example 165

Code Explanation

 schema='Demo'

 getdata='Basic'

● getdata—Name of the table in the cube.

You must include Connection, schema, and getdata to successfully
connect.

Begin-select loops=5000

Product &prod (+1,10)

Market &mkt (0,25)

Year &year (0,1)

Begins a SELECT paragraph.

● loops=5000—(Optional) Specifies the number of rows to retrieve.
After the specified number is processed, the SELECT loop exits.

● &prod,&mkt, and &year—Read-only column variables. You can use
their existing value, but you cannot assign a new value to a column
variable. (See “Column Variables” in Volume 1 of the Production
Reporting Developer's Guide)

Measures.Profit.Total_Expenses.Marketi
ng &exp (0,45) edit $99,999,999.99

Measures.Profit.Margin.Cost_of_Goods_S
old &cogs (0,65) edit $99,999,999.99

Required to retrieve the numeric data.

Measures are hierarchical in design; each dot defines another level or
member.

The measures in this example are Profit, Total_Expenses,
Marketing, Margin, and Cost_of_Goods_Sold.

From Essbase From —Required for Production Reporting.

Essbase —(Optional) Documents the data source of a select statement.

End-Select Completes Begin-Select.

End-Execute Completes Begin-Execute.

End-Procedure Completes Begin-Procedure.

166 Using Production Reporting DDO to Access Essbase Cubes

10
Using Production Reporting

DDO to Access MSOLAP Cubes

In This Chapter

Overview of Cubes ... 167

Viewing Cubes... 168

Using Cube Commands in Production Reporting ... 169

Displaying Report Data ... 175

Accessing Cubes: An Example ... 178

Note:

For information on how to set up MSOLAP drivers, see Chapter 3, “Writing a Production
Reporting DDO Driver.” You can use your driver against the sample cubes provided with
MSOLAP.

Overview of Cubes
Cubes contain multidimensional database components that support multiple data views. The
components, arranged in a “hierarchical tree” (outline) structure, include:

● Dimensions—Information categories, such as Location, Products, Stores, and Time.

● Members—Dimension content values. A Location dimension for example, could contain
members such as USA, France, San Francisco, Paris, and 35 Main Street.

● Generations—Consolidation of dimension levels. Starting at Generation 0, the generations
count down toward each dimension member.

● Levels—Groups of similar member types. For example, USA and France could belong to
the Country level, San Francisco and Paris could belong to the City level, and 35 Main Street
could belong to the Address level.

● Aliases—Optional, descriptive names given to members and stored in alias tables. In report
output, aliases can be used instead of member names when member names are
non-descriptive.

● Measures—Aggregations stored in columns in fact tables for quick retrieval by users
querying cubes. Measures are numeric data displayed in reports.

Figure 15 illustrates a folder tree containing the Location dimension members in a cube. In this
example, Location is the dimension, and USA, France, and all other branches are its members.
Location is generation 0, USA and France are generation 1, San Francisco and Paris are

Overview of Cubes 167

generation 2, and 35 Main St. and 30 rue St. Jacques are generation 3. Levels refer to the
dimension branches and are in reverse order of generations.

Figure 15 Location Dimension Hierarchy

Location 0 3
USA 1 2

 2 1
 2 1
 3 0
 3 0
 1 2France

 2 1
 3 0
 3 0

Normandy
30 rue St. Jacques
25 rue Dr Roux

Denver
35 Main St.
100 High St.

San Francisco

 2 1Paris

Generations Levels Dimension/Members

Viewing Cubes
To write Production Reporting programs to access MS OLAP cubes, you must specify the correct
dimensions, member names, and hierarchies used by the database. The Production Reporting
DDO Query Editor displays MSOLAP tree structures as well as member names and aliases.
Member names appear under the Subtype Information column, and member aliases appear under
the Name column.

Caution!

When referencing members in Production Reporting code, use the member name in the DDO
Query Editor’s Subtype Information column.

Figure 16 displays member names and aliases in the Production Reporting DDO Query Editor.
Notice that the name of the Drink member is Product.All Product.Drink, but the alias is Drink.
In the Production Reporting code, for example, you would use Product.All Product.Drink
(member name) under DECLARE-CONNECTION, but the word Drink (member alias) would
display in your report if you had the alias parameter enabled. (See “Aliases” on page 175.)

Note:

If no alias is specified for a member, the member name is used in both columns because no alias
is specified in the MSOLAP alias table.

168 Using Production Reporting DDO to Access MSOLAP Cubes

Figure 16 Production Reporting DDO Query Editor

Note:

To view database content with the DDO Query Editor, you must first add a data-source
specification in the Registry Editor. See “Data Source Specifications” on page 87.

➤ To use the Production Reporting DDO Query Editor to view dimensions and members:

1 Select Start > Programs > Oracle EPM System > Reporting and Analysis > Production Reporting DDO >
Query Editor.

2 Select File > Open or click the Open button on the toolbar.

3 Highlight the data source under the Registry folder and click Open.

4 Enter your username and password.

You may have to double click the Meta Data folder to view the hierarchy.

5 Use the name supplied under Subtype Information in the Production Reporting program.

Using Cube Commands in Production Reporting
The following Production Reporting commands access cubes:

● SET-MEMBERS

● SET-GENERATIONS

● SET-LEVELS

You can use these commands under DECLARE-CONNECTION or ALTER-CONNECTION in your
Production Reporting program.

Review the following sections for information on each of these commands. The information is
based on the same sample code used to access the Product Dimension Folder Tree in
Figure 17, which displays a hierarchy of members in a multidimensional database.

Note:

The sample data used in this section is from the Demo application included with the MSOLAP
Server.

Using Cube Commands in Production Reporting 169

Figure 17 Product Dimension Folder Tree

Product 0 7
All Products 1 6

Drink 2 5
Alcoholic Beverages 3 4

Beer and Wine 4 3

Beer 5 2

Good Imported Beer 7 0
Good Light Beer 7 0

Pearl 6 1

Good 6 1

Generation Level Dimensions/Members

Pearl Imported Beer 7 0
Pearl Light Beer 7 0

Wine 5 2

Portsmouth 6 1
Portsmouth Imported Beer 7 0
Portsmouth Light Beer 7 0

Top Measure 6 1
Top Measure Imported Beer 7 0

Walrus 6 1
Walrus Imported Beer 7 0
Walrus Light Beer 7 0

Top Measure Light Beer 7 0

0 3
1 2
2 1
3 0

3 0
3 0

2 1

Time
1997

Q1
1
2
3

Q2

SET-MEMBERS
Selects a specific dimension hierarchy. Using dot notation with the alpha name of dimensions
and members, you can use SET-MEMBERS to retrieve specific information for one or more data
items.

Note:

A program that does not use SET-MEMBERS, returns all of the dimensions within a declared
column.

Program ex30.sqr uses SET-MEMBERS to access the information in the Production Dimension
Folder Tree in Figure 17.

In this example, SET-MEMBERS:

● returns the set of members in the dimension Product at the specific hierarchy of All Products,
at the specific level of Drink, at the specific level of Alcoholic Beverages, at the specific level
of ‘Beer and Wine’.

● returns the set of members in the dimension Time at the specific hierarchy of 1997, at the
specific level of Q1.

170 Using Production Reporting DDO to Access MSOLAP Cubes

Program ex30.sqr
Begin-Setup
 Declare-Connection MSOLAP
 dsn=MSOLAP
 set-members=('product','all products.drink.alcoholic
beverages.beer and wine','time','1997.Q1')
 End-Declare
End-Setup
Begin-Program
print 'Quarter' (+2,1)
print 'Product' (0,15)
print 'Profit' (0,48)
print 'Sales' (0,64)
print 'Cost' (0,75)

do Read_Cube
end-program

Begin-Procedure Read_Cube
Begin-Execute
 Connection=MSOLAP
 Schema='FoodMart 2000'
 GetData='Sales'
Begin-select loops=5000
Time &time (+2,1)
Product &prod (0,15)
Measures.Profit &prof (0,45) edit 999999.99
"Measures.Store Cost" &cog (0,70) edit 999999.99
"Measures.Store Sales" &sale (0,60) edit 999999.99
From Rowsets=(1)
End-select
End-Execute
End-Procedure

Program ex30.sqr produces the following output.

Output for Program ex30.sqr
Quarter Product Profit Sales Cost
Q1 Beer and Wine 1858.19 3082.00 1223.81

SET-GENERATIONS
SET-GENERATIONS selects a specific point within the hierarchy for the previously-declared
dimension. You can use SET-GENERATIONS to set an exact location within the dimension
declared by SET-MEMBERS. The dimension and hierarchy defined with SET-GENERATIONS can
be a literal value only.

Program ex31.sqr uses SET-GENERATIONS to access the information in the Production
Dimension Folder Tree in Figure 17. This example builds on Program ex30.sqr, and uses
SET-GENERATIONS to broaden the range of report output from ‘Beer and Wine’ listed together
to ‘Beer’ and ‘Wine’ listed separately.

In this example, SET-GENERATIONS:

Using Cube Commands in Production Reporting 171

● requests a specific generation for Product.

SET-MEMBERS narrows the range to the Product hierarchy of ‘all products.drink.alcoholic
beverages.beer and wine’, and SET-GENERATIONS requests all members at the fifth
generation within Beer and Wine (Beer and Wine–listed separately).

● returns the set of members in the Time dimension that are at the second generation within
the dimension. That is, it returns all Q1 members (generation 2) under the Time hierarchy
of ‘1997.Q1.’

Program ex31.sqr
Begin-Setup
 Declare-Connection MSOLAP
 dsn=MSOLAP
 set-members=('product','all products.drink.alcoholic
beverages.beer and wine','time','1997.Q1')
 set-generations= ('time',2,'product', 5)
 End-Declare
End-Setup
Begin-Program
print 'Quarter' (+2,1)
print 'Product' (0,15)
print 'Profit' (0,48)
print 'Sales' (0,64)
print 'Cost' (0,75)

do Read_Cube
end-program

Begin-Procedure Read_Cube
Begin-Execute
 Connection=MSOLAP
 Schema='FoodMart 2000'
 GetData='Sales'
Begin-select loops=5000
Time &time (+2,1)
Product &prod (,15)
Measures.Profit &prof (0,45) edit 999999.99
"Measures.Store Cost" &cog (0,70) edit 999999.99
"Measures.Store Sales" &sale (0,60) edit 999999.99
From Rowsets=(1)
End-select
End-Execute
End-Procedure

The SET-GENERATIONS command in Program ex31.sqr produces the following output.

Output for Program ex31.sqr
Quarter Product Profit Sales Cost
Q1 Beer 439.67 722.99 283.32
Q1 Wine 1418.53 2359.01 940.48

172 Using Production Reporting DDO to Access MSOLAP Cubes

SET-LEVELS
SET-LEVELS extends the dimension hierarchy for the previously-declared dimension. After
declaring the starting point with SET-MEMBERS, use SET-LEVELS to specify how many levels to
move down the hierarchy. The dimension and hierarchy defined with SET-LEVELS can be a
literal value only.

Program ex32.sqr uses SET-LEVELS with SET-MEMBERS to access the information in the
Production Dimension Folder Tree in Figure 17.

In this example, SET-LEVELS:

● requests additional levels for Product.

SET-MEMBERS sets the starting point to Beer and Wine, and SET-LEVELS requests Beer and
Wine list separately (level 2) plus the next level below (Good, Pearl, Portermouth, Top
Measure, and Walrus).

● requests additional levels for Time.

SET-MEMBERS sets the starting point to Q1 (level 1), and SET-LEVELS requests Q1 plus the
next level below (1,2, and 3).

Program ex32.sqr
Begin-Setup
 Declare-Connection MSOLAP
 dsn=MSOLAP
 set-members=('product','all products.drink.alcoholic
beverages.beer and wine','time','1997.Q1')
 set-levels=('time', 1,'product', 2)
 End-Declare
End-Setup

Begin-Program
print 'Quarter' (+2,1)
print 'Product' (0,15)
print 'Profit' (0,48)
print 'Sales' (0,64)
print 'Cost' (0,75)
do Read_Cube
end-program

Begin-Procedure Read_Cube
Begin-Execute
 Connection=MSOLAP
 Schema='FoodMart 2000'
 GetData='Sales'
Begin-select loops=5000
Time &time (+2,1)
Product &prod (0,15)
Measures.Profit &prof (0,45) edit 999999.99
"Measures.Store Cost" &cog (0,70) edit 999999.99
"Measures.Store Sales" &sale (0,60) edit 999999.99
From Rowsets=(1)
End-select
End-Execute

Using Cube Commands in Production Reporting 173

End-Procedure

As shown in Output for Program ex32.sqr, adding SET-LEVELS produces a larger report than
using SET-MEMBERS alone.

Output for Program ex32.sqr
Quarter Product Profit Sales Cost
Q1 Beer and Wine 1858.19 3082.00 1223.81
1 Beer and Wine 592.31 981.88 389.57
2 Beer and Wine 553.40 919.27 365.87
3 Beer and Wine 712.48 1180.85 468.37
Q1 Beer 439.67 722.99 283.32
1 Beer 132.59 219.11 86.52
2 Beer 138.25 229.08 90.83
3 Beer 168.82 274.80 105.98
Q1 Wine 1418.53 2359.01 940.48
1 Wine 459.72 762.77 303.05
2 Wine 415.14 690.19 275.05
3 Wine 543.66 906.05 362.39
Q1 Good 54.51 89.08 34.57
1 Good 21.38 33.64 12.26
2 Good 15.61 27.16 11.55
3 Good 17.51 28.28 10.77
Q1 Pearl 78.40 130.39 51.99
1 Pearl 25.55 44.44 18.89
2 Pearl 26.88 43.45 16.57
3 Pearl 25.97 42.50 16.53
Q1 Portsmouth 114.59 182.82 68.23
1 Portsmouth 35.02 56.85 21.83
2 Portsmouth 32.50 52.98 20.48
3 Portsmouth 47.07 72.99 25.92
Q1 Top Measure 39.89 68.42 28.53
1 Top Measure 12.43 21.66 9.23
2 Top Measure 12.74 22.28 9.54
3 Top Measure 14.73 24.48 9.75
Q1 Walrus 152.29 252.28 100.00
1 Walrus 38.22 62.52 24.30
2 Walrus 50.52 83.21 32.69
3 Walrus 63.54 106.55 43.01
Q1 Good 277.60 456.28 178.68
1 Good 95.17 156.23 61.06
2 Good 70.06 116.43 46.37
3 Good 112.36 183.62 71.26
Q1 Pearl 251.82 422.27 170.45
1 Pearl 84.69 143.66 58.98
2 Pearl 105.90 176.38 70.48
3 Pearl 61.23 102.23 41.00
Q1 Portsmouth 342.06 571.62 229.56
1 Portsmouth 94.47 155.15 60.68
2 Portsmouth 85.34 144.29 58.95
3 Portsmouth 162.25 272.18 109.93
Q1 Top Measure 235.53 391.27 155.74
1 Top Measure 93.79 155.60 61.81
2 Top Measure 66.78 109.40 42.62
3 Top Measure 74.95 126.27 51.32
Q1 Walrus 311.52 517.57 206.05

174 Using Production Reporting DDO to Access MSOLAP Cubes

1 Walrus 91.60 152.13 60.53
2 Walrus 87.06 143.69 56.63
3 Walrus 132.86 221.75 88.89

Displaying Report Data
Once you decide what data to access and which commands to use, you can display the
information in a report. Review the following sections to understand some aspects of report
layout.

● Measures

● Aliases

● Column Order

Measures
Measures are the numeric data displayed in reports. Some common measures are sales, cost,
expenditures, and production count. Measures are aggregations stored for quick retrieval by
users querying cubes. Each measure is stored in a column in a fact table in a cube. Measures can
contain multiple columns combined in expressions. For example, the Profit measure is the
difference of two numeric columns: Sales and Cost.

The format for measure columns is ‘measures’, dot, ‘measure name’ (for example,
measures.profit). Use this format regardless of the name used by the data source to declare
measures.

Program ex30.sqr displays a measure, which cannot be included in SET-MEMBERS,
SET-GENERATIONS, or SET-LEVELS but is written under BEGIN-SELECT.

Aliases
Aliases are optional, descriptive names given to members and stored in alias tables. In report
output, you can use aliases instead of member names when member names are non-descriptive.
For example, a member name could be a number while its alias could be a noun such as Sales.
Use the parameters property in the setup section of your Production Reporting program to
specify whether to use names or aliases in your output.

➤ To use aliases in your Production Reporting output, write the following line in the setup section
of your Production Reporting program:

Parameters=member.alias=true;

Including this statement displays the aliases in the Name column of the Production Reporting
DDO Query Editor. (See “Viewing Cubes” on page 168 for more information).

Displaying Report Data 175

➤ To use names in your Production Reporting output, do not include the following statement in
your Production Reporting program:

Parameters=member.alias=true;

If you do not include this statement, the output displays the member names under the Subtype
Information column of the Production Reporting DDO Query Editor. (See “Viewing Cubes” on
page 168 for more information.)

Note:

Regardless of whether you display aliases in report output, you must use member names when
referencing the members in the SET-UP section of your Production Reporting program.

Column Order
The order in which dimension columns display in the BEGIN-SELECT section determines the
order the data displays in multiple rowset queries. Program ex33.sqr shows Profit, Sales, and
Cost reports for the selected Quarter and Product.

Program ex33.sqr
Begin-Setup
 Declare-Connection MSOLAP
 dsn=MSOLAP
 set-members=('product','all products.drink.alcoholic
beverages','time','1997.Q1')
 set-levels= ('time', 1,'product', 2)
 set-generations= ('time',2,'product', 3)
 End-Declare
End-Setup

Begin-Program
print 'Quarter' (+2,1)
print 'Product' (0,15)
print 'Profit' (0,48)
print 'Sales' (0,64)
print 'Cost' (0,75)
print '' (+1,1)
do Read_Cube
end-program

Begin-Procedure Read_Cube
Begin-Execute
 Connection=MSOLAP
 Schema='FoodMart 2000'
 GetData='Sales'
Begin-select loops=5000
Product &prod (+1,15)
Time &time (0,1)
Measures.Profit &prof (0,45) edit 999999.99
"Measures.Store Cost" &cog (0,70) edit 999999.99
"Measures.Store Sales" &sale (0,60) edit 999999.99
From Rowsets=(1)

176 Using Production Reporting DDO to Access MSOLAP Cubes

End-select
End-Execute
End-Procedure

Program ex33.sqr produces the following output.

Output for Program ex33.sqr
Quarter Product Profit Sales Cost
Q1 Alcoholic Beverages 1858.19 3082.00 1223.81
1 Alcoholic Beverages 592.31 981.88 389.57
2 Alcoholic Beverages 553.40 919.27 365.87
3 Alcoholic Beverages 712.48 1180.85 468.37
Q1 Beer and Wine 1858.19 3082.00 1223.81
1 Beer and Wine 592.31 981.88 389.57
2 Beer and Wine 553.40 919.27 365.87
3 Beer and Wine 712.48 1180.85 468.37
Q1 Beer 439.67 722.99 283.32
1 Beer 132.59 219.11 86.52
2 Beer 138.25 229.08 90.83
3 Beer 168.82 274.80 105.98
Q1 Wine 1418.53 2359.01 940.48
1 Wine 459.72 762.77 303.05
2 Wine 415.14 690.19 275.05
3 Wine 543.66 906.05 362.39

To change the look of the output, modify the dimension order under BEGIN-SELECT. If the
order of the Time and Product dimensions is reversed (as in Program ex34.sqr) then you get a
report with columns displayed in a different sorting order.

Program ex34.sqr
Begin-select loops=5000
Product &prod (+1,15)
Time &time (0,1)
Measures.Profit &prof (0,45) edit 999999.99
"Measures.Store Cost" &cog (0,70) edit 999999.99
"Measures.Store Sales" &sale (0,60) edit 999999.99
From Rowsets=(1)
End-select
End-Execute
End-Procedure

In Output for Program ex34.sqr, the rows are sorted first by Quarter: All the Q1 rows are first,
followed by rows 1, 2, and 3. The Quarter column sets the row order because Time is listed first
under BEGIN-SELECT.

Output for Program ex34.sqr
Quarter Product Profit Sales Cost
Q1 Alcoholic Beverages 1858.19 3082.00 1223.81
Q1 Beer and Wine 1858.19 3082.00 1223.81
Q1 Beer 439.67 722.99 283.32
Q1 Wine 1418.53 2359.01 940.48
1 Alcoholic Beverages 592.31 981.88 389.57

Displaying Report Data 177

1 Beer and Wine 592.31 981.88 389.57
1 Beer 132.59 219.11 86.52
1 Wine 459.72 762.77 303.05
2 Alcoholic Beverages 553.40 919.27 365.87
2 Beer and Wine 553.40 919.27 365.87
2 Beer 138.25 229.08 90.83
2 Wine 415.14 690.19 275.05
3 Alcoholic Beverages 712.48 1180.85 468.37
3 Beer and Wine 712.48 1180.85 468.37
3 Beer 168.82 274.80 105.98
3 Wine 543.66 906.05 362.39

Accessing Cubes: An Example
This section gives an example of a cube and discusses the Production Reporting code necessary
to access the cube. Review this section for information on:

● The Cube

● The Production Reporting Code Needed to Access the Cube

● An Explanation of the Code

The Cube
Figure 18 shows a cube with three dimensions: Product (Y-axis), Time (X-axis), and Accounts
(Z-axis). This example illustrates only a small part of an entire cube. For example, the Time
dimension could have four quarters while only the first quarter is illustrated here. In addition,
dimensions such as Location or Salesperson, could also be added to this cube.

Each cell of the cube represents a data value in a database. For example, one cell might hold a
value of Beer Sales in January. In addition to being divided by cells, the cube can also be sliced
into small segments, such as, Sales for Beer across the entire quarter or Cost in February (2) for
all products (Beer and Wine).

Figure 18 Three-Dimensional Data Cube

Sales

Cost

Beer

Wine

1 2 3

Figure 19 reveals the dimensions and levels of the cube in Figure 18 above. Drinks is a member
of the Product dimension, 1997 is a member of the Time dimension, and Sales and Cost are
members of the Accounts dimension. Each dimension corresponds to a cube axis.

178 Using Production Reporting DDO to Access MSOLAP Cubes

Figure 19 Hierarchy of a Data Cube

Product 0 5 Y-axis
All Products 1 4

Drink 2 3
Alcoholic Beverages 3 2

Beer and Wine 4 1

Beer 5 0

Generation Level AxisDimensions/Members

Wine 5 0

Time
1997

0 3 X-axis

Q1
1
2
3

1 2
2 1
3 0

3 0
3 0

Accounts

Cost
Sales

1 0
1 0
0 1 Z-axis

The Production Reporting Code Needed to Access the Cube
The Production Reporting code in Program ex35.sqr accesses the OLAP cube discussed in the
previous section. The code uses the three commands for accessing a cube: SET-MEMBERS, SET-
GENERATIONS, and SET-LEVELS.

Program ex35.sqr
Begin-Setup
 Declare-Connection MSOLAP
 dsn=MSOLAP
 set-members=('product','all products.drink.alcoholic
beverages','time','1997.Q1')
 set-levels= ('time', 1,'product', 2)
 set-generations= ('time',2,'product', 3)
 End-Declare
End-Setup

Begin-Program
print 'Quarter' (+2,1)
print 'Product' (0,15)
print 'Profit' (0,48)
print 'Sales' (0,64)
print 'Cost' (0,75)
print '' (+1,1)
do Read_Cube
end-program

Begin-Proced Read_Cube
Begin-Execute
 Connection=MSOLAP
 Schema='FoodMart 2000'
 GetData='Sales'
Begin-select loops=5000
Time &time (+1,1)
Product &prod (0,15)

Accessing Cubes: An Example 179

Measures.Profit &prof (0,45) edit 999999.99
"Measures.Store Cost" &cog (0,70) edit 999999.99
"Measures.Store Sales" &sale (0,60) edit 999999.99
From Rowsets=(1)
End-select
End-Execute
End-Procedure

Note:

The order in which the columns and rows in your output appear depends on the order in which
the dimensions are listed under BEGIN-SELECT. The columns in Output for Program ex34.sqr
are listed in Product-by Market-by Year order. To change the look of the output, modify the
dimension order under BEGIN-SELECT.

Output for Program ex35.sqr
Quarter Product Profit Sales Cost
Q1 Alcoholic Beverages 1858.19 3082.00 1223.81
1 Alcoholic Beverages 592.31 981.88 389.57
2 Alcoholic Beverages 553.40 919.27 365.87
3 Alcoholic Beverages 712.48 1180.85 468.37
Q1 Beer and Wine 1858.19 3082.00 1223.81
1 Beer and Wine 592.31 981.88 389.57
2 Beer and Wine 553.40 919.27 365.87
3 Beer and Wine 712.48 1180.85 468.37
Q1 Beer 439.67 722.99 283.32
1 Beer 132.59 219.11 86.52
2 Beer 138.25 229.08 90.83
3 Beer 168.82 274.80 105.98
Q1 Wine 1418.53 2359.01 940.48
1 Wine 459.72 762.77 303.05
2 Wine 415.14 690.19 275.05
3 Wine 543.66 906.05 362.39

An Explanation of the Code
Table 21 explains the code necessary to access the example OLAP cube.

Table 21 Code Explanation

Code Explanation

Begin-Setup

 Declare-Connection MSOLAP

 dsn=MSOLAP

 User=

 Password=

 set-members=
('product','all products.drink.alcoh
olic beverages','time','1997.Q1')

The setup section of the Production Reporting program.

● Declare-Connection—User-defined name for describing a
cube connection. In this case, we used OLAP.

● DSN—Essbase connection. Enter the DDO registry name in the DDO
registry.

● USER—User name for the MSOLAP connection.

● PASSWORD—Password for the user.

180 Using Production Reporting DDO to Access MSOLAP Cubes

Code Explanation

 set-levels= ('time',
1, 'product', 2)

 set-generations= ('time',

2, 'product', 3)

 End-Declare

End-Setup

You can also connect from the command line using the following
syntax:

SQR [program] DSN/[username]/[password]

● Parameters—Optional parameter. Declares whether to use an
alias table.

If you include this statement, aliases instead of names are
displayed in the output.

● set-members—The name of the dimension at the specific
hierarchical level.

● set-levels—Expends the dimension hierarchy for the
previously-declared dimension.

● set-generations—Overrides the specific hierarchical level
declared by set-members.

Begin-Program

print 'Quarter' (+2,1)

print 'Product' (0,15)

print 'Profit' (0,48)

print 'Sales' (0,64)

print 'Cost' (0,75)

do Read_Cube

end-program

The program section of the Production Reporting program.

● print—Prints column header text.

In this example, the program prints the headings Quarter, Product,
Profit, Sales, and Cost.

● do Read_Cube—Directs Production Reporting to read the cube.

Begin-Procedure Read_Cube

Begin-Execute

 Connection=MSOLAP

 Schema='FoodMart 2000'

 GetData='Sales'

Begins the new query or procedure execution.

● Connection—Points to the information in
Declare-Connection.

● schema—Name of the cube.

● getdata—Name of the table in the cube.

You must include Connection, Schema, and GetData in all cubes.

Begin-select loops=5000

Time &time (+2,1)

Product &prod (0,15)

Begins a SELECT paragraph.

● loops=5000—(Optional) Specifies the number of rows to retrieve.
After the specified number is processed, the SELECT loop exits.

● &time,&prod—The dimensions in the cube.

Measures.Profit &prof (0,45) edit
999999.99

"Measures.Store Cost" &cog (0,70) edit
999999.99

"Measures.Store Sales" &sale (0,60) edit
999999.99

Required to retrieve the numeric data.

Measures are hierarchical in design; each dot defines another level or
member.

The measures in this example are Profit, Store Cost, and
Store Sales.

From MSOLAP From—Required for Production Reporting.

MSOLAP—(Optional) Documents the data source of a select statement.

Accessing Cubes: An Example 181

Code Explanation

End-Select Completes Begin-Select.

End-Execute Completes Begin-Execute.

End-Procedure Completes Begin-Procedure.

182 Using Production Reporting DDO to Access MSOLAP Cubes

P a r t I I I

Appendices

In Appendices:

● Sample Resource Files
● Using the HTTP-enabled XML DDO Driver

Appendices 183

184 Appendices

A
Sample Resource Files

In This Appendix

SAP DataSource Property Description ... 185

SAP DataSource Messages ... 190

SAP DataSource Property Description
Title: Production Reporting Objects -- SAP/R3 Access
Version:
Copyright: Copyright (c) 2005
Company: Oracle
Description: SAP/R3 Access Data Source Property Descriptions
#

logon.Name=Logon
logon.Description=Logon is required to establish a connection with an SAP R3data source.
\
The SAP R3data source takes a number of parameters as part of the connection string. \
Included among these are the operator (or user) identification and the operator (or
user) \
password. The user identification and password are included as logon information. The
remaining \
connection attributes are part of the connection string provided with the data source \
description (see the SAP R3 DataSource interface documentation for a complete
description). \
To summarize, the SAP R3 connection string may have a form similar to: \
SAPR3:JNI:ASHOST=hs0311 SYSNR=53. \
Where the ASHOST would be replaced by the data source host identifier; the SYSNR would
be replaced by \
the system number for the host. \
The client (CLIENT=), user identification (USER=), password (PASSWD=) and language
(LANG=) \
are appended to the connection string. These are usually retained as properties. A user
\
interface will normally prompt for these values.
logon.Indices=logon.client \
user \
password \
logon.language \
logon.gateway \
logon.noloadbalancing \
logon.loadbalancing \
logon.advanced
logon.Required=true

SAP DataSource Property Description 185

logon.client.Name=Client
logon.client.Description=SAP logon client identifier.
logon.client.ClassName=java.lang.String
logon.client.Required=true

logon.language.Name=Language
logon.language.Description=SAP logon language (1-byte SAP language or 2-byte ISO
language).
logon.language.ClassName=java.lang.String

logon.gateway.Name=Gateway
logon.gateway.Description=The attributes of this node provide gateway specifications.
logon.gateway.Indices=logon.dest \
logon.gwhost \
logon.gwserv

logon.loadbalancing.Name=Load Balancing
logon.loadbalancing.Description=The attributes of this node provide load balancing
specifications.
logon.loadbalancing.Indices=logon.mshost \
logon.r3name \
logon.group

logon.noloadbalancing.Name=No Load Balancing
logon.noloadbalancing.Description=The attributes of this node provide additional no load
balancing specifications.
logon.noloadbalancing.Indices=logon.sysnr \
logon.ashost

logon.advanced.Name=Advanced
logon.advanced.Description=The attributes of this node provide advanced and diagnostic
specifications.
logon.advanced.Indices=logon.type \
logon.check \
logon.trace

logon.type.Name=RFC Server Type
logon.type.Description=The RFC server type. This parameter should be left empty or set
to 3, the default.
logon.type.ClassName=java.lang.String
logon.type.ValidationType=2
logon.type.Validator=com.sqribe.comutil.StringValidator
logon.type.ValidationValues=3 E 2

logon.check.Name=SAP Logon Check
logon.check.Description=SAP logon check during Open. The default is 1. The default
should always be used.
logon.check.ClassName=java.lang.String
logon.check.ValidationType=2
logon.check.Validator=com.sqribe.comutil.StringValidator
logon.check.ValidationValues=1 0

logon.trace.Name=RFC Trace
logon.trace.Description=Establish an RFC trace log. The default is 0, do not establish a
trace log.
logon.trace.ClassName=java.lang.String

186 Sample Resource Files

logon.trace.ValidationType=2
logon.trace.Validator=com.sqribe.comutil.StringValidator
logon.trace.ValidationValues=1 0

logon.dest.Name=SAP Logical Destination
logon.dest.Description=Destination in saprfc.ini, when using saprfc.ini. If the RFC
server is an R/2 system \
this destination must also be defined in the 'sideinfo' for the SAP gateway. This
parameter value should \
only be specified when an saprfc.ini file is being referenced; otherwise, it should be
left empty.
logon.dest.ClassName=java.lang.String

logon.gwhost.Name=SAP Gateway Host
logon.gwhost.Description=The host name of the SAP gateway, when the server is R/2 or
External. \
This parameter value should only be specified when the server is R/2 or External;
otherwise, it should be left empty.
logon.gwhost.ClassName=java.lang.String

logon.gwserv.Name=SAP Gateway Service
logon.gwserv.Description=The service of the SAP gateway, when the server is R/2 or
External. \
This parameter value should only be specified when the server is R/2 or External;
otherwise, it should be left empty.
logon.gwserv.ClassName=java.lang.String

logon.mshost.Name=SAP Message Server Host
logon.mshost.Description=The host name of the SAP message server, when using load
balancing. \
This parameter value should only be specified when the server is R/3 and load balancing
is being used; \
otherwise, it should be left empty.
logon.mshost.ClassName=java.lang.String

logon.r3name.Name=R/3 Load Balancing Server Name
logon.r3name.Description=The SAProuter string for the R/3 system, when using load
balancing. \
This parameter value should only be specified when the server is R/3 and load balancing
is being used; \
otherwise, it should be left empty.
logon.r3name.ClassName=java.lang.String

logon.group.Name=Application Server Group Name
logon.group.Description=The name of the group of application servers, when using load
balancing. \
This parameter value should only be specified when the server is R/3 and load balancing
is being used; \
otherwise, it should be left empty.
logon.group.ClassName=java.lang.String

logon.ashost.Name=External Server Name
logon.ashost.Description=The host name of a specific application server, when using R/3
without load balancing. \
This parameter value should only be specified when the server is R/3, the server is an
external application \
server, and load balancing is not being used; \

SAP DataSource Property Description 187

otherwise, it should be left empty.
logon.ashost.ClassName=java.lang.String

logon.sysnr.Name=External Server System Number
logon.sysnr.Description=The SAP system number of a specific application server, when
using R/3 without load balancing. \
This parameter value should only be specified when the server is R/3, the server is an
external application \
server, and load balancing is not being used; \
otherwise, it should be left empty.
logon.sysnr.ClassName=java.lang.String

filters.Name=SAP Hierarchy Filters
filters.Description=SAP hierarchy filters provide a mechanism for controlling the amount
\
of information retrieved as part of the hierarchy. For example, the hierarchy may
include \
all business objects or only business objects with BAPIs. In another case, the hierarchy
\
may only include business objects with BAPIs that have a status of "released."
filters.Indices=filters.BAPI \
filters.Objects \
filters.Interfaces \
filters.Organization \
filters.Implemented \
filters.Released \
filters.Modelled \
filters.Obsolete \
filters.Delegated

filters.BAPI.Name=Object Type Filter
filters.BAPI.Description=When activated, this filter will restrict the hierarchy to
business \
objects to those containing BAPIs. When deactivated, the hierarchy, potentially, will
contain \
all business objects.
filters.BAPI.ClassName=java.lang.Boolean
filters.BAPI.ValidationType=2
filters.BAPI.Validator=com.sqribe.comutil.BooleanValidator
filters.BAPI.ValidationValues=true false

filters.Objects.Name=Object Filter
filters.Objects.Description=If this filter and the Interfaces filter are deactivated,
i.e., \
set to false, all SAP Business Object types and interface types are returned. When this
\
filter is activated, then only Business Object types are returned. \
When not specified, this filter defaults to "false".
filters.Objects.ClassName=java.lang.Boolean
filters.Objects.ValidationType=2
filters.Objects.Validator=com.sqribe.comutil.BooleanValidator
filters.Objects.ValidationValues=true false

filters.Interfaces.Name=Object Filter
filters.Interfaces.Description=If this filter and the Objects filter are deactivated,
i.e., \

188 Sample Resource Files

set to false, all SAP Business Object types and interface types are returned. When this
\
filter is activated, then only Interface type identifiers are returned. \
When not specified, this filter defaults to "false".
filters.Interfaces.ClassName=java.lang.Boolean
filters.Interfaces.ValidationType=2
filters.Interfaces.Validator=com.sqribe.comutil.BooleanValidator
filters.Interfaces.ValidationValues=true false

filters.Organization.Name=Organizational Unit Filter
filters.Organization.Description=Filter of organizational unit object types. \
A value of "true" indicates that all organizational unit object types are returned. \
A value of "false" indicates that no organizational unit object types are returned. \
When not specified, this filter defaults to "false".
filters.Organization.ClassName=java.lang.Boolean
filters.Organization.ValidationType=2
filters.Organization.Validator=com.sqribe.comutil.BooleanValidator
filters.Organization.ValidationValues=true false

filters.Implemented.Name=With Implemented Filter
filters.Implemented.Description=Filter for implemented SAP Business Object types.
Implmented \
object types have not been officially released but can be used in a runtime environment.
Use \
this filter when the "Released" filter is set to "Released". The value, "true", means
that object \
types with status, "implemented", are also returned. The value, "false", means that
objects \
types with status, "implemented", are not returned. \
When not specified, the default value is "true".
filters.Implemented.ClassName=java.lang.Boolean
filters.Implemented.ValidationType=2
filters.Implemented.Validator=com.sqribe.comutil.BooleanValidator
filters.Implemented.ValidationValues=true false

filters.Released.Name=Released Object Type Filter
filters.Released.Description=Filter for released SAP Business Object types. \
The value, "true", means that "released" object types are returned. \
The value, "false", means that "released" object types are not returned. \
When not specified, the default value is "false".
filters.Released.ClassName=java.lang.Boolean
filters.Released.ValidationType=2
filters.Released.Validator=com.sqribe.comutil.BooleanValidator
filters.Released.ValidationValues=true false

filters.Modelled.Name=Modelled Object Type Filter
filters.Modelled.Description=Filter for modelled SAP Business Object types. \
The value, "true", means that all modelled object types are returned. \
The value, "false", means that no modelled object types are returned. \
When not specified, the default value is "false".
filters.Modelled.ClassName=java.lang.Boolean
filters.Modelled.ValidationType=2
filters.Modelled.Validator=com.sqribe.comutil.BooleanValidator
filters.Modelled.ValidationValues=true false

filters.Obsolete.Name=With Obsolete Filter
filters.Obsolete.Description=Filter for obsolete SAP Business Object types. Use \

SAP DataSource Property Description 189

this filter when the "Released" filter is set to "Released". The value, "true", means
that object \
types with status, "obsolete", are also returned. The value, "false", means that objects
\
types with status, "obsolete", are not returned. \
When not specified, the default value is "false".
filters.Obsolete.ClassName=java.lang.Boolean
filters.Obsolete.ValidationType=2
filters.Obsolete.Validator=com.sqribe.comutil.BooleanValidator
filters.Obsolete.ValidationValues=true false

filters.Delegated.Name=With Delegated Object Type Filter
filters.Delegated.Description=Filter for delegated SAP Business Object types. \
The value, "true", means that all object types, including delegated object types, are
returned. \
The value, "false", means that no delegated object types are returned. \
When not specified, the default value is "true".
filters.Delegated.ClassName=java.lang.Boolean
filters.Delegated.ValidationType=2
filters.Delegated.Validator=com.sqribe.comutil.BooleanValidator
filters.Delegated.ValidationValues=true false

SAP DataSource Messages

Title: Production Reporting Objects -- SAPR3acc
Version:
Copyright: Copyright (c) 1999
Company: SQRIBE Technologies
Description: SAP R3 Access Common Messages
#

The connection string protocol value is not recognized by the SAP R3 DAO driver
0 class name
1 method name
2 specified protocol name
3 expected protocol name
4 the connection string
InvalidProtocolName.text=The specified connection protocol, "{2}", is not supported by \
this driver. This driver supports the "{3}" protocol. The connection string is: {4}.
InvalidProtocolName.logtext={0}.{1}(): The specified connection protocol, "{2}", is not
supported by \
this driver. This driver supports the "{3}" protocol. The connection string is: {4}.

The connection string subprotocol value is not recognized by the SAP R3 DAO driver
0 class name
1 method name
2 specified subprotocol name
3 expected subprotocol name
4 the connection string
InvalidSubProtocolName.text=The specified connection subprotocol, "{2}", is not
supported by \
this driver. This driver supports the "{3}" subprotocol. The connection string is: {4}.
InvalidSubProtocolName.logtext={0}.{1}(): The specified connection subprotocol, "{2}",
is not supported by \
this driver. This driver supports the "{3}" subprotocol. The connection string is: {4}.

190 Sample Resource Files

A parameter in the connection string was not recognized
0 class name
1 method name
2 specified parameter key
3 specified parameter value
4 the connection string
UnknownLogonParameter.text=The specified parameter, "{2}={3}", is not recognized by \
this driver. The connection string is: {4}. The parameter will be passed to the data
source.
UnknownLogonParameter.logtext={0}.{1}(): The specified parameter, "{2}={3}", is not
recognized by \
this driver. The connection string is: {4}. The parameter will be passed to the data
source.

Unexpected SAP R3 RFC error occurred. It has been converted to an SAP R3 exception.
0 class catching the exception
1 method catching the exception
2 error key
3 error group
4 error message
SAPR3Exception.text=SAP R3 message: key={2}, group={3}, and msg={4}.
SAPR3Exception.logtext={0}.{1}(): SAP R3 exception caught: key={2}, group={3}, and msg=
{4}.

SAPR3Field internal error set field with improper field type
0 class catching the exception
1 method catching the exception
2 the string dump of the underlying field
SAPR3FieldInternalError.text=Unexpected field instance of {2}.
SAPR3FieldInternalError.logtext={0}.{1}(): Unexpected field instance of {2}.

BOR Tree retrieval error message
0 class name
1 method name
2 the SAP R/3 message text
BorTreeMsg.text={2}.
BorTreeMsg.logtext={0}.{1}(): {2}.

ParameterException container message, indicating errors occurring during container
marshalling
0 class name
1 method name
2 messages
ParameterException.text={2}
ParameterException.logtext={0}.{1}(): {2}

There are too many parameters in the parameter list
0 class name
1 method name
2 input parameter count from metadata
3 parameter list count
TooManyParameters.text=Too many parameters. There are {2} parameters in the metadata \
but there are {3} parameters in the parameter list.
TooManyParameters.logtext={0}.{1}: Too many parameters. There are {2} parameters in the
metadata \
but there are {3} parameters in the parameter list.

SAP DataSource Messages 191

There are too few parameters in the parameter list
0 class name
1 method name
2 input parameter count from metadata
3 parameter list count
TooFewParameters.text=Too few parameters. There are {2} parameters in the metadata \
but there are {3} parameters in the parameter list.
TooFewParameters.logtext={0}.{1}: Too few parameters. There are {2} parameters in the
metadata \
but there are {3} parameters in the parameter list.

Conflicting field types for the expected and actual parameters
0 class name
1 method name
2 input parameter field type
3 parameter list field type
ConflictingParameterFieldTypes.text=Conflicting parameter field types. The metatdata \
parameter field type is {2}. The input parameter field type is {3}.
ConflictingParameterFieldTypes.logtext={0}.{1}: Conflicting parameter field types. The
metatdata \
parameter field type is {2}. The input parameter field type is {3}.

Parameter format error
0 class name
1 method name
2 expected parameter name
3 expected parameter field type
4 received parameter name
5 received parameter field type
6 exception
ParameterFormatError.text=Expected parameter {2} has a field type of {3}. The parameter
list \
parameter {4} has a field type of {5}. The exception was {6}.
ParameterFormatError.logtext={0}.{1}: Expected parameter {2} has a field type of {3}.
The parameter list \
parameter {4} has a field type of {5}. The exception was {6}.

Required parameter is null
0 class name
1 method name
2 parameter list index
RequiredParameterEmpty.text=Parameter {2} is required parameter, but is empty.
RequiredParameterEmpty.logtext={0}.{1}: Parameter {2} is required parameter, but is
empty.

Invocation of object returned an error message
0 class name
1 method name
2 object type
3 error code
4 error type
5 workarea
6 message
7 text
InvokeErrorMessage.text=Object, {2}, invocation returned error message: \
Code: {3}, Type: {4}, Workarea: {5}, Message: {6}, Text: {7}.

192 Sample Resource Files

InvokeErrorMessage.logtext={0}.{1}: Object, {2}, invocation returned error message: \
Code: {3}, Type: {4}, Workarea: {5}, Message: {6}, Text: {7}.

Handle is not invalid or null. This is mostly likely an internal processing error
0 class name
1 method name
2 table object state
InvalidHandle.text=The RFC table handle is not valid or is null. \
The handle either has not been created or was previously destroyed. \
Table object state: {2}.
InvalidHandle.logtext={0}.{1}: The RFC table handle is not valid or is null. \
The handle either has not been created or was previously destroyed. \
Table object state: {2}.

Rowset is null
0 class name
1 method name
2 parameter name
RowsetIsNull.text=Expected rowset for parameter, {2}, is null.
RowsetIsNull.logtext={0}.{1}: Expected rowset for parameter, {2}, is null.

Fetch of structure failed
0 class name
1 method name
2 parent object name (e.g., the schema procedure name)
3 structure name
4 exception message
StructureFetchFailed.text=An exception was caught while retrieving the \
description of the structure, {3}, for object, {2}. The exception message is: {4}.
StructureFetchFailed.logtext={0}.{1}: An exception was caught while retrieving the \
description of the structure, {3}, for object, {2}. The exception message is: {4}.

Field not found. This should not occur. It means that the metadata returned
from SAP is not valid (or the permissions of the user are really messed up).
0 class name
1 method name
2 column name
3 field name
FieldNotFound.text=The field, {3}, for column, {2}, was not found.
FieldNotFound.logtext={0}.{1}(): The field, {3}, for column, {2}, was not found.

CallResults failed for a HelpValues retrieval. This should not occur.
It means that the metadata returned from SAP is not valid (or the permissions
of the user are really messed up).
0 class name
1 method name
2 object name
3 procedure name
4 parameter name
5 field name
6 exception message
HelpCallResultsFailed.text=The BAPI call to obtain help description \
information for object type, {2}, procedure, {3}, parameter, {4}, and field, {5}, \
failed. Exception: {6}.
HelpCallResultsFailed.logtext={0}.{1}(): The BAPI call to obtain help description \
information for object type, {2}, procedure, {3}, parameter, {4}, and field, {5}, \
failed. Exception: {6}.

SAP DataSource Messages 193

The help description metadata is invalid.
0 class name
1 method name
2 column name
3 exception message
HelpMetaDataInvalid.text=The help description metadata is invalid for \
column, {2}. Exception: {3}.
HelpMetaDataInvalid.logtext={0}.{1}(): The help description metadata is invalid for \
column, {2}. Exception: {3}.

The help description values are invalid.
0 class name
1 method name
2 column name
3 exception message
HelpValuesInvalid.text=The help description values are invalid for \
column, {2}. Exception: {3}.
HelpValuesInvalid.logtext={0}.{1}(): The help description values are invalid for \
column, {2}. Exception: {3}.

The Help description return value
0 class name
1 method name
2 object name
3 procedure name
4 parameter name
5 field name
6 message text (dump of return value row)
HelpReturnValue.text=The request for help description for \
object={2}, procedure={3}, parameter={4}, field={5}, produced message: {6}.
HelpReturnValue.logtext={0}.{1}(): The request for help description for \
object={2}, procedure={3}, parameter={4}, field={5}, produced message: {6}.

Expected parameters based upon the metadata information
0 class name
1 method name
2 parameter metadata dump
ExpectedParameterMetadata.logtext={0}.{1}() The expected parameter metadata is: {2}.

Actual parameter list
0 class name
1 method name
2 parameter list dump
ActualParameterList.logtext={0}.{1}() The actual parameter list is: {2}.

194 Sample Resource Files

B
Using the HTTP-enabled XML

DDO Driver

In This Appendix

Usage ... 195

Accessing XML Files via HTTP Using the Production Reporting DDO Query Editor .. 197

Limitation ... 197

Note:

See “XML Support in Production Reporting” in Volume 1 of the Hyperion SQR Production
Reporting Developer's Guide for a description of XML support in Production Reporting.

Usage
The XML DDO driver checks for the presence of a property URL, and reads data from that URL
if specified. If the URL property is not present, the XML DDO driver reads data from the XML
files in the directory specified in the connection string. You do not need a special DDO registry
entry to access URLs. Instead, you can make a DDO registry entry that points to a local directory,
and a Production Reporting program can use that entry to access XML files via URLs.

➤ To use the XML DDO driver:

1 Define a registry entry

2 Declare a connection

3 Use Getdata= in the begin-execute section

Review the following sections for specific information on each of the above steps, as well as how
to use alter-connection and specify URLs at runtime.

Define a Registry Entry
Define a DDO Registry entry which uses the XML DDO driver. Use the DDO Registry Editor
to create one, or edit the properties\Registry.properties file manually. It should contain an entry
such as:

 SampleXML.desc=Sample XML files
 SampleXML.class=com.sqribe.xmlacc.XMLDataSource
 SampleXML.lib=

Usage 195

 SampleXML.load=
 SampleXML.conn=D:\\XML_Data\\SampleXML

Declare a Connection
Declare a connection to your data source in the BEGIN-SETUP section of your Production
Reporting program. For example:

 begin-setup
 declare-connection xml
 DSN=SampleXML
 end-declare
 end-setup

This allows access to the files in the directory specified by the connection string in the registry.
(D:\XML_Data\SampleXML in the example above.)

To use the new HTTP features of the driver, include PARAMETERS= URL=<your_url> in the
connection declaration:

 begin-setup
 declare-connection xml
 DSN=SampleXML
 PARAMETERS= URL=http://server/path/filename.xml;
 end-declare
 end-setup

Use Getdata= in the Begin-Execute Section
In the BEGIN-EXECUTE portion of your Production Reporting DDO program, specify the
connection. Make sure to use the file name (without the extension) as the schema name
parameter to GetData:

 begin-execute
 connection=xml
 GetData='filename'

An Alternate Method
Instead of specifying the URL in a DECLARE-CONNECTION block, you can specify it in ALTER-
CONNECTION. For example:

 alter-connection
 NAME=xml
 PARAMETERS= URL=http://server/path/filename.xml;

The ALTER-CONNECTION method is particularly useful if you specify the connection on the
Production Reporting DDO command line. In this case, you can leave out the DECLARE-
CONNECTION statements, and simply alter the default connection:

 alter-connection

196 Using the HTTP-enabled XML DDO Driver

 NAME=default
 PARAMETERS= URL=http://server/path/filename.xml;

Specifying URLs at Runtime
To use a URL from a variable, build a parameter string which begins 'URL=' and ends ';', and
use it in an alter-connection statement. For example:

 let $params = 'URL=' || $url || ';'
 alter-connection
 NAME=xml
 PARAMETERS=$params

Accessing XML Files via HTTP Using the Production Reporting
DDO Query Editor

Editing the property files slightly makes it easier to use the Production Reporting DDO Query
Editor to test this driver. Edit the following file and uncomment the lines defining the logon
property:

properties\com_sqribe_xmlacc_XMLDataSource_PropertyDescriptions.properties

Defining the logon property this way, including setting logon.Required=true, forces the
Production Reporting DDO Query Editor to display a dialog allowing entry of the URL value
at runtime.

If you also edit the following file and uncomment the URL=line, the logon dialog box displays
a default value that you can update.

properties\com_sqribe_xmlacc_XMLDataSource_Properties.properties

This saves you typing while you test using the Production Reporting DDO Query Editor;
however, it also prevents use of the XML driver to access the directory of files specified in the
connection string. This is because the URL property is always defined for all XML data sources,
and thus the driver always uses the URL provided.

Note:

Do not define a logon property and specify a default URL on a production installation, because
it may affect existing Production Reporting DDO programs which access XML files on the file
system. These changes are most useful in a development environment, when you use the
Production Reporting DDO Query Editor to view the structure, schema names, and content of
XML files obtained through HTTP.

Limitation
When using Oracle's Hyperion® SQR® Production Reporting DDO with the XML DDO
driver, the XML DDO driver uses a validating DOM parser. This involves significant memory

Accessing XML Files via HTTP Using the Production Reporting DDO Query Editor 197

usage, and means that large XML files (approaching a three megabytes in size) may trigger out-
of-memory errors in the JVM.

198 Using the HTTP-enabled XML DDO Driver

Index

A
access to messages, 75
adding

a specification in the registry, 88
connection specification information, 74

allocateFields() method, 71
application security, 12
architecture for Production Reporting DDO drivers,

16

B
base classes, 11
BEGIN-SELECT, 135
bi-directional gateway, 73
bwacc driver, 132

C
call() method, 44
calling a procedure to obtain data, 15
calling procedures, 44
CallResults interface, 15
capabilities, 28
capabilities files, 56
capability, code example, 29
class hierarchy, used by message facility, 57
close() method, 61
code example

access to messages, CSV driver, 76
call () method, 44
CSV driver, 55
registry entry, 59
retrieving data and processing the data, 19
set uer and password, 25
to check for the procedure's return value, 36
using a selector to pick specific dimensions, 50

column metadata
providing, 62

retrieving, 34
columns, 37
common connection implementation method, 73
connection

establishing, 25
interface, 13, 25

connection interface, implementing, 60
createField() method, 71
createSchemas() method, 61
creating a new data source, edit a registry file, 22
CSV

driver, 55
driver template, 75
interface, 58

CSVFileclass methods, 62

D
data access strategies, 17
data objects

definition of, 14
obtaining information about, 33

data source
capabilities, 28
implementation mehods, 73
name, 87
specification, 87

database cursors, 44
DataSource interface, 59
DataSourceManager, 20
DataSourceManagerAdmin, 22
DDO

access from other programming languages, 12
API, 19
defined, 12
SDK, 12

defining a new data source, 22
dimension properties, accessing, 135

A B C D E G H I L M N O P R S T U W

Index 199

driver manager, 17

E
error notification, 77
establishing a connection, 25
executing a command to obtain data, 15
executing commands, 42

G
getData() method, 66
getDBTypeName() method, 65
getField() method, 64, 65, 70
getFieldCount() method, 70
getRow() method, 70
getSchemaObjectColumns() method, 62

H
hierarchical and multidimensional data, 47

I
IO access to the file system, 59

L
listDir()method, 61
listing procedure parameters, 35
log messages, 76

M
managing multiple registries, 21
message conventions, 76
message file

creating, 57
demo_csv_CSV.properties, 57

metadata
access, 12
function, 14
obtaining, 30

multidimensional data, 47
multiple calls, 20
multiple registries, 22

N
names

of the capabilities files, 57

of the properties files, 56
next() method, 70

O
obtaining data, 34

getData () method, 34
three methods, 15

obtaining metadata, 30
obtaining metadata about procedures, 35
open system, 12
open() call, 25
open()method, 59

P
platforms, for SAP BW, 131
procedure, 14
procedureresult sets, 36
processing

logon properties, 25
results using the CallResults interface, 15
results using the rowset interface, 40

properties files, 56
property descriptions file, 56
property sheet, 13

R
registering a new data source, 13
registry, 21
registry.properties file, adding a data source to, 132
remote data access, 12
requesting, 38
rethrow convenience methods, 76
retrieving column metadata, 34
retrieving multidimensional data

using a regular selector, 50
using MDSelector, 51

return value, 36
Rowset interface, 16

S
sample code, loading the registry, 21
SAP BW

adding a data source, 132
copying files to the /lib directory, 132
supported platforms, 131

A B C D E G H I L M N O P R S T U W

200 Index

schema, 30
listing data objects in a schema, 32
traversing schemas, 31

schemas, 14
SDK, 12
searching the Registry for a data source, 20
selecting and filtering, 42
selector, to pick the desired columns, 42
setSchemas() method, 61
static rethrow() method, 61

T
transaction interface, 14
transactions, 46

U
user messages, 76
using getData to obtain data, 15

W
writing a DDO driver, 55

A B C D E G H I L M N O P R S T U W

Index 201

A B C D E G H I L M N O P R S T U W

202 Index

	Contents
	Understanding Production Reporting
	Production Reporting Basics
	About Production Reporting DDO
	Production Reporting DDO Software Development Kit
	Advantages of Production Reporting DDO Interfaces
	Production Reporting DDO Architecture
	Establishing a Data Source Connection
	Supporting Transactions
	Obtaining Metadata
	Obtaining Data
	Processing Results
	Implementing Production Reporting DDO Interfaces with Drivers

	Data Access Strategies

	Creating Production Reporting DDO Applications
	About the Production Reporting DDO API
	A Simple Code Example
	Managing Data Sources
	Registry Files
	The DataSourceManagerAdmin Class
	Defining a New Data Source

	Establishing a Connection
	Processing Logon Properties

	Discovering Capabilities
	Checking for a Capability

	Obtaining Metadata
	Obtaining Schema Information
	Listing Data Objects in a Schema
	Obtaining Information about Data Objects
	Retrieving Column Metadata
	Obtaining Metadata About Procedures
	Determining the Return Value

	Requesting Data
	Retrieving Data with getData
	Executing Commands
	Calling Procedures and Processing Call Results
	Performing Transactions
	Obtaining Hierarchical and Multidimensional Data
	Retrieving Multidimensional Data Using a Regular Selector
	Retrieving Multidimensional Data Using MDSelector

	Writing a Production Reporting DDO Driver
	About Writing a Driver
	Summary of Steps
	Step 1: Create the Properties, Capabilities, and Message Files
	Creating the Properties Files
	Creating the Capabilities Files
	Creating the Messages File
	The CSV Interface

	Step 2: Implement the DataSource Interface
	Step 3: Implement the Connection Interface
	Providing Column Metadata
	Implementing getData
	Implementing getData with Selector
	CSVFile Class

	Step 4: Implementing Rowset

	Programming Considerations
	Production Reporting DDO Adapters
	Driver Organization Tips
	Registy Editor

	Messages and Exceptions
	CSV Example
	Message Forms

	Properties and Capabilities
	Descriptions
	Localization
	Hierarchical Structure

	Internationalization
	Message Editor
	Loading Messages
	Adding Messages
	Editing Message Contents

	Property Editor
	Loading Properties

	Testing and Debugging Drivers
	Using the Query Editor to Test and Debug Drivers

	Managing Data Sources
	Data Source Specifications
	Adding a Data Source Specification in the Registry Editor
	Data Source Descriptions and Templates
	Hyperion Essbase
	SAP R/3 and SAP BW
	Microsoft OLEDB for OLAP
	Microsoft OLEDB
	JDBC
	XML
	Delimiter Separated Values
	OMG Corba Sample
	Microsoft DCOM Sample
	CSV Sample

	Utilities Package and Common Facilities
	About the Utilities Package
	Common Components of the Utilities Package
	Naming Scheme
	Property Resource Bundles
	Instrumentation

	Message Facility
	Message Text
	Message Property Files
	Localization Example
	Services

	Property Facility
	DataSource Class
	Property Descriptions
	Property Sheets
	Retrieving Properties and Capabilities
	Secure Properties and Capabilities
	Property Auxiliary Services
	Property Validators

	Using Production Reporting DDO to Access Data
	Using Production Reporting DDO to Access SAP R/3 Data
	Data Access Requirements
	Using the Registry Editor to Make an SAP R/3 Connection
	Using the Query Editor to See the SAP Tree Structure
	Using SQR Production Reporting Studio to Build a Report with a BAPI
	Understanding the Production Reporting Code for SAP R/3

	Using Production Reporting DDO to Access an SAP BW Data Source
	Accessing the SAP BW OLAP Server
	Supported Platforms
	Copying Files to the /lib Directory
	Adding the SAP BW Data Source to the Registry.properties File
	The Hierarchical Structure of Objects for an SAP BW Data Source
	SAP BW and the Production Reporting Language
	Accessing Dimension Properties
	Specifying Dimension Members
	Specifying the Order in Which to Return Dimension Members
	Restricting the Returned Result Set
	Limiting the Set of Values Used for a Dimension
	Using SAP BW Variables
	Returning a Set of Descendants
	Finding a Dimension’s Ancestor
	Defining Calculated Key Figures, Restricted Key Figures, and Calculated Members

	Accessing SAP BW Data from SQR Production Reporting Studio

	Using Production Reporting DDO to Access Essbase Cubes
	Overview of Cubes
	Viewing Cubes
	Using Cube Commands in Production Reporting
	SET-MEMBERS
	SET-GENERATIONS
	SET-LEVELS

	Displaying Report Data
	Measures
	Aliases
	Column Order

	Accessing Cubes: An Example
	The Cube
	The Production Reporting Code Needed to Access the Cube
	An Explanation of the Code

	Using Production Reporting DDO to Access MSOLAP Cubes
	Overview of Cubes
	Viewing Cubes
	Using Cube Commands in Production Reporting
	SET-MEMBERS
	SET-GENERATIONS
	SET-LEVELS

	Displaying Report Data
	Measures
	Aliases
	Column Order

	Accessing Cubes: An Example
	The Cube
	The Production Reporting Code Needed to Access the Cube
	An Explanation of the Code

	Appendices
	Sample Resource Files
	SAP DataSource Property Description
	SAP DataSource Messages

	Using the HTTP-enabled XML DDO Driver
	Usage
	Define a Registry Entry
	Declare a Connection
	Use Getdata= in the Begin-Execute Section
	An Alternate Method
	Specifying URLs at Runtime

	Accessing XML Files via HTTP Using the Production Reporting DDO Query Editor
	Limitation

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /FranklinGothic-BookCnd
 /FranklinGothic-BookCndItal
 /FranklinGothic-DemiCnd
 /FranklinGothic-DemiCndItal
 /FranklinGothic-MedCnd
 /FranklinGothic-MedCndItal
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /Minion-Black
 /Minion-Bold
 /Minion-BoldItalic
 /Minion-Italic
 /Minion-Regular
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Palatino-Roman
 /Symbol
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (This file has been modified for Distiller 7.0 PDF, as described in the Oracle Documentation Processes Guide to Creating PDF. Also, Franklin Gothic and Minion fonts are set to Always Embed.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

