ORACLE
ATG WEB COMMERCE

Version 10.1.2

ATG Endeca Integration Guide

Oracle ATG

One Main Street
Cambridge, MA 02142
USA

ATG Endeca Integration Guide

Product version: 10.1.2
Release date: 12-17-12
Document identifier: EndecalntegrationGuide 1404301402

Copyright © 1997, 2012 Oracle and/or its affiliates. All rights reserved.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please
report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:

U.S. GOVERNMENT END USERS:

Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any
operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and
license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures
to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party
content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services.

The software is based in part on the work of the Independent JPEG Group.

Table of Contents

LI (0] 47T (VT { o] PP TP PPN 1
INSTAllatioN REQUITEMENTS ..ouuutititit ittt ettt e ettt et e e et et e e e e e et et et eanaeneaeeenenanes 1
Creating the Endeca APPlICatioNSuiuiuniniei et 1

Determining the Number of Endeca Applications t0 Createcovuiuiuiuininiiiniiiiiiinenenens 2
Provisioning the Endeca Applicationsouiieuiirii e e e e 3
Configuring the ATG Server INstances iN CIMv.iinii et e e e e a e 3
oo Yo 18 ot oYY =T o o PPN 3
ATG Server INStance Creation ue. it ettt ettt e e e aene 3
Configuring the ApplicationConfiguration COMPONENTiuiiitiriiiitiii i ienaeenens 4
Starting the INAEXING PrOCESSiuitiitit ettt e et e e e e e e e e e et enenaenenes 5
Increasing the Transaction Timeout and Datasource Connection Pool Values.......................... 5
Indexing As Part of @ DepPIOYMENTuuiiii e 6
Manually Starting the INdeXing PrOCESScuinininii e 6
Monitoring the INAEXiNG PrOCESSiuititiiiti et e e et eeteeneeaenens 6
Viewing the INAeXed Dataiueniriiiiiii e ettt e e e eaees 6
ATG MOAUIES ... e e ettt ettt e e e 7

R O 1YYV 1Y Vo) B TaTe 1] s o PP 9

INAEXADIE CIASSES ... ettt 9
EndecalndexingOutputConfig Classeueueuieenen ittt eene e 10
CategoryTre@SEIVICE ClaSss ... cueuen ettt ettt ettt e e e eeene 12
RepositoryTypeHierarchyEXporter Classeueu e 13
N el =0 4T 1 S o Te o =T @ - T S PPN 14

SUDMIEING the RECOITSenin e ettt e e e ens 14

MaNAGING the PrOCESS e et 15

3. Configuring the INdeXing CoOMPONENTSttt ettt et et et e et et e eaeereeneeaeenaanen 17
IndexingApplicationConfiguration COMPONENTiuiuirititititeteie e e e e et erereaaanans 17
EndecalndexingOutputConfig COMPONENTSuiuirenieenen ettt ettt et e een e e eneneenens 18
(DY =l e -To L= G @e T3] o] g =T Y {3 N 22

Tuning Incremental Loadingviuiniieiniiiii e e et e e aas 22

(@) (= Te To T Y 1 (=TSN Y=] Vi N 23

RepositoryTypeDimenSiONEXPOITEYouiuieitiiit ittt 24

1Yl 1= 0 g P =3 o o =T (P 25

Document SUDMItEEr COMPONENTS .. .ouutitittt ittt ettt et et etee e et eeteteneaeateneneesereaeateaneanenens 26
RedUCING LOGGING IMESSAGES ... euvtenintetetet ettt et ete e et etaeeteenteteneateteentenenenaenenentenenens 26
Directing OULPUL tO FIlESeuitiie et e e e eenes 27

g Ve Lo Il 4o YT PN 27

ProductCatalogSimplelndexXingAdmin ... e e ea s 28
QUEUING INAEXING JODS .. .ot e 30

Content Administration COMPONENTSe.iuninieinet ittt ettt et et e e eaea e en et eaenennens 31
Triggering Indexing on Deployment 33

Viewing Records in the COmMPONENT BrOWSENutiuiriititirteteinteteeteteieneeeenaetenenaeneneneerenanaes 33

4. Configuring EndecalndexingOutputConfig Definition Filescoviiiiiiiiiiiiiiiiieeee e 35
Definition File FOIMAt ittt e e e e e e e e s e e enans 35
Specifying Endeca Schema AtLHDULESuuee e 36
Specifying Properties for INdeXingc.c.ouiuiiiiiiii e 37

Specifying MUlti-Value ProPertiesoueuiueiiieieiee it e e et et e ae e e e eaanenes 37
SPECIfYiNg MaP PrOPEITIES ... vueeinie ettt ettt et ettt et ettt e e e en e 38
Specifying Properties of ltem SUDLYPES ..o 39
Specifying a Default Property Valuec.oooi i 40
Specifying NON-RePOSItOry PrOPEItiESueuunin ettt ettt e ee e eneaes 40
SUPPIESSING PrOPEITIESeuenininiiii it 41

ATG Endeca Integration Guide iii

Including the Sitelds PrOPEITYouiuiuieii e 41

Renaming an OULPUL PrOPEItYuiuiniitiiiii i eeees 42
Translating Property ValUEsc.euinininini e 42

USING MONITOred Properti@sueuieieiieti ettt ettt e e e e e e e aeanaes 43

5. Customizing the OULPUL RECOIASueiit ittt e e ettt e e eeaens 45
USING PrOPEITY ACCESSOIS . nenettntt ettt ettt ettt ettt ettt ettt et et e ettt e et ea e eateteneneaaenens 45
FirstWithLOCalEPrOPEIrtyACCESSON ...ttt 46

[T e U= Yo T A =T = Y ool TYY o) PP 46
GENErAtiVEPIOPEITYACCESSON .. e ittt et ettt ettt et ettt et et e e et et e e e e e e et eteneneanenes 46
Category DImension Value ACCESSOISu et eenes 47

O [T = T T o oY ¥ el T PN 47
LOCaleVariantPrOGUCETouiuinitit ittt eeenes 48
CategoryPathVariantPrOUCETo.iuiuiii e eene 49
CustomCatalogVariantPrOGUCEToueninin e 49
UNiqueSItEVariantPrOGUCETuiiet ittt e ettt e et a e e e e e e eaaan 50

USING Property FOIMATIOrS ..o.eue ittt ettt et et et e et eet e et et et aeteenaeaenenaenens 50
Using Property Value FIlterso.ouiu ittt a e 51
L0 Lol o U] 1 =T 52
(@oTaTer- 1 {1 L =] TP 53
UNIQUEWOIAFIIEE .. ettt et et ettt e e e e e e et e e e s e eeneenens 53

[1000 1T PP 54

6. Indexing MUItiPle LAaNGUAGEScuninininitit e e et eeenes 57
SPECIfYING The LOCAIESvteetinee ittt ettt e et e e et e e e aenes 57
Using a Separate MDEX for EQCh LanQUAgeo.viiiiiiieeee e e e e e e e e e e ee e enanenanas 57
Using a Single MDEX for all LAnQUAgESc.euiuinititititit e eene 58
(@014 o TU 1 =T ele ¢ [N 59

28 O 1= 20 1 (=T =11 [61
Contentltem, Contentinclude, and ContentSIotConfig Classesc.ovvuiuiririniiiieiiiiieeeinenineneanans 61
Invoking the Assembler in the Request Handling Pipelinecooiiiiiiiiiiiiieeee 62
Using a JSP Renderer to Render CONTENTuununininiii e 62
Rendering XIML or JSON CONTENT .. .iuiitiniiiit ettt et e e et e e e eaeeneneeanenaanans 64
When the Assembler Returns an Empty Contentltemcovieviiiiiniiiiiniiinieieeeenes 66
Invoking the Assembler using the InvokeAssembler Servlet Beanccoooviiiiiiiiiiiininninenene. 66
Choosing Between Pipeline Invocation and Servlet Bean Invocationcoceeieieiiiiiiiiiiniiinn... 68
Components for Invoking the AssembIerc.cooiiiiiiiiii e 69
AsSemMbIerPipelin@SErvIetuuini i e 69

LN Ye) YN =T s o1 o] T PP 71
ASSEMDIEITOOIS ..o e 72
Defining Global Assembler SETHNGSo.iuiritii et e e e e e e e e et ereaeaaaaaans 74
(@] I=Tad g T IR (ol =l oo [T or- H PPN 74
AssemblerApplicationConfiguration COMPONENTeuininininiiii e eens 75
ConNecting t0 @n IMDEX ittt e 76
Connecting to the Endeca Workbenchooouiiiiiiii e 76
QUErYING the ASSEMDIEE .. . ceeti e as 80
Cartridge Handlers and Their SUpporting ComMPONENTSvuiuiuinirititititiieieie e ieereneneeeeenenans 81
Providing Access to the HTTP Request to the Cartridgesocoveiiiiiiiii e 81
Controlling How Cartridges Generate URLSouiuirirtitinietiiirteiiteteenentetenenteenenaenenanaenenenes 81
S e[oY 1 T | (=] PP 82
DefaultACtionPathPrOVIAErouiee et e e 82
RetrieVING RENAEIEIS ... e e ettt e e 84
ContentltemToRendererPath e 84
AspP:renderCONTENTITEM ..o.u ettt ettt et e et e et e e eaaeneenens 86

LRt Talo) 1o Il a1 =T 1o T PPN 87

ATG Endeca Integration Guide

RecordFilterBuilder Interface and Implementing Classesoeoiiiiiiiiiiiiiiie e eens 87

SHEFIErBUIIAET ... et 87
LanguageRiterBUIldero e e 88

(@ 1 [oTe | 211 (= ¢ 101 o] S PPN 89

Enabling Record Filter COMPONENTSuttitie ittt e et e e e enens 89

9. HaNAIING PrICE LIStS .. .neneiiini e ettt et ettt e et eene 91
T = I Y N 91
INAEXING PriCe LISt DAta «.vuviuintitiniititiiet et ettt et et ettt e e e e et e et e et et eneeetenenenaenenaneens 92
PriceListPairVariantProdUCerouiiiii e 92
PriCELISTPAINACCESSON . u ettt e ettt 93

e A=) g el ol Y 93

Filtering RECOrds DY PriCe LIStuinie ittt ettt ettt ettt et e et e e e s aeeaeans 93

10. DIMEeNsion Value Cachingouiueiiiiit e ettt et e e eaeaas 95
Mapping Categories to DImension Values ..o 95
DIimensionValueCacheo.iu i e 95

Managing the Cacheouiuinii e e e 96
DimensionValueCacheDropletc.ieiriii i e e e e e aaaas 97

T = PP P PP PRSI 929

ATG Endeca Integration Guide v

vi

ATG Endeca Integration Guide

1 Introduction

The ATG-Endeca integration enables customers of Oracle ATG Web Commerce and Oracle Endeca Commerce
to index ATG product catalog data in Endeca MDEX engines, where it can then be queried and the results
can be displayed on commerce sites. This document describes how to configure ATG indexing and querying
components to work with Oracle Endeca Commerce.

Note that Commerce Reference Store makes extensive use of the ATG-Endeca integration to demonstrate the
use of both ATG-driven and Endeca-driven content on commerce sites, and in some cases extends the capability
of the integration. See the Commerce Reference Store documentation for more information.

This chapter provides an overview of installing and configuring an ATG-Endeca integration environment. It also
provides a brief description of the ATG-Endeca integration modules.

Installation Requirements

The ATG-Endeca integration requires that Oracle ATG Web Commerce and Oracle Endeca Commerce software
(including either Oracle Endeca Guided Search or Oracle Endeca Experience Manager), be installed in your
environment. We also suggest that you initially install ATG Oracle Web Commerce Reference Store, so that you
have an application and data to work with as you familiarize yourself with the integration.

For information on installing Oracle ATG Commerce software, see the ATG Installation and Configuration Guide.
For information on installing Commerce Reference Store, see the ATG Commerce Reference Store Installation and
Configuration Guide. For information on installing Oracle Endeca Commerce software, see the Oracle Endeca
Commerce Getting Started Guide and other related Oracle Endeca installation documentation.

Creating the Endeca Applications

To create an Endeca application to integrate with ATG, use the Endeca deployment template designed to work
with product catalog data. (See the Endeca Deployment Template Module for Product Catalog Integration Usage
Guide for details.) This deployment template has a script that creates various Endeca CAS (Content Acquisition
System) record stores that the ATG-Endeca integration writes to. The naming convention for these record stores
is:

appl i cati on- nane_| anguage- code_r ecord-store-type

1 Introduction 1

So for an application named ATGen that indexes ATG product catalog data in English, the record stores are:
+ ATGen_en_dat a-- Holds data records representing SKUs or products.

+ ATGen_en_di nval s-- Holds dimension value records generated from the category hierarchy and from the
hierarchy of repository item types.

+ ATGen_en_schena-- Holds records representing property and dimension definitions generated from the set
of ATG properties being indexed.

Determining the Number of Endeca Applications to Create

For each ATG Server instance, you must have at least one unique Endeca application and corresponding MDEX.
For example, if you are configuring a Content Administration server and a production server, you will need

a minimum of two Endeca applications and two MDEX engines. If your product catalog has data in multiple
languages, the number of Endeca applications you have per server depends on your approach to indexing these
languages, as described below.

One Language per MDEX

In this configuration, you have one MDEX for each language for each server. For example, if you have three
languages—English, German, and Spanish—and you have two servers—Content Administration and Production
—you must have six Endeca applications:

Content Administration/English
Content Administration/German
Content Administration/Spanish
Production/English
Production/German
Production/Spanish

Each ATG server should use a different Endeca base application name, which by default is used for all of the
applications associated with that server. For example, you could set the base application name for the Content
Administration server to ATGCA, and set the base application name for the Production server to ATGPr od. By
default, the names of the applications for the different languages on a given server are distinguished by adding
the two-letter code for the language to the base application name. So, for example, the names of the Content
Administration-related Endeca applications would be ATGCAen, ATGCAde, and ATGCAes, and the names of the
Production-related Endeca applications would be ATGPr oden, ATGPr odde, and ATGPr odes. (Note that you can
override this naming convention if you prefer; see Configuring the ApplicationConfiguration Component (page
4).)

As you create the Endeca applications using the deployment template, be sure to specify the correct language
code for each application. Also, be sure to provide unique ports for the Li veDgr aph, Aut hor i ngDgr aph, and
LogSer ver for each application.

All Languages in a Single MDEX

If you plan to have all languages indexed in a single MDEX, you only need to create one Endeca application
for each ATG server instance. Each ATG server should use a different Endeca base application name; for
example, you could set the base application name for the Content Administration server to ATGCA, and set
the base application name for the Production server to ATGPr od. By default, the name of the application is
the base application name plus the two-letter language code for the default language for the application; for
example, ATGCAen and ATGPr oden. (Note that you can override this naming convention; see Configuring the
ApplicationConfiguration Component (page 4).) Be sure to specify the default language (in this case, en)
inthe/ at g/ endeca/ Appl i cati onConfi gur ati on component’s def aul t LanguageFor Appl i cati ons
property for each ATG server instance:

2 1 Introduction

def aul t LanguageFor Appl i cati ons=en

As you create the Endeca applications using the deployment template, be sure to provide unique ports for the
Li veDgr aph, Aut hor i ngDgr aph, and LogSer ver.

Provisioning the Endeca Applications

For each Endeca application you create, you must provision it by running thei ni ti al i ze_servi ces. sh|
bat script found in the application’s / cont r ol directory. Therefore, if you have six Endeca applications, you
must invoke this script six times. The i ni ti al i ze_ser vi ces. sh script is found in the following location: /
endecal/ Endeca- appl i cation-directory/your-application/control/.

Configuring the ATG Server Instances in CIM

You must configure your ATG server instances for an ATG-Endeca integration environment using CIM. The
options you must configure are described below.

Product Selection

To configure your server instances to use the ATG-Endeca integration, select [3] ATG-Endeca Integration and [4]
ATG Commerce in the Product Selection menu:

[1] ATG Platform and Content Admi nistration :
I ncludes, optionally, data warehouse conponents and Previ ew

[2] ATG Site Administration :
I ncl udes ATG Pl at form and Content Administration.

[3] ATG Endeca Integration :
Includes ATG Platform Select this option when Endeca is used. Do not
select this if you are using ATG Search

[4] Oracle ATG Wb Commerce :
Includes the ATG pl atform and ATG Content Administration. Optional:
dat a war ehouse conmponents, Preview, and Oracle ATG Wb Commrerce
Mer chandi si ng

[5] Oracle ATG Conmerce Reference Store :
Includes the ATG platform ATG Endeca |Integration, ATG Content
Admini stration, Site Administration, Oacle ATG Wb Commerce, and
O acl e ATG Wb Conmerce Merchandi sing. Optional: data warehouse
conponents and Previ ew

If your installation includes Oracle ATG Commerce Reference Store, you can select [5] Oracle ATG Commerce
Reference Store instead. Your servers’ installs will automatically include ATG Commerce and the ATG-Endeca
integration, because Commerce Reference Store requires them.

ATG Server Instance Creation

During your ATG server instance configuration, you must provide information about your Endeca environment
so that the ATG server instance can communicate with Oracle Endeca Commerce. Specifically, you must provide

1 Introduction

the CAS hostname and port, the Endeca base application name, and the EAC host and port. The defaults for
these settings are provided in the table below:

Setting Default
CAS hostname | ocal host
CAS port 8500
Endeca base application name ATG

EAC hostname | ocal host
EAC port 8888

After your ATG server instances are configured in CIM, start them in preparation for indexing.

Configuring the ApplicationConfiguration Component

The at g. endeca. confi guration. Appl i cati onConfi gurati on class provides a central place for
configuring various global settings, including language configuration options and application naming. The
ATG-Endeca integration includes a component of this class, / at g/ endeca/ Appl i cat i onConfi gur ati on.The
following are key properties of this component:

locales
An array of the locales to generate records for.
defaultLanguageForApplications

The two-letter code for the default language for the application. This should be set only if there is a single MDEX
for all languages being indexed. By default the value of this property is null.

baseApplicationName

The base string used in constructing the Endeca EAC application names. The default setting is ATG You can
override the default when you use CIM to configure your ATG environment.

keyToApplicationName

A map of application keys to application names. You can use this property to override the default application
naming convention discussed in Determining the Number of Endeca Applications to Create (page 2). For
example, if an environment supports English, Spanish, and German, and there is a separate Endeca application
for each language, you can specify the application names like this:

keyToAppl i cati onNanme=\
en=M/Engl i shApp,
es=MySpani shApp,

4 1 Introduction

de=MyGer manApp

The application keys in this case are the two-letter language codes. An array of the keys is stored in the read-only
appl i cati onKeys property.

If there is a single application, the key is def aul t . You can specify the application name like this:

keyToAppl i cati onNane=\
def aul t =MyApp

defaultApplicationKey

The key of the application to use if the current application cannot otherwise be determined. If there is a separate
application for each language, the first key listed in the appl i cat i onKeys property is the default, unless you
change the default by explicitly setting the def aul t Appl i cat i onKey property to a different key.

If there is only one Endeca application, you do not need to set this property; it will automatically be set to
defaul t.

workbenchHostName

The host name of the machine running the Endeca Workbench. The default setting is | ocal host . You can
override this default when you use CIM to configure your ATG environment.

workbenchPort

The port number for accessing the Endeca Workbench. The default setting is 8006. You can override this default
when you use CIM to configure your ATG environment.

Starting the Indexing Process

The indexing process can be started in two ways: automatically as part of running a full deployment through
Content Administration, or manually using the ATG Dynamo Administration Ul.

Increasing the Transaction Timeout and Datasource Connection Pool Values

Depending on your application server, you may need to increase the transaction timeout and datasource
connection pool settings in order for indexing to run successfully.

Increasing the Transaction Timeout

If indexing is not successful, it may be related to the transaction timeout setting in your application server.
Oracle ATG recommends setting a transaction timeout of 300 seconds or greater. All supported application
servers time out long running transactions by marking the active transaction as rolled back (essentially, by
calling set Rol | backOnl y on the transaction), which can result in problems when indexing. If your indexing
process fails, try increasing the transaction timeout setting. For details on changing your transaction timeout,
see Setting the Transaction Timeout on WebLogic, Setting the Transaction Timeout on JBoss, or Setting the
Transaction Timeout on WebSphere in the ATG Installation and Configuration Guide.

1 Introduction 5

Increasing the Data Source Connection Pool

Oracle ATG recommends setting the data source connection pool maximum capacity to 30 or greater for all of
your data sources. For information on setting the data source connection pool maximum capacity, refer to your
application server's documentation.

Indexing As Part of a Deployment

You can configure your environment so that when you run a deployment in Content Administration, indexing

is automatically started after the deployment is finished. To make this automatic triggering occur, add the
following three components and their configuration to the | ocal confi g layer for your Content Administration
server.

/atg/commerce/endeca/index/CategoryToDimensionOutputConfig
Specify the following property for the Cat egor yToDi nensi onQut put Conf i g component:
t ar get Nane=Pr oduct i on
/atg/commerce/search/ProductCatalogOutputConfig
Specify the following property for the Pr oduct Cat al ogQut put Conf i g component:
t ar get Nane=Pr oduct i on
/atg/search/Synchronizationinvoker
Specify the following properties for the Synchr oni zat i onl nvoker component:

host =at g- pr oduct i on- ser ver - host
rm =8860

Manually Starting the Indexing Process

To manually start an indexing job, log in to ATG Dynamo Administration for the appropriate ATG server instance
and navigate to/ at g/ commrer ce/ endeca/ i ndex/ Pr oduct Cat al ogSi npl el ndexi ngAdni n component.
From here, you can click Baseline Index to start a baseline index, or Partial Index to start a partial update.

Monitoring the Indexing Process

Regardless of how an indexing process has been started, you can monitor its progress in ATG Dynamo
Administration by viewing the / at g/ conmer ce/ endeca/ i ndex/ Pr oduct Cat al ogSi npl el ndexi ngAdni n
component. Each phase of the indexing process is listed in the table under Indexing Job Status. To dynamically
refresh the window, enable the Auto Refresh option below the table.

Viewing the Indexed Data

You can view the indexed data residing in your MDEX engines using Oracle Endeca’s JSP Reference
Implementation. To use this reference implementation, do the following:

6 1 Introduction

1. In a browser, navigateto ht t p: / / host : port/ endeca_j spr ef , where host : port refers to the name and
port of the server hosting the Endeca Tools and Frameworks installation, for example:

http://1 ocal host: 8006/ endeca_j spr ef
2. Click the ENDECA-JSP Reference Implementation link.

3. Enter an MDEX host and port, and then click Go.

ATG Modules

The main ATG-Endeca integration modules are:

Module Description

DAF. Endeca. | ndex Includes the necessary classes for exporting data to CAS record
stores and triggering indexing via the EAC, along with associated
configuration.

DAF. Endeca. | ndex. Ver si oned Adds configuration for running on an ATG Content Administration
instance. This module adds basic record generation configuration
for ATG Content Administration servers, including a deployment
listener.

DAF. Endeca. Assenbl er Contains classes and configuration for creating an Assembler
instance that has access to the data in your application’s MDEX
engines. Also provides classes for querying the Assembler for data
and managing the content returned.

DCS. Endeca. | ndex Configures components for creating CAS data records from
products in the catalog repository and dimension-value records
from the category hierarchy.

DCS. Endeca. | ndex. SKUI ndexi ng Modifies configuration so that CAS data records are generated
based on SKUs rather than products.

DCS. Endeca. | ndex. Ver si oned Adds Commerce-specific configuration for running on an ATG
Content Administration instance.

DCS. Endeca. Assenbl er Contains Commerce-specific configuration for query-related
components.

Note that when you assemble an application that includes any of the modules listed in the table above, the
DAF. Sear ch. Base and DAF. Sear ch. | ndex modules are automatically included in the EAR file as well.
These modules contain core ATG Search repository indexing classes that are subclassed in the Endeca-specific
modaules. In addition, some of the Endeca-specific modules pull in classes from other ATG Search modules
(without including the modules in their entirety) through the ATG O ass- Pat h entries in their manifest files.

1 Introduction

1 Introduction

2 Overview of Indexing

To make your product catalog available for searching, the Oracle ATG Web Commerce platform must transform
the data into the appropriate format, and then submit this data to Oracle Endeca Commerce for indexing.

The process of indexing ATG product catalog data in Oracle Endeca Commerce works like this:

1. ATG components transform the catalog repository data into Endeca records that represent Endeca properties,
dimensions, and schema:

 Properties of ATG products and SKUs are used to create Endeca properties and non-hierarchical
dimensions.

+ The ATG category hierarchy is used to create a hierarchical category dimension in Oracle Endeca
Commerce. The hierarchy of repository item types in the product catalog is used to create another
hierarchical Endeca dimension.

+ An Endeca schema is created by examining the set of ATG properties to be indexed.
2. The generated records are submitted to Endeca CAS data, dimension value, and schema record stores.
3. The Endeca EAC is invoked, which creates Forge processes that process the record stores and invoke indexing.

This chapter provides an overview of the classes and components that perform these steps, and the user
interface provided for managing the process. Other chapters of this book provide more detail about configuring
and using these and other classes and components to work with the product catalog in your Oracle ATG Web
Commerce environment.

Indexable Classes

The ATG platform includes an interface, at g. endeca. i ndex. | ndexabl e, that is implemented by the classes
responsible for creating Endeca records. Key classes that implement this interface include:

* atg.endeca. i ndex. Endecal ndexi ngQut put Confi g

* atg.comer ce. endeca. i ndex. di mensi on. Cat egoryTreeServi ce

» atg.endeca. i ndex. di mensi on. Reposi t oryTypeHi er ar chyExporter
» atg.endeca.index. schema. SchemaExporter

These classes are discussed below.

2 Overview of Indexing 9

EndecalndexingOutputConfig Class

The main class used to specify how to transform repository items into records is
at g. endeca. i ndex. Endecal ndexi ngQut put Conf i g. The ATG-Endeca integration includes two components
of this class:

« [at g/ commer ce/ sear ch/ Product Cat al ogQut put Confi g
* [at g/ commer cel/ endecal i ndex/ Cat egor yToDi nensi onQut put Confi g
Each Endecal ndexi ngQut put Conf i g component has a number of properties, as well as an XML definition file,

for configuring how repository data should be transformed to create Endeca records. The configuration of these
components is discussed in detail in EndecalndexingOutputConfig Components (page 18).

ProductCatalogOutputConfig Component

The Pr oduct Cat al ogQut put Conf i g component specifies how to create Endeca data records that represent
items in the ATG product catalog. Each record represents either one product or one SKU (depending on whether
you use product-based or SKU-based indexing), and contains the values of the ATG properties to be included in
the index.

In addition, each record includes properties of parent and child items. For example, a record that represents a
product includes information about its parent category’s properties, as well as information about the properties
of its child SKUs. This makes it possible to search category and SKU properties as well as product properties
when searching for products in the catalog.

The names of the output properties include information about the item types they are associated with. For
example, a record generated from a product might have a pr oduct . descri pt i on property that holds the
value of the descri pti on property of the pr oduct item, and a sku. col or property that holds the value of the
col or properties of the product’s child SKUs.

Multi-value properties are given names without array subscripts. For example, a pr oduct repository item might
have multiple child sku items, each with a different value for the col or property. In the output record there will
be multiple entries for sku. col or.

The following is an XML representation of a portion of a Commerce Reference Store record. Note that the actual
records submitted to the CAS data record store are in a binary object format, not XML.

<RECORD>
<PROP NAME="record. spec">
<PVAL>
cl ot hi ng- sku- xsku1013. . xpr od1003. nast er Cat al og. en__US. pl i st 3080003__pl i st 3080002
</ PVAL>
</ PROP>
<PROP NAME="product. baseUr| ">
<PVAL>at gr ep: / Pr oduct Cat al og/ cl ot hi ng- sku/ xsku1013</ PVAL>
</ PROP>
<PROP NAME="product.repositoryld">
<PVAL>xpr 0d1003</ PVAL>
</ PROP>
<PROP NAME="product . brand" >
<PVAL>Cri cket Cl ub</ PVAL>
</ PROP>
<PROP NAME="product. | anguage" >
<PVAL>Engl i sh</ PVAL>
</ PROP>

10

2 Overview of Indexing

<PROP NAME="product. pricelLi stPair">
<PVAL>pl i st 3080003 _pl i st 3080002</ PVAL>

</ PROP>

<PROP NAME="product . descri ption">

<PVAL>Genui ne English | eather wall et</PVAL>

</ PROP>

<PROP NAME="product . di spl ayNane" >
<PVAL>Or gani zed Wl | et </ PVAL>

</ PROP>

<PROP NAME="sku. activePrice">
<PVAL>24. 49</ PVAL>

</ PROP>

<PROP NAME="cl ot hi ng- sku. col or">
<PVAL>Br own</ PVAL>

</ PROP>

<PROP NAME="cl ot hi ng- sku. si ze">
<PVAL>One Si ze</ PVAL>

</ RECORD>

CategoryToDimensionOutputConfig Component

The Cat egor yToDi mensi onQut put Conf i g component specifies how to create Endeca dimension value
records that represent categories from the ATG product catalog. This category dimension makes it possible to
use Oracle Endeca Commerce to navigate the categories of a catalog.

Cat egor yToDi nensi onQut put Conf i g creates dimension values using a special representation of the category
hierarchy that is generated by the/ at g/ comrer ce/ endeca/ i ndex/ Cat egor yTr eeSer vi ce component, as
described in the CategoryTreeService Class (page 12) section.

The following example shows an XML representation of a portion of a category dimension value record
generated by Cat egor yToDi nensi onQut put Confi g:

<RECORD>

<PROP NAME="di nval . spec">
<PVAL>r oot Cat egory. cat 10016. cat 10014. cat DeskLanps</ PVAL>

</ PROP>

<PROP NAME="di nval . qual i fi ed_spec">
<PVAL>pr oduct . cat egory: r oot Cat egory. cat 10016. cat 10014. cat DeskLanps</ PVAL>

</ PROP>

<PROP NAME="di nval . prop. cat egory. r oot Cat al ogl d" >
<PVAL>mast er Cat al og</ PVAL>

</ PROP>

<PROP NAME="di nval . prop. cat egory. ancest or Cat al ogl ds" >
<PVAL>nmast er Cat al og</ PVAL>

</ PROP>

<PROP NAME="di nval . di mensi on_spec" >
<PVAL>pr oduct . cat egor y</ PVAL>

</ PROP>

<PROP NAME="di nval . parent _spec">
<PVAL>cat 10016. cat 10014</ PVAL>

</ PROP>

<PROP NAME="di nval . di spl ay_order">
<PVAL>2</ PVAL>

</ PROP>

<PROP NAME="di nval . prop. category. repositoryld">
<PVAL>cat DeskLanps</ PVAL>

</ PROP>

<PROP NAME="di nval . prop. cat egory. cat al ogs. reposi toryl d">

2 Overview of Indexing 11

<PVAL>nmast er Cat al og, honeSt or eCat al og</ PVAL>
</ PROP>
<PROP NAME="di nval . di spl ay_nane" >
<PVAL>Desk Lanps</PVAL>
</ PROP>
</ RECORD>

CategoryTreeService Class

The ATG-Endeca integration uses the category hierarchy in the ATG product catalog to construct a category
dimension in Oracle Endeca Commerce. In some cases, the hierarchy cannot be translated directly, because
ATG's catalog hierarchy supports categories with multiple parent categories, while Endeca requires each
dimension value to have a single parent.

For example, suppose you have the following category structure in your product catalog:

Shoss Cloth ng
¥ ¥
Men's Clothing Women's Clothing
. X X L
Women's Shoas Ban's Shoes Man's Panls

To deal with this structure, the ATG-Endeca integration creates two different records for the Men'’s Shoes
dimension value, one for each path to this category in the catalog hierarchy. These paths are computed by the
at g. conmer ce. endeca. i ndex. di mensi on. Cat egor yTr eeSer vi ce class.

The ATG-Endeca integration includes a component of this class, / at g/ conmer ce/ endecal i ndex/

Cat egor yTr eeSer vi ce. This component, which is run in the first phase of the indexing process, creates data
structures in memory that represent all possible paths to each category in the product catalog. A category can
have multiple parents, and those parents and their ancestors can each have multiple parents, so there can be
any number of unique paths to an individual category.

The Cat egor yToDi mensi onQut put Conf i g component then uses the/ at g/ conmer ce/ endeca/ i ndex/

Cat egor yPat hVari ant Producer component to create multiple records for each category, one for each path
computed by Cat egor yTr eeSer vi ce. For each path, the corresponding record uses the pathname as the value
of its di nval . spec property; this makes it possible to differentiate records that represent different paths to the
same category.

In the example above, two records are created for the Men's Shoes category. One of the records includes
something like this:

12

2 Overview of Indexing

<PROP NAME="di nval . spec" >
<PVAL>cat C ot hi ng. cat MensCl ot hi ng. cat MensShoes</ PVAL>
</ PROP>

The other record for the category includes something like this:

<PROP NAME="di nval . spec">
<PVAL>cat Shoes. cat MensShoes</ PVAL>
</ PROP>

Note that the period (.) is used as a separator in the property values rather the slash (/) . This is done so the
value can be passed to Oracle Endeca Commerce through a URL query parameter when issuing a search query,
without requiring any characters to be escaped.

RepositoryTypeHierarchyExporter Class

The at g. endeca. i ndex. di mensi on. Reposi t or yTypeHi er ar chyExpor t er class creates Endeca dimension
value records from the hierarchy of repository item types in the product catalog, and submits those records to
the CAS dimension values record store. This dimension is not typically displayed on a site, but can be used in
determining which other dimensions to display. For example, Commerce Reference Store has a f ur ni t ur e- sku
subtype that includes a woodFi ni sh property that can be used as an Endeca dimension. A site can include logic
to detect whether the items returned from a search are of type f ur ni t ur e- sku, and display the woodFi ni sh
dimension if they are.

The ATG-Endeca integration includes a component of class Reposi t or yTypeHi er ar chyExporter,/

at g/ conmer ce/ endecal i ndex/ Reposi t or yTypeDi mensi onExport er, that is configured to work

with the Pr oduct Cat al ogQut put Conf i g component. The Reposi t or yTypeDi mensi onExport er
component outputs dimension value records for all of the repository item types referred to in the

Pr oduct Cat al ogQut put Conf i g definition file, as well as the ancestors and descendants of those item types.
Reposi t or yTypeDi nensi onExport er does not create records for any item types that are not part of the
hierarchy mentioned in the definition file.

The following example shows a record produced by the Reposi t or yTypeDi nensi onExport er component for
the pr oduct item type:

<RECORD>
<PROP NAME="di nval . di mensi on_spec" >
<PVAL>i t em t ype</ PVAL>
</ PROP>
<PROP NAME="di nval . di spl ay_nange" >
<PVAL>Pr oduct </ PVAL>
</ PROP>
<PROP NAME="di nval . qual i fi ed_spec">
<PVAL>i t em t ype: product </ PVAL>
</ PROP>
<PROP NAME="di nval . spec">
<PVAL>pr oduct </ PVAL>
</ PROP>
<PROP NAME="di nval . parent _spec">
<PVAL>i t em t ype</ PVAL>
</ PROP>
</ RECORD>

2 Overview of Indexing 13

SchemaExporter Class

The at g. endeca. i ndex. schema. SchenaExport er class is responsible for generating schema records and
submitting them to the Endeca schema record store. The / at g/ commer ce/ endeca/ i ndex/ SchemaExport er
component of this class examines the Pr oduct Cat al ogQut put Conf i g definition file and generates a schema
record for each ATG property that is output. The schema record indicates whether the ATG property should be
treated as a property or a dimension by Oracle Endeca Commerce, whether it should be searchable, and the data
type of the property or dimension.

For example, the following is an XML representation of a schema record for the pr oduct . descri pti on
property, which identifies it as a searchable Endeca property whose data type is st ri ng:

<RECORD>

<PROP NAME="attri bute. nane">
<PVAL>pr oduct . descri pti on</ PVAL>

</ PROP>

<PROP NAME="attri bute. source_nane">
<PVAL>pr oduct . descri pti on</ PVAL>

</ PROP>

<PROP NAME="attri bute. di spl ay_nane">
<PVAL>Pr oduct Descri pti on</ PVAL>

</ PROP>

<PROP NAME="attri bute. property.data_type">
<PVAL>st ri ng</ PVAL>

</ PROP>

<PROP NAME="attribute.type">
<PVAL>pr opert y</ PVAL>

</ PROP>

<PROP NAME="attri bute. search. searchabl e">
<PVAL>t r ue</ PVAL>

</ PROP>

</ RECORD>

Submitting the Records

Once the records have been generated, they are submitted to the appropriate CAS record stores by components
of class at g. endeca. i ndex. Recor dSt or eDocunent Subni t t er. The ATG platform includes three
components of this class, each of which is configured to submit to a different record store:

+ /at g/ endecal i ndex/ Dat aDocument Submi t t er -- Submits records to the data record store (for example,
ATGen_en_dat a).

« [at g/ endecal i ndex/ Di mensi onDocunent Submi t t er -- Submits records to the dimension values record
store (for example, ATGen_en_di nval s).

« /atg/endeca/ i ndex/ SchemaDocunent Subni tt er -- Submits records to the schema record store (for
example, ATGen_en_schenm).

The Endecal ndexi ngQut put Conf i g, Reposi t or yTypeHi er ar chyExport er, and SchemaExport er classes
each have a docunent Subni tt er property that is used to specify a document submitter component to

use to submit records to the appropriate CAS record store. The following table shows default values of the
docunent Subni t t er property of each component of these classes:

14

2 Overview of Indexing

Component Record Submitter

Pr oduct Cat al ogQut put Confi g Dat aDocunent Submi tter

Cat egor yToDi nensi onCQut put Confi g Di mensi onDocunent Submi tter
Reposi t oryTypeDi nmensi onExport er Di mensi onDocunent Subnitter
SchenaExporter SchemaDocunent Submi tter

Managing the Process

The at g. endeca. i ndex. admi n. Si npl el ndexi ngAdmni n class provides a mechanism for

managing the process of generating records, submitting them to Endeca, and invoking indexing.

The ATG-Endeca integration includes a component of this class, / at g/ conmer ce/ endecal i ndex/

Pr oduct Cat al ogSi npl el ndexi ngAdni n. The page for this component in the Component Browser of the ATG
Dynamo Server Admin presents a simple user interface for controlling and monitoring the process:

Indexing Job Status

Phase Component Records Sent Records Failed Status
Pralndexng

fatgfendecafindexicommerceCateqon/TreeSenice PEMDIMNG
RepositoryExport

Iatgfendacaindexicommerce/Schemabsporter 0 1] FEMNDIM

latgfendacaindescomenanceCategony TaDimensionOutputConfig O 1] PENDIMG

latgfendecaindexicommerceRepositonTypalsmensionExporter O
latgfoommercefseanc hiProductCatalogOutpatConfig 0

PENDIMNG
FEMNDING

e e}

Endacalndexng
latgiendecaindexicommertsEndacasScnplSanics FENDIMG
Actions: | Basaling Index ” Pastinl Indlax: |

After the records are generated and submitted to Oracle Endeca Commerce,

Pr oduct Cat al 0ogSi npl el ndexi ngAdni n calls the / at g/ conmer ce/ endeca/ i ndex/ EndecaScr i pt Ser vi ce
component (of class at g. endeca. eaccl i ent. Scri pt | ndexabl e). This component is responsible for invoking
Endeca Application Controller (EAC) scripts that trigger indexing.

The Ul provides buttons for initiating an Endeca baseline index or a partial update. Note that even if you click
Partial Index, a baseline update may be invoked if the changes since the last baseline update necessitate it. See
EndecalndexingOutputConfig Components (page 18) for more information.

2 Overview of Indexing 15

16

2 Overview of Indexing

3 Configuring the Indexing

Components

This chapter provides detailed information about the indexing-related Nucleus components in the ATG-Endeca

integration, what they do, how they’re configured, and how you can modify them to alter various aspects of

indexing.

IndexingApplicationConfiguration Component

The at g. endeca. i ndex. confi gur ati on. | ndexi ngAppl i cati onConfi gur ati on class provides a central

place for configuring various indexing settings. The ATG-Endeca integration includes a component of this class,
/ at g/ endeca/ i ndex/ | ndexi ngAppl i cati onConf i gur at i on. This component is configured by default with

typical settings, but you can override these defaults when you use CIM to configure your ATG environment.

CASHostName

The hostname of the machine running CAS. The default setting is:

CASHost Nanme=| ocal host

CASPort

The port number of the machine running CAS. The default setting is:

CASPor t =8500

eacHostName

The hostname of the EAC server. The default setting is:

eacHost =l ocal host

eacPort

The port used by the EAC server. The default setting is:

3 Configuring the Indexing Components

17

eacPort =8888

applicationConfiguration

The component of class at g. endeca. confi gurati on. Appl i cati onConfi gurati on used to configure
global settings for the integration. The default setting is:

appl i cati onConfi gurati on=/at g/ endecal Appl i cati onConfi guration

EndecalndexingOutputConfig Components

The at g. endeca. i ndex. Endecal ndexi ngQut put Conf i g class has a number of properties that configure
various aspects of the record creation and submission process:

definitionFile

The full Nucleus pathname of the XML indexing definition file that specifies the repository
item types and properties to include in the Endeca records. For the / at g/ commer ce/ sear ch/
Pr oduct Cat al ogQut put Conf i g component, this property is set as follows:

definitionFile=/atg/ comrerce/ endecal i ndex/ product - sku- out put - confi g. xm

For/ at g/ commer ce/ endeca/ i ndex/ Cat egor yToDi nensi onCut put Confi g:

definitionFil e=/atg/comercel/ endeca/ i ndex/ cat egory-di m out put - confi g. xm

See the Configuring EndecalndexingOutputConfig Definition Files (page 35) chapter for information about the
definition file's elements and attributes that configure how ATG repository items are transformed into Endeca
records.

repository

The full Nucleus pathname of the repository that the definition file applies to. For both the
Pr oduct Cat al ogQut put Conf i g and Cat egor yToDi mensi onCQut put Conf i g, this property is set to the
product catalog repository:

reposi tory=/ at g/ conmer ce/ cat al og/ Pr oduct Cat al og

It is also possible to specify the repository in the indexing definition file using the r eposi t or y- pat h attribute
of the top-level i t emelement. If the repository is specified in the definition file and also set by the component’s
reposi t ory property, the value set by the r eposi t or y property overrides the value set in the definition file.

Note that in an ATG Content Administration environment, the repository should not be set to a versioned
repository. Instead, it should be set to the corresponding unversioned target repository. For example, an

18

3 Configuring the Indexing Components

Endecal ndexi ngQut put Conf i g component for a product catalog in an ATG Content Administration
environment could be set to:

reposi tory=/ at g/ conmer ce/ cat al og/ Pr oduct Cat al og_pr oducti on

repositoryltemGroup

A component of a class that implements the at g. r eposi t ory. Reposi t oryl t ena oup interface. This
interface defines a logical grouping of repository items. Items that are not included in this logical grouping
are excluded from the index. For the Cat egor yToDi nensi onQut put Conf i g component, this property

is set by default to null (so no items are excluded). For the Pr oduct Cat al ogQut put Conf i g component,
reposi t oryl t ena oup property is set by default to:

reposi toryltenG oup=/ at g/ comrer ce/ sear ch/ | ndexedl t ens G oup

The I ndexedl t ens G oup component uses this targeting rule set to select only products that have an ancestor
catalog:

<rul eset >
<accept s>
<rul e op=i sNot Nul | >
<val ueof target="conputedCatal ogs">
</rul e>
</ accept s>
</rul eset >

This rule set ensures that the index does not include products that are not part of the catalog hierarchy.

It is also possible to specify a repository item group in the indexing definition file using the r eposi t or y-

i t em gr oup attribute of the top-level i t emelement. If a repository item group is specified in the definition file
and also by the component’s r eposi t or yl t enGr oup property, the value set by the r eposi t or yl t enGr oup
property overrides the value set in the definition file.

Note that the | ndexedI t enar oup component has ar eposi t or y property that specifies the repository that
the items are selected from. This value must match the repository that the Pr oduct Cat al ogQut put Confi g is
associated with.

For more information about targeting rule sets, see ATG Personalization Programming Guide.
documentSubmitter

The component (typically of class at g. endeca. i ndex. Recor dSt or eDocument Subrmi t t er) to use to submit
records to the appropriate CAS record store. For the Pr oduct Cat al ogQut put Conf i g component, this property
is set as follows:

docunent Submi tt er =/ at g/ endeca/ i ndex/ Dat aDocunent Submi t t er

For the Cat egor yToDi mensi onQut put Conf i g component:

docunent Submi tt er =/ at g/ endeca/ i ndex/ Di mensi onDocunent Submi tter

3 Configuring the Indexing Components 19

See Document Submitter Components (page 26) for more information.

forceToBaselineOnChange
Ift r ue, a baseline update is performed when a partial update is invoked, if a value of a hierarchical dimension
has been changed. For Cat al ogToDi nensi onQut put Conf i g, this property is set to t r ue by default, because
the component generates category dimension values. For Pr oduct Cat al ogQut put Conf i g, this property is set
to f al se by default, because the component does not generate dimension values.

bulkLoader

A Nucleus component of class at g. endeca. i ndex. Recor dSt or eBul kLoader | npl . This is typically set to /
at g/ sear ch/ reposi t ory/ Bul kLoader . Any number of Endecal ndexi ngQut put Conf i g components can
use the same bulk loader.
See Data Loader Components (page 22) for more information.

enablelncrementalLoading
If t r ue, incremental loading is enabled.

incrementalLoader
A Nucleus component of class at g. endeca. i ndex. Recor dSt or el ncr ement al Loader | npl . This is typically
setto/ at g/ sear ch/ reposi t ory/ | ncr enent al Loader . Any number of Endecal ndexi ngQut put Confi g
components can use the same incremental loader.
See Data Loader Components (page 22) for more information.

excludedltemsAncestorlds
A list of the IDs of the items whose child items should not be indexed. For example, Commerce Reference Store

excludes products and skus that are not part of the standard catalog hierarchy (e.g., gift wrapping) by setting the
excl uded! t ensAncest or | ds property of the Pr oduct Cat al ogQut put Conf i g component to:

excl udedl t emsAncest or | ds=\
NonNavi gabl ePr oduct s, honeSt or eNonNavi gabl ePr oduct s

sitelDsTolndex

A list of site IDs of the sites to include in the index. The value of this property is used to automatically set the
value of the si t esTol ndex property, which is the actual property used to determine which sites to index. If

si t el DsTol ndex is explicitly set to a list of site IDs, si t esTol ndex is set to the sites that have those IDs. If the
value of si t el DsTol ndex is null (the default), si t esTol ndex is set to a list of all enabled sites. So it is only
necessary to set si t el DsTol ndex if you want to restrict indexing to only a subset of the enabled sites.

replaceWithTypePrefixes
A list of the property-name prefixes that should be replaced with the item type the property is associated with.
In this list, a period specifies that a type prefix should be added to properties of the top-level item, which is

pr oduct for Pr oduct Cat al ogQut put Confi g and cat egor y for Cat egor yToDi nensi onQut put Confi g.

For Pr oduct Cat al ogQut put Confi g, therepl aceW t hTypePr ef i xes property is set by default to:

20 3 Configuring the Indexing Components

repl aceWt hTypePrefi xes=., chi | dSKUs

This means, for example, that the br and property of the pr oduct item is given the name pr oduct . br and

in the output records, and the onSal e property of the sku item (which appears in the definition file as the

chi | dSKUs property of the pr oduct item) is given the name sku. onSal e. Properties that are specific to a sku
subtype are prefixed with the subtype name in the output records. For example, Commerce Reference Store
has a f ur ni t ur e- sku subtype, so the woodFi ni sh property (which is specific to this subtype) is given the
output name f ur ni t ur e- sku. woodFi ni sh, while onSal e (which is common to all SKUs) is given the name
sku. onSal e.

Adding these prefixes ensures that there is no duplication of property or dimension names in Oracle Endeca
Commerce, in case different indexed ATG item types (or records from other sources) have identically named

properties.

For Cat egor yToDi mensi onCQut put Confi g, ther epl aceW t hTypePr ef i xes property is set to:

repl aceWt hTypePrefi xes=.

This means, for example, that the ancest or Cat al ogl ds property of the cat egor y item is given the name
cat egory. ancest or Cat al ogl ds in the output records.

prefixReplacementMap

A mapping of property-name prefixes to their replacements. This mapping is applied after any type prefixes are
added by r epl aceW t hTypePr ef i xes.

For Pr oduct Cat al ogQut put Confi g, pr ef i xRepl acenment Map is set by default to:

pr ef i xRepl acenment Map=\
product. ancest or Cat egori es=al | Ancestors

So, for example, the ancest or Cat egor i es. di spl ayNane property is renamed to
product . ancest or Cat egor i es. di spl ayNane by applying r epl aceW t hTypePr ef i xes, and then the result
is renamed to al | Ancest or s. di spl ayNane by applying pr ef i xRepl acement Map.

For Cat egor yToDi mensi onQut put Confi g, pr ef i xRepl acement Map is set to null by default, so no prefix
replacement is performed.

suffixReplacementMap

A mapping of property-name suffixes to their replacements. In addition to any mappings you specify in the
properties file, the following mappings are automatically included:

$reposi toryl d=reposi toryld,

$reposi tory. repositoryNane=repositoryNane,
$i tenmDescriptor.itenDescri ptorNane=t ype,
$siteld=siteld,

$url =url,

$baseUr | =baseUr|

3 Configuring the Indexing Components 21

The suf fi xRepl acenent Map property is set to null by default for both Pr oduct Cat al ogQut put Conf i g and
Cat egor yToDi mensi onQut put Conf i g, which means only the automatic mappings are used. You can exclude
the automatic mappings by setting the addDef aul t Qut put NameRepl acenent s property to f al se.

Data Loader Components

The Endecal ndexi ngQut put Conf i g components specify how to generate records from items in the catalog
repository, but the actual generation is performed by data loader components. Depending on your ATG
environment, data loading may be an operation that is performed occasionally (if the content rarely changes) or
frequently (if the content changes often). To be as flexible as possible, the ATG-Endeca integration provides two
approaches to loading the data:

+ Bulk loading generates the complete set of records for the catalog. Bulk loading is performed by the
at g. endeca. i ndex. Recor dSt or eBul kLoader | npl class. The ATG-Endeca integration includes a
component of this class, / at g/ sear ch/ r eposi t ory/ Bul kLoader.

+ Incremental loading generates only the records that have changed since the last load. The incremental
loader records which repository items have changed since the last incremental or bulk load. It deletes the
records that represent items that have been deleted, and creates records for any items that are new or have
been modified.

Incremental loading is performed by the at g. endeca. i ndex. Recor dSt or el ncr enent al Loader | npl
class. The ATG-Endeca integration includes a component of this class, / at g/ sear ch/ r eposi tory/
I ncrement al Loader .

Bulk loading and incremental loading are not mutually exclusive. For some environments, only bulk loading will
be necessary, especially if content is updated only occasionally. For other environments, incremental loading will
be needed to keep the search content up to date, but even in that case it is a good idea to perform a bulk load
occasionally to ensure the integrity of the indexed data.

Note that Oracle Endeca Commerce always does a baseline update after ATG performs bulk loading, and
typically does a partial update after incremental loading. In some cases, however, a baseline update may
be invoked after incremental loading. For example, if incremental loading adds a new category dimension
value, a baseline update must be performed. See EndecalndexingOutputConfig Components (page 18) for
information about how to configure this.

The I ncr enent al Loader component uses an implementation of the Pr oper t i esChangedLi st ener interface
to monitor the repository for add, update, and delete events. It then analyzes these events to determine

which ones necessitate updating records, and creates a queue of the affected repository items. When a new
incremental update is triggered, the | ncr ement al Loader processes the items in the queue, generating and
loading a new record for each changed repository item.

Tuning Incremental Loading

The number of changed items accumulating in the queue can vary greatly, depending on how frequently
your data changes and how long you specify between incremental updates. Rather than processing all of the
changes at once, the | ndexi ngQut put Conf i g component groups changes in batches called generations.

The Endecal ndexi ngQut put Conf i g class has a max| ncr enent al Updat esPer Gener at i on property that
specifies the maximum number of changes that can be assigned to a generation. By default, this value is 1000,
but you can change this value if necessary. Larger generations require more ATG platform resources to process,

22

3 Configuring the Indexing Components

but reduce the number of Endeca jobs required (and hence the overhead associated with starting up and
completing these jobs). Smaller generations require fewer ATG platform resources, but increase the number of
Endeca jobs.

CategoryTreeService

The following describes key properties of the
at g. conmer ce. endeca. i ndex. di mensi on. Cat egor yTr eeSer vi ce class and the default configuration of
the/ at g/ commer ce/ endeca/ i ndex/ Cat egor yTr eeSer vi ce component of this class:

catalogTools

The component of class at g. commer ce. cat al og. cust om Cust onCat al ogTool s for accessing the catalog
repository. By default, this property is set to:

cat al ogTool s=/ at g/ commrer ce/ cat al og/ Cat al ogTool s

excludedCategorylds

A list of the IDs of categories that dimension values should not be created for. For example, Commerce Reference
Store has root categories that are not displayed on the site and therefore should not be represented by
dimension values. Commerce Reference Store excludes these categories by setting excl udedCat egor yl ds to:

excl udedCat egor yl ds=r oot Cat egory, honeSt or eRoot Cat egory

excludedltemsCategorylds

A list of the IDs of the categories whose child products and skus are excluded from indexing. As with the
categories specified in the excl udedCat egor yI ds property, no dimension values are created for the categories
specified in excl udedl! t enmsCat egor yI ds.

By default, the excl udedl t emsCat egor y| ds property of Cat egor yTr eeSer vi ce is configured to get its value
from the excl udedl t ensAncest or | ds property of the Pr oduct Cat al ogQut put Conf i g component:

excl udedl t ensCat egor yl ds”=\
/ at g/ conmer ce/ sear ch/ Product Cat al ogQut put Confi g. excl udedl t ensAncest or | ds

sitesForCatalogs

To create a representation of the category hierarchy in which each category dimension value has only one
parent, the Cat egor yTr eeSer vi ce class creates data structures in memory that represent all possible paths to
each category in the product catalog. In order to do this, it must be provided with a list of the catalogs to use for
computing paths.

The si t esFor Cat al ogs property specifies a list of sites. If this property is set, Cat egor yTr eeSer vi ce uses the
catalogs associated with the specified sites for computing paths. By default, si t esFor Cat al ogs is set to:

si t esFor Cat al ogs”=\

3 Configuring the Indexing Components 23

/ at g/ conmer ce/ sear ch/ Product Cat al ogQut put Confi g. si t esTol ndex

If si t esFor Cat al ogs is null, Cat egor yTr eeSer vi ce uses the r oot Cat al ogsRQLSt ri ng property to
determine the catalogs.

rootCatalogsRQLString

An RQL query that returns a list of catalogs. If si t esFor Cat al ogs is null, the catalogs returned from this query
are used. The query is set by default to:

root Cat al ogsRQStri ng=\
direct Parent Catal ogs |'S NULL AND parent Categories |'S NULL

If si t esFor Cat al ogs and r oot Cat al ogsRQLSt ri ng are both null, Cat egor yTr eeSer vi ce uses the
r oot Cat al ogl ds property to determine the catalogs.

rootCatalogids

An explicit list of catalog IDs of the catalogs to use. This list is used if si t esFor Cat al ogs and
r oot Cat al ogsRQLSt ri ng are both null. By default, r oot Cat al ogl ds is set to null.

RepositoryTypeDimensionExporter

This section describes key properties of the

at g. endeca. i ndex. di mensi on. Reposi t or yTypeHi er ar chyExport er class and the default configuration
of the/ at g/ commer ce/ endeca/ i ndex/ Reposi t or yTypeDi mensi onExport er component of this class.

dimensionName

The name to give the dimension created from the repository item-type hierarchy. Set by default to:

di nensi onNanme=i tem type

indexingOutputConfig

The component of class at g. endeca. i ndex. Endecal ndexi ngQut put Conf i g whose definition file should be
used for generating dimension value records from the repository item-type hierarchy. Set by default to:

i ndexi ngQut put Conf i g=/ at g/ comer ce/ sear ch/ Product Cat al ogQut put Confi g

documentSubmitter

The component (typically of class at g. endeca. i ndex. Recor dSt or eDocunment Subrmi t t er) to use to submit

records to the CAS dimension values record store. (See Document Submitter Components (page 26) for more
information.) Set by default to:

docunent Submi tt er =/ at g/ endeca/ i ndex/ Di mensi onDocunent Submi tter

24 3 Configuring the Indexing Components

SchemaExporter

The following are key properties of the at g. endeca. i ndex. schema. SchemaExpor t er class and the default
configuration of the / at g/ conmrer ce/ endeca/ i ndex/ SchemaExpor t er component of this class:

indexingOutputConfig

The component of class at g. endeca. i ndex. Endecal ndexi ngQut put Conf i g whose definition file should be
used for generating schema records. Set by default to:

i ndexi ngQut put Conf i g=/ at g/ comer ce/ sear ch/ Product Cat al ogQut put Confi g

documentSubmitter

The component (typically of class at g. endeca. i ndex. Recor dSt or eDocunent Subni t t er) to use to
submit records to the CAS schema record store. (See Document Submitter Components (page 26) for more
information.) Set by default to:

docunent Submi tt er =/ at g/ endeca/ i ndex/ SchemaDocunent Submi tter

dimensionNameProviders

An array of components of a class that implements the
at g. endeca. i ndex. schema. Di mensi onNamePr ovi der interface. SchemaExport er uses these components
to create references from attribute names to dimension names.

By default, di nensi onNanePr ovi der s is set to:

di nensi onNanePr ovi der s+=Reposi t or yTypeDi nensi onExporter

When an indexing job is run, Reposi t or yTypeDi nensi onExpor t er outputs dimension value records

forthei t em t ype dimension from the pr oduct . t ype, sku. t ype, and other item-type attributes. When
SchemaExpor t er outputs schema records, it checks with Reposi t or yTypeDi nensi onExport er to determine
these associations, and outputs a schema record that creates references from these attribute names to the
dimension name. For example:

<RECORD>

<PROP NAME="attri bute. name">
<PVAL>i t em t ype</ PVAL>

</ PROP>

<PROP NAME="attri bute. source_nane">
<PVAL>pr oduct . t ype</ PVAL>
<PVAL>sku. t ype</ PVAL>
<PVAL>pr oduct . manuf act ur er . t ype</ PVAL>
<PVAL>al | Ancest ors. t ype</ PVAL>

</ PROP>

<PROP NAME="attri bute. di spl ay_nanme">
<PVAL>i t em t ype</ PVAL>

</ PROP>

<PROP NAME="attri bute. property.data_type">
<PVAL>st ri ng</ PVAL>

</ PROP>

3 Configuring the Indexing Components 25

<PROP NAME="attribute.type">
<PVAL>di nmensi on</ PVAL>
</ PROP>
</ RECORD>

Document Submitter Components

As described above, each component that generates records has a docunment Subni t t er property that is set
by default to a component of class at g. endeca. i ndex. Recor dSt or eDocunent Subni t t er. The ATG-Endeca
integration includes the following components of this class:

» /at g/ endecal i ndex/ Dat aDocunent Submi tter
* [at g/ endecal i ndex/ Di nensi onDocumnent Submi tter
« [at g/ endecal i ndex/ SchemaDocurent Subni tter

The following are key properties of this class.

endecaDataStoreType

The type of the record store to submit to. Can be set to dat a, di nval , or schema. The following table shows the
default setting for each component:

Dat aDocunent Submi tter dat a
Di mensi onDocunent Submitter di nval
SchemaDocunent Submi tter schema

flushAfterEveryRecord

enabled

A boolean that specifies whether to flush the buffer used by the connection to CAS after each record is
processed. This property is set by default to f al se. Setting it to t r ue during debugging can be helpful for
determining which records are being rejected by CAS, because the errors will be isolated to specific records.

A boolean that specifies whether this component is enabled. This property is set by default to t r ue, but it
can be settof al se to always report success without submitting records to CAS. (This is useful for debugging
purposes when a CAS instance is not available.)

Reducing Logging Messages

In order to write records to the CAS record stores, the document submitters import classes from the Endeca
com endeca.itl.recordandcom endeca.itl.recordstore packages. These classes make use of the
Apache CXF framework.

26

3 Configuring the Indexing Components

Using the default CXF configuration results in a large number of informational logging
messages. The volume of the messages can result in problems, such as locking up of the terminal
window. Therefore, it is a good idea to reduce the number of logging messages by setting

the logging level of the or g. apache. cxf . i nt er cept or. Loggi ngl nl nt er cept or and

org. apache. cxf . i nt er cept or. Loggi ngQut | nt er cept or loggers to WARNI NG

The way to set these logging levels differs depending on your application server. See the documentation for
your application for information.

Directing Output to Files

To help optimize and debug your output, you can have the generated records sent to files rather than to the
Endeca record stores. Doing this enables you to examine the output without triggering indexing, so you can
determine if you need to make changes to the configuration of the record-generating components.

To direct output to files, create a component of class

atg.repository. search.indexing.subnitter. Fi |l eDocunent Subnitter,and set

the document Subni t t er property of the record-generating components to point to the

Fi | eDocunment Submi tt er component. Note that a separate file is created for each record generated.

The location and names of the files are automatically determined based on the following properties of
Fi | eDocunent Submi tter:

baseDirectory

The pathname of the directory to write the files to.
filePrefix

The string to prepend to the name of each generated file. Default is the empty string.
fileSuffix

The string to append to the name of each generated file. Set this as follows:

fileSuffix= xm

nameByRepositoryld

If t r ue, each filename will be based on the repository ID of the item the file represents. If f al se (the default),
files are named 0. xm , 1. xn , etc.

overwriteExistingFiles

If t r ue, if the generated filename matches an existing file, the existing file will be overwritten by the new file. If
f al se (the default), the new file will be given a different name to avoid overwriting the existing file.

EndecaScriptService

The / at g/ conmer ce/ endeca/ i ndex/ EndecaScr i pt Ser vi ce component (of class
at g. endeca. eaccl i ent. Scri pt | ndexabl e) is responsible for invoking Endeca Application Controller (EAC)
scripts that trigger indexing.

3 Configuring the Indexing Components 27

The following are key properties of this component.
eacScriptTimeout

The maximum amount of time (in milliseconds) to wait for an EAC script to complete execution before throwing
an exception. Set by default to 1800000 (1 hour). For large indexing jobs, you may need to increase this value to
ensure EndecaScri pt Ser vi ce does not time out before indexing completes.

enabled

A boolean that specifies whether this component is enabled. This property is set by default to t r ue, but it can
be set to f al se to always report success without invoking a script. (This is useful for debugging purposes when
an EAC instance is not available.)

indexingApplicationConfiguration

The component of class at g. endeca. i ndex. confi gurati on. Appl i cati onConfi gurati on used to
configure indexing settings for the integration. The default setting:

appl i cati onConfi gurati on=/at g/ endeca/ i ndex/ | ndexAppl i cati onConfi guration

ProductCatalogSimpleindexingAdmin

The/ at g/ conmrer ce/ endeca/ i ndex/ Pr oduct Cat al ogSi npl el ndexi ngAdnmi n component (of class

at g. endeca. i ndex. admi n. Si npl el ndexi ngAdni n) manages the process of generating records, submitting
them to Oracle Endeca Commerce, and invoking indexing. The page for this component in the Component
Browser of the ATG Dynamo Server Admin presents a simple user interface for controlling and monitoring the
process.

The Si npl el ndexi ngAdni n class defines indexing in terms of an indexing job, which is made of up indexing
phases, which in turn contain indexing tasks. Each indexing task is responsible for executing an individual

I ndexabl e component. Tasks within a phase may run in sequence or in parallel, but in either case all tasks in a
phase must complete before the next phase can begin.

By default, the Pr oduct Cat al ogSi npl el ndexi ngAdni n defines three phases:
1. Prelndexing -- Runs / at g/ commer ce/ endeca/ i ndex/ Cat egor yTr eeSer vi ce.
2. RepositoryExport -- Runs these components in parallel:

» /at g/ comrer ce/ endecal i ndex/ SchemaExport er

» [at g/ commer ce/ endecal i ndex/ Cat egor yToDi nensi onQut put Confi g

« [at g/ commer cel/ endecal i ndex/ Reposi t or yTypeDi nensi onExporter

* [at g/ commer ce/ sear ch/ Product Cat al ogQut put Confi g

3. Endecalndexing -- Runs / at g/ commer ce/ endeca/ i ndex/ EndecaScri pt Ser vi ce, which invokes Endeca
indexing scripts.

Pr oduct Cat al ogSi npl el ndexi ngAdni n reports information about an indexing job, such as the start and
finish time of the job, the duration of each phase, the status of each task, and the number of records submitted.

28 3 Configuring the Indexing Components

You can invoke indexing jobs manually through the Pr oduct Cat al ogSi npl el ndexi ngAdmni n user interface.
In addition, the Si npl el ndexi ngAdni n class implements the at g. servi ce. schedul er. Schedul abl e
interface, so it is also possible to configure the Pr oduct Cat al ogSi npl el ndexi ngAdni n component to invoke
indexing jobs automatically on a specified schedule. (See the ATG Platform Programming Guide for information
about the Schedul abl e interface and other Scheduler services.)

Key configuration properties of Pr oduct Cat al ogSi npl el ndexi ngAdni n include:
phaseToPrioritiesAndTasks

This property defines the phases and tasks of an indexing job, and the order in which the phases are executed. It
is a comma-separated list of phases, where the format of each phase definition is:

phaseNanme=priority: | ndexabl el; | ndexabl e2; . .. ;| ndexabl eN

Phases are executed in priority order, with lower number priorities executed first.

By default, this is set to:

phaseToPrioriti esAndTasks=\
Pr el ndexi ng=5: Cat egor yTr eeSer vi ce, \
Reposi t or yExport =10:\
SchemaExporter;\
Cat egor yToDi mensi onQut put Confi g; \
Reposi t oryTypeDi mensi onExporter;\
/ at g/ commer ce/ sear ch/ Pr oduct Cat al ogQut put Confi g, \
Endecal ndexi ng=15: EndecaScr i pt Servi ce

runTasksWithinPhaselnParallel

A boolean that controls whether to run tasks within a phase in parallel. Set to t r ue by default. If set to f al se,
the tasks are executed in sequence, in the order specified in the phaseToPri ori ti esAndTasks property.
Setting runTasksW t hi nPhasel nPar al | el tof al se can simplify debugging, because when tasks are run in
parallel, logging messages from multiple components may be interspersed, making them difficult to read.

enableScheduledindexing

A boolean that controls whether to invoke indexing automatically on a specified schedule. Set to f al se by
default.

baselineSchedule

A String that specifies the schedule for performing baseline updates. Set to null by default. If you set

enabl eSchedul edl ndexi ng tot r ue, set basel i neSchedul e to a String that conforms to one of the
formats accepted by classes implementing the at g. ser vi ce. schedul er. Schedul e interface, such as
at g. servi ce. schedul er. Cal endar Schedul e or at g. servi ce. schedul er. Peri odi cSchedul e. For
example, to schedule a baseline update to run every Sunday at 11:30 pm:

basel i neSchedul e=cal endar * * 7 * 23 30

partialSchedule

A String that specifies the schedule for performing partial updates. The format for the String is the same as the
format used for basel i neSchedul e. Set to null by default.

3 Configuring the Indexing Components 29

retrylnMs

The amount of time (in milliseconds) to wait before retrying a scheduled indexing job if the first attempt

to execute it fails. Set by default to -1, which means no retry. If you change this value, you should set it to a
relatively short amount of time to ensure that the indexing job completes before the next scheduled job begins.
If Pr oduct Cat al ogSi npl el ndexi ngAdni n estimates that the retried job will not complete before the next
scheduled job, it skips the retry.

jobQueue

Specifies the component that manages queuing of index jobs. Set by default to / at g/ endeca/ i ndex/
I nMenor yJobQueue. See Queuing Indexing Jobs (page 30) for more information.

Queuing Indexing Jobs

In certain cases, an indexing job cannot be executed immediately when it is invoked:
« Ifthereis currently another indexing job running
+ If an ATG Content Administration deployment is in progress

To handle these cases, Pr oduct Cat al ogSi npl el ndexi ngAdmi n invokes the / at g/

endeca/ i ndex/ | nMenor yJobQueue component. This component, which is of class

at g. endeca. i ndex. admi n. | nMenor yJobQueue, implements a memory-based indexing job queue that
manages these jobs on a first-in, first-out basis.

In addition, the queue handles the case where an indexing job is in progress when an ATG Content
Administration deployment is started. In this situation, the job in progress is stopped, moved to the top of the
queue (ahead of any other pending jobs), and restarted when the deployment is complete.

Queued jobs are listed on the Pr oduct Cat al ogSi npl el ndexi ngAdni n page in the Component Browser of the
ATG Dynamo Server Admin. In the following example, an indexing job has been stopped due to an ATG Content
Administration deployment, and moved to the queue to be restarted once the deployment completes:

Indexing Job Status

Started Jul 11, 2012 11:50:50 AM
Phase Component Records Sent Records Falled Status
Prelndesng (Duration: 000000}

latgiendecaindadcommerce/Cateqony TreeSemce COMPLETE (Succeeded)
RepositoryExpont (Started: Jul 11, 2012 11:50:50 AM)

fatglendecaindedicommerce’Schemabxpotar 192 0 COMPLETE (Succeeded)

fatglendecaindedcommercefCategonToDimensionCutputionfig 3 0 CANCELED

fatafendecaindawicommerca/Repository TypeDimensionExporter 39 0 COMPLETE [Succeedad)

fatalcommernceisaanchProductC ataleqOulpaConfi 0 0 CANCELIMNG
Endecaindexdng

fatgfendecaindadcommerca/EndecaSerptSanice CANCELED

Fu:t'rl:lns.'| Cancel Fusfraesh
|ﬂdEX|ﬂg Job Queue Status

L Owner Baseline Action
1 fatgfendecaindexicommenc eProductCatalogSimpleindedngAdmin trus

& Auto Refrash

Requasting update in 1 seconds

30

3 Configuring the Indexing Components

Content Administration Components

If your ATG environment includes ATG Content Administration, be sure to include the

DCS. Endeca. | ndex. Ver si oned module when you assemble the EAR file for your ATG Content Administration
server. This module enables indexing jobs to be triggered automatically after a deployment, ensuring that
changes deployed from ATG Content Administration are reflected in the index as quickly as possible. A full
deployment triggers a baseline update, and an incremental deployment triggers a partial update.

Indexing can be configured to trigger either locally (on the ATG Content Administration server itself) or
remotely (on the staging or production server). Note that even when indexing is executed on the ATG Content
Administration server, the catalog repository that is indexed is the unversioned deployment target (/ at g/
commer ce/ cat al og/ Product Cat al og_pr oduct i on), not the versioned repository.

The ATG-Endeca integration includes the / at g/ sear ch/ r eposi t ory/ | ndexi ngDepl oynent Li st ener
component, which is of class at g. epub. sear ch. i ndexi ng. | ndexi ngDepl oynent Li st ener . This
component listens for deployment events and, depending on the repositories involved, triggers one or more
indexing jobs.

The | ndexi ngDepl oynent Li st ener component has ar enot eSynchr oni zat i onl nvoker Ser vi ce

property that is set by default to/ at g/ sear ch/ Synchr oni zat i onl nvoker . The Synchr oni zat i onl nvoker
component, which is of class at g. sear ch. cor e. Renpt eSynchr oni zat i onl nvoker Ser vi ce, controls
whether indexing is invoked on the local (ATG Content Administration) server or on a remote system (such as the
production server).

Local Indexing

For local indexing (the default configuration), the Synchr oni zat i onl nvoker component
invokes the / at g/ endeca/ i ndex/ Local Synchr oni zat i onl nvoker component on the
ATG Content Administration server to trigger the indexing job. This component, which is

of class at g. endeca. i ndex. Local Synchr oni zat i onl nvoker, is specified through the

I ocal Synchroni zati onl nvoker property of the Synchr oni zat i onl nvoker component:

| ocal Synchroni zati onl nvoker =/ at g/ endeca/ i ndex/ Local Synchroni zat i onl nvoker

The following diagram illustrates the configuration for local indexing:

3 Configuring the Indexing Components 31

DeploymentServer

DeploymentListener

Synchronizationlnvoker

LocalSynchronizationlnvoker

ProductCatalog
SimplelndexingAdmin

ProductCatalog
_production

Remote Indexing

To enable remote indexing, modify the configuration of the Synchr oni zat i onl nvoker component on the ATG
Content Administration system so that it points to a Synchr oni zat i onl nvoker component on the remote
system, and configure the remote Synchr oni zat i onl nvoker to pointto a Local Synchr oni zat i onl nvoker
on the remote system:

+ On the ATG Content Administration system, set the Synchr oni zat i onl nvoker . host property
to the host name of the remote system, and set the Synchr oni zat i onl nvoker . port property
to the RMI port number to use for communication between systems. It is also a good idea to set
the Synchr oni zat i onl nvoker . | ocal Synchr oni zat i onl nvoker property on the ATG Content
Administration system to null, to ensure local indexing is not triggered.

+ On the remote system, ensure that the Synchr oni zat i onl nvoker . | ocal Synchr oni zat i onl nvoker
property is set to/ at g/ endeca/ i ndex/ Local Synchr oni zat i onl nvoker.

The following diagram illustrates the configuration for remote indexing:

32

3 Configuring the Indexing Components

DeploymentServer

DeploymentListener

Remote

A ICM BT Synchronizationlnvoker

LocalSynchronizationInvoker

ProductCatalog
SimplelndexingAdmin

ProductCatalog

production ProductCatalog

Triggering Indexing on Deployment
The following steps describe how indexing is triggered when a deployment occurs:
1. The | ndexi ngDepl oynent Li st ener component detects the event.
2. The I ndexi ngDepl oyment Li st ener examines the event to see the list of repositories being deployed.

3. The I ndexi ngDepl oynent Li st ener compiles a list of the Endecal ndexi ngQut put Conf i g components
that are associated with any of those repositories.

4. The | ndexi ngDepl oynent Li st ener invokes the Local Synchr oni zat i onl nvoker component.

5. The Local Synchr oni zat i onl nvoker looks at the list of Endecal ndexi ngQut put Conf i g components
and compiles a list of Si npl el ndexi ngAdni n components that are associated with any of the
Endecal ndexi ngQut put Conf i g components.

6. The Local Synchroni zat i onl nvoker triggers an indexing job on each Si npl el ndexi ngAdmi n
component in the list.

Note that the lists of Endecal ndexi ngQut put Conf i g and Si npl el ndexi ngAdni n components are not
configured explicitly. Instead, the Si npl el ndexi ngAdnmi n components are automatically registered with the
Local Synchroni zat i onl nvoker, and the Endecal ndexi ngQut put Conf i g components are automatically
registered with the Local Synchr oni zat i onl nvoker and the I ndexi ngDepl oynent Li st ener.

Viewing Records in the Component Browser

For debugging purposes, you can use the Component Browser of the ATG Dynamo Server Admin to view
records without submitting them to Oracle Endeca Commerce. To do this, access the page for a component that
generates records and follow the instructions below.

3 Configuring the Indexing Components 33

ProductCatalogOutputConfig or CategoryToDimensionOutputConfig

The pages for the Pr oduct Cat al ogQut put Conf i g and Cat egor yToDi nensi onCQut put Conf i g components
include a Test Document Generation section that you can use to view the output for a single repository item:

Test Document Generation

product D Generate |

Show Indexing COutput Froperties

Fill in the repository ID of a pr oduct item (for the Pr oduct Cat al ogQut put Conf i g component) or a cat egory
item (for the Cat egor yToDi mensi onQut put Conf i g component), and click Generate. The page will display the
output records.

Click the Show Indexing Output Properties link to see descriptions of how the ATG repository-item properties
are renamed in the Endeca records, based on the values of various Endecal ndexi ngQut put Conf i g properties.
(See the EndecalndexingOutputConfig Components (page 18) section for information about these

properties.)

RepositoryTypeDimensionExporter or SchemaExporter

The pages for the Reposi t or yTypeDi mensi onExpor t er and SchenaExport er components include a Show
XML Output link. Each of these components produces a single output for the entire catalog. Click the link to view
the output from the component.

34 3 Configuring the Indexing Components

4 Configuring
EndecalndexingOutputConfig
Definition Files

This chapter describes various elements and attributes of Endecal ndexi ngQut put Conf i g XML definition files
that you can use to control the content of the output records created from the ATG product catalog.

Definition File Format

An Endecal ndexi ngQut put Conf i g indexing definition file begins with a top-level i t emelement that specifies
the item descriptor to create records from, and then lists the properties of that item type to include. The
properties appear as pr oper t y elements within a pr oper ti es element.

The top-level i t emelement in the definition file can contain child i t emelements for properties that refer to
other repository items (or arrays, Collections, or Maps of repository items). Those child i t emelements in turn can
contain property and i t emelements themselves.

The following example shows a simple definition file for indexing an ATG product catalog repository:

<itemitemdescriptor-name="product" is-docunment="true">
<properties>
<property name="creati onDate" type="date"/>
<property nanme="brand" is-dinension="true" type="string"
t ext - sear chabl e="true"/>
<property nanme="description" text-searchable="true"/>
<property nane="| ongDescri pti on" text-searchable="true"/>
<property nanme="di spl ayNane" text-searchabl e="true"/>
</ properties>

<itemis-multi="true" property-nanme="chil dSKUs" >

<properties>
<property name="quantity" type="integer"/>
<property nanme="description" text-searchable="true"/>
<property nanme="di spl ayNane" text-searchabl e="true"/>
<property nane="col or" is-dinension="true" type="string"

t ext - sear chabl e="true"/>
</ properties>

4 Configuring EndecalndexingOutputConfig Definition Files 35

<itemis-nulti="true" property-nane="parent Categories"
par ent - property="chi | dProducts">
<properties>
<property nanme="descri ption" text-searchable="true"/>
<property nanme="| ongDescri ption" text-searchable="true"/>
<property nane="di spl ayNane" text-searchabl e="true"/>
</ properties>
</itemp
</itemr

Note that in this example, the top-level i t emelement has the i s- docunent attribute set to t r ue. This attribute
specifies that a record should be generated for each item of that type (in this case, each pr oduct item). This
means that each record indexed by Oracle Endeca Commerce corresponds to a product, so that when a user
searches the catalog, each individual result returned represents a product. The definition file specifies that each
output record should include information about the product’s parent categories and child SKUs (as well as the
product itself), so that users can search category or SKU properties in addition to product properties.

If, instead, you want to generate a separate record per sku item, you seti s- document totr ue for the
chi | dSKUs i t emelement and to f al se for the pr oduct i t emelement. In that case, the product properties
(e.g., br and in the example) are repeated in each record.

When you configure the ATG-Endeca integration in CIM, you select whether to index by product or SKU. Your
selection determines whether certain application modules are included in your EAR files. These modules
configure the i s- document attributes and other related settings appropriately for the option you select. See
ATG Modules (page 7) for information about these modules.

In addition to the properties you specify in the definition file, the output records also automatically include a few
special properties. These properties provide information that identifies the repository items represented in the
record:r eposi toryl d,repository.repositoryNane, anditenDescriptor.itenDescriptorNane.

The output also includes aur | property and a baseUr | property, which each contain the URL representing

this repository item. The difference between these properties is that if a Var i ant Pr oducer is used to generate
multiple records from the same repository item, the ur | property for each record will include unique query
parameters to distinguish the record from the others. The baseUr | property, which omits the query parameters,
will be the same for each record.

Specifying Endeca Schema Attributes

You use various attributes of the pr oper t y element to specify the way ATG properties should be treated in the
Endeca MDEX. The SchemaExport er component then uses the values of these attributes in the schema records
it creates.

To specify the data type of a property, you use the t ype attribute. The value of this attribute can be dat e,
string,bool ean,integer,orfl oat.Forexample:

<property name="quantity" type="integer"/>

If at ype value is not specified, it defaults to st ri ng.

You can designate a property as searchable, as a dimension, or both. To make a property searchable, set the
t ext - sear chabl e attribute to t r ue. To make a property an Endeca dimension, set the i s- di mensi on
attribute to t r ue. In the following example, the col or property is both a dimension and searchable:

36

4 Configuring EndecalndexingOutputConfig Definition Files

<property nanme="col or" is-di mensi on="true" text-searchable="true"/>

Ifi s-di mensionistrue,youcan usethenul tisel ect -t ype attribute to specify whether the customer can
select multiple values of the dimension at the same time. The value of this attribute can be nul ti - or (combine
using Boolean OR), nul ti - and (combine using Boolean AND), or none (the default, meaning multiselect is not
supported for this dimension). For example:

<property nanme="brand" is-di mension="true" nmultiselect-type="multi-or"/>

Multiselect logic works as follows:

« Combining with Boolean OR returns results that match any of the selected values. For example, for a col or
dimension, if the user selects yel | owand or ange, a given item is returned if its col or valueisyel | owor if it
is or ange.

+ Combining with Boolean AND returns results that match all of the selected values. For example, suppose
a product representing a laser printer has a paper Si zes property that is an array of the paper sizes the
printer accepts, and you have a dimension based on this property. If the user selects A4 and | et t er for this
dimension, a given item is returned only if its paper Si zes property includes both | et t er and A4.

Automatically Generating Dimension Values

Ifi s-di mensionistrue foran ATG property, by default Oracle Endeca Commerce examines the data and
automatically generates non-hierarchical dimension values for the values of that property. For example, if the
col or property has values of or ange, yel | ow, and bl ue, three dimension values are generated, representing
the values of the property.

For a hierarchical dimension, though, the dimension value records must be explicitly created by the ATG-Endeca
integration. This is done by the Cat egor yToDi mensi onQut put Conf i g (for the product categories) and the
Reposi t or yTypeDi nensi onExport er component (for the catalog repository item-type hierarchy).

To prevent automatic generation of dimension values for a property, set the aut ogen- di nensi on- val ues
attribute to f al se. For example, the dimension for the repository item-type hierarchy is defined like this:

<property autogen-di mensi on-val ues="f al se"
nane="$i t enDescri ptor.itenDescriptorNane" is-di nension="true"/>

Specifying Properties for Indexing

This section discusses how to specify various properties of catalog items for inclusion in the Endeca MDEX, and
options for how these properties should be handled.

Specifying Multi-Value Properties

In most cases, you specify a multi-value property, such as an array or Collection, using the pr oper t y element,
just as you specify a single-value property. In the following example, the f eat ur es property stores an array of
Strings:

4 Configuring EndecalndexingOutputConfig Definition Files 37

<properties>
<property nanme="creationDate" type="date"/>
<property nanme="brand" is-di mension="true" type="string"
t ext - sear chabl e="true"/>
<property nanme="di spl ayName" type="string" text-searchable="true"/>
<property nanme="features" type="string" text-searchable="true"/>
</ properties>

Notice that f eat ur es is specified in the same way as cr eat i onDat e, br and, and di spl ayNang, which are all
single-value properties. The output will include a separate entry for each value in the f eat ur es array.

If a property is an array or Collection of repository items, you specify it using the i t emelement, and set the i s-
mul ti attribute tot rue. For example, in a product catalog, a pr oduct item will typically have a multi-valued
chi | dSKUs property whose values are the various SKUs for the product. You might specify the property like this:

<item property-nane="chil dSKUs" is-multi="true">
<properties>
<property nanme="col or" is-dimension="true" type="string"
t ext - sear chabl e="true"/>
<property nanme="description" type="string" text-searchable="true"/>
</ properties>
</itenpr

If you index by product, the output records will include the col or and descri pti on value for each of the
product’s SKUs.

Specifying Map Properties

To specify a Map property, you use the i t emelement, set thei s-mul ti attribute tot r ue, and use the map-
i teration-type attribute to specify how to output the Map entries. If the Map values are primitives or Strings,
setmap-iteration-typetow | dcard,asin this example:

<item property-nanme="personal Data" is-multi="true" map-iteration-type="w|dcard">
<properties>
<property nanme="*" type="string"/>
</ properties>
</litemp

In the output, the Map keys are treated as subproperties of the Map property, and the Map values are treated as
the values of these subproperties. All of the Map entries are included in the output. So, for example, the output
from the definition file entry shown above might look like this:

<PROP NAME="personal Data. first Nane" >
<PVAL>Fr ed</ PVAL>

</ PROP>

<PROP NAME="per sonal Dat a. age" >
<PVAL>37</ PVAL>

</ PROP>

<PROP NAME="personal Dat a. hei ght ">
<PVAL>68</ PVAL>

</ PROP>

38

4 Configuring EndecalndexingOutputConfig Definition Files

If you want to output only a subset of the Map entries, explicitly specify the keys to include, rather than using
the wildcard character (*). For example:

<item property-nane="personal Data" is-nulti="true" map-iteration-type="w | dcard">
<properties>
<property name="firstNanme" type="string" text-searchable="true"/>
<property nanme="hei ght" type="string"/>
</ properties>
<litenr

Maps of Repository Items

If the Map values are repository items, set map-i t er ati on-t ype to val ues, and specify the properties of
the repository item that you want to output. For example, suppose you want to index a pr oduct | nf os Map
property whose keys are product IDs and whose values are pr oduct | nf o items:

<item property-nanme="productlnfos" is-nmulti="true" map-iteration-type="val ues">
<properties>
<property nanme="di spl ayNane" type="string" text-searchable="true"/>
<property nane="size" type="integer" is-dinmension="true"/>
</ properties>
<litemr

The output will include di spl ayNare and si ze tags for each pr oduct | nf o item in the Map. In this case, the
Map keys are ignored, the properties of the repository items are treated as subproperties of the Map property,
and the values of the items are treated as the values of the subproperties. The output looks like this:

<PROP NAME="product | nf os. di spl ayNane" >
<PVAL>Funny Hat </ PVAL>

</ PROP>

<PROP NAME="product | nfos. si ze">
<PVAL>8</ PVAL>

</ PROP>

<PROP NAME="product | nf os. di spl ayNane" >
<PVAL>Cl own Shoes</ PVAL>

</ PROP>

<PROP NAME="product | nfos. si ze">
<PVAL>14</ PVAL>

</ PROP>

Specifying Properties of Item Subtypes

A repository item type can have subtypes that include additional properties that are not part of the base item
type. This feature is commonly used in the Oracle ATG Web Commerce catalog for the SKU item type. A SKU
subtype might add properties that are specific to certain SKUs but which are not relevant for other SKUs.

When you list properties to index, you can use the subtype attribute of the property element to specify
properties that are unique to a specific item subtype. For example, suppose you have a furniture-sku subtype
that adds properties specific to furniture SKUs. You might specify your SKU properties like this:

<item property-nane="chi | dSKUs" >
<properties>

4 Configuring EndecalndexingOutputConfig Definition Files

<property nanme="description" type="string" text-searchable="true"/>
<property name="col or" type="string" text-searchabl e="true"
i s-di mension="true"/>
<property nane="woodFi ni sh" subtype="furniture-sku" type="string"
text - searchabl e="true"/>
</ properties>
</itenr

This specifies that the descri pti on and col or properties should be included in the output for all SKUs, but for
SKUs whose subtypeis f ur ni t ur e- sku, the woodFi ni sh property should also be included.

Thei t emelement also has a subt ype attribute for specifying a subtype-specific property whose value is a
repository item. If woodFi ni sh is a repository item, the example above would look something like this:

<i tem property-nanme="chi | dSKUs" >
<properties>
<property nanme="description" type="string" text-searchable="true"/>
<property nane="col or" type="string" text-searchabl e="true"
i s-di nensi on="true"/>
</ properties>
<i tem property-nanme="woodFi ni sh" subtype="furniture-sku"/>
<properties>
<property nanme="texture" type="string" text-searchable="true"/>
<property nane="stai nType" type="string" text-searchable="true"/>
</ properties>
</litemp
</itemp

Specifying a Default Property Value

You may find it useful to specify a default value for certain indexed properties. For example, suppose you are
indexing address data, and for some addresses no value appears in the repository for the ci t y property. In
these cases, you could set the property value in the index to be “city unknown.” A user could then search for this
phrase and return the addresses whose ci t y property is null.

To set a default value, you use the def aul t - val ue attribute of the pr oper t y element. For example:

<property nane="city" type="string" text-searchabl e="true"
def aul t -val ue="city unknown"/>

Specifying Non-Repository Properties

When you index a repository, you can include in the index additional properties that are not part of the
repository itself. For example, you might want to include a cr eat i onDat e property to record the current time
when a record is created. The value for this property could be generated by a custom property accessor that
invokes the Java Dat e class.

To specify a property like this, use the i s- non-r eposi t ory- pr operty attribute of the pr oper t y element. This
attribute indicates that the property is not actually stored in the repository, and prevents warnings from being
thrown when the | ndexi ngQut put Conf i g component starts up. Note that you must also specify a custom
property accessor that is responsible for obtaining the property values:

40

4 Configuring EndecalndexingOutputConfig Definition Files

<property nane="creati onDate" is-non-repository-property="true"
type="date" property-accessor="dateAccessor"/>

If no actual property accessor is needed, set the pr operty- accessor attribute to nul | . For example, you might
do this if you have a default value that you always want to use for the property:

<property nanme="creati onDate" is-non-repository-property="true"
type="date" default-val ue="Mn Mar 15 16:07: 15 EDT 2010"
property-accessor="nul | "/>

See Using Property Accessors (page 45) for more information about custom property accessors.

Suppressing Properties

The output record automatically includes certain standard JavaBean properties of the Reposi t or yI t emobject.

These properties provide information that identifies the repository items represented in the record, and they

are indicated in the definition file by a dollar-sign ($) prefix: $r eposi t oryl d, $r eposi t ory. r eposi t or yNane,

and $i t enDescri ptor.itenDescri pt or Nane. (The dollar-signs are removed by default in the output records,
because Endeca property names cannot include them.)

You may want to return these properties in search results, to enable accessing the indexed repository and
repository items in page code. Typically you would do this for the document-level item type. For other item
types, you may not need these properties. If you don't, it is a good idea to suppress them from the index, as they
may significantly increase the size of the index.

To suppress one of these properties, specify the property in the indexing definition file with the suppr ess
attribute. For example:

<i tem property-nane="parent Cat egori es" is-docunent="fal se">
<properties>
<property nanme="$repositoryld" suppress="true"/>
<property nanme="$repository.repositoryNanme" suppress="true"/>
<property nane="$itenDescriptor.itenDescriptorNane" suppress="true"/>
</ properties>
<litemr

Including the sitelds Property

If you are using Oracle ATG Web Commerce multisite support, many of the item types in the catalog repository
have a si t el ds property whose value is a comma-separated list of the sites an item appears on. For example, if
you have three sites, A, B, and C, and a certain product is available on sites A and C (but not B), the value of the
product’s si t el ds property would be si t eA, si t eC(assuming those are the site IDs).

The si t el ds properties in the catalog repository are defined as context membership properties. For the
document-level item type, the record output includes a special si t el d property representing the repository
item’s context membership property. (The output property is always named si t el d, regardless of the actual
name of the context membership property.) The records include a separate entry for each site listed in the
context membership property.

Note that the output records include entries only for sites that are listed in the si t esTol ndex property of the
Endecal ndexi ngQut put Conf i g component. For example, if the value of a product’s si t el ds property is

4 Configuring EndecalndexingOutputConfig Definition Files 41

siteA siteC, siteD, butsitesTol ndex list only sites C and D, the record will not include an entry for site A.
If an item’s si t el ds property is null, or if it lists only sites that are not listed in the si t esTol ndex property, no
record is generated for the item.

Renaming an Output Property

By default, the name of a property in an output record is based on its name in the repository, with
modifications applied based on the values of the r epl aceW t hTypePr ef i xes, pr ef i xRepl acenent Map,
and suf f i xRepl acement Map properties of the Endecal ndexi ngQut put Conf i g component. (See the
EndecalndexingOutputConfig Components (page 18) section for information about these properties.)

You can instead specify the output property name by using the out put - name attribute of the property
element. For example:

<property nane="material" output-nane="product.fabric"
t ext - sear chabl e="true" is-di mension="true"/>

Note that the exact out put - nane value you specify is used with no modifications. So in this example, the item-
type prefix is explicitly included.

Translating Property Values

In some cases, the property values that you want to include in the index (and therefore in the generated records)
may not be the actual values used in the repository. For example, you may want to normalize values (e.g., index
the color values Rose, Vermilion, Crimson, and Ruby all as Red, so they are all treated as the same dimension
value). Or you may want to translate values into another language (e.g., index the color value Green as Vert, so
when a customer searches for Vert, green items are returned).

To translate property values for indexing, you use the t r ansl at e child element of the pr oper t y element. The
transl at e element has an i nput attribute for specifying a property value found in the repository, and an
out put attribute for specifying the value to translate this to in the output records. For example:

<property nane="col or" text-searchabl e="true" is-dinension="true">
<transl ate input="Rose" output="Red"/>
<transl ate input="Vermlion" output="Red"/>
<transl ate input="Crinmson" output="Red"/>
<transl ate input="Ruby" output="Red"/>
</ property>

The proper ty element also has pr ef i x and suf f i x child elements that you can use to append a text string
before or after the output property values. For example, you can use the suf f i x element to add units to the
property values:

<property nanme="| ength">
<suffix val ue=" cni'/>
</ property>

Note that the pr ef i x and suf fi x values are concatenated to the property values exactly as specified, with no
additional spaces. If you want spaces before the suf f i x string or after the pr ef i x string, include the spaces in
the val ue attribute, as in the example above.

42

4 Configuring EndecalndexingOutputConfig Definition Files

You can use the pref i x, suf fi x, and t r ansl| at e elements individually or in combination. The following
example translates the size values S, M, and L, to “size small,” “size medium,” and “size large,” to make it easier for
customers to search for specific sizes:

<property nanme="si ze" text-searchable="true" is-dinmension="true">
<prefix val ue="size "/>
<translate input="S" output="small"/>
<transl ate input="M out put="nedi uni'/>
<transl ate input="L" output="I|arge"/>
</ property>

Translating Based on Locale

Theprefix,suffix,andtransl at e elements all have optional | ocal e attributes that allow you to specify
different values for different locales. For example:

<property nane="onSal e" is-dinension="true">
<transl ate | ocal e="en_US" input="true" output="on sale"/>
<transl ate |l ocale="fr_FR' input="true" output="a la vente"/>
</ property>
<property name="wei ght">
<suffix | ocal e="en_US" output=" granms"/>
<suffix locale="fr_FR' output=" grames"/>
</ property>

When the records are generated, the | ndexi ngQut put Conf i g component determines which tags to use based
on the current locale. So if the locale is en_US, only the tags that specify that locale are applied.

Multilingual environments typically use the Local eVar i ant Pr oducer, which generates multiple records
for each indexed item, one record for each locale specified in its | ocal es array property. (See Using Variant
Producers (page 47) for more information.) If the value of the | ocal es array is en_US, f r _FR, two sets of
records are generated, one using the t r ansl at e, pr ef i x, and suf f i x tags whose locale is en_US, and one
using the tags whose localeis fr _FR.

If a tag does not specify a locale, that tag is used as the default when the current locale does not match any of
the other tags. In the following example, Rose is translated to Rouge if the locale is f r _FR, but is translated to
Red for any other locale:

<property nane="col or" text-searchabl e="true" is-dinension="true">
<transl ate i nput="Rose" output="Red"/>
<transl ate |l ocal e="fr_FR" input="Rose" out put="Rouge"/>

</ property>

Using Monitored Properties

By default, the | ncr enent al Loader determines which changes necessitate updates by monitoring the
properties specified in the XML definition file. In some cases, however, the properties you want to monitor
are not necessarily the ones that you want to output. This is especially the case if you are outputting derived
properties, because these properties do not have values of their own.

For example, suppose you are indexing a user item type that has f i r st Name and | ast Nane properties, plus a
ful | Name derived property whose value is formed by concatenating the values of f i r st Nane and | ast Nane.

4 Configuring EndecalndexingOutputConfig Definition Files 43

You might want to output the f ul | Name property, but to detect when the value of this property changes, you
need to monitor (but not necessarily output) f i r st Nane and | ast Nane.

You can do this by including a noni t or element in your definition file to specify properties that should be
monitored but not output. For example:

<properties>
<property nane="ful | Nanme" text-searchabl e="true"/>
</ properties>
<noni t or >
<property name="firstNane"/>
<property nanme="| ast Name"/>
</ moni t or >

For information about derived properties, see the ATG Repository Guide.

44

4 Configuring EndecalndexingOutputConfig Definition Files

5 Customizing the Output Records

This chapter describes interfaces and classes that can be used to customize the records created by the ATG-
Endeca integration. It discusses the following topics:

Using Property Accessors (page 45)
Using Variant Producers (page 47)
Using Property Formatters (page 50)
Using Property Value Filters (page 51)

In addition to the classes described here, the ATG-Endeca integration includes property accessors and variant
producers for accessing price data in price lists. See the Handling Price Lists (page 91) chapter for more
information.

For additional information about the classes and interfaces described in this chapter, see the ATG Platform API
Reference.

Using Property Accessors

Property values are read from the product catalog through an implementation of the

at g. reposi tory. search. i ndexi ng. PropertyAccessor interface. For most properties, the default
istousethe at g. reposi t ory. search. i ndexi ng. PropertyAccessor | npl class, which just invokes
the Reposi t oryl t em get Proper t yVal ue() method. You can write your own implementations of
Propert yAccessor that use custom logic for determining the values of properties that you specify. The
simplest way to do this is to subclass Pr opert yAccessor | npl .

In an Endecal ndexi ngQut put Conf i g definition file, you can specify a custom property accessor for a property
by using the pr oper t y- accessor attribute. For example, suppose you have a Nucleus component named /
nyst uf f/ MyPr oper t yAccessor, of a custom class that implements the Pr opert yAccessor interface. You can
specify it in the definition file like this:

<property name="mnyProperty"
property-accessor="/nystuff/M/PropertyAccessor"/>

The value of the proper t y- accessor attribute is the absolute path of the Nucleus component. To simplify
coding of the definition file, you can map Pr opert yAccessor Nucleus components to simple names, and

5 Customizing the Output Records 45

use those names as the values of pr opert y- accessor attributes. For example, if you map the / nyst uf f/
My Pr opert yAccessor component to the name nyAccessor, the above tag becomes:

<property nanme="nyProperty" property-accessor="myAccessor"/>

You can perform this mapping by setting the pr oper t yAccessor Map property of the | ndexi ngQut put Confi g
component. This property is a Map in which the keys are the names and the values are Pr oper t yAccessor
Nucleus components that the names represent. For example:

propertyAccessor Map+=\
myAccessor =/ nyst uf f/ MyPr oper t yAccessor

FirstWithLocalePropertyAccessor

The at g. reposi tory. sear ch. i ndexi ng. accessor package includes a subclass of
PropertyAccessor | mpl named Fi r st Wt hLocal ePr opert yAccessor . This property accessor
works only with derived properties that are defined using the f i r st W t hLocal e derivation method.
Fi rst Wt hLocal ePropertyAccessor determines the value of the derived property by looking up
the cur r ent Docunent Local e property of the Cont ext object. Typically, this property is set by the
Local eVari ant Producer, as described in Accessing the Context Object (page 48).

You can specify this property accessor in your definition file using the attribute value fi r st Wt hLocal e. (Note
that you do not need to map this name to the property accessor in the pr opert yAccessor Map.) For example:

<property nanme="di spl ayNane" property-accessor="firstWthLocal e"/>

For information about the fi r st Wt hLocal e derivation method, and about derived properties in general, see
the ATG Repository Guide.

LanguageNameAccessor

The at g. endeca. i ndex. accessor. LanguageNameAccessor class, which is a subclass of

at g. reposi tory. search. i ndexi ng. PropertyAccessor | npl, returns the name of the language that a
record is in. The ATG-Endeca integration includes a component of this class, / at g/ endeca/ i ndex/ accessor/
LanguageNaneAccessor, which the Pr oduct Cat al ogQut put Conf i g uses to obtain the value of the
product . | anguage property:

<property nane="| anguage" is-dinension="true" type="string"
property-accessor ="/ at g/ endeca/ i ndex/ accessor/ LanguageNaneAccessor "
out put - nane="pr oduct . | anguage" is-non-repository-property="true"/>

GenerativePropertyAccessor

The at g. reposi tory. sear ch. i ndexi ng. accessor package includes a subclass of

PropertyAccessor | npl named Gener at i vePr opert yAccessor . This is an abstract class that adds the ability
to generate multiple property names and associated values for a single property tag in the indexing definition
file.

46 5 Customizing the Output Records

You can write your own subclass of Gener at i vePr oper t yAccessor . Your subclass must implement the
get Proper t yNamesAndVal ues method. This method returns a Map in which each key is a property name, and
the corresponding Map value contains the value to be associated with the property name.

Category Dimension Value Accessors

Several property accessors are used by the Cat egor yToDi mensi onQut put Conf i g component to extract the
values of various dimension value attributes from the data structures created by the Cat egor yTr eeSer vi ce
component.

A component of class at g. endeca. i ndex. accessor. Const ant Val ueAccessor,/ at g/ cormer ce/ endeca/
i ndex/ accessor/ Di mensi onSpecPr oper t yAccessor, obtains the value of the di mval . di mensi on_spec
attribute, which is a unique identifier for the dimension (typically pr oduct . cat egory).

Several components of class

at g. conmer ce. endeca. i ndex. di mensi on. Cat egor yNodePr opert yAccessor, also in the/ at g/

commer ce/ endeca/ i ndex/ accessor/ Nucleus folder, obtain the values of various dimension value attributes.
The following table lists these property accessors and describes the attributes they obtain values for:

Property Accessor Property

Root Cat al ogPr opert yAccessor | di mval . prop. cat egory. r oot Cat al ogl d -- The repository ID of the
root catalog the category belongs to (e.g., mast er Cat al og).

SpecPropert yAccessor di mval . spec -- A unique identifier for the dimension
value that includes the path information to distinguish it
from other dimension values for the same category (e.g.,
r oot Cat egory. cat 10016. cat 10014).

Qual i fi edSpecPropertyAccessordi mval . qual i fi ed_spec -- A qualified identifier

for the dimension value consisting of the

di nval . di mensi on_spec value and the di nval . spec value (e.g.,
product . cat egory: r oot Cat egory. cat 10016. cat 10014).

Par ent SpecPr opert yAccessor | di nval . par ent _spec -- A reference to the category’s parent
category (e.g., r oot Cat egory. cat 10016).

Di spl ayOr der Proper t yAccessor di nval . di spl ay_or der -- An integer specifying the order the
category is displayed in, relative to its sibling categories.

Using Variant Producers

By default, for the repository item type designated by the i s- docunent attribute, the I ndexi ngQut put Confi g
component generates one record per item. In some cases, though, you may want to generate more than one
record for each repository item. For example, suppose you have a repository whose text properties are stored in
both French and English, and the language displayed is determined by the user’s locale setting. In this case you
will typically want to create two records from each repository item, one with the text content in French, and the
other one in English.

5 Customizing the Output Records 47

To handle situations like this, the Oracle ATG Web Commerce platform provides an interface named

at g. reposi tory. search. i ndexi ng. Vari ant Pr oducer . You can write your own implementations of the
Var i ant Producer interface, or you can use implementations included with the ATG platform. This interface
defines a single method, pr epar eNext Vari ant (), for determining the number and type of variants to
produce. Depending on how your repository is organized, implementations of this method can use a variety of
approaches for determining how to generate variant records.

LocaleVariantProducer

The ATG-Endeca integration includes an implementation of the Var i ant Pr oducer interface,

at g. reposi tory. search. i ndexi ng. producer . Local eVari ant Pr oducer, for generating variant
records for different locales. It also includes a component of this class, / at g/ conmer ce/ sear ch/
Local eVari ant Producer.

The Local eVari ant Producer class has al ocal es property where you specify the list of locales to generate
variants for. By default, this property is linked to the value of the | ocal es property of the / at g/ endeca/
Appl i cati onConfi gurati on component:

| ocal es™=/ at g/ endeca/ Appl i cati onConfi guration. | ocal es

You specify the Var i ant Pr oducer components to use by setting the var i ant Pr oducer s property of the
Endecal ndexi ngQut put Conf i g component. Note that this property is an array; you can specify any number of
Vari ant Producer components. For example:

vari ant Producer s=/ at g/ comer ce/ sear ch/ Local eVari ant Producer,
/ mystuf f/ MyVari ant Producer

If you specify multiple variant producers, the Endecal ndexi ngQut put Conf i g generates a separate variant
for each possible combination of values of the variant criteria. For example, suppose you use the configuration
shown above and MyVar i ant Pr oducer creates three variants (1, 2, and 3). The total number of variants
generated for each repository item is six (French 1, English 1, French 2, English 2, French 3, and English 3).

Accessing the Context Object

Classes that implement the Pr oper t yAccessor or Vari ant Producer interface must be stateless, because
they can be accessed by multiple threads at the same time. Rather than maintaining state themselves,

these classes instead use an object of class at g. r eposi t ory. sear ch. i ndexi ng. Cont ext to store state
information and to pass data to each other. The Cont ext object contains the current list of parent repository
items that were navigated to reach the current item, the current URL (if any), the current collected output values
(if any), and status information.

One of the main uses of the Cont ext object is to store information used to determine what variant to generate
next. For example, each time a new record is generated, the Local eVari ant Producer uses the next value in
its| ocal e array to set the cur r ent Docunent Local e property of the Cont ext object. A Pr opert yAccessor
instance might read the cur r ent Docunent Local e property and use its current value to determine the locale to
use for the property.

Note that classes that implement the Pr opert yFor mat t er or PropertyVal uesFi | t er interface (described
below) are applied after all of the output properties have been gathered, so these classes do not have access to
the Cont ext object.

For more information about the Cont ext object, see the ATG Platform API Reference.

48

5 Customizing the Output Records

CategoryPathVariantProducer

The/ at g/ conmer ce/ endeca/ i ndex/ Cat egor yPat hVari ant Pr oducer component is used by the
CategoryToDimensionOutputConfig component to produce multiple records per category (one record for each
unique path computed by Cat egor yTr eeSer vi ce). The Cat egor yPat hVar i ant Producer component is

of class at g. conmer ce. endeca. i ndex. di nensi on. Cat egor yPat hVar i ant Pr oducer, which implements
the at g. reposi tory. sear ch. i ndexi ng. Vari ant Pr oducer interface. In each record this variant producer
creates, the value of the record’s di nval . spec property is the unique pathname that the record represents. For
example:

The Cat egor yPat hVar i ant Producer component is added to the CategoryToDimensionOutputConfig
component’s variantProducers property by default:

vari ant Producer s+=\
Cat egor yPat hVar i ant Pr oducer

See the CategoryTreeService Class (page 12) section for more information about how category path variants are
computed.

CustomCatalogVariantProducer

In addition to the cat egory, pr oduct , and sku items, the catalog repository includes cat al og items that
represent different hierarchies of categories and products. Each user is assigned one catalog, and sees the
navigational structure, products and SKUs, and property values associated with that catalog. A given product
may appear in multiple catalogs. The pr oduct repository item type includes a cat al ogs property whose value
is a Set of the catalogs the product is included in.

Depending on how your catalog repository is configured, the property values of individual categories, products,
or SKUs may vary depending on the catalog. If so, when you index the catalog, you may need to generate
multiple records for each product or SKU (one for each catalog the item is included in).

To support creation of multiple records per product or SKU, the ATG-Endeca integration uses the /

at g/ commer ce/ sear ch/ Cust ontCat al ogVari ant Producer component. This component is of class

at g. conmer ce. sear ch. producer . Cust onCat al ogVar i ant Pr oducer , which implements the

at g. reposi tory. search. i ndexi ng. Vari ant Pr oducer interface. The variant producer iterates through
each catalog individually, so that each record contains only the property values associated with a single catalog.

The Cust ontCat al ogVari ant Pr oducer component is added to the ProductCatalogOutputConfig component’s
variantProducers property by default:

vari ant Producer s+=\
Cust ontat al ogVari ant Pr oducer

The mechanism used for retrieving catalog-specific property values differs depending on the property. For
cat egory, product, or sku item properties that use the at g. commer ce. dp. Cat al ogMapDeri vat i on class to
derive catalog-specific values, the correct values are automatically obtained by that class.

To get the value of the cat al ogs property of the pr oduct item, the Pr oduct Cat al ogQut put Confi g
component is configured by default to use the / at g/ commer ce/ sear ch/

Cust ontCat al ogPr opert yAccessor component. This component is of class

at g. conmer ce. sear ch. producer. Cust onCat al ogPr opert yAccessor, which implements the

at g. reposi tory. search. i ndexi ng. PropertyAccessor interface. This accessor returns, for each record,

5 Customizing the Output Records 49

only the specific catalog the record applies to. The accessor is specified in the / at g/ commer ce/ endeca/
i ndex/ product - sku- out put - confi g. xnl definition file:

<itemis-multi="true" property-nanme="cat al ogs"
property-accessor="cust ontCat al og" >

The Cust ontat al ogPr opert yAccessor component is mapped to the name cust ontCat al og by the
Pr oduct Cat al ogQut put Confi g component’s pr oper t yAccessor Map property:

propertyAccessor Map+=\
cust onCat al og=Cust onCat al ogPr opert yAccessor

UniqueSiteVariantProducer

If you want to create a separate record for each site, you can do so by using the / at g/ sear ch/
reposi t ory/ Uni queSi t eVari ant Producer component. This component is of class

at g. conmer ce. sear ch. producer . Uni queSi t eVari ant Pr oducer, which implements the
atg. reposi tory. sear ch. i ndexi ng. Vari ant Producer interface.

Uni queSi t eVari ant Producer creates a separate record for each site that meets both of these criteria:
+ TheID of the site is included in the si t el ds property of the item being indexed.

+ Thesite is listed in the si t esTol ndex property of the Endecal ndexi ngQut put Conf i g component that
invokes the variant producer.

For example, if you are indexing by product and the value of a product’s si t el ds property

issiteE, siteF, siteGandthesitesTol ndex property is set to sites B, E, and F,

Uni queSi t eVari ant Producer creates two records, one for site E and one for site F. The records are virtually
identical, except that each one has a different value for the si t el d property.

To use the Uni queSi t eVari ant Pr oducer, add it to the Pr oduct Cat al ogQut put Conf i g component’s
vari ant Producer s property:

vari ant Producer s+=\
| at g/ sear ch/ reposi t ory/ Uni queSi t eVari ant Producer

Using Property Formatters

If a property takes an object as its value, the data loader must convert that object to a string to include it in an
output record. The Pr oper t yFor nat t er interface defines methods for performing this conversion.

By default, the data loaders use the implementation class

at g. endeca. i ndex. f or mat t er . EndecaPr oper t yFor mat t er . This class invokes the object’s get Long()
method for numbers or get Ti me() method for dates; for booleans, it converts the value to the String

“0" (f al se)or“1” (t r ue). For other objects, it calls the object’st oSt ri ng() method.

50

5 Customizing the Output Records

You can write your own implementations of Pr oper t yFor mat t er that use custom logic for performing the
conversion. The simplest way to do this is to subclass EndecaPr oper t yFor mat t er .

In an Endecal ndexi ngQut put Conf i g definition file, you can specify a custom property formatter by

using the f or mat t er attribute. For example, suppose you have a Nucleus component named / nyst uf f/

My Pr opert yFor mat t er, of a custom class that implements the Pr oper t yFor mat t er interface. You can specify
it in the definition file like this:

<property nanme="mnyProperty" formatter="/MStuff/MPropertyFormatter"/>

The value of the f or mat t er attribute is the absolute path of the Nucleus component. To simplify coding of
the definition file, you can map Pr oper t yFor mat t er Nucleus components to simple names, and use those
names as the values of f or mat t er attributes. For example, if you map the / nyst uf f/ MyPr oper t yFor mat t er
component to the name nyFor mat t er, the above tag becomes:

<property nane="nyProperty" formatter="nyFormatter"/>

You can perform this mapping by setting the f or mat t er Map property of the I ndexi ngQut put Confi g
component. This property is a Map in which the keys are the names and the values are Pr oper t yFor mat t er
Nucleus components that the names represent.

Using Property Value Filters

In some cases, it is useful to filter a set of property values before outputting a record. For example, suppose
each record represents a product whose SKUs all have the same display name. Rather than outputting the

di spl ayNane property value of each SKU, you could include di spl ayNane in the record just once, by using a
filter that removes duplicate property values.

The Propert yVal uesFi | t er interface defines a method for filtering property values. The
at g.repository. search.indexing. filter package includes several implementations of this interface:

« Uni queFi | t er removes duplicate property values, returning only the unique values.
« Concat Fi | t er concatenates all of the property values into a single string.

+ Uni queWor dFi | t er removes any duplicate words in the property values, and then concatenates the results
into a single string.

« Hnl Fil ter removes any HTML markup from the property values.
This section provides information about what these filters do and when they're appropriate.

In an Endecal ndexi ngQut put Conf i g definition file, you can specify property filters by using thefil ter
attribute. Note that you can use multiple filters on the same property. The value of the fi | t er attributeisa
comma-separated list of Nucleus components. The component names must be absolute pathnames.

To simplify coding of the definition file, you can map Pr opert yVal uesFi | t er Nucleus components to simple
names, and use those names as the values of f i | t er attributes. You can perform this mapping by setting the
filterMap property of the | ndexi ngQut put Confi g component. This property is a Map in which the keys are
the names and the values are Pr oper t yFi | t er Nucleus components that the names represent.

5 Customizing the Output Records 51

Note, however, that you do not need to perform this mapping to use the Uni queFi | t er, Concat Fi | ter,
Uni queWor dFi | ter,or Ht nl Fi | t er class. These classes are mapped by default to the following names:

Filter Class Name

Uni queFi | ter uni que
Concat Fil ter concat

Uni queWordFil ter uni quewor d
HmFilter ht mi

So, for example, you can specify Uni queFi | t er like this:

<property nane="color" filter="uni que"/>

UniqueFilter

You may be able to reduce the size of your index by filtering the property values to remove redundant entries.
For example, suppose a record represents a product whose SKUs have a si ze property, with values of small,
medium, and large; multiple SKUs have the same si ze value, and are differentiated by other properties (e.g.,

col or). The entries for si ze in a record might be:

<PROP NAME="sku. si ze">
<PVAL>nedi unx/ PVAL>
<PVAL>| ar ge</ PVAL>
<PVAL>nedi unx/ PVAL>
<PVAL>smal | </ PVAL>
<PVAL>nedi unx/ PVAL>
<PVAL>snal | </ PVAL>

</ PROP>

By filtering out redundant entries, you can reduce this to:

<PROP NAME="sku. si ze">
<PVAL>nedi unx/ PVAL>
<PVAL>| ar ge</ PVAL>
<PVAL>snal | </ PVAL>
</ PROP>

To automatically perform this filtering, specify the Uni queFi | t er class in the XML definition file:

<property nanme="size" filter="unique"/>

As a general rule, it is a good idea to specify the uni que filter for a property if multiple items in a record may
have identical values for that property. If you specify this filter for a property and every value of that property

52

5 Customizing the Output Records

in a record is unique (or if only one item with that property appears in the record), the uni que filter will have
no effect on the record (either negative or positive). However, executing this filter increases processing time to
create the record, so it is a good idea to specify it only for properties that will benefit from it.

ConcatFilter

You may also be able to reduce the size of your index by concatenating the values of text properties. For
example, suppose each record represents a product whose SKUs have a col or property, with values of red,
green, blue, and yellow. The entries for col or in a record might be:

<PROP NAME="sku. col or">
<PVAL>r ed</ PVAL>
<PVAL>gr een</ PVAL>
<PVAL>bl ue</ PVAL>
<PVAL>yel | ow</ PVAL>
</ PROP>

By concatenating the values, you can reduce this to:

<PROP NAME="sku. col or">
<PVAL>red green bl ue yell ow</ PVAL>
</ PROP>

To combine these values into a single tag, specify the Concat Fi | t er class in the XML definition file:

<property nanme="color" filter="concat"/>

This setting invokes an instance of the at g. r eposi tory. search. i ndexi ng. fil ter. ConcatFi | ter class.
Note that you do not need to create a Nucleus component to use this filter.

You can use both the uni que and concat filters on the same property, by setting the value of thefil ter
attribute to a comma-separated list. The filters are invoked in the order that they are listed, so it is important to
put the uni que filter first for it to have an effect. For example:

<property nanme="color" filter="uni que, concat"/>

UniqueWordFilter

The at g. reposi tory. search. i ndexi ng. filter.Uni queWr dFilter class removes any duplicate words
in the property values, and then concatenates the results into a single string. For example, suppose a product’s
SKUs have a si ze property, and the resulting entries in a record are:

<PROP NAME="sku. si ze">
<PVAL>nedi unx/ PVAL>
<PVAL>| ar ge</ PVAL>
<PVAL>x | ar ge</ PVAL>
<PVAL>xx | ar ge</ PVAL>

5 Customizing the Output Records 53

</ PROP>

By applying Uni queWor dFi | t er, you can reduce this to:

<PROP NAME="sku. si ze" >
<PVAL>medi um | arge x xx</ PVAL>
</ PROP>

Note that Uni quewor dFi | t er converts all Strings to lowercase, so that redundant words are eliminated even if
they don't have identical case.

You can specify Uni queWor dFi | t er in the XML definition file like this:

<property name="size" filter="uni queword"/>

You do not need to create a Nucleus component to use this filter.

Although Uni queWér dFi | t er removes redundancies and concatenates values, it is not equivalent to using
a combination of Uni queFi | t er and Concat Fi | t er.Uni queFi | t er considers the entire string when

it eliminates redundant values, not individual words. In this example, each complete string is unique, so

Uni queFi | t er would not actually eliminate any values, and the result would be:

<PROP NAME="sku. si ze">
<PVAL>nedi um | arge x | arge xx | arge</PVAL>
</ PROP>

Note: You should use Uni queWor dFi | t er carefully, as under certain circumstances it can have undesirable
effects. If you use a dictionary that includes multi-word terms, searches for those terms may not return the
expected results, because the filter may rearrange the order of the words in the index.

HtmlFilter

Theat g. reposi tory. search.indexing.filter.Hnl Filter class removesany HTML markup from a
property value. This is useful, for example, if text properties include tags for bolding or italicizing certain words,
asinthisl ongDescri pti on property of a product:

You' Il love this Italian <i>leather</i> sofa!

Because the HTML markup is included in the index, searches may return unexpected results. In this example,
searching for “leather sofa” might not return the product, because that string does not actually appear in the
| ongDescri pti on property.

Using Ht m Fi | t er, this value appears in the index as:

<PROP NAME="product .| ongDescri ption">
<PVAL>You'll love this Italian |eather sofa!</PVAL>
</ PROP>

54

5 Customizing the Output Records

Now a search for “leather sofa” will find the value in this property, and return this product.

5 Customizing the Output Records

55

56

5 Customizing the Output Records

6 Indexing Multiple Languages

If your ATG sites include data in more than one language, there are two options for how to index this data in
Oracle Endeca Commerce:

» Index each language in a separate MDEX
+ Index all of the languages in a single MDEX

This chapter discusses how to configure the ATG indexing components to support each option. It includes these
sections:

Specifying the Locales (page 57)
Using a Separate MDEX for Each Language (page 57)
Using a Single MDEX for all Languages (page 58)

There are also differences in how querying works, depending on which indexing option you choose. See the
Query Integration (page 61) chapter for information.

Specifying the Locales

To generate records in multiple languages, you specify the locales by setting the | ocal es property of the / at g/
endeca/ Appl i cati onConfi gur ati on component. For example:

| ocal es=en_US, fr_FR

Using a Separate MDEX for Each Language

If you use a separate MDEX for each language, you must create a separate EAC application and a
corresponding set of record stores for each MDEX. By default, the name of each application is the value of the
baseAppl i cat i onName property of the / at g/ endeca/ Appl i cat i onConf i gur ati on component plus the
two-letter code for the application’s language.

6 Indexing Multiple Languages 57

So, for example, if the baseAppl i cat i onName property is set to ATG (the default), and catalog data is in English,
German, and Spanish, the three applications would be named ATGen, ATGde, and ATGes.

If you do not want to use the default application naming convention, use the key ToAppl i cat i onName
property of the / at g/ endeca/ Appl i cati onConfi gur at i on component to map the application keys to the
names of the applications. For example:

keyToAppl i cati onName=\
en=MyEngl i shApp,
es=MySpani shApp,
de=My Ger manApp

The record stores for an EAC application use the following naming convention:

appl i cati on- nane_| anguage- code_r ecord-store-type

So for the MySpani shApp application, the record stores are named MySpani shApp_es_dat a,
My Spani shApp_es_di mval s,and MySpani shApp_es_schena.

For more information about application keys and application naming, see Creating the Endeca
Applications (page 1).

Using a Single MDEX for all Languages

If you use the same MDEX for all languages, you must create a single EAC application and a single set of record
stores. In this case, the default name of the application is the value of the baseAppl i cat i onNane property

of the/ at g/ endeca/ Appl i cati onConfi gur ati on component plus the language code for the default
language of the application. So if your catalog data is in English, German, and Spanish, and you want to index
all languages in a single MDEX with English as the default language, the default application name would be
ATGen (assuming the baseAppl i cat i onNane property is set to ATG). The names of the record stores would be
ATGen_en_dat a, ATGen_en_di nval s, and ATGen_en_schena.

You specify the default language by setting the def aul t LanguageFor Appl i cat i ons property of the / at g/
endeca/ Appl i cati onConfi gur ati on component to the two-letter code for the language. For example:

def aul t LanguageFor Appl i cati ons=en

If you do not want to use the default application naming convention, use the keyToAppl i cat i onName
property of the / at g/ endecal Appl i cati onConfi gur ati on component to map the def aul t application key
to the name of the application. For example:

keyToAppl i cat i onNanme=\
def aul t =MyApp

For more information about application keys and application naming, see Creating the Endeca
Applications (page 1).

58

6 Indexing Multiple Languages

Output Records

When you index multiple languages in a single MDEX, the schema records generated are the same as the
records that would be generated in the multiple-MDEX case for the first locale listed in the / at g/ endeca/

Appl i cati onConfi gur ati on component’s| ocal es property. The data records generated include separate
records for each of the listed locales, with each data record including a pr oduct . | anguage property that
identifies the language of the record. The language name is given in its own language. For example, the value for
the German language is Deutsch.

The dimension value records consist of the same set of records that would be generated for each

language in the multiple-MDEX case, but the records generated by the / at g/ conmer ce/ endeca/ i ndex/
Reposi t or yTypeDi nensi onExport er component contain additional properties for the translated display
names of the repository item types. These properties are named di nval . pr op. di spl ayNane_| anguage-
code, where | anguage- code is the two-letter language code associated with one of the specified locales. For
example:

<PROP NAME="di nval . prop. di spl ayNane_en" >
<PVAL>Pr oduct </ PVAL>

</ PROP>

<PROP NAME="di nval . prop. di spl ayNane_de" >
<PVAL>Pr odukt </ PVAL>

</ PROP>

<PROP NAME="di nval . prop. di spl ayNane_es" >
<PVAL>Pr oduct o</ PVAL>

</ PROP>

If the mul ti LanguageSynonyms property of the Reposi t or yTypeDi mensi onExport er component is set
to t r ue, then additional Endeca record properties are generated to indicate that all translations of the same
repository type are synonyms for searching. For example:

<PROP NAME="di nval . sear ch_synonyni >
<PVAL>Pr oduct </ PVAL>
<PVAL>Pr odukt </ PVAL>
<PVAL>Pr oduct o</ PVAL>

</ PROP>

6 Indexing Multiple Languages 59

60

6 Indexing Multiple Languages

7 Query Integration

The Oracle ATG Platform provides two options for querying the Oracle Endeca Assembler and MDEX engine:

+ Invoking the Assembler via a servlet as part of Oracle ATG's request handling pipeline. This option allows the
call to the Assembler to happen early in the page’s life cycle, which is desirable when the bulk of the page’s
content is served by the Assembler.

+ Invoking the Assembler from within a page, using a servlet bean. This option allows the call to the Assembler
to occur on a just-in-time basis for the portion of the page that requires Assembler-served content. This
approach is desirable when only a small portion of the page requires Assembler content.

The remainder of this chapter provides more detail on both configurations and the components that facilitate
them.

Contentltem, Contentinclude, and ContentSlotConfig
Classes

Similar to HTTP requests, requests that are made to the Assembler use the paradigm

of a request object and a response object. Both of these objects are of type

com endeca. i nfront. assenbl er. Cont ent | t em There are two subclasses of Cont ent | t em depending
on the type of content being requested: com endeca. i nfront . cartri dge. Cont ent | ncl ude and

com endeca. i nfront. cartridge. Cont ent Sl ot Confi g.

Cont ent I ncl ude is used to request pages defined in the Pages section of Experience Manager. Invoking the
Assembler for a page request is also referred to as “invoking the Assembler with a Cont ent | ncl ude.” The URI
for a page request must begin with a/ pages prefix, for example, / pages/ br owse. Endeca uses the / pages
prefix to distinguish page requests from content collection requests.

The handler for the Cont ent I ncl ude component first tries to retrieve the content at the exact URI specified in
the Cont ent I ncl ude. If there is no content at that location, the handler attempts to find the deepest matching
path. To return to our original example, assume a br owse page exists in the Experience Manager Pages
definitions. Passing in a/ pages/ br owse path will match this br owse page. Passing in a/ pages/ br owse/

seo/ ur| path will also match this page because the deepest matching path the handler can find for / pages/
br owse/ seo/ url is/ pages/ br owse (this example assumes that a br owse/ seo/ ur| page does not exist in
Experience Manager).

Cont ent Sl ot Conf i g is used to request content collections defined in the Content section of Experience
Manager. Invoking the Assembler for a content collection request is also referred to as “invoking the Assembler

7 Query Integration 61

with a Cont ent Sl ot item.” A content collection request must specify the name of the content collection

and the number of items to retrieve from that collection. The handler for Cont ent Sl ot Conf i g, uses these
parameters to form a content trigger request that fetches the top item (or items) from the collection by priority.
The Assembler then processes the content items from the collection and returns them as part of the response
for rendering.

The remainder of this chapter makes a distinction between Cont ent | ncl ude and Cont ent S| ot Conf i g when
necessary. When the distinction is not required, the more general Cont ent | t emis used.

Note: For more information on the Cont ent | ncl ude and Cont ent Sl ot Conf i g components and their
handlers, refer to the Assembler Application Developer’s Guide in the Oracle Endeca Commerce documentation.

Invoking the Assembler in the Request Handling Pipeline

In this option, the Assembler is invoked early in the page rendering process as part of the ATG request handling
pipeline. This option is appropriate when the bulk of a page’s content is served by the Assembler and this guide
refers to these pages as “Assembler-driven pages.”

Assembler-driven pages are generally those pages that benefit greatly from increased merchandiser control. For
example, a home page is a good candidate to be Assembler-driven because merchandisers want to customize
their site’s home page based on the season, a current sale, or a customer’s profile. A search results page is

also a good candidate because merchandisers may want to control the order of search results, specify special
brand landing pages for particular searches, and so on. Endeca’s Experience Manager tool, which works hand

in hand with the Assembler API, is designed to facilitate increased merchandiser control, therefore pages that
need a high level of merchandiser control are best served through the Assembler API/Experience Manager
combination.

Using a JSP Renderer to Render Content

The content returned to the client browser can take several forms: JSP, XML, or JSON. The request-handling
architecture for an Assembler-driven JSP page looks like this:

62

7 Query Integration

17. Include to path retumed by
ContentitemToRendererPath dsprenderContentltem
HTML output le—18 15. Recursively invoke
JSP rendering pages dsp:renderContentitem
to get renderar paths
for sub-Contentltems

16. Get renderer path for sub-Contentltem

[y

14. Render the page; set the contentltem
attribute on the HilpServietRequest

13, Get renderer path for

t Contentll
ATGrequest | 5 | AssemblerPipelineSendet o em
&l

Application » ContentltemToRendererPath
1 I
Request Server 2> handling pipeline

4. Call AssemblerTools.imvokeAssembler()
12. Return Contentltem

5. Invcke
le— — 1 AssemblerTools
MucleusAssemblerFactory

MNucleusAssemblerFactary

11. Return Content|tam

7. Call NucleusAssembler assemble)

6. Return a

MucleusAssembler instanca NucleusAssembler

8. Create an initial version of 9. Call getCartridgeMandler() 10. Return manipulated (or

the roat Contentltem and for each Contentltern replaced) Contertltern
any sub-Contentltems ‘

Y

XML Endeca Content

Canfiguration Repasitory CartridgeHandlers
(base (Experience

configuration) Manager changes)

In this diagram, the following happens:
1. The application server receives a request.
2. The application server passes the request to the ATG request handling pipeline.

3. The ATG request handling pipeline does some preliminary work, such as setting up the profile and
determining which site the request is for. At the appropriate point, the pipeline invokes the / at g/ endeca/
assenbl er/ Assenbl er Pi pel i neServl et.

4. The Assenbl er Pi pel i neSer vl et determines if the request is for a page or a content collection in
Experience Manager and creates an appropriate request Cont ent | t em Then, Assenbl er Pi pel i neSer vl et
calls thei nvokeAssenbl er () method on the/ at g/ endecal assenbl er /Assenbl er Tool s component
and passes it the request Cont ent | t em

5. The Assenbl er Tool s component invokes the cr eat eAssenbl er () method on the/ at g/ endeca/
assenbl er /Nucl eusAssenbl er Fact ory component.

6. The Nucl eusAssenbl er Fact ory component returns an at g. endeca. assenbl er. Nucl eusAssenbl er
instance.

7. The Assenbl er Tool s component invokes the assenbl e() method on the Nucl eusAssenbl er instance
and passes it the request Cont ent | t em

7 Query Integration 63

8. The Nucl eusAssenbl er instance assembles the correct content for the request. Content, in Endeca terms,
corresponds to a set of cartridges and their associated data. The Nucl eusAssenbl er instance starts with
the data in the Endeca Experience Manager cartridge configuration files and then modifies that data with
information stored in the Endeca Content Repository (that is, changes made and saved via the Experience
Manager Ul). The assembled content takes the form of a response Cont ent | t emthat consists of a root
Cont ent | t emwhich may have sub-Cont ent I t emobjects as attributes. This Cont ent | t emhierarchy
corresponds to the root cartridge and any sub-cartridges that were used to create the returned content.

9. The Nucl eusAssenbl er instance recursively calls the Nucl eusAssenbl er. get Cartri dgehandl er ()
method, passing in the Cont ent | t emtype, to retrieve the correct cartridge handlers for the root
Cont ent I t emand any of its sub-items.

10.The cartridge handlers get resolved and executed for the root Cont ent | t emand its sub-items. The resulting
root Cont ent | t emis passed back to the Nucl eusAssenbl er Instance.

Note: If a cartridge handler doesn't exist for a Cont ent | t em the initial version of the item, created in step 8,
is returned.

11.The Nucl eusAssenbl er instance returns the root Cont ent | t emto Assenbl er Tool s.
12.The Assenbl er Tool s component returns the root Cont ent | t emto Assenbl er Pi pel i neServl et .

13.The Assenbl er Pi pel i neSer vl et component calls the / at g/ endeca/ assenbl er/ cartri dge/
render er / Cont ent | t enlToRender er Pat h component to get the path to the renderer (in this case, a JSP
file) for the root Cont ent I t em The Cont ent | t enlToRender er Pat h component uses pattern matching to
match the Cont ent | t emtype to a JSP file; for example, in Commerce Reference Store, if the Cont ent I t em
type is Br eadcr unbs, the JSPfileis / cart ri dges/ Br eadcr unbs/ Br eadcr unbs. j sp.

Note: See ContentltemToRendererPath (page 84) for more details on how the renderer path is calculated.

14.The Assenbl er Pi pel i neSer vl et component sets the assembled Cont ent | t emasacontent | tem
parameter on the Ht t pSer vl et Request , then forwards the request to the JSP determined by the
Cont ent | t eniToRender er Pat h component

15.The JSP for the root Cont ent | t emmay also have to render sub-Cont ent | t ens. In this case, the JSP must
include dsp: r ender Cont ent | t emtags for the sub-Cont ent | t ens.

16.dsp: r ender Cont ent | t eminvokes Cont ent | t enlToRender er Pat h to retrieve the JSP renderer for the
specified Cont ent | t em This process happens recursively until all sub-Cont ent | t ens are rendered.

The dsp: render Cont ent | t emtag also sets the cont ent | t emattribute on the Ht t pSer vl et Request,
thereby making the current Cont ent | t emavailable to the renderers; however, this value lasts only for the
duration of the i ncl ude so that after the i ncl ude is done, the cont ent I t emattribute’s value returns to the
root Content | t em

17.The JSPs returned by the Cont ent | t enlToRender er Pat h component are included in the response.

18.The response is returned to the browser.

Rendering XML or JSON Content

The process for handling XML or JSON output is very similar to that for JSPs, with some minor modifications. The
architecture diagram for an XML or JSON response looks like the following (note that this diagram is identical to
the JSP diagram except for steps 13 and 14):

64

7 Query Integration

Client browser

X
14, Return XML or JSON content

Applicati ATG t 1—End193c;n:eurl,'::"$r 10— Endaca sarializers
Requast 1 phication 2 » EQUESL 3 format= HMLJSOM——»| AssemblerPipelineServlat (XML or J3OM]
Server handling plpeline 1_setlallze Content/tem
4. Call AssemblerTools invokeAssembler()
¥ 12. Return Contentltem
5. Invoke — | AssemblerTools
4_Nuc|eusﬁssernblerFactnry
MucleusAssamblerFactory

11. Return Contentliem

7. Call MucleusAssembler. assembla()

6. Return a

NucleusAssamblar instance hucleusAssembler B

8. Create an initial version of 9. Call getCartridgeHandler{} 10 Raturn manipulated (or

the root Contentitem and for each Contentiiem replaced) Contentlteam
any sub-Contentltems

XML Endeca Content

CartridgeHandlers

Configuration Repository
(base (Experience
configuration) Manager changes)

Serializing the content to XML or JSON is controlled by the Assenbl er Pi pel i neSer vl et . f or mat Par anNane
property. This property specifies the name of the request parameter that must be passed in order to serialize the
content. This property defaults to f or mat , meaning that, in order to serialize output, the request must include
af ormat parameter with an acceptable value. Acceptable values are xm and j son. For example, the following
URL returns j son for a content collection request:

http://1 ocal host: 8080/ assenbl er/ assenbl er ?assenbl er Cont ent Col | ecti on=/ content/
Br owsePageCol | ecti on&f or mat =j son

This example returns j son for a page request:

http://1 ocal host: 8080/ assenbl er/ br owse?f or mat =j son

If the request specifies a valid f or mat parameter and value, then after the Assenbl er Pi pel i neSer vl et
component receives the response Cont ent | t emfrom Assenbl er Tool s, it calls the appropriate serializer to
reformat the response into XML or JSON. The Assenbl er Pi pel i neSer vl et component then returns the
reformatted content to the client browser.

7 Query Integration 65

When the Assembler Returns an Empty Contentitem

In the case where the Nucl eusAssenbl er instance returns a null response or the response

Cont ent | t emcontains an @r r or key (in other words, the request is not an Assembler request), the

Assenbl er Pi pel i neSer vl et component simply passes the request back to the ATG request handling pipeline
for further processing. This scenario is shown in the diagram below:

10. Pass request back
1o the ATG requast
l handling pipeline

Application ATG request -
Request 1 Server 2—¥ handling pipeline 3+ AssemblerPipelineServiet [+—
4, Call AssemblerTools irvokeAssembler()
v 9. Retumn an empty Contentliem
5. Invoke
— | AssemblarTools
MNucleusAssemblerFactory
NucleusAssemblerFactory

<

4, Returns an empty Contentitem

7. Call NucleusAssembler.assemble])

6. Relurn a

NudeusAssembler instance ™ NucleusAssembler

Note that you can configure an application to bypass the Assenbl er Pi pel i neSer vl et and avoid this scenario.
For more information, see the AssemblerPipelineServlet (page 69) section.

Invoking the Assembler using the InvokeAssembler
Servlet Bean

Invoking the Assembler from within a page, using a servlet bean, allows the call to the Assembler to occuron a
just-in-time basis for the portion of the page that requires Assembler-served content. This approach is desirable

when only a small portion of the page requires Assembler content. This guide refers to these pages as “ATG-
driven pages.”

The request-handling architecture for an ATG-driven JSP page looks like this:

66 7 Query Integration

» HTML output

JSP
15. Render HTML
<droplet name="InvokeAssembler” ., >
<81~ Either the includePage or contentCallection « 14. Include 1o path returned by
paramater is specified hare. —%> ContentltemToRendererPath
=dspzoparam name="output"> 1 2, Invoke dsprerderContentltem to | dsprrenderContentltem

<dgsprrenderContentliem contenthtern="$contentltem}’=—
</dsproparam=
</droplet>

gel renderer path for Contentitern

[

13 Get renderer path for Contentltem
1. Call InvokeAssembler

11. Retum Contentltem ¥

ContentitemToRenderafPath
InvokeAssembler

2. Call AssemblerTools. invokeAssembler(}
10. Return Contentltam

3. Invoke

l—— JR— ¥ blerTooks
MucleusAssemblerFactory sssmbler

MNucleusAssemblerFactory

9. Retum Contentltem

5. Call NucleusAssembler assemble()

4. Retum a
MucleusAssembler instance NucleusAssembler
r Y
6. Create an initial version of 7. Call getCartridgeHandler(} &, Return manmipulated jor
the root Contentitem and far each Contentltam replaced) Contentliem

any sub-Contentitems

XML Endeca Content .
Configuration Repository CarlridgeHandlers
(base (Experiancs
configuration) Manager changes)

In this diagram, the following happens:

1. The JSP page code calls the | nvokeAssenbl er servlet bean and passes it either the i ncl udePage
parameter, for a page request, or the cont ent Col | ect i on parameter, for a content collection request.

2. Thel nvokeAssenbl er servlet bean parses thei ncl udePat h or cont ent Col | ect i on parameter
into an Assembler content request, in the form of a Cont ent | t em | nvokeAssenbl er then calls the
Assenbl er Tool s. i nvokeAssenbl er () method, passing in the Cont ent I t em

3. The Assenbl er Tool s component invokes the cr eat eAssenbl er () method on the/ at g/ endeca/
assenbl er /Nucl eusAssenbl er Fact ory component.

4. The Nucl eusAssenbl er Fact ory component returns an at g. endeca. assenbl er. Nucl eusAssenbl er
instance.

5. The Assenbl er Tool s component invokes the assenbl e() method on the Nucl eusAssenbl er instance
and passes it the Cont ent I t em

7 Query Integration 67

6. The Nucl eusAssenbl er instance assembles the correct content for the request. Content, in Endeca terms,
corresponds to a set of cartridges and their associated data. The Nucl eusAssenbl er instance starts with
the data in the Endeca Experience Manager cartridge configuration files and then modifies that data with
information stored in the Endeca Content Repository (that is, changes made and saved via the Experience
Manager Ul). The assembled content takes the form of a response Cont ent | t emthat consists of a root
Cont ent | t emwhich may have sub-Cont ent I t emobjects as attributes. This Cont ent | t emhierarchy
corresponds to the root cartridge and any sub-cartridges that were used to create the returned content.

7. The Nucl eusAssenbl er instance recursively calls the Nucl eusAssenbl er. get Cart ri dgehandl er ()
method, passing in the Cont ent | t emtype, to retrieve the correct cartridge handlers for the root
Cont ent | t emand any of its sub-items.

8. The cartridge handlers get resolved and executed for the root Cont ent | t emand its sub-items. The resulting
root Cont ent | t emis passed back to the Nucl eusAssenbl er instance.

Note: If a cartridge handler doesn't exist for a Cont ent | t em the initial version of the item, created in step 8,
is returned.

9. The Nucl eusAssenbl er instance returns the root Cont ent | t emto the Assenbl er Tool s component.
10.The Assenbl er Tool s component returns the root Cont ent | t emto the | nvokeAssenbl er servlet bean.

11.When the Cont ent | t emis not empty, the | nvokeAssenbl er servlet bean’s out put oparam is rendered.
In this example, we assume that the out put oparam uses a dsp: r ender Cont ent I t emtag to call the
/ at g/ endeca/ assenbl er/ cartri dge/ renderer/ Cont ent | t eniToRender er Pat h component to
get the path to the JSP renderer for the root Cont ent | t em However, choosing when and how many
times to invoke dsp: r ender Cont ent | t emdepends on what the application needs to do. It may make
sense to invoke dsp: r ender Cont ent | t emfor the root Cont ent | t em and then recursively invoke
dsp: render Cont ent | t emfor all the sub-Cont ent | t ens via additional dsp: r ender Cont ent | t emtags.
Alternatively, you could take a more targeted approach where you invoke dsp: r ender Cont ent | t emfor
individual sub-Cont ent | t ens as needed.

Note that the dsp: r ender Cont ent | t emtag also sets the cont ent | t emattribute on the
Ht t pSer vl et Request , thereby making the Cont ent | t emavailable to the renderers. This value lasts for the
duration of the i ncl ude only.

12.The Cont ent | t enlToRender er Pat h component returns the correct renderer for the Cont ent I t em

13.The JSP returned by Cont ent | t enlToRender er Pat h is included in the response.

14.The response is returned to the browser.

Choosing Between Pipeline Invocation and Serviet Bean
Invocation

As you write your pages, you can choose to make a page Assembler-driven via pipeline invocation versus
making it ATG-driven via servlet bean invocation is based on:

+ The amount of the page’s content that must be configurable by a merchandiser. Pages that must be heavily
configurable by a merchandiser are good candidates for being Assembler-driven.

68 7 Query Integration

+ The number of URLs on the resulting page that should be constructed as Endeca URLs. Pages that contain
many URLs that will result in calls to the MDEX should be constructed by the Assembler, so that those URLs
are properly formed. For example, the category page includes a facets rail on the left side that consists of links
backed by Endeca URLs. These URLs should be constructed by the Assembler API.

Components for Invoking the Assembler

This section provides more details on the components that invoke the Assembler.

AssemblerPipelineServiet

The/ at g/ endeca/ assenbl er/ Assenbl er Pi pel i neSer vl et component is part of Oracle ATG's

request handling pipeline and it is of class at g. endeca. assenbl er. Assenbl er Pi pel i neSer vl et .
Assenbl er Pi pel i neSer vl et s primary task is to invoke the Assembler, passing in a Cont ent | ncl ude (for
a page request) or a Cont ent Sl ot Conf i g (for a content collection request). Assenbl er Pi pel i neSer vl et
is started when the ATG server is started. The/ I ni ti al . properti es file under DAF. Endeca. Assenbl er
configures this behavior by adding Assenbl er Pi pel i neSer vl et to its initial services.

initial Services+=\
/ at g/ endecal assenbl er/ Assenbl er Pi pel i neSer vl et

On invocation of the Assenbl er Pi pel i neSer vl et . servi ce() method, several items are checked to
determine whether or not the servlet should execute:

+ The Assenbl er Pi pel i neSer vl et . enabl e property: If this property is set to f al se, the servlet is disabled
and the request will be passed. This property defaults to t r ue.

+ Theat g. assenbl er context parameter: A web application must explicitly set the at g. assenbl er context
parameter to true in its web. xni file, otherwise the Assenbl er Pi pel i neSer vl et will pass the request. To
set the at g. assenbl er context parameter tot r ue, add the following to the application’s web. xni file:

<cont ext - par an»

<par am nane>at g. assenbl er </ par am nane>
<par am val ue>t r ue</ par am val ue>

</ cont ext - par an

Applications that never have a need to invoke the Assembler, should set at g. assenbl er tof al se to bypass
the servlet and avoid making requests to the Assembler.

+ The MIME type of the request: Assenbl er Pi pel i neSer vl et uses the request URI to determine the MIME
type of the request. If Assenbl er Pi pel i neSer vl et is not allowed to process the specified MIME type, it
passes the request. By default, the Assenbl er Pi pel i neSer vl et component passes all known MIME types
and only executes for a null MIME type. See Bypassing or Invoking the Assembler Based On MIME Type (page
71) for more information on customizing the MIME types that the Assenbl er Pi pel i neSer vl et is
allowed to execute.

+ The Assenbl er Pi pel i neSer vl et . i gnor eRequest URI Pat t er n property: This optional property contains
a regular expression that defines a pattern for URIs that should be disallowed. When this property is set, the
request URI is compared against the specified regular expression and, if the current URI matches the regular
expression, the request is passed. Out of the box, this property is not set.

7 Query Integration 69

If all of the above checks pass, Assenbl er Pi pel i neSer vl et executes. Its first task is to determine whether
the request is a page request or a content collection request. Assenbl er Pi pel i neSer vl et makes this
determination based on the URL, as described in the following sections.

Content Collection Request Identification and Handling

The URL for a content collection request has some additional requirements that the URL for a page request
does not have. Specifically, the URL for a content collection must have an/ assenbl er sub-path and an
assenbl er Cont ent Col | ect i on request parameter, for example:

/ crs/ storeus/assenbl er/ ?assenbl er Cont ent Col | ecti on=Search Box Auto Suggest Content

The/ assenbl er sub-path can take any of these forms:

* /assenbl er

« <cont ext - r oot >/ assenbl er (for example, cr s/ assenbl er)

+ <site.productionURL>/ assenbl er (forexample,/ crs/ storeus/ assenbl er)

The assenbl er Cont ent Col | ect i on request parameter must specify the name of a content collection. If these
content collection URL conditions are met, Assenbl er Pi pel i neSer vl et creates a Cont ent Sl ot Confi g
object and passes it to the Assembler:

contentltem = new Content Sl ot Config(content, ruleLimt);

A content collection URL may also include the optional assenbl er Rul eLi ni t request parameter. This is an
integer value that is used as an argument to the Cont ent Sl ot Conf i g constructor. It determines the number
of items to return from the content collection. If assenbl er Rul eLi ni t is not set or is an invalid value, then the
default value of 1 is used.

/ crs/ storeus/assenbl er/ ?assenbl er Cont ent Col | ecti on=Search Box Auto Suggest
Cont ent &assenbl er Rul eLi m t =3

If the content collection does not exist, the Assembler returns a content item whose cont ent s value is empty.
For example, this URL:

http://1 ocal host: 8080/ assenbl er/ assenbl er ?assenbl er Cont ent Col | ecti on=/ cont ent/
Br owsePageCol | ecti on&f or mat =j son

Results in this data:

{"@ype":"ContentSlot","contents":[],"ruleLimt":1, "contentCollection":"\/content\/
Br owsePageCol | ecti on"}

Page Request Identification and Handling

If the URL does not fit the requirements for a content collection request, the Assenbl er Pi pel i neSer vl et
component assumes that this is a page request. A page request must be transformed into a form that the
Nucl eusAssenbl er class can accept. To do this, the Assenbl er Pi pel i neSer vl et component calls the

70 7 Query Integration

Assenbl er Tool s. get Cont ent Pat h() method to transform the page request URL into a URI and store it in
a Cont ent | ncl ude that can be passed to the Nucl eusAssenbl er class. The Nucl eusAssenbl er class can
then match this URI to the URIs of the pages defined Experience Manager. See the AssemblerTools (page 72)
section for specific details on how the URL transformation is done.

Bypassing or Invoking the Assembler Based On MIME Type

By default, the Assenbl er Pi pel i neSer vl et limits its Assembler invocation to request paths that do not
match a known MIME type. It does this via a reference to the / at g/ dynano/ ser vl et/ pi pel i ne/ M meTyper
component, which is part of the ATG Platform system that routes and executes requests based on matching
MIME types. This configuration prevents the Assenbl er Pi pel i neSer vl et from intercepting requests for JSP,
CSS, HTML, and JavaScript files, among others.

You can add allowed MIME types or disable Assembler invocation for unknown MIME types using the following
Assenbl er Pi pel i neSer vl et configurable properties:

Whet her to invoke the Assenbler for a potential match on a request
that doesn't natch a known M ME type (typically a directory).

H B B H*

assenbl eUnknownM nmeTypes=t rue

A String array of allowed MM types. Defaults to null, but
can be set to a MME type if you want to pass certain extensions to
the Assenbler (for exanple, ".asn' or ".endeca").

H H H O H

al | onedM neTypes=

See the ATG Platform Programming Guide for more information on the M meTyper component.

InvokeAssembler

The/ at g/ endeca/ assenbl er/ dropl et/ | nvokeAssenbl er servlet bean, which is of class

at g. endeca. assenbl er. dropl et . | nvokeAssenbl er, provides a means of invoking the Assembler via a
servlet bean on a page. It is useful on pages that contain mostly ATG content, with a section of Assembler-based
content. Note that, for pages that have multiple sections of Assembler content, you should consider combining
the requests for that content into a single | nvokeAssenbl er call for performance reasons.

Input Parameters

The | nvokeAssenbl er servlet bean has two input parameters, i ncl udePat h and cont ent Col | ecti on,
described below. Note that you must provide one of these parameters but they are mutually exclusive.

includePath

Use the i ncl udePat h parameter for a page request. The path you specify must correspond to the name of

a page in Experience Manager, with the addition of a/ pages prefix. For example, to assemble content for a

br owse page, specify / pages/ br owse for the i ncl udePat h (passing in a/ br owse path will not match because
it is missing the / pages prefix).

I nvokeAssenbl er parses thei ncl udePat h into a Cont ent | ncl ude component. This component contains a
set of parameters, including the request URI, that is used to form a content request for the Assembler.

Thei ncl udePat h and cont ent Col | ect i on parameters are mutually exclusive but one of them must be
passed when using the | nvokeAssenbl er servlet bean.

contentCollection

7 Query Integration 71

Use the cont ent Col | ect i on parameter for a content collection request. The value you provide for
cont ent Col | ecti on must correspond to the name of a content collection in Experience Manager, for
example, Sear ch Box Auto Suggest Content.lnvokeAssenbl er parsesthe cont ent Col | ecti on
into a Cont ent Sl ot Confi g component. This component specifies a content collection and the number
of content items to return from that collection (note, the number of items to return is specified using the
I nvokeAssenbl er. rul eLi mi t parameter, described next).

Thei ncl udePat h and cont ent Col | ect i on parameters are mutually exclusive but one of them must be
passed when using the | nvokeAssenbl er servlet bean.

ruleLimit
This optional parameter is used in conjunction with the cont ent Col | ect i on parameter to specify the number
of items that should be returned from the specified content collection.

Output Parameters

The | nvokeAssenbl er servlet bean has one output parameter, cont ent | t em This parameter contains the
root Cont ent | t emreturned by the Assembler. If this content item is empty, the request was not an Assembler
request.

Open Parameters

Example

The | nvokeAssenbl er has three open parameters.

output
Rendered when the Assembler returns a Cont ent I t em

error
Rendered if the Assembler returns a Cont ent | t emwith an @r r or key. The presence of this key indicates that
the Cont ent | t emdoes not contain any content because the Assembler threw an exception or returned an error.

This code snippet shows how to use the | nvokeAssenbl er servlet bean on a page:

<dsp: i nport bean bean="/at g/ endeca/ assenbl er/ dropl et/ | nvokeAssenbl er"/>
<dsp: dropl et name="| nvokeAssenbl er" >
<dsp: param nanme="i ncl udePat h" val ue="/ pages/ br onse"/ >
<dsp: opar am nane="out put ">
<dsp: get val ueof var="contentltent
vartype="com endeca. i nfront. assenbl er. Content | t enf
paran¥"contentltent />
</ dsp: opar an»
</ dsp: dropl et >

AssemblerTools

The/ at g/ endecal assenbl er/ Assenbl er Tool s component provides commonly used functionality to other
ATG-Endeca query integration components. This component’s functionality includes:

+ Making the actual content request to the Assembler by invoking the assenbl e() method on the
Nucl eusAssenbl er instance and passing it the request Cont ent | t em

+ Assisting the Assenbl er Pi pel i neSer vl et component by transforming the page request URL into a request
Contentltem

72

7 Query Integration

+ Identifying the renderer mapping component to use for the request.

The Assenbl er Tool s component is of class at g. endeca. assenber . Assenbl er Tool s and it has the
following core method:

public Contentltem invokeAssenbl er (Contentltem pContentltemn)

Creating the Assembler Instance and Starting Content Assembly

The Assenbl er Tool s component has a configurable property, assenbl er Fact ory, that out of the box

is setto/ at g/ endecal assenbl er/ Nucl eusAssenbl er Fact ory. The Nucl eusAssenbl er Fact ory
component is responsible for creating the Assembler instance that collects and organizes

content. The Assenbl er Tool s. i nvokeAssenbl er () method calls cr eat eAssenbl er () on the

Nucl eusAssenbl er Fact or y component to create an Assembler instance and then it calls assenbl e() on that
instance to begin the content collection process. More details on the Nucl eusAssenbl er Fact ory component
can be found in the Querying the Assembler (page 80) section.

Transforming a Page Request URL for the AssemblerPipelineServiet

Note: This section describes transforming the URL for a page request into a request Cont ent | t emwhen using
the Assenbl er Pi pel i neSer vl et component only. Other mechanisms exist for creating the Cont ent | t em
when requesting a content collection or when using the | nvokeAssenbl er servlet bean. See the Content
Collection Request Identification and Handling (page 70) and InvokeAssembler (page 71) sections,
respectively, for more information on how those mechanisms work.

For page requests, the Assenbl er Tool s. get Cont ent Pat h() method transforms the request URL into a

Cont ent | t emURI. This URI tells the Assembler the path it should use to determine what content to assemble.
get Cont ent Pat h() takes into account several configurable properties when it calculates the URI. For example,
ifarequestis madetohttp://1 ocal host: 8080/ crs/ storeus/browse/,get Cont ent Pat h() does the
following:

1. Gets the request URI using the at g. servl et. Servl et Uti | class. In this case, the request URI is:
/crs/ storeus/browse/

2. Ifthe Assenbl er Tool s. i sRenpbveSi t eBaseURL() property is true, get Cont ent Pat h() removes the site
base URL (also known as the pr oduct i onURL). In this example, the site base URLis/ cr s/ st or eus, so the
modified URI is:

/ br owse/

3. If Assenbl er Tool s. i sRemoveCont ext Root () property is true and the site base URL has not been
removed, get Cont ent Pat h() removes the context root. In this case, get Cont ent Pat h() has already
removed the site base URL, so the URL remains as is:

/ br owse/

4. Finally, get Cont ent Pat hPr ef i x() inserts the content path prefix. This prefix can be passed
in on the request, using the cont ent Pr ef i x parameter. When get Cont ent Pat hPr ef i x()
executes, it first checks for the existence of the cont ent Pr ef i x request parameter. If this
parameter exists, its value is inserted at the beginning of the URL. If cont ent Pr ef i x does not exist,
get Cont ent Pat hPr ef i x() invokes the Assenbl er Tool s. i sExperi enceManager () method to
determine if Experience Manager is in use. If Experience Manager is in use, i sExper i enceManger ()
returns Assenbl er Tool s. assenbl er Setti ngs. def aul t Experi enceManager Prefi x,
which defaults to / pages. If not, i sExperi enceManager () returns
Assenbl er Tool s. assenbl er Set ti ngs. def aul t Gui dedSear chPr ef i x, which defaults to/ ser vi ces.

7 Query Integration 73

In this example, we assume that Experience Manager is in use, so the final content path URI is:
/ pages/ br owse/

The resulting content path URI is used to construct a content item.
Identifying the Renderer Mapping Component to Use for the Request

The Assenbl er Tool s. def aul t Cont ent | t enlToRender er Pat h property specifies the default component that
should be used to map a response Cont ent | t emto its correct renderer. Having this default ensures that the
same mapping component is used across all web sites:

Qur default service for mapping froma Contentltemto the path of
its correspondi ng JSP rendering page
def aul t Cont ent | t eniToRender er Pat h=cartri dge/ renderer/ Cont ent | t enToRender er Pat h

You can override this setting on a web application-specific basis by specifying a cont ext - par amin your
application’s web. xn file. The name of the parameter must be cont ent | t enToRender er Pat h and the value
must specify the Nucleus path of the mapping component you want to use:

<cont ext - par an>
<par am nane>cont ent | t eniffoRender er Pat h</ par am nane>
<par am val ue>Nucl eus- pat h-t o- mapper </ par am val ue>
</ cont ext - par an>

Defining Global Assembler Settings

The/ at g/ endecal assenbl er/ cartri dge/ manager/ Assenbl er Set t i ngs component defines global
Assembler settings and is referenced by various components. The Nucl eusAssenbl er Set t i ngs component
is of class at g. endeca. assenbl er. Nucl eusAssenbl er Set t i ngs, which is an extension of the class

com endeca. i nfront. assenbl er. Assenbl er Set t i ngs. It has the following properties:

« def aul t Experi enceManager Pr ef i x: Defaults to / pages. Used by the Assenbl er Tool s component when
creating the content path prefix.

+ def aul t Gui dedSear chPr ef i x: Defaults to/ ser vi ce. Used by the Assenbl er Tool s component when
creating the content path prefix.

« experi enceManager : Defaults to t r ue. Used by the Assenbl er Tool s. i sExperi enceManager () method
to determine if Experience Manager is available.

Connecting to Endeca

Some cartridges need to communicate with the Endeca Workbench while others need to communicate directly
with the MDEX engines to do their work. The ATG-Endeca integration includes a number of components to
facilitate both types of communication.

74 7 Query Integration

AssemblerApplicationConfiguration Component

The at g. endeca. assenbl er. confi gurati on. Assenbl er Appl i cati onConfi gurati on class

provides a central place for calculating and storing Workbench and MDEX host and port information. This
information complements the information contained in the / at g/ endeca/ Appl i cati onConfi gurati on
component and allows the Assembler to communicate with Workbench applications and MDEX instances.

The ATG-Endeca integration includes a component of the Assenbl er Appl i cati onConfi gurati on

class,/ at g/ endecal assenbl er/ Assenbl er Appl i cati onConfi gur ati on, that other components

use to retrieve Workbench and MDEX connection details. This section provides information on how the
Assenbl er Appl i cati onConfi gurati on component identifies the correct Workbench application and MDEX
to connect to. The sections after provide details on the components that reference this information.

Creating Application-specific Workbench Connections

Note: This section introduces the Wor kbenchCont ent Sour ce and Def aul t Wor kbenchCont ent Sour ce
components, in the context of what the Assenbl er Appl i cati onConfi gur ati on component does with them.
Additional information is provided about these component types in the following sections.

The/ at g/ endeca/ assenbl er/ cartri dge/ manager/ Wr kbenchCont ent Sour ce component

holds details for a particular Endeca application’s connection to a Workbench application (or, to be

more specific, it functions as an alias for other components that calculate the connection details based

on the environment and the current request). It is an Endeca requirement that a globally-scoped

com endeca. i nfront. cont ent. sour ce. Wr kbenchCont ent Sour ce object be instantiated for

each Workbench application in your environment before any content requests are made. Environments
that have multiple Endeca applications, for example, to support multiple languages, will have multiple
Workbench applications and, therefore, will need multiple Wr kbenchCont ent Sour ce components. The
Assenbl er Appl i cati onConfi gurati on component is responsible for creating these components when
necessary.

To create the application-specific Wor kbenchCont ent Sour ce components, the

Assenbl er Appl i cati onConfi gurati on component resolves a prototype-scoped / at g/ endeca/
assenbl er/ cartri dge/ manager/ Pr ot ot ypeWor kbenchCont ent Sour ce component, which is of class
at g. endeca. assenbl er. cont ent. Ext endedWor kbenchCont ent Sour ce, and inserts it into the Nucleus
global scope under a new name that follows this pattern:

Wor kbenchCont ent Sour ce_Endeca- appl i cati on- key

Adding the Endeca- appl i cat i on- key to the end of the Wor kbenchCont ent Sour ce component name
uniquely identifies the correct Wr kbenchCont ent Sour ce to use for each Endeca application.

The Pr ot ot ypeWor kbenchCont ent Sour ce configuration includes a $basedOn property that
references the / at g/ endeca/ assenbl er/ cartri dge/ manager/ Def aul t Wor kbenchCont ent Sour ce
component, where arguments for the Wor kbenchCont ent Sour ce constructor are

provided. The Pr ot ot ypeWor kbenchCont ent Sour ce component gets its settings from

the Def aul t Wor kbenchCont ent component, with the exception of the Endeca application

name, which it gets from the Assenbl er Appl i cati onConfi gurati on component’s
currentlnitializi ngWrkbenchCont ent Sour ceAppl i cat i onName property.

Calculating Which MDEX to Use

The Assenbl er Appl i cat i onConfi gur ati on component is responsible for determining which host name

and port to use to connect to the correct MDEX engine for any given request. The / at g/ endeca/ assenbl er/
cartridge/ manager/ MlexResour ce component, which represents the connection to a single MDEX, can then
refer to the Assenbl er Appl i cati onConfi gurati on when creating a connection for a specific request.

The MDEX host and port values are stored in the
Assenbl er Appl i cati onConfi gurati on. current MlexHost nane and

7 Query Integration 75

Assenbl er Appl i cati onConfi gurati on. current MiexPort properties, respectively. The
Assenbl er Appl i cati onConfi gur ati on component includes configuration settings that specify how the
current MlexHost and cur r ent Miex port properties are calculated.

Typically, if your application uses a single MDEX, you set the def aul t MlexHost Nane and def aul t MiexPor t
properties of the Assenbl er Appl i cat i onConfi gur at i on component to the host and port for that MDEX, for
example:

def aul t MlexHost Nane=l ocal host
def aul t MlexPor t =15000

The Assenbl er Appl i cati onConfi gurati on then uses the def aul t MlexHost Nane and def aul t MiexPor t
settings to set the cur r ent MlexHost Nane and cur r ent MlexPor t properties.

If your application uses multiple MDEX engines, for example, one MDEX for each language, you must configure
the appl i cati onKeyToMlexHost AndPor t property. This property contains a map where the keys identify
each Endeca application and the values specify the host names and port numbers for the MDEX engines
associated with each application. For example, if your environment has two Endeca applications to support two
languages, English and German, the appl i cat i onKey ToMlexHost AndPort would be set as follows:

appl i cati onKeyToMlexHost AndPor t =\
en=host - f or - Engl i sh- MDEX: port - f or - Engl i sh- MDEX\
de=host - f or - Ger man- MDEX: port - f or - Ger man- MDEX

To calculate which MDEX host and port to use, the Assenbl er Appl i cat i onConfi gurati on component
retrieves the Endeca application key for the current request from the Appl i cati onConfi gurati on
component, and then uses that key to retrieve the correct host and port values from the

appl i cati onKey ToMlexHost AndPort map. To enable the call to the Appl i cat i onConfi gur ati on
component, the Assenbl er Appl i cati onConfi gur ati on component includes the following required

property:
appl i cationConfiguration=../ApplicationConfiguration

Note: For more details, on the Appl i cat i onConf i gur at i on component, see the Configuring the
ApplicationConfiguration Component (page 4) section

Connecting to an MDEX

The/ at g/ endeca/ assenbl er/ cartri dge/ manager / MiexResour ce component, of class

com endeca. i nfront. navi gati on. nodel . MlexResour ce, is a request-scoped component that represents a
connection to a single MDEX. The Nucl eusAssenbl er uses this component to connect to the correct MDEX for
content.

The MlexResour ce component has host and port properties that represent the MDEX
host and port to use for the current request. The MlexResour ce component gets the
values for these properties from the Assenbl er Appl i cat i onConfi gurati on component,
specifically, the Assenbl er Appl i cati onConfi gur ati on. curr ent MlexHost Nanme and
Assenbl er Appl i cati onConfi gurati on. current MlexPort properties.

Connecting to the Endeca Workbench

Oracle ATG Web Commerce has several components for creating a connection to an Endeca Workbench
application. The Workbench connection components can vary depending on whether your environment has a
single Workbench application or multiple applications (for example, to support multiple languages). Here is a
brief overview of the process:

76

7 Query Integration

+ Onstartup, the / at g/ endeca/ assenbl er/ cartri dge/ manager / Def aul t Wr kbenchCont ent Sour ce
component is instantiated. This component contains host name and port information for the Workbench
application to connect to by default. The Def aul t Wor kbenchCont ent Sour ce component gets its
host and port values from the Assenbl er Appl i cat i onConfi gur ati on. wor kbenchHost Name and
Assenbl er Appl i cati onConfi gurati on. wor kbenchPort properties, respectively. It gets the Endeca
application name from the Appl i cati onConfi gurati on. def aul t Appl i cati onName property.

+ If the environment has more than one Endeca application (for example, because it supports multiple
languages with one language per Endeca application), the Assenbl er Appl i cat i onConfi gurati on
component creates globally-scoped, Wor kbenchCont ent Sour ce_Endeca- appl i cat i on- key components
for each application. Each component has a suffix that identifies which Endeca application the component is
for, for example, Wor kbenchCont ent Sour ce_en and Wor kbenchCont ent Sour ce_de.

+ The Nucl eusAssenbl er resolves the/ at g/ endeca/ assenbl er/ cartri dge/ manager/
Wor kbenchCont ent Sour ce component. This component in turn resolves either the / at g/ endeca/
assenbl er/ cartri dge/ manager/ Def aul t Wor kbenchCont ent Sour ce component or the / at g/ endeca/
assenbl er/ cartridge/ manager/ Per Appl i cati onWor kbenchCont ent Sour ceResol ver as the
Wor kbenchCont ent Sour ce for the current request.

+ If the Def aul t Wor kbenchCont ent Sour ce is resolved, the host, port, and Endeca application defined by this
component are used to connect to the default Workbench application.

+ If the Per Appl i cat i onWor kbenchCont ent Sour ceResol ver is resolved, the component relies on
the Assenbl er Appl i cati onConfi gur ati on to determine what the current Endeca application is
and then it references the correct Endeca application-specific Wor kbenchCont ent Sour ce that the
Assenbl er Appl i cati onConfi gurati on component has already created.

The remaining sections provide more details on the individual Workbench-related components.
WorkbenchContentSource

The/ at g/ endeca/ assenbl er/ cartri dge/ manager/ Wor kbenchCont ent Sour ce component represents
the current application’s connection to the Workbench. The Nucl eusAssenbl er class uses this component to
connect to the correct Workbench application.

Out of the box, the Wor kbenchCont ent Sour ce component uses a $hasedOn property set to the / at g/
endeca/ assenbl er/ cartri dge/ manager/ Per Appl i cati onWr kbenchCont ent Sour ceResol ver, which
is a request-scoped component that determines which Workbench application to connect to, based on the
current request. This default configuration is primarily intended to support environments that have multiple
applications, although it works for single-application environments as well.

The Wor kbenchCont ent Sour ce properties file also includes some configuration, which has been commented
out, that is more efficient for environments that always have a single Endeca application:

$cl ass=at g. nucl eus. Generi cRef erence
$scope=gl obal
conponent Pat h=Def aul t Wor kbenchCont ent Sour ce

This configuration creates a globally-scoped Wor kbenchCont ent Sour ce component that gets its connection
details from the / at g/ endecal/ assenbl er/ cartri dge/ manager / Def aul t Wor kbenchCont ent Sour ce
component. This approach is more efficient for a single-application environment because it avoids having to
resolve the Wor kbenchCont ent Sour ce for every request. If you have a single-application environment, you can
use this configuration instead.

The following sections provide some additional details on the Def aul t Wor kbenchCont ent Sour ce and
Per Appl i cati onWr kbenchCont ent Sour ce components that provide the connection details stored in a
Wor kbenchCont ent Sour ce component.

7 Query Integration 77

DefaultWorkbenchContentSource

The/ at g/ endeca/ assenbl er/ cartri dge/ manager/ Def aul t Wor kbenchCont ent Sour ce component,

of class at g. endeca. assenbl er. cont ent . Ext endedWor kbenchCont ent Sour ce, is a globally-scoped
component that includes properties for connecting to a default Workbench application. Out of the box, this
property is included in thei ni ti al Servi ces property of the /i ni ti al component, to ensure that it is created
on start up.

initial Services+=\
| at g/ endecal assenbl er/ Assenbl er Pi pel i neServl et \
| at g/ endecal assenbl er/ cartri dge/ manager/ Def aul t Wor kbenchCont ent Sour ce

In a single application environment, the Def aul t Wor kbenchCont ent Sour ce component provides connection
details to the single globally-scoped Workbench application that should be used for all requests. In a multi-
application environment, this component provides connection details to a default Workbench application in
case that the Per Appl i cat i onWr kbenchCont ent Sour ceResol ver cannot resolve an Endeca application-
specific Wor kbenchCont ent Sour ce.

The Def aul t Wor kbenchCont ent Sour ce component has a set of properties that represent the constructor
arguments that are used to create the Wor kbenchCont ent Sour ce. The Def aul t Wor kbenchCont ent Sour ce
component gets the values for these properties from the Appl i cat i onConf i gur ati on and

Assenbl er Appl i cati onConfi gur ati on components. It is the responsibility of these other two
components to calculate the correct Endeca application and Workbench connection to use. The

Def aul t Wor kbenchCont ent Sour ce properties include:

« # Arg1 - Workbench app name: This property provides the first constructor argument for
Wor kbenchCont ent Sour ce and it points to the Endeca application. The default property setting is:

$constructor. paranf 1] . val ue®=/ at g/ endeca/
Appl i cationConfiguration. defaul t Appl i cati onNane

+ # Arg3 - Workbench host: This property provides the third constructor argument for
Wor kbenchCont ent Sour ce and it points to the host that the Workbench is installed on. The default property
setting is:

$constructor. paranf3].value=../../
Assenbl er Appl i cati onConfi gurati on. wor kbenchHost Nanme

+ # Arg 4 - Workbench port: This property provides the fourth constructor argument for
Wor kbenchCont ent Sour ce and it points to the port that the Workbench is using. The default property
setting is:

$construct or. paranf 4] . val ue®=../../ Assenbl er Appl i cati onConfi gurati on. wor kbenchPort

PerApplicationWorkbenchContentSourceResolver

In an environment that has multiple Workbench applications, it is the / at g/ endeca/ assenbl er/ cartri dge/
manager / Per Appl i cat i onWr kbenchCont ent Sour ceResol ver component’s responsibility to determine
the correct globally-scoped, Endeca application-specific Wor kbenchCont ent Sour ce component to use for the
current request. This component also defines a default Wor kbenchCont ent Sour ce component to use if an
Endeca application-specific version cannot be found. Per Appl i cat i onWr kbenchCont ent Sour ceResol ver
is of class at g. endeca. assenbl er. confi gurati on. Per EndecaAppl i cati onGener i cRef er ence, which
extends the at g. nucl eus. Gener i cRef er ence class to calculate the correct component to reference based on
the Endeca application key of the current request.

78

7 Query Integration

Note that Per Appl i cat i onWor kbenchCont ent Sour ceResol ver is request-scoped. This means that the
globally-scoped Wor kbenchCont ent Sour ce component that it resolves and references gets inserted into the
request scope as an alias. This effectively allows the application to resolve the Wor kbenchCont ent Sour ce
component on a per-request basis.

To perform its tasks, the Per Appl i cat i onWr kbenchCont ent Sour ceResol ver component has the following
properties:

+ def aul t Conponent Pat h: The Nucleus path of the Wor kbenchCont ent Sour ce component to default to if an
Endeca application-specific version cannot be resolved. Defaults to / at g/ endeca/ assenbl er/ cartri dge/
manager / Def aul t Wor kbenchCont ent Sour ce.

+ conponent BasePat h: The base path for the Endeca application-specific Wor kbenchCont ent Sour ce
components. Per Appl i cat i onWr kbenchCont ent Sour ceResol ver adds the Endeca application keys,
such as _en and _es, as suffixes to this path to resolve the correct Wor kbenchCont ent Sour ce to reference.
Defaults to/ at g/ endeca/ assenbl er/ cartri dge/ manager/ Wr kbenchCont ent Sour ce.

» assenbl er Appl i cati onConfi gur at i on: The Nucleus path to the
Assenbl er Appl i cati onConfi gurati on component, where the
Per Appl i cat i onWor kbenchCont ent Sour ceResol ver gets the application keys. Defaultsto. . /. ./
Assenbl er Appl i cati onConfi gurati on.

« useDefaul tIfSingl eApplicati on:Indicates that the
Per Appl i cat i onWor kbenchCont ent Sour ceResol ver should use the
Def aul t Wor kbenchCont ent Sour ce if there is only one Endeca application and avoid resolving an Endeca
application-specific Wor kbenchCont ent Sour ce.

Manually Adding Application-specific WorkbenchContentSource Components

Itis an Endeca requirement that the Wor kbenchCont ent Sour ce component used to communicate with
any given Workbench application be globally scoped and started up front, before any requests are made. To
accommodate this requirement, the Appl i cati onAssenbl er Conf i gur at i on component automatically
creates Endeca application-specific Wor kbenchCont ent Sour ce components on application start up.

If the automatically-created Wor kbenchCont ent Sour ce components are not sufficient for your needs, you
can manually create . pr oper ti es files for other Endeca application-specific Wor kbenchCont ent Sour ce
components, for example:

$basedOn=Def aul t Wor kbenchCont ent Sour ce

Argl - Workbench app nane
$constructor. paranf 1] . val ue=Endeca- appl i cati on- nane

Arg3 - Workbench host
$constructor. parani 3] . val ue=Wor kbench- host - nane

Arg 4 - Workbench port
$constructor. paranf 4] . val ue=Wor kbench- host - port

After creating the Endeca application-specific Wor kbenchCont ent Sour ce components, you must add them to
thei nti al Servi ces property of the /i ni ti al component so that they are started on application start-up, for
example:

initial Services+=\
/ at g/ endecal assenbl er/ cartri dge/ manager/ Wr kbenchCont ent Sour ce_appl i cat i on- key

7 Query Integration 79

Querying the Assembler

The at g. endeca. assenbl er. Nucl eusAssenbl er Fact or y class is responsible for creating the

at g. endeca. assenbl er. Nucl eusAssenbl er instance that retrieves and organizes content. The

Nucl eusAssenbl er Fact or y class implements the com endeca. i nfront . assenbl er. Assenbl er Factory
interface and defines a cr eat eAssenbl er () method that the Assenbl er Tool s component invokes to

geta Nucl eusAssenbl er instance. Nucl eusAssenbl er is an inner class of Nucl eusAssenbl er Fact ory.

It implements the com endeca. i nfront . assenbl er. Assenbl er interface and defines an assenbl e()
method that the Assenbl er Tool s component invokes to begin a query. The following code excerpt from
Assenbl er Tool s. j ava shows the use of these two methods:

/]l Get the assenbler factory and create an Assenbl er

Assenbl er assenbl er = get Assenbl er Factory(). creat eAssenbl er();

assenbl er. addAssenbl er Event Li st ener (new Assenbl er Event Adapter());
/] Assenbl e the content

Contentltem responseContentltem = assenbl er. assenbl e(pContentlten);

In addition to retrieving the base content from the cartridge XML configuration files, the Nucl eusAssenbl er
class also modifies that content as necessary using Car t r i dgeHandl er components. The

Nucl eusAssenbl er Fact or y component provides the Nucl eusAssenbl er class with the configuration it
needs to find the correct Car t ri dgeHand| er components. Car t ri dgeHandl er s can be found either by using
a default naming strategy (that is, looking for a Nucleus component named after the car t ri dgeType in one of
the Nucl eusAssenbl er Fact or y component’s path properties), or via an explicit mapping. To support these
strategies, the Nucl eusAssenbl er Fact ory component provides the following properties:

« experi enceManager Handl er Pat h: Defaults to the / at g/ endeca/ assenbl er/ cartri dge/ handl er/
experi encemanager folder.

+ gui dedSear chHandl er Pat h: Defaults to the / at g/ endeca/ assenbl er/ cartri dge/ handl er/
gui dedsear ch folder.

+ def aul t Handl er Pat h: Defaults to the / at g/ endeca/ assenbl er/ cartri dge/ handl er folder.

+ handl er Mappi ng: AMap<Stri ng, String> property that provides a map from the cartri dgeType to the
Nucleus path of the corresponding Car t ri dgeHandl er component. This property can be used to override
the default mapping specified in path properties.

When looking for a cartridge handler, the Nucl eusAssenbl er class first invokes the

Assenbl er Tool s. i sExperi enceManager () method to determine if Experience Manager is present or
not. If i sExperi enceManager () returnstr ue, the Nucl eusAssenbl er class tries to locate the correct
handler in the path specified by the Nucl eusAssenbl er Fact or y.experi enceManager Handl er Pat h
property. For example, for the MyCar t r i dge cartridge, the Nucl eusAssenbl er class would look

for the handler called / at g/ endeca/ assenbl er/ cartri dge/ handl er/ exper i encenanager/
MyCartridge.Ifi sExperi enceManager () returnsf al se, the Nucl eusAssenbl er class looks for

the handler in the path specified by the Nucl eusAssenbl er Fact ory. gui dedSear chHandl er Pat h
property. If neither path resolves successfully, the Nucl eusAssenbl er class looks for the handler

in the path specified by the Nucl eusAssenbl er Fact ory. def aul t Handl er Pat h. Finally, if the

Nucl eusAssenbl er class still cannot find the correct handler, it looks at the explicit mappings defined in the
Nucl eusAssenbl er Fact ory. handl er Mappi ng property.

Note that, out of the box, the handl er Mappi ng property provides override mappings to handlers for the default
set of Endeca cartridges:

Explicit cartridge handl er mappings

80

7 Query Integration

handl| er Mappi ng=\
Di mensi onSear chAut oSuggest | t e/ at g/ endecal/ assenbl er/ cartri dge/ handl er/\
Di nensi onSear chResul t s, \
Hor i zont al Recor dSpot | i ght =/ at g/ endeca/ assenbl er/ cartri dge/ handl er/\
Recor dSpot | i ght,\
Cont ent Sl ot Header =/ at g/ endeca/ assenbl er/ cartri dge/ handl er/ Content Sl ot , \
Cont ent Sl ot Secondar y=/ at g/ endeca/ assenbl er/ cartri dge/ handl er/ Cont ent Sl ot , \
Cont ent Sl ot Mai n=/ at g/ endecal/ assenbl er/ cartri dge/ handl er/ Cont ent Sl ot , \
PageS| ot =/ at g/ endeca/ assenbl er/ cartri dge/ handl er/ Cont ent Sl ot

Cartridge Handlers and Their Supporting Components

The default folder that Nucleus will try to resolve cartridge handlers in is / at g/ endecal assenbl er/
cartridge/ handl er.The/ confi g subdirectory in that same location contains configuration components
associated with the Car t ri dgeHand| er components. Similarly,/ at g/ endeca/ assenbl er/ cartri dge/
handl er/ xngr and/ at g/ endeca/ assenbl er/ cartri dge/ handl er/ gui dedsear ch folders contain
cartridge handlers that are specific to Experience Manager and Guided Search, respectively, and they also have
their own / conf i g sub-paths.

The components in the / at g/ endeca/ assenbl er/ cartri dge/ manager Nucleus folder provide additional
cartridge support outside of what can be found in the cartridge handlers themselves. For example,

the Navi gati onSt at eBui | der and Navi gat i onSt at e components build and represent the current
navigation state, respectively; the Fi | t er St at e component represents the state of any filters; and the
MiexRequest Bui | der component builds MDEX requests.

Note: Currently, the / at g/ endeca/ assenbl er/ cartri dge/ handl er/ xngr and/ at g/ endecal assenbl er/
cartridge/ handl er/ gui dedsear ch folders are empty and function only as placeholders for future
components.

Providing Access to the HTTP Request to the Cartridges

The/ at g/ endecal servl et/ request/ Nucl eusHt t pSer vl et Request Provi der component, which is of
class at g. endeca. servl et . request. Nucl eusHtt pSer vl et Request Provi der, provides access to the
current request to various components in both the / at g/ endeca/ assenbl er/ cart ri dge/ handl er and/
at g/ endeca/ assenbl er/ cartri dge/ manager Nucleus folders.

Controlling How Cartridges Generate URLs

If a cartridge provides links to another Endeca navigation or record state, the URL path for each link is
provided as an action string in the response Cont ent | t em Two components, Basi cUr | For mat t er and
Def aul t Act i onPat hPr ovi der, assist the cartridges in forming action strings. This section provides some
details on both.

7 Query Integration 81

BasicUrlFormatter

The/ at g/ endeca/ ur | / basi ¢/ Basi cUr | For mat t er component is of class

com endeca. sol eng. url format ter. basi c. Basi cUr| For mat t er. This class is responsible for serializing
action strings from a navigation state, for example, ?N=4294967263. It includes properties such as

def aul t Encodi ng and pr ependQuest i onMar ks that control how the strings are generated. Out of the box
these properties are set to UTF- 8 and t r ue, respectively.

For more information on the Basi cUr | For mat t er class, refer to the Assembler Application Developer’s Guide in
the Oracle Endeca Commerce documentation.

DefaultActionPathProvider

The/ at g/ endeca/ assenbl er/ cartri dge/ manager/ Def aul t Act i onPat hPr ovi der component, of class

at g. endeca. assenbl er. navi gat i on. Def aul t Act i onPat hPr ovi der, creates the action path portion of the
action strings that are stored in Cont ent | t emobjects. The action path is defined as the combination of the site
root path and the content path. For example, in the link below:

/ pages/ br owse?N=4294967263

The site root path is / pages and the content path is / br owse (the remainder of the URL represents the query
parameters that define the request). The Def aul t Act i onPat hPr ovi der class generates both the site root
and the content path values to be used in the action string. To do so, the Def aul t Act i onPat hPr ovi der class
implements the com endeca. i nfront. navi gati on. url . Acti onPat hProvi der interface and its four
methods:

+ get Def aul t Navi gat i onAct i onCont ent Pat h() : Returns the content path for a navigation request.

+ get Def aul t Navi gat i onAct i onSi t eRoot Pat h() : Returns the site root path for a navigation request.
+ get Def aul t Recor dAct i onCont ent Pat h() : Returns the content path for a record request.

+ get Def aul t Recor dAct i onSi t eRoot Pat h() : Returns the site root path for a record request.

The Def aul t Act i onPat hPr ovi der component also has the following properties that support action path
generation:

+ def aul t Experi enceManager Navi gat i onAct i onPat h: The content path to use for navigation requests
when Experience Manager is installed and no other content path can be resolved, defaults to / br owse.

« def aul t Experi enceManager Recor dAct i onPat h: The content path to use for record requests when
Experience Manager is installed and no other path can be resolved, defaults to / pr oduct .

« def aul t Gui dedSear chNavi gat i onAct i onPat h: The content path to use for navigation requests when
Guided Search is installed, defaults to / gui dedsear ch.

+ def aul t Gui dedSear chRecor dAct i onPat h: The content path to use for record requests when Guided
Search is installed, defaults to/ r ecor ddet ai | s.

* navi gationActionUri Map: A map whose keys are navigation request action paths and whose values are
replacement action paths that should be substituted for the key action paths. For example, a/ pages/ br and
action path can be replaced with a / pages/ br owse action path. This map can be used when overriding the
action path of the current request is necessary. The keys are in regular expression form, so things like query
parameters are ignored.

+ recordActi onUri Map: Analogous to navi gat i onAct i onUr i Map, this is a map whose keys represent record
request action paths and whose values are replacement action paths that should be substituted for the key
action paths. The keys are in regular expression form.

82

7 Query Integration

+ assenbl er Tool s: A reference to the Assenbl er Tool s component. The default site root paths are defined
by this component’s properties. Defaults to / at g/ endecal assenbl er/ Assenbl er Tool s.

+ current Request : Provides access to the current request’s details. Defaults to/ Ori gi nat i ngRequest .

+ cont ent Sour ce: A reference to the Wor kbenchCont ent Sour ce component used to connect with
the correct Workbench application. Defaults to / at g/ endeca/ assenbl er/ cart ri dge/ manager /
Wor kbenchCont ent Sour ce. See Connecting to Endeca (page 74) for details on this component.

Calculating the Content Path

To calculate the content path for a navigation request, the get Def aul t navi gat i onAct i onCont ent Pat h()
method is invoked. This method, in turn, calls the Assenbl er Tool s. i sExperi enceManager () method

to determine if Experience Manager is in use. If so, the Def aul t Act i onPat hPr ovi der component
calculates the content path to return using the process described in the next paragraph. If Experience
Manager is not in use, the Def aul t Act i onPat hPr ovi der component returns the value of the

def aul t Gui dedSear chNavi gat i onAct i onPat h property, which defaults to / gui dedsear ch.

To calculate the content path to use for navigation requests when Experience Manager is in use, the

Def aul t Act i onPat hProvi der component checks the current request to determine if it contains an Endeca-
specific URL. If it does, the Def aul t Act i onPat hPr ovi der component extracts the entire action path from
the URL and looks for a match in the keys of its navi gat i onActi onUri Map property. If a match is found, the
Def aul t Act i onPat hPr ovi der component returns the content path portion of the matching entry’s value.

If no match is found, the Def aul t Act i onPat hPr ovi der component returns the content path portion from
the current request’s action path. If it cannot resolve a content path from either the current request or the

navi gati onActi onUri Map, the Def aul t Act i onPat hPr ovi der component returns the value specified in its
def aul t Experi enceManager Navi gat i onAct i onPat h property, which defaults to / br owse.

The process for calculating the content path for record requests when Experience Manager is in use is

very similar to that for navigation requests. The get Def aul t Recor dAct i onCont ent Pat h() method is
invoked and it performs the same URL checking, extraction, and comparison process, however, it uses the
recor dActi onUri Map property for the lookup instead. Also, if a content path cannot be resolved from
either the current request or the navi gat i onAct i onUr i Map, this method returns the value specified in the
Def aul t Act i onPat hPr ovi der . def aul t Exper i enceManager Navi gat i onAct i onPat h property, which
defaults to / pr oduct .

Calculating the Site Root Path

To calculate the site root path for a navigation request, the get Def aul t Navi gat i onActi onSi t eRoot Pat h()
method is invoked. First, this method checks the current request to determine if it contains an Endeca-specific
URL. If it does, the Def aul t Act i onPat hPr ovi der component extracts the entire action path from the

URL and looks for a match in the keys of its navi gat i onAct i onUri Map property. If a match is found, the

Def aul t Act i onPat hProvi der component returns the site root portion of the matching entry’s value. If no
match is found, the Def aul t Act i onPat hPr ovi der component returns the site root portion from the current
request’s action path.

If it cannot resolve a content path from either the current request or the navi gati onAct i onUr i Map, the

Def aul t Acti onPat hProvi der component calls the Assenbl er Tool s. i sExperi enceManager () method
to determine if Experience Manager is in use. If so, the Def aul t Act i onPat hPr ovi der component invokes
the Assenbl er Tool s. assenbl er Set ti ngs() method to retrieve the default site root prefix. This prefix is
dependent on whether or not Experience Manager or Guided Search is installed and defaults to / pages and /
servi ce, respectively.

The process for calculating the site root path for record requests is very similar to that for navigation
requests. The get Def aul t Recor dAct i onSi t eRoot Pat h() method is invoked. This method performs

7 Query Integration 83

the same URL checking, extraction and comparison process, however, it uses the r ecor dAct i onUr i Map
property for the lookup instead. The process for retrieving a default site root in cases where one cannot be
resolved from either the current request or the r ecor dAct i onUr i Map is the same; a call is made to the
Assenbl er Tool s. assenbl er Set ti ngs() method to retrieve the default site root prefix.

Also, if the Def aul t Act i onPat hPr ovi der component cannot resolve a content path from
either the current request or the navi gat i onActi onUr i Map, it returns the value specified in its
def aul t Experi enceManager Navi gat i onAct i onPat h property, which defaults to / pr oduct .

DefaultActionPathProvider and the InvokeAssembler Servlet Bean

When using the / at g/ endecal assenbl er/ dr opl et/ | nvokeAssenbl er servlet bean to retrieve content
from the Assembler, there is no concept of a “current request.” Because the Def aul t Act i onPat hPr ovi der
logic uses the current request’s action path to do its calculations, the | nvokeAssenbl er servlet bean provides
navAct i onCont ent Pat h and r ecor dAct i onCont ent Pat h parameters for passing in a value that can function
as the current request’s action path. These parameters are used for navigation requests and record requests,
respectively. The code sample below shows the use of the navAct i onCont ent Pat h.

<dsp: dropl et name="| nvokeAssenbl er" >
<dsp: param nane="cont ent Col | ecti on" val ue="/cont ent/ Shar ed/ Gui ded Navi gati on"/>
<dsp: param nane="navActi onCont ent Pat h" val ue="/ pages/ nobi | e/ br onse"/ >
<dsp: opar am name="out put " >
<dsp: get val ueof var="contentltent
vartype="com endeca. i nfront. assenbl er. Content |t enf
paran¥"contentltent />

</ dsp: opar an>

</ dsp: dropl et >

Retrieving Renderers

The ATG Platform includes one component, Cont ent | t eniToRender er Pat h, and one dsp tag,
dsp: render Cont ent | t em for retrieving the correct renderer for a content item.

ContentltemToRendererPath

The/ at g/ endeca/ assenbl er/ cartri dge/ renderer/ Cont ent | t enilToRender er Pat h component is
responsible for locating the correct renderer for the Cont ent | t emthat has been return by the Assembler

in response to a request. The Cont ent | t enlToRender er Pat h component is an instance of the class

at g. endeca. assenbl er. cartridge. renderer. Cartri dgeRenderi ngPat hMapper I npl , which
implements the at g. endeca. assenbl er. cartri dge. renderer. Cartri dgeRender i ngMapper interface.
The core method of the Cart ri dgeRender i ngMapper interface is:

public String get Renderer Pat hFor Contentlten{(Contentltempltem;

84

7 Query Integration

The get Render er Pat hFor Cont ent | t em() method returns the web-app relative path of the JSP file used to
render the Cont ent I t em

Creating the Path

The Cont ent | t eniToRender er Pat h component provides some configurable properties that control how a
Cont ent I t emis mapped to a JSP path:

« format String: The string that defines the relative path of the JSP file. Defaults to/ cartri dges/
{cartridgeType}/{cartridgeType}{sel ectorSuffix}.jsp.{cartridgeType} isreplaced by the
type of the current Cont ent I t em which is determined using the car t ri dgeTypePr oper t yName property,
described below. { sel ect or Suf fi x} is provided by the Sel ect or Repl acenent Val uePr oducer, also
described below.

« cartridgeTypePropertyName: The name of the Cont ent | t emproperty that contains the cart ri dgeType.
Defaults tocartri dgeType.

+ content | tenToRepl acement Propert yNames: A map that creates a relationship between a source
Cont ent | t emattribute’s name and a f or mat St ri ng property name. You can use this map to make
Cont ent | t emproperties available for use in the f or mat St ri ng.

+ repl acenent Val uePr oducer s: An array of Repl acenent Val uePr oducer s, described below, that makes
additional values available for use in the f or mat St ri ng.

To create the path, get Render er Pat hFor Cont ent | t en() creates a replacement map that gets populated
with values calculated by other components or retrieved from other contexts. The replacement map values are
then used to replace placeholders in the Cont ent | t eniToRender er Pat h.f or mat St ri ng property, resulting in
a string that defines the relative path of the JSP file.

ReplacementValueProducer and SelectorReplacementValueProducer

The at g. endeca. assenbl er. cartri dge. renderer. Repl acement Val uePr oducer interface can be
implemented by components that need to make new, perhaps dynamically-generated, values available for use
in the replacement map and, by extension, the f or mat St ri ng. It contains one method that adds values to the
replacement map.

/** Add any repl acenent values to pMap. Note that a given

* instance may add a single value, nultiple values, or none.

*

* @aram pMap--The map to add paraneters to.

* @aram pContentltem-The Contentltem (avail able for reference

* and cal cul ating repl acenent val ues based on the content item
* Contentltem shoul d not be nodified.

* @aram pRequest--The current request. May be null, if invoked
* outsi de of a request.
*/

public void addRepl acerment Val ues(Map<String, String> pMap,
Contentltem pContentltem
Ht t pSer vl et Request pRequest);

Out of the box, the ATG Platform includes one replacement value producer, the / at g/ endeca/ assenbl er/
cartridge/ renderer/ Sel ect or Repl acenent Val uePr oducer . This component adds a sel ect or and

sel ect or Suf f i x to the replacement map, if needed. A sel ect or represents the type of device being used to
view the web page, for example, a mobile device. The sel ect or Suf fi x is a corresponding suffix—for example,
“_mobile”"—that gets added to the end of the JSP renderer path, so that the correct JSP is rendered for that type
of device.

7 Query Integration 85

The Sel ect or Repl acenent Val uePr oducer component is of class
at g. endeca. assenbl er. cartridge. render er and its primary configurable properties are:

+ browser TypeToSel ect or Narme: A map where the key is the browser type and the value is the
corresponding type of device (the “selector”). Out of the box, this property is configured to include the entry
i OSMobi | e=nobi | e, which declares that when the browser type isi OSMbbi | e, the value in the replacement
map for sel ect or is nobi | e. The sel ect or Suf f i x always has the same value as the sel ect or witha
preceding underscore, making the sel ect or Suf f i x in this case _nobi | e. If no matching browser type is
found, sel ect or and sel ect or Suf fi x are not set.

+ sel ect or KeyNane: The name of the key to use when putting the selector value into the replacement map.
Defaults to sel ect or.

+ sel ect or Suf f i xKeyNane: The name of the key to use when putting the selector suffix value into the
replacement map. Defaults to sel ect or Suf fi x.

+ sel ector Overri dePar armet er Nane: The name of a request query parameter that can be used to override
the selector setting in the replacement map. Defaults to ci Sel ect or . This property allows you to force a
selector value of mobi | e by having a ci Sel ect or query parameter value of nobi | e.

dsp:renderContentitem

The dsp: r ender Cont ent | t emJSP tag has two responsibilities:

+ For a JSP response, it locates and dispatches to a rendering JSP page. The dsp: r ender Cont ent | t emtag uses
the Cont ent | t enmiToRender er Pat h component to determine the path of the JSP page to include.

« Itsetsan Ht t pSer vl et Request . cont ent | t emattribute to the specified cont ent I t em This provides a well-
known attribute for rendering pages to pull data from; however, this attribute is set for the duration of the
i ncl ude only.

The dsp: render Cont ent | t emtag supports the following tag attributes:

+ cont ent | t em(required) - The Cont ent | t emto locate a rendering JSP page for. The value of the
cont ent | t emrequest attribute is also set to this Cont ent | t em for the duration of the i ncl ude.

« format (optional) - Specifies whether the response should be serialized into JSON or XML. Acceptable values
arej sonorxm .

+ webApp (optional) - The web application that the i ncl ude is relative to. By default, the current web
application is used, but by passing another value in the webApp attribute, you can specify ani ncl ude that
is relative to a different web application. The value of webApp may either be the content root of the target
web application (in which case, it must begin with a slash) or the display name of webApp (in which case, it is
located via Oracle ATG's WebAppRegi st ry; see the ATG Platform Programming Guide for more information on
the WebAppRegi stry).

+ var (optional) - The name of the request attribute to set. You can use var to override the default request
attribute name of cont ent I t em

Similar to dsp: i ncl ude, dsp: r ender Cont ent | t emsupports either nested dsp: par amtags or dynamic
attributes for setting additional parameters.

86 7 Query Integration

8 Record Filtering

Endeca provides a mechanism for filtering the records returned by a query, based on the values of record
properties. For example, for a multisite application, you can use record filters to control which sites a query
returns results for. To return results for only a single site, you use a filter to exclude all records except the ones
thatinclude a product . si t el d property whose value is the ID of the desired site.

This chapter discusses ATG classes you can use to build and apply Endeca record filters.

RecordFilterBuilder Interface and Implementing Classes

The ATG-Endeca integration includes the

at g. endeca. assenbl er. navi gation.filter. RecordFilterBuil der interface. Classes that
build Endeca record filters implement this interface. The Recor dFi | t er Bui | der interface includes a
bui | dRecor dFi | t er () method that is responsible for building the actual record filter.

The ATG-Endeca integration includes several classes that implement the Recor dFi | t er Bui | der interface:
* SiteFilterBuil der

* LanguageFi | t er Bui | der

* Catal ogFil terBuilder

* PriceListPairFilterBuil der

The first three of these classes are described below. See the Handling Price Lists (page 91) chapter for
information about the Pri ceLi st Pai r Fi | t er Bui | der class.

SiteFilterBuilder

The at g. endeca. assenbl er. navigation.filter. SiteFilterBuilder class constructs a filter that
restricts the set of records returned to only those associated with specified sites. For example, if a there are
three sites, siteA, siteB, and siteC, the filter might specify that only records associated with siteA or siteC should
be returned. (Note that a record associated with siteB may still be returned if it is also associated with siteA or
siteC.) Si t eFi | t er Bui | der has a number of properties that it uses to determine which sites to include when it
constructs the filter:

8 Record Filtering 87

sitelds

An array of the site IDs of the sites to include. Typically the value of this property is set through a form handler
in a JSP, based on user interface elements, such as a set of checkboxes that the customer selects to indicate the
sites to search.

siteScope

If si t el ds is null, the si t eScope property is used to determine the set of sites to include. It can be any of the
following values:

+ IfsiteScopeisnull orissetto current, only records associated with the current site are returned.
+ Ifsit eScope is set to any, all records that are associated with any site are returned.

+ IfsiteScopeissettoall,all records are returned, including ones not associated with any site.

+ If si t eScope is set to none, only records that are not associated with any site are returned.

+ If si t eScope is set to a shareable type ID, records are returned for any sites that are in a sharing group that
shares the shareable type with the current site.

includelnactiveSites

If t r ue, any inactive sites specified in the si t el ds property or determined via the si t eScope property are
included. If f al se (the default), inactive sites are omitted.

includeDisabledSites

If t r ue, any disabled sites specified in the si t el ds property or determined via the si t eScope property are
included. If f al se (the default), disabled sites are omitted.

sitePropertyName

The name of the site ID property in Endeca records to use for filtering. This is typically set to:

si t ePropertyNanme=product.siteld

siteManager

The component of classat g. mul ti si t e. Si t eManager used to determine which sites are enabled and active.
This is typically set to/ at g/ mul ti si t e/ Si t eManager .

siteGroupManager

The component of class at g. mul ti si t e. Si t eGr oupManager used to determine which sites share with the
current site the shareable type specified in the si t eScope property. This is typically setto/ at g/ mul ti si t e/
Si t eG oupManager .

LanguageFilterBuilder

The at g. endeca. assenbl er. navi gati on. filter.LanguageFilterBuil der class constructs a filter

that restricts the set of records returned to only those in the current language. LanguageFi | t er Bui | der
determines the current customer’s locale, and based on this, constructs a filter that excludes records that are not
in the locale’s language.

88 8 Record Filtering

languagePropertyName

The name of the language property in Endeca records to use for filtering. This is typically set to:

| anguagePr oper t yNane=pr oduct . | anguage

Note that the filter assumes that the value of this property was set in the records by the
LanguageNanmeAccessor property accessor. See the LanguageNameAccessor (page 46) section for more
information.

CatalogFilterBuilder

The at g. commer ce. endeca. assenbl er. navi gation.filter. Catal ogFilterBuil der class constructs a
filter that restricts the set of records returned to only those associated with the appropriate catalogs.

catalogTools

The component of class at g. commer ce. cat al og. cust om Cust onCat al ogTool s to use to determine the
catalogs to include. By default, this property is set to:

cat al ogTool s=/ at g/ commrer ce/ cat al og/ Cat al ogTool s

Note that a record associated with an excluded catalog might still be returned if it is also associated with an
included catalog.

catalogldPropertyName

The name of the catalog ID property in Endeca records to use for filtering. This is typically set to:

cat al ogl dPr opert yName=pr oduct . cat al ogl d

Enabling Record Filter Components

The ATG-Endeca integration includes several record filtering components:

| at g/ endecal/ assenbl er/ cartri dge/ manager/filter/SiteFilterBuilder

| at g/ endecal/ assenbl er/ cartridge/ manager/filter/LanguageFilterBuil der

| at g/ endecal assenbl er/ cartri dge/ manager/filter/Catal ogFilterBuil der

| at g/ endecal assenbl er/ cartridge/ manager/filter/PriceListPairFilterBuilder

To enable a specific record filter builder component, you add it to the r ecor dFi | t er Bui | der s property of the
/ at g/ endeca/ assenbl er/ cartri dge/ manager/ Navi gat i onSt at eBui | der component. This property is an
array of components of classes that implement the Recor dFi | t er Bui | der interface. For example:

recordFi |t erBuil der s+=\

8 Record Filtering 89

| at g/ endecal assenbl er/ cartri dge/ manager/filter/PriceListPairFilterBuilder,
| at g/ endecal assenbl er/ cartri dge/ manager/filter/ Catal ogFilterBuil der

20

8 Record Filtering

9 Handling Price Lists

If your application stores prices in product or SKU properties, indexing price data and accessing it on site
pages is handled much like other properties, such as color or brand. If prices are stored in price lists, however,
additional mechanisms are required to index the price data and access it on sites.

This chapter describes how the ATG-Endeca integration handles price data in price lists.

Price List Pairs

A common configuration used on Commerce sites involves assigning a pair of price lists to each customer, with
one price list containing the list prices for all SKUs in the catalog, and the other price list containing sale prices
for the SKUs that are currently on sale (and empty values for SKUs that are not on sale). The customer profile’s
pricelLi st property is set to the price list holding the list prices, and the profile’s sal ePri ceLi st property is
set to the price list holding the sale prices.

When the application looks up the price of an individual SKU, the following logic is applied:
« If the price list specified in the sal ePri ceLi st property has a price for the SKU, use that price.

+ If the price list specified in the sal ePri ceLi st property does not have a price for the SKU, use the price from
the price list specified in the pri ceLi st property.

In other words, use the sale price if there is one, and if there isn’t, use the list price. The resulting value is referred
to as the active price.

The ATG-Endeca integration includes classes that support this configuration. These classes assume

each customer is assigned a price list pair. There may be only one price list pair that is assigned to all
customers, or there may be different price list pairs for each site in a multisite environment. For example, a
multisite environment with multiple country stores might have a different price list pair for each country
store, to handle different currency, catalogs, or pricing; the customer is assigned price lists based on the
defaul tListPriceList anddef aul t Sal ePri ceLi st site properties.

When the ATG-Endeca integration generates records for a given SKU, various classes are used to retrieve the data
associated with specific price list pairs:

+ ThePri ceLi st Pai r Vari ant Producer class produces a separate record for each price list pair.

+ Ineachrecord, the Pri ceLi st Pai r Accessor class sets the value of the product . pri ceLi st Pai r property
to the price list pair the record applies to.

+ Ineachrecord, the Acti vePri ceAccessor class sets the value of the sku. act i vePr i ce property based on
the price values in the price list pair.

9 Handling Price Lists 91

+ After the records are generated and indexed, the Pri ceLi st Pai r Fi | t er Bui | der is used during querying to
construct a filter that returns only the records associated with the price list pair for the current customer.

Note that if your application uses only a single price list pair, the Pri ceLi st Pai r Vari ant Producer and the
Pri ceLi st Pai rFil terBui |l der are not needed and can be disabled. If your application assigns price lists
based on criteria other than site, you may need to write alternative classes (e.g., a different variant producer) to
implement price-handling logic.

Indexing Price List Data

This section describes the variant producer and property accessors used by the ATG-Endeca integration to index
price list data.

PricelListPairVariantProducer

The at g. conmer ce. endeca. i ndex. producer . Pri ceLi st Pai r Var i ant Producer class produces
a separate record for each price list pair. It obtains the price list pair for each site from the values of the
defaul tListPriceList anddef aul t Sal ePri celLi st properties of the site’s si t eConf i gur ati on item.

The ATG-Endeca integration includes a component of this class, / at g/

commer ce/ sear ch/ Pri ceLi st Pai r Var i ant Pr oducer, which is added to the

Pr oduct Cat al ogQut put Confi g. vari ant Producer s property by the DCS. Endeca. | ndex module. The
following are key properties of Pri ceLi st Pai r Var i ant Pr oducer .

priceListPairUniqueParamName

The name of the query parameter used to specify the price list pair in the URL identifying a product or SKU. By
default, this property is set to pri ceLi st Pai r . For example, the value of the pr oduct . ur| property in a record
might be:

at grep: / Product Cat al og/ sku/ xsku2099?_pr oduct =xpr od2099&cat al og=
honeSt or eCat al 0g&l ocal e=en_US&pri celLi st Pai r =pl i st 3080003_pl i st 3080002

languagesPropertyName

The name of the property of the si t eConf i gur at i on item that specifies the languages for the site. By default,
this property is null. If this property is set, Pri ceLi st Vari ant Producer uses the value of the specified
si t eConfi gur at i on property to exclude unneeded variants.

For example, in Commerce Reference Store, the ATG Store US and ATG Home sites use the same price list

pair (representing prices in dollars), while ATG Store Germany uses a separate price list pair (representing
prices in euros). Commerce Reference Store sets the value of the | anguagesPr oper t yNane property to

| anguages. For the ATG Store US and ATG Home sites, the si t eConf i gur ati on item’s| anguages property
is set to en, es. So when generating the records for the price list pair used for ATG Store US and ATG Home,

Pri ceLi st Pai r Vari ant Producer excludes the German language variants, since these price lists aren’t used
on any sites that support German.

Note that by default ATG Commerce does not have a property for languages on the si t eConf i gur ati on item.
If the | anguagesPr oper t yNane is not set to a valid si t eConf i gur at i on property, records are generated for
all possible combinations of language and price list pair.

92

9 Handling Price Lists

PriceListPairAccessor

The at g. endeca. i ndex. accessor. Pri ceLi st Pai r Accessor class sets the value of the
product . pri ceLi st Pai r property of a record to the record’s price list pair, which is obtained from
the Pri ceLi st Pai r Vari ant Producer . The pr oduct . pri ceLi st Pai r property is specified in the
Pr oduct Cat al ogQut put Conf i g definition file like this:

<property nane="pricelListPair" is-dinension="true" type="string"
property-accessor="/at g/ endecal/ i ndex/ accessor/ Pri celLi st Pai r Accessor"
out put - nane="product. priceLi stPair" is-non-repository-property="true"/>

The resulting value has the following format:

sal ePriceList_listPriceList

For example:

<PROP NAME="product. pri ceLi st Pair">
<PVAL>
pl i st 3080003_pl i st 3080002
</ PVAL>
</ PROP>

ActivePriceAccessor

The at g. endeca. i ndex. accessor. Acti vePri ceAccessor class sets the value of a record’s
sku. acti vePri ce property based on the prices in the record’s price list pair. The sku. act i vePri ce property
is specified in the Pr oduct Cat al ogQut put Conf i g definition file like this:

<property nane="price" type="float"
property-accessor="/at g/ conmer ce/ endeca/ i ndex/ accessor/ Acti vePri ceAccessor"
out put - nane="sku. acti vePri ce" is-non-repository-property="true"/>

The actual calculation of the price is performed by a component of class

at g. conmer ce. endeca. i ndex. Acti vePri ceCal cul at or . This class looks up the prices in the price lists and
uses the sale price if there is one, or uses the list price if there is no sale price. The Act i vePri ceCal cul at or
component is specified through the act i vePri ceCal cul at or property of the Acti vePri ceAccessor
component. By default, this property is set to:

activePriceCal cul at or =/ at g/ conmer ce/ endeca/ i ndex/ Acti vePri ceCal cul at or

Filtering Records by Price List

The at g. commer ce. endeca. assenbl er. navigation.filter. PriceListPairFilterBuilder class
constructs a filter that restricts the set of records returned to only those associated with the price list pair used

9 Handling Price Lists 93

for the current customer. The ATG-Endeca integration includes a component of this class, / at g/ endeca/
assenbl er/cartridge/ manager/filter/PricelListPairFilterBuilder.

The name of the price list pair property in Endeca records to use for filtering is specified through the
pri ceLi st Pai r Proper t yNanme property. This is typically set to:

pri ceLi st Pai r Propert yNane=pr oduct . pri ceLi st Pai r

See the Record Filtering (page 87) chapter for more information about configuring and using record filters.

94

9 Handling Price Lists

10 Dimension Value Caching

This chapter discusses dimension value caching, which the ATG-Endeca integration uses to map ATG repository
items to the Endeca dimension values that represent them in the MDEX. The discussion in this chapter focuses
on categories, but the feature is implemented in a general way so it can work with other repository items.

Mapping Categories to Dimension Values

A key aspect of the ATG-Endeca integration involves treating product categories both as cat egor y items in the
ATG product catalog repository and as Endeca dimension values. In some contexts categories are accessed via
their category IDs, while in other contexts they are accessed via their dimension value IDs.

To manage the relationship between categories and dimension values, the ATG-Endeca integration maintains a
cache that maps each ATG category ID to the equivalent Endeca pr oduct . cat egor y dimension value ID. The
cache supports two-way lookup, so either value can be obtained if the other one is known. Commerce Reference
Store makes extensive use of this cache in both directions. For example, to create a link from an ATG-driven page
to an Endeca-driven category page, it can use the cache to obtain the dimension value ID from the category ID;
to provide the current category context to an ATG scenario running in a cartridge on a category page, it can use
the cache to find the category ID associated with the current category dimension value.

If your Endeca environment includes multiple MDEX engines (for example, if you use a separate MDEX for each

language), a separate dimension value cache is maintained for each MDEX. This avoids any collisions that might
be caused by multiple MDEX engines using the same dimension value IDs.

DimensionValueCache

The dimension value cache is implemented by the class

at g. conmer ce. endeca. cache. Di nensi onVal ueCache class. This class uses objects of class

at g. conmer ce. endeca. cache. Di nensi onVal ueCachebj ect for storing cache entries. The cacheis a
Concur r ent HashMap, where each key is an ATG category ID, and the corresponding map value is an instance of
Di mensi onVal ueCachej ect .

The Di nensi onVal ueCacheQbj ect class stores the following information about a dimension value:
+ di mval I d - the dimension value ID for the category; e.g., 1245
« repositoryl d-the ATG repository ID for the category; e.g., cat 50087

+ url --the Endeca URL for the dimension value; e.g., / br owse?N=1245

10 Dimension Value Caching 95

+ ancest or Reposi t oryl ds - a List of repository IDs for the category’s ancestor categories; e.g.,
cat 10016, cat 10014

Note that a single key can be associated with multiple Di mensi onVal ueCachebj ect instances,
because a category can have multiple parent categories. Therefore when a Di mensi onVal ueCache is
used to look up the dimension value for a specific repository ID, the results are returned as a Li st of

Di mensi onVal ueCachebj ect instances (although in many cases the Li st may have only one entry).

Managing the Cache

The/ at g/ commer ce/ endeca/ cache/ Di mensi onVal ueCacheTool s component (of class
at g. conmer ce. endeca. cache. Di nensi onVal ueCacheTool s) provides methods used to access the caches.
These include methods for:

+ Retrieving a Li st of Di nensi onVal ueCacheQbj ect instances that correspond to a particular category ID.
+ Retrieving the Di mensi onVal ueCacheObj ect associated with a particular dimension value ID.

+ Creating a new cache.

+ Refreshing an existing cache.

In an environment with multiple MDEX engines, a single Di mensi onVal ueCacheTool s component
performs these operations on all caches. Di mensi onVal ueCacheTool s has a get Cache() method
which retrieves the appropriate cache to access for a given request, based on the value returned by the
get Cur rent Appl i cat i onKey() method of the Assenbl er Appl i cati onConfi gurati on component.

Populating and Refreshing the Cache

The/ at g/ endeca/ assenbl er/ cartri dge/ handl er / Di nensi onVal ueCacheRef r esh component (of class
at g. conmer ce. endeca. assenbl er. cartri dge. handl er. Di mensi onVal ueCacheRef r eshHandl er) is
responsible for accessing the MDEX to populate the associated cache. If an attempt is made to access a cache
that does not exist, the Di nensi onVal ueCacheTool s. cr eat eEnpt yCache() method is invoked to create an
empty Di nensi onVal ueCache. The Di mensi onVal ueCacheRef r esh component then accesses the MDEX

to populate the cache. For each dimension value of the specified dimension, Di nensi onVal ueCacheRef r esh
creates a new Di nensi onVal ueCacheQbj ect that stores the dimension value ID, the repository ID, the URL,
and the repository IDs of the item’s ancestor items.

If a cache lookup fails to find an entry, this may be because the cache is out of date. When this happens,

Di mensi onVal ueCacheRef r esh attempts to refresh the cache by recreating all of the entries. However, to
prevent unnecessary refreshes (such as when an entry is not found because it has not been indexed, which
means a refresh will not fix the failed lookup), the cache is not refreshed if any of the following conditions exist:

« The number of seconds since the last refresh is less than the value of the
Di nensi onVal ueCacheTool s. mi ni munCacheRef r eshl nt er val Secs property (default value is 600).

« Arefresh is already in progress.
« The MDEX has not been updated since the last time the cache was refreshed.
Key properties of the Di mensi onVal ueCacheRef r esh component include:

dimensionName
The name of the dimension in the MDEX. Set by default to pr oduct . cat egory.

repositoryldProperty

926

10 Dimension Value Caching

The name of the property in the MDEX that represents the repository ID of the category. Set
by default to cat egory. reposi toryl d.

dimensionValueCacheTools
The Di nensi onVal ueCacheTool s component used to access the cache. Set by default to /
at g/ commer ce/ endecal/ cache/ Di mensi onVal ueCacheTool s.

navigationState

The component representing the Endeca Navi gat i onSt at e to use to access the

MDEX. By default, this is set to the / at g/ endeca/ assenbl er/ cartri dge/ manager/
UnfilteredNavi gati onSt at e component, which creates a Navi gat i onSt at e object
without any refinements or filters applied. This is done so that the set of dimension values
returned is not restricted based on the navigational context.

DimensionValueCacheDroplet

On a JSP page, you can use the / at g/ conmrer ce/ endecal cache/ Di nensi onVal ueCacheDr opl et
component (of class at g. conmer ce. endeca. cache. Di mensi onVal ueCacheDr opl et) to obtain the
dimension value associated with a specific category. This servlet bean takes the following input parameters:

repositoryld
The repository ID of the category to retrieve the corresponding
Di mensi onVal ueCacheQbj ect for.

ancestors

A list of the repository IDs of the category’s ancestor categories, delimited by colons. This
value helps determine the correct Di nensi onVal ueCacheObj ect to retrieve for a category
that has more than one path in the catalog hierarchy.

Di mensi onVal ueCacheDr opl et returns the Di nensi onVal ueCacheObj ect entry that matches these
parameters. For example:

<dsp: dropl et name="Di mensi onVal ueCacheDr opl et ">
<dsp: param nane="reposi toryl d" val ue="${categoryld}"/>
<dsp: param nane="ancestors" val ue="${topLevel Categoryld}"/>
<dsp: opar am name="out put " >
<dsp: get val ueof var="cat egoryCacheEntry" param="di nensi onVal ueCacheEntry" />
</ dsp: opar an»
</ dsp: dropl et >

Theur| property of the Di mensi onVal ueCache(bj ect can be used to render a link to an Endeca-driven
category page. For example:

<dsp: a page="$%{categoryCacheEntry.url}">
<dsp: val ueof val ue="${cat egoryDi spl ayNane}" >
<f nt: message key="common. cat egor yNaneDefault" />
</ dsp: val ueof >
</ dsp: a>

10 Dimension Value Caching

97

98

10 Dimension Value Caching

Index

A

Assembler-driven pages, 62, 68
AssemblerPipelineServlet, 69
AssemblerSettings, 74
AssemblerTools, 72
creating the Assembler instance, 73
identifying the renderer mapping component, 74
starting content assembly, 73
transforming the request URL, 73
ATG server instances
configuring in CIM, 3
ATG-driven pages, 66

BasicUrlFormatter, 82
bulk loading, 22
bypassing the Assembler, 71

C

cartridge handlers

generating URLs, 81

locating, 80

providing access to the HTTP request to, 81

supporting components, 81, 81
cartridge manager components, 81
category dimension value accessors, 47
CategoryNodePropertyAccessor, 47
CategoryPathVariantProducer, 49
CategoryToDimensionOutputConfig, 6
CategoryTreeService, 12,23
ConcatFilter, 53
connecting to an MDEX, 76
connecting to the Workbench, 76
ConstantValueAccessor, 47
Content Administration components, 31
content collection requests, 61, 70
Contentinclude, 61
ContentltemToRendererPath, 84
ContentSlotConfig, 61
CustomCatalogPropertyAccessor, 49

CustomCatalogVariantProducer, 49
customizing record output, 45

D

data loading, 22

default property values, 40
DefaultActionPathProvider, 82
DefaultMdexResource, 76
DefaultWorkbenchContentSource, 76
definition file format, 35

locale attribute, 43
prefix element, 42
schema attributes, 36
suffix element, 42

document submitters, 14, 26

E

empty Contentltem, 66
Endeca applications

creating, 1

determining how many to create, 2
provisioning, 3

supporting all languages in a single MDEX, 2
supporting one language per MDEX, 2

Endeca classes

Contentinclude, 61
ContentSlotConfig, 61

endeca_jspref, 6
EndecalndexingOutputConfig, 10, 18
EndecaScriptService, 27

F

FirstWithLocalePropertyAccessor, 46

G

GenerativePropertyAccessor, 46
global settings for the Assembler, 74

H

HtmlFilter, 54

incremental loading, 22

monitored properties, 43
tuning, 22

Indexable classes, 9
indexing, 5

as part of deployment, 6

increasing data source connection pool maximum, 5
increasing transaction timeout, 5

manually, 6

monitoring progress, 6

Index

929

multiple languages, 57
viewing indexed data, 6
installation and configuration
creating Endeca applications, 1
requirements, 1
InvokeAssembler, 71
invoking the Assembler
bypassing based on MIME type, 71
choosing an invocation method, 68
identifying content collection requests, 70
identifying page requests, 70
InvokeAssembler, 71
using AssemblerPipelineServlet, 62, 69
using the InvokeAssembler servlet bean, 66, 71
item subtypes
indexing, 39

L

LanguageNamePropertyAccessor , 46
languages

indexing, 57
loading data, 22
LocaleVariantProducer, 48
logging

configuration, 26

M

Map properties

indexing, 38
MdexResource, 76
MIME type, using to bypass the Assembler, 71
modaules that support Endeca integration, 7
monitored properties, 43
multi-language configurations, 76, 76
multi-value properties

indexing, 37

record output, 10
multiple languages

indexing, 57
multisite catalogs

indexing, 41

N

non-repository properties
indexing, 40

normalizing property values, 42

NucleusAssembler, 80

NucleusAssemblerFactory, 73, 80

P

page requests, 61
identifying, 70

transforming a URL into, 73
PerLanguageMdexResourceResolver, 76

PerLanguageWorkbenchContentSourceResolver, 76

ProductCatalogOutputConfig, 6
ProductCatalogSimpleIndexingAdmin, 6, 6, 28
property accessors, 45
CustomCatalogPropertyAccessor, 49
FirstWithLocalePropertyAccessor, 46
GenerativePropertyAccessor, 46
LanguageNamePropertyAccessor, 46
property values
default for indexing, 40
normalizing, 42
translating, 42
PropertyFormatter, 50
PropertyValuesFilter, 51

Q

querying the Assembler, 80

R

record output

customizing, 45

format, 10

viewing in Component Browser, 33
records

creating, 9

submitting, 14, 26

submitting to files, 27
renaming index properties, 42
renderContentltem tag, 86
renderers

ContentltemToRendererPath, 84

creating the path to, 85

locating the correct renderer, 84, 86

renderContentltem tag, 86
rendering

JSON, 64, 86

JSP, 62

XML, 64, 86
ReplacementValueProducer, 85
repository indexing, 9

ConcatFilter, 53

customizing output, 45

default property values, 40

definition file format, 35

HtmlFilter, 54

item subtypes, 39

loading data, 22

Map properties, 38

multi-value properties, 37

multisite catalogs, 41

non-repository properties, 40

100

Index

property accessors, 45

PropertyFormatter, 50

PropertyValuesFilter, 51

renaming output properties, 42

suppressing properties, 41

translating property values, 42

UniquefFilter, 52

UniqueWordFilter, 53

variant producers, 47
RepositoryTypeDimensionExporter, 24
RepositoryTypeHierarchyExporter, 13, 24

S

schema attributes, 36
SchemaExporter, 14, 25
SelectorReplacementValueProducer, 85
SimplelndexingAdmin, 15, 28
submitting records, 14, 26
submitting records to files, 27
subtypes

indexing, 39
suppressing properties from indexes, 41
Synchronizationinvoker, 6

T

translating property values, 42

U

UniquefFilter, 52
UniqueSiteVariantProducer, 50
UniqueWordFilter, 53

Vv

variant producers, 47
CategoryPathVariantProducer, 49
CustomCatalogVariantProducer, 49
LocaleVariantProducer, 48
UniqueSiteVariantProducer, 50

w

WorkbenchContentSource, 76

Index

101

102 Index

	ATG Endeca Integration Guide
	Table of Contents
	1 Introduction
	Installation Requirements
	Creating the Endeca Applications
	Determining the Number of Endeca Applications to Create
	Provisioning the Endeca Applications

	Configuring the ATG Server Instances in CIM
	Product Selection
	ATG Server Instance Creation

	Configuring the ApplicationConfiguration Component
	Starting the Indexing Process
	Increasing the Transaction Timeout and Datasource Connection Pool Values
	Indexing As Part of a Deployment
	Manually Starting the Indexing Process
	Monitoring the Indexing Process

	Viewing the Indexed Data
	ATG Modules

	2 Overview of Indexing
	Indexable Classes
	EndecaIndexingOutputConfig Class
	CategoryTreeService Class
	RepositoryTypeHierarchyExporter Class
	SchemaExporter Class

	Submitting the Records
	Managing the Process

	3 Configuring the Indexing Components
	IndexingApplicationConfiguration Component
	EndecaIndexingOutputConfig Components
	Data Loader Components
	Tuning Incremental Loading

	CategoryTreeService
	RepositoryTypeDimensionExporter
	SchemaExporter
	Document Submitter Components
	Reducing Logging Messages
	Directing Output to Files

	EndecaScriptService
	ProductCatalogSimpleIndexingAdmin
	Queuing Indexing Jobs

	Content Administration Components
	Triggering Indexing on Deployment

	Viewing Records in the Component Browser

	4 Configuring EndecaIndexingOutputConfig Definition Files
	Definition File Format
	Specifying Endeca Schema Attributes
	Specifying Properties for Indexing
	Specifying Multi-Value Properties
	Specifying Map Properties
	Specifying Properties of Item Subtypes
	Specifying a Default Property Value
	Specifying Non-Repository Properties
	Suppressing Properties
	Including the siteIds Property
	Renaming an Output Property
	Translating Property Values
	Using Monitored Properties

	5 Customizing the Output Records
	Using Property Accessors
	FirstWithLocalePropertyAccessor
	LanguageNameAccessor
	GenerativePropertyAccessor
	Category Dimension Value Accessors

	Using Variant Producers
	LocaleVariantProducer
	CategoryPathVariantProducer
	CustomCatalogVariantProducer
	UniqueSiteVariantProducer

	Using Property Formatters
	Using Property Value Filters
	UniqueFilter
	ConcatFilter
	UniqueWordFilter
	HtmlFilter

	6 Indexing Multiple Languages
	Specifying the Locales
	Using a Separate MDEX for Each Language
	Using a Single MDEX for all Languages
	Output Records

	7 Query Integration
	ContentItem, ContentInclude, and ContentSlotConfig Classes
	Invoking the Assembler in the Request Handling Pipeline
	Using a JSP Renderer to Render Content
	Rendering XML or JSON Content
	When the Assembler Returns an Empty ContentItem

	Invoking the Assembler using the InvokeAssembler Servlet Bean
	Choosing Between Pipeline Invocation and Servlet Bean Invocation
	Components for Invoking the Assembler
	AssemblerPipelineServlet
	InvokeAssembler
	AssemblerTools

	Defining Global Assembler Settings
	Connecting to Endeca
	AssemblerApplicationConfiguration Component
	Connecting to an MDEX
	Connecting to the Endeca Workbench

	Querying the Assembler
	Cartridge Handlers and Their Supporting Components
	Providing Access to the HTTP Request to the Cartridges
	Controlling How Cartridges Generate URLs
	BasicUrlFormatter
	DefaultActionPathProvider

	Retrieving Renderers
	ContentItemToRendererPath
	dsp:renderContentItem

	8 Record Filtering
	RecordFilterBuilder Interface and Implementing Classes
	SiteFilterBuilder
	LanguageFilterBuilder
	CatalogFilterBuilder

	Enabling Record Filter Components

	9 Handling Price Lists
	Price List Pairs
	Indexing Price List Data
	PriceListPairVariantProducer
	PriceListPairAccessor
	ActivePriceAccessor

	Filtering Records by Price List

	10 Dimension Value Caching
	Mapping Categories to Dimension Values
	DimensionValueCache
	Managing the Cache
	DimensionValueCacheDroplet

	Index

