
Part No: E36865
July 2014

Memory and Thread Placement
Optimization Developer's Guide

Copyright © 2007, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws.
Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute,
exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take
all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use
of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates
are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Copyright © 2007, 2014, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d’utilisation
et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter, transmettre, distribuer,
exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute
ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes d’erreurs et
vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de ce logiciel ou l’utilise
pour le compte du Gouvernement des Etats-Unis, la notice suivante s’applique:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S.Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est destiné
à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel dans le cadre
d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation
dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l’utilisation de ce logiciel ou matériel
pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d’autres
propriétaires qu’Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro Devices. UNIX
est une marque déposée d’The Open Group.

Ce logiciel ou matériel et la documentation qui l’accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant
de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En aucun cas, Oracle
Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l’accès à des contenus, produits ou
services tiers, ou à leur utilisation.

3

Contents

Using This Documentation .. 5

1 Overview of Locality Groups ... 7
Locality Groups Overview .. 7
MPO Observability Tools .. 9

2 MPO Observability Tools ... 11
The pmadvise utility ... 11
Using the madv.so.1 Shared Object .. 12

madv.so.1 Usage Examples ... 14
The plgrp tool .. 15

Specifying Lgroups .. 16
Specifying Process and Thread Arguments ... 16

The lgrpinfo Tool ... 17
Options for the lgrpinfo Tool ... 17

The Solaris::lgrp Module .. 19
Functions in the Solaris::lgrp Module .. 21
Object Methods in the Solaris::lgrp Module .. 26

3 Locality Group APIs .. 29
Verifying the Interface Version ... 29
Initializing the Locality Group Interface ... 30

Using lgrp_init ... 30
Using lgrp_fini ... 31

Locality Group Hierarchy .. 31
Using lgrp_cookie_stale ... 31
Using lgrp_view ... 32
Using lgrp_nlgrps .. 32
Using lgrp_root ... 32

Contents

4 Memory and Thread Placement Optimization Developer's Guide • July 2014

Using lgrp_parents ... 33
Using lgrp_children ... 33

Locality Group Contents ... 33
Using lgrp_resources ... 34
Using lgrp_cpus ... 34
Using lgrp_mem_size ... 35

Locality Group Characteristics ... 35
Using lgrp_latency_cookie ... 36

Locality Groups and Thread and Memory Placement .. 36
Using lgrp_home ... 37
Using madvise ... 37
Using meminfo ... 38
Locality Group Affinity .. 40

Examples of API Usage .. 42

Using This Documentation 5

Using This Documentation

■ Overview – The Memory and Thread Placement Optimization Developer's Guide provides
information on locality groups and the technologies that are available to optimize the use
of computing resources in the Oracle Solaris operating system.

■ Audience – This book is intended for use by system administrators, performance
engineers, systems programmers, and support engineers, and developers who are
writing applications in an environment with multiple CPUs and a non-uniform memory
architecture. The programming interfaces and tools that are described in this book give the
developer control over the system's behavior and resource allocation.

■ Required knowledge – Readers of this guide should be familiar with advanced knowledge
of Oracle Solaris operating system.

Product Documentation Library

Late-breaking information and known issues for this product are included in the documentation
library at http://www.oracle.com/pls/topic/lookup?ctx=E36784.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://
www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

http://www.oracle.com/pls/topic/lookup?ctx=E36784
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/goto/docfeedback

6 Memory and Thread Placement Optimization Developer's Guide • July 2014

Chapter 1 • Overview of Locality Groups 7

 1 ♦ ♦ ♦ C H A P T E R 1

Overview of Locality Groups

■ “Locality Groups Overview” on page 7
■ “MPO Observability Tools” on page 9

Locality Groups Overview

Shared memory multiprocessor computers contain multiple CPUs. Each CPU can access all of
the memory in the machine. In some shared memory multiprocessors, the memory architecture
enables each CPU to access some areas of memory more quickly than other areas.

When a machine with such a memory architecture runs the Oracle Solaris software, providing
information to the kernel about the shortest access times between a given CPU and a given
area of memory can improve the system's performance. The locality group (lgroup) abstraction
has been introduced to handle this information. The lgroup abstraction is part of the Memory
Placement Optimization (MPO) feature.

An lgroup is a set of CPU–like and memory–like devices in which each CPU in the set can
access any memory in that set within a bounded latency interval. The value of the latency
interval represents the least common latency between all the CPUs and all the memory in
that lgroup. The latency bound that defines an lgroup does not restrict the maximum latency
between members of that lgroup. The value of the latency bound is the shortest latency that is
common to all possible CPU-memory pairs in the group.

Lgroups are hierarchical. The lgroup hierarchy is a Directed Acyclic Graph (DAG) and is
similar to a tree, except that an lgroup might have more than one parent. The root lgroup
contains all the resources in the system and can include child lgroups. Furthermore, the root
lgroup can be characterized as having the highest latency value of all the lgroups in the system.
All of its child lgroups will have lower latency values. The lgroups closer to the root have a
higher latency while lgroups closer to leaves have lower latency.

A computer in which all the CPUs can access all the memory in the same amount of time can
be represented with a single lgroup (see Figure 1-1). A computer in which some of the CPUs
can access some areas of memory in a shorter time than other areas can be represented by using
multiple lgroups (see Figure 1-2).

Locality Groups Overview

8 Memory and Thread Placement Optimization Developer's Guide • July 2014

FIGURE 1-1 Single Locality Group Schematic

FIGURE 1-2 Multiple Locality Groups Schematic

The organization of the lgroup hierarchy simplifies the task of finding the nearest resources
in the system. Each thread is assigned a home lgroup upon creation. The operating system
attempts to allocate resources for the thread from the thread's home lgroup by default. For
example, the Oracle Solaris kernel attempts to schedule a thread to run on the CPUs in the
thread's home lgroup and allocate the thread's memory in the thread's home lgroup by default.
If the desired resources are not available from the thread's home lgroup, the kernel can traverse
the lgroup hierarchy to find the next nearest resources from parents of the home lgroup. If the
desired resources are not available in the home lgroup's parents, the kernel continues to traverse
the lgroup hierarchy to the successive ancestor lgroups of the home lgroup. The root lgroup
is the ultimate ancestor of all other lgroups in a machine and contains all of the machine's
resources.

The Memory Placement Optimization (MPO) tools enable developers to tune the performance
of the MPO features in cases where the default MPO behaviors do not yield the desired
performance.

The lgroup APIs export the lgroup abstraction for applications to use for observability and
performance tuning. A new library, called liblgrp, contains the new APIs. Applications can
use the APIs to perform the following tasks:

■ Traverse the group hierarchy

MPO Observability Tools

Chapter 1 • Overview of Locality Groups 9

■ Discover the contents and characteristics of a given lgroup
■ Affect the thread and memory placement on lgroups

MPO Observability Tools

The MPO tools help developers to answer questions about system configuration and balance or
placement. The tools also provide the basic information and mechanisms that developers need
in order to determine whether MPO is successful and to diagnose problems related to MPO.

To determine the degree of success that MPO has in providing useful locality assignments and
acceptable performance, it is important to know a given thread's affinities for lgroups, including
its home lgroup, and where the thread's memory is allocated.

The MPO observability tools provide developers with the ability to determine the actions taken
by the system. The MPO thread and memory placement tools enable developers to act on that
information. Developers can also use the dtrace(1M) tool to gain further insights into the
system's behavior.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mdtrace-1m

10 Memory and Thread Placement Optimization Developer's Guide • July 2014

Chapter 2 • MPO Observability Tools 11

 2 ♦ ♦ ♦ C H A P T E R 2

MPO Observability Tools

This chapter describes the tools that are available to use the MPO functionality that is available
in the Oracle Solaris operating system.

This chapter discusses the following topics:

■ “The pmadvise utility” on page 11 describes the tool that applies rules that define the
memory use of a process.

■ “Using the madv.so.1 Shared Object” on page 12 describes the madv.so.1 shared
object and how to use it to configure virtual memory advice.

■ “The plgrp tool” on page 15 describes the tool that can display and set a thread's
affinity for a locality group.

■ “The lgrpinfo Tool” on page 17 prints information about the lgroup hierarchy,
contents, and characteristics.

■ “The Solaris::lgrp Module” on page 19 describes a Perl interface to the locality
group API that is described in Chapter 3, “Locality Group APIs”.

The pmadvise utility
The pmadvise utility applies rules to a process that define how that process uses memory. The
pmadvise utility applies the rules, called advice, to the process with the madvise(3C) tool.
This tool can apply advice to a specific subrange of locations in memory at a specific time.
By contrast, the madv.so.1(1) tool applies the advice throughout the execution of the target
program to all segments of a specified type.

The pmadvise utility has the following options:

-f This option takes control of the target process. This option overrides the
control of any other process. See the proc(1) manual page.

-o This option specifies the advice to apply to the target process. Specify the
advice in this format:

private=advice
shared=advice

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Amadvise-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1madv.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1proc-1

Using the madv.so.1 Shared Object

12 Memory and Thread Placement Optimization Developer's Guide • July 2014

heap=advice
stack=advice
address:length=advice

The value of the advice term can be one of the following:

normal

random

sequential

willneed

dontneed

free

access_lwp

access_many

access_default

You can specify an address and length to specify the subrange where
the advice applies. Specify the address in hexadecimal notation and the
length in bytes.
If you do not specify the length and the starting address refers to the start
of a segment, the pmadvise utility applies the advice to that segment. You
can qualify the length by adding the letters K, M, G, T, P, or E to specify
kilobytes, megabytes, gigabytes, terabytes, or exabytes, respectively.

-v This option prints verbose output in the style of the pmap(1) tool that
shows the value and locations of the advice rules currently in force.

The pmadvise tool attempts to process all legal options. When the pmadvise tool attempts to
process an option that specifies an illegal address range, the tool prints an error message and
skips that option. When the pmadvise tool finds a syntax error, it quits without processing any
options and prints a usage message.

When the advice for a specific region conflicts with the advice for a more general region, the
advice for the more specific region takes precedence. Advice that specifies a particular address
range has precedence over advice for the heap and stack regions, and advice for the heap and
stack regions has precedence over advice for private and shared memory.

The advice rules in each of the following groups are mutually exclusive from other advice rules
within the same group:

MADV_NORMAL, MADV_RANDOM, MADV_SEQUENTIAL

MADV_WILLNEED, MADV_DONTNEED, MADV_FREE

MADV_ACCESS_DEFAULT, MADV_ACCESS_LWP, MADV_ACCESS_MANY

Using the madv.so.1 Shared Object
The madv.so.1 shared object enables the selective configuration of virtual memory advice for
launched processes and their descendants. To use the shared object, the following string must be
present in the environment:

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1pmap-1

Using the madv.so.1 Shared Object

Chapter 2 • MPO Observability Tools 13

LD_PRELOAD=$LD_PRELOAD:madv.so.1

The madv.so.1 shared object applies memory advice as specified by the value of the MADV
environment variable. The MADV environment variable specifies the virtual memory advice to
use for all heap, shared memory, and mmap regions in the process address space. This advice is
applied to all created processes. The following values of the MADV environment variable affect
resource allocation among lgroups:

access_default This value resets the kernel's expected access pattern to the default.

access_lwp This value advises the kernel that the next LWP to touch an address range
is the LWP that will access that range the most. The kernel allocates the
memory and other resources for this range and the LWP accordingly.

access_many This value advises the kernel that many processes or LWPs will access
memory randomly across the system. The kernel allocates the memory
and other resources accordingly.

The value of the MADVCFGFILE environment variable is the name of a text file that contains one
or more memory advice configuration entries in the form exec-name:advice-opts.

The value of exec-name is the name of an application or executable. The value of exec-name
can be a full pathname, a base name, or a pattern string.

The value of advice-opts is of the form region=advice. The values of advice are the same as
the values for the MADV environment variable. Replace region with any of the following legal
values:

madv Advice applies to all heap, shared memory, and mmap(2) regions in the
process address space.

heap The heap is defined to be the brk(2) area. Advice applies to the existing
heap and to any additional heap memory allocated in the future.

shm Advice applies to shared memory segments. See shmat(2) for more
information on shared memory operations.

ism Advice applies to shared memory segments that are using the
SHM_SHARE_MMU flag. The ism option takes precedence over shm.

dsm Advice applies to shared memory segments that are using the
SHM_PAGEABLE flag. The dsm option takes precedence over shm.

mapshared Advice applies to mappings established by the mmap system call using the
MAP_SHARED flag.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN2brk-2
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN2shmat-2

Using the madv.so.1 Shared Object

14 Memory and Thread Placement Optimization Developer's Guide • July 2014

mapprivate Advice applies to mappings established by the mmap system call using the
MAP_PRIVATE flag.

mapanon Advice applies to mappings established by the mmap system call using
the MAP_ANON flag. The mapanon option takes precedence when multiple
options apply.

The value of the MADVERRFILE environment variable is the name of the path where error
messages are logged. In the absence of a MADVERRFILE location, the madv.so.1 shared object
logs errors by using syslog(3C) with a LOG_ERR as the severity level and LOG_USER as the
facility descriptor.

Memory advice is inherited. A child process has the same advice as its parent. The advice is
set back to the system default advice after a call to exec(2) unless a different level of advice is
configured using the madv.so.1 shared object. Advice is only applied to mmap regions explicitly
created by the user program. Regions established by the run-time linker or by system libraries
that make direct system calls are not affected.

madv.so.1 Usage Examples

The following examples illustrate specific aspects of the madv.so.1 shared object.

EXAMPLE 2-1 Setting Advice for a Set of Applications

This configuration applies advice to all ISM segments for applications with exec names that
begin with foo.

$ LD_PRELOAD=$LD_PRELOAD:madv.so.1

$ MADVCFGFILE=madvcfg

$ export LD_PRELOAD MADVCFGFILE

$ cat $MADVCFGFILE

 foo*:ism=access_lwp

EXAMPLE 2-2 Excluding a Set of Applications From Advice

This configuration sets advice for all applications with the exception of ls.

$ LD_PRELOAD=$LD_PRELOAD:madv.so.1

$ MADV=access_many

$ MADVCFGFILE=madvcfg

$ export LD_PRELOAD MADV MADVCFGFILE

$ cat $MADVCFGFILE

 ls:

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Asyslog-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN2exec-2

The plgrp tool

Chapter 2 • MPO Observability Tools 15

EXAMPLE 2-3 Pattern Matching in a Configuration File

Because the configuration specified in MADVCFGFILE takes precedence over the value set in
MADV, specifying * as the exec-name of the last configuration entry is equivalent to setting MADV.
This example is equivalent to the previous example.

$ LD_PRELOAD=$LD_PRELOAD:madv.so.1

$ MADVCFGFILE=madvcfg

$ export LD_PRELOAD MADVCFGFILE

$ cat $MADVCFGFILE

 ls:

 *:madv=access_many

EXAMPLE 2-4 Advice for Multiple Regions

This configuration applies one type of advice for mmap regions and different advice for heap and
shared memory regions for applications whose exec names begin with foo.

$ LD_PRELOAD=$LD_PRELOAD:madv.so.1

$ MADVCFGFILE=madvcfg

$ export LD_PRELOAD MADVCFGFILE

$ cat $MADVCFGFILE

 foo*:madv=access_many,heap=sequential,shm=access_lwp

The plgrp tool

The plgrp utility can display or set the home lgroup and lgroup affinities for one or more
processes, threads, or lightweight processes (LWPs). The system assigns a home lgroup to
each thread on creation. When the system allocates a CPU or memory resource to a thread, it
searches the lgroup hierarchy from the thread's home lgroup for the nearest available resources
to the thread's home.

The system chooses a home lgroup for each thread. The thread's affinity for its home lgroup is
initially set to none, or no affinity. When a thread sets an affinity for an lgroup in its processor
set that is higher than the thread's affinity for its home lgroup, the system moves the thread to
that lgroup. The system does not move threads that are bound to a CPU. The system rehomes a
thread to the lgroup in its processor set that has the highest affinity when the thread's affinity for
its home lgroup is removed (set to none).

For a full description of the different levels of lgroup affinity and their semantics, see the
lgrp_affinity_set(3LGRP) manual page.

The plgrp tool supports the following options:

-a lgroup list This option displays the affinities of the processes or threads that you
specify for the lgroups in the list.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-affinity-set-3lgrp

The plgrp tool

16 Memory and Thread Placement Optimization Developer's Guide • July 2014

-Algroup
list/none|weak|
strong[,...]

This option sets the affinity of the processes or threads that you specify
for the lgroups in the list. You can use a comma separated list of
lgroup/affinity assignments to set several affinities at once.

-F This option takes control of the target process. This option overrides the
control of any other process. See the proc(1) manual page.

-h This option returns the home lgroup of the processes or threads that you
specify. This is the default behavior of the plgrp tool when you do not
specify any options.

-H lgroup list This option sets the home lgroup of the processes or threads that you
specify. This option sets a strong affinity for the listed lgroup. If you
specify more than one lgroup, the plgrp utility will attempt to home the
threads to the lgroups in a round robin fashion.

Specifying Lgroups

The value of the lgroup list variable is a comma separated list of one or more of the following
attributes:

■ lgroup ID
■ Range of lgroup IDs, specified as start lgroup ID-end lgroup ID
■ all

■ root

■ leaves

The all keyword represents all of the lgroup IDs in the system. The root keyword represents
the ID of the root lgroup. The leaves keyword represents the IDs of all of the leaf lgroups. A
leaf lgroup is an lgroup that does not have any children.

Specifying Process and Thread Arguments

The plgrp utility takes one or more space-separated processes or threads as arguments. You can
specify processes and threads in a the same syntax that the proc(1) tools use. You can specify
a process ID as an integer, with the syntax pid or /proc/pid. You can use shell expansions with
the /proc/pid syntax. When you give a process ID alone, the arguments to the plgrp utility
include all of the threads of that process.

You can specify a thread explicitly by specifying the process ID and thread ID with the syntax
pid/lwpid. You can specify multiple threads of a process by defining ranges with can be selected

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1proc-1

The lgrpinfo Tool

Chapter 2 • MPO Observability Tools 17

at once by using the - character to define a range, or with a comma-separated list. To specify
threads 1, 2, 7, 8, and 9 of a process whose process ID is pid, use the syntax pid/1,2,7-9.

The lgrpinfo Tool

The lgrpinfo tool prints information about the lgroup hierarchy, contents, and characteristics.
The lgrpinfo tool is a Perl script that requires the Solaris::Lgrp module. This tool uses the
liblgrp(3LIB) API to get the information from the system and displays it in the human-
readable form.

The lgrpinfo tool prints general information about all of the lgroups in the system when you
call it without any arguments. When you pass lgroup IDs to the lgrpinfo tool at the command
line, the tool returns information about the lgroups that you specify. You can specify lgroups
with their lgroup IDs or with one of the following keywords:

all This keyword specifies all lgroups and is the default behavior.

root This keyword specifies the root lgroup.

leaves This keyword specifies all of the leaf lgroups. A leaf lgroup is an lgroup
that has no children in the lgroup hierarchy.

intermediate This keyword specifies all of the intermediate lgroups. An intermediate
lgroup is an lgroup that has a parent and children.

When the lgrpinfo tool receives an invalid lgroup ID, the tool prints a message with the
invalid ID and continues processing any other lgroups that are passed in the command line.
When the lgrpinfo tool finds no valid lgroups in the arguments, it exits with a status of 2.

Options for the lgrpinfo Tool

When you call the lgrpinfo tool without any arguments, the tool's behavior is equivalent to
using the options -celmrt all. The valid options for the lgrpinfo tool are:

-a This option prints the topology, CPU, memory, load and latency
information for the specified lgroup IDs. This option combines the
behaviors of the -tcemrlL options, unless you also specify the -T option.
When you specify the -T option, the behavior of the -a option does not
include the behavior of the -t option.

-c This option prints the CPU information.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Fliblgrp-3lib

The lgrpinfo Tool

18 Memory and Thread Placement Optimization Developer's Guide • July 2014

-C This option replaces each lgroup in the list with its children. You cannot
combine this option with the -P or -T options. When you do not specify
any arguments, the tool applies this option to all lgroups.

-e This option prints lgroup load averages for leaf lgroups.

-G This option prints the OS view of the lgroup hierarchy. The tool's
default behavior displays the caller's view of the lgroup hierarchy. The
caller's view only includes the resources that the caller can use. See
the lgrp_init(3LGRP) manual page for more details on the OS and
caller's view.

-h This option prints the help message for the tool.

-I This option prints only IDs that match the IDs you specify. You can
combine this option with the -c, -G, -C, or -P options. When you specify
the -c option, the tool prints the list of CPUs that are in all of the
matching lgroups. When you do not specify the -c option, the tool
displays the IDs for the matching lgroups. When you do not specify any
arguments, the tool applies this option to all lgroups.

-l This option prints information about lgroup latencies. The latency value
given for each lgroup is defined by the operating system and is platform-
specific. It can only be used for relative comparison of lgroups on the
running system. It does not necessarily represent the actual latency
between hardware devices and may not be applicable across platforms.

-L This option prints the lgroup latency table. This table shows the relative
latency from each lgroup to each of the other lgroups.

-m This option prints memory information. The tool reports memory sizes
in the units that give a size result in the integer range from 0 to 1023.
You can override this behavior by using the -u option. The tool will only
display fractional results for values smaller than 10.

-P This option replaces each lgroup in the list with its parent or parents. You
cannot combine this option with the -C or -T options. When you do not
specify any arguments, the tool applies this option to all lgroups.

-r This option prints information about lgroup resources. When you specify
the -T option, the tool displays information about the resources of the
intermediate lgroups only.

-t This option prints information about lgroup topology.

-T This option prints the lgroup topology of a system graphically, as a tree.
You can only use this option with the -a, -c, -e, -G, -l, -L, -m, -r, and -u

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-init-3lgrp

The Solaris::lgrp Module

Chapter 2 • MPO Observability Tools 19

options. To restrict the output to intermediate lgroups, use the -r option.
Omit the -t option when you combine the -T option with the -a option.
This option does not print information for the root lgroup unless it is the
only lgroup.

-uunits This option specifies memory units. The value of the units argument
can be b, k, m, g, t, p, or e for bytes, kilobytes, megabytes, gigabytes,
terabytes, petabytes, or exabytes, respectively.

The Solaris::lgrp Module

This Perl module provides a Perl interface to the lgroup APIs that are in liblgrp. This interface
provides a way to traverse the lgroup hierarchy, discover its contents and characteristics, and
set a thread's affinity for an lgroup. The module gives access to various constants and functions
defined in the lgrp_user.h header file. The module provides the procedural interface and the
object interface to the library.

The default behavior of this module does not export anything. You can use the following tags to
selectively import the constants and functions that are defined in this module:

:LGRP_CONSTANTS LGRP_AFF_NONE, LGRP_AFF_STRONG, LGRP_AFF_WEAK,
LGRP_CONTENT_DIRECT, LGRP_CONTENT_HIERARCHY, LGRP_MEM_SZ_FREE,
LGRP_MEM_SZ_INSTALLED, LGRP_VER_CURRENT, LGRP_VER_NONE,
LGRP_VIEW_CALLER, LGRP_VIEW_OS, LGRP_NONE, LGRP_RSRC_CPU,
LGRP_RSRC_MEM, LGRP_CONTENT_ALL, LGRP_LAT_CPU_TO_MEM

:PROC_CONSTANTS P_PID, P_LWPID, P_MYID

:CONSTANTS :LGRP_CONSTANTS, :PROC_CONSTANTS

:FUNCTIONS lgrp_affinity_get, lgrp_affinity_set, lgrp_children,
lgrp_cookie_stale, lgrp_cpus, lgrp_fini, lgrp_home, lgrp_init,
lgrp_latency, lgrp_latency_cookie, lgrp_mem_size, lgrp_nlgrps,
lgrp_parents, lgrp_root, lgrp_version, lgrp_view, lgrp_resources,
lgrp_lgrps, lgrp_leaves, lgrp_isleaf, lgrp_lgrps, lgrp_leaves.

:ALL :CONSTANTS, :FUNCTIONS

The Perl module has the following methods:

■ new

■ cookie

■ stale

The Solaris::lgrp Module

20 Memory and Thread Placement Optimization Developer's Guide • July 2014

■ view

■ root

■ children

■ parents

■ nlgrps

■ mem_size

■ cpus

■ isleaf

■ resources

■ version

■ home

■ affinity_get

■ affinity_set

■ lgrps

■ leaves

■ latency

You can export constants with the :CONSTANTS or :ALL tags. You can use any of the constants in
the following list in Perl programs.

■ LGRP_NONE

■ LGRP_VER_CURRENT

■ LGRP_VER_NONE

■ LGRP_VIEW_CALLER

■ LGRP_VIEW_OS

■ LGRP_AFF_NONE

■ LGRP_AFF_STRONG

■ LGRP_AFF_WEAK

■ LGRP_CONTENT_DIRECT

■ LGRP_CONTENT_HIERARCHY

■ LGRP_MEM_SZ_FREE

■ LGRP_MEM_SZ_INSTALLED

■ LGRP_RSRC_CPU

■ LGRP_RSRC_MEM

■ LGRP_CONTENT_ALL

■ LGRP_LAT_CPU_TO_MEM

■ P_PID

The Solaris::lgrp Module

Chapter 2 • MPO Observability Tools 21

■ P_LWPID

■ P_MYID

When an underlying library function fails, the functions in this module return either undef or an
empty list. The module can use the following error codes:

EINVAL The value supplied is not valid.

ENOMEM There was not enough system memory to complete an operation.

ESRCH The specified process or thread was not found.

EPERM The effective user of the calling process does not have the appropriate
privileges, and its real or effective user ID does not match the real or
effective user ID of one of the threads.

Functions in the Solaris::lgrp Module

lgrp_init([LGRP_VIEW_CALLER

| LGRP_VIEW_OS])

This function initializes the lgroup interface and takes a snapshot of the
lgroup hierarchy with the given view. Given the view, the lgrp_init
function returns a cookie that represents this snapshot of the lgroup
hierarchy. Use this cookie with the other routines in the lgroup interface
that require the lgroup hierarchy. Call the lgrp_fini function with
this cookie when the system no longer needs the hierarchy snapshot.
Unlike the lgrp_init(3LGRP) function, this function assumes a value
of LGRP_VIEW_OS as the default if the system provides no view. This
function returns a cookie upon successful completion. If the lgrp_init
function does not complete successfully, it returns a value of undef and
sets $! to indicate the error. See the man page for the lgrp_init(3LGRP)
function for more information.

lgrp_fini($cookie) This function takes a cookie, frees the snapshot of the lgroup hierarchy
that the lgrp_init function created, and cleans up anything else that
the lgrp_init function set up. After calling this function, do not use
the cookie that the lgroup interface returns. This function returns 1 upon
successful completion. If the lgrp_fini function does not complete
successfully, it returns a value of undef and sets $! to indicate the error.
See the man page for the lgrp_fini(3LGRP) function for more
information.

lgrp_view($cookie) This function takes a cookie that represents the snapshot of the lgroup
hierarchy and returns the snapshot's view of the lgroup hierarchy. If
the given view is LGRP_VIEW_CALLER, the snapshot contains only the

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-init-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-fini-3lgrp

The Solaris::lgrp Module

22 Memory and Thread Placement Optimization Developer's Guide • July 2014

resources that are available to the caller. When the view is LGRP_VIEW_OS,
the snapshot contains the resources that are available to the operating
system. This function returns the view for the snapshot of the lgroup
hierarchy that is represented by the given cookie upon successful
completion. If the lgrp_view function does not complete successfully,
it returns a value of undef and sets $! to indicate the error. See the man
page for the lgrp_view(3LGRP) function for more information.

lgrp_home($idtype,

$id)

This function returns the home lgroup for the given process or thread. To
specify a process, give the $idtype argument the value P_PID and give
the $id argument the value of the process id. To specify a thread, give
the $idtype argument the value P_LWPID and give the $id argument the
value of the thread's LWP id. To specify the current process or thread,
give the $id argument the value P_MYID. This function returns the id
of the home lgroup of the specified process or thread upon successful
completion. If the lgrp_home function does not complete successfully,
it returns a value of undef and sets $! to indicate the error. See the man
page for the lgrp_home(3LGRP) function for more information.

lgrp_cookie_stale($cookie)This function returns the staleness status of the specified cookie upon
successful completion. If the lgrp_cookie_stale function does not
complete successfully, it returns a value of undef and sets $! to indicate
the error. This function fails and returns EINVAL if the cookie is not valid.
See the man page for the lgrp_cookie_stale(3LGRP) function for
more information.

lgrp_cpus($cookie,

$lgrp, $context)

This function takes a cookie that represents a snapshot of the lgroup
hierarchy and returns the list of CPUs that are in the lgroup that is
specified by the $lgrp argument. Give the $context argument the value
LGRP_CONTENT_HIERARCHY to make the lgrp_cpus function return the list
of all the CPUs that are in the specified lgroup, including child lgroups.
Give the $context argument the value LGRP_CONTENT_DIRECT to make
the lgrp_cpus function return the list of CPUs that are directly contained
in the specified lgroup. This function returns the number of CPUs that
are in the specified lgroup when you call it in a scalar context. If the
lgrp_cpus function does not complete successfully when you call it in
a scalar context, it returns a value of undef and sets $! to indicate the
error. If the lgrp_cpus function does not complete successfully when you
call it in a list context, it returns the empty list and sets $! to indicate the
error. See the man page for the lgrp_cpus(3LGRP) function for more
information.

lgrp_children($cookie,

$lgrp)

This function takes a cookie that represents a snapshot of the lgroup
hierarchy and returns the list of lgroups that are children of the specified

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-view-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-home-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-cookie-stale-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-cpus-3lgrp

The Solaris::lgrp Module

Chapter 2 • MPO Observability Tools 23

lgroup. When called in scalar context, the lgrp_children function
returns the number of children lgroups for the specified lgroup when
you call it in a scalar context. If the lgrp_children function does not
complete successfully when you call it in a scalar context, it returns a
value of undef and sets $! to indicate the error. If the lgrp_children
function does not complete successfully when you call it in a list context,
it returns the empty list and sets $! to indicate the error. See the man page
for the lgrp_children(3LGRP) function for more information.

lgrp_parents($cookie,

$lgrp)

This function takes a cookie that represents a snapshot of the lgroup
hierarchy and returns the list of parent groups of the specified lgroup.
When called in scalar context, the lgrp_parents function returns the
number of parent lgroups for the specified lgroup when you call it
in a scalar context. If the lgrp_parents function does not complete
successfully when you call it in a scalar context, it returns a value of
undef and sets $! to indicate the error. If the lgrp_parents function does
not complete successfully when you call it in a list context, it returns
the empty list and sets $! to indicate the error. See the man page for the
lgrp_parents(3LGRP) function for more information.

lgrp_nlgrps($cookie) This function takes a cookie that represents a snapshot of the lgroup
hierarchy. It returns the number of lgroups in the hierarchy. This number
is always at least one. If the lgrp_nlgrps function does not complete
successfully, it returns a value of undef and sets the value of $! to
EINVAL to indicate that the cookie is invalid. See the man page for the
lgrp_nlgrps(3LGRP) function for more information.

lgrp_root($cookie) This function returns the ID of the root lgroup. If the lgrp_root function
does not complete successfully, it returns a value of undef and sets the
value of $! to EINVAL to indicate that the cookie is invalid. See the man
page for the lgrp_root(3LGRP) function for more information.

lgrp_mem_size($cookie,

$lgrp, $type,

$content)

This function takes a cookie that represents a snapshot of the lgroup
hierarchy. The function returns the memory size of the given lgroup in
bytes. Set the value of the $type argument to LGRP_MEM_SZ_FREE to have
the lgrp_mem_size function return the amount of free memory. Set the
value of the $type argument to LGRP_MEM_SZ_INSTALLED to have the
lgrp_mem_size function return the amount of installed memory. Set
the value of the $content argument to LGRP_CONTENT_HIERARCHY to
have the lgrp_mem_size function return results for the specified lgroup
and each of its child lgroups. Set the value of the $content argument
to LGRP_CONTENT_DIRECT to have the lgrp_mem_size function return
results for the specified lgroup only. This function returns the memory

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-children-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-parents-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-nlgrps-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-root-3lgrp

The Solaris::lgrp Module

24 Memory and Thread Placement Optimization Developer's Guide • July 2014

size in bytes upon successful completion, the size in bytes is returned. If
the lgrp_mem_size function does not complete successfully, it returns a
value of undef and sets $! to indicate the error. See the man page for the
lgrp_mem_size(3LGRP) function for more information.

lgrp_version([VERSION])This function takes an interface version number as the value of the
VERSION argument and returns an lgroup interface version. To discover
the current lgroup interface version, pass the value of LGRP_VER_CURRENT
or LGRP_VER_NONE in the VERSION argument. The lgrp_version function
returns the requested version if the system supports that version.
The lgrp_version function returns LGRP_VER_NONE if the system
does not supports the request version. The lgrp_version function
returns the current version of the library when you call the function
with LGRP_VER_NONE as the value of the VERSION argument. This code
fragment tests whether the version of the interface used by the caller is
supported:

lgrp_version(LGRP_VER_CURRENT) == LGRP_VER_CURRENT or

 die("Built with unsupported lgroup interface");

See the man page for the lgrp_version(3LGRP) function for more
information.

lgrp_affinity_set($idtype,

$id, $lgrp,

$affinity)

This function sets the affinity that the LWPs you specify with the
$idtype and $id arguments have for the given lgroup. You can set the
lgroup affinity to LGRP_AFF_STRONG, LGRP_AFF_WEAK, or LGRP_AFF_NONE.
When the value of the $idtype argument is P_PID, this function
sets the affinity for all the LWPs of the process with the process id
specified in the $id argument. The lgrp_affinity_set function sets
the affinity for the LWP of the current process with LWP id $id when
the value of the $idtype argument is P_LWPID. You can specify the
current LWP or process by assigning the $id argument a value of
P_MYID. This function returns 1 upon successful completion. If the
lgrp_affinity_set function does not complete successfully, it returns a
value of undef and sets $! to indicate the error. See the man page for the
lgrp_affinity_set(3LGRP) function for more information.

lgrp_affinity_get($idtype,

$id, $lgrp)

This function retrieves the affinity that the LWPs you specify with the
$idtype and $id arguments have for the given lgroup. When the value
of the $idtype argument is P_PID, this function retrieves the affinity
for one of the LWPs in the process. The lgrp_affinity_get function
retrieves the affinity for the LWP of the current process with LWP id $id
when the value of the $idtype argument is P_LWPID. You can specify
the current LWP or process by assigning the $id argument a value of
P_MYID. This function returns 1 upon successful completion. If the

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-mem-size-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-version-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-affinity-set-3lgrp

The Solaris::lgrp Module

Chapter 2 • MPO Observability Tools 25

lgrp_affinity_get function does not complete successfully, it returns a
value of undef and sets $! to indicate the error. See the man page for the
lgrp_affinity_get(3LGRP) function for more information.

lgrp_latency_cookie($cookie,

$from, $to,

[$between=LGRP_LAT_CPU_TO_MEM])

This function takes a cookie that represents a snapshot of the lgroup
hierarchy and returns the latency value between a hardware resource in
the $from lgroup to a hardware resource in the $to lgroup. This function
returns the latency value within a given lgroup when the values of the
$from and $to arguments are identical. Set the value of the optional
$between argument to LGRP_LAT_CPU_TO_MEM to specify the hardware
resources to measure the latency between. LGRP_LAT_CPU_TO_MEM
represents the latency from CPU to memory and is the only valid value
for this argument in this release. This function returns 1 upon successful
completion. If the lgrp_latency_cookie function does not complete
successfully, it returns a value of undef and sets $! to indicate the error.
See the man page for the lgrp_latency_cookie(3LGRP) function
for more information.

lgrp_latency($from,

$to)

The function is similar to the lgrp_latency_cookie function, but
returns the latency between the given lgroups at the given instant in
time. Because the system dynamically reallocates and frees lgroups, this
function's results are not always consistent across calls. This function is
deprecated. Use the lgrp_latency_cookie function instead. See the man
page for the lgrp_latency(3LGRP) function for more information.

lgrp_resources($cookie,

$lgrp, $type)

This function is only available for version 2 of the API. When you call
this function with version 1 of the API, the lgrp_resources function
returns undef or the empty list and sets the value of $! to EINVAL. This
function returns the list of lgroups that directly contain the specified type
of resources. The resources are represented by a set of lgroups in which
each lgroup directly contains CPU and/or memory resources. To specify
CPU resources, set the value of the $type argument to LGRP_RSRC_CPU.
To specify memory resources, set the value of the $type argument to
LGRP_RSRC_MEM. If the lgrp_resources function does not complete
successfully, it returns a value of undef or the empty list and sets $! to
indicate the error. See the man page for the lgrp_resources(3LGRP)
function for more information.

lgrp_lgrps($cookie,

[$lgrp])

This function returns the list of all of the lgroups in a hierarchy, starting
from the lgroup specified in the $lgrp argument. This function uses the
value returned by the lgrp_root($cookie) function when the $lgrp
argument has no value. The lgrp_lgrps function returns the empty list
on failure. This function returns the total number of lgroups in the system
when you call it in a scalar context.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-affinity-get-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-latency-cookie-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-latency-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-resources-3lgrp

The Solaris::lgrp Module

26 Memory and Thread Placement Optimization Developer's Guide • July 2014

lgrp_leaves($cookie,

[$lgrp])

This function returns the list of all leaf lgroups in a hierarchy that starts
from the lgroup specified in the $lgrp argument. This function uses the
value returned by the lgrp_root($cookie) function when the $lgrp
argument has no value. The lgrp_leaves function returns undef or
the empty list on failure. This function returns the total number of leaf
lgroups in the system when you call it in a scalar context.

lgrp_isleaf($cookie,

$lgrp)

This function returns True if the lgroup specified by the value of the
$lgrp argument is a leaf lgroup. Leaf lgroups have no children. The
lgrp_isleaf function returns False if the specified lgroup is not a leaf
lgroup.

Object Methods in the Solaris::lgrp Module

new([$view]) This method creates a new Sun::Solaris::Lgrp object. An optional
argument is passed to the lgrp_init function. This method uses a value
for the $view argument of LGRP_VIEW_OS by default.

cookie This function returns a transparent cookie that is passed to functions that
accept a cookie.

version([$version]) This method returns the current version of the liblgrp(3LIB)
library when you call it without an argument. This is a wrapper for the
lgrp_version function with LGRP_VER_NONE as the default value of the
$version argument.

stale This method returns T if the lgroup information in the object is stale. This
method returns F in all other cases. The stale method is a wrapper for
the lgrp_cookie_stale function.

view This method returns the snapshot's view of the lgroup hierarchy. The
view method is a wrapper for the lgrp_view function.

root This method returns the root lgroup. The root method is a wrapper for
the lgrp_root function.

children($lgrp) This method returns the list of lgroups that are children of the specified
lgroup. The children method is a wrapper for the lgrp_children
function.

parents($lgrp) This method returns the list of lgroups that are parents of the specified
lgroup. The parents method is a wrapper for the lgrp_parents function.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Fliblgrp-3lib

The Solaris::lgrp Module

Chapter 2 • MPO Observability Tools 27

nlgrps This method returns the number of lgroups in the hierarchy. The nlgrps
method is a wrapper for the lgrp_nlgrps function.

mem_size($lgrp,

$type, $content)

This method returns the memory size of the given lgroup in bytes. The
mem_size method is a wrapper for the lgrp_mem_size function.

cpus($lgrp,

$context)

This method returns the list of CPUs that are in the lgroup specified by
the $lgrp argument. The cpus method is a wrapper for the lgrp_cpus
function.

resources($lgrp,

$type)

This method returns the list of lgroups that directly contain resources
of the specified type. The resources method is a wrapper for the
lgrp_resources function.

home($idtype,

$id)

This method returns the home lgroup for the given process or thread. The
home method is a wrapper for the lgrp_home function.

affinity_get($idtype,

$id, $lgrp)

This method returns the affinity that the LWP has to a given lgroup. The
affinity_get method is a wrapper for the lgrp_affinity_get function.

affinity_set($idtype,

$id, $lgrp,

$affinity)

This method sets the affinities that the LWPs specified by the $idtype
and $id arguments have for the given lgroup. The affinity_set method
is a wrapper for the lgrp_affinity_set function.

lgrps([$lgrp]) This method returns the list of all of the lgroups in a hierarchy starting
from the lgroup specified by the value of the $lgrp argument. The
hierarchy starts from the root lgroup when you do not specify a value for
the $lgrp argument. The lgrps method is a wrapper for the lgrp_lgrps
function.

leaves([$lgrp]) This method returns the list of all of the leaf lgroups in a hierarchy
starting from the lgroup specified by the value of the $lgrp argument.
The hierarchy starts from the root lgroup when you do not specify a
value for the $lgrp argument. The leaves method is a wrapper for the
lgrp_leaves function.

isleaf($lgrp) This method returns True if the lgroup specified by the value of the
$lgrp argument is a leaf lgroup. A leaf lgroup has no children. This
method returns False in all other cases. The isleaf method is a wrapper
for the lgrp_isleaf function.

latency($from,

$to)

This method returns the latency value between a hardware resource in
the lgroup specified by the $from argument to a hardware resource in
the lgroup specified by the $to argument. The latency method uses the

The Solaris::lgrp Module

28 Memory and Thread Placement Optimization Developer's Guide • July 2014

lgrp_latency function in version 1 of liblgrp. The latency method uses
the lgrp_latency_cookie function in newer versions of liblgrp.

Chapter 3 • Locality Group APIs 29

 3 ♦ ♦ ♦ C H A P T E R 3

Locality Group APIs

This chapter describes the APIs that applications use to interact with locality groups.

This chapter discusses the following topics:

■ “Verifying the Interface Version” on page 29 describes the functions that give
information about the interface.

■ “Initializing the Locality Group Interface” on page 30 describes function calls that
initialize and shut down the portion of the interface that is used to traverse the locality
group hierarchy and to discover the contents of a locality group.

■ “Locality Group Hierarchy” on page 31 describes function calls that navigate the
locality group hierarchy and functions that get characteristics of the locality group
hierarchy.

■ “Locality Group Contents” on page 33 describes function calls that retrieve
information about a locality group's contents.

■ “Locality Group Characteristics” on page 35 describes function calls that retrieve
information about a locality group's characteristics.

■ “Locality Groups and Thread and Memory Placement” on page 36 describes how to
affect the locality group placement of a thread and its memory.

■ “Examples of API Usage” on page 42 contains code that performs example tasks by
using the APIs that are described in this chapter.

Verifying the Interface Version

The lgrp_version(3LGRP) function must be used to verify the presence of a supported
lgroup interface before using the lgroup API. The lgrp_version function has the following
syntax:

#include <sys/lgrp_user.h>

int lgrp_version(const int version);

The lgrp_version function takes a version number for the lgroup interface as an argument and
returns the lgroup interface version that the system supports. When the current implementation
of the lgroup API supports the version number in the version argument, the lgrp_version

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-version-3lgrp

Initializing the Locality Group Interface

30 Memory and Thread Placement Optimization Developer's Guide • July 2014

function returns that version number. Otherwise, the lgrp_version function returns
LGRP_VER_NONE.

EXAMPLE 3-1 Example of lgrp_version Use

#include <sys/lgrp_user.h>

if (lgrp_version(LGRP_VER_CURRENT) != LGRP_VER_CURRENT) {

 fprintf(stderr, "Built with unsupported lgroup interface %d\n",

 LGRP_VER_CURRENT);

 exit (1);

 }

Initializing the Locality Group Interface

Applications must call lgrp_init(3LGRP) in order to use the APIs for traversing the lgroup
hierarchy and to discover the contents of the lgroup hierarchy. The call to lgrp_init gives
the application a consistent snapshot of the lgroup hierarchy. The application developer can
specify whether the snapshot contains only the resources that are available to the calling
thread specifically or the resources that are available to the operating system in general. The
lgrp_init function returns a cookie that is used for the following tasks:

■ Navigating the lgroup hierarchy
■ Determining the contents of an lgroup
■ Determining whether the snapshot is current

Using lgrp_init
The lgrp_init function initializes the lgroup interface and takes a snapshot of the lgroup
hierarchy.

#include <sys/lgrp_user.h>

lgrp_cookie_t lgrp_init(lgrp_view_t view);

When the lgrp_init function is called with LGRP_VIEW_CALLER as the view, the function
returns a snapshot that contains only the resources that are available to the calling thread.
When the lgrp_init function is called with LGRP_VIEW_OS as the view, the function returns a
snapshot that contains the resources that are available to the operating system. When a thread
successfully calls the lgrp_init function, the function returns a cookie that is used by any
function that interacts with the lgroup hierarchy. When a thread no longer needs the cookie, call
the lgrp_fini function with the cookie as the argument.

The lgroup hierarchy consists of a root lgroup that contains all of the machine's CPU and
memory resources. The root lgroup might contain other locality groups bounded by smaller
latencies.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-init-3lgrp

Locality Group Hierarchy

Chapter 3 • Locality Group APIs 31

The lgrp_init function can return two errors. When a view is invalid, the function returns
EINVAL. When there is insufficient memory to allocate the snapshot of the lgroup hierarchy, the
function returns ENOMEM.

Using lgrp_fini

The lgrp_fini(3LGRP) function ends the usage of a given cookie and frees the
corresponding lgroup hierarchy snapshot.

#include <sys/lgrp_user.h>

int lgrp_fini(lgrp_cookie_t cookie);

The lgrp_fini function takes a cookie that represents an lgroup hierarchy snapshot created by
a previous call to lgrp_init. The lgrp_fini function frees the memory that is allocated to that
snapshot. After the call to lgrp_fini, the cookie is invalid. Do not use that cookie again.

When the cookie passed to the lgrp_fini function is invalid, lgrp_fini returns EINVAL.

Locality Group Hierarchy
The APIs that are described in this section enable the calling thread to navigate the lgroup
hierarchy. The lgroup hierarchy is a directed acyclic graph that is similar to a tree, except that
a node might have more than one parent. The root lgroup represents the whole machine and
contains all of that machine's resources. The root lgroup is the lgroup with the highest latency
value in the system. Each of the child lgroups contains a subset of the hardware that is in the
root lgroup. Each child lgroup is bounded by a lower latency value. Locality groups that are
closer to the root have more resources and a higher latency. Locality groups that are closer to
the leaves have fewer resources and a lower latency. An lgroup can contain resources directly
within its latency boundary. An lgroup can also contain leaf lgroups that contain their own sets
of resources. The resources of leaf lgroups are available to the lgroup that encapsulates those
leaf lgroups.

Using lgrp_cookie_stale

The lgrp_cookie_stale(3LGRP) function determines whether the snapshot of the lgroup
hierarchy represented by the given cookie is current.

#include <sys/lgrp_user.h>

int lgrp_cookie_stale(lgrp_cookie_t cookie);

The cookie returned by the lgrp_init function can become stale due to several reasons
that depend on the view that the snapshot represents. A cookie that is returned by calling

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-fini-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-cookie-stale-3lgrp

Locality Group Hierarchy

32 Memory and Thread Placement Optimization Developer's Guide • July 2014

the lgrp_init function with the view set to LGRP_VIEW_OS can become stale due to changes
in the lgroup hierarchy such as dynamic reconfiguration or a change in a CPU's online
status. A cookie that is returned by calling the lgrp_init function with the view set to
LGRP_VIEW_CALLER can become stale due to changes in the calling thread's processor set or
changes in the lgroup hierarchy. A stale cookie is refreshed by calling the lgrp_fini function
with the old cookie, followed by calling lgrp_init to generate a new cookie.

The lgrp_cookie_stale function returns EINVAL when the given cookie is invalid.

Using lgrp_view

The lgrp_view(3LGRP) function determines the view with which a given lgroup hierarchy
snapshot was taken.

#include <sys/lgrp_user.h>

lgrp_view_t lgrp_view(lgrp_cookie_t cookie);

The lgrp_view function takes a cookie that represents a snapshot of the lgroup hierarchy and
returns the snapshot's view of the lgroup hierarchy. Snapshots that are taken with the view
LGRP_VIEW_CALLER contain only the resources that are available to the calling thread. Snapshots
that are taken with the view LGRP_VIEW_OS contain all the resources that are available to the
operating system.

The lgrp_view function returns EINVAL when the given cookie is invalid.

Using lgrp_nlgrps

The lgrp_nlgrps(3LGRP) function returns the number of locality groups in the system. If a
system has only one locality group, memory placement optimizations have no effect.

#include <sys/lgrp_user.h>

int lgrp_nlgrps(lgrp_cookie_t cookie);

The lgrp_nlgrps function takes a cookie that represents a snapshot of the lgroup hierarchy and
returns the number of lgroups available in the hierarchy.

The lgrp_nlgrps function returns EINVAL when the cookie is invalid.

Using lgrp_root

The lgrp_root(3LGRP) function returns the root lgroup ID.

#include <sys/lgrp_user.h>

lgrp_id_t lgrp_root(lgrp_cookie_t cookie);

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-view-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-nlgrps-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-root-3lgrp

Locality Group Contents

Chapter 3 • Locality Group APIs 33

The lgrp_root function takes a cookie that represents a snapshot of the lgroup hierarchy and
returns the root lgroup ID.

Using lgrp_parents

The lgrp_parents(3LGRP) function takes a cookie that represents a snapshot of the lgroup
hierarchy and returns the number of parent lgroups for the specified lgroup.

#include <sys/lgrp_user.h>

int lgrp_parents(lgrp_cookie_t cookie, lgrp_id_t child,

 lgrp_id_t *lgrp_array, uint_t lgrp_array_size);

If lgrp_array is not NULL and the value of lgrp_array_size is not zero, the lgrp_parents
function fills the array with parent lgroup IDs until the array is full or all parent lgroup IDs are
in the array. The root lgroup has zero parents. When the lgrp_parents function is called for the
root lgroup, lgrp_array is not filled in.

The lgrp_parents function returns EINVAL when the cookie is invalid. The lgrp_parents
function returns ESRCH when the specified lgroup ID is not found.

Using lgrp_children

The lgrp_children(3LGRP) function takes a cookie that represents the calling thread's
snapshot of the lgroup hierarchy and returns the number of child lgroups for the specified
lgroup.

#include <sys/lgrp_user.h>

int lgrp_children(lgrp_cookie_t cookie, lgrp_id_t parent,

 lgrp_id_t *lgrp_array, uint_t lgrp_array_size);

If lgrp_array is not NULL and the value of lgrp_array_size is not zero, the lgrp_children
function fills the array with child lgroup IDs until the array is full or all child lgroup IDs are in
the array.

The lgrp_children function returns EINVAL when the cookie is invalid. The lgrp_children
function returns ESRCH when the specified lgroup ID is not found.

Locality Group Contents
The following APIs retrieve information about the contents of a given lgroup.

The lgroup hierarchy organizes the domain's resources to simplify the process of locating the
nearest resource. Leaf lgroups are defined with resources that have the least latency. Each of the

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-parents-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-children-3lgrp

Locality Group Contents

34 Memory and Thread Placement Optimization Developer's Guide • July 2014

successive ancestor lgroups of a given leaf lgroup contains the next nearest resources to its child
lgroup. The root lgroup contains all of the resources that are in the domain.

The resources of a given lgroup are contained directly within that lgroup or indirectly within the
leaf lgroups that the given lgroup encapsulates. Leaf lgroups directly contain their resources and
do not encapsulate any other lgroups.

Using lgrp_resources

The lgrp_resources function returns the number of resources contained in a specified lgroup.

#include <sys/lgrp_user.h>

int lgrp_resources(lgrp_cookie_t cookie, lgrp_id_t lgrp, lgrp_id_t *lgrpids,

 uint_t count, lgrp_rsrc_t type);

The lgrp_resources function takes a cookie that represents a snapshot of the lgroup hierarchy.
That cookie is obtained from the lgrp_init function. The lgrp_resources function returns
the number of resources that are in the lgroup with the ID that is specified by the value of the
lgrp argument. The lgrp_resources function represents the resources with a set of lgroups that
directly contain CPU or memory resources. The lgrp_rsrc_t argument can have the following
two values:

LGRP_RSRC_CPU The lgrp_resources function returns the number of CPU resources.

LGRP_RSRC_MEM The lgrp_resources function returns the number of memory resources.

When the value passed in the lgrpids[] argument is not null and the count argument is not
zero, the lgrp_resources function stores lgroup IDs in the lgrpids[] array. The number of
lgroup IDs stored in the array can be up to the value of the count argument.

The lgrp_resources function returns EINVAL when the specified cookie, lgroup ID, or type
are not valid. The lgrp_resources function returns ESRCH when the function does not find the
specified lgroup ID.

Using lgrp_cpus

The lgrp_cpus(3LGRP) function takes a cookie that represents a snapshot of the lgroup
hierarchy and returns the number of CPUs in a given lgroup.

#include <sys/lgrp_user.h>

int lgrp_cpus(lgrp_cookie_t cookie, lgrp_id_t lgrp, processorid_t *cpuids,

 uint_t count, int content);

If the cpuid[] argument is not NULL and the CPU count is not zero, the lgrp_cpus function fills
the array with CPU IDs until the array is full or all the CPU IDs are in the array.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-cpus-3lgrp

Locality Group Characteristics

Chapter 3 • Locality Group APIs 35

The content argument can have the following two values:

LGRP_CONTENT_ALL The lgrp_cpus function returns IDs for the CPUs in this lgroup and this
lgroup's descendants.

LGRP_CONTENT_DIRECT The lgrp_cpus function returns IDs for the CPUs in this lgroup only.

The lgrp_cpus function returns EINVAL when the cookie, lgroup ID, or one of the flags is not
valid. The lgrp_cpus function returns ESRCH when the specified lgroup ID is not found.

Using lgrp_mem_size

The lgrp_mem_size(3LGRP) function takes a cookie that represents a snapshot of the
lgroup hierarchy and returns the size of installed or free memory in the given lgroup. The
lgrp_mem_size function reports memory sizes in bytes.

#include <sys/lgrp_user.h>

lgrp_mem_size_t lgrp_mem_size(lgrp_cookie_t cookie, lgrp_id_t lgrp,

 int type, int content)

The type argument can have the following two values:

LGRP_MEM_SZ_FREE The lgrp_mem_size function returns the amount of free memory in bytes.

LGRP_MEM_SZ_INSTALLEDThe lgrp_mem_size function returns the amount of installed memory in
bytes.

The content argument can have the following two values:

LGRP_CONTENT_ALL The lgrp_mem_size function returns the amount of memory in this
lgroup and this lgroup's descendants.

LGRP_CONTENT_DIRECT The lgrp_mem_size function returns the amount of memory in this
lgroup only.

The lgrp_mem_size function returns EINVAL when the cookie, lgroup ID, or one of the flags
is not valid. The lgrp_mem_size function returns ESRCH when the specified lgroup ID is not
found.

Locality Group Characteristics

The following API retrieves information about the characteristics of a given lgroup.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-mem-size-3lgrp

Locality Groups and Thread and Memory Placement

36 Memory and Thread Placement Optimization Developer's Guide • July 2014

Using lgrp_latency_cookie

The lgrp_latency(3LGRP) function returns the latency between a CPU in one lgroup to the
memory in another lgroup.

#include <sys/lgrp_user.h>

int lgrp_latency_cookie(lgrp_cookie_t cookie, lgrp_id_t from, lgrp_id_t to.

 lat_between_t between);

The lgrp_latency_cookie function takes a cookie that represents a snapshot of the lgroup
hierarchy. The lgrp_init function creates this cookie. The lgrp_latency_cookie function
returns a value that represents the latency between a hardware resource in the lgroup given by
the value of the from argument and a hardware resource in the lgroup given by the value of the
to argument. If both arguments point to the same lgroup, the lgrp_latency_cookie function
returns the latency value within that lgroup.

Note - The latency value returned by the lgrp_latency_cookie function is defined by the
operating system and is platform-specific. This value does not necessarily represent the actual
latency between hardware devices. Use this value only for comparison within one domain.

When the value of the between argument is LGRP_LAT_CPU_TO_MEM, the lgrp_latency_cookie
function measures the latency from a CPU resource to a memory resource.

The lgrp_latency_cookie function returns EINVAL when the lgroup ID is not valid. When the
lgrp_latency_cookie function does not find the specified lgroup ID, the “from” lgroup does
not contain any CPUs, or the “to” lgroup does not have any memory, the lgrp_latency_cookie
function returns ESRCH.

Locality Groups and Thread and Memory Placement
This section discusses the APIs used to discover and affect thread and memory placement with
respect to lgroups.

■ The lgrp_home(3LGRP) function is used to discover thread placement.
■ The meminfo(2) system call is used to discover memory placement.
■ The MADV_ACCESS flags to the madvise(3C) function are used to affect memory allocation

among lgroups.
■ The lgrp_affinity_set(3LGRP) function can affect thread and memory placement

by setting a thread's affinity for a given lgroup.
■ The affinities of an lgroup may specify an order of preference for lgroups from which to

allocate resources.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-latency-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-home-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN2meminfo-2
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Amadvise-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-affinity-set-3lgrp

Locality Groups and Thread and Memory Placement

Chapter 3 • Locality Group APIs 37

■ The kernel needs information about the likely pattern of an application's memory use in
order to allocate memory resources efficiently.

■ The madvise function and its shared object analogue madv.so.1 provide this information
to the kernel.

■ A running process can gather memory usage information about itself by using the meminfo
system call.

Using lgrp_home

The lgrp_home function returns the home lgroup for the specified process or thread.

#include <sys/lgrp_user.h>

lgrp_id_t lgrp_home(idtype_t idtype, id_t id);

The lgrp_home function returns EINVAL when the ID type is not valid. The lgrp_home function
returns EPERM when the effective user of the calling process is not the superuser and the real or
effective user ID of the calling process does not match the real or effective user ID of one of
the threads. The lgrp_home function returns ESRCH when the specified process or thread is not
found.

Using madvise

The madvise function advises the kernel that a region of user virtual memory in the range
starting at the address specified in addr and with length equal to the value of the len parameter
is expected to follow a particular pattern of use. The kernel uses this information to optimize the
procedure for manipulating and maintaining the resources associated with the specified range.
Use of the madvise function can increase system performance when used by programs that have
specific knowledge of their access patterns over memory.

#include <sys/types.h>

#include <sys/mman.h>

int madvise(caddr_t addr, size_t len, int advice);

The madvise function provides the following flags to affect how a thread's memory is allocated
among lgroups:

MADV_ACCESS_DEFAULT This flag resets the kernel's expected access pattern for the specified
range to the default.

MADV_ACCESS_LWP This flag advises the kernel that the next LWP to touch the specified
address range is the LWP that will access that range the most. The kernel
allocates the memory and other resources for this range and the LWP
accordingly.

Locality Groups and Thread and Memory Placement

38 Memory and Thread Placement Optimization Developer's Guide • July 2014

MADV_ACCESS_MANY This flag advises the kernel that many processes or LWPs will access the
specified address range randomly across the system. The kernel allocates
the memory and other resources for this range accordingly.

The madvise function can return the following values:

EAGAIN Some or all of the mappings in the specified address range, from addr to
addr+len, are locked for I/O.

EINVAL The value of the addr parameter is not a multiple of the page size as
returned by sysconf(3C), the length of the specified address range is
less than or equal to zero, or the advice is invalid.

EIO An I/O error occurs while reading from or writing to the file system.

ENOMEM Addresses in the specified address range are outside the valid range for
the address space of a process or the addresses in the specified address
range specify one or more pages that are not mapped.

ESTALE The NFS file handle is stale.

Using meminfo

The meminfo function gives the calling process information about the virtual memory and
physical memory that the system has allocated to that process.

#include <sys/types.h>

#include <sys/mman.h>

int meminfo(const uint64_t inaddr[], int addr_count,

 const uint_t info_req[], int info_count, uint64_t outdata[],

 uint_t validity[]);

The meminfo function can return the following types of information:

MEMINFO_VPHYSICAL The physical memory address corresponding to the given virtual address

MEMINFO_VLGRP The lgroup to which the physical page corresponding to the given virtual
address belongs

MEMINFO_VPAGESIZE The size of the physical page corresponding to the given virtual address

MEMINFO_VREPLCNT The number of replicated physical pages that correspond to the given
virtual address

MEMINFO_VREPL|n The nth physical replica of the given virtual address

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Asysconf-3c

Locality Groups and Thread and Memory Placement

Chapter 3 • Locality Group APIs 39

MEMINFO_VREPL_LGRP|

n

The lgroup to which the nth physical replica of the given virtual address
belongs

MEMINFO_PLGRP The lgroup to which the given physical address belongs

The meminfo function takes the following parameters:

inaddr An array of input addresses.

addr_count The number of addresses that are passed to meminfo.

info_req An array that lists the types of information that are being requested.

info_count The number of pieces of information that are requested for each address
in the inaddr array.

outdata An array where the meminfo function places the results. The array's size
is equal to the product of the values of the info_req and addr_count
parameters.

validity An array of size equal to the value of the addr_count parameter. The
validity array contains bitwise result codes. The 0th bit of the result
code evaluates the validity of the corresponding input address. Each
successive bit in the result code evaluates the validity of the response to
the members of the info_req array in turn.

The meminfo function returns EFAULT when the area of memory to which the outdata or
validity arrays point cannot be written to. The meminfo function returns EFAULT when the area
of memory to which the info_req or inaddr arrays point cannot be read from. The meminfo
function returns EINVAL when the value of info_count exceeds 31 or is less than 1. The
meminfo function returns EINVAL when the value of addr_count is less than zero.

EXAMPLE 3-2 Use of meminfo to Print Out Physical Pages and Page Sizes Corresponding to a Set of
Virtual Addresses

void

print_info(void **addrvec, int how_many)

{

 static const int info[] = {

 MEMINFO_VPHYSICAL,

 MEMINFO_VPAGESIZE};

 uint64_t * inaddr = alloca(sizeof(uint64_t) * how_many);

 uint64_t * outdata = alloca(sizeof(uint64_t) * how_many * 2;

 uint_t * validity = alloca(sizeof(uint_t) * how_many);

 int i;

Locality Groups and Thread and Memory Placement

40 Memory and Thread Placement Optimization Developer's Guide • July 2014

 for (i = 0; i < how_many; i++)

 inaddr[i] = (uint64_t *)addr[i];

 if (meminfo(inaddr, how_many, info,

 sizeof (info)/ sizeof(info[0]),

 outdata, validity) < 0)

 ...

 for (i = 0; i < how_many; i++) {

 if (validity[i] & 1 == 0)

 printf("address 0x%llx not part of address

 space\n",

 inaddr[i]);

 else if (validity[i] & 2 == 0)

 printf("address 0x%llx has no physical page

 associated with it\n",

 inaddr[i]);

 else {

 char buff[80];

 if (validity[i] & 4 == 0)

 strcpy(buff, "<Unknown>");

 else

 sprintf(buff, "%lld", outdata[i * 2 +

 1]);

 printf("address 0x%llx is backed by physical

 page 0x%llx of size %s\n",

 inaddr[i], outdata[i * 2], buff);

 }

 }

}

Locality Group Affinity
The kernel assigns a thread to a locality group when the lightweight process (LWP) for that
thread is created. That lgroup is called the thread's home lgroup. The kernel runs the thread
on the CPUs in the thread's home lgroup and allocates memory from that lgroup whenever
possible. If resources from the home lgroup are unavailable, the kernel allocates resources
from other lgroups. When a thread has affinity for more than one lgroup, the operating system
allocates resources from lgroups chosen in order of affinity strength. Lgroups can have one of
three distinct affinity levels:

1. LGRP_AFF_STRONG indicates strong affinity. If this lgroup is the thread's home lgroup, the
operating system avoids rehoming the thread to another lgroup if possible. Events such as
dynamic reconfiguration, processor, offlining, processor binding, and processor set binding
and manipulation might still result in thread rehoming.

2. LGRP_AFF_WEAK indicates weak affinity. If this lgroup is the thread's home lgroup, the
operating system rehomes the thread if necessary for load balancing purposes.

3. LGRP_AFF_NONE indicates no affinity. If a thread has no affinity to any lgroup, the operating
system assigns a home lgroup to the thread .

Locality Groups and Thread and Memory Placement

Chapter 3 • Locality Group APIs 41

The operating system uses lgroup affinities as advice when allocating resources for a given
thread. The advice is factored in with the other system constraints. Processor binding and
processor sets do not change lgroup affinities, but might restrict the lgroups on which a thread
can run.

Using lgrp_affinity_get

The lgrp_affinity_get(3LGRP) function returns the affinity that a LWP has for a given
lgroup.

#include <sys/lgrp_user.h>

lgrp_affinity_t lgrp_affinity_get(idtype_t idtype, id_t id, lgrp_id_t lgrp);

The idtype and id arguments specify the LWP that the lgrp_affinity_get function examines.
If the value of idtype is P_PID, the lgrp_affinity_get function gets the lgroup affinity for
one of the LWPs in the process whose process ID matches the value of the id argument. If the
value of idtype is P_LWPID, the lgrp_affinity_get function gets the lgroup affinity for the
LWP of the current process whose LWP ID matches the value of the id argument. If the value
of idtype is P_MYID, the lgrp_affinity_get function gets the lgroup affinity for the current
LWP.

The lgrp_affinity_get function returns EINVAL when the given lgroup or ID type is not valid.
The lgrp_affinity_get function returns EPERM when the effective user of the calling process
is not the superuser and the ID of the calling process does not match the real or effective user
ID of one of the LWPs. The lgrp_affinity_get function returns ESRCH when a given lgroup or
LWP is not found.

Using lgrp_affinity_set

The lgrp_affinity_set(3LGRP) function sets the affinity that a LWP or set of LWPs have
for a given lgroup.

#include <sys/lgrp_user.h>

int lgrp_affinity_set(idtype_t idtype, id_t id, lgrp_id_t lgrp,

 lgrp_affinity_t affinity);

The idtype and id arguments specify the LWP or set of LWPs the lgrp_affinity_set
function examines. If the value of idtype is P_PID, the lgrp_affinity_set function sets the
lgroup affinity for all of the LWPs in the process whose process ID matches the value of the
id argument to the affinity level specified in the affinity argument. If the value of idtype is
P_LWPID, the lgrp_affinity_set function sets the lgroup affinity for the LWP of the current
process whose LWP ID matches the value of the id argument to the affinity level specified in
the affinity argument. If the value of idtype is P_MYID, the lgrp_affinity_set function sets
the lgroup affinity for the current LWP or process to the affinity level specified in the affinity
argument.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-affinity-get-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Elgrp-affinity-set-3lgrp

Examples of API Usage

42 Memory and Thread Placement Optimization Developer's Guide • July 2014

The lgrp_affinity_set function returns EINVAL when the given lgroup, affinity, or ID type
is not valid. The lgrp_affinity_set function returns EPERM when the effective user of the
calling process is not the superuser and the ID of the calling process does not match the real or
effective user ID of one of the LWPs. The lgrp_affinity_set function returns ESRCH when a
given lgroup or LWP is not found.

Examples of API Usage

This section contains code for example tasks that use the APIs that are described in this chapter.

EXAMPLE 3-3 Move Memory to a Thread

The following code sample moves the memory in the address range between addr and
addr+len near the next thread to touch that range.

#include <stdio.h>

#include <sys/mman.h>

#include <sys/types.h>

/*

 * Move memory to thread

 */

void

mem_to_thread(caddr_t addr, size_t len)

{

 if (madvise(addr, len, MADV_ACCESS_LWP) < 0)

 perror("madvise");

}

EXAMPLE 3-4 Move a Thread to Memory

This sample code uses the meminfo function to determine the lgroup of the physical memory
backing the virtual page at the given address. The sample code then sets a strong affinity for
that lgroup in an attempt to move the current thread near that memory.

#include <stdio.h>

#include <sys/lgrp_user.h>

#include <sys/mman.h>

#include <sys/types.h>

/*

 * Move a thread to memory

 */

int

thread_to_memory(caddr_t va)

{

Examples of API Usage

Chapter 3 • Locality Group APIs 43

 uint64_t addr;

 ulong_t count;

 lgrp_id_t home;

 uint64_t lgrp;

 uint_t request;

 uint_t valid;

 addr = (uint64_t)va;

 count = 1;

 request = MEMINFO_VLGRP;

 if (meminfo(&addr, 1, &request, 1, &lgrp, &valid) != 0) {

 perror("meminfo");

 return (1);

 }

 if (lgrp_affinity_set(P_LWPID, P_MYID, lgrp, LGRP_AFF_STRONG) != 0) {

 perror("lgrp_affinity_set");

 return (2);

 }

 home = lgrp_home(P_LWPID, P_MYID);

 if (home == -1) {

 perror ("lgrp_home");

 return (3);

 }

 if (home != lgrp)

 return (-1);

 return (0);

}

EXAMPLE 3-5 Walk the lgroup Hierarchy

The following sample code walks through and prints out the lgroup hierarchy.

#include <stdio.h>

#include <stdlib.h>

#include <sys/lgrp_user.h>

#include <sys/types.h>

/*

 * Walk and print lgroup hierarchy from given lgroup

 * through all its descendants

 */

int

lgrp_walk(lgrp_cookie_t cookie, lgrp_id_t lgrp, lgrp_content_t content)

{

 lgrp_affinity_t aff;

 lgrp_id_t *children;

 processorid_t *cpuids;

 int i;

 int ncpus;

 int nchildren;

 int nparents;

Examples of API Usage

44 Memory and Thread Placement Optimization Developer's Guide • July 2014

 lgrp_id_t *parents;

 lgrp_mem_size_t size;

 /*

 * Print given lgroup, caller's affinity for lgroup,

 * and desired content specified

 */

 printf("LGROUP #%d:\n", lgrp);

 aff = lgrp_affinity_get(P_LWPID, P_MYID, lgrp);

 if (aff == -1)

 perror ("lgrp_affinity_get");

 printf("\tAFFINITY: %d\n", aff);

 printf("CONTENT %d:\n", content);

 /*

 * Get CPUs

 */

 ncpus = lgrp_cpus(cookie, lgrp, NULL, 0, content);

 printf("\t%d CPUS: ", ncpus);

 if (ncpus == -1) {

 perror("lgrp_cpus");

 return (-1);

 } else if (ncpus > 0) {

 cpuids = malloc(ncpus * sizeof (processorid_t));

 ncpus = lgrp_cpus(cookie, lgrp, cpuids, ncpus, content);

 if (ncpus == -1) {

 free(cpuids);

 perror("lgrp_cpus");

 return (-1);

 }

 for (i = 0; i < ncpus; i++)

 printf("%d ", cpuids[i]);

 free(cpuids);

 }

 printf("\n");

 /*

 * Get memory size

 */

 printf("\tMEMORY: ");

 size = lgrp_mem_size(cookie, lgrp, LGRP_MEM_SZ_INSTALLED, content);

 if (size == -1) {

 perror("lgrp_mem_size");

 return (-1);

 }

 printf("installed bytes 0x%llx, ", size);

 size = lgrp_mem_size(cookie, lgrp, LGRP_MEM_SZ_FREE, content);

 if (size == -1) {

 perror("lgrp_mem_size");

 return (-1);

 }

 printf("free bytes 0x%llx\n", size);

 /*

 * Get parents

 */

Examples of API Usage

Chapter 3 • Locality Group APIs 45

 nparents = lgrp_parents(cookie, lgrp, NULL, 0);

 printf("\t%d PARENTS: ", nparents);

 if (nparents == -1) {

 perror("lgrp_parents");

 return (-1);

 } else if (nparents > 0) {

 parents = malloc(nparents * sizeof (lgrp_id_t));

 nparents = lgrp_parents(cookie, lgrp, parents, nparents);

 if (nparents == -1) {

 free(parents);

 perror("lgrp_parents");

 return (-1);

 }

 for (i = 0; i < nparents; i++)

 printf("%d ", parents[i]);

 free(parents);

 }

 printf("\n");

 /*

 * Get children

 */

 nchildren = lgrp_children(cookie, lgrp, NULL, 0);

 printf("\t%d CHILDREN: ", nchildren);

 if (nchildren == -1) {

 perror("lgrp_children");

 return (-1);

 } else if (nchildren > 0) {

 children = malloc(nchildren * sizeof (lgrp_id_t));

 nchildren = lgrp_children(cookie, lgrp, children, nchildren);

 if (nchildren == -1) {

 free(children);

 perror("lgrp_children");

 return (-1);

 }

 printf("Children: ");

 for (i = 0; i < nchildren; i++)

 printf("%d ", children[i]);

 printf("\n");

 for (i = 0; i < nchildren; i++)

 lgrp_walk(cookie, children[i], content);

 free(children);

 }

 printf("\n");

 return (0);

}

EXAMPLE 3-6 Find the Closest lgroup With Available Memory Outside a Given lgroup

#include <stdio.h>

#include <stdlib.h>

#include <sys/lgrp_user.h>

#include <sys/types.h>

Examples of API Usage

46 Memory and Thread Placement Optimization Developer's Guide • July 2014

#define INT_MAX 2147483647

/*

 * Find next closest lgroup outside given one with available memory

 */

lgrp_id_t

lgrp_next_nearest(lgrp_cookie_t cookie, lgrp_id_t from)

{

 lgrp_id_t closest;

 int i;

 int latency;

 int lowest;

 int nparents;

 lgrp_id_t *parents;

 lgrp_mem_size_t size;

 /*

 * Get number of parents

 */

 nparents = lgrp_parents(cookie, from, NULL, 0);

 if (nparents == -1) {

 perror("lgrp_parents");

 return (LGRP_NONE);

 }

 /*

 * No parents, so current lgroup is next nearest

 */

 if (nparents == 0) {

 return (from);

 }

 /*

 * Get parents

 */

 parents = malloc(nparents * sizeof (lgrp_id_t));

 nparents = lgrp_parents(cookie, from, parents, nparents);

 if (nparents == -1) {

 perror("lgrp_parents");

 free(parents);

 return (LGRP_NONE);

 }

 /*

 * Find closest parent (ie. the one with lowest latency)

 */

 closest = LGRP_NONE;

 lowest = INT_MAX;

 for (i = 0; i < nparents; i++) {

 lgrp_id_t lgrp;

 /*

 * See whether parent has any free memory

 */

Examples of API Usage

Chapter 3 • Locality Group APIs 47

 size = lgrp_mem_size(cookie, parents[i], LGRP_MEM_SZ_FREE,

 LGRP_CONTENT_ALL);

 if (size > 0)

 lgrp = parents[i];

 else {

 if (size == -1)

 perror("lgrp_mem_size");

 /*

 * Find nearest ancestor if parent doesn't

 * have any memory

 */

 lgrp = lgrp_next_nearest(cookie, parents[i]);

 if (lgrp == LGRP_NONE)

 continue;

 }

 /*

 * Get latency within parent lgroup

 */

 latency = lgrp_latency_cookie(lgrp, lgrp);

 if (latency == -1) {

 perror("lgrp_latency_cookie");

 continue;

 }

 /*

 * Remember lgroup with lowest latency

 */

 if (latency < lowest) {

 closest = lgrp;

 lowest = latency;

 }

 }

 free(parents);

 return (closest);

}

/*

 * Find lgroup with memory nearest home lgroup of current thread

 */

lgrp_id_t

lgrp_nearest(lgrp_cookie_t cookie)

{

 lgrp_id_t home;

 longlong_t size;

 /*

 * Get home lgroup

 */

 home = lgrp_home(P_LWPID, P_MYID);

 /*

 * See whether home lgroup has any memory available in its hierarchy

 */

 size = lgrp_mem_size(cookie, home, LGRP_MEM_SZ_FREE,

Examples of API Usage

48 Memory and Thread Placement Optimization Developer's Guide • July 2014

 LGRP_CONTENT_ALL);

 if (size == -1)

 perror("lgrp_mem_size");

 /*

 * It does, so return the home lgroup.

 */

 if (size > 0)

 return (home);

 /*

 * Otherwise, find next nearest lgroup outside of the home.

 */

 return (lgrp_next_nearest(cookie, home));

}

EXAMPLE 3-7 Find Nearest lgroup With Free Memory

This example code finds the nearest lgroup with free memory to a given thread's home lgroup.

lgrp_id_t

lgrp_nearest(lgrp_cookie_t cookie)

{

 lgrp_id_t home;

 longlong_t size;

 /*

 * Get home lgroup

 */

 home = lgrp_home();

 /*

 * See whether home lgroup has any memory available in its hierarchy

 */

 if (lgrp_mem_size(cookie, lgrp, LGRP_MEM_SZ_FREE,

 LGRP_CONTENT_ALL, &size) == -1)

 perror("lgrp_mem_size");

 /*

 * It does, so return the home lgroup.

 */

 if (size > 0)

 return (home);

 /*

 * Otherwise, find next nearest lgroup outside of the home.

 */

 return (lgrp_next_nearest(cookie, home));

}

	Memory and Thread Placement Optimization Developer's Guide
	Contents
	Using This Documentation
	Product Documentation Library
	Access to Oracle Support
	Feedback

	Chapter 1 • Overview of Locality Groups
	Locality Groups Overview
	MPO Observability Tools

	Chapter 2 • MPO Observability Tools
	The pmadvise utility
	Using the madv.so.1 Shared Object
	madv.so.1 Usage Examples

	The plgrp tool
	Specifying Lgroups
	Specifying Process and Thread Arguments

	The lgrpinfo Tool
	Options for the lgrpinfo Tool

	The Solaris::lgrp Module
	Functions in the Solaris::lgrp Module
	Object Methods in the Solaris::lgrp Module

	Chapter 3 • Locality Group APIs
	Verifying the Interface Version
	Initializing the Locality Group Interface
	Using lgrp_init
	Using lgrp_fini

	Locality Group Hierarchy
	Using lgrp_cookie_stale
	Using lgrp_view
	Using lgrp_nlgrps
	Using lgrp_root
	Using lgrp_parents
	Using lgrp_children

	Locality Group Contents
	Using lgrp_resources
	Using lgrp_cpus
	Using lgrp_mem_size

	Locality Group Characteristics
	Using lgrp_latency_cookie

	Locality Groups and Thread and Memory Placement
	Using lgrp_home
	Using madvise
	Using meminfo
	Locality Group Affinity
	Using lgrp_affinity_get
	Using lgrp_affinity_set

	Examples of API Usage

