
Part No: E36855
July 2014

Developer's Guide to Oracle® Solaris 11
Security

Copyright © 2000, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws.
Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute,
exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take
all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use
of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates
are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Copyright © 2000, 2014, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d’utilisation
et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter, transmettre, distribuer,
exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute
ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes d’erreurs et
vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de ce logiciel ou l’utilise
pour le compte du Gouvernement des Etats-Unis, la notice suivante s’applique:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S.Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est destiné
à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel dans le cadre
d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation
dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l’utilisation de ce logiciel ou matériel
pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d’autres
propriétaires qu’Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro Devices. UNIX
est une marque déposée d’The Open Group.

Ce logiciel ou matériel et la documentation qui l’accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant
de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En aucun cas, Oracle
Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l’accès à des contenus, produits ou
services tiers, ou à leur utilisation.

3

Contents

Using This Documentation .. 15

1 Oracle Solaris Security for Developers (Overview) .. 17
Overview of Oracle Solaris Security Features for Developers 17
System Security ... 17

Address Space Layout Randomization (ASLR) .. 18
Network Security Architecture ... 20

2 Developing Privileged Applications ... 23
Privileged Applications ... 23
About Privileges .. 24

How Administrators Assign Privileges ... 24
How Privileges Are Implemented ... 24
Compatibility Between the Superuser and Privilege Models 26
Privilege Categories .. 26

Programming with Privileges ... 27
Privilege Data Types .. 27
Privilege Interfaces ... 28
Privilege Coding Example ... 30

Guidelines for Developing Privileged Applications .. 33
About Authorizations .. 34

3 Writing PAM Applications and Services .. 37
Introduction to the PAM Framework ... 37

PAM Service Modules .. 38
PAM Library ... 39
PAM Authentication Process .. 39
Requirements for PAM Consumers ... 40

PAM Configuration .. 41
Configuring PAM Through /etc/pam.d ... 41

Contents

4 Developer's Guide to Oracle Solaris 11 Security • July 2014

Writing Applications That Use PAM Services ... 42
A Simple PAM Consumer Example .. 42
Other Useful PAM Functions ... 46

Writing Conversation Functions .. 46
Writing Modules That Provide PAM Services ... 50

Requirements for PAM Service Providers ... 51
Sample PAM Provider Service Module .. 51

4 Writing Applications That Use GSS-API .. 57
Introduction to GSS-API ... 57

Application Portability With GSS-API ... 58
Security Services in GSS-API .. 58
Available Mechanisms in GSS-API ... 59
Remote Procedure Calls With GSS-API ... 59
Limitations of GSS-API .. 60
Language Bindings for GSS-API .. 60
Where to Get More Information on GSS-API .. 60

Important Elements of GSS-API ... 61
GSS-API Data Types .. 61
GSS-API Status Codes .. 67
GSS-API Tokens .. 69

Developing Applications That Use GSS-API .. 71
Generalized GSS-API Usage .. 71
Working With Credentials in GSS-API .. 72
Working With Contexts in GSS-API .. 73
Sending Protected Data in GSS-API .. 82
Cleaning Up a GSS-API Session .. 87

5 GSS-API Client Example .. 89
GSSAPI Client Example Overview ... 89

GSSAPI Client Example Structure .. 89
Running the GSSAPI Client Example .. 90

GSSAPI Client Example: main Function .. 90
Opening a Connection With the Server .. 92
Establishing a Security Context With the Server .. 93

Translating a Service Name into GSS-API Format 94
Establishing a Security Context for GSS-API .. 94

Miscellaneous GSSAPI Context Operations on the Client Side 97
Wrapping and Sending a Message ... 98

Contents

5

Reading and Verifying a Signature Block From a GSS-API Client 101
Deleting the Security Context ... 102

6 GSS-API Server Example ... 103
GSSAPI Server Example Overview ... 103

GSSAPI Server Example Structure .. 103
Running the GSSAPI Server Example .. 104

GSSAPI Server Example: main Function .. 104
Acquiring Credentials ... 106
Checking for inetd .. 109
Receiving Data From a Client .. 110

Accepting a Context ... 112
Unwrapping the Message ... 115
Signing and Returning the Message ... 116
Using the test_import_export_context Function 116

Cleanup in the GSSAPI Server Example .. 118

7 Writing Applications That Use SASL ... 119
Introduction to Simple Authentication Security Layer (SASL) 119

SASL Library Basics .. 119
Steps in the SASL Cycle ... 124

SASL Example .. 129
SASL for Service Providers ... 132

SASL Plug-in Overview .. 132
SASL Plug-in Development Guidelines .. 137

8 Introduction to the Oracle Solaris Cryptographic Framework 139
Oracle Solaris Cryptography Terminology .. 139
Overview of the Cryptographic Framework ... 140
Components of the Cryptographic Framework ... 141
What Cryptography Developers Need to Know .. 142

Requirements for Developers of User-Level Consumers 142
Requirements for Developers of Kernel-Level Consumers 143

9 Writing User–Level Cryptographic Applications .. 145
Overview of the Cryptoki Library ... 145

PKCS #11 Function List .. 146
Functions for Using PKCS #11 ... 146

Contents

6 Developer's Guide to Oracle Solaris 11 Security • July 2014

Extended PKCS #11 Functions ... 152
User-Level Cryptographic Application Examples ... 153

Message Digest Example ... 153
Symmetric Encryption Example .. 156
Sign and Verify Example ... 160
Random Byte Generation Example .. 166

10 Introduction to the Oracle Solaris Key Management Framework 171
Oracle Solaris Key Management Framework Features ... 171
Oracle Solaris Key Management Framework Components 172

KMF Key Management Tool .. 172
KMF Policy Enforcement Mechanisms .. 173
KMF Application Programming Interfaces .. 174

Oracle Solaris Key Management Framework Example Application 175
KMF Headers and Libraries ... 175
KMF Basic Data Types ... 175
KMF Application Results Verification .. 176
Complete KMF Application Source Code ... 176

A Secure Coding Guidelines for Developers .. 183

B Sample C–Based GSS-API Programs .. 185
Client-Side Application ... 185
Server-Side Application ... 195
Miscellaneous GSS-API Sample Functions ... 204

C GSS-API Reference .. 211
GSS-API Functions .. 211

Functions From Previous Versions of GSS-API ... 213
GSS-API Status Codes .. 213

GSS-API Major Status Code Values .. 214
Displaying Status Codes .. 216
Status Code Macros .. 217

GSS-API Data Types and Values .. 217
Basic GSS-API Data Types .. 217
Name Types .. 218
Address Types for Channel Bindings ... 219

Implementation-Specific Features in GSS-API ... 220

Contents

7

Oracle Solaris-Specific Functions .. 220
Human-Readable Name Syntax ... 221
Implementations of Selected Data Types ... 221
Deletion of Contexts and Stored Data .. 221
Protection of Channel-Binding Information ... 222
Context Exportation and Interprocess Tokens .. 222
Types of Credentials Supported .. 222
Credential Expiration .. 222
Context Expiration ... 222
Wrap Size Limits and QOP Values .. 223
Use of minor_status Parameter ... 223

Kerberos v5 Status Codes .. 223
Messages Returned in Kerberos v5 for Status Code 1 223
Messages Returned in Kerberos v5 for Status Code 2 225
Messages Returned in Kerberos v5 for Status Code 3 226
Messages Returned in Kerberos v5 for Status Code 4 227
Messages Returned in Kerberos v5 for Status Code 5 229
Messages Returned in Kerberos v5 for Status Code 6 230
Messages Returned in Kerberos v5 for Status Code 7 232

D Specifying an OID .. 235
Files with OID Values ... 235

/etc/gss/mech File .. 235
/etc/gss/qop File .. 236

gss_str_to_oid Function .. 237
Constructing Mechanism OIDs ... 237

createMechOid Function ... 238
Specifying a Non-Default Mechanism .. 239

E Source Code for SASL Example .. 241
SASL Client Example ... 241
SASL Server Example .. 249
Common Code ... 258

F SASL Reference Tables ... 261
SASL Interface Summaries .. 261

G Security Considerations When Using C Functions 267

Contents

8 Developer's Guide to Oracle Solaris 11 Security • July 2014

Glossary ... 277

Index ... 283

9

Figures

FIGURE 3-1 PAM Architecture .. 38
FIGURE 4-1 GSS-API Layer ... 57
FIGURE 4-2 RPCSEC_GSS and GSS-API ... 59
FIGURE 4-3 Internal Names and Mechanism Names .. 64
FIGURE 4-4 Comparing Names (Slow) ... 65
FIGURE 4-5 Comparing Names (Fast) .. 66
FIGURE 4-6 Exporting Contexts: Multithreaded Acceptor Example 81
FIGURE 4-7 gss_get_mic versus gss_wrap .. 82
FIGURE 4-8 Message Replay and Message Out-of-Sequence 85
FIGURE 4-9 Confirming MIC Data .. 86
FIGURE 4-10 Confirming Wrapped Data ... 87
FIGURE 7-1 SASL Architecture ... 120
FIGURE 7-2 SASL Life Cycle ... 124
FIGURE 7-3 SASL Session Initialization .. 126
FIGURE 7-4 SASL Authentication: Sending Client Data ... 127
FIGURE 7-5 SASL Authentication: Processing Server Data 128
FIGURE 8-1 Overview of the Oracle Solaris Cryptographic Framework 141
FIGURE C-1 Major-Status Encoding .. 214

10 Developer's Guide to Oracle Solaris 11 Security • July 2014

11

Tables

TABLE 2-1 Interfaces for Using Privileges ... 28
TABLE 2-2 Privilege Set Transition ... 32
TABLE C-1 GSS-API Calling Errors .. 214
TABLE C-2 GSS-API Routine Errors ... 214
TABLE C-3 GSS-API Supplementary Information Codes 215
TABLE C-4 Channel Binding Address Types ... 219
TABLE C-5 Kerberos v5 Status Codes 1 ... 224
TABLE C-6 Kerberos v5 Status Codes 2 ... 225
TABLE C-7 Kerberos v5 Status Codes 3 ... 226
TABLE C-8 Kerberos v5 Status Codes 4 ... 228
TABLE C-9 Kerberos v5 Status Codes 5 ... 229
TABLE C-10 Kerberos v5 Status Codes 6 ... 231
TABLE C-11 Kerberos v5 Status Codes 7 ... 232
TABLE F-1 SASL Functions Common to Clients and Servers 261
TABLE F-2 Basic SASL Client–only Functions .. 262
TABLE F-3 Basic SASL Server Functions (Clients Optional) 262
TABLE F-4 SASL Functions for Configuring Basic Services 262
TABLE F-5 SASL Utility Functions ... 263
TABLE F-6 SASL Property Functions .. 263
TABLE F-7 Callback Data Types ... 263
TABLE F-8 SASL Include Files .. 264
TABLE F-9 SASL Return Codes: General ... 264
TABLE F-10 SASL Return Codes: Client-Only .. 265
TABLE F-11 SASL Return Codes: Server-Only ... 265
TABLE F-12 SASL Return Codes – Password Operations .. 265
TABLE G-1 Security Considerations When Using C Functions 267

12 Developer's Guide to Oracle Solaris 11 Security • July 2014

13

Examples

EXAMPLE 2-1 Superuser Privilege Bracketing Example .. 30
EXAMPLE 2-2 Least Privilege Bracketing Example .. 31
EXAMPLE 2-3 Checking for Authorizations .. 35
EXAMPLE 3-1 Sample PAM Consumer Application ... 44
EXAMPLE 3-2 PAM Conversation Function .. 47
EXAMPLE 3-3 Sample PAM Service Module .. 52
EXAMPLE 4-1 Using Strings in GSS-API ... 61
EXAMPLE 4-2 Using gss_import_name .. 63
EXAMPLE 4-3 OIDs Structure .. 66
EXAMPLE 4-4 OID Set Structure .. 66
EXAMPLE 5-1 gss-client Example: main ... 91
EXAMPLE 5-2 connect_to_server Function ... 92
EXAMPLE 5-3 client_establish_context – Translate Service Name 94
EXAMPLE 5-4 Loop for Establishing Contexts .. 96
EXAMPLE 5-5 gss-client: call_server Establish Context .. 98
EXAMPLE 5-6 gss-client Example: call_server – Wrap Message 99
EXAMPLE 5-7 gss-client Example – Read and Verify Signature Block 101
EXAMPLE 5-8 gss-client Example: call_server – Delete Context 102
EXAMPLE 6-1 gss-server Example: main .. 105
EXAMPLE 6-2 Sample Code for server_acquire_creds Function 108
EXAMPLE 6-3 sign_server Function .. 110
EXAMPLE 6-4 server_establish_context Function .. 112
EXAMPLE 6-5 test_import_export_context ... 117
EXAMPLE 9-1 Creating a Message Digest Using PKCS #11 Functions 154
EXAMPLE 9-2 Creating an Encryption Key Object Using PKCS #11 Functions 157
EXAMPLE 9-3 Signing and Verifying Text Using PKCS #11 Functions 161
EXAMPLE 9-4 Generating Random Numbers Using PKCS #11 Functions 167
EXAMPLE B-1 Complete Listing of gss-client.c Sample Program 185
EXAMPLE B-2 Complete Code Listing for gss-server.c Sample Program 195

Examples

14 Developer's Guide to Oracle Solaris 11 Security • July 2014

EXAMPLE B-3 Code Listings for Miscellaneous GSS-API Functions 205
EXAMPLE C-1 Displaying Status Codes with gss_display_status 216
EXAMPLE D-1 The /etc/gss/mech File .. 236
EXAMPLE D-2 The /etc/gss/qop File ... 236
EXAMPLE D-3 createMechOid Function ... 238
EXAMPLE D-4 parse_oid Function .. 239

Using This Documentation 15

Using This Documentation

■ Overview – The Developer's Guide to Oracle Solaris 11 Security describes the public
application programming interfaces (API) and service provider interfaces (SPI) for the
security features in the Oracle Solaris® operating environment. The term service provider
refers to components that are plugged into a framework to provide security services, such
as cryptographic algorithms and security protocols.

■ Audience –
The Developer's Guide to Oracle Solaris 11 Security is intended for C-language
developers who want to write the following types of programs:
■ Privileged applications that can override system controls
■ Applications that use authentication and related security services
■ Applications that need to secure network communications
■ Applications that use cryptographic services
■ Libraries, shared objects, and plug-ins that provide or consume security services

Note - For Java-language equivalents to the Oracle Solaris features, see http://www.oracle.com/
technetwork/java/javase/tech/index-jsp-136007.html.

■ Required knowledge – Readers of this guide should be familiar with C programming. A
basic knowledge of security mechanisms is helpful but not required. You do not need to
have specialized knowledge about network programming to use this book.

Product Documentation Library

Late-breaking information and known issues for this product are included in the documentation
library at http://www.oracle.com/pls/topic/lookup?ctx=E36784.

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
http://www.oracle.com/pls/topic/lookup?ctx=E36784

Access to Oracle Support

16 Developer's Guide to Oracle Solaris 11 Security • July 2014

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://
www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/goto/docfeedback

Chapter 1 • Oracle Solaris Security for Developers (Overview) 17

 1 ♦ ♦ ♦ C H A P T E R 1

Oracle Solaris Security for Developers
(Overview)

This manual documents the public application programming interfaces (APIs) and service
provider interfaces (SPIs) for the security features in the Oracle Solaris Operating System
(Oracle Solaris OS).
This chapter covers the following areas:

■ “System Security” on page 17
■ “Network Security Architecture” on page 20

Overview of Oracle Solaris Security Features for
Developers

This manual covers the public APIs and public SPIs to security features in the Oracle Solaris
operating system. For information on how these security features operate from the system
administrator's viewpoint, see “Securing Users and Processes in Oracle Solaris 11.2 ”.

The Oracle Solaris OS provides a network security architecture that is based on standard
industry interfaces. Through the use of standardized interfaces, applications that consume or
provide cryptographic services should need no modification as security technologies evolve.

System Security

For system security, the Oracle Solaris OS provides process privileges. Process privileges are
an alternative to the standard, superuser-based UNIX model for granting access to privileged
applications. The system administrator assigns users a set of process privileges that permit
access to privileged applications. A user does not need to become superuser to use a privileged
application.

Privileges enable system administrators to delegate limited permission to users to override
system security instead of giving users complete root access. Accordingly, developers who

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSSUP

System Security

18 Developer's Guide to Oracle Solaris 11 Security • July 2014

create new privileged applications should test for specific privileges instead of checking for
UID = 0. See Chapter 2, “Developing Privileged Applications”.

For highly stringent system security, the Oracle Solaris OS provides the Trusted Extensions
feature, which is outside of the scope of this book. The Trusted Extensions feature enables
system administrators to specify the applications and files that a particular user can access. See
“Trusted Extensions Developer's Guide ” and the “Trusted Extensions User's Guide ” for more
information.
Oracle Solaris provides the following public interfaces for security:

■ Cryptographic framework – The cryptographic framework is the backbone of
cryptographic services in the Oracle Solaris OS. The framework provides standard
Extended PKCS#11, v2.20 Amendment 3 Library , henceforth referred to as PKCS #11,
interfaces to accommodate consumers and providers of cryptographic services. The
framework has two parts: the user cryptographic framework for user-level applications
and the kernel cryptographic framework for kernel-level modules. Consumers that are
connected to the framework need no special knowledge of the installed cryptographic
mechanisms. Providers plug into the framework with no special code necessary for the
different types of consumers.
The consumers of the cryptographic framework include security protocols, certain
mechanisms, and applications that need to perform cryptography. The providers to the
framework are cryptographic mechanisms as well as other mechanisms in hardware
and software plug-ins. See Chapter 8, “Introduction to the Oracle Solaris Cryptographic
Framework” for an overview of the cryptographic framework. See Chapter 9, “Writing
User–Level Cryptographic Applications” to learn how to write user-level applications that
consume services from the framework.
The library for the cryptographic framework is an implementation of the RSA PKCS
#11 specification. Both consumers and providers communicate with the user-level
cryptographic framework through standard PKCS #11 calls.

■ Java API – Java security technology includes a large set of APIs, tools, and
implementations of commonly used security algorithms, mechanisms, and protocols.
The Java security APIs span a wide range of areas, including cryptography, public key
infrastructure, secure communication, authentication, and access control. Java security
technology provides the developer with a comprehensive security framework for writing
applications, and also provides the user or administrator with a set of tools to securely
manage applications. See http://www.oracle.com/technetwork/java/javase/tech/index-
jsp-136007.html.

Address Space Layout Randomization (ASLR)
ASLR is a feature of the Oracle Solaris system that randomizes the starting address of key
portions of the process address space such as stack, libraries, and brk-based heap. By default,
ASLR is enabled for binaries explicitly tagged to request ASLR. The following command
provides information about the status of ASLR:

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=TRSOLDEV
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=TRSSUG
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html

System Security

Chapter 1 • Oracle Solaris Security for Developers (Overview) 19

% sxadm info

EXTENSION STATUS CONFIGURATION

aslr enable (tagged-files) enable (tagged-files)

The -z option to the ld(1) command is used to tag a newly created object with an ASLR
requirement. The usage is as shown below:

ld -z aslr[=mode]

where mode can be set to enable or disable. If mode is not specified, enable is assumed.

The following example demonstrates the use of the -z option to create an executable with ASLR
enabled:

% cat hello.c
#include <stdio.h>

int

main(int argc, char **argv)

{

 (void) printf("Hello World!\n");

 return (0);

}

% cc hello.c -z aslr

ASLR tagging is provided by an entry in the object's dynamic section, which can be inspected
with elfdump(1).

% elfdump -d a.out | grep ASLR
[28] SUNW_ASLR 0x2 ENABLE

The elfedit(1) command can be used to add or modify the ASLR dynamic entry in an
existing object.

% cc hello.c

% elfedit -e 'dyn:sunw_aslr enable' a.out

% elfdump -d a.out | grep ASLR
[29] SUNW_ASLR 0x2 ENABLE

% elfedit -e 'dyn:sunw_aslr disable' a.out

% elfdump -d a.out | grep ASLR
[29] SUNW_ASLR 0x1 DISABLE

The ASLR requirements for a given process are established at process startup, and cannot be
modified once the process has started. For this reason, the ASLR tagging is only meaningful for
the primary executable object in the process.

The pmap(1) utility can be used to examine the address mappings for a process. When used to
observe the mappings for an executable which has ASLR enabled, the specific addresses used
for the stack, library mappings, and the brk-based heap will differ for every invocation.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1elfedit-1

Network Security Architecture

20 Developer's Guide to Oracle Solaris 11 Security • July 2014

The sxadm(1) command is used to control the default ASLR default behavior for the system.
Binaries that are explicitly tagged to disable ASLR take precedence over the system default
behavior established by sxadm.

Debugging and ASLR

Address Space Randomization may be problematic during debugging. Some debugging
situations require that repeated invocations of the program use the same address mappings. You
can temporarily disable ASLR in one of the following ways:

■ Temporarily disable ASLR system wide

% sxadm exec -s aslr=disable /bin/bash

■ Use ld or elfedit commands to tag the associate binary to disable ASLR
■ Establish an ASLR disabled shell in which to carry out debugging

% sxadm exec -s aslr=disable /bin/bash

Note - This ASLR modification cannot be applied to SUID or privileged binaries.

See the sxadm(1M) man page and Chapter 2, “Configuring Oracle Solaris Security,” in “Oracle
Solaris 11 Security Guidelines ” for more information.

Network Security Architecture
The network security architecture works with standard industry interfaces, such as PAM, GSS-
API, SASL, and RSA Security Inc. PKCS #11 Cryptographic Token Interface (Cryptoki).
Through the use of standardized protocols and interfaces, developers can write both consumers
and providers that need no modification as security technologies evolve.

An application, library, or kernel module that uses security services is called a consumer. An
application that provides security services to consumers is referred to as a provider and also
as a plug-in. The software that implements a cryptographic operation is called a mechanism.
A mechanism is not just an algorithm but includes the manner in which the algorithm is to be
applied. For example, one mechanism might apply the DES algorithm to authentication. A
different mechanism might apply DES to data protection with block-by-block encryption.

The network security architecture eliminates the need for developers of consumers to write,
maintain, and optimize cryptographic algorithms. Optimized cryptographic mechanisms are
provided as part of the architecture.
The Oracle Solaris OS provides the following public interfaces for security:

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Msxadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=SYSADV7conf-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=SYSADV7conf-1

Network Security Architecture

Chapter 1 • Oracle Solaris Security for Developers (Overview) 21

■ PAM – Pluggable authentication modules. PAM modules are mainly used for the initial
authentication of a user to a system. The user can enter the system by GUI, command
line, or some other means. In addition to authentication services, PAM provides services
for managing accounts, sessions, and passwords. Applications such as login, rlogin,
and telnet are typical consumers of PAM services. The PAM SPI is supplied services by
security providers such as Kerberos v5. See Chapter 3, “Writing PAM Applications and
Services”.

■ GSS-API – Generic security service application program interface. The GSS-API
provides secure communication between peer applications. The GSS-API provides
authentication, integrity, and confidentiality protection services as well. The Oracle Solaris
implementation of the GSS-API works with Kerberos v5, SPNEGO, and Diffie-Hellman
encryption. The GSS-API is primarily used to design or implement secure application
protocols. GSS-API can provide services to other kinds of protocols, such as SASL.
Through SASL, GSS-API provides services to LDAP.
GSS-API is typically used by two peer applications that are communicating over a network
after the initial establishment of credentials has occurred. GSS-API is used by login
applications, NFS, and ftp, among other applications.
See Chapter 4, “Writing Applications That Use GSS-API” for an introduction to GSS-
API. Chapter 5, “GSS-API Client Example” and Chapter 6, “GSS-API Server Example”
provides the source code descriptions of two typical GSS-API applications. Appendix B,
“Sample C–Based GSS-API Programs” presents the code listings for the GSS-API
examples. Appendix C, “GSS-API Reference” provides reference material for GSS-API.
Appendix D, “Specifying an OID” demonstrates how to specify a mechanism other than
the default mechanism.

■ SASL – Simple authentication and security layer. SASL is used largely by protocols, for
authentication, privacy, and data integrity. SASL is intended for higher-level network-
based applications that use dynamic negotiation of security mechanisms to protect
sessions. LDAP is one of the better-known consumers of SASL. SASL is similar to GSS-
API. SASL is on a somewhat higher level than GSS-API. SASL consumes GSS-API
services. See Chapter 7, “Writing Applications That Use SASL”.

22 Developer's Guide to Oracle Solaris 11 Security • July 2014

Chapter 2 • Developing Privileged Applications 23

 2 ♦ ♦ ♦ C H A P T E R 2

Developing Privileged Applications

This chapter describes how to develop privileged applications.
The chapter covers the following topics:

■ “Privileged Applications” on page 23
■ “About Privileges” on page 24
■ “Programming with Privileges” on page 27
■ “About Authorizations” on page 34

Privileged Applications
A privileged application is an application that can override system controls and check for
specific user IDs (UIDs), group IDs (GIDs), authorizations, or privileges. These access control
elements are assigned by system administrators. For a general discussion of how administrators
use these access control elements, see “Assigning Rights to Users and Roles” in “Securing
Users and Processes in Oracle Solaris 11.2 ”.
The Oracle Solaris operating system provides developers with two elements that enable a finer-
grained delegation of privileges:

■ Privileges - A privilege is a discrete right that can be granted to an application. With a
privilege, a process can perform an operation that would otherwise be prohibited by the
Oracle Solaris OS. For example, processes cannot normally open data files without the
proper file permission. The file_dac_read privilege provides a process with the ability to
override the UNIX file permissions for reading a file. Privileges are enforced at the kernel
level.

■ Authorizations - An authorization is a permission for performing a class of actions that
are otherwise prohibited by security policy. An authorization can be assigned to a role or
user. Authorizations are enforced at the user level.

The difference between authorizations and privileges has to do with the level at which the
policy of who can do what is enforced. Privileges are enforced at the kernel level. Without
the proper privilege, a process cannot perform specific operations in a privileged application.
Authorizations enforce policy at the user application level. An authorization might be required
for access to a privileged application or for specific operations within a privileged application.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSSUPrbactask-assignrights-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSSUPrbactask-assignrights-1

About Privileges

24 Developer's Guide to Oracle Solaris 11 Security • July 2014

About Privileges

A privilege is a discrete right that is granted to a process to perform an operation that would
otherwise be prohibited by the Oracle Solaris operating system. Most programs do not use
privileges, because a program typically operates within the bounds of the system security
policy.

Privileges are assigned by an administrator. Privileges are enabled according to the design
of the program. At login or when a profile shell is entered, the administrator's privilege
assignments apply to any commands that are executed in the shell. When an application is run,
privileges are turned on or turned off programmatically. If a new program is started by using
the exec(1) command, that program can potentially use all of the parent process's inheritable
privileges. However, that program cannot add any new privileges.

How Administrators Assign Privileges

System administrators are responsible for assigning privileges to commands. For more
information on privilege assignment, see “More About Privileges” in “Securing Users and
Processes in Oracle Solaris 11.2 ”.

How Privileges Are Implemented

Every process has four sets of privileges that determine whether a process can use a particular
privilege:

■ Permitted privilege set
■ Inheritable privilege set
■ Limit privilege set
■ Effective privilege set

Permitted Privilege Set

All privileges that a process can ever potentially use must be included in the permitted set.
Conversely, any privilege that is never to be used should be excluded from the permitted set for
that program.

When a process is started, that process inherits the permitted privilege set from the parent
process. Typically at login or from a new profile shell, all privileges are included in the initial
set of permitted privileges. The privileges in this set are specified by the administrator. Each

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1exec-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSSUPprbac-moreabtprivs-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSSUPprbac-moreabtprivs-1

About Privileges

Chapter 2 • Developing Privileged Applications 25

child process can remove privileges from the permitted set, but the child cannot add other
privileges to the permitted set. As a security precaution, you should remove those privileges
from the permitted set that the program never uses. In this way, a program can be protected
from using an incorrectly assigned or inherited privilege.

Privileges that are removed from the permitted set are automatically removed from the effective
set.

Inheritable Privilege Set

At login or from a new profile shell, the inheritable set contains the privileges that have been
specified by the administrator. These inheritable privileges can potentially be passed on to child
processes after an exec(1) call. A process should remove any unnecessary privileges to prevent
these privileges from passing on to a child process. Often the permitted and inheritable sets are
the same. However, there can be cases where a privilege is taken out of the inheritable set, but
that privilege remains in the permitted set.

Limit Privilege Set

The limit set enables a developer to control which privileges a process can exercise or pass on
to child processes. A child process and the descendant processes can only obtain privileges
that are in the limit set. When a setuid(0) function is executed, the limit set determines the
privileges that the application is permitted to use. The limit set is enforced at exec(1) time.
Removal of privileges from the limit set does not affect any other sets until the exec(1) is
performed.

Effective Privilege Set

The privileges that a process can actually use are in the process's effective set. At the start of a
program, the effective set is equal to the permitted set. Afterwards, the effective set is either a
subset of or is equal to the permitted set.

A good practice is to reduce the effective set to the set of basic privileges. The basic privilege
set, which contains the core privileges, is described in “Privilege Categories” on page 26.
Remove completely any privileges that are not needed in the program. Toggle off any basic
privileges until that privilege is needed. For example, the file_dac_read privilege, enables
all files to be read. A program can have multiple routines for reading files. The program turns
off all privileges initially and turns on file_dac_read, for appropriate reading routines. The
developer thus ensures that the program cannot exercise the file_dac_read privilege for the
wrong reading routines. This practice is called privilege bracketing. Privilege bracketing is
demonstrated in “Privilege Coding Example” on page 30.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1exec-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1exec-1

About Privileges

26 Developer's Guide to Oracle Solaris 11 Security • July 2014

Compatibility Between the Superuser and
Privilege Models

To accommodate legacy applications, the implementation of privileges works with both
the superuser and privilege models. This accommodation is achieved through use of the
PRIV_AWARE flag, which indicates that a program works with privileges. The PRIV_AWARE
flag is handled automatically by the operating system.

Consider a child process that is not aware of privileges. The PRIV_AWARE flag for that
process would be false. Any privileges that have been inherited from the parent process are
available in the permitted and effective sets. If the child sets a UID to 0, the process's effective
and permitted sets are restricted to those privileges in the limit set. The child process does
not gain full superuser powers. Thus, the limit set of a privilege-aware process restricts the
superuser privileges of any non-privilege-aware child processes. If the child process modifies
any privilege set, then the PRIV_AWARE flag is set to true.

Privilege Categories

Privileges are logically grouped on the basis of the scope of the privilege, as follows:

■ Basic privileges – The basic privileges are privileges granted to processes that were not
privileged in previous Oracle Solaris releases. By default, each process and each user is
assigned all basic privileges; however they can be taken away to further restrict a process.
■ PRIV_FILE_LINK_ANY – Allows a process to create hard links to files that are owned

by a UID other than the process's effective UID.
■ PRIV_PROC_EXEC – Allows a process to call execve.
■ PRIV_PROC_FORK – Allows a process to call fork, fork1, or vfork.
■ PRIV_PROC_SESSION – Allows a process to send signals or trace processes outside its

session.
■ PRIV_PROC_INFO – Allows a process to examine the status of processes outside

of those processes to which the inquiring process can send signals. Without this
privilege, processes that cannot be seen in /proc cannot be examined.

■ PRIV_FILE_READ – Allows a process to read objects in the filesystem.
■ PRIV_FILE_WRITE – Allows a process to modify objects in the filesystem.
■ PRIV_NET_ACCESS – Allows a process to open a TCP, UDP, SDP, or SCTP network

endpoint.
Initially, the basic privileges should be assigned as a set rather than individually for a
program. This approach ensures that any basic privileges that are released in an update
to the Oracle Solaris OS will be included in the assignment. However, when computing
the needed privilege set for a program, it is important to remove basic privileges that are
not needed and add other privileges that will be needed by the program. For example, the

Programming with Privileges

Chapter 2 • Developing Privileged Applications 27

proc_exec privilege should be turned off if the program is not intended to exec(1) sub-
processes.

■ File system privileges.
■ System V Interprocess Communication (IPC) privileges.
■ Network privileges.
■ Process privileges.
■ System privileges.

See the privileges(5) man page for a complete list of the Oracle Solaris privileges with
descriptions.

Note - Oracle Solaris provides the zones facility, which lets an administrator set up isolated
environments for running applications. See zones(5) for more information. Since a process
in a zone is prevented from monitoring or interfering with other activity in the system outside
of that zone, any privileges on that process are limited to the zone as well. However, if needed,
the PRIV_PROC_ZONE privilege can be applied to processes in the global zone that need
privileges to operate in non–global zones.

Programming with Privileges

This section discusses the interfaces for working with privileges. To use the privilege
programming interfaces, you need the following header file.

#include <priv.h>

An example demonstrating how privilege interfaces are used in a privileged application is also
provided.

Privilege Data Types

The major data types that are used by the privilege interfaces are:

■ Privilege type – An individual privilege is represented by the priv_t type definition. You
initialize a variable of type priv_t with a privilege ID string, as follows:

priv_t priv_id = PRIV_FILE_DAC_WRITE;

■ Privilege set type – Privilege sets are represented by the priv_set_t data structure. Use
one of the privilege manipulation functions shown in Table 2-1 to initialize variables of
type priv_set_t.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1exec-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN5zones-5

Programming with Privileges

28 Developer's Guide to Oracle Solaris 11 Security • July 2014

■ Privilege operation type – The type of operation to be performed on a file or process
privilege set is represented by the priv_op_t type definition. Not all operations are valid
for every type of privilege set. Read the privilege set descriptions in “Programming with
Privileges” on page 27 for details.
Privilege operations can have the following values:
■ PRIV_ON – Turn the privileges that have been asserted in the priv_set_t structure on

in the specified file or process privilege set.
■ PRIV_OFF – Turn the privileges asserted in the priv_set_t structure off in the

specified file or process privilege set.
■ PRIV_SET – Set the privileges in the specified file or process privilege set to the

privileges asserted in the priv_set_t structure. If the structure is initialized to empty,
PRIV_SET sets the privilege set to none.

Privilege Interfaces
The following table lists the interfaces for using privileges. Descriptions of some major
privilege interfaces are provided after the table.

TABLE 2-1 Interfaces for Using Privileges

Purpose Functions Additional Comments

Getting and setting privilege sets setppriv(2), getppriv(2),
priv_set(3C), priv_
ineffect(3C)

setppriv and getppriv are system
calls. priv_ineffect and priv_set
are wrappers for convenience.

Identifying and translating privileges priv_str_to_set(3C),
priv_set_to_str(3C),
priv_getbyname(3C),
priv_getbynum(3C), priv_
getsetbyname(3C), priv_
getsetbynum(3C)

These functions map the specified
privilege or privilege set to a name or
a number.

Manipulating privilege sets priv_allocset(3C),
priv_freeset(3C), priv_
emptyset(3C),priv_
fillset(3C), priv_
isemptyset(3C), priv_
isfullset(3C), priv_
isequalset(3C), priv_
issubset(3C), priv_
intersect(3C), priv_
union(3C), priv_inverse(3C),
priv_addset(3C), priv_
copyset(3C), priv_delset(3C),

These functions are concerned with
privilege memory allocation, testing,
and various set operations.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN2setppriv-2
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN2getppriv-2
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-set-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-ineffect-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-ineffect-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-str-to-set-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-set-to-str-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-getbyname-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-getbynum-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-getsetbyname-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-getsetbyname-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-getsetbynum-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-getsetbynum-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-allocset-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-freeset-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-emptyset-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-emptyset-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-fillset-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-fillset-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-isemptyset-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-isemptyset-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-isfullset-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-isfullset-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-isequalset-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-isequalset-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-issubset-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-issubset-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-intersect-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-intersect-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-union-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-union-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-inverse-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-addset-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-copyset-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-copyset-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-delset-3c

Programming with Privileges

Chapter 2 • Developing Privileged Applications 29

Purpose Functions Additional Comments

priv_ismember(3C), priv_
basicset(3C)

Getting and setting process flags getpflags(2), setpflags(2) The PRIV_AWARE process flag
indicates whether the process
understands privileges or runs under
the superuser model. PRIV_DEBUG
is used for privilege debugging.

Low-level credential manipulation ucred_get(3C) These routines are used for
debugging, low-level system calls,
and kernel calls.

setppriv: for Setting Privileges

The main function for setting privileges is setppriv, which has the following syntax:

int setppriv(priv_op_t op, priv_ptype_t which, \
const priv_set_t *set);

op represents the privilege operation that is to be performed. The op parameter has one of three
possible values:

■ PRIV_ON – Adds the privileges that are specified by the set variable to the set type that is
specified by which

■ PRIV_OFF – Removes the privileges that are specified by the set variable from the set type
that is specified by which

■ PRIV_SET – Uses the privileges that are specified by the set variable to replace privileges in
the set type that is specified by which

which specifies the type of privilege set to be changed, as follows:

■ PRIV_PERMITTED
■ PRIV_EFFECTIVE
■ PRIV_INHERITABLE
■ PRIV_LIMIT

set specifies the privileges to be used in the change operation.

In addition, a convenience function is provided: priv_set.

priv_str_to_set for Mapping Privileges

These functions are convenient for mapping privilege names with their numeric values.
priv_str_to_set is a typical function in this family. priv_str_to_set has the following
syntax:

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-ismember-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-basicset-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Apriv-basicset-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN2getpflags-2
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN2setpflags-2
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Aucred-get-3c

Programming with Privileges

30 Developer's Guide to Oracle Solaris 11 Security • July 2014

priv_set_t *priv_str_to_set(const char *buf, const char *set, \

const char **endptr);

priv_str_to_set takes a string of privilege names that are specified in buf. priv_str_to_set
returns a set of privilege values that can be combined with one of the four privilege sets.
**endptr can be used to debug parsing errors.

Note that the following keywords can be included in buf:

■ “all” indicates all defined privileges. “all,!priv_name,...” enables you to specify all
privileges except the indicated privileges.

Note - Constructions that use “priv_set, “!priv_name,...” subtract the specified privilege
from the specified set of privileges. Do not use “!priv_name,...” without first specifying a set
because with no privilege set to subtract from, the construction subtracts the specified privileges
from an empty set of privileges and effectively indicates no privileges.

■ “none” indicates no privileges.
■ “basic” indicates the set of privileges that are required to perform operations that are

traditionally granted to all users on login to a standard UNIX operating system.

Privilege Coding Example
This section compares how privileges are bracketed using the superuser model and the least
privilege model.

Privilege Bracketing in the Superuser Model

The following example demonstrates how privileged operations are bracketed in the superuser
model.

EXAMPLE 2-1 Superuser Privilege Bracketing Example

/* Program start */

uid = getuid();

seteuid(uid);

/* Privilege bracketing */

seteuid(0);

/* Code requiring superuser capability */

...

/* End of code requiring superuser capability */

seteuid(uid);

...

/* Give up superuser ability permanently */

setreuid(uid,uid);

Programming with Privileges

Chapter 2 • Developing Privileged Applications 31

Privilege Bracketing in the Least Privilege Model

This example demonstrates how privileged operations are bracketed in the least privilege
model. The example uses the following assumptions:

■ The program is setuid 0.
■ The permitted and effective sets are initially set to all privileges as a result of setuid 0.
■ The inheritable set is initially set to the basic privileges.
■ The limit set is initially set to all privileges.

An explanation of the example follows the code listing.

Note - The source code for this example is also available through the Oracle download center.
See http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html.

EXAMPLE 2-2 Least Privilege Bracketing Example

1 #include <priv.h>

2 /* Always use the basic set. The Basic set might grow in future

3 * releases and potentially retrict actions that are currently

4 * unrestricted */

5 priv_set_t *temp = priv_str_to_set("basic", ",", NULL);

6 /* PRIV_FILE_DAC_READ is needed in this example */

7 (void) priv_addset(temp, PRIV_FILE_DAC_READ);

8 /* PRIV_PROC_EXEC is no longer needed after program starts */

9 (void) priv_delset(temp, PRIV_PROC_EXEC);

10 /* Compute the set of privileges that are never needed */

11 priv_inverse(temp);

12 /* Remove the set of unneeded privs from Permitted (and by

13 * implication from Effective) */

14 (void) setppriv(PRIV_OFF, PRIV_PERMITTED, temp);

15 /* Remove unneeded priv set from Limit to be safe */

16 (void) setppriv(PRIV_OFF, PRIV_LIMIT, temp);

17 /* Done with temp */

18 priv_freeset(temp);

19 /* Now get rid of the euid that brought us extra privs */

20 (void) seteuid(getuid());

21 /* Toggle PRIV_FILE_DAC_READ off while it is unneeded */

22 priv_set(PRIV_OFF, PRIV_EFFECTIVE, PRIV_FILE_DAC_READ, NULL);

23 /* Toggle PRIV_FILE_DAC_READ on when special privilege is needed*/

24 priv_set(PRIV_ON, PRIV_EFFECTIVE, PRIV_FILE_DAC_READ, NULL);

http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html

Programming with Privileges

32 Developer's Guide to Oracle Solaris 11 Security • July 2014

25 fd = open("/some/retricted/file", O_RDONLY);

26 /* Toggle PRIV_FILE_DAC_READ off after it has been used */

27 priv_set(PRIV_OFF, PRIV_EFFECTIVE, PRIV_FILE_DAC_READ, NULL);

28 /* Remove PRIV_FILE_DAC_READ when it is no longer needed */

29 priv_set(PRIV_OFF, PRIV_ALLSETS, PRIV_FILE_DAC_READ, NULL);

The program defines a variable that is named temp. The temp variable determines the set of
privileges that are not needed by this program. Initially in line 5, temp is defined to contain the
set of basic privileges. In line 7, the file_dac_read privilege is added to temp. The proc_exec
privilege is necessary to exec(1) new processes, which is not permitted in this program.
Therefore, proc_exec is removed from temp in line 9 so that the exec(1) command cannot
execute new processes.

At this point, temp contains only those privileges that are needed by the program, that is,
the basic set plus file_dac_read minus proc_exec. In line 11, the priv_inverse function
computes the inverse of temp and resets the value of temp to the inverse. The inverse is the
result of subtracting the specified set, temp in this case, from the set of all possible privileges.
As a result of line 11, temp now contains those privileges that are never needed by the program.
In line 14, the unneeded privileges that are defined by temp are subtracted from the permitted
set. This removal effectively removes the privileges from the effective set as well. In line 16,
the unneeded privileges are removed from the limit set. In line 18, the temp variable is freed,
since temp is no longer needed.

This program is aware of privileges. Accordingly, the program does not use setuid and can
reset the effective UID to the user's real UID in line 20.

The file_dac_read privilege is turned off in line 22 through removal from the effective
set. In a real program, other activities would take place before file_dac_read is needed.
In this sample program, file_dac_read is needed for to read a file in line 25. Accordingly,
file_dac_read is turned on in line 24. Immediately after the file is read, file_dac_read is
again removed from the effective set. When all files have been read, file_dac_read is removed
for good by turning off file_dac_read in all privilege sets.

The following table shows the transition of the privilege sets as the program progresses. The
line numbers are indicated.

TABLE 2-2 Privilege Set Transition

Step temp Set Permitted
Privilege Set

Effective
Privilege Set

Limit Privilege
Set

Initially – all all all

Line 5 – temp is set to basic
privileges

basic all all all

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1exec-1

Guidelines for Developing Privileged Applications

Chapter 2 • Developing Privileged Applications 33

Step temp Set Permitted
Privilege Set

Effective
Privilege Set

Limit Privilege
Set

Line 7 – file_dac_read is added
to temp.

basic + file_
dac_read

all all all

Line 9 – proc_exec is removed
from temp.

basic + file_
dac_read –
proc_exec

all all all

Line 11 – temp is reset to the
inverse.

all – (basic +
file_dac_read –
proc_exec)

all all all

Line 14 – The unneeded privileges
are turned off in the permitted set.

all – (basic +
file_dac_read –
proc_exec)

basic + file_
dac_read –
proc_exec

basic + file_
dac_read – proc_
exec

all

Line 16 – The unneeded privileges
are turned off in the limit set.

all – (basic +
file_dac_read –
proc_exec)

basic + file_
dac_read –
proc_exec

basic + file_
dac_read – proc_
exec

basic + file_
dac_read – proc_
exec

Line 18 – The temp file is freed. – basic + file_
dac_read –
proc_exec

basic + file_
dac_read – proc_
exec

basic + file_
dac_read – proc_
exec

Line 22 – Turn off file_dac_read
until needed.

– basic – proc_
exec

basic – proc_
exec

basic + file_
dac_read – proc_
exec

Line 24 – Turn on file_dac_read
when needed.

– basic + file_
dac_read –
proc_exec

basic + file_
dac_read – proc_
exec

basic + file_
dac_read – proc_
exec

Line 27 – Turn off file_dac_read
after read operation.

– basic – proc_
exec

basic – proc_
exec

basic + file_
dac_read – proc_
exec

Line 29 – Removefile_dac_
read from all sets when no longer
needed.

– basic – proc_
exec

basic – proc_
exec

basic – proc_
exec

Guidelines for Developing Privileged Applications

This section provides the following suggestions for developing privileged applications:

■ Use an isolated system. You should never debug privileged applications on a production
system, as an incomplete privileged application can compromise security.

■ Set IDs properly. The calling process needs the proc_setid privilege in its effective set to
change its user ID, group ID, or supplemental group ID.

About Authorizations

34 Developer's Guide to Oracle Solaris 11 Security • July 2014

■ Use privilege bracketing. When an application uses privilege, system security policy
is being overridden. Privileged tasks should be bracketed and carefully controlled
to ensure that sensitive information is not compromised. See “Privilege Coding
Example” on page 30 for information on how to bracket privileges.

■ Start with the basic privileges. The basic privileges are necessary for minimal operation.
A privileged application should start with the basic set. The application should then
subtract and add privileges appropriately.
A typical start-up scenario follows.
1. The daemon starts up as root.
2. The daemon turns on the basic privilege set.
3. The daemon turns off any basic privileges that are unnecessary, for example,

PRIV_FILE_LINK_ANY.
4. The daemon adds any other privileges that are needed, for example,

PRIV_FILE_DAC_READ.
5. The daemon switches to the daemon UID.

■ Avoid shell escapes. The new process in a shell escape can use any of the privileges in the
parent process's inheritable set. An end user can therefore potentially violate trust through
a shell escape. For example, some mail applications might interpret the !command line as
a command and would execute that line. An end user could thus create a script to take
advantage of any mail application privileges. The removal of unnecessary shell escapes is
a good practice.

About Authorizations

Authorizations are stored in the /etc/security/auth_attr file. To create an application that
uses authorizations, take the following steps:

1. Scan the entries in the auth_attr database using the getent command as follows :

% getent auth_attr | sort | more

The getent command retrieves a list of authorizations in the auth_attr database and sorts
similar named authorizations together. The authorizations are retrieved in the order in which
they were configured. See the getent(1M) man page for information on using the getent
command.

2. Check for the required authorization at the beginning of the program using the
chkauthattr(3C) function.

The chkauthattr function searches for the authorization in order in the following locations:
■ AUTHS_GRANTED key in the policy.conf(4) database – AUTHS_GRANTED

indicates authorizations that have been assigned by default.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mgetent-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Achkauthattr-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN4policy.conf-4

About Authorizations

Chapter 2 • Developing Privileged Applications 35

■ PROFS_GRANTED key in the policy.conf(4) database – PROFS_GRANTED
indicates rights profiles that have been assigned by default. chkauthattr checks these
rights profiles for the specified authorization.

■ The user_attr(4) database – This database stores security attributes that have been
assigned to users.

■ The prof_attr(4) database – This database stores rights profiles that have been
assigned to users.

If chkauthattr cannot find the right authorization in any of these places, then
the user is denied access to the program. If the Stop profile is encountered by the
chkauthattr function, further authorizations and profiles including AUTHS_GRANTED,
PROFS_GRANTED, and those found in the /etc/security/policy.conf are
ignored. Hence the Stop profile can be used to override profiles that are listed using the
PROFS_GRANTED and AUTHS_GRANTED key in the /etc/security/policy.conf
file.

See Chapter 3, “Assigning Rights in Oracle Solaris,” in “Securing Users and Processes in
Oracle Solaris 11.2 ” for information on how to use the provided security attributes, add new
ones, and assign them to users and processes.

Note - Users can add entries to the auth_attr, exec_attr, and prof_attr databases. However
Oracle Solaris authorizations are not stored in these databases.

EXAMPLE 2-3 Checking for Authorizations

The following code snippet demonstrates how the chkauthattr function can be used to check a
user's authorization. In this case, the program checks for the solaris.job.admin authorization.
If the user has this authorization, the user is able to read or write to other users' files. Without
the authorization, the user can operate on owned files only.

/* Define override privileges */

priv_set_t *override_privs = priv_allocset();

/* Clear privilege set before adding privileges. */

priv_set(PRIV_OFF, PRIV_EFFECTIVE, PRIV_FILE_DAC_READ,

 priv_FILE_DAC_WRITE, NULL);

priv_addset(override_privs, PRIV_FILE_DAC_READ);

priv_addset(override_privs, PRIV_FILE_DAC_WRITE);

if (!chkauthattr("solaris.jobs.admin", username)) {

 /* turn off privileges */

 setppriv(PRIV_OFF, PRIV_EFFECTIVE, override_privs);

}

/* Authorized users continue to run with privileges */

/* Other users can read or write to their own files only */

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN4policy.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN4user-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN4prof-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSSUPrbactask-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSSUPrbactask-1

36 Developer's Guide to Oracle Solaris 11 Security • July 2014

Chapter 3 • Writing PAM Applications and Services 37

 3 ♦ ♦ ♦ C H A P T E R 3

Writing PAM Applications and Services

Pluggable authentication modules (PAM) provide system entry applications with authentication
and related security services. This chapter is intended for developers of system entry
applications who wish to provide authentication, account management, session management,
and password management through PAM modules. There is also information for designers of
PAM service modules.
The following topics are discussed:

■ “Introduction to the PAM Framework” on page 37
■ “PAM Configuration” on page 41
■ “Writing Applications That Use PAM Services” on page 42
■ “Writing Modules That Provide PAM Services” on page 50

PAM was originally developed at Oracle. The PAM specification has since been submitted to
X/Open, which is now the Open Group. The PAM specification is available in X/Open Single
Sign-On Service (XSSO) - Pluggable Authentication, Open Group, UK ISBN 1-85912-144-6
June 1997. The Oracle Solaris implementation of PAM is described in the pam(3PAM),
libpam(3LIB), and pam_sm(3PAM) man pages.

Introduction to the PAM Framework

The PAM framework consists of four parts:

■ PAM consumers
■ PAM library
■ The pam.conf(4) configuration file
■ PAM service modules, also referred to as providers

The framework provides a uniform way for authentication-related activities to take place.
This approach enables application developers to use PAM services without having to know
the semantics of the policy. Algorithms are centrally supplied. The algorithms can be
modified independently of the individual applications. With PAM, administrators can tailor
the authentication process to the needs of a particular system without having to change any

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Flibpam-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-sm-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN4pam.conf-4

Introduction to the PAM Framework

38 Developer's Guide to Oracle Solaris 11 Security • July 2014

applications. Adjustments are made through pam.conf, the PAM configuration file or the /etc/
pam.d files, which is available from Oracle Solaris 11.1 release onwards.

The following figure illustrates the PAM architecture. Applications communicate with the PAM
library through the PAM application programming interface (API). PAM modules communicate
with the PAM library through the PAM service provider interface (SPI). Thus, the PAM library
enables applications and modules to communicate with each other.

FIGURE 3-1 PAM Architecture

PAM Service Modules
A PAM service module is a shared library that provides authentication and other security
services to system entry applications such as login, rlogin, and telnet.
The four types of PAM services are:

■ Authentication service modules – For granting users access to an account or service.
Modules that provide this service authenticate users and set up user credentials.

■ Account management modules – For determining whether the current user's account is
valid. Modules that provide this service can check password or account expiration and
time-restricted access.

Introduction to the PAM Framework

Chapter 3 • Writing PAM Applications and Services 39

■ Session management modules – For setting up and terminating login sessions.
■ Password management modules – For enforcing password strength rules and performing

authentication token updates.

A PAM module can implement one or more of these services. The use of simple modules
with well-defined tasks increases configuration flexibility. PAM services should thus be
implemented in separate modules. The services can then be used as needed as defined in the
PAM configuration. See pam.conf(4).

For example, the Oracle Solaris OS provides the pam_authtok_check(5) module for system
administrators to configure the site's password policy. The pam_authtok_check(5) module
checks proposed passwords for various strength criteria.

For a complete list of Oracle Solaris PAM modules, see man pages section 5: Standards,
Environments, and Macros. The PAM modules have the prefix pam_.

Changes to PAM Modules in This Release

The Oracle Solaris 11.1 release provides a new PAM module pam_user_policy(5) that adds
support for per-user PAM configuration. This module calls the pam_eval(3PAM) function to
evaluate a named PAM configuration. The pam_eval routine in the PAM librarylibpam(3LIB),
is also new to Oracle Solaris 11.1.

PAM Library

The PAM library, libpam(3LIB), is the central element in the PAM architecture:

■ libpam exports an API, pam(3PAM). Applications can call this API for authentication,
account management, credential establishment, session management, and password
changes.

■ libpam looks for the PAM configuration in /etc/pam.conf or the per-service PAM policy
files in /etc/pam.d. The PAM configuration specifies the PAM module requirements for
each available service and is managed by a system administrator.

■ libpam imports an SPI, pam_sm(3PAM), which is exported by the service modules.

PAM Authentication Process

As an example of how consumers use the PAM library for user authentication, consider how
login authenticates a user:

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN4pam.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN5pam-authtok-check-5
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN5pam-authtok-check-5
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN5pam-user-policy-5
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-eval-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Flibpam-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Flibpam-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-sm-3pam

Introduction to the PAM Framework

40 Developer's Guide to Oracle Solaris 11 Security • July 2014

1. The login application initiates a PAM session by calling pam_start(3PAM) and by
specifying the login service.

2. The application calls pam_authenticate(3PAM), which is part of the PAM API that is
exported by the PAM library, libpam(3LIB).

3. The PAM library searches for login entries in the PAM configuration corresponding to the
service module type of authentication (auth).

4. For each module in pam.conf that is configured for the login service, the PAM library
calls pam_sm_authenticate(3PAM). The pam_sm_authenticate function is part of the
PAM SPI. The pam.conf control flag and results of each call determine whether the user
is allowed access to the system. This process is described in more detail in “Configuring
PAM” in “Managing Kerberos and Other Authentication Services in Oracle Solaris 11.2 ”.

In this way, the PAM library connects PAM applications with the PAM modules that have been
configured by the system administrator.

Requirements for PAM Consumers

PAM consumers must be linked with the PAM library libpam. Before an application can use
any service that is provided by the modules, the application must initialize its instance of the
PAM library by calling pam_start(3PAM). The call to pam_start initializes a handle that
must be passed to all subsequent PAM calls. When an application is finished with the PAM
services, pam_end is called to clean up any data that was used by the PAM library.
Communication between the PAM application and the PAM modules takes place through items.
For example, the following items are useful for initialization:

■ PAM_USER – Currently authenticated user
■ PAM_AUTHTOK – Password
■ PAM_USER_PROMPT – User name prompt
■ PAM_TTY – Terminal through which the user communication takes place
■ PAM_RHOST – Remote host through which user enters the system
■ PAM_REPOSITORY – Any restrictions on the user account repository
■ PAM_RESOURCE – Any controls on resources

For a complete list of available items, see pam_set_item(3PAM). Items can be set by the
application through pam_set_item(3PAM). Values that have been set by the modules can
be retrieved by the application through pam_get_item(3PAM). However, PAM_AUTHTOK
and PAM_OLDAUTHTOK cannot be retrieved by the application. The PAM_SERVICE item
cannot be set.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-start-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-authenticate-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Flibpam-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-sm-authenticate-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSMKApam-11
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSMKApam-11
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-start-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-set-item-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-get-item-3pam

PAM Configuration

Chapter 3 • Writing PAM Applications and Services 41

Note - PAM consumers must have unique PAM service names which are passed to
pam_start(3PAM).

PAM Configuration

The PAM configuration, in /etc/pam.conf or per-service policy files in /etc/pam.d, is used
to configure PAM service modules for system services, such as login, rlogin, su, and cron.
The system administrator manages the PAM configuration. An incorrect order of entries
in /etc/pam.conf or the per-service policy files in /etc/pam.d can cause unforeseen side
effects. For example, a badly configured pam.conf can lock out users so that single-user mode
becomes necessary for repair. For information on PAM configuration, see “Configuring PAM”
in “Managing Kerberos and Other Authentication Services in Oracle Solaris 11.2 ”.

Configuring PAM Through /etc/pam.d

Starting with the Oracle Solaris 11.1 release, PAM can be also be configured via the per-service
PAM policy files in the /etc/pam.d directory in addition to the pam.conf file.

The /etc/pam.d directory contains files named using the value of PAM_SERVICE. For
example, /etc/pam.d/telnet is the file to read for the telnet service. The syntax of the /etc/
pam.d files is identical to that of /etc/pam.conf except that the first column in the /etc/
pam.conf file which is the service name, is omitted.

Configuring PAM with the /etc/pam.d files has following advantages:

■ A mistake in a per-service PAM policy file only affects that service.
■ Adding new PAM services is simple as it requires only creating a file in /etc/pam.d.
■ Improved interoperability with cross-platform PAM applications since many other PAM

implementations such as Linux-PAM and OpenPAM support /etc/pam.d.
■ System administrators can also customize the security policy of their site by overlaying

any vendor-supplied /etc/pam.d files.

The order given below is followed when searching for a configuration:

1. /etc/pam.conf, for a named service entry
2. /etc/pam.d/servicename
3. /etc/pam.conf, for any other entry
4. /etc/pam.d/other

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-start-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSMKApam-11
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSMKApam-11

Writing Applications That Use PAM Services

42 Developer's Guide to Oracle Solaris 11 Security • July 2014

This search order ensures that any customizations made to /etc/pam.conf file is preserved
when the system is upgraded via pkg(5) and that the policy is still active.

See “Process Rights Management” in “Securing Users and Processes in Oracle Solaris 11.2 ”
for additional information.

Writing Applications That Use PAM Services

This section provides a sample application that uses several PAM functions.

A Simple PAM Consumer Example

The following PAM consumer application is provided as an example. The example is a basic
terminal-lock application that validates a user trying to access a terminal.
The example goes through the following steps:

1. Initialize the PAM session.

PAM sessions are initiated by calling the pam_start(3PAM) function. A PAM consumer
application must first establish a PAM session before calling any of the other PAM
functions.

The pam_start(3PAM) function takes the following arguments:
■ plock – Service name, that is, the name of the application. The service name is used by

the PAM framework to determine which rules in the configuration file, /etc/pam.conf
or, the /etc/pam.d, are applicable. The service name is generally used for logging and
error-reporting.

■ pw->pw_name – The username is the name of the user that the PAM framework acts on.
■ &conv – The conversation function, conv, which provides a generic means for PAM

to communicate with a user or application. Conversation functions are necessary
because the PAM modules have no way of knowing how communication is to be
conducted. Communication can be by means of GUIs, the command line, a smart
card reader, or other devices. For more information, see “Writing Conversation
Functions” on page 46.

■ &pamh – The PAM handle, pamh, which is an opaque handle that is used by the PAM
framework to store information about the current operation. This handle is returned by
a successful call to pam_start.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSSUPprbac-2
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-start-3pam

Writing Applications That Use PAM Services

Chapter 3 • Writing PAM Applications and Services 43

Note - An application that calls PAM interfaces must be sufficiently privileged to perform any
needed operations such as authentication, password change, process credential manipulation, or
audit state initialization. In this example, the application must be able to read /etc/shadow to
verify the passwords for local users.

2. Authenticate the user.

The application calls pam_authenticate(3PAM) to authenticate the current user.
Generally, the user is required to enter a password or other authentication token depending
on the type of authentication service.

The PAM framework invokes the modules configured for the service name plock which
corresponds to the service module type of authentication, auth, in /etc/pam.conf, or, in
the case of Oracle Solaris 11.1 OS, in /etc/pam.d/plock. If there are no auth entries for
the plock service in either /etc/pam.conf or /etc/pam.d/plock, then auth entries for the
other service are searched in /etc/pam.conf and finally in the /etc/pam.d/other file.

3. Check account validity.

The example uses the pam_acct_mgmt(3PAM) function to check the validity of the
authenticated user's account. In this example, pam_acct_mgmt checks for expiration of the
password.

The pam_acct_mgmt function also uses the PAM_DISALLOW_NULL_AUTHTOK flag. If
pam_acct_mgmt returns PAM_NEW_AUTHTOK_REQD, then pam_chauthtok(3PAM)
should be called to allow the authenticated user to change the password.

4. Force the user to change passwords if the system discovers that the password has expired.

The example uses a loop to call pam_chauthtok until success is returned. The
pam_chauthtok function returns success if the user successfully changes his or her
authentication information, which is usually the password. In this example, the loop
continues until success is returned. More commonly, an application would set a maximum
number of tries before terminating.

5. Call pam_setcred(3PAM).

The pam_setcred(3PAM) function is used to establish, modify, or delete user credentials.
pam_setcred is typically called when a user has been authenticated. The call is made after
the account has been validated, but before a session has been opened. The pam_setcred
function is used with the PAM_ESTABLISH_CRED flag to establish a new user
session. If the session is the renewal of an existing session, such as for lockscreen,
pam_setcred with the PAM_REFRESH_CRED flag should be called. If the session is
changing the credentials, such as using su or assuming a role, then pam_setcred with the
PAM_REINITIALIZE_CRED flag should be called.

6. Close the PAM session.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-authenticate-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-acct-mgmt-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-chauthtok-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-setcred-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-setcred-3pam

Writing Applications That Use PAM Services

44 Developer's Guide to Oracle Solaris 11 Security • July 2014

The PAM session is closed by calling the pam_end(3PAM) function. pam_end frees all
PAM resources as well.

The following example shows the source code for the sample PAM consumer application.

Note - The source code for this example is also available through the Oracle download center.
See http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html.

EXAMPLE 3-1 Sample PAM Consumer Application

/*

* Copyright (c) 2005, 201

2, Oracle and/or its affiliates. All rights reserved.

 */

#include <sys/types.h>

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <strings.h>

#include <signal.h>

#include <pwd.h>

#include <errno.h>

#include <security/pam_appl.h>

extern int pam_tty_conv(int num_msg, struct pam_message **msg,

 struct pam_response **response, void *appdata_ptr);

/* Disable keyboard interrupts (Ctrl-C, Ctrl-Z, Ctrl-\) */

static void

disable_kbd_signals(void)

{

 (void) signal(SIGINT, SIG_IGN);

 (void) signal(SIGTSTP, SIG_IGN);

 (void) signal(SIGQUIT, SIG_IGN);

}

/* Terminate current user session, i.e., logout */

static void

logout()

{

 pid_t pgroup = getpgrp();

 (void) signal(SIGTERM, SIG_IGN);

 (void) fprintf(stderr, "Sorry, your session can't be restored.\n");

 (void) fprintf(stderr, "Press return to terminate this session.\n");

 (void) getchar();

 (void) kill(-pgroup, SIGTERM);

 (void) sleep(2);

 (void) kill(-pgroup, SIGKILL);

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-end-3pam
http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html

Writing Applications That Use PAM Services

Chapter 3 • Writing PAM Applications and Services 45

 exit(-1);

}

int

/*ARGSUSED*/

main(int argc, char *argv)

{

 struct pam_conv conv = { pam_tty_conv, NULL };

 pam_handle_t *pamh;

 struct passwd *pw;

 int err;

 disable_kbd_signals();

 if ((pw = getpwuid(getuid())) == NULL) {

 (void) fprintf(stderr, "plock: Can't get username: %s\n",

 strerror(errno));

 exit(1);

 }

 /* Initialize PAM framework */

 err = pam_start("plock", pw->pw_name, &conv, &pamh);

 if (err != PAM_SUCCESS) {

 (void) fprintf(stderr, "plock: pam_start failed: %s\n",

 pam_strerror(pamh, err));

 exit(1);

 }

 /* Authenticate user in order to unlock screen */

 do {

 (void) fprintf(stderr, "Terminal locked for %s. ", pw->pw_name);

 err = pam_authenticate(pamh, 0);

 if (err == PAM_USER_UNKNOWN) {

 logout();

 } else if (err != PAM_SUCCESS) {

 (void) fprintf(stderr, "Invalid password.\n");

 }

 } while (err != PAM_SUCCESS);

 /* Make sure account and password are still valid */

 switch (err = pam_acct_mgmt(pamh, 0)) {

 case PAM_SUCCESS:

 break;

 case PAM_USER_UNKNOWN:

 case PAM_ACCT_EXPIRED:

 /* User not allowed in anymore */

 logout();

 break;

 case PAM_NEW_AUTHTOK_REQD:

 /* The user's password has expired. Get a new one */

 do {

 err = pam_chauthtok(pamh, 0);

 } while (err == PAM_AUTHTOK_ERR);

 if (err != PAM_SUCCESS)

 logout();

 break;

 default:

 logout();

 }

Writing Conversation Functions

46 Developer's Guide to Oracle Solaris 11 Security • July 2014

if (pam_setcred(pamh, PAM_REFRESH_CRED) != PAM_SUCCESS){

 logout();

}

 (void) pam_end(pamh, 0);

 return(0);

 /*NOTREACHED*/

}

Other Useful PAM Functions
The previous example, Example 3-1, is a simple application that demonstrates only a few of the
major PAM functions. This section describes some other PAM functions that can be useful.

The pam_open_session(3PAM) function is called to open a new session after a user has
been successfully authenticated.

The pam_getenvlist(3PAM) function is called to establish a new environment.
pam_getenvlist returns a new environment to be merged with the existing environment.

The pam_eval(3PAM) function loads and evaluates a PAM configuration stored in a file
specified by the caller. This function is called by the pam_user_policy(5) PAM module.

Writing Conversation Functions
A PAM module or application can communicate with a user in a number of ways: command
line, dialog box, and so on. As a result, the designer of a PAM consumer that communicates
with users needs to write a conversation function. A conversation function passes messages
between the user and module independently of the means of communication. A conversation
function derives the message type from the msg_style parameter in the conversation function
callback pam_message parameter. See pam_start(3PAM).

Developers should make no assumptions about how PAM is to communicate with users.
Rather, the application should exchange messages with the user until the operation is complete.
Applications should display the message strings for the conversation function without
interpretation or modification. An individual message can contain multiple lines, control
characters, or extra blank spaces. Note that service modules are responsible for localizing any
strings sent to the conversation function.

A sample conversation function, pam_tty_conv, is provided below. The pam_tty_conv takes the
following arguments:

■ num_msg – The number of messages that are being passed to the function.
■ **mess – A pointer to the buffer that holds the messages from the user.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-open-session-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-getenvlist-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-eval-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-start-3pam

Writing Conversation Functions

Chapter 3 • Writing PAM Applications and Services 47

■ **resp – A pointer to the buffer that holds the responses to the user.
■ *my_data – Pointer to the application data.

The sample function gets user input from stdin. The routine needs to allocate memory for
the response buffer. A maximum, PAM_MAX_NUM_MSG, can be set to limit the number of
messages. If the conversation function returns an error, the conversation function is responsible
for clearing and freeing any memory that has been allocated for responses. In addition, the
conversation function must set the response pointer to NULL. Note that clearing memory
should be accomplished using a zero fill approach. The caller of the conversation function
is responsible for freeing any responses that have been returned to the caller. To conduct
the conversation, the function loops through the messages from the user application. Valid
messages are written to stdout, and any errors are written to stderr.

Note - The source code for this example is also available through the Oracle download center.
See http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html.

EXAMPLE 3-2 PAM Conversation Function

/*

*

Copyright (c) 2005, 201

2, Oracle and/or its affiliates.

* All rights reserved.

 #pragma ident "@(#)pam_tty_conv.c 1.4 05/02/12 SMI"

#define __EXTENSIONS__

/* to expose flockfile and friends in stdio.h */

#include <errno.h>

#include <libgen.h>

#include <malloc.h>

#include <signal.h>

#include <stdio.h>

#include <stdlib.h>

#include <strings.h>

#include <stropts.h>

#include <unistd.h>

#include <termio.h>

#include <security/pam_appl.h>

static int ctl_c; /* was the conversation interrupted? */

/* ARGSUSED 1 */

static void

interrupt(int x)

{

 ctl_c = 1;

http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html

Writing Conversation Functions

48 Developer's Guide to Oracle Solaris 11 Security • July 2014

}

/* getinput -- read user input from stdin abort on ^C

 * Entry noecho == TRUE, don't echo input.

 * Exit User's input.

 * If interrupted, send SIGINT to caller for processing.

 */

static char *

getinput(int noecho)

{

 struct termio tty;

 unsigned short tty_flags;

 char input[PAM_MAX_RESP_SIZE];

 int c;

 int i = 0;

 void (*sig)(int);

 ctl_c = 0;

 sig = signal(SIGINT, interrupt);

 if (noecho) {

 (void) ioctl(fileno(stdin), TCGETA, &tty);

 tty_flags = tty.c_lflag;

 tty.c_lflag &= ~(ECHO | ECHOE | ECHOK | ECHONL);

 (void) ioctl(fileno(stdin), TCSETAF, &tty);

 }

 /* go to end, but don't overflow PAM_MAX_RESP_SIZE */

 flockfile(stdin);

 while (ctl_c == 0 &&

 (c = getchar_unlocked()) != '\n' &&

 c != '\r' &&

 c != EOF) {

 if (i < PAM_MAX_RESP_SIZE) {

 input[i++] = (char)c;

 }

 }

 funlockfile(stdin);

 input[i] = '\0';

 if (noecho) {

 tty.c_lflag = tty_flags;

 (void) ioctl(fileno(stdin), TCSETAW, &tty);

 (void) fputc('\n', stdout);

 }

 (void) signal(SIGINT, sig);

 if (ctl_c == 1)

 (void) kill(getpid(), SIGINT);

 return (strdup(input));

}

/* Service modules do not clean up responses if an error is returned.

 * Free responses here.

 */

static void

free_resp(int num_msg, struct pam_response *pr)

{

 int i;

 struct pam_response *r = pr;

Writing Conversation Functions

Chapter 3 • Writing PAM Applications and Services 49

 if (pr == NULL)

 return;

 for (i = 0; i < num_msg; i++, r++) {

 if (r->resp) {

 /* clear before freeing -- may be a password */

 bzero(r->resp, strlen(r->resp));

 free(r->resp);

 r->resp = NULL;

 }

 }

 free(pr);

}

/* ARGSUSED */

int

pam_tty_conv(int num_msg, struct pam_message **mess,

 struct pam_response **resp, void *my_data)

{

 struct pam_message *m = *mess;

 struct pam_response *r;

 int i;

 if (num_msg <= 0 || num_msg >= PAM_MAX_NUM_MSG) {

 (void) fprintf(stderr, "bad number of messages %d "

 "<= 0 || >= %d\n",

 num_msg, PAM_MAX_NUM_MSG);

 *resp = NULL;

 return (PAM_CONV_ERR);

 }

 if ((*resp = r = calloc(num_msg,

 sizeof (struct pam_response))) == NULL)

 return (PAM_BUF_ERR);

errno = 0; /* don't propogate possible EINTR */

 /* Loop through messages */

 for (i = 0; i < num_msg; i++) {

 int echo_off;

 /* bad message from service module */

 if (m->msg == NULL) {

 (void) fprintf(stderr, "message[%d]: %d/NULL\n",

 i, m->msg_style);

 goto err;

 }

 /*

 * fix up final newline:

 * removed for prompts

 * added back for messages

 */

 if (m->msg[strlen(m->msg)] == '\n')

 m->msg[strlen(m->msg)] = '\0';

Writing Modules That Provide PAM Services

50 Developer's Guide to Oracle Solaris 11 Security • July 2014

 r->resp = NULL;

 r->resp_retcode = 0;

 echo_off = 0;

 switch (m->msg_style) {

 case PAM_PROMPT_ECHO_OFF:

 echo_off = 1;

 /*FALLTHROUGH*/

 case PAM_PROMPT_ECHO_ON:

 (void) fputs(m->msg, stdout);

 r->resp = getinput(echo_off);

 break;

 case PAM_ERROR_MSG:

 (void) fputs(m->msg, stderr);

 (void) fputc('\n', stderr);

 break;

 case PAM_TEXT_INFO:

 (void) fputs(m->msg, stdout);

 (void) fputc('\n', stdout);

 break;

 default:

 (void) fprintf(stderr, "message[%d]: unknown type "

 "%d/val=\"%s\"\n",

 i, m->msg_style, m->msg);

 /* error, service module won't clean up */

 goto err;

 }

 if (errno == EINTR)

 goto err;

 /* next message/response */

 m++;

 r++;

 }

 return (PAM_SUCCESS);

err:

 free_resp(i, r);

 *resp = NULL;

 return (PAM_CONV_ERR);

}

Writing Modules That Provide PAM Services

This section describes how to write PAM service modules.

Writing Modules That Provide PAM Services

Chapter 3 • Writing PAM Applications and Services 51

Requirements for PAM Service Providers

PAM service modules use pam_get_item(3PAM) and pam_set_item(3PAM) to
communicate with applications. To communicate with each other, service modules use
pam_get_data(3PAM) and pam_set_data(3PAM). If service modules from the same
project need to exchange data, then a unique data name for that project should be established.
The service modules can then share this data through the pam_get_data and pam_set_data
functions.
Service modules must return one of three classes of PAM return code:

■ PAM_SUCCESS if the module has made a positive decision that is part of the requested
policy.

■ PAM_IGNORE if the module does not make a policy decision.
■ PAM_error if the module participates in the decision that results in a failure. The error

can be either a generic error code or a code specific to the service module type. The error
cannot be an error code for another service module type. See the specific man page for
pam_sm_module-type for the error codes.

If a service module performs multiple functions, these functions should be split up into separate
modules. This approach gives system administrators finer-grained control for configuring
policy.
Man pages should be provided for any new service modules. Man pages should include the
following items:

■ Arguments that the module accepts.
■ All functions that the module implements.
■ The effect of flags on the algorithm.
■ Any required PAM items.
■ Error returns that are specific to this module.

Service modules are required to honor the PAM_SILENT flag for preventing display of
messages. The debug argument is recommended for logging debug information to syslog.
Use syslog(3C) with LOG_AUTH and LOG_DEBUG for debug logging. Other messages
should be sent to syslog with LOG_AUTH and the appropriate priority. openlog(3C),
closelog(3C), and setlogmask(3C) must not be used as these functions interfere with the
applications settings.

Sample PAM Provider Service Module
A sample PAM service module follows. This example checks to see if the user is a member of a
group that is permitted access to this service. The provider then grants access on success or logs
an error message on failure.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-get-item-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-set-item-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-get-data-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-set-data-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Asyslog-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Aopenlog-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Acloselog-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Asetlogmask-3c

Writing Modules That Provide PAM Services

52 Developer's Guide to Oracle Solaris 11 Security • July 2014

The example goes through the following steps:

1. Parse the options passed to this module from the PAM configuration . See pam.conf(4).

This module accepts the nowarn and debug options as well as a specific option group. With
the group option, the module can be configured to allow access for a particular group other
than the group root that is used by default. See the definition of DEFAULT_GROUP in the
source code for the example. For example, to allow telnet(1) access by users that belong
to group staff, one could use the following line, which is in the telnet stack in /etc/
pam.conf:

telnet account required pam_members_only.so.1 group=staff

The equivalent /etc/pam.d configuration would have the following line in /etc/pam.d/
telnet:

account required pam_members_only.so.1 group=staff

2. Get the username, service name and hostname.

The username is obtained by calling pam_get_user(3PAM) which retrieves the current
user name from the PAM handle. If the user name has not been set, access is denied. The
service name and the host name are obtained by calling pam_get_item(3PAM).

3. Validate the information to be worked on.
If the user name is not set, deny access. If the group to be worked on is not defined, deny
access.

4. Verify that the current user is a member of the special group that allows access to this host
and grant access.
In the event that the special group is defined but contains no members at all,
PAM_IGNORE is returned to indicate that this module does not participate in any account
validation process. The decision is left to other modules on the stack.

5. If the user is not a member of the special group, display a message to inform the user that
access is denied.
Log a message to record this event.

The following example shows the source code for the sample PAM provider.

Note - The source code for this example is also available through the Oracle download center.
See http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html.

EXAMPLE 3-3 Sample PAM Service Module

/*

* Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN4pam.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1telnet-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-get-user-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Hpam-get-item-3pam
http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html

Writing Modules That Provide PAM Services

Chapter 3 • Writing PAM Applications and Services 53

 */

#include <stdio.h>

#include <stdlib.h>

#include <grp.h>

#include <string.h>

#include <syslog.h>

#include <libintl.h>

#include <security/pam_appl.h>

/*

 * by default, only users who are a member of group "root" are allowed access

 */

#define DEFAULT_GROUP "root"

static char *NOMSG =

 "Sorry, you are not on the access list for this host - access denied.";

int

pam_sm_acct_mgmt(pam_handle_t * pamh, int flags, int argc, const char **argv)

{

 char *user = NULL;

 char *host = NULL;

 char *service = NULL;

 const char *allowed_grp = DEFAULT_GROUP;

 char grp_buf[4096];

 struct group grp;

 struct pam_conv *conversation;

 struct pam_message message;

 struct pam_message *pmessage = &message;

 struct pam_response *res = NULL;

 int i;

 int nowarn = 0;

 int debug = 0;

 /* Set flags to display warnings if in debug mode. */

 for (i = 0; i < argc; i++) {

 if (strcasecmp(argv[i], "nowarn") == 0)

 nowarn = 1;

 else if (strcasecmp(argv[i], "debug") == 0)

 debug = 1;

 else if (strncmp(argv[i], "group=", 6) == 0)

 allowed_grp = &argv[i][6];

 }

 if (flags & PAM_SILENT)

 nowarn = 1;

 /* Get user name,service name, and host name. */

 (void) pam_get_user(pamh, &user, NULL);

 (void) pam_get_item(pamh, PAM_SERVICE, (void **) &service);

 (void) pam_get_item(pamh, PAM_RHOST, (void **) &host);

 /* Deny access if user is NULL. */

 if (user == NULL) {

 syslog(LOG_AUTH|LOG_DEBUG,

 "%s: members_only: user not set", service);

 return (PAM_USER_UNKNOWN);

Writing Modules That Provide PAM Services

54 Developer's Guide to Oracle Solaris 11 Security • July 2014

 }

 if (host == NULL)

 host = "unknown";

 /*

 * Deny access if vuser group is required and user is not in vuser

 * group

 */

 if (getgrnam_r(allowed_grp, &grp, grp_buf, sizeof (grp_buf)) == NULL) {

 syslog(LOG_NOTICE|LOG_AUTH,

 "%s: members_only: group \"%s\" not defined",

 service, allowed_grp);

 return (PAM_SYSTEM_ERR);

 }

 /* Ignore this module if group contains no members. */

 if (grp.gr_mem[0] == 0) {

 if (debug)

 syslog(LOG_AUTH|LOG_DEBUG,

 "%s: members_only: group %s empty: "

 "all users allowed.", service, grp.gr_name);

 return (PAM_IGNORE);

 }

 /* Check to see if user is in group. If so, return SUCCESS. */

 for (; grp.gr_mem[0]; grp.gr_mem++) {

 if (strcmp(grp.gr_mem[0], user) == 0) {

 if (debug)

 syslog(LOG_AUTH|LOG_DEBUG,

 "%s: user %s is member of group %s. "

 "Access allowed.",

 service, user, grp.gr_name);

 return (PAM_SUCCESS);

 }

 }

 /*

 * User is not a member of the group.

 * Set message style to error and specify denial message.

 */

 message.msg_style = PAM_ERROR_MSG;

 message.msg = gettext(NOMSG);

 /* Use conversation function to display denial message to user. */

 (void) pam_get_item(pamh, PAM_CONV, (void **) &conversation);

 if (nowarn == 0 && conversation != NULL) {

 int err;

 err = conversation->conv(1, &pmessage, &res,

 conversation->appdata_ptr);

 if (debug && err != PAM_SUCCESS)

 syslog(LOG_AUTH|LOG_DEBUG,

 "%s: members_only: conversation returned "

 "error %d (%s).", service, err,

 pam_strerror(pamh, err));

 /* free response (if any) */

 if (res != NULL) {

Writing Modules That Provide PAM Services

Chapter 3 • Writing PAM Applications and Services 55

 if (res->resp)

 free(res->resp);

 free(res);

 }

 }

 /* Report denial to system log and return error to caller. */

 syslog(LOG_NOTICE | LOG_AUTH, "%s: members_only: "

 "Connection for %s not allowed from %s", service, user, host);

 return (PAM_PERM_DENIED);

}

56 Developer's Guide to Oracle Solaris 11 Security • July 2014

Chapter 4 • Writing Applications That Use GSS-API 57

 4 ♦ ♦ ♦ C H A P T E R 4

Writing Applications That Use GSS-API

The Generic Security Service Application Programming Interface (GSS-API) provides a means
for applications to protect data to be sent to peer applications. Typically, the connection is from
a client on one machine to a server on a different machine.
This chapter provides information on the following subjects:

■ “Introduction to GSS-API” on page 57
■ “Important Elements of GSS-API” on page 61
■ “Developing Applications That Use GSS-API” on page 71

Introduction to GSS-API

GSS-API enables programmers to write applications generically with respect to security.
Developers do not have to tailor the security implementations to any particular platform,
security mechanism, type of protection, or transport protocol. With GSS-API, a programmer
can avoid the details of protecting network data. A program that uses GSS-API is more portable
with regards to network security. This portability is the hallmark of the Generic Security
Service API.

GSS-API is a framework that provides security services to callers in a generic fashion. The
GSS-API framework is supported by a range of underlying mechanisms and technologies, such
as Kerberos v5 or public key technologies, as shown in the following figure.

FIGURE 4-1 GSS-API Layer

Broadly speaking, GSS-API does two main things:

Introduction to GSS-API

58 Developer's Guide to Oracle Solaris 11 Security • July 2014

1. GSS–API creates a security context in which data can be passed between applications.
A context is a state of trust between two applications. Applications that share a context
recognize each other and thus can permit data transfers while the context lasts.

2. GSS–API applies one or more types of protection, known as security services, to the
data to be transmitted. Security services are explained in “Security Services in GSS-
API” on page 58.

In addition, GSS-API performs the following functions:

■ Data conversion
■ Error checking
■ Delegation of user privileges
■ Information display
■ Identity comparison

GSS-API includes numerous support and convenience functions.

Application Portability With GSS-API

GSS-API provides several types of portability for applications:

■ Mechanism independence. GSS-API provides a generic interface for security. By
specifying a default security mechanism, an application does not need to know the
mechanism to be applied nor any details about that mechanism.

■ Protocol independence. GSS–API is independent of any communications protocol or
protocol suite. For example, GSS–API can be used with applications that use sockets, RCP,
or TCP/IP.
RPCSEC_GSS is an additional layer that smoothly integrates GSS-API with RPC. For
more information, see “Remote Procedure Calls With GSS-API” on page 59.

■ Platform independence. GSS-API is independent of the type of operating system on
which an application is running.

■ Quality of Protection independence. Quality of Protection (QOP) refers to the type
of algorithm for encrypting data or generating cryptographic tags. GSS-API allows a
programmer to ignore QOP by using a default that is provided by GSS-API. On the other
hand, an application can specify the QOP if necessary.

Security Services in GSS-API
GSS-API provides three types of security services:

■ Authentication – The basic security offered by GSS-API is authentication. Authentication
is the verification of an identity. If a user is authenticated, the system assumes that person
is the one who is entitled to operate under that user name.

Introduction to GSS-API

Chapter 4 • Writing Applications That Use GSS-API 59

■ Integrity – Integrity is the verification of the data's validity. Even if data comes from a
valid user, the data itself could have become corrupted or compromised. Integrity ensures
that a message is complete as intended, with nothing added and nothing missing. GSS-
API provides for data to be accompanied by a cryptographic tag, known as an Message
Integrity Code (MIC). The MIC proves that the data that you receive is the same as the
data that the sender transmitted.

■ Confidentiality – Confidentiality ensures that a third party who intercepted the message
would have a difficult time reading the contents. Neither authentication nor integrity
modify the data. If the data is somehow intercepted, others can read that data. GSS-API
therefore allows data to be encrypted, provided that underlying mechanisms are available
that support encryption. This encryption of data is known as confidentiality.

Available Mechanisms in GSS-API

The current implementation of GSS-API works with the following mechanisms: Kerberos
v5™, Diffie-Hellman, and SPNEGO. For more information on the Kerberos implementation,
see “Managing Kerberos and Other Authentication Services in Oracle Solaris 11.2 ” for more
information. Kerberos v5 should be installed and running on any system on which GSS-API-
aware programs are running.

Remote Procedure Calls With GSS-API

Programmers who use the RPC (Remote Procedure Call) protocol for networking applications
can use RPCSEC_GSS to provide security. RPCSEC_GSS is a separate layer that sits on
top of GSS-API. RPCSEC_GSS provides all the functionality of GSS-API in a way that is
tailored to RPC. In fact, RPCSC_GSS serves to hide many aspects of GSS-API from the
programmer, making RPC security especially accessible and portable. For more information on
RPCSEC_GSS, see “Authentication Using RPCSEC_GSS” in “ONC+ RPC Developer’s Guide
”.

The following diagram illustrates how the RPCSEC_GSS layer sits between the application and
GSS-API.

FIGURE 4-2 RPCSEC_GSS and GSS-API

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSMKA
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=ONCDGadvrpcpt-98
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=ONCDGadvrpcpt-98

Introduction to GSS-API

60 Developer's Guide to Oracle Solaris 11 Security • July 2014

Limitations of GSS-API

Although GSS-API makes protecting data simple, GSS-API avoids some tasks that would not
be consistent with GSS-API's generic nature. Accordingly, GSS-API does not perform the
following activities:

■ Provide security credentials for users or applications. Credentials must be provided by the
underlying security mechanisms. GSS-API does allow applications to acquire credentials,
either automatically or explicitly.

■ Transfer data between applications. The application has the responsibility for handling the
transfer of all data between peers, whether the data is security-related or plain data.

■ Distinguish between different types of transmitted data. For example, GSS-API does not
know whether a data packet is plain data or encrypted.

■ Indicate status due to asynchronous errors.
■ Protect by default information that has been sent between processes of a multiprocess

program.
■ Allocate string buffers to be passed to GSS-API functions. See “Strings and Similar Data

in GSS-API” on page 61.
■ Deallocate GSS-API data spaces. This memory must be explicitly deallocated with

functions such as gss_release_buffer and gss_delete_name.

Language Bindings for GSS-API

This document currently covers only the C language bindings, that is, functions and data
types, for GSS-API. A Java-bindings version of GSS-API is now available. The Java GSS-API
contains the Java bindings for the Generic Security Services Application Program Interface
(GSS-API), as defined in RFC 2853.

Where to Get More Information on GSS-API

These two documents provide further information about GSS-API:

■ Generic Security Service Application Program Interface document (http://
www.ietf.org/rfc/rfc2743.txt) provides a conceptual overview of GSS-API.

■ Generic Security Service API Version 2: C-Bindings document (http://www.ietf.org/
rfc/rfc2744.txt) discusses the specifics of the C-language-based GSS-API.

http://www.ietf.org/rfc/rfc2743.txt
http://www.ietf.org/rfc/rfc2744.txt

Important Elements of GSS-API

Chapter 4 • Writing Applications That Use GSS-API 61

Important Elements of GSS-API

This section covers the following important GSS-API concepts: principals, GSS-API data types,
status codes, and tokens.

■ “GSS-API Data Types” on page 61
■ “GSS-API Status Codes” on page 67
■ “GSS-API Tokens” on page 69

GSS-API Data Types

The following sections explain the major GSS-API data types. For information on all GSS-API
data types, see “GSS-API Data Types and Values” on page 217.

GSS-API Integers

Because the size of an int can vary from platform to platform, GSS-API provides the following
integer data type:OM_uint32which is a 32–bit unsigned integer.

Strings and Similar Data in GSS-API

Because GSS-API handles all data in internal formats, strings must be converted to a GSS-
API format before being passed to GSS-API functions. GSS-API handles strings with the
gss_buffer_desc structure:

typedef struct gss_buffer_desc_struct {

 size_t length;

 void *value;

} gss_buffer_desc *gss_buffer_t;

gss_buffer_t is a pointer to such a structure. Strings must be put into a gss_buffer_desc
structure before being passed to functions that use them. In the following example, a generic
GSS-API function applies protection to a message before sending that message.

EXAMPLE 4-1 Using Strings in GSS-API

char *message_string;

gss_buffer_desc input_msg_buffer;

Important Elements of GSS-API

62 Developer's Guide to Oracle Solaris 11 Security • July 2014

input_msg_buffer.value = message_string;

input_msg_buffer.length = strlen(input_msg_buffer.value) + 1;

gss_generic_function(arg1, &input_msg_buffer, arg2...);

gss_release_buffer(input_msg_buffer);

Note that input_msg_buffer must be deallocated with gss_release_buffer when you are
finished with input_msg_buffer.

The gss_buffer_desc object is not just for character strings. For example, tokens are
manipulated as gss_buffer_desc objects. See “GSS-API Tokens” on page 69 for more
information.

Names in GSS-API

A name refers to a principal. In network-security terminology, a principal is a user, a program,
or a machine. Principals can be either clients or servers.
Some examples of principals are:

■ A user, such as user@machine, who logs into another machine
■ A network service, such as nfs@machine
■ A machine, such as myHost@example.com, that runs an application

In GSS-API, names are stored as a gss_name_t object, which is opaque to the application.
Names are converted from gss_buffer_t objects to the gss_name_t form by the
gss_import_name function. Every imported name has an associated name type, which indicates
the format of the name. See “GSS-API OIDs” on page 66 for more about name types. See
“Name Types” on page 218 for a list of valid name types.

gss_import_name has the following syntax:

OM_uint32 gss_import_name (

 OM_uint32 *minor-status,

 const gss_buffer_t input-name-buffer,

 const gss_OID input-name-type,

 gss_name_t *output-name)

minor-status Status code returned by the underlying mechanism. See “GSS-API Status
Codes” on page 67.

input-name-buffer The gss_buffer_desc structure containing the name to be imported.
The application must allocate this structure explicitly. See “Strings and
Similar Data in GSS-API” on page 61 as well as Example 4-2. This

Important Elements of GSS-API

Chapter 4 • Writing Applications That Use GSS-API 63

argument must be deallocated with gss_release_buffer when the
application is finished with the space.

input-name-type A gss_OID that specifies the format of input-name-buffer. See “Name
Types in GSS-API” on page 67. Also, “Name Types” on page 218
contains a table of valid name types.

output-name The gss_name_t structure to receive the name.

A minor modification of the generic example shown in Example 4-1 illustrates how
gss_import_name can be used. First, the regular string is inserted into a gss_buffer_desc
structure. Then gss_import_name places the string into a gss_name_t structure.

EXAMPLE 4-2 Using gss_import_name

char *name_string;

gss_buffer_desc input_name_buffer;

gss_name_t output_name_buffer;

input_name_buffer.value = name_string;

input_name_buffer.length = strlen(input_name_buffer.value) + 1;

gss_import_name(&minor_status, input_name_buffer,

 GSS_C_NT_HOSTBASED_SERVICE, &output_name);

gss_release_buffer(input_name_buffer);

An imported name can be put back into a gss_buffer_t object for display in human-readable
form with gss_display_name. However, gss_display_name does not guarantee that the
resulting string will be the same as the original due to the way the underlying mechanisms
store names. GSS-API includes several other functions for manipulating names. See “GSS-API
Functions” on page 211.

A gss_name_t structure can contain several versions of a single name. One version is produced
for each mechanism that is supported by GSS-API. That is, a gss_name_t structure for
user@company might contain one version of that name as rendered by Kerberos v5 and another
version that was given by a different mechanism. The function gss_canonicalize_name takes
as input an internal name and a mechanism. gss_canonicalize_name yields a second internal
name that contains a single version of the name that is specific to that mechanism.

Such a mechanism-specific name is called a mechanism name (MN). A mechanism name does
not refer to the name of a mechanism, but to the name of a principal as produced by a given
mechanism. This process is illustrated in the following figure.

Important Elements of GSS-API

64 Developer's Guide to Oracle Solaris 11 Security • July 2014

FIGURE 4-3 Internal Names and Mechanism Names

Comparing Names in GSS-API

Consider the case where a server has received a name from a client and needs to look up
that name in an access control list. An access control list, or ACL, is a list of principals with
particular access permissions.
One way to do the lookup would be as follows:

1. Import the client name into GSS-API internal format with gss_import_name, if the name
has not already been imported.
In some cases, the server will receive a name in internal format, so this step will not be
necessary. For example, a server might look up the client's own name. During context
initiation, the client's own name is passed in internal format.

2. Import each name in the ACL with gss_import_name.
3. Compare each imported ACL name with the imported client's name, using

gss_compare_name.

This process is shown in the following figure. In this case, Step 1 is assumed to be needed.

Important Elements of GSS-API

Chapter 4 • Writing Applications That Use GSS-API 65

FIGURE 4-4 Comparing Names (Slow)

The previous approach of comparing names individually is acceptable when there are only
a few names. When there are a large number of names, using the gss_canonicalize_name
function is more efficient.
This approach uses the following steps:

1. Import the client's name with gss_import_name, if the name has not already been imported.
As with the previous method of comparing names, if the name is already in internal format,
this step is unnecessary.

2. Use gss_canonicalize_name to produce a mechanism name version of the client's name.
3. Use gss_export_name to produce an exported name, which is the client's name as a

contiguous string.
4. Compare the exported client's name with each name in the ACL by using memcmp, which is

a fast, low-overhead function.

This process is shown in the following figure. Again, assume that the server needs to import the
name that is received from the client.

Important Elements of GSS-API

66 Developer's Guide to Oracle Solaris 11 Security • July 2014

FIGURE 4-5 Comparing Names (Fast)

Because gss_export_name expects a mechanism name (MN), you must run
gss_canonicalize_name on the client's name first.

See the gss_export_name(3GSS), gss_import_name(3GSS), and
gss_canonicalize_name(3GSS) for more information.

GSS-API OIDs

Object identifiers (OIDs) are used to store the following kinds of data:

■ Security mechanisms
■ QOPs – Quality of Protection values
■ Name types

OIDs are stored in GSS-API gss_OID_desc structure. GSS-API provides a pointer to the
structure, gss_OID, as shown in the following example.

EXAMPLE 4-3 OIDs Structure

typedef struct gss_OID_desc_struct {

 OM_uint32 length;

 void *elements;

 } gss_OID_desc, *gss_OID;

Further, one or more OIDs might be contained in a gss_OID_set_desc structure.

EXAMPLE 4-4 OID Set Structure

typedef struct gss_OID_set_desc_struct {

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Bgss-export-name-3gss
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Bgss-import-name-3gss
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Bgss-canonicalize-name-3gss

Important Elements of GSS-API

Chapter 4 • Writing Applications That Use GSS-API 67

 size_t count;

 gss_OID elements;

 } gss_OID_set_desc, *gss_OID_set;

Caution - Applications should not attempt to deallocate OIDs with free.

Mechanisms and QOPs in GSS-API

Although GSS-API allows applications to choose underlying security mechanisms, applications
should use the default mechanism that has been selected by GSS-API if possible. Similarly,
although GSS-API lets an application specify a Quality of Protection level for protecting data,
the default QOP should be used if possible. Acceptance of the default mechanism is indicated
by passing the value GSS_C_NULL_OID to functions that expect a mechanism or QOP as an
argument.

Caution - Specifying a security mechanism or QOP explicitly defeats the purpose of
using GSS-API. Such a specific selection limits the portability of an application. Other
implementations of GSS-API might not support that QOP or mechanism in the intended
manner. Nonetheless, Appendix D, “Specifying an OID” briefly discusses how to find out
which mechanisms and QOPs are available, and how to choose one.

Name Types in GSS-API

Besides QOPs and security mechanisms, OIDs are also used to indicate name types, which
indicate the format for an associated name. For example, the function gss_import_name,
which converts the name of a principal from a string to a gss_name_t type, takes as
one argument the format of the string to be converted. If the name type is, for example,
GSS_C_NT_HOSTBASED_SERVICE, then the function knows that the name being input is of the
form service@host. If the name type is GSS_C_NT_EXPORT_NAME, then the function expects a
GSS-API exported name. Applications can find out which name types are available for a given
mechanism with the gss_inquire_names_for_mech function. A list of name types used by
GSS-API is provided in “Name Types” on page 218.

GSS-API Status Codes

All GSS-API functions return two types of codes that provide information on the function's
success or failure. Both types of status codes are returned as OM_uint32 values.

Important Elements of GSS-API

68 Developer's Guide to Oracle Solaris 11 Security • July 2014

The two types of return codes are as follows:

■ Major status codes
Major status codes indicate the following errors:
■ Generic GSS-API routine errors, such as giving a routine an invalid mechanism
■ Call errors that are specific to a particular GSS-API language binding, such as a

function argument that cannot be read, cannot be written, or is malformed
■ Both types of errors
Additionally, major status codes can provide supplementary information about a routine's
status. For example, a code might indicate that an operation is not finished, or that a token
has been sent out of order. If no errors occur, the routine returns a major status value of
GSS_S_COMPLETE.
Major status codes are returned as follows:

OM_uint32 major_status ; /* status returned by GSS-API */

major_status = gss_generic_function(arg1, arg2 ...);

Major status return codes can be processed like any other OM_uint32. For example,
consider the following code.

OM_uint32 maj_stat;

maj_sta = gss_generic_function(arg1, arg2 ...);

if (maj_stat == GSS_CREDENTIALS_EXPIRED)

 <do something...>

Major status codes can be processed with the macros GSS_ROUTINE_ERROR,
GSS_CALLING_ERROR, and GSS_SUPPLEMENTARY_INFO. “GSS-API Status
Codes” on page 213 explains how to read major status codes and contains a list of GSS-
API status codes.

■ Minor status codes
Minor status codes are returned by the underlying mechanism. These codes are not
specifically documented in this manual.

Every GSS-API function has as a first argument an OM_uint32 type for the minor code
status. The minor status code is stored in the OM_uint32 argument when the function
returns to the calling function. Consider the following code.

OM_uint32 *minor_status ; /* status returned by mech */

major_status = gss_generic_function(&minor_status, arg1, arg2 ...);

The minor_status parameter is always set by a GSS-API routine, even if a fatal major
status code error is returned. Note that most other output parameters can remain unset.

Important Elements of GSS-API

Chapter 4 • Writing Applications That Use GSS-API 69

However, output parameters that are expected to return pointers to storage that has been
allocated by the routine are set to NULL. NULL indicates that no storage was actually
allocated. Any length field associated with such pointers, as in a gss_buffer_desc
structure, are set to zero. In such cases, applications do not need to release these buffers.

GSS-API Tokens

The basic unit of “currency” in GSS-API is the token. Applications that use GSS-API
communicate with each other by using tokens. Tokens are used for exchanging data and for
making security arrangements. Tokens are declared as gss_buffer_t data types. Tokens are
opaque to applications.

Two types of tokens are context-level tokens and per-message tokens. Context-level tokens
are used primarily when a context is established, that is, initiated and accepted. Context-level
tokens can also be passed afterward to manage a context.

Per-message tokens are used after a context has been established. Per-message tokens are
used to provide protection services on data. For example, consider an application that wants
to send a message to another application. That application might use GSS-API to generate
a cryptographic identifier to go along with that message. The identifier would be stored in a
token.

Per-message tokens can be considered with regard to messages as follows. A message is a
piece of data that an application sends to a peer. For example, the ls command could be a
message that is sent to an ftp server. A per-message token is an object generated by GSS-
API for that message. A per-message token could be a cryptographic tag or the encrypted
form of the message. Note that this last example is mildly inaccurate. An encrypted message
is still a message and not a token. A token is only GSS-API-generated information. However,
informally, message and per-message token are often used interchangeably.
An application is responsible for the following activities:

1. Sending and receiving tokens. The developer usually needs to write generalized read and
write functions for performing these actions. The send_token and recv_token functions in
“Miscellaneous GSS-API Sample Functions” on page 204.

2. Distinguishing between types of tokens and manipulating the tokens accordingly.
Because tokens are opaque to applications, the application does not distinguish between
one token and another. Without knowing a token's contents, an application must be able to
distinguish the token's type to pass that token to an appropriate GSS-API function.
An application can distinguish token types through the following methods:
■ By state. Through the control-flow of a program. For example, an application that

is waiting to accept a context might assume that any received tokens are related to
context establishment. Peers are expected to wait until the context is fully established

Important Elements of GSS-API

70 Developer's Guide to Oracle Solaris 11 Security • July 2014

before sending message tokens, that is, data. After the context is established, the
application assumes that new tokens are message tokens. This approach to handling
tokens is a fairly common way to handle tokens. The sample programs in this book use
this method.

■ By flags. For example, if an application has a function for sending tokens to peers,
that application can include a flag to indicate the kind of token. Consider the following
code:

gss_buffer_t token; /* declare the token */

OM_uint32 token_flag /* flag for describing the type of token */

<get token from a GSS-API function>

token_flag = MIC_TOKEN; /* specify what kind of token it is */

send_a_token(&token, token_flag);

The receiving application would have a receiving function, for example, get_a_token,
that would check the token_flag argument.

■ Through explicit tagging. Applications can use meta-tokens. A meta-token is a user-
defined structure that contain tokens that have been received from GSS-API functions.
A meta-token includes user-defined fields that signal how the tokens that are provided
by GSS-API are to be used.

Interprocess Tokens in GSS-API

GSS-API permits a security context to be passed from one process to another in a multiprocess
application. Typically, a application has accepted a client's context. The application then shares
the context among that application's processes. See “Exporting and Importing Contexts in GSS-
API” on page 80 for information on multiprocess applications.

The gss_export_context function creates an interprocess token. This token contains
information that enables the context to be reconstituted by a second process. The application is
responsible for passing the interprocess token from one process to the other. This situation is
similar to the application's responsibility for passing tokens to other applications.

The interprocess token might contain keys or other sensitive information. Not all GSS-API
implementations cryptographically protect interprocess tokens. Therefore, the application must
protect interprocess tokens before an exchange takes place. This protection might involve
encrypting the tokens with gss_wrap, if encryption is available.

Note - Do not assume that interprocess tokens are transferable across different GSS-API
implementations.

Developing Applications That Use GSS-API

Chapter 4 • Writing Applications That Use GSS-API 71

Developing Applications That Use GSS-API

This section shows how to implement secure data exchange using GSS-API. The section
focuses on those functions that are most central to using GSS-API. For more information, see
Appendix C, “GSS-API Reference”, which contains a list of all GSS-API functions, status
codes, and data types. To find out more about any GSS-API function, check the individual man
page.

The examples in this manual follow a simple model. A client application sends data directly to a
remote server. No mediation by transport protocol layers such as RPC occurs.

Generalized GSS-API Usage

The general steps for using GSS-API are as follows:

1. Each application, both sender and recipient, acquires credentials explicitly, unless
credentials have been acquired automatically.

2. The sender initiates a security context. The recipient accepts the context.
3. The sender applies security protection to the data to be transmitted. The sender either

encrypts the message or stamps the data with an identification tag. The sender then
transmits the protected message.

Note - The sender can choose not to apply either security protection, in which case the message
has only the default GSS-API security service, that is, authentication.

4. The recipient decrypts the message if needed and verifies the message if appropriate.
5. (Optional) The recipient returns an identification tag to the sender for confirmation.
6. Both applications destroy the shared security context. If necessary, the allocations can also

deallocate any remaining GSS-API data.

Caution - The calling application is responsible for freeing all data space that has been
allocated.

Applications that use GSS-API need to include the file gssapi.h.

Developing Applications That Use GSS-API

72 Developer's Guide to Oracle Solaris 11 Security • July 2014

Working With Credentials in GSS-API

A credential is a data structure that provides proof of an application's claim to a principal name.
An application uses a credential to establish that application's global identity. Additionally, a
credential may be used to confirm an entity's privileges.

GSS-API does not provide credentials. Credentials are created by the security mechanisms
that underly GSS-API, before GSS-API functions are called. In many cases, a user receives
credentials at login.

A given GSS-API credential is valid for a single principal. A single credential can contain
multiple elements for that principal, each created by a different mechanism. A credential
that is acquired on a machine with multiple security mechanisms is valid if that credential is
transferred to a machine with a subset of those mechanisms. GSS-API accesses credentials
through the gss_cred_id_t structure. This structure is called a credential handle. Credentials
are opaque to applications. Thus, the application does not need to know the specifics of a given
credential.
Credentials come in three forms:

■ GSS_C_INITIATE – Identifies applications that only initiate security contexts
■ GSS_C_ACCEPT – Identifies applications that only accept security contexts
■ GSS_C_BOTH – Identifies applications that can initiate or accept security contexts

Acquiring Credentials in GSS-API

Before a security context can be established, both the server and the client must acquire their
respective credentials. A credential can be reused until that credential expires, after which the
application must reacquire the credential. Credentials that are used by the client and credentials
that are used by the server can have different lifetimes.
GSS-API-based applications can acquire credentials in two ways:

■ By using the gss_acquire_cred or gss_add_cred function
■ By specifying the value GSS_C_NO_CREDENTIAL, which indicates a default credential, when

the context is established

In most cases, gss_acquire_cred is called only by a context acceptor, that is, a server. A
context initiator, that is, a client, typically receives credentials at login. A client, therefore, can
usually specify the default credential. The server can also bypass gss_acquire_cred and use
that server's default credential instead.

A client's credential proves that client's identity to other processes. A server acquires a
credential to enable that server to accept a security context. So when a client makes an

Developing Applications That Use GSS-API

Chapter 4 • Writing Applications That Use GSS-API 73

ftp request to a server, that client might already have a credential from login. GSS-API
automatically retrieves the credential when the client attempts to initiate a context. The server
program, however, explicitly acquires credentials for the requested service (ftp).

If gss_acquire_cred completes successfully, then GSS_S_COMPLETE is returned.
If a valid credential cannot be returned, then GSS_S_NO_CRED is returned. See the
gss_acquire_cred(3GSS) man page for other error codes. For an example, see “Acquiring
Credentials” in Chapter 8.

gss_add_cred is similar to gss_acquire_cred. However, gss_add_cred enables an application
to use an existing credential to create a new handle or to add a new credential element. If
GSS_C_NO_CREDENTIAL is specified as the existing credential, then gss_add_cred creates a new
credential according to the default behavior. See the gss_add_cred(3GSS) man page for more
information.

Working With Contexts in GSS-API

The two most significant tasks for GSS-API in providing security are to create security contexts
and to protect data. After an application acquires the necessary credentials, a security context
must be established. To establish a context, one application, typically a client, initiates the
context, and another application, usually a server, accepts the context. Multiple contexts
between peers are allowed.

The communicating applications establish a joint security context by exchanging authentication
tokens. The security context is a pair of GSS-API data structures that contain information to be
shared between the two applications. This information describes the state of each application in
terms of security. A security context is required for protection of data.

Initiating a Context in GSS-API

The gss_init_sec_context function is used to start a security context between an application
and a remote peer. If successful, this function returns a context handle for the context to be
established and a context-level token to send to the acceptor.

Before calling gss_init_sec_context, the client should perform the following tasks:

1. Acquire credentials, if necessary, with gss_acquire_cred. Typically, the client receives
credentials at login. gss_acquire_cred can only retrieve initial credentials from the
running operating system.

2. Import the name of the server into GSS-API internal format with gss_import_name.
See “Names in GSS-API” on page 62 for more information about names and
gss_import_name.

Developing Applications That Use GSS-API

74 Developer's Guide to Oracle Solaris 11 Security • July 2014

When calling gss_init_sec_context, a client typically passes the following argument values:

■ GSS_C_NO_CREDENTIAL for the cred_handle argument, to indicate the default credential.
■ GSS_C_NULL_OID for the mech_type argument, to indicate the default mechanism.
■ GSS_C_NO_CONTEXT for the context_handle argument, to indicate an initial null context.

Because gss_init_sec_context is usually called in a loop, subsequent calls should pass
the context handle that was returned by previous calls.

■ GSS_C_NO_BUFFER for the input_token argument, to indicate an initially empty token.
Alternatively, the application can pass a pointer to a gss_buffer_desc object whose length
field has been set to zero.

■ The name of the server, imported into internal GSS-API format with gss_import_name.

Applications are not bound to use these default values. Additionally, a client can specify
requirements for other security parameters with the req_flags argument. The full set of
gss_init_sec_context arguments is described below.

The context acceptor might require several handshakes to establish a context. That is, an
acceptor can require the initiator to send more than one piece of context information before the
context is fully established. Therefore, for portability, context initiation should always be done
as part of a loop that checks whether the context has been fully established.

If the context is not complete, gss_init_sec_context returns a major status code
of GSS_C_CONTINUE_NEEDED. Therefore, a loop should use the return value from
gss_init_sec_context to test whether to continue the initiation loop.

The client passes context information to the server in the form of the output token, which is
returned by gss_init_sec_context. The client receives information back from the server
as an input token. The input token can then be passed as an argument in subsequent calls of
gss_init_sec_context. If the received input token has a length of zero, however, then no more
output tokens are required by the server.

Therefore, besides checking for the return status of gss_init_sec_context, the loop should
check the input token's length. If the length has a nonzero value, another token needs to be
sent to the server. Before the loop begins, the input token's length should be initialized to zero.
Either set the input token to GSS_C_NO_BUFFER or set the structure's length field to a value of
zero.

The following pseudocode demonstrates an example of context establishment from the client
side.

context = GSS_C_NO_CONTEXT
input token = GSS_C_NO_BUFFER

do

 call gss_init_sec_context(credential, context, name, input token,

Developing Applications That Use GSS-API

Chapter 4 • Writing Applications That Use GSS-API 75

 output token, other args...)

 if (there's an output token to send to the acceptor)
 send the output token to the acceptor
 release the output token

 if (the context is not complete)
 receive an input token from the acceptor

 if (there's a GSS-API error)
 delete the context

until the context is complete

A real loop would be more complete with more extensive error-checking. See “Establishing
a Security Context With the Server” on page 93 for a real example of such a context-
initiation loop. Additionally, the gss_init_sec_context(3GSS) man page provides a less
generic example.

In general, the parameter values returned when a context is not fully established are those
values that would be returned when the context is complete. See the gss_init_sec_context
man page for more information.

If gss_init_sec_context completes successfully, GSS_S_COMPLETE is returned. If a context-
establishment token is required from the peer application, GSS_S_CONTINUE_NEEDED is returned.
If errors occur, error codes are returned as shown in the gss_init_sec_context(3GSS) man
page.

If context initiation fails, the client should disconnect from the server.

Accepting a Context in GSS-API

The other half of context establishment is context acceptance, which is done through the
gss_accept_sec_context function. In a typical scenario, a server accepts a context that has
been initiated by a client with gss_init_sec_context.

The main input to gss_accept_sec_context is an input token from the initiator. The initiator
returns a context handle as well as an output token to be returned to the initiator. Before
gss_accept_sec_context can be called, however, the server should acquire credentials
for the service that was requested by the client. The server acquires these credentials with
the gss_acquire_cred function. Alternatively, the server can bypass explicit acquisition of
credentials by specifying the default credential, that is, GSS_C_NO_CREDENTIAL, when the server
calls gss_accept_sec_context.

When calling gss_accept_sec_context, the server can set the following arguments as shown:

Developing Applications That Use GSS-API

76 Developer's Guide to Oracle Solaris 11 Security • July 2014

■ cred_handle – The credential handle returned by gss_acquire_cred. Alternatively,
GSS_C_NO_CREDENTIAL can be used to indicate the default credential.

■ context_handle – GSS_C_NO_CONTEXT indicates an initial null context. Because
gss_init_sec_context is usually called in a loop, subsequent calls should pass the
context handle that was returned by previous calls.

■ input_token – The context token received from the client.

The full set of gss_accept_sec_context arguments is described in the following paragraphs.

Security context establishment might require several handshakes. The initiator and acceptor
often need to send more than one piece of context information before the context is fully
established. Therefore, for portability, context acceptance should always be done as part of
a loop that checks whether the context has been fully established. If the context is not yet
established, gss_accept_sec_context returns a major status code of GSS_C_CONTINUE_NEEDED.
Therefore, a loop should use the value that was returned by gss_accept_sec_context to test
whether to continue the acceptance loop.

The context acceptor returns context information to the initiator in the form of the output
token that was returned by gss_accept_sec_context. Subsequently, the acceptor can receive
additional information from the initiator as an input token. The input token is then passed as an
argument to subsequent gss_accept_sec_context calls. When gss_accept_sec_context has
no more tokens to send to the initiator, an output token with a length of zero is returned. Besides
checking for the return status gss_accept_sec_context, the loop should check the output
token's length to see whether another token must be sent. Before the loop begins, the output
token's length should be initialized to zero. Either set the output token to GSS_C_NO_BUFFER, or
set the structure's length field to a value of zero.

The following pseudocode demonstrates an example of context establishment from the server
side.

context = GSS_C_NO_CONTEXT
output token = GSS_C_NO_BUFFER

do

 receive an input token from the initiator

 call gss_accept_sec_context(context, cred handle, input token,
 output token, other args...)

 if (there's an output token to send to the initiator)
 send the output token to the initiator
 release the output token

 if (there's a GSS-API error)
 delete the context

until the context is complete

Developing Applications That Use GSS-API

Chapter 4 • Writing Applications That Use GSS-API 77

A real loop would be more complete with more extensive error-checking. See “Establishing
a Security Context With the Server” on page 93 for a real example of such a context-
acceptance loop. Additionally, the gss_accept_sec_context man page provides an example.

Again, GSS-API does not send or receive tokens. Tokens must be handled by the application.
Examples of token-transferring functions are found in “Miscellaneous GSS-API Sample
Functions” on page 204.

gss_accept_sec_context returns GSS_S_COMPLETE if it completes successfully. If the context is
not complete, the function returns GSS_S_CONTINUE_NEEDED. If errors occur, the function returns
error codes. For more information, see the gss_accept_sec_context(3GSS) man page.

Using Other Context Services in GSS-API

The gss_init_sec_context function enables an application to request additional data
protection services beyond basic context establishment. These services are requested through
the req_flags argument to gss_init_sec_context.

Not all mechanisms offer all these services. The ret_flags argument for gss_init_sec_context
indicates which services are available in a given context. Similarly, the context acceptor
examines the ret_flags value that is returned by gss_accept_sec_context to determine the
available services. The additional services are explained in the following sections.

Delegating a Credential in GSS-API

If permitted, a context initiator can request that the context acceptor act as a proxy. In such a
case, the acceptor can initiate further contexts on behalf of the initiator.

Suppose someone on Machine A wants to rlogin to Machine B, and then rlogin from
Machine B to Machine C. Depending on the mechanism, the delegated credential identifies B
either as A or B as proxy for A.

If delegation is permitted, ret_flags can be set to GSS_C_DELEG_FLAG. The acceptor receives
a delegated credential as the delegated_cred_handle argument of gss_accept_sec_context.
Delegating a credential is not the same as exporting a context. See “Exporting and Importing
Contexts in GSS-API” on page 80. One difference is that an application can delegate that
application's credentials multiple times simultaneously, while a context can only be held by one
process at a time.

Performing Mutual Authentication Between Peers in GSS-API

A user who transfers files to an ftp site typically does not need proof of the site's identity. On
the other hand, a user who is required to provide a credit card number to an application would

Developing Applications That Use GSS-API

78 Developer's Guide to Oracle Solaris 11 Security • July 2014

want definite proof of the receiver's identity. In such a case, mutual authentication is required.
Both the context initiator and the acceptor must prove their identities.

A context initiator can request mutual authentication by setting the gss_init_sec_context
req_flags argument to the value GSS_C_MUTUAL_FLAG. If mutual authentication has been
authorized, the function indicates authorization by setting the ret_flags argument to this value.
If mutual authentication is requested but not available, the initiating application is responsible
for responding accordingly. GSS-API does not automatically terminate a context when mutual
authentication is requested but unavailable. Also, some mechanisms always perform mutual
authentication even without a specific request.

Performing Anonymous Authentication in GSS-API

In normal use of GSS-API, the initiator's identity is made available to the acceptor as a part of
context establishment. However, a context initiator can request that its identity not be revealed
to the context acceptor.

For example, consider an application that provides unrestricted access to a medical database. A
client of such a service might want to authenticate the service. This approach would establish
trust in any information that is retrieved from the database. The client might not want to expose
its identity due to privacy concerns, for example.

To request anonymity, set the req_flags argument of gss_init_sec_context to
GSS_C_ANON_FLAG. To verify whether anonymity is available, check the ret_flags argument
to gss_init_sec_context or gss_accept_sec_context to see whether GSS_C_ANON_FLAG is
returned.

When anonymity is in effect, calling gss_display_name on a client name that was returned by
gss_accept_sec_context or gss_inquire_context produces a generic anonymous name.

Note - An application has the responsibility to take appropriate action if anonymity is requested
but not permitted. GSS-API does not terminate a context in such a case.

Using Channel Bindings in GSS-API

For many applications, basic context establishment is sufficient to assure proper authentication
of a context initiator. In cases where additional security is desired, GSS-API offers the use
of channel bindings. Channel bindings are tags that identify the particular data channel that
is used. Specifically, channel bindings identify the origin and endpoint, that is, the initiator

Developing Applications That Use GSS-API

Chapter 4 • Writing Applications That Use GSS-API 79

and acceptor of the context. Because the tags are specific to the originator and recipient
applications, such tags offer more proof of a valid identity.

Channel bindings are pointed to by the gss_channel_bindings_t data type, which is a pointer
to a gss_channel_bindings_struct structure as shown below.

typedef struct gss_channel_bindings_struct {

OM_uint32 initiator_addrtype;

gss_buffer_desc initiator_address;

OM_uint32 acceptor_addrtype;

gss_buffer_desc acceptor_address;

gss_buffer_desc application_data;

} *gss_channel_bindings_t;

The first two fields are the address of the initiator and an address type that identifies the format
in which the initiator's address is being sent. For example, initiator_addrtype might be sent
to GSS_C_AF_INET to indicate that initiator_address is in the form of an Internet address, that
is, an IP address. Similarly, the third and fourth fields indicate the address and address type
of the acceptor. The final field, application_data, can be used by the application as needed.
Set application_data to GSS_C_NO_BUFFER if application_data is not going to be used. If an
application does not specify an address, that application should set the address type field to
GSS_C_AF_NULLADDR. The “Address Types for Channel Bindings” on page 219 section has a
list of valid address type values.

The address types indicate address families rather than specific addressing formats. For
address families that contain several alternative address forms, the initiator_address and
acceptor_address fields must contain sufficient information to determine which form is used.
When not otherwise specified, addresses should be specified in network byte-order, that is,
native byte-ordering for the address family.

To establish a context that uses channel bindings, the input_chan_bindings argument for
gss_init_sec_context should point to an allocated channel bindings structure. The structure's
fields are concatenated into an octet string, and a MIC is derived. This MIC is then bound to
the output token. The application then sends the token to the context acceptor. After receiving
the token, the acceptor calls gss_accept_sec_context. See “Accepting a Context in GSS-
API” on page 75 for more information. gss_accept_sec_context calculates a MIC for the
received channel bindings. gss_accept_sec_context then returns GSS_C_BAD_BINDINGS if the
MIC does not match.

Because gss_accept_sec_context returns the transmitted channel bindings, an acceptor can
use these values to perform security checking. For example, the acceptor could check the value
of application_data against code words that are kept in a secure database.

Developing Applications That Use GSS-API

80 Developer's Guide to Oracle Solaris 11 Security • July 2014

Note - An underlying mechanism might not provide confidentiality for channel binding
information. Therefore, an application should not include sensitive information as part of
channel bindings unless confidentiality is ensured. To test for confidentiality, an application
can check the ret_flags argument of gss_init_sec_context or gss_accept_sec_context. The
values GSS_C_CONF_FLAG and GSS_C_PROT_READY_FLAG indicate confidentiality. See “Initiating a
Context in GSS-API” on page 73 or “Accepting a Context in GSS-API” on page 75 for
information on ret_flags.

Individual mechanisms can impose additional constraints on the addresses and address
types that appear in channel bindings. For example, a mechanism might verify that the
initiator_address field of the channel bindings to be returned to gss_init_sec_context.
Portable applications should therefore provide the correct information for the address fields. If
the correct information cannot be determined, then GSS_C_AF_NULLADDR should be specified as
the address types.

Exporting and Importing Contexts in GSS-API

GSS-API provides the means for exporting and importing contexts. This ability enables
a multiprocess application, usually the context acceptor, to transfer a context from one
process to another. For example, an acceptor might have one process that listens for
context initiators and another that uses the data that is sent in the context. The “Using the
test_import_export_context Function” on page 116 section shows how a context can be
saved and restored with these functions.

The function gss_export_sec_context creates an interprocess token that contains information
about the exported context. See “Interprocess Tokens in GSS-API” on page 70 for
more information. The buffer to receive the token should be set to GSS_C_NO_BUFFER before
gss_export_sec_context is called.

The application then passes the token on to the other process. The new process accepts the
token and passes that token to gss_import_sec_context. The same functions that are used to
pass tokens between applications can often be used to pass tokens between processes as well.

Only one instantiation of a security process can exist at a time. gss_export_sec_context
deactivates the exported context and sets the context handle to GSS_C_NO_CONTEXT.
gss_export_sec_context also deallocates any process-wide resources that are associated with
that context. If the context exportation cannot be completed, gss_export_sec_context leaves
the existing security context unchanged and does not return an interprocess token.

Not all mechanisms permit contexts to be exported. An application can determine whether
a context can be exported by checking the ret_flags argument to gss_accept_sec_context

Developing Applications That Use GSS-API

Chapter 4 • Writing Applications That Use GSS-API 81

or gss_init_sec_context. If this flag is set to GSS_C_TRANS_FLAG, then the context can be
exported. (See “Accepting a Context in GSS-API” on page 75 and “Initiating a Context in
GSS-API” on page 73.)

Figure 4-6 shows how a multiprocess acceptor might use context exporting to multitask.
In this case, Process 1 receives and processes tokens. This step separates the context-level
tokens from the data tokens and passes the tokens on to Process 2. Process 2 deals with data
in an application-specific way. In this illustration, the clients have already obtained export
tokens from gss_init_sec_context. The clients pass the tokens to a user-defined function,
send_a_token, which indicates whether the token to be transmitted is a context-level token or
a message token. send_a_token transmits the tokens to the server. Although not shown here,
send_a_token would presumably be used to pass tokens between threads as well.

FIGURE 4-6 Exporting Contexts: Multithreaded Acceptor Example

Obtaining Context Information in GSS-API

GSS-API provides a function, gss_inquire_context(3GSS), that obtains information
about a given security context. Note that the context does not need to be complete.

Given a context handle, gss_inquire_context provides the following information about
context:

■ Name of the context initiator.
■ Name of the context acceptor.
■ Number of seconds for which the context is valid.
■ Security mechanism to be used with the context.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Bgss-inquire-context-3gss

Developing Applications That Use GSS-API

82 Developer's Guide to Oracle Solaris 11 Security • July 2014

■ Several context-parameter flags. These flags are the same as the ret_flags argument of
the gss_accept_sec_context(3GSS) function. The flags cover delegation, mutual
authentication, and so on. See “Accepting a Context in GSS-API” on page 75.

■ A flag that indicates whether the inquiring application is the context initiator.
■ A flag that indicates whether the context is fully established.

Sending Protected Data in GSS-API

After a context has been established between two peers, a message can be protected before that
message is sent.
Establishing a context only uses the most basic GSS-API protection: authentication. Depending
on the underlying security mechanisms, GSS-API provides two other levels of protection:

■ Integrity – A message integrity code (MIC) for the message is generated by the
gss_get_mic function. The recipient checks the MIC to ensure that the received message
is the same as the message that was sent.

■ Confidentiality – In addition to using a MIC, the message is encrypted. The GSS-API
function gss_wrap performs the encryption.

The difference between gss_get_mic and gss_wrap is illustrated in the following diagram. With
gss_get_mic, the receiver gets a tag that indicates the message is intact. With gss_wrap, the
receiver gets an encrypted message and a tag.

FIGURE 4-7 gss_get_mic versus gss_wrap

The function to be used depends on the situation. Because gss_wrap includes the
integrity service, many programs use gss_wrap. A program can test for the availability
of the confidentiality service. The program can then call gss_wrap with or without
confidentiality depending on the availability. An example is “Wrapping and Sending a
Message” on page 98. However, because messages that use gss_get_mic do not need to be
unwrapped, fewer CPU cycles are used than withgss_wrap. Thus a program that does not need
confidentiality might protect messages with gss_get_mic.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Bgss-accept-sec-context-3gss

Developing Applications That Use GSS-API

Chapter 4 • Writing Applications That Use GSS-API 83

Tagging Messages With gss_get_mic

Programs can use gss_get_mic to add a cryptographic MIC to a message. The recipient can
check the MIC for a message by calling gss_verify_mic.

In contrast to gss_wrap, gss_get_mic produces separate output for the message and the MIC.
This separation means that a sender application must arrange to send both the message and the
accompanying MIC. More significantly, the recipient must be able to distinguish between the
message and the MIC.
The following approaches ensure the proper processing of message and MIC:

■ Through program control, that is, state. A recipient application might know to call the
receiving function twice, once to get a message and a second time to get the message's
MIC.

■ Through flags. The sender and receiver can flag the kind of token that is included.
■ Through user-defined token structures that include both the message and the MIC.

GSS_S_COMPLETE is returned if gss_get_mic completes successfully. If the specified QOP is not
valid, GSS_S_BAD_QOP is returned. For more information, see gss_get_mic(3GSS).

Wrapping Messages With gss_wrap

Messages can be wrapped by the gss_wrap function. Like gss_get_mic, gss_wrap provides a
MIC. gss_wrap also encrypts a given message if confidentiality is requested and permitted by
the underlying mechanism. The message receiver unwraps the message with gss_unwrap.

Unlike gss_get_mic, gss_wrap wraps the message and the MIC together in the outgoing
message. The function that transmits the bundle need be called only once. On the other end,
gss_unwrap extracts the message. The MIC is not visible to the application.

gss_wrap returns GSS_S_COMPLETE if the message was successfully wrapped. If the requested
QOP is not valid, GSS_S_BAD_QOP is returned. For an example of gss_wrap, see “Wrapping and
Sending a Message” on page 98.

Handling Wrap Size Issues in GSS-API

Wrapping a message with gss_wrap increases the amount of data to be sent. Because the
protected message packet needs to fit through a given transportation protocol, GSS-API
provides the function gss_wrap_size_limit. gss_wrap_size_limit calculates the maximum
size of a message that can be wrapped without becoming too large for the protocol. The
application can break up messages that exceed this size before calling gss_wrap. Always check
the wrap-size limit before actually wrapping the message.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Bgss-get-mic-3gss

Developing Applications That Use GSS-API

84 Developer's Guide to Oracle Solaris 11 Security • July 2014

The amount of the size increase depends on two factors:

■ Which QOP algorithm is used for making the transformation
■ Whether confidentiality is invoked

The default QOP can vary from one implementation of GSS-API to another. Thus, a wrapped
message can vary in size even if the QOP default is specified. This possibility is illustrated in
the following figure.

Regardless of whether confidentiality is applied, gss_wrap still increases the size of a message.
gss_wrap embeds a MIC into the transmitted message. However, encrypting the message can
further increase the size. The following figure shows this process.

GSS_S_COMPLETE is returned if gss_wrap_size_limit completes successfully. If the
specified QOP is not valid, GSS_S_BAD_QOP is returned. “Wrapping and Sending a
Message” on page 98 includes an example of how gss_wrap_size_limit can be used to
return the maximum original message size.

Successful completion of this call does not necessarily guarantee that gss_wrap can
protect a message of length max-input-size bytes. This ability depends on the availability
of system resources at the time that gss_wrap is called. For more information, see the
gss_wrap_size_limit(3GSS) man page.

Developing Applications That Use GSS-API

Chapter 4 • Writing Applications That Use GSS-API 85

Detecting Sequence Problems in GSS-API

As a context initiator transmits sequential data packets to the acceptor, some mechanisms allow
the context acceptor to check for proper sequencing. These checks include whether the packets
arrive in the right order, and with no unwanted duplication of packets. See following figure. An
acceptor checks for these two conditions during the verification of a packet and the unwrapping
of a packet. See “Unwrapping the Message” on page 115 for more information.

FIGURE 4-8 Message Replay and Message Out-of-Sequence

With gss_init_sec_context, an initiator can check the sequence by applying logical OR to the
req_flags argument with either GSS_C_REPLAY_FLAG or GSS_C_SEQUENCE_FLAG.

Confirming Message Transmission in GSS-API

After the recipient has unwrapped or verified the transmitted message, a confirmation can be
returned to the sender. This means sending back a MIC for that message. Consider the case of a
message that was not wrapped by the sender but only tagged with a MIC with gss_get_mic.
The process, illustrated in Figure 4-9, is as follows:

1. The initiator tags the message with gss_get_mic.
2. The initiator sends the message and MIC to the acceptor.
3. The acceptor verifies the message with gss_verify_mic.
4. The acceptor sends the MIC back to the initiator.
5. The initiator verifies the received MIC against the original message with gss_verify_mic.

Developing Applications That Use GSS-API

86 Developer's Guide to Oracle Solaris 11 Security • July 2014

FIGURE 4-9 Confirming MIC Data

In the case of wrapped data, the gss_unwrap function never produces a separate MIC, so the
recipient must generate it from the received and unwrapped message.
The process, illustrated in Figure 4-10, is as follows:

1. The initiator wraps the message with gss_wrap.
2. The initiator sends the wrapped message.
3. The acceptor unwraps the message with gss_unwrap.
4. The acceptor calls gss_get_mic to produce a MIC for the unwrapped message.
5. The acceptor sends the derived MIC to the initiator.
6. The initiator compares the received MIC against the original message with

gss_verify_mic.

Applications should deallocate any data space that has been allocated for GSS-API data.
The relevant functions are gss_release_buffer(3GSS), gss_release_cred(3GSS),
gss_release_name(3GSS), and gss_release_oid_set(3GSS).

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Bgss-release-buffer-3gss
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Bgss-release-cred-3gss
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Bgss-release-name-3gss
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Bgss-release-oid-set-3gss

Developing Applications That Use GSS-API

Chapter 4 • Writing Applications That Use GSS-API 87

FIGURE 4-10 Confirming Wrapped Data

Cleaning Up a GSS-API Session

Finally, all messages have been sent and received, and the initiator and acceptor applications
have finished. At this point, both applications should call gss_delete_sec_context to destroy
the shared context. gss_delete_sec_context deletes local data structures that are associated
with the context.

For good measure, applications should be sure to deallocate any data space that has
been allocated for GSS-API data. The functions that do this are gss_release_buffer,
gss_release_cred, gss_release_name, and gss_release_oid_set.

88 Developer's Guide to Oracle Solaris 11 Security • July 2014

Chapter 5 • GSS-API Client Example 89

 5 ♦ ♦ ♦ C H A P T E R 5

GSS-API Client Example

This chapter presents a walk-through of a typical GSS-API client application.
The following topics are covered:

■ “GSSAPI Client Example Overview” on page 89
■ “GSSAPI Client Example: main Function” on page 90
■ “Opening a Connection With the Server” on page 92
■ “Establishing a Security Context With the Server” on page 93
■ “Miscellaneous GSSAPI Context Operations on the Client Side” on page 97
■ “Wrapping and Sending a Message” on page 98
■ “Reading and Verifying a Signature Block From a GSS-API Client” on page 101
■ “Deleting the Security Context” on page 102

GSSAPI Client Example Overview

The sample client-side program gss-client creates a security context with a server, establishes
security parameters, and sends the message string to the server. The program uses a simple
TCP-based sockets connection to make the connection.

The following sections provide a step-by-step description of how gss-client works. Because
gss-client is a sample program that has been designed to show off GSSAPI functionality,
only relevant parts of the program are discussed in detail. The complete source code for the two
applications appears in the appendix and can be downloaded from the Oracle download center.
See http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html.

GSSAPI Client Example Structure

The gss-client application performs the following steps:

1. Parses the command line.
2. Creates an object ID (OID) for a mechanism, if a mechanism is specified. Otherwise, the

default mechanism is used, which is most commonly the case.

http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html

GSSAPI Client Example: main Function

90 Developer's Guide to Oracle Solaris 11 Security • July 2014

3. Creates a connection to the server.
4. Establishes a security context.
5. Wraps and sends the message.
6. Verifies that the message has been “signed” correctly by the server.
7. Deletes the security context.

Running the GSSAPI Client Example
The gss-client example takes this form on the command line:

gss-client [-port port] [-d] [-mech mech] host service-name [-f] msg

■ port – The port number for making the connection to the remote machine that is specified
by host.

■ -d flag – Causes security credentials to be delegated to the server. Specifically, the deleg-
flag variable is set to the GSS-API value GSS_C_DELEG_FLAG. Otherwise, deleg-flag is
set to zero.

■ mech – The name of the security mechanism, such as Kerberos v5 to be used. If no
mechanism is specified, the GSS-API uses a default mechanism.

■ host – The name of the server.
■ service-name – The name of the network service requested by the client. Some typical

examples are the telnet, ftp, and login services.
■ msg – The string to send to the server as protected data. If the -f option is specified, then

msg is the name of a file from which to read the string.

A typical command line for client application program might look like the following example:

% gss-client -port 8080 -d -mech kerberos_v5 erebos.eng nfs "ls"

The following example does not specify a mechanism, port, or delegation:

% gss-client erebos.eng nfs "ls"

GSSAPI Client Example: main Function
As with all C programs, the outer shell of the program is contained in the entry-point function,
main. main performs four functions:

■ Parses command-line arguments and assigns the arguments to variables.
■ Calls parse_oid to create a GSS-API OID, object identifier, if a mechanism other than

the default is to be used. The object identifier comes from the name of the security
mechanism, provided that a mechanism name has been supplied.

■ Calls call_server, which does the actual work of creating a context and sending data.

GSSAPI Client Example: main Function

Chapter 5 • GSS-API Client Example 91

■ Releases the storage space for the OID if necessary, after the data is sent.

The source code for the main routine is shown in the following example.

Note - The source code for this example is also available through the Oracle download center.
See http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html.

EXAMPLE 5-1 gss-client Example: main

int main(argc, argv)

 int argc;

 char **argv;

{

 char *msg;

 char service_name[128];

 char hostname[128];

 char *mechanism = 0;

 u_short port = 4444;

 int use_file = 0;

 OM_uint32 deleg_flag = 0, min_stat;

 display_file = stdout;

 /* Parse command-line arguments. */

 argc--; argv++;

 while (argc) {

 if (strcmp(*argv, "-port") == 0) {

 argc--; argv++;

 if (!argc) usage();

 port = atoi(*argv);

 } else if (strcmp(*argv, "-mech") == 0) {

 argc--; argv++;

 if (!argc) usage();

 mechanism = *argv;

 } else if (strcmp(*argv, "-d") == 0) {

 deleg_flag = GSS_C_DELEG_FLAG;

 } else if (strcmp(*argv, "-f") == 0) {

 use_file = 1;

 } else

 break;

 argc--; argv++;

 }

 if (argc != 3)

 usage();

 if (argc > 1) {

 strcpy(hostname, argv[0]);

 } else if (gethostname(hostname, sizeof(hostname)) == -1) {

 perror("gethostname");

 exit(1);

 }

http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html

Opening a Connection With the Server

92 Developer's Guide to Oracle Solaris 11 Security • July 2014

 if (argc > 2) {

 strcpy(service_name, argv[1]);

 strcat(service_name, "@");

 strcat(service_name, hostname);

 }

 msg = argv[2];

 /* Create GSSAPI object ID. */

 if (mechanism)

 parse_oid(mechanism, &g_mechOid);

 /* Call server to create context and send data. */

 if (call_server(hostname, port, g_mechOid, service_name,

 deleg_flag, msg, use_file) < 0)

 exit(1);

 /* Release storage space for OID, if still allocated */

 if (g_mechOid != GSS_C_NULL_OID)

 (void) gss_release_oid(&min_stat, &gmechOid);

 return 0;

}

Opening a Connection With the Server

The call_server function uses the following code to make the connection with the server:

 if ((s = connect_to_server(host, port)) < 0)

 return -1;

s is a file descriptor, the int that is initially returned by a call to socket.

connect_to_server is a simple function outside GSS-API that uses sockets to create a
connection. The source code for connect_to_server is shown in the following example.

Note - The source code for this example is also available through the Oracle download center.
See http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html.

EXAMPLE 5-2 connect_to_server Function

int connect_to_server(host, port)

 char *host;

 u_short port;

{

 struct sockaddr_in saddr;

 struct hostent *hp;

http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html

Establishing a Security Context With the Server

Chapter 5 • GSS-API Client Example 93

 int s;

 if ((hp = gethostbyname(host)) == NULL) {

 fprintf(stderr, "Unknown host: %s\n", host);

 return -1;

 }

 saddr.sin_family = hp->h_addrtype;

 memcpy((char *)&saddr.sin_addr, hp->h_addr, sizeof(saddr.sin_addr));

 saddr.sin_port = htons(port);

 if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) {

 perror("creating socket");

 return -1;

 }

 if (connect(s, (struct sockaddr *)&saddr, sizeof(saddr)) < 0) {

 perror("connecting to server");

 (void) close(s);

 return -1;

 }

 return s;

}

Establishing a Security Context With the Server

After the connection is made, call_server uses the function client_establish_context to
create the security context, as follows:

if (client_establish_context(s, service-name, deleg-flag, oid, &context,

 &ret-flags) < 0) {

 (void) close(s);

 return -1;

 }

■ s is a file descriptor that represents the connection that is established by
connect_to_server.

■ service-name is the requested network service.
■ deleg-flag specifies whether the server can act as a proxy for the client.
■ oid is the mechanism.
■ context is the context to be created.
■ ret-flags is an int that specifies any flags to be returned by the GSS-API function

gss_init_sec_context.

The client_establish_context performs the following tasks:

■ Translates the service name into internal GSSAPI format
■ Performs a loop of token exchanges between the client and the server until the security

context is complete

Establishing a Security Context With the Server

94 Developer's Guide to Oracle Solaris 11 Security • July 2014

Translating a Service Name into GSS-API Format
The first task that client_establish_context performs is to translate the service name string
to internal GSS-API format by using gss_import_name.

EXAMPLE 5-3 client_establish_context – Translate Service Name

 /*

 * Import the name into target_name. Use send_tok to save

 * local variable space.

 */

 send_tok.value = service_name;

 send_tok.length = strlen(service_name) + 1;

 maj_stat = gss_import_name(&min_stat, &send_tok,

 (gss_OID) GSS_C_NT_HOSTBASED_SERVICE, &target_name);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("parsing name", maj_stat, min_stat);

 return -1;

 }

gss_import_name takes the name of the service, which is stored in an opaque GSS_API
buffer send_tok, and converts the string to the GSS_API internal name target_name.
send_tok is used to save space instead of declaring a new gss_buffer_desc. The third
argument is a gss_OID type that indicates the send_tok name format. This example uses
GSS_C_NT_HOSTBASED_SERVICE, which means a service of the format service@host. See “Name
Types” on page 218 for other possible values for this argument.

Establishing a Security Context for GSS-API
Once the service has been translated to GSS-API internal format, the context can be established.
To maximize portability, establishing context should always be performed as a loop.

Before entering the loop, client_establish_context initializes the context and the token_ptr
parameter. There is a choice in the use of token_ptr. token_ptr can point either to send_tok,
the token to be sent to the server, or to recv_tok, the token that is sent back by the server.
Inside the loop, two items are checked:

■ The status that is returned by gss_init_sec_context
The return status catches any errors that might require the loop to be aborted.
gss_init_sec_context returns GSS_S_CONTINUE_NEEDED if and only if the server
has another token to send.

■ The size of token to be sent to the server, which is generated by gss_init_sec_context
A token size of zero indicates that no more information exists that can be sent to the server
and that the loop can be exited. The token size is determined from token_ptr.

Establishing a Security Context With the Server

Chapter 5 • GSS-API Client Example 95

The following pseudocode describes the loop:

do
 gss_init_sec_context
 if no context was created
 exit with error;
 if the status is neither "complete" nor "in process"
 release the service namespace and exit with error;
 if there is a token to send to the server, that is, the size is nonzero
 send the token;
 if sending the token fails,
 release the token and service namespaces. Exit with error;
 release the namespace for the token that was just sent;
 if the context is not completely set up
 receive a token from the server;
while the context is not complete

The loop starts with a call to gss_init_sec_context, which takes the following arguments:

■ The status code to be set by the underlying mechanism.
■ The credential handle. The example uses GSS_C_NO_CREDENTIAL to act as a default

principal.
■ gss-context, which represents the context handle to be created.
■ target-name of the service, as a GSS_API internal name.
■ oid, the ID for the mechanism.
■ Request flags. In this case, the client requests that the server authenticate itself, that

message-duplication be turned on, and that the server act as a proxy if requested.
■ No time limit for the context.
■ No request for channel bindings.
■ token_ptr, which points to the token to be received from the server.
■ The mechanism actually used by the server. The mechanism is set to NULL here because the

application does not use this value.
■ &send_tok, which is the token that gss_init_sec_context creates to send to the server.
■ Return flags. Set to NULL because they are ignored in this example.

Note - The client does not need to acquire credentials before initiating a context. On the client
side, credential management is handled transparently by the GSS-API. That is, the GSS-
API knows how to get credentials that are created by this mechanism for this principal. As a
result, the application can pass gss_init_sec_context a default credential. On the server side,
however, a server application must explicitly acquire credentials for a service before accepting a
context. See “Acquiring Credentials” on page 106.

After checking that a context or part of one exists and that gss_init_sec_context is returning
valid status, connect_to_server checks that gss_init_sec_context has provided a token

Establishing a Security Context With the Server

96 Developer's Guide to Oracle Solaris 11 Security • July 2014

to send to the server. If no token is present, the server has signalled that no other tokens
are needed. If a token has been provided, then that token must be sent to the server. If
sending the token fails, the namespaces for the token and service cannot be determined, and
connect_to_server exits. The following algorithm checks for the presence of a token by
looking at the length:

if (send_tok_length != 0) {

 if (send_token(s, &send_tok) < 0) {

 (void) gss_release_buffer(&min_stat, &send_tok);

 (void) gss_release_name(&min_stat, &target_name);

 return -1;

 }

}

send_token is not a GSS-API function and needs to be written by the user. The send_token
function writes a token to the file descriptor. send_token returns 0 on success and –1 on failure.
GSS-API does not send or receive tokens itself. The calling applications are responsible for
sending and receiving any tokens that have been created by GSS-API.

The source code for the context establishment loop is provided below.

Note - The source code for this example is also available through the Oracle download center.
See http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html.

EXAMPLE 5-4 Loop for Establishing Contexts

/*

 * Perform the context establishment loop.

 *

 * On each pass through the loop, token_ptr points to the token

 * to send to the server (or GSS_C_NO_BUFFER on the first pass).

 * Every generated token is stored in send_tok which is then

 * transmitted to the server; every received token is stored in

 * recv_tok, which token_ptr is then set to, to be processed by

 * the next call to gss_init_sec_context.

 *

 * GSS-API guarantees that send_tok's length will be non-zero

 * if and only if the server is expecting another token from us,

 * and that gss_init_sec_context returns GSS_S_CONTINUE_NEEDED if

 * and only if the server has another token to send us.

 */

token_ptr = GSS_C_NO_BUFFER;

*gss_context = GSS_C_NO_CONTEXT;

1234567890123456789012345678901234567890123456789012345678901234567890123456

do {

 maj_stat =

 gss_init_sec_context(&min_stat, GSS_C_NO_CREDENTIAL,

 gss_context, target_name, oid,

 GSS_C_MUTUAL_FLAG | GSS_C_REPLAY_FLAG | deleg_flag,

http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html

Miscellaneous GSSAPI Context Operations on the Client Side

Chapter 5 • GSS-API Client Example 97

 0, NULL, /* no channel bindings */

 token_ptr, NULL, /* ignore mech type */

 &send_tok, ret_flags, NULL); /* ignore time_rec */

 if (gss_context == NULL){

 printf("Cannot create context\n");

 return GSS_S_NO_CONTEXT;

 }

 if (token_ptr != GSS_C_NO_BUFFER)

 (void) gss_release_buffer(&min_stat, &recv_tok);

 if (maj_stat!=GSS_S_COMPLETE && maj_stat!=GSS_S_CONTINUE_NEEDED) {

 display_status("initializing context", maj_stat, min_stat);

 (void) gss_release_name(&min_stat, &target_name);

 return -1;

 }

 if (send_tok.length != 0){

 fprintf(stdout, "Sending init_sec_context token (size=%ld)...",

 send_tok.length);

 if (send_token(s, &send_tok) < 0) {

 (void) gss_release_buffer(&min_stat, &send_tok);

 (void) gss_release_name(&min_stat, &target_name);

 return -1;

 }

 }

 (void) gss_release_buffer(&min_stat, &send_tok);

 if (maj_stat == GSS_S_CONTINUE_NEEDED) {

 fprintf(stdout, "continue needed...");

 if (recv_token(s, &recv_tok) < 0) {

 (void) gss_release_name(&min_stat, &target_name);

 return -1;

 }

 token_ptr = &recv_tok;

 }

 printf("\n");

} while (maj_stat == GSS_S_CONTINUE_NEEDED);

For more information on how send_token and recv_token work, see “Miscellaneous GSS-API
Sample Functions” on page 204.

Miscellaneous GSSAPI Context Operations on the Client
Side

As a sample program, gss-client performs some functions for demonstration purposes. The
following source code is not essential for the basic task, but is provided to demonstrate these
other operations:

■ Saving and restoring the context
■ Displaying context flags
■ Obtaining the context status

Wrapping and Sending a Message

98 Developer's Guide to Oracle Solaris 11 Security • July 2014

The source code for these operations is shown in the following example.

Note - The source code for this example is also available through the Oracle download center.
See http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html.

EXAMPLE 5-5 gss-client: call_server Establish Context

/* Save and then restore the context */

 maj_stat = gss_export_sec_context(&min_stat,

 &context,

 &context_token);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("exporting context", maj_stat, min_stat);

 return -1;

 }

 maj_stat = gss_import_sec_context(&min_stat,

 &context_token,

 &context);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("importing context", maj_stat, min_stat);

 return -1;

 }

 (void) gss_release_buffer(&min_stat, &context_token);

 /* display the flags */

 display_ctx_flags(ret_flags);

 /* Get context information */

 maj_stat = gss_inquire_context(&min_stat, context,

 &src_name, &targ_name, &lifetime,

 &mechanism, &context_flags,

 &is_local,

 &is_open);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("inquiring context", maj_stat, min_stat);

 return -1;

 }

 if (maj_stat == GSS_S_CONTEXT_EXPIRED) {

 printf(" context expired\n");

 display_status("Context is expired", maj_stat, min_stat);

 return -1;

 }

Wrapping and Sending a Message

The gss-client application needs to wrap, that is, encrypt the data before the data can be sent.
The application goes through the following steps to wrap the message:

http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html

Wrapping and Sending a Message

Chapter 5 • GSS-API Client Example 99

■ Determines the wrap size limit. This process ensures that the wrapped message can be
accommodated by the protocol.

■ Obtains the source and destination names. Translates the names from object identifiers to
strings.

■ Gets the list of mechanism names. Translates the names from object identifiers to strings.
■ Inserts the message into a buffer and wraps the message.
■ Sends the message to the server.

The following source code wraps a message.

Note - The source code for this example is also available through the Oracle download center.
See http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html.

EXAMPLE 5-6 gss-client Example: call_server – Wrap Message

/* Test gss_wrap_size_limit */

maj_stat = gss_wrap_size_limit(&min_stat, context, conf_req_flag,

 GSS_C_QOP_DEFAULT, req_output_size, &max_input_size);

if (maj_stat != GSS_S_COMPLETE) {

 display_status("wrap_size_limit call", maj_stat, min_stat);

} else

 fprintf (stderr, "gss_wrap_size_limit returned "

 "max input size = %d \n"

 "for req_output_size = %d with Integrity only\n",

 max_input_size , req_output_size , conf_req_flag);

conf_req_flag = 1;

maj_stat = gss_wrap_size_limit(&min_stat, context, conf_req_flag,

 GSS_C_QOP_DEFAULT, req_output_size, &max_input_size);

if (maj_stat != GSS_S_COMPLETE) {

 display_status("wrap_size_limit call", maj_stat, min_stat);

} else

 fprintf (stderr, "gss_wrap_size_limit returned "

 " max input size = %d \n" "for req_output_size = %d with "

 "Integrity & Privacy \n", max_input_size , req_output_size);

maj_stat = gss_display_name(&min_stat, src_name, &sname, &name_type);

if (maj_stat != GSS_S_COMPLETE) {

 display_status("displaying source name", maj_stat, min_stat);

 return -1;

}

maj_stat = gss_display_name(&min_stat, targ_name, &tname,

 (gss_OID *) NULL);

if (maj_stat != GSS_S_COMPLETE) {

 display_status("displaying target name", maj_stat, min_stat);

 return -1;

 }

fprintf(stderr, "\"%.*s\" to \"%.*s\", lifetime %u, flags %x, %s, %s\n",

 (int) sname.length, (char *) sname.value, (int) tname.length,

 (char *) tname.value, lifetime, context_flags,

http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html

Wrapping and Sending a Message

100 Developer's Guide to Oracle Solaris 11 Security • July 2014

 (is_local) ? "locally initiated" : "remotely initiated",

 (is_open) ? "open" : "closed");

(void) gss_release_name(&min_stat, &src_name);

(void) gss_release_name(&min_stat, &targ_name);

(void) gss_release_buffer(&min_stat, &sname);

(void) gss_release_buffer(&min_stat, &tname);

maj_stat = gss_oid_to_str(&min_stat, name_type, &oid_name);

if (maj_stat != GSS_S_COMPLETE) {

 display_status("converting oid->string", maj_stat, min_stat);

 return -1;

}

fprintf(stderr, "Name type of source name is %.*s.\n", (int) oid_name.length,

 (char *) oid_name.value);

(void) gss_release_buffer(&min_stat, &oid_name);

/* Now get the names supported by the mechanism */

maj_stat = gss_inquire_names_for_mech(&min_stat, mechanism, &mech_names);

if (maj_stat != GSS_S_COMPLETE) {

 display_status("inquiring mech names", maj_stat, min_stat);

 return -1;

}

maj_stat = gss_oid_to_str(&min_stat, mechanism, &oid_name);

if (maj_stat != GSS_S_COMPLETE) {

 display_status("converting oid->string", maj_stat, min_stat);

 return -1;

}

mechStr = (char *)__gss_oid_to_mech(mechanism);

fprintf(stderr, "Mechanism %.*s (%s) supports %d names\n", (int) oid_name.length,

 (char *) oid_name.value, (mechStr == NULL ? "NULL" : mechStr),

 mech_names->count);

(void) gss_release_buffer(&min_stat, &oid_name);

for (i=0; i < mech_names->count; i++) {

 maj_stat = gss_oid_to_str(&min_stat, &mech_names->elements[i], &oid_name);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("converting oid->string", maj_stat, min_stat);

 return -1;

 }

 fprintf(stderr, " %d: %.*s\n", i, (int) oid_name.length, (

 char *) oid_name.value);

 (void) gss_release_buffer(&min_stat, &oid_name);

 }

(void) gss_release_oid_set(&min_stat, &mech_names);

if (use_file) {

 read_file(msg, &in_buf);

} else {

 /* Wrap the message */

 in_buf.value = msg;

 in_buf.length = strlen(msg) + 1;

}

if (ret_flag & GSS_C_CONF_FLAG) {

 state = 1;

Reading and Verifying a Signature Block From a GSS-API Client

Chapter 5 • GSS-API Client Example 101

else

 state = 0;

}

maj_stat = gss_wrap(&min_stat, context, 1, GSS_C_QOP_DEFAULT, &in_buf,

 &state, &out_buf);

if (maj_stat != GSS_S_COMPLETE) {

 display_status("wrapping message", maj_stat, min_stat);

 (void) close(s);

 (void) gss_delete_sec_context(&min_stat, &context, GSS_C_NO_BUFFER);

 return -1;

} else if (! state) {

 fprintf(stderr, "Warning! Message not encrypted.\n");

}

/* Send to server */

if (send_token(s, &out_buf) < 0) {

 (void) close(s);

 (void) gss_delete_sec_context(&min_stat, &context, GSS_C_NO_BUFFER);

 return -1;

}

(void) gss_release_buffer(&min_stat, &out_buf);

Reading and Verifying a Signature Block From a GSS-API
Client

The gss-client program can now test the validity of the message that was sent. The server
returns the MIC for the message that was sent. The message can be retrieved with the
recv_token.

The gss_verify_mic function is then used to verify the message's signature, that is, the MIC.
gss_verify_mic compares the MIC that was received with the original, unwrapped message.
The received MIC comes from the server's token, which is stored in out_buf. The MIC from
the unwrapped version of the message is held in in_buf. If the two MICs match, the message is
verified. The client then releases the buffer for the received token, out_buf.

The process of reading and verifying a signature block is demonstrated in the following source
code.

Note - The source code for this example is also available through the Oracle download center.
See http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html.

EXAMPLE 5-7 gss-client Example – Read and Verify Signature Block

/* Read signature block into out_buf */

 if (recv_token(s, &out_buf) < 0) {

 (void) close(s);

http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html

Deleting the Security Context

102 Developer's Guide to Oracle Solaris 11 Security • July 2014

 (void) gss_delete_sec_context(&min_stat, &context, GSS_C_NO_BUFFER);

 return -1;

 }

/* Verify signature block */

 maj_stat = gss_(&min_stat, context, &in_buf,

 &out_buf, &qop_state);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("verifying signature", maj_stat, min_stat);

 (void) close(s);

 (void) gss_delete_sec_context(&min_stat, &context, GSS_C_NO_BUFFER);

 return -1;

 }

 (void) gss_release_buffer(&min_stat, &out_buf);

 if (use_file)

 free(in_buf.value);

 printf("Signature verified.\n");

Deleting the Security Context

The call_server function finishes by deleting the context and returning to the main function.

Note - The source code for this example is also available through the Oracle download center.
See http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html.

EXAMPLE 5-8 gss-client Example: call_server – Delete Context

/* Delete context */

 maj_stat = gss_delete_sec_context(&min_stat, &context, &out_buf);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("deleting context", maj_stat, min_stat);

 (void) close(s);

 (void) gss_delete_sec_context(&min_stat, &context, GSS_C_NO_BUFFER);

 return -1;

 }

 (void) gss_release_buffer(&min_stat, &out_buf);

 (void) close(s);

 return 0;

http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html

Chapter 6 • GSS-API Server Example 103

 6 ♦ ♦ ♦ C H A P T E R 6

GSS-API Server Example

This chapter presents a walk-through of the source code for the gss-server sample program.
The following topics are covered:

■ “GSSAPI Server Example Overview” on page 103
■ “GSSAPI Server Example: main Function” on page 104
■ “Acquiring Credentials” on page 106
■ “Checking for inetd” on page 109
■ “Receiving Data From a Client” on page 110
■ “Cleanup in the GSSAPI Server Example” on page 118

GSSAPI Server Example Overview

The sample server-side program gss-server works in conjunction with gss-client, which
is described in the previous chapter. The basic purpose of gss-server is to receive, sign, and
return the wrapped message from gssapi-client.

The following sections provide a step-by-step description of how gss-server works. Because
gss-server is a sample program for demonstrating GSSAPI functionality, only relevant parts
of the program are discussed in detail. The complete source code for the two applications
appears in the appendix and can be downloaded from the Oracle download center. See http://
www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html.

GSSAPI Server Example Structure

The gss-structure application performs the following steps:

1. Parses the command line.
2. If a mechanism is specified, translates the mechanism name to internal format.
3. Acquires credentials for the caller.

http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html
http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html

GSSAPI Server Example: main Function

104 Developer's Guide to Oracle Solaris 11 Security • July 2014

4. Checks to see whether the user has specified using the inetd daemon for connecting.
5. Makes a connection with the client.
6. Receives the data from the client.
7. Signs and returns the data.
8. Releases namespaces and exits.

Running the GSSAPI Server Example

gss-server takes this form on the command line

gss-server [-port port] [-verbose] [-inetd] [-once] [-logfile file] \

 [-mech mechanism] service-name

■ port is the port number to listen on. If no port is specified, the program uses port 4444 as
the default.

■ -verbose causes messages to be displayed as gss-server runs.
■ -inetd indicates that the program should use the inetd daemon to listen to a port. -inetd

uses stdin and stdout to connect to the client.
■ -once indicates a single-instance connection only.
■ mechanism is the name of a security mechanism to use, such as Kerberos v5. If no

mechanism is specified, the GSS-API uses a default mechanism.
■ service-name is the name of the network service that is requested by the client, such as

telnet, ftp, or login service.

A typical command line might look like the following example:

% gss-server -port 8080 -once -mech kerberos_v5 erebos.eng nfs "hello"

GSSAPI Server Example: main Function

The gss-server main function performs the following tasks:

■ Parses command-line arguments and assigns the arguments to variables
■ Acquires the credentials for the service corresponding to the mechanism
■ Calls the sign_server function, which performs the work involved with signing and

returning the message
■ Releases the credentials that have been acquired
■ Releases the mechanism OID namespace
■ Closes the connection if the connection is still open

GSSAPI Server Example: main Function

Chapter 6 • GSS-API Server Example 105

Note - The source code for this example is also available through the Oracle download center.
See http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html.

EXAMPLE 6-1 gss-server Example: main

int

main(argc, argv)

 int argc;

 char **argv;

{

 char *service_name;

 gss_cred_id_t server_creds;

 OM_uint32 min_stat;

 u_short port = 4444;

 int s;

 int once = 0;

 int do_inetd = 0;

 log = stdout;

 display_file = stdout;

 /* Parse command-line arguments. */

 argc--; argv++;

 while (argc) {

 if (strcmp(*argv, "-port") == 0) {

 argc--; argv++;

 if (!argc) usage();

 port = atoi(*argv);

 } else if (strcmp(*argv, "-verbose") == 0) {

 verbose = 1;

 } else if (strcmp(*argv, "-once") == 0) {

 once = 1;

 } else if (strcmp(*argv, "-inetd") == 0) {

 do_inetd = 1;

 } else if (strcmp(*argv, "-logfile") == 0) {

 argc--; argv++;

 if (!argc) usage();

 log = fopen(*argv, "a");

 display_file = log;

 if (!log) {

 perror(*argv);

 exit(1);

 }

 } else

 break;

 argc--; argv++;

 }

 if (argc != 1)

 usage();

 if ((*argv)[0] == '-')

 usage();

http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html

Acquiring Credentials

106 Developer's Guide to Oracle Solaris 11 Security • July 2014

 service_name = *argv;

 /* Acquire service credentials. */

 if (server_acquire_creds(service_name, &server_creds) < 0)

 return -1;

 if (do_inetd) {

 close(1);

 close(2);

 /* Sign and return message. */

 sign_server(0, server_creds);

 close(0);

 } else {

 int stmp;

 if ((stmp = create_socket(port)) >= 0) {

 do {

 /* Accept a TCP connection */

 if ((s = accept(stmp, NULL, 0)) < 0) {

 perror("accepting connection");

 continue;

 }

 /* This return value is not checked, because there is

 not really anything to do if it fails. */

 sign_server(s, server_creds);

 close(s);

 } while (!once);

 close(stmp);

 }

 }

 /* Close down and clean up. */

 (void) gss_release_cred(&min_stat, &server_creds);

 /*NOTREACHED*/

 (void) close(s);

 return 0;

}

Acquiring Credentials

Credentials are created by the underlying mechanisms rather than by the client application,
server application, or GSS-API. A client program often has credentials that are obtained at
login. A server always needs to acquire credentials explicitly.

The gss-server program has a function, server_acquire_creds, to get the credentials for
the service to be provided. The server_acquire_creds function takes as input the name of
the service and the security mechanism to be used. The server_acquire_creds function then
returns the credentials for the service. The server_acquire_creds function uses the GSS-API
function gss_acquire_cred to get the credentials for the service that the server provides.

Acquiring Credentials

Chapter 6 • GSS-API Server Example 107

Before server_acquire_creds accesses gss_acquire_cred, server_acquire_creds must
complete the following two tasks:

1. Checking for a list of mechanisms and reducing the list to a single mechanism for the
purpose of getting a credential.

If a single credential can be shared by multiple mechanisms, the gss_acquire_cred
function returns credentials for all those mechanisms. Therefore, gss_acquire_cred takes
as input a set of mechanisms. (See “Working With Credentials in GSS-API” on page 72.)
In most cases, however, including this one, a single credential might not work for multiple
mechanisms. In the gss-server program, either a single mechanism is specified on the
command line or else the default mechanism is used. Therefore, the first task is to make
sure that the set of mechanisms that was passed to gss_acquire_cred contains a single
mechanism, default or otherwise, as follows:

if (mechOid != GSS_C_NULL_OID) {

 desiredMechs = &mechOidSet;

 mechOidSet.count = 1;

 mechOidSet.elements = mechOid;

} else

 desiredMechs = GSS_C_NULL_OID_SET;

GSS_C_NULL_OID_SET indicates that the default mechanism should be used.
2. Translating the service name into GSS-API format.

Because gss_acquire_cred takes the service name in the form of a gss_name_t structure,
the name of the service must be imported into that format. The gss_import_name function
performs this translation. Because this function, like all GSS-API functions, requires
arguments to be GSS-API types, the service name has to be copied to a GSS-API buffer
first, as follows:

 name_buf.value = service_name;

 name_buf.length = strlen(name_buf.value) + 1;

 maj_stat = gss_import_name(&min_stat, &name_buf,

 (gss_OID) GSS_C_NT_HOSTBASED_SERVICE, &server_name);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("importing name", maj_stat, min_stat);

 if (mechOid != GSS_C_NO_OID)

 gss_release_oid(&min_stat, &mechOid);

 return -1;

 }

Note again the use of the nonstandard function gss_release_oid.
The input is the service name as a string in name_buf. The output is the pointer to a
gss_name_t structure, server_name. The third argument, GSS_C_NT_HOSTBASED_SERVICE, is
the name type for the string in name_buf. In this case, the name type indicates that the string
should be interpreted as a service of the format service@host.

Acquiring Credentials

108 Developer's Guide to Oracle Solaris 11 Security • July 2014

After these tasks have been performed, the server program can call gss_acquire_cred:

maj_stat = gss_acquire_cred(&min_stat, server_name, 0,

 desiredMechs, GSS_C_ACCEPT,

 server_creds, NULL, NULL);

■ min_stat is the error code returned by the function.
■ server_name is the name of the server.
■ 0 indicates that the program does not need to know the maximum lifetime of the credential.
■ desiredMechs is the set of mechanisms for which this credential applies.
■ GSS_C_ACCEPT means that the credential can be used only to accept security contexts.
■ server_creds is the credential handle to be returned by the function.
■ NULL, NULL indicates that the program does not need to know either the specific

mechanism being employed or the amount of time that the credential will be valid.

The following source code illustrates the server_acquire_creds function.

Note - The source code for this example is also available through the Oracle download center.
See http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html.

EXAMPLE 6-2 Sample Code for server_acquire_creds Function

/*

 * Function: server_acquire_creds

 *

 * Purpose: imports a service name and acquires credentials for it

 *

 * Arguments:

 *

 * service_name (r) the ASCII service name

 mechType (r) the mechanism type to use

 * server_creds (w) the GSS-API service credentials

 *

 * Returns: 0 on success, -1 on failure

 *

 * Effects:

 *

 * The service name is imported with gss_import_name, and service

 * credentials are acquired with gss_acquire_cred. If either operation

 * fails, an error message is displayed and -1 is returned; otherwise,

 * 0 is returned.

 */

int server_acquire_creds(service_name, mechOid, server_creds)

 char *service_name;

 gss_OID mechOid;

 gss_cred_id_t *server_creds;

{

 gss_buffer_desc name_buf;

 gss_name_t server_name;

http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html

Checking for inetd

Chapter 6 • GSS-API Server Example 109

 OM_uint32 maj_stat, min_stat;

 gss_OID_set_desc mechOidSet;

 gss_OID_set desiredMechs = GSS_C_NULL_OID_SET;

 if (mechOid != GSS_C_NULL_OID) {

 desiredMechs = &mechOidSet;

 mechOidSet.count = 1;

 mechOidSet.elements = mechOid;

 } else

 desiredMechs = GSS_C_NULL_OID_SET;

 name_buf.value = service_name;

 name_buf.length = strlen(name_buf.value) + 1;

 maj_stat = gss_import_name(&min_stat, &name_buf,

 (gss_OID) GSS_C_NT_HOSTBASED_SERVICE, &server_name);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("importing name", maj_stat, min_stat);

 if (mechOid != GSS_C_NO_OID)

 gss_release_oid(&min_stat, &mechOid);

 return -1;

 }

 maj_stat = gss_acquire_cred(&min_stat, server_name, 0,

 desiredMechs, GSS_C_ACCEPT,

 server_creds, NULL, NULL);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("acquiring credentials", maj_stat, min_stat);

 return -1;

 }

 (void) gss_release_name(&min_stat, &server_name);

 return 0;

}

Checking for inetd

Having acquired credentials for the service, gss-server checks to see whether the user has
specified inetd. The main function checks for inetd as follows:

if (do_inetd) {

 close(1);

 close(2);

If the user has specified to use inetd, then the program closes the standard output and standard
error. gss-server then calls sign_server on the standard input, which inetd uses to pass
connections. Otherwise, gss-server creates a socket, accepts the connection for that socket
with the TCP function accept, and calls sign_server on the file descriptor that is returned by
accept.

Receiving Data From a Client

110 Developer's Guide to Oracle Solaris 11 Security • July 2014

If inetd is not used, the program creates connections and contexts until the program is
terminated. However, if the user has specified the -once option, the loop terminates after the
first connection.

Receiving Data From a Client
After checking for inetd, the gss-server program then calls sign_server, which does
the main work of the program. sign_server first establishes the context by calling
server_establish_context.

sign_server performs the following tasks:

■ Accepts the context
■ Unwraps the data
■ Signs the data
■ Returns the data

These tasks are described in the subsequent sections. The following source code illustrates the
sign_server function.

Note - The source code for this example is also available through the Oracle download center.
See http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html.

EXAMPLE 6-3 sign_server Function

int sign_server(s, server_creds)

 int s;

 gss_cred_id_t server_creds;

{

 gss_buffer_desc client_name, xmit_buf, msg_buf;

 gss_ctx_id_t context;

 OM_uint32 maj_stat, min_stat;

 int i, conf_state, ret_flags;

 char *cp;

 /* Establish a context with the client */

 if (server_establish_context(s, server_creds, &context,

 &client_name, &ret_flags) < 0)

 return(-1);

 printf("Accepted connection: \"%.*s\"\n",

 (int) client_name.length, (char *) client_name.value);

 (void) gss_release_buffer(&min_stat, &client_name);

 for (i=0; i < 3; i++)

 if (test_import_export_context(&context))

 return -1;

http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html

Receiving Data From a Client

Chapter 6 • GSS-API Server Example 111

 /* Receive the sealed message token */

 if (recv_token(s, &xmit_buf) < 0)

 return(-1);

 if (verbose && log) {

 fprintf(log, "Sealed message token:\n");

 print_token(&xmit_buf);

 }

 maj_stat = gss_unwrap(&min_stat, context, &xmit_buf, &msg_buf,

 &conf_state, (gss_qop_t *) NULL);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("unsealing message", maj_stat, min_stat);

 return(-1);

 } else if (! conf_state) {

 fprintf(stderr, "Warning! Message not encrypted.\n");

 }

 (void) gss_release_buffer(&min_stat, &xmit_buf);

 fprintf(log, "Received message: ");

 cp = msg_buf.value;

 if ((isprint(cp[0]) || isspace(cp[0])) &&

 (isprint(cp[1]) || isspace(cp[1]))) {

 fprintf(log, "\"%.*s\"\n", msg_buf.length, msg_buf.value);

 } else {

 printf("\n");

 print_token(&msg_buf);

 }

 /* Produce a signature block for the message */

 maj_stat = gss_get_mic(&min_stat, context, GSS_C_QOP_DEFAULT,

 &msg_buf, &xmit_buf);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("signing message", maj_stat, min_stat);

 return(-1);

 }

 (void) gss_release_buffer(&min_stat, &msg_buf);

 /* Send the signature block to the client */

 if (send_token(s, &xmit_buf) < 0)

 return(-1);

 (void) gss_release_buffer(&min_stat, &xmit_buf);

 /* Delete context */

 maj_stat = gss_delete_sec_context(&min_stat, &context, NULL);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("deleting context", maj_stat, min_stat);

 return(-1);

 }

 fflush(log);

 return(0);

}

Receiving Data From a Client

112 Developer's Guide to Oracle Solaris 11 Security • July 2014

Accepting a Context

Establishing a context typically involves a series of token exchanges between the client and
the server. Both context acceptance and context initialization should be performed in loops to
maintain program portability. The loop for accepting a context is very similar to the loop for
establishing a context, although in reverse. Compare with “Establishing a Security Context
With the Server” on page 93.

The following source code illustrates the server_establish_context function.

Note - The source code for this example is also available through the Oracle download center.
See http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html.

EXAMPLE 6-4 server_establish_context Function

/*

 * Function: server_establish_context

 *

 * Purpose: establishes a GSS-API context as a specified service with

 * an incoming client, and returns the context handle and associated

 * client name

 *

 * Arguments:

 *

 * s (r) an established TCP connection to the client

 * service_creds (r) server credentials, from gss_acquire_cred

 * context (w) the established GSS-API context

 * client_name (w) the client's ASCII name

 *

 * Returns: 0 on success, -1 on failure

 *

 * Effects:

 *

 * Any valid client request is accepted. If a context is established,

 * its handle is returned in context and the client name is returned

 * in client_name and 0 is returned. If unsuccessful, an error

 * message is displayed and -1 is returned.

 */

int server_establish_context(s, server_creds, context, client_name, ret_flags)

 int s;

 gss_cred_id_t server_creds;

 gss_ctx_id_t *context;

 gss_buffer_t client_name;

 OM_uint32 *ret_flags;

{

 gss_buffer_desc send_tok, recv_tok;

 gss_name_t client;

 gss_OID doid;

 OM_uint32 maj_stat, min_stat, acc_sec_min_stat;

 gss_buffer_desc oid_name;

http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html

Receiving Data From a Client

Chapter 6 • GSS-API Server Example 113

 *context = GSS_C_NO_CONTEXT;

 do {

 if (recv_token(s, &recv_tok) < 0)

 return -1;

 if (verbose && log) {

 fprintf(log, "Received token (size=%d): \n", recv_tok.length);

 print_token(&recv_tok);

 }

 maj_stat =

 gss_accept_sec_context(&acc_sec_min_stat,

 context,

 server_creds,

 &recv_tok,

 GSS_C_NO_CHANNEL_BINDINGS,

 &client,

 &doid,

 &send_tok,

 ret_flags,

 NULL, /* ignore time_rec */

 NULL); /* ignore del_cred_handle */

 (void) gss_release_buffer(&min_stat, &recv_tok);

 if (send_tok.length != 0) {

 if (verbose && log) {

 fprintf(log,

 "Sending accept_sec_context token (size=%d):\n",

 send_tok.length);

 print_token(&send_tok);

 }

 if (send_token(s, &send_tok) < 0) {

 fprintf(log, "failure sending token\n");

 return -1;

 }

 (void) gss_release_buffer(&min_stat, &send_tok);

 }

 if (maj_stat!=GSS_S_COMPLETE && maj_stat!=GSS_S_CONTINUE_NEEDED) {

 display_status("accepting context", maj_stat,

 acc_sec_min_stat);

 if (*context == GSS_C_NO_CONTEXT)

 gss_delete_sec_context(&min_stat, context,

 GSS_C_NO_BUFFER);

 return -1;

 }

 if (verbose && log) {

 if (maj_stat == GSS_S_CONTINUE_NEEDED)

 fprintf(log, "continue needed...\n");

 else

 fprintf(log, "\n");

 fflush(log);

 }

 } while (maj_stat == GSS_S_CONTINUE_NEEDED);

Receiving Data From a Client

114 Developer's Guide to Oracle Solaris 11 Security • July 2014

 /* display the flags */

 display_ctx_flags(*ret_flags);

 if (verbose && log) {

 maj_stat = gss_oid_to_str(&min_stat, doid, &oid_name);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("converting oid->string", maj_stat, min_stat);

 return -1;

 }

 fprintf(log, "Accepted connection using mechanism OID %.*s.\n",

 (int) oid_name.length, (char *) oid_name.value);

 (void) gss_release_buffer(&min_stat, &oid_name);

 }

 maj_stat = gss_display_name(&min_stat, client, client_name, &doid);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("displaying name", maj_stat, min_stat);

 return -1;

 }

 maj_stat = gss_release_name(&min_stat, &client);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("releasing name", maj_stat, min_stat);

 return -1;

 }

 return 0;

}

The sign_server function uses the following source code to call server_establish_context
to accept the context.

/* Establish a context with the client */

 if (server_establish_context(s, server_creds, &context,

 &client_name, &ret_flags) < 0)

 return(-1);

The server_establish_context function first looks for a token that the client sends as part
of the context initialization process. Because, GSS-API does not send or receive tokens itself,
programs must have their own routines for performing these tasks. The server uses recv_token
for receiving the token:

 do {

 if (recv_token(s, &recv_tok) < 0)

 return -1;

Next, server_establish_context calls the GSS-API function gss_accept_sec_context:

 maj_stat = gss_accept_sec_context(&min_stat,

 context,

 server_creds,

 &recv_tok,

 GSS_C_NO_CHANNEL_BINDINGS,

 &client,

 &doid,

 &send_tok,

 ret_flags,

 NULL, /* ignore time_rec */

Receiving Data From a Client

Chapter 6 • GSS-API Server Example 115

 NULL); /* ignore del_cred_handle */

■ min_stat is the error status returned by the underlying mechanism.
■ context is the context being established.
■ server_creds is the credential for the service to be provided (see “Acquiring

Credentials” on page 106).
■ recv_tok is the token received from the client by recv_token.
■ GSS_C_NO_CHANNEL_BINDINGS is a flag indicating not to use channel bindings (see “Using

Channel Bindings in GSS-API” on page 78).
■ client is the ASCII name of the client.
■ oid is the mechanism (in OID format).
■ send_tok is the token to send to the client.
■ ret_flags are various flags indicating whether the context supports a given option, such as

message-sequence-detection.
■ The two NULL arguments indicate that the program does not need to know the length of

time that the context will be valid, or whether the server can act as a client's proxy.

The acceptance loop continues, barring any errors, as long as gss_accept_sec_context
sets maj_stat to GSS_S_CONTINUE_NEEDED. If maj_stat is not equal to that value or to
GSS_S_COMPLETE, a problem exists and the loop exits.

gss_accept_sec_context returns a positive value for the length of send_tok whether a token
exists to send back to the client. The next step is to see a token exists to be sent, and, if so, to
send the token:

 if (send_tok.length != 0) {

 . . .

 if (send_token(s, &send_tok) < 0) {

 fprintf(log, "failure sending token\n");

 return -1;

 }

 (void) gss_release_buffer(&min_stat, &send_tok);

 }

Unwrapping the Message

After accepting the context, the sign_server receives the message that has been sent by the
client. Because the GSS-API does not provide a function for receiving tokens, the program uses
the recv_token function:

if (recv_token(s, &xmit_buf) < 0)

 return(-1);

Because the message might be encrypted, the program uses the GSS-API function gss_unwrap
for unwrapping:

Receiving Data From a Client

116 Developer's Guide to Oracle Solaris 11 Security • July 2014

maj_stat = gss_unwrap(&min_stat, context, &xmit_buf, &msg_buf,

 &conf_state, (gss_qop_t *) NULL);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("unwrapping message", maj_stat, min_stat);

 return(-1);

 } else if (! conf_state) {

 fprintf(stderr, "Warning! Message not encrypted.\n");

 }

 (void) gss_release_buffer(&min_stat, &xmit_buf);

gss_unwrap takes the message that recv_token has placed in xmit_buf, translates the message,
and puts the result in msg_buf. Two arguments to gss_unwrap are noteworthy. conf_state is a
flag to indicate whether confidentiality, that is, encryption, has been applied to this message.
The final NULL indicates that the program does not need to know that the QOP that was used
to protect the message.

Signing and Returning the Message

At this point, the sign_server function needs to sign the message. Signing a message entails
returning the message's Message Integrity Code or MIC to the client. Returning the message
proves that the message was sent and was unwrapped successfully. To obtain the MIC,
sign_server uses the function gss_get_mic:

maj_stat = gss_get_mic(&min_stat, context, GSS_C_QOP_DEFAULT,

 &msg_buf, &xmit_buf);

gss_get_mic looks at the message in msg_buf, produces the MIC, and stores the MIC in
xmit_buf. The server then sends the MIC back to the client with send_token. The client verifies
the MIC with gss_verify_mic. See “Reading and Verifying a Signature Block From a GSS-
API Client” on page 101.

Finally, sign_server performs some cleanup. sign_server releases the GSS-API buffers
msg_buf and xmit_buf with gss_release_buffer. Then sign_server destroys the context with
gss_delete_sec_context.

Using the test_import_export_context Function

GSS-API allows you to export and import contexts. These activities enable you to
share a context between different processes in a multiprocess program. sign_server
contains a proof-of-concept function, test_import_export_context, that illustrates
how exporting and importing contexts works. test_import_export_context does not
pass a context between processes. Instead, test_import_export_context displays the

Receiving Data From a Client

Chapter 6 • GSS-API Server Example 117

amount of time to export and then import a context. Although an artificial function,
test_import_export_context does indicate how to use the GSS-API importing and exporting
functions. test_import_export_context also shows how to use timestamps with regard to
manipulating contexts.

The source code for test_import_export_context is shown in the following example.

Note - The source code for this example is also available through the Oracle download center.
See http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html.

EXAMPLE 6-5 test_import_export_context

int test_import_export_context(context)

 gss_ctx_id_t *context;

{

 OM_uint32 min_stat, maj_stat;

 gss_buffer_desc context_token, copied_token;

 struct timeval tm1, tm2;

 /*

 * Attempt to save and then restore the context.

 */

 gettimeofday(&tm1, (struct timezone *)0);

 maj_stat = gss_export_sec_context(&min_stat, context, &context_token);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("exporting context", maj_stat, min_stat);

 return 1;

 }

 gettimeofday(&tm2, (struct timezone *)0);

 if (verbose && log)

 fprintf(log, "Exported context: %d bytes, %7.4f seconds\n",

 context_token.length, timeval_subtract(&tm2, &tm1));

 copied_token.length = context_token.length;

 copied_token.value = malloc(context_token.length);

 if (copied_token.value == 0) {

 fprintf(log, "Couldn't allocate memory to copy context token.\n");

 return 1;

 }

 memcpy(copied_token.value, context_token.value, copied_token.length);

 maj_stat = gss_import_sec_context(&min_stat, &copied_token, context);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("importing context", maj_stat, min_stat);

 return 1;

 }

 free(copied_token.value);

 gettimeofday(&tm1, (struct timezone *)0);

 if (verbose && log)

 fprintf(log, "Importing context: %7.4f seconds\n",

 timeval_subtract(&tm1, &tm2));

 (void) gss_release_buffer(&min_stat, &context_token);

 return 0;

}

http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html

Cleanup in the GSSAPI Server Example

118 Developer's Guide to Oracle Solaris 11 Security • July 2014

Cleanup in the GSSAPI Server Example

Back in the main function, the application deletes the service credential with
gss_release_cred. If an OID for the mechanism has been specified, the program deletes the
OID with gss_release_oid and exits.

 (void) gss_release_cred(&min_stat, &server_creds);

Chapter 7 • Writing Applications That Use SASL 119

 7 ♦ ♦ ♦ C H A P T E R 7

Writing Applications That Use SASL

SASL (Simple Authentication and Security Layer) is a security framework. SASL, pronounced
“sassel,” provides authentication services and optionally integrity and confidentiality services to
connection-based protocols.
This chapter covers the following topics:

■ “Introduction to Simple Authentication Security Layer (SASL)” on page 119
■ “SASL Example” on page 129
■ “SASL for Service Providers” on page 132

Introduction to Simple Authentication Security Layer
(SASL)

SASL provides developers of applications and shared libraries with mechanisms for
authentication, data integrity-checking, and encryption. SASL enables the developer to code
to a generic API. This approach avoids dependencies on specific mechanisms. SASL is
particularly appropriate for applications that use the IMAP, SMTP, ACAP, and LDAP protocols,
as these protocols all support SASL. SASL is described in RFC 2222.

SASL Library Basics

The SASL library is called libsasl. libsasl is a framework that allows properly written SASL
consumer applications to use any SASL plug-ins that are available on the system. The term
plug-in refers to objects that provide services for SASL. Plug-ins are external to libsasl. SASL
plug-ins can be used for authentication and security, canonicalization of names, and lookup of
auxiliary properties, such as passwords. Cryptographic algorithms are stored in plug-ins rather
than in libsasl.

libsasl provides an application programming interface (API) for consumer applications
and libraries. A service provider interface (SPI) is provided for plug-ins to supply services to
libsasl. libsasl is not aware of the network or the protocol. Accordingly, the application
must take responsibility for sending and receiving data between the client and server.

Introduction to Simple Authentication Security Layer (SASL)

120 Developer's Guide to Oracle Solaris 11 Security • July 2014

SASL uses two important identifiers for users. The authentication ID (authid) is the user
ID for authenticating the user. The authentication ID grants the user access to a system. The
authorization ID (userid) is used to check whether the user is allowed to use a particular
option.

The SASL client application and SASL server application negotiate a common SASL
mechanism and security level. Typically, the SASL server application sends its list of acceptable
authentication mechanisms to the client. The SASL client application can then decide which
authentication mechanism best satisfies its requirements. After this point, the authentication
takes place using the agreed–upon authentication mechanism as a series of client-server
exchanges of the SASL supplied authentication data. This exchange continues until the
authentication successfully completes, fails, or is aborted by the client or the server.

In the process of authentication, the SASL authentication mechanism can negotiate a security
layer. If a security layer is selected, that layer must be used for the duration of the SASL
session.

SASL Architecture

The following figure shows the basic SASL architecture.

FIGURE 7-1 SASL Architecture

Client and server applications make calls to their local copies of libsasl through the SASL
API. libsasl communicates with the SASL mechanisms through the SASL service provider
interface (SPI).

Security Mechanisms

Security mechanism plug-ins provide security services to libsasl. Some typical functions that
are provided by security mechanisms follow:

■ Authentication on the client side
■ Authentication on the server side

Introduction to Simple Authentication Security Layer (SASL)

Chapter 7 • Writing Applications That Use SASL 121

■ Integrity, that is, checking that transmitted data is intact
■ Confidentiality, that is, encrypting and decrypting transmitted data

SASL Security Strength Factor

SSF, the security strength factor, indicates the strength of the SASL protection. If the
mechanism supports a security layer, the client and server negotiate the SSF. The value of the
SSF is based on the security properties that were specified before the SASL negotiation. If a
non-zero SSF is negotiated, both client and server need to use the mechanism's security layer
when the authentication has completed.
SSF is represented by an integer with one of the following values:

■ 0 – No protection.
■ 1 – Integrity checking only.
■ >1 – Supports authentication, integrity and confidentiality. The number represents the

encryption key length.

The confidentiality and integrity operations are performed by the security mechanism. libsasl
coordinates these requests.

Note - In the negotiation, the SASL client selects the mechanism with the maximum SSF.
However, the actual SASL mechanism that is chosen might subsequently negotiate a lower SSF.

Communication in SASL

Applications communicate with libsasl through the libsasl API. libsasl can request
additional information by means of callbacks that are registered by the application. Applications
do not call plug-ins directly, only through libsasl. Plug-ins generally call the libsasl
framework's plug-ins, which then call the application's callbacks. SASL plug-ins can also call
the application directly, although the application does not know whether the call came from a
plug-in or from libsasl.
Callbacks are useful in multiple areas, as follows.

■ libsasl can use callbacks to get information that is needed to complete authentication.
■ libsasl consumer applications can use callbacks to change search paths for plug-ins and

configuration data, to verify files, and to change various default behaviors.
■ Servers can use callbacks to change authorization policies, to supply different password

verification methods, and to get password change information.
■ Clients and servers can use callbacks to specify the language for error messages.

Introduction to Simple Authentication Security Layer (SASL)

122 Developer's Guide to Oracle Solaris 11 Security • July 2014

Applications register two sorts of callbacks: global and session. Additionally, libsasl defines a
number of callback identifiers that are used to register for different sorts of callbacks. If a given
type of callback is not registered, libsasl takes default action.

Session callbacks override global callbacks. If a session callback is specified for a given ID,
the global callback is not called for that session. Some callbacks must be global, because these
callbacks occur outside of sessions.
The following instances require global callbacks:

■ Determination of search paths for plug-ins to load
■ Verification of plug-ins
■ Location of configuration data
■ The logging of error messages
■ Other global configuration of libsasl or its plug-ins

A SASL callback can be registered with a NULL callback function for a given SASL callback
ID. The NULL callback function indicates that the client is equipped to supply the needed data.
All SASL callback IDs start with the prefix SASL_CB_.

SASL provides the following callbacks for use by either a client or a server:

SASL_CB_GETOPT Gets a SASL option. Options modify the behavior of libsasl(3LIB)
and related plug-ins. Can be used by either a client or a server.

SASL_CB_LOG Sets the logging function for libsasl and its plug-ins. The default
behavior is to use syslog.

SASL_CB_GETPATH Gets the colon-separated list of SASL plug-in search paths.
The default SASL plug-in search paths depend on the architecture as
follows:
■ 32-bit SPARC architecture: /usr/lib/sasl
■ 32-bit x86 architecture: /usr/lib/sasl
■ 64-bit SPARC architecture: /usr/lib/sasl/sparcv9
■ x64 architecture: /usr/lib/sasl/amd64

SASL_CB_GETCONF Gets the path to the SASL server's configuration directory. The default is
/etc/sasl.

SASL_CB_LANGUAGESpecifies a comma-separated list of RFC 1766 language codes in order
of preference, for client and server error messages and for client prompts.
The default is i-default.

SASL_CB_VERIFYFILEVerifies the configuration file and plug-in files.

SASL provides the following callbacks for use by clients only:

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Flibsasl-3lib

Introduction to Simple Authentication Security Layer (SASL)

Chapter 7 • Writing Applications That Use SASL 123

SASL_CB_USER Gets the client user name. The user name is the same as the authorization
ID. The LOGNAME environment variable is the default.

SASL_CB_AUTHNAMEGets the client authentication name.

SASL_CB_PASS Gets a client passphrase-based secret.

SASL_CB_ECHOPROMPTGets the result for a given challenge prompt. The input from the client
can be echoed.

SASL_CB_NOECHOPROMPTGets the result for a given challenge prompt. The input from the client
should not be echoed.

SASL_CB_GETREALMSets the realm to be used for authentication.

SASL provides the following callbacks for use by servers only:

SASL_CB_PROXY_POLICYChecks that an authenticated user is authorized to act on behalf of the
specified user. If this callback is not registered, then the authenticated
user and the user to be authorized must be the same. If these IDs are not
the same, then the authentication fails. Use the server application to take
care of nonstandard authorization policies.

SASL_CB_SERVER_USERDB_CHECKPASSVerifies a plain text password against the caller-supplied user database.

SASL_CB_SERVER_USERDB_SETPASSStores a plain text password in the user database

SASL_CB_CANON_USERCalls an application-supplied user canonicalization function.

When the SASL library is first initialized, the server and client declare any necessary global
callbacks. The global callbacks are available prior to and during the SASL sessions. Prior
to initialization, callbacks perform such tasks as loading plug-ins, logging data, and reading
configuration files. At the start of a SASL session, additional callbacks can be declared. Such
callbacks can override global callbacks if necessary.

SASL Connection Contexts

libsasl uses a SASL connection context to maintain the state of each SASL session for both
SASL clients and SASL servers. Each context can be used for only one authentication and
security session at a time.
The maintained state includes the following information:

■ Connection information, such as service, naming and address information, and protocol
flags

■ Callbacks specific to the connection

Introduction to Simple Authentication Security Layer (SASL)

124 Developer's Guide to Oracle Solaris 11 Security • July 2014

■ Security properties for negotiating the SASL SSF
■ State of the authentication along with security layer information

Steps in the SASL Cycle
The following diagram shows steps in the SASL life cycle. The client actions are shown on
the left of the diagram and the server actions on the right side. The arrows in the middle show
interactions between the client and server over an external connection.

FIGURE 7-2 SASL Life Cycle

The sections that follow illustrate the steps in the life cycle.

libsasl Initialization

The client calls sasl_client_init to initialize libsasl for the client's use. The server calls
sasl_server_init to initialize libsasl for server use.

When sasl_client_init is run, the SASL client, the client's mechanisms and the client's
canonicalization plug-in are loaded. Similarly, when sasl_server_init is called, the SASL
server, the server's mechanisms, the server's canonicalization plug-in, and the server's auxprop
plug-in are loaded. After sasl_client_init has been called, additional client plug–ins can be
added by using sasl_client_add_plugin and sasl_canonuser_add_plugin. On the server
side, after sasl_server_init has been called, additional server plug–ins can be added through
sasl_server_add_plugin, sasl_canonuser_add_plugin, and sasl_auxprop_add_plugin.
SASL mechanisms are provided in the Oracle Solaris software in the following directories
according to the architecture:

■ 32-bit SPARC architecture: /usr/lib/sasl

Introduction to Simple Authentication Security Layer (SASL)

Chapter 7 • Writing Applications That Use SASL 125

■ 32-bit x86 architecture: /usr/lib/sasl
■ 64-bit SPARC architecture: /usr/lib/sasl/sparcv9
■ x64 architecture: /usr/lib/sasl/amd64

The SASL_CB_GETPATH callback can be used to override the default location.
At this point, any required global callbacks are set. SASL clients and servers might include the
following callbacks:

■ SASL_CB_GETOPT
■ SASL_CB_LOG
■ SASL_CB_GETPATH
■ SASL_CB_VERIFYFILE

A SASL server might additionally include the SASL_CB_GETCONF callback.

SASL Session Initialization

The server and client use establish the connection through the protocol. To use SASL
for authentication, the server and client create SASL connection contexts by using
sasl_server_new and sasl_client_new respectively. The SASL client and server can use
sasl_setprop to set properties that impose security restrictions on mechanisms. This approach
enables a SASL consumer application to decide the minimum SSF, the maximum SSF, and the
security properties for the specified SASL connection context.

#define SASL_SEC_NOPLAINTEXT 0x0001

#define SASL_SEC_NOACTIVE 0x0002

#define SASL_SEC_NODICTIONARY 0x0004

#define SASL_SEC_FORWARD_SECRECY 0x0008

#define SASL_SEC_NOANONYMOUS 0x0010

#define SASL_SEC_PASS_CREDENTIALS 0x0020

#define SASL_SEC_MUTUAL_AUTH 0x0040

Note - Authentication and a security layer can be provided by the client-server protocol or by
some other mechanism that is external to libsasl. In such a case, sasl_setprop can be used
to set the external authentication ID or the external SSF. For example, consider the case in
which the protocol uses SSL with client authentication to the server. In this case, the external
authentication identity can be the client's subject name. The external SSF can be the key size.

For the server, libsasl determines the available SASL mechanisms according to the security
properties and the external SSF. The client obtains the available SASL mechanisms from the
SASL server through the protocol.

For a SASL server to create a SASL connection context, the server should call
sasl_server_new. An existing SASL connection context that is no longer in use can be reused.
However, the following parameters might need to be reset:

Introduction to Simple Authentication Security Layer (SASL)

126 Developer's Guide to Oracle Solaris 11 Security • July 2014

#define SASL_DEFUSERREALM 3 /* default realm passed to server_new or set with setprop */

#define SASL_IPLOCALPORT 8 /* iplocalport string passed to server_new */

#define SASL_IPREMOTEPORT 9 /* ipremoteport string passed to server_new */

#define SASL_SERVICE 12 /* service passed to sasl_*_new */

#define SASL_SERVERFQDN 13 /* serverFQDN passed to sasl_*_new */

You can modify any of the parameters to sasl_client_new and sasl_server_new except the
callbacks and protocol flags.

The server and client can also establish security policy and set connection specific parameters
by using sasl_setprop to specify the following properties:

#define SASL_SSF_EXTERNAL 100 /* external SSF active (sasl_ssf_t *) */

#define SASL_SEC_PROPS 101 /* sasl_security_properties_t */

#define SASL_AUTH_EXTERNAL 102 /* external authentication ID (const char *)

 */

■ SASL_SSF_EXTERNAL – For setting the strength factor, that is, the number of bits in the
key

■ SASL_SEC_PROPS – For defining security policy
■ SASL_AUTH_EXTERNAL – The external authentication ID

The server can call sasl_listmech to get a list of the available SASL mechanisms that satisfy
the security policy. The client can generally get the list of available mechanisms from the server
in a protocol-dependent way.

The initialization of a SASL session is illustrated in the following diagram. In this diagram and
subsequent diagrams, data checks after transmission over the protocol have been omitted for the
sake of simplicity.

FIGURE 7-3 SASL Session Initialization

SASL Authentication

Authentication takes a variable number of client and server steps depending on the security
mechanism that is used. The SASL client calls sasl_client_start with a list of security

Introduction to Simple Authentication Security Layer (SASL)

Chapter 7 • Writing Applications That Use SASL 127

mechanisms to use. This list typically comes from the server. libsasl selects the best
mechanism to use for this SASL session, according to the available mechanisms and the client's
security policy. The client's security policy controls which mechanisms are permitted. The
selected mechanism is returned by sasl_client_start. Sometimes the security mechanism for
the client sometimes needs additional information for authentication. For registered callbacks,
libsasl calls the specified callback unless the callback function is NULL. If the callback
function is NULL, libsasl returns SASL_INTERACT and a request for needed information.
If SASL_INTERACT is returned, then sasl_client_start should be called with the requested
information.

If sasl_client_start returns SASL_CONTINUE or SASL_OK, the client should send the
selected mechanism with any resulting authentication data to the server. If any other value is
returned, an error has occurred. For example, no mechanism might be available.

The server receives the mechanism that has been selected by the client, along with any
authentication data. The server then calls sasl_server_start to initialize the mechanism
data for this session. sasl_server_start also processes any authentication data. If
sasl_server_start returns SASL_CONTINUE or SASL_OK, the server sends authentication
data. If sasl_server_start returns any other value, an error has occurred such as an
unacceptable mechanism or an authentication failure. The authentication must be aborted. The
SASL context should be either freed or reused.

This part of the authentication process is illustrated in the following diagram.

FIGURE 7-4 SASL Authentication: Sending Client Data

If the server call to sasl_server_start returns SASL_CONTINUE, the server continues to
communicate with the client to get all the necessary authentication information. The number of
subsequent steps depends on the mechanism. If needed, the client calls sasl_client_step to
process the authentication data from the server and to generate a reply. Similarly, the server can
call sasl_server_step to process the authentication from the client and to generate a reply in

Introduction to Simple Authentication Security Layer (SASL)

128 Developer's Guide to Oracle Solaris 11 Security • July 2014

turn. This exchange continues until the authentication is complete or until an error has occurred.
SASL_OK is returned to indicate that the authentication has successfully completed for the
client or server. The SASL mechanism might still have additional data to send to the other side
so the other side can complete authentication. When authentication has been achieved on both
sides, the server and client can inquire about each other's properties.

The following diagram shows the interactions between the server and client to transfer the
additional authentication data.

FIGURE 7-5 SASL Authentication: Processing Server Data

SASL Confidentiality and Integrity

To check for a security layer, use the sasl_getprop(3SASL) function to see if the security
strength factor (SSF) has a value that is greater than 0. If a security layer has been negotiated,
the client and server must use the resulting SSF after successful authentication. Data is
exchanged between the client and server in a similar fashion to authentication. sasl_encode is
applied to data before the data is sent by the protocol to the client or server. On the receiving
end, data is decoded by sasl_decode. If a security layer has not been negotiated, the SASL
connection context is not needed. The context can then be disposed of or reused.

Releasing SASL Sessions

A SASL connection context should only be freed when the session is not to be reused.
sasl_dispose frees the SASL connection context and all associated resources and mechanisms.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Bsasl-getprop-3sasl

SASL Example

Chapter 7 • Writing Applications That Use SASL 129

The SASL connection contexts must be disposed before calling sasl_done. sasl_done is
not responsible for releasing context resources for the SASL connection. See “libsasl
Cleanup” on page 129.

When a SASL session is freed, the associated mechanisms are informed that all state can be
freed. A SASL session should only be freed when the session is not to be reused. Otherwise, the
SASL state can be reused by another session. Both the client and server use sasl_dispose to
free the SASL connection context.

libsasl Cleanup

This step releases all the resources in the SASL library and the plug-ins. The client and server
call sasl_done to release libsasl resources and to unload all the SASL plug-ins. sasl_done
does not release SASL connection contexts. Note that if an application is both a SASL client
and a SASL server, sasl_done releases both the SASL client and SASL server resources. You
cannot release the resources for just the client or the server.

Caution - Libraries should not call sasl_done. Applications should exercise caution when
calling sasl_done to avoid interference with any libraries that might be using libsasl.

SASL Example

This section demonstrates a typical SASL session between a client application and server
application. The example goes through these steps:

1. The client application initializes libsasl.
The client application sets the following global callbacks:
■ SASL_CB_GETREALM
■ SASL_CB_USER
■ SASL_CB_AUTHNAME
■ SASL_CB_PASS
■ SASL_CB_GETPATH
■ SASL_CB_LIST_END

2. The server application initializes libsasl.
The server application sets the following global callbacks:
■ SASL_CB_LOG
■ SASL_CB_LIST_END

SASL Example

130 Developer's Guide to Oracle Solaris 11 Security • July 2014

3. The client creates a SASL connection context, sets the security properties, and requests the
list of available mechanisms from the server.

4. The server creates a SASL connection context, sets the security properties, gets a list of
suitable SASL mechanisms, and sends the list to client.

5. The client receives the list of available mechanisms, chooses a mechanism, and sends the
mechanism choice to the server together with any authentication data.

6. The client and server then exchange SASL data until the authentication and security layer
negotiation is complete.

7. With the authentication complete, the client and server determine whether a security layer
was negotiated. The client encodes a test message. The message is then sent to the server.
The server also determines the user name of the authenticated user and the user's realm.

8. The server receives, decodes, and prints the encoded message.
9. The client calls sasl_dispose to release the client's SASL connection context. The client

then calls sasl_done to release the libsasl resources.
10. The server calls sasl_dispose to release the client connection context.

The dialogue between the client and the server follows. Each call to libsasl is displayed as the
call is made. Each transfer of data is indicated by the sender and receiver. The data is displayed
in encoded form preceded by the source: C: for the client and S:for server. The source code for
both applications is provided in the Appendix E, “Source Code for SASL Example”.

Client % doc-sample-client

*** Calling sasl_client_init() to initialize libsasl for client use ***

*** Calling sasl_client_new() to create client SASL connection context ***

*** Calling sasl_setprop() to set sasl context security properties ***

Waiting for mechanism list from server...

Server % doc-sample-server digest-md5

*** Calling sasl_server_init() to initialize libsasl for server use ***

*** Calling sasl_server_new() to create server SASL connection context ***

*** Calling sasl_setprop() to set sasl context security properties ***

Forcing use of mechanism digest-md5

Sending list of 1 mechanism(s)

S: ZGlnZXN0LW1kNQ==

Client S: ZGlnZXN0LW1kNQ==

received 10 byte message

got 'digest-md5'

Choosing best mechanism from: digest-md5

*** Calling sasl_client_start() ***

Using mechanism DIGEST-MD5

Sending initial response...

C: RElHRVNULU1ENQ==

Waiting for server reply...

Server C: RElHRVNULU1ENQ==

got 'DIGEST-MD5'

*** Calling sasl_server_start() ***

Sending response...

S: bm9uY2U9IklicGxhRHJZNE4Z1gyVm5lQzl5MTZOYWxUOVcvanUrcmp5YmRqaHM\

SASL Example

Chapter 7 • Writing Applications That Use SASL 131

sbT0iam0xMTQxNDIiLHFvcD0iYXV0aCxhdXRoLWludCxhdXRoLWNvbmYiLGNpcGhlcj0ic\

QwLHJjNC01NixyYzQiLG1heGJ1Zj0yMDQ4LGNoYXJzZXQ9dXRmLTgsYWxnb3JpdGhtPW1k\

XNz

Waiting for client reply...

Client S: bm9uY2U9IklicGxhRHJZNE4Z1gyVm5lQzl5MTZOYWxUOVcvanUrcmp5YmRqaHM\

sbT0iam0xMTQxNDIiLHFvcD0iYXV0aCxhdXRoLWludCxhdXRoLWNvbmYiLGNpcGhlcj0ic\

QwLHJjNC01NixyYzQiLG1heGJ1Zj0yMDQ4LGNoYXJzZXQ9dXRmLTgsYWxnb3JpdGhtPW1k\

XNz

received 171 byte message

got 'nonce="IbplaDrY4N4szhgX2VneC9y16NalT9W/ju+rjybdjhs=",\

realm="jm114142",qop="auth,auth-int,auth-conf",cipher="rc4-40,rc4-56,\

rc4",maxbuf=2048,charset=utf-8,algorithm=md5-sess'

*** Calling sasl_client_step() ***

Please enter your authorization name : zzzz

Please enter your authentication name : zzzz

Please enter your password : zz

*** Calling sasl_client_step() ***

Sending response...

C: dXNlcm5hbWU9Inp6enoiLHJlYWxtPSJqbTExNDE0MiIsbm9uY2U9IklicGxhRHJZNE4\

yVm5lQzl5MTZOYWxUOVcvanUrcmp5YmRqaHM9Iixjbm9uY2U9InlqZ2hMVmhjRFJMa0Fob\

tDS0p2WVUxMUM4V1NycjJVWm5IR2Vkclk9IixuYz0wMDAwMDAwMSxxb3A9YXV0aC1jb25m\

Ghlcj0icmM0IixtYXhidWY9MjA0OCxkaWdlc3QtdXJpPSJyY21kLyIscmVzcG9uc2U9OTY\

ODI1MmRmNzY4YTJjYzkxYjJjZDMyYTk0ZWM=

Waiting for server reply...

Server C: dXNlcm5hbWU9Inp6enoiLHJlYWxtPSJqbTExNDE0MiIsbm9uY2U9IklicGxhRHJZNE4\

yVm5lQzl5MTZOYWxUOVcvanUrcmp5YmRqaHM9Iixjbm9uY2U9InlqZ2hMVmhjRFJMa0Fob\

tDS0p2WVUxMUM4V1NycjJVWm5IR2Vkclk9IixuYz0wMDAwMDAwMSxxb3A9YXV0aC1jb25m\

Ghlcj0icmM0IixtYXhidWY9MjA0OCxkaWdlc3QtdXJpPSJyY21kLyIscmVzcG9uc2U9OTY\

ODI1MmRmNzY4YTJjYzkxYjJjZDMyYTk0ZWM=

got 'username="zzzz",realm="jm114142",\

nonce="IbplaDrY4N4szhgX2VneC9y16NalT9W/ju+rjybdjhs=",\

cnonce="yjghLVhcDRLkAhoirwKCKJvYU11C8WSrr2UZnHGedrY=", \

nc=00000001,qop=auth-conf,cipher="rc4",maxbuf=2048,digest-uri="rcmd/",\

response=966e978252df768a2cc91b2cd32a94ec'

*** Calling sasl_server_step() ***

Sending response...

S: cnNwYXV0aD0yYjEzMzRjYzU4NTE4MTEwOWM3OTdhMjUwYjkwMzk3OQ==

Waiting for client reply...

Client S: cnNwYXV0aD0yYjEzMzRjYzU4NTE4MTEwOWM3OTdhMjUwYjkwMzk3OQ==

received 40 byte message

got 'rspauth=2b1334cc585181109c797a250b903979'

*** Calling sasl_client_step() ***

C:

Negotiation complete

*** Calling sasl_getprop() ***

Username: zzzz

SSF: 128

Waiting for encoded message...

Server Waiting for client reply...

C: got '' *** Calling sasl_server_step() ***

Negotiation complete

*** Calling sasl_getprop() to get username, realm, ssf ***

Username: zzzz

SASL for Service Providers

132 Developer's Guide to Oracle Solaris 11 Security • July 2014

Realm: 22c38

SSF: 128

*** Calling sasl_encode() *** sending encrypted message 'srv message 1'

S: AAAAHvArjnAvDFuMBqAAxkqdumzJB6VD1oajiwABAAAAAA==

Client S: AAAAHvArjnAvDFuMBqAAxkqdumzJB6VD1oajiwABAAAAAA==

received 34 byte message

got ''

*** Calling sasl_decode() ***

received decoded message 'srv message 1'

*** Calling sasl_encode() ***

sending encrypted message 'client message 1'

C: AAAAIRdkTEMYOn9X4NXkxPc3OTFvAZUnLbZANqzn6gABAAAAAA==

*** Calling sasl_dispose() to release client SASL connection context ***

*** Calling sasl_done() to release libsasl resources ***

Server Waiting for encrypted message...

C: AAAAIRdkTEMYOn9X4NXkxPc3OTFvAZUnLbZANqzn6gABAAAAAA==

got ''

*** Calling sasl_decode() ***

received decoded message 'client message 1'

*** Calling sasl_dispose() to release client SASL connection context ***

SASL for Service Providers

This section describes how to create plug-ins for providing mechanisms and other services to
SASL applications.

Note - Due to export regulations, the Oracle Solaris SASL SPI does not support a security layer
for non- Oracle Solaris client/server mechanism plug-ins. As a result, non- Oracle Solaris client/
server mechanism plug-ins cannot offer integrity or privacy services. Oracle Solaris client/
server mechanism plug-ins do not have this restriction.

SASL Plug-in Overview

The SASL service provider interface (SPI) enables communication between plug-ins and the
libsasl library. SASL plug-ins are typically implemented as shared libraries. A single shared
library can one or more SASL plug-ins of different types. Plug-ins that are in shared libraries
are opened dynamically by libsasl through the dlopen(3C) function.

Plug-ins can also be statically bound to an application that calls libsasl. These kinds
of plug-ins are loaded through either the sasl_client_add_plugin function or the
sasl_server_add_plugin function, depending on whether the application is a client or server.
A SASL plug-in in the Oracle Solaris operating system has the following requirements:

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Adlopen-3c

SASL for Service Providers

Chapter 7 • Writing Applications That Use SASL 133

■ A plug-in in a shared library must be in a valid executable object file, preferably with the
.so file extension.

■ The plug-in must be in a location that can be verified. The SASL_CB_VERIFYFILE
callback is used to verify plug-ins.

■ The plug– in must contain the proper entry points.
■ The version of the plug-in for the SASL client must match the version of the

corresponding plug-in for the SASL server.
■ The plug-in needs to be able to be initialized successfully.
■ The binary type of the plug-in must match the binary type for libsasl.

SASL plug-ins fall into four categories:

■ Client mechanism plug-in
■ Server mechanism plug-in
■ Canonicalization plug-in
■ Auxprop plug-in

The sasl_client_init function causes SASL clients to load any available client plug-ins.
The sasl_server_init function causes SASL servers to load the server, canonicalization, and
auxprop plug-ins. All plug-ins are unloaded when sasl_done is called.

To locate plug-ins, libsasl uses either the SASL_CB_GETPATH callback function or the
default path. SASL_CB_GETPATH returns a colon-separated list of directories to be searched
for plug-ins. If the SASL consumer specifies a SASL_CB_GETPATH callback, then libsasl
uses the returned path for searching. Otherwise, the SASL consumer can use the default path
that corresponds to the binary type.
The following list shows the default path and binary type correspondence:

■ 64-bit SPARC architecture: /usr/lib/sasl/sparcv9
■ x64 architecture: /usr/lib/sasl/amd64
■ 32-bit SPARC architecture: /usr/lib/sasl
■ 32-bit x86 architecture: /usr/lib/sasl

As part of the loading process, libsasl calls the latest, supported version of the plug-in. The
plug-in returns the version and a structure that describes the plug-in. If the version checks out,
libsasl loads the plug-in. The current version number is SASL_UTILS_VERSION.

After a plug-in has been initialized, subsequent communication between the plug-in
and libsasl takes place through structures that have to be established. Plug–ins use the
sasl_utils_t structure to call libsasl.

The libsasl library uses entry points in the following structures to communicate with plug-ins:

■ sasl_out_params_t

SASL for Service Providers

134 Developer's Guide to Oracle Solaris 11 Security • July 2014

■ sasl_client_params_t

■ sasl_server_params_t

■ sasl_client_plug_t

■ sasl_server_plug_t

■ sasl_canonuser_plug_t

■ sasl_auxprop_plug_t

The source code for these structures can be found in the SASL header files. The structures are
described in the following section.

Important Structures for SASL Plug-ins

Communication between libsasl and plug-ins is accomplished through the following
structures:

■ sasl_utils_t – The sasl_utils_t structure contains a number of utility functions, along
with the three contexts.
This structure contains a number of utility functions that serve as a convenience for plug-
in writers. Many of the functions are pointers to public interfaces in libsasl. Plug–ins do
not need to call libsasl directly, unless for some reason the plug-in needs to be a SASL
consumer.

libsasl creates three contexts for sasl_utils_t:
■ sasl_conn_t *conn

■ sasl_rand_t *rpool

■ void *getopt_context

In some cases, such as loading plug-ins, the conn variable in sasl_utils_t is not
actually associated with a connection. In other cases, conn is the SASL consumer's SASL
connection context. The rpool variable is used for random number generation functions.
getopt_context is the context that should be used with the getopt function.

See sasl_getopt_t(3SASL), sasl_log_t(3SASL), and
sasl_getcallback_t(3SASL).

■ sasl_out_params_t – libsasl creates the sasl_out_params_t structure and passes the
structure to mech_step in the client or server. This structure communicates the following
information to libsasl: authentication status, the authid, the authzid, maxbuf, the
negotiated ssf, and information for encoding and decoding data.

■ sasl_client_params_t – The sasl_client_params_t structure is used by libsasl
to pass the client state to a SASL client mechanism. The client mechanism's
mech_new, mech_step, and mech_idle entry points are used to send this state data. The
canon_user_client entry point also requires client state to be passed along.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Bsasl-getopt-t-3sasl
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Bsasl-log-t-3sasl
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Bsasl-getcallback-t-3sasl

SASL for Service Providers

Chapter 7 • Writing Applications That Use SASL 135

■ sasl_server_params_t – The sasl_server_params_t structure performs a similar
function to sasl_client_params_t on the server side.

Client Plug-ins

Client plug-ins are used to manage the client-side of a SASL negotiation. Client plug-ins are
usually packaged with the corresponding server plug-ins. A client plug-in contains one or more
client-side SASL mechanisms. Each SASL client mechanism supports authentication, and
optionally integrity and confidentiality.
Each SASL client mechanism provides information on that mechanism's capabilities:

■ Maximum SSF
■ Maximum security flags
■ Plug-in features
■ Callbacks and prompt IDs for using the plug-in

Client plug-ins must export sasl_client_plug_init. libsasl calls sasl_client_plug_init
to initialize the plug-in for the client. The plug-in returns a sasl_client_plug_t structure.

The sasl_client_plug_t provides the following entry points for libsasl to call the
mechanism:

■ mech_new – The client starts a connection by calling sasl_client_start, which uses
mech_new. mech_new performs initialization that is specific to the mechanism. If necessary,
a connection context is allocated.

■ mech_step – mech_step can be called by sasl_client_start and sasl_client_step.
mech_step performs authentication on the client side after mech_new has been called.
mech_step returns SASL_OK if authentication is successful. SASL_CONTINUE is
returned if more data is required. A SASL error code is returned if authentication fails.
If an error occurs, then seterror is called. If the authentication is successful, mech_step
must return the sasl_out_params_t structure with the relevant security layer information
and callbacks. The canon_user function is part of this structure. canon_user must be
called when the client receives the authentication and authorization IDs.

■ mech_dispose – mech_dispose is called when the context can be safely closed.
mech_dispose is called by sasl_dispose.

■ mech_free – mech_free is called when libsasl shuts down. Any remaining global state
for the plug-in is freed by mech_free.

Server Plug-ins

Server plug-ins are used to manage the server-side of a SASL negotiation. Server plug-ins are
usually packaged with the corresponding client plug-ins. A server plug-in contains one or more

SASL for Service Providers

136 Developer's Guide to Oracle Solaris 11 Security • July 2014

server-side SASL mechanisms. Each SASL server mechanism supports authentication, and
optionally integrity and confidentiality.
Each SASL server mechanism provides information on that mechanism's capabilities:

■ Maximum SSF
■ Maximum security flags
■ Plug-in features
■ Callbacks and prompt IDs for using the plug-in

Server plug-ins must export sasl_server_plug_init. libsasl calls sasl_server_plug_init
to initialize the plug-in for the server. The plug-in returns a sasl_server_plug_t structure.

The sasl_server_plug_t structure provides the following entry points for libsasl to call the
mechanism:

■ mech_new – The server starts a connection by calling sasl_server_start, which uses
mech_new. mech_new performs initialization that is specific to the mechanism. If necessary,
mech_new allocates a connection context.

■ mech_step – mech_step can be called by sasl_server_start and sasl_server_step.
mech_step performs authentication on the server-side after mech_new has been called.
mech_step returns SASL_OK if authentication is successful. SASL_CONTINUE is
returned if more data is required. A SASL error code is returned if authentication fails.
If an error occurs, then seterror is called. If the authentication is successful, mech_step
must return the sasl_out_params_t structure with the relevant security layer information
and callbacks. The canon_user function is part of this structure. canon_user must be
called when the server receives the authentication and authorization IDs. Calling the
canon_user function causes propctx to be filled in. Any required auxiliary property
requests should be performed before the authentication is canonicalized. Authorization ID
lookups are performed after the authentication is canonicalized.

The mech_step function must fill any related sasl_out_params_t fields before SASL_OK
is returned. These fields perform the following functions:
■ doneflag – Indicates a complete exchange
■ maxoutbuf – Indicates maximum output size for a security layer
■ mech_ssf – Supplied SSF for the security layer
■ encode – Called by sasl_encode, sasl_encodev, and sasl_decode
■ decode – Called by sasl_encode, sasl_encodev, and sasl_decode
■ encode_context – Called by sasl_encode, sasl_encodev, and sasl_decode
■ decode_context – Called by sasl_encode, sasl_encodev, and sasl_decode

■ mech_dispose – mech_dispose is called when the context can be safely closed.
mech_dispose is called by sasl_dispose.

■ mech_free – mech_free is called when libsasl shuts down. Any remaining global state
for the plug-in is freed by mech_free.

SASL for Service Providers

Chapter 7 • Writing Applications That Use SASL 137

■ setpass sets a user's password. setpass enables a mechanism to have an internal
password.

■ mech_avail is called by sasl_listmech to check if a mechanism is available for a given
user. mech_avail can create a new context and thus avoid a call to mech_new. Use this
method to create a context as long as performance is not affected.

User Canonicalization Plug-ins

A canonicalization plug-in provides support for alternate canonicalization of authentication and
authorization names for both the client and server-side. The sasl_canonuser_plug_init is
used to load canonicalization plug-ins.
A canonicalization plug-in has the following requirements:

■ The canonicalized name must be copied to the output buffers.
■ The same input buffer can be used as an output buffer.
■ A canonicalization plug-in must function in cases where only authentication IDs or

authorization IDs exist.

User canonicalization plug-ins must export a sasl_canonuser_init function. The
sasl_canonuser_init function must return sasl_canonuser_plug_t to establish the
necessary entry points. User canonicalization plug-ins must implement at least one of the
canon_user_client or canon_user_server members of the sasl_canonuser_plug_t structure.

Auxiliary Property (auxprop) Plug-ins

Auxprop plug-ins provide support for the lookup of auxiliary properties for both authid
and authzid for a SASL server. For example, an application might want to look up the user
password for an internal authentication. The sasl_auxprop_plug_init function is used to
initialize auxprop plug-ins and returns the sasl_auxpropr_plug_t structure.

To implement an auxprop plug-in successfully, the auxprop_lookup member of the
sasl_auxprop_plug_t structure must be implemented. The auxprop_lookup function is called
after canonicalization of the user name, with the canonicalized user name. The plug-in can then
do any lookups that are needed for the requested auxiliary properties.

Note - Oracle Corporation does not currently provide auxprop plug-ins.

SASL Plug-in Development Guidelines
This section provides some additional pointers for developing SASL plug-ins.

SASL for Service Providers

138 Developer's Guide to Oracle Solaris 11 Security • July 2014

Error Reporting in SASL Plug-ins

Good error reporting can help in tracking down authentication problems and in other
debugging. Developers of plug-ins are encouraged to use the sasl_seterror callback in the
sasl_utils_t structure to supply detailed error information for a given connection.

Memory Allocation in SASL Plug-ins

The general rule for allocating memory in SASL is to free any memory that you have allocated
when that memory is no longer needed. Following this rule improves performance and
portability, and prevents memory leaks.

Setting the SASL Negotiation Sequence

A plug-in mechanism can set the order in which a client and server conduct a SASL
conversation through the following flags:

■ SASL_FEAT_WANT_CLIENT_FIRST – The client side begins the interchange.
■ SASL_FEAT_WANT_SERVER_LAST – The server sends the final data to the client.

If neither flag is set, the mechanism plug-in sets the order internally. In this case, the
mechanism must check both the client and server for data that needs to be sent. Note that
the situation where the client sends first is only possible when the protocol permits an initial
response.

The case in which the server sends last requires that the plug-in set *serverout when the step
function returns SASL_OK. Those mechanisms that never have the server send last must set
*serverout to NULL. Those mechanisms that always have the server send last need to point
*serverout to the success data.

Chapter 8 • Introduction to the Oracle Solaris Cryptographic Framework 139

 8 ♦ ♦ ♦ C H A P T E R 8

Introduction to the Oracle Solaris Cryptographic
Framework

The Oracle Solaris cryptographic framework is an architecture that enables applications in the
Oracle Solaris operating system to use or provide cryptographic services. All interactions with
the framework are based on the RSA Security Inc. PKCS#11 Cryptographic Token Interface
(Cryptoki). PKCS#11 is a product by RSA Laboratories, the research arm of RSA Security Inc.
This chapter presents the following topics on the Oracle Solaris cryptographic framework:

■ “Overview of the Cryptographic Framework” on page 140
■ “Components of the Cryptographic Framework” on page 141
■ “What Cryptography Developers Need to Know” on page 142

Oracle Solaris Cryptography Terminology

An application, library, or kernel module that obtains cryptographic services is called a
consumer. An application that provides cryptographic services to consumers through the
framework is referred to as a provider and also as a plug–in. The software that implements
a cryptographic operation is called a mechanism. A mechanism is not just the algorithm but
includes the way in which the algorithm is to be applied. For example, the DES algorithm when
applied to authentication is considered a separate mechanism. DES when applied to block-by-
block encryption would be a different mechanism.

A token is the abstraction of a device that can perform cryptography. In addition, tokens can
store information for use in cryptographic operations. A single token can support one or more
mechanisms. Tokens can represent hardware, as in an accelerator board. Tokens that represent
pure software are referred to as soft tokens. A token can be plugged into a slot, which continues
the physical metaphor. A slot is the connecting point for applications that use cryptographic
services.

In addition to specific slots for providers, the Oracle Solaris implementation provides a special
slot called the metaslot. The metaslot is a component of the Oracle Solaris cryptographic
framework library (libpkcs11.so). The metaslot serves as a single virtual slot with the
combined capabilities of all tokens and slots that have been installed in the framework.

Overview of the Cryptographic Framework

140 Developer's Guide to Oracle Solaris 11 Security • July 2014

Effectively, the metaslot enables an application to transparently connect with any available
cryptographic service through a single slot. When an application requests a cryptographic
service, the metaslot points to the most appropriate slot, which simplifies the process of
selecting a slot. In some cases, a different slot might be required, in which case the application
must perform a separate search explicitly. The metaslot is automatically enabled and can only
be disabled through explicit action by the system administrator.

A session is a connection between an application that use cryptographic services and a token.
The PKCS #11 standard uses two kinds of objects: token objects and session objects. Session
objects are ephemeral, that is, objects that last only for the duration of a session. Objects that
persist beyond the length of a session are referred to as token objects.

The default location for token objects is $HOME/.sunw/pkcs11_softtoken. Alternatively,
token objects can be stored in $SOFTTOKEN_DIR/pkcs11_softtoken. Private token objects are
protected by personal identification numbers (PIN). To create or change a token object requires
that the user be authenticated, unless the user is accessing a private token object.

Overview of the Cryptographic Framework

The cryptographic framework is the portion of the Oracle Solaris OS that provides
cryptographic services from Oracle Corporation and from third-party suppliers. The framework
provides various services:

■ Message encryption and message digest
■ Message authentication codes (MACs)
■ Digital signing
■ Application programmer interfaces (APIs) for accessing cryptographic services
■ Service provider interfaces (SPIs) for providing cryptographic services
■ An administration command for managing cryptographic resources

The following figure provides an overview of the cryptographic framework. The light gray
shading in the figure indicates the user-level portion of the cryptographic framework. The dark
gray shading represents the kernel-level portion of the framework. Private software is indicated
by a background with diagonal striping.

Components of the Cryptographic Framework

Chapter 8 • Introduction to the Oracle Solaris Cryptographic Framework 141

FIGURE 8-1 Overview of the Oracle Solaris Cryptographic Framework

Components of the Cryptographic Framework

The components of the cryptographic framework are described as follows.

■ libpkcs11.so – The framework provides access through the RSA Security Inc. PKCS #11
Cryptographic Token Interface (Cryptoki). Applications need to link to the libpkcs11.so
library, which implements the RSA PKCS #11 of the standard.

■ Pluggable interface – The pluggable interface is the service provider interface (SPI)
for PKCS #11 cryptographic services that are provided by Oracle Corporation and third-
party developers. Providers are user-level libraries. Providers are implemented through
encryption services that are available from either hardware or software.

■ pkcs11_softtoken.so – A private shared object that contains user-level cryptographic
mechanisms that are provided by Oracle Corporation The pkcs11_softtoken(5)
library implements the RSA PKCS #11 v2.11 of the standard.

■ pkcs11_kernel.so – The private shared object used to access kernel-level cryptographic
mechanisms. pkcs11_kernel(5) implements the RSA PKCS#11 v2.11 specification.
pkcs11_kernel.so offers a PKCS#11 user interface for cryptographic services that are
plugged into the kernel's service provider interface.

■ /dev/crypto pseudo device driver – The private pseudo device driver for using kernel-
level cryptographic mechanisms. This information is provided to avoid inadvertent
deletion of the pseudo device driver.

■ Scheduler / load balancer – The kernel software that is responsible for coordinating use,
load balancing, and dispatching of the cryptographic service requests.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN5pkcs11-softtoken-5
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN5pkcs11-kernel-5

What Cryptography Developers Need to Know

142 Developer's Guide to Oracle Solaris 11 Security • July 2014

■ Kernel programmer interface – The interface for kernel-level consumers of
cryptographic services. The IPSec protocol and the kerberos GSS mechanism are typical
cryptographic consumers.

Note - This interface is only available through a special contract with Oracle Corporation Send
email to solaris-crypto-req_ww@oracle.com for more information.

■ Oracle HW and SW cryptographic providers – Kernel-level cryptographic services that
are provided by Oracle Corporation HW refers to hardware cryptographic services such as
accelerator boards. SW refers to kernel modules that provide cryptographic services, such
as an implementation of a cryptographic algorithm.

■ Kernel cryptographic framework daemon – The private daemon that is responsible for
managing system resources for cryptographic operations. The daemon is also responsible
for verifying cryptographic providers.

■ Module verification library – A private library used to verify the integrity and
authenticity of all binaries that the Oracle Solaris cryptographic framework is importing.

■ elfsign – A utility that can verify the signature of binaries, that is, elf objects, that plug
into the Oracle Solaris cryptographic framework.

■ /dev/cryptoadm pseudo device driver – The private pseudo device driver used
by cryptoadm(1M) for administering kernel-level cryptographic mechanisms. This
information is provided to avoid inadvertent deletion of the pseudo device driver.

■ cryptoadm – A user-level command for administrators to manage cryptographic services.
A typical cryptoadm task is listing cryptographic providers and their capabilities.
Disabling and enabling cryptographic mechanisms according to security policy is also
performed with cryptoadm.

What Cryptography Developers Need to Know
This section describes the requirements to develop the four types of applications that can plug
into the Oracle Solaris cryptographic framework.

Requirements for Developers of User-Level
Consumers

To develop a user-level consumer, do all of the following:

■ Include <security/cryptoki.h>.
■ Make all calls through the PKCS #11 interfaces only.
■ Link with libpkcs11.so.

What Cryptography Developers Need to Know

Chapter 8 • Introduction to the Oracle Solaris Cryptographic Framework 143

■ Libraries should not call the C_Finalize function.

See Chapter 9, “Writing User–Level Cryptographic Applications” for more information.

Requirements for Developers of Kernel-Level
Consumers

To develop a kernel-level consumer, do all of the following:

■ Include <sys/crypto/common.h> and <sys/crypto/api.h>.
■ Make all calls through the kernel programming interface.

144 Developer's Guide to Oracle Solaris 11 Security • July 2014

Chapter 9 • Writing User–Level Cryptographic Applications 145

 9 ♦ ♦ ♦ C H A P T E R 9

Writing User–Level Cryptographic Applications

This chapter explains how to develop user–level applications and providers that use the PKCS
#11 functions for cryptography.
The following topics are covered:

■ “PKCS #11 Function List” on page 146
■ “Functions for Using PKCS #11” on page 146
■ “Message Digest Example” on page 153
■ “Symmetric Encryption Example” on page 156
■ “Sign and Verify Example” on page 160
■ “Random Byte Generation Example” on page 166

For more information on the cryptographic framework, refer to Chapter 8, “Introduction to the
Oracle Solaris Cryptographic Framework”.

Overview of the Cryptoki Library

User-level applications in the Oracle Solaris cryptographic framework access PKCS #11
functions through the cryptoki library, which is provided in the libpkcs11.so module. The
pkcs11_softtoken.so module is a PKCS #11 Soft Token implementation that is provided by
Oracle Corporation to supply cryptographic mechanisms. The soft token plug-in is the default
source of mechanisms. Cryptographic mechanisms can also be supplied through third-party
plug-ins.

This section lists the PKCS #11 functions and return values that are supported by the soft token.
Return codes vary depending on the providers that are plugged into the framework. The section
also describes some common functions. For a complete description of all the elements in the
cryptoki library, refer to libpkcs11(3LIB) or to PKCS #11: Cryptographic Token Interface
Standard on the RSA Laboratories web site.

Ensure that direct bindings are used for all providers. See ld(1) and the “Oracle Solaris 11.2
Linkers and Libraries Guide ” for more information.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Flibpkcs11-3lib
http://www.rsa.com/rsalabs/node.asp?id=2133
http://www.rsa.com/rsalabs/node.asp?id=2133
http://www.rsa.com/rsalabs/
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSLLG
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSLLG

Overview of the Cryptoki Library

146 Developer's Guide to Oracle Solaris 11 Security • July 2014

PKCS #11 Function List

The following list shows the categories of PKCS #11 functions that are supported by
pkcs11_softtoken.so in the Oracle Solaris cryptographic framework with the associated
functions:

■ General purpose – C_Initialize, C_Finalize, C_GetInfo, C_GetFunctionList
■ Session management – C_OpenSession, C_CloseSession, C_GetSessionInfo,

C_CloseAllSessions, C_Login, C_Logout
■ Slot and token management – C_GetSlotList, C_GetSlotInfo, C_GetMechanismList,

C_GetMechanismInfo, C_SetPIN
■ Encryption and decryption – C_EncryptInit, C_Encrypt, C_EncryptUpdate,

C_EncryptFinal, C_DecryptInit, C_Decrypt, C_DecryptUpdate, C_DecryptFinal
■ Message digesting – C_DigestInit, C_Digest, C_DigestKey, C_DigestUpdate,

C_DigestFinal

■ Signing and applying MAC – C_Sign, C_SignInit, C_SignUpdate, C_SignFinal,
C_SignRecoverInit, C_SignRecover

■ Signature verification – C_Verify, C_VerifyInit, C_VerifyUpdate, C_VerifyFinal,
C_VerifyRecoverInit, C_VerifyRecover

■ Dual-purpose cryptographic functions – C_DigestEncryptUpdate,
C_DecryptDigestUpdate, C_SignEncryptUpdate, C_DecryptVerifyUpdate

■ Random number generation – C_SeedRandom, C_GenerateRandom
■ Object management – C_CreateObject, C_DestroyObject, C_CopyObject,

C_FindObjects, C_FindObjectsInit, C_FindObjectsFinal, C_GetAttributeValue,
C_SetAttributeValue

■ Key management – C_GenerateKey, C_GenerateKeyPair, C_DeriveKey

Functions for Using PKCS #11

This section provides descriptions of the following functions for using PKCS #11:

■ “PKCS #11 Functions: C_Initialize” on page 147
■ “PKCS #11 Functions: C_GetInfo” on page 147
■ “PKCS #11 Functions: C_GetSlotList” on page 148
■ “PKCS #11 Functions: C_GetTokenInfo” on page 148
■ “PKCS #11 Functions: C_OpenSession” on page 149
■ “PKCS #11 Functions: C_GetMechanismList” on page 150

Overview of the Cryptoki Library

Chapter 9 • Writing User–Level Cryptographic Applications 147

Note - All the PKCS #11 functions are available from libpkcs11.so library. You do not have to
use the C_GetFunctionList function to get the list of functions available.

PKCS #11 Functions: C_Initialize

C_Initialize initializes the PKCS #11 library. C_Initialize uses the following syntax:

C_Initialize(CK_VOID_PTR pInitArgs);

pInitArgs is either the null value NULL_PTR or else a pointer to a CK_C_INITIALIZE_ARGS
structure. With NULL_PTR, the library uses the Oracle Solaris mutexes as locking primitives
to arbitrate the access to internal shared structures between multiple threads. Note that
the Oracle Solaris cryptographic framework does not accept mutexes. Because this
implementation of the cryptoki library handles multithreading safely and efficiently, using
NULL_PTR is recommended. An application can also use pInitArgs to set flags such as
CKF_LIBRARY_CANT_CREATE_OS_THREADS. C_Finalize signals that the application is
through with the PKCS #11 library.

Note - C_Finalize should never be called by libraries. By convention, applications are
responsible for calling C_Finalize to close out a session.

In addition to CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, and CKR_OK, C_Initialize uses the following return values:

■ CKR_ARGUMENTS_BAD

■ CKR_CANT_LOCK

■ CKR_CRYPTOKI_ALREADY_INITIALIZED (not fatal)

PKCS #11 Functions: C_GetInfo

C_GetInfo uses manufacturer and version information about the cryptoki library. C_GetInfo
uses the following syntax:

C_GetInfo(CK_INFO_PTR pInfo);

C_GetInfo returns the following values:

■ cryptokiVersion = 2, 11

■ manufacturerID = Oracle Corporation.

Overview of the Cryptoki Library

148 Developer's Guide to Oracle Solaris 11 Security • July 2014

In addition to CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, and CKR_OK, C_GetInfo gets the following return values:

■ CKR_ARGUMENTS_BAD

■ CKR_CRYPTOKI_NOT_INITIALIZED

PKCS #11 Functions: C_GetSlotList

C_GetSlotList uses a list of available slots. If no additional cryptographic providers have been
installed other than pkcs11_softtoken.so, then C_GetSlotList returns the default slot only.
C_GetSlotList uses the following syntax:

C_GetSlotList(CK_BBOOL tokenPresent, CK_SLOT_ID_PTR pSlotList,
CK_ULONG_PTR pulCount);

When set to TRUE, tokenPresent limits the search to those slots whose tokens are present.

When pSlotList is set to NULL_PTR, C_GetSlotlist returns the number of slots only.
pulCount is a pointer to the location to receive the slot count.

When pSlotList points to the buffer to receive the slots, *pulCount is set to the maximum
expected number of CK_SLOT_ID elements. On return, *pulCount is set to the actual number
of CK_SLOT_ID elements.

Typically, PKCS #11 applications call C_GetSlotList twice. The first time, C_GetSlotList
is called to get the number of slots for memory allocation. The second time, C_GetSlotList is
called to retrieve the slots.

Note - The order of the slots is not guaranteed and can vary with each load of the PKCS #11
library.

In addition to CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, and CKR_OK, C_GetSlotlist gets the following return values:

■ CKR_ARGUMENTS_BAD

■ CKR_BUFFER_TOO_SMALL

■ CKR_CRYPTOKI_NOT_INITIALIZED

PKCS #11 Functions: C_GetTokenInfo

C_GetTokenInfo gets information about a specific token. C_GetTokenInfo uses the following
syntax:

C_GetTokenInfo(CK_SLOT_ID slotID, CK_TOKEN_INFO_PTR pInfo);

Overview of the Cryptoki Library

Chapter 9 • Writing User–Level Cryptographic Applications 149

slotID identifies the slot for the token. slotID has to be a valid ID that was returned by
C_GetSlotList. pInfo is a pointer to the location to receive the token information.

If pkcs11_softtoken.so is the only installed provider, then C_GetTokenInfo returns the
following fields and values:

■ label – Sun Software PKCS#11 softtoken.
■ flags – CKF_DUAL_CRYPTO_OPERATIONS, CKF_TOKEN_INITIALIZED, CKF_RNG,

CKF_USER_PIN_INITIALIZED, and CKF_LOGIN_REQUIRED, which are set to 1.
■ ulMaxSessionCount – Set to CK_EFFECTIVELY_INFINITE.
■ ulMaxRwSessionCount - Set to CK_EFFECTIVELY_INFINITE.
■ ulMaxPinLen – Set to 256.
■ ulMinPinLen – Set to 1.
■ ulTotalPublicMemory set to CK_UNAVAILABLE_INFORMATION.
■ ulFreePublicMemory set to CK_UNAVAILABLE_INFORMATION.
■ ulTotalPrivateMemory set to CK_UNAVAILABLE_INFORMATION.
■ ulFreePrivateMemory set to CK_UNAVAILABLE_INFORMATION.

In addition to CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, and CKR_OK, C_GetSlotlist gets the following return values:

■ CKR_ARGUMENTS_BAD

■ CKR_BUFFER_TOO_SMALL

■ CKR_CRYPTOKI_NOT_INITIALIZED

■ CKR_SLOT_ID_INVALID

The following return values are relevant for plug-ins with hardware tokens:

■ CKR_DEVICE_ERROR

■ CKR_DEVICE_MEMORY

■ CKR_DEVICE_REMOVED

■ CKR_TOKEN_NOT_PRESENT

■ CKR_TOKEN_NOT_RECOGNIZED

PKCS #11 Functions: C_OpenSession

C_OpenSession enables an application to start a cryptographic session with a specific token in a
specific slot. C_OpenSession uses the following syntax:

C_OpenSession(CK_SLOT_ID slotID, CK_FLAGS flags, CK_VOID_PTR pApplication,
CK_NOTIFY Notify, CK_SESSION_HANDLE_PTR phSession);

slotID identifies the slot. flags indicates whether the session is read-write or read-only.
pApplication is a pointer that is defined by the application for use in callbacks. Notify holds

Overview of the Cryptoki Library

150 Developer's Guide to Oracle Solaris 11 Security • July 2014

the address of an optional callback function. phSession is a pointer to the location of the
session handle.
In addition to CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, and CKR_OK, C_OpenSession gets the following return values:

■ CKR_ARGUMENTS_BAD

■ CKR_CRYPTOKI_NOT_INITIALIZED

■ CKR_SLOT_ID_INVALID

■ CKR_TOKEN_WRITE_PROTECTED (occurs with write-protected tokens)

The following return values are relevant for plug-ins with hardware tokens:

■ CKR_DEVICE_ERROR

■ CKR_DEVICE_MEMORY

■ CKR_DEVICE_REMOVED

■ CKR_SESSION_COUNT

■ CKR_SESSION_PARALLEL_NOT_SUPPORTED

■ CKR_SESSION_READ_WRITE_SO_EXISTS

■ CKR_TOKEN_NOT_PRESENT

■ CKR_TOKEN_NOT_RECOGNIZED

PKCS #11 Functions: C_GetMechanismList

C_GetMechanismList gets a list of mechanism types that are supported by the specified token.
C_GetMechanismList uses the following syntax:

C_GetMechanismList(CK_SLOT_ID slotID, CK_MECHANISM_TYPE_PTR pMechanismList,
CK_ULONG_PTR pulCount);

slotID identifies the slot for the token. pulCount is a pointer to the location to receive
the number of mechanisms. When pMechanismList is set to NULL_PTR, the number of
mechanisms is returned in *pulCount. Otherwise, *pulCount must be set to the size of the list
and pMechanismList points to the buffer to hold the list.

When PKCS #11 Soft Token is plugged in, C_GetMechanismList returns the following list of
supported mechanisms:

■ CKM_AES_CBC

■ CKM_AES_CBC_PAD

■ CKM_AES_ECB

■ CKM_AES_KEY_GEN

■ CKM_DES_CBC

■ CKM_DES_CBC_PAD

Overview of the Cryptoki Library

Chapter 9 • Writing User–Level Cryptographic Applications 151

■ CKM_DES_ECB

■ CKM_DES_KEY_GEN

■ CKM_DES_MAC

■ CKM_DES_MAC_GENERAL

■ CKM_DES3_CBC

■ CKM_DES3_CBC_PAD

■ CKM_DES3_ECB

■ CKM_DES3_KEY_GEN

■ CKM_DH_PKCS_DERIVE

■ CKM_DH_PKCS_KEY_PAIR_GEN

■ CKM_DSA

■ CKM_DSA_KEY_PAIR_GEN

■ CKM_DSA_SHA_1

■ CKM_MD5

■ CKM_MD5_KEY_DERIVATION

■ CKM_MD5_RSA_PKCS

■ CKM_MD5_HMAC

■ CKM_MD5_HMAC_GENERAL

■ CKM_PBE_SHA1_RC4_128

■ CKM_PKCS5_PBKD2

■ CKM_RC4

■ CKM_RC4_KEY_GEN

■ CKM_RSA_PKCS

■ CKM_RSA_X_509

■ CKM_RSA_PKCS_KEY_PAIR_GEN

■ CKM_SHA_1

■ CKM_SHA_1_HMAC_GENERAL

■ CKM_SHA_1_HMAC

■ CKM_SHA_1_KEY_DERIVATION

■ CKM_SHA_1_RSA_PKCS

■ CKM_SSL3_KEY_AND_MAC_DERIVE

■ CKM_SSL3_MASTER_KEY_DERIVE

■ CKM_SSL3_MASTER_KEY_DERIVE_DH

■ CKM_SSL3_MD5_MAC

■ CKM_SSL3_PRE_MASTER_KEY_GEN

■ CKM_SSL3_SHA1_MAC

Overview of the Cryptoki Library

152 Developer's Guide to Oracle Solaris 11 Security • July 2014

■ CKM_TLS_KEY_AND_MAC_DERIVE

■ CKM_TLS_MASTER_KEY_DERIVE

■ CKM_TLS_MASTER_KEY_DERIVE_DH

■ CKM_TLS_PRE_MASTER_KEY_GEN

In addition to CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, and CKR_OK, C_GetSlotlist uses the following return values:

■ CKR_ARGUMENTS_BAD

■ CKR_BUFFER_TOO_SMALL

■ CKR_CRYPTOKI_NOT_INITIALIZED

■ CKR_SLOT_ID_INVALID

The following return values are relevant for plug-ins with hardware tokens:

■ CKR_DEVICE_ERROR

■ CKR_DEVICE_MEMORY

■ CKR_DEVICE_REMOVED

■ CKR_TOKEN_NOT_PRESENT

■ CKR_TOKEN_NOT_RECOGNIZED

Extended PKCS #11 Functions
In addition to the standard PKCS #11 functions, two convenience functions are supplied with
the Oracle Solaris cryptographic framework:

■ “Extended PKCS #11 Functions: SUNW_C_GetMechSession” on page 152
■ “Extended PKCS #11 Functions: SUNW_C_KeyToObject” on page 153

Extended PKCS #11 Functions: SUNW_C_GetMechSession

SUNW_C_GetMechSession is a convenience function that initializes the Oracle Solaris
cryptographic framework. The function then starts a session with the specified mechanism.
SUNW_C_GetMechSession uses the following syntax:

SUNW_C_GetMechSession(CK_MECHANISM_TYPE mech, C\
K_SESSION_HANDLE_PTR hSession)

The mech parameter is used to specify the mechanism to be used. hSession is a pointer to the
session location.

Internally, SUNW_C_GetMechSession calls C_Initialize to initialize the cryptoki library.
SUNW_C_GetMechSession next calls C_GetSlotList and C_GetMechanismInfo to search through

User-Level Cryptographic Application Examples

Chapter 9 • Writing User–Level Cryptographic Applications 153

the available slots for a token with the specified mechanism. When the mechanism is found,
SUNW_C_GetMechSession calls C_OpenSession to open a session.

The SUNW_C_GetMechSession only needs to be called once. However, calling
SUNW_C_GetMechSession multiple times does not cause any problems.

Extended PKCS #11 Functions: SUNW_C_KeyToObject

SUNW_C_KeyToObject creates a secret key object. The calling program must specify the
mechanism to be used and raw key data. Internally, SUNW_C_KeyToObject determines the type
of key for the specified mechanism. A generic key object is created through C_CreateObject.
SUNW_C_KeyToObject next calls C_GetSessionInfo and C_GetMechanismInfo to get the slot
and mechanism. C_SetAttributeValue then sets the attribute flag for the key object according
to the type of mechanism.

User-Level Cryptographic Application Examples
This section includes the following examples:

■ “Message Digest Example” on page 153
■ “Symmetric Encryption Example” on page 156
■ “Sign and Verify Example” on page 160
■ “Random Byte Generation Example” on page 166

Message Digest Example

This example uses PKCS #11 functions to create a digest from an input file. The example
performs the following steps:

1. Specifies the digest mechanism.
In this example, the CKM_MD5 digest mechanism is used.

2. Finds a slot that is capable of the specified digest algorithm.

This example uses the Oracle Solaris convenience function SUNW_C_GetMechSession.
SUNW_C_GetMechSession opens the cryptoki library, which holds all the PKCS
#11 functions that are used in the Oracle Solaris cryptographic framework.
SUNW_C_GetMechSession then finds the slot with the desired mechanism. The session
is then started. Effectively, this convenience function replaces the C_Initialize call,
the C_OpenSession call, and any code needed to find a slot that supports the specified
mechanism.

User-Level Cryptographic Application Examples

154 Developer's Guide to Oracle Solaris 11 Security • July 2014

3. Obtains cryptoki information.
This part is not actually needed to create the message digest, but is included to demonstrate
use of the C_GetInfo function. This example gets the manufacturer ID. The other
information options retrieve version and library data.

4. Conducts a digest operation with the slot.
The message digest is created in this task through these steps:
a. Opening the input file.
b. Initializing the digest operation by calling C_DigestInit.
c. Processing the data a piece at a time with C_DigestUpdate.
d. Ending the digest process by using C_DigestFinal to get the complete digest.

5. Ends the session.

The program uses C_CloseSession to close the session and C_Finalize to close the library.

The source code for the message digest example is shown in the following example.

EXAMPLE 9-1 Creating a Message Digest Using PKCS #11 Functions

#include <stdio.h>

#include <fcntl.h>

#include <errno.h>

#include <sys/types.h>

#include <security/cryptoki.h>

#include <security/pkcs11.h>

#define BUFFERSIZ 8192

#define MAXDIGEST 64

/* Calculate the digest of a user supplied file. */

void

main(int argc, char **argv)

{

 CK_BYTE digest[MAXDIGEST];

 CK_INFO info;

 CK_MECHANISM mechanism;

 CK_SESSION_HANDLE hSession;

 CK_SESSION_INFO Info;

 CK_ULONG ulDatalen = BUFFERSIZ;

 CK_ULONG ulDigestLen = MAXDIGEST;

 CK_RV rv;

 CK_SLOT_ID SlotID;

 int i, bytes_read = 0;

 char inbuf[BUFFERSIZ];

 FILE *fs;

 int error = 0;

 /* Specify the CKM_MD5 digest mechanism as the target */

 mechanism.mechanism = CKM_MD5;

 mechanism.pParameter = NULL_PTR;

 mechanism.ulParameterLen = 0;

User-Level Cryptographic Application Examples

Chapter 9 • Writing User–Level Cryptographic Applications 155

 /* Use SUNW convenience function to initialize the cryptoki

 * library, and open a session with a slot that supports

 * the mechanism we plan on using. */

 rv = SUNW_C_GetMechSession(mechanism.mechanism, &hSession);

 if (rv != CKR_OK) {

 fprintf(stderr, "SUNW_C_GetMechSession: rv = 0x%.8X\n", rv);

 exit(1);

 }

 /* Get cryptoki information, the manufacturer ID */

 rv = C_GetInfo(&info);

 if (rv != CKR_OK) {

 fprintf(stderr, "WARNING: C_GetInfo: rv = 0x%.8X\n", rv);

 }

 fprintf(stdout, "Manufacturer ID = %s\n", info.manufacturerID);

 /* Open the input file */

 if ((fs = fopen(argv[1], "r")) == NULL) {

 perror("fopen");

 fprintf(stderr, "\n\tusage: %s filename>\n", argv[0]);

 error = 1;

 goto exit_session;

 }

 /* Initialize the digest session */

 if ((rv = C_DigestInit(hSession, &mechanism)) != CKR_OK) {

 fprintf(stderr, "C_DigestInit: rv = 0x%.8X\n", rv);

 error = 1;

 goto exit_digest;

 }

 /* Read in the data and create digest of this portion */

 while (!feof(fs) && (ulDatalen = fread(inbuf, 1, BUFFERSIZ, fs)) > 0) {

 if ((rv = C_DigestUpdate(hSession, (CK_BYTE_PTR)inbuf,

 ulDatalen)) != CKR_OK) {

 fprintf(stderr, "C_DigestUpdate: rv = 0x%.8X\n", rv);

 error = 1;

 goto exit_digest;

 }

 bytes_read += ulDatalen;

 }

 fprintf(stdout, "%d bytes read and digested!!!\n\n", bytes_read);

 /* Get complete digest */

 ulDigestLen = sizeof (digest);

 if ((rv = C_DigestFinal(hSession, (CK_BYTE_PTR)digest,

 &ulDigestLen)) != CKR_OK) {

 fprintf(stderr, "C_DigestFinal: rv = 0x%.8X\n", rv);

 error = 1;

 goto exit_digest;

 }

 /* Print the results */

 fprintf(stdout, "The value of the digest is: ");

 for (i = 0; i < ulDigestLen; i++) {

 fprintf(stdout, "%.2x", digest[i]);

 }

User-Level Cryptographic Application Examples

156 Developer's Guide to Oracle Solaris 11 Security • July 2014

 fprintf(stdout, "\nDone!!!\n");

exit_digest:

 fclose(fs);

exit_session:

 (void) C_CloseSession(hSession);

exit_program:

 (void) C_Finalize(NULL_PTR);

 exit(error);

}

Symmetric Encryption Example

Example 9-2 creates a key object for encryption with the DES algorithm in the CBC mode. This
source code performs the following steps:

1. Declares key materials.
Defines DES and initialization vector. The initialization vector is declared statically for
demonstration purposes only. Initialization vectors should always be defined dynamically
and never reused.

2. Defines a key object.
For this task, you have to set up a template for the key.

3. Finds a slot that is capable of the specified encryption mechanism.

This example uses the Oracle Solaris convenience function SUNW_C_GetMechSession.
SUNW_C_GetMechSession opens the cryptoki library, which holds all the PKCS
#11 functions that are used in the Oracle Solaris cryptographic framework.
SUNW_C_GetMechSession then finds the slot with the desired mechanism. The session
is then started. Effectively, this convenience function replaces the C_Initialize call,
the C_OpenSession call, and any code needed to find a slot that supports the specified
mechanism.

4. Conducts an encryption operation in the slot.
The encryption is performed in this task through these steps:
a. Opening the input file.
b. Creating an object handle for the key.
c. Setting the encryption mechanism to CKM_DES_CBC_PAD by using the mechanism

structure.
d. Initializing the encryption operation by calling C_EncryptInit.
e. Processing the data a piece at a time with C_EncryptUpdate.
f. Ending the encryption process by using C_EncryptFinal to get the last portion of the

encrypted data.

User-Level Cryptographic Application Examples

Chapter 9 • Writing User–Level Cryptographic Applications 157

5. Conducts a decryption operation in the slot.
The decryption is performed in this task through these steps. The decryption is provided for
testing purposes only.
a. Initializes the decryption operation by calling C_DecryptInit.
b. Processes the entire string with C_Decrypt.

6. Ends the session.

The program uses C_CloseSession to close the session and C_Finalize to close the library.

The source code for the symmetric encryption example is shown in the following example.

EXAMPLE 9-2 Creating an Encryption Key Object Using PKCS #11 Functions

#include <stdio.h>

#include <fcntl.h>

#include <errno.h>

#include <sys/types.h>

#include <security/cryptoki.h>

#include <security/pkcs11.h>

#define BUFFERSIZ 8192

/* Declare values for the key materials. DO NOT declare initialization

 * vectors statically like this in real life!! */

uchar_t des_key[] = { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef};

uchar_t des_cbc_iv[] = { 0x12, 0x34, 0x56, 0x78, 0x90, 0xab, 0xcd, 0xef};

/* Key template related definitions. */

static CK_BBOOL truevalue = TRUE;

static CK_BBOOL falsevalue = FALSE;

static CK_OBJECT_CLASS class = CKO_SECRET_KEY;

static CK_KEY_TYPE keyType = CKK_DES;

/* Example encrypts and decrypts a file provided by the user. */

void

main(int argc, char **argv)

{

 CK_RV rv;

 CK_MECHANISM mechanism;

 CK_OBJECT_HANDLE hKey;

 CK_SESSION_HANDLE hSession;

 CK_ULONG ciphertext_len = 64, lastpart_len = 64;

 long ciphertext_space = BUFFERSIZ;

 CK_ULONG decrypttext_len;

 CK_ULONG total_encrypted = 0;

 CK_ULONG ulDatalen = BUFFERSIZ;

 int i, bytes_read = 0;

 int error = 0;

 char inbuf[BUFFERSIZ];

 FILE *fs;

 uchar_t ciphertext[BUFFERSIZ], *pciphertext, decrypttext[BUFFERSIZ];

User-Level Cryptographic Application Examples

158 Developer's Guide to Oracle Solaris 11 Security • July 2014

 /* Set the key object */

 CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof (class) },

 {CKA_KEY_TYPE, &keyType, sizeof (keyType) },

 {CKA_TOKEN, &falsevalue, sizeof (falsevalue) },

 {CKA_ENCRYPT, &truevalue, sizeof (truevalue) },

 {CKA_VALUE, &des_key, sizeof (des_key) }

 };

 /* Set the encryption mechanism to CKM_DES_CBC_PAD */

 mechanism.mechanism = CKM_DES_CBC_PAD;

 mechanism.pParameter = des_cbc_iv;

 mechanism.ulParameterLen = 8;

 /* Use SUNW convenience function to initialize the cryptoki

 * library, and open a session with a slot that supports

 * the mechanism we plan on using. */

 rv = SUNW_C_GetMechSession(mechanism.mechanism, &hSession);

 if (rv != CKR_OK) {

 fprintf(stderr, "SUNW_C_GetMechSession: rv = 0x%.8X\n", rv);

 exit(1);

 }

 /* Open the input file */

 if ((fs = fopen(argv[1], "r")) == NULL) {

 perror("fopen");

 fprintf(stderr, "\n\tusage: %s filename>\n", argv[0]);

 error = 1;

 goto exit_session;

 }

 /* Create an object handle for the key */

 rv = C_CreateObject(hSession, template,

 sizeof (template) / sizeof (CK_ATTRIBUTE),

 &hKey);

 if (rv != CKR_OK) {

 fprintf(stderr, "C_CreateObject: rv = 0x%.8X\n", rv);

 error = 1;

 goto exit_session;

 }

 /* Initialize the encryption operation in the session */

 rv = C_EncryptInit(hSession, &mechanism, hKey);

 if (rv != CKR_OK) {

 fprintf(stderr, "C_EncryptInit: rv = 0x%.8X\n", rv);

 error = 1;

 goto exit_session;

 }

 /* Read in the data and encrypt this portion */

 pciphertext = &ciphertext[0];

 while (!feof(fs) && (ciphertext_space > 0) &&

 (ulDatalen = fread(inbuf, 1, ciphertext_space, fs)) > 0) {

 ciphertext_len = ciphertext_space;

User-Level Cryptographic Application Examples

Chapter 9 • Writing User–Level Cryptographic Applications 159

 /* C_EncryptUpdate is only being sent one byte at a

 * time, so we are not checking for CKR_BUFFER_TOO_SMALL.

 * Also, we are checking to make sure we do not go

 * over the alloted buffer size. A more robust program

 * could incorporate realloc to enlarge the buffer

 * dynamically. */

 rv = C_EncryptUpdate(hSession, (CK_BYTE_PTR)inbuf, ulDatalen,

 pciphertext, &ciphertext_len);

 if (rv != CKR_OK) {

 fprintf(stderr, "C_EncryptUpdate: rv = 0x%.8X\n", rv);

 error = 1;

 goto exit_encrypt;

 }

 pciphertext += ciphertext_len;

 total_encrypted += ciphertext_len;

 ciphertext_space -= ciphertext_len;

 bytes_read += ulDatalen;

 }

 if (!feof(fs) || (ciphertext_space < 0)) {

 fprintf(stderr, "Insufficient space for encrypting the file\n");

 error = 1;

 goto exit_encrypt;

 }

 /* Get the last portion of the encrypted data */

 lastpart_len = ciphertext_space;

 rv = C_EncryptFinal(hSession, pciphertext, &lastpart_len);

 if (rv != CKR_OK) {

 fprintf(stderr, "C_EncryptFinal: rv = 0x%.8X\n", rv);

 error = 1;

 goto exit_encrypt;

 }

 total_encrypted += lastpart_len;

 fprintf(stdout, "%d bytes read and encrypted. Size of the "

 "ciphertext: %d!\n\n", bytes_read, total_encrypted);

 /* Print the encryption results */

 fprintf(stdout, "The value of the encryption is:\n");

 for (i = 0; i < ciphertext_len; i++) {

 if (ciphertext[i] < 16)

 fprintf(stdout, "0%x", ciphertext[i]);

 else

 fprintf(stdout, "%2x", ciphertext[i]);

 }

 /* Initialize the decryption operation in the session */

 rv = C_DecryptInit(hSession, &mechanism, hKey);

 /* Decrypt the entire ciphertext string */

 decrypttext_len = sizeof (decrypttext);

 rv = C_Decrypt(hSession, (CK_BYTE_PTR)ciphertext, total_encrypted,

 decrypttext, &decrypttext_len);

 if (rv != CKR_OK) {

 fprintf(stderr, "C_Decrypt: rv = 0x%.8X\n", rv);

User-Level Cryptographic Application Examples

160 Developer's Guide to Oracle Solaris 11 Security • July 2014

 error = 1;

 goto exit_encrypt;

 }

 fprintf(stdout, "\n\n%d bytes decrypted!!!\n\n", decrypttext_len);

 /* Print the decryption results */

 fprintf(stdout, "The value of the decryption is:\n%s", decrypttext);

 fprintf(stdout, "\nDone!!!\n");

exit_encrypt:

 fclose(fs);

exit_session:

 (void) C_CloseSession(hSession);

exit_program:

 (void) C_Finalize(NULL_PTR);

 exit(error);

}

Sign and Verify Example

The example in this section generates an RSA key pair. The key pair is used to sign and verify a
simple string. The example goes through the following steps:

1. Defines a key object.
2. Sets the public key template.
3. Sets the private key template.
4. Creates a sample message.
5. Specifies the genmech mechanism, which generates the key pair.
6. Specifies the smech mechanism, which signs the key pair.
7. Initializes the cryptoki library.
8. Finds a slot with mechanisms for signing, verifying, and key pair generation.

The task uses a function that is called getMySlot, which performs the following steps:
a. Calling the function C_GetSlotList to get a list of the available slots.

C_GetSlotList is called twice, as the PKCS #11 convention suggests. C_GetSlotList
is called the first time to get the number of slots for memory allocation. C_GetSlotList
is called the second time to retrieve the slots.

b. Finding a slot that can supply the desired mechanisms.

For each slot, the function calls GetMechanismInfo to find mechanisms for signing
and for key pair generation. If the mechanisms are not supported by the slot,
GetMechanismInfo returns an error. If GetMechanismInfo returns successfully, then

User-Level Cryptographic Application Examples

Chapter 9 • Writing User–Level Cryptographic Applications 161

the mechanism flags are checked to make sure the mechanisms can perform the needed
operations.

9. Opens the session by calling C_OpenSession.
10. Generates the key pair by using C_GenerateKeyPair.
11. Displays the public key with C_GetAttributeValue – For demonstration purposes only.
12. Signing is started with C_SignInit and completed with C_Sign.
13. Verification is started with C_VerifyInit and completed with C_Verify.
14. Closes the session.

The program uses C_CloseSession to close the session and C_Finalize to close the library.

The source code for the sign-and-verify example follows.

EXAMPLE 9-3 Signing and Verifying Text Using PKCS #11 Functions

#include <stdio.h>

#include <fcntl.h>

#include <errno.h>

#include <sys/types.h>

#include <security/cryptoki.h>

#include <security/pkcs11.h>

#define BUFFERSIZ 8192

/* Define key template */

static CK_BBOOL truevalue = TRUE;

static CK_BBOOL falsevalue = FALSE;

static CK_ULONG modulusbits = 1024;

static CK_BYTE public_exponent[] = {3};

boolean_t GetMySlot(CK_MECHANISM_TYPE sv_mech, CK_MECHANISM_TYPE kpgen_mech,

 CK_SLOT_ID_PTR pslot);

/* Example signs and verifies a simple string, using a public/private

 * key pair. */

void

main(int argc, char **argv)

{

 CK_RV rv;

 CK_MECHANISM genmech, smech;

 CK_SESSION_HANDLE hSession;

 CK_SESSION_INFO sessInfo;

 CK_SLOT_ID slotID;

 int error, i = 0;

 CK_OBJECT_HANDLE privatekey, publickey;

 /* Set public key. */

 CK_ATTRIBUTE publickey_template[] = {

 {CKA_VERIFY, &truevalue, sizeof (truevalue)},

 {CKA_MODULUS_BITS, &modulusbits, sizeof (modulusbits)},

 {CKA_PUBLIC_EXPONENT, &public_exponent,

 sizeof (public_exponent)}

User-Level Cryptographic Application Examples

162 Developer's Guide to Oracle Solaris 11 Security • July 2014

 };

 /* Set private key. */

 CK_ATTRIBUTE privatekey_template[] = {

 {CKA_SIGN, &truevalue, sizeof (truevalue)},

 {CKA_TOKEN, &falsevalue, sizeof (falsevalue)},

 {CKA_SENSITIVE, &truevalue, sizeof (truevalue)},

 {CKA_EXTRACTABLE, &truevalue, sizeof (truevalue)}

 };

 /* Create sample message. */

 CK_ATTRIBUTE getattributes[] = {

 {CKA_MODULUS_BITS, NULL_PTR, 0},

 {CKA_MODULUS, NULL_PTR, 0},

 {CKA_PUBLIC_EXPONENT, NULL_PTR, 0}

 };

 CK_ULONG messagelen, slen, template_size;

 boolean_t found_slot = B_FALSE;

 uchar_t *message = (uchar_t *)"Simple message for signing & verifying.";

 uchar_t *modulus, *pub_exponent;

 char sign[BUFFERSIZ];

 slen = BUFFERSIZ;

 messagelen = strlen((char *)message);

 /* Set up mechanism for generating key pair */

 genmech.mechanism = CKM_RSA_PKCS_KEY_PAIR_GEN;

 genmech.pParameter = NULL_PTR;

 genmech.ulParameterLen = 0;

 /* Set up the signing mechanism */

 smech.mechanism = CKM_RSA_PKCS;

 smech.pParameter = NULL_PTR;

 smech.ulParameterLen = 0;

 /* Initialize the CRYPTOKI library */

 rv = C_Initialize(NULL_PTR);

 if (rv != CKR_OK) {

 fprintf(stderr, "C_Initialize: Error = 0x%.8X\n", rv);

 exit(1);

 }

 found_slot = GetMySlot(smech.mechanism, genmech.mechanism, &slotID);

 if (!found_slot) {

 fprintf(stderr, "No usable slot was found.\n");

 goto exit_program;

 }

 fprintf(stdout, "selected slot: %d\n", slotID);

 /* Open a session on the slot found */

 rv = C_OpenSession(slotID, CKF_SERIAL_SESSION, NULL_PTR, NULL_PTR,

 &hSession);

User-Level Cryptographic Application Examples

Chapter 9 • Writing User–Level Cryptographic Applications 163

 if (rv != CKR_OK) {

 fprintf(stderr, "C_OpenSession: rv = 0x%.8X\n", rv);

 error = 1;

 goto exit_program;

 }

 fprintf(stdout, "Generating keypair....\n");

 /* Generate Key pair for signing/verifying */

 rv = C_GenerateKeyPair(hSession, &genmech, publickey_template,

 (sizeof (publickey_template) / sizeof (CK_ATTRIBUTE)),

 privatekey_template,

 (sizeof (privatekey_template) / sizeof (CK_ATTRIBUTE)),

 &publickey, &privatekey);

 if (rv != CKR_OK) {

 fprintf(stderr, "C_GenerateKeyPair: rv = 0x%.8X\n", rv);

 error = 1;

 goto exit_session;

 }

 /* Display the publickey. */

 template_size = sizeof (getattributes) / sizeof (CK_ATTRIBUTE);

 rv = C_GetAttributeValue(hSession, publickey, getattributes,

 template_size);

 if (rv != CKR_OK) {

 /* not fatal, we can still sign/verify if this failed */

 fprintf(stderr, "C_GetAttributeValue: rv = 0x%.8X\n", rv);

 error = 1;

 } else {

 /* Allocate memory to hold the data we want */

 for (i = 0; i < template_size; i++) {

 getattributes[i].pValue =

 malloc (getattributes[i].ulValueLen *

 sizeof(CK_VOID_PTR));

 if (getattributes[i].pValue == NULL) {

 int j;

 for (j = 0; j < i; j++)

 free(getattributes[j].pValue);

 goto sign_cont;

 }

 }

 /* Call again to get actual attributes */

 rv = C_GetAttributeValue(hSession, publickey, getattributes,

 template_size);

 if (rv != CKR_OK) {

 /* not fatal, we can still sign/verify if failed */

 fprintf(stderr,

 "C_GetAttributeValue: rv = 0x%.8X\n", rv);

 error = 1;

 } else {

 /* Display public key values */

 fprintf(stdout, "Public Key data:\n\tModulus bits: "

 "%d\n",

User-Level Cryptographic Application Examples

164 Developer's Guide to Oracle Solaris 11 Security • July 2014

 *((CK_ULONG_PTR)(getattributes[0].pValue)));

 fprintf(stdout, "\tModulus: ");

 modulus = (uchar_t *)getattributes[1].pValue;

 for (i = 0; i < getattributes[1].ulValueLen; i++) {

 fprintf(stdout, "%.2x", modulus[i]);

 }

 fprintf(stdout, "\n\tPublic Exponent: ");

 pub_exponent = (uchar_t *)getattributes[2].pValue;

 for (i = 0; i< getattributes[2].ulValueLen; i++) {

 fprintf(stdout, "%.2x", pub_exponent[i]);

 }

 fprintf(stdout, "\n");

 }

 }

sign_cont:

 rv = C_SignInit(hSession, &smech, privatekey);

 if (rv != CKR_OK) {

 fprintf(stderr, "C_SignInit: rv = 0x%.8X\n", rv);

 error = 1;

 goto exit_session;

 }

 rv = C_Sign(hSession, (CK_BYTE_PTR)message, messagelen,

 (CK_BYTE_PTR)sign, &slen);

 if (rv != CKR_OK) {

 fprintf(stderr, "C_Sign: rv = 0x%.8X\n", rv);

 error = 1;

 goto exit_session;

 }

 fprintf(stdout, "Message was successfully signed with private key!\n");

 rv = C_VerifyInit(hSession, &smech, publickey);

 if (rv != CKR_OK) {

 fprintf(stderr, "C_VerifyInit: rv = 0x%.8X\n", rv);

 error = 1;

 goto exit_session;

 }

 rv = C_Verify(hSession, (CK_BYTE_PTR)message, messagelen,

 (CK_BYTE_PTR)sign, slen);

 if (rv != CKR_OK) {

 fprintf(stderr, "C_Verify: rv = 0x%.8X\n", rv);

 error = 1;

 goto exit_session;

 }

 fprintf(stdout, "Message was successfully verified with public key!\n");

exit_session:

 (void) C_CloseSession(hSession);

User-Level Cryptographic Application Examples

Chapter 9 • Writing User–Level Cryptographic Applications 165

exit_program:

 (void) C_Finalize(NULL_PTR);

 for (i = 0; i < template_size; i++) {

 if (getattributes[i].pValue != NULL)

 free(getattributes[i].pValue);

 }

 exit(error);

}

/* Find a slot capable of:

 * . signing and verifying with sv_mech

 * . generating a key pair with kpgen_mech

 * Returns B_TRUE when successful. */

boolean_t GetMySlot(CK_MECHANISM_TYPE sv_mech, CK_MECHANISM_TYPE kpgen_mech,

 CK_SLOT_ID_PTR pSlotID)

{

 CK_SLOT_ID_PTR pSlotList = NULL_PTR;

 CK_SLOT_ID SlotID;

 CK_ULONG ulSlotCount = 0;

 CK_MECHANISM_INFO mech_info;

 int i;

 boolean_t returnval = B_FALSE;

 CK_RV rv;

 /* Get slot list for memory alloction */

 rv = C_GetSlotList(0, NULL_PTR, &ulSlotCount);

 if ((rv == CKR_OK) && (ulSlotCount > 0)) {

 fprintf(stdout, "slotCount = %d\n", ulSlotCount);

 pSlotList = malloc(ulSlotCount * sizeof (CK_SLOT_ID));

 if (pSlotList == NULL) {

 fprintf(stderr, "System error: unable to allocate "

 "memory\n");

 return (returnval);

 }

 /* Get the slot list for processing */

 rv = C_GetSlotList(0, pSlotList, &ulSlotCount);

 if (rv != CKR_OK) {

 fprintf(stderr, "GetSlotList failed: unable to get "

 "slot count.\n");

 goto cleanup;

 }

 } else {

 fprintf(stderr, "GetSlotList failed: unable to get slot "

 "list.\n");

 return (returnval);

 }

 /* Find a slot capable of specified mechanism */

 for (i = 0; i < ulSlotCount; i++) {

 SlotID = pSlotList[i];

User-Level Cryptographic Application Examples

166 Developer's Guide to Oracle Solaris 11 Security • July 2014

 /* Check if this slot is capable of signing and

 * verifying with sv_mech. */

 rv = C_GetMechanismInfo(SlotID, sv_mech, &mech_info);

 if (rv != CKR_OK) {

 continue;

 }

 if (!(mech_info.flags & CKF_SIGN &&

 mech_info.flags & CKF_VERIFY)) {

 continue;

 }

 /* Check if the slot is capable of key pair generation

 * with kpgen_mech. */

 rv = C_GetMechanismInfo(SlotID, kpgen_mech, &mech_info);

 if (rv != CKR_OK) {

 continue;

 }

 if (!(mech_info.flags & CKF_GENERATE_KEY_PAIR)) {

 continue;

 }

 /* If we get this far, this slot supports our mechanisms. */

 returnval = B_TRUE;

 *pSlotID = SlotID;

 break;

 }

cleanup:

 if (pSlotList)

 free(pSlotList);

 return (returnval);

}

Random Byte Generation Example

Example 9-4 demonstrates how to find a slot with a mechanism that can generate random bytes.
The example performs the following steps:

1. Initializes the cryptoki library.
2. Calls GetRandSlot to find a slot with a mechanism that can generate random bytes.

The task of finding a slot performs the following steps:
a. Calling the function C_GetSlotList to get a list of the available slots.

User-Level Cryptographic Application Examples

Chapter 9 • Writing User–Level Cryptographic Applications 167

C_GetSlotList is called twice, as the PKCS #11 convention suggests. C_GetSlotList
is called the first time to get the number of slots for memory allocation. C_GetSlotList
is called the second time to retrieve the slots.

b. Finding a slot that can generate random bytes.

For each slot, the function obtains the token information by using GetTokenInfo and
checks for a match with the CKF_RNG flag set. When a slot that has the CKF_RNG
flag set is found, the GetRandSlot function returns.

3. Opens the session by using C_OpenSession.
4. Generates random bytes by using C_GenerateRandom.
5. Ends the session.

The program uses C_CloseSession to close the session and C_Finalize to close the library.

The source code for the random number generation sample is shown in the following example.

EXAMPLE 9-4 Generating Random Numbers Using PKCS #11 Functions

#include <stdio.h>

#include <fcntl.h>

#include <errno.h>

#include <sys/types.h>

#include <security/cryptoki.h>

#include <security/pkcs11.h>

#define RANDSIZE 64

boolean_t GetRandSlot(CK_SLOT_ID_PTR pslot);

/* Example generates random bytes. */

void

main(int argc, char **argv)

{

 CK_RV rv;

 CK_MECHANISM mech;

 CK_SESSION_HANDLE hSession;

 CK_SESSION_INFO sessInfo;

 CK_SLOT_ID slotID;

 CK_BYTE randBytes[RANDSIZE];

 boolean_t found_slot = B_FALSE;

 int error;

 int i;

 /* Initialize the CRYPTOKI library */

 rv = C_Initialize(NULL_PTR);

 if (rv != CKR_OK) {

 fprintf(stderr, "C_Initialize: Error = 0x%.8X\n", rv);

 exit(1);

 }

 found_slot = GetRandSlot(&slotID);

User-Level Cryptographic Application Examples

168 Developer's Guide to Oracle Solaris 11 Security • July 2014

 if (!found_slot) {

 goto exit_program;

 }

 /* Open a session on the slot found */

 rv = C_OpenSession(slotID, CKF_SERIAL_SESSION, NULL_PTR, NULL_PTR,

 &hSession);

 if (rv != CKR_OK) {

 fprintf(stderr, "C_OpenSession: rv = 0x%.8x\n", rv);

 error = 1;

 goto exit_program;

 }

 /* Generate random bytes */

 rv = C_GenerateRandom(hSession, randBytes, RANDSIZE);

 if (rv != CKR_OK) {

 fprintf(stderr, "C_GenerateRandom: rv = 0x%.8x\n", rv);

 error = 1;

 goto exit_session;

 }

 fprintf(stdout, "Random value: ");

 for (i = 0; i < RANDSIZE; i++) {

 fprintf(stdout, "%.2x", randBytes[i]);

 }

exit_session:

 (void) C_CloseSession(hSession);

exit_program:

 (void) C_Finalize(NULL_PTR);

 exit(error);

}

boolean_t

GetRandSlot(CK_SLOT_ID_PTR pslot)

{

 CK_SLOT_ID_PTR pSlotList;

 CK_SLOT_ID SlotID;

 CK_TOKEN_INFO tokenInfo;

 CK_ULONG ulSlotCount;

 CK_MECHANISM_TYPE_PTR pMechTypeList = NULL_PTR;

 CK_ULONG ulMechTypecount;

 boolean_t result = B_FALSE;

 int i = 0;

 CK_RV rv;

 /* Get slot list for memory allocation */

 rv = C_GetSlotList(0, NULL_PTR, &ulSlotCount);

 if ((rv == CKR_OK) && (ulSlotCount > 0)) {

 fprintf(stdout, "slotCount = %d\n", (int)ulSlotCount);

 pSlotList = malloc(ulSlotCount * sizeof (CK_SLOT_ID));

User-Level Cryptographic Application Examples

Chapter 9 • Writing User–Level Cryptographic Applications 169

 if (pSlotList == NULL) {

 fprintf(stderr,

 "System error: unable to allocate memory\n");

 return (result);

 }

 /* Get the slot list for processing */

 rv = C_GetSlotList(0, pSlotList, &ulSlotCount);

 if (rv != CKR_OK) {

 fprintf(stderr, "GetSlotList failed: unable to get "

 "slot list.\n");

 free(pSlotList);

 return (result);

 }

 } else {

 fprintf(stderr, "GetSlotList failed: unable to get slot"

 " count.\n");

 return (result);

 }

 /* Find a slot capable of doing random number generation */

 for (i = 0; i < ulSlotCount; i++) {

 SlotID = pSlotList[i];

 rv = C_GetTokenInfo(SlotID, &tokenInfo);

 if (rv != CKR_OK) {

 /* Check the next slot */

 continue;

 }

 if (tokenInfo.flags & CKF_RNG) {

 /* Found a random number generator */

 *pslot = SlotID;

 fprintf(stdout, "Slot # %d supports random number "

 "generation!\n", SlotID);

 result = B_TRUE;

 break;

 }

 }

 if (pSlotList)

 free(pSlotList);

 return (result);

}

170 Developer's Guide to Oracle Solaris 11 Security • July 2014

Chapter 10 • Introduction to the Oracle Solaris Key Management Framework 171

 10 ♦ ♦ ♦ C H A P T E R 1 0

Introduction to the Oracle Solaris Key
Management Framework

The Oracle Solaris Key Management Framework (KMF) provides a unified set of interfaces for
managing Public Key Infrastructure (PKI) objects in Oracle Solaris. These interfaces include
both programming interfaces and administrative tools.
This chapter discusses the following topics:

■ “Oracle Solaris Key Management Framework Features” on page 171
■ “Oracle Solaris Key Management Framework Components” on page 172
■ “Oracle Solaris Key Management Framework Example Application” on page 175

Oracle Solaris Key Management Framework Features

Developers and system administrators can choose among several different keystore systems
when designing systems that employ PKI technologies. A keystore is a storage system for PKI
objects. The primary choices for Oracle Solaris users are NSS, OpenSSL, and PKCS#11. Each
of these keystore systems presents different programming interfaces and administrative tools.
None of these keystore systems includes any PKI policy enforcement system.
KMF provides generic interfaces that manipulate keys and certificates in all of these keystores.

■ A generic API layer enables the developer to specify which type of keystore to use. KMF
also provides plugin modules for each of these three keystore systems so that you can write
new applications to use any of these keystores. Applications written to KMF are not bound
to one keystore system.

■ A management utility enables the administrator to manage PKI objects in all three of these
keystores. You do not need to use a different utility for each keystore.

KMF also provides a system-wide policy database that KMF applications can use, regardless of
which type of keystore is being used. The administrator can create policy definitions in a global
database. KMF applications can choose which policy to assert, and then all subsequent KMF
operations behave according to the limitations of that policy. Policy definitions include rules for
how to perform validations, requirements for key usage and extended key usage, trust anchor

Oracle Solaris Key Management Framework Components

172 Developer's Guide to Oracle Solaris 11 Security • July 2014

definitions, Online Certificate Status Protocol (OCSP) parameters, and Certificate Revocation
List (CRL) DB parameters such as location.
Oracle Solaris KMF includes the following features:

■ Programming interfaces for developing PKI aware applications. These interfaces are
keystore independent: The interface does not bind the application to a particular keystore
system such as NSS, OpenSSL, or PKCS#11.

■ An administrative utility for managing PKI objects.
■ A PKI policy database and enforcement system for PKI aware applications. The

enforcement system is keystore independent and can be applied system-wide.
■ A plugin interface to extend KMF for legacy and proprietary systems.

KMF consumers include any project that uses certificates, such as authentication services and
smart card authentication with X.509 certificates.

Oracle Solaris Key Management Framework Components
This section describes the following KMF components:

■ The pktool(1) key management tool
■ The KMF policy database
■ The kmfcfg(1) policy definition and plugin configuration utility
■ KMF data types defined in kmftypes.h and programming interfaces defined in kmfapi.h

and libkmf(3LIB)

KMF Key Management Tool

The following pktool(1) subcommands specifically support KMF:

delete Delete objects in the keystore.

download Download a CRL or certificate file from an external source.

export Export objects from the keystore to a file.

gencert Create a self-signed X.509v3 certificate.

gencsr Create a PKCS#10 Certificate Signing Request (CSR) file.

genkey Create a symmetric key in the keystore.

help Displays a help message.

Oracle Solaris Key Management Framework Components

Chapter 10 • Introduction to the Oracle Solaris Key Management Framework 173

import Import objects from an external source.

inittoken Initialize a PKCS#11 token.

list List a summary of objects in the keystore.

setpin Change user authentication passphrase for keystore access.

signcsr Sign a PKCS#10 CSR.

tokens List all visible PKCS#11 tokens.

KMF Policy Enforcement Mechanisms

KMF policy is a hierarchical tree of policies. A default policy is defined when the system is
installed. The default policy applies unless the application asserts a different policy.

Policy parameters control the use of X.509 certificates by an application. KMF policy applies to
all certificates and is not restricted to any particular keystore.

Use the kmfcfg(1) utility to manage the KMF policy database and configure plugins. You can
use kmfcfg to list, create, modify, delete, import, and export policy definitions in the system
default database file /etc/security/kmfpolicy.xml or in a user-defined database file. Note
that you cannot modify the default policy in the system KMF policy database. For plugin
configuration, you can use kmfcfg to display plugin information, install or uninstall a KMF
plugin, and modify the plugin option.

The following list shows some of the KMF policy attributes. See the kmfcfg(1) man page for a
complete list and descriptions of these policy attributes.

■ Policy Name. Applications reference this name.
■ Default Keystore. Examples include NSS, files, PKCS11.
■ Ignore Date. Ignore the validity periods defined in the certificates when evaluating their

validity.
■ Ignore Unknown EKU. Ignore any unrecognized EKU values in the Extended Key Usage

extension.
■ Token Label. This attribute only applies to NSS or PKCS11 keystores.
■ Validation Method. Examples include OCSP and CRL.
■ Key Usage Values. This attribute is a comma separated list of key usage values that are

required by the policy being defined. These bits must be set in order to use the certificate.
■ Extended Key Usage Values. This attribute is a comma separated list of Extended Key

Usage OIDs that are required by the policy being defined. These OIDS must be present in
order to use the certificate.

See the kmfpolicy.h file for definitions of policy data types.

https://hg.java.net/hg/solaris~on-src/file/b23a4dab3d50/usr/src/lib/libkmf/include/kmfpolicy.h

Oracle Solaris Key Management Framework Components

174 Developer's Guide to Oracle Solaris 11 Security • July 2014

The following plugin libraries are provided in Oracle Solaris KMF:

■ PKCS#11 keystore plugin: kmf_pkcs11
■ OpenSSL keystore plugin: kmf_openssl
■ NSS keystore plugin: kmf_nss

KMF Application Programming Interfaces

The Oracle Solaris KMF provides abstract APIs for PKI operations. Applications written to
KMF can access multiple keystores such as files (OpenSSL), NSS, and PKCS11 tokens and
multiple validation modules such as OCSP and CRL checking. The KMF API can be extended
by third parties for proprietary and legacy implementations.

The KMF APIs are provided in the Key Management Framework Library, libkmf(3LIB).
These APIs enable your application to create and manage public key objects such as public/
private keypairs, certificates, CSRs, certificate validation, CRLs, and OCSP response
processing.

■ Keys, certificate, and CSR operations: create and delete, store and retrieve, search, import
and export

■ Common cryptographic operations: sign and verify, encrypt and decrypt using certificates
as keys

■ Access complex PKI objects: set and get X.509 attributes and extensions, and extract data
in human-readable formats

The KMF APIs are defined in the kmfapi.h file, and structures and types are defined in the
kmftypes.h file. The kmfapi.h file lists the functions in the following groups:

■ Setup operations
■ Key operations
■ Certificate operations
■ Cryptographic operations with key or certificate
■ CRL operations
■ CSR operations
■ Get certificate operations
■ Set certificate operations
■ PK12 operations
■ OCSP operations
■ Policy operations
■ Error handling
■ Memory cleanup operations
■ APIs for PKCS#11 tokens
■ Attribute management operations

https://hg.java.net/hg/solaris~on-src/file/b23a4dab3d50/usr/src/lib/libkmf/plugins
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Flibkmf-3lib
https://hg.java.net/hg/solaris~on-src/file/b23a4dab3d50/usr/src/lib/libkmf/include/kmfapi.h
https://hg.java.net/hg/solaris~on-src/file/tip/usr/src/lib/libkmf/include/kmftypes.h

Oracle Solaris Key Management Framework Example Application

Chapter 10 • Introduction to the Oracle Solaris Key Management Framework 175

Oracle Solaris Key Management Framework Example
Application

The pktool application is an excellent example of how to use the KMF APIs.

This section shows a simple application that uses KMF. This section describes the basic steps
that an application needs to take in order to perform some KMF operations. This example
assumes that you have experience in C programming and a basic understanding of public key
technologies and standards. This example goes through the steps of initializing KMF for use
and then creates a self-signed X.509v3 certificate and associated RSA key pair. This example
also shows how to use the KMF-enhanced pktool command to verify that the application was
successful.

KMF Headers and Libraries
To give the program access to the KMF function prototypes and type definitions, include the
kmfapi.h file.

#include <stdio.h>

#include <kmfapi.h>

Be sure to include the KMF library in the link step.

$ cc -o kmftest kmftest.c -lkmf

KMF Basic Data Types
See the kmftypes.h file for definitions of structures and types. This example uses variables of
the following KMF types.

KMF_HANDLE_T Session handle for KMF calls

KMF_RETURN Return code for all KMF calls

KMF_KEY_HANDLE Handle to a KMF key

KMF_CREDENTIAL KMF credential

KMF_ATTRIBUTE Make sure this is big enough

KMF_KEYSTORE_TYPE Keystore type, such as KMF_KEYSTORE_PK11TOKEN

KMF_KEY_ALG Key type, such as KMF_RSA

KMF_X509_CERTIFICATE Data record that gets signed

https://hg.java.net/hg/solaris~on-src/file/tip/usr/src/lib/libkmf/include/kmftypes.h

Oracle Solaris Key Management Framework Example Application

176 Developer's Guide to Oracle Solaris 11 Security • July 2014

KMF_X509_NAME Distinguished name record

KMF_DATA Final certificate data record

KMF_BIGINT Variable length integer

KMF Application Results Verification
The user can verify that the program successfully created the certificate and keypair by using
the pktool(1M) utility.

$ pktool list objtype=both
Enter pin for Sun Software PKCS#11 softtoken :

Found 1 certificates.

1. (X.509 certificate)

 Label: admin@example.com

 ID:

09:ac:7f:1a:01:f7:fc:a9:1a:cd:fd:8f:d4:92:4c:25:bf:b1:97:fe

 Subject: C=US, ST=CA, L=Menlo Park, O=Foobar Inc., OU=Foobar

IT Office, CN=admin@example.com

 Issuer: C=US, ST=CA, L=Menlo Park, O=Foobar Inc., OU=Foobar IT

Office, CN=admin@example.com

 Serial: 0x452BF693

 X509v3 Subject Alternative Name:

 email:admin@example.com

Found 1 keys.

Key #1 - RSA private key: admin@example.com

Complete KMF Application Source Code

See the libkmf(3LIB) man page for definitions of KMF APIs.

This application performs the following steps:

1. Before any KMF functions can be called, the application must first use kmf_initialize
to initialize a handle for a KMF session. This handle is used as the first argument to most
KMF function calls. It is an opaque data type and is used to hold internal state and context
information for that session.

2. This example application uses the PKCS#11 keystore. Use kmf_configure_keystore to
define a token to use for future operations.

3. The first step to create a certificate or a PKCS#10 CSR is to generate a keypair. Use
kmf_create_keypair to create both the public and private keys needed and store the private
key in the specified keystore. The function returns handles to the application so that the
caller can reference the public and private key objects in future operations if necessary.

4. Once a keypair is established, use kmf_set_cert_pubkey and kmf_set_cert_version to
populate the template record that is used to generate the final certificate. KMF provides

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Flibkmf-3lib

Oracle Solaris Key Management Framework Example Application

Chapter 10 • Introduction to the Oracle Solaris Key Management Framework 177

different APIs for setting the various fields of an X.509v3 certificate, including extensions.
Use kmf_hexstr_to_bytes, kmf_set_cert_serial, kmf_set_cert_validity, and
kmf_set_cert_sig_alg to set the serial number. The serial number is a KMF_BIGINT record.
Use kmf_dn_parser, kmf_set_cert_subject, and kmf_set_cert_issuer to create a
KMF_X509_NAME structure.

5. Because this is a self-signed certificate creation exercise, this application signs the
certificate template created above with the private key that goes with the public key in the
certificate itself. This kmf_sign_cert operation results in a KMF_DATA record that contains
the ASN.1 encoded X.509v3 certificate data.

6. Now that the certificate is signed and in its final format, it can be stored in any of the
keystores. Use kmf_store_cert to store the certificate in the PKCS#11 token defined at the
beginning of this application. The certificate could also be stored in NSS or an OpenSSL
file at this point.

7. Memory allocated to data structures generated by KMF should be cleaned up when the data
structure is no longer needed. KMF provides convenience APIs for properly deallocating
memory associated with these objects. The proper cleanup of memory is strongly
encouraged in order to conserve resources. Cleanup interfaces include kmf_free_data,
kmf_free_dn, and kmf_finalize.

Below is the complete source code for this example application, including all of the data types
and helper functions. When you compile, be sure to include the KMF library.

/*

 * KMF Example code for generating a self-signed X.509 certificate.

 * This is completely unsupported and is just to be used as an example.

 *

 * Compile:

 * $ cc -o keytest keytest.c -lkmf

 *

 * Run:

 * $./keytest

 *

 * Once complete, the results can be verified using the pktool(1) command:

 *

 * $ pktool list

 * This should show an RSA public key labeled "keytest" and a cert labeled "keytest".

 *

 * The objects created by this program can be deleted from the keystore

 * using pktool(1) also:

 *

 * $ pktool delete label=keytest

 *

 */

#include <stdio.h>

#include <strings.h>

#include <fcntl.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <tzfile.h>

#include <kmfapi.h>

Oracle Solaris Key Management Framework Example Application

178 Developer's Guide to Oracle Solaris 11 Security • July 2014

int

main(int argc, char *argv[])

{

 KMF_HANDLE_T kmfhandle;

 KMF_RETURN ret;

 char opt, *str = NULL;

 extern char *optarg;

 KMF_KEY_HANDLE prikey, pubkey;

 KMF_CREDENTIAL cred;

 KMF_ATTRIBUTE attrlist[16]; /* this needs to be big enough */

 KMF_KEYSTORE_TYPE kstype;

 KMF_KEY_ALG keytype;

 KMF_KEY_HANDLE prik, pubk;

 KMF_X509_CERTIFICATE certstruct;

 KMF_X509_NAME certsubject, certissuer;

 KMF_DATA rawcert;

 KMF_BIGINT serno;

 char *token = "Sun Software PKCS#11 softtoken";

 char *keylabel = "keytest";

 boolean_t readonly = B_FALSE;

 uint32_t keylen = 1024;

 uint32_t ltime = SECSPERDAY * DAYSPERNYEAR; /* seconds in a

 year (see tzfile.h) */

 char prompt[1024];

 int numattrs;

 (void) memset(&certstruct, 0, sizeof (certstruct));

 (void) memset(&rawcert, 0, sizeof (rawcert));

 (void) memset(&certissuer, 0, sizeof (certissuer));

 (void) memset(&certsubject, 0, sizeof (certsubject));

 /*

 * Initialize a KMF handle for use in future calls.

 */

 ret = kmf_initialize(&kmfhandle, NULL, NULL);

 if (ret != KMF_OK) {

 printf("kmf_initialize failed: 0x%0x\n", ret);

 exit(1);

 }

 /* We want to use the PKCS11 keystore */

 kstype = KMF_KEYSTORE_PK11TOKEN;

 numattrs = 0;

 kmf_set_attr_at_index(attrlist, numattrs, KMF_KEYSTORE_TYPE_ATTR,

 &kstype, sizeof (kstype));

 numattrs++;

 /* Indicate which PKCS11 token will be used */

 kmf_set_attr_at_index(attrlist, numattrs, KMF_TOKEN_LABEL_ATTR,

 token, strlen(token));

 numattrs++;

 kmf_set_attr_at_index(attrlist, numattrs, KMF_READONLY_ATTR,

 &readonly, sizeof (readonly));

 numattrs++;

 ret = kmf_configure_keystore(kmfhandle, numattrs, attrlist);

 if (ret != KMF_OK)

Oracle Solaris Key Management Framework Example Application

Chapter 10 • Introduction to the Oracle Solaris Key Management Framework 179

 exit (ret);

 /* Reset the attribute count for a new command */

 numattrs = 0;

 /*

 * Get the PIN to access the token.

 */

 (void) snprintf(prompt, sizeof (prompt), "Enter PIN for %s:", token);

 cred.cred = getpassphrase(prompt);

 if (cred.cred != NULL) {

 cred.credlen = strlen(cred.cred);

 kmf_set_attr_at_index(attrlist, numattrs, KMF_CREDENTIAL_ATTR,

 &cred, sizeof (cred));

 numattrs++;

 }

 kmf_set_attr_at_index(attrlist, numattrs, KMF_KEYSTORE_TYPE_ATTR,

 &kstype, sizeof (kstype));

 numattrs++;

 keytype = KMF_RSA;

 keylen = 1024;

 keylabel = "keytest";

 kmf_set_attr_at_index(attrlist, numattrs, KMF_KEYALG_ATTR,

 &keytype, sizeof (keytype));

 numattrs++;

 kmf_set_attr_at_index(attrlist, numattrs, KMF_KEYLENGTH_ATTR,

 &keylen, sizeof (keylen));

 numattrs++;

 kmf_set_attr_at_index(attrlist, numattrs, KMF_KEYLABEL_ATTR,

 keylabel, strlen(keylabel));

 numattrs++;

 kmf_set_attr_at_index(attrlist, numattrs, KMF_CREDENTIAL_ATTR,

 &cred, sizeof (cred));

 numattrs++;

 /*

 * Set the handles so they can be used later.

 */

 kmf_set_attr_at_index(attrlist, numattrs, KMF_PRIVKEY_HANDLE_ATTR,

 &prik, sizeof (prik));

 numattrs++;

 kmf_set_attr_at_index(attrlist, numattrs, KMF_PUBKEY_HANDLE_ATTR,

 &pubk, sizeof (pubk));

 numattrs++;

 ret = kmf_create_keypair(kmfhandle, numattrs, attrlist);

 if (ret != KMF_OK) {

 printf("kmf_create_keypair error: 0x%02x\n", ret);

 goto cleanup;

 }

Oracle Solaris Key Management Framework Example Application

180 Developer's Guide to Oracle Solaris 11 Security • July 2014

 /*

 * Now the keys have been created, generate an X.509 certificate

 * by populating the template and signing it.

 */

 if ((ret = kmf_set_cert_pubkey(kmfhandle, &pubk, &certstruct))) {

 printf("kmf_set_cert_pubkey error: 0x%02x\n", ret);

 goto cleanup;

 }

 /* Version "2" is for an x509.v3 certificate */

 if ((ret = kmf_set_cert_version(&certstruct, 2))) {

 printf("kmf_set_cert_version error: 0x%02x\n", ret);

 goto cleanup;

 }

 /*

 * Set up the serial number, it must be a KMF_BIGINT record.

 */

 if ((ret = kmf_hexstr_to_bytes((uchar_t *)"0x010203", &serno.val, \

 &serno.len))) {

 printf("kmf_hexstr_to_bytes error: 0x%02x\n", ret);

 goto cleanup;

 }

 if ((ret = kmf_set_cert_serial(&certstruct, &serno))) {

 printf("kmf_set_cert_serial error: 0x%02x\n", ret);

 goto cleanup;

 }

 if ((ret = kmf_set_cert_validity(&certstruct, NULL, ltime))) {

 printf("kmf_set_cert_validity error: 0x%02x\n", ret);

 goto cleanup;

 }

 if ((ret = kmf_set_cert_sig_alg(&certstruct, KMF_ALGID_SHA1WithRSA))) {

 printf("kmf_set_cert_sig_alg error: 0x%02x\n", ret);

 goto cleanup;

 }

 /*

 * Create a KMF_X509_NAME struct by parsing a distinguished name.

 */

 if ((ret = kmf_dn_parser("cn=testcert", &certsubject))) {

 printf("kmf_dn_parser error: 0x%02x\n", ret);

 goto cleanup;

 }

 if ((ret = kmf_dn_parser("cn=testcert", &certissuer))) {

 printf("kmf_dn_parser error: 0x%02x\n", ret);

 goto cleanup;

 }

 if ((ret = kmf_set_cert_subject(&certstruct, &certsubject))) {

 printf("kmf_set_cert_sig_alg error: 0x%02x\n", ret);

 goto cleanup;

 }

 if ((ret = kmf_set_cert_issuer(&certstruct, &certissuer))) {

Oracle Solaris Key Management Framework Example Application

Chapter 10 • Introduction to the Oracle Solaris Key Management Framework 181

 printf("kmf_set_cert_sig_alg error: 0x%02x\n", ret);

 goto cleanup;

 }

 /*

 * Now we have the certstruct setup with the minimal amount needed

 * to generate a self-signed cert. Put together the attributes to

 * call kmf_sign_cert.

 */

 numattrs = 0;

 kmf_set_attr_at_index(attrlist, numattrs, KMF_KEYSTORE_TYPE_ATTR,

 &kstype, sizeof (kstype));

 numattrs++;

 kmf_set_attr_at_index(attrlist, numattrs, KMF_KEY_HANDLE_ATTR,

 &prik, sizeof (KMF_KEY_HANDLE_ATTR));

 numattrs++;

 /* The X509 template structure to be signed goes here. */

 kmf_set_attr_at_index(attrlist, numattrs, KMF_X509_CERTIFICATE_ATTR,

 &certstruct, sizeof (KMF_X509_CERTIFICATE));

 numattrs++;

 /*

 * Set the output buffer for the signed cert.

 * This will be a block of raw ASN.1 data.

 */

 kmf_set_attr_at_index(attrlist, numattrs, KMF_CERT_DATA_ATTR,

 &rawcert, sizeof (KMF_DATA));

 numattrs++;

 if ((ret = kmf_sign_cert(kmfhandle, numattrs, attrlist))) {

 printf("kmf_sign_cert error: 0x%02x\n", ret);

 goto cleanup;

 }

 /*

 * Now we have the certificate and we want to store it in the

 * keystore (which is the PKCS11 token in this example).

 */

 numattrs = 0;

 kmf_set_attr_at_index(attrlist, numattrs, KMF_KEYSTORE_TYPE_ATTR,

 &kstype, sizeof (kstype));

 numattrs++;

 kmf_set_attr_at_index(attrlist, numattrs, KMF_CERT_DATA_ATTR,

 &rawcert, sizeof (KMF_DATA));

 numattrs++;

 /* Use the same label as the public key */

 kmf_set_attr_at_index(attrlist, numattrs, KMF_CERT_LABEL_ATTR,

 keylabel, strlen(keylabel));

 numattrs++;

 if ((ret = kmf_store_cert(kmfhandle, numattrs, attrlist))) {

 printf("kmf_store_cert error: 0x%02x\n", ret);

 goto cleanup;

 }

Oracle Solaris Key Management Framework Example Application

182 Developer's Guide to Oracle Solaris 11 Security • July 2014

cleanup:

 kmf_free_data(&rawcert);

 kmf_free_dn(&certissuer);

 kmf_free_dn(&certsubject);

 kmf_finalize(kmfhandle);

 return (ret);

}

Appendix A • Secure Coding Guidelines for Developers 183

 A ♦ ♦ ♦ A P P E N D I X A

Secure Coding Guidelines for Developers

Developers who write applications for the Oracle Solaris operating system need to follow
secure coding guidelines. Guidelines exist for secure coding in general, language-specific
coding, and Oracle Solaris-specific coding and tools.

The following web sites track coding vulnerabilities and promote secure coding practices:

■ Common Weakness Enumeration
■ National Vulnerability Database Version 2.2
■ CERT Secure Coding Standards
■ ISO/IEC JTC 1/SC 22/ WG 23 Programming Language Vulnerabilities

The CERT web site contains computer language references for secure coding practices. These
references might include sections about the POSIX APIs, which are part of the API set of
Oracle Solaris.

■ C – CERT C Secure Coding Standard
Additional guidelines for secure use of the standard C library functions in Oracle Solaris is
available at Appendix G, “Security Considerations When Using C Functions”

■ C++ – CERT C++ Secure Coding Standard
■ Java – CERT Oracle Secure Coding Standard for Java
■ Perl – CERT Perl Secure Coding Standard

The Open Web Application Security Project (OWASP) hosts security guidelines for two web
scripting languages:

■ PHP – OWASP PHP Security Cheat Sheet
■ Python – OWASP Python Security website

Oracle Solaris provides specific APIs which can be used to write more secure code and to take
advantage of the security and cryptographic features of the Oracle Solaris operating system and
Oracle Sun hardware systems. Additionally, the suite of documents for Oracle Solaris Studio
include discussions of using the tools securely.
The following guides from Oracle Solaris address secure coding:

■ “Oracle Solaris 11.2 Linkers and Libraries Guide ”

http://cwe.mitre.org/
http://nvd.nist.gov/
https://www.securecoding.cert.org
http://grouper.ieee.org/groups/plv/
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/display/java/The+CERT+Oracle+Secure+Coding+Standard+for+Java
https://www.securecoding.cert.org/confluence/display/perl/CERT+Perl+Secure+Coding+Standard
https://www.owasp.org/index.php/PHP_Security_Cheat_Sheet
http://www.pythonsecurity.org
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSLLG

184 Developer's Guide to Oracle Solaris 11 Security • July 2014

■ “Oracle Solaris 11.2 Dynamic Tracing Guide ”
■ “Resource Management and Oracle Solaris Zones Developer's Guide ”
■ Studio 12.3 Security Guide

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSDTG
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=VLDZV
http://docs.oracle.com/cd/E24457_01/html/E23632/osssg.html#scrolltoc

Appendix B • Sample C–Based GSS-API Programs 185

 B ♦ ♦ ♦ A P P E N D I X B

Sample C–Based GSS-API Programs

This appendix shows the source code for two sample applications that use GSS-API to make
a safe network connection. The first application is a typical client. The second application
demonstrates how a server works in GSS-API. The two programs display benchmarks in
the course of being run. A user can thus view GSS-API in action. Additionally, certain
miscellaneous functions are provided for use by the client and server applications.
This chapter covers the following topics:

■ “Client-Side Application” on page 185
■ “Server-Side Application” on page 195
■ “Miscellaneous GSS-API Sample Functions” on page 204

These programs are examined in detail in the Chapter 5, “GSS-API Client Example” and
Chapter 6, “GSS-API Server Example”.

Client-Side Application
The source code for the client-side program, gss_client, is provided in the following example.

Note - The source code for this example is also available through the Oracle download center.
See http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html.

EXAMPLE B-1 Complete Listing of gss-client.c Sample Program

/*

 * Copyright 1994 by OpenVision Technologies, Inc.

 *

 * Permission to use, copy, modify, distribute, and sell this software

 * and its documentation for any purpose is hereby granted without fee,

 * provided that the above copyright notice appears in all copies and

 * that both that copyright notice and this permission notice appear in

 * supporting documentation, and that the name of OpenVision not be used

 * in advertising or publicity pertaining to distribution of the software

 * without specific, written prior permission. OpenVision makes no

 * representations about the suitability of this software for any

http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html

Client-Side Application

186 Developer's Guide to Oracle Solaris 11 Security • July 2014

 * purpose. It is provided "as is" without express or implied warranty.

 *

 * OPENVISION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,

 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO

 * EVENT SHALL OPENVISION BE LIABLE FOR ANY SPECIAL, INDIRECT OR

 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF

 * USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR

 * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR

 * PERFORMANCE OF THIS SOFTWARE.

 */

#if !defined(lint) && !defined(__CODECENTER__)

static char *rcsid = \

"$Header: /cvs/krbdev/krb5/src/appl/gss-sample/gss-client.c,\

v 1.16 1998/10/30 02:52:03 marc Exp $";

#endif

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#include <errno.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <gssapi/gssapi.h>

#include <gssapi/gssapi_ext.h>

#include <gss-misc.h>

void usage()

{

 fprintf(stderr, "Usage: gss-client [-port port] [-d] host service \

msg\n");

 exit(1);

}

/*

 * Function: connect_to_server

 *

 * Purpose: Opens a TCP connection to the name host and port.

 *

 * Arguments:

 *

 * host (r) the target host name

 * port (r) the target port, in host byte order

 *

 * Returns: the established socket file descriptor, or -1 on failure

 *

 * Effects:

 *

 * The host name is resolved with gethostbyname(), and the socket is

 * opened and connected. If an error occurs, an error message is

 * displayed and -1 is returned.

Client-Side Application

Appendix B • Sample C–Based GSS-API Programs 187

 */

int connect_to_server(host, port)

 char *host;

 u_short port;

{

 struct sockaddr_in saddr;

 struct hostent *hp;

 int s;

 if ((hp = gethostbyname(host)) == NULL) {

 fprintf(stderr, "Unknown host: %s\n", host);

 return -1;

 }

 saddr.sin_family = hp->h_addrtype;

 memcpy((char *)&saddr.sin_addr, hp->h_addr, sizeof(saddr.sin_addr));

 saddr.sin_port = htons(port);

 if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) {

 perror("creating socket");

 return -1;

 }

 if (connect(s, (struct sockaddr *)&saddr, sizeof(saddr)) < 0) {

 perror("connecting to server");

 (void) close(s);

 return -1;

 }

 return s;

}

/*

 * Function: client_establish_context

 *

 * Purpose: establishes a GSS-API context with a specified service and

 * returns the context handle

 *

 * Arguments:

 *

 * s (r) an established TCP connection to the service

 * service_name (r) the ASCII service name of the service

 * context (w) the established GSS-API context

 * ret_flags (w) the returned flags from init_sec_context

 *

 * Returns: 0 on success, -1 on failure

 *

 * Effects:

 *

 * service_name is imported as a GSS-API name and a GSS-API context is

 * established with the corresponding service; the service should be

 * listening on the TCP connection s. The default GSS-API mechanism

 * is used, and mutual authentication and replay detection are

 * requested.

 *

 * If successful, the context handle is returned in context. If

 * unsuccessful, the GSS-API error messages are displayed on stderr

 * and -1 is returned.

 */

int client_establish_context(s, service_name, deleg_flag, oid,

Client-Side Application

188 Developer's Guide to Oracle Solaris 11 Security • July 2014

 gss_context, ret_flags)

 int s;

 char *service_name;

 gss_OID oid;

 OM_uint32 deleg_flag;

 gss_ctx_id_t *gss_context;

 OM_uint32 *ret_flags;

{

 gss_buffer_desc send_tok, recv_tok, *token_ptr;

 gss_name_t target_name;

 OM_uint32 maj_stat, min_stat, init_sec_min_stat;

 /*

 * Import the name into target_name. Use send_tok to save

 * local variable space.

 */

 send_tok.value = service_name;

 send_tok.length = strlen(service_name) + 1;

 maj_stat = gss_import_name(&min_stat, &send_tok,

 (gss_OID) GSS_C_NT_HOSTBASED_SERVICE, &target_name);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("parsing name", maj_stat, min_stat);

 return -1;

 }

 /*

 * Perform the context-establishement loop.

 *

 * On each pass through the loop, token_ptr points to the token

 * to send to the server (or GSS_C_NO_BUFFER on the first pass).

 * Every generated token is stored in send_tok which is then

 * transmitted to the server; every received token is stored in

 * recv_tok, which token_ptr is then set to, to be processed by

 * the next call to gss_init_sec_context.

 *

 * GSS-API guarantees that send_tok's length will be non-zero

 * if and only if the server is expecting another token from us,

 * and that gss_init_sec_context returns GSS_S_CONTINUE_NEEDED if

 * and only if the server has another token to send us.

 */

 token_ptr = GSS_C_NO_BUFFER;

 *gss_context = GSS_C_NO_CONTEXT;

 do {

 maj_stat =

 gss_init_sec_context(&init_sec_min_stat,

 GSS_C_NO_CREDENTIAL,

 gss_context,

 target_name,

 oid,

 GSS_C_MUTUAL_FLAG | GSS_C_REPLAY_FLAG |

 deleg_flag,

 0,

 NULL, /* no channel bindings */

 token_ptr,

 NULL, /* ignore mech type */

 &send_tok,

Client-Side Application

Appendix B • Sample C–Based GSS-API Programs 189

 ret_flags,

 NULL); /* ignore time_rec */

 if (token_ptr != GSS_C_NO_BUFFER)

 (void) gss_release_buffer(&min_stat, &recv_tok);

 if (send_tok.length != 0) {

 printf("Sending init_sec_context token (size=%d)...",

 send_tok.length);

 if (send_token(s, &send_tok) < 0) {

 (void) gss_release_buffer(&min_stat, &send_tok);

 (void) gss_release_name(&min_stat, &target_name);

 return -1;

 }

 }

 (void) gss_release_buffer(&min_stat, &send_tok);

 if (maj_stat!=GSS_S_COMPLETE && maj_stat!=GSS_S_CONTINUE_NEEDED) {

 display_status("initializing context", maj_stat,

 init_sec_min_stat);

 (void) gss_release_name(&min_stat, &target_name);

 if (*gss_context == GSS_C_NO_CONTEXT)

 gss_delete_sec_context(&min_stat, gss_context,

 GSS_C_NO_BUFFER);

 return -1;

 }

 if (maj_stat == GSS_S_CONTINUE_NEEDED) {

 printf("continue needed...");

 if (recv_token(s, &recv_tok) < 0) {

 (void) gss_release_name(&min_stat, &target_name);

 return -1;

 }

 token_ptr = &recv_tok;

 }

 printf("\n");

 } while (maj_stat == GSS_S_CONTINUE_NEEDED);

 (void) gss_release_name(&min_stat, &target_name);

 return 0;

}

void read_file(file_name, in_buf)

 char *file_name;

 gss_buffer_t in_buf;

{

 int fd, bytes_in, count;

 struct stat stat_buf;

 if ((fd = open(file_name, O_RDONLY, 0)) < 0) {

 perror("open");

 fprintf(stderr, "Couldn't open file %s\n", file_name);

 exit(1);

 }

 if (fstat(fd, &stat_buf) < 0) {

 perror("fstat");

 exit(1);

 }

Client-Side Application

190 Developer's Guide to Oracle Solaris 11 Security • July 2014

 in_buf->length = stat_buf.st_size;

 if (in_buf->length == 0) {

 in_buf->value = NULL;

 return;

 }

 if ((in_buf->value = malloc(in_buf->length)) == 0) {

 fprintf(stderr, \

 "Couldn't allocate %d byte buffer for reading file\n",

 in_buf->length);

 exit(1);

 }

 /* this code used to check for incomplete reads, but you can't get

 an incomplete read on any file for which fstat() is meaningful */

 count = read(fd, in_buf->value, in_buf->length);

 if (count < 0) {

 perror("read");

 exit(1);

 }

 if (count < in_buf->length)

 fprintf(stderr, "Warning, only read in %d bytes, expected %d\n",

 count, in_buf->length);

}

/*

 * Function: call_server

 *

 * Purpose: Call the "sign" service.

 *

 * Arguments:

 *

 * host (r) the host providing the service

 * port (r) the port to connect to on host

 * service_name (r) the GSS-API service name to authenticate to

 * msg (r) the message to have "signed"

 *

 * Returns: 0 on success, -1 on failure

 *

 * Effects:

 *

 * call_server opens a TCP connection to <host:port> and establishes a

 * GSS-API context with service_name over the connection. It then

 * seals msg in a GSS-API token with gss_seal, sends it to the server,

 * reads back a GSS-API signature block for msg from the server, and

 * verifies it with gss_verify. -1 is returned if any step fails,

 * otherwise 0 is returned. */

int call_server(host, port, oid, service_name, deleg_flag, msg, use_file)

 char *host;

 u_short port;

 gss_OID oid;

 char *service_name;

 OM_uint32 deleg_flag;

 char *msg;

 int use_file;

{

Client-Side Application

Appendix B • Sample C–Based GSS-API Programs 191

 gss_ctx_id_t context;

 gss_buffer_desc in_buf, out_buf;

 int s, state;

 OM_uint32 ret_flags;

 OM_uint32 maj_stat, min_stat;

 gss_name_t src_name, targ_name;

 gss_buffer_desc sname, tname;

 OM_uint32 lifetime;

 gss_OID mechanism, name_type;

 int is_local;

 OM_uint32 context_flags;

 int is_open;

 gss_qop_t qop_state;

 gss_OID_set mech_names;

 gss_buffer_desc oid_name;

 size_t i;

 /* Open connection */

 if ((s = connect_to_server(host, port)) < 0)

 return -1;

 /* Establish context */

 if (client_establish_context(s, service_name, deleg_flag, oid,

 &context, &ret_flags) < 0) {

 (void) close(s);

 return -1;

 }

 /* display the flags */

 display_ctx_flags(ret_flags);

 /* Get context information */

 maj_stat = gss_inquire_context(&min_stat, context,

 &src_name, &targ_name, &lifetime,

 &mechanism, &context_flags,

 &is_local,

 &is_open);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("inquiring context", maj_stat, min_stat);

 return -1;

 }

 maj_stat = gss_display_name(&min_stat, src_name, &sname,

 &name_type);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("displaying source name", maj_stat, min_stat);

 return -1;

 }

 maj_stat = gss_display_name(&min_stat, targ_name, &tname,

 (gss_OID *) NULL);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("displaying target name", maj_stat, min_stat);

 return -1;

 }

 fprintf(stderr, "\"%.*s\" to \"%.*s\", lifetime %d, flags %x, %s,

 %s\n", (int) sname.length, (char *) sname.value,

 (int) tname.length, (char *) tname.value, lifetime,

 context_flags,

Client-Side Application

192 Developer's Guide to Oracle Solaris 11 Security • July 2014

 (is_local) ? "locally initiated" : "remotely initiated",

 (is_open) ? "open" : "closed");

 (void) gss_release_name(&min_stat, &src_name);

 (void) gss_release_name(&min_stat, &targ_name);

 (void) gss_release_buffer(&min_stat, &sname);

 (void) gss_release_buffer(&min_stat, &tname);

 maj_stat = gss_oid_to_str(&min_stat,

 name_type,

 &oid_name);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("converting oid->string", maj_stat, min_stat);

 return -1;

 }

 fprintf(stderr, "Name type of source name is %.*s.\n",

 (int) oid_name.length, (char *) oid_name.value);

 (void) gss_release_buffer(&min_stat, &oid_name);

 /* Now get the names supported by the mechanism */

 maj_stat = gss_inquire_names_for_mech(&min_stat,

 mechanism,

 &mech_names);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("inquiring mech names", maj_stat, min_stat);

 return -1;

 }

 maj_stat = gss_oid_to_str(&min_stat,

 mechanism,

 &oid_name);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("converting oid->string", maj_stat, min_stat);

 return -1;

 }

 fprintf(stderr, "Mechanism %.*s supports %d names\n",

 (int) oid_name.length, (char *) oid_name.value,

 mech_names->count);

 (void) gss_release_buffer(&min_stat, &oid_name);

 for (i=0; i<mech_names->count; i++) {

 maj_stat = gss_oid_to_str(&min_stat,

 &mech_names->elements[i],

 &oid_name);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("converting oid->string", maj_stat, min_stat);

 return -1;

 }

 fprintf(stderr, " %d: %.*s\n", i,

 (int) oid_name.length, (char *) oid_name.value);

 (void) gss_release_buffer(&min_stat, &oid_name);

 }

 (void) gss_release_oid_set(&min_stat, &mech_names);

 if (use_file) {

 read_file(msg, &in_buf);

 } else {

Client-Side Application

Appendix B • Sample C–Based GSS-API Programs 193

 /* Seal the message */

 in_buf.value = msg;

 in_buf.length = strlen(msg);

 }

 maj_stat = gss_wrap(&min_stat, context, 1, GSS_C_QOP_DEFAULT,

 &in_buf, &state, &out_buf);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("sealing message", maj_stat, min_stat);

 (void) close(s);

 (void) gss_delete_sec_context(&min_stat, &context,

 GSS_C_NO_BUFFER);

 return -1;

 } else if (! state) {

 fprintf(stderr, "Warning! Message not encrypted.\n");

 }

 /* Send to server */

 if (send_token(s, &out_buf) < 0) {

 (void) close(s);

 (void) gss_delete_sec_context(&min_stat, &context, GSS_C_NO_BUFFER);

 return -1;

 }

 (void) gss_release_buffer(&min_stat, &out_buf);

 /* Read signature block into out_buf */

 if (recv_token(s, &out_buf) < 0) {

 (void) close(s);

 (void) gss_delete_sec_context(&min_stat, &context, GSS_C_NO_BUFFER);

 return -1;

 }

 /* Verify signature block */

 maj_stat = gss_verify_mic(&min_stat, context, &in_buf,

 &out_buf, &qop_state);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("verifying signature", maj_stat, min_stat);

 (void) close(s);

 (void) gss_delete_sec_context(&min_stat, &context, GSS_C_NO_BUFFER);

 return -1;

 }

 (void) gss_release_buffer(&min_stat, &out_buf);

 if (use_file)

 free(in_buf.value);

 printf("Signature verified.\n");

 /* Delete context */

 maj_stat = gss_delete_sec_context(&min_stat, &context, &out_buf);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("deleting context", maj_stat, min_stat);

 (void) close(s);

 (void) gss_delete_sec_context(&min_stat, &context, GSS_C_NO_BUFFER);

 return -1;

 }

 (void) gss_release_buffer(&min_stat, &out_buf);

Client-Side Application

194 Developer's Guide to Oracle Solaris 11 Security • July 2014

 (void) close(s);

 return 0;

}

static void parse_oid(char *mechanism, gss_OID *oid)

{

 char *mechstr = 0, *cp;

 gss_buffer_desc tok;

 OM_uint32 maj_stat, min_stat;

 if (isdigit(mechanism[0])) {

 mechstr = malloc(strlen(mechanism)+5);

 if (!mechstr) {

 printf("Couldn't allocate mechanism scratch!\n");

 return;

 }

 sprintf(mechstr, "{ %s }", mechanism);

 for (cp = mechstr; *cp; cp++)

 if (*cp == '.')

 *cp = ' ';

 tok.value = mechstr;

 } else

 tok.value = mechanism;

 tok.length = strlen(tok.value);

 maj_stat = gss_str_to_oid(&min_stat, &tok, oid);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("str_to_oid", maj_stat, min_stat);

 return;

 }

 if (mechstr)

 free(mechstr);

}

int main(argc, argv)

 int argc;

 char **argv;

{

 char *service_name, *server_host, *msg;

 char *mechanism = 0;

 u_short port = 4444;

 int use_file = 0;

 OM_uint32 deleg_flag = 0, min_stat;

 gss_OID oid = GSS_C_NULL_OID;

 display_file = stdout;

 /* Parse arguments. */

 argc--; argv++;

 while (argc) {

 if (strcmp(*argv, "-port") == 0) {

 argc--; argv++;

 if (!argc) usage();

 port = atoi(*argv);

 } else if (strcmp(*argv, "-mech") == 0) {

 argc--; argv++;

 if (!argc) usage();

 mechanism = *argv;

 } else if (strcmp(*argv, "-d") == 0) {

Server-Side Application

Appendix B • Sample C–Based GSS-API Programs 195

 deleg_flag = GSS_C_DELEG_FLAG;

 } else if (strcmp(*argv, "-f") == 0) {

 use_file = 1;

 } else

 break;

 argc--; argv++;

 }

 if (argc != 3)

 usage();

 server_host = *argv++;

 service_name = *argv++;

 msg = *argv++;

 if (mechanism)

 parse_oid(mechanism, &oid);

 if (call_server(server_host, port, oid, service_name,

 deleg_flag, msg, use_file) < 0)

 exit(1);

 if (oid != GSS_C_NULL_OID)

 (void) gss_release_oid(&min_stat, &oid);

 return 0;

}

Server-Side Application

The source code for the server-side program, gss_server, is provided in the following example.

Note - The source code for this example is also available through the Oracle download center.
See http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html.

EXAMPLE B-2 Complete Code Listing for gss-server.c Sample Program

/*

 * Copyright 1994 by OpenVision Technologies, Inc.

 *

 * Permission to use, copy, modify, distribute, and sell this software

 * and its documentation for any purpose is hereby granted without fee,

 * provided that the above copyright notice appears in all copies and

 * that both that copyright notice and this permission notice appear in

 * supporting documentation, and that the name of OpenVision not be used

 * in advertising or publicity pertaining to distribution of the software

 * without specific, written prior permission. OpenVision makes no

 * representations about the suitability of this software for any

 * purpose. It is provided "as is" without express or implied warranty.

 *

 * OPENVISION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,

http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html

Server-Side Application

196 Developer's Guide to Oracle Solaris 11 Security • July 2014

 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO

 * EVENT SHALL OPENVISION BE LIABLE FOR ANY SPECIAL, INDIRECT OR

 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF

 * USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR

 * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR

 * PERFORMANCE OF THIS SOFTWARE.

 */

#if !defined(lint) && !defined(__CODECENTER__)

static char *rcsid = \

"$Header: /cvs/krbdev/krb5/src/appl/gss-sample/gss-server.c, \

 v 1.21 1998/12/22 \

04:10:08 tytso Exp $";

#endif

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/time.h>

#include <netinet/in.h>

#include <unistd.h>

#include <stdlib.h>

#include <ctype.h>

#include <gssapi/gssapi.h>

#include <gssapi/gssapi_ext.h>

#include <gss-misc.h>

#include <string.h>

void usage()

{

 fprintf(stderr, "Usage: gss-server [-port port] [-verbose]\n");

 fprintf(stderr, " [-inetd] [-logfile file] [service_name]\n");

 exit(1);

}

FILE *log;

int verbose = 0;

/*

 * Function: server_acquire_creds

 *

 * Purpose: imports a service name and acquires credentials for it

 *

 * Arguments:

 *

 * service_name (r) the ASCII service name

 * server_creds (w) the GSS-API service credentials

 *

 * Returns: 0 on success, -1 on failure

 *

 * Effects:

 *

 * The service name is imported with gss_import_name, and service

 * credentials are acquired with gss_acquire_cred. If either operation

 * fails, an error message is displayed and -1 is returned; otherwise,

Server-Side Application

Appendix B • Sample C–Based GSS-API Programs 197

 * 0 is returned.

 */

int server_acquire_creds(service_name, server_creds)

 char *service_name;

 gss_cred_id_t *server_creds;

{

 gss_buffer_desc name_buf;

 gss_name_t server_name;

 OM_uint32 maj_stat, min_stat;

 name_buf.value = service_name;

 name_buf.length = strlen(name_buf.value) + 1;

 maj_stat = gss_import_name(&min_stat, &name_buf,

 (gss_OID) GSS_C_NT_HOSTBASED_SERVICE, &server_name);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("importing name", maj_stat, min_stat);

 return -1;

 }

 maj_stat = gss_acquire_cred(&min_stat, server_name, 0,

 GSS_C_NULL_OID_SET, GSS_C_ACCEPT,

 server_creds, NULL, NULL);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("acquiring credentials", maj_stat, min_stat);

 return -1;

 }

 (void) gss_release_name(&min_stat, &server_name);

 return 0;

}

/*

 * Function: server_establish_context

 *

 * Purpose: establishes a GSS-API context as a specified service with

 * an incoming client, and returns the context handle and associated

 * client name

 *

 * Arguments:

 *

 * s (r) an established TCP connection to the client

 * service_creds (r) server credentials, from gss_acquire_cred

 * context (w) the established GSS-API context

 * client_name (w) the client's ASCII name

 *

 * Returns: 0 on success, -1 on failure

 *

 * Effects:

 *

 * Any valid client request is accepted. If a context is established,

 * its handle is returned in context and the client name is returned

 * in client_name and 0 is returned. If unsuccessful, an error

 * message is displayed and -1 is returned.

 */

int server_establish_context(s, server_creds, context, client_name, \

 ret_flags)

Server-Side Application

198 Developer's Guide to Oracle Solaris 11 Security • July 2014

 int s;

 gss_cred_id_t server_creds;

 gss_ctx_id_t *context;

 gss_buffer_t client_name;

 OM_uint32 *ret_flags;

{

 gss_buffer_desc send_tok, recv_tok;

 gss_name_t client;

 gss_OID doid;

 OM_uint32 maj_stat, min_stat, acc_sec_min_stat;

 gss_buffer_desc oid_name;

 *context = GSS_C_NO_CONTEXT;

 do {

 if (recv_token(s, &recv_tok) < 0)

 return -1;

 if (verbose && log) {

 fprintf(log, "Received token (size=%d): \n", recv_tok.length);

 print_token(&recv_tok);

 }

 maj_stat =

 gss_accept_sec_context(&acc_sec_min_stat,

 context,

 server_creds,

 &recv_tok,

 GSS_C_NO_CHANNEL_BINDINGS,

 &client,

 &doid,

 &send_tok,

 ret_flags,

 NULL, /* ignore time_rec */

 NULL); /* ignore del_cred_handle */

 (void) gss_release_buffer(&min_stat, &recv_tok);

 if (send_tok.length != 0) {

 if (verbose && log) {

 fprintf(log,

 "Sending accept_sec_context token (size=%d):\n",

 send_tok.length);

 print_token(&send_tok);

 }

 if (send_token(s, &send_tok) < 0) {

 fprintf(log, "failure sending token\n");

 return -1;

 }

 (void) gss_release_buffer(&min_stat, &send_tok);

 }

 if (maj_stat!=GSS_S_COMPLETE && maj_stat!=GSS_S_CONTINUE_NEEDED) {

 display_status("accepting context", maj_stat,

 acc_sec_min_stat);

 if (*context == GSS_C_NO_CONTEXT)

 gss_delete_sec_context(&min_stat, context,

 GSS_C_NO_BUFFER);

Server-Side Application

Appendix B • Sample C–Based GSS-API Programs 199

 return -1;

 }

 if (verbose && log) {

 if (maj_stat == GSS_S_CONTINUE_NEEDED)

 fprintf(log, "continue needed...\n");

 else

 fprintf(log, "\n");

 fflush(log);

 }

 } while (maj_stat == GSS_S_CONTINUE_NEEDED);

 /* display the flags */

 display_ctx_flags(*ret_flags);

 if (verbose && log) {

 maj_stat = gss_oid_to_str(&min_stat, doid, &oid_name);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("converting oid->string", maj_stat, min_stat);

 return -1;

 }

 fprintf(log, "Accepted connection using mechanism OID %.*s.\n",

 (int) oid_name.length, (char *) oid_name.value);

 (void) gss_release_buffer(&min_stat, &oid_name);

 }

 maj_stat = gss_display_name(&min_stat, client, client_name, &doid);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("displaying name", maj_stat, min_stat);

 return -1;

 }

 maj_stat = gss_release_name(&min_stat, &client);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("releasing name", maj_stat, min_stat);

 return -1;

 }

 return 0;

}

/*

 * Function: create_socket

 *

 * Purpose: Opens a listening TCP socket.

 *

 * Arguments:

 *

 * port (r) the port number on which to listen

 *

 * Returns: the listening socket file descriptor, or -1 on failure

 *

 * Effects:

 *

 * A listening socket on the specified port is created and returned.

 * On error, an error message is displayed and -1 is returned.

 */

int create_socket(port)

 u_short port;

{

Server-Side Application

200 Developer's Guide to Oracle Solaris 11 Security • July 2014

 struct sockaddr_in saddr;

 int s;

 int on = 1;

 saddr.sin_family = AF_INET;

 saddr.sin_port = htons(port);

 saddr.sin_addr.s_addr = INADDR_ANY;

 if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) {

 perror("creating socket");

 return -1;

 }

 /* Let the socket be reused right away */

 (void) setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (char *)&on,

 sizeof(on));

 if (bind(s, (struct sockaddr *) &saddr, sizeof(saddr)) < 0) {

 perror("binding socket");

 (void) close(s);

 return -1;

 }

 if (listen(s, 5) < 0) {

 perror("listening on socket");

 (void) close(s);

 return -1;

 }

 return s;

}

static float timeval_subtract(tv1, tv2)

 struct timeval *tv1, *tv2;

{

 return ((tv1->tv_sec - tv2->tv_sec) +

 ((float) (tv1->tv_usec - tv2->tv_usec)) / 1000000);

}

/*

 * Yes, yes, this isn't the best place for doing this test.

 * DO NOT REMOVE THIS UNTIL A BETTER TEST HAS BEEN WRITTEN, THOUGH.

 * -TYT

 */

int test_import_export_context(context)

 gss_ctx_id_t *context;

{

 OM_uint32 min_stat, maj_stat;

 gss_buffer_desc context_token, copied_token;

 struct timeval tm1, tm2;

 /*

 * Attempt to save and then restore the context.

 */

 gettimeofday(&tm1, (struct timezone *)0);

 maj_stat = gss_export_sec_context(&min_stat, context, \

 &context_token);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("exporting context", maj_stat, min_stat);

 return 1;

 }

 gettimeofday(&tm2, (struct timezone *)0);

Server-Side Application

Appendix B • Sample C–Based GSS-API Programs 201

 if (verbose && log)

 fprintf(log, "Exported context: %d bytes, %7.4f seconds\n",

 context_token.length, timeval_subtract(&tm2, &tm1));

 copied_token.length = context_token.length;

 copied_token.value = malloc(context_token.length);

 if (copied_token.value == 0) {

 fprintf(log, "Couldn't allocate memory to copy context \

 token.\n");

 return 1;

 }

 memcpy(copied_token.value, context_token.value, \

 copied_token.length);

 maj_stat = gss_import_sec_context(&min_stat, &copied_token, \

 context);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("importing context", maj_stat, min_stat);

 return 1;

 }

 free(copied_token.value);

 gettimeofday(&tm1, (struct timezone *)0);

 if (verbose && log)

 fprintf(log, "Importing context: %7.4f seconds\n",

 timeval_subtract(&tm1, &tm2));

 (void) gss_release_buffer(&min_stat, &context_token);

 return 0;

}

/*

 * Function: sign_server

 *

 * Purpose: Performs the "sign" service.

 *

 * Arguments:

 *

 * s (r) a TCP socket on which a connection has been

 * accept()ed

 * service_name (r) the ASCII name of the GSS-API service to

 * establish a context as

 *

 * Returns: -1 on error

 *

 * Effects:

 *

 * sign_server establishes a context, and performs a single sign request.

 *

 * A sign request is a single GSS-API sealed token. The token is

 * unsealed and a signature block, produced with gss_sign, is returned

 * to the sender. The context is then destroyed and the connection

 * closed.

 *

 * If any error occurs, -1 is returned.

 */

int sign_server(s, server_creds)

 int s;

 gss_cred_id_t server_creds;

{

 gss_buffer_desc client_name, xmit_buf, msg_buf;

 gss_ctx_id_t context;

Server-Side Application

202 Developer's Guide to Oracle Solaris 11 Security • July 2014

 OM_uint32 maj_stat, min_stat;

 int i, conf_state, ret_flags;

 char *cp;

 /* Establish a context with the client */

 if (server_establish_context(s, server_creds, &context,

 &client_name, &ret_flags) < 0)

 return(-1);

 printf("Accepted connection: \"%.*s\"\n",

 (int) client_name.length, (char *) client_name.value);

 (void) gss_release_buffer(&min_stat, &client_name);

 for (i=0; i < 3; i++)

 if (test_import_export_context(&context))

 return -1;

 /* Receive the sealed message token */

 if (recv_token(s, &xmit_buf) < 0)

 return(-1);

 if (verbose && log) {

 fprintf(log, "Sealed message token:\n");

 print_token(&xmit_buf);

 }

 maj_stat = gss_unwrap(&min_stat, context, &xmit_buf, &msg_buf,

 &conf_state, (gss_qop_t *) NULL);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("unsealing message", maj_stat, min_stat);

 return(-1);

 } else if (! conf_state) {

 fprintf(stderr, "Warning! Message not encrypted.\n");

 }

 (void) gss_release_buffer(&min_stat, &xmit_buf);

 fprintf(log, "Received message: ");

 cp = msg_buf.value;

 if ((isprint(cp[0]) || isspace(cp[0])) &&

 (isprint(cp[1]) || isspace(cp[1]))) {

 fprintf(log, "\"%.*s\"\n", msg_buf.length, msg_buf.value);

 } else {

 printf("\n");

 print_token(&msg_buf);

 }

 /* Produce a signature block for the message */

 maj_stat = gss_get_mic(&min_stat, context, GSS_C_QOP_DEFAULT,

 &msg_buf, &xmit_buf);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("signing message", maj_stat, min_stat);

 return(-1);

 }

 (void) gss_release_buffer(&min_stat, &msg_buf);

 /* Send the signature block to the client */

Server-Side Application

Appendix B • Sample C–Based GSS-API Programs 203

 if (send_token(s, &xmit_buf) < 0)

 return(-1);

 (void) gss_release_buffer(&min_stat, &xmit_buf);

 /* Delete context */

 maj_stat = gss_delete_sec_context(&min_stat, &context, NULL);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("deleting context", maj_stat, min_stat);

 return(-1);

 }

 fflush(log);

 return(0);

}

int

main(argc, argv)

 int argc;

 char **argv;

{

 char *service_name;

 gss_cred_id_t server_creds;

 OM_uint32 min_stat;

 u_short port = 4444;

 int s;

 int once = 0;

 int do_inetd = 0;

 log = stdout;

 display_file = stdout;

 argc--; argv++;

 while (argc) {

 if (strcmp(*argv, "-port") == 0) {

 argc--; argv++;

 if (!argc) usage();

 port = atoi(*argv);

 } else if (strcmp(*argv, "-verbose") == 0) {

 verbose = 1;

 } else if (strcmp(*argv, "-once") == 0) {

 once = 1;

 } else if (strcmp(*argv, "-inetd") == 0) {

 do_inetd = 1;

 } else if (strcmp(*argv, "-logfile") == 0) {

 argc--; argv++;

 if (!argc) usage();

 log = fopen(*argv, "a");

 display_file = log;

 if (!log) {

 perror(*argv);

 exit(1);

 }

 } else

 break;

 argc--; argv++;

 }

 if (argc != 1)

Miscellaneous GSS-API Sample Functions

204 Developer's Guide to Oracle Solaris 11 Security • July 2014

 usage();

 if ((*argv)[0] == '-')

 usage();

 service_name = *argv;

 if (server_acquire_creds(service_name, &server_creds) < 0)

 return -1;

 if (do_inetd) {

 close(1);

 close(2);

 sign_server(0, server_creds);

 close(0);

 } else {

 int stmp;

 if ((stmp = create_socket(port)) >= 0) {

 do {

 /* Accept a TCP connection */

 if ((s = accept(stmp, NULL, 0)) < 0) {

 perror("accepting connection");

 continue;

 }

 /* this return value is not checked, because there's

 not really anything to do if it fails */

 sign_server(s, server_creds);

 close(s);

 } while (!once);

 close(stmp);

 }

 }

 (void) gss_release_cred(&min_stat, &server_creds);

 /*NOTREACHED*/

 (void) close(s);

 return 0;

}

Miscellaneous GSS-API Sample Functions

To make the client and server programs work as shown, a number of other functions are
required. These functions are used to display values. The functions are not otherwise needed.
The functions in this category are as follows:

■ send_token – Transfers tokens and messages to a recipient
■ recv_token – Accepts tokens and messages from a sender
■ display_status – Shows the status returned by the last GSS-API function called

Miscellaneous GSS-API Sample Functions

Appendix B • Sample C–Based GSS-API Programs 205

■ write_all – Writes a buffer to a file
■ read_all – Reads a file into a buffer
■ display_ctx_flags – Shows in a readable form information about the current context,

such as whether confidentiality or mutual authentication is allowed
■ print_token – Prints out a token's value

The code for these functions is shown in the following example.

Note - The source code for this example is also available through the Oracle download center.
See http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html.

EXAMPLE B-3 Code Listings for Miscellaneous GSS-API Functions

/*

 * Copyright 1994 by OpenVision Technologies, Inc.

 *

 * Permission to use, copy, modify, distribute, and sell this software

 * and its documentation for any purpose is hereby granted without fee,

 * provided that the above copyright notice appears in all copies and

 * that both that copyright notice and this permission notice appear in

 * supporting documentation, and that the name of OpenVision not be used

 * in advertising or publicity pertaining to distribution of the software

 * without specific, written prior permission. OpenVision makes no

 * representations about the suitability of this software for any

 * purpose. It is provided "as is" without express or implied warranty.

 *

 * OPENVISION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,

 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO

 * EVENT SHALL OPENVISION BE LIABLE FOR ANY SPECIAL, INDIRECT OR

 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF

 * USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR

 * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR

 * PERFORMANCE OF THIS SOFTWARE.

 */

#if !defined(lint) && !defined(__CODECENTER__)

static char *rcsid = "$Header: /cvs/krbdev/krb5/src/appl/gss-sample/\

 gss-misc.c, v 1.15 1996/07/22 20:21:20 marc Exp $";

#endif

#include <stdio.h>

#include <sys/types.h>

#include <netinet/in.h>

#include <errno.h>

#include <unistd.h>

#include <string.h>

#include <gssapi/gssapi.h>

#include <gssapi/gssapi_ext.h>

#include <gss-misc.h>

http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html

Miscellaneous GSS-API Sample Functions

206 Developer's Guide to Oracle Solaris 11 Security • July 2014

#include <stdlib.h>

FILE *display_file;

static void display_status_1

 (char *m, OM_uint32 code, int type);

static int write_all(int fildes, char *buf, unsigned int nbyte)

{

 int ret;

 char *ptr;

 for (ptr = buf; nbyte; ptr += ret, nbyte -= ret) {

 ret = write(fildes, ptr, nbyte);

 if (ret < 0) {

 if (errno == EINTR)

 continue;

 return(ret);

 } else if (ret == 0) {

 return(ptr-buf);

 }

 }

 return(ptr-buf);

}

static int read_all(int fildes, char *buf, unsigned int nbyte)

{

 int ret;

 char *ptr;

 for (ptr = buf; nbyte; ptr += ret, nbyte -= ret) {

 ret = read(fildes, ptr, nbyte);

 if (ret < 0) {

 if (errno == EINTR)

 continue;

 return(ret);

 } else if (ret == 0) {

 return(ptr-buf);

 }

 }

 return(ptr-buf);

}

/*

 * Function: send_token

 *

 * Purpose: Writes a token to a file descriptor.

 *

 * Arguments:

 *

 * s (r) an open file descriptor

 * tok (r) the token to write

 *

 * Returns: 0 on success, -1 on failure

 *

 * Effects:

Miscellaneous GSS-API Sample Functions

Appendix B • Sample C–Based GSS-API Programs 207

 *

 * send_token writes the token length (as a network long) and then the

 * token data to the file descriptor s. It returns 0 on success, and

 * -1 if an error occurs or if it could not write all the data.

 */

int send_token(s, tok)

 int s;

 gss_buffer_t tok;

{

 int len, ret;

 len = htonl(tok->length);

 ret = write_all(s, (char *) &len, 4);

 if (ret < 0) {

 perror("sending token length");

 return -1;

 } else if (ret != 4) {

 if (display_file)

 fprintf(display_file,

 "sending token length: %d of %d bytes written\n",

 ret, 4);

 return -1;

 }

 ret = write_all(s, tok->value, tok->length);

 if (ret < 0) {

 perror("sending token data");

 return -1;

 } else if (ret != tok->length) {

 if (display_file)

 fprintf(display_file,

 "sending token data: %d of %d bytes written\n",

 ret, tok->length);

 return -1;

 }

 return 0;

}

/*

 * Function: recv_token

 *

 * Purpose: Reads a token from a file descriptor.

 *

 * Arguments:

 *

 * s (r) an open file descriptor

 * tok (w) the read token

 *

 * Returns: 0 on success, -1 on failure

 *

 * Effects:

 *

 * recv_token reads the token length (as a network long), allocates

 * memory to hold the data, and then reads the token data from the

 * file descriptor s. It blocks to read the length and data, if

 * necessary. On a successful return, the token should be freed with

Miscellaneous GSS-API Sample Functions

208 Developer's Guide to Oracle Solaris 11 Security • July 2014

 * gss_release_buffer. It returns 0 on success, and -1 if an error

 * occurs or if it could not read all the data.

 */

int recv_token(s, tok)

 int s;

 gss_buffer_t tok;

{

 int ret;

 ret = read_all(s, (char *) &tok->length, 4);

 if (ret < 0) {

 perror("reading token length");

 return -1;

 } else if (ret != 4) {

 if (display_file)

 fprintf(display_file,

 "reading token length: %d of %d bytes read\n",

 ret, 4);

 return -1;

 }

 tok->length = ntohl(tok->length);

 tok->value = (char *) malloc(tok->length);

 if (tok->value == NULL) {

 if (display_file)

 fprintf(display_file,

 "Out of memory allocating token data\n");

 return -1;

 }

 ret = read_all(s, (char *) tok->value, tok->length);

 if (ret < 0) {

 perror("reading token data");

 free(tok->value);

 return -1;

 } else if (ret != tok->length) {

 fprintf(stderr, "sending token data: %d of %d bytes written\n",

 ret, tok->length);

 free(tok->value);

 return -1;

 }

 return 0;

}

static void display_status_1(m, code, type)

 char *m;

 OM_uint32 code;

 int type;

{

 OM_uint32 maj_stat, min_stat;

 gss_buffer_desc msg;

 OM_uint32 msg_ctx;

 msg_ctx = 0;

 while (1) {

 maj_stat = gss_display_status(&min_stat, code,

 type, GSS_C_NULL_OID,

Miscellaneous GSS-API Sample Functions

Appendix B • Sample C–Based GSS-API Programs 209

 &msg_ctx, &msg);

 if (display_file)

 fprintf(display_file, "GSS-API error %s: %s\n", m,

 (char *)msg.value);

 (void) gss_release_buffer(&min_stat, &msg);

 if (!msg_ctx)

 break;

 }

}

/*

 * Function: display_status

 *

 * Purpose: displays GSS-API messages

 *

 * Arguments:

 *

 * msg a string to be displayed with the message

 * maj_stat the GSS-API major status code

 * min_stat the GSS-API minor status code

 *

 * Effects:

 *

 * The GSS-API messages associated with maj_stat and min_stat are

 * displayed on stderr, each preceded by "GSS-API error <msg>: " and

 * followed by a newline.

 */

void display_status(msg, maj_stat, min_stat)

 char *msg;

 OM_uint32 maj_stat;

 OM_uint32 min_stat;

{

 display_status_1(msg, maj_stat, GSS_C_GSS_CODE);

 display_status_1(msg, min_stat, GSS_C_MECH_CODE);

}

/*

 * Function: display_ctx_flags

 *

 * Purpose: displays the flags returned by context initiation in

 * a human-readable form

 *

 * Arguments:

 *

 * int ret_flags

 *

 * Effects:

 *

 * Strings corresponding to the context flags are printed on

 * stdout, preceded by "context flag: " and followed by a newline

 */

void display_ctx_flags(flags)

 OM_uint32 flags;

{

 if (flags & GSS_C_DELEG_FLAG)

 fprintf(display_file, "context flag: GSS_C_DELEG_FLAG\n");

Miscellaneous GSS-API Sample Functions

210 Developer's Guide to Oracle Solaris 11 Security • July 2014

 if (flags & GSS_C_MUTUAL_FLAG)

 fprintf(display_file, "context flag: GSS_C_MUTUAL_FLAG\n");

 if (flags & GSS_C_REPLAY_FLAG)

 fprintf(display_file, "context flag: GSS_C_REPLAY_FLAG\n");

 if (flags & GSS_C_SEQUENCE_FLAG)

 fprintf(display_file, "context flag: GSS_C_SEQUENCE_FLAG\n");

 if (flags & GSS_C_CONF_FLAG)

 fprintf(display_file, "context flag: GSS_C_CONF_FLAG \n");

 if (flags & GSS_C_INTEG_FLAG)

 fprintf(display_file, "context flag: GSS_C_INTEG_FLAG \n");

}

void print_token(tok)

 gss_buffer_t tok;

{

 int i;

 unsigned char *p = tok->value;

 if (!display_file)

 return;

 for (i=0; i < tok->length; i++, p++) {

 fprintf(display_file, "%02x ", *p);

 if ((i % 16) == 15) {

 fprintf(display_file, "\n");

 }

 }

 fprintf(display_file, "\n");

 fflush(display_file);

}

Appendix C • GSS-API Reference 211

 C ♦ ♦ ♦ A P P E N D I X C

GSS-API Reference

This appendix includes the following sections:

■ “GSS-API Functions” on page 211 provides a table of GSS-API functions.
■ “GSS-API Status Codes” on page 213 discusses status codes returned by GSS-API

functions, and provides a list of those status codes.
■ “GSS-API Data Types and Values” on page 217 discusses the various data types used

by GSS-API.
■ “Implementation-Specific Features in GSS-API” on page 220 covers features that are

unique to the Oracle Solaris implementation of GSS-API.
■ “Kerberos v5 Status Codes” on page 223 lists the status codes that can be returned by

the Kerberos v5 mechanism.

Additional GSS-API definitions can be found in the file gssapi.h.

GSS-API Functions

The Oracle Solaris software implements the GSS-API functions. For more information
on each function, see its man page. See also “Functions From Previous Versions of GSS-
API” on page 213.

gss_acquire_cred Assume a global identity by obtaining a GSS-API credential handle for
preexisting credentials

gss_add_cred Construct credentials incrementally

gss_inquire_cred Obtain information about a credential

gss_inquire_cred_by_mechObtain per-mechanism information about a credential

gss_release_cred Discard a credential handle

gss_init_sec_context Initiate a security context with a peer application

gss_accept_sec_contextAccept a security context initiated by a peer application

GSS-API Functions

212 Developer's Guide to Oracle Solaris 11 Security • July 2014

gss_delete_sec_contextDiscard a security context

gss_process_context_tokenProcess a token on a security context from a peer application

gss_context_time Determine how long a context is to remain valid

gss_inquire_context Obtain information about a security context

gss_wrap_size_limit Determine token-size limit for gss_wrap on a context

gss_export_sec_contextTransfer a security context to another process

gss_import_sec_contextImport a transferred context

gss_get_mic Calculate a cryptographic message integrity code (MIC) for a message

gss_verify_mic Check a MIC against a message to verify integrity of a received message

gss_wrap Attach a MIC to a message, and optionally encrypt the message content

gss_unwrap Verify a message with attached MIC. Decrypt message content if
necessary

gss_import_name Convert a contiguous string name to an internal-form name

gss_display_name Convert internal-form name to text

gss_compare_name Compare two internal-form names

gss_release_name Discard an internal-form name

gss_inquire_names_for_mechList the name types supported by the specified mechanism

gss_inquire_mechs_for_nameList mechanisms that support the specified name type

gss_canonicalize_nameConvert an internal name to a mechanism name (MN)

gss_export_name Convert an MN to export form

gss_duplicate_name Create a copy of an internal name

gss_add_oid_set_memberAdd an object identifier to a set

gss_display_status Convert a GSS-API status code to text

gss_indicate_mechs Determine available underlying authentication mechanisms

gss_release_buffer Discard a buffer

GSS-API Status Codes

Appendix C • GSS-API Reference 213

gss_release_oid_set Discard a set of object identifiers

gss_create_empty_oid_setCreate a set with no object identifiers

gss_test_oid_set_memberDetermine whether an object identifier is a member of a set

Functions From Previous Versions of GSS-API

This section explains functions that were included in previous versions of the GSS-API.

Functions for Manipulating OIDs

The Oracle Solaris implementation of GSS-API provides the following functions for
convenience and for backward compatibility. However, these functions might not be supported
by other implementations of GSS-API.

■ gss_delete_oid

■ gss_oid_to_str

■ gss_str_to_oid

Although a mechanism's name can be converted from a string to an OID, programmers should
use the default GSS-API mechanism if at all possible.

Renamed Functions

The following functions have been supplanted by newer functions. In each case, the new
function is the functional equivalent of the older function. Although the old functions are
supported, developers should replace these functions with the newer functions whenever
possible.

■ gss_sign has been replaced with gss_get_mic.
■ gss_verify has been replaced with gss_verify_mic.
■ gss_seal has been replaced with gss_wrap.
■ gss_unseal has been replaced with gss_unwrap.

GSS-API Status Codes

Major status codes are encoded in the OM_uint32 as shown in the following figure.

GSS-API Status Codes

214 Developer's Guide to Oracle Solaris 11 Security • July 2014

FIGURE C-1 Major-Status Encoding

If a GSS-API routine returns a GSS status code whose upper 16 bits contain a nonzero value,
the call has failed. If the calling error field is nonzero, the application's call of the routine
was erroneous. The calling errors are listed in Table C-1. If the routine error field is nonzero,
the routine failed because of a routine-specific error, as listed in Table C-2. The bits in the
supplementary information field of the status code can be set whether the upper 16 bits indicate
a failure or a success. The meaning of individual bits is listed in Table C-3.

GSS-API Major Status Code Values

The following tables list the calling errors that are returned by GSS-API. These errors are
specific to a particular language-binding, which is C in this case.

TABLE C-1 GSS-API Calling Errors

Error Value in Field Meaning

GSS_S_CALL_INACCESSIBLE_READ 1 An input parameter that is required
could not be read

GSS_S_CALL_INACCESSIBLE_WRITE 2 A required output parameter could
not be written

GSS_S_CALL_BAD_STRUCTURE 3 A parameter was malformed

The following table lists the GSS-API routine errors, generic errors that are returned by GSS-
API functions.

TABLE C-2 GSS-API Routine Errors

Error Value in
Field

Meaning

GSS_S_BAD_MECH 1 An unsupported mechanism was requested.

GSS_S_BAD_NAME 2 An invalid name was supplied.

GSS-API Status Codes

Appendix C • GSS-API Reference 215

Error Value in
Field

Meaning

GSS_S_BAD_NAMETYPE 3 A supplied name was of an unsupported type.

GSS_S_BAD_BINDINGS 4 Incorrect channel bindings were supplied.

GSS_S_BAD_STATUS 5 An invalid status code was supplied.

GSS_S_BAD_MIC, GSS_S_BAD_SIG 6 A token had an invalid MIC.

GSS_S_NO_CRED 7 The credentials were unavailable, inaccessible,
or not supplied.

GSS_S_NO_CONTEXT 8 No context has been established.

GSS_S_DEFECTIVE_TOKEN 9 A token was invalid.

GSS_S_DEFECTIVE_CREDENTIAL 10 A credential was invalid.

GSS_S_CREDENTIALS_EXPIRED 11 The referenced credentials have expired.

GSS_S_CONTEXT_EXPIRED 12 The context has expired.

GSS_S_FAILURE 13 Miscellaneous failure. The underlying
mechanism detected an error for which no
specific GSS–API status code is defined. The
mechanism-specific status code, that is, the
minor-status code, provides more details about
the error.

GSS_S_BAD_QOP 14 The quality-of-protection that was requested
could not be provided.

GSS_S_UNAUTHORIZED 15 The operation is forbidden by local security
policy.

GSS_S_UNAVAILABLE 16 The operation or option is unavailable.

GSS_S_DUPLICATE_ELEMENT 17 The requested credential element already exists.

GSS_S_NAME_NOT_MN 18 The provided name was not a mechanism name
(MN).

The name GSS_S_COMPLETE, which is a zero value, indicates an absence of any API errors or
supplementary information bits.

The following table lists the supplementary information values returned by GSS-API functions.

TABLE C-3 GSS-API Supplementary Information Codes

Code Bit Number Meaning

GSS_S_CONTINUE_NEEDED 0 (LSB) Returned only by gss_init_sec_context or gss_
accept_sec_context. The routine must be called
again to complete its function.

GSS-API Status Codes

216 Developer's Guide to Oracle Solaris 11 Security • July 2014

Code Bit Number Meaning

GSS_S_DUPLICATE_TOKEN 1 The token was a duplicate of an earlier token.

GSS_S_OLD_TOKEN 2 The token's validity period has expired.

GSS_S_UNSEQ_TOKEN 3 A later token has already been processed.

GSS_S_GAP_TOKEN 4 An expected per-message token was not received.

For more on status codes, see “GSS-API Status Codes” on page 67.

Displaying Status Codes

The function gss_display_status translates GSS-API status codes into text format. This
format allows the codes to be displayed to a user or put in a text log. gss_display_status
only displays one status code at a time, and some functions can return multiple status
conditions. Accordingly, gss_display_status should be called as part of a loop. When
gss_display_status indicates a non-zero status code, another status code is available for the
function to fetch.

EXAMPLE C-1 Displaying Status Codes with gss_display_status

OM_uint32 message_context;

OM_uint32 status_code;

OM_uint32 maj_status;

OM_uint32 min_status;

gss_buffer_desc status_string;

...

message_context = 0;

do {

 maj_status = gss_display_status(

 &min_status,

 status_code,

 GSS_C_GSS_CODE,

 GSS_C_NO_OID,

 &message_context,

 &status_string);

 fprintf(stderr, "%.*s\n", \

 (int)status_string.length, \

 (char *)status_string.value);

 gss_release_buffer(&min_status, &status_string,);

} while (message_context != 0);

GSS-API Data Types and Values

Appendix C • GSS-API Reference 217

Status Code Macros

The macros, GSS_CALLING_ERROR, GSS_ROUTINE_ERROR and GSS_SUPPLEMENTARY_INFO, take
a GSS status code. These macros remove all information except for the relevant field. For
example, the GSS_ROUTINE_ERROR can be applied to a status code to remove the calling errors
and supplementary information fields. This operation leaves the routine errors field only. The
values delivered by these macros can be directly compared with a GSS_S_xxx symbol of the
appropriate type. The macro GSS_ERROR returns a non-zero value if a status code indicates a
calling or routine error, and a zero value otherwise. All macros that are defined by GSS-API
evaluate the arguments exactly once.

GSS-API Data Types and Values

This section describes various types of GSS-API data types and values. Some data types, such
as gss_cred_id_t or gss_name_t, are opaque to the user. These data types do not need to be
discussed. This section explains the following topics:

■ “Basic GSS-API Data Types” on page 217 – Shows the definitions of the
OM_uint32, gss_buffer_desc, gss_OID_desc, gss_OID_set_desc_struct, and
gss_channel_bindings_struct data types.

■ “Name Types” on page 218 – Shows the various name formats recognized by the GSS-
API for specifying names.

■ “Address Types for Channel Bindings” on page 219 – Shows the various values
that can be used as the initiator_addrtype and acceptor_addrtype fields of the
gss_channel_bindings_t structure.

Basic GSS-API Data Types
This section describes data types that are used by GSS-API.

OM_uint32

The OM_uint32 is a platform-independent 32–bit unsigned integer.

gss_buffer_desc

The definition of the gss_buffer_desc with the gss_buffer_t pointer takes the following
form:

GSS-API Data Types and Values

218 Developer's Guide to Oracle Solaris 11 Security • July 2014

typedef struct gss_buffer_desc_struct {

 size_t length;

 void *value;

} gss_buffer_desc, *gss_buffer_t;

gss_OID_desc

The definition of the gss_OID_desc with the gss_OID pointer takes the following form:

typedef struct gss_OID_desc_struct {

 OM_uint32 length;

 void*elements;

} gss_OID_desc, *gss_OID;

gss_OID_set_desc

The definition of the gss_OID_set_desc with the gss_OID_set pointer takes the following
form:

typedef struct gss_OID_set_desc_struct {

 size_t count;

 gss_OID elements;

} gss_OID_set_desc, *gss_OID_set;

gss_channel_bindings_struct

The definition of the gss_channel_bindings_struct structure and the
gss_channel_bindings_t pointer has the following form:

typedef struct gss_channel_bindings_struct {

 OM_uint32 initiator_addrtype;

 gss_buffer_desc initiator_address;

 OM_uint32 acceptor_addrtype;

 gss_buffer_desc acceptor_address;

 gss_buffer_desc application_data;

} *gss_channel_bindings_t;

Name Types

A name type indicates the format of the associated name. See “Names in GSS-API” on page 62
and “GSS-API OIDs” on page 66 for more on names and name types. The GSS-API supports
the gss_OID name types in the following table.

GSS-API Data Types and Values

Appendix C • GSS-API Reference 219

GSS_C_NO_NAME The symbolic name GSS_C_NO_NAME is recommended as a parameter
value to indicate that no value is supplied in the transfer of names.

GSS_C_NO_OID This value corresponds to a null input value instead of an actual object
identifier. Where specified, the value indicates interpretation of an
associated name that is based on a mechanism-specific default printable
syntax.

GSS_C_NT_ANONYMOUSA means to identify anonymous names. This value can be compared with
to determine in a mechanism-independent fashion whether a name refers
to an anonymous principal.

GSS_C_NT_EXPORT_NAMEA name that has been exported with the gss_export_name function.

GSS_C_NT_HOSTBASED_SERVICEUsed to represent services that are associated with host computers. This
name form is constructed using two elements, service and hostname, as
follows: service@hostname.

GSS_C_NT_MACHINE_UID_NAMEUsed to indicate a numeric user identifier corresponding to a user on
a local system. The interpretation of this value is OS-specific. The
gss_import_name function resolves this UID into a user name, which is
then treated as the User Name Form.

GSS_C_NT_STRING_STRING_UID_NAMEUsed to indicate a string of digits that represents the numeric user
identifier of a user on a local system. The interpretation of this value is
OS-specific. This name type is similar to the Machine UID Form, except
that the buffer contains a string that represents the user ID.

GSS_C_NT_USER_NAMEA named user on a local system. The interpretation of this value is OS-
specific. The value takes the form: username.

Address Types for Channel Bindings

The following table shows the possible values for the initiator_addrtype and acceptor_addrtype
fields of the gss_channel_bindings_struct structure. These fields indicate the format that a
name can take, for example, ARPAnet IMP address or AppleTalk address. Channel bindings are
discussed in “Using Channel Bindings in GSS-API” on page 78.

TABLE C-4 Channel Binding Address Types

Field Value (Decimal) Address Type

GSS_C_AF_UNSPEC 0 Unspecified address type

GSS_C_AF_LOCAL 1 Host-local

Implementation-Specific Features in GSS-API

220 Developer's Guide to Oracle Solaris 11 Security • July 2014

Field Value (Decimal) Address Type

GSS_C_AF_INET 2 Internet address type, for example, IP

GSS_C_AF_IMPLINK 3 ARPAnet IMP

GSS_C_AF_PUP 4 pup protocols, for example, BSP

GSS_C_AF_CHAOS 5 MIT CHAOS protocol

GSS_C_AF_NS 6 XEROX NS

GSS_C_AF_NBS 7 nbs

GSS_C_AF_ECMA 8 ECMA

GSS_C_AF_DATAKIT 9 Datakit protocols

GSS_C_AF_CCITT 10 CCITT

GSS_C_AF_SNA 11 IBM SNA

GSS_C_AF_DECnet 12 DECnet

GSS_C_AF_DLI 13 Direct data link interface

GSS_C_AF_LAT 14 LAT

GSS_C_AF_HYLINK 15 NSC Hyperchannel

GSS_C_AF_APPLETALK 16 AppleTalk

GSS_C_AF_BSC 17 BISYNC

GSS_C_AF_DSS 18 Distributed system services

GSS_C_AF_OSI 19 OSI TP4

GSS_C_AF_X25 21 X.25

GSS_C_AF_NULLADDR 255 No address specified

Implementation-Specific Features in GSS-API

Some aspects of the GSS-API can differ between implementations of the API. In most
cases, differences in implementations have only minimal effect on programs. In all cases,
developers can maximize portability by not relying on any behavior that is specific to a given
implementation, including the Oracle Solaris implementation.

Oracle Solaris-Specific Functions

The Oracle Solaris implementation does not have customized GSS-API functions.

Implementation-Specific Features in GSS-API

Appendix C • GSS-API Reference 221

Human-Readable Name Syntax

Implementations of GSS-API can differ in the printable syntax that corresponds to names. For
portability, applications should not compare names that use human-readable, that is, printable,
forms. Instead, such applications should use gss_compare_name to determine whether an
internal-format name matches any other name.

The Oracle Solaris implementation of gss_display_name displays names as follows.
If the input_nameargument denotes a user principal, the gss_display_name returns
user_principal@realm as the output_name_buffer and the gss_OID value as
the output_name_type. If Kerberos v5 is the underlying mechanism, gss_OID is
1.2.840.11354.1.2.2.

If gss_display_name receives a name that was created by gss_import_name with the
GSS_C_NO_OID name type, gss_display_name returns GSS_C_NO_OID in the output_name_type
parameter.

Format of Anonymous Names

The gss_display_name function outputs the string '<anonymous>' to indicate an anonymous
GSS-API principal. The name type OID associated with this name is GSS_C_NT_ANONYMOUS.
No other valid printable names supported by the Oracle Solaris implementation should be
surrounded by angle brackets (<>).

Implementations of Selected Data Types

The following data types have been implemented as pointers, although some implementations
might specify these types as arithmetic types: gss_cred_t, gss_ctx_id_t, and gss_name_t.

Deletion of Contexts and Stored Data

When context establishment fails, the Oracle Solaris implementation does not automatically
delete partially built contexts. Applications should therefore handle this event by deleting the
contexts with gss_delete_sec_context.

The Oracle Solaris implementation automatically releases stored data, such as internal names,
through memory management. However, applications should still call appropriate functions,
such as gss_release_name, when data elements are no longer needed.

Implementation-Specific Features in GSS-API

222 Developer's Guide to Oracle Solaris 11 Security • July 2014

Protection of Channel-Binding Information

Support for channel bindings varies by mechanism. Both the Diffie-Hellman mechanism and
the Kerberos v5 mechanism support channel bindings.

Developers should assume that channel bindings data do not have confidentiality protection.
Although the Kerberos v5 mechanism provides this protection, confidentiality for channel-
bindings data is not available with the Diffie-Hellman mechanism.

Context Exportation and Interprocess Tokens

The Oracle Solaris implementation detects and rejects attempted multiple imports of the same
context.

Types of Credentials Supported

The Oracle Solaris implementation of the GSS-API supports the acquisition of
GSS_C_INITIATE, GSS_C_ACCEPT, and GSS_C_BOTH credentials through gss_acquire_cred.

Credential Expiration

The Oracle Solaris implementation of the GSS-API supports credential expiration. Therefore,
programmers can use parameters that relate to credential lifetime in functions such as
gss_acquire_cred and gss_add_cred.

Context Expiration

The Oracle Solaris implementation of the GSS-API supports context expiration. Therefore,
programmers can use parameters that relate to context lifetime in functions such as
gss_init_sec_context and gss_inquire_context.

Kerberos v5 Status Codes

Appendix C • GSS-API Reference 223

Wrap Size Limits and QOP Values

The Oracle Solaris implementation of the GSS-API, as opposed to any underlying mechanism,
does not impose a maximum size for messages to be processed by gss_wrap. Applications can
determine the maximum message size with gss_wrap_size_limit.

The Oracle Solaris implementation of the GSS-API detects invalid QOP values when
gss_wrap_size_limit is called.

Use of minor_status Parameter

In the Oracle Solaris implementation of the GSS-API, functions return only mechanism-
specific information in the minor_status parameter. Other implementations might include
implementation-specific return values as part of the returned minor-status code.

Kerberos v5 Status Codes

Each GSS-API function returns two status codes: a major status code and a minor status
code. Major status codes relate to the behavior of GSS-API. For example, if an application
attempts to transmit a message after a security context has expired, GSS-API returns a major
status code of GSS_S_CONTEXT_EXPIRED. Major status codes are listed in “GSS-API Status
Codes” on page 213.

Minor status codes are returned by the underlying security mechanisms supported by a
given implementation of GSS-API. Every GSS-API function takes as the first argument a
minor_status or minor_stat parameter. An application can examine this parameter when
the function returns, successfully or not, to see the status that is returned by the underlying
mechanism.

The following tables list the status messages that can be returned by Kerberos v5 in
the minor_status argument. For more on GSS-API status codes, see “GSS-API Status
Codes” on page 67.

Messages Returned in Kerberos v5 for Status
Code 1

The following table lists the minor status messages that are returned in Kerberos v5 for status
code 1.

Kerberos v5 Status Codes

224 Developer's Guide to Oracle Solaris 11 Security • July 2014

TABLE C-5 Kerberos v5 Status Codes 1

Minor Status Value Meaning

KRB5KDC_ERR_NONE -1765328384L No error

KRB5KDC_ERR_NAME_EXP -1765328383L Client's entry in
database has expired

KRB5KDC_ERR_SERVICE_EXP -1765328382L Server's entry in
database has expired

KRB5KDC_ERR_BAD_PVNO -1765328381L Requested protocol
version not supported

KRB5KDC_ERR_C_OLD_MAST_KVNO -1765328380L Client's key is encrypted
in an old master key

KRB5KDC_ERR_S_OLD_MAST_KVNO -1765328379L Server's key is
encrypted in an old
master key

KRB5KDC_ERR_C_PRINCIPAL_UNKNOWN -1765328378L Client not found in
Kerberos database

KRB5KDC_ERR_S_PRINCIPAL_UNKNOWN -1765328377L Server not found in
Kerberos database

KRB5KDC_ERR_PRINCIPAL_NOT_UNIQUE -1765328376L Principal has multiple
entries in Kerberos
database

KRB5KDC_ERR_NULL_KEY -1765328375L Client or server has a
null key

KRB5KDC_ERR_CANNOT_POSTDATE -1765328374L Ticket is ineligible for
postdating

KRB5KDC_ERR_NEVER_VALID -1765328373L Requested effective
lifetime is negative or
too short

KRB5KDC_ERR_POLICY -1765328372L KDC policy rejects
request

KRB5KDC_ERR_BADOPTION -1765328371L KDC can't fulfill
requested option

KRB5KDC_ERR_ETYPE_NOSUPP -1765328370L KDC has no support for
encryption type

KRB5KDC_ERR_SUMTYPE_NOSUPP -1765328369L KDC has no support for
checksum type

KRB5KDC_ERR_PADATA_TYPE_NOSUPP -1765328368L KDC has no support for
padata type

KRB5KDC_ERR_TRTYPE_NOSUPP -1765328367L KDC has no support for
transited type

Kerberos v5 Status Codes

Appendix C • GSS-API Reference 225

Minor Status Value Meaning

KRB5KDC_ERR_CLIENT_REVOKED -1765328366L Client's credentials have
been revoked

KRB5KDC_ERR_SERVICE_REVOKED -1765328365L Credentials for server
have been revoked

Messages Returned in Kerberos v5 for Status
Code 2
The following table lists the minor status messages that are returned in Kerberos v5 for status
code 2.

TABLE C-6 Kerberos v5 Status Codes 2

Minor Status Value Meaning

KRB5KDC_ERR_TGT_REVOKED -1765328364L TGT has been revoked

KRB5KDC_ERR_CLIENT_NOTYET -1765328363L Client not yet valid, try
again later

KRB5KDC_ERR_SERVICE_NOTYET -1765328362L Server not yet valid, try
again later

KRB5KDC_ERR_KEY_EXP -1765328361L Password has expired

KRB5KDC_ERR_PREAUTH_FAILED -1765328360L Preauthentication failed

KRB5KDC_ERR_PREAUTH_REQUIRED -1765328359L Additional
preauthentication
required

KRB5KDC_ERR_SERVER_NOMATCH -1765328358L Requested server and
ticket don't match

KRB5PLACEHOLD_27 through KRB5PLACEHOLD_30 -1765328357L through
-1765328354L

KRB5 error codes 27
through 30 (reserved)

KRB5KRB_AP_ERR_BAD_INTEGRITY -1765328353L Decrypt integrity check
failed

KRB5KRB_AP_ERR_TKT_EXPIRED -1765328352L Ticket expired

KRB5KRB_AP_ERR_TKT_NYV -1765328351L Ticket not yet valid

KRB5KRB_AP_ERR_REPEAT -1765328350L Request is a replay

KRB5KRB_AP_ERR_NOT_US -1765328349L The ticket isn't for us

KRB5KRB_AP_ERR_BADMATCH -1765328348L Ticket/authenticator do
not match

KRB5KRB_AP_ERR_SKEW -1765328347L Clock skew too great

Kerberos v5 Status Codes

226 Developer's Guide to Oracle Solaris 11 Security • July 2014

Minor Status Value Meaning

KRB5KRB_AP_ERR_BADADDR -1765328346L Incorrect net address

KRB5KRB_AP_ERR_BADVERSION -1765328345L Protocol version
mismatch

KRB5KRB_AP_ERR_MSG_TYPE -1765328344L Invalid message type

KRB5KRB_AP_ERR_MODIFIED -1765328343L Message stream
modified

KRB5KRB_AP_ERR_BADORDER -1765328342L Message out of order

KRB5KRB_AP_ERR_ILL_CR_TKT -1765328341L Illegal cross-realm
ticket

KRB5KRB_AP_ERR_BADKEYVER -1765328340L Key version is not
available

Messages Returned in Kerberos v5 for Status
Code 3

The following table lists the minor status messages that are returned in Kerberos v5 for status
code 3.

TABLE C-7 Kerberos v5 Status Codes 3

Minor Status Value Meaning

KRB5KRB_AP_ERR_NOKEY -1765328339L Service key not
available

KRB5KRB_AP_ERR_MUT_FAIL -1765328338L Mutual authentication
failed

KRB5KRB_AP_ERR_BADDIRECTION -1765328337L Incorrect message
direction

KRB5KRB_AP_ERR_METHOD -1765328336L Alternative
authentication method
required

KRB5KRB_AP_ERR_BADSEQ -1765328335L Incorrect sequence
number in message

KRB5KRB_AP_ERR_INAPP_CKSUM -1765328334L Inappropriate type of
checksum in message

KRB5PLACEHOLD_51 throughKRB5PLACEHOLD_59 -1765328333L through
-1765328325L

KRB5 error codes 51
through 59 (reserved)

KRB5KRB_ERR_GENERIC -1765328324L Generic error

Kerberos v5 Status Codes

Appendix C • GSS-API Reference 227

Minor Status Value Meaning

KRB5KRB_ERR_FIELD_TOOLONG -1765328323L Field is too long for this
implementation

KRB5PLACEHOLD_62 through KRB5PLACEHOLD_127 -1765328322L through
-1765328257L

KRB5 error codes 62
through 127 (reserved)

value not returned -1765328256L For internal use only

KRB5_LIBOS_BADLOCKFLAG -1765328255L Invalid flag for file lock
mode

KRB5_LIBOS_CANTREADPWD -1765328254L Cannot read password

KRB5_LIBOS_BADPWDMATCH -1765328253L Password mismatch

KRB5_LIBOS_PWDINTR -1765328252L Password read
interrupted

KRB5_PARSE_ILLCHAR -1765328251L Illegal character in
component name

KRB5_PARSE_MALFORMED -1765328250L Malformed
representation of
principal

KRB5_CONFIG_CANTOPEN -1765328249L Can't open/find
Kerberos /etc/krb5/
krb5 configuration file

KRB5_CONFIG_BADFORMAT -1765328248L Improper format of
Kerberos /etc/krb5/
krb5 configuration file

KRB5_CONFIG_NOTENUFSPACE -1765328247L Insufficient space
to return complete
information

KRB5_BADMSGTYPE -1765328246L Invalid message type
has been specified for
encoding

KRB5_CC_BADNAME -1765328245L Credential cache name
malformed

Messages Returned in Kerberos v5 for Status
Code 4

The following table lists the minor status messages that are returned in Kerberos v5 for status
code 4.

Kerberos v5 Status Codes

228 Developer's Guide to Oracle Solaris 11 Security • July 2014

TABLE C-8 Kerberos v5 Status Codes 4

Minor Status Value Meaning

KRB5_CC_UNKNOWN_TYPE -1765328244L Unknown credential
cache type

KRB5_CC_NOTFOUND -1765328243L No matching credential
has been found

KRB5_CC_END -1765328242L End of credential cache
reached

KRB5_NO_TKT_SUPPLIED -1765328241L Request did not supply
a ticket

KRB5KRB_AP_WRONG_PRINC -1765328240L Wrong principal in
request

KRB5KRB_AP_ERR_TKT_INVALID -1765328239L Ticket has invalid flag
set

KRB5_PRINC_NOMATCH -1765328238L Requested principal and
ticket don't match

KRB5_KDCREP_MODIFIED -1765328237L KDC reply did not
match expectations

KRB5_KDCREP_SKEW -1765328236L Clock skew too great in
KDC reply

KRB5_IN_TKT_REALM_MISMATCH -1765328235L Client/server realm
mismatch in initial
ticket request

KRB5_PROG_ETYPE_NOSUPP -1765328234L Program lacks support
for encryption type

KRB5_PROG_KEYTYPE_NOSUPP -1765328233L Program lacks support
for key type

KRB5_WRONG_ETYPE -1765328232L Requested encryption
type not used in
message

KRB5_PROG_SUMTYPE_NOSUPP -1765328231L Program lacks support
for checksum type

KRB5_REALM_UNKNOWN -1765328230L Cannot find KDC for
requested realm

KRB5_SERVICE_UNKNOWN -1765328229L Kerberos service
unknown

KRB5_KDC_UNREACH -1765328228L Cannot contact any
KDC for requested
realm

KRB5_NO_LOCALNAME -1765328227L No local name found for
principal name

Kerberos v5 Status Codes

Appendix C • GSS-API Reference 229

Minor Status Value Meaning

KRB5_MUTUAL_FAILED -1765328226L Mutual authentication
failed

KRB5_RC_TYPE_EXISTS -1765328225L Replay cache type is
already registered

KRB5_RC_MALLOC -1765328224L No more memory to
allocate in replay cache
code

KRB5_RC_TYPE_NOTFOUND -1765328223L Replay cache type is
unknown

Messages Returned in Kerberos v5 for Status
Code 5

The following table lists the minor status messages that are returned in Kerberos v5 for status
code 5

TABLE C-9 Kerberos v5 Status Codes 5

Minor Status Value Meaning

KRB5_RC_UNKNOWN -1765328222L Generic unknown RC
error

KRB5_RC_REPLAY -1765328221L Message is a replay

KRB5_RC_IO -1765328220L Replay I/O operation
failed

KRB5_RC_NOIO -1765328219L Replay cache type does
not support non-volatile
storage

KRB5_RC_PARSE -1765328218L Replay cache name
parse and format error

KRB5_RC_IO_EOF -1765328217L End-of-file on replay
cache I/O

KRB5_RC_IO_MALLOC -1765328216L No more memory to
allocate in replay cache
I/O code

KRB5_RC_IO_PERM -1765328215L Permission denied in
replay cache code

KRB5_RC_IO_IO -1765328214L I/O error in replay cache
i/o code

Kerberos v5 Status Codes

230 Developer's Guide to Oracle Solaris 11 Security • July 2014

Minor Status Value Meaning

KRB5_RC_IO_UNKNOWN -1765328213L Generic unknown RC/
IO error

KRB5_RC_IO_SPACE -1765328212L Insufficient system
space to store replay
information

KRB5_TRANS_CANTOPEN -1765328211L Can't open/find realm
translation file

KRB5_TRANS_BADFORMAT -1765328210L Improper format of
realm translation file

KRB5_LNAME_CANTOPEN -1765328209L Can't open or find lname
translation database

KRB5_LNAME_NOTRANS -1765328208L No translation is
available for requested
principal

KRB5_LNAME_BADFORMAT -1765328207L Improper format of
translation database
entry

KRB5_CRYPTO_INTERNAL -1765328206L Cryptosystem internal
error

KRB5_KT_BADNAME -1765328205L Key table name
malformed

KRB5_KT_UNKNOWN_TYPE -1765328204L Unknown Key table
type

KRB5_KT_NOTFOUND -1765328203L Key table entry not
found

KRB5_KT_END -1765328202L End of key table
reached

KRB5_KT_NOWRITE -1765328201L Cannot write to
specified key table

Messages Returned in Kerberos v5 for Status
Code 6

The following table lists the minor status messages that are returned in Kerberos v5 for status
code 6.

Kerberos v5 Status Codes

Appendix C • GSS-API Reference 231

TABLE C-10 Kerberos v5 Status Codes 6

Minor Status Value Meaning

KRB5_KT_IOERR -1765328200L Error writing to key
table

KRB5_NO_TKT_IN_RLM -1765328199L Cannot find ticket for
requested realm

KRB5DES_BAD_KEYPAR -1765328198L DES key has bad parity

KRB5DES_WEAK_KEY -1765328197L DES key is a weak key

KRB5_BAD_ENCTYPE -1765328196L Bad encryption type

KRB5_BAD_KEYSIZE -1765328195L Key size is incompatible
with encryption type

KRB5_BAD_MSIZE -1765328194L Message size is
incompatible with
encryption type

KRB5_CC_TYPE_EXISTS -1765328193L Credentials cache type
is already registered

KRB5_KT_TYPE_EXISTS -1765328192L Key table type is
already registered

KRB5_CC_IO -1765328191L Credentials cache I/O
operation failed

KRB5_FCC_PERM -1765328190L Credentials cache file
permissions incorrect

KRB5_FCC_NOFILE -1765328189L No credentials cache file
found

KRB5_FCC_INTERNAL -1765328188L Internal file credentials
cache error

KRB5_CC_WRITE -1765328187L Error writing to
credentials cache file

KRB5_CC_NOMEM -1765328186L No more memory to
allocate in credentials
cache code

KRB5_CC_FORMAT -1765328185L Bad format in
credentials cache

KRB5_INVALID_FLAGS -1765328184L Invalid KDC option
combination, which is
an internal library error

KRB5_NO_2ND_TKT -1765328183L Request missing second
ticket

KRB5_NOCREDS_SUPPLIED -1765328182L No credentials supplied
to library routine

Kerberos v5 Status Codes

232 Developer's Guide to Oracle Solaris 11 Security • July 2014

Minor Status Value Meaning

KRB5_SENDAUTH_BADAUTHVERS -1765328181L Bad sendauth version
was sent

KRB5_SENDAUTH_BADAPPLVERS -1765328180L Bad application version
was sent by sendauth

KRB5_SENDAUTH_BADRESPONSE -1765328179L Bad response during
sendauth exchange

KRB5_SENDAUTH_REJECTED -1765328178L Server rejected
authentication during
sendauth exchange

Messages Returned in Kerberos v5 for Status
Code 7

The following table lists the minor status messages that are returned in Kerberos v5 for status
code 7.

TABLE C-11 Kerberos v5 Status Codes 7

Minor Status Value Meaning

KRB5_PREAUTH_BAD_TYPE -1765328177L Unsupported
preauthentication type

KRB5_PREAUTH_NO_KEY -1765328176L Required
preauthentication key
not supplied

KRB5_PREAUTH_FAILED -1765328175L Generic
preauthentication failure

KRB5_RCACHE_BADVNO -1765328174L Unsupported format
version number for
replay cache

KRB5_CCACHE_BADVNO -1765328173L Unsupported credentials
cache format version
number

KRB5_KEYTAB_BADVNO -1765328172L Unsupported version
number for key table
format

KRB5_PROG_ATYPE_NOSUPP -1765328171L Program lacks support
for address type

KRB5_RC_REQUIRED -1765328170L Message replay
detection requires
rcache parameter

Kerberos v5 Status Codes

Appendix C • GSS-API Reference 233

Minor Status Value Meaning

KRB5_ERR_BAD_HOSTNAME -1765328169L Host name cannot be
canonicalized

KRB5_ERR_HOST_REALM_UNKNOWN -1765328168L Cannot determine realm
for host

KRB5_SNAME_UNSUPP_NAMETYPE -1765328167L Conversion to service
principal is undefined
for name type

KRB5KRB_AP_ERR_V4_REPLY -1765328166L Initial Ticket response
appears to be Version 4
error

KRB5_REALM_CANT_RESOLVE -1765328165L Cannot resolve KDC for
requested realm

KRB5_TKT_NOT_FORWARDABLE -1765328164L The requesting ticket
cannot get forwardable
tickets

KRB5_FWD_BAD_PRINCIPAL -1765328163L Bad principal name
while trying to forward
credentials

KRB5_GET_IN_TKT_LOOP -1765328162L Looping detected inside
krb5_get_in_tkt

KRB5_CONFIG_NODEFREALM -1765328161L Configuration file /
etc/krb5/krb5.conf

does not specify default
realm

KRB5_SAM_UNSUPPORTED -1765328160L Bad SAM flags in
obtain_sam_padata

KRB5_KT_NAME_TOOLONG -1765328159L Keytab name too long

KRB5_KT_KVNONOTFOUND -1765328158L Key version number for
principal in key table is
incorrect

KRB5_CONF_NOT_CONFIGURED -1765328157L Kerberos /etc/
krb5/krb5.conf

configuration file not
configured

ERROR_TABLE_BASE_krb5 -1765328384L default

234 Developer's Guide to Oracle Solaris 11 Security • July 2014

Appendix D • Specifying an OID 235

 D ♦ ♦ ♦ A P P E N D I X D

Specifying an OID

You should use the default QOP and mechanism provided by the GSS-API if at all possible. See
“GSS-API OIDs” on page 66. However, you might have your own reasons for specifying OIDs.
This appendix describes how to specify OIDs.
The following topics are covered.

■ “Files with OID Values” on page 235
■ “Constructing Mechanism OIDs” on page 237
■ “Specifying a Non-Default Mechanism” on page 239

Files with OID Values

For convenience, the GSS-API does allow mechanisms and QOPs to be displayed in human-
readable form. On Oracle Solaris systems, two files, /etc/gss/mech and /etc/gss/qop,
contain information about available mechanisms and available QOPs. If you do not have access
to these files, then you must provide the string literals from some other source. The published
Internet standard for that mechanism or QOP should serve that purpose.

/etc/gss/mech File

The /etc/gss/mech file lists the mechanisms that are available. /etc/gss/mech contains the
names in both the numerical format and the alphabetic form. /etc/gss/mech presents the
information in this format:

■ Mechanism name, in ASCII
■ Mechanism's OID
■ Shared library for implementing the services that are provided by this mechanism
■ Optionally, the kernel module for implementing the service

A sample /etc/gss/mech might look like Example D-1.

Files with OID Values

236 Developer's Guide to Oracle Solaris 11 Security • July 2014

EXAMPLE D-1 The /etc/gss/mech File

Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.

#

#ident "@(#)mech 1.12 03/10/20 SMI"

#

This file contains the GSS-API based security mechanism names,

the associated object identifiers (OID) and a shared library that

implements the services for the mechanisms under GSS-API.

#

Mechanism Name Object Identifier Shared Library Kernel Module

[Options]

#

kerberos_v5 1.2.840.113554.1.2.2 mech_krb5.so kmech_krb5

spnego 1.3.6.1.5.5.2 mech_spnego.so.1 [msinterop]

diffie_hellman_640_0 1.3.6.4.1.42.2.26.2.4 dh640-0.so.1

diffie_hellman_1024_0 1.3.6.4.1.42.2.26.2.5 dh1024-0.so.1

/etc/gss/qop File

The /etc/gss/qop file stores, for all mechanisms installed, all the QOPs supported by each
mechanism, both as an ASCII string and as the corresponding 32–bit integer. A sample /etc/
gss/qop might look like the following example.

EXAMPLE D-2 The /etc/gss/qop File

#

Copyright (c) 2000,2012

 by Oracle and/or its affiliates. All rights reserved. .

All rights reserved.

#

#ident "@(#)qop 1.3 00/11/09 SMI"

#

This file contains information about the GSS-API based quality of

protection (QOP), its string name and its value (32-bit integer).

#

QOP string QOP Value Mechanism Name

#

GSS_KRB5_INTEG_C_QOP_DES_MD5 0 kerberos_v5

GSS_KRB5_CONF_C_QOP_DES 0 kerberos_v5

gss_str_to_oid Function

Appendix D • Specifying an OID 237

gss_str_to_oid Function

For backward compatibility with earlier versions of the GSS-API, this implementation of
the GSS-API supports the function gss_str_to_oid. gss_str_to_oid converts a string that
represents a mechanism or QOP to an OID. The string can be either as a number or a word.

Caution - gss_str_to_oid, gss_oid_to_str, and gss_release_oid are not supported by some
implementations of the GSS-API to discourage the use of explicit, non-default mechanisms and
QOPs.

The mechanism string can be hard-coded in the application or come from user input. However,
not all implementations of the GSS-API support gss_str_to_oid, so applications should not
rely on this function.

The number that represents a mechanism can have two different formats. The first format,
{ 1 2 3 4 }, is officially mandated by the GSS-API specifications. The second format,
1.2.3.4, is more widely used but is not an official standard format. gss_str_to_oid expects
the mechanism number in the first format, so you must convert the string if the string is in the
second format before calling gss_str_to_oid. An example of gss_str_to_oid is shown in
Example D-3. If the mechanism is not a valid one, gss_str_to_oid returns GSS_S_BAD_MECH.

Because gss_str_to_oid allocates GSS-API data space, the gss_release_oid function
exists is provided to remove the allocated OID when you are finished. Like gss_str_to_oid,
gss_release_oid is not a generally supported function and should not be relied upon in
programs that aspire to universal portability.

Constructing Mechanism OIDs

Because gss_str_to_oid cannot always be used, there are alternative techniques for finding
and selecting mechanisms. One way is to construct a mechanism OID manually and then
compare that mechanism to a set of available mechanisms. Another way is to get the set of
available mechanisms and choose one from the set.

The gss_OID type has the following form:

typedef struct gss_OID_desc struct {

 OM_uint32 length;

 void *elements;

} gss_OID_desc, *gss_OID;

where the elements field of this structure points to the first byte of an octet string containing the
ASN.1 BER encoding of the value portion of the normal BER TLV encoding of the gss_OID.

Constructing Mechanism OIDs

238 Developer's Guide to Oracle Solaris 11 Security • July 2014

The length field contains the number of bytes in this value. For example, the gss_OID value
that corresponds to the DASS X.509 authentication mechanism has a length field of 7 and an
elements field that points to the following octal values: 53,14,2,207,163,7,5.

One way to construct a mechanism OID is to declare a gss_OID and then initialize the elements
manually to represent a given mechanism. As above, the input for the elements values can
be hard-coded, obtained from a table, or entered by a user. This method is somewhat more
painstaking than using gss_str_to_oid but achieves the same effect.

This constructed gss_OID can then be compared against a set of available mechanisms that have
been returned by the functions gss_indicate_mechs or gss_inquire_mechs_for_name. The
application can check for the constructed mechanism OID in this set of available mechanisms
by using the gss_test_oid_set_member function. If gss_test_oid_set_member does not return
an error, then the constructed OID can be used as the mechanism for GSS-API transactions.

As an alternative to constructing a preset OID, the application can use gss_indicate_mechs
or gss_inquire_mechs_for_name to get the gss_OID_set of available mechanisms. A
gss_OID_set has the following form:

typedef struct gss_OID_set_desc_struct {

 OM_uint32 length;

 void *elements;

} gss_OID_set_desc, *gss_OID_set;

where each of the elements is a gss_OID that represents a mechanism. The application can then
parse each mechanism and display the numerical representation. A user can use this display to
choose the mechanism. The application then sets the mechanism to the appropriate member of
the gss_OID_set. The application can also compare the desired mechanisms against a list of
preferred mechanisms.

createMechOid Function

This function is shown for the sake of completeness. Normally, you should use the default
mechanism, which is specified by GSS_C_NULL_OID.

EXAMPLE D-3 createMechOid Function

gss_OID createMechOid(const char *mechStr)

{

 gss_buffer_desc mechDesc;

 gss_OID mechOid;

 OM_uint32 minor;

 if (mechStr == NULL)

 return (GSS_C_NULL_OID);

 mechDesc.length = strlen(mechStr);

Specifying a Non-Default Mechanism

Appendix D • Specifying an OID 239

 mechDesc.value = (void *) mechStr;

 if (gss_str_to_oid(&minor, &mechDesc, &mechOid) !

 = GSS_S_COMPLETE) {

 fprintf(stderr, "Invalid mechanism oid specified <%s>",

 mechStr);

 return (GSS_C_NULL_OID);

 }

 return (mechOid);

}

Specifying a Non-Default Mechanism

parse_oid converts the name of a security mechanism on the command line to a compatible
OID.

EXAMPLE D-4 parse_oid Function

static void parse_oid(char *mechanism, gss_OID *oid)

{

 char *mechstr = 0, *cp;

 gss_buffer_desc tok;

 OM_uint32 maj_stat, min_stat;

 if (isdigit(mechanism[0])) {

 mechstr = malloc(strlen(mechanism)+5);

 if (!mechstr) {

 printf("Couldn't allocate mechanism scratch!\n");

 return;

 }

 sprintf(mechstr, "{ %s }", mechanism);

 for (cp = mechstr; *cp; cp++)

 if (*cp == '.')

 *cp = ' ';

 tok.value = mechstr;

 } else

 tok.value = mechanism;

 tok.length = strlen(tok.value);

 maj_stat = gss_str_to_oid(&min_stat, &tok, oid);

 if (maj_stat != GSS_S_COMPLETE) {

 display_status("str_to_oid", maj_stat, min_stat);

 return;

 }

 if (mechstr)

 free(mechstr);

}

240 Developer's Guide to Oracle Solaris 11 Security • July 2014

Appendix E • Source Code for SASL Example 241

 E ♦ ♦ ♦ A P P E N D I X E

Source Code for SASL Example

This appendix contains the source code for the example in “SASL Example” on page 129. The
appendix includes the following topics:

■ “SASL Client Example” on page 241
■ “SASL Server Example” on page 249
■ “Common Code” on page 258

SASL Client Example
The following code listing is for the sample client in “SASL Example” on page 129.

Note - The source code for this example is also available through the Oracle download center.
See http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html.

#pragma ident "@(#)client.c 1.4 03/04/07 SMI"

/* $Id: client.c,v 1.3 2002/09/03 15:11:59 rjs3 Exp $ */

/*

 * Copyright (c) 2001 Carnegie Mellon University. All rights reserved.

 *

 * Redistribution and use in source and binary forms, with or without

 * modification, are permitted provided that the following conditions

 * are met:

 *

 * 1. Redistributions of source code must retain the above copyright

 * notice, this list of conditions and the following disclaimer.

 *

 * 2. Redistributions in binary form must reproduce the above copyright

 * notice, this list of conditions and the following disclaimer in

 * the documentation and/or other materials provided with the

 * distribution.

 *

 * 3. The name "Carnegie Mellon University" must not be used to

 * endorse or promote products derived from this software without

 * prior written permission. For permission or any other legal

 * details, please contact

 * Office of Technology Transfer

 * Carnegie Mellon University

http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html

SASL Client Example

242 Developer's Guide to Oracle Solaris 11 Security • July 2014

 * 5000 Forbes Avenue

 * Pittsburgh, PA 15213-3890

 * (412) 268-4387, fax: (412) 268-7395

 * tech-transfer@andrew.cmu.edu

 *

 * 4. Redistributions of any form whatsoever must retain the following

 * acknowledgment:

 * "This product includes software developed by Computing Services

 * at Carnegie Mellon University (http://www.cmu.edu/computing/)."

 *

 * CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL WARRANTIES WITH REGARD TO

 * THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY

 * AND FITNESS, IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE

 * FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN

 * AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING

 * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

 */

#include <config.h>

#include <stdio.h>

#include <stdlib.h>

#include <stdarg.h>

#include <ctype.h>

#include <errno.h>

#include <string.h>

#ifdef HAVE_UNISTD_H

#include <unistd.h>

#endif

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <netdb.h>

#ifdef _SUN_SDK_

#include <sysexits.h>

#endif /* _SUN_SDK_ */

#include <assert.h>

#include <sasl.h>

#include "common.h"

/* remove \r\n at end of the line */

static void chop(char *s)

{

 char *p;

 assert(s);

 p = s + strlen(s) - 1;

 if (p[0] == '\n') {

 *p-- = '\0';

 }

 if (p >= s && p[0] == '\r') {

 *p-- = '\0';

SASL Client Example

Appendix E • Source Code for SASL Example 243

 }

}

static int getrealm(void *context __attribute__((unused)),

 int id,

 const char **availrealms,

 const char **result)

{

 static char buf[1024];

 /* Double-check the ID */

 if (id != SASL_CB_GETREALM) return SASL_BADPARAM;

 if (!result) return SASL_BADPARAM;

 printf("please choose a realm (available:");

 while (*availrealms) {

 printf(" %s", *availrealms);

 availrealms++;

 }

 printf("): ");

 fgets(buf, sizeof buf, stdin);

 chop(buf);

 *result = buf;

 return SASL_OK;

}

static int simple(void *context __attribute__((unused)),

 int id,

 const char **result,

 unsigned *len)

{

 static char buf[1024];

 /* Double-check the connection */

 if (! result)

 return SASL_BADPARAM;

 switch (id) {

 case SASL_CB_USER:

 printf("please enter an authorization id: ");

 break;

 case SASL_CB_AUTHNAME:

 printf("please enter an authentication id: ");

 break;

 default:

 return SASL_BADPARAM;

 }

 fgets(buf, sizeof buf, stdin);

 chop(buf);

 *result = buf;

 if (len) *len = strlen(buf);

 return SASL_OK;

}

SASL Client Example

244 Developer's Guide to Oracle Solaris 11 Security • July 2014

#ifndef HAVE_GETPASSPHRASE

static char *

getpassphrase(const char *prompt)

{

 return getpass(prompt);

}

#endif /* ! HAVE_GETPASSPHRASE */

static int

getsecret(sasl_conn_t *conn,

 void *context __attribute__((unused)),

 int id,

 sasl_secret_t **psecret)

{

 char *password;

 size_t len;

 static sasl_secret_t *x;

 /* paranoia check */

 if (! conn || ! psecret || id != SASL_CB_PASS)

 return SASL_BADPARAM;

 password = getpassphrase("Password: ");

 if (! password)

 return SASL_FAIL;

 len = strlen(password);

 x = (sasl_secret_t *) realloc(x, sizeof(sasl_secret_t) + len);

 if (!x) {

 memset(password, 0, len);

 return SASL_NOMEM;

 }

 x->len = len;

#ifdef _SUN_SDK_

 strcpy((char *)x->data, password);

#else

 strcpy(x->data, password);

#endif /* _SUN_SDK_ */

 memset(password, 0, len);

 *psecret = x;

 return SASL_OK;

}

static int getpath(void * context __attribute__((unused)),

 const char **path)

{

 *path = getenv("SASL_PATH");

 if (*path == NULL)

 *path = PLUGINDIR;

 return SASL_OK;

}

SASL Client Example

Appendix E • Source Code for SASL Example 245

/* callbacks we support */

static sasl_callback_t callbacks[] = {

 {

 SASL_CB_GETREALM, &getrealm, NULL

 }, {

 SASL_CB_USER, &simple, NULL

 }, {

 SASL_CB_AUTHNAME, &simple, NULL

 }, {

 SASL_CB_PASS, &getsecret, NULL

 }, {

 SASL_CB_GETPATH, &getpath, NULL

 }, {

 SASL_CB_LIST_END, NULL, NULL

 }

};

int getconn(const char *host, const char *port)

{

 struct addrinfo hints, *ai, *r;

 int err, sock = -1;

 memset(&hints, 0, sizeof(hints));

 hints.ai_family = PF_UNSPEC;

 hints.ai_socktype = SOCK_STREAM;

 if ((err = getaddrinfo(host, port, &hints, &ai)) != 0) {

 fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(err));

 exit(EX_UNAVAILABLE);

 }

 for (r = ai; r; r = r->ai_next) {

 sock = socket(r->ai_family, r->ai_socktype, r->ai_protocol);

 if (sock < 0)

 continue;

 if (connect(sock, r->ai_addr, r->ai_addrlen) >= 0)

 break;

 close(sock);

 sock = -1;

 }

 freeaddrinfo(ai);

 if (sock < 0) {

 perror("connect");

 exit(EX_UNAVAILABLE);

 }

 return sock;

}

char *mech;

int mysasl_negotiate(FILE *in, FILE *out, sasl_conn_t *conn)

{

 char buf[8192];

 const char *data;

 const char *chosenmech;

#ifdef _SUN_SDK_

SASL Client Example

246 Developer's Guide to Oracle Solaris 11 Security • July 2014

 unsigned len;

#else

 int len;

#endif /* _SUN_SDK_ */

 int r, c;

 /* get the capability list */

 dprintf(0, "receiving capability list... ");

 len = recv_string(in, buf, sizeof buf);

 dprintf(0, "%s\n", buf);

 if (mech) {

 /* make sure that 'mech' appears in 'buf' */

 if (!strstr(buf, mech)) {

 printf("server doesn't offer mandatory mech '%s'\n", mech);

 return -1;

 }

 } else {

 mech = buf;

 }

 r = sasl_client_start(conn, mech, NULL, &data, &len, &chosenmech);

 if (r != SASL_OK && r != SASL_CONTINUE) {

 saslerr(r, "starting SASL negotiation");

 printf("\n%s\n", sasl_errdetail(conn));

 return -1;

 }

 dprintf(1, "using mechanism %s\n", chosenmech);

 /* we send up to 3 strings;

 the mechanism chosen, the presence of initial response,

 and optionally the initial response */

 send_string(out, chosenmech, strlen(chosenmech));

 if(data) {

 send_string(out, "Y", 1);

 send_string(out, data, len);

 } else {

 send_string(out, "N", 1);

 }

 for (;;) {

 dprintf(2, "waiting for server reply...\n");

 c = fgetc(in);

 switch (c) {

 case 'O':

 goto done_ok;

 case 'N':

 goto done_no;

 case 'C': /* continue authentication */

 break;

 default:

 printf("bad protocol from server (%c %x)\n", c, c);

 return -1;

SASL Client Example

Appendix E • Source Code for SASL Example 247

 }

 len = recv_string(in, buf, sizeof buf);

 r = sasl_client_step(conn, buf, len, NULL, &data, &len);

 if (r != SASL_OK && r != SASL_CONTINUE) {

 saslerr(r, "performing SASL negotiation");

 printf("\n%s\n", sasl_errdetail(conn));

 return -1;

 }

 if (data) {

 dprintf(2, "sending response length %d...\n", len);

 send_string(out, data, len);

 } else {

 dprintf(2, "sending null response...\n");

 send_string(out, "", 0);

 }

 }

 done_ok:

 printf("successful authentication\n");

 return 0;

 done_no:

 printf("authentication failed\n");

 return -1;

}

#ifdef _SUN_SDK_

void usage(const char *s)

#else

void usage(void)

#endif /* _SUN_SDK_ */

{

#ifdef _SUN_SDK_

 fprintf(stderr, "usage: %s [-p port] [-s service] [-m mech] host\n", s);

#else

 fprintf(stderr, "usage: client [-p port] [-s service] \

 [-m mech] host\n");

#endif /* _SUN_SDK_ */

 exit(EX_USAGE);

}

int main(int argc, char *argv[])

{

 int c;

 char *host = "localhost";

 char *port = "12345";

 char localaddr[NI_MAXHOST + NI_MAXSERV],

 remoteaddr[NI_MAXHOST + NI_MAXSERV];

 char *service = "rcmd";

 char hbuf[NI_MAXHOST], pbuf[NI_MAXSERV];

 int r;

 sasl_conn_t *conn;

 FILE *in, *out;

 int fd;

 int salen;

 struct sockaddr_storage local_ip, remote_ip;

SASL Client Example

248 Developer's Guide to Oracle Solaris 11 Security • July 2014

 while ((c = getopt(argc, argv, "p:s:m:")) != EOF) {

 switch(c) {

 case 'p':

 port = optarg;

 break;

 case 's':

 service = optarg;

 break;

 case 'm':

 mech = optarg;

 break;

 default:

#ifdef _SUN_SDK_

 usage(argv[0]);

#else

 usage();

#endif /* _SUN_SDK_ */

 break;

 }

 }

 if (optind > argc - 1) {

#ifdef _SUN_SDK_

 usage(argv[0]);

#else

 usage();

#endif /* _SUN_SDK_ */

 }

 if (optind == argc - 1) {

 host = argv[optind];

 }

 /* initialize the sasl library */

 r = sasl_client_init(callbacks);

 if (r != SASL_OK) saslfail(r, "initializing libsasl");

 /* connect to remote server */

 fd = getconn(host, port);

 /* set ip addresses */

 salen = sizeof(local_ip);

 if (getsockname(fd, (struct sockaddr *)&local_ip, &salen) < 0) {

 perror("getsockname");

 }

 getnameinfo((struct sockaddr *)&local_ip, salen,

 hbuf, sizeof(hbuf), pbuf, sizeof(pbuf),

#ifdef _SUN_SDK_ /* SOLARIS doesn't support NI_WITHSCOPEID */

 NI_NUMERICHOST | NI_NUMERICSERV);

#else

 NI_NUMERICHOST | NI_WITHSCOPEID | NI_NUMERICSERV);

#endif

 snprintf(localaddr, sizeof(localaddr), "%s;%s", hbuf, pbuf);

SASL Server Example

Appendix E • Source Code for SASL Example 249

 salen = sizeof(remote_ip);

 if (getpeername(fd, (struct sockaddr *)&remote_ip, &salen) < 0) {

 perror("getpeername");

 }

 getnameinfo((struct sockaddr *)&remote_ip, salen,

 hbuf, sizeof(hbuf), pbuf, sizeof(pbuf),

#ifdef _SUN_SDK_ /* SOLARIS doesn't support NI_WITHSCOPEID */

 NI_NUMERICHOST | NI_NUMERICSERV);

#else

 NI_NUMERICHOST | NI_WITHSCOPEID | NI_NUMERICSERV);

#endif

 snprintf(remoteaddr, sizeof(remoteaddr), "%s;%s", hbuf, pbuf);

 /* client new connection */

 r = sasl_client_new(service, host, localaddr, remoteaddr, NULL,

 0, &conn);

 if (r != SASL_OK) saslfail(r, "allocating connection state");

 /* set external properties here

 sasl_setprop(conn, SASL_SSF_EXTERNAL, &extprops); */

 /* set required security properties here

 sasl_setprop(conn, SASL_SEC_PROPS, &secprops); */

 in = fdopen(fd, "r");

 out = fdopen(fd, "w");

 r = mysasl_negotiate(in, out, conn);

 if (r == SASL_OK) {

 /* send/receive data */

 }

 printf("closing connection\n");

 fclose(in);

 fclose(out);

 close(fd);

 sasl_dispose(&conn);

 sasl_done();

 return 0;

}

SASL Server Example

The following code listing is for the sample server in “SASL Example” on page 129.

SASL Server Example

250 Developer's Guide to Oracle Solaris 11 Security • July 2014

Note - The source code for this example is also available through the Oracle download center.
See http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html.

#pragma ident "@(#)server.c 1.3 03/04/07 SMI"

/* $Id: server.c,v 1.4 2002/10/07 05:04:05 rjs3 Exp $ */

/*

 * Copyright (c) 2001 Carnegie Mellon University. All rights reserved.

 *

 * Redistribution and use in source and binary forms, with or without

 * modification, are permitted provided that the following conditions

 * are met:

 *

 * 1. Redistributions of source code must retain the above copyright

 * notice, this list of conditions and the following disclaimer.

 *

 * 2. Redistributions in binary form must reproduce the above copyright

 * notice, this list of conditions and the following disclaimer in

 * the documentation and/or other materials provided with the

 * distribution.

 *

 * 3. The name "Carnegie Mellon University" must not be used to

 * endorse or promote products derived from this software without

 * prior written permission. For permission or any other legal

 * details, please contact

 * Office of Technology Transfer

 * Carnegie Mellon University

 * 5000 Forbes Avenue

 * Pittsburgh, PA 15213-3890

 * (412) 268-4387, fax: (412) 268-7395

 * tech-transfer@andrew.cmu.edu

 *

 * 4. Redistributions of any form whatsoever must retain the following

 * acknowledgment:

 * "This product includes software developed by Computing Services

 * at Carnegie Mellon University (http://www.cmu.edu/computing/)."

 *

 * CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL WARRANTIES WITH REGARD TO

 * THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY

 * AND FITNESS, IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE

 * FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN

 * AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING

 * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

 */

#include <config.h>

#include <stdio.h>

#include <stdlib.h>

#include <stdarg.h>

#include <ctype.h>

#include <errno.h>

#include <string.h>

#ifdef HAVE_UNISTD_H

http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html

SASL Server Example

Appendix E • Source Code for SASL Example 251

#include <unistd.h>

#endif

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <netdb.h>

#ifdef _SUN_SDK_

#include <sysexits.h>

#endif /* _SUN_SDK_ */

#include <sasl.h>

#include "common.h"

#if !defined(IPV6_BINDV6ONLY) && defined(IN6P_IPV6_V6ONLY)

#define IPV6_BINDV6ONLY IN6P_BINDV6ONLY

#endif

#if !defined(IPV6_V6ONLY) && defined(IPV6_BINDV6ONLY)

#define IPV6_V6ONLY IPV6_BINDV6ONLY

#endif

#ifndef IPV6_BINDV6ONLY

#undef IPV6_V6ONLY

#endif

static int getpath(void * context __attribute__((unused)),

 const char **path)

{

 *path = getenv("SASL_PATH");

 if (*path == NULL)

 *path = PLUGINDIR;

 return SASL_OK;

}

/* callbacks we support */

static sasl_callback_t callbacks[] = {

 {

 SASL_CB_GETPATH, &getpath, NULL

 }, {

 SASL_CB_LIST_END, NULL, NULL

 }

};

/* create a socket listening on port 'port' */

/* if af is PF_UNSPEC more than one socket might be returned */

/* the returned list is dynamically allocated, so caller needs to free it */

int *listensock(const char *port, const int af)

{

 struct addrinfo hints, *ai, *r;

 int err, maxs, *sock, *socks;

 const int on = 1;

 memset(&hints, 0, sizeof(hints));

 hints.ai_flags = AI_PASSIVE;

 hints.ai_family = af;

 hints.ai_socktype = SOCK_STREAM;

SASL Server Example

252 Developer's Guide to Oracle Solaris 11 Security • July 2014

 err = getaddrinfo(NULL, port, &hints, &ai);

 if (err) {

 fprintf(stderr, "%s\n", gai_strerror(err));

 exit(EX_USAGE);

 }

 /* Count max number of sockets we can open */

 for (maxs = 0, r = ai; r; r = r->ai_next, maxs++)

 ;

 socks = malloc((maxs + 1) * sizeof(int));

 if (!socks) {

 fprintf(stderr, "couldn't allocate memory for sockets\n");

 freeaddrinfo(ai);

 exit(EX_OSERR);

 }

 socks[0] = 0; /* num of sockets counter at start of array */

 sock = socks + 1;

 for (r = ai; r; r = r->ai_next) {

 fprintf(stderr, "trying %d, %d, %d\n",r->ai_family, r->ai_socktype,

 r->ai_protocol);

 *sock = socket(r->ai_family, r->ai_socktype, r->ai_protocol);

 if (*sock < 0) {

 perror("socket");

 continue;

 }

 if (setsockopt(*sock, SOL_SOCKET, SO_REUSEADDR,

 (void *) &on, sizeof(on)) < 0) {

 perror("setsockopt(SO_REUSEADDR)");

 close(*sock);

 continue;

 }

#if defined(IPV6_V6ONLY) && !(defined(__FreeBSD__) && __FreeBSD__ < 3)

 if (r->ai_family == AF_INET6) {

 if (setsockopt(*sock, IPPROTO_IPV6, IPV6_BINDV6ONLY,

 (void *) &on, sizeof(on)) < 0) {

 perror("setsockopt (IPV6_BINDV6ONLY)");

 close(*sock);

 continue;

 }

 }

#endif

 if (bind(*sock, r->ai_addr, r->ai_addrlen) < 0) {

 perror("bind");

 close(*sock);

 continue;

 }

 if (listen(*sock, 5) < 0) {

 perror("listen");

 close(*sock);

 continue;

 }

 socks[0]++;

 sock++;

 }

SASL Server Example

Appendix E • Source Code for SASL Example 253

 freeaddrinfo(ai);

 if (socks[0] == 0) {

 fprintf(stderr, "Couldn't bind to any socket\n");

 free(socks);

 exit(EX_OSERR);

 }

 return socks;

}

#ifdef _SUN_SDK_

void usage(const char *s)

#else

void usage(void)

#endif /* _SUN_SDK_ */

{

#ifdef _SUN_SDK_

 fprintf(stderr, "usage: %s [-p port] [-s service] [-m mech]\n", s);

#else

 fprintf(stderr, "usage: server [-p port] [-s service] [-m mech]\n");

#endif /* _SUN_SDK_ */

 exit(EX_USAGE);

}

/* Globals are used here, but local variables are preferred */

char *mech;

/* do the sasl negotiation; return -1 if it fails */

int mysasl_negotiate(FILE *in, FILE *out, sasl_conn_t *conn)

{

 char buf[8192];

 char chosenmech[128];

 const char *data;

#ifdef _SUN_SDK_

 unsigned len;

#else

 int len;

#endif /* _SUN_SDK_ */

 int r = SASL_FAIL;

 const char *userid;

 /* generate the capability list */

 if (mech) {

 dprintf(2, "forcing use of mechanism %s\n", mech);

 data = strdup(mech);

 } else {

 int count;

 dprintf(1, "generating client mechanism list... ");

 r = sasl_listmech(conn, NULL, NULL, " ", NULL,

 &data, &len, &count);

 if (r != SASL_OK) saslfail(r, "generating mechanism list");

 dprintf(1, "%d mechanisms\n", count);

 }

 /* send capability list to client */

 send_string(out, data, len);

SASL Server Example

254 Developer's Guide to Oracle Solaris 11 Security • July 2014

 dprintf(1, "waiting for client mechanism...\n");

 len = recv_string(in, chosenmech, sizeof chosenmech);

 if (len <= 0) {

 printf("client didn't choose mechanism\n");

 fputc('N', out); /* send NO to client */

 fflush(out);

 return -1;

 }

 if (mech && strcasecmp(mech, chosenmech)) {

 printf("client didn't choose mandatory mechanism\n");

 fputc('N', out); /* send NO to client */

 fflush(out);

 return -1;

 }

 len = recv_string(in, buf, sizeof(buf));

 if(len != 1) {

 saslerr(r, "didn't receive first-send parameter correctly");

 fputc('N', out);

 fflush(out);

 return -1;

 }

 if(buf[0] == 'Y') {

 /* receive initial response (if any) */

 len = recv_string(in, buf, sizeof(buf));

 /* start libsasl negotiation */

 r = sasl_server_start(conn, chosenmech, buf, len,

 &data, &len);

 } else {

 r = sasl_server_start(conn, chosenmech, NULL, 0,

 &data, &len);

 }

 if (r != SASL_OK && r != SASL_CONTINUE) {

 saslerr(r, "starting SASL negotiation");

 fputc('N', out); /* send NO to client */

 fflush(out);

 return -1;

 }

 while (r == SASL_CONTINUE) {

 if (data) {

 dprintf(2, "sending response length %d...\n", len);

 fputc('C', out); /* send CONTINUE to client */

 send_string(out, data, len);

 } else {

 dprintf(2, "sending null response...\n");

 fputc('C', out); /* send CONTINUE to client */

 send_string(out, "", 0);

 }

 dprintf(1, "waiting for client reply...\n");

 len = recv_string(in, buf, sizeof buf);

 if (len < 0) {

SASL Server Example

Appendix E • Source Code for SASL Example 255

 printf("client disconnected\n");

 return -1;

 }

 r = sasl_server_step(conn, buf, len, &data, &len);

 if (r != SASL_OK && r != SASL_CONTINUE) {

 saslerr(r, "performing SASL negotiation");

 fputc('N', out); /* send NO to client */

 fflush(out);

 return -1;

 }

 }

 if (r != SASL_OK) {

 saslerr(r, "incorrect authentication");

 fputc('N', out); /* send NO to client */

 fflush(out);

 return -1;

 }

 fputc('O', out); /* send OK to client */

 fflush(out);

 dprintf(1, "negotiation complete\n");

 r = sasl_getprop(conn, SASL_USERNAME, (const void **) &userid);

 printf("successful authentication '%s'\n", userid);

 return 0;

}

int main(int argc, char *argv[])

{

 int c;

 char *port = "12345";

 char *service = "rcmd";

 int *l, maxfd=0;

 int r, i;

 sasl_conn_t *conn;

 while ((c = getopt(argc, argv, "p:s:m:")) != EOF) {

 switch(c) {

 case 'p':

 port = optarg;

 break;

 case 's':

 service = optarg;

 break;

 case 'm':

 mech = optarg;

 break;

 default:

#ifdef _SUN_SDK_

 usage(argv[0]);

#else

 usage();

SASL Server Example

256 Developer's Guide to Oracle Solaris 11 Security • July 2014

#endif /* _SUN_SDK_ */

 break;

 }

 }

 /* initialize the sasl library */

 r = sasl_server_init(callbacks, "sample");

 if (r != SASL_OK) saslfail(r, "initializing libsasl");

 /* get a listening socket */

 if ((l = listensock(port, PF_UNSPEC)) == NULL) {

 saslfail(SASL_FAIL, "allocating listensock");

 }

 for (i = 1; i <= l[0]; i++) {

 if (l[i] > maxfd)

 maxfd = l[i];

 }

 for (;;) {

 char localaddr[NI_MAXHOST | NI_MAXSERV],

 remoteaddr[NI_MAXHOST | NI_MAXSERV];

 char myhostname[1024+1];

 char hbuf[NI_MAXHOST], pbuf[NI_MAXSERV];

 struct sockaddr_storage local_ip, remote_ip;

 int salen;

 int nfds, fd = -1;

 FILE *in, *out;

 fd_set readfds;

 FD_ZERO(&readfds);

 for (i = 1; i <= l[0]; i++)

 FD_SET(l[i], &readfds);

 nfds = select(maxfd + 1, &readfds, 0, 0, 0);

 if (nfds <= 0) {

 if (nfds < 0 && errno != EINTR)

 perror("select");

 continue;

 }

 for (i = 1; i <= l[0]; i++)

 if (FD_ISSET(l[i], &readfds)) {

 fd = accept(l[i], NULL, NULL);

 break;

 }

 if (fd < 0) {

 if (errno != EINTR)

 perror("accept");

 continue;

 }

 printf("accepted new connection\n");

 /* set ip addresses */

 salen = sizeof(local_ip);

 if (getsockname(fd, (struct sockaddr *)&local_ip, &salen) < 0) {

SASL Server Example

Appendix E • Source Code for SASL Example 257

 perror("getsockname");

 }

 getnameinfo((struct sockaddr *)&local_ip, salen,

 hbuf, sizeof(hbuf), pbuf, sizeof(pbuf),

#ifdef _SUN_SDK_ /* SOLARIS doesn't support NI_WITHSCOPEID */

 NI_NUMERICHOST | NI_NUMERICSERV);

#else

 NI_NUMERICHOST | NI_WITHSCOPEID | NI_NUMERICSERV);

#endif

 snprintf(localaddr, sizeof(localaddr), "%s;%s", hbuf, pbuf);

 salen = sizeof(remote_ip);

 if (getpeername(fd, (struct sockaddr *)&remote_ip, &salen) < 0) {

 perror("getpeername");

 }

 getnameinfo((struct sockaddr *)&remote_ip, salen,

 hbuf, sizeof(hbuf), pbuf, sizeof(pbuf),

#ifdef _SUN_SDK_ /* SOLARIS doesn't support NI_WITHSCOPEID */

 NI_NUMERICHOST | NI_NUMERICSERV);

#else

 NI_NUMERICHOST | NI_WITHSCOPEID | NI_NUMERICSERV);

#endif

 snprintf(remoteaddr, sizeof(remoteaddr), "%s;%s", hbuf, pbuf);

 r = gethostname(myhostname, sizeof(myhostname)-1);

 if(r == -1) saslfail(r, "getting hostname");

 r = sasl_server_new(service, myhostname, NULL, localaddr, remoteaddr,

 NULL, 0, &conn);

 if (r != SASL_OK) saslfail(r, "allocating connection state");

 /* set external properties here

 sasl_setprop(conn, SASL_SSF_EXTERNAL, &extprops); */

 /* set required security properties here

 sasl_setprop(conn, SASL_SEC_PROPS, &secprops); */

 in = fdopen(fd, "r");

 out = fdopen(fd, "w");

 r = mysasl_negotiate(in, out, conn);

 if (r == SASL_OK) {

 /* send/receive data */

 }

 printf("closing connection\n");

 fclose(in);

 fclose(out);

 close(fd);

 sasl_dispose(&conn);

 }

 sasl_done();

}

Common Code

258 Developer's Guide to Oracle Solaris 11 Security • July 2014

Common Code

The following code sample includes listings for miscellaneous SASL functions.

Note - The source code for this example is also available through the Oracle download center.
See http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html.

#pragma ident "@(#)common.c 1.1 03/03/28 SMI"

/* $Id: common.c,v 1.3 2002/09/03 15:11:59 rjs3 Exp $ */

/*

 * Copyright (c) 2001 Carnegie Mellon University. All rights reserved.

 *

 * Redistribution and use in source and binary forms, with or without

 * modification, are permitted provided that the following conditions

 * are met:

 *

 * 1. Redistributions of source code must retain the above copyright

 * notice, this list of conditions and the following disclaimer.

 *

 * 2. Redistributions in binary form must reproduce the above copyright

 * notice, this list of conditions and the following disclaimer in

 * the documentation and/or other materials provided with the

 * distribution.

 *

 * 3. The name "Carnegie Mellon University" must not be used to

 * endorse or promote products derived from this software without

 * prior written permission. For permission or any other legal

 * details, please contact

 * Office of Technology Transfer

 * Carnegie Mellon University

 * 5000 Forbes Avenue

 * Pittsburgh, PA 15213-3890

 * (412) 268-4387, fax: (412) 268-7395

 * tech-transfer@andrew.cmu.edu

 *

 * 4. Redistributions of any form whatsoever must retain the following

 * acknowledgment:

 * "This product includes software developed by Computing Services

 * at Carnegie Mellon University (http://www.cmu.edu/computing/)."

 *

 * CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL WARRANTIES WITH REGARD TO

 * THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY

 * AND FITNESS, IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE

 * FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN

 * AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING

 * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

 */

#include <config.h>

#include <stdio.h>

#include <ctype.h>

http://www.oracle.com/technetwork/indexes/downloads/sdlc-decommission-333274.html

Common Code

Appendix E • Source Code for SASL Example 259

#include <stdarg.h>

#ifdef _SUN_SDK_

#include <sysexits.h>

#endif /* _SUN_SDK_ */

#include <sasl.h>

/* send/recv library for IMAP4 style literals.

 really not important; just one way of doing length coded strings */

int send_string(FILE *f, const char *s, int l)

{

 int al;

 al = fprintf(f, "{%d}\r\n", l);

 fwrite(s, 1, l, f);

 fflush(f);

 printf("send: {%d}\n", l);

 while (l--) {

 if (isprint((unsigned char) *s)) {

 printf("%c", *s);

 } else {

 printf("[%X]", (unsigned char) *s);

 }

 s++;

 }

 printf("\n");

 return al;

}

int recv_string(FILE *f, char *buf, int buflen)

{

 int c;

 int len, l;

 char *s;

 c = fgetc(f);

 if (c != '{') return -1;

 /* read length */

 len = 0;

 c = fgetc(f);

 while (isdigit(c)) {

 len = len * 10 + (c - '0');

 c = fgetc(f);

 }

 if (c != '}') return -1;

 c = fgetc(f);

 if (c != '\r') return -1;

 c = fgetc(f);

 if (c != '\n') return -1;

 /* read string */

 if (buflen <= len) {

 fread(buf, buflen - 1, 1, f);

Common Code

260 Developer's Guide to Oracle Solaris 11 Security • July 2014

 buf[buflen - 1] = '\0';

 /* discard oversized string */

 len -= buflen - 1;

 while (len--) (void)fgetc(f);

 len = buflen - 1;

 } else {

 fread(buf, len, 1, f);

 buf[len] = '\0';

 }

 l = len;

 s = buf;

 printf("recv: {%d}\n", len);

 while (l--) {

 if (isprint((unsigned char) *s)) {

 printf("%c", *s);

 } else {

 printf("[%X]", (unsigned char) *s);

 }

 s++;

 }

 printf("\n");

 return len;

}

int debuglevel = 0;

int dprintf(int lvl, const char *fmt, ...)

{

 va_list ap;

 int ret = 0;

 if (debuglevel >= lvl) {

 va_start(ap, fmt);

 ret = vfprintf(stdout, fmt, ap);

 va_end(ap);

 }

 return ret;

}

void saslerr(int why, const char *what)

{

 fprintf(stderr, "%s: %s", what, sasl_errstring(why, NULL, NULL));

}

void saslfail(int why, const char *what)

{

 saslerr(why, what);

 exit(EX_TEMPFAIL);

}

Appendix F • SASL Reference Tables 261

 F ♦ ♦ ♦ A P P E N D I X F

SASL Reference Tables

This appendix provides reference information for SASL, which is an acronym for simple
authentication and security layer.

SASL Interface Summaries

The following tables provide brief descriptions of some SASL interfaces.

TABLE F-1 SASL Functions Common to Clients and Servers

Function Description

sasl_version Get version information for the SASL library.

sasl_done Release all SASL global state.

sasl_dispose Dispose of sasl_conn_t when connection is done.

sasl_getprop Get property, for example, user name, security layer info.

sasl_setprop Set a SASL property.

sasl_errdetail Generate string from last error on connection.

sasl_errstring Translate SASL error code to a string.

sasl_encode Encode data to send using security layer.

sasl_encodev Encode a block of data for transmission through the security layer. Uses iovec
* as the input parameter.

sasl_listmech Create list of available mechanisms.

sasl_global_listmech Return an array of all possible mechanisms. Note that this interface is obsolete.

sasl_seterror Set the error string to be returned by sasl_errdetail.

sasl_idle Configure saslib to perform calculations during an idle period or during a
network round trip.

sasl_decode Decode data received using security layer.

SASL Interface Summaries

262 Developer's Guide to Oracle Solaris 11 Security • July 2014

TABLE F-2 Basic SASL Client–only Functions

Function Description

sasl_client_init Called once initially to load and initialize client plug-ins.

sasl_client_new Initialize client connection. Sets up the sasl_conn_t context.

sasl_client_start Select mechanism for connection.

sasl_client_step Perform one authentication step.

TABLE F-3 Basic SASL Server Functions (Clients Optional)

Function Description

sasl_server_init Called once initially to load and initialize server plug-ins.

sasl_server_new Initialize server connection. Sets up the sasl_conn_t context.

sasl_server_start Begin an authentication exchange.

sasl_server_step Perform one authentication exchange step.

sasl_checkpass Check a plain text passphrase.

sasl_checkapop Check an APOP challenge/response. Uses a pseudo APOP mechanism, which is
similar to a CRAM-MD5 mechanism. Optional. Note that this interface is obsolete.

sasl_user_exists Check whether user exists.

sasl_setpass Change a password. Optionally, add a user entry.

sasl_auxprop_request Request auxiliary properties.

sasl_auxprop_getctx Get auxiliary property context for connection.

TABLE F-4 SASL Functions for Configuring Basic Services

Function Description

sasl_set_alloc Assign memory allocation functions. Note that this interface is obsolete.

sasl_set_mutex Assign mutex functions. Note that this interface is obsolete.

sasl_client_add_plugin Add a client plug-in.

sasl_server_add_plugin Add a server plug-in.

sasl_canonuser_add_plugin Add a user canonicalization plug-in.

sasl_auxprop_add_plugin Add an auxiliary property plug-in.

SASL Interface Summaries

Appendix F • SASL Reference Tables 263

TABLE F-5 SASL Utility Functions

Function Description

sasl_decode64 Use base64 to decode.

sasl_encode64 Use base64 to encode.

sasl_utf8verify Verify that a string is valid UTF-8.

sasl_erasebuffer Erase a security-sensitive buffer or password. Implementation might use recovery-
resistant erase logic.

TABLE F-6 SASL Property Functions

Function Description

prop_clear Clear values and optionally requests from property context

prop_dispose Dispose of a property context

prop_dup Create new propctx which duplicates the contents of an existing propctx

prop_erase Erase the value of a property

prop_format Format the requested property names into a string

prop_get Return array of the propval structure from the context

prop_getnames Fill in an array of struct propval, given a list of property names

prop_new Create a property context

prop_request Add property names to a request

prop_set Add a property value to the context

prop_setvals Set the values for a property

sasl_auxprop_getctx Get auxiliary property context for connection

sasl_auxprop_request Request auxiliary properties

TABLE F-7 Callback Data Types

Callback Description

sasl_getopt_t Get an option value. Used by both clients and servers.

sasl_log_t Log message handler. Used by both clients and servers.

sasl_getpath_t Get path to search for mechanisms. Used by both clients and servers.

sasl_verifyfile_t Verify files for use by SASL. Used by both clients and servers.

sasl_canon_user_t User name canonicalization function. Used by both clients and servers.

SASL Interface Summaries

264 Developer's Guide to Oracle Solaris 11 Security • July 2014

Callback Description

sasl_getsimple_t Get user and language list. Used by clients only.

sasl_getsecret_t Get authentication secret. Used by clients only.

sasl_chalprompt_t Display challenge and prompt for response. Used by clients only.

sasl_getrealm_t Get the authentication realm. Used by clients only.

sasl_authorize_t Authorize policy callback. Used by servers only.

sasl_server_userdb_checkpass_t Verify plain text password. Used by servers only.

sasl_server_userdb_setpass_t Set plain text password. Used by servers only.

TABLE F-8 SASL Include Files

Include File Comments

sasl/saslplug.h

sasl/sasl.h Needed for developing plug-ins

sasl/saslutil.h

sasl/prop.h

TABLE F-9 SASL Return Codes: General

Return Code Description

SASL_BADMAC Integrity check failed

SASL_BADVERS Mismatch between versions of a mechanism

SASL_BADPARAM Invalid parameter supplied

SASL_BADPROT Bad protocol, cancel operation

SASL_BUFOVER Overflowed buffer

SASL_CONTINUE Another step is needed in authentication

SASL_FAIL Generic failure

SASL_NOMECH Mechanism not supported

SASL_NOMEM Insufficient memory to complete operation

SASL_NOTDONE Cannot request information until later in exchange

SASL_NOTINIT SASL library not initialized

SASL_OK Successful result

SASL_TRYAGAIN Transient failure, for example, a weak key

SASL Interface Summaries

Appendix F • SASL Reference Tables 265

TABLE F-10 SASL Return Codes: Client-Only

Function Description

SASL_BADSERV Server failed mutual authentication step

SASL_INTERACT Needs user interaction

SASL_WRONGMECH Mechanism does not support requested feature

TABLE F-11 SASL Return Codes: Server-Only

Function Description

SASL_BADAUTH Authentication failure

SASL_BADVERS Version mismatch with plug-in

SASL_DISABLED Account disabled

SASL_ENCRYPT Encryption needed to use mechanism

SASL_EXPIRED Passphrase expired and needs to be reset

SASL_NOAUTHZ Authorization failure

SASL_NOUSER User not found

SASL_NOVERIFY User exists, but without verifier

SASL_TOOWEAK Mechanism too weak for this user

SASL_TRANS One-time use of a plain text password enables requested mechanism for user

SASL_UNAVAIL Remote authentication server unavailable

TABLE F-12 SASL Return Codes – Password Operations

Function Description

SASL_NOCHANGE Requested change not needed

SASL_NOUSERPASS User-supplied passwords not permitted

SASL_PWLOCK Passphrase locked

SASL_WEAKPASS Passphrase too weak for security policy

266 Developer's Guide to Oracle Solaris 11 Security • July 2014

Appendix G • Security Considerations When Using C Functions 267

 G ♦ ♦ ♦ A P P E N D I X G

Security Considerations When Using C
Functions

The necessary security considerations when using C library functions are outlined in the
following table. Each function is classified into one of the following categories:

UNRESTRICTED Default for all the functions.

USE WITH
CAUTION

Requires special care to use securely.

AVOID Avoid using these functions.

UNSAFE Do not use these functions.

TABLE G-1 Security Considerations When Using C Functions

Function Format Category Comments Alternative

access int access(const char

*path, in mode)

AVOID The information this function provides
is outdated by the time you receive it.
Using the access function followed
by the open function causes a race
condition that cannot be solved.

Open the file with the
permissions of the intended
user.

bcopy void bcopy(const void

*s1, void *s2, size_

t n) void *memcpy(void

*s1, const void *s2,

size_t n)

USE WITH
CAUTION

Should not be used for copying strings,
even though the length is known.
Instead, use the strlcpy function.

NA

catopen nl_catd catopen(const

char *name, int oflag)

USE WITH
CAUTION

Libraries and programs should not call
the catopen function on user-supplied
pathnames. User-supplied message
catalogues can be leveraged to break
privileged code easily.

NA

cftime int cftime(char *s,

char *format, const

time_t *clock)

int ascftime(char *s,

const char *format,

UNSAFE These functions do not check for
bounds on the output buffer and might
import the userdata through the CFTIME
environment variable.

strftime(buf, sizeof

(buf), fmt, &tm)

268 Developer's Guide to Oracle Solaris 11 Security • July 2014

Function Format Category Comments Alternative

const struct tm

*timeptr)

chdir int chdir(const char

*path)

USE WITH
CAUTION

Prone to pathname race conditions. Do
not use in multithreaded programs.

To avoid the race condition,
use the fchdir function
after the directory has been
opened and the properties
have been checked using
the fstat function). Oracle
Solaris 11 has added the
POSIX 2008 *at versions
of the system calls that
operate on files such as
openat, linkat, mkdirat,
mkfifoat, readlinkat,
and symlinkat. These calls
take the file descriptor
of a directory as the first
argument to use as the
working directory for
relative paths. These
methods avoid the race
condition when one thread
calls chdir while another
is calling open, unlink and
the like.

chmod int chmod(const char

*path, mode_t mode)

int fchmodat(int fd,

const char *path, mode_

t mode, int flag)

int chown(const char

*path, uid_t owner,

gid_t group)

int lchown(const char

*path, uid_t owner,

gid_t group)

AVOID These functions operate on pathnames
and are prone to race conditions.
Normally, programs need not call
chown or chmod, but honor the current
UID (switch back to it before opening
files) and umask. Note that chmod
always follows symbolic links.

If the attributes of a file
must be changed, open
the file safely and use the
the fchown or the fchmod
functions on the resulting
file descriptor.

chroot int chroot(const char

*path)

USE WITH
CAUTION

After the chroot function is called, the
environment in which it is called offers
little protection. Programs can easily
escape. Do not run privileged programs
in such a environment and that you
change the directory to a point below
the new root after the chroot function.

Run in a non-global zone.

copylist char *copylist(const

char *filenm, off_t

*szptr)

USE WITH
CAUTION

Used to open files and should only be
used to open pathnames known to be
safe.

NA

Appendix G • Security Considerations When Using C Functions 269

Function Format Category Comments Alternative

DBM *dbm_open(const

char *file, int open_

flags, mode_t file_

mode)

int dbminit(char *file)

dlopen void *dlopen(const char

*pathname, int mode)

USE WITH
CAUTION

Parameters passed to the dlopen
function should only be unqualified
pathnames which are then found
using the runtime linker's path, or full
pathnames not in any way derived
from user input (including from
argv[0]). There is no way to safely
open a user-supplied shared object.
The object's _init function is executed
before dlopen returns.

NA

drand48 double drand48(void)

double erand48(unsigned

short xi[3])

long lrand48(void)long

mrand48(void)

long jrand48(unsigned

short xi[3])

long nrand48(unsigned

short xi[3])

void srand48(long

seedval)

int rand(void)

int rand_r(unsigned int

*seed)

void srand(unsigned int

seed)

long random(void)

AVOID These weak random number generators
are not useful for increasing security.
To generate random numbers for
security, use /dev/urandom, which is
available starting with Solaris 9.

NA

dup int dup(int fildes)

int dup2(int fildes,

int fildes2)

USE WITH
CAUTION

Both the dup and the dup2 functions
return file descriptors with the FD_
CLOEXEC cleared and therefore they
might leak when a program calls exec.
Older code made fcntl calls shortly
after these functions returned to set
that flag. But in multithreaded code
(including programs that only run
one thread themselves but may be
linked with libraries that run additional

fcntl(fildes, F_DUPFD_

CLOEXEC, 0)

fcntl(fildes, F_DUP2FD_

CLOEXEC, fildes2)

270 Developer's Guide to Oracle Solaris 11 Security • July 2014

Function Format Category Comments Alternative

threads), that leaves a window open
for a race with another thread. The F_
DUPFD_CLOEXEC and F_DUP2FD_CLOEXE
calls to fcntl (available in Oracle
Solaris 11 and later releases) combine
the duplication and flag setting into an
atomic operation so there is no race.

execl int execl(const char

*path, const char

*arg0, ..., const char

*argn, NULL)

int execv(const char

*path, char *const

argv[])

int execve(const char

*path, char *const

argv[], char *const

envp[])

USE WITH
CAUTION

Make sure that the environment
is sanitized and non-essential file
descriptors are closed before executing
a new program.

NA

execvp int execvp(const char

*file, const char

*argv[])

int execlp(const char

*file, const char

*arg0, ..., const char

*argn, NULL)

AVOID Too dangerous to use in libraries or
privileged commands and daemons
because they find the executable by
searching the directories in the PATH
environment variable, which is under
the complete control of the user. They
should be avoided for most other
programs.

Use the execl, execv, or
execve functions.

fattach int fattach(int

filedes, const char

*path)

USE WITH
CAUTION

Check the file descriptor after the open
function (using fstat), and not the
pathname before the open function.

NA

fchmod int fchmod(int filedes,

mode_t mode)

int fchown(int filedes,

uid_t owner, gid_t

group)

UNRESTRICTEDPreferred alternative to chmod and
chown functions.

NA

fdopen FILE *fdopen(int

filedes, const char

*mode)

UNRESTRICTEDAlternative for fopen NA

fopen FILE *fopen(const char

*path, const char

*mode)

FILE *freopen(const

char *path, const char

*mode, FILE *stream)

USE WITH
CAUTION

It is not possible to safely create files
by using fopen. However, once a
pathname is verified to exist, that is,
after calling the mkstemp function, it
can be used to open those pathnames.
In other cases, a safe invocation of
open followed by fdopen should be
used.

Use open followed by
fdopen, For example:

FILE *fp; int fd;

fd = open(path,

O_CREAT|O_EXCL|O_

WRONLY,

0600);

Appendix G • Security Considerations When Using C Functions 271

Function Format Category Comments Alternative

if (fd < 0){

...... }

fp = fdopen(fd, "w");

fstat int fstat(int filedes,

struct stat *buf)

UNRESTRICTEDUseful to check whether the file that
is opened is the file you expected to
open.

NA

ftw int ftw(const char

*path, int (*fn)(), int

depth)

int nftw(const char

*path, int (*fn)(), int

depth, int flags)

USE WITH
CAUTION

Follows symbolic links and crosses
mount points.

Use nftw with the
appropriate flags set (a
combination of FTW_PHYS
and FTW_MOUNT).

getenv char *getenv(const char

*name)

USE WITH
CAUTION

The environment is completely user-
specified. If possible, avoid the use of
getenv in libraries. Strings returned
by getenv can be up to NCARGS
bytes long (currently 1MB for 32-bit
environments). Pathnames derived
from environment variables should not
be trusted. They should not be used as
input for any of the *open functions
(including catopen and dlopen).

NA

getlogin char *getlogin(void) AVOID The value returned by getlogin is not
reliable. It is only a hint for the user
name.

NA

getpass char *getpass(const

char *prompt)

AVOID Only the first 8 bytes of input are used.
Avoid using it in new code.

Use the getpassphrase
function.

gets char *gets(char *s) UNSAFE This function does not check for
bounds when storing the input. This
function cannot be used securely.

Use fgets(buf, sizeof
(buf), stdin) OR
getline(buf, bufsize,

stdin).

The getline(buf,
bufsize, stdin) function
is new in Oracle Solaris 11.

kvm_open kvm_t *kvm_open(char

*namelist, char

*corefile, char

*swapfile, int flag,

char *errstr)

int nlist(const char

*filename, struct nlist

*nl)

AVOID Write a proper kstat or other interface
if you need information from the
kernel. If you accept a user-specified
namelist argument, make sure you
revoke privileges before using it.
Otherwise, a specifically constructed
namelist can be used to read random
parts of the kernel, revealing possibly
sensitive data.

NA

272 Developer's Guide to Oracle Solaris 11 Security • July 2014

Function Format Category Comments Alternative

lstat int lstat(const char

*path, struct stat

*buf)

int stat(const char

*path, struct stat

*buf)

int fstatat(int fildes,

const char *path,

struct stat *buf, int

flag)

USE WITH
CAUTION

Do not use these functions to check
for the existence or absence of a file.
The lstat, stat, or fstatat functions
followed by open have an inherent race
condition.

If the purpose is to create
the file that does not exist,
use

open(file, O_CREAT|O_

EXCL, mode)

If the purpose is to read the
file, open it for reading. If
the purpose is to make sure
the file attributes are correct
before reading from it, use

fd = open(file, O_

RDONLY); fstat(fd,

&statbuf);

If the pathname can't be
trusted, add O_NONBLOCK
to the open flags. This
prevents the application
from hanging upon opening
a device.

mkdir int mkdir(const char

*path, mode_t mode)

int mkdirat(int fd,

const char *path, mode_

t mode)

int mknod(const char

*path, mode_t mode,

dev_t dev)

int mknodat(int fd,

const char *path, mode_

t mode, dev_t dev)

USE WITH
CAUTION

Be careful about the path used. These
functions will not follow symbolic
links for the last component and hence
they are relatively safe.

NA

mkstemp int mkstemp(char

*template)

UNRESTRICTEDSafe temporary file creation function. NA

mktemp char *mktemp(char

*template)

AVOID Generates a temporary filename but
the use of the generated pathname is
not guaranteed safe because there is a
race condition between the checks in
mktemp and the subsequent call to open
by the application.

Use mkstemp to create a
file and mkdtemp to create a
directory.

open int open(const char

path, int oflag, /

mode_t mode */...)

int creat(const char

*path, mode_t mode)

USE WITH
CAUTION

When opening for reading from
a privileged program, make sure
that you open the file as a user by
dropping privileges or setting the
effective UID to the real UID. Under
no circumstances should programs

NA

Appendix G • Security Considerations When Using C Functions 273

Function Format Category Comments Alternative

implement their own access control
based on file ownership and modes.
Similarly, when creating files, do not
open and then use chown on the file.

When opening for writing, the program
can be tricked into opening the wrong
file by following symbolic or hard
links. To avoid this problem, either use
the O_NOFOLLOW and O_NOLINKS flags,
or use O_CREAT|O_EXCL to ensure that
a new file is created instead of opening
an existing file.

When opening a file, consider whether
the file descriptor should be kept open
across an exec call. In Oracle Solaris
11, you can specify O_CLOEXEC in the
open flags to atomically mark the
file descriptor to be closed by exec
system calls. In older releases, you
must use the fcntl function with the
FD_CLOEXEC flag, which allows a race
condition in multithreaded programs,
if another thread forks and execute
between the open and fcntl calls.

popen FILE *popen(const char

*command, const char

*mode)

int p2open(const char

*cmd, FILE *fp[2])

int system(const char

*string)

AVOID These three library calls always
involve the shell which involves
PATH, IFS, other environment
variables and interpretation of special
characters. Refer CERT C Coding
Recommendation ENV04-C for more
details.

Use posix_spawn to
execute other programs,
with waitpid or pipe as
necessary.

printf int printf(const char

*format, ...)

int vprintf(const char

*format, va_list ap)

int fprintf(FILE

*stream, const char

*format, ...)

int vfprintf(FILE

*stream, const char

*format, va_list ap)

int snprintf(char *s,

size_t n, const char

*format, ...)

USE WITH
CAUTION

At risk from user-specified format
strings. If the format string comes from
a message catalog, verify your NLSPATH
manipulations and catopen or catget
uses. The C library tries to be safe by
ignoring NLSPATH settings for set-uid
and set-gid applications.

The snprintf and
vsnprintf functions return
the number of characters
that would have been
written to the buffer if it
were large enough. You
cannot use this value
in constructs like, p +=
snprintf(p, lenp, "...

") because p might point
beyond p+lenp afterwards.

274 Developer's Guide to Oracle Solaris 11 Security • July 2014

Function Format Category Comments Alternative

int vsnprintf(char *s,

size_t n, const char

*format, va_list ap)

int wprintf(const

wchar_t *format, ...)

int vwprintf(const

wchar_t format, va_list

arg)

int fwprintf(FILE

*stream, const wchar_t

*format, ...)

int vfwprintf(FILE

*stream, const wchar_t

*format, va_list arg)

int swprintf(wchar_

t *s, size_t n, const

wchar_t *format, ...)

int vswprintf(wchar_

t *s, size_t n, const

wchar_t *format, va_

list arg)

int asprintf(char

**ret, const char

*format, ...)

scanf int scanf(const char

*format, ...)

int vscanf(const char

*format, va_list arg)

int fscanf(FILE

*stream, const char

*format, ...)

int vfscanf(FILE

*stream, const char

*format, va_list arg)

int sscanf(const

char *s, const char

*format, ...)

int vsscanf(const char

*s, const char *format,

va_list arg)

USE WITH
CAUTION

When scanning strings, make sure the
format specified includes maximum
buffer lengths. Use scanf("%10s",
p) to limit scanf to read 10 characters
at most. Note that the corresponding
buffer must be at least eleven bytes to
allow space for the terminating NULL
character.

NA

Appendix G • Security Considerations When Using C Functions 275

Function Format Category Comments Alternative

sprintf int sprintf(char *s,

const char *fmt, ...)

int vsprintf(char *s,

const char *fmt, va_

list ap)

AVOID Typically cause buffer overflow. If
you must use these functions, make
sure that the fmt argument cannot be
user-controlled and that you can trust
the parameters not to overflow the
destination buffer.

Use snprintf, vsnprintf
or asprintf. The asprintf
function is new in Oracle
Solaris 11.

strcat char *strcat(char *s1,

const char *s2)

char *strcpy(char *s1,

const char *s2)

AVOID It is not possible to limit these
functions to a maximum buffer size.
However, you can calculate the amount
of space required before calling strcat
or strcpy. Use of these functions
always forces reviewers to follow the
logic, and prevent automated scanning
of source code for vulnerabilities.

strlcat(dst, src,

dstsize)

strlcpy(dst, src,

dstsize)

strccpy char *strccpy(char

*output, const char

*input)

char *strcadd(char

*output, const char

*input)

char *streadd(char

*output, const char

*input)

char *strecpy(char

*output, const char

*input, const char

*exceptions)

char *strtrns(const

char *string, const

char *old, const char

*new, char *result)

USE WITH
CAUTION

Similar problems as with strcpy. See
the strcpy and strccpy man pages for
proper use.

NA

strlcpy size_t strlcpy(char

*dst, const char *src,

size_t dstsize)

size_t strlcat(char

*dst, const char *src,

size_t dstsize)

UNRESTRICTEDPreferred alternative to the strcpy
and the strcat functions. Available
in Solaris 8 and later. Should be used
with constant and not computed size
arguments to facilitate code review.

NA

strncat char *strncat(char *s1,

const char *s2, size_t

n)

char *strncpy(char *s1,

const char *s2, size_t

n)

USE WITH
CAUTION

The strncpy function is not guaranteed
to null-terminate the destination buffer.
The strncat function is hard to use
as it requires the proper size of the
destination buffer to be calculated.

The fact that the strncpy function
does not null- terminate on insufficient

strlcpy(dst, src,

dstsize)

strlcat(dst, src,

dstsize)

276 Developer's Guide to Oracle Solaris 11 Security • July 2014

Function Format Category Comments Alternative

space, together with the side effect
that it will add NULL bytes if there is
space left, makes it a useful function
for updating structures that reside on
disk. For example the wtmpx files, are
often generated with write(fd, w, sizeof
(*w));

syslog void syslog(int

priority, const char

*message, ...)

void vsyslog(int

priority, const char

*message, va_list ap)

USE WITH
CAUTION

At risk from user-specified format
strings. Verify your NLSPAT
manipulations and catopen or catget
uses.

NA

tempnam char *tempnam(const

char *dir, const char

*pfx)

char *tmpnam(char *s)

char *tmpnam_r(char *s)

AVOID These functions are not suitable for
generating unpredictable filenames.
There is a race condition between the
generation of the filename and its use,
for example, open.

mkstem

tmpfile FILE *tmpfile(void) USE WITH
CAUTION

Uses mkstemp, so it is safe to use.
However, because this function
changes the umask, it is not
multithread safe.

NA

truncate int truncate(const char

*path, off_t length)

AVOID This function is prone to pathname
race conditions.

Use ftruncate after a safe
open.

umask mode_t umask(mode_t

cmask)

USE WITH
CAUTION

Should not be used in libraries or
applications; the user's umask should
be used. Also it is not multithread safe.

NA

utmpname int utmpname(const

char *file) int

utmpxname(const char

*file)

AVOID Use the default utmp and utmpx files. NA

Glossary 277

Glossary

Access
Control List
(ACL)

A file containing a list of principals with certain access permissions. Typically, a server
consults an access control list to verify that a client has permission to use its services. Note that
a principal authenticated by GSS-API can still be denied services if an ACL does not permit
them.

authentication A security service that verifies the claimed identity of a principal.

authorization The process of determining whether a principal can use a service, which objects the principal is
allowed to access, and the type of access allowed for each.

client Narrowly, a process that makes use of a network service on behalf of a user, for example, an
application that uses rlogin. In some cases, a server can itself be a client of some other server
or service. Informally, a principal that makes use of a service.

confidentiality A security service that encrypts data. Confidentiality also includes integrity and authentication
services. See also authentication, integrity, service.

consumer An application, library, or kernel module that uses system services.

context A state of trust between two applications. When a context has successfully been established
between two peers, the context acceptor is aware that the context initiator is who it claims
to be, and can verify and decrypt messages sent to it. If the context includes mutual
authentication, then the initiator knows the acceptor's identity is valid and can also verify and
decrypt messages from the acceptor.

context-level
token

See token.

credential An information package that identifies a principal and a principal's identification. A credential
specifies who the principal is and, often, what privileges the principal has. Credentials are
produced by security mechanisms.

credential
cache

A storage space (usually a file) containing credentials stored by a given mechanism.

CRL Certificate Revocation List

CSR Certificate Signing Request

data replay

278 Developer's Guide to Oracle Solaris 11 Security • July 2014

data replay When a single message in a message stream is received more than once. Many security
mechanisms support data replay detection. Replay detection, if available, must be requested at
context-establishment time.

data type The form that a given piece of data takes, for example, an int, a string, a gss_name_t
structure, or a gss_OID_set structure.

delegation If permitted by the underlying security mechanism, a principal (generally the context initiator)
can designate a peer principal (usually the context acceptor) as a proxy by delegating its
credentials to it. The delegated credentials can be used by the recipient to make requests
on behalf of the original principal, as might be the case when a principal uses rlogin from
machine to machine to machine.

exported
name

A mechanism name that has been converted from the GSS-API internal-name format to the
GSS-API Exported Name format by gss_export_name. An exported name can be compared
with names that are in non-GSS-API string format with memcmp. See also mechanism name
(MN), name.

flavor Historically, security flavor and authentication flavor were equivalent terms, as a flavor
indicated a type of authentication, such as AUTH_UNIX, AUTH_DES, AUTH_KERB.
RPCSEC_GSS is also a security flavor, even though it provides integrity and confidentiality
services in addition to authentication.

GSS-API The Generic Security Service Application Programming Interface. A network layer providing
support for various modular security services. GSS-API provides for security authentication,
integrity, and confidentiality services, and allows maximum portability of applications with
regard to security. See also authentication, confidentiality, integrity.

host A machine accessible over a network.

integrity A security service that, in addition to user authentication, provides proof of the validity of
transmitted data through cryptographic tagging. See also authentication, confidentiality,
message integrity code (MIC).

keystore A storage system for PKI objects. The following examples are popular keystores:

■ OpenSSL stores keys and certificates on disk in files (PEM, DER, or PKCS#12 format).
■ NSS is a private database that stores objects. NSS also supports PKCS#11 tokens.
■ PKCS#11 storage depends on the token selected: Local files use Oracle Solaris softtoken.

Smart cards, for example, use hardware tokens.

KMF Oracle Solaris Key Management Framework

mechanism A software package that specifies cryptographic techniques to achieve data authentication or
confidentiality. Examples include Kerberos v5 and Diffie-Hellman public key.

mechanism
name (MN)

A special instance of a GSS-API internal-format name. A normal internal-format GSS-API
name can contain several instances of a name, each in the format of an underlying mechanism.

out-of-sequence detection

Glossary 279

A mechanism name, however, is unique to a particular mechanism. Mechanism names are
generated by gss_canonicalize_name.

message Data in the form of a gss_buffer_t object that is sent from one GSS-API-based application to
a peer. An example of a message is “ls” sent to a remote ftp server.

A message can contain more than just the user-provided data. For example, gss_wrap takes an
unwrapped message and produces a wrapped one to be sent. The wrapped message includes
both the original message and an accompanying MIC. GSS-API-generated information that
does not include a message is a token. See token.

message
integrity code
(MIC)

A cryptographic tag that is attached to transmitted data to ensure the data's validity. The
recipient of the data generates another MIC and compares this MIC to the one that was
sen. If the MICs are equal, the message is valid. Some MICs, such as those generated by
gss_get_mic, are visible to the application, while others, such as those generated by gss_wrap
or gss_init_sec_context, are not.

message–level
token

See token.

MIC See message integrity code (MIC).

MN See mechanism name (MN).

mutual
authentication

When a context is established, a context initiator must authenticate itself to the context
acceptor. In some cases the initiator might request that the acceptor authenticate itself back. If
the acceptor does so, the two are said to be mutually authenticated.

name The name of a principal, such as user@machine. Names in the GSS-API are handled through
the gss_name_t structure, which is opaque to applications. See also exported name, mechanism
name (MN), name type, principal.

name type The particular form in which a name is given. Name types are stored as gss_OID types and
are used to indicate the format used for a name. For example, the name user@machine would
have a name type of GSS_C_NT_HOSTBASED_SERVICE. See also exported name, mechanism name
(MN), name.

OCSP Online Certificate Status Protocol

opaque Applies to a piece of data whose value or format is not normally visible to functions that
use it. For example, the input_token parameter to gss_init_sec_context is opaque to
the application, but significant to the GSS-API. Similarly, the input_message parameter to
gss_wrap is opaque to the GSS-API but important to the application doing the wrapping.

out-of-
sequence
detection

Many security mechanisms can detect whether messages in a message stream are received
out of their proper order. Message detection, if available, must be requested at context-
establishment time.

per-message token

280 Developer's Guide to Oracle Solaris 11 Security • July 2014

per-message
token

See token.

PKCS Public Key Cryptography Standards

PKI Public Key Infrastructure

principal A uniquely named client/user or server/service instance that participates in a network
communication; GSS–API–based transactions involve interactions between principals.
Examples of principal names include:

■ user

■ user@machine

■ nfs@machine

■ 123.45.678.9

■ ftp://ftp.example.com

See also name, name type.

privacy See confidentiality.

provider An application, library, or kernel module that provides services to consumers.

Quality of
Protection
(QOP)

A parameter used to select the cryptographic algorithms to be used in conjunction with
the integrity or confidentiality service. With integrity, the QOP specifies the algorithm for
producing a message integrity code (MIC). With confidentiality, the QOP specifies the
algorithm for both the MIC and message encryption.

replay
detection

Many security mechanisms can detect whether a message in a message stream has been
incorrectly repeated. Message replay detection, if available, must be requested at context-
establishment time.

security flavor See flavor.

security
mechanism

See mechanism.

security
service

See service.

server A principal that provides a resource to network clients. For example, if you use rlogin to log
in to the machine sales.example.com, then that machine is the server providing the rlogin
service.

service 1. (Also, network service) A resource provided to network clients; often provided by more than
one server. For example, if you use rlogin to log in to the machine sales.example.com, then
that machine is the server providing the rlogin service.

token

Glossary 281

2. A security service can be either integrity or confidentiality, providing a level of protection
beyond authentication. See also authentication, integrity, and confidentiality.

SSL Secure Sockets Layer

token A data packet in the form of a GSS-API gss_buffer_t structure. Tokens are produced by GSS-
API functions for transfer to peer applications.

Tokens come in two types. Context-level tokens contain information used to establish or
manage a security context. For example, gss_init_sec_context bundles a context initiator's
credential handle, the target machine's name, flags for various requested services, and possibly
other items into a token to be sent to the context acceptor.

Message tokens (also known as per-message tokens or message-level tokens) contain
information generated by a GSS-API function from messages to be sent to a peer application.
For example, gss_get_mic produces an identifying cryptographic tag for a given message and
stores it in a token to be sent to a peer with the message. Technically, a token is considered to
be separate from a message, which is why gss_wrap is said to produce an output_message and
not an output_token.

See also message.

282 Developer's Guide to Oracle Solaris 11 Security • July 2014

283

Index

A
access control lists

use in GSS-API, 64
account management

PAM service module, 38
ACL See access control list
acquiring context information, 81
anonymous authentication, 78
authentication

flavor, 278
GSS-API, 58

anonymous, 78
mutual, 77

PAM process for, 39
PAM service module, 38
SASL, 126

authid

auxprop plug-ins, 137
SASL, 120

authorizations
code example, 35
defined, 23
use in application development, 34

authzid

auxprop plug-ins, 137
auxiliary properties See auxprop plug-ins
auxprop plug-ins, 137

C
C_CloseSession function

digest message example, 154
message signing example, 161
random byte generation example, 167

C_Decrypt function, 157
C_DecryptInit function, 157

C_EncryptFinal function, 156
C_EncryptInit function, 156
C_EncryptUpdate function, 156
C_Finalize function

digest message example, 154
message signing example, 161

C_GenerateKeyPair function, 161
C_GenerateRandom function, 167
C_GetAttributeValue function, 161
C_GetInfo function, 147, 154
C_GetMechanismList function, 150
C_GetSlotList function, 148

message signing example, 160
random byte generation example, 166

C_Initialize function, 147
C_OpenSession function, 149

random byte generation example, 167
C_SignInit function, 161
C_Verify function, 161
C_VerifyInit function, 161
callbacks

SASL, 121
SASL_CB_AUTHNAME, 123
SASL_CB_CANON_USER, 123
SASL_CB_ECHOPROMPT, 123
SASL_CB_GETCONF, 122
SASL_CB_GETOPT, 122
SASL_CB_GETPATH, 122
SASL_CB_GETREALM, 123
SASL_CB_LANGUAGE, 122
SASL_CB_LOG, 122
SASL_CB_NOECHOPROMPT, 123
SASL_CB_PASS, 123
SASL_CB_PROXY_POLICY, 123

Index

284 Developer's Guide to Oracle Solaris 11 Security • July 2014

SASL_CB_SERVER_USERDB_CHECKPASS, 123
SASL_CB_SERVER_USERDB_SETPASS, 123
SASL_CB_USER, 123
SASL_CB_VERIFYFILE, 122

canonicalization
SASL, 137

Certificate Revocation List (CRL), 171
Certificate Signing Request (CSR), 172
channel bindings

GSS-API, 78, 219
client plug-ins

SASL, 135, 137
client_establish_context function

GSS-API client example, 93
confidentiality

GSS-API, 59, 82
connect_to_server function

GSS-API client example, 92, 95
connection contexts

SASL, 123
consumers

defined, 20
Oracle Solaris cryptographic framework, 139

context-level tokens
GSS-API, 69

contexts
GSS-API

acceptance, 75
acceptance example, 112
deletion, 87
establishing , 73
establishing example, 94
exporting, 80
getting acquisition information, 81
gss-client example, 102
import and export, 80, 116
introduction, 57
other context services, 77
releasing, 118

initiation in GSS-API, 73
createMechOid function, 238
credentials

cache, 277
delegation, 77
GSS-API, 72, 222

acquisition, 106
GSS-API default, 72

CRL (Certificate Revocation List), 171
crypto pseudo device driver, 141
cryptoadm pseudo device driver, 142
cryptoadm utility, 142
cryptographic checksum (MIC), 83
cryptographic framework See Oracle Solaris
cryptographic framework
cryptographic providers

Oracle Solaris cryptographic framework, 142
cryptoki library

overview, 145
CSR (Certificate Signing Request), 172

D
data encryption

GSS-API, 83
data protection

GSS-API, 82
data replay, 278
data types

GSS-API, 61, 217
integers, 61
names, 62
strings, 61

privileges, 27
default credentials

GSS-API, 72
delegation

credentials, 77
design requirements

Oracle Solaris cryptographic framework
kernel-level consumers, 143
user-level consumers, 142

digesting messages
Oracle Solaris cryptographic framework, 153

E
effective privilege set

defined, 25
elfsign command

Oracle Solaris cryptographic framework, 142

Index

285

encryption
GSS-API, 82
wrapping messages with gss_wrap, 83

error codes
GSS-API, 214

examples
checking for authorizations, 35
GSS-API client application

description, 89
source code, 185

GSS-API miscellaneous functions
source code, 204

GSS-API server application
description, 103
source code, 195

miscellaneous SASL functions, 258
Oracle Solaris cryptographic framework

message digest, 153
random byte generation, 166
signing and verifying messages, 160
symmetric encryption, 156

PAM consumer application, 42
PAM conversation function, 46
PAM service provider, 51
privilege bracketing, 31
SASL client application, 241
SASL server application, 249

exporting GSS-API contexts, 80

F
flavor See security flavor
functions See specific function name

GSS-API, 211

G
General Security Standard Application Programming
Interface See GSS-API
GetMechanismInfo function, 160
GetRandSlot function, 166
GetTokenInfo function, 167
GSS-API

acquiring credentials, 106
anonymous authentication, 78

anonymous name format, 221
channel bindings, 78, 219
communication layers, 57
comparing names in, 64
confidentiality, 82
constructing OIDs, 237
context establishment example, 94
contexts

acceptance example, 112
deallocation, 87
expiration, 222

createMechOid function, 238
credentials, 72

expiration, 222
data types, 61, 217
detecting out-of-sequence problems, 85
developing applications, 71
displaying status codes, 216
encryption, 82, 83
exporting contexts, 80, 222
files containing OID values, 235
functions, 211
generalized steps, 71
gss-client example

context deletion, 102
contexts, 97
sending messages, 98
signature blocks, 101

gss-server example
signing messages, 116
unwrapping messages, 115

gss_str_to_oid function, 237
include files, 71
integrity, 82
interprocess tokens, 222
introduction, 57
Kerberos v5 status codes, 223
language bindings, 60
limitations, 60
mech file, 235
message transmission, 85
MICs, 82
minor-status codes, 223
miscellaneous sample functions

source code, 204
mutual authentication, 77

Index

286 Developer's Guide to Oracle Solaris 11 Security • July 2014

name types, 67, 218
OIDs, 66
other context services, 77
outside references, 60
portability, 58
protecting channel-binding information, 222
QOP, 58, 236
readable name syntax, 221
releasing contexts, 118
releasing stored data, 221
remote procedure calls, 59
replaced functions, 213
role in Oracle Solaris OS, 21
sample client application

description, 89
source code, 185

sample server application
description, 103
source code, 195

specifying non-default mechanisms, 239
specifying OIDs, 235
status code macros, 217
status codes, 67, 213, 214
supported credentials, 222
tokens, 69

context-level, 69
interprocess, 70
per-message, 69

translation into GSS-API format, 94
wrap-size limits, 223

gss-client example
context deletion, 102
obtaining context status, 97
restoring contexts, 97
saving contexts, 97
sending messages, 98
signature blocks, 101

gss-client sample application, 89
gss-server example

signing messages, 116
unwrapping messages, 115

gss-server sample application, 103
gss_accept_sec_context function, 75, 211

GSS-API server example, 115
gss_acquire_cred function, 72, 211

GSS-API server example, 106
gss_add_cred function, 73, 211
gss_add_oid_set_member function, 212
gss_buffer_desc structure, 61, 217
gss_buffer_t pointer, 61
GSS_C_ACCEPT credential, 72
GSS_C_BOTH credential, 72
GSS_C_INITIATE credential, 72
GSS_CALLING_ERROR macro, 68, 217
gss_canonicalize_name function, 63, 212
gss_channel_bindings_structure structure, 218
gss_channel_bindings_t data type, 79
gss_compare_name function, 64, 65, 212
gss_context_time function, 212
gss_create_empty_oid_set function, 213
gss_delete_oid function, 213
gss_delete_sec_context function, 87, 212

releasing contexts, 221
gss_display_name function, 63, 212
gss_display_status function, 212, 216
gss_duplicate_name function, 212
gss_export_context function, 70
gss_export_name function, 212
gss_export_sec_context function, 80, 212
gss_get_mic function, 82, 83, 212

comparison with gss_wrapfunction, 82
GSS-API server example, 116

gss_import_name function, 62, 212
GSS-API client example, 94
GSS-API server example, 107

gss_import_sec_context function, 80, 212
gss_indicate_mechs function, 212
gss_init_sec_context function, 74, 77, 211

GSS-API client example, 94
use in anonymous authentication, 78
use in mutual authentication, 77

gss_inquire_context function, 81, 212
gss_inquire_cred function, 211
gss_inquire_cred_by_mech function, 211
gss_inquire_mechs_for_name function, 212
gss_inquire_names_for_mech function, 212
gss_OID pointer, 66
gss_OID_desc structure, 218

Index

287

gss_OID_set pointer, 66
gss_OID_set_desc structure, 66, 218
gss_oid_to_str function, 213
gss_process_context_token function, 212
gss_release_buffer function, 87, 212
gss_release_cred function, 87, 211

GSS-API server example, 118
gss_release_name function, 87, 212

releasing stored data, 221
gss_release_oid function

GSS-API client example, 91
GSS-API server example, 107

gss_release_oid_set function, 87, 213
GSS_ROUTINE_ERROR macro, 68, 217
gss_seal function, 213
gss_sign function, 213
gss_str_to_oid function, 213, 237
GSS_SUPPLEMENTARY_INFO macro, 68, 217
gss_test_oid_set_member function, 213
gss_unseal function, 213
gss_unwrap function, 212

GSS-API server example, 115
gss_verify function, 213
gss_verify_mic function, 212
gss_wrap function, 82, 83, 212

comparison with gss_get_mic function, 82
wrapping messages, 83

gss_wrap_size_limit function, 83, 212
gssapi.h file, 71
guidelines for privileged applications, 33

H
header files

GSS-API, 71

I
importing GSS-API contexts, 80
inetd

checking for in gss-client example, 109
inheritable privilege set

defined, 25
integers

GSS-API, 61
integrity

GSS-API, 59, 82
interprocess tokens

GSS-API, 70
IPC privileges, 27

J
Java API, 18

K
Kerberos v5

GSS-API, 59
Key Management Framework (KMF), 171
keypair, 174
keystore, 171
KMF (Key Management Framework), 171
kmfcfg(1) configuration utility, 173

L
language bindings

GSS-API, 60
libpam, 39
libpkcs11.so library

Oracle Solaris cryptographic framework, 141
libsasl

initialization, 124
use of API, 121

libsasl library, 119
limit privilege set

defined, 25

M
macros

GSS-API
GSS_CALLING_ERROR, 68
GSS_ROUTINE_ERROR, 68
GSS_SUPPLEMENTARY_INFO, 68

major status codes
GSS-API, 67

descriptions, 214

Index

288 Developer's Guide to Oracle Solaris 11 Security • July 2014

major-status codes
GSS-API

encoding, 213
mech file, 235
Mechanism Name (MN), 63
mechanisms

defined, 20
GSS-API, 59
Oracle Solaris cryptographic framework, 139
printable formats, 237
SASL, 120
specifying GSS-API, 67

memcmp function, 65
message digesting

Oracle Solaris cryptographic framework, 153
Message Integrity Code See MICs
messages, 69

See also data
encrypting with gss_wrap, 83
GSS-API, 69

out-of-sequence problems, 85
sending, 98
signing, 116
transmission confirmation, 85
unwrapping, 115

tagging with MICs, 83
wrapping in GSS-API, 83

metaslot
Oracle Solaris cryptographic framework, 139

MICs
defined, 82
GSS-API

tagging messages, 83
message transmission confirmation, 85

minor status codes
GSS-API, 68

MN See Mechanism Name
mutual authentication

GSS-API, 77

N
name types

GSS-API, 218
names

comparing in GSS-API, 64

GSS-API, 62
types in GSS-API, 67

network security
overview, 20

O
Object Identifiers See OIDs
OCSP (Online Certificate Status Protocol), 171
OIDs

constructing, 237
deallocation of, 67
GSS-API, 66
sets, 66
specifying, 67, 235
types of data stored as, 66

Online Certificate Status Protocol (OCSP), 171
Oracle Solaris cryptographic framework

architecture, 140
crypto pseudo device driver, 141
cryptoadm pseudo device driver, 142
cryptoadm utility, 142
cryptographic providers, 142
cryptoki library, 145
design requirements

kernel-level consumers, 143
user-level consumers, 142

elfsign utility, 142
examples

message digest, 153
random byte generation, 166
signing and verifying messages, 160
symmetric encryption, 156

introduction, 139
kernel programmer interface, 142
libpkcs11.so, 141
modules verification library, 142
pkcs11_kernel.so, 141
pkcs11_softtoken.so, 141
pluggable interface, 141
role in Oracle Solaris OS, 18
scheduler / load balancer, 141, 142

Oracle Solaris Enterprise Authentication Mechanism
See SEAM
out-of-sequence problems

Index

289

GSS-API, 85

P
PAM, 37

authentication process, 39
consumer application example, 42
framework, 37
items, 40
library, 39
requirements for PAM consumers, 40
role in Oracle Solaris OS, 21
service modules, 38
service provider example, 51
service provider requirements, 51
writing conversation functions, 46

pam.conf file See PAM configuration file
pam_end function, 40
pam_getenvlist function, 46
pam_open_session function, 46
pam_set_item function, 40
pam_setcred function, 43
pam_start function, 40
parse_oid function, 239

GSS-API client example, 91
per-message tokens

GSS-API, 69
permitted privilege set

defined, 24
PKCS #11

C_GetInfo function, 147
C_GetMechanismList function, 150
C_GetSlotList function, 148
C_GetTokenInfo function, 148
C_Initialize function, 147
C_OpenSession function, 149
function list, 146
pkcs11_softtoken.so module, 145
SUNW_C_GetMechSession function, 152, 153

pkcs11_kernel.so library
Oracle Solaris cryptographic framework, 141

pkcs11_softtoken.so library
Oracle Solaris cryptographic framework, 141

PKI (Public Key Infrastructure), 171

pktool(1) key management tool, 172
plug-ins

Oracle Solaris cryptographic framework, 139
SASL, 132

pluggable authentication module See PAM
pluggable interface

Oracle Solaris cryptographic framework, 141
principals

GSS-API, 62
PRIV_FILE_LINK_ANY, 26
PRIV_OFF flag, 28
PRIV_ON flag, 28
PRIV_PROC_EXEC, 26
PRIV_PROC_FORK, 26
PRIV_PROC_INFO, 26
PRIV_PROC_SESSION, 26
PRIV_SET flag, 28
priv_set_t structure, 27
priv_str_to_set function

synopsis, 29
priv_t type, 27
privilege sets

defined, 24
privileged applications

defined, 23
privileges

assignment, 24
bracketing in the least privilege model, 31
bracketing in the superuser model, 30
categories, 26

IPC, 27
process, 27
system, 27
System V IPC, 27

code example, 31
compatibility with superuser, 26
data types, 27
defined, 23
interfaces, 28
introduction, 17
operation flags, 28
overview, 24
priv_str_to_set function, 29
privilege ID data type, 27
required header file, 27

Index

290 Developer's Guide to Oracle Solaris 11 Security • July 2014

setppriv function, 29
use in application development, 33

process privileges, 27 See privileges
protecting data

GSS-API, 82
providers

defined, 20
Oracle Solaris cryptographic framework, 139, 142

Public Key Infrastructure (PKI), 171

Q
qop file, 236
QOPs, 58

role in wrap size, 84
specifying, 67, 235
storage in OIDs, 66

Quality of Protection See QOP

R
random byte generation

Oracle Solaris cryptographic framework
example, 166

remote procedure calls
GSS-API, 59

return codes
GSS-API, 67

RPCSEC_GSS, 59

S
SASL

architecture, 120
authentication, 126
authid, 120
auxprop plug-ins, 137
callbacks

SASL_CB_AUTHNAME, 123
SASL_CB_CANON_USER, 123
SASL_CB_ECHOPROMPT, 123
SASL_CB_GETCONF, 122
SASL_CB_GETOPT, 122
SASL_CB_GETPATH, 122
SASL_CB_GETREALM, 123

SASL_CB_LANGUAGE, 122
SASL_CB_LOG, 122
SASL_CB_NOECHOPROMPT, 123
SASL_CB_PASS, 123
SASL_CB_PROXY_POLICY, 123
SASL_CB_SERVER_USERDB_CHECKPASS, 123
SASL_CB_SERVER_USERDB_SETPASS, 123
SASL_CB_USER, 123
SASL_CB_VERIFYFILE, 122

canonicalization, 137
client sample application, 241
confidentiality, 128
connection contexts, 123
functions, 261
integrity, 128
library, 119
libsasl API, 121
libsasl initialization, 124
life cycle, 124
mechanisms, 120
overview, 119
plug-in design, 137

client plug-ins, 135
overview, 132
server plug-ins, 135
structures, 134

reference tables, 261
releasing resources, 129
releasing sessions, 128
role in Oracle Solaris OS, 21
sample functions, 258
sample output, 129
server sample application, 249
session initialization, 125
setting SSF, 125
SPI, 132
SSF, 121
userid, 120

sasl_canonuser_plug_nit function, 137
SASL_CB_AUTHNAME callback, 123
SASL_CB_CANON_USER callback, 123
SASL_CB_ECHOPROMPT callback, 123
SASL_CB_GETCONF callback, 122
SASL_CB_GETOPT callback, 122

Index

291

SASL_CB_GETPATH callback, 122
SASL_CB_GETREALM callback, 123
SASL_CB_LANGUAGE callback, 122
SASL_CB_LOG callback, 122
SASL_CB_NOECHOPROMPT callback, 123
SASL_CB_PASS callback, 123
SASL_CB_PROXY_POLICY callback, 123
SASL_CB_SERVER_USERDB_CHECKPASS callback, 123
SASL_CB_SERVER_USERDB_SETPASS callback, 123
SASL_CB_USER callback, 123
SASL_CB_VERIFYFILE callback, 122
sasl_client_add_plugin function, 132
sasl_client_init function, 124, 133
sasl_client_new function

SASL life cycle, 125
sasl_client_start function

SASL life cycle, 126
SASL_CONTINUE flag, 126
sasl_decode function, 128
sasl_dispose function, 128, 129
sasl_done function, 128, 129
sasl_encode function, 128
sasl_getprop function

checking SSF, 128
SASL_INTERACT flag, 126
SASL_OK flag, 126
sasl_server_add_plugin function, 132
sasl_server_init function, 124, 133
sasl_server_new function

SASL life cycle, 125
sasl_server_start function

SASL life cycle, 126
SEAM

GSS-API, 59
security context See contexts
security flavor, 278
security mechanisms See GSS-API
security policy

privileged application guidelines, 33
security strength factor See SSF
send_token function

GSS-API client example, 96
sequence problems

GSS-API, 85

server plug-ins
SASL, 135

server_acquire_creds function
GSS-API server example, 106

server_establish_context function
GSS-API server example, 112

service provider interface See SPI
session management

PAM service module, 38
session objects

Oracle Solaris cryptographic framework, 140
setppriv function

synopsis, 29
shell escapes

and privileges, 34
sign_server function

GSS-API client example, 104
GSS-API server example, 110

signature blocks
GSS-API

gss-client example, 101
signing messages

GSS-API, 116
signing messages example

Oracle Solaris cryptographic framework, 160
Simple Authentication and Security Layer See SASL
slots

Oracle Solaris cryptographic framework, 139
soft tokens

Oracle Solaris cryptographic framework, 139
specifying a QOP, 235
specifying mechanisms in GSS-API, 235
specifying OIDs, 235
SPI

Oracle Solaris cryptographic framework
user level, 141

SSF
defined, 121
setting, 125, 126

status codes
GSS-API, 67, 213
major, 67
minor, 68

strings
GSS-API, 61

Index

292 Developer's Guide to Oracle Solaris 11 Security • July 2014

SUNW_C_GetMechSession function, 152, 153
digest message example, 153
symmetric encryption example, 156

symmetric encryption
Oracle Solaris cryptographic framework

example, 156
system privileges, 27
System V IPC privileges, 27

T
test_import_export_context function

GSS-API server example, 116
token objects

Oracle Solaris cryptographic framework, 140
tokens

distinguishing GSS-API types, 69
GSS-API, 69

context-level, 69
interprocess, 70
per-message, 69

Oracle Solaris cryptographic framework, 139

U
userid

SASL, 120

V
verifying messages example

Oracle Solaris cryptographic framework
example, 160

W
wrapping messages

GSS-API, 83

	Developer's Guide to Oracle® Solaris 11 Security
	Contents
	Using This Documentation
	Product Documentation Library
	Access to Oracle Support
	Feedback

	Chapter 1 • Oracle Solaris Security for Developers (Overview)
	Overview of Oracle Solaris Security Features for Developers
	System Security
	Address Space Layout Randomization (ASLR)
	Debugging and ASLR

	Network Security Architecture

	Chapter 2 • Developing Privileged Applications
	Privileged Applications
	About Privileges
	How Administrators Assign Privileges
	How Privileges Are Implemented
	Permitted Privilege Set
	Inheritable Privilege Set
	Limit Privilege Set
	Effective Privilege Set

	Compatibility Between the Superuser and Privilege Models
	Privilege Categories

	Programming with Privileges
	Privilege Data Types
	Privilege Interfaces
	setppriv: for Setting Privileges
	priv_str_to_set for Mapping Privileges

	Privilege Coding Example
	Privilege Bracketing in the Superuser Model
	Privilege Bracketing in the Least Privilege Model

	Guidelines for Developing Privileged Applications
	About Authorizations

	Chapter 3 • Writing PAM Applications and Services
	Introduction to the PAM Framework
	PAM Service Modules
	Changes to PAM Modules in This Release

	PAM Library
	PAM Authentication Process
	Requirements for PAM Consumers

	PAM Configuration
	Configuring PAM Through /etc/pam.d

	Writing Applications That Use PAM Services
	A Simple PAM Consumer Example
	Other Useful PAM Functions

	Writing Conversation Functions
	Writing Modules That Provide PAM Services
	Requirements for PAM Service Providers
	Sample PAM Provider Service Module

	Chapter 4 • Writing Applications That Use GSS-API
	Introduction to GSS-API
	Application Portability With GSS-API
	Security Services in GSS-API
	Available Mechanisms in GSS-API
	Remote Procedure Calls With GSS-API
	Limitations of GSS-API
	Language Bindings for GSS-API
	Where to Get More Information on GSS-API

	Important Elements of GSS-API
	GSS-API Data Types
	GSS-API Integers
	Strings and Similar Data in GSS-API
	Names in GSS-API
	Comparing Names in GSS-API
	GSS-API OIDs
	Mechanisms and QOPs in GSS-API
	Name Types in GSS-API

	GSS-API Status Codes
	GSS-API Tokens
	Interprocess Tokens in GSS-API

	Developing Applications That Use GSS-API
	Generalized GSS-API Usage
	Working With Credentials in GSS-API
	Acquiring Credentials in GSS-API

	Working With Contexts in GSS-API
	Initiating a Context in GSS-API
	Accepting a Context in GSS-API
	Using Other Context Services in GSS-API
	Delegating a Credential in GSS-API
	Performing Mutual Authentication Between Peers in GSS-API
	Performing Anonymous Authentication in GSS-API
	Using Channel Bindings in GSS-API
	Exporting and Importing Contexts in GSS-API
	Obtaining Context Information in GSS-API

	Sending Protected Data in GSS-API
	Tagging Messages With gss_get_mic
	Wrapping Messages With gss_wrap
	Handling Wrap Size Issues in GSS-API
	Detecting Sequence Problems in GSS-API
	Confirming Message Transmission in GSS-API

	Cleaning Up a GSS-API Session

	Chapter 5 • GSS-API Client Example
	GSSAPI Client Example Overview
	GSSAPI Client Example Structure
	Running the GSSAPI Client Example

	GSSAPI Client Example: main Function
	Opening a Connection With the Server
	Establishing a Security Context With the Server
	Translating a Service Name into GSS-API Format
	Establishing a Security Context for GSS-API

	Miscellaneous GSSAPI Context Operations on the Client Side
	Wrapping and Sending a Message
	Reading and Verifying a Signature Block From a GSS-API Client
	Deleting the Security Context

	Chapter 6 • GSS-API Server Example
	GSSAPI Server Example Overview
	GSSAPI Server Example Structure
	Running the GSSAPI Server Example

	GSSAPI Server Example: main Function
	Acquiring Credentials
	Checking for inetd
	Receiving Data From a Client
	Accepting a Context
	Unwrapping the Message
	Signing and Returning the Message
	Using the test_import_export_context Function

	Cleanup in the GSSAPI Server Example

	Chapter 7 • Writing Applications That Use SASL
	Introduction to Simple Authentication Security Layer (SASL)
	SASL Library Basics
	SASL Architecture
	Security Mechanisms
	SASL Security Strength Factor
	Communication in SASL
	SASL Connection Contexts

	Steps in the SASL Cycle
	libsasl Initialization
	SASL Session Initialization
	SASL Authentication
	SASL Confidentiality and Integrity
	Releasing SASL Sessions
	libsasl Cleanup

	SASL Example
	SASL for Service Providers
	SASL Plug-in Overview
	Important Structures for SASL Plug-ins
	Client Plug-ins
	Server Plug-ins
	User Canonicalization Plug-ins
	Auxiliary Property (auxprop) Plug-ins

	SASL Plug-in Development Guidelines
	Error Reporting in SASL Plug-ins
	Memory Allocation in SASL Plug-ins
	Setting the SASL Negotiation Sequence

	Chapter 8 • Introduction to the Oracle Solaris Cryptographic Framework
	Oracle Solaris Cryptography Terminology
	Overview of the Cryptographic Framework
	Components of the Cryptographic Framework
	What Cryptography Developers Need to Know
	Requirements for Developers of User-Level Consumers
	Requirements for Developers of Kernel-Level Consumers

	Chapter 9 • Writing User–Level Cryptographic Applications
	Overview of the Cryptoki Library
	PKCS #11 Function List
	Functions for Using PKCS #11
	PKCS #11 Functions: C_Initialize
	PKCS #11 Functions: C_GetInfo
	PKCS #11 Functions: C_GetSlotList
	PKCS #11 Functions: C_GetTokenInfo
	PKCS #11 Functions: C_OpenSession
	PKCS #11 Functions: C_GetMechanismList

	Extended PKCS #11 Functions
	Extended PKCS #11 Functions: SUNW_C_GetMechSession
	Extended PKCS #11 Functions: SUNW_C_KeyToObject

	User-Level Cryptographic Application Examples
	Message Digest Example
	Symmetric Encryption Example
	Sign and Verify Example
	Random Byte Generation Example

	Chapter 10 • Introduction to the Oracle Solaris Key Management Framework
	Oracle Solaris Key Management Framework Features
	Oracle Solaris Key Management Framework Components
	KMF Key Management Tool
	KMF Policy Enforcement Mechanisms
	KMF Application Programming Interfaces

	Oracle Solaris Key Management Framework Example Application
	KMF Headers and Libraries
	KMF Basic Data Types
	KMF Application Results Verification
	Complete KMF Application Source Code

	Appendix A • Secure Coding Guidelines for Developers
	Appendix B • Sample C–Based GSS-API Programs
	Client-Side Application
	Server-Side Application
	Miscellaneous GSS-API Sample Functions

	Appendix C • GSS-API Reference
	GSS-API Functions
	Functions From Previous Versions of GSS-API
	Functions for Manipulating OIDs
	Renamed Functions

	GSS-API Status Codes
	GSS-API Major Status Code Values
	Displaying Status Codes
	Status Code Macros

	GSS-API Data Types and Values
	Basic GSS-API Data Types
	OM_uint32
	gss_buffer_desc
	gss_OID_desc
	gss_OID_set_desc
	gss_channel_bindings_struct

	Name Types
	Address Types for Channel Bindings

	Implementation-Specific Features in GSS-API
	Oracle Solaris-Specific Functions
	Human-Readable Name Syntax
	Format of Anonymous Names

	Implementations of Selected Data Types
	Deletion of Contexts and Stored Data
	Protection of Channel-Binding Information
	Context Exportation and Interprocess Tokens
	Types of Credentials Supported
	Credential Expiration
	Context Expiration
	Wrap Size Limits and QOP Values
	Use of minor_status Parameter

	Kerberos v5 Status Codes
	Messages Returned in Kerberos v5 for Status Code 1
	Messages Returned in Kerberos v5 for Status Code 2
	Messages Returned in Kerberos v5 for Status Code 3
	Messages Returned in Kerberos v5 for Status Code 4
	Messages Returned in Kerberos v5 for Status Code 5
	Messages Returned in Kerberos v5 for Status Code 6
	Messages Returned in Kerberos v5 for Status Code 7

	Appendix D • Specifying an OID
	Files with OID Values
	/etc/gss/mech File
	/etc/gss/qop File

	gss_str_to_oid Function
	Constructing Mechanism OIDs
	createMechOid Function

	Specifying a Non-Default Mechanism

	Appendix E • Source Code for SASL Example
	SASL Client Example
	SASL Server Example
	Common Code

	Appendix F • SASL Reference Tables
	SASL Interface Summaries

	Appendix G • Security Considerations When Using C Functions
	Glossary
	Index

