
Part No: E37124-02
September 2014

Managing Encryption and Certificates in
Oracle® Solaris 11.2

Copyright © 2002, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws.
Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute,
exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take
all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use
of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates
are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Copyright © 2002, 2014, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d’utilisation
et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter, transmettre, distribuer,
exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute
ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes d’erreurs et
vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de ce logiciel ou l’utilise
pour le compte du Gouvernement des Etats-Unis, la notice suivante s’applique:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S.Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est destiné
à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel dans le cadre
d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation
dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l’utilisation de ce logiciel ou matériel
pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d’autres
propriétaires qu’Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro Devices. UNIX
est une marque déposée d’The Open Group.

Ce logiciel ou matériel et la documentation qui l’accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant
de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En aucun cas, Oracle
Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l’accès à des contenus, produits ou
services tiers, ou à leur utilisation.

3

Contents

Using This Documentation .. 5

1 Cryptographic Framework ... 7
What's New in Cryptography for Oracle Solaris 11.2 ... 7
Introduction to the Cryptographic Framework ... 7
Concepts in the Cryptographic Framework ... 9
Cryptographic Framework Commands and Plugins .. 11

Administrative Commands in the Cryptographic Framework 11
User-Level Commands in the Cryptographic Framework 12
Plugins to the Cryptographic Framework .. 12

Cryptographic Services and Zones .. 13
Cryptographic Framework and FIPS 140 .. 13
OpenSSL Support in Oracle Solaris .. 14

▼ How to Switch to the FIPS 140-Capable OpenSSL Implementation 14

2 About SPARC T-Series Systems and the Cryptographic Framework 17
Cryptographic Framework and SPARC T-Series Servers 17

Cryptographic Optimizations in SPARC T-4 Systems 17

3 Cryptographic Framework ... 21
Protecting Files With the Cryptographic Framework ... 21

▼ How to Generate a Symmetric Key by Using the pktool Command 22
▼ How to Compute a Digest of a File .. 27
▼ How to Compute a MAC of a File ... 29
▼ How to Encrypt and Decrypt a File .. 31

Administering the Cryptographic Framework .. 33
Listing Available Providers .. 35
Adding a Software Provider ... 40
Create a Boot Environment with FIPS 140 Enabled 42
Preventing the Use of Mechanisms ... 44

Contents

4 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

Refreshing or Restarting All Cryptographic Services 50

4 Key Management Framework .. 53
Managing Public Key Technologies .. 53
Key Management Framework Utilities ... 54

KMF Policy Management .. 54
KMF Plugin Management ... 54
KMF Keystore Management .. 55

Using the Key Management Framework .. 55
▼ How to Create a Certificate by Using the pktool gencert Command 56
▼ How to Import a Certificate Into Your Keystore 58
▼ How to Export a Certificate and Private Key in PKCS #12 Format 59
▼ How to Generate a Passphrase by Using the pktool setpin Command 61
▼ How to Generate a Key Pair by Using the pktool genkeypair
Command ... 62
▼ How to Sign a Certificate Request by Using the pktool signcsr
Command ... 66
▼ How to Manage Third-Party Plugins in KMF ... 68

Glossary ... 71

Index .. 85

Using This Documentation 5

Using This Documentation

Centrally Managing Encryption and Certificates in Oracle® Solaris 11.2 explains how to
administer and use encryption, and how to create and manage private/public key certificates.

■ Overview – Describes concepts revolving around the Cryptographic Framework and Key
Management Framework and tasks for using these technologies to secure files.

■ Audience – System administrators who must implement security on the enterprise.
■ Required knowledge – Familiarity with security concepts and terminology.

Product Documentation Library

Late-breaking information and known issues for this product are included in the documentation
library at http://www.oracle.com/pls/topic/lookup?ctx=E36784.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://
www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

http://www.oracle.com/pls/topic/lookup?ctx=E36784
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/goto/docfeedback

6 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

Chapter 1 • Cryptographic Framework 7

 1 ♦ ♦ ♦ C H A P T E R 1

Cryptographic Framework

This chapter describes the Cryptographic Framework feature of Oracle Solaris, and covers the
following topics:

■ “Introduction to the Cryptographic Framework” on page 7
■ “Concepts in the Cryptographic Framework” on page 9
■ “Cryptographic Framework Commands and Plugins” on page 11
■ “Cryptographic Services and Zones” on page 13
■ “Cryptographic Framework and FIPS 140” on page 13
■ “OpenSSL Support in Oracle Solaris” on page 14

To administer and use the Cryptographic Framework, see Chapter 3, “Cryptographic
Framework”.

What's New in Cryptography for Oracle Solaris 11.2

This section highlights information for existing customers about new features in encryption
support in this release.

■ Oracle Solaris supports both FIPS-capable and non FIPS-capable versions of OpenSSL.
■ On SPARC T4 systems with cryptographic optimizations, cryptographic instructions are

available directly in hardware, which enables cryptographic operations to run faster.
■ The Cryptographic Framework supports Camellia, a 128-bit block cipher that is similar to

AES and is mostly used in the Japanese market.

Introduction to the Cryptographic Framework

The Cryptographic Framework provides a common store of algorithms and PKCS #11 libraries
to handle cryptographic requirements. The PKCS #11 libraries are implemented according to
the RSA Security Inc. PKCS #11 Cryptographic Token Interface (Cryptoki) standard.

Introduction to the Cryptographic Framework

8 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

FIGURE 1-1 Cryptographic Framework Levels

At the kernel level, the framework currently handles cryptographic requirements for ZFS,
Kerberos and IPsec, as well as hardware. User-level consumers include the OpenSSL engine,
Java Cryptographic Extensions (JCE), libsasl, and IKE (Internet Key Protocol). The kernel
SSL (kssl) proxy uses the Cryptographic Framework. For more information, see “SSL Kernel
Proxy Encrypts Web Server Communications” in “Securing the Network in Oracle Solaris 11.2
” and the ksslcfg(1M) man page.

Export law in the United States requires that the use of open cryptographic interfaces be
licensed. The Cryptographic Framework satisfies the current law by requiring that kernel
cryptographic providers and PKCS #11 cryptographic providers be signed. For further
discussion, see the information about the elfsign command in “User-Level Commands in the
Cryptographic Framework” on page 12.
The framework enables providers of cryptographic services to have their services used by many
consumers in Oracle Solaris. Another name for providers is plugins. The framework supports
three types of plugins:

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=NWSECwebk-2
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=NWSECwebk-2
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=NWSECwebk-2
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mksslcfg-1m

Concepts in the Cryptographic Framework

Chapter 1 • Cryptographic Framework 9

■ User-level plugins – Shared objects that provide services by using PKCS #11 libraries,
such as /var/user/$USER/pkcs11_softtoken.so.1.

■ Kernel-level plugins – Kernel modules that provide implementations of cryptographic
algorithms in software, such as AES.
Many of the algorithms in the framework are optimized for x86 with the SSE2 instruction
set and for SPARC hardware. For T-Series optimizations, see “Cryptographic Framework
and SPARC T-Series Servers” on page 17.

■ Hardware plugins – Device drivers and their associated hardware accelerators. The
Niagara chips and Oracle's ncp and n2cp device drivers are one example. A hardware
accelerator offloads expensive cryptographic functions from the operating system. Sun
Crypto Accelerator 6000 board is one example.

The framework implements a standard interface, the PKCS #11, v2.20 amendment 3 library,
for user-level providers. The library can be used by third-party applications to reach providers.
Third parties can also add signed libraries, signed kernel algorithm modules, and signed device
drivers to the framework. These plugins are added when the Image Packaging System (IPS)
installs the third-party software. For a diagram of the major components of the framework, see
Figure 1-1.

Concepts in the Cryptographic Framework
Note the following descriptions of concepts and corresponding examples that are useful when
working with the Cryptographic Framework.

■ Algorithms – Cryptographic algorithms are established, recursive computational
procedures that encrypt or hash input. Encryption algorithms can be symmetric or
asymmetric. Symmetric algorithms use the same key for encryption and decryption.
Asymmetric algorithms, which are used in public-key cryptography, require two keys.
Hashing functions are also algorithms.
Examples of algorithms include:
■ Symmetric algorithms, such as AES and ECC
■ Asymmetric algorithms, such as Diffie-Hellman and RSA
■ Hashing functions, such as SHA256

■ Consumers – Users of the cryptographic services that come from providers. Consumers
can be applications, end users, or kernel operations.
Examples of consumers include:
■ Applications, such as IKE
■ End users, such as a regular user who runs the encrypt command
■ Kernel operations, such as IPsec

■ Keystore – In the Cryptographic Framework, persistent storage for token objects, often
used interchangeably with token. For information about a reserved keystore, see Metaslot
in this list of definitions.

Concepts in the Cryptographic Framework

10 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

■ Mechanism – The Application of a mode of an algorithm for a particular purpose.
For example, a DES mechanism that is applied to authentication, such as
CKM_DES_MAC, is a separate mechanism from a DES mechanism that is applied to
encryption, CKM_DES_CBC_PAD.

■ Metaslot – A single slot that presents a union of the capabilities of other slots which are
loaded in the framework. The metaslot eases the work of dealing with all of the capabilities
of the providers that are available through the framework. When an application that uses
the metaslot requests an operation, the metaslot determines which actual slot will perform
the operation. Metaslot capabilities are configurable, but configuration is not required. The
metaslot is on by default. For more information, see the cryptoadm(1M) man page.

The metaslot does not have its own keystore. Rather, the metaslot reserves the use of a
keystore from one of the actual slots in the Cryptographic Framework. By default, the
metaslot reserves the Sun Crypto Softtoken keystore. The keystore that is used by the
metaslot is not shown as one of the available slots.
Users can specify an alternate keystore for metaslot by setting the environment variables
${METASLOT_OBJECTSTORE_SLOT} and ${METASLOT_OBJECTSTORE_TOKEN}, or by
running the cryptoadm command. For more information, see the libpkcs11(3LIB),
pkcs11_softtoken(5), and cryptoadm(1M) man pages.

■ Mode – A version of a cryptographic algorithm. For example, CBC (Cipher Block
Chaining) is a different mode from ECB (Electronic Code Book). The AES algorithm has
two modes: CKM_AES_ECB and CKM_AES_CBC.

■ Policy – The choice, by an administrator, of which mechanisms to make available for
use. By default, all providers and all mechanisms are available for use. The enabling or
disabling of any mechanism would be an application of policy. For examples of setting and
applying policy, see “Administering the Cryptographic Framework” on page 33.

■ Providers – Cryptographic services that consumers use. Providers plug in to the
framework, so are also called plugins.
Examples of providers include:
■ PKCS #11 libraries, such as /var/user/$USER/pkcs11_softtoken.so
■ Modules of cryptographic algorithms, such as aes and arcfour
■ Device drivers and their associated hardware accelerators, such as the mca driver for

the Sun Crypto Accelerator 6000
■ Slot – An interface to one or more cryptographic devices. Each slot, which corresponds

to a physical reader or other device interface, might contain a token. A token provides a
logical view of a cryptographic device in the framework.

■ Token – In a slot, a token provides a logical view of a cryptographic device in the
framework.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mcryptoadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Flibpkcs11-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN5pkcs11-softtoken-5
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mcryptoadm-1m

Cryptographic Framework Commands and Plugins

Chapter 1 • Cryptographic Framework 11

Cryptographic Framework Commands and Plugins

The framework provides commands for administrators, for users, and for developers who
supply providers.

■ Administrative commands – The cryptoadm command provides a list subcommand to
list the available providers and their capabilities. Regular users can run the cryptoadm
list and the cryptoadm --help commands.

All other cryptoadm subcommands require you to assume a role that includes the Crypto
Management rights profile, or to become superuser. Subcommands such as disable,
install, and uninstall are available for administering the framework. For more
information, see the cryptoadm(1M) man page.

The svcadm command is used to manage the kcfd daemon and to refresh cryptographic
policy in the kernel. For more information, see the svcadm(1M) man page.

■ User-level commands – The digest and mac commands provide file integrity services.
The encrypt and decrypt commands protect files from eavesdropping. To use these
commands, see Table 3-1.

Administrative Commands in the Cryptographic
Framework

The cryptoadm command administers a running Cryptographic Framework. The command is
part of the Crypto Management rights profile. This profile can be assigned to a role for secure
administration of the Cryptographic Framework. You use the cryptoadm command to do the
following:

■ Disable or enable provider mechanisms
■ Disable or enable the metaslot

The svcadm command is used to enable, refresh, and disable the cryptographic services daemon,
kcfd. This command is part of the Service Management Facility (SMF) feature of Oracle
Solaris. svc:/system/cryptosvcs is the service instance for the Cryptographic Framework. For
more information, see the smf(5) and svcadm(1M) man pages.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mcryptoadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Msvcadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN5smf-5
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Msvcadm-1m

Cryptographic Framework Commands and Plugins

12 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

User-Level Commands in the Cryptographic
Framework

The Cryptographic Framework provides user-level commands to check the integrity of files, to
encrypt files, and to decrypt files.

■ digest command – Computes a message digest for one or more files or for stdin. A
digest is useful for verifying the integrity of a file. SHA1 and MD5 are examples of digest
functions.

■ mac command – Computes a message authentication code (MAC) for one or more files
or for stdin. A MAC associates data with an authenticated message. A MAC enables a
receiver to verify that the message came from the sender and that the message has not been
tampered with. The sha1_mac and md5_hmac mechanisms can compute a MAC.

■ encrypt command – Encrypts files or stdin with a symmetric cipher. The encrypt -l
command lists the algorithms that are available. Mechanisms that are listed under a user-
level library are available to the encrypt command. The framework provides AES, DES,
3DES (Triple-DES), and ARCFOUR mechanisms for user encryption.

■ decrypt command – Decrypts files or stdin that were encrypted with the encrypt
command. The decrypt command uses the identical key and mechanism that were used to
encrypt the original file.

■ elfsign command – Provides a means to sign providers to be used with the Cryptographic
Framework. Typically, this command is run by the developer of a provider. The elfsign
command has subcommands to request a certificate, sign binaries, and verify the signature
on a binary. Unsigned binaries cannot be used by the Cryptographic Framework. Providers
that have verifiable signed binaries can use the framework.

Plugins to the Cryptographic Framework

Third parties can plug their providers into the Cryptographic Framework. A third-party provider
can be one of the following objects:

■ PKCS #11 shared library
■ Loadable kernel software module, such as an encryption algorithm, MAC function, or

digest function
■ Kernel device driver for a hardware accelerator

The objects from a provider must be signed with a certificate from Oracle. The certificate
request is based on a private key that the third party selects, and a certificate that Oracle
provides. The certificate request is sent to Oracle, which registers the third party and then issues
the certificate. The third party then signs its provider object with the certificate from Oracle.

Cryptographic Services and Zones

Chapter 1 • Cryptographic Framework 13

The loadable kernel software modules and the kernel device drivers for hardware accelerators
must also register with the kernel. Registration is through the Cryptographic Framework SPI
(service provider interface).

Cryptographic Services and Zones

The global zone and each non-global zone has its own /system/cryptosvc service. When the
cryptographic service is enabled or refreshed in the global zone, the kcfd daemon starts in the
global zone, user-level policy for the global zone is set, and kernel policy for the system is set.
When the service is enabled or refreshed in a non-global zone, the kcfd daemon starts in the
zone, and user-level policy for the zone is set. Kernel policy was set by the global zone.

For more information about zones, see “Introduction to Oracle Solaris Zones ”. For more
information about using SMF to manage persistent applications, see Chapter 1, “Introduction to
the Service Management Facility,” in “Managing System Services in Oracle Solaris 11.2 ” and
the smf(5) man page.

Cryptographic Framework and FIPS 140

FIPS 140 is a U.S. Government computer security standard for cryptography modules. Oracle
Solaris systems offer two providers of cryptographic algorithms that are approved for FIPS
140-2 Level 1.
Those providers are:

■ The Cryptographic Framework of Oracle Solaris provides two FIPS 140-approved
modules. The userland module supplies cryptography for applications that run in user
space. The kernel module provides cryptography for kernel-level processes.

■ The OpenSSL object module provides FIPS 140-approved cryptography for SSH and web
applications.

Note the following key considerations:

■ Because FIPS 140-2 provider modules are CPU intensive, they are not enabled by default.
As the system administrator, you are responsible for enabling the providers in FIPS 140
mode and configuring applications that use the FIPS-approved algorithms.

■ If you have a strict requirement to use only FIPS 140-2 validated cryptography, you must
be running the Oracle Solaris11.1 SRU5.5 release or the Oracle Solaris11.1 SRU3 release.
Oracle completed a FIPS 140-2 validation against the Solaris Cryptographic Framework
in these two specific releases. Oracle Solaris11.2 builds on this validated foundation and
includes software improvements that address performance, functionality, and reliability.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=VLZON
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=SVSVFgmteb
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=SVSVFgmteb
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN5smf-5

OpenSSL Support in Oracle Solaris

14 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

Whenever possible, you should configure Oracle Solaris11.2 in FIPS 140-2 mode to take
advantage of these improvements.

For information, see “Using a FIPS 140 Enabled System in Oracle Solaris 11.2 ”. This article
covers the following topics:

■ Overview of FIPS 140-2 Level 1 cryptography in Oracle Solaris
■ Enabling FIPS 140 providers
■ Enabling FIPS 140 consumers
■ Example of enabling two applications in FIPS 140 mode
■ FIPS 140-approved algorithms and certificate references

The following additional information is available:

■ “How to Switch to the FIPS 140-Capable OpenSSL Implementation” on page 14
■ “Create a Boot Environment with FIPS 140 Enabled ” on page 42

OpenSSL Support in Oracle Solaris

Oracle Solaris supports two implementations of OpenSSL:

■ FIPS 140 capable OpenSSL
■ Non FIPS 140 capable OpenSSL

Both implementations have been upgraded to be compatible with the latest OpenSSL version
from the OpenSSL project, which is OpenSSL 1.0.1. With regards to the versions libraries, both
are API/ABI compatible.

While both implementations are present in the OS, only one implementation can be active
at a time. To determine which OpenSSL implementation is active on the system, use the pkg
mediator openssl command.

How to Switch to the FIPS 140-Capable OpenSSL
Implementation

By default, the non FIPS 140-capable OpenSSL implementation is active in Oracle Solaris.
However, you can choose the security for your system and select implementation that you want.

1. Become an administrator.

2. Ensure that both implementations are on the system.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIP

How to Switch to the FIPS 140-Capable OpenSSL Implementation

Chapter 1 • Cryptographic Framework 15

$ pkg mediator -a openssl

Caution - The OpenSSL implementation to which you are switching must exist in the system.
Otherwise, if you switch to an implementation that is not in the system, the system might
become unusable.

3. Switch to a different OpenSSL implementation.

pkg set-mediator [--be-name name] -I implementation openssl

where implementation is either default or fips-140 and name is a name for a new clone of the
current boot environment. The clone will have the specified implementation active.

Note - When --be-name is specified, the command creates a backup of the current boot
environment. When you reboot, the system will run the new, cloned boot environment with the
new implementation.

For more information about the pkg set-mediator command, see “Changing the Preferred
Application” in “Adding and Updating Software in Oracle Solaris 11.2 ”.

4. Reboot the system.

5. (Optional) Verify that the switch was successful and that your preferred
OpenSSL implementation is active.

pkg mediator openssl

Example 1-1 Switching to the FIPS 140-Capable OpenSSL Implementation

This example changes a system's OpenSSL implementation to be FIPS 140 capable.

pkg mediator -a openssl
MEDIATOR VER. SRC. VERSION IMPL. SRC. IMPLEMENTATION

openssl vendor vendor default

openssl system system fips-140

pkg set-mediator --be-name BE2 -I fips-140 openssl

reboot

pkg mediator openssl
MEDIATOR VER. SRC. VERSION IMPL. SRC. IMPLEMENTATION

openssl vendor vendor default

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=AUOSSgnztu
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=AUOSSgnztu

16 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

Chapter 2 • About SPARC T-Series Systems and the Cryptographic Framework 17

 2 ♦ ♦ ♦ C H A P T E R 2

About SPARC T-Series Systems and the
Cryptographic Framework

This chapter describes the Cryptographic Framework on SPARC T-series servers and the
optimizations in Oracle Solaris 11 that enhance the performance of cryptographic functions.

Cryptographic Framework and SPARC T-Series Servers

The Cryptographic Framework supplies the SPARC T-Series systems with cryptographic
mechanisms, and optimizes some mechanisms for these servers. Three cryptographic
mechanisms are optimized for data at rest and in motion: AES-CBC, AES-CFB128, and ARCFOUR.
The DES cryptographic mechanism is optimized for OpenSSL, and, by optimizing arbitrary-
precision arithmetic (bignum), so are RSA and DSA. Other optimizations include small packet
performance for handshakes and data in motion.
The following cryptographic mechanisms are available in this release:

■ AES-XTS – Used for data at rest
■ SHA-224 – SHA2 mechanism
■ AES-XCBC-MAC – Used for IPsec

Cryptographic Optimizations in SPARC T-4
Systems

Beginning with the SPARC T4 microprocessor, new instructions to perform cryptography
functions have become available directly in hardware. The instructions are non-privileged.
Thus, any program can use the instructions without requiring any kernel environment, root
permissions, or other special setup. Cryptography is performed directly on the hardware
instead of using numerous low-level instructions. Cryptographic operations are therefore faster
compared to operations on systems whose previous SPARC processors had separate processing
units for cryptography.

Cryptographic Framework and SPARC T-Series Servers

18 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

The following comparison shows the differences in the data flow between SPARC T-3 systems
and SPARC T-4 systems with cryptographic optimizations.

FIGURE 2-1 Data Flow Comparison Between SPARC T-Systems

The following table provides a detailed comparison of cryptographic functions in SPARC T
microprocessor units combined with specific Oracle Solaris releases.

TABLE 2-1 Cryptographic Performance on SPARC T-Series Servers

Feature/
Software

Consumer

T-3 and Previous Systems T-4 Systems Running
Oracle Solaris 10

T-4 Systems Running
Oracle Solaris 11

SSH Automatically enabled with
Solaris 10 5/09 and later.

Disable/Enable with the Use
OpenSSLEngine clause in /
etc/ssh/sshd_config.

Requires patch 147707-01.

Disable/Enable with the Use
OpenSSLEngine clause in /
etc/ssh/sshd_config.

Automatically enabled.

Disable/Enable with the UseOpen
SSLEngine clause in /etc/ssh/
sshd_config.

Java/JCE Automatically enabled.

Configure in $JAVA_HOME/
jre/lib/ security/java.
security.

Automatically enabled.

Configure in $JAVA_HOME/
jre/lib/ security/java.
security.

Automatically enabled.

Configure in $JAVA_HOME/jre/
lib/ security/java.security.

ZFS Crypto Not available. Not available. HW crypto automatically enabled
if dataset is encrypted.

IPsec Automatically enabled. Automatically enabled. Automatically enabled.

OpenSSL Use -engine pkcs11 Requires patch 147707-01

Use -engine pkcs11

The T4 optimization is
automatically used.

(Optionally use -engine pkcs11.
) pkcs11 recommended for RSA/
DSA at this time.

Cryptographic Framework and SPARC T-Series Servers

Chapter 2 • About SPARC T-Series Systems and the Cryptographic Framework 19

Feature/
Software

Consumer

T-3 and Previous Systems T-4 Systems Running
Oracle Solaris 10

T-4 Systems Running
Oracle Solaris 11

KSSL
(Kernel SSL
proxy)

Automatically enabled. Automatically enabled. Automatically enabled.

Oracle TDE Not supported. Pending patch. Automatically enabled with
Oracle DB 11.2.0.3 and ASO.

Apache SSL Configure with SSLCrypto
Device pkcs11

Configure with SSLCrypto
Device pkcs11

Configure with SSLCryptoDevice
pkcs11

Logical
Domains

Assign crypto units to
domains.

Functionality always available,
no configuration required.

Functionality always available, no
configuration required.

The T4 crypto instructions include the following:

■ aes_kexpand0, aes_kexpand1, aes_kexpand2
These instructions perform key expansion. They expand the 128-bit, 192-bit, or 256-
bit user-provided key into a key schedule that is used internally during encryption and
decryption. The aes_kexpand2 instruction is used only for AES-256. The other two
aes_kexpand instructions are used for all three key lengths: AES-128, AES-192, and
AES-256.

■ aes_eround01, aes_eround23, aes_eround01_l, aes_eround_23_l
These instructions are used for AES encryption rounds or transformations. According
to the AES standard in FIPS 197, the number of rounds used (for example 10, 12, or 14)
varies according to AES key length because using larger keys presumably indicates a
desire for more robust encryption at the cost of more computation.

■ aes_dround01, aes_dround23, aes_dround01_l, aes_dround_23_l
These instructions are used for AES decryption rounds in a similar way as with encryption.

■ Instructions for DES/DES-3, Kasumi, Camellia, Montgomery multiply/square root (for
RSA Bignum), and CRC32c checksums

■ MD5, SHA1, and SHA2 digest instructions

The SPARC T4 hardware cryptographic instructions are available and used automatically on
SPARC T4 systems running Oracle Solaris 11 by means of the built-in t4 engine on the system's
T4 microprocessor. Beginning with Oracle Solaris 11.2, those instructions are now embedded in
the OpenSSL upstream code. Thus, in this release, OpenSSL 1.0.1e is delivered with a patch to
enable it to use those instructions.
For more information about the T4 instructions, refer to the following articles.

■ "SPARC T4 OpenSSL Engine" (https://blogs.oracle.com/DanX/entry/
sparc_t4_openssl_engine)

■ "How to tell if SPARC T4 crypto is being used?" (https://blogs.oracle.com/DanX/entry/
how_to_tell_if_sparc)

https://blogs.oracle.com/DanX/entry/sparc_t4_openssl_engine
https://blogs.oracle.com/DanX/entry/sparc_t4_openssl_engine
https://blogs.oracle.com/DanX/entry/how_to_tell_if_sparc
https://blogs.oracle.com/DanX/entry/how_to_tell_if_sparc

Cryptographic Framework and SPARC T-Series Servers

20 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

■ "Exciting Crypto Advances with the T4 processor and Oracle Solaris 11" (http://
bubbva.blogspot.com/2011/11/exciting-crypto-advances-with-t4.html)

■ "SPARC T4 Digest and Crypto Optimizations in Solaris 11.1" (https://blogs.oracle.com/
DanX/entry/sparc_t4_digest_and_crypto)

Determining Whether the System Supports SPARC T4
Optimizations

To determine whether the T4 optimizations are being used, use the isainfo command. The
inclusion of sparcv9 and aes in the output indicates that the system is using the optimizations.

$ isainfo -v
64-bit sparcv9 applications

 crc32c cbcond pause mont mpmul sha512 sha256 sha1 md5 camellia kasumi

 des aes ima hpc vis3 fmaf asi_blk_init vis2 vis popc

Determining Your System's OpenSSL Version

To check the version of OpenSSL that is running on your system, type openssl version. The
output is similar to the following:

OpenSSL 1.0.0j 10 May 2012

Verifying That Your System Has OpenSSL with SPARC T4
Optimizations

To determine whether your system supports OpenSSL with SPARC T4 optimizations, check the
libcrypto.so library as follows:

nm /lib/libcrypto.so.1.0.0 | grep des_t4
[5239] | 504192| 300|FUNC |GLOB |3 |12 |des_t4_cbc_decrypt

[5653] | 503872| 300|FUNC |GLOB |3 |12 |des_t4_cbc_encrypt

[4384] | 505024| 508|FUNC |GLOB |3 |12 |des_t4_ede3_cbc_decrypt

[2963] | 504512| 508|FUNC |GLOB |3 |12 |des_t4_ede3_cbc_encrypt

[4111] | 503712| 156|FUNC |GLOB |3 |12 |des_t4_key_expand

If the command does not generate any output, then your system does not support the SPARC T4
optimizations for OpenSSL.

http://bubbva.blogspot.com/2011/11/exciting-crypto-advances-with-t4.html
http://bubbva.blogspot.com/2011/11/exciting-crypto-advances-with-t4.html
https://blogs.oracle.com/DanX/entry/sparc_t4_digest_and_crypto
https://blogs.oracle.com/DanX/entry/sparc_t4_digest_and_crypto

Chapter 3 • Cryptographic Framework 21

 3 ♦ ♦ ♦ C H A P T E R 3

Cryptographic Framework

This chapter describes how to use the Cryptographic Framework, and covers the following
topics:

■ “Protecting Files With the Cryptographic Framework” on page 21
■ “Administering the Cryptographic Framework” on page 33

Protecting Files With the Cryptographic Framework

This section describes how to generate symmetric keys, how to create checksums for file
integrity, and how to protect files from eavesdropping. The commands in this section can be run
by regular users. Developers can write scripts that use these commands.

To setup your system in FIPS 140 mode, you must use FIPS-validated algorithms, modes, and
key lengths. Refer to “FIPS 140 Algorithm Lists and Certificate References for Oracle Solaris
Systems” in “Using a FIPS 140 Enabled System in Oracle Solaris 11.2 ”.

The Cryptographic Framework can help you protect your files. The following task map
points to procedures for listing the available algorithms, and for protecting your files
cryptographically.

TABLE 3-1 Protecting Files With the Cryptographic Framework Task Map

Task Description For Instructions

Generate a symmetric key. Generates a key of user-specified length.
Optionally, stores the key in a file, a PKCS #11
keystore, or an NSS keystore.

For FIPS 140-approved mode, select a key
type, mode, and key length that has been
validated for FIPS. See “FIPS 140 Algorithms
in the Cryptographic Framework” in “Using a
FIPS 140 Enabled System in Oracle Solaris 11.
2 ”.

“How to Generate a Symmetric
Key by Using the pktool
Command” on page 22

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ref-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ref-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1

How to Generate a Symmetric Key by Using the pktool Command

22 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

Task Description For Instructions

Provide a checksum that
ensures the integrity of a
file.

Verifies that the receiver's copy of a file is
identical to the file that was sent.

“How to Compute a Digest of a
File” on page 27

Protect a file with a
message authentication
code (MAC).

Verifies to the receiver of your message that
you were the sender.

“How to Compute a MAC of a
File” on page 29

Encrypt a file, and then
decrypt the encrypted file.

Protects the content of files by encrypting the
file. Provides the encryption parameters to
decrypt the file.

“How to Encrypt and Decrypt a
File” on page 31

How to Generate a Symmetric Key by Using the
pktool Command

Some applications require a symmetric key for encryption and decryption of communications.
In this procedure, you create a symmetric key and store it.

If your site has a random number generator, you can use the generator to create a random
number for the key. This procedure does not use your site's random number generator.

1. (Optional) If you plan to use a keystore, create it.

■ To create and initialize a PKCS #11 keystore, see “How to Generate a
Passphrase by Using the pktool setpin Command” on page 61.

■ To create and initialize an NSS database, see the sample command in
Example 4-5.

2. Generate a random number for use as a symmetric key.

Use one of the following methods.

■ Generate a key and store it in a file.

The advantage of a file-stored key is that you can extract the key from this file to use in an
application's key file, such as the /etc/inet/secret/ipseckeys file or IPsec. The usage
statement shows the arguments.

% pktool genkey keystore=file
...genkey keystore=file

outkey=key-fn

[keytype=aes|arcfour|des|3des|generic]

[keylen=key-size (AES, ARCFOUR or GENERIC only)]

[print=y|n]

How to Generate a Symmetric Key by Using the pktool Command

Chapter 3 • Cryptographic Framework 23

outkey=key-fn

The filename where the key is stored.

keytype=specific-symmetric-algorithm

For a symmetric key of any length, the value is generic. For a particular algorithm,
specify aes, arcfour, des, or 3des.
For FIPS 140-approved algorighms, select a key type that has been validated for FIPS.
See “FIPS 140 Algorithms in the Cryptographic Framework” in “Using a FIPS 140
Enabled System in Oracle Solaris 11.2 ”.

keylen=size-in-bits

The length of the key in bits. The number must be divisible by 8. Do not specify for
des or 3des.
For FIPS 140-approved algorithms, select a key length that has been validated for
FIPS. See “FIPS 140 Algorithms in the Cryptographic Framework” in “Using a FIPS
140 Enabled System in Oracle Solaris 11.2 ”.

print=n

Prints the key to the terminal window. By default, the value of print is n.

■ Generate a key and store it in a PKCS #11 keystore.

The advantage of the PKCS #11 keystore is that you can retrieve the key by its label. This
method is useful for keys that encrypt and decrypt files. You must complete Step 1 before
using this method. The usage statement shows the arguments. The brackets around the
keystore argument indicate that when the keystore argument is not specified, the key is
stored in the PKCS #11 keystore.

$ pktool genkey keystore=pkcs11
...genkey [keystore=pkcs11]

label=key-label

[keytype=aes|arcfour|des|3des|generic]

[keylen=key-size (AES, ARCFOUR or GENERIC only)]

[token=token[:manuf[:serial]]]

[sensitive=y|n]

[extractable=y|n]

[print=y|n]

label=key-label

A user-specified label for the key. The key can be retrieved from the keystore by its
label.

keytype=specific-symmetric-algorithm

For a symmetric key of any length, the value is generic. For a particular algorithm,
specify aes, arcfour, des, or 3des.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1

How to Generate a Symmetric Key by Using the pktool Command

24 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

For FIPS 140-approved algorithms, select a key type that has been validated for FIPS.
See “FIPS 140 Algorithms in the Cryptographic Framework” in “Using a FIPS 140
Enabled System in Oracle Solaris 11.2 ”.

keylen=size-in-bits

The length of the key in bits. The number must be divisible by 8. Do not specify for
des or 3des.
For FIPS 140-approved algorithms, select a key length that has been validated for
FIPS. See “FIPS 140 Algorithms in the Cryptographic Framework” in “Using a FIPS
140 Enabled System in Oracle Solaris 11.2 ”.

token=token

The token name. By default, the token is Sun Software PKCS#11 softtoken.

sensitive=n

Specifies the sensitivity of the key. When the value is y, the key cannot be printed by
using the print=y argument. By default, the value of sensitive is n.

extractable=y

Specifies that the key can be extracted from the keystore. Specify n to prevent the key
from being extracted.

print=n

Prints the key to the terminal window. By default, the value of print is n.

■ Generate a key and store it in an NSS keystore.

You must complete Step 1 before using this method. The usage statement shows the
arguments.

$ pktool genkey keystore=nss
...genkey keystore=nss

label=key-label

[keytype=aes|arcfour|des|3des|generic]

[keylen=key-size (AES, ARCFOUR or GENERIC only)]

[token=token[:manuf[:serial]]]

[dir=directory-path]

[prefix=DBprefix]

label=key-label

A user-specified label for the key. The key can be retrieved from the keystore by its
label.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1

How to Generate a Symmetric Key by Using the pktool Command

Chapter 3 • Cryptographic Framework 25

keytype=specific-symmetric-algorithm

For a symmetric key of any length, the value is generic. For a particular algorithm,
specify aes, arcfour, des, or 3des.
For FIPS 140-approved algorithms, select a key type that has been validated for FIPS.
See “FIPS 140 Algorithms in the Cryptographic Framework” in “Using a FIPS 140
Enabled System in Oracle Solaris 11.2 ”.

keylen=size-in-bits

The length of the key in bits. The number must be divisible by 8. Do not specify for
des or 3des.
For FIPS 140-approved algorithms, select a key length that has been validated for
FIPS. See “FIPS 140 Algorithms in the Cryptographic Framework” in “Using a FIPS
140 Enabled System in Oracle Solaris 11.2 ”.

token=token

The token name. By default, the token is the NSS internal token.

dir=directory

The directory path to the NSS database. By default, directory is the current directory.

prefix=directory

The prefix to the NSS database. The default is no prefix.

3. (Optional) Verify that the key exists.

Use one of the following commands, depending on where you stored the key.

■ Verify the key in the key-fn file.

% pktool list keystore=file objtype=key [infile=key-fn]
Found n keys.
Key #1 - keytype:location (keylen)

■ Verify the key in the PKCS #11 or the NSS keystore.

For PKCS #11, use the following command:

$ pktool list keystore=pkcs11 objtype=key
Enter PIN for keystore:
Found n keys.
Key #1 - keytype:location (keylen)

Alternately, replace keystore=pkcs11 with keystore=nss in the command.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1

How to Generate a Symmetric Key by Using the pktool Command

26 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

Example 3-1 Creating a Symmetric Key by Using the pktool Command

In the following example, a user creates a PKCS #11 keystore for the first time and then
generates a large symmetric key for an application. Finally, the user verifies that the key is in
the keystore.

Note that the initial password for a PKCS #11 keystore is changeme. The initial password for an
NSS keystore is an empty password.

pktool setpin
Create new passphrase: Type password
Re-enter new passphrase: Retype password
Passphrase changed.

% pktool genkey label=specialappkey keytype=generic keylen=1024
Enter PIN for Sun Software PKCS#11 softtoken : Type password

% pktool list objtype=key
Enter PIN for Sun Software PKCS#11 softtoken : Type password
No. Key Type Key Len. Key Label

--

Symmetric keys:

1 Symmetric 1024 specialappkey

Example 3-2 Creating a FIPS-approved AES Key by Using the pktool Command

In the following example, a secret key for the AES algorithm is created using a FIPS-approved
algorithm and key length. The key is stored in a local file for later decryption. The command
protects the file with 400 permissions. When the key is created, the print=y option displays the
generated key in the terminal window.

The user who owns the keyfile retrieves the key by using the od command.

% pktool genkey keystore=file outkey=256bit.file1 keytype=aes keylen=256 print=y
Key Value ="aaa2df1d10f02eaee2595d48964847757a6a49cf86c4339cd5205c24ac8c8873"

% od -x 256bit.file1

0000000 aaa2 df1d 10f0 2eae e259 5d48 9648 4775

0000020 7a6a 49cf 86c4 339c d520 5c24 ac8c 8873

0000040

Example 3-3 Creating a Symmetric Key for IPsec Security Associations

In the following example, the administrator manually creates the keying material for IPsec SAs
and stores them in files. Then, the administrator copies the keys to the /etc/inet/secret/
ipseckeys file and destroys the original files.

First, the administrator creates and displays the keys that the IPsec policy requires:

pktool genkey keystore=file outkey=ipencrin1 keytype=generic keylen=192 print=y
Key Value ="294979e512cb8e79370dabecadc3fcbb849e78d2d6bd2049"

pktool genkey keystore=file outkey=ipencrout1 keytype=generic keylen=192 print=y

How to Compute a Digest of a File

Chapter 3 • Cryptographic Framework 27

Key Value ="9678f80e33406c86e3d1686e50406bd0434819c20d09d204"

pktool genkey keystore=file outkey=ipspi1 keytype=generic keylen=32 print=y
Key Value ="acbeaa20"

pktool genkey keystore=file outkey=ipspi2 keytype=generic keylen=32 print=y
Key Value ="19174215"

pktool genkey keystore=file outkey=ipsha21 keytype=generic keylen=256 print=y
Key Value ="659c20f2d6c3f9570bcee93e96d95e2263aca4eeb3369f72c5c786af4177fe9e"

pktool genkey keystore=file outkey=ipsha22 keytype=generic keylen=256 print=y
Key Value ="b041975a0e1fce0503665c3966684d731fa3dbb12fcf87b0a837b2da5d82c810"

Then, the administrator creates the following /etc/inet/secret/ipseckeys file:

SPI values require a leading 0x.

Backslashes indicate command continuation.

##

for outbound packets on this system

add esp spi 0xacbeaa20 \

src 192.168.1.1 dst 192.168.2.1 \

encr_alg aes auth_alg sha256 \

encrkey 294979e512cb8e79370dabecadc3fcbb849e78d2d6bd2049 \

authkey 659c20f2d6c3f9570bcee93e96d95e2263aca4eeb3369f72c5c786af4177fe9e

##

for inbound packets

add esp spi 0x19174215 \

src 192.168.2.1 dst 192.168.1.1 \

encr_alg aes auth_alg sha256 \

encrkey 9678f80e33406c86e3d1686e50406bd0434819c20d09d204 \

authkey b041975a0e1fce0503665c3966684d731fa3dbb12fcf87b0a837b2da5d82c810

After verifying that the syntax of the ipseckeys file is valid, the administrator destroys the
original key files.

ipseckey -c /etc/inet/secret/ipseckeys

rm ipencrin1 ipencrout1 ipspi1 ipspi2 ipsha21 ipsha22

The administrator copies the ipseckeys file to the communicating system by using the ssh
command or another secure mechanism. On the communicating system, the protections are
reversed. The first entry in the ipseckeys file protects inbound packets, and the second entry
protects outbound packets. No keys are generated on the communicating system.

Next Steps To proceed with using the key to create a message authentication code (MAC) for a file, see
“How to Compute a MAC of a File” on page 29.

How to Compute a Digest of a File

When you compute a digest of a file, you can check to see that the file has not been tampered
with by comparing digest outputs. A digest does not alter the original file.

1. List the available digest algorithms.

How to Compute a Digest of a File

28 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

% digest -l
md5

sha1

sha224

sha256

sha384

sha512

Note - Whenever possible, select a FIPS-approved algorithm, per list at “FIPS 140 Algorithms
in the Cryptographic Framework” in “Using a FIPS 140 Enabled System in Oracle Solaris 11.2
”.

2. Compute the digest of the file and save the digest listing.

Provide an algorithm with the digest command.

% digest -v -a algorithm input-file > digest-listing

-v Displays the output in the following format:

algorithm (input-file) = digest

-a algorithm The algorithm to use to compute a digest of the file. Type the algorithm
as the algorithm appears in the output of Step 1.

Note - Whenever possible, select a FIPS-approved algorithm, listed at “FIPS 140 Algorithms in
the Cryptographic Framework” in “Using a FIPS 140 Enabled System in Oracle Solaris 11.2 ”.

input-file The input file for the digest command.

digest-listing The output file for the digest command.

Example 3-4 Computing a Digest With the SHA1 Mechanism

In the following example, the digest command uses the SHA1 mechanism to provide a
directory listing. The results are placed in a file.

% digest -v -a sha1 docs/* > $HOME/digest.docs.legal.05.07

% more ~/digest.docs.legal.05.07
sha1 (docs/legal1) = 1df50e8ad219e34f0b911e097b7b588e31f9b435

sha1 (docs/legal2) = 68efa5a636291bde8f33e046eb33508c94842c38

sha1 (docs/legal3) = 085d991238d61bd0cfa2946c183be8e32cccf6c9

sha1 (docs/legal4) = f3085eae7e2c8d008816564fdf28027d10e1d983

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1

How to Compute a MAC of a File

Chapter 3 • Cryptographic Framework 29

How to Compute a MAC of a File

A message authentication code, or MAC, computes a digest for the file and uses a secret key to
further protect the digest. A MAC does not alter the original file.

1. List the available mechanisms.

% mac -l
Algorithm Keysize: Min Max

des_mac 64 64

sha1_hmac 8 512

md5_hmac 8 512

sha224_hmac 8 512

sha256_hmac 8 512

sha384_hmac 8 1024

sha512_hmac 8 1024

Note - Each supported algorithm is an alias to the most commonly used and least restricted
version of a particular algorithm type. The output above shows available algorithm names and
the keysize for each algorithm. Whenever possible, use a supported algorithm that matches a
FIPS-approved algorithm with a FIPS-approved key length, listed at “FIPS 140 Algorithms in
the Cryptographic Framework” in “Using a FIPS 140 Enabled System in Oracle Solaris 11.2 ”.

2. Generate a symmetric key of the appropriate length.

You can provide either a passphrase from which a key will be generated or you can provide a
key.

■ If you provide a passphrase, you must store or remember the passphrase. If you store the
passphrase online, the passphrase file should be readable only by you.

■ If you provide a key, it must be the correct size for the mechanism. You can use the pktool
command. For the procedure and some examples, see “How to Generate a Symmetric Key
by Using the pktool Command” on page 22.

3. Create a MAC for a file.

Provide a key and use a symmetric key algorithm with the mac command.

% mac [-v] -a algorithm [-k keyfile | -K key-label [-T token]] input-file

-v Displays the output in the following format:

algorithm (input-file) = mac

-a algorithm The algorithm to use to compute the MAC. Type the algorithm as the
algorithm appears in the output of the mac -l command.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1

How to Compute a MAC of a File

30 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

-k keyfile The file that contains a key of algorithm-specified length.

-K key-label The label of a key in the PKCS #11 keystore.

-T token The token name. By default, the token is Sun Software PKCS#11
softtoken. It is used only when the -K key-label option is used.

input-file The input file for the MAC.

Example 3-5 Computing a MAC With SHA1_HMAC and a Passphrase

In the following example, the email attachment is authenticated with the SHA1_HMAC
mechanism and a key that is derived from a passphrase. The MAC listing is saved to a file. If
the passphrase is stored in a file, the file should not be readable by anyone but the user.

% mac -v -a sha1_hmac email.attach
Enter passphrase: Type passphrase
sha1_hmac (email.attach) = 2b31536d3b3c0c6b25d653418db8e765e17fe07b

% echo "sha1_hmac (email.attach) = 2b31536d3b3c0c6b25d653418db8e765e17fe07b" \

>> ~/sha1hmac.daily.05.12

Example 3-6 Computing a MAC With SHA1_HMAC and a Key File

In the following example, the directory manifest is authenticated with the SHA1_HMAC
mechanism and a secret key. The results are placed in a file.

% mac -v -a sha1_hmac \

-k $HOME/keyf/05.07.mack64 docs/* > $HOME/mac.docs.legal.05.07

% more ~/mac.docs.legal.05.07
sha1_hmac (docs/legal1) = 9b31536d3b3c0c6b25d653418db8e765e17fe07a

sha1_hmac (docs/legal2) = 865af61a3002f8a457462a428cdb1a88c1b51ff5

sha1_hmac (docs/legal3) = 076c944cb2528536c9aebd3b9fbe367e07b61dc7

sha1_hmac (docs/legal4) = 7aede27602ef6e4454748cbd3821e0152e45beb4

Example 3-7 Computing a MAC With SHA1_HMAC and a Key Label

In the following example, the directory manifest is authenticated with the SHA1_HMAC
mechanism and a secret key. The results are placed in the user's PKCS #11 keystore. The user
initially created the keystore and the password to the keystore by using the pktool setpin
command.

% mac -a sha1_hmac -K legaldocs0507 docs/*
Enter pin for Sun Software PKCS#11 softtoken: Type password

To retrieve the MAC from the keystore, the user uses the verbose option, and provides the key
label and the name of the directory that was authenticated.

% mac -v -a sha1_hmac -K legaldocs0507 docs/*

How to Encrypt and Decrypt a File

Chapter 3 • Cryptographic Framework 31

Enter pin for Sun Software PKCS#11 softtoken: Type password
sha1_hmac (docs/legal1) = 9b31536d3b3c0c6b25d653418db8e765e17fe07a

sha1_hmac (docs/legal2) = 865af61a3002f8a457462a428cdb1a88c1b51ff5

sha1_hmac (docs/legal3) = 076c944cb2528536c9aebd3b9fbe367e07b61dc7

sha1_hmac (docs/legal4) = 7aede27602ef6e4454748cbd3821e0152e45beb4

How to Encrypt and Decrypt a File

When you encrypt a file, the original file is not removed or changed. The output file is
encrypted.

For solutions to common errors related to the encrypt command, see the section that follows
the examples.

Note - When encrypting and decrypting files, try to use FIPS-approved algorithms with
approved key lengths whenever possible. See the list at “FIPS 140 Algorithms in the
Cryptographic Framework” in “Using a FIPS 140 Enabled System in Oracle Solaris 11.2 ”. Run
the encrypt -l command to view available algorithms and their key lengths.

1. Create a symmetric key of the appropriate length.

You can provide either a passphrase from which a key will be generated or you can provide a
key.

■ If you provide a passphrase, you must store or remember the passphrase. If you store the
passphrase online, the passphrase file should be readable only by you.

■ If you provide a key, it must be the correct size for the mechanism. You can use the pktool
command. For the procedure and some examples, see “How to Generate a Symmetric Key
by Using the pktool Command” on page 22.

2. Encrypt a file.

Provide a key and use a symmetric key algorithm with the encrypt command.

% encrypt -a algorithm [-v] \

[-k keyfile | -K key-label [-T token]] [-i input-file] [-o output-file]

-a algorithm The algorithm to use to encrypt the file. Type the algorithm as the
algorithm appears in the output of the encrypt -l command. Whenever
possible, select a FIPS-approved algorithm, per list at “FIPS 140
Algorithms in the Cryptographic Framework” in “Using a FIPS 140
Enabled System in Oracle Solaris 11.2 ”.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1

How to Encrypt and Decrypt a File

32 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

-k keyfile The file that contains a key of algorithm-specified length. The key length
for each algorithm is listed, in bits, in the output of the encrypt -l
command.

-K key-label The label of a key in the PKCS #11 keystore.

-T token The token name. By default, the token is Sun Software PKCS#11
softtoken. It is used only when the -K key-label option is used.

-i input-file The input file that you want to encrypt. This file is left unchanged by the
command.

-o output-file The output file that is the encrypted form of the input file.

Example 3-8 Creating an AES Key for Encrypting Your Files

In the following example, a user creates and stores an AES key in an existing PKCS #11
keystore for use in encryption and decryption. The user can verify that the key exists and can
use the key, but cannot view the key itself.

% pktool genkey label=MyAESkeynumber1 keytype=aes keylen=256
Enter PIN for Sun Software PKCS#11 softtoken : Type password

% pktool list objtype=key
Enter PIN for Sun Software PKCS#11 softtoken : Type password
No. Key Type Key Len. Key Label

--

Symmetric keys:

1 AES 256 MyAESkeynumber1

To use the key to encrypt a file, the user retrieves the key by its label.

% encrypt -a aes -K MyAESkeynumber1 -i encryptthisfile -o encryptedthisfile

To decrypt the encryptedthisfile file, the user retrieves the key by its label.

% decrypt -a aes -K MyAESkeynumber1 -i encryptedthisfile -o sameasencryptthisfile

Example 3-9 Encrypting and Decrypting With AES and a Passphrase

In the following example, a file is encrypted with the AES algorithm. The key is generated from
the passphrase. If the passphrase is stored in a file, the file should not be readable by anyone but
the user.

% encrypt -a aes -i ticket.to.ride -o ~/enc/e.ticket.to.ride
Enter passphrase: Type passphrase
Re-enter passphrase: Type passphrase again

Administering the Cryptographic Framework

Chapter 3 • Cryptographic Framework 33

The input file, ticket.to.ride, still exists in its original form.

To decrypt the output file, the user uses the same passphrase and encryption mechanism that
encrypted the file.

% decrypt -a aes -i ~/enc/e.ticket.to.ride -o ~/d.ticket.to.ride
Enter passphrase: Type passphrase

Example 3-10 Encrypting and Decrypting With AES and a Key File

In the following example, a file is encrypted with the AES algorithm. AES mechanisms use a
key of 128 bits, or 16 bytes.

% encrypt -a aes -k ~/keyf/05.07.aes16 \

-i ticket.to.ride -o ~/enc/e.ticket.to.ride

The input file, ticket.to.ride, still exists in its original form.

To decrypt the output file, the user uses the same key and encryption mechanism that encrypted
the file.

% decrypt -a aes -k ~/keyf/05.07.aes16 \

-i ~/enc/e.ticket.to.ride -o ~/d.ticket.to.ride

Troubleshooting The following messages indicate that the key that you provided to the encrypt command is not
permitted by the algorithm that you are using.

■ encrypt: unable to create key for crypto operation:

CKR_ATTRIBUTE_VALUE_INVALID

■ encrypt: failed to initialize crypto operation: CKR_KEY_SIZE_RANGE

If you pass a key that does not meet the requirements of the algorithm, you must supply a better
key using one of the following methods:

■ Use a passphrase. The framework then provides a key that meets the requirements.
■ Pass a key size that the algorithm accepts. For example, the DES algorithm requires a key

of 64 bits. The 3DES algorithm requires a key of 192 bits.

Administering the Cryptographic Framework

This section describes how to administer the software providers and the hardware providers
in the Cryptographic Framework. Software providers and hardware providers can be removed
from use when desirable. For example, you can disable the implementation of an algorithm
from one software provider. You can then force the system to use the algorithm from a different
software provider.

Administering the Cryptographic Framework

34 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

Note - An important component of administering the Cryptographic Framework is to plan and
implement your policy regarding FIPS 140, the U.S. Government computer security standard
for cryptography modules.

If you have a strict requirement to use only FIPS 140-2 validated cryptography, you must
be running the Oracle Solaris11.1 SRU5.5 release or the Oracle Solaris11.1 SRU3 release.
Oracle completed a FIPS 140-2 validation against the Solaris Cryptographic Framework in
these two specific releases. Oracle Solaris11.2 builds on this validated foundation and includes
software improvements that address performance, function, and reliability. Whenever possible,
you should configure Oracle Solaris11.2 in FIPS 140-2 mode to take advantage of these
improvements.

Review “Using a FIPS 140 Enabled System in Oracle Solaris 11.2 ” and plan an overall FIPS
policy for your systems.

The following task map points to procedures for administering software and hardware providers
in the Cryptographic Framework.

TABLE 3-2 Administering the Cryptographic Framework Task Map

Task Description For Instructions

Plan your FIPS policy for
your systems.

Decide on your plan for enabling FIPS-
approved providers and consumers and
implement your plan.

“Using a FIPS 140 Enabled System in
Oracle Solaris 11.2 ”

List the providers in
the Cryptographic
Framework.

Lists the algorithms, libraries, and hardware
devices that are available for use in the
Cryptographic Framework.

“Listing Available
Providers” on page 35

Enable FIPS 140 mode. Runs the Cryptographic Framework to a U.
S. government standard for cryptography
modules.

“How to Create a Boot Environment
with FIPS 140 Enabled” on page 42

Add a software provider. Adds a PKCS #11 library or a kernel module
to the Cryptographic Framework. The
provider must be signed.

“How to Add a Software
Provider” on page 40

Prevent the use of a user-
level mechanism.

Removes a software mechanism from use.
The mechanism can be enabled again.

“How to Prevent the Use of a User-
Level Mechanism” on page 44

Temporarily disable
mechanisms from a kernel
module.

Temporarily removes a mechanism from use.
Usually used for testing.

“How to Prevent the Use of a Kernel
Software Mechanism” on page 46

Uninstall a library. Removes a user-level software provider
from use.

Example 3-17

Uninstall a kernel
provider.

Removes a kernel software provider from
use.

Example 3-19

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIP
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIP
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIP

Administering the Cryptographic Framework

Chapter 3 • Cryptographic Framework 35

Task Description For Instructions

Disable mechanisms from
a hardware provider.

Ensures that selected mechanisms on a
hardware accelerator are not used.

“How to Disable Hardware
Provider Mechanisms and
Features” on page 48

Restart or refresh
cryptographic services.

Ensures that cryptographic services are
available.

“How to Refresh or
Restart All Cryptographic
Services” on page 50

Listing Available Providers

Hardware providers are automatically located and loaded. For more information, see
driver.conf(4) man page.

When you have hardware that expects to plug in to the Cryptographic Framework, the hardware
registers with the SPI in the kernel. The framework checks that the hardware driver is signed.
Specifically, the framework checks that the object file of the driver is signed with a certificate
that Oracle issues.

For example, the Sun Crypto Accelerator 6000 board (mca), the ncp driver for the cryptographic
accelerator on the UltraSPARC T1 and T2 processors (ncp), the n2cp driver for the
UltraSPARC T2 processors (n2cp), and the /dev/crypto driver for the T-Series systems plug
hardware mechanisms into the framework.

For information about getting your provider signed, see the information about the elfsign
command in “User-Level Commands in the Cryptographic Framework” on page 12.

To list available providers, you use the cryptoadm list commands with different options
depending on the specific information you want to obtain.

■ Listing all the providers on the system.
The contents and format of the providers list varies for different Oracle Solaris releases
and different platforms. Run the cryptoadm list command on your system to see the
providers that your system supports. Only those mechanisms at the user level are available
for direct use by regular users.

% cryptoadm list

User-level providers: /* for applications */
Provider: /usr/lib/security/$ISA/pkcs11_kernel.so

Provider: /usr/lib/security/$ISA/pkcs11_softtoken.so

Provider: /usr/lib/security/$ISA/pkcs11_tpm.so

Kernel software providers: /* for IPsec, kssl, Kerberos */
des

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN4driver.conf-4

Administering the Cryptographic Framework

36 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

aes

arcfour

blowfish

camellia

ecc

sha1

sha2

md4

md5

rsa

swrand

n2rng/0 /* for hardware */
ncp/0

n2cp/0

■ Listing the providers and their mechanisms in the Cryptographic Framework.

You can view the strength and modes, such as ECB and CBC, of the available mechanisms.
However, some of the listed mechanisms might be unavailable for use. See the next item
for instructions about how to list which mechanisms can be used.
The following output is truncated for display purposes.

% cryptoadm list -m [provider=provider]
User-level providers:

=====================

Provider: /usr/lib/security/$ISA/pkcs11_kernel.so

Mechanisms:

CKM_DSA

CKM_RSA_X_509

CKM_RSA_PKCS

...

CKM_SHA256_HMAC_GENERAL

CKM_SSL3_MD5_MAC

Provider: /usr/lib/security/$ISA/pkcs11_softtoken.so

Mechanisms:

CKM_DES_CBC

CKM_DES_CBC_PAD

CKM_DES_ECB

CKM_DES_KEY_GEN

CKM_DES_MAC_GENERAL

...

CKM_ECDSA_SHA1

CKM_ECDH1_DERIVE

Administering the Cryptographic Framework

Chapter 3 • Cryptographic Framework 37

Provider: /usr/lib/security/$ISA/pkcs11_tpm.so

/usr/lib/security/$ISA/pkcs11_tpm.so: no slots presented.

Kernel providers:

==========================

des: CKM_DES_ECB,CKM_DES_CBC,CKM_DES3_ECB,CKM_DES3_CBC

aes: CKM_AES_ECB,CKM_AES_CBC,CKM_AES_CTR,CKM_AES_CCM, \

 CKM_AES_GCM,CKM_AES_GMAC,

CKM_AES_CFB128,CKM_AES_XTS,CKM_AES_XCBC_MAC

arcfour: CKM_RC4

blowfish: CKM_BLOWFISH_ECB,CKM_BLOWFISH_CBC

ecc: CKM_EC_KEY_PAIR_GEN,CKM_ECDH1_DERIVE,CKM_ECDSA, \

 CKM_ECDSA_SHA1

sha1: CKM_SHA_1,CKM_SHA_1_HMAC,CKM_SHA_1_HMAC_GENERAL

sha2: CKM_SHA224,CKM_SHA224_HMAC,...CKM_SHA512_256_HMAC_GENERAL

md4: CKM_MD4

md5: CKM_MD5,CKM_MD5_HMAC,CKM_MD5_HMAC_GENERAL

rsa: CKM_RSA_PKCS,CKM_RSA_X_509,CKM_MD5_RSA_PKCS, \

 CKM_SHA1_RSA_PKCS,CKM_SHA224_RSA_PKCS,

CKM_SHA256_RSA_PKCS,CKM_SHA384_RSA_PKCS,CKM_SHA512_RSA_PKCS

swrand: No mechanisms presented.

n2rng/0: No mechanisms presented.

ncp/0: CKM_DSA,CKM_RSA_X_509,CKM_RSA_PKCS,CKM_RSA_PKCS_KEY_PAIR_GEN,

CKM_DH_PKCS_KEY_PAIR_GEN,CKM_DH_PKCS_DERIVE,CKM_EC_KEY_PAIR_GEN,

CKM_ECDH1_DERIVE,CKM_ECDSA

n2cp/0: CKM_DES_CBC,CKM_DES_CBC_PAD,CKM_DES_ECB,CKM_DES3_CBC, \

 ...CKM_SSL3_SHA1_MAC

■ Listing the available cryptographic mechanisms.
Policy determines which mechanisms are available for use. The administrator sets the
policy. An administrator can choose to disable mechanisms from a particular provider.
The -p option displays the list of mechanisms that are permitted by the policy that the
administrator has set.

% cryptoadm list -p [provider=provider]
User-level providers:

=====================

/usr/lib/security/$ISA/pkcs11_kernel.so: \

 all mechanisms are enabled.random is enabled.

/usr/lib/security/$ISA/pkcs11_softtoken.so: \

 all mechanisms are enabled, random is enabled.

/usr/lib/security/$ISA/pkcs11_tpm.so: all mechanisms are enabled.

Kernel providers:

==========================

des: all mechanisms are enabled.

Administering the Cryptographic Framework

38 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

aes: all mechanisms are enabled.

arcfour: all mechanisms are enabled.

blowfish: all mechanisms are enabled.

ecc: all mechanisms are enabled.

sha1: all mechanisms are enabled.

sha2: all mechanisms are enabled.

md4: all mechanisms are enabled.

md5: all mechanisms are enabled.

rsa: all mechanisms are enabled.

swrand: random is enabled.

n2rng/0: all mechanisms are enabled. random is enabled.

ncp/0: all mechanisms are enabled.

n2cp/0: all mechanisms are enabled.

The following examples show additional specific uses of the cryptoadm list command.

EXAMPLE 3-11 Listing Cryptographic Information of a Specific Provider

Specifying the provider in the cryptoadm options command limits the output only to
information that is applicable to the provider.

cryptoadm enable provider=dca/0 random

cryptoadm list -p provider=dca/0
dca/0: all mechanisms are enabled, except CKM_MD5, CKM_MD5_HMAC,...

random is enabled.

The following output shows only the mechanisms are enabled. The random generator continues
to be disabled.

cryptoadm list -p provider=dca/0
dca/0: all mechanisms are enabled, except CKM_MD5,CKM_MD5_HMAC,....

cryptoadm enable provider=dca/0 mechanism=all

cryptoadm list -p provider=dca/0
dca/0: all mechanisms are enabled. random is disabled.

The following output shows every feature and mechanism on the board is enabled.

cryptoadm list -p provider=dca/0
dca/0: all mechanisms ar enabled, except CKM_DES_ECB,CKM_DES3_ECB.

random is disabled.

cryptoadm enable provider=dca/0 all

cryptoadm list -p provider=dca/0
dca/0: all mechanisms are enabled. random is enabled.

EXAMPLE 3-12 Finding User-Level Cryptographic Mechanisms Only

In the following example, all mechanisms that the user-level library, pkcs11_softtoken, offers
are listed.

Administering the Cryptographic Framework

Chapter 3 • Cryptographic Framework 39

% cryptoadm list -m provider=/usr/lib/security/\

 $ISA/pkcs11_softtoken.so
Mechanisms:

CKM_DES_CBC

CKM_DES_CBC_PAD

CKM_DES_ECB

CKM_DES_KEY_GEN

CKM_DES_MAC_GENERAL

CKM_DES_MAC

…

CKM_ECDSA

CKM_ECDSA_SHA1

CKM_ECDH1_DERIVE

EXAMPLE 3-13 Determining Which Cryptographic Mechanisms Perform Which Functions

Mechanisms perform specific cryptographic functions, such as signing or key generation. The
-v -m options display every mechanism and its functions.

In this instance, the administrator wants to determine for which functions the CKM_ECDSA*
mechanisms can be used.

% cryptoadm list -vm
User-level providers:

=====================

Provider: /usr/lib/security/$ISA/pkcs11_kernel.so

Number of slots: 3

Slot #2

Description: ncp/0 Crypto Accel Asym 1.0

...

CKM_ECDSA 163 571 X . . . X . X

...

Provider: /usr/lib/security/$ISA/pkcs11_softtoken.so

...

CKM_ECDSA 112 571 X . X

CKM_ECDSA_SHA1 112 571 X . X

...

Kernel providers:

=================

...

ecc: CKM_EC_KEY_PAIR_GEN,CKM_ECDH1_DERIVE,CKM_ECDSA,CKM_ECDSA_SHA1

...

The listing indicates that these mechanisms are available from the following user-level
providers:

■ CKM_ECDSA and CKM_ECDSA_SHA1 – As software implementation in /usr/lib/security/
$ISA/pkcs11_softtoken.so library

■ CKM_ECDSA – Accelerated by ncp/0 Crypto Accel Asym 1.0 in /usr/lib/security/
$ISA/pkcs11_kernel.so library

How to Add a Software Provider

40 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

Each item in an entry represents a piece of information about the mechanism. For these ECC
mechanisms, the listing indicates the following:

■ Minimum length – 112 bytes
■ Maximum length – 571 bytes
■ Hardware – Is or is not available on hardware.
■ Encrypt – Is not used to encrypt data.
■ Decrypt – Is not used to decrypt data.
■ Digest – Is not used to create message digests.
■ Sign – Is used to sign data.
■ Sign + Recover – Is not used to sign data, where the data can be recovered from the

signature.
■ Verify – Is used to verify signed data.
■ Verify + Recover– Is not used to verify data that can be recovered from the signature.
■ Key generation – Is not used to generate a private key.
■ Pair generation – Is not used to generate a key pair.
■ Wrap – Is not used to wrap. that is, encrypt, an existing key.
■ Unwrap – Is not used to unwrap a wrapped key.
■ Derive – Is not used to derive a new key from a base key.
■ EC Caps – Absent EC capabilities that are not covered by previous items

Adding a Software Provider

The following procedure explains how to add providers to the system. You must become an
administrator who is assigned the Crypto Management rights profile. For more information,
see “Using Your Assigned Administrative Rights” in “Securing Users and Processes in Oracle
Solaris 11.2 ”.

How to Add a Software Provider

1. List the software providers that are available to the system.

% cryptoadm list
User-level providers:

Provider: /usr/lib/security/$ISA/pkcs11_kernel.so

Provider: /usr/lib/security/$ISA/pkcs11_softtoken.so

/usr/lib/security/$ISA/pkcs11_tpm.so: all mechanisms are enabled.

Kernel software providers:

des

aes

arcfour

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSSUPrbactask-28
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSSUPrbactask-28

How to Add a Software Provider

Chapter 3 • Cryptographic Framework 41

blowfish

camellia

sha1

sha2

md4

md5

rsa

swrand

n2rng/0

ncp/0

n2cp/0

2. Add the provider from a repository.

Existing provider software has been issued a certificate by Oracle.

3. Refresh the providers.

You need to refresh providers if you added a software provider, or if you added hardware and
specified policy for the hardware.

svcadm refresh svc:/system/cryptosvc

4. Locate the new provider on the list.

In this case, a new kernel software provider was installed.

cryptoadm list
…

Kernel software providers:

des

aes

arcfour

blowfish

camellia

ecc

sha1

sha2

md4

md5

rsa

swrand

sha3 <-- added provider
…

Example 3-14 Adding a User-Level Software Provider

In the following example, a signed PKCS #11 library is installed.

pkgadd -d /cdrom/cdrom0/PKCSNew
Answer the prompts

svcadm refresh system/cryptosvc

cryptoadm list
user-level providers:

==========================

How to Create a Boot Environment with FIPS 140 Enabled

42 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

/usr/lib/security/$ISA/pkcs11_kernel.so

/usr/lib/security/$ISA/pkcs11_softtoken.so

/usr/lib/security/$ISA/pkcs11_tpm.so

/opt/lib/$ISA/libpkcs11.so.1 <-- added provider

Developers who are testing a library with the Cryptographic Framework can install the library
manually.

cryptoadm install provider=/opt/lib/\$ISA/libpkcs11.so.1

Create a Boot Environment with FIPS 140 Enabled

By default, FIPS 140 mode is disabled in Oracle Solaris. In this procedure, you create a new
boot environment (BE) for FIPS 140 mode, then enable FIPS 140 and boot into the new BE. By
giving you a backup BE, this method enables you to quickly recover from system panics that
can result from FIPS 140 compliance tests.

For an overview about FIPS, see “Using a FIPS 140 Enabled System in Oracle Solaris 11.2
”. See, also, the cryptoadm(1M) man page and “Cryptographic Framework and FIPS
140” on page 13.

How to Create a Boot Environment with FIPS 140 Enabled

Before You Begin You must assume the root role. For more information, see “Using Your Assigned
Administrative Rights” in “Securing Users and Processes in Oracle Solaris 11.2 ”.

1. Determine if the system is in FIPS 140 mode.

% cryptoadm list fips-140
User-level providers:

=====================

/usr/lib/security/$ISA/pkcs11_softtoken: FIPS-140 mode is disabled.

Kernel software providers:

==========================

des: FIPS-140 mode is disabled.

aes: FIPS-140 mode is disabled.

ecc: FIPS-140 mode is disabled.

sha1: FIPS-140 mode is disabled.

sha2: FIPS-140 mode is disabled.

rsa: FIPS-140 mode is disabled.

swrand: FIPS-140 mode is disabled.

Kernel hardware providers:

=========================:

2. Create a new BE for your FIPS 140 version of the Cryptographic Framework.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIP
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIP
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mcryptoadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSSUPrbactask-28
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSSUPrbactask-28

How to Create a Boot Environment with FIPS 140 Enabled

Chapter 3 • Cryptographic Framework 43

Before you enable FIPS 140 mode, you must first create, activate, and boot a new BE by using
the beadm command. A FIPS 140-enabled system runs compliance tests that can cause a panic if
they fail. Therefore, it is important to have an available BE that you can boot to get your system
up and running while you debug issues with the FIPS 140 boundary.

a. Create a BE based on your current BE.

In this example, you create a BE named S11.1-FIPS.

beadm create S11.1-FIPS-140

b. Activate that BE.

beadm activate S11.1-FIPS-140

c. Reboot the system.

d. Enable FIPS 140 mode in the new BE.

cryptoadm enable fips-140

Note - This subcommand does not disable the non-FIPS 140 approved algorithms from the
user-level pkcs11_softtoken library and the kernel software providers. The consumers of the
framework are responsible for using only FIPS 140-approved algorithms.

For more information about the effects of FIPS 140 mode, see “Using a FIPS 140 Enabled
System in Oracle Solaris 11.2 ”. See, also, the cryptoadm(1M) man page.

3. When you want to run without FIPS 140 enabled, disable FIPS 140 mode.

You can reboot to the original BE or disable FIPS 140 in the current BE.

■ Boot to the original BE.

beadm list
BE Active Mountpoint Space Policy Created

-- ------ ---------- ----- ------ -------

S11.1 - - 48.22G static 2012-10-10 10:10

S11.1-FIPS-140 NR / 287.01M static 2012-11-18 18:18

beadm activate S11.1

beadm list
BE Active Mountpoint Space Policy Created

-- ------ ---------- ----- ------ -------

S11.1 R - 48.22G static 2012-10-10 10:10

S11.1-FIPS-140 N / 287.01M static 2012-11-18 18:18

reboot

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIP
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIP
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mcryptoadm-1m

How to Prevent the Use of a User-Level Mechanism

44 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

■ Disable FIPS 140 mode in the current BE and reboot.

cryptoadm disable fips-140

FIPS 140 mode remains in operation until the system is rebooted.

reboot

Preventing the Use of Mechanisms

If some of the cryptographic mechanisms from a library provider should not be used, you can
remove selected mechanisms. You might consider preventing the use of mechanisms if, for
example, the same mechanism in another library performs better, or if a security vulnerability is
being investigated.

If the Cryptographic Framework provides multiple modes of a provider such as AES, you
might remove a slow mechanism from use, or a corrupted mechanism. You might also use this
procedure to remove an algorithm with proven security vulnerabilities.

You can selectively disable mechanisms and the random number feature from a hardware
provider. To enable them again, see Example 3-22. The hardware in this example, the Sun
Crypto Accelerator 1000 board, provides a random number generator.

How to Prevent the Use of a User-Level Mechanism

Before You Begin You must become an administrator who is assigned the Crypto Management rights profile. For
more information, see “Using Your Assigned Administrative Rights” in “Securing Users and
Processes in Oracle Solaris 11.2 ”.

1. List the mechanisms that are offered by a particular user-level software provider.

% cryptoadm list -m provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so:

CKM_DES_CBC,CKM_DES_CBC_PAD,CKM_DES_ECB,CKM_DES_KEY_GEN,

CKM_DES3_CBC,CKM_DES3_CBC_PAD,CKM_DES3_ECB,CKM_DES3_KEY_GEN,

CKM_AES_CBC,CKM_AES_CBC_PAD,CKM_AES_ECB,CKM_AES_KEY_GEN,

…

2. List the mechanisms that are available for use.

$ cryptoadm list -p
user-level providers:

=====================

…

/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled.

random is enabled.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSSUPrbactask-28
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSSUPrbactask-28

How to Prevent the Use of a User-Level Mechanism

Chapter 3 • Cryptographic Framework 45

…

3. Disable the mechanisms that should not be used.

$ cryptoadm disable provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so \

> mechanism=CKM_DES_CBC,CKM_DES_CBC_PAD,CKM_DES_ECB

4. List the mechanisms that are available for use.

$ cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled,

except CKM_DES_ECB,CKM_DES_CBC_PAD,CKM_DES_CBC. random is enabled.

Example 3-15 Enabling a User-Level Software Provider Mechanism

In the following example, a disabled DES mechanism is again made available for use.

$ cryptoadm list -m provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so:

CKM_DES_CBC,CKM_DES_CBC_PAD,CKM_DES_ECB,CKM_DES_KEY_GEN,

CKM_DES3_CBC,CKM_DES3_CBC_PAD,CKM_DES3_ECB,CKM_DES3_KEY_GEN,

…

$ cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled,

except CKM_DES_ECB,CKM_DES_CBC_PAD,CKM_DES_CBC. random is enabled.

$ cryptoadm enable provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so \

> mechanism=CKM_DES_ECB

$ cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled,

except CKM_DES_CBC_PAD,CKM_DES_CBC. random is enabled.

Example 3-16 Enabling All User-Level Software Provider Mechanisms

In the following example, all mechanisms from the user-level library are enabled.

$ cryptoadm enable provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so all

$ cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled.

random is enabled.

Example 3-17 Permanently Removing a User-Level Library

In the following example, a libpkcs11.so.1 library from the /opt directory is removed.

$ cryptoadm uninstall provider=/opt/lib/\$ISA/libpkcs11.so.1

$ cryptoadm list
user-level providers:

/usr/lib/security/$ISA/pkcs11_kernel.so

/usr/lib/security/$ISA/pkcs11_softtoken.so

/usr/lib/security/$ISA/pkcs11_tpm.so

kernel providers:

…

How to Prevent the Use of a Kernel Software Mechanism

46 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

How to Prevent the Use of a Kernel Software Mechanism

Before You Begin You must become an administrator who is assigned the Crypto Management rights profile. For
more information, see “Using Your Assigned Administrative Rights” in “Securing Users and
Processes in Oracle Solaris 11.2 ”.

1. List the mechanisms that are offered by a particular kernel software provider.

$ cryptoadm list -m provider=aes
aes: CKM_AES_ECB,CKM_AES_CBC,CKM_AES_CTR,CKM_AES_CCM,CKM_AES_GCM,

CKM_AES_GMAC,CKM_AES_CFB128,CKM_AES_XTS,CKM_AES_XCBC_MAC

2. List the mechanisms that are available for use.

$ cryptoadm list -p provider=aes
aes: all mechanisms are enabled.

3. Disable the mechanism that should not be used.

$ cryptoadm disable provider=aes mechanism=CKM_AES_ECB

4. List the mechanisms that are available for use.

$ cryptoadm list -p provider=aes
aes: all mechanisms are enabled, except CKM_AES_ECB.

Example 3-18 Enabling a Kernel Software Provider Mechanism

In the following example, a disabled AES mechanism is again made available for use.

cryptoadm list -m provider=aes
aes: CKM_AES_ECB,CKM_AES_CBC,CKM_AES_CTR,CKM_AES_CCM,

CKM_AES_GCM,CKM_AES_GMAC,CKM_AES_CFB128,CKM_AES_XTS,CKM_AES_XCBC_MAC

$ cryptoadm list -p provider=aes
aes: all mechanisms are enabled, except CKM_AES_ECB.

$ cryptoadm enable provider=aes mechanism=CKM_AES_ECB

$ cryptoadm list -p provider=aes
aes: all mechanisms are enabled.

Example 3-19 Temporarily Removing Kernel Software Provider Availability

In the following example, the AES provider is temporarily removed from use. The unload
subcommand is useful to prevent a provider from being loaded automatically while the provider
is being uninstalled. For example, the unload subcommand might be used when modifying a
mechanism of this provider.

$ cryptoadm unload provider=aes

$ cryptoadm list
…

Kernel software providers:

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSSUPrbactask-28
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSSUPrbactask-28

How to Prevent the Use of a Kernel Software Mechanism

Chapter 3 • Cryptographic Framework 47

des

aes (inactive)
arcfour

blowfish

ecc

sha1

sha2

md4

md5

rsa

swrand

n2rng/0

ncp/0

n2cp/0

The AES provider is unavailable until the Cryptographic Framework is refreshed.

$ svcadm refresh system/cryptosvc

$ cryptoadm list
…

Kernel software providers:

des

aes
arcfour

blowfish

camellia

ecc

sha1

sha2

md4

md5

rsa

swrand

n2rng/0

ncp/0

n2cp/0

If a kernel consumer is using the kernel software provider, the software is not unloaded. An
error message is displayed and the provider continues to be available for use.

Example 3-20 Permanently Removing Software Provider Availability

In the following example, the AES provider is removed from use. Once removed, the AES
provider does not appear in the policy listing of kernel software providers.

$ cryptoadm uninstall provider=aes

$ cryptoadm list
…

Kernel software providers:

des

arcfour

blowfish

camellia

ecc

How to Disable Hardware Provider Mechanisms and Features

48 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

sha1

sha2

md4

md5

rsa

swrand

n2rng/0

ncp/0

n2cp/0

If a kernel consumer is using the kernel software provider, an error message is displayed and the
provider continues to be available for use.

Example 3-21 Reinstalling a Removed Kernel Software Provider

In the following example, the AES kernel software provider is reinstalled. To reinstall a
removed kernel provider, you must enumerate the mechanisms to be installed.

$ cryptoadm install provider=aes \

mechanism=CKM_AES_ECB,CKM_AES_CBC,CKM_AES_CTR,CKM_AES_CCM,

CKM_AES_GCM,CKM_AES_GMAC,CKM_AES_CFB128,CKM_AES_XTS,CKM_AES_XCBC_MAC

$ cryptoadm list
…

Kernel software providers:

des

aes

arcfour

blowfish

camellia

ecc

sha1

sha2

md4

md5

rsa

swrand

n2rng/0

ncp/0

n2cp/0

How to Disable Hardware Provider Mechanisms and Features

Before You Begin You must become an administrator who is assigned the Crypto Management rights profile. For
more information, see “Using Your Assigned Administrative Rights” in “Securing Users and
Processes in Oracle Solaris 11.2 ”.

Choose the mechanisms or feature to disable.

List the hardware provider.

cryptoadm list

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSSUPrbactask-28
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSSUPrbactask-28

How to Disable Hardware Provider Mechanisms and Features

Chapter 3 • Cryptographic Framework 49

...

Kernel hardware providers:

dca/0

■ Disable selected mechanisms.

cryptoadm list -m provider=dca/0
dca/0: CKM_RSA_PKCS, CKM_RSA_X_509, CKM_DSA, CKM_DES_CBC, CKM_DES3_CBC

random is enabled.

cryptoadm disable provider=dca/0 mechanism=CKM_DES_CBC,CKM_DES3_CBC

cryptoadm list -p provider=dca/0
dca/0: all mechanisms are enabled except CKM_DES_CBC,CKM_DES3_CBC.

random is enabled.

■ Disable the random number generator.

cryptoadm list -p provider=dca/0
dca/0: all mechanisms are enabled. random is enabled.

cryptoadm disable provider=dca/0 random

cryptoadm list -p provider=dca/0
dca/0: all mechanisms are enabled. random is disabled.

■ Disable all mechanisms. Do not disable the random number generator.

cryptoadm list -p provider=dca/0
dca/0: all mechanisms are enabled. random is enabled.

cryptoadm disable provider=dca/0 mechanism=all

cryptoadm list -p provider=dca/0
dca/0: all mechanisms are disabled. random is enabled.

■ Disable every feature and mechanism on the hardware.

cryptoadm list -p provider=dca/0
dca/0: all mechanisms are enabled. random is enabled.

cryptoadm disable provider=dca/0 all

cryptoadm list -p provider=dca/0
dca/0: all mechanisms are disabled. random is disabled.

Example 3-22 Enabling Mechanisms and Features on a Hardware Provider

In the following examples, disabled mechanisms on a piece of hardware are selectively enabled.

cryptoadm list -p provider=dca/0
dca/0: all mechanisms are enabled except CKM_DES_ECB,CKM_DES3_ECB

.

random is enabled.

cryptoadm enable provider=dca/0 mechanism=CKM_DES3_ECB

cryptoadm list -p provider=dca/0
dca/0: all mechanisms are enabled except CKM_DES_ECB.

random is enabled.

In the following example, only the random generator is enabled.

How to Refresh or Restart All Cryptographic Services

50 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

cryptoadm list -p provider=dca/0
dca/0: all mechanisms are enabled, except CKM_MD5,CKM_MD5_HMAC,….

random is disabled.

cryptoadm enable provider=dca/0 random

cryptoadm list -p provider=dca/0
dca/0: all mechanisms are enabled, except CKM_MD5,CKM_MD5_HMAC,….

random is enabled.

In the following example, only the mechanisms are enabled. The random generator continues to
be disabled.

cryptoadm list -p provider=dca/0
dca/0: all mechanisms are enabled, except CKM_MD5,CKM_MD5_HMAC,….

random is disabled.

cryptoadm enable provider=dca/0 mechanism=all

cryptoadm list -p provider=dca/0
dca/0: all mechanisms are enabled. random is disabled.

In the following example, every feature and mechanism on the board is enabled.

cryptoadm list -p provider=dca/0
dca/0: all mechanisms are enabled, except CKM_DES_ECB,CKM_DES3_ECB.

random is disabled.

cryptoadm enable provider=dca/0 all

cryptoadm list -p provider=dca/0
dca/0: all mechanisms are enabled. random is enabled.

Refreshing or Restarting All Cryptographic
Services

By default, the Cryptographic Framework is enabled. When the kcfd daemon fails for any
reason, the Service Management Facility (SMF) can be used to restart cryptographic services.
For more information, see the smf(5) and svcadm(1M) man pages. For the effect on zones of
restarting cryptographic services, see “Cryptographic Services and Zones” on page 13.

How to Refresh or Restart All Cryptographic Services

Before You Begin You must become an administrator who is assigned the Crypto Management rights profile. For
more information, see “Using Your Assigned Administrative Rights” in “Securing Users and
Processes in Oracle Solaris 11.2 ”.

1. Check the status of cryptographic services.

% svcs cryptosvc
STATE STIME FMRI

offline Dec_09 svc:/system/cryptosvc:default

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN5smf-5
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Msvcadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSSUPrbactask-28
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSSUPrbactask-28

How to Refresh or Restart All Cryptographic Services

Chapter 3 • Cryptographic Framework 51

2. Enable cryptographic services.

svcadm enable svc:/system/cryptosvc

Example 3-23 Refreshing Cryptographic Services

In the following example, cryptographic services are refreshed in the global zone. Therefore,
kernel-level cryptographic policy in every non-global zone is also refreshed.

svcadm refresh system/cryptosvc

52 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

Chapter 4 • Key Management Framework 53

 4 ♦ ♦ ♦ C H A P T E R 4

Key Management Framework

The Key Management Framework (KMF) feature of Oracle Solaris provides tools and
programming interfaces for managing public key objects. Public key objects include X.509
certificates and public/private key pairs. The formats for storing these objects can vary.
KMF also provides a tool for managing policies that define the use of X.509 certificates by
applications. KMF supports third-party plugins.
This chapter covers the following topics:

■ “Managing Public Key Technologies” on page 53
■ “Key Management Framework Utilities” on page 54
■ “Using the Key Management Framework” on page 55

Managing Public Key Technologies

KMF centralizes the management of public key technologies (PKI). Oracle Solaris has several
different applications that make use of PKI technologies. Each application provides its own
programming interfaces, key storage mechanisms, and administrative utilities. If an application
provides a policy enforcement mechanism, the mechanism applies to that application only.
With KMF, applications use a unified set of administrative tools, a single set of programming
interfaces, and a single policy enforcement mechanism. These features manage the PKI needs
of all applications that adopt these interfaces.
KMF unifies the management of public key technologies with the following interfaces:

■ pktool command – Manages PKI objects, such as certificates, in a variety of keystores.
■ kmfcfg command – Manages the PKI policy database and third-party plugins.

PKI policy decisions include operations such as the validation method for an operation.
Also, PKI policy can limit the scope of a certificate. For example, PKI policy might assert
that a certificate can be used only for specific purposes. Such a policy would prevent that
certificate from being used for other requests.

■ KMF library – Contains programming interfaces that abstract the underlying keystore
mechanism.

Key Management Framework Utilities

54 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

Applications do not have to choose one particular keystore mechanism, but can migrate
from one mechanism to another mechanism. The supported keystores are PKCS #11,
NSS, and OpenSSL. The library includes a pluggable framework so that new keystore
mechanisms can be added. Therefore, applications that use the new mechanisms would
require only minor modifications to use a new keystore.

Key Management Framework Utilities

KMF provides methods for managing the storage of keys and provides the overall policy for
the use of those keys. KMF can manage the policy, keys, and certificates for three public key
technologies:

■ Tokens from PKCS #11 providers, that is, from the Cryptographic Framework
■ NSS, that is, Network Security Services
■ OpenSSL, a file-based keystore

The kmfcfg tool can create, modify, or delete KMF policy entries. The tool also manages
plugins to the framework. KMF manages keystores through the pktool command. For more
information, see the kmfcfg(1) and pktool(1) man pages, and the following sections.

KMF Policy Management

KMF policy is stored in a database. This policy database is accessed internally by all
applications that use the KMF programming interfaces. The database can constrain the use of
the keys and certificates that are managed by the KMF library. When an application attempts to
verify a certificate, the application checks the policy database. The kmfcfg command modifies
the policy database.

KMF Plugin Management

The kmfcfg command provides the following subcommands for plugins:

■ list plugin – Lists plugins that are managed by KMF.
■ install plugin – Installs the plugin by the module's path name and creates a keystore for

the plugin. To remove the plugin from KMF, you remove the keystore.
■ uninstall plugin – Removes the plugin from KMF by removing its keystore.
■ modify plugin – Enables the plugin to be run with an option that is defined in the code for

the plugin, such as debug.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1kmfcfg-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1pktool-1

Using the Key Management Framework

Chapter 4 • Key Management Framework 55

For more information, see the kmfcfg(1) man page. For the procedure, see “How to Manage
Third-Party Plugins in KMF” on page 68.

KMF Keystore Management

KMF manages the keystores for three public key technologies, PKCS #11 tokens, NSS, and
OpenSSL. For all of these technologies, the pktool command enables you to do the following:

■ Generate a self-signed certificate
■ Generate a certificate request
■ Generate a symmetric key
■ Generate a public/private key pair
■ Generate a PKCS #10 certificate signing request (CSR) to be sent to an external certificate

authority (CA) to be signed
■ Sign a PKCS #10 CSR
■ Import objects into the keystore
■ List the objects in the keystore
■ Delete objects from the keystore
■ Download a CRL

For the PKCS #11 and NSS technologies, the pktool command also enables you to set a PIN by
generating a passphrase for the keystore or for an object in the keystore.

For examples of using the pktool utility, see the pktool(1) man page and Table 4-1.

Using the Key Management Framework

This section describes how to use the pktool command to manage your public key objects, such
as passwords, passphrases, files, keystores, certificates, and CRLs.

The Key Management Framework (KMF) enables you to centrally manage public key
technologies.

TABLE 4-1 Using the Key Management Framework Task Map

Task Description For Instructions

Create a certificate. Creates a certificate for use by PKCS #11, NSS, or
OpenSSL.

“How to Create a Certificate
by Using the pktool gencert
Command” on page 56

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1kmfcfg-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1pktool-1

How to Create a Certificate by Using the pktool gencert Command

56 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

Task Description For Instructions

Export a certificate. Creates a file with the certificate and its supporting
keys. The file can be protected with a password.

“How to Export a Certificate
and Private Key in PKCS #12
Format” on page 59

Imports a certificate from another system. “How to Import a Certificate Into
Your Keystore” on page 58

Import a certificate.

Imports a certificate in PKCS #12 format from another
system.

Example 4-2

Generate a
passphrase.

Generates a passphrase for access to a PKCS #11
keystore or an NSS keystore.

“How to Generate a Passphrase
by Using the pktool setpin
Command” on page 61

Generate a symmetric
key.

Generates symmetric keys for use in encrypting files,
in creating a MAC of a file, and for applications.

“How to Generate a Symmetric
Key by Using the pktool
Command” on page 22

Generate a key pair. Generates a public/private key pair for use with
applications.

“How to Generate a Key Pair by
Using the pktool genkeypair
Command” on page 62

Generate a PKCS #10
CSR.

Generates a PKCS #10 certificate signing request
(CSR) for an external certificate authority (CA) to
sign.

pktool(1) man page

Sign a PKCS #10
CSR.

Signs a PKCS #10 CSR. “How to Sign a Certificate Request
by Using the pktool signcsr
Command” on page 66

Add a plugin to
KMF.

Installs, modifies, and lists a plugin. Also, removes the
plugin from the KMF.

“How to Manage Third-Party
Plugins in KMF” on page 68

How to Create a Certificate by Using the
pktool gencert Command

This procedure creates a self-signed certificate and stores the certificate in the PKCS #11
keystore. As a part of this operation, an RSA public/private key pair is also created. The private
key is stored in the keystore with the certificate.

1. Generate a self-signed certificate.

% pktool gencert [keystore=keystore] label=label-name \
subject=subject-DN serial=hex-serial-number keytype=rsa/dsa keylen=key-size

keystore=keystore Specifies the keystore by type of public key object. The value can be nss,
pkcs11, or file. This keyword is optional.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1pktool-1

How to Create a Certificate by Using the pktool gencert Command

Chapter 4 • Key Management Framework 57

label=label-name Specifies a unique name that the issuer gives to the certificate.

subject=subject-
DN

Specifies the distinguished name for the certificate.

serial=hex-serial-
number

Specifies the serial number in hexadecimal format. The issuer of the
certificate chooses the number, such as 0x0102030405.

keytype=key type Optional variable that specifies the type of private key associated with
the certificate. Check the pktool(1) man page to find available key
types for the selected keystore.
To use a FIPS 140-approved key, check the approved key types at “FIPS
140 Algorithms in the Cryptographic Framework” in “Using a FIPS 140
Enabled System in Oracle Solaris 11.2 ”.

keylen=key size Optional variable that specifies the length of the private key associated
with the certificate.
To use a FIPS 140-approved key, check the approved key lengths for the
key type that you selected at “FIPS 140 Algorithms in the Cryptographic
Framework” in “Using a FIPS 140 Enabled System in Oracle Solaris 11.2
”.

2. Verify the contents of the keystore.

% pktool list
Found number certificates.
1. (X.509 certificate)

Label: label-name
ID: fingerprint that binds certificate to private key
Subject: subject-DN
Issuer: distinguished-name
Serial: hex-serial-number
n. ...

This command lists all certificates in the keystore. In the following example, the keystore
contains one certificate only.

Example 4-1 Creating a Self-Signed Certificate by Using pktool

In the following example, a user at My Company creates a self-signed certificate and stores the
certificate in a keystore for PKCS #11 objects. The keystore is initially empty. If the keystore
has not been initialized, the PIN for the softtoken is changeme, and you can use the pktool
setpin command to reset the PIN. Note that a FIPS-approved key type and key length, RSA
2048, is specified in the command options.

% pktool gencert keystore=pkcs11 label="My Cert" \

subject="C=US, O=My Company, OU=Security Engineering Group, CN=MyCA" \

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSFIPfips-ok-1

How to Import a Certificate Into Your Keystore

58 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

serial=0x000000001 keytype=rsa keylen=2048
Enter pin for Sun Software PKCS#11 softtoken: Type PIN for token

% pktool list
No. Key Type Key Len. Key Label

--

Asymmetric public keys:

1 RSA My Cert

Certificates:

1 X.509 certificate

Label: My Cert

ID: d2:7e:20:04:a5:66:e6:31:90:d8:53:28:bc:ef:55:55:dc:a3:69:93

Subject: C=US, O=My Company, OU=Security Engineering Group, CN=MyCA

Issuer: C=US, O=My Company, OU=Security Engineering Group, CN=MyCA

...

...

Serial: 0x00000010

...

How to Import a Certificate Into Your Keystore

This procedure describes how to import a file with PKI information that is encoded with PEM
or with raw DER into your keystore. For an export procedure, see Example 4-4.

1. Import the certificate.

% pktool import keystore=keystore infile=infile-name label=label-name

2. If you are importing private PKI objects, provide passwords when prompted.

a. At the prompt, type the password for the file.

If you are importing PKI information that is private, such as an export file in PKCS #12
format, the file requires a password. The creator of the file that you are importing provides
you with the PKCS #12 password.

Enter password to use for accessing the PKCS12 file: Type PKCS #12 password

b. At the prompt, type the password for your keystore.
Enter pin for Sun Software PKCS#11 softtoken: Type PIN for token

3. Verify the contents of the keystore.

% pktool list
Found number certificates.
1. (X.509 certificate)

Label: label-name
ID: fingerprint that binds certificate to private key
Subject: subject-DN
Issuer: distinguished-name

How to Export a Certificate and Private Key in PKCS #12 Format

Chapter 4 • Key Management Framework 59

Serial: hex-serial-number

2. ...

Example 4-2 Importing a PKCS #12 File Into Your Keystore

In the following example, the user imports a PKCS #12 file from a third party. The pktool
import command extracts the private key and the certificate from the gracedata.p12 file and
stores them in the user's preferred keystore.

% pktool import keystore=pkcs11 infile=gracedata.p12 label=GraceCert
Enter password to use for accessing the PKCS12 file: Type PKCS #12 password
Enter pin for Sun Software PKCS#11 softtoken: Type PIN for token
Found 1 certificate(s) and 1 key(s) in gracedata.p12

% pktool list
No. Key Type Key Len. Key Label

--

Asymmetric public keys:

1 RSA GraceCert

Certificates:

1 X.509 certificate

Label: GraceCert

ID: 71:8f:11:f5:62:10:35:c2:5d:b4:31:38:96:04:80:25:2e:ad:71:b3

Subject: C=US, O=My Company, OU=Security Engineering Group, CN=MyCA

Issuer: C=US, O=My Company, OU=Security Engineering Group, CN=MyCA

Serial: 0x00000010

Example 4-3 Importing an X.509 Certificate Into Your Keystore

In the following example, the user imports an X.509 certificate in PEM format into the user's
preferred keystore. This public certificate is not protected with a password. The user's public
keystore is also not protected by a password.

% pktool import keystore=pkcs11 infile=somecert.pem label="TheirCompany Root Cert"

% pktool list
No. Key Type Key Len. Key Label

Certificates:

1 X.509 certificate

Label: TheirCompany Root Cert

ID: ec:a2:58:af:83:b9:30:9d:de:b2:06:62:46:a7:34:49:f1:39:00:0e

Subject: C=US, O=TheirCompany, OU=Security, CN=TheirCompany Root CA

Issuer: C=US, O=TheirCompany, OU=Security, CN=TheirCompany Root CA

Serial: 0x00000001

How to Export a Certificate and Private Key in
PKCS #12 Format

You can create a file in PKCS #12 format to export private keys and their associated X.509
certificate to other systems. Access to the file is protected by a password.

How to Export a Certificate and Private Key in PKCS #12 Format

60 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

1. Find the certificate to export.

% pktool list
Found number certificates.
1. (X.509 certificate)

Label: label-name
ID: fingerprint that binds certificate to private key
Subject: subject-DN
Issuer: distinguished-name
Serial: hex-serial-number

2. ...

2. Export the keys and certificate.

Use the keystore and label from the pktool list command. Provide a file name for the export
file. If the name contains a space, surround the name with double quotes.

% pktool export keystore=keystore outfile=outfile-name label=label-name

3. Protect the export file with a password.

At the prompt, type the current password for the keystore. At this point, you create a password
for the export file. The receiver must provide this password when importing the file.

Enter pin for Sun Software PKCS#11 softtoken: Type PIN for token
Enter password to use for accessing the PKCS12 file: Create PKCS #12 password

Tip - Send the password separately from the export file. Best practice suggests that you provide
the password out of band, such as during a telephone call.

Example 4-4 Exporting a Certificate and Private Key in PKCS #12 Format

In the following example, a user exports the private keys with their associated X.509 certificate
into a standard PKCS #12 file. This file can be imported into other keystores. The PKCS #11
password protects the source keystore. The PKCS #12 password is used to protect private data
in the PKCS #12 file. This password is required to import the file.

% pktool list
No. Key Type Key Len. Key Label

--

Asymmetric public keys:

1 RSA My Cert

Certificates:

1 X.509 certificate

Label: My Cert

ID: d2:7e:20:04:a5:66:e6:31:90:d8:53:28:bc:ef:55:55:dc:a3:69:93

Subject: C=US, O=My Company, OU=Security Engineering Group, CN=MyCA

Issuer: C=US, O=My Company, OU=Security Engineering Group, CN=MyCA

Serial: 0x000001

% pktool export keystore=pkcs11 outfile=mydata.p12 label="My Cert"

How to Generate a Passphrase by Using the pktool setpin Command

Chapter 4 • Key Management Framework 61

Enter pin for Sun Software PKCS#11 softtoken: Type PIN for token
Enter password to use for accessing the PKCS12 file: Create PKCS #12 password

The user then telephones the recipient and provides the PKCS #12 password.

How to Generate a Passphrase by Using the
pktool setpin Command

You can generate a passphrase for an object in a keystore, and for the keystore itself. The
passphrase is required to access the object or keystore. For an example of generating a
passphrase for an object in a keystore, see Example 4-4.

1. Generate a passphrase for access to a keystore.

% pktool setpin keystore=nss|pkcs11 [dir=directory]

The default directory for key storage is /var/username.

The initial password for a PKCS #11 keystore is changeme. The initial password for an NSS
keystore is an empty password.

2. Answer the prompts.

When prompted for the current token passphrase, type the token PIN for a PKCS #11 keystore,
or press the Return key for an NSS keystore.

Enter current token passphrase: Type PIN or press the Return key
Create new passphrase: Type the passphrase that you want to use
Re-enter new passphrase: Retype the passphrase
Passphrase changed.

The keystore is now protected by passphrase. If you lose the passphrase, you lose access to the
objects in the keystore.

3. (Optional) Display a list of tokens.

pktool tokens

The output depends on whether the metaslot is enabled. For more information about the
metaslot, see “Concepts in the Cryptographic Framework” on page 9.

■ If the metaslot is enabled, the pktools token command generates output similar to the
following:

ID Slot Name Token Name Flags

-- --------- ---------- -----

0 Sun Metaslot Sun Metaslot

1 Sun Crypto Softtoken Sun Software PKCS#11 softtoken LIX

How to Generate a Key Pair by Using the pktool genkeypair Command

62 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

2 PKCS#11 Interface for TPM TPM LXS

■ If the metaslot is disabled, the pktools token command generates output similar to the
following:

ID Slot Name Token Name Flags

-- --------- ---------- -----

1 Sun Crypto Softtoken Sun Software PKCS#11 softtoken LIX

2 PKCS#11 Interface for TPM TPM LXS

In the two output versions, flags can be any combination of the following:

■ L – login required
■ I – initialized
■ X – User PIN expired
■ S – SO PIN expired

Example 4-5 Protecting a Keystore With a Passphrase

The following example shows how to set the passphrase for an NSS database. Because no
passphrase has been created, the user presses the Return key at the first prompt.

% pktool setpin keystore=nss dir=/var/nss
Enter current token passphrase: Press the Return key
Create new passphrase: has8n0NdaH

Re-enter new passphrase: has8n0NdaH
Passphrase changed.

How to Generate a Key Pair by Using the pktool
genkeypair Command

Some applications require a public/private key pair. In this procedure, you create these key pairs
and store them.

1. (Optional) If you plan to use a keystore, create the keystore.

■ To create and initialize a PKCS #11 keystore, see “How to Generate a
Passphrase by Using the pktool setpin Command” on page 61.

■ To create and initialize an NSS keystore, see Example 4-5.

2. Create the key pair.

Use one of the following methods.

How to Generate a Key Pair by Using the pktool genkeypair Command

Chapter 4 • Key Management Framework 63

■ Create the key pair and store the key pair in a file.

File-based keys are created for applications that read keys directly from files on the disk.
Typically, applications that directly use OpenSSL cryptographic libraries require that you
store the keys and certificates for the application in files.

Note - The file keystore does not support elliptic curve (ec) keys and certificates.

% pktool genkeypair keystore=file outkey=key-filename \
[format=der|pem] [keytype=rsa|dsa] [keylen=key-size]

keystore=file

The value file specifies the file type of storage location for the key.

outkey=key-filename

Specifies the name of the file where the key pair is stored.

format=der|pem

Specifies the encoding format of the key pair. der output is binary, and pem output is
ASCII.

keytype=rsa|dsa

Specifies the type of key pair that can be stored in a file keystore. For definitions, see
DSA and RSA.

keylen=key-size

Specifies the length of the key in bits. The number must be divisible by 8. To
determine possible key sizes, use the cryptoadm list -vm command.

■ Create the key pair and store it in a PKCS #11 keystore.

You must complete Step 1 before using this method.

The PKCS #11 keystore is used to store objects on a hardware device. The device could
be a Sun Crypto Accelerator 6000 card, a trusted platform module (TPM) device, or a
smart card that is plugged into the Cryptographic Framework. PKCS #11 can also be used
to store objects in the softtoken, or software-based token, which stores the objects in a
private subdirectory on the disk. For more information, see the pkcs11_softtoken(5)
man page.

You can retrieve the key pair from the keystore by a label that you specify.

% pktool genkeypair label=key-label \
[token=token[:manuf[:serial]]] \

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN5pkcs11-softtoken-5

How to Generate a Key Pair by Using the pktool genkeypair Command

64 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

[keytype=rsa|dsa|ec] [curve=ECC-Curve-Name]]\
[keylen=key-size] [listcurves]

label=key-label

Specifies a label for the key pair. The key pair can be retrieved from the keystore by
its label.

token=token[:manuf[:serial]]

Specifies the token name. By default, the token name is Sun Software PKCS#11
softtoken.

keytype=rsa|dsa|ec [curve=ECC-Curve-Name]

Specifies the keypair type. For the elliptic curve (ec) type, optionally specifies a curve
name. Curve names are listed as output to the listcurves option.

keylen=key-size

Specifies the length of the key in bits. The number must be divisible by 8.

listcurves

Lists the elliptic curve names that can be used as values to the curve= option for an ec
key type.

■ Generate the key pair and store it in an NSS keystore.

The NSS keystore is used by servers that rely on NSS as their primary cryptographic
interface.

You must complete Step 1 before using this method.

% pktool keystore=nss genkeypair label=key-nickname \
[token=token[:manuf[:serial]]] \
[dir=directory-path] [prefix=database-prefix] \
[keytype=rsa|dsa|ec] [curve=ECC-Curve-Name]] \
[keylen=key-size] [listcurves]

keystore=nss

The value nss specifies the NSS type of storage location for the key.

label=nickname

Specifies a label for the key pair. The key pair can be retrieved from the keystore by
its label.

token=token[:manuf[:serial]]

Specifies the token name. By default, the token is Sun Software PKCS#11
softtoken.

How to Generate a Key Pair by Using the pktool genkeypair Command

Chapter 4 • Key Management Framework 65

dir=directory

Specifies the directory path to the NSS database. By default, directory is the current
directory.

prefix=database-prefix

Specifies the prefix to the NSS database. The default is no prefix.

keytype=rsa|dsa|ec [curve=ECC-Curve-Name]

Specifies the keypair type. For the elliptic curve type, optionally specifies a curve
name. Curve names are listed as output to the listcurves option.

keylen=key-size

Specifies the length of the key in bits. The number must be divisible by 8.

listcurves

Lists the elliptic curve names that can be used as values to the curve= option for an ec
key type.

3. (Optional) Verify that the key exists.

Use one of the following commands, depending on where you stored the key:

■ Verify the key in the key-filename file.

% pktool list keystore=file objtype=key infile=key-filename
Found n keys.
Key #1 - keytype:location (keylen)

■ Verify the key in the PKCS #11 keystore.

$ pktool list objtype=key
Enter PIN for keystore:
Found n keys.
Key #1 - keytype:location (keylen)

■ Verify the key in the NSS keystore.

% pktool list keystore=nss dir=directory objtype=key

Example 4-6 Creating a Key Pair by Using the pktool Command

In the following example, a user creates a PKCS #11 keystore for the first time. After
determining the key sizes for RSA key pairs, the user then generates a key pair for an
application. Finally, the user verifies that the key pair is in the keystore. The user notes that
the second instance of the RSA key pair can be stored on hardware. Because the user does not
specify a token argument, the key pair is stored as a Sun Software PKCS#11 softtoken.

How to Sign a Certificate Request by Using the pktool signcsr Command

66 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

pktool setpin
Create new passphrase:

Re-enter new passphrase: Retype password
Passphrase changed.

% cryptoadm list -vm | grep PAIR
...

CKM_DSA_KEY_PAIR_GEN 512 3072 X

CKM_RSA_PKCS_KEY_PAIR_GEN 256 8192 X

...

CKM_RSA_PKCS_KEY_PAIR_GEN 256 2048 X X

ecc: CKM_EC_KEY_PAIR_GEN,CKM_ECDH1_DERIVE,CKM_ECDSA,CKM_ECDSA_SHA1

% pktool genkeypair label=specialappkeypair keytype=rsa keylen=2048
Enter PIN for Sun Software PKCS#11 softtoken : Type password

% pktool list
Enter PIN for Sun Software PKCS#11 softtoken : Type password
No. Key Type Key Len. Key Label

--

Asymmetric public keys:

1 RSA specialappkeypair

Example 4-7 Creating a Key Pair That Uses the Elliptic Curve Algorithm

In the following example, a user adds an elliptic curve (ec) key pair to the keystore, specifies a
curve name, and verifies that the key pair is in the keystore.

% pktool genkeypair listcurves
secp112r1, secp112r2, secp128r1, secp128r2, secp160k1

.

.

.

c2pnb304w1, c2tnb359v1, c2pnb368w1, c2tnb431r1, prime192v2

prime192v3

% pktool genkeypair label=eckeypair keytype=ec curves=c2tnb431r1

% pktool list
Enter PIN for Sun Software PKCS#11 softtoken : Type password
No. Key Type Key Len. Key Label

--

Asymmetric public keys:

1 ECDSA eckeypair

How to Sign a Certificate Request by Using the
pktool signcsr Command

This procedure is used to sign a PKCS #10 certificate signing request (CSR). The CSR can be
in PEM or DER format. The signing process issues an X.509 v3 certificate. To generate a PKCS
#10 CSR, see the pktool(1) man page.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1pktool-1

How to Sign a Certificate Request by Using the pktool signcsr Command

Chapter 4 • Key Management Framework 67

Before You Begin This procedure assumes that you are a certificate authority (CA), you have received a CSR, and
it is stored in a file.

1. Collect the following information for the required arguments to the pktool
signcsr command:

signkey If you have stored the signer's key in a PKCS #11 keystore, signkey is
the label that retrieves this private key.
If you have stored the signer's key in an NSS keystore or a file keystore,
signkey is the file name that holds this private key.

csr Specifies the file name of the CSR.

serial Specifies the serial number of the signed certificate.

outcer Specifies the file name for the signed certificate.

issuer Specifies your CA issuer name in distinguished name (DN) format.

For information about optional arguments to the signcsr subcommand, see the pktool(1)
man page.

2. Sign the request and issue the certificate.

For example, the following command signs the certificate with the signer's key from the
PKCS #11 repository:

pktool signcsr signkey=CASigningKey \

csr=fromExampleCoCSR \

serial=0x12345678 \

outcert=ExampleCoCert2010 \

issuer="O=Oracle Corporation, \

OU=Oracle Solaris Security Technology, L=Redwood City, ST=CA, C=US, \

CN=rootsign Oracle"

The following command signs the certificate with the signer's key from a file:

pktool signcsr signkey=CASigningKey \

csr=fromExampleCoCSR \

serial=0x12345678 \

outcert=ExampleCoCert2010 \

issuer="O=Oracle Corporation, \

OU=Oracle Solaris Security Technology, L=Redwood City, ST=CA, C=US, \

CN=rootsign Oracle"

3. Send the certificate to the requester.

You can use email, a web site, or another mechanism to deliver the certificate to the requester.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1pktool-1

How to Manage Third-Party Plugins in KMF

68 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

For example, you could use email to send the ExampleCoCert2010 file to the requester.

How to Manage Third-Party Plugins in KMF

You identify your plugin by giving it a keystore name. When you add the plugin to KMF, the
software identifies it by its keystore name. The plugin can be defined to accept an option. This
procedure includes how to remove the plugin from KMF.

1. Install the plugin.

% /usr/bin/kmfcfg install keystore=keystore-name \
modulepath=path-to-plugin [option="option-string"]

where

keystore-name Specifies a unique name for the keystore that you provide.

path-to-plugin Specifies the full path to the shared library object for the KMF plugin.

option-string Specifies an optional argument to the shared library object.

2. List the plugins.

% kmfcfg list plugin
keystore-name:path-to-plugin [(built-in)] | [;option=option-string]

3. To remove the plugin, uninstall it and verify its removal.

% kmfcfg uninstall keystore=keystore-name
% kmfcfg plugin list

Example 4-8 Calling a KMF Plugin With an Option

In the following example, the administrator stores a KMF plugin in a site-specific directory. The
plugin is defined to accept a debug option. The administrator adds the plugin and verifies that
the plugin is installed.

/usr/bin/kmfcfg install keystore=mykmfplug \

modulepath=/lib/security/site-modules/mykmfplug.so

kmfcfg list plugin
KMF plugin information:

pkcs11:kmf_pkcs11.so.1 (built-in)

file:kmf_openssl.so.1 (built-in)

nss:kmf_nss.so.1 (built-in)

mykmfplug:/lib/security/site-modules/mykmfplug.so

kmfcfg modify plugin keystore=mykmfplug option="debug"

How to Manage Third-Party Plugins in KMF

Chapter 4 • Key Management Framework 69

kmfcfg list plugin
KMF plugin information:

...

mykmfplug:/lib/security/site-modules/mykmfplug.so;option=debug

The plugin now runs in debugging mode.

70 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

Glossary 71

Security Glossary

Access
Control List
(ACL)

An access control list (ACL) provides finer-grained file security than traditional UNIX file
protection provides. For example, an ACL enables you to allow group read access to a file,
while allowing only one member of that group to write to the file.

admin
principal

A user principal with a name of the form username/admin (as in jdoe/admin). An admin
principal can have more privileges (for example, to change policies) than a regular user
principal. See also principal name, user principal.

AES Advanced Encryption Standard. A symmetric 128-bit block data encryption technique. The
U.S. government adopted the Rijndael variant of the algorithm as its encryption standard in
October 2000. AES replaces user principal encryption as the government standard.

algorithm A cryptographic algorithm. This is an established, recursive computational procedure that
encrypts or hashes input.

application
server

See network application server.

asynchronous
audit event

Asynchronous events are the minority of system events. These events are not associated with
any process, so no process is available to be blocked and later woken up. Initial system boot
and PROM enter and exit events are examples of asynchronous events.

audit files Binary audit logs. Audit files are stored separately in an audit file system.

audit policy The global and per-user settings that determine which audit events are recorded. The global
settings that apply to the audit service typically affect which pieces of optional information are
included in the audit trail. Two settings, cnt and ahlt, affect the operation of the system when
the audit queue fills. For example, audit policy might require that a sequence number be part of
every audit record.

audit trail The collection of all audit files from all hosts.

authenticated
rights profile

A rights profile that requires the assigned user or role to type a password before executing an
operation from the profile. This behavior is similar to sudo behavior. The length of time that
the password is valid is configurable.

authentication The process of verifying the claimed identity of a principal.

authenticator

72 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

authenticator Authenticators are passed by clients when requesting tickets (from a KDC) and services (from
a server). They contain information that is generated by using a session key known only by the
client and server, that can be verified as of recent origin, thus indicating that the transaction is
secure. When used with a ticket, an authenticator can be used to authenticate a user principal.
An authenticator includes the principal name of the user, the IP address of the user's host, and
a time stamp. Unlike a ticket, an authenticator can be used only once, usually when access to a
service is requested. An authenticator is encrypted by using the session key for that client and
that server.

authorization 1. In Kerberos, the process of determining if a principal can use a service, which objects the
principal is allowed to access, and the type of access that is allowed for each object.

2. In user rights management, a right that can be assigned to a role or user (or embedded in a
rights profile) for performing a class of operations that are otherwise prohibited by security
policy. Authorizations are enforced at the user application level, not in the kernel.

basic set The set of privileges that are assigned to a user's process at login. On an unmodified system,
each user's initial inheritable set equals the basic set at login.

Blowfish A symmetric block cipher algorithm that takes a variable-length key from 32 bits to 448 bits.
Its author, Bruce Schneier, claims that Blowfish is optimized for applications where the key
does not change often.

certificate A public key certificate is a set of data that encodes a public key value, including some
information about the generation of the certificate, such as a name and who signed it, a hash or
checksum of the certificate, and a digital signature of the hash. Together, these values form the
certificate. The digital signature ensures that the certificate has not been modified.

For more information, see key.

client Narrowly, a process that makes use of a network service on behalf of a user; for example, an
application that uses rlogin. In some cases, a server can itself be a client of some other server
or service.

More broadly, a host that a) receives a Kerberos credential, and b) makes use of a service that is
provided by a server.

Informally, a principal that makes use of a service.

client
principal

(RPCSEC_GSS API) A client (a user or an application) that uses RPCSEC_GSS-secured
network services. Client principal names are stored in the form of rpc_gss_principal_t
structures.

clock skew The maximum amount of time that the internal system clocks on all hosts that are participating
in the Kerberos authentication system can differ. If the clock skew is exceeded between any of
the participating hosts, requests are rejected. Clock skew can be specified in the krb5.conf file.

confidentiality See privacy.

forwardable ticket

Glossary 73

consumer In the Cryptographic Framework feature of Oracle Solaris, a consumer is a user of the
cryptographic services that come from providers. Consumers can be applications, end users,
or kernel operations. Kerberos, IKE, and IPsec are examples of consumers. For examples of
providers, see provider.

credential An information package that includes a ticket and a matching session key. Used to authenticate
the identity of a principal. See also ticket, session key.

credential
cache

A storage space (usually a file) that contains credentials that are received from the KDC.

cryptographic
algorithm

See algorithm.

DES Data Encryption Standard. A symmetric-key encryption method developed in 1975 and
standardized by ANSI in 1981 as ANSI X.3.92. DES uses a 56-bit key.

device
allocation

Device protection at the user level. Device allocation enforces the exclusive use of a device by
one user at a time. Device data is purged before device reuse. Authorizations can be used to
limit who is permitted to allocate a device.

device policy Device protection at the kernel level. Device policy is implemented as two sets of privileges on
a device. One set of privileges controls read access to the device. The second set of privileges
controls write access to the device. See also policy.

Diffie-
Hellman
protocol

Also known as public key cryptography. An asymmetric cryptographic key agreement protocol
that was developed by Diffie and Hellman in 1976. The protocol enables two users to exchange
a secret key over an insecure medium without any prior secrets. Diffie-Hellman is used by
Kerberos.

digest See message digest.

DSA Digital Signature Algorithm. A public key algorithm with a variable key size from 512 to 4096
bits. The U.S. Government standard, DSS, goes up to 1024 bits. DSA relies on SHA1 for input.

ECDSA Elliptic Curve Digital Signature Algorithm. A public key algorithm that is based on elliptic
curve mathematics. An ECDSA key size is significantly smaller than the size of a DSA public
key needed to generate a signature of the same length.

effective set The set of privileges that are currently in effect on a process.

flavor Historically, security flavor and authentication flavor had the same meaning, as a flavor
that indicated a type of authentication (AUTH_UNIX, AUTH_DES, AUTH_KERB).
RPCSEC_GSS is also a security flavor, even though it provides integrity and privacy services
in addition to authentication.

forwardable
ticket

A ticket that a client can use to request a ticket on a remote host without requiring the client to
go through the full authentication process on that host. For example, if the user david obtains
a forwardable ticket while on user jennifer's machine, david can log in to his own machine

FQDN

74 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

without being required to get a new ticket (and thus authenticate himself again). See also
proxiable ticket.

FQDN Fully qualified domain name. For example, central.example.com (as opposed to simply
denver).

GSS-API The Generic Security Service Application Programming Interface. A network layer that
provides support for various modular security services, including the Kerberos service.
GSS-API provides for security authentication, integrity, and privacy services. See also
authentication, integrity, privacy.

hardening The modification of the default configuration of the operating system to remove security
vulnerabilities that are inherent in the host.

hardware
provider

In the Cryptographic Framework feature of Oracle Solaris, a device driver and its hardware
accelerator. Hardware providers offload expensive cryptographic operations from the computer
system, thus freeing CPU resources for other uses. See also provider.

host A system that is accessible over a network.

host principal A particular instance of a service principal in which the principal (signified by the primary
name host) is set up to provide a range of network services, such as ftp, rcp, or rlogin. An
example of a host principal is host/central.example.com@EXAMPLE.COM. See also server
principal.

inheritable set The set of privileges that a process can inherit across a call to exec.

initial ticket A ticket that is issued directly (that is, not based on an existing ticket-granting ticket). Some
services, such as applications that change passwords, might require tickets to be marked
initial so as to assure themselves that the client can demonstrate a knowledge of its secret
key. This assurance is important because an initial ticket indicates that the client has recently
authenticated itself (instead of relying on a ticket-granting ticket, which might existed for a
long time).

instance The second part of a principal name, an instance qualifies the principal's primary. In the case
of a service principal, the instance is required. The instance is the host's fully qualified domain
name, as in host/central.example.com. For user principals, an instance is optional. Note,
however, that jdoe and jdoe/admin are unique principals. See also primary, principal name,
service principal, user principal.

integrity A security service that, in addition to user authentication, provides for the validity of
transmitted data through cryptographic checksumming. See also authentication, privacy.

invalid ticket A postdated ticket that has not yet become usable. An invalid ticket is rejected by an
application server until it becomes validated. To be validated, an invalid ticket must be
presented to the KDC by the client in a TGS request, with the VALIDATE flag set, after its start
time has passed. See also postdated ticket.

KDC Key Distribution Center. A machine that has three Kerberos V5 components:

keytab file

Glossary 75

■ Principal and key database
■ Authentication service
■ Ticket-granting service

Each realm has a master KDC and should have one or more slave KDCs.

Kerberos An authentication service, the protocol that is used by that service, or the code that is used to
implement that service.

The Kerberos implementation in Oracle Solaris that is closely based on Kerberos V5
implementation.

While technically different, “Kerberos” and “Kerberos V5” are often used interchangeably in
the Kerberos documentation.

Kerberos (also spelled Cerberus) was a fierce, three-headed mastiff who guarded the gates of
Hades in Greek mythology.

Kerberos
policy

A set of rules that governs password usage in the Kerberos service. Policies can regulate
principals' accesses, or ticket parameters, such as lifetime.

key 1. Generally, one of two main types of keys:

■ A symmetric key – An encryption key that is identical to the decryption key. Symmetric
keys are used to encrypt files.

■ An asymmetric key or public key – A key that is used in public key algorithms, such as
Diffie-Hellman or RSA. Public keys include a private key that is known only by one user,
a public key that is used by the server or general resource, and a private-public key pair
that combines the two. A private key is also called a secret key. The public key is also
called a shared key or common key.

2. An entry (principal name) in a keytab file. See also keytab file.
3. In Kerberos, an encryption key, of which there are three types:

■ A private key – An encryption key that is shared by a principal and the KDC, and
distributed outside the bounds of the system. See also private key.

■ A service key – This key serves the same purpose as the private key, but is used by servers
and services. See also service key.

■ A session key – A temporary encryption key that is used between two principals, with a
lifetime limited to the duration of a single login session. See also session key.

keystore A keystore holds passwords, passphrases, certificates, and other authentication objects for
retrieval by applications. A keystore can be specific to a technology, or a location that several
applications use.

keytab file A key table file that contains one or more keys (principals). A host or service uses a keytab file
in the much the same way that a user uses a password.

kvno

76 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

kvno Key version number. A sequence number that tracks a particular key in order of generation.
The highest kvno is the latest and most current key.

least privilege A security model which gives a specified process only a subset of superuser powers. The
least privilege model assigns enough privilege to regular users that they can perform personal
administrative tasks, such as mount file systems and change the ownership of files. On the
other hand, processes run with just those privileges that they need to complete the task, rather
than with the full power of superuser, that is, all privileges. Damage due to programming
errors like buffer overflows can be contained to a non-root user, which has no access to critical
abilities like reading or writing protected system files or halting the machine.

limit set The outside limit of what privileges are available to a process and its children.

MAC 1. See message authentication code (MAC).

2. Also called labeling. In government security terminology, MAC is Mandatory Access
Control. Labels such as Top Secret and Confidential are examples of MAC. MAC contrasts
with DAC, which is Discretionary Access Control. UNIX permissions are an example of DAC.

3. In hardware, the unique system address on a LAN. If the system is on an Ethernet, the MAC
is the Ethernet address.

master KDC The main KDC in each realm, which includes a Kerberos administration server, kadmind, and
an authentication and ticket-granting daemon, krb5kdc. Each realm must have at least one
master KDC, and can have many duplicate, or slave, KDCs that provide authentication services
to clients.

MD5 An iterative cryptographic hash function that is used for message authentication, including
digital signatures. The function was developed in 1991 by Rivest. Its use is deprecated.

mechanism 1. A software package that specifies cryptographic techniques to achieve data authentication or
confidentiality. Examples: Kerberos V5, Diffie-Hellman public key.

2. In the Cryptographic Framework feature of Oracle Solaris, an implementation of an
algorithm for a particular purpose. For example, a DES mechanism that is applied to
authentication, such as CKM_DES_MAC, is a separate mechanism from a DES mechanism
that is applied to encryption, CKM_DES_CBC_PAD.

message
authentication
code (MAC)

MAC provides assurance of data integrity and authenticates data origin. MAC does not protect
against eavesdropping.

message
digest

A message digest is a hash value that is computed from a message. The hash value almost
uniquely identifies the message. A digest is useful for verifying the integrity of a file.

minimization The installation of the minimal operating system that is necessary to run the server. Any
software that does not directly relate to the operation of the server is either not installed, or
deleted after the installation.

policy for public key technologies

Glossary 77

name service
scope

The scope in which a role is permitted to operate, that is, an individual host or all hosts that are
served by a specified naming service such as NIS LDAP.

network
application
server

A server that provides a network application, such as ftp. A realm can contain several network
application servers.

network
policies

The settings that network utilities configure to protect network traffic. For information about
network security, see “Securing the Network in Oracle Solaris 11.2 ”.

nonattributable
audit event

An audit event whose initiator cannot be determined, such as the AUE_BOOT event.

NTP Network Time Protocol. Software from the University of Delaware that enables you to manage
precise time or network clock synchronization, or both, in a network environment. You can use
NTP to maintain clock skew in a Kerberos environment. See also clock skew.

PAM Pluggable Authentication Module. A framework that allows for multiple authentication
mechanisms to be used without having to recompile the services that use them. PAM enables
Kerberos session initialization at login.

passphrase A phrase that is used to verify that a private key was created by the passphrase user. A good
passphrase is 10-30 characters long, mixes alphabetic and numeric characters, and avoids
simple prose and simple names. You are prompted for the passphrase to authenticate use of the
private key to encrypt and decrypt communications.

password
policy

The encryption algorithms that can be used to generate passwords. Can also refer to more
general issues around passwords, such as how often the passwords must be changed, how many
password attempts are permitted, and other security considerations. Security policy requires
passwords. Password policy might require passwords to be encrypted with the AES algorithm,
and might make further requirements related to password strength.

permitted set The set of privileges that are available for use by a process.

policy Generally, a plan or course of action that influences or determines decisions and actions. For
computer systems, policy typically means security policy. Your site's security policy is the set
of rules that define the sensitivity of the information that is being processed and the measures
that are used to protect the information from unauthorized access. For example, security
policy might require that systems be audited, that devices must be allocated for use, and that
passwords be changed every six weeks.

For the implementation of policy in specific areas of the Oracle Solaris OS, see audit policy,
policy in the Cryptographic Framework, device policy, Kerberos policy, password policy, and
rights policy.

policy for
public key
technologies

In the Key Management Framework (KMF), policy is the management of certificate usage.
The KMF policy database can put constraints on the use of the keys and certificates that are
managed by the KMF library.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=NWSEC

policy in the Cryptographic Framework

78 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

policy in the
Cryptographic
Framework

In the Cryptographic Framework feature of Oracle Solaris, policy is the disabling of existing
cryptographic mechanisms. The mechanisms then cannot be used. Policy in the Cryptographic
Framework might prevent the use of a particular mechanism, such as CKM_DES_CBC, from a
provider, such as DES.

postdated
ticket

A postdated ticket does not become valid until some specified time after its creation. Such
a ticket is useful, for example, for batch jobs that are intended to run late at night, since the
ticket, if stolen, cannot be used until the batch job is run. When a postdated ticket is issued, it
is issued as invalid and remains that way until a) its start time has passed, and b) the client
requests validation by the KDC. A postdated ticket is normally valid until the expiration time
of the ticket-granting ticket. However, if the postdated ticket is marked renewable, its lifetime
is normally set to be equal to the duration of the full life time of the ticket-granting ticket. See
also invalid ticket, renewable ticket.

primary The first part of a principal name. See also instance, principal name, realm.

principal 1. A uniquely named client/user or server/service instance that participates in a network
communication. Kerberos transactions involve interactions between principals (service
principals and user principals) or between principals and KDCs. In other words, a principal is a
unique entity to which Kerberos can assign tickets. See also principal name, service principal,
user principal.

2. (RPCSEC_GSS API) See client principal, server principal.

principal
name

1. The name of a principal, in the format primary/instance@REALM. See also instance,
primary, realm.

2. (RPCSEC_GSS API) See client principal, server principal.

principle of
least privilege

See least privilege.

privacy A security service, in which transmitted data is encrypted before being sent. Privacy also
includes data integrity and user authentication. See also authentication, integrity, service.

private key A key that is given to each user principal, and known only to the user of the principal and to the
KDC. For user principals, the key is based on the user's password. See also key.

private-key
encryption

In private-key encryption, the sender and receiver use the same key for encryption. See also
public-key encryption.

privilege 1. In general, a power or capability to perform an operation on a computer system that is
beyond the powers of a regular user. Superuser privileges are all the rights that superuser
is granted. A privileged user or privileged application is a user or application that has been
granted additional rights.

2. A discrete right on a process in an Oracle Solaris system. Privileges offer a finer-grained
control of processes than does root. Privileges are defined and enforced in the kernel.

public object

Glossary 79

Privileges are also called process privileges or kernel privileges. For a full description of
privileges, see the privileges(5) man page.

privilege
escalation

Gaining access to resources that are outside the range of resources that your assigned rights,
including rights that override the defaults, permit. The result is that a process can perform
unauthorized operations.

privilege
model

A stricter model of security on a computer system than the superuser model. In the privilege
model, processes require privilege to run. Administration of the system can be divided into
discrete parts that are based on the privileges that administrators have in their processes.
Privileges can be assigned to an administrator's login process. Or, privileges can be assigned to
be in effect for certain commands only.

privilege set A collection of privileges. Every process has four sets of privileges that determine whether
a process can use a particular privilege. See limit set, effective set set, permitted set set, and
inheritable set set.

Also, the basic set set of privileges is the collection of privileges that are assigned to a user's
process at login.

privilege-
aware

Programs, scripts, and commands that turn on and off the use of privilege in their code. In a
production environment, the privileges that are turned on must be supplied to the process, for
example, by requiring users of the program to use a rights profile that adds the privileges to the
program. For a full description of privileges, see the privileges(5) man page.

privileged
application

An application that can override system controls. The application checks for security attributes,
such as specific UIDs, GIDs, authorizations, or privileges.

privileged
user

A user who is assigned rights beyond the rights of regular user on a computer system. See also
trusted users.

profile shell In rights management, a shell that enables a role (or user) to run from the command line any
privileged applications that are assigned to the role's rights profiles. The profile shell versions
correspond to the available shells on the system, such as the pfbash version of bash.

provider In the Cryptographic Framework feature of Oracle Solaris, a cryptographic service that is
provided to consumers. PKCS #11 libraries, kernel cryptographic modules, and hardware
accelerators are examples of providers. Providers plug in to the Cryptographic Framework, so
are also called plugins. For examples of consumers, see consumer.

proxiable
ticket

A ticket that can be used by a service on behalf of a client to perform an operation for the
client. Thus, the service is said to act as the client's proxy. With the ticket, the service can take
on the identity of the client. The service can use a proxiable ticket to obtain a service ticket to
another service, but it cannot obtain a ticket-granting ticket. The difference between a proxiable
ticket and a forwardable ticket is that a proxiable ticket is only valid for a single operation. See
also forwardable ticket.

public object A file that is owned by the root user and readable by the world, such as any file in the /etc
directory.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN5privileges-5

public-key encryption

80 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

public-key
encryption

An encryption scheme in which each user has two keys, one public key and one private key. In
public-key encryption, the sender uses the receiver's public key to encrypt the message, and the
receiver uses a private key to decrypt it. The Kerberos service is a private-key system. See also
private-key encryption.

QOP Quality of Protection. A parameter that is used to select the cryptographic algorithms that are
used in conjunction with the integrity service or privacy service.

RBAC Role-based access control, the user rights management feature of Oracle Solaris. See rights.

RBAC policy See rights policy.

realm 1. The logical network that is served by a single Kerberos database and a set of Key
Distribution Centers (KDCs).

2. The third part of a principal name. For the principal name jdoe/admin@CORP.EXAMPLE.COM,
the realm is CORP.EXAMPLE.COM. See also principal name.

reauthentication The requirement to provide a password to perform a computer operation. Typically, sudo
operations require reauthentication. Authenticated rights profiles can contain commands that
require reauthentication. See authenticated rights profile.

relation A configuration variable or relationship that is defined in the kdc.conf or krb5.conf files.

renewable
ticket

Because having tickets with very long lives is a security risk, tickets can be designated as
renewable. A renewable ticket has two expiration times: a) the time at which the current
instance of the ticket expires, and b) maximum lifetime for any ticket. If a client wants to
continue to use a ticket, the client renews the ticket before the first expiration occurs. For
example, a ticket can be valid for one hour, with all tickets having a maximum lifetime of ten
hours. If the client that holds the ticket wants to keep it for more than an hour, the client must
renew the ticket. When a ticket reaches the maximum ticket lifetime, it automatically expires
and cannot be renewed.

rights An alternative to the all-or-nothing superuser model. User rights management and process
rights management enable an organization to divide up superuser's privileges and assign them
to users or roles. Rights in Oracle Solaris are implemented as kernel privileges, authorizations,
and the ability to run a process as a specific UID or GID. Rights can be collected in a rights
profile and a role.

rights policy The security policy that is associated with a command. Currently, solaris is the valid policy
for Oracle Solaris. The solaris policy recognizes privileges and extended privilege policy,
authorizations, and setuid security attributes.

rights profile Also referred to as a profile. A collection of security overrides that can be assigned to a role or
user. A rights profile can include authorizations, privileges, commands with security attributes,
and other rights profiles that are called supplementary profiles.

role A special identity for running privileged applications that only assigned users can assume.

server principal

Glossary 81

RSA A method for obtaining digital signatures and public key cryptosystems. The method was first
described in 1978 by its developers, Rivest, Shamir, and Adleman.

scan engine A third-party application, residing on an external host, that examines a file for known viruses.

SEAM The product name for the initial version of Kerberos on Solaris systems. This product is
based on the Kerberos V5 technology that was developed at the Massachusetts Institute of
Technology. SEAM is now called the Kerberos service. It continues to differ slightly from the
MIT version.

secret key See private key.

Secure Shell A special protocol for secure remote login and other secure network services over an insecure
network.

security
attributes

Overrides to security policy that enable an administrative command to succeed when the
command is run by a user other than superuser. In the superuser model, the setuid root and
setgid programs are security attributes. When these attributes are applied to a command, the
command succeeds no matter who runs the command. In the privilege model, kernel privileges
and other rights replace setuid root programs as security attributes. The privilege model is
compatible with the superuser model, in that the privilege model also recognizes the setuid
and setgid programs as security attributes.

security flavor See flavor.

security
mechanism

See mechanism.

security policy See policy.

security
service

See service.

seed A numeric starter for generating random numbers. When the starter originates from a random
source, the seed is called a random seed.

separation of
duty

Part of the notion of least privilege. Separation of duty prevents one user from performing or
approving all operations that complete a transaction. For example, in RBAC, you can separate
the creation of a login user from the assignment of security overrides. One role creates the user.
A separate role can assign security attributes, such as rights profiles, roles, and privileges to
existing users.

server A principal that provides a resource to network clients. For example, if you ssh to the system
central.example.com, then that system is the server that provides the ssh service. See also
service principal.

server
principal

(RPCSEC_GSS API) A principal that provides a service. The server principal is stored as an
ASCII string in the form service@host. See also client principal.

service

82 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

service 1. A resource that is provided to network clients, often by more than one server. For example, if
you rlogin to the machine central.example.com, then that machine is the server that provides
the rlogin service.

2. A security service (either integrity or privacy) that provides a level of protection beyond
authentication. See also integrity and privacy.

service key An encryption key that is shared by a service principal and the KDC, and is distributed outside
the bounds of the system. See also key.

service
principal

A principal that provides Kerberos authentication for a service or services. For service
principals, the primary name is a name of a service, such as ftp, and its instance is the fully
qualified host name of the system that provides the service. See also host principal, user
principal.

session key A key that is generated by the authentication service or the ticket-granting service. A session
key is generated to provide secure transactions between a client and a service. The lifetime of a
session key is limited to a single login session. See also key.

SHA1 Secure Hashing Algorithm. The algorithm operates on any input length less than 264 to produce
a message digest. The SHA1 algorithm is input to DSA.

single-system
image

A single-system image is used in Oracle Solaris auditing to describe a group of audited systems
that use the same naming service. These systems send their audit records to a central audit
server, where the records can be compared as if the records came from one system.

slave KDC A copy of a master KDC, which is capable of performing most functions of the master. Each
realm usually has several slave KDCs (and only one master KDC). See also KDC, master
KDC.

software
provider

In the Cryptographic Framework feature of Oracle Solaris, a kernel software module or a
PKCS #11 library that provides cryptographic services. See also provider.

stash file A stash file contains an encrypted copy of the master key for the KDC. This master key is used
when a server is rebooted to automatically authenticate the KDC before it starts the kadmind
and krb5kdc processes. Because the stash file includes the master key, the stash file and any
backups of it should be kept secure. If the encryption is compromised, then the key could be
used to access or modify the KDC database.

superuser
model

The typical UNIX model of security on a computer system. In the superuser model, an
administrator has all-or-nothing control of the system. Typically, to administer the machine, a
user becomes superuser (root) and can do all administrative activities.

synchronous
audit event

The majority of audit events. These events are associated with a process in the system. A non-
attributable event that is associated with a process is a synchronous event, such as a failed
login.

TGS Ticket-Granting Service. That portion of the KDC that is responsible for issuing tickets.

virtual private network (VPN)

Glossary 83

TGT Ticket-Granting Ticket. A ticket that is issued by the KDC that enables a client to request
tickets for other services.

ticket An information packet that is used to securely pass the identity of a user to a server or service.
A ticket is valid for only a single client and a particular service on a specific server. A ticket
contains the principal name of the service, the principal name of the user, the IP address of the
user's host, a time stamp, and a value that defines the lifetime of the ticket. A ticket is created
with a random session key to be used by the client and the service. Once a ticket has been
created, it can be reused until the ticket expires. A ticket only serves to authenticate a client
when it is presented along with a fresh authenticator. See also authenticator, credential, service,
session key.

ticket file See credential cache.

trusted users Users whom you have decided can perform administrative tasks at some level of trust.
Typically, administrators create logins for trusted users first and assign administrative rights
that match the users' level of trust and ability. These users then help configure and maintain the
system. Also called privileged users.

user principal A principal that is attributed to a particular user. A user principal's primary name is a user
name, and its optional instance is a name that is used to described the intended use of the
corresponding credentials (for example, jdoe or jdoe/admin). Also known as a user instance.
See also service principal.

virtual private
network
(VPN)

A network that provides secure communication by using encryption and tunneling to connect
users over a public network.

84 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

85

Index

A
-a option

digest command, 28
encrypt command, 31
mac command, 29

adding
hardware provider mechanisms and features, 49
library plugin, 41
plugins

Cryptographic Framework, 40
KMF, 68

software provider, 40
user-level software provider, 41

administering
Cryptographic Framework and zones, 13
Cryptographic Framework commands, 11
Cryptographic Framework plus FIPS–140, 13
metaslot, 11

algorithms
definition in Cryptographic Framework, 9
file encryption, 31
listing in the Cryptographic Framework, 35

C
certificate signing requests (CSR) See certificates
certificates

exporting for use by another system, 59
generating with the pktool gencert command, 56
importing into keystore, 58
signing PKCS #10 CSR with the pktool
command, 66

commands
Cryptographic Framework commands, 11
user-level cryptographic commands, 12

computing

digest of a file, 27
MAC of a file, 29
secret key, 22

consumers
definition in Cryptographic Framework, 9

creating
file digests, 27
key pair, 62
secret keys for encryption, 22

cryptoadm command
description, 11
disabling cryptographic mechanisms, 44
disabling hardware mechanisms, 48
installing PKCS #11 library, 42
listing providers, 44, 46
restoring kernel software provider, 46

Cryptographic Framework
connecting providers, 12
consumers, 8
cryptoadm command, 11, 11
definition of terms, 9
description, 7
elfsign command, 12
error messages, 33
FIPS–140 and, 13
hardware plugins, 9
interacting with, 11
listing providers, 35, 35
PKCS #11 library, 9
providers, 8, 9
refreshing, 50
registering providers, 13
restarting, 50
signing providers, 12
SPARC T4 series optimizations, 17
user-level commands, 12

Index

86 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

zones and, 13, 50
cryptographic mechanisms

disabling, 44
enabling, 45
listing, 35
optimized for SPARC T4 series, 17

cryptographic services See Cryptographic Framework
Cryptoki See PKCS #11 library

D
daemons

kcfd, 11
decrypt command

description, 12
syntax, 32

decrypting files, 32
digest command

description, 12
syntax, 27

digests
computing for file, 27
of files, 27

disabling
cryptographic mechanisms, 44
hardware mechanisms, 48

displaying
providers in the Cryptographic Framework, 35

E
elfsign command, 12
enabling

cryptographic mechanisms, 45
kernel software provider use, 46
mechanisms and features on hardware provider, 49

encrypt command
description, 12
error messages, 33
troubleshooting, 33

encrypting
files, 21, 31
generating symmetric key with the pktool
command, 22
using user-level commands, 12

error messages
encrypt command, 33

export subcommand
pktool command, 59

F
files

computing a digest, 27
computing MAC of, 29
decrypting, 32
digest of, 27
encrypting for security, 21, 31
hashing, 21
PKCS #12, 60
verifying integrity with digest, 27

FIPS 140
approved key length, 21
Cryptographic Framework and, 13, 42

G
gencert subcommand

pktool command, 56
generating

certificates with pktool command, 56
key pair with the pktool command, 62
passphrases with the pktool command, 61
random number with the pktool command, 22
symmetric key with the pktool command, 22
X.509 v3 certificate, 66

H
hardware

Cryptographic Framework and, 17
listing attached hardware accelerators, 35
SPARC T4 series, 17

hardware mechanisms
disabling, 48

hardware providers
disabling cryptographic mechanisms, 48
enabling mechanisms and features on, 49
listing, 35
loading, 35

Index

87

hashing files, 21

I
-i option

encrypt command, 31
import subcommand

pktool command, 58
install subcommand

cryptoadm command, 42

K
-K option

encrypt command, 32
mac command, 30

-k option
encrypt command, 31
mac command, 29

kcfd daemon, 11, 50
key management framework (KMF) See KMF
key pairs

creating, 62
generating with the pktool command, 62

keys
generating key pair with the pktool command, 62
generating symmetric key with the pktool
command, 22
secret, 22

keystores
definition in Cryptographic Framework, 9
exporting certificates, 59
importing certificates, 58
listing contents, 57
managed by KMF, 54
protecting with password in KMF, 61
supported by KMF, 53, 55

KMF
adding plugin, 68
creating

passphrases for keystores, 55
password for keystore, 61
self-signed certificate, 56

exporting certificates, 59

importing certificates into keystore, 58
keystores, 53, 55
library, 53
listing plugins, 68
managing

keystores, 55
PKI policy, 54
plugins, 54
public key technologies (PKI), 53

removing plugin, 68
utilities, 54

kmfcfg command
list plugin subcommand, 68
plugin subcommands, 53, 54

L
-l option

digest command, 27
mac command, 29

list plugin subcommand
kmcfg command, 68

list subcommand
pktool command, 57

listing
available providers in Cryptographic
Framework, 35
contents of keystore, 57
Cryptographic Framework providers, 35
hardware providers, 35
providers in the Cryptographic Framework, 35

M
-m option

cryptoadm command, 44, 46
mac command

description, 12
syntax, 29

managing
keystores with KMF, 55

mechanisms
definition in Cryptographic Framework, 10
disabling all on hardware provider, 48
enabling some on hardware provider, 49

Index

88 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

listing all available for use, 37
preventing use of, 44

message authentication code (MAC)
computing for file, 29

metaslot
administering, 11
definition in Cryptographic Framework, 10

mode
definition in Cryptographic Framework, 10

N
n2cp driver

hardware plugin to Cryptographic Framework, 9
listing mechanisms, 35

ncp driver
hardware plugin to Cryptographic Framework, 9
listing mechanisms, 35

NSS
default password, 61
managing keystore, 55

O
-o option

encrypt command, 31
OpenSSL

managing keystore, 55
version, 20

P
-p option

cryptoadm command, 44, 46
passphrases

encrypt command, 31
generating in KMF, 61
mac command, 29
providing for symmetric key, 22
storing safely, 32
using for MAC, 30

password protection
keystore, 60
PKCS #12 file, 60

PKCS #10 CSR

use, 66
PKCS #11 library

adding provider library, 41
in Cryptographic Framework, 9

PKCS #11 softtokens
managing keystore, 55

PKCS #12 files
protecting, 60

PKI
managed by KMF, 53
policy managed by KMF, 54

pktool command
creating self-signed certificate, 56
export subcommand, 59
gencert subcommand, 56
generating key pairs, 62
generating random number, 22
generating secret keys, 22
generating symmetric key, 22
import subcommand, 58
list subcommand, 57
managing PKI objects, 53
setpin subcommand, 61
signing PKCS #10 CSR, 66

plugins
adding to KMF, 68
Cryptographic Framework, 8
managed in KMF, 54
removing from KMF, 68

policy
definition in Cryptographic Framework, 10

preventing
kernel software provider use, 46
use of hardware mechanism, 48

protecting
by using passwords with Cryptographic
Framework, 55
contents of keystore, 60
files with Cryptographic Framework, 21

providers
adding library, 41
adding software provider, 40
adding user-level software provider, 41
connecting to Cryptographic Framework, 12
definition as plugins, 8, 9

Index

89

definition in Cryptographic Framework, 10
disabling hardware mechanisms, 48
listing hardware providers, 35
listing in Cryptographic Framework , 35
preventing use of kernel software provider, 46
registering, 13
restoring use of kernel software provider, 46
signing, 12

public key technologies See PKI

R
random numbers

pktool command, 22
RC4 See ARCFOUR kernel provider
refreshing

cryptographic services, 50
registering providers

Cryptographic Framework, 13
removing

cryptographic providers, 44, 45
plugins from KMF, 68
software providers

permanently, 47, 48
temporarily, 46

user-level library, 45
repository

installing third-party providers, 41
restarting

cryptographic services, 50
restoring

cryptographic providers, 46

S
secret keys

creating, 22
generating with the pktool command, 22

security
computing digest of files, 27
computing MAC of files, 29
Cryptographic Framework, 7
encrypting files, 31
key management framework, 53
passwords, 55

service management facility
refreshing Cryptographic Framework, 41

setpin subcommand
pktool command, 61

signing
PKCS #10 CSR, 66
PKCS #10 CSR with the pktool command, 66
providers in Cryptographic Framework, 12

slot
definition in Cryptographic Framework, 10

SMF
Cryptographic Framework service, 11
kcfd service, 11
restarting Cryptographic Framework, 50

SPARC T4 series
cryptographic optimizations, 17

Sun Crypto Accelerator 1000 board
listing mechanisms, 48

Sun Crypto Accelerator 6000 board
hardware plugin to Cryptographic Framework, 9
listing mechanisms, 35

svcadm command
administering Cryptographic Framework, 11, 11
enabling Cryptographic Framework, 50
refreshing Cryptographic Framework, 40

svcs command
listing cryptographic services, 50

T
-T option

encrypt command, 32
mac command, 30

task maps
administering Cryptographic Framework, 33
protecting files with cryptographic mechanisms, 21
using the Key Management Framework, 55

token
definition in Cryptographic Framework, 10

troubleshooting
encrypt command, 33, 33

U
uninstalling

Index

90 Managing Encryption and Certificates in Oracle Solaris 11.2 • September 2014

cryptographic providers, 45

V
-v option

digest command, 28
mac command, 29

viewing
available cryptographic mechanisms, 37, 46
cryptographic mechanisms

available, 37, 46
existing, 36, 38, 46
purpose, 39

existing cryptographic mechanisms, 38, 46
hardware providers, 35, 38
verbose listing of cryptographic mechanisms, 39

X
X.509 v3 certificate

generating, 66

Z
zones

Cryptographic Framework and, 13
cryptographic services and, 50

	Managing Encryption and Certificates in Oracle® Solaris 11.2
	Contents
	Using This Documentation
	Product Documentation Library
	Access to Oracle Support
	Feedback

	Chapter 1 • Cryptographic Framework
	What's New in Cryptography for Oracle Solaris 11.2
	Introduction to the Cryptographic Framework
	Concepts in the Cryptographic Framework
	Cryptographic Framework Commands and Plugins
	Administrative Commands in the Cryptographic Framework
	User-Level Commands in the Cryptographic Framework
	Plugins to the Cryptographic Framework

	Cryptographic Services and Zones
	Cryptographic Framework and FIPS 140
	OpenSSL Support in Oracle Solaris
	How to Switch to the FIPS 140-Capable OpenSSL Implementation

	Chapter 2 • About SPARC T-Series Systems and the Cryptographic Framework
	Cryptographic Framework and SPARC T-Series Servers
	Cryptographic Optimizations in SPARC T-4 Systems
	Determining Whether the System Supports SPARC T4 Optimizations
	Determining Your System's OpenSSL Version
	Verifying That Your System Has OpenSSL with SPARC T4 Optimizations

	Chapter 3 • Cryptographic Framework
	Protecting Files With the Cryptographic Framework
	How to Generate a Symmetric Key by Using the pktool Command
	How to Compute a Digest of a File
	How to Compute a MAC of a File
	How to Encrypt and Decrypt a File

	Administering the Cryptographic Framework
	Listing Available Providers
	Adding a Software Provider
	How to Add a Software Provider

	Create a Boot Environment with FIPS 140 Enabled
	How to Create a Boot Environment with FIPS 140 Enabled

	Preventing the Use of Mechanisms
	How to Prevent the Use of a User-Level Mechanism
	How to Prevent the Use of a Kernel Software Mechanism
	How to Disable Hardware Provider Mechanisms and Features

	Refreshing or Restarting All Cryptographic Services
	How to Refresh or Restart All Cryptographic Services

	Chapter 4 • Key Management Framework
	Managing Public Key Technologies
	Key Management Framework Utilities
	KMF Policy Management
	KMF Plugin Management
	KMF Keystore Management

	Using the Key Management Framework
	How to Create a Certificate by Using the pktool gencert Command
	How to Import a Certificate Into Your Keystore
	How to Export a Certificate and Private Key in PKCS #12 Format
	How to Generate a Passphrase by Using the pktool setpin Command
	How to Generate a Key Pair by Using the pktool genkeypair Command
	How to Sign a Certificate Request by Using the pktool signcsr Command
	How to Manage Third-Party Plugins in KMF

	Security Glossary
	Index

