

[1] Oracle® Audit Vault and Database Firewall
Developer's Guide

Release 12.1.2

E27779-06

August 2016

Oracle Audit Vault and Database Firewall Developer's Guide, Release 12.1.2

E27779-06

Copyright © 2013, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author: Karthik Shetty

Contributing Authors: Tulika Das, Gigi Hanna, Janis Greenberg, Sheila Moore

Contributors: Shyam Bellam, Raghav Hanumantharau, Srivatsan Kannan, Sayali Nafde, Sreekumar
Seshadri, Vipul Shah, Madhusudhan Reddy Yellu

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents .. vii
Conventions ... viii

1 Introduction

1.1 What Is Oracle Audit Vault and Database Firewall?... 1-1
1.1.1 How Oracle Audit Vault Server and Agent Work.. 1-2
1.2 What Are Audit Collection Plug-ins? .. 1-2
1.2.1 Types of Audit Collection Plug-ins... 1-3
1.2.1.1 Determining Which Audit Collection Plug-in Type to Create 1-3
1.3 Audit Vault Events and Fields .. 1-3
1.3.1 Core Fields .. 1-3
1.3.1.1 CommandClass and Target Types... 1-4
1.3.2 Other Audit Vault Fields .. 1-4
1.3.2.1 Large Fields ... 1-4
1.3.2.2 Extension Field.. 1-4
1.3.2.3 Marker Field .. 1-4
1.3.3 Storing Audit Records in Audit Vault .. 1-4
1.4 The Collection Process ... 1-5
1.4.1 Flow of Collection: User.. 1-5
1.4.2 Flow of Control Inside the Audit Collection Plug-in ... 1-6
1.4.3 Collection Concepts... 1-7
1.4.3.1 Collection Thread ... 1-7
1.4.3.2 Collection Phase.. 1-7
1.4.3.3 Mapping... 1-7
1.4.3.4 Checkpoint of a Trail.. 1-7
1.4.3.5 Recovery Phase Of Data Collection ... 1-7
1.4.3.6 Audit Trail Clean-Up ... 1-8
1.5 General Procedure for Writing Audit Collection Plug-ins ... 1-8

2 Setting Up Your Development Environment

2.1 Before You Set Up the Development Environment ... 2-1
2.2 Setting Up the Development Environment... 2-1

iv

2.3 Audit Collection Plug-in Directory Structure... 2-2
2.3.1 General Directory Structure ... 2-2
2.3.2 Audit Collection Plug-in Directory Structure.. 2-3
2.3.3 Staging a plugin-manifest.xml File ... 2-3

3 Audit Collection Plug-ins

3.1 About Audit Collection Plug-ins .. 3-1
3.2 About Mapper Files .. 3-2
3.3 Database Table Collection Plug-ins.. 3-2
3.3.1 Requirements for Database Table Collection Plug-ins... 3-3
3.3.2 Example Audit Trail for a Database Table Collection Plug-in...................................... 3-3
3.3.3 Creating a Database Table Mapper File ... 3-4
3.4 XML File Collection Plug-ins .. 3-8
3.4.1 Requirements for XML File Collection Plug-ins .. 3-8
3.4.2 Example Audit Trail for an XML File Collection Plug-in .. 3-9
3.4.3 Creating the XML File Audit Collection Mapper File ... 3-10
3.4.4 XML Transformation for Non-Standard Audit Records... 3-14
3.4.4.1 Additional Requirement for XML Transformation Using XSL 3-14
3.4.4.2 Changes Required to Transform Non-Standard Audit Records 3-14
3.4.4.3 Sample Non-Standard XML Audit Data Record .. 3-14
3.4.4.4 Creating an XSL File for Transformation... 3-15
3.5 Secured Target Collection Attributes.. 3-17
3.6 Pre-Processing Audit Data ... 3-17

4 Packaging Audit Collection Plug-ins

4.1 Flow of Packaging... 4-1
4.2 External Dependencies... 4-2
4.3 Creating New Versions of Your Audit Collection Plug-ins.. 4-2
4.4 Description of Plug-in Manifest File .. 4-2
4.5 avpack Tool.. 4-4

5 Testing Audit Collection Plug-ins

5.1 Requirements for Testing Audit Collection Plug-ins .. 5-1
5.2 Typical Audit Collection Plug-in Testing Processes.. 5-1
5.3 Deploying an Oracle Audit Vault Agent... 5-2
5.4 Redeploying the Oracle Audit Vault Agent.. 5-3

A Audit Vault Server Fields

A.1 AVDF Fields.. A-1
A.1.1 Core Fields ... A-1
A.1.2 Large Fields ... A-2
A.1.3 Marker Field .. A-2
A.1.4 Extension Field.. A-2
A.2 Actions and Target Types ... A-2
A.2.1 Actions.. A-3
A.2.2 Target Types .. A-5

v

B Schemas

B.1 Sample Schema for a plugin-manifest.xml file .. B-1
B.2 Database Table Collection Plug-in Mapper File ... B-4
B.3 Schema for XML File Collection Plug-in Mapper File.. B-6

C Example Code

C.1 Database Table Collection Plug-in Example.. C-1
C.1.1 Database Table Collection Plug-in Mapper File... C-1
C.1.2 Database Table Collection Plug-in Manifest File ... C-4
C.2 XML File Collection Plug-in Example... C-5
C.2.1 XML File Collection Plug-in Mapper File ... C-5
C.2.2 XML File Collection Plug-in Manifest file... C-8

D Bundled JDBC Drivers

D.1 About Bundled JDBC drivers... D-1
D.1.1 Connecting URLs .. D-2
D.1.2 Driver class .. D-2

Glossary

Index

vi

List of Tables

3–1 AUD Audit Table Data Fields and Mappings ... 3-3
3–2 Audit Data Fields in XML Audit Records and Mappings .. 3-10
D–1 JDBC Drivers and Connecting URLs ... D-1

vii

Preface

Oracle Audit Vault and Database Firewall Developer's Guide explains how to develop
Audit Collection Plug-ins for Oracle Audit Vault and Database Firewall.

This preface contains:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
Oracle Audit Vault and Database Firewall Developer's Guide is intended for developers
who want to develop Audit Collection Plug-ins.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information about Oracle Audit Vault and Database Firewall, see these
documents:

■ Oracle Audit Vault and Database Firewall Administrator's Guide

■ Oracle Audit Vault and Database Firewall Auditor's Guide

■ Oracle Audit Vault and Database Firewall Installation Guide

Oracle Documentation Search Engine
To access the database documentation search engine directly, visit:

viii

http://tahiti.oracle.com/

Oracle Technology Network (OTN)
You can download free release notes, installation documentation, updated versions of
this guide, white papers, or other collateral from the Oracle Technology Network
(OTN). Visit

http://www.oracle.com/technetwork/index.html

For security-specific information on OTN, visit

http://www.oracle.com/technetwork/topics/security/whatsnew/index.html

For the latest version of the Oracle documentation, including this guide, visit

http://www.oracle.com/technetwork/documentation/index.html

Oracle Audit Vault and Database Firewall Specific Sites
For OTN information specific to Oracle Audit Vault and Database Firewall, visit

http://www.oracle.com/technetwork/database/database-technologies/audit-vau
lt-and-database-firewall/overview/index.html

For the Oracle Audit Vault and Database Firewal Discussion Forums, visit

http://forums.oracle.com/forums/forum.jspa?forumID=391

Oracle Store
Printed documentation is available for sale in the Oracle Store at:

https://shop.oracle.com

My Oracle Support (formerly OracleMetaLink)
You can find information about security patches, certifications, and the support
knowledge base by visiting My Oracle Support at:

https://support.oracle.com

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction 1-1

1Introduction

This chapter introduces the Audit Collection Plug-in for Audit Vault and Database
Firewall. The chapter begins by briefly describing Oracle Audit Vault and Database
Firewall software (AVDF) and then explains the collection plug-in. Later chapters
describe how you can create custom collection plug-ins to collect audit information
written to database tables, XML files, or other locations.

This chapter contains:

■ What Is Oracle Audit Vault and Database Firewall?

■ What Are Audit Collection Plug-ins?

■ Audit Vault Events and Fields

■ The Collection Process

■ General Procedure for Writing Audit Collection Plug-ins

1.1 What Is Oracle Audit Vault and Database Firewall?
Oracle Audit Vault and Database Firewall is a software system that collects,
consolidates, protects, and analyzes audit data from multiple, distributed,
heterogeneous systems. It is comprised of these components:

■ Oracle Audit Vault Server: A server that contains an embedded Oracle database
and other software components that manage the activities of Oracle Audit Vault
and Database Firewall.

■ Oracle Audit Vault Agent: A Java component that runs on a remote host and
manages the collection of audit information based on commands from the Audit
Vault server. The agent interfaces with the collection plug-ins under its control to
gather audit records and sends it to the Audit Vault Server.

■ Oracle Database Firewall: The Database Firewall is a dedicated server that runs the
Database Firewall software. Each Database Firewall monitors SQL traffic on the
network from database clients to secured target databases. The Database Firewall
then sends the SQL data to the Audit Vault Server to be analyzed in reports.

Oracle Audit Vault and Database Firewall ships with several prepackaged collection
plug-ins, which are software programs that know how to access and interpret audit
data from secured target systems of various types. Collection plug-ins collect audit
data from an audit trail generated by a secured target system and store it in an Audit
Vault Server repository. Each collection plug-in is specific to a particular type of trail
from a particular type of secured target. These collection plug-ins collect data from
databases such as Oracle, SQL Server, Sybase ASE, and DB2 as described in Oracle
Audit Vault and Database Firewall Administrator's Guide.

What Are Audit Collection Plug-ins?

1-2 Oracle Audit Vault and Database Firewall Developer's Guide

1.1.1 How Oracle Audit Vault Server and Agent Work
Audit Collection Plug-ins retrieve audit data in the form of audit trails, which are
sequences of audit records. Audit trails are generated by different secured target types
such as database tables or XML audit records.

A secured target can write one or more audit trails; each audit trail is stored in a
separate location, and can have its own format.

To elaborate a little on these terms:

■ Secured Target

A secured target is a software or hardware system performing a specific function.
As part of performing that function, the secured target system generates an audit
trail. A secured target is an instance of a secured target type and has specific
properties such as connection credentials and trail types.

■ Secured Target Type

A secured target type represents a collection of a particular type of secured target
that generates the same type of audit data. Oracle Database, for example, is a
secured target type which can have many instances. However, all Oracle
Databases generate the same audit data and record the same fields.

■ Audit Trail

An Audit Trail identifies a location and format where audit data resides. Each
audit trail is generated by one and only one secured target. Examples of audit
trails are:

■ For secured targets that write data into files, the trail is the directory path plus
the file mask.

■ For secured targets that write audit data into a database table, the name of the
table is the trail for that secured target. SYS.AUD$ is an example of a database
table audit trail in an Oracle database.

1.2 What Are Audit Collection Plug-ins?
A collection plug-in provides functionality similar to the prepackaged collection
plug-ins shipped with Oracle Audit Vault and Database Firewall, by retrieving audit
data stored in audit trails. See "What Is Oracle Audit Vault and Database Firewall?" on
page 1-1.

Starting with Oracle Audit Vault and Database Firewall release 12.1.1, developers, as
well as third-party vendors, can build custom collection plug-ins. These collection
plug-ins can collect audit data from a new secured target type or support new audit
trails written by a secured target type that AVDF already knows about, and make them
available to users.

You can write collection plug-ins that collect audit trails stored in database tables and
XML files, or are accessible in another way.

You can support secured targets such as relational databases, operating systems,
mid-tier systems, or enterprise applications.

This guide describes how you can create these custom collection plug-ins and deploy
them into existing Oracle Audit Vault and Database Firewall installations.

Audit Vault Events and Fields

Introduction 1-3

1.2.1 Types of Audit Collection Plug-ins
You can create two types of collection plug-ins. The actual type you need to create
depends on the properties of the audit trail being collected.

A collection plug-in uses an XML file, called a mapper file, which you create, to
describe the audit data being collected. Audit Vault Server uses this file to access and
interpret the audit records being collected. You do not need to write code for this

1.2.1.1 Determining Which Audit Collection Plug-in Type to Create
This section describes the two types of collection plug-ins and explains the properties
that are required to use each type.

You can easily define a mapper file (template) and a collection plug-in if the audit
trails you wish to collect are stored in either of the following:

■ Database Tables: Stored in database tables that conform to specific constraints

■ XML Files: Stored in XML files based on the Audit Vault XML Audit File format

See Also:

■ "Database Table Collection Plug-in Example" on page C-1

■ "XML File Collection Plug-in Example" on page C-5

1.3 Audit Vault Events and Fields
Monitoring the activity, the stream of events, that occur in a secured target system is the
essence of Oracle Audit Vault and Database Firewall. These events are described by
fields. A collection of fields describing a single event that occurred on the secured
target system is an audit record.

Oracle Audit Vault and Database Firewall release 12.1.1 greatly simplifies the
representation of events and event structure as compared to Audit Vault 10.3.

In Oracle Audit Vault and Database Firewall release 12.1.1 the following applies:

■ Each secured target logs events as audit events that occur on that secured target.
Audit records capture information about audit events.

■ Audit records typically have a secured target type event name that describes what
happened to what type of object. They also contain the target of the action that
happened. In addition, they must contain a time when the action occurred, the
subject, or actor, who caused the action to happen, and may also contain
additional data.

Audit Vault Server organizes the fields of an audit record into these groups: core
fields, extension fields, large fields, and marker fields.

1.3.1 Core Fields
Core fields are the fundamental fields that describe an event, and most audit records
contain some or all of these fields. However, not all core fields are required in every
audit record.

In Oracle Audit Vault and Database Firewall release 12.1.1, the core fields, which
describe the actions that occurred are:

■ CommandClass field: The action that caused the audit record to be generated.

■ UserName and OsUserName fields: The subject or user who performed the action.

Audit Vault Events and Fields

1-4 Oracle Audit Vault and Database Firewall Developer's Guide

■ EventTime field: When, what time, the action occurred.

■ ClientHostName, ClientIp, and other related fields: Where, the location, of the
action.

■ TargetType, TargetOwner, and TargetObject fields: The object type, object owner,
or target of the action.

For a complete list of core fields, see core fields listed in Appendix A, Section A.1.1,
"Core Fields".

1.3.1.1 CommandClass and Target Types
The CommandClass and TargetType fields have well-known values, which cover a set
of general-purpose events that occur in secured targets belonging to various domains,
such as databases or operating systems.

Examples of CommandClasses are Logon, Select, Update, and Shutdown.

These are listed in Appendix A, Section A.2, "Actions and Target Types".

1.3.2 Other Audit Vault Fields
In addition to core fields, Audit Vault Server understands these categories:

■ Large Fields

■ Marker Field

■ Extension Field

1.3.2.1 Large Fields
Large fields are fields that can contain arbitrarily large amounts of data. See
Section A.1.2, "Large Fields" for further information.

1.3.2.2 Extension Field
The Extension field provides a way to make available secured target fields that do not
have a semantically equivalent Audit Vault field and do not map to Core or Large
fields.

The developer determines the format used to store the fields.

See Section A.1.4, "Extension Field" for further information.

1.3.2.3 Marker Field
The Marker field is a unique identifier of a record in a trail. It is constructed out of one
or more fields in an audit record.

See Section A.1.3, "Marker Field" for further information.

1.3.3 Storing Audit Records in Audit Vault
As a plug-in developer, you must map the various events that occur within secured
targets, and their fields, to the various fields allowed by Audit Vault.

If a field in the audit record maps to one of the named fields (core, large, or marker
fields) in Audit Vault, you should map it as such.

If a field in the audit record does not map to one of the named fields, you can map it to
an extension field of your choosing.

The Collection Process

Introduction 1-5

For the Action and TargetType Audit Vault Server fields, see the list of field values in
the "Actions and Target Types" on page A-2. If your audit record maps to one of these
values semantically, we strongly encourage you to use that value. You are, however,
free to use values not listed in the appendix.

You are strongly encouraged to follow these basic guidelines when you store values in
Audit Vault.

■ Do not store IDs that reference objects in the secured target database. Audit Vault
does not have access to these objects, and the stored values will be meaningless.
Store literal names of objects instead, so they can be understood by the auditors,

■ Follow defined Audit Vault conventions. For example, all the ACTION fields and
TARGET TYPE fields in Audit Vault have uppercase values. Please follow this
convention, unless this is not applicable to your secured target type, and would
cause the data stored in Audit Vault to be interpreted incorrectly,

■ Map to the values documented in "Actions and Target Types" on page A-2 if
possible. For example, if TABLE exists in the list as a TargetType, do not add an
audit record with the TargetType of DATABASE TABLE.

Finally, if a field in the audit record of a secured target merits becoming a core field,
please contact Oracle so that it can be added to the model appropriately.

1.4 The Collection Process
This section covers the following topics:

■ Flow of Collection: User

■ Flow of Control Inside the Audit Collection Plug-in

■ Collection Concepts

1.4.1 Flow of Collection: User
1. You, the developer, create a collection plug-in and provide it to the user.

2. The user deploys the plug-in into the Audit Vault Server. The act of deploying a
plug-in into the server creates a new version of the Audit Vault Agent. This new
agent contains collector code from the collection plug-in.

3. The user then deploys the new Agent onto the host where it needs to run.

4. From then on, the user can start collecting audit trails supported by the collector
code.

5. User starts collecting audit trails supported by the collector code.

The next section describes what happens inside the collection plug-in after the user
starts collection.

The Collection Process

1-6 Oracle Audit Vault and Database Firewall Developer's Guide

Figure 1–1 Flow of Collection

1.4.2 Flow of Control Inside the Audit Collection Plug-in
Once a collection plug-in accesses an audit trail, and extracts an audit record and its
related fields from the audit trail, then it maps the audit record to an Audit Vault
event, and all the fields to Audit Vault fields. The collection plug-in then passes the
Audit Vault event and fields to the Audit Vault Agent, which sends the information to
the Audit Vault Server.

This section describes this process in detail.

1. The Audit Vault Server commands the Agent Framework to create a thread to
collect a specific audit trail. See "Collection Thread" on page 1-7l

2. The new thread, just created by the agent, collects a specific audit trail.

At this point control is handed to the Collection Framework. See "Collection
Phase" on page 1-7.

3. Within the thread, the Collection Framework connects to the Audit Vault Server
and queries for configuration information for the audit trail being collected.

Additionally, it requests information for the last checkpoint set for that trail. See
"Checkpoint of a Trail" on page 1-7.

4. With the information it now has, the Collection Framework determines, through
the plug-in manifest file, the correct Java class to invoke within the correct
collection plug-in. It passes the configuration information to this class, and asks it
to initialize itself.

5. Once the collector has initialized itself, the Collection Framework loops repeatedly.
Within each loop, the Collection Framework does the following:

■ Asks the collector for any additional audit records in the audit trail.

The collector transforms (by mapping) any further audit records into the form
of audit records that Audit Vault Server expects, and hands them to the
Collection Framework through the Collection API. See "Mapping" on page 1-7

■ Sends the Audit Vault Server any checkpoint information and other metric
data received from the collection plug-in.

The Collection Process

Introduction 1-7

6. If the Audit Vault Server sends commands to the Collection Framework, such as a
shutdown command, the Collection Framework passes them to the collector to act
on. If the Collection Framework receives a STOP command from the Audit Vault
Server, it notifies the collector to stop sending records, then exits the collection
thread, shuts itself down.

1.4.3 Collection Concepts
This section explains some of the concepts related to the collection process.

1.4.3.1 Collection Thread
The agent starts threads of collection. Within each thread, the Audit Vault Collection
Framework executes code provided by the collection plug-in. The collection
Framework is the run-time infrastructure that exposes the collection API which the
collection plug-in interfaces with. The collection plug-in also uses utility APIS (not
shown) if it needs to.

1.4.3.2 Collection Phase
During the collection phase, the collection plug-in accesses the audit trail to extract
new records. The exact mechanism of how audit trails are accessed depend on the
audit trail. Once a secured target audit record is retrieved from the trail, the collection
plug-in must be able to transform (map) it into an audit record hat can be sent to the
Audit Vault Server. See "Mapping" on page 1-7.

The collection plug-in must also acquire information about the character set of the
secured target records, the encoding used, and issues related to the time stamps, in
order to make these things coordinate with Audit Vault Server requirements.

1.4.3.3 Mapping
The mappings required depend on the secured target records.

These types of mapping are required:

■ Event Mapping: Maps a secured target-specific event to an Audit Vault Event.

■ Field Mapping: Maps the various field of the secured target records to Audit Vault
Fields.

■ Value Mapping: Maps various field values collected into a set of normalized
values for each field (for example, 0 and 1 may be mapped to FALSE and TRUE for a
specific field).

■ Complex Mapping: Complex mappings are used when there are no simple
mappings from one secured target field to an Audit Vault Field, or one secured
target audit event to one Audit Vault Event.

1.4.3.4 Checkpoint of a Trail
The checkpoint or the checkpoint of a trail is the point (as a timestamp) up to which
the audit records were committed to the Audit Vault Server. The collection plug-in sets
a checkpoint periodically so that it can resume from the last checkpoint when
restarted.

1.4.3.5 Recovery Phase Of Data Collection
Audit Vault provides a once and only once guarantee to its users, stating that each audit
record is archived in the Audit Vault Server once and only once. It implements a
checkpoint and recovery mechanism for this purpose.

General Procedure for Writing Audit Collection Plug-ins

1-8 Oracle Audit Vault and Database Firewall Developer's Guide

In the recovery phase of data collection, a collection plug-in has stopped and restarted,
resuming collection. The collection plug-in resumes collection from the checkpoint at
which it had previously stopped

If the collection plug-in has not collected any records from the audit trail, then the
checkpoint occurs before the first record. If the collection plug-in has started collecting
records and then stopped, then the checkpoint occurs immediately after the last record
that it collected.

Resuming collection immediately after the checkpoint ensures that the collection
plug-in does not miss any records. To avoid collecting duplicate records during
recovery, the collection plug-in checks the Marker field of each record.

The collection plug-in should not collect and pass on to the agent any records that
occurred before the last checkpoint. The agent, however, automatically filters out
records that were committed after the last checkpoint and re-collected when the
collection plug-in restarts. In fact, collection plug-ins built using this SDK (see
Chapter 3) write the EventTimeUTC field into a file with the extension.atc. A script can
subsequently read this file and delete audit records as appropriate.

1.4.3.6 Audit Trail Clean-Up
Audit Trail clean-up is a feature that some secured targets provide to clean up audit
records once they've been archived. If this type of feature exists in the secured target, an
Audit Vault collection plug-in can integrate with it, to tell the secured target to what
extent the audit trail has been archived. This enables the secured target to clean up the
audit trail (remove the original audit data) to that point, knowing this will not result in
loss of data. The collection plug-in gives the clean-up utility information about the
checkpoint, the point up to which data has been collected.

The collection plug-in can notify the clean-up feature of the secured target system by
invoking the appropriate interface of the feature. For instance, the system may read a
timestamp from a file in the filesystem and clean up the audit trail up to that
timestamp. If that is the case, the plug-in can write that file periodically.

For example, Oracle Database secured targets provides this type of utility in the DMBS_
AUDIT_MGMT package, and the Oracle Database prepackaged collection plug-ins
integrate with it.

1.5 General Procedure for Writing Audit Collection Plug-ins
The general procedure for writing collection plug-ins is:

1. Know what capability you want to add to Oracle Audit Vault and Database
Firewall, a new secured target type or a new audit trail for an existing secured
target type.

2. Check Oracle Audit Vault and Database Firewall Administrator's Guide to see if Oracle
provides a plug-in that does what you want. If so, use it; do not reinvent the wheel.

Continue only if the plug-in you need does not exist.

Note: Do not create version-dependent secured target types, that is,
different secured target types for different versions of the same
software. If you do, then AVDF cannot collect from the secured target
after it is upgraded to a different version.

For example, suppose that you create the version-dependent secured
target types SQL Server 2000 and SQL Server 2005 and a collection
plug-in that collects the audit trail from a SQL Server 2000 secured
target. If you upgrade that secured target to SQL Server 2005, then
Oracle Audit Vault agent cannot collect its audit trail.

General Procedure for Writing Audit Collection Plug-ins

Introduction 1-9

3. Understand the events that your secured target type writes and their fields.

Use appropriate existing events and fields when you write your plug-in (for
examples of existing events and fields (see Appendix A, "Audit Vault Server
Fields"). If the events or fields you need are not available, you can use extension
fields (see "Extension Field" on page 1-4). Oracle, from time to time, evaluates the
set of fields that Audit Vault supports, and may add new fields if they apply to a
broad set of secured target types. If you believe your fields satisfy this criterion,
please contact Oracle Support.

4. Decide which type of collection plug-in to write, as discussed in "Types of Audit
Collection Plug-ins" on page 1-3.

5. Set up the development environment. See Chapter 2, "Setting Up Your
Development Environment".

6. Learn more about the type of plug-in you are creating in Chapter 3, "Audit
Collection Plug-ins".

7. Determine the following for your collection plug-in:

■ How to connect to the secured target.

■ How to interrogate the secured target to learn what you must know.

■ Which platforms your plug-in will support.

8. Decide whether your plug-in will support audit trail cleanup as described in
"Audit Trail Clean-Up" on page 1-8.

9. Set up the collection plug-in parameters.

10. Create a plug-in manifest file to describe the collection plug-in. See Chapter 4,
"Packaging Audit Collection Plug-ins".

11. Run the avpack utility to package the plug-in (see Chapter 4, "Packaging Audit
Collection Plug-ins").

12. Test the plug-in the staging environment (see Chapter 5, "Testing Audit Collection
Plug-ins").

13. If the plug-in works, make it available to the Audit Vault administrator to deploy
in the development environment, using the command-line commands described in
Oracle Audit Vault and Database Firewall Administrator's Guide.

General Procedure for Writing Audit Collection Plug-ins

1-10 Oracle Audit Vault and Database Firewall Developer's Guide

2

Setting Up Your Development Environment 2-1

2Setting Up Your Development Environment

This chapter describes the process of setting up the Oracle Audit Vault Server
development environment.

This chapter contains:

■ Before You Set Up the Development Environment

■ Setting Up the Development Environment

■ Audit Collection Plug-in Directory Structure

2.1 Before You Set Up the Development Environment
To develop Audit Collection Plug-ins, you must first set up the development
environment. This setup provides a consistent environment for developing and testing
the collection plug-ins.

Before you set up a developer environment, do the following:

■ Obtain and install Oracle Audit Vault and Database Firewall 12.1.2. You must
have this version so that you can test the collection plug-in execution and
determine whether it captures the correct audit records from the secured target
and makes them available in the server. Also, doing early end-to-end integration
tests helps to eliminate any connectivity problems and other bugs in your code.
See Oracle Audit Vault and Database Firewall Installation Guide for more information.

■ To help you decide which type of collection plug-in to use, see "Determining
Which Audit Collection Plug-in Type to Create" on page 1-3.

2.2 Setting Up the Development Environment
Before setting up the development environment, download the Oracle AVDF SDK
from the Audit Vault Server console in Oracle Audit Vault and Database Firewall:

To download the SDK, do the following:

1. Log in to the Audit Vault Server console as an administrator.

2. Click the Settings tab, and then click Plug-ins (under the System subsection).

3. Click Download SDK.

4. Unzip the SDK into an empty directory.

To set up an environment for developing collection plug-ins, follow these steps:

1. Set the AV_SDK_HOME variable to the directory you extracted the SDK to.

Audit Collection Plug-in Directory Structure

2-2 Oracle Audit Vault and Database Firewall Developer's Guide

For example:

$ export AV_SDK_HOME=/home/username/avsdk

2. Set the PATH environment variable to bin directory of the Audit Vault Server.

For example:

$ export PATH=$AV_SDK_HOME/bin:$PATH

This setting enables you to use existing scripts during the development cycle.

3. Set the CLASSPATH environment variable to include the relevant jars for your
collection plug-in project.

For example:

$ export CLASSPATH=$AV_SDK_HOME/av/jlib

4. Create directories as necessary.

See "Audit Collection Plug-in Directory Structure" on page 2-2 for the directory
structure that you should use.

2.3 Audit Collection Plug-in Directory Structure
This section contains these topics:

■ General Directory Structure

■ Audit Collection Plug-in Directory Structure

■ Staging a plugin-manifest.xml File

2.3.1 General Directory Structure
Example 2–1 shows a general directory structure.

Example 2–1 General Directory Structure

STAGE_DIR_ROOT
plugin-manifest.xml
 jars
 mycoll.jar
 myjdbc-lib.jar
 config
 mycoll.properties
 bin
 mycoll.exe
 patches
 p3653288_GENERIC.zip

In Example 2–1, the STAGE_DIR_ROOT directory is the root directory where you stage
your collection plug-in files. Place the plugin-manifest.xml directly in this directory.
Under the STAGE_DIR_ROOT directory, create the following directories:

■ jars: Holds all the binaries generated through the Java build process.

Place your collector binaries for a Java-based plug-in in the jars directory. You
should package the various collector Java classes into a jar file for easier access on
the file system. For collection plug-ins, you do not need to package the
Collector.jar in to this directory because it is part of the core agent and is
automatically available for all collectors that are managed by an agent.

Audit Collection Plug-in Directory Structure

Setting Up Your Development Environment 2-3

■ config: Holds any configuration files that the collection plug-in requires to
function. These configuration files can be resource bundles, property files, and so
on.

■ bin: Holds any native non-Java binary executables. For example, if your collector
code invokes any native non-Java binaries, place them in the bin directory.

Because the agent is supported on multiple platforms, you should build the
non-Java binaries on all platforms that the agent supports. In addition, the
collector process locates and loads the appropriate binary based on the execution
platform, so use a naming convention similar to that described in the "Description
of Plug-in Manifest File" on page 4-2.

■ patches: Holds any OPatch patches for secured target-specified event attributes
that the collector needs to function. If your collector adds new event attributes that
are needed during run-time, then contact Oracle Support. Oracle Support will
provide you with a patch that adds these events into the Audit Vault Server
repository. This approval process is necessary to avoid collisions with other event
attribute names across multiple plug-ins. After you have obtained these patches,
place them in the patches directory. Then they will automatically be applied to the
server during collection plug-in deployment.

2.3.2 Audit Collection Plug-in Directory Structure
Example 2–2 shows the structure of a stage directory for a collection plug-in.

Example 2–2 Directory Structure for collection plug-in

STAGE_DIR_ROOT
plugin-manifest.xml
 templates
 mycoll-template.xml
 config
 mycoll.properties
 patches
 p3653288_GENERIC.zip

 See "Description of Plug-in Manifest File" on page 4-2.

For a collection plug-in, place all mapper files in the templates directory, as shown in
Example 2–2. This placement directs the collection plug-in to load the relevant
template file based on the information that the file contains.

2.3.3 Staging a plugin-manifest.xml File
The plugin-manifest.xml file is a core XML file that describes the collection plug-in
and defines its attributes. You must stage the plugin-manifest.xml file directly under
the STAGE_DIR_ROOT directory, as follows:

■ On UNIX systems: If your stage directory is /opt/final-plugin-stage/, then
stage the plugin-manifest.xml file at
/opt/final-plugin-stage/plugin-manifest.xml.

■ On Microsoft Windows systems: If your stage directory is
c:\myplugin\final-stage-dir, then stage the plugin-manifest.xml file at
c:\myplugin\final-stage-dir\plugin-manifest.xml.

See Also:

■ "Description of Plug-in Manifest File" on page 4-2 for description
and lists of attributes

■ Appendix C, "Example Code" for a complete sample file

■ "Sample Schema for a plugin-manifest.xml file" on page B-1

Audit Collection Plug-in Directory Structure

2-4 Oracle Audit Vault and Database Firewall Developer's Guide

3

Audit Collection Plug-ins 3-1

3Audit Collection Plug-ins

This chapter describes Audit Collection Plug-ins and how to create them.

This chapter covers these topics:

■ About Audit Collection Plug-ins

■ About Mapper Files

■ Database Table Collection Plug-ins

■ XML File Collection Plug-ins

■ Secured Target Collection Attributes

■ Pre-Processing Audit Data

3.1 About Audit Collection Plug-ins
Collection plug-ins can retrieve audit data stored in either database tables or XML file
audit trails, without the need for writing code.

Collection plug-ins are template-based generalized collectors. Users must provide a
mapper file to collect audit data from a trail.

These collection plug-ins are created by preparing an XML Mapper file that supplies
the mapping information for secured target fields to Audit Vault Server fields and
other details for secured target types and audit trails. Model XML Mapper files are
provided in "Database Table Collection Plug-in Mapper File" on page C-1 and "XML
File Collection Plug-in Mapper File" on page C-5.

This process does not require any coding. Audit Vault contains all the code necessary
to interpret Mapper files and use them to collect the audit data from the audit trail
appropriately.

Collection plug-ins support two types of audit trails:

■ Database Table: database table collection plug-ins can collect audit data from an
audit table, using the information from the Mapper file.

■ XML File: XML file collection plug-ins can collect audit data from XML audit files
present in a single directory, using the information from the Mapper file.

To use the collection plug-in for Database tables or XML file trails, you perform the
following steps:

1. Create an XML Mapper file for a secured target audit trail. This chapter discusses
Mapper files in general and focuses on their creation in "Creating a Database Table
Mapper File" on page 3-4 and "Creating the XML File Audit Collection Mapper
File" on page 3-10.

About Mapper Files

3-2 Oracle Audit Vault and Database Firewall Developer's Guide

2. Create a plugin-manifest file for this secured target type. See "Description of
Plug-in Manifest File" on page 4-2.

3. Create the collection plug-in by packaging the mapper file and plugin-manifest
file. See Chapter 4, "Packaging Audit Collection Plug-ins".

You can now deploy this collection plug-in at the Audit Vault Server and use it to
collect audit data after adding the secured target and any necessary collection
attributes for this secured target. See "Secured Target Collection Attributes" on
page 3-17.

3.2 About Mapper Files
Mapper files are XML files which mainly contain information about which secured
target fields you must collect from the audit trail and how these secured target fields
map to Audit Vault Server fields. Mapper files are specific to a secured target type, and
contains secured target information such as securedTargetType and
securedTargetVersion, and so on.

Mapper files cover these details:

■ The supported secure target name and secured target version.

■ Mapping information from secured target fields to Audit Vault Server fields.

■ Secured target fields for constructing markers, which uniquely identify each audit
record.

■ Audit table and datasource class names, where the audit trail type is database
table.

■ Event time timestamp format, where the audit trail type is XML file.

Package the mapper files as part of the collection plug-in. Place mapper files in the
templates folder during the plug-in packaging process. See "Audit Collection Plug-in
Directory Structure" on page 2-3.

See Also:

■ "Database Table Collection Plug-ins" on page 3-2 for mapper files
that retrieve audit records from database audit tables

■ "XML File Collection Plug-ins" on page 3-8 for mapper files that
retrieve audit records from XML files

3.3 Database Table Collection Plug-ins
Database table collection plug-ins support the collection of audit data from the table
type of trail. They collect audit data from a single audit table. You can specify details of
the audit table in the mapper file. These mapper files must conform to the schema
present in "Database Table Collection Plug-in Mapper File" on page B-4.

This section covers these topics:

■ Requirements for Database Table Collection Plug-ins

■ Example Audit Trail for a Database Table Collection Plug-in

■ Creating a Database Table Mapper File

Database Table Collection Plug-ins

Audit Collection Plug-ins 3-3

3.3.1 Requirements for Database Table Collection Plug-ins
You can use database table collection plug-ins for reading audit trails from secured
target database tables if the following criteria are met:

■ Audit data must be stored in a single database table.

■ The secured target system has a user with privileges to read the audit data stored
in this table.

■ The columns in the audit tables can be mapped to various Audit Vault core fields
and large fields.

Also single or multiple fields can be mapped to extension and marker fields. Fields
mapped to Audit Vault core fields, extension fields, and marker fields must be of
String data type or convertible to String. They cannot be of large data type, such
as a CLOB. Columns having CLOB data type should use large Audit Vault fields,
such as CommandText or CommandParam.

■ The audit trail must contain fields which map to the CommandClass Audit Vault
core fields.

The value of the CommandClass core field must not be null. If it is null, then the
record is treated as an invalid record, so you must provide the proper mapping.

■ The audit file must have a field that can be mapped to the UserName core field. If a
record has its UserName field as null, then the record is treated as invalid.

■ The collection plug-in can collect the text of any command issued, as well as any
parameters passed to the command, in large fields. No other fields can be mapped
to large fields in AVDF.

■ The audit trail must contain a field of type Timestamp that is monotonically
increasing, that is, the value of the field increases with every new audit record
inserted into the trail. This field must mapped to the EventTimeUTC core field in
the mapper file. If, for any audit record, this field value becomes null, the collector
treats this as an abnormal condition and shuts down.

■ The audit trail must contain a single column or group of columns that uniquely
identify each audit record.

See schemas in Appendix B, "Schemas".

3.3.2 Example Audit Trail for a Database Table Collection Plug-in
This section contains details of an example audit trail, which is used for demonstrating
the creation and structure of a sample mapper file throughout the chapter.

Table 3–1 lists the structure for the hypothetical secured target type, DBSOURCE, that
generates and stores audit data in a table AUD.

Table 3–1 AUD Audit Table Data Fields and Mappings

Secured Target
Field Data Type Audit Vault Server Field

Map to Field
Type

USER_ID varchar UserName core field

OS_USER_ID varchar OSUserName core field

ACTION int CommandClass core field

STATUS int EventStatus core field

EVENT_TIME timestamp EventTimeUTC core field

Database Table Collection Plug-ins

3-4 Oracle Audit Vault and Database Firewall Developer's Guide

Not all of the secured target fields map to core fields. The secured target fields which
do not map to core fields map to extension fields or to designated marker fields, which
test the uniqueness of an audit record.

3.3.3 Creating a Database Table Mapper File
This section explains how to create an XML mapper file for a database table collection
plug-in. It briefly describes each XML element and attribute used in this type of
mapper file. You can read descriptions of all fields in Section A.1, "AVDF Fields."

See Also:

■ The complete example, "Database Table Collection Plug-in
Mapper File" on page C-1

■ "Example Audit Trail for a Database Table Collection Plug-in" on
page 3-3

The following is a step-by-step example that shows how to create a mapper file for
database table collection plug-in:

■ Top Level Element

<AVTableCollectorTemplate securedTargetType="DBSOURCE"
minSecuredTargetVersion="10.2.0"
 maxSecuredTargetVersion="11.0" version="1.0" >

The AVTableCollectorTemplate is the top level element, which marks the start of
the mapper file. It has these mandatory attributes: securedTargetType,
maxSecuredTargetVersion, and version. The minSecuredTargetVersion attribute
is optional.

The accepted format for the minSecuredTargetVersion,
maxSecuredTargetVersion, and version attributes uses numbers, separated by
dots, such as 12.2,10.3.2, 11.2.3.0.

■ Table Name Information

<TableName>AUD</TableName>

OBJ_NAME varchar TargetObject core field

OBJ_CREATOR varchar TargetOwner core field

USER_HOST varchar ClientHostName core field

SQL_TEXT clob CommandText core field

SQL_BIND clob CommandParam core field

TERMINAL varchar extension field extension field

DB_ID varchar extension field extension field

INSTANCE varchar extension field extension field

PROCESS int extension field extension field

SESSION_ID int marker field marker field

ENTRY_ID int marker field marker field

Table 3–1 (Cont.) AUD Audit Table Data Fields and Mappings

Secured Target
Field Data Type Audit Vault Server Field

Map to Field
Type

Database Table Collection Plug-ins

Audit Collection Plug-ins 3-5

You must provide the TableName of the audit table. This is a mandatory field.

■ Secured Target Connection Information

<ConnectionInfo>
 <Driver>platform.jdbc.dbsource.DBSourceDataSource</Driver>
</ConnectionInfo>

You must provide the full name for the datasource class implementing
javax.sql.DataSource interface. This is a mandatory field.

■ Field Mapping Information

<FieldMappingInfo>

FieldMappingInfo must provide mapping information from secured target fields
to various Audit Vault fields, along with the value transformations if any. This is a
mandatory element.

Field mappings include <Map> elements which contain <Name> elements that hold
secured target field names and <MapTo> elements that hold Audit Value field
names that secured targets are mapped to.

There should be no many-to-one mappings from secured target fields to Audit
Vault Server fields. For example, the following is invalid:

<!-- Invalid code
<Map>
 <Name>USER_ID</Name>
 <MapTo>UserName</MapTo>
</Map>
<Map>
 <Name>OS_USER_ID</Name>
 <MapTo>UserName</MapTo>
</Map> -->

The following sections explain mappings for core, large, extension, and marker
fields:

■ Core Fields

<CoreFields>

CoreFields provides mapping from secured target fields to core fields of
Audit Vault Server. The data type of secured target fields specified must
belong to either a SQL string data type or a data type that can convert to a
String.

The following elements contain core fields, which are described in "Core
Fields" on page A-1.

<Map>
 <Name>EVENT_TIME</Name>
 <MapTo>EventTimeUTC</MapTo>
</Map>

EventTimeUTC provides event time mapping information. It is a mandatory
field.

EVENT_TIME secured target fields must be of the SQL data type Timestamp.

<Map>
 <Name>USER_ID</Name>

Database Table Collection Plug-ins

3-6 Oracle Audit Vault and Database Firewall Developer's Guide

 <MapTo>UserName</MapTo>
</Map>

UserName represents the user who performs the action. If the mapping is not
provided, Audit Data Collection still starts successfully, but every audit record
will be treated as invalid.

<Map>
 <Name>OS_USER_ID</Name>
 <MapTo>OSUserName</MapTo>
</Map>

<Map>
 <Name>ACTION</Name>
 <MapTo>CommandClass</MapTo>
</Map>

CommandClass represents the action of the event. If the mapping is not
provided, Audit Data Collection still starts successfully, but all audit records
are treated as invalid.

<Transformation>
 <ValueTransformation from="1" to="CREATE"/>
 <ValueTransformation from="2" to="INSERT"/>
 <ValueTransformation from="3" to="SELECT"/>
 <ValueTransformation from="4" to="CREATE"/>
 <ValueTransformation from="15" to="READ"/>
 <ValueTransformation from="30" to="LOGON"/>
 <ValueTransformation from="34" to="LOGOFF"/>
 <ValueTransformation from="35" to="ACQUIRE"/>
 </Transformation>
 </Map>

CommandClass contains a Transformation field with ValueTransformation
values, from secured targets to the Audit Vault CommandClass field. These
transformations are mandatory.

The to attributes are values for the CommandClass field, as described in the
"Actions and Target Types" on page A-2. If you can meaningfully map an
event to one of these values, Oracle recommends that you do so. If this is not
possible, use a value that appropriately reflects the action that generated the
audit event.

<Map>
 <Name> OBJ_NAME</Name>
 <MapTo>TargetObject</MapTo>
</Map>

<Map>
 <Name>USER_HOST</Name>
 <MapTo>ClientHostName</MapTo>
</Map>

<Map>
 <Name>OBJ_CREATOR</Name>
 <MapTo>TargetOwner</MapTo>
 </Map>

<Map>

Database Table Collection Plug-ins

Audit Collection Plug-ins 3-7

 <Name>STATUS</Name>
 <MapTo>EventStatus</MapTo>
 <Transformation>
 <ValueTransformation from="0" to="FAILURE"/>
 <ValueTransformation from="1" to="SUCCESS"/>
 <ValueTransformation from="2" to="UNKNOWN"/>
 </Transformation>
 </Map>

EventStatus contains a Transformation field with ValueTransformation
values, from secured targets to Audit Vault EventStatus fields. These
transformations are mandatory.

</CoreFields>

■ Large Fields Information

<LargeFields>
 <Map>
 <Name>SQL_TEXT</Name>
 <MapTo>CommandText</MapTo>
 </Map>
 <Map>
 <Name>COMMAND_PARAMETER</Name>
 <MapTo>CommandParam</MapTo>
 </Map>
</LargeFields>

LargeFields are secured target fields mapped to large fields in the Audit
Vault Server, such as CommandText or CommandParam. The specified secured
target fields must be of SQL data type CLOB or String, or be convertible to
String.

Large fields are described in "Large Fields" on page A-2.

■ Extension Field

<ExtensionField>
 <Name>DB_ID</Name>
 <Name>INSTANCE</Name>
 <Name>PROCESS</Name>
 <Name>TERMINAL</Name>
</ExtensionField>

The ExtensionField is a secured target field name that must be stored as a
name-value pair in the Extension field in Audit Vault Server. Secured target
columns specified here should have a String value or a value that can be
converted to String without loss of information.

See "Extension Field" on page A-2.

■ Marker Field

<MarkerField>
 <Name>SESSION_ID</Name>
 <Name>ENTRY_ID</Name>
</MarkerField>

The MarkerField contains a list of secured target field names that uniquely
identify each audit record. The secured target fields specified must be of SQL
data type String or convertible to String. MarkerField is mandatory.

The marker field is described in "Marker Field" on page A-2.

XML File Collection Plug-ins

3-8 Oracle Audit Vault and Database Firewall Developer's Guide

■ End Tags

The field tags must be properly closed in order for the file to be valid. The
following are examples of field end tags:

</FieldMappingInfo>

</AVTableCollectorTemplate>

3.4 XML File Collection Plug-ins
XML file collection plug-ins support collection of audit data from an XML file type of
trail. All these XML audit files must be present in single directory. You can specify
details of the XML audit data in the mapper file. This XML mapper file must conform
to this schema, "Schema for XML File Collection Plug-in Mapper File" on page B-6.

This section covers these topics:

■ Requirements for XML File Collection Plug-ins

■ Example Audit Trail for an XML File Collection Plug-in

■ Creating the XML File Audit Collection Mapper File

■ XML Transformation for Non-Standard Audit Records

3.4.1 Requirements for XML File Collection Plug-ins
You can use collection plug-ins for reading audit trails from XML audit record files if
the XML files meet the following criteria:

■ The audit trail must be stored in one or more XML files in a single directory path.

■ The user must have read permission on the directory containing the XML audit
files.

■ XML files in this directory must be valid, well-formed XML documents, within the
constraints of the XML 1.0 specification.

■ The file and record start elements must be as specified in the mapper file.

■ All the audit record elements should be at the same level in Audit XML files.

■ All the audit record elements in Audit XML files must be the same.

■ Under every audit record element, all the field elements must be at the same level
and one level below the audit record start element.

■ The XML audit file must have an element value that can be mapped to the
CommandClass core field. If a record has its CommandClass field as null, then the
record is treated as invalid.

■ The XML audit file must have an element value that can be mapped to the
UserName core field. If a record has its UserName field as null, then the record is
treated as invalid.

■ In the XML file, each audit record must have a timestamp as one of its element
values.

The value of the timestamp element must be monotonically increasing, that is, the
value of the field increases with every new audit record inserted into the trail. The
timestamp value should be strictly Not Null. Timestamp format must be
according to SimpleDateFormat Java class.

XML File Collection Plug-ins

Audit Collection Plug-ins 3-9

This field must mapped to the EventTimeUTC core field in the mapper file. If
mapping for event time is not specified in the mapper file, then the collection
plug-in shuts down. If the field value for the event time in audit records is found
null, then the collection plug-in takes the time of the record last sent from the same
XML audit file.

■ The audit trail must contain a single element value or group of element values in
the audit record that uniquely identify each audit record in XML Audit files.

■ Common information shared by all audit records in XML file should be present in
the beginning of the XML file, under the file start element, at the same level as the
audit record elements.

■ If an audit data secured target produces audit files with multiple XML formats,
then the user must provide a separate mapper file for each audit file format having
a different start element.

■ XML files in this directory should be of the same locale and encoding as the agent,
as described in the examples below:

– Valid: The user has an agent in a Chinese locale (env). XML files are also
generated in a Chinese locale with same encoding (for example, ZHS16GBK).
This setup is valid.

– Invalid: The user has an agent in a German locale (env). XML files are
generated/moved from some other computer, which are Chinese encoded.
The collectors fail to start because of an encoding mismatch, as well as a locale
mismatch, in this case. This setup is invalid.

3.4.2 Example Audit Trail for an XML File Collection Plug-in
This section contains an example audit trail which is used for the creation and
structure of a sample mapper file for an XML file collection plug-in throughout the
chapter.

Example 3–1 Sample XML Audit Record

<?xml version="1.0" encoding="UTF-8"?>
<Audit>
 <AuditRecord>
 <Audit_type>1</Audit_type>
 <User_id>scott</User_id>
 <Os_user_id>usr1</Os_user_id>
 <Action>select</Action>
 <Status>0</Status>
 <Event_time>2010-11-11 12:23:59.166</Event_time>
 <Obj_name>emp</Obj_name>
 <Terminal>t1</Terminal>
 <Db_id>136</Db_id>
 <Session_id>170191</Session_id>
 <Entry_id>1</Entry_id>
 </AuditRecord>
 <AuditRecord>
 <Audit_type>3</Audit_type>
 <User_id>scott</User_id>
 <Os_user_id>usr1</Os_user_id>
 <Action>delete</Action>
 <Status>1</Status>
 <Event_time>2010-11-11 12:33:59.166</Event_time>
 <Obj_name>emp</Obj_name>
 <Terminal>t1</Terminal>

XML File Collection Plug-ins

3-10 Oracle Audit Vault and Database Firewall Developer's Guide

 <Db_id>136</Db_id>
 <Session_id>170191</Session_id>
 <Entry_id>2</Entry_id>
 </AuditRecord>
</Audit>

Table 3–2 lists the audit record structure and mappings to Audit Vault Server fields for
the hypothetical secured target type, XMLSOURCE, which generates and stores audit data
in XML audit files.

Table 3–2 Audit Data Fields in XML Audit Records and Mappings

Secured Target Field Audit Vault Server Field Map to Field Type

USER_ID UserName core field

OS_USER_ID OSUserName core field

ACTION CommandClass core field

STATUS EventStatus core field

EVENT_TIME EventTimeUTC core field

OBJ_NAME TargetObject core field

OBJ_CREATOR TargetOwner core field

USER_HOST ClientHostName core field

SQL_TEXT CommandText core field

SQL_BIND CommandParam core field

TERMINAL extension field extension field

DB_ID extension field extension field

INSTANCE extension field extension field

PROCESS extension field extension field

SESSION_ID marker field marker field

ENTRY_ID marker field marker field

3.4.3 Creating the XML File Audit Collection Mapper File
This section describes the process that you must follow to create an XML file collection
plug-in mapper file. See "XML File Collection Plug-in Example" on page C-5 for the
complete example.

You must describe the collection plug-in mappings in this mapper file as follows:

■ Top-Level Element

<AVXMLCollectorTemplate securedTargetType="XMLSOURCE"
 maxSecuredTargetVersion="11.0" version="1.0">

The AVXMLCollectorTemplate is the top level element and has these mandatory
attributes: securedTargetType, maxSecuredTargetVersion, and version. The
minSecuredTargetVersion attribute is optional.

The accepted format for the minSecuredTargetVersion,
maxSecuredTargetVersion, and version attributes uses numbers, separated by
dots, such as 12.2,10.3.2, 11.2.3.0.

■ Header Information

XML File Collection Plug-ins

Audit Collection Plug-ins 3-11

<HeaderInfo>
 <StartTag>Audit</StartTag>
</HeaderInfo>

HeaderInfo is mandatory. It contains one child element, StartTag, which names
the top-level element of the audit record file.

■ Record Information

<RecordInfo>
 <StartTag>AuditRecord</StartTag>
</RecordInfo>

RecordInfo provides the starting element of audit records in XML audit files.
RecordInfo is mandatory.

StartTag is the starting element of each audit record in XML audit files.

■ Field Mapping Information

<FieldMappingInfo>

FieldMappingInfo provides mapping information from secured target fields to
various Audit Vault fields, contained in these child elements, CoreFields,
LargeFields, ExtensionField, and MarkerField.

Field mappings include <Map> elements, which contain <Name> elements that hold
secured target field names, and <MapTo> elements that hold Audit Value field
names that secured targets are mapped to.

There should be no many-to-one mappings from secured target fields to Audit
Vault Server fields. For example, the following is invalid:

<!-- Invalid code
<Map>
 <Name>USER_ID</Name>
 <MapTo>UserName</MapTo>
</Map>
<Map>
 <Name>OS_USER_ID</Name>
 <MapTo>UserName</MapTo>
</Map> -->

■ Core Fields

<CoreFields>

CoreFields provides mapping from secured target fields to core fields of
Audit Vault Server. Secured target fields specified in core field mappings must
be of SQL data type, either a string or a data type that can convert to string.

The following elements contain core fields, which are described in "Core
Fields" on page A-1.

<Map>
 <Name>EVENT_TIME</Name>
 <MapTo>EventTimeUTC</MapTo>
 <TimestampPattern>yyyy-MM-dd HH:mm:ss.SSS</TimestampPattern>
</Map>

EventTimeUTC provides event time mapping information. The value in
TimestampPattern specifies the timestamp format for event time.
EventTimeUTC and TimestampPattern are mandatory.

XML File Collection Plug-ins

3-12 Oracle Audit Vault and Database Firewall Developer's Guide

When specifying the TimestampPattern, use the supported patterns and
characters of the Java SimpleDateFormat class, NOT Oracle Database specific
patterns.

For multibyte characters such as Chinese, specific words such as Month
should be added into the pattern as characters in SimpleDateFormat. The AM
and PM indicators are obtained based on locale, but should be explicitly
mentioned in the TimestampPattern that you provide in the mapper file.

<Map>
 <Name>USER_ID</Name>
 <MapTo>UserName</MapTo>
</Map>

UserName represents the user who performed the action. If the mapping is not
provided, Audit Data Collection still starts successfully, but every audit record
is treated as invalid.

<Map>
 <Name>OS_USER_ID</Name>
 <MapTo>OSUserName</MapTo>
</Map>

<Map>
 <Name>ACTION</Name>
 <MapTo>CommandClass</MapTo>
</Map>

CommandClass represents the action of the event. If the mapping is not
provided, Audit Data Collection still starts successfully, but all audit records
are treated as invalid.

 <Transformation>
 <ValueTransformation from="1" to="CREATE"/>
 <ValueTransformation from="2" to="INSERT"/>
 <ValueTransformation from="3" to="SELECT"/>
 <ValueTransformation from="4" to="CREATE"/>
 <ValueTransformation from="15" to="READ"/>
 <ValueTransformation from="30" to="LOGON"/>
 <ValueTransformation from="34" to="LOGOFF"/>
 <ValueTransformation from="35" to="ACQUIRE"/>
 </Transformation>

CommandClass contains a Transformation field with ValueTransformation
values, from secured targets to the Audit Vault Server CommandClass field.
These transformations are mandatory.

The to attributes are values for the CommandClass field, as described in the
"Actions and Target Types" on page A-2. If you can meaningfully map an
event to one of these values, Oracle recommends that you do so. If this is not
possible, use a value that appropriately reflects the action that generated the
audit event.

<Map>
 <Name>OBJ_NAME</Name>
 <MapTo>TargetObject</MapTo>
</Map>

<Map>
 <Name>USER_HOST</Name>

XML File Collection Plug-ins

Audit Collection Plug-ins 3-13

 <MapTo>ClientHostName</MapTo>
</Map>

<Map>
 <Name>OBJ_CREATOR</Name>
 <MapTo>TargetOwner</MapTo>
</Map>

<Map>
 <Name>STATUS</Name>
 <MapTo>EventStatus</MapTo>
 <Transformation>
 <ValueTransformation from="0" to="FAILURE"/>
 <ValueTransformation from="1" to="SUCCESS"/>
 <ValueTransformation from="2" to="UNKNOWN"/>
 </Transformation>
</Map>

EventStatus contains a Transformation field with ValueTransformation
values, from secured targets to Audit Vault EventStatus fields. These
transformations are mandatory.

</CoreFields>

■ Large Fields Information

<LargeFields>
 <Map>
 <Name>SQL_TEXT</Name>
 <MapTo>CommandText</MapTo>
 </Map>

 <Map>
 <Name>COMMAND_PARAMETER</Name>
 <MapTo>CommandParam</MapTo>
 </Map>
</LargeFields>

LargeFields are secured target fields mapped to large fields in the Audit
Vault Server. The specified secured target fields must be of SQL data type CLOB
or String, or be convertible to String.

Large fields are described in "Large Fields" on page A-2.

■ Extension Fields

<ExtensionField>
 <Name>DB_ID</Name>
 <Name>INSTANCE</Name>
 <Name>PROCESS</Name>
 <Name>TERMINAL</Name>
</ExtensionField>

ExtensionFields are secured target field names that must be stored as a
name-value pair in the Extension field in Audit Vault Server. Secured target
fields specified must be of SQL data type CLOB or String, or be convertible to
String.

See "Extension Field" on page A-2.

■ Marker Fields

XML File Collection Plug-ins

3-14 Oracle Audit Vault and Database Firewall Developer's Guide

<MarkerField>
 <Name>SESSION_ID</Name>
 <Name>ENTRY_ID</Name>
</MarkerField>

MarkerField contains a list of secured target fields that uniquely identify each
audit record. The secured target fields specified must be of SQL data type CLOB
or String, or be convertible to String. MarkerField is mandatory.

Marker fields are described in "Marker Field" on page A-2.

3.4.4 XML Transformation for Non-Standard Audit Records
If you have audit records in a non-standard audit data format, that is, unlike the audit
record example shown in "Example Audit Trail for an XML File Collection Plug-in" on
page 3-9, you can apply XML transformation using XSL on the XML audit records. To
do this, you provide an XSL file that can transform the audit data from its original
format to the format currently specified for the XML file collection plug-ins. Doing this
means you can enhance file collection plug-ins to support a variety of XML audit data
formats.

3.4.4.1 Additional Requirement for XML Transformation Using XSL
To transform non-standard audit records into the current format, the following is
required:

The transformer must write to audit files in an incremental order, that is, writing to
one audit file until its maximum size is reached and then moving over to another file.
Therefore, only one file can be active at a time. The XML file collection plug-in stops if
the transformer finds more than one incomplete XML audit file.

3.4.4.2 Changes Required to Transform Non-Standard Audit Records
In order to transform non-standard audit records, you must perform these steps:

1. Add a section such as this, to the mapper file after <RecordInfo>, as shown in
Section 3.4.3, "Creating the XML File Audit Collection Mapper File", specifying the
name of XSL file to be used for transformation and the SourceFileStartTag for
the file to be transformed, see "Sample Non-Standard XML Audit Data Record" on
page 3-14.

<XslTransformation>
 <XslFile>test_template.xsl</XslFile>
 <SourceFileStartTag>AUDIT</SourceFileStartTag>
</XslTransformation>

2. Provide the XSL file and place it in the templates folder of the plugin directory.
For an example, see "Creating an XSL File for Transformation" on page 3-15

3. You can also make calls to Java functions from within the XSL file. To do this, place
the jar file created in the jars folder of the plugin directory.

3.4.4.3 Sample Non-Standard XML Audit Data Record
This section contains an sample of an XML data record that needs to be transformed in
the proper XML format required for an XML file collection plug-in. Your source
system may produce audit records with a different appearance.

XML File Collection Plug-ins

Audit Collection Plug-ins 3-15

Example 3–2 Audit.xml: Sample XML Audit Record

<?xml version="1.0" encoding="UTF-8"?>
<AUDIT>

 <AUDIT_RECORD TIMESTAMP="2013-06-07T08:27:53" NAME="Audit"
 SERVER_ID="0" VERSION="1" STARTUP_OPTIONS="C:/Program Files/MySQL/MySQL
 Server 5.6/bin\mysqld --defaults-file=C:\ProgramData\MySQL\MySQL Server
 5.6\my.ini" OS_VERSION="x86_64-Win64" MYSQL_VERSION=
 "5.6.11-enterprise-commercial-advanced"/>

 <AUDIT_RECORD TIMESTAMP="2013-06-07T08:30:46" NAME="Connect" CONNECTION_ID="1"
 STATUS="0" USER="root" PRIV_USER="root" OS_LOGIN="" PROXY_USER=""
 HOST="localhost" IP="127.0.0.1" DB=""/>

 <AUDIT_RECORD TIMESTAMP="2013-06-07T08:31:21" NAME="Query" CONNECTION_ID="1"
 STATUS="0" SQLTEXT="CREATE USER 'admin'@'localhost' IDENTIFIED BY
 'welcome_1'"/>

</AUDIT>

3.4.4.4 Creating an XSL File for Transformation
This an example of an XSL transformation file that defines transformation rules. You
need to create a version that can transform the source audit records that your system
creates and place it in the templates folder of the plugin.

Example 3–3 test_template.xsl

<?xml version="1.0"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output indent="yes" />
 <xsl:template match="/">
 <ROOT_DEST>
 <xsl:for-each select="AUDIT/AUDIT_RECORD">
 <Record_Dest>
 <USER><xsl:value-of select="@USER"/></USER>
 <PRIV_USER><xsl:value-of select="@PRIV_USER"/></PRIV_USER>
 <OS_LOGIN><xsl:value-of select="@OS_LOGIN"/></OS_LOGIN>
 <PROXY_USER><xsl:value-of select="@PROXY_USER"/></PROXY_USER>
 <HOST><xsl:value-of select="@HOST"/></HOST>
 <IP><xsl:value-of select="@IP"/></IP>
 <DB><xsl:value-of select="@DB"/></DB>
 <SQLTEXT><xsl:value-of select="@SQLTEXT"/></SQLTEXT>
 <CONNECTION_ID><xsl:value-of select=
 "@CONNECTION_ID"/></CONNECTION_ID>
 <STATUS><xsl:value-of select="@STATUS"/></STATUS>
 <TIMESTAMP><xsl:value-of select="@TIMESTAMP"/></TIMESTAMP>
 <NAME><xsl:value-of select="@NAME"/></NAME>
 <SERVER_ID><xsl:value-of select="@SERVER_ID"/></SERVER_ID>
 <VERSION><xsl:value-of select="@VERSION" /></VERSION>
 <STARTUP_OPTIONS><xsl:value-of select="@STARTUP_OPTIONS"/> </STARTUP_OPTIONS>
 <OS_VERSION><xsl:value-of select="@OS_VERSION"/></OS_VERSION>
 <MYSQL_VERSION><xsl:value-of select="@MYSQL_VERSION"/>
 </MYSQL_VERSION>
 </Record_Dest>
 </xsl:for-each>
 </ROOT_DEST>
 </xsl:template>
 </xsl:stylesheet>

XML File Collection Plug-ins

3-16 Oracle Audit Vault and Database Firewall Developer's Guide

The following file does not appear in your folder. It is just an example showing the
result of transforming the Audit.xml file into the required XML format using the XSL
transformation file in Example 3–3.

Example 3–4 Transformed Audit Record file

<ROOT_DEST>
 <Record_Dest>
 <USER></USER>
 <PRIV_USER></PRIV_USER>
 <OS_LOGIN></OS_LOGIN>
 <PROXY_USER></PROXY_USER>
 <HOST></HOST>
 <IP></IP>
 <DB></DB>
 <SQLTEXT></SQLTEXT>
 <CONNECTION_ID></CONNECTION_ID>
 <STATUS></STATUS>
 <TIMESTAMP>2013-06-07T08:27:53</TIMESTAMP>
 <NAME>Audit</NAME>
 <SERVER_ID>0</SERVER_ID>
 <VERSION>1</VERSION>
 <STARTUP_OPTIONS>C:/Program Files/MySQL/MySQL Server 5.6/bin\mysqld
 --defaults-file=C:\ProgramData\MySQL\MySQL Server
 5.6\my.ini</STARTUP_OPTIONS>
 <OS_VERSION>x86_64-Win64</OS_VERSION>
 <MYSQL_VERSION>5.6.11-enterprise-commercial-advanced</MYSQL_VERSION>
 </Record_Dest>
 <Record_Dest>
 <USER>root</USER>
 <PRIV_USER>root</PRIV_USER>
 <OS_LOGIN></OS_LOGIN>
 <PROXY_USER></PROXY_USER>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <DB></DB>
 <SQLTEXT></SQLTEXT>
 <CONNECTION_ID>1</CONNECTION_ID>
 <STATUS>0</STATUS>
 <TIMESTAMP>2013-06-07T08:30:46</TIMESTAMP>
 <NAME>Connect</NAME>
 <SERVER_ID></SERVER_ID>
 <VERSION></VERSION>
 <STARTUP_OPTIONS></STARTUP_OPTIONS>
 <OS_VERSION></OS_VERSION>
 <MYSQL_VERSION></MYSQL_VERSION>
 </Record_Dest>
 <Record_Dest>
 <USER></USER>
 <PRIV_USER></PRIV_USER>
 <OS_LOGIN></OS_LOGIN>
 <PROXY_USER></PROXY_USER>
 <HOST></HOST>
 <IP></IP>
 <DB></DB>
 <SQLTEXT>CREATE USER 'admin'@'localhost' IDENTIFIED BY
 'welcome_1'</SQLTEXT>
 <CONNECTION_ID>1</CONNECTION_ID>
 <STATUS>0</STATUS>

Pre-Processing Audit Data

Audit Collection Plug-ins 3-17

 <TIMESTAMP>2013-06-07T08:31:21</TIMESTAMP>
 <NAME>Query</NAME>
 <SERVER_ID></SERVER_ID>
 <VERSION></VERSION>
 <STARTUP_OPTIONS></STARTUP_OPTIONS>
 <OS_VERSION></OS_VERSION>
 <MYSQL_VERSION></MYSQL_VERSION>
 </Record_Dest>
</ROOT_DEST>

3.5 Secured Target Collection Attributes
For database table and XML file collection plug-ins, you need to set secured target
collection attributes after you have deployed the collection plug-in in the Audit Vault
Server and registered the secured target but before the plug-in starts collection from
the audit trail.

You define collection attributes using the AVCLI command ALTER SECURED TARGET.

Required secured target attributes are:

■ av.collector.securedtargetversion (Mandatory): Current version of the
secured target. This version information helps in choosing the correct mapper file
for the audit trail if there are multiple mapper files in the templates directory of
the collection plug-in.

■ av.collector.atcintervaltime: The collection plug-in writes the time, up to
which audit data has been collected from the trail, to a file. This file will be present
in the av/atc directory in the agent home. Also, this file contains the time in UTC
timezone. This information can help some third party utilities to clean up audit
data from a trail. Note that collection plug-in does not perform the audit data
clean-up, it just writes this information to a file. atcintervaltime: specifies how
frequently the collection plug-in should update the time information in the file.
The value of the attribute is in minutes.

■ av.collector.timezoneoffset (Mandatory): Offset of the secured target event
time from UTC timezone. This helps the collector to report event time correctly to
the Audit Vault Server by adjusting the timezones. This attribute is not needed for
an XML file collection plug-in if the event time itself contains the timezone
information.

3.6 Pre-Processing Audit Data
In general, collection plug-ins can only be used to collect audit trails that conform to
the requirements presented in this chapter.

However, there may be other reasons why you cannot collect audit records directly
with a collection plug-in, but you can do it indirectly.

You may be able to pre-process these audit trails to generate entries in database tables
or XML files in a format that allows collection plug-ins to collect them. For example,
IBM DB2 on Linux, UNIX, and Windows all require you to execute the db2audit
program to extract audit records from a proprietary binary format into a text file. This
program must be run periodically, as the user who owns the DB2 software, to extract
new records.

Pre-Processing Audit Data

3-18 Oracle Audit Vault and Database Firewall Developer's Guide

While you cannot define a collection plug-in to read the file directly, you may be able
to write a program that reads the file periodically, extracts new audit records, and
writes them to a new XML file in a directory. Each run of this program may create a
new XML file that contains only the new records. You can then define a collection
plug-in to read these XML files and collect the audit records into Audit Vault Server.

4

Packaging Audit Collection Plug-ins 4-1

4Packaging Audit Collection Plug-ins

This chapter describes steps you need to perform to package collection plug-ins.

This chapter contains these topics:

■ Flow of Packaging

■ External Dependencies

■ Creating New Versions of Your Audit Collection Plug-ins

■ Description of Plug-in Manifest File

■ avpack Tool

4.1 Flow of Packaging
The previous chapters have taken you to the point where you can package the
collection plug-in.

Chapter 2 described the directory structure of the staging area, all the shipping objects
such as the JDBC driver (if needed), the mapper file, any executables, and any
Oracle-supplied patches.

Chapter 3 described the mapper file.

Now you are in a position to create a plugin-manifest.xml file that describes where
everything resides, what AVDF should do with it, and then package everything into a
.zip file to ship to the AVDF Administrator.

1. When the collection plug-in program is ready to be packaged, create a directory
structure as illustrated in the "Audit Collection Plug-in Directory Structure" on
page 2-2.

2. Create a plugin-manifest.xml file. Refer to the "Description of Plug-in Manifest
File" on page 4-2, if needed. This file describes the collection plug-in and the
relevant parameters that provide the Audit Vault Collection Framework necessary
information to instantiate and run the collection plug-in. See "Example Code" on
page C-1 for example plugin-manifest.xml files specific to your type of collection
plug-in.

3. Package the collection plug-in files, the plugin-manifest.xml file, and any
additional jars that collection plug-in depends on at run-time.

4. Run the avpack tool. The avpack tool validates and generates a .zip package that
represents an collection plug-in package. See "avpack Tool" on page 4-4.

The avpack tool runs a number of validity checks (such as whether the directory
structure is correctly populated, the manifest file is well-formed, and is without

External Dependencies

4-2 Oracle Audit Vault and Database Firewall Developer's Guide

errors, and so on), then generates the collection plug-in package, in the form of a
zip file, for deployment.

4.2 External Dependencies
External dependencies, in this packaging process, are files that will be needed during
runtime, but may not be available when you package the collection plug-in. For
example, if your collection plug-in depends on a third-party component that the
end-user licenses, or a component with an issue related to licensing or copyright, you
may not able to package this component, and will expect the end-user to provide it
during collection plug-in deployment.

For these scenarios, the plugin-manifest.xml exposes the unresolved-external
element. avpack does not file-check files under this element, but during deployment
time, avpack will fail to deploy the collection plug-in if the $OH/av/dropins folder
does not contain these files.

In the following example, foo.jar is an external dependency:

<unresolved-external>
 <file>foo.jar</file>
</unresolved-external>

During deployment, avpack checks to see if the file foo.jar is present in the
$OH/av/dropins folder on the Audit Vault Server. If the file is missing, avpack will fail
to deploy the collection plug-in stating that external dependencies are not being met.

To resolve the issue, the user must acquire the file and make it available in the
$OH/av/dropins folder. Then, avpack can deploy the collection plug-in successfully.

4.3 Creating New Versions of Your Audit Collection Plug-ins
If you create new versions of the collection plug-ins, you can easily plug them in to
replace existing versions without difficulty.

Using the avcli command-line tool, you can use the DEPLOY PLUGIN command,
described in Oracle Audit Vault and Database Firewall Administrator's Guide, to update an
existing collection plug-in to a newer version. collection plug-ins are cumulative in
nature. All necessary files are created and updated.

Collection plug-ins can be removed or undeployed, using the avcli tool and the
UNDEPLOY PLUGIN command, described in Oracle Audit Vault and Database Firewall
Administrator's Guide. This command is atomic, that is, it is an all or nothing
transaction, which helps maintain a high degree of system stability.

4.4 Description of Plug-in Manifest File
The plugin-manifest.xml file is a core XML file that describes the collection plug-in
and defines the following elements and attributes:

■ The plugin element represents the plug-in object with these attributes:

– Name: A descriptive name for the collection plug-in.

– version: The version should be updated along with each update to the
collection plug-in, and should monotonically increase based on some ordering
scheme. For instance, AVDF uses a versioning scheme comprising of five
digits, separated by periods: majr.minr.minr.patch.hotfix.

– provider: The name of the provider, typically, the company or organization.

Description of Plug-in Manifest File

Packaging Audit Collection Plug-ins 4-3

– copyright: Any copyright notices for the collection plug-in.

■ TargetVersion: Oracle Audit Vault and Database Firewall Version that the
collection plug-in is compatible with. The min attribute represents the minimum
version of the target.

■ extensionSet: A set of extensionPoints.

■ ExtensionPoint: Each extensionPoint uniquely identifies the area of AVDF that is
being extended by the collection plug-in. Currently, AVDF supports one Extension
Point, securedTargetType, as indicated by the type attribute.

■ fileList: A list of all the files that ship with the collection plug-in.

– jars: A directory that contains Java files ending with the extension .jar, in
the element file.

– templates: A directory that contains the mapper files for a collection
plug-in, in the element file.

– bin: A directory that contains executable files, typically those that end
with .exe, in the element file.

– config: A directory that contains plug-in specific configuration files, in the
element file.

– shell: A directory that contains shell or batch command files, in the
element file.

– patch: A directory that contains event patches for the collection plug-in, in
the element file.

– unresolved-external: A directory that contains files that cannot be
packaged with the collection plug-in for some reason, but are needed at
run-time. Packaging succeeds but the plug-in deployment will fail until
these files are made available in the $OH/av/dropins folder of Oracle
Audit Vault Server. These files are in the element file. See "External
Dependencies" on page 4-2 for further information.

■ securedTargetTypeInfo: This is a mandatory field that indicates the source type
that this collection plug-in supports. Specify the source type by filling in the
name attribute of this element.

■ trailInfo: A mandatory field that indicates the type of audit trails, on this
source type, that the collection plug-in supports.

– trailType: A mandatory field that indicates the type of trail described by
this entry. Oracle Audit Vault and Database Firewall 12.1.1 supports these
trail types: TABLE, DIRECTORY, TRANSACTIONLOG, SYSLOG, and EVENTLOG.

trailType can also be any arbitrary string, in which case, it is treated as a
custom trail type.

– trailLocation: Specifies the location of the trail; this is applicable only for
TABLE and CUSTOM type trails only. This field must not be set for other trail
types and will be ignored if set.

– className: Specifies the Java class that handles the task of retrieving the
audit data from this trail. Use the following:

-oracle.av.platform.agent.collfwk.ezcollector.table.DatabaseTabl
eCollector for database table collection plug-ins.

-oracle.av.platform.agent.collfwk.ezcollector.xml.XMLFileCollect
or for XML file collection plug-ins.

avpack Tool

4-4 Oracle Audit Vault and Database Firewall Developer's Guide

To handle audit trails of different source versions of the same source type,
you can optionally set the srcVersion attribute.

■ eventPatch: This is an optional field containing any event patches that must be
applied as part of the collection plug-in deployment. These patches are in the
eventPatch element with the name attribute as the file name and an order
attribute that indicates the order to apply the patches.

Events attributes to be added are extended through patches generated by
Oracle Audit Vault and Database Firewall Development. Partner developers
can request specific events and attributes or both, to be added to the Oracle
Audit Vault Event dictionary. If the core development team determines that a
request is justified, it may issue a patch. You can bundle these patches with the
collection plug-in for application during plug-in deployment.

See Also:

For sample manifest plug-in files for specific collection plug-ins:

■ "Database Table Collection Plug-in Manifest File" on page C-4

■ "XML File Collection Plug-in Manifest file" on page C-8

4.5 avpack Tool
The avpack tool is a command-line based tool written in Java that packages the various
collection plug-in objects such as code files, configuration files, and so on.

You must lay out the collection plug-in artifacts following the directory structure
recommended in "Audit Collection Plug-in Directory Structure" on page 2-2. Then,
you can use avpack to generate a collection plug-in package.

You can stage the collection plug-in files in any directory that is accessible by the
avpack tool.

The avpack tool validates the directory structure and then parses and verifies the
plugin-manifest.xml file. It also performs some basic sanity checks such as verifying
that all the files specified in the plugin-manifest.xml are staged in their
corresponding directories, and so on.

You use the plugin-manifest.xml file to specify the key files that the collection
plug-in must have to run. The avpack utility checks for the existence of these files, but
zips everything contained in stagedir, so you do not need to list every file unless you
want it to be verified by avpack.

Once validation is complete, the tool packages the files into a .zip plug-in package
suitable for deployment with Oracle Audit Vault and Database Firewall.

Usage:

avpack -stagedir <directory name> -o <archive filename> [-l <loglevel>]

Where:

directory: The directory under which the collection plug-in artifacts are staged.
Contents of this directory will be archived in the generated plug-in archive.

archive filename: The name for the generated plug-in archive file. It should end with
a .zip extension. (for example, myplugin.zip).

log level: Optional: Sets the log level to the level specified. Supported log levels:
INFO, WARNING, ERROR, and DEBUG. Default log level is INFO.

avpack Tool

Packaging Audit Collection Plug-ins 4-5

For further help, see avpack -h output.

avpack Tool

4-6 Oracle Audit Vault and Database Firewall Developer's Guide

5

Testing Audit Collection Plug-ins 5-1

5Testing Audit Collection Plug-ins

This chapter provides a general description of the kind of testing that you might want
to do for your collection plug-ins. Be sure to analyze your database and audit trails for
other issues that require testing.

This chapter contains:

■ Requirements for Testing Audit Collection Plug-ins

■ Typical Audit Collection Plug-in Testing Processes

■ Deploying an Oracle Audit Vault Agent

■ Redeploying the Oracle Audit Vault Agent

5.1 Requirements for Testing Audit Collection Plug-ins
You should prepare for testing by performing the following:

■ Deploy the Audit Vault Server and an Audit Vault Agent, as described in "Before
You Set Up the Development Environment" on page 2-1.

■ Have an available source system, a system that generates the audit events.

■ Ensure that the agent is deployed on the same computer where the audit trail
resides if the audit trail must be collected locally (for example, if it is written to
operating system files).

5.2 Typical Audit Collection Plug-in Testing Processes
The typical testing process as follows:

1. Perform functional testing:

a. Deploy the collection plug-in in the generated .zip archive that you created in
Chapter 4, "Packaging Audit Collection Plug-ins," in your test Oracle Audit
Vault Server environment.

b. Redeploy the agent (containing the updated plug-in artifacts) into your test
Oracle Audit Vault agent environment, as described in "Redeploying the
Oracle Audit Vault Agent" on page 5-3.

c. Register the source using the AVCLI utility. See Oracle Audit Vault and Database
Firewall Administrator's Guide.

d. Issue an AVCLI START COLLECTION command to start gathering records from
the audit trail supported by this collection plug-in. See Oracle Audit Vault and
Database Firewall Administrator's Guide.

Deploying an Oracle Audit Vault Agent

5-2 Oracle Audit Vault and Database Firewall Developer's Guide

e. Validate the process, by looking at the data reports through the AVDF
Console, to ensure that:

- Records in the source are now in the Oracle Audit Vault Server.

- The data makes sense.

- Fields are correctly mapped.

- Values are valid.

f. Issue an AVCLI STOP COLLECTION command. See Oracle Audit Vault and
Database Firewall Administrator's Guide.

g. Undeploy the collection plug-in. See Oracle Audit Vault and Database Firewall
Administrator's Guide.

h. Redeploy the agent as described in Step 1b.

2. Perform failure testing to see what happens when various things go wrong.

Some examples of failure are network failure, a source shutting down in the
middle of collection, a power outage, and malformed input data. In all cases, the
collection plug-in should not crash, and should be able to recover gracefully,
continuing collection from where it left off. The guarantee you need to provide is
that each audit record is sent to the Audit Vault Server once, and exactly once,
regardless of failure.

3. Analyze performance by checking how many of these components the collection
plug-in uses:

- The CPU

- The memory

- The disk I/O

- The network I/O

4. Check the performance under stress.

Some examples of stress are thirty days of continuous use, heavy event volume, or
collection of trails for multiple sources at the same time, both on the same host,
and on multiple hosts.

5. Perform security testing (for example, see if you can inject HTML or SQL).

6. Perform internationalization testing. Test the ability to handle data in multiple
input languages.

7. If bugs are found, fix them and then repeat these steps.

5.3 Deploying an Oracle Audit Vault Agent
This agent can be on the same computer as the Audit Vault Server or a different one.

To deploy the agent, follow these steps:

1. Register the agent host using the AVCLI command REGISTER HOST. See Oracle Audit
Vault and Database Firewall Administrator's Guide.

2. Create a directory ($AGENT_HOME) on the agent host.

3. Copy the agent.jar from the Audit Vault Server $ORACLE_
HOME/av/jlib/agent.jar to the $AGENT_HOME.

4. Install the agent using following command:

Redeploying the Oracle Audit Vault Agent

Testing Audit Collection Plug-ins 5-3

$ java -jar agent.jar -d $AGENT_HOME

5. Send the activation request to the Audit Vault Server Administrator using the
following command:

$ $AGENT_HOME/bin/agentctl activate

The Audit Vault Server Administrator must approve the activation request using
either the following command or the Administrator Console.

avcli> activate host '<agent host>';

The activation key generated during the activation approval process must be sent
to agent administrator.

6. Start the agent using the activation key provided by the Audit Vault
Administrator:

$ $AGENT_HOME/bin/agentctl start -key <activation key>

Subsequently, starting the agent does not require the user to provide the activation
key. The agent can be started using the following command:

$ $AGENT_HOME/bin/agentctl start

7. The agent can be stopped anytime using the following command:

$ $AGENT_HOME/bin/agentctl stop

It may take several seconds before the agent comes to a complete stop and the
agent process is shutdown.

Activation is a one-time activity. You will not have to do it again.

5.4 Redeploying the Oracle Audit Vault Agent
You may need to redeploy the agent for various reasons while testing the collection
plug-in. It is assumed that an agent is already set up and a directory created.

To redeploy the agent, follow these steps:

1. Copy the agent.jar from the Audit Vault Server to a local directory.

2. Update the agent by using the following command:

$ java -jar agent.jar -d $AGENT_HOME

3. Start the agent by invoking the $AGENT_HOME/bin/agentctl start command.

Note: The agent automatically determines if it is an upgrade or a
new install depending on the destination directory provided to the
java -jar agent.jar command.

Redeploying the Oracle Audit Vault Agent

5-4 Oracle Audit Vault and Database Firewall Developer's Guide

A

Audit Vault Server Fields A-1

AAudit Vault Server Fields

This appendix contains the AVDF events and fields that you can map to in your
collection plug-ins.

This appendix covers these topics:

■ AVDF Fields

■ Actions and Target Types

A.1 AVDF Fields
This section discusses the different types of AVDF values:

■ Core Fields

■ Large Fields

■ Marker Field

■ Extension Field

A.1.1 Core Fields
Core fields are fundamental to all source types and central to the description of an
event. These fields are present in most audit records, for reporting, filtering, and so on.

EventTimeUTC: Required: The time stamp that indicates when the event occurred. If
the event has more than one time stamp (for example, an event start time stamp and
an event end time stamp), then the collection plug-in must assign a time stamp to this
field. If this field contains NULL, then Oracle Audit Vault shuts down the collection
plug-in.

UserName: Required: The user who performed the action in the application or system
that generated the audit record. If this field contains NULL, then the audit record is
invalid.

CommandClass: Required: The action performed in the event (for example, SELECT or
DELETE). If this field contains NULL, then the audit record is invalid. See "Actions" on
page A-3.

OSUserName: The user who logged into the operating system that generated the
audit record. If the user logged into the operating system as JOHN but performed the
action as SCOTT, then this field contains JOHN and the User Name field contains SCOTT.

TargetType: The type of the target object on which the action was performed. For
example, if the user selected from a table, then the target type is TABLE. See "Target
Types" on page A-5.

Actions and Target Types

A-2 Oracle Audit Vault and Database Firewall Developer's Guide

TargetObject: The name of the object on which the action was performed. For
example, if the user selected from a table, then the Target Object field contains the
name of the table.

TargetOwner: The name of the owner of the target on which the action was
performed. For example, if the user had selected from a table owned by user JOHN,
then the Target Owner field contains the user name JOHN.

ClientIP: The IP address of the host (Host Name) from where the user initiated the
action.

ClientHostName: The host computer from where the user initiated the action. For
example, if the user performed the action from an application on a server, then this
field contains the name of the server.

EventName: The name of the event as is from the audit trail.

EventStatus: The status of the event. There are three possible values for EventStatus:
SUCCESS, FAILURE, and UNKNOWN.

ErrorId: The error code of an action.

ErrorMessage: The error message of an action.

CommandText: Contains the text of the command that caused the event, which can be
a SQL statement, a PL/SQL statement, and so on. This is also a large field.

CommandParam: Contains the parameters of the command that caused the event.
This is also a large field.

A.1.2 Large Fields
Large fields are fields that can contain arbitrarily large amounts of data.

For large fields, use the following:

■ CommandText: Contains the text of the command that caused the event, which
can be a SQL statement, a PL/SQL statement, and so on. This is also a core field.

■ CommandParam: Contains the parameters of the command that caused the event.
This is also a core field.

A.1.3 Marker Field
Marker Field of a Record: The marker is a string that uniquely identifies a record in a
a trail. During the recovery process, Audit Vault uses this field to filter the duplicate
records. The collection plug-in provides the marker field, which is typically a
concatenated subset of the fields of an audit record. For example, in Oracle database,
the session Id and Entry id (a unique identifier within a session) define a marker.

A.1.4 Extension Field
The extension field can store fields that cannot be accommodated in core or large
fields, as name-value pairs, separated by delimiter, inside a single Audit Vault field.

A.2 Actions and Target Types
This section contains lists of target types and actions that Audit Vault is aware of. If
you are building a collection plug-in, then you should use these fields in your mapper
file, if the fields mapped semantically. Otherwise, you can use your own values.

This section covers the following:

Actions and Target Types

Audit Vault Server Fields A-3

■ Actions

■ Target Types

A.2.1 Actions
The Action field describes the nature of user activity that triggers generation of an
audit record. It is similar to the verb part of a sentence; it describes the activity.

Oracle Audit Vault and Database Firewall strongly recommends mapping audit events
to an appropriate value for the Action field, if the user activity semantically maps to it.
Audit Vault Server is current aware of the following actions:

Create

Read

Select

Insert

Delete

Remove

Truncate

Update

Modify

Execute

Communicate

Set

Get

Verify

Logon

Logoff

Authorize

Violate

Acquire

Release

Enable

Disable

Backup

Restore

Open

Close

Apply

Grant

Revoke

Actions and Target Types

A-4 Oracle Audit Vault and Database Firewall Developer's Guide

Deny

Suspend

Resume

Commit

Savepoint

Checkpoint

Rollback

Rollforward

Copy

Move

Rename

Analyze

Audit

Noaudit

Migrate

Validate

Startup

Shutdown

Unmount

Mount

Invalid

Associate

Disassociate

Deny

Proxy

Initialize

Unknown

Subscribe

Unsubscribe

User configurable event

DDL

Control

Undo

Access

Deadlock

DML

Transaction Control

Actions and Target Types

Audit Vault Server Fields A-5

A.2.2 Target Types
The TargetType field describes the type of object on which a user action operates. It is
similar to a noun that describes the object of a user action.

Oracle Audit Vault and Database Firewall strongly recommends mapping audit events
to an appropriate value for the TargetType field, if the user activity semantically maps
to it.

Audit Vault Server is current aware of the following target types:

DATABASE

OBJECT

OPERATOR

OUTLINE

PROCEDURE

PUBLIC DATABASE LINK

TYPE BODY

CONTROL FILE

FLASHBACK

BROKER QUEING

BUFFERPOOL

SCHEMA

SYSTEM

TRIGGER

PRIVILEGE

EVENT MONITOR

RULE

EVALUATION

USER

STATISTICS

METHOD

CONTEXT

MESSAGE

VIEW

CONNECTION

TAPE

SAVEPOINT

USER OR PROGRAM UNIT LABEL

APP ROLE

EDITION

FLASHBACK ARCHIVE

Actions and Target Types

A-6 Oracle Audit Vault and Database Firewall Developer's Guide

MATERIALIZED VIEW LOG

NODEGROUP

PACKAGE BODY

RESOURCE COST

ROLE

INDEXTYPE

USER_RECYCLEBIN

SAVEPOINT

ASSEMBLY

CLUSTER

FUNCTION

JAVA

MINING MODEL

PUBLIC SYNONYM

REWRITE EQUIVALENCE

SEQUENCE

SUMMARY

DEFAULT

AUTHORIZATION

INSTANCE

NODE

CHECKPOINT

EXPRESSION

DATABASE LINK

DIMENSION

INDEX

PACKAGE

SYNONYM

TABLE

TABLESPACE

TYPE

DIRECTORY

LIBRARY

RESTORE POINT

ALL TRIGGERS

APPLICATION

TRANSACTION

Actions and Target Types

Audit Vault Server Fields A-7

USER LOGON

REVOKE

UNKNOWN

MATERIALIZED VIEW

SESSION

TABLE OR SCHEMA POLICY

INDEXES

PROFILE

ROLLBACK SEG

TRACE

DBA_RECYCLEBIN

SUBSCRIPTION

Actions and Target Types

A-8 Oracle Audit Vault and Database Firewall Developer's Guide

B

Schemas B-1

BSchemas

This chapter contains schemas for plug-in manifest files and collection plug-ins.

■ Sample Schema for a plugin-manifest.xml file

■ Database Table Collection Plug-in Mapper File

■ Schema for XML File Collection Plug-in Mapper File

B.1 Sample Schema for a plugin-manifest.xml file
This is the schema for a plugin-manifest.xml file. Please use this Schema to validate
any plugin-manifest.xml that you author. Typically, the type of collection plug-in
requires you to modify the trailInfo section, and possibly other sections. See
Appendix C, "Example Code" for information specific to the collection plug-in type.

Example B–1 Sample plugin-manifest.xsd file

<?xml version="1.0" encoding="utf-8"?>
<!-- This schema defines the structure of the Oracle Audit Vault Plugin -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://xmlns.oracle.com/av/plugin"
 targetNamespace="http://xmlns.oracle.com/av/plugin"
 elementFormDefault="qualified">
 <xs:element name="plugin">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="targetVersion">
 <xs:complexType>
 <xs:attribute name="min" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
 <xs:element name="extensionSet">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="extensionPoint">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="fileList">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="jars" minOccurs="0" maxOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0"
 maxOccurs="0" maxOccurs="unbounded"
 name="include">

Sample Schema for a plugin-manifest.xml file

B-2 Oracle Audit Vault and Database Firewall Developer's Guide

 <xs:complexType>
 <xs:attribute name="file" type="xs:string"
 use="required" />
 <xs:attribute name="permission" type="xs:string"
 use="optional" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="templates" minOccurs="0"
 maxOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="unbounded"
 name="include">
 <xs:complexType>
 <xs:attribute name="file" type="xs:string"
 use="required" />
 <xs:attribute name="permission" type="xs:string"
 use="optional" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="bin" minOccurs="0" maxOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="unbounded"
 name="include">
 <xs:complexType>
 <xs:attribute name="file" type="xs:string"
 use="required" />
 <xs:attribute name="permission" type="xs:string"
 use="optional" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="config" minOccurs="0" maxOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="unbounded"
 name="include">
 <xs:complexType>
 <xs:attribute name="file" type="xs:string"
 use="required" />
 <xs:attribute name="permission" type="xs:string"
 use="optional" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="shell" minOccurs="0" maxOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="unbounded"

Sample Schema for a plugin-manifest.xml file

Schemas B-3

 name="include">
 <xs:complexType>
 <xs:attribute name="file" type="xs:string"
 use="required" />
 <xs:attribute name="permission" type="xs:string"
 use="optional" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="patch" minOccurs="0" maxOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="unbounded"
 name="include">
 <xs:complexType>
 <xs:attribute name="file" type="xs:string"
 use="required" />
 <xs:attribute name="permission" type="xs:string"
 use="optional" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="unresolved-external" minOccurs="0"
 maxOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="unbounded"
 name="include">
 <xs:complexType>
 <xs:attribute name="file" type="xs:string"
 use="required" />
 <xs:attribute name="permission" type="xs:string"
 use="optional" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="securedTargetTypeInfo">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string"
 use="required" />
 </xs:complexType>
 </xs:element>
 <xs:element maxOccurs="unbounded" name="trailInfo">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="trailType" type="xs:string" />
 <xs:element minOccurs="0" name="trailLocation"
 type="xs:string" />
 <xs:element maxOccurs="unbounded" name="className">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string"

Database Table Collection Plug-in Mapper File

B-4 Oracle Audit Vault and Database Firewall Developer's Guide

 use="required" />
 <xs:attribute name="srcVersion" type="xs:decimal"
 use="optional" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element minOccurs="0" maxOccurs="unbounded"
 name="eventPatch">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string"
 use="required" />
 <xs:attribute name="order" type="xs:unsignedByte"
 use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="type" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required" />
 <xs:attribute name="id" type="xs:string" use="required" />
 <xs:attribute name="version" type="xs:string" use="required" />
 <xs:attribute name="provider-name" type="xs:string" use="required" />
 <xs:attribute name="copyright" type="xs:string" use="optional" />
 </xs:complexType>
 </xs:element>
</xs:schema>

See Also: "Staging a plugin-manifest.xml File" on page 2-3

B.2 Database Table Collection Plug-in Mapper File

Example B–2 Database Table Collection Plug-in Mapper Schema

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<!--Existing Set of Core Fields-->
<xsd:simpleType name="CoreFieldValues">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="EventTimeUTC"/>
<xsd:enumeration value="UserName"/>
 <xsd:enumeration value="OSUserName"/>
 <xsd:enumeration value="CommandClass"/>
 <xsd:enumeration value="TargetObject"/>
 <xsd:enumeration value="ClientHostName"/>
 <xsd:enumeration value="ClientIP"/>
 <xsd:enumeration value="TargetOwner"/>
 <xsd:enumeration value="ErrorId"/>
 <xsd:enumeration value="ErrorMessage"/>
 <xsd:enumeration value="EventStatus"/>
 <xsd:enumeration value="EventName"/>
 <xsd:enumeration value="TargetType"/>
 </xsd:restriction>

Database Table Collection Plug-in Mapper File

Schemas B-5

</xsd:simpleType>

<!--Existing Set of Large Fields-->
<xsd:simpleType name="LargeFieldValues">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="CommandText"/>
 <xsd:enumeration value="CommandParam"/>
 </xsd:restriction>
</xsd:simpleType>

<!-- XML Document Structure-->
<xsd:element name="AVTableCollectorTemplate" >
 <xsd:complexType>
 <xsd:all>
 <!-- Audit table name -->
 <xsd:element name="TableName" type="xsd:string" minOccurs="1"
 maxOccurs="1"/>
 <!-- Database connection information -->
 <xsd:element name="ConnectionInfo" minOccurs="1" maxOccurs="1">
 <xsd:complexType>
 <xsd:sequence>
 <!-- Datasource class-->
 <xsd:element name="Driver" type="xsd:string" minOccurs="1"
 maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <!-- Source to AV server fields Mapping for Core, Large, Extension fields
 and Marker-->
 <xsd:element name="FieldMappingInfo" minOccurs="1" maxOccurs="1">
 <xsd:complexType>
 <xsd:all>
 <!-- Core Field Mapping -->
 <xsd:element name="CoreFields" minOccurs="1" maxOccurs="1">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Map" minOccurs="1" maxOccurs ="13">
 <xsd:complexType>
 <xsd:all>
 <xsd:element name="Name" type="xsd:string" />
 <xsd:element name="MapTo" type="CoreFieldValues" />
 <xsd:element name="Transformation" minOccurs="0"
 maxOccurs="1">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ValueTransformation"
 minOccurs="1" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="from" type="xsd:string"
 use="required"/>
 <xsd:attribute name="to" type="xsd:string"
 use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:all>
 </xsd:complexType>

Schema for XML File Collection Plug-in Mapper File

B-6 Oracle Audit Vault and Database Firewall Developer's Guide

 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <!-- Large Field Mapping -->
 <xsd:element name="LargeFields" minOccurs="0" maxOccurs="1">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Map" minOccurs="0" maxOccurs="2">
 <xsd:complexType>
 <xsd:all>
 <xsd:element name="Name" type="xsd:string" />
 <xsd:element name="MapTo" type="LargeFieldValues" />
 </xsd:all>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <!-- List of fields to be mapped to extension fields-->
 <xsd:element name="ExtensionField" minOccurs="0" maxOccurs="1">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string" minOccurs="0"
 maxOccurs ="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <!-- List of fields which uniquely identify each audit record-->
 <xsd:element name="MarkerField" minOccurs="1" maxOccurs="1">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string" minOccurs="1"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>
 </xsd:all>
 <!-- Source Type-->
 <xsd:attribute name="securedTargetType" type="xsd:string" use="required"/>
 <!-- Max source version supported by the template-->
 <xsd:attribute name="maxSecuredTargetVersion" type="xsd:string"
use="required"/>
 <!-- Min source version supported by the template-->
 <xsd:attribute name="minSecuredTargetVersion" type="xsd:string"/>
 <!-- Template file version-->
 <xsd:attribute name="version" type="xsd:string" use="required"/>
 </xsd:complexType>
</xsd:element>
</xsd:schema>

B.3 Schema for XML File Collection Plug-in Mapper File

Example B–3 XML file collection plug-in Mapper Schema

<?xml version="1.0"?>

Schema for XML File Collection Plug-in Mapper File

Schemas B-7

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<!--Existing Set of Core Fields-->
<xsd:simpleType name="CoreFieldValues">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="EventTimeUTC"/>
 <xsd:enumeration value="UserName"/>
 <xsd:enumeration value="OSUserName"/>
 <xsd:enumeration value="CommandClass"/>
 <xsd:enumeration value="TargetObject"/>
 <xsd:enumeration value="ClientHostName"/>
 <xsd:enumeration value="ClientIP"/>
 <xsd:enumeration value="TargetOwner"/>
 <xsd:enumeration value="ErrorId"/>
 <xsd:enumeration value="ErrorMessage"/>
 <xsd:enumeration value="EventStatus"/>
 <xsd:enumeration value="EventName"/>
 <xsd:enumeration value="TargetType"/>
 </xsd:restriction>
</xsd:simpleType>

<!--Existing Set of Large Fields-->
<xsd:simpleType name="LargeFieldValues">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="CommandText"/>
 <xsd:enumeration value="CommandParam"/>
 </xsd:restriction>
</xsd:simpleType>
<!-- XML Document Structure-->
<xsd:element name="AVXMLCollectorTemplate" >
 <xsd:complexType>
 <xsd:all>
 <xsd:element name="HeaderInfo" minOccurs="1" maxOccurs="1">
 <xsd:complexType>
 <xsd:all>
 <!-- StartTag tag contains Root element of XML Audit data file-->
 <xsd:element name="StartTag" type="xsd:string" minOccurs="1"
 maxOccurs="1"/>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="RecordInfo" minOccurs="1" maxOccurs="1">
 <xsd:complexType>
 <xsd:all>
 <!-- start tag of xml audit record in XML audit file-->
 <xsd:element name="StartTag" type="xsd:string" minOccurs="1"
 maxOccurs="1"/>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>
 <!-- Source to AV server fields Mapping for Core, Large, Extension fields
 and Marker-->
 <xsd:element name="FieldMappingInfo" minOccurs="1" maxOccurs="1">
 <xsd:complexType>
 <xsd:all>
 <!-- Core Field Mapping-->
 <xsd:element name="CoreFields" minOccurs="1" maxOccurs="1">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Map" minOccurs="1" maxOccurs ="13">
 <xsd:complexType>

Schema for XML File Collection Plug-in Mapper File

B-8 Oracle Audit Vault and Database Firewall Developer's Guide

 <xsd:all>
 <xsd:element name="Name" type="xsd:string" />
 <xsd:element name="MapTo" type="CoreFieldValues" />
 <xsd:element name="TimestampPattern" type="xsd:string"
 minOccurs="0" maxOccurs="1" />
 <xsd:element name="Transformation" minOccurs="0"
 maxOccurs="1">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ValueTransformation"
 minOccurs="1" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="from" type="xsd:string"
 use="required"/>
 <xsd:attribute name="to" type="xsd:string"
 use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <!-- Large Field Mapping -->
 <xsd:element name="LargeFields" minOccurs="0" maxOccurs="1">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Map" minOccurs="0" maxOccurs="2">
 <xsd:complexType>
 <xsd:all>
 <xsd:element name="Name" type="xsd:string" />
 <xsd:element name="MapTo" type="LargeFieldValues" />
 </xsd:all>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <!-- List of fields to be mapped to extension fields-->
 <xsd:element name="ExtensionField" minOccurs="0" maxOccurs="1">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string" minOccurs="0"
 maxOccurs ="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <!-- List of fields which uniquely identify each audit record-->
 <xsd:element name="MarkerField" minOccurs="1" maxOccurs="1">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string" minOccurs="1"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

Schema for XML File Collection Plug-in Mapper File

Schemas B-9

 </xsd:all>
 </xsd:complexType>
 </xsd:element>
 </xsd:all>
 <!-- Source Type-->
 <xsd:attribute name="securedTargetType" type="xsd:string" use="required"/>
 <!-- Max source version supported by the template-->
 <xsd:attribute name="maxSecuredTargetVersion" type="xsd:string"
use="required"/>
 <!-- Min source version supported by the template-->
 <xsd:attribute name="minSecuredTargetVersion" type="xsd:string"/>
 <!-- Template file version-->
 <xsd:attribute name="version" type="xsd:string" use="required"/>
 </xsd:complexType>
</xsd:element>
</xsd:schema>

Schema for XML File Collection Plug-in Mapper File

B-10 Oracle Audit Vault and Database Firewall Developer's Guide

C

Example Code C-1

CExample Code

This appendix contains examples for the different types of collection plug-ins:

■ Database Table Collection Plug-in Example

■ XML File Collection Plug-in Example

C.1 Database Table Collection Plug-in Example
This section covers these topics:

■ Database Table Collection Plug-in Mapper File

■ Database Table Collection Plug-in Manifest File

C.1.1 Database Table Collection Plug-in Mapper File
These attributes and fields are mandatory:

■ securedTargetType

■ maxSecuredTargetVersion

■ version

■ TableName

■ Driver

■ EventTimeUTC

■ CommandClass transformations

■ EventStatus transformations

■ MarkerField

Source names that map to these Audit Vault Server fields are not mandatory, but if the
information is not provided, when data collection starts, all audit records are treated as
invalid:

■ UserName

■ CommandClass

See Also: Appendix A, "Audit Vault Server Fields" for lists of fields
and events

Example C–1 Sample XML Mapper File for a database table collection plug-in

<AVTableCollectorTemplate securedTargetType="DBSOURCE"

Database Table Collection Plug-in Example

C-2 Oracle Audit Vault and Database Firewall Developer's Guide

minSecuredTargetVersion="10.2.0"
 maxSecuredTargetVersion="11.0" version="1.0" >
 <!--Example Template for a database Collector-->
 <!-- Attributes: securedTargetType, maxSecuredTargetVersion,
 and version are mandatory;
 minSecuredTargetVersion attribute is optional -->
 <!-- Accepted Format for min/maxSecuredTargetVersion and
 version attribute value is numbers separated by
 dots (For example: 12.2,10.3.2, 11.2.3.0 etc..)-->
 <!-- Audit Table Information -->
 <!-- Name of Audit Table: Mandatory information -->
 <TableName>dummy_auditTable</TableName>
 <!-- Source Connection Information -->
 <ConnectionInfo>
 <!--Datasource class name for current secured target type:
 Mandatory information -->
 </ConnectionInfo>
 <!-- This Gives Mapping Information of Source Fields to various AV
 Fields(core and large fields) -->
 <!-- There should be no many-to-one mappings from source fields to
 AV Server fields -->
 <FieldMappingInfo>
 <!-- Mapping of Source Fields to Core Fields of AV server -->
 <!-- Source fields specified in core field mappings must be of SQL
 Datatype: String OR convertible to String-->
 <CoreFields>
 <Map>
 <!-- Mandatory: EventTime mapping information -->
 <Name>EVENT_TIME</Name>
 <MapTo>EventTimeUTC</MapTo>
 </Map>
 <Map>
 <!-- If UserName core field mapping is not provided, Audit Data
 Collection still starts successfully, but every audit record
 will be treated as invalid -->
 <Name>USER_ID</Name>
 <MapTo>UserName</MapTo>
 </Map>
 <Map>
 <Name>OS_USER_ID</Name>
 <MapTo>OSUserName</MapTo>
 </Map>
 <Map>

 <!-- If source name, the ACTION field, for CommandClass core field
 mapping is not provided, Audit Data Collection still starts
 successfully, but all audit records are treated as invalid -->

 <Name>ACTION</Name>
 <MapTo>CommandClass</MapTo>

 <!-- Mandatory: value transformation from secured target field value
 to command class field value. Value of "to" Attribute is from AV
 Event set -->

 <Transformation>
 <ValueTransformation from="1" to="CREATE"/>
 <ValueTransformation from="2" to="INSERT"/>
 <ValueTransformation from="3" to="SELECT"/>
 <ValueTransformation from="4" to="CREATE"/>

Database Table Collection Plug-in Example

Example Code C-3

 <ValueTransformation from="15" to="READ"/>
 <ValueTransformation from="30" to="LOGON"/>
 <ValueTransformation from="34" to="LOGOFF"/>
 <ValueTransformation from="35" to="ACQUIRE"/>
 </Transformation>
 </Map>
 <Map>
 <Name> OBJ_NAME</Name>
 <MapTo>TargetObject</MapTo>
 </Map>
 <Map>
 <Name>USER_HOST</Name>
 <MapTo>ClientHostName</MapTo>
 </Map>
 <Map>
 <Name>OBJ_CREATOR</Name>
 <MapTo>TargetOwner</MapTo>
 </Map>
 <Map>
 <Name>STATUS</Name>
 <MapTo>EventStatus</MapTo>

 <!-- Value transformation for "STATUS" source field value.
 Mandatory: EventStatus value transformation.
 There are three possible values for EventStatus:
 SUCCESS, FAILURE, UNKNOWN -->
 <Transformation>
 <ValueTransformation from="0" to="FAILURE"/>
 <ValueTransformation from="1" to="SUCCESS"/>
 <ValueTransformation from="2" to="UNKNOWN"/>
 </Transformation>
 </Map>
 </CoreFields>

 <!-- Mapping of Source Fields to Large Fields of AV server i.e fields
 with huge content -->
 <!-- Secured target fields specified in large field mappings must be
 of SQL Datatype:CLOB OR SQL Datatype:String OR convertible to
 String -->
 <LargeFields>
 <Map>
 <Name>SQL_TEXT</Name>
 <MapTo>CommandText</MapTo>
 </Map>
 <Map>
 <Name>COMMAND_PARAMETER</Name>
 <MapTo>CommandParam</MapTo>
 </Map>
 </LargeFields>

 <!-- These secured target fields are collected in a single extension
 field, all name-value pairs separated by standard delimiter -->
 <!-- Secured target fields specified in extension field mapping must
 be of SQL Datatype:String OR convertible to String -->
 <ExtensionField>
 <Name>DB_ID</Name>
 <Name>INSTANCE</Name>
 <Name>PROCESS</Name>
 <Name>TERMINAL</Name>
 </ExtensionField>

Database Table Collection Plug-in Example

C-4 Oracle Audit Vault and Database Firewall Developer's Guide

 <!-- Mandatory: Secured target fields for MarkerField
 A group of secured target fields to uniquely identify each Audit
 Record -->
 <!-- Secured target fields specified to be used as MarkerField mapping
 must be of SQL Datatype:String OR convertible to String -->
 <MarkerField>
 <Name>SESSION_ID</Name>
 <Name>ENTRY_ID</Name>
 </MarkerField>
 </FieldMappingInfo>
</AVTableCollectorTemplate>

C.1.2 Database Table Collection Plug-in Manifest File
This is a sample manifest file for a database table collection plug-in.

Example C–2 Sample Manifest File for a database table collection plug-in

<?xml version="1.0"?>

<plugin xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/av/plugin plugin-manifest.xsd"
 xmlns="http://xmlns.oracle.com/av/plugin"
 name="HRMS-Template"
 id="com.oracle.av.plugin"
 version="1.0"
 provider-name="Oracle Corp."
 copyright="Copyright Oracle Corp. 2011">

 <!-- targetVersion: Version of Oracle Audit Vault supported by this
 plugin. This is represented by the "min" attribute of
 <targetVersion> tag -->
 <targetVersion min="11.1.0.0.0"/>

 <extensionSet>
 <extensionPoint type= "securedTargetType">
 <!-- Tag: fileList: Lists all files that ship with the plugin -->
 <fileList>
 <jars></jars>
 <templates>
 <include file="DBSource-Mapper.xml"/>
 </templates>
 <bin></bin>
 <config></config>
 <shell></shell>
 <patch></patch>
 <unresolved-external>
 </unresolved-external>
 </fileList>
 <!-- Tag: securedTargetTypeInfo: Contains secured target type and
 trail information -->
 <securedTargetTypeInfo name="DBSOOURCE"/>

 <!-- Tag: trailType: contains trail type, location , classname for
 source type testSource -->
 <trailInfo>
 <trailType>TABLE</trailType>
 <className name="oracle.av.platform.agent.
 collfwk.Collector. table.DatabaseTableCollector"/>

XML File Collection Plug-in Example

Example Code C-5

 </trailInfo>

 <!-- eventPatch: OPTIONAL field that indicates any event patches
 that need to be applied as part of plugin deployment
 The files listed here must be present in the <patch>
 tag entries. The order in which the patches need to
 applied can be controlled via the "order" attribute
 Patches with lower "order" value will be applied
 first -->
 <eventPatch name="p6753288_11.1.2.0.0_GENERIC.zip" order="2"/>
 </extensionPoint>
 </extensionSet>
</plugin>

C.2 XML File Collection Plug-in Example
This section covers these topics:

■ XML File Collection Plug-in Mapper File

■ XML File Collection Plug-in Manifest file

C.2.1 XML File Collection Plug-in Mapper File
These attributes and fields are mandatory:

■ securedTargetType

■ maxSecuredTargetVersion

■ version

■ HeaderInfo

■ RecordInfo

■ EventTimeUTC

■ CommandClass transformations

■ EventStatus transformations

■ MarkerField

Source names that map to these Audit Vault Server fields are not mandatory, but if the
information is not provided, when data collection starts, all audit records are treated as
invalid:

■ UserName

■ CommandClass

See Also: Appendix A, "Audit Vault Server Fields" for lists of fields
and events

Example C–3 Sample XML file collection plug-in Mapper File

<AVXMLCollectorTemplate securedTargetType="XMLSOURCE"
 maxSecuredTargetVersion="11.0"
 version="1.0">
 <!--Example Template for XML template collector-->
 <!-- Attributes: "securedTargetType", "maxSecuredTargetVersion" and
 "version" are mandatory attributes, "minSecuredTargetVersion"
 attribute is optional -->

XML File Collection Plug-in Example

C-6 Oracle Audit Vault and Database Firewall Developer's Guide

 <!-- Accepted Format for min/maxSecuredTargetVersion and version
 attribute value is numbers separated by dots (For example:
 12.2,10.3.2, 11.2.3.0 etc..)-->
 <!-- Header Information like XML Header start tag -->
 <HeaderInfo>
 <!-- Mandatory: HeaderInfo-->
 <!-- Value in this tag gives Root tag of the XML audit file-->
 <StartTag>Audit</StartTag>
 </HeaderInfo>

 <!-- Record Information like Record Start tag and conformation to hold
 original record -->
 <RecordInfo>
 <!-- Mandatory: RecordInfo -->
 <!-- Provides starting tag of audit record in XML audit file -->
 <StartTag>AuditRecord</StartTag>
 </RecordInfo>

 <!-- Gives Mapping Information of Source Fields to various AV Fields
 (core and large fields) -->
 <!-- Not Allowed: many-to-one mapping from source field to
 AV Server fields -->
 <FieldMappingInfo>
 <!-- Mapping of Source Fields to Core Fields of AV server
 Source fields specified in core field mappings must be of SQL
 Datatype: String OR convertible to String -->
 <CoreFields>
 <Map>
 <Name>EVENT_TIME</Name>
 <MapTo>EventTimeUTC</MapTo>
 <TimestampPattern>yyyy-MM-dd HH:mm:ss.SSS</TimestampPattern>
 </Map>
 <Map>
 <!-- If UserName core field mapping is not provided, Audit Data
 Collection still starts successfully, but every audit record
 will be treated as invalid -->
 <Name>USER_ID</Name>
 <MapTo>UserName</MapTo>
 </Map>
 <Map>
 <Name>OS_USER_ID</Name>
 <MapTo>OSUserName</MapTo>
 </Map>
 <Map>
 <!-- If source name, the ACTION field, for CommandClass
 core field mapping is not provided, Audit Data Collection
 still starts successfully, but all audit records are treated
 as invalid -->
 <Name>ACTION</Name>
 <MapTo>CommandClass</MapTo>
 <!-- Mandatory: value transformations from source to Action
 field value. Value of "to" Attribute is from AV Event set -->
 <Transformation>
 <ValueTransformation from="1" to="CREATE"/>
 <ValueTransformation from="2" to="INSERT"/>
 <ValueTransformation from="3" to="SELECT"/>
 <ValueTransformation from="4" to="CREATE"/>
 <ValueTransformation from="15" to="READ"/>
 <ValueTransformation from="30" to="LOGON"/>
 <ValueTransformation from="34" to="LOGOFF"/>

XML File Collection Plug-in Example

Example Code C-7

 <ValueTransformation from="35" to="ACQUIRE"/>
 </Transformation>
 </Map>
 <Map>
 <Name> OBJ_NAME</Name>
 <MapTo>TargetObject</MapTo>
 </Map>
 <Map>
 <Name>USER_HOST</Name>
 <MapTo>ClientHostName</MapTo>
 </Map>
 <Map>
 <Name>OBJ_CREATOR</Name>
 <MapTo>TargetOwner</MapTo>
 </Map>
 <Map>
 <Name>STATUS</Name>
 <MapTo>EventStatus</MapTo>
 <!-- Specifying value transformation for Status source field value.
 Mandatory: EventStatus value transformation.
 There are three possible values for EventStatus:
 SUCCESS, FAILURE, UNKNOWN -->
 <Transformation>
 <ValueTransformation from="0" to="FAILURE"/>
 <ValueTransformation from="1" to="SUCCESS"/>
 <ValueTransformation from="2" to="UNKNOWN"/>
 </Transformation>
 </Map>
 </CoreFields>

 <!-- Mapping of Source Fields to Large Fields of AV server i.e fields
 with huge content -->
 <!-- Source fields specified in large field mappings must be of SQL
 Datatype:CLOB OR SQL Datatype:String OR convertible to String -->
 <LargeFields>
 <Map>
 <Name>SQL_TEXT</Name>
 <MapTo>CommandText</MapTo>
 </Map>
 <Map>
 <Name>COMMAND_PARAMETER</Name>
 <MapTo>CommandParam</MapTo>
 </Map>
 </LargeFields>

 <!-- These Source fields will be collected in a single extension
 field, all name-value pairs are separated by standard delimiter -->
 <!-- Source fields specified in extension field mapping must be of
 SQL Datatype:String OR convertible to String -->
 <ExtensionField>
 <Name>DB_ID</Name>
 <Name>INSTANCE</Name>
 <Name>PROCESS</Name>
 <Name>TERMINAL</Name>
 </ExtensionField>

 <!-- This is group of source fields for uniquely identifying each
 Audit Record Marker -->
 <!-- Source fields specified to be used as Marker field mapping must
 be of SQL Datatype:String OR convertible to String -->

XML File Collection Plug-in Example

C-8 Oracle Audit Vault and Database Firewall Developer's Guide

 <!-- Mandatory: Source fields for MarkerField -->
 <MarkerField>

 <Name>SESSION_ID</Name>
 <Name>ENTRY_ID</Name>
 </MarkerField>
 </FieldMappingInfo>
</AVXMLCollectorTemplate>

C.2.2 XML File Collection Plug-in Manifest file
This is a sample manifest file for an XML file collection plug-in.

Example C–4 Sample Manifest File for an XML file collection plug-in

<?xml version="1.0"?>

<plugin xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/av/plugin plugin-manifest.xsd"
 xmlns="http://xmlns.oracle.com/av/plugin"
 name="Oracle-XML-Template"
 id="com.oracle.av.plugin"
 version="1.0"
 provider-name="Oracle Corp."
 copyright="Copyright Oracle Corp. 2011">

 <!-- targetVersion: Version of Oracle Audit Vault supported by
 this plugin. This is represented by the "min" attribute of
 targetVersion> tag -->
 <targetVersion min="11.1.0.0.0"/>

 <extensionSet>
 <extensionPoint type= "securedTargetType">
 <!-- fileList: Lists *all* the files that ship with the plugin -->
 <fileList>
 <jars></jars>
 <templates>
 <include file="XMLSource-Mapper.xml"/>
 </templates>
 <bin></bin>
 <config></config>
 <shell></shell>
 <patch></patch>
 <unresolved-external></unresolved-external>

 </fileList>

 <!-- securedTargetTypeInfo: Contains source type and trail information
 -->
 <securedTargetTypeInfo name="oracle"/>

 <!-- trailType: contains trail type, location , classname for
 source type testSource -->
 <trailInfo>
 <trailType>DIRECTORY</trailType>
 <className name="oracle.av.platform.agent.collfwk.
 ezcollector.xml.XMLFileCollector"/>
 </trailInfo>

XML File Collection Plug-in Example

Example Code C-9

 <!-- eventPatch: OPTIONAL field that indicates any event patches
 that need to be applied as part of plugin deployment-->
 The files listed here must be present in the <patch>-->
 tag entries. The order in which the patches need to -->
 applied can be controlled via the "order" attribute -->
 Patches with lower "order" value will be applied -->
 first -->
 <eventPatch name="p6753288_11.1.2.0.0_GENERIC.zip" order="2"/>
 </extensionPoint>
 </extensionSet>
</plugin>

XML File Collection Plug-in Example

C-10 Oracle Audit Vault and Database Firewall Developer's Guide

D

Bundled JDBC Drivers D-1

DBundled JDBC Drivers

This appendix describes the JDBC drivers that are bundled with the Oracle AVDF
SDK.

D.1 About Bundled JDBC drivers
When you create a collection plug-in, you can use it to extract audit records from a
database table. To do this, you must have a JDBC driver to connect to the database.
Drivers for most common databases are bundled with the SDK.

The Oracle AVDF SDK ships with 5 different JDBC drivers, some that are standard to
the product and some that are proprietary drivers provided by Oracle for specific
third-party databases.

■ Standard

– Oracle

– MySQL

■ Proprietary

– Sybase

– Microsoft SQL Server

– DB2

You are not required to use any of these JDBC drivers and may use drivers acquired
elsewhere. However, if you plan to use any of the listed drivers, you will need to
provide the information in Table D–1 in your mapper file and when registering a
secured target.

Table D–1 JDBC Drivers and Connecting URLs

Database Driver Class Connecting URL

Oracle oracle.jdbc.pool.OracleDataSource jdbc:oracle:thin:@host:port:sid

MySQL jdbc:av:mysql://host:port

SQLServer oracle.av.platform.jdbcx.sqlserver.SQLServerDataSource jdbc:av:sqlserver://host:port

DB2 oracle.av.platform.jdbcx.db2.DB2DataSource jdbc:av:db2://host:port/dbname

Sybase oracle.av.platform.jdbcx.sybase.SybaseDataSource jdbc:av:sybase://host:port

About Bundled JDBC drivers

D-2 Oracle Audit Vault and Database Firewall Developer's Guide

D.1.1 Connecting URLs
You use Connection URLs to specify the location of a database Secured Target when
you register the Secured Target on the GUI or through AVCLI. The format of the
Connection URL depends on the JDBC driver that you use. Each of the JDBC drivers
shipped with AVDF specifies the format required by the JDBC driver in question in
Table D–1.

Additionally, to use specific encryption methods in the connecting URL, you need to
set the EncryptionMethod property as shown in the following example:

 jdbc:av:[sqlserver]://hostname: port;[EncryptionMethod=encryptionMethod]

where the encryption methods can be SSL, requestSSL, and loginSSL.

Use this url to register a Secured Target, by entering it into the Secured Target Location
field, with the Advanced mode selected.

See "Secured Target Connection Information" on page 3-5.

D.1.2 Driver class
<Driver>platform.jdbc.dbsource.DBSourceDataSource</Driver>

Glossary-1

Glossary

audit record

A record that represents a database event.

audit record field

A component of an audit record. Each audit record field represents an attribute of the
event that the record represents. If the record is in a table, then its fields are columns.

audit trail

A location of audit records on the secured target. For example:

■ If the secured target writes audit records into files (called audit files), then the
directory path plus the file mask is an audit trail.

■ If the source writes audit records into a database table (called an audit table), then
the name of the table is an audit trail.

■ If the source writes some audit records into files of directory x, some into database
table y, and some into files of directory z, then the source has three different audit
trails: directory x plus the file mask, table y, and directory z plus the file mask.

audit trail cleanup

The process that purges audit records from the secured target after they are stored in
Audit Vault Server repository. The collection plug-in provides the checkpoint to
either the source or a utility that has permission to delete records from the source, and
the source or utility purges the original records.

Audit Vault Server field

An audit record field in Oracle Audit Vault and Database Firewall, as opposed to an
audit record field on a secured target (see collection plug-in). An Audit Vault Server
field is either a core field, an extension field, or a large field.

checkpoint

The point in an audit trail after which a collection plug-in will start collecting audit
records. If the collection plug-in has collected no records from the audit trail, then the
checkpoint is immediately before the first record. If the collection plug-in started
collecting records and then stopped, then the checkpoint is immediately after the last
record that it collected.

collection plug-in

A plug-in that adds an audit trail collection capability to Oracle Audit Vault and
Database Firewall. It gets audit record semantics from a mapper file and reads audit
records from either an audit table or XML audit files.

Command Text field

Glossary-2

Command Text field

A large field that contains the text of the command that caused the event.

Command Parameter field

A large field that contains the parameters of the command that caused the event.

core field

An Audit Vault Server field that has a corresponding field in audit records generated
by almost every source. That is, almost every collection plug-in maps a source audit
record field to each core field. Oracle Audit Vault and Database Firewall uses core
fields for filtering and reporting. The core fields are described and listed in "Core
Fields" on page A-1.

extension field

An Audit Vault Server field that is not a core field but must be stored in Oracle Audit
Vault Server.

large field

An Audit Vault Server field of the data type CLOB (described in Oracle Database SQL
Language Reference). A large field is either a Command Text field or a Command
Parameter field.

mapper file

An XML file that describes the audit records that a specific secured target writes into
either an audit table or XML audit files. The mapper file specifies the audit record
fields to collect from the source, how to map them to Audit Vault Server fields, and
which fields to use for recovery. A mapper file always specifies the secured target
type, the maximum version of the source type that the mapper file supports, and the
mapper file version. A mapper file can also specify the minimum version of the source
type that it supports and an incremental field for calculating the checkpoint. The
default for the incremental field is the event time field.

Marker field

An audit record field that uniquely identifies the record within an audit trail. An
collection plug-in uses marker fields to avoid collecting duplicate records during
recovery.

plug-in

An application that adds a capability to another application (and usually cannot run
independently).

recovery

The phase of data collection where an collection plug-in that stopped and restarted
tries to reach its checkpoint. Resuming collection immediately after the checkpoint
ensures that the collector does not miss any records. To avoid collecting duplicate
records during recovery, the collector checks the Marker field of each record.

secured target

A secured target is a supported database or non-database product that you secure
using an Audit Vault Agent, a Database Firewall, or both.

secured target type

Glossary-3

secured target type

A category of auditing source. For example, Oracle Database is a secured target type, a
collection of Oracle Database instances that generate audit records with the same
fields. Secured target types generate semantically identical audit records (that is, audit
records that have the same fields).

secured target type

Glossary-4

Index-1

Index

A
about Audit Collection Plug-ins, 3-1
about XML mapper files, 3-2
Action fields, A-3
actions and target types, A-2
agents

deploying, 5-2
redeploying, 5-3

audit collection plug-in
packaging, 4-1
setting up development environment for, 2-1

Audit Collection Plug-ins, 3-1
audit collection Plug-ins

determining which to use, 1-3
audit collection plug-ins

types of, 1-3
audit records, 1-3

storing, 1-4
audit trail, 1-2

clean-up, 1-8
Audit Vault Agent

deploying, 5-2
how it works, 1-2

Audit Vault Server
how it works, 1-2

Audit Vault Server events
about, 1-3

Audit Vault Server fields
about, 1-3

AVCLI commands, 3-17
avcli commands, 5-1
av.collector.atcintervaltime, 3-17
av.collector.securedtargetversion (Mandatory), 3-17
av.collector.timezoneoffset (Mandatory), 3-17
AVDF core fields, A-1
AVDF extension fields, A-2
AVDF fields, A-1
AVDF large fields, A-2
AVDF marker fields, A-2
AVDF SDK

downloading, 2-1
avpack tool

how to use, 4-4

C
checkpoint

of a trail, 1-7
clean-up

audit trail, 1-8
collection concepts, 1-7
collection phase, 1-7
collection plug-in

directory structure, 2-3
upgrading (creating new versions), 4-2

collection plug-in directory structure, 2-2
collection plug-in example

XML file, C-5
collection plug-in manifest file

XML file, C-8
collection plug-in mapper file

XML file, C-5
collection plug-ins

what are they?, 1-2
collection process

overview of the whole process, 1-5
collection thread, 1-7
creating a database table mapper file, 3-4
creating the XML file audit collection mapper

file, 3-10

D
data collection

recovery phase, 1-7
database table collection plug-in example, C-1
database table collection plug-in manifest file, C-4
database table collection plug-in mapper file, B-4,

C-1
database table collection plug-ins, 3-2

requirements, 3-3
database table mapper file

creating, 3-4
deploy plugin command, 4-2
deploying an Oracle Audit Vault Agent, 5-2
development environment, 2-2

directory structure, 2-2, 2-3
plugin-manifest.xml file staging, 2-3
requirements, 2-1
setting up, 2-1

Index-2

directory structure
collection plug-in, 2-2
collection plug-ins, 2-2
general, 2-2

E
example

database table collection plug-in, C-1
example audit trail for a database table collection

plug-in, 3-3
example audit trail for an xml file collection

plug-in, 3-9
extension fields, A-2
external dependencies, 4-2

F
flow of control

inside the collection plug-in, 1-6
flow of packaging, 4-1

G
general procedure

for writing collection plug-is, 1-8

L
large fields, A-2

M
mapper file

database table collection plug-in, B-4, C-1
mapper files, 3-2
mappings

from secured target to Audit Vault Server, 1-7
marker fields, A-2

O
Oracle Audit Vault and Database Firewall

what is it?, 1-1

P
packaging, 4-1

external dependencies, 4-2
flow of, 4-1

plugin id, 4-2
plug-in manifest file

database table collection, C-4
plugin-manifest.xml file

about, 2-3
description of, 4-2
sample schema, B-1
staging, 2-3

plug-ins
redeploying agent, 5-3
requirements for testing, 5-1

testing procedure, 5-1
pre-processing audit data, 3-17

R
recovery phase

of data collection, 1-7
requirements for database table collection

plug-ins, 3-3
requirements for xml file collection plug-ins, 3-8

S
sample schema for a plugin-manifest.xml file, B-1
schema for xml file collection plug-in mapper

file, B-6
SDK

downloading, 2-1
secured target, 1-2
secured target collection attributes, 3-17
secured target type, 1-2
setting up development environment, 2-1
staging

plugin-manifest.xml file, 2-3
storing audit records, 1-4

T
target types, A-5
trail

checkpoint, 1-7

U
undeploy plugin command, 4-2
unresolved-external tag, 4-2
upgrading

collection plug-ins, 4-2

W
what are collection plug-Ins?, 1-2
writing collection plug-Ins

general procedures for, 1-8

X
xml file audit collection mapper file

creating, 3-10
xml file collection plug-in

example audit trail for, 3-9
XML file collection plug-in example, C-5
XML file collection plug-in manifest file, C-8
XML file collection plug-in mapper file, C-5
xml file collection plug-in mapper file

schema, B-6
XML file collection plug-ins, 3-8
xml file collection plug-ins

requirements for, 3-8
XML mapper files, 3-1

about, 3-2

	Contents
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction
	1.1 What Is Oracle Audit Vault and Database Firewall?
	1.1.1 How Oracle Audit Vault Server and Agent Work

	1.2 What Are Audit Collection Plug-ins?
	1.2.1 Types of Audit Collection Plug-ins
	1.2.1.1 Determining Which Audit Collection Plug-in Type to Create

	1.3 Audit Vault Events and Fields
	1.3.1 Core Fields
	1.3.1.1 CommandClass and Target Types

	1.3.2 Other Audit Vault Fields
	1.3.2.1 Large Fields
	1.3.2.2 Extension Field
	1.3.2.3 Marker Field

	1.3.3 Storing Audit Records in Audit Vault

	1.4 The Collection Process
	1.4.1 Flow of Collection: User
	1.4.2 Flow of Control Inside the Audit Collection Plug-in
	1.4.3 Collection Concepts
	1.4.3.1 Collection Thread
	1.4.3.2 Collection Phase
	1.4.3.3 Mapping
	1.4.3.4 Checkpoint of a Trail
	1.4.3.5 Recovery Phase Of Data Collection
	1.4.3.6 Audit Trail Clean-Up

	1.5 General Procedure for Writing Audit Collection Plug-ins

	2 Setting Up Your Development Environment
	2.1 Before You Set Up the Development Environment
	2.2 Setting Up the Development Environment
	2.3 Audit Collection Plug-in Directory Structure
	2.3.1 General Directory Structure
	2.3.2 Audit Collection Plug-in Directory Structure
	2.3.3 Staging a plugin-manifest.xml File

	3 Audit Collection Plug-ins
	3.1 About Audit Collection Plug-ins
	3.2 About Mapper Files
	3.3 Database Table Collection Plug-ins
	3.3.1 Requirements for Database Table Collection Plug-ins
	3.3.2 Example Audit Trail for a Database Table Collection Plug-in
	3.3.3 Creating a Database Table Mapper File

	3.4 XML File Collection Plug-ins
	3.4.1 Requirements for XML File Collection Plug-ins
	3.4.2 Example Audit Trail for an XML File Collection Plug-in
	3.4.3 Creating the XML File Audit Collection Mapper File
	3.4.4 XML Transformation for Non-Standard Audit Records
	3.4.4.1 Additional Requirement for XML Transformation Using XSL
	3.4.4.2 Changes Required to Transform Non-Standard Audit Records
	3.4.4.3 Sample Non-Standard XML Audit Data Record
	3.4.4.4 Creating an XSL File for Transformation

	3.5 Secured Target Collection Attributes
	3.6 Pre-Processing Audit Data

	4 Packaging Audit Collection Plug-ins
	4.1 Flow of Packaging
	4.2 External Dependencies
	4.3 Creating New Versions of Your Audit Collection Plug-ins
	4.4 Description of Plug-in Manifest File
	4.5 avpack Tool

	5 Testing Audit Collection Plug-ins
	5.1 Requirements for Testing Audit Collection Plug-ins
	5.2 Typical Audit Collection Plug-in Testing Processes
	5.3 Deploying an Oracle Audit Vault Agent
	5.4 Redeploying the Oracle Audit Vault Agent
	A.1 AVDF Fields
	A.1.1 Core Fields
	A.1.2 Large Fields
	A.1.3 Marker Field
	A.1.4 Extension Field

	A.2 Actions and Target Types
	A.2.1 Actions
	A.2.2 Target Types

	B.1 Sample Schema for a plugin-manifest.xml file
	B.2 Database Table Collection Plug-in Mapper File
	B.3 Schema for XML File Collection Plug-in Mapper File
	C.1 Database Table Collection Plug-in Example
	C.1.1 Database Table Collection Plug-in Mapper File
	C.1.2 Database Table Collection Plug-in Manifest File

	C.2 XML File Collection Plug-in Example
	C.2.1 XML File Collection Plug-in Mapper File
	C.2.2 XML File Collection Plug-in Manifest file

	D.1 About Bundled JDBC drivers
	D.1.1 Connecting URLs
	D.1.2 Driver class

	Glossary
	Index
	A
	C
	D
	E
	F
	G
	L
	M
	O
	P
	R
	S
	T
	U
	W
	X

