Chapter 4

Database Administration

The following sections provide information about the tools that can be used to maintain your
Oracle Utilities Work and Asset Management Database.

Using SQL

SQL is a simple yet powerful database access language that is the standard language for relational
database management systems. The SQL implemented by Oracle Utilities Work and Asset
Management for Oracle is 100 percent compliant with the ANSI/ISO standard SQL data
language.

SQL Statements

All operations on the information in an Oracle database are performed using SQL statements. A
SQL statement is a string of SQL text that is given to Oracle to execute. A statement must be the
equivalent of a complete SQL sentence, as in:

SELECT ename, deptno FROM emp;

Only a complete SQL statement can be executed, whereas a sentence fragment, such as the
following, generates an error indicating that more text is required before a SQL statement can

execute:
SELECT ename

A SQL statement can be thought of as a very simple, but powerful, computer program or
instruction. SQL statements are divided into the following categories:

*  Data Definition Language (DDL) statements

*  Data Manipulation Language (DML) statements
*  Transaction control statements

*  Session control statements

*  System control statements

*  Embedded SQL statements

Data Definition Statements (DDL)

DDL statements define, maintain, and drop schema objects when they are no longer needed.
DDL statements also include statements that permit a user to grant other users the privileges, or
rights, to access the database and specific objects within the database.

DDL statements implicitly commit the preceding and start a new transaction.

Appendix - Database Administration 1503
User Guide for Release 1.8.1.5 Doc v1 rev.0 11/16/10



Using SQL

Some examples of DDL statements follow:
CREATE TABLE plants
(COMMON_NAME VARCHAR?2 (15), LATIN_NAME VARCHAR?2 (40));
DROP TABLE plants;
GRANT SELECT ON emp TO scott;
REVOKE DELETE ON emp FROM scott;

Data Manipulation Statements (DML)

DML statements manipulate the database’s data. For example, querying, inserting, updating, and
deleting rows of a table are all DML operations; locking a table or view and examining the
execution plan of an SQL statement are also DML operations.

DML statements are the most frequently used SQL statements. Some examples of DML
statements follow:

SELECT ename, mgr, comm + sal FROM emp;
INSERT INTO emp VALUES

(1234, ‘DAVIS’, SALESMAN?’, 7698, *14-FEB-1988', 1600, 500, 30);
DELETE FROM emp WHERE ename IN (‘"WARD’’JONES’);

Transaction Control Statements
Transaction control statements manage the changes made by DML statements. They allow the

user or application developer to group changes into logical transactions. Examples include
COMMIT and ROLLBACK.

Session Control Statements

Session control statements allow a user to control the properties of his current session, including
enabling and disabling roles and changing language settings. The two session control statements
are ALTER SESSION and SET ROLE.

System Control Statements

System control commands change the properties of the Oracle server instance. The only system
control command is ALTER SYSTEM,; it allows you to change such settings as the minimum
number of shared servers, to kill a session, and to perform other tasks.

Embedded SQL Statements

Embedded SQL statements incorporate DDL, DML, and transaction control statements in a
procedural language program (such as those used with the Oracle Precompilers). Examples
include OPEN, CLOSE, FETCH, and EXECUTE.

Cursors

A cursor is a handle or name for a private SQL area—an area in memory in which a parsed
statement and other information for processing the statement are kept.

Although most Oracle users rely on the automatic cursor handling of the Oracle utilities, the
programmatic interfaces offer application designers more control over cursors. In application

Appendix - Database Administration 1504
User Guide for Release 1.8.1.5 Doc v1 rev.0 11/16/10



Using SQL

development, a cursor is a named resource available to a program and can be used specifically
for the parsing of SQL statements embedded within the application.

Each user session can open multiple cursors up to the limit set by the initialization parameter
OPEN_CURSORS. However, applications should close unneeded cursors to conserve system
memory. If a cursor cannot be opened due to a limit on the number of cursors, the database
administrator can alter the OPEN_CURSORS initialization parameter.

Some statements (primarily DDL statements) require Oracle to implicitly issue recursive SQL
statements, which also require recursive cursors. For example, a CREATE TABLE statement
causes many updates to various data dictionary tables to record the new table and columns.
Recursive calls are made for those recursive cursors; one cursor may execute several recursive
calls.

Transactions

A transaction is a logical unit of work that comprises one or more SQL statements executed by a
single uset. According to the ANSI/ISO SQL standard, with which Oracle is compatible, a
transaction begins with the user’s first executable SQL statement. A transaction ends when it is
explicitly committed or rolled back (both terms are discussed later in this section) by that user.

Consider a banking database. When a bank customer transfers money from a savings account to
a checking account, the transaction might consist of three separate operations: decrease the
savings account, increase the checking account, and record the transaction in the transaction
journal.

Oracle must guarantee that all three SQL statements are performed to maintain the accounts in
proper balance. When something prevents one of the statements in the transaction from
executing (such as a hardware failure), the other statements of the transaction must be undone;
this is called “rolling back.” If an error occurs in making either of the updates, then neither
update is made.

Appendix - Database Administration 1505
User Guide for Release 1.8.1.5 Doc v1 rev.0 11/16/10



Using SQL

UPDATE savings accounts

SET balance = balance - 500 ——— Decrement Savings Account
WHERE account = 3209;

UPDATE checking accounts
SET balance = balance + 500 —}—— Increment Checking Account

WHERE account = 3208;

INSERT INTO journal VALUES
(journal_seq NEXTVAL, 1B°  ——— Record in Transaction Journal
3209, 3208, 500);

COMMIT WORK; —1  End Transaction

Committing and Rolling Back Transactions

The changes made by the SQL statements that constitute a transaction can be either committed
or rolled back. After a transaction is committed or rolled back, the next transaction begins with
the next SQL statement.

Committing a transaction makes permanent the changes resulting from all SQL statements in
the transaction. The changes made by the SQL statements of a transaction become visible to
other user sessions’ transactions that start only after the transaction is committed.

Rolling back a transaction retracts any of the changes resulting from the SQL statements in the
transaction. After a transaction is rolled back, the affected data is left unchanged as if the SQL
statements in the transaction were never executed.

PL/SQL

PL/SQL is Oracle’s procedural language extension to SQL. PL/SQL combines the ease and
flexibility of SQL with the procedural functionality of a structured programming language, such
as IF ... THEN, WHILE, and LOOP.

When designing a database application, a developer should consider the advantages of using
stored PL/SQL.:

*  Because PL/SQL code can be stored centrally in a database, network traffic between
applications and the database is reduced, so application and system performance
increases.

*  Data access can be controlled by stored PL/SQL code. In this case, the usets of
PL/SQL can access data only as intended by the application developer (unless anothetr
access route is granted).

*  PL/SQL blocks can be sent by an application to a database, executing complex
operations without excessive network traffic.

Appendix - Database Administration 1506
User Guide for Release 1.8.1.5 Doc v1 rev.0 11/16/10



Using SQL

Even when PL/SQL is not stored in the database, applications can send blocks of PL/SQL to
the database rather than individual SQL statements, thereby again reducing network traffic.

The following sections describe the different program units that can be defined and stored
centrally in a database.

Procedures and Functions

Procedures and functions consist of a set of SQL and PL/SQL statements that are grouped
together as a unit to solve a specific problem or perform a set of related tasks. A procedure is
created and stored in compiled form in the database and can be executed by a user or a database
application.

Procedures and functions are identical except that functions always return a single value to the
caller, while procedures do not return values to the caller.

Packages

Packages provide a method of encapsulating and storing related procedures, functions, variables,
and other package constructs together as a unit in the database. While packages allow the
administrator or application developer the ability to organize such routines, they also offer
increased functionality (for example, global package variables can be declared and used by any
procedure in the package) and performance (for example, all objects of the package are parsed,
compiled, and loaded into memory once).

Keys

The term “key” is used in the definitions of several types of integrity constraints. A key is the
column or set of columns included in the definition of certain types of integrity constraints.
Keys describe the relationships between the different tables and columns of a relational
database. The different types of keys include:

*  primary key - The column or set of columns included in the definition of a table’s
PRIMARY KEY constraint. A primary key’s values uniquely identify the rows in a
table. Only one primary key may be defined per table.

* unique key - The column or set of columns included in the definition of a UNIQUE
constraint.

* foreign key - The column or set of columns included in the definition of a referential
integrity constraint.

* referenced key - The unique key or primary key of the same or different table that is
referenced by a foreign key.

Individual values in a key are called key values.

Database Triggers

Oracle allows you to write procedures that are automatically executed as a result of an insert in,
update to, or delete from a table. These procedures are called database triggers.

Database triggers can be used in a variety of ways for the information management of your
database. For example, they can be used to automate data generation, audit data modifications,
enforce complex integrity constraints, and customize complex security authorizations.

Centralized actions can be defined using a non-declarative approach (writing PL/SQL code)
with database triggers. A database trigger is a stored procedure that is fired (implicitly executed)
when an INSERT, UPDATE, or DELETE statement is issued against the associated table.
Database triggers can be used to customize a database management system with such features as

Appendix - Database Administration 1507
User Guide for Release 1.8.1.5 Doc v1 rev.0 11/16/10



Using SQL

value-based auditing and the enforcement of complex security checks and integrity rules. For

example, a database trigger might be created to allow a table to be modified only during normal
business hours.

Custom SQL Search Query Examples

Note: System Administrators can disable users’ ability to use Custom SQL by adding the
DISABLE CUSTOM SQL Responsibility to the uset’s profile.

1.

Active or Pending Approval requisitions. Selecting stock reorder requisitions in
created or pending approval status. FMC leaves requisitions in created to
accumulate more parts and reduce the number of PO’s. This way they can review

and combine with any requisitions input manually or created by batch after status
was changed to PA.

PLANT | | REQUISITION_NO IN

(SELECT PLANT | |[REQUISITION_NO

FROM SA_REQUISITION

WHERE

REQUISITION_STATUS IN (‘CREATED’PENDING APPROVAL’)
AND REQUISITION_TYPE LIKE ‘S%’

AND NVL(NEXT_APPROVER;STORES’) LIKE ‘STORES%)
[order by vendor code]

Obsolete stock codes. Searching inventory stock codes in catalog where storeroom
is active and stores personnel have marked it as obsolete or same as another part (in

description). These parts are reviewed to see if FMC need to report value for write
off to accounting.

PLANT | |STOCK_CODE | [STOREROOM IN
(SELECT S.PLANT| |SSTOCK_CODE| | SSTOREROOM
FROM SA_STOREROOM S, SA_CATALOG C
WHERE S.STOREROOM_STATUS = ACTIVE’
AND (UPPER(C.STOCK_DESC) LIKE “%SAME AS%’
OR UPPER(C.STOCK_DESC) LIKE “4OBSOLETE%)
AND CSTOCK_TYPE = INVENTORY’
AND C.STOCK_CODE = SSTOCK_CODE)

Vendors with null manufacturer codes. Selecting catalog stock codes by vendor
(edit selection and save) for parts with no manufacturer code.
PLANT| |STOCK_CODE | [STOREROOM IN

(SELECT S.PLANT| | SSTOCK_CODE | | SSTOREROOM
FROM SA_STOREROOM 8, SA_CATALOG_MFR_VENDOR V
WHERE VMANUFACTURER_CODE IS NULL

AND VVENDOR_CODE LIKE 4924%’

AND VPRIMARY_VENDOR_IND = Y’

AND S.STOCK_CODE = VSTOCK_CODE)

Appendix - Database Administration 1508
User Guide for Release 1.8.1.5 Doc v1 rev.0 11/16/10



Using SQL

10.

Line item description in PO’s. Searching for purchase orders by line item
description, where description contains the word ‘MOTOR’.
PLANT| |PO_NO IN

(SELECT LPLANT | | LPO_NO
FROM SA_PURCHASE_ORDER_ITEM I
WHERE UPPER(LITEM_DESC) LIKE “%MOTOR%’)

Detail views. Searching for work orders where any task downtime type is
‘Shutdown’.
PLANT | | WORK_ORDER_NO IN

(SELECT TASK.PLANT| | TASK.WORK_ORDER_NO
FROM SA_WORK_ORDER_TASK TASK
WHERE TASK.DOWNTIME_TYPE = SHUTDOWN?)

Comparison. Searching for stock codes where the inventory quantity has fallen
below minimum quantity.
PLANT| |STOCK_CODE | |[STOREROOM IN

(SELECT SPLANT| |S.STOCK_CODE| | SSTOREROOM
FROM SA_STOREROOM $
WHERE NVL(S.INVENTORY_QUANTITY,0) < NVLMINIMUM_QUANTITY,0))

Date Ranges & Custom Order by. Search for work orders due during Feb 1, 1999 and
Feb 20, 2000 in ‘ACTIVE’ or ‘PENDING APPROVAL’ work status. Results of
search is ordered by Required Date.

WORK_REQUIRED_DATE >= TO_DATE(01-FEB-1999'DD-MON-YYYY")

AND WORK_REQUIRED_DATE <= TO_DATE(20-FEB-2000’, " DD-MON-YYYY’)
AND WORK_STATUS IN (‘PENDING APPROVAL’, ‘ACTIVE’)
[CUSTOM ORDER BY ‘WORK_REQUIRED_DATE’|

NULL operator. Search for Checkout Request records that are not associated with a
Work Order record.
WORK_ORDER_NO IS NULL

Search in the Accounting Log for the vendor with largest transaction cost.
PLANT | |ACCOUNT_NO| |EXPENSE_CODE]| |

PERIOD_YEAR| |PERIOD_MONTH | [ TRANSACTION_DATE| |
SEQUENCE_NUMBER IN

(SELECT L.PLANT | | LACCOUNT_NO | | LEXPENSE_CODE| |
LPERIOD_YEAR | | L.PERIOD_MONTH | | L.TRANSACTION_DATE| |
L.SEQUENCE_NUMBER

FROM SA_ACCOUNT_LOG 1.

WHERE TRANSACTION_AMOUNT = (SELECT MAX(TRANSACTION_
AMOUNT)

FROM SA_ACCOUNT_LOG
WHERE VENDOR_CODE IS NOT NULL))

Reorder reviews in created status that are on BPO’s
PLANT| |STOCK_CODE IN

Appendix - Database Administration 1509
User Guide for Release 1.8.1.5 Doc v1 rev.0 11/16/10



Using SQL

11.

12.

13.

14.

15.

(SELECT PLANT| | STOCK_CODE

FROM SA_BLANKET_CONTRACT_ITEM

WHERE BLANKET_CONTRACT_NO IN

(SELECT BLANKET_CONTRACT_NO FROM SA_BLANKET_CONTRACT
WHERE BLANKET_STATUS="ACTIVE)

AND REORDER_STATUS="CREATED’

Reorder reviews in ‘Created’ status that are not on BPO’s
PLANT| |STOCK_CODE IN

(SELECT PLANT| | STOCK_CODE

FROM SA_STOREROOM_REORDER_REVIEW

MINUS

SELECT PLANT | |STOCK_CODE

FROM SA_BLANKET_CONTRACT_ITEM

WHERE BLANKET_CONTRACT_NO IN

(SELECT BLANKET_CONTRACT_NO FROM SA_BLANKET_CONTRACT
WHERE BLANKET_STATUS="ACTIVE’

AND BLANKET_ITEM_STATUS="ACTIVE’

AND REORDER_STATUS="CREATED")

Storeroom records with quantity > 0 but total cost = 0.
PLANT| |STOCK_CODE IN

(SELECT PLANT| |STOCK_CODE

FROM SA_STOREROOM

WHERE NVL(INVENTORY_QUANTITY,0) =0
AND NVIL(TOTAL_VALUE,0) = 0)

Storeroom records with available quantity < 0
PLANT| |STOCK_CODE IN

(SELECT PLANT| | STOCK_CODE FROM SA_STOREROOM
WHERE NVL(INVENTORY_QUANTITY,0) |= 0
AND NVI(TOTAL_VALUE,0) = 0)

Work Order tasks that are charged to construction work orders.
PLANT | | WORK_ORDER_NO IN

(SELECT PLANT| | WORK_ORDER_NO

FROM SA_WORK_ORDER

WHERE SUBSTR(ATTRIBUTE1,1,2)="A0")

AND CREATION_DATE >= TRUNC(SYSDATE) — 3
AND TASK_STATUS = ‘ACTIVE’

PO’s received in the system but not received in AF/S (external) system.
PLANT| |PO_NO IN

(SELECT DISTINCT PLANT| | PO_NO FROM SA_PURCHASE_ORDER_ITEM

Appendix - Database Administration 1510
User Guide for Release 1.8.1.5 Doc v1 rev.0 11/16/10



Using SQL

16.

17.

18.

19.

20.

WHERE NVLRECEIVED_NET_QUANTITY,0) |= NVL(ATTRIBUTEA4,0)
AND PO_ITEM_STATUS I= ‘CANCELED’

AND TRUNC(LAST_RECEIVED_DATE) I= TRUNC(SYSDATE)

AND PO_STATUS I= ‘CANCELED’

AND PO_REVISION_NO = NVL(ATTRIBUTE1,”)

PO’s not fully received by Promise Date
PO_STATUS = ISSUED’

AND ((REQUIRED_DATE IS NULL)
OR (TRUNC(REQUIRED_DATE) <= TRUNC(SYSDATE)))

PO’s with total cost > $250,000.00
TOTAL_AMOUNT > 250000

UDPF’s. Invoices posted but no check date from AF/S
INVOICE_STATUS = POSTED’

AND ATTRIBUTES IS NULL

Reorder review — lost items
PLANT| |STOCK_CODE IN

(SELECT PLANT| | STOCK_CODE

FROM SA_STOREROOM

WHERE (INVENTORY_QUANTITY + ON_ORDER_QUANTITY)
< MINIMUM_QUANTITY

AND TRUNC(LAST_UPDATE_DATE) < TRUNC(SYSDATE)
MINUS

SELECT PLANT | |STOCK_CODE

FROM SA_STOREROOM_REORDER_REVIEW

WHERE (REORDER_STATUS = ‘CREATED’

OR REORDER_STATUS = ‘APPROVED’)

MINUS

SELECT PLANT | |STOCK_CODE

FROM SA_PURCHASE_ORDER_ITEM

WHERE PO_ITEM_STATUS != ‘CANCELED’

AND PO_NO IN

(SELECT PO_NO FROM SA_PURCHASE_ORDER
WHERE (PO_STATUS = ‘CREATED’

OR PO_STATUS = ‘APPROVED")))

Reorder review created records > $99.00
PLANT| |STOCK_CODE IN

(SELECT PLANT| | STOCK_CODE
FROM SA_STOREROOM
WHERE AVERAGE_UNIT_PRICE > 99.00)

Appendix - Database Administration 1511
User Guide for Release 1.8.1.5 Doc v1 rev.0 11/16/10



Databases, Tablespaces & Datafiles

AND REORDER_STATUS = ‘CREATED’

21. Searching for work orders where costs in the ‘Cost Summary’ detail option are
greater than $1000.
PLANT | | WORK_ORDER_NO IN

(SELECT PLANT | | WORK_ORDER_NO
FROM SV_WORK_ORDER_COST
WHERE ACTUAL_AMOUNT > “1000°)

Databases, Tablespaces & Datafiles

Oracle stores data logically in tablespaces and physically in datafiles associated with the
corresponding tablespace. The figure below illustrates this relationship.

Tablespace
(one or more datafiles)

Table Table Index

Datafiles Objects
(physical structures associated (stored in tablespaces -
with only one tablespace) may span several datafiles

Note: A database consists of a number of tablespaces. Each tablespace contains one or more
datafiles.

Databases, tablespaces, and datafiles are closely related, but they have important differences:

Databases and Tablespaces - An Oracle database consists of one or more logical storage
units called tablespaces, which collectively store all of the database’s data.

Tablespaces and Datafiles - Each tablespace in an Oracle database consists of one or
more files called datafiles, which are physical structures that conform with the operating
system in which Oracle is running,

Databases and Datafiles - A database’s data is collectively stored in the datafiles that
constitute each tablespace of the database. For example, the simplest Oracle database would
have one tablespace and one datafile. Another database might have three tablespaces, each
consisting of two datafiles (for a total of six datafiles).

Appendix - Database Administration 1512
User Guide for Release 1.8.1.5 Doc v1 rev.0 11/16/10



Databases, Tablespaces & Datafiles

Allocating More Space for a Database

You can enlarge a database in three ways:

1. Add a datafile to a tablespace.
2. Add a new tablespace.
3. Increase the size of a datafile.

Adding a Datafile to a Tablespace

When you add another datafile to an existing tablespace, you increase the amount of disk space
allocated for the corresponding tablespace. The figure below illustrates this kind of space
increase.

Database

— Single Tablespace

I
I
.|
|
|
DATAS.ORA : Database size and
tablespace size increase
. with the addition of

A

I datafiles

ALTER TABLESPACE system
ADD DATAFILE ‘DATA2.0RA

ALTER TABLESPACE system
ADD DATAFILE ‘DATA3.ORA

Adding a New Tablespace
Alternatively, you can create a new tablespace containing at least one additional datafile to
increase the size of a database as illustrated below.

Appendix - Database Administration 1513
User Guide for Release 1.8.1.5 Doc v1 rev.0 11/16/10



Databases, Tablespaces & Datafiles

Two Tablespaces

Database

|
| | | |
| |

[, — | .

N D¢ Sk |
S, I R I

| |
| |
|| patat.ora DATAZORA | | ' DATAZ.0RA ‘

| |
; | |

[ o R |
|  ———
J

CREATE TABLESPACE Users
DATAFILE ‘DATA3.0RA'

Note: The size of a tablespace is the size of the datafiles that makes up the tablespace. The size of
a database is the collective size of the tablespaces that make up the database.

Increasing the Size of a Datafile

The third option for enlarging a database is to change a datafile’s size or to allow datafiles in
existing tablespaces to grow dynamically as more space is needed. Do this by altering existing
files or by adding files with dynamic extension properties as illustrated below.

Appendix - Database Administration 1514
User Guide for Release 1.8.1.5 Doc v1 rev.0 11/16/10



Databases, Tablespaces & Datafiles

Database

System Tablespace Users Tablespace

M ]

Fi _ F_ _ !

DATA1.0RA DATA2.0RA DATAZ.ORA

M

| |
| |
| [
| [
| |
| [
e |
| |
| — 20M
| [
| [
| |
| [
| |
| |
| [

ALTER DATABASE
DATAFILE DATA3CORA
AUTOEXTEMND ONMNEXT 20M
MAXSIZE 1000M

Tablespaces

A database is divided into one or more logical storage units called tablespaces. Tablespaces are
divided into logical units of storage called segments, which are further divided into extents.

This section includes the following topics about tablespaces:
*  The SYSTEM Tablespace
*  Multiple Tablespaces
*  Space Management in Tablespaces
*  Online and Offline Tablespaces

*  Transporting Tablespaces between Databases

The SYSTEM Tablespace

Every Oracle database contains a tablespace named SYSTEM, which Oracle creates
automatically when the database is created.

The SYSTEM tablespace always contains the data dictionary tables for the entire database. The
data dictionary tables are stored in Datafile 1.

Multiple Tablespaces

A small database might need only the SYSTEM tablespace; however, Oracle Corporation
recommends that you create at least one additional tablespace to store user data separate from
data dictionary information. This gives you more flexibility in various database administration
operations and reduces contention among dictionary objects and schema objects for the same
datafiles.

You can use multiple tablespaces to:
*  control disk space allocation for database data
*  assign specific space quotas for database users
*  control availability of data by taking individual tablespaces online or offline

*  perform partial database backup or recovery operations

Appendix - Database Administration 1515
User Guide for Release 1.8.1.5 Doc v1 rev.0 11/16/10



Databases, Tablespaces & Datafiles

An extent is a logical unit of
storage space made up of a
number of contiguous data
blocks.

Local management of extents
automatically tracks adjacent
free space, eliminating the
need to coalesce free extents.

*  allocate data storage across devices to improve performance

A database administrator (DBA) can create new tablespaces, add datafiles to tablespaces, set and
alter default segment storage settings for segments created in a tablespace, make a tablespace
read-only or read-write, make a tablespace temporary or permanent, and drop tablespaces.

Space Management in Tablespaces
Tablespaces allocate space in extents. Tablespaces can use two different methods to keep track
of their free and used space:

*  extent management by the data dictionary (dictionary-managed tablespaces)
*  extent management by the tablespace (locally-managed tablespaces)

When you create a tablespace, you choose one of these methods of space management. You
cannot alter the method at a later time.

Dictionary-Managed Tablespaces

For a tablespace that uses the data dictionary to manage its extents, Oracle updates the
appropriate tables in the data dictionary whenever an extent is allocated or freed for reuse.
Oracle also stores rollback information about each update of the dictionary tables. Since
dictionary tables and rollback segments are part of the database, the space that they occupy is
subject to the same space management operations as all other data.

This is the default method of space management in a tablespace. It was the only method
available in Oracle releases 8.0 and earliet.

Locally-Managed Tablespaces

A tablespace that manages its own extents maintains a bitmap in each datafile to keep track of
the free or used status of blocks in that datafile. Each bit in the bitmap corresponds to a block or
a group of blocks. When an extent is allocated or freed for reuse, Oracle changes the bitmap
values to show the new status of the blocks. These changes do not generate rollback information
because they do not update tables in the data dictionary (except for special cases such as
tablespace quota information).

One of the greatest advantages of locally-managed tablespaces over dictionary-managed
tablespaces is that local management of extents avoids recursive space management operations
which can occur in dictionary-managed tablespaces if consuming or releasing space in an extent
results in another operation that consumes or releases space in a rollback segment or data
dictionary table. Local management of extents automatically tracks adjacent free space,
eliminating the need to coalesce free extents.

The sizes of extents that are managed locally can be determined automatically by the system.
Alternatively, all extents can have the same size in a locally-managed tablespace.

The LOCAL option of the EXTENT MANAGEMENT clause specifies this method of space
management in various CREATE commands:

*  For the SYSTEM tablespace, you can specify EXTENT MANGEMENT LOCAL in
the CREATE DATABASE command. If the SYSTEM tablespace is locally managed,
other tablespaces in the database can be dictionary-managed but you must create all
rollback segments in locally-managed tablespaces.

*  For a permanent tablespace other than SYSTEM, you can specify EXTENT
MANGEMENT LOCAL in the CREATE TABLESPACE command.

*  For a temporary tablespace, you can specify EXTENT MANGEMENT LOCAL in
the CREATE TEMPORARY TABLESPACE command.

Appendix - Database Administration 1516
User Guide for Release 1.8.1.5 Doc v1 rev.0 11/16/10



Databases, Tablespaces & Datafiles

Tablespaces are automatically
switched offline by Oracle
when certain errors occut.

Online and Offline Tablespaces

A database administrator can bring any tablespace other than the SYSTEM tablespace online
(accessible) or offline (not accessible) whenever the database is open. The SYSTEM tablespace
is always online when the database is open because the data dictionary must always be available
to Oracle.

A tablespace is normally online so that the data contained within it is available to database users.
However, the database administrator might take a tablespace offline

*  To make a portion of the database unavailable, while allowing normal access to the
remainder of the database.

*  To perform an offline tablespace backup (although a tablespace can be backed up
while online and in use).

*  To make an application and its group of tables temporarily unavailable while updating
or maintaining the application.

You cannot take a tablespace offline if it contains any rollback segments that are in use.

When a Tablespace Goes Offline

When a tablespace goes offline, Oracle does not permit any subsequent SQL statements to
reference objects contained in that tablespace. Active transactions with completed statements
that refer to data in that tablespace are not affected at the transaction level. Oracle saves rollback
data corresponding to those completed statements in a deferred rollback segment (in the
SYSTEM tablespace). When the tablespace is brought back online, Oracle applies the rollback
data to the tablespace, if needed.

When a tablespace goes offline or comes back online, this is recorded in the data dictionary in
the SYSTEM tablespace. If a tablespace was offline when you shut down a database, the
tablespace remains offline when the database is subsequently mounted and reopened.

You can bring a tablespace online only in the database in which it was created because the
necessary data dictionary information is maintained in the SYSTEM tablespace of that database.
An offline tablespace cannot be read or edited by any utility other than Oracle. Thus, offline
tablespaces cannot be transferred from database to database.

Oracle automatically switches a tablespace from online to offline when certain errors are
encountered (for example, when the database writer process, DBWn, fails in several attempts to
write to a datafile of the tablespace). Users trying to access tables in the offline tablespace receive
an error. If the problem that causes this disk I/O to fail is media failure, you must recover the
tablespace after you correct the hardware problem.

Using Tablespaces for Special Procedures

If you create multiple tablespaces to separate different types of data, you take specific
tablespaces offline for various procedures; other tablespaces remain online and the information
in them is still available for use. However, special circumstances can occur when tablespaces are
taken offline. For example, if two tablespaces are used to separate table data from index data, the
following is true:

»  If the tablespace containing the indexes is offline, queries can still access table data
because queries do not require an index to access the table data.

*  If the tablespace containing the tables is offline, the table data in the database is not
accessible because the tables are required to access the data.

In summary, if Oracle has enough information in the online tablespaces to execute a statement,
it will do so. If it needs data in an offline tablespace, then it causes the statement to fail.

Appendix - Database Administration 1517
User Guide for Release 1.8.1.5 Doc v1 rev.0 11/16/10



Databases, Tablespaces & Datafiles

Transporting Tablespaces Between Databases

The transportable tablespace feature enables you to move a subset of an Oracle database from
one Oracle database to another. You can clone a tablespace from one tablespace and plug it into
another database, copying the tablespace between databases, or you can unplug a tablespace
from one Oracle database and plug it into another Oracle database, moving the tablespace
between databases.

Moving data by transporting tablespaces can be orders of magnitude faster than either
export/import ot unload/load of the same data, because transporting a tablespace involves only
copying datafiles and integrating the tablespace metadata. When you transport tablespaces you
can also move index data, so that you do not have to rebuild the indexes after importing or
loading the table data.

You can only transport tablespaces between Oracle databases that use the same data block size
and character set, and that run on compatible platforms from the same hardware vendor.

Moving or Copying a Tablespace to Another Database

To move or copy a set of tablespaces, you must make the tablespaces read-only, copy the
datafiles of these tablespaces, and use export/import to move the database information
(metadata) stored in data dictionary. Both the datafiles and the metadata export file must be
copied to the target database. The transport of these files can be done using any facility for
copying flat files, such as the operating system copying facility, FTP, or publishing on CDs.

After copying the datafiles and importing the metadata, you can optionally put the tablespaces in
read-write mode.

Datafiles

A tablespace in an Oracle database consists of one or more physical datafiles. A datafile can be
associated with only one tablespace and only one database.

Oracle creates a datafile for a tablespace by allocating the specified amount of disk space plus the
overhead required for the file header. When a datafile is created, the operating system in which
Oracle is running is responsible for clearing old information and authorizations from a file
before allocating it to Oracle. If the file is large, this process might take a significant amount of
time.

The first tablespace in any database is always the SYSTEM tablespace, so Oracle automatically
allocates the first datafiles of any database for the SYSTEM tablespace during database creation.

Datafile Contents

When a datafile is first created, the allocated disk space is formatted but does not contain any
user data; however, Oracle reserves the space to hold the data for future segments of the
associated tablespace—it is used exclusively by Oracle. As the data grows in a tablespace, Oracle
uses the free space in the associated datafiles to allocate extents for the segment.

The data associated with schema objects in a tablespace is physically stored in one or more of
the datafiles that constitute the tablespace. Note that a schema object does not correspond to a
specific datafile; rather, a datafile is a repository for the data of any schema object within a
specific tablespace. Oracle allocates space for the data associated with a schema object in one or
more datafiles of a tablespace. Therefore, a schema object can “span” one or more datafiles.
Unless table “striping” is used (where data is spread across more than one disk), the database
administrator and end users cannot control which datafile stores a schema object.

Appendix - Database Administration 1518
User Guide for Release 1.8.1.5 Doc v1 rev.0 11/16/10



Data Blocks, Extents, & Segments

The units of database space
allocation are data blocks,
extents, and segments.

Size of Datafiles

You can alter the size of a datafile after its creation or you can specify that a datafile should
dynamically grow as schema objects in the tablespace grow. This functionality enables you to
have fewer datafiles per tablespace and can simplify administration of datafiles.

Data Blocks, Extents, & Segments

Oracle allocates logical database space for all data in a database. The units of database space
allocation are data blocks, extents, and segments. The following illustration shows the
relationships among these data structures:

~
\
AN
Saegment ™
112Kb N
~
~
N N Kb
o N —
E N Extant Exttert Kb
84kb ] T
N 84Kb\ b
N = N
AN ~ Kb
| 2Kb! | 2Kb Kb Zfb
| kbl V] Kb | 2kb | 2kb
i | {
\ 2wa| EIEE 2K‘p
(O IOl I T o
| ol
i | 2o || Ko | xb | b,
a1 e | 20 | 2
| H y
taxe | | e | o | b
Yao [ ] ko | 20 | 20

Data Blocks

Data Blocks

At the finest level of granularity, Oracle stores data in data blocks (also called logical blocks,
Oracle blocks, or pages). One data block corresponds to a specific number of bytes of physical
database space on disk.

The PCTFREE Parameter

The PCTFREE parameter sets the minimum percentage of a data block to be reserved as free
space for possible updates to rows that already exist in that block. For example, assume that you
specify the following parameter within a CREATE TABLE statement:

PCTFREE 20

This states that 20% of each data block in this table’s data segment will be kept free and available
for possible updates to the existing rows already within each block. New rows can be added to
the row data area, and corresponding information can be added to the variable portions of the
overhead area, until the row data and overhead total 80% of the total block size.

Appendix - Database Administration 1519
User Guide for Release 1.8.1.5 Doc v1 rev.0 11/16/10



Data Blocks, Extents, & Segments

Data Block
PCTFREE = 20

20% Free Space Block allows row inserts

until 80% is occupied,
leaving 209 free for updates
to existing rows in the block

The PCTUSED Parameter

The PCTUSED parameter sets the minimum percentage of a block that can be used for row
data plus overhead before new rows will be added to the block. After a data block is filled to the
limit determined by PCTFREE, Oracle considers the block unavailable for the insertion of new
rows until the percentage of that block falls below the parameter PCTUSED. Until this value is
achieved, Oracle uses the free space of the data block only for updates to rows already contained
in the data block. For example, assume that you specify the following parameter in a CREATE
TABLE statement:

PCTUSED 40

In this case, a data block used for this table’s data segment is considered unavailable for the
insertion of any new rows until the amount of used space in the block falls to 39% or less
(assuming that the block’s used space has previously reached PCTFREE). Figure 3 illustrates
this.

Appendix - Database Administration 1520
User Guide for Release 1.8.1.5 Doc v1 rev.0 11/16/10



Data Blocks, Extents, & Segments

Data Block
PCTUSED = 40

No new rows are
inserted until the
amount of used space
falls below 40%

How PCTFREE and PCTUSED Work Together

This figure illustrates the PCTFREE and PCTUSED work together to optimize the utilization of space in the data blocks
interaction between of the extents within a data segment.
PCTFREE and PCTUSED.

Appendix - Database Administration 1521
User Guide for Release 1.8.1.5 Doc v1 rev.0 11/16/10



Data Blocks, Extents, & Segments

2 Updates to
Existing rows

uze the free
space
reserved in
the black.
1 Rows are Mo new rows
inserted up to can be
B80% only inserted into
becalse the block.
PCTFREE untl the
specifies that amount of
20% must remain open Used
for updates of space is 33%
existing rows. or less.
Rows are
inserted Lp to
B0% only,
After the E&Cif&
amount of specifies that
Used space 20% of the
fals below black must
jc?ﬁjcr;?ww remain open
asin be for_ u_pdates of
inserted into SXstIg rows.
this block. Qﬁﬁﬁﬂgg

In a newly allocated data block, the space available for inserts is the block size minus the sum of
the block overhead and free space (PCTFREE). Updates to existing data can use any available
space in the block; therefore, updates can reduce the available space of a block to less than
PCTFREE, the space reserved for updates but not accessible to inserts.

For each data and index segment, Oracle maintains one or more free lists—Ilists of data blocks
that have been allocated for that segment’s extents and have free space greater than PCTFREE;
these blocks are available for inserts. When you issue an INSERT statement, Oracle checks a
free list of the table for the first available data block and uses it if possible. If the free space in
that block is not large enough to accommodate the INSERT statement, and the block is at least
PCTUSED, Oracle takes the block off the free list. Multiple free lists per segment can reduce
contention for free lists when concurrent inserts take place.

After you issue a DELETE or UPDATE statement, Oracle processes the statement and checks
to see if the space being used in the block is now less than PCTUSED. If it is, the block goes to
the beginning of the transaction free list, and it is the first of the available blocks to be used in
that transaction. When the transaction commits, free space in the block becomes available for
other transactions.

Extents

The next level of logical database space is an extent. An extent is a logical unit of database
storage space allocation made up of a number of contiguous data blocks. One or more extents in
turn make up a segment. When the existing space in a segment is completely used, Oracle
allocates a new extent for the segment.

Appendix - Database Administration 1522
User Guide for Release 1.8.1.5 Doc v1 rev.0 11/16/10



Indexes

When Extents Are Allocated

When you create a table, Oracle allocates to the table’s data segment an initial extent of a
specified number of data blocks. Although no rows have been inserted yet, the Oracle data
blocks that correspond to the initial extent are reserved for that table’s rows.

If the data blocks of a segment’s initial extent become full and more space is required to hold
new data, Oracle automatically allocates an incremental extent for that segment. An incremental
extent is a subsequent extent of the same or greater size than the previously allocated extent in
that segment. (The next section explains the factors controlling the size of incremental extents.)

For maintenance purposes, the header block of each segment contains a directory of the extents
in that segment.

Rollback segments always have at least two extents.

Segments

The level of logical database storage above an extent is called a segment. A segment is a set of
extents, each of which has been allocated for a specific data structure, and all of which are stored
in the same tablespace. For example, each table’s data is stored in its own data segment, while
each index’s data is stored in its own index segment. If the table or index is partitioned, each
partition is stored in its own segment.

Oracle allocates space for segments in units of one extent. When the existing extents of a
segment are full, Oracle allocates another extent for that segment. Since extents are allocated as
needed, the extents of a segment may or may not be contiguous on disk.

A segment and all its extents are stored in one tablespace. Within a tablespace, a segment can
include extents from more than one file, that is, the segment can span datafiles. However, each
extent can contain data from only one datafile.

Indexes

Indexes are optional structures associated with tables and clusters. You can create indexes on
one or more columns of a table to speed SQL statement execution on that table. An Oracle
index provides a faster access path to table data. Indexes are the primary means of reducing disk
1/O when propetly used.

You can create an unlimited number of indexes for a table provided that the combination of
columns differs for each index. You can create more than one index using the same columns
provided that you specify distinctly different combinations of the columns. For example, the
following statements specify valid combinations:

CREATE INDEX emp_idx1 ON emp (ename, job);
CREATE INDEX emp_idx2 ON emp (job, ename);

You cannot create an index that references only one column in a table if another such index
already exists.

The absence or presence of an index does not require a change in the wording of any SQL
statement. An index is merely a fast access path to the data; it affects only the speed of
execution. Given a data value that has been indexed, the index points directly to the location of
the rows containing that value.

Indexes are logically and physically independent of the data in the associated table. You can
create or drop an index at anytime without affecting the base tables or other indexes. If you drop
an index, all applications continue to work; however, access of previously indexed data might be
slower. Indexes, as independent structures, require storage space.

Appendix - Database Administration 1523
User Guide for Release 1.8.1.5 Doc v1 rev.0 11/16/10



Indexes

Oracle automatically maintains and uses indexes once they are created, and automatically reflects
changes to data, such as adding new rows, updating rows, or deleting rows, in all relevant indexes
with no additional action by users.

Retrieval performance of indexed data remains almost constant, even as new rows are inserted.
However, the presence of many indexes on a table decreases the performance of updates,
deletes, and inserts because Oracle must also update the indexes associated with the table.

Unique and Nonunique Indexes

Indexes can be unique or nonunique. Unique indexes guarantee that no two rows of a table have
duplicate values in the columns that define the index. Nonunique indexes do not impose this
restriction on the column values.

Oracle recommends that you do not explicitly define unique indexes on tables; uniqueness is
strictly a logical concept and should be associated with the definition of a table. Alternatively,
define UNIQUE integrity constraints on the desired columns. Oracle enforces UNIQUE
integrity constraints by automatically defining a unique index on the unique key.

Composite Indexes

A composite index (also called a concatenated index) is an index that you create on multiple
columns in a table. Columns in a composite index can appear in any order and need not be
adjacent in the table.

Composite indexes can speed retrieval of data for SELECT statements in which the WHERE
clause references all or the leading portion of the columns in the composite index. Therefore,
the order of the columns used in the definition is important; generally, the most commonly
accessed or most selective columns go first.

No more than 32 columns can form a regular composite index.

Indexes and Keys

Although the terms are often used interchangeably, you should understand the distinction
between “indexes” and “keys”. Indexes are structures actually stored in the database, which
users create, alter, and drop using SQL statements. You create an index to provide a fast access
path to table data. Keys are strictly a logical concept. Keys correspond to another feature of
Oracle called integrity constraints, which enforce the business rules of a database.

Since Oracle uses indexes to enforce some integrity constraints, the terms key and index are
often are used interchangeably; however, they should not be confused with each other.

How Indexes Are Stored

When you create an index, Oracle automatically allocates an index segment to hold the index’s
data in a tablespace. You control allocation of space for an index’s segment and use of this
reserved space in the following ways:

*  Set the storage parameters for the index segment to control the allocation of the index
segment’s extents.

*  Set the PCTFREE parameter for the index segment to control the free space in the
data blocks that constitute the index segment’s extents.

The tablespace of an index’s segment is either the owner’s default tablespace or a tablespace
specifically named in the CREATE INDEX statement. You do not have to place an index in the
same tablespace as its associated table. Furthermore, you can improve performance of queries

Appendix - Database Administration 1524
User Guide for Release 1.8.1.5 Doc v1 rev.0 11/16/10



DBA Glossary

that use an index by storing an index and its table in different tablespaces located on different
disk drives because Oracle can retrieve both index and table data in parallel.

Tables

Tables are relational database structures which are analogous to the entity of a data model. An
index-organized table differs from an ordinary table in that the data for the table is held in its
associated index. Changes to the table data, such as adding new rows, updating rows, or deleting
rows, result only in updating the index.

Ordinary Table

Row ID uniquely identifies a row; primary key can be optionally specified
Physical Row ID in ROWID pseudocolumn allows building secondary indexes
Row ID based access

Sequential scan returns all rows

UNIQUE constraint and triggers allowed

Can be stored in a cluster with other tables

Can contain a column of the LONG datatype and columns of LOB datatypes

Distribution and replication supported

Index-Organized Table

Primary key uniquely identifies a row; primary key must be specified

Logical Row ID in ROWID pseudocolumn allows building secondary indexes

Primary key based access

Full-index scan returns all rows in primary key order

UNIQUE constraint not allowed but triggers are allowed

Cannot be stored in a cluster

Can contain LOB columns but not LONG columns

Distribution and replication not supported

Benefits of Index-Organized Tables

Since data rows are stored in the index, index-organized tables provide faster key-based access to
table data for queries that involve exact match or range search, or both. The storage
requirements are reduced because key columns are not duplicated as they ate in an ordinary table
and its index. The data row stored with the key in an index-organized table only contains
non-key column values. Also, placing the data row with the key eliminates the additional storage

that an index on an ordinary table requires for physical Row IDs, which link the key values to
corresponding rows in the table.

DBA Glossary

Base Table - The underlying table in the data dictionary. Base tables store information about
the associated database. Only Oracle should write to and read these tables. Users rarely access
them directly because they are normalized, and most of the data is stored in a cryptic format.

Block - A set of related fields in a module. Blocks do not necessarily correspond directly with
windows. While one block typically represents one screen (Header, one of the Views, etc.), this is

Appendix - Database Administration 1525
User Guide for Release 1.8.1.5 Doc v1 rev.0 11/16/10



DBA Glossary

not always the case. Some windows use two or more blocks. In other cases, a view will share the
same block as the header. To check the name of a block associated with a portion of a window,
place the cursor in a field and select About Item from the Help menu.

Code Table - Code tables are used to keep track of codes that stand for names, titles, labels and
other information that is used frequently.

Composite Index - (also called a concatenated index) An index that you create on multiple
columns in a table. Columns in a composite index can appear in any order and need not be
adjacent in the table.

Cursor - A name for a private SQL area—an area in memory in which a parsed statement and
other information for processing the statement are kept.

Custom Menu - A user defined menu. The menu items that users create can open reports or
custom API calls that are developed using SQL. Once the fields in this form are completed, the
system adds a menu item to the menu bar of the selected module. To users, the added menu
items look like standard options, while adding greater accessibility and functionality specific to
an organization.

Custom SQL - Manual commands that can be entered by a user to perform searches based on
criteria that are not available on the standard search screens.

Customize - To modify according to individual specifications.

Database Trigger - A procedure that can be written to be executed automatically as a result of
an insert in, update to, or delete from a table.

Datablock - The smallest unit of database space allocation. Oracle stores data in data blocks
(also called logical blocks, Oracle blocks, or pages). One data block corresponds to a specific
number of bytes of physical database space on disk. Several data blocks make up an extent.

Data Dictionary - A read-only set of tables that provides information about the database’s
associated database.

Datafile - Physical structures where data is stored in a database. Datafiles typically conform with
the operating system in which Oracle is running;

DBA (Database Administrator) - The person who keeps the database running smoothly.
Among other tasks, the DBA helps make sure codes are correct, handles problems and installs
new features as they become available.

Extent - A specific number of contiguous data blocks allocated for storing a specific type of
information. Several extents make up a segment.

Field - A space allocated for a particular item of information on a record. Fields are grouped
into records and any given field may be used in several different kinds of records. For example a
stock number may be used in a record for keeping track of inventory, and also be used in a
record about the service life and reliability of parts.

Foreign Key - A field that identifies a specific record in a different module. The column or set
of columns included in the definition of a referential integrity constraint.

Functions - A set of SQL and PL/SQL statements that are grouped together as a unit to solve
a specific problem or perform a set of related tasks. Procedures and functions are identical
except that functions always return a single value to the caller, while procedures do not return
values to the caller.

Header - The main information window in a module.

Index - A structure actually stored in the database, which users create, alter, and drop using SQL
statements.

Join - A SQL function that allows you to search by information located in a different table.

Appendix - Database Administration 1526
User Guide for Release 1.8.1.5 Doc v1 rev.0 11/16/10



DBA Glossary

Key - A column or set of columns included in the definition of certain types of integrity
constraints. Keys describe the relationships between the different tables and columns of a
relational database. The different types of keys include: primary key, unique key, foreign key, and
referenced key.

List of Values (LOV) - A predetermined list of possible values that can fill in a field. The lists
serve to help you locate information that you might not remember. They also ensure that the
information entered into the database is both consistent and correct.

Nonunique Index - An index where two or more rows of a table can have duplicate values in
the columns that define the index.

ODBC (Open DataBase Connectivity) - ODBC is a programming interface language that
allows database programs to communicate using a common set of SQL queries. Oracle Utilities
Work and Asset Management can use ODBC to exchange information with MS Project,
ArcView, and other programs. In order for you to use an ODBC interface, your system
administrator must first install the appropriate ODBC driver on your computer.

Package - A method of encapsulating and storing related procedures, functions, variables, and
other package constructs together as a unit in the database.

PL/SQL - Oracle’s procedural language extension to SQL.

Primary Key - The column that identifies or contributes to the identification of a unique
instance of data in a module. The column or set of columns included in the definition of a table’s
PRIMARY KEY constraint. A primary key’s values uniquely identify the rows in a table. Only
one primary key may be defined per table.

Procedures - A set of SQL and PL/SQL statements that are grouped together as a unit to solve
a specific problem or perform a set of related tasks. A procedure is created and stored in
compiled form in the database and can be executed by a user or a database application.
Procedures and functions are identical except that functions always return a single value to the
caller, while procedures do not return values to the caller.

Referenced Key - The unique key or primary key of the same or different table that is
referenced by a foreign key.

RunTime Processing - Database processes that occur while you are entering or saving the
information. Effectively, these processes happen immediately, as opposed to 'batch processing'
which is reserved for certain times when batches of information are processed at one time.

Schema - A collection of logical data storage structures (schema objects).

Segment - A set of extents, each of which has been allocated for a specific data structure, and all
of which are stored in the same tablespace. For example, each table’s data is stored in its own
data segment, while each index’s data is stored in its own index segment. If the table or index is
partitioned, each partition is stored in its own segment.

Server Batch Queue - Batch process that prints designated reports at a specified date and time.

Slave Printer - A printer directly connected to the terminal / computer. Only used with
character mode terminals.

Structured Query Language (SQL) - A simple yet powerful database access language that is
the standard language for relational database management systems.

Table - A relational database structure which is analogous to the entity of a data model.
Tablespace - Where data is logically stored in a database.

Transaction - A logical unit of work that comprises one or more SQL statements executed by a
single user.

Appendix - Database Administration 1527
User Guide for Release 1.8.1.5 Doc v1 rev.0 11/16/10



DBA Glossary

Unique Index - An index where no two rows of a table have duplicate values in the columns
that define the index.

Unique Key - A column set of columns included in the definition of a UNIQUE constraint.

User-Accessible View - The view in the data dictionary that summarizes and displays the
information stored in the base tables. These views decode the base table data into useful
information, such as user or table names, using joins and WHERE clauses to simplify the
information. Most users are given access to the views rather than the base tables.

User Defined Fields (UDF) - Fields defined by an organization to customize modules and
screens.

Appendix - Database Administration 1528
User Guide for Release 1.8.1.5 Doc v1 rev.0 11/16/10



	Database Administration

