Creating and Using Oracle® Solaris Kernel Zones
Référence: E61041

Copyright © 2014, 2021, Oracle et/ou ses affiliés.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d'utilisation et de divulgation. Sauf stipulation expresse de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence, transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l'accompagne, est livré sous licence au Gouvernement des Etats-Unis, ou à quiconque qui aurait souscrit la licence de ce logiciel pour le compte du Gouvernement des Etats-Unis, la notice suivante s'applique :

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software" or "commercial computer software documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être utilisé dans des applications à risque, notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou matériel dans le cadre d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de securité, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce logiciel ou matériel pour des applications dangereuses.

Oracle et Java sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d'autres propriétaires qu'Oracle.

Intel et Intel Inside sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques déposées de SPARC International, Inc. AMD, Epyc, et le logo AMD sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une marque déposée de The Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse ou implicite quant aux contenus, produits ou services émanant de tiers, sauf mention contraire stipulée dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l'accès à des contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée dans un contrat entre vous et Oracle.

Accessibilité de la documentation

Accès aux services de support Oracle

Contents

Using This Documentation .. 9

1 Planning Oracle Solaris Kernel Zones ... 11
 About Oracle Solaris Kernel Zones ... 11
 Kernel Zones and General Zones Concepts .. 12
 Security Measures for Kernel Zones ... 13
 Software and Hardware Requirements for Oracle Solaris Kernel Zones 13
 Software Requirements for Oracle Solaris Kernel Zones .. 14
 Hardware Requirements for Oracle Solaris Kernel Zones ... 14
 Verifying Hardware and Software Support on Kernel Zone Hosts ... 16
 Tuning the Host ZFS ARC to Reserve Memory for Kernel Zones .. 17
 SPARC: Software in Silicon Features on Kernel Zones ... 18

2 Configuring Oracle Solaris Kernel Zones ... 21
 Configuring the Oracle Solaris Kernel Zone ... 21
 ▼ How to Configure a Kernel Zone .. 21
 About Managing Kernel Zone Resources .. 22
 Managing Kernel Zone CPUs .. 23
 Managing Kernel Zone Memory .. 25
 Managing Kernel Zone Storage Devices and Boot Order ... 28
 Managing Kernel Zone Network Devices and Configuration ... 30
 Managing Single-Root I/O NIC Virtualization on Kernel Zones .. 31
 Configuring the suspend Resource Type ... 37
 Using Verified Boot to Secure an Oracle Solaris Kernel Zone .. 38
 Working with IPoIB and Kernel Zones ... 39
 Configuring Virtual LANs in Kernel Zones ... 39
 Using Dynamic MAC Addresses and VLAN IDs in Kernel Zones ... 41
3 Installing, Shutting Down, and Cloning Oracle Solaris Kernel Zones 43
 Installing a Kernel Zone ... 43
 Directly Installing a Kernel Zone ... 44
 Using an AI Manifest to Install a Kernel Zone 46
 Using a sysconfig Profile to Install a Kernel Zone 49
 Using an Installation Image to Install a Kernel Zone 51
 Uninstalling a Kernel Zone .. 54
 Shutting Down, Halting, and Rebooting a Kernel Zone 54
 Cloning a Kernel Zone .. 54

4 Live Zone Reconfiguration of Kernel Zones ... 57
 Live Zone Reconfiguration of Kernel Zones .. 57
 zonecfg Utility Edit Modes ... 57
 About Live Zone Reconfiguration of Kernel Zones 58
 Temporary Changes to the Live Zone Configuration 59
 Persistent Changes to the Live Zone Configuration 59
 Live Zone Reconfiguration Dry Run .. 60
 Reloading a Live Zone Configuration .. 60
 Performing a Live Zone Reconfiguration .. 61
 ▼ How to Inspect the Live Configuration of a Running Zone 61
 ▼ How to Preview the Effect of a Live Zone Configuration 61
 ▼ How to Make Persistent Configuration Changes to a Live Zone 62
 ▼ How to Make Temporary Changes to the Running Zone 64
 ▼ How to Recover From a Failure While Committing Live Zone
 Configuration Changes ... 65

5 Migrating an Oracle Solaris Kernel Zone .. 67
 About Kernel Zone Migration ... 67
 Rights Required to Perform Kernel Zone Migrations 68
 Determining a Migration Method to Use ... 70
 Kernel Zone Migration Requirements ... 71
 Requirements for All Kernel Zone Migration Methods 71
 Additional Requirements for Kernel Zone Warm Migration and Live
 Migration .. 72
 Additional Requirements for Kernel Zone Live Migration 73
 Kernel Zone Migration Preparation ... 74
 About the zoneadm migrate Command ... 74
Using This Documentation

- **Overview** – Describes how to plan, configure, install, and administer Oracle Solaris Kernel Zones
- **Audience** – Technicians, system administrators, and authorized service providers
- **Required knowledge** – Experience administering Oracle Solaris environments. Familiarity with Oracle Solaris Zones. Experience with virtualized environments is a plus.

Product Documentation Library

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.
This chapter discusses how to confirm the hardware, software, and security requirements for Oracle Solaris Kernel Zones, also known as solaris-kz branded zones. It provides procedures for verifying hardware and software support, and for configuring secure administration of kernel zones.

This chapter covers the following topics:

- “About Oracle Solaris Kernel Zones” on page 11
- “Kernel Zones and General Zones Concepts” on page 12
- “Security Measures for Kernel Zones” on page 13
- “Software and Hardware Requirements for Oracle Solaris Kernel Zones” on page 13
- “Software in Silicon Features on Kernel Zones” on page 18

About Oracle Solaris Kernel Zones

An Oracle Solaris Kernel Zone, also called a solaris-kz zone, is a non-global zone that has its own kernel and operating system that are separate from the global zone. The separate kernel and OS installation provide for greater independence and enhanced security of operating system instances and applications.

The administrative and structural content of a kernel zone is entirely independent of the global zone. For example, a kernel zone does not share software packaging with the global zone, or kernel zone host. Package updates on the kernel zone host are not linked images and do not affect kernel zones. Similarly, packaging commands such as pkg update are fully functional from inside a kernel zone. For more information, see “Options That Operate on Non-Global Zones” in *Updating Systems and Adding Software in Oracle Solaris 11.4*.

System processes are handled in the kernel zone's separate process ID table and are not shared with the global zone. Resource management in kernel zones is also different. Resource controls such as max-processes are not available when configuring a kernel zone.
Kernel Zones and General Zones Concepts

The `zoneadm rename` command is not supported for kernel zones in the installed state. You can only change the name of a kernel zone by using the `zonecfg` command when the kernel zone is in the configured or unavailable state.

Use the existing `zlogin`, `zonecfg`, and `zoneadm` commands to manage and to administer kernel zones on the global zone.

Kernel zones are part of the branded zones framework. For more information, see the `brands(7)` man page.

Caution - On an Oracle Solaris x86 system, do not run Oracle VM VirtualBox and Oracle Solaris Kernel Zones at the same time.

Kernel Zones and General Zones Concepts

This guide assumes that you are familiar with the following resource management and zones concepts:

- Resource controls that determine how applications use available system resources
- Commands used to configure, install, and administer zones, primarily `zonecfg`, `zoneadm`, and `zlogin`
- `zonecfg` resources and property types
- Global zones and non-global zones
- The whole-root non-global zone model
- Authorizations granted through the `zonecfg` utility
- Global administrator and zone administrator
- The zone state model
- Zone isolation characteristics
- Network concepts and configuration
- Zone exclusive-IP type

See Introduction to Oracle Solaris Zones and Creating and Using Oracle Solaris Zones for more information about these concepts.
Security Measures for Kernel Zones

Kernel zones, non-global zones, and global zones offer similar security features. IPsec and IKE protect the network, rights and auditing prevent unauthorized use of resources, and immutable zones add administrative security. For more information, see “Security Measures for a System With Non-Global Zones” in Creating and Using Oracle Solaris Zones.

Kernel zones has an additional security measure called verified boot. For more information, see “Using Verified Boot to Secure an Oracle Solaris Kernel Zone” on page 38 and “Using Verified Boot” in Securing Systems and Attached Devices in Oracle Solaris 11.4.

The assignment of rights to administer zones to non-root users is a common security practice. By default, the global zone administrator (root) can administer all kernel zones, but root can distribute those rights.

For descriptions of zones rights profiles that apply to kernel zones and an overview of the admin resource in a zone, see “Using Rights Profiles to Install and Manage Zones” in Creating and Using Oracle Solaris Zones.

Note - The examples and procedures in this guide assume that zones are administered by a non-root user. Typically, non-root users prefix zone administration commands with the pfbash or pfexec command to run the commands with rights. For more information, see the pfexec(1) man page.

Refer to the following for background and details about rights:

- Chapter 1, “About Using Rights to Control Users and Processes” in Securing Users and Processes in Oracle Solaris 11.4
- “Using Your Assigned Administrative Rights” in Securing Users and Processes in Oracle Solaris 11.4
- “admin Resource Type” in Oracle Solaris Zones Configuration Resources

Software and Hardware Requirements for Oracle Solaris Kernel Zones

Oracle Solaris has Oracle Solaris release version requirements and hardware requirements for kernel zones. Additionally, to migrate zones requires hardware and software compatibility.
Software Requirements for Oracle Solaris Kernel Zones

To use an Oracle Solaris-supported feature within an Oracle Solaris kernel zone, both the OS of the host and the OS of its guest Kernel Zone must support the feature. Most Oracle Solaris features work out-of-box within a Kernel Zone.

Some features require additional support in the Kernel Zone hypervisor, in the Kernel Zone guest driver, or both. The Oracle Solaris system version of the host and the Kernel Zone guest determine whether a feature is supported from within a Kernel Zone. Some Oracle Solaris features are not yet supported from within a Kernel Zone.

<table>
<thead>
<tr>
<th>Oracle Solaris kernel zone Feature</th>
<th>Kernel Zone Guest OS Versions</th>
<th>Host OS Versions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software In Silicon</td>
<td>11.4, 11.3</td>
<td>11.4, 11.3</td>
</tr>
<tr>
<td>Live Zone Reconfiguration</td>
<td>11.4, 11.3</td>
<td>11.4, 11.3</td>
</tr>
<tr>
<td>Oracle Solaris Kernel Zone Migration</td>
<td>11.4, 11.3, 11.2</td>
<td>11.4, 11.3(^1), 11.2(^2)</td>
</tr>
<tr>
<td>Evacuation of Oracle Solaris Kernel Zone to Target Host</td>
<td>11.4, 11.3, 11.2</td>
<td>11.4</td>
</tr>
</tbody>
</table>

\(^1\)Adds Live Migration support.
\(^2\)Includes suspend and resume migration support.

Hardware Requirements for Oracle Solaris Kernel Zones

The physical machine must meet the following requirements.

SPARC based systems:

- A SPARC T4 series server with at least System Firmware 8.8.
- A SPARC T5, SPARC M5, or SPARC M6 series server with at least System Firmware 9.5.
- A SPARC M8 series server. All firmware versions are supported.
- A SPARC T7 or SPARC M7 series server. All firmware versions are supported.
- A Fujitsu M10/SPARC M10 server. Follow the firmware requirements in *Fujitsu M10 Systems Product Notes* that are appropriate for your configuration.
- A Fujitsu SPARC M12 server with the Oracle Solaris 11.3 or Oracle Solaris 11.4 release. All firmware versions are supported.
For information about downloading the latest system firmware, see Firmware Downloads and Release History for Oracle Systems (https://www.oracle.com/servers/technologies/firmware/release-history-jsp.html).

x86 systems:
- Intel-based systems with Nehalem or later processors
- AMD-based systems with Barcelona or later processors
- Compatible microcode levels on the CPUs
- BIOS must enable the following:
 - CPU virtualization (for example, VT-x)
 - Extended/Nested Page Table support, also referred to as EPT, NPT, or Rapid Virtualization Indexing (RVI)
 - No-eXecute support, also referred to as NX, XD, No-Execute Memory Protection, No Execute Mode Mem Protection, Execute Disable, or Execute Bit Support

Both SPARC and x86 systems require the following:
- A minimum of 8GB of physical RAM
- The kernel zone brand software package brand/brand-solaris-kz.
 For information about obtaining and installing software packages, see Chapter 3, “Installing and Updating Software Packages” in Updating Systems and Adding Software in Oracle Solaris 11.4.
- To use the Remote Administrative Daemon (RAD), the rad-zonemgr package must be installed on your system. For operations such as zone migration that occur between systems, the rad-zonemgr package must be installed on both the target and the source systems. Note that the RAD SMF services must be manually restarted with the command svcadm restart rad after you install RAD modules.
- To prevent memory errors, you must adjust a parameter for the ZFS Adaptive Replacement Cache (ARC) on the kernel zone host. See “Tuning the Host ZFS ARC to Reserve Memory for Kernel Zones” on page 17.

Kernel zones can be installed using any of the following:
- The global zone's publishers and a default AI manifest
- A custom AI manifest
- An ISO image of Oracle Solaris installation media
- A Unified Archive

The default AI manifest, /usr/share/auto_install/manifest/default.xml, and the global zone's pkg publishers are used to perform the installation unless the -a, -b, or -m options are specified. The text installer and the automated installer enable you to install any supported Oracle Solaris version. Oracle Solaris 11.2 is the first version of Oracle Solaris supported in a kernel zone.
Oracle Solaris Kernel Zones can run in guests on Oracle VM Server for SPARC (previously called Sun Logical Domains). Each Oracle VM Server for SPARC domain has an independent limit for the number of kernel zones that can run. The limit is 768 for SPARC T4 or SPARC T5 systems, 512 for SPARC M5, SPARC M6, SPARC M7, and SPARC M8 systems, and 256 for Fujitsu M10 and Fujitsu SPARC M12 systems.

Kernel zones cannot run in Oracle VM Server for x86 guests or on the Oracle VM VirtualBox.

Note - On SPARC based systems, a running kernel zone within an Oracle VM Server for SPARC domain will block Oracle VM Server for SPARC live migration of the guest domain. For details, see “Kernel Zones Issues” in *Oracle Solaris 11.4 Release Notes*.

Kernel zone live migration on SPARC based systems has additional software and firmware requirements. See “Additional Requirements for Kernel Zone Warm Migration and Live Migration” on page 72.

Tip - Although you can run different zone brands on a system, when you run kernel zones, reserve the kernel zone host for running non-global zones and avoid running applications in the global zone.

Verifying Hardware and Software Support on Kernel Zone Hosts

Before planning and deploying a kernel zone, you must verify that the kernel zone host satisfies “Software and Hardware Requirements for Oracle Solaris Kernel Zones” on page 13.

How to Verify That a System Can Support Kernel Zones

1. **Verify that the Oracle Solaris operating system version is at least 11.2.**

   ```
   $ uname -a
   ```

 For example, on the system `global`:

   ```
   global$ uname -a
   SunOS example-server 5.11 11.4.36.15.0 sun4v sparc sun4v non-virtualized
   ```

2. **Verify that the kernel zone brand package `brand/brand-solaris-kz` is installed.**

   ```
   $ pkg list brand/brand-solaris-kz
   ```
This example shows that the kernel zone brand package is installed on the system `global`.

```
globals pkg list brand/brand-solaris-kz
NAME (PUBLISHER) VERSION IFO
system/zones/brand/brand-solaris-kz 11.4-11.4.0.0.1.10.1 i--
```

3. **Verify that the global zone supports kernel zones.**

```
$ virtinfo
```

This sample output shows that kernel zones are supported on the system `global`.

```
globals virtinfo
NAME CLASS
logical-domain current
logical-domain parent
non-global-zone supported
kernel-zone supported
```

See Also

For further information, see the `virtinfo(8)` man page.

Tuning the Host ZFS ARC to Reserve Memory for Kernel Zones

To ensure efficient performance of kernel zones, you must set the `user_reserve_hint_pct` tunable parameter on the kernel zone host. The parameter provides a hint to the system about application memory usage and is used to limit growth of the ZFS Adaptive Replacement Cache (ARC) so that more memory remains available for applications. From the perspective of its kernel zone host, a kernel zone is an application. By limiting the growth of the ARC, more memory remains available for applications, including the kernel zones and the applications running within them.

Caution - Failure to set this parameter to limit the host system's ZFS ARC can lead to low memory failures.

To limit the ZFS ARC on the system, set the `user_reserve_hint_pct` parameter on the kernel zone host. The recommendation is to set the parameter value to 80 using a script called `set_user_reserve.sh`. This script adjusts the parameter dynamically.

You could set a value higher or lower than 80, depending on maximum memory requirements of all kernel zones and other processes that are anticipated to run on the kernel zone host.
To obtain the `set_user_reserve.sh` script and see more information about determining requirements and configuring the `user_reserve_hint_pct` tunable parameter, log in to the My Oracle Support website and access the document Memory Management Between ZFS and Applications in Oracle Solaris 11.x (Doc ID 1663862.1). The `set_user_reserve.sh` script is attached to that document.

For example, run the script on the kernel zone host named `global`:

```
(global) # ./set_user_reserve.sh -fp 80
Adjusting user_reserve_hint_pct from 0 to 80
waiting for current value : 60 to grow to target : 65...
Adjustment of user_reserve_hint_pct to 80 successful.
Make the setting persistent across reboot by adding to /etc/system
```

#
Tuning based on MOS note 1663861.1, script version 1.0
added Monday, March 30, 2015 05:09:53 PM PST by system administrator : user
set user_reserve_hint_pct=80

Note - When you run the script, the `user_reserve_hint_pct` parameter is tuned on the running system. To make the parameter persist across reboots, set the parameter in `/etc/system`.

SPARC: Software in Silicon Features on Kernel Zones

Oracle Software in Silicon features are available on servers based on Oracle's SPARC M7 processor and running Oracle Solaris 11.3 and Oracle Solaris 11.4. Software in Silicon technologies include Silicon Secured Memory (SSM) and data analytics accelerators (DAX). SSM enables Application Data Integrity (ADI).

For more information about Oracle Software in Silicon functionality, refer to Understanding the Security and Performance Advantages of a Complete Oracle Solution with Software in Silicon.

SSM and DAX are not enabled in a kernel zone by default, even if they are supported by the host system's CPU and the kernel zone's operating system. This default is chosen to aid warm and live migration of kernel zones to and from earlier systems which do not support these features.

To enable these features in a kernel zone running Oracle Solaris 11.3 or Oracle Solaris 11.4, set the `host-compatible` property:

- To enable only SSM, set `host-compatible=adi`.
To enable DAX, virtual address masking (VA masking), and SSM, set host-compatible=level1.

Note - Only features enabled by both migration class and host compatibility level are visible to the kernel zone. Do not set the cpu-arch property to a migration class if you want to use SSM or DAX.

To migrate a kernel zone to an earlier SPARC based system or earlier version of Oracle Solaris software where SSM or DAX is not available, before you begin the migration you must first make the following configuration changes:

1. Set the host-compatible property to a compatible value or clear the property to enable the zone to work in the target system's environment.
2. Set the cpu-arch property to migrate to an earlier SPARC based system. See “Preparation for Migrating Kernel Zones to Systems With Different CPUs or OS Versions” on page 77 for more information.

See “Kernel Zone Migration Class and Host Compatibility Level (solaris-kz Only)” in Oracle Solaris Zones Configuration Resources for more information.

EXAMPLE 1 Enabling SSM in a Kernel Zone

This example checks whether the host-compatible property is set, then sets the property to adi and boots the zone. Note that the info subcommand displays no information for a property that is not explicitly set, even when the property has a default value.

```
global$ pfbash zonecfg -z kzone1
zonecfg:kzone1> info host-compatible
zonecfg:kzone1> set host-compatible=adi
zonecfg:kzone1> exit
global$ zonecfg -z kzone1 boot
```

EXAMPLE 2 Attempting to Enable SSM in a Kernel Zone on a System Without the Silicon Secured Memory Feature

This example shows an attempt to enable SSM in a kernel zone on a SPARC T5 system. The SPARC T5 does not support SSM. The error is detected when you attempt to boot the kernel zone.

```
global$ pfbash zonecfg -z kzone1
zonecfg:kzone1> set host-compatible=adi
zonecfg:kzone1> exit
global$ zonecfg -z kzone1 boot
zone 'kzone1': error: modifier adi not supported by migration class SPARC-T5
```
EXAMPLE 3 Enabling DAX in a Kernel Zone

This example shows by the lack of output that the `host-compatible` property is not set on kernel zone `kzone1`, sets the property to `level1` to enable DAX, VA masking, and SSM, and boots the zone.

```
global$ pfbash zonecfg -z kzone1
zonecfg:kzone1> info host-compatible
zonecfg:kzone1> set host-compatible=level1
zonecfg:kzone1> exit
global$ zonecfg -z kzone1 boot
```

EXAMPLE 4 Clearing the `host-compatible` Property to Enable Migration to Earlier Systems

This example clears the `host-compatible` property on kernel zone `kzone1` then reboots the zone. Note that you must also reset the `cpu-arch` property, as described in “Preparation for Migrating Kernel Zones to Systems With Different CPUs or OS Versions” on page 77, before you can migrate a kernel zone to a target host that does not support features such as SSM.

```
global$ pfbash zonecfg -z kzone1 clear host-compatible
global$ zoneadm -z kzone1 reboot
```
Configuring Oracle Solaris Kernel Zones

This chapter discusses how to configure Oracle Solaris Kernel Zones, also known as solaris-kz branded zones. The chapter covers the following topics:

- “Configuring the Oracle Solaris Kernel Zone” on page 21
- “About Managing Kernel Zone Resources” on page 22

How to Configure a Kernel Zone

Perform this procedure to configure a kernel zone that uses the default kernel zone template, SYSsolaris-kz.

Before You Begin

- Review requirements and guidelines for kernel zone configuration, including information about important kernel zone resources. See Chapter 1, “Planning Oracle Solaris Kernel Zones”.
- Confirm kernel zone hardware support, software support, and memory configuration on your host system. See “Verifying Hardware and Software Support on Kernel Zone Hosts” on page 16
- Set the user_reserve_hint_pct tunable parameter on the system that is hosting the kernel zone. See “Tuning the Host ZFS ARC to Reserve Memory for Kernel Zones” on page 17.

1. On the kernel zone host, become an administrator.
For more information, see “Using Rights Profiles to Install and Manage Zones” in *Creating and Using Oracle Solaris Zones*.

2. **Start the zonecfg utility and create a new kernel zone configuration.**

 The default solaris-kz zone template is SYSsolaris-kz.

   ```
   global$ pfbash zonecfg -z kzone
   Use 'create' to begin configuring a new zone.
   zonecfg:kzone> create -t SYSsolaris-kz
   ```

3. **Add any additional kernel zone resources.**

 You can set some kernel zone resources now or after the zone is configured. For more information, see “About Managing Kernel Zone Resources” on page 22.

4. **Commit the zone configuration.**

   ```
   zonecfg:kzone> commit
   ```

5. **Exit the zonecfg utility.**

   ```
   zonecfg:kzone> exit
   ```

6. **(Optional) Verify the zone configuration.**

 You can verify a zone prior to installation. If you skip this step, the verification is performed automatically when you install the zone.

   ```
   global$ zoneadm -z kzone verify
   ```

 If you see an error message and the zone fails to verify, make the corrections specified in the message and try the command again. If no error messages are displayed, you can install the zone.

Next Steps

After the kernel zone is verified, install and boot the kernel zone. Go to “Installing a Kernel Zone” on page 43.

About Managing Kernel Zone Resources

Zone configuration resources enable you to manage the system resources for a zone. You specify resources when creating a zone configuration. Some resources apply only to kernel zones.
This section describes how to manage resources for the following components:

- “Managing Kernel Zone CPUs” on page 23.
- “Managing Kernel Zone Memory” on page 25.
- “Managing Kernel Zone Storage Devices and Boot Order” on page 28.
- “Managing Kernel Zone Network Devices and Configuration” on page 30.
- “Configuring the suspend Resource Type” on page 37.
- “Using Verified Boot to Secure an Oracle Solaris Kernel Zone” on page 38.

You use the `zonecfg` command in the global zone to manage kernel zone resources.

Note - You must be an administrator assigned the appropriate zone administration rights in the global zone to use the `zonecfg` command. For more information, see “Using Rights Profiles to Install and Manage Zones” in *Creating and Using Oracle Solaris Zones*.

For more information about zone resources, see *Oracle Solaris Zones Configuration Resources* and the `solaris-kz(7)` man page.

Managing Kernel Zone CPUs

By default, a kernel zone is given four virtual CPUs upon creation. You can change the number of virtual CPUs by using any of the following methods:

- Adding and modifying the `dedicated-cpu` resource
- Adding and modifying the `virtual-cpu` resource
- Adding CPUs from an `anet` locality group

Adding a `dedicated-cpu` Resource to a Kernel Zone

For best performance, configure a `dedicated-cpu` resource. By setting this value, you tell the kernel zone to run only on those selected CPUs. No other processes on the system can run on the CPUs that are dedicated to the kernel zone.

You can assign the CPU value in terms of available cores or processors. Use `psrinfo -vp` to obtain processor information about the system. For example, the following `psrinfo -vp` output shows that there are six available cores on the system `global`:
global$ psrinfo -vp
The physical processor has 6 cores and 48 virtual processors (0-47)
 The core has 8 virtual processors (0-7)
 The core has 8 virtual processors (8-15)
 The core has 8 virtual processors (16-23)
 The core has 8 virtual processors (24-31)
 The core has 8 virtual processors (32-39)
 The core has 8 virtual processors (40-47)
 SPARC-T4 (chipid 0, clock 2998 MHz)

Note - By default, setting `dedicated-cpu:ncpus` does not provide any control over which of the system's CPUs are allocated. This can lead to inconsistent results if the system is rebooted. For consistent results, see Example 5, “Allocating Dedicated CPUs to a Kernel Zone,” on page 24.

EXAMPLE 5 Allocating Dedicated CPUs to a Kernel Zone

This example shows how to verify that no CPUs are allocated or dedicated to `kzone1`, and then allocates them. It assumes that `kzone1` is on the global system that is running a SPARC T4 with six cores.

global$ pfbash zonecfg -z kzomal
zonecfg:kzomal> info dedicated-cpu
zonecfg:kzomal> add dedicated-cpu
zonecfg:kzomal:dedicated-cpu> set cpus=8-15
zonecfg:kzomal:dedicated-cpu> end
zonecfg:kzomal:dedicated-cpu> info dedicated-cpu
 cpus: 8-15
zonecfg:kzomal:dedicated-cpu> end
zonecfg:kzomal> exit

For more information, see “dedicated-cpu Resource Type” in *Oracle Solaris Zones Configuration Resources*.

Adding a virtual-cpu Resource to a Kernel Zone

The `virtual-cpu` resource type specifies the number of virtualized CPUs visible to the kernel zone. On the host system, virtualized CPUs share CPU time with other zones. Setting a `virtual-cpu` resource is beneficial for consolidation, but can affect system performance. For more information and examples, see “virtual-cpu Resource Type (solaris-kz Only)” in *Oracle Solaris Zones Configuration Resources*.
Adding CPUs from a Locality Group to a Kernel Zone

You can specify CPUs from a locality group. Specifying CPUs from a locality group can improve network performance if the locality group is the same as the underlying network device.

For more information about working with locality groups, review the following:

- Chapter 2, “Creating and Managing Virtual Networks” in *Managing Network Virtualization and Network Resources in Oracle Solaris 11.4*
- *Locality Group Observability on Oracle Solaris*

Managing Kernel Zone Memory

You must allocate a fixed amount of physical RAM to the kernel zone virtual platform. You can define this amount by setting the kernel zone capped-memory resource type's physical property.

The physical memory assigned to a kernel zone is allocated in its entirety when the zone boots. The memory allocated is for the exclusive use of the kernel zone. After a kernel zone is booted, all of the memory specified in the capped-memory resource is unavailable to the host operating system and other zones.

The default CPU and memory configuration for kernel zones is 4 VCPUs and 4 GB of memory, to enable applications to run in the kernel zone. Increase the kernel zone memory size (capped-memory:physical) to manage larger workloads:

- On a SPARC based system, set the resource in increments of 256 MB.
- On an x86 based system, set the resource in increments of 2 MB.

The capped-memory:pagesize-policy property specifies the policy for allocating page size for the kernel zone's physical memory. By default a kernel zone uses the largest page size available to enable best performance. See “About Memory Page Size Policy and Physical Memory” on page 27 for more information.

An additional kernel zone template, SYSsolaris-kz-minimal, provides the minimal supported kernel zone configuration of 1 VCPU and 2 GB of memory.
Note - On Fujitsu SPARC M12 servers, Fujitsu M10 servers, or SPARC M10 servers, a kernel zone created with the SYSsolaris-kz-minimal template might not be bootable because of insufficient memory. If the kernel zone cannot be booted, increase the memory assigned to the kernel zone through the physical property of the capped-memory resource.

For detailed information about setting the capped-memory zone resource type, see “Capped Memory Guidelines for a solaris-kz Zone” in Oracle Solaris Zones Configuration Resources.

If you increase kernel zone memory size prior to installation, you must also increase the kernel zone root disk size to account for the larger swap and dump devices. If you do not explicitly add a disk to a kernel zone, a zvol is created and used as the root disk. By default, the zvol is 16 GB in size. To specify a different root disk size, use the zoneadm install -x install-size command. For example, to specify a 32GB root disk size on the kernel zone kzone1, you would use the following command when you install:

global$ pfbash zoneadm -z kzone1 install -x install-size=32G

For information about modifying the disk size by using the zoneadm command, see the zoneadm(8) man page.

EXAMPLE 6 Setting the capped-memory Resource on a SPARC Based System

This example shows how to specify 2048MB of memory for a kernel zone on a SPARC based system.

 global$ pfbash zonecfg -z kzone
 zonecfg:kzone> select capped-memory
 zonecfg:kzone:capped-memory> set physical=2048m
 zonecfg:kzone:capped-memory> end ; exit

EXAMPLE 7 Setting the capped-memory Resource on an x86 Based System

This example shows how to specify 16GB of memory for a kernel zone on an x86 based system.

 global$ pfbash zonecfg -z kzone
 zonecfg:kzone> select capped-memory
 zonecfg:kzone:capped-memory> set physical=16g
 zonecfg:kzone:capped-memory> end ; exit
About Memory Page Size Policy and Physical Memory

The `pagesize-policy` property of the `capped-memory` resource controls how the system selects a page size for a kernel zone.

The default kernel zone template `SYSsolaris-kz` sets the `pagesize-policy` property to `largest-available`, which is the recommended value for best performance. This setting enables the system to select the appropriate page size to use with the kernel zone's amount of physical memory. The physical memory size must be a multiple of the page size, so the system selects the largest page size that aligns with the amount of physical memory specified for the kernel zone. Booting with `pagesize-policy=largest-available` always succeeds.

For best performance, set an appropriate amount of physical memory that will enable the largest page size to be selected when `pagesize-policy=largest-available` is set.

If a kernel zone's `pagesize-policy` property is cleared or not set, the kernel zone uses the lowest allowable page size required to boot on the particular hardware platform on which it is running. This page size might not be appropriate. The `physical` property must be set to an amount that is a multiple of the largest page size supported, as shown in Example 8, “Setting Physical Memory to Use the Largest Page Size,” on page 27.

The amount of memory allocated must align perfectly with the page size being requested. Therefore, you must clear `pagesize-policy` if either of the following conditions apply:

- If the target system has a smaller page size than the source system.
- If the source kernel zone was created in an update of Oracle Solaris 11.4 and the target is an Oracle Solaris release that does not support the `pagesize-policy` property, such as the initial release of Oracle Solaris 11.3.

EXAMPLE 8 Setting Physical Memory to Use the Largest Page Size

The SPARC T5 supports various page sizes, as the following output shows. The largest is 2147483648 bytes or 2GB.

Using 2GB pagesize increments, the `capped-memory:physical` property is set to 8GB. This value enables the system to use the largest page size when `pagesize-policy` is set to `largest-available`.

```sh
globals pfbash pagesize -a
8192
65536
4194304
```
Clearing the pagesize-policy Property Before Migrating a Kernel Zone to an Earlier Oracle Solaris Release

This example shows how to clear the pagesize-policy property to prepare for migrating a kernel zone to an Oracle Solaris release that does not support the property.

You can do a trial run of the migration by using the zoneadm migrate -n command to see if the pagesize-policy needs to be cleared. For more information, see “About the zoneadm migrate Command” on page 74.

Tip - If the kernel zone is hosting a database or other application where performance depends on using the largest page size, you might want to set pagesize-policy=largest-only to prevent booting unless the largest page size is used.

For more information about setting the physical and pagesize-policy properties, see “Capped Memory Guidelines for a solaris-kz Zone” in Oracle Solaris Zones Configuration Resources.

Managing Kernel Zone Storage Devices and Boot Order

The root of a kernel zone is always accessible and by default is a 16GB ZFS volume. To increase the disk space, you can enlarge the root disk as described in “Managing Kernel Zone
About Managing Kernel Zone Resources

Memory” on page 25. Or, you can add storage devices. Devices are portable across systems and provide increased performance over ZFS volumes.

Additional kernel zone storage devices have the following requirements:

- The full storage device path (for example, /dev/dsk/c9t0d0) must be specified.
- The storage device must be defined by a valid storage URI.
- The storage device must be a whole disk or LUN.

Use the bootpri property of the device resource type to specify the boot order of each storage device. Set the bootpri property to any positive integer value.

Caution - The bootpri property must be set only on a boot device. If the bootpri property is set on devices other than boot devices, data corruption might result.

To unset the bootpri property, use the zonecfg clear bootpri command.

The default boot order of each device is determined by sorting devices first by the bootpri property value, then by the id property value if multiple devices have the same bootpri value.

If multiple bootable devices are present during installation, the devices will be used for a mirrored ZFS pool in the zone.

EXAMPLE 10 Adding Storage Devices to a Kernel Zone

This example shows how to add the storage device /dev/dsk/c9t0d0 to the kernel zone kzone1.

```
global$ pfbash zonecfg -z kzone1
zonecfg:kzone1> add device
zonecfg:kzone1:device> set storage=dev:/dev/dsk/c9t0d0
zonecfg:kzone1:device> set bootpri=4
zonecfg:kzone1:device> end
```

EXAMPLE 11 Changing the Kernel Zone Default Boot Device to Use a Storage URI:

This example shows how to change the default boot device on the kernel zone kzone1 to use a storage URI located at iscsi://zfssa/luname.naa.600144F0DBF8AF19000052E820D60003.

```
global$ pfbash zonecfg -z kzone1
zonecfg:kzone1> select device id=0
zonecfg:kzone1:device> set storage=iscsi://zfssa/luname.naa.600144F0DBF8AF19000052E820D60003
zonecfg:kzone1:device> end
zonecfg:kzone1> info device
```
Managing Kernel Zone Network Devices and Configuration

Kernel zones provide network access in kernel zones by adding net or anet resources. See “Configurable Resource Types and Global Properties” in Oracle Solaris Zones Configuration Resources for more information about these two resource types.

Note - Best practice is to use an anet resource with kernel zones.

Kernel zones must be exclusive-IP zones. For information about exclusive-IP zones, see “Networking in Exclusive-IP Non-Global Zones” in Creating and Using Oracle Solaris Zones.

You can supply additional MAC addresses to support running native (solaris) zones inside a kernel zone. See “Managing Non-Global Zones in Kernel Zones” on page 110 for more information.

You can optionally specify a network device ID to identify the VNIC address from inside the zone and determine the order in which the network interfaces are presented to the kernel zone. This process is similar to moving a NIC from one physical slot to another.

EXAMPLE 12 Adding Network Devices to a Kernel Zone

This example shows how to add a network device to the kernel zone kzone1. The ID of 3 specifies the order in which the new anet interface is presented to the kernel zone. After booting the zone, the dladm show-phys -i command shows information about implicitly created physical links in the kernel zone. The value in the ID column matches the ID that you set with zonecfg.

```
global$ pfbash zonecfg -z kzone1
zonecfg:kzone1> add anet
zonecfg:kzone1:anet> set id=3
zonecfg:kzone1:anet> info
anet 1:
    id: 3
zonecfg:kzone1:anet> end ; exit
```
About Managing Kernel Zone Resources

EXAMPLE 13 Removing Network Devices From a Kernel Zone

This example shows how to remove a network device from the kernel zone kzone1. The information about the existing anet resources is listed and the anet device with the ID of 1 is deleted.

global$ pfbash zonecfg -z kzone1 info anet
 anet: configure-allowed-address: true
 id: 0
 anet: configure-allowed-address: true
 id: 1

global$ zoneadm -z kzone1 boot

global$ zlogin kzone1 dladm show-phys -i
 LINK MEDIA ID DEVICE ACTIVE STANDBY
 net0 Ethernet anet:0 vnic1000 -- zvnet0
 net1 Ethernet anet:3 vnic1001 -- zvnet1

Managing Single-Root I/O NIC Virtualization on Kernel Zones

You can create and administer single root I/O (SR-IOV) NIC virtual functions (VF) on kernel zones by using the iov property of the zonecfg anet resource type. SR-IOV enables the efficient sharing of Peripheral Component Interconnect Express (PCIe) devices among virtual machines and is implemented in the system hardware to achieve I/O performance that is comparable to bare metal performance.

SR-IOV must be enabled on the datalink in the global zone in order to enable it on the anet resource in a kernel zone. For information about using SR-IOV in Oracle Solaris, see “Using Single Root I/O Virtualization With VNICs” in Managing Network Virtualization and Network Resources in Oracle Solaris 11.4.

The iov property is only supported on kernel zones and native (solaris) zones.

When you enable the iov property, the ability to suspend and resume the kernel zone and migrate it using warm or live migration is limited to host systems and zones running
Oracle Solaris 11.4. See “About Migration of Kernel Zones with SR-IOV-Enabled anet Resources” on page 34 for more information.

See “Zone Global Properties” in Oracle Solaris Zones Configuration Resources for information about how to enable and configure the iov property of the anet resource type.

Tip - When using some Intel network adapters that support SR-IOV, a virtual function might be the target of malicious behavior. Unexpected software-generated frames can slow traffic between the host system and the virtual switch, which might negatively affect performance. You can work around this issue by configuring all SR-IOV-enabled ports to use VLAN tagging to drop unexpected and potentially malicious frames, See Example 15, “Configuring SR-IOV and VLAN Tagging on an anet Resource,” on page 34 for an example.

How to Enable SR-IOV NIC Virtual Functions on a Kernel Zone With a Single anet Resource

1. **Become a zone administrator.**
 For more information, see “Using Rights Profiles to Install and Manage Zones” in Creating and Using Oracle Solaris Zones.

2. **Enable iov on an anet.**
 Using zonecfg, set the iov property on a selected anet resource.

   ```
   $ pfbash zonecfg -z kernel-zone
   zonecfg:kernel-zone> select anet id=id-number
   zonecfg:kernel-zone:anet> set lower-link=network-interface
   zonecfg:kernel-zone:anet> set iov=iov-value
   zonecfg:kernel-zone:anet> set iov=auto
   zonecfg:kernel-zone:anet> end ; exit
   
   The following example demonstrates enabling the iov property on an anet resource belonging to the kernel zone kzone1.
   ```
   ```
   global$ pfbash zonecfg -z kzone1
   zonecfg:kzone1> select anet id=0
   zonecfg:kzone1:anet> set lower-link=net1
   zonecfg:kzone1:anet> set iov=auto
   zonecfg:kzone1:anet> end ; exit
   
   3. **(Optional) Confirm that the iov property is set for the anet resource in the kernel zone configuration.**

   ```
 $ zonecfg -z kernel-zone info anet id=id-number
   ```
How to Enable SR-IOV NIC Virtual Functions on a Kernel Zone With a Single anet Resource

For example, on the system global and the anet resource with ID 0 of the kernel zone kzone1:

```bash
$ zonecfg -z kzone1 info anet id=0
anet:
 lower-link: net1
 configure-allowed-address: true
 iov: auto
 id: 0
```

4. Ensure that SR-IOV is enabled on the chosen network interface.

```bash
$ dladm show-linkprop -p iov network-interface
```

For example, on the system global and the network interface net1:

```bash
global$ dladm show-linkprop -p iov net1
```

5. Boot the kernel zone.

```bash
$ zoneadm -z kernel-zone boot
```

For example, to boot the kernel zone kzone1 on the system global:

```bash
global$ zoneadm -z kzone1 boot
```

6. Verify that the VF was successfully added.

```bash
$ zlogin kernel-zone
kernel-zone$ dladm show-phys -i
```

The output from this command varies depending on which version of Oracle Solaris is running in the global zone of the host system and in the kernel zone. The following is sample output for selected Oracle Solaris version combinations.

- The global zone and the kernel zone are both running Oracle Solaris 11.4:

```bash
 globals$ pfexec zlogin kzone
 kzone$ dladm show-phys -i
```

- The global zone is running Oracle Solaris 11.4 and the kernel zone is running Oracle Solaris 11.3:

```bash
 globals$ pfexec zlogin kzone
 kzone$ dladm show-phys -i
```
How to Enable SR-IOV NIC Virtual Functions on a Kernel Zone With a Single anet Resource

The global zone is running Oracle Solaris 11.3 and the kernel zone is running Oracle Solaris 11.4:

```
global$ pfexec zlogin kzone
kzone$ dladm show-phys -i
```

```
LINK MEDIA STATE SPEED DUPLEX DEVICE
net0 Ethernet down 0 unknown ixgbevf0
```

```
Example 14 Confirming the zonecfg iov Value on an anet

The following example shows the iov value on anet 0. The value is set to auto. If set to the default value off, it would not be displayed.

```
globals$ pfbash zonecfg -z kzone
zonecfg:kzone1> select anet id=0
zonecfg:kzone1:anet> info
anet:
    lower-link: net1
    configure-allowed-address: true
    iov: auto
    id: 0
```

```
Example 15  Configuring SR-IOV and VLAN Tagging on an anet Resource

The following example shows how to explicitly set a VLAN ID to enable VLAN tagging on an anet resource, which allows untagged and potentially malicious frames to be dropped.

```
globals$ pfbash zonecfg -z kzone
zonecfg:kzone1> select anet id=0
zonecfg:kzone1:anet> set iov=auto
zonecfg:kzone1:anet> set vlan-id=11
zonecfg:kzone1:anet> end ; exit
```

For more information about setting VLAN IDs and VLAN tagging, see “Configuring Virtual LANs in Kernel Zones” on page 39.

About Migration of Kernel Zones with SR-IOV-Enabled anet Resources

For a kernel zone that is using SR-IOV, the ability to suspend and resume the kernel zone and migrate using warm or live migration is limited to host systems and zones running Oracle
Solaris 11.4. If the kernel zone configuration includes the settings `iov=auto` or `iov=on`, migration fails if the source host, target host, or the kernel zone is running an older release.

If you must migrate a kernel zone that has `iov` enabled, and either the kernel zone or the global zone on the source host or target host is running a release that is older than Oracle Solaris 11.4, you must perform a cold migration.

For more information about migration and the limitations of the `iov` property, review:

- Chapter 5, “Migrating an Oracle Solaris Kernel Zone”
- “Zone Global Properties” in Oracle Solaris Zones Configuration Resources

### Configuring Network High Availability for SR-IOV-Enabled Kernel Zones

You can achieve network high availability for SR-IOV devices within a kernel zone if the global zone is using datalink multipathing (DLMP) with SR-IOV.

To enable high availability, you must create a DLMP link aggregation of links with SR-IOV enabled in the global zone, then add an `anet` resource in the kernel zone that uses the DLMP aggregation as its lower link. Set the `anet` resource's `iov` property to `auto` and boot the zone.

For more information, see “Datalink Multipathing Aggregations” in Managing Network Datalinks in Oracle Solaris 11.4.

**EXAMPLE 16** Configure a DLMP Link Aggregation for Network High Availability in a Kernel Zone

```bash
global$ podash dladm set-linkprop -p iov=on net3
global$ dladm set-linkprop -p iov=on net4
global$ dladm create-aggr -l net3 -l net4 -m dlmp dlmp0
global$ zonecfg -z kz1
zonecfg:kz1> create -t SYSsolaris-kz
zonecfg:kz1> add anet
zonecfg:kz1:anet> set lower-link=dlmp0
zonecfg:kz1:anet> set iov=auto
zonecfg:kz1:anet> set id=0
zonecfg:kz1:anet> end

global$ zoneadm -z kz1 boot
global$ dladm show-aggr -C dlmp0
```

<table>
<thead>
<tr>
<th>LINK</th>
<th>PORT</th>
<th>SPEED</th>
<th>DUPLEX</th>
<th>STATE</th>
<th>CLIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>dlmp0</td>
<td>--</td>
<td>10000Mb</td>
<td>full</td>
<td>up</td>
<td>--</td>
</tr>
<tr>
<td>net3</td>
<td></td>
<td>10000Mb</td>
<td>full</td>
<td>up</td>
<td>kz1/net0</td>
</tr>
<tr>
<td>net4</td>
<td></td>
<td>10000Mb</td>
<td>full</td>
<td>up</td>
<td>dlmp0</td>
</tr>
</tbody>
</table>
How to Enable SR-IOV NIC Virtual Functions on a Kernel Zone With a Single anet Resource

```
global$ zlogin kz1 dladm show-phys -i
```

<table>
<thead>
<tr>
<th>LINK</th>
<th>MEDIA</th>
<th>ID</th>
<th>DEVICE</th>
<th>ACTIVE</th>
<th>STANDBY</th>
</tr>
</thead>
<tbody>
<tr>
<td>net0</td>
<td>Ethernet</td>
<td>anet:0</td>
<td>vnic1000</td>
<td>ixgbevf0</td>
<td>zvnet0</td>
</tr>
</tbody>
</table>

**Using Virtual Functions and Shadow VNICS With Kernel Zones**

A virtual function (VF) on a kernel zone is created when an anet belonging to a kernel zone is configured with the `zonecfg iov` property set to `on` or `auto`. The VF is assigned by the host system to the kernel zone.

Each VF assigned to a kernel zone has an associated shadow VNIC in the host system. You can use shadow VNICS to show network statistics.

The following shows example output of the shadow VNIC kzone1/net0 on the system `global`:

```
global$ dladm show-link
```

<table>
<thead>
<tr>
<th>LINK</th>
<th>CLASS</th>
<th>MTU</th>
<th>STATE</th>
<th>OVER</th>
</tr>
</thead>
<tbody>
<tr>
<td>net1</td>
<td>phys</td>
<td>1500</td>
<td>unknown</td>
<td>--</td>
</tr>
<tr>
<td>net0</td>
<td>phys</td>
<td>1500</td>
<td>up</td>
<td>--</td>
</tr>
<tr>
<td>net2</td>
<td>phys</td>
<td>1500</td>
<td>up</td>
<td>--</td>
</tr>
<tr>
<td>kzone1/net0</td>
<td>vnic</td>
<td>1500</td>
<td>unknown</td>
<td>net1</td>
</tr>
</tbody>
</table>

```
global$ dlstat show-link kzone1/net0
```

<table>
<thead>
<tr>
<th>LINK</th>
<th>IPKTS</th>
<th>RBYTES</th>
<th>OPKTS</th>
<th>OBYTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>kzone1/net0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>126</td>
</tr>
</tbody>
</table>

VF can be allocated from a DLMP aggregation. You can set `iov=auto` on a DLMP aggregation, which causes VF to be allocated when there's an available VF resource. An example is shown in Example 16, “Configure a DLMP Link Aggregation for Network High Availability in a Kernel Zone,” on page 35.

Setting `iov=on` over either DLMP or trunk aggregation is prohibited.

The `zonecfg anet` property `bwshare` enables a shadow VNIC to be set on a link only if the underlying physical link is supported. See the `dladm(8)` and `zonecfg(8)` man pages for additional information.

For additional information about VNICS and network configuration, consult *Managing Network Virtualization and Network Resources in Oracle Solaris 11.4*. 

```
Configuring the `suspend` Resource Type

Suspend and resume are supported for a kernel zone only if a kernel zone has a `suspend` resource in its configuration. You must add a `suspend` resource and set its path or storage property before you can suspend the kernel zone.

Suspend and resume is necessary for warm migration. If you want to perform a warm migration, the `suspend` resource must use a shared storage location that is accessible to the source host and the target host. The storage device for the suspended image must be large enough to accommodate the amount of memory allocated to the kernel zone in its `capped-memory:physical` property.

Other uses for suspend and resume include enabling the ability to pause a zone instead of shutting it down when system maintenance is needed. Suspend and resume can enable the kernel zone and its running applications to be ready for use more quickly.

You can also set the `autoshutdown=suspend` global property to enable a kernel zone to be suspended automatically instead of shut down when the global zone is shut down. For more information, see “`autoshutdown` Global Property” in Oracle Solaris Zones Configuration Resources.

Note - If a kernel zone is using SR-IOV, the ability to suspend and warm or live migrate the kernel zone is limited to host systems and zones running Oracle Solaris 11.4. See “About Migration of Kernel Zones with SR-IOV-Enabled anet Resources” on page 34 for more information.

For a more extensive example and background, see Migratory Solaris Kernel Zones.

EXAMPLE 17 Configuring a `suspend` Resource to Enable Pausing a Kernel Zone

This example shows how to set a `suspend` resource to use a local path to enable suspend and resume so you can pause the kernel zone on the host.

```
global$ pfbash zonecfg -z kz1
zonecfg:kz1> add suspend
zonecfg:kz1:suspend> set path=/system/zones/kz1/suspend
zonecfg:kz1:suspend> end
zonecfg:kz1> info suspend
suspend:
  path: /system/zones/kz1/suspend
```

The zone can be suspended with the following command and later resumed with a `zoneadm boot` command.
EXAMPLE 18 Configure the suspend Resource to Enable Warm Migration

This example shows how to reset a suspend resource to use a storage URI for an iSCSI device.

```
global$ pf bash zonecfg -z kz1
zonecfg:kz1> select suspend
zonecfg:kz1:suspend> clear path
zonecfg:kz1:suspend> set storage=iscsi://system/luname.naa.501337600144f0dbf8af1900
zonecfg:kz1:suspend> end ; exit
```

See “Using Warm Migration to Migrate a Kernel Zone” on page 85 for more information.

See the `solaris-kz(7)` man page for more information about suspend resource type requirements.

Using Verified Boot to Secure an Oracle Solaris Kernel Zone

You can use verified boot to secure a kernel zone's boot process. Verified boot protects a kernel zone from corrupted kernel zone modules, malicious programs, and installation of unauthorized third-party kernel modules by securely loading Oracle Solaris kernel modules before execution.

Verified boot enables you to perform the following actions:

- Automate the `elfsign(1)` verification of Oracle Solaris kernel modules. By default, you use only the Oracle Solaris system certificate for verification. With verified boot, you can specify additional certificates enabling you to load third-party kernel modules or modules signed for another version of Oracle Solaris.
- Create a verifiable chain of trust in the boot process beginning from kernel zone reboot up to the completion of the boot process.

Use the `verified-boot` resource type to enable and to configure verified boot on a kernel zone. Verified boot and the `verified-boot` resource type are supported only for `solaris-kz` brand zones. For examples and information about properties, see “verified-boot Resource Type” in Oracle Solaris Zones Configuration Resources.

For additional information about certificate verification and verified boot, see the `elfsign(1)` man page and “Using Verified Boot” in Securing Systems and Attached Devices in Oracle Solaris 11.4.
Working with IPoIB and Kernel Zones

You can configure a kernel zone to support InfiniBand (IPoIB) devices by setting properties of the anet resource type. Consult “Zone Global Properties” in Oracle Solaris Zones Configuration Resources and “Creating and Viewing Paravirtualized IPoIB Datalinks in Kernel Zones” in Managing Network Virtualization and Network Resources in Oracle Solaris 11.4.

Configuring Virtual LANs in Kernel Zones

By using Ethernet-based anet resources, you can create VNICs inside a kernel zone and configure them to be in their own virtual LAN (VLAN).

■ Use a vlan resource to add extra VLAN IDs (VIDs) to an existing anet resource to create new VLANs. See “Configurable Resource Types and Global Properties” in Oracle Solaris Zones Configuration Resources for more information about the anet and vlan resource types.

■ The vlan resource type makes a kernel zone VLAN-aware. The host system forwards to the kernel zone the packets that are meant for these VLANs without stripping the VLAN tag. The kernel zone will then forward the packet to the correct network client.

When transmitting data, packets from these VLANs are tagged by the kernel zone and passed on to the host. The host forwards the packets without stripping the tag, based on the destination MAC.

Note - You are not required to specify a vlan-id (known as the port VID or PVID) for an anet before you can add extra VLANs for an anet. If there is no PVID set, all untagged packets that match the zone's MAC addresses are passed on to the zone from the host.

EXAMPLE 19 Configuring a Kernel Zone with Additional VLANs

Configure a zone kzone0 with a mac-address of 0:1:2:3:4:5, PVID of 11, and two additional VIDs of 45 and 46.

global$ pfbash zonecfg -z kzone0
zonecfg:kzone0> create -t SYSSolaris-kz
zonecfg:kzone0> select anet id=0
zonecfg:kzone0> set mac-address=0:1:2:3:4:5
zonecfg:kzone0:anet> set vlan-id=11
zonecfg:kzone0:anet> add vlan
How to Enable SR-IOV NIC Virtual Functions on a Kernel Zone With a Single anet Resource

To enable SR-IOV NIC virtual functions on a kernel zone with a single anet resource, follow these steps:

1. Use the `zonecfg` command to create VLANs:
   ```
   zonecfg:kzone0:anet:vlan> set vlan-id=45
   zonecfg:kzone0:anet:vlan> end
   zonecfg:kzone0:anet:vlan> add vlan
   zonecfg:kzone0:anet:vlan> set vlan-id=46
   zonecfg:kzone0:anet:vlan> end
   zonecfg:kzone0:anet>
   ```
2. Use the `info vlan` command to verify the VLAN IDs:
   ```
   zonecfg:kzone0:anet:vlan> info vlan
   vlan 0:
       vlan-id: 45
   vlan 1:
       vlan-id: 46
   zonecfg:kzone0:anet>
   ```
3. Commit the changes and exit:
   ```
   zonecfg:kzone0:anet> commit ; exit
   ```

After the zone is installed and booted, the `dladm show-vnic` command shows the following output:

```
global$ dladm show-vnic
LINK OVER SPEED MACADDRESS MACADDRTYPE IDS
kzone0/net0 net4 10000 0:1:2:3:4:5 fixed VID:11,45,46
``` 

The virtual switch on the host system `global` is now configured to handle frames with the following `mac-address, vlan-id` tuples:

- `0:1:2:3:4:5, 11`
- `0:1:2:3:4:5, 45`
- `0:1:2:3:4:5, 46`

Frames arriving with a `0:1:2:3:4:5, 11` tuple have the VID stripped by the system `global` and passed on to the kernel zone `kzone0`, so `kzone0` never sees the VID 11 tag. Frames with `0:1:2:3:4:5, 45` and `0:1:2:3:4:5, 46` will be passed to `kzone0` with their tags VID 45 and 46.

Inside `kzone0`, if there is a VLAN datalink `vlan45` with VID of 45, the virtual switch in `kzone0` will strip VID 45 from the frame and pass the frame to `vlan45`. All the frames originating from `vlan45` datalink inside `kzone0` will be tagged by the virtual switch in `kzone0` and passed onto the anet in the host. The host anet will pass the frames directly to the NIC to be sent out.

EXAMPLE 20 Display the List of VLAN IDs Supported in the Kernel Zone

Inside a kernel zone, use the `dladm show-phys -v` command to determine the VLAN IDs that are supported on the physical datalinks.

```
global$ zlogin kzone0
kzone0$ dladm show-phys -v
LINK VID INUSE CLIENT
net0 40 yes vnic0,vnic1
net0 20 no --
```
Using Dynamic MAC Addresses and VLAN IDs in Kernel Zones

For most deployment cases, the MAC address and VLAN IDs used in a kernel zone can be statically configured before the zone is booted. However, in cases such as a cloud deployment, you might not know ahead of time what values the kernel zone needs to use for MAC addresses and the VLAN IDs of its VNICs. In such cases, you have two configuration options:

- You can specify prefixes of allowed MAC addresses and ranges of allowed VLAN IDs.
- You can enable the kernel zone to create a VNIC with any valid MAC address or VLAN ID.

Tip - Use the default static configuration when you know the number of MAC addresses and VLAN IDs and their values ahead of time. Static configuration is also required for SR-IOV VF based anet resources.

To enable dynamic configuration, set the anet resource type `allowed-mac-address` and `allowed-vlan-ids` as shown in the following procedure.

For more information about these properties, see “anet Resource Type” in *Oracle Solaris Zones Configuration Resources*.

How to Use Dynamic MAC Addresses and VLAN IDs for Kernel Zone anet Configuration

1. **Become a zone administrator.**
 For more information, see “Using Rights Profiles to Install and Manage Zones” in *Creating and Using Oracle Solaris Zones*.

2. **Enable `allowed-mac-address` on an `anet`.**
 Using zonecfg, add an anet device and a mac resource and enable `allowed-mac-address` on it.

```
$ pfbash zonecfg -z kernel-zone
zonecfg:kernel-zone> add anet
zonecfg:kernel-zone:anet> add mac
zonecfg:kernel-zone:anet:mac> add allowed-mac-address octet-prefix
```
zonecfg:kernel-zone:anet:mac> end
zonecfg:kernel-zone:anet>

3. **Enable allowed-vlan-ids on the anet.**

Using zonecfg, add a vlan resource and enable allowed-vlan-ids on it.

zonecfg:kernel-zone:anet> add vlan
zonecfg:kernel-zone:anet:vlan> add allowed-vlan-ids id-range
zonecfg:kernel-zone:anet:vlan> end
zonecfg:kernel-zone:anet> end ; exit

4. **Boot the kernel zone.**

 $ zoneadm -z kernel-zone boot

5. **Log in to the kernel zone.**

 $ zlogin kernel-zone

6. **Verify in the kernel zone the allowed addresses and IDs.**

To determine which MAC prefixes and VLAN IDs are allowed, use the dladm show-phys command with the -o option to specify output fields. For example, to verify for kzone1:

global$ zlogin kzone1
kzone1$ dladm show-phys -o link,media,id,allowed-addresses,allowed-vids

<table>
<thead>
<tr>
<th>LINK</th>
<th>MEDIA</th>
<th>ID</th>
<th>ALLOWED-ADDRESSES</th>
<th>ALLOWED-VIDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>net0</td>
<td>Ethernet</td>
<td>anet:0</td>
<td>fa:16:3f, fa:80:20:21:22</td>
<td>100-199, 400-498,500</td>
</tr>
</tbody>
</table>
CHAPTER 3

Installing, Shutting Down, and Cloning Oracle Solaris Kernel Zones

This chapter describes how to install a kernel zone using several methods, how to uninstall a kernel zone, and how to halt, shut down, restart, and clone a kernel zone:

- “Installing a Kernel Zone” on page 43
- “Uninstalling a Kernel Zone” on page 54
- “Shutting Down, Halting, and Rebooting a Kernel Zone” on page 54
- “Cloning a Kernel Zone” on page 54

For general information about zone installation and zone cloning concepts, see “How Non-Global Zones Are Created” in Introduction to Oracle Solaris Zones.

Installing a Kernel Zone

Before you can install a kernel zone, you must configure it as described in Chapter 2, “Configuring Oracle Solaris Kernel Zones”. After configuration, you can choose the appropriate zone installation method:

- Create one kernel zone that is identical to the global zone configuration – “Directly Installing a Kernel Zone” on page 44
- Create multiple kernel zones with identical requirements – “Using an AI Manifest to Install a Kernel Zone” on page 46
- Create multiple kernel zones with identical requirements – “Using a sysconfig Profile to Install a Kernel Zone” on page 49
- Duplicate an existing zone, or duplicate and modify an existing zone – “Using an Installation Image to Install a Kernel Zone” on page 51
- Copy an existing installed zone from your system and add the copy to your system – “Cloning a Kernel Zone” on page 54
During zone installation, a log is recorded in two locations. The contents of the logs are the same.

- In the global zone in the /var/log/zones/ directory
- In the installed zone in the /zones/zonename/root/var/log/zones/ directory

Directly Installing a Kernel Zone

A kernel zone direct installation occurs when you do not specify the `-b` option during a `zoneadm install` operation. Direct installation is the simplest kernel zone installation method.

In a direct installation, the installer runs in the global zone. The installer creates and formats the kernel zone boot disk and installs Oracle Solaris packages on that disk using the global zone's `pkg` publishers.

Note - In a kernel zone direct installation, the installer installs the exact version of Oracle Solaris that is running in the global zone. To install a different version of Oracle Solaris, you must choose a different installation method.

▼ How to Directly Install a Kernel Zone

1. **On the kernel zone host, become an administrator.**
 For more information, see “Using Rights Profiles to Install and Manage Zones” in *Creating and Using Oracle Solaris Zones*.

2. **Install the kernel zone.**

   ```
   global$ pfbash zoneadm -z kzone install
   ```

 Note - If a direct installation fails after zone verification, confirm that the publishers on the global zone have all of the required package components. See “Troubleshooting Local Package Repositories” in *Creating Package Repositories in Oracle Solaris 11.4* for more information.

3. **(Optional) Review the installation logs.**
 For their location, see “Installing a Kernel Zone” on page 43.

4. **Boot the kernel zone.**

   ```
   global$ zoneadm -z kzone boot
   ```
How to Directly Install a Kernel Zone

You can now log in to the zone. Oracle Solaris provides several login methods. The methods for kernel zones are identical to the methods for non-global zones. What you are going to do in the zone determines your login method. See “How to Create and Deploy a Non-Global Zone” in *Creating and Using Oracle Solaris Zones*.

Example 21 Installing a Kernel Zone Using Direct Installation

This example shows a successful direct installation of the kernel zone `kzone1`.

global$ `pfbash zoneadm -z kzone1 install`

```
Progress being logged to /var/log/zones/zoneadm.20146T195713Z.kzone1.install
pkg cache: Using /var/pkg/publisher.
Install Log: /system/volatile/install.778521/install_log
AI Manifest: /tmp/zoneadm777933.spqFV/devel-ai-manifest.xml
SC Profile: /usr/share/auto_install/sc_profiles/enable_sci.xml
Installation: Starting ...

Creating IPS image
  Startup: Retrieving catalog 'nightly' ... Done
  Startup: Caching catalogs ... Done
  Startup: Refreshing catalog 'nightly' ... Done
  Startup: Refreshing catalog 'solaris' ... Done
  Startup: Refreshing catalog 'extra' ... Done
  Startup: Caching catalogs ... Done
  Installing packages from:
    solaris
      origin: http://ipkg.us.oracle.com/solaris11/dev/
  Startup: Linked image publisher check ... Startup: Refreshing catalog 'nightly' ... Done
  Startup: Refreshing catalog 'solaris' ... Done
  Startup: Refreshing catalog 'extra' ... Done
  Planning: Solver setup ... Done
  Planning: Running solver ... Done
  Planning: Finding local manifests ... Done
  Planning: Fetching manifests: 0/477 0% complete
  Planning: Fetching manifests: 477/477 100% complete
  Planning: Package planning ... Done
  Planning: Merging actions ... Done
  Planning: Checking for conflicting actions ... Done
  Planning: Consolidating action changes ... Done
  Planning: Evaluating mediators ... Done
  Planning: Planning completed in 29.49 seconds

The following licenses have been accepted and not displayed.
Please review the licenses for the following packages post-install:
  consolidation/osnet/osnet-incorporation
Package licenses may be viewed using the command:
  pkg info --license <pkg_fmri>
```
How to Install a Kernel Zone by Using an AI Manifest

Using an AI Manifest to Install a Kernel Zone

You can use an Automated Installation (AI) manifest when you need to install multiple kernel zones with specific resource and package configurations that are different from those in the global zone.

Observe the following requirements and guidelines when installing an alternate AI manifest to a kernel zone:

- For a successful installation, the AI manifest and sysconfig files must include the full path and .xml suffix.
- You cannot apply custom disk references in an AI manifest to a kernel zone installation. Because a kernel zone root disk is not available to the global zone, the kernel zone installation script automatically assigns a labeled loopback file, or lofi device during configuration to allow for root disk creation. You can configure a removable loopback file lofi device, which works as a CD-ROM device, on the kernel zone. See “Managing Removable Devices on the Kernel Zone” on page 107.
- If you use an AI manifest to install a different version of Oracle Solaris than the one that is installed in the global zone, you must perform the installation from an image for the version of Oracle Solaris that you are installing. See “Using an Installation Image to Install a Kernel Zone” on page 51 for an example.

How to Install a Kernel Zone by Using an AI Manifest

This procedure provides the zoneadm command to install a kernel zone with an AI manifest and detailed examples.
For additional information about developing and customizing an AI manifest, see Chapter 5, “Specifying Criteria for AI Manifests and System Configuration Profiles” in Customizing Automated Installations With Manifests and Profiles.

Before You Begin
Review the requirements and guidelines in “Using an AI Manifest to Install a Kernel Zone” on page 46.

1. **On the kernel zone host, become an administrator.**
 For more information, see “Using Rights Profiles to Install and Manage Zones” in Creating and Using Oracle Solaris Zones.

2. **Install the kernel zone by using a specified AI manifest.**

   ```bash
   global$ zoneadm -z kzone install -m path-to-manifest
   ```

3. **(Optional) Review the installation logs.**
 For their location, see “Installing a Kernel Zone” on page 43.

Example 22 Installing a Kernel Zone by Using a Separate Automated Installer (AI) Manifest

This example shows an installation of the kernel zone kzone1 using the non-default Automated Install (AI) manifest /var/tmp/kz_manifest.xml.

```bash
global$ pfbash zoneadm -z kzone1 install -m /var/tmp/kz_manifest.xml
```

Progress being logged to /var/log/zones/zoneadm.20146T195713Z.kzone1.install
pkg cache: Using /var/pkg/publisher.
Install Log: /system/volatile/install.10708/install_log
AI Manifest: /tmp/zoneadm10343.5la4Vu/devel-ai-manifest.xml
SC Profile: /usr/share/auto_install/sc_profiles/enable_sci.xml
Installation: Starting ...
How to Install a Kernel Zone by Using an AI Manifest

Planning: Package planning ... Done
Planning: Merging actions ... Done
Planning: Checking for conflicting actions ... Done
Planning: Consolidating action changes ... Done
Planning: Evaluating mediators ... Done
Planning: Planning completed in 32.07 seconds

The following licenses have been accepted and not displayed.
Please review the licenses for the following packages post-install:
 consolidation/osnet/osnet-incorporation

Package licenses may be viewed using the command:
 pkg info --license <pkg_fmri>

Download: 0/64687 items 0.0/569.3MB 0% complete
Download: 931/64687 items 5.8/569.3MB 1% complete (1.2M/s)
...
Download: 64589/64687 items 569.2/569.3MB 99% complete (825k/s)
Download: Completed 569.25 MB in 358.54 seconds (1.6M/s)

Actions: 1/88614 actions (Installing new actions)
Actions: 19471/88614 actions (Installing new actions)
...
Actions: 86994/88614 actions (Installing new actions)
Actions: 87128/88614 actions (Installing new actions)
Actions: Completed 88614 actions in 73.71 seconds.
Installation: Succeeded
Done: Installation completed in 342.508 seconds.

Log saved in non-global zone as /zones/kzone1/root/var/log/zones/
zoneadm.20146T195713Z.kzone1.install

Example 23 Installing a Kernel Zone Using an Automated Installer (AI) Manifest for a Unified Archive (UAR)
with Non-Root Pool

If a UAR contains datasets in a non-root pool and the AI manifest does not account for the non-root pool, you might see the following error:

ERROR: Archive contains non-root data, please use [-m manifest]

The following sample AI manifest is for installing from a UAR located at the path /Extpool/Archive/Clone-T4.uar. This archive was created on a system that has a non-root zpool named tank.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE auto_install SYSTEM "file:///usr/share/install/ai.dtd.1">
<auto_install>
 <ai_instance name="default">
 <target name="origin">
 <disk in_zpool="rpool" in_vdev="rpool-none" whole_disk="true">
 <disk_name name="c1d0" name_type="ctd"/>
 </disk>
 </target>
 </ai_instance>
</auto_install>
How to Install a Kernel Zone by Using a sysconfig Profile

If the manifest file is stored in /tmp/ai.xml and storage devices with IDs 0 and 1 exist in the kzone1 zone configuration, you can use the following command to install in the kernel zone kzone1:

```bash
global$ zoneadm -z kzone1 install -m /tmp/ai.xml
```

Using a sysconfig Profile to Install a Kernel Zone

You can use sysconfig profile when you need to install multiple kernel zones with specific resource and package configurations that are different from those in the global zone.

How to Install a Kernel Zone by Using a sysconfig Profile

This procedure provides a detailed example of how to use the zoneadm command to install a kernel zone with a sysconfig profile.
Before You Begin
Create the sysconfig profile and put it in a location that is accessible to the system you use to install the kernel zone. For more information, see Chapter 3, “Working With System Configuration Profiles” in Customizing Automated Installations With Manifests and Profiles and the sysconfig(8) and solaris-kz(7) man pages.

For more information about using a sysconfig profile to install kernel zones, see the zoneadm(8) man page.

1. **On the kernel zone host, become an administrator.**
 For more information, see “Using Rights Profiles to Install and Manage Zones” in Creating and Using Oracle Solaris Zones.

2. **Install the kernel zone by using a sysconfig profile.**
   ```
   global$ pfbash zoneadm -z kzone install -c sysconfig-profile
   ```

3. **(Optional) Review the installation logs.**
 For their location, see “Installing a Kernel Zone” on page 43.

Example 24 Installing a Kernel Zone by Using an Alternate sysconfig Profile

This example installs the kernel zone kzone1 using the sysconfig profile /var/tmp/kzone1.sysconfig.xml.

```global$ pfbash zoneadm -z kzone1 install -c /var/tmp/kzone1-sysconfig.xml
The following ZFS file system(s) have been created:
  rpool/zones/kzone1
Progress being logged to /var/log/zones/zoneadm.20146T195713Z.kzone1.install
pkg cache: Using /var/pkg/publisher.
AI Manifest: /tmp/zoneadm124827.zQWoOh/devel-ai-manifest.xml
SC Profile: /var/tmp/kzone1-sysconfig.xml
Installation: Starting ...
   Creating IPS image
   Startup: Retrieving catalog 'nightly' ... Done
   Startup: Caching catalogs ... Done
   Startup: Refreshing catalog 'nightly' ... Done
   Startup: Refreshing catalog 'solaris' ... Done
   Startup: Refreshing catalog 'extra' ... Done
   Startup: Caching catalogs ... Done
   Installing packages from:
       nightly
           origin: file:///server/nightly
   solaris
       origin: file:///server/solaris
   extra
```
Using an Installation Image to Install a Kernel Zone

You can install a kernel zone from an installation image alone or combined with an AI manifest with specific resource and package configurations.

Observe the following requirements and guidelines when installing a kernel zone from an installation image:

- The version of Oracle Solaris in the installation image must support kernel zones, so it must be at least Oracle Solaris 11.2. See “Verifying Hardware and Software Support on Kernel Zone Hosts” on page 16.
How to Install a Kernel Zone From an Installation Image

■ You must specify the complete path to the ISO image.
■ Interactive text installations and automated installations from media are both supported.
 Live Media installation is not supported for kernel zones. For more information, see:
 ■ Chapter 3, “Using the Text Installer” in Manually Installing an Oracle Solaris 11.4 System
 ■ Chapter 8, “Automated Installations That Boot From Media” in Automatically Installing Oracle Solaris 11.4 Systems

This section provides the following procedures for installing a kernel zone from an installation image:
■ “How to Install a Kernel Zone From an Installation Image” on page 52
■ “How to Install a Kernel Zone From an Installation Image and an AI Manifest” on page 53

▼ How to Install a Kernel Zone From an Installation Image

During an Oracle Solaris installation from an ISO file, the kernel zone is booted and you are connected to the zone console. For how to use the zone console, see “How to Create and Deploy a Non-Global Zone” in Creating and Using Oracle Solaris Zones.

Caution - If you exit or disconnect from the kernel zone console before the installation is complete, the installation fails.

Before You Begin
■ Review the requirements and guidelines in “Using an Installation Image to Install a Kernel Zone” on page 51.
■ Ensure that the installation image is accessible to the system you use to install the kernel zone.

1. **On the kernel zone host, become an administrator.**
 For more information, see “Using Rights Profiles to Install and Manage Zones” in Creating and Using Oracle Solaris Zones.

2. **Install the kernel zone by using the Oracle Solaris installation image.**

   ```bash
   global$ pfbash zonedm -z kzone install -b path-to-iso-file
   ```

3. **(Optional) Review the installation logs.**
 For their location, see “Installing a Kernel Zone” on page 43.
How to Install a Kernel Zone From an Installation Image and an AI Manifest

Example 25 Installing a Kernel Zone From an Installation Image

This example installs the image located at `/var/tmp/solaris-media.iso` to the kernel zone, `kzone2`.

```
global$ pfbash zoneadm -z kzone2 install -b /var/tmp/solaris-media.iso
```

▼ How to Install a Kernel Zone From an Installation Image and an AI Manifest

If you do not need to provide specific resource and package configuration information, go instead to “How to Install a Kernel Zone From an Installation Image” on page 52.

Before You Begin

- Review the requirements and guidelines in “Using an Installation Image to Install a Kernel Zone” on page 51.
- Ensure that the installation image and AI manifest are accessible to the system you use to install the kernel zone.

1. **Become a zone administrator.**
 For more information, see “Using Rights Profiles to Install and Manage Zones” in *Creating and Using Oracle Solaris Zones*.

2. **Install the kernel zone by using an installation image ISO file and an AI manifest.**

   ```
global$ pfbash zoneadm -z kzone install -b path-to-iso-file -m path-to-manifest
   ```

 For more information about the `zoneadm` install options, see the `zoneadm(8)` man page.

3. **(Optional) Review the installation logs.**
 For their location, see “Installing a Kernel Zone” on page 43.

Example 26 Installing a Kernel Zone From an Installation Image and Using an AI Manifest

This example installs the image located at `/var/tmp/solaris-media.iso` to the kernel zone `kzone2` and uses the AI manifest `/var/tmp/kz_manifest.xml` to provide specific resource and package configurations:

```
global$ pfbash zoneadm -z kzone2 install -b /var/tmp/solaris-media.iso \ 
   -m /var/tmp/kz_manifest.xml
```
Uninstalling a Kernel Zone

Use the `zoneadm uninstall` command to uninstall a kernel zone, for example, before you install a new or updated zone configuration. Note that the zone cannot be in the running state when you perform this operation. For more information, see “How to Uninstall and Remove a Zone” in Creating and Using Oracle Solaris Zones.

Shutting Down, Halting, and Rebooting a Kernel Zone

Use the `zoneadm shutdown`, `zoneadm halt`, and `zoneadm reboot` commands to shut down, halt, and reboot a kernel zone.

Tip - If you want a zone to boot automatically when the host system reboots, set the `autoboot` property to `true`.

Cloning a Kernel Zone

Cloning enables you to copy an existing configured and installed zone on your system to a new zone on the same system. The cloned zone includes any customizations of the existing zone. For example, added packages, modified zone resources, and file modifications on the source zone will exist in each clone. Cloning a zone is an efficient way to add additional zones that have similar requirements.

You can clone a kernel zone in the following ways:

- Use the `zoneadm clone` command if you need to clone a small number of zones. See Example 27, “Cloning a Kernel Zone by Using the `zoneadm clone` Command,” on page 55.
- Use a Unified Archive file if you need to clone multiple zones for a large deployment. See Example 28, “Cloning and Deploying a Kernel Zone by Using a Unified Archive,” on page 55.

After a kernel zone is cloned, you can boot and log in to the new zone.
EXAMPLE 27 Cloning a Kernel Zone by Using the zoneadm clone Command.

The following example demonstrates how to clone the kernel zone kzone1 to the kernel zone kzone2 on the host system global.

```
global$ pfbash zoneadm -z kzone1 halt
global$ zonecfg -z kzone2 create -t kzone1
global$ zoneadm -z kzone2 clone kzone1
```

Progress being logged to /var/log/zones/zoneadm.20140327T223951Z.kzone2.clone
Install Log: /system/volatile/install.100847/install_log
AI Manifest: /system/shared/ai.xml
Installation: Starting ...

 Creating direct clone image...
 Registering dynamic archive transfer
 Pre-validating manifest targets before actual target selection
 Pre-validation of manifest targets completed
 Validating combined manifest and archive origin targets
 Commencing transfer of stream: ...
 Completed transfer of direct stream: ...
 Archive transfer completed

Installation: Succeeded

EXAMPLE 28 Cloning and Deploying a Kernel Zone by Using a Unified Archive

The following example demonstrates cloning and deploying the kernel zone kzone1 by using the archiveadm command. A Unified Archive is created for the kernel zone kzone1. The archive information is verified and the kernel zone kzone2 is cloned with the modified zone configuration from kzone1. For a step-by-step procedure, see Using Unified Archives for System Recovery and Cloning in Oracle Solaris 11.4.

```
global$ pfbash archiveadm create -z kzone1 /var/tmp/kzone1.uar
Unified Archive initialized: /var/tmp/kzone1.uar.
\   
Logging to: /system/volatile/archive_log.26248
Dataset discovery completed...
/  
Media creation complete for zone(s)...  
-  
Archive stream creation completed...  
-  
Archive creation completed...
global$ zoneadm list -cv
```

<table>
<thead>
<tr>
<th>ID</th>
<th>NAME</th>
<th>STATUS</th>
<th>PATH</th>
<th>BRAND</th>
<th>IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>global</td>
<td>running</td>
<td>/</td>
<td>solaris</td>
<td>shared</td>
</tr>
<tr>
<td>2</td>
<td>kzone1</td>
<td>running</td>
<td>-</td>
<td>solaris-kz</td>
<td>excl</td>
</tr>
</tbody>
</table>
Cloning a Kernel Zone

global$ archiveadm info /var/tmp/kzone1.uar
Archive Information
 Creation Time: 2014-04-10T17:12:12Z
 Source Host: global
 Architecture: i386
 Operating System: Oracle Solaris 11.2 X86
 Deployable Systems: kzone1

global$ zonecfg -z kzone2 create -a /var/tmp/kzone1.uar

global$ zoneadm -z kzone2 install -a /var/tmp/kzone1.uar

global$ zoneadm list -cv

<table>
<thead>
<tr>
<th>ID</th>
<th>NAME</th>
<th>STATUS</th>
<th>PATH</th>
<th>BRAND</th>
<th>IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>global</td>
<td>running</td>
<td>/</td>
<td>solaris</td>
<td>shared</td>
</tr>
<tr>
<td>2</td>
<td>kzone1</td>
<td>running</td>
<td>-</td>
<td>solaris-kz</td>
<td>excl</td>
</tr>
<tr>
<td></td>
<td>kzone2</td>
<td>configured</td>
<td>-</td>
<td>solaris-kz</td>
<td>excl</td>
</tr>
</tbody>
</table>
Live Zone Reconfiguration of Kernel Zones

Use Live Zone Reconfiguration to reconfigure or report on the live configuration of kernel zones while the zones are running.

To view a table that shows Live Zone Reconfiguration support for resources and properties in solaris zones and kernel zones, see “Live Zone Reconfiguration Support or Restriction for Resource Types and Global Properties” in Oracle Solaris Zones Configuration Resources.

Live Zone Reconfiguration of Kernel Zones

Use Live Zone Reconfiguration to reconfigure or report on the live configuration of kernel zones while the zones are running.

This section covers the following information:

- “zonecfg Utility Edit Modes” on page 57
- “About Live Zone Reconfiguration of Kernel Zones” on page 58
- “Temporary Changes to the Live Zone Configuration” on page 59
- “Persistent Changes to the Live Zone Configuration” on page 59
- “Live Zone Reconfiguration Dry Run” on page 60
- “Reloading a Live Zone Configuration” on page 60

zonecfg Utility Edit Modes

Use the zonecfg utility edit modes to make configuration changes to the zone. You can change either the persistent stored configuration or the running live configuration. The zonecfg utility supports the following edit modes for use with Live Reconfiguration:
Live Zone Reconfiguration of Kernel Zones

Default mode

Create, modify, and list the persistent zone configuration stored on the stable storage.
Parameters you changed in the default mode do not affect a running zone at the time you make the changes. The default mode is the primary way to maintain the zone configuration. This mode is backwards compatible.

To have the changes made in default mode take effect in the running zone, you must issue one of the following zoneadm commands:

- Use the \texttt{zoneadm apply} command to load the updated persistent zone configuration so it is applied to the running zone.
- Use the \texttt{zoneadm reboot} command to reboot the zone and read the updated persistent zone configuration.

Live mode

Retrieve, inspect and edit the running live zone configuration. The live mode is available for a running zone only. Parameters you change in live mode take effect immediately after you use the \texttt{commit} subcommand to enable them in the live zone configuration.

Changes made in live mode are temporary. The changes remain active until the next zone reboot. For more information, see “Temporary Changes to the Live Zone Configuration” on page 59.

To make live zone configuration changes permanent, you apply the changes to the persistent zone configuration with the \texttt{zoneadm apply} command. For more information, see “Persistent Changes to the Live Zone Configuration” on page 59.

To enable live mode, use the \texttt{-r} option with the \texttt{zonecfg} command, which retrieves the live zone configuration instead of the persistent zone configuration.

\texttt{global$ pfexec zonecfg -z kzone \ -r}

You can work with the \texttt{zonecfg \ -r} command just as you do in default mode. The full set of \texttt{zonecfg} subcommands and both the interactive and the batch mode are supported.

Not all resources can be reconfigured in the live configuration. For a list of supported resource types and properties, see “Live Zone Reconfiguration Support or Restriction for Resource Types and Global Properties” in \textit{Oracle Solaris Zones Configuration Resources}.

About Live Zone Reconfiguration of Kernel Zones

Use Live Zone Reconfiguration to perform the following tasks on a running kernel zone:

- Report on and inspect the current live zone configuration
- Make temporary changes in the live zone configuration
Apply changes made in the persistent configuration to the live zone configuration

Use the `zonecfg` and `zoneadm` commands to administer Live Zone Reconfiguration. You can make temporary or persistent changes to the zone configuration. Temporary changes are active until the next reboot. You do not need to reboot for changes to be applied to the persistent configuration.

Services are available within the zone with no downtime when you make the following configuration changes:

- Changing resource controls
- Changing network configuration
- Changing the CPU resource pool
- Adding or removing file systems
- Adding or removing virtual and physical devices

For a list of supported resource types and properties during live zone reconfiguration, see “Live Zone Reconfiguration Support or Restriction for Resource Types and Global Properties” in Oracle Solaris Zones Configuration Resources.

Temporary Changes to the Live Zone Configuration

You might want to make only temporary changes in the configuration of a running zone. For example, you might want to remove a resource from a zone temporarily while maintenance is performed on a device, or allocate a resource temporarily for a special purpose but not have it be present for the entire run of the zone. Such removals or additions of resources should not be done in the persistent zone configuration because they would cause a failure when the zone reboots and the resource is no longer available.

Parameters changed temporarily in live mode take effect immediately after you issue the `zonecfg` commit command. These changes are valid until the next zone reboot.

Persistent Changes to the Live Zone Configuration

You use the `zoneadm apply` command to apply changes from the persistent zone configuration to the live zone configuration. You do not have to reboot for the changes to affect the running
Live Zone Reconfiguration of Kernel Zones

Live Zone Reconfiguration Dry Run

You can test run the effects of changes to the live zone configuration before putting those changes into effect by using the following options to the zonecfg commit and zoneadm apply commands:

- **n**

 Dry run mode. The command shows the effects of the changes to the configuration, but applies no changes to the running zone. Use the dry run mode to preview the actions that would be performed if you issued the zonecfg commit or zoneadm apply command to impact the live zone configuration.

- **q**

 Quiet mode. This mode suppresses all system messages and returns a status code only.

Reloading a Live Zone Configuration

If the configuration of a running zone changes externally while you are modifying the configuration in either default mode or live mode, the zonecfg commit command will return an error. Some scenarios where this might occur include another administrator modifying the configuration, modifying resource controls, or changing network parameters of the zone using network administration commands.

If the configuration of a running zone changes during live reconfiguration, use the zonecfg reload subcommand to load the external configuration changes:

- If you issue the zonecfg reload command in default mode, the command discards any uncommitted changes you have made and reloads the configuration from persistent storage.
- If you issue the zonecfg reload command in live mode (the -r option), the command discards any uncommitted changes and retrieves an up-to-date live configuration of the running zone.

After the configuration is reloaded, you can repeat the configuration changes and commit.

See “How to Recover From a Failure While Committing Live Zone Configuration Changes” on page 65 for an instructions to reload a zone configuration.
Performing a Live Zone Reconfiguration

This section provides the following procedures to perform common live zone reconfiguration tasks:

- “How to Inspect the Live Configuration of a Running Zone” on page 61
- “How to Preview the Effect of a Live Zone Configuration” on page 61
- “How to Make Persistent Configuration Changes to a Live Zone” on page 62
- “How to Make Temporary Changes to the Running Zone” on page 64
- “How to Recover From a Failure While Committing Live Zone Configuration Changes” on page 65

▼ How to Inspect the Live Configuration of a Running Zone

Perform this procedure to view and export the configuration of a running zone.

1. **On the kernel zone host, become an administrator.**
 For more information, see “Using Rights Profiles to Install and Manage Zones” in *Creating and Using Oracle Solaris Zones*.

2. **Display information about the live zone configuration.**

   ```
   global$ pfbash zonecfg -z kzone -r info
   ```

3. **(Optional) Export the live configuration.**

   ```
   global$ zonecfg -z kzone -r export -f exported.cfg
   ```

▼ How to Preview the Effect of a Live Zone Configuration

Perform this procedure to review the live zone configuration changes that would be made, before you make a final commitment of those changes.

Before You Begin

Review the following:
How to Make Persistent Configuration Changes to a Live Zone

1. **On the kernel zone host, become an administrator.**
 For more information, see “Using Rights Profiles to Install and Manage Zones” in *Creating and Using Oracle Solaris Zones*.

2. **Start the `zonecfg` utility in live mode and configure the desired zone changes.**

   ```
global$ pfbash zonecfg -z kzone -r
zonecfg:kzone> Make zone configuration changes
   ```

3. **View the actions that would be performed by the reconfiguration.**
 The `-n` option prevents actual commitment of the zone changes.

   ```
zonecfg:kzone> commit -n
   ```

Next Steps
To make the previewed changes to the live zone configuration, issue the `zonecfg commit` command without using the `-n` option.

How to Make Persistent Configuration Changes to a Live Zone

Perform this procedure to make live zone configuration changes that persist across reboots of the zone.

Before You Begin
Review the following documentation:

- “zonecfg Utility Edit Modes” on page 57
- “Persistent Changes to the Live Zone Configuration” on page 59
- Appendix A, “Resource Types and Global Properties That Support Live Zone Reconfiguration,” in *Oracle Solaris Zones Configuration Resources*

1. **On the kernel zone host, become an administrator.**
 For more information, see “Using Rights Profiles to Install and Manage Zones” in *Creating and Using Oracle Solaris Zones*.

2. **Make changes to the zone in default mode.**
How to Make Persistent Configuration Changes to a Live Zone

1. Make persistent changes to the configuration.

```
globals pfbash zonecfg -z kzone "zonecfg-commands"
```

Specify one or more zonecfg subcommands.

```
kzone> "zonecfg-commands"
```

For the format, see the zonecfg(8) man page.

2. Specify one or more zonecfg subcommands.

```
globals pfbash zoneadm -z kzone apply
```

3. **Apply the changes to the live configuration.**

Example 29 Reducing the Number of Virtual CPUs in the Live Zone Configuration

This example shows a running kernel zone `kz1` that has 16 virtual CPUs configured. The persistent configuration is changed to set the number of VCPUs to 8 and applied to the live configuration. The output shows what happens if the kernel zone cannot stop using some of the CPUs. This might occur if the kernel zone contains a `solaris` zone that is configured with the dedicated-cpu resource type, for instance.

The live zone reconfiguration tries to satisfy the request by skipping those CPUs that cannot be removed from the kernel zone (the guest) while trying to remove others. When the specified number of CPUs cannot be removed, the operation succeeds partially and the output shows the new number of virtual CPUs.

```
globals pfbash zonecfg -z kz1 -r info virtual-cpu
virtual-cpu:
    ncpus: 16

globals zoneadm -z kz1 apply
zone 'kz1': Checking: Modifying virtual-cpu ncpus=8
zone 'kz1': Applying the changes
zone 'kz1': error: dr-cpu failed for cpu id=15: Operation was blocked
zone 'kz1': error:        status: CPU is configured for use by the guest
zone 'kz1': error: dr-cpu failed for cpu id=14: Operation was blocked
zone 'kz1': error:        status: CPU is configured for use by the guest
... operation continues to try to remove 8 virtual CPUs
...
zone 'kz1': warning: operation succeeded partially for virtual cpus (requested: 8, final: 12)
```

```
globals zoneadm -z kz1 apply
zone 'kz1': Checking: Modifying virtual-cpu ncpus=8
zone 'kz1': Applying the changes
zone 'kz1': error: dr-cpu failed for cpu id=15: Operation was blocked
zone 'kz1': error:        status: CPU is configured for use by the guest
zone 'kz1': error: dr-cpu failed for cpu id=14: Operation was blocked
zone 'kz1': error:        status: CPU is configured for use by the guest
... operation continues to try to remove 8 virtual CPUs
...
zone 'kz1': warning: operation succeeded partially for virtual cpus (requested: 8, final: 12)
```

```
globals pfbash zonecfg -z kz1 -r info virtual-cpu
virtual-cpu:
    ncpus: 12
```

Chapter 4 • Live Zone Reconfiguration of Kernel Zones

63
How to Make Temporary Changes to the Running Zone

Perform this procedure to temporarily change the live configuration of a running zone and then restore the persistent configuration to undo the change.

Before You Begin

Review the following documentation:

- “zonecfg Utility Edit Modes” on page 57
- “Temporary Changes to the Live Zone Configuration” on page 59
- Appendix A, “Resource Types and Global Properties That Support Live Zone Reconfiguration,” in Oracle Solaris Zones Configuration Resources

1. On the kernel zone host, become an administrator.

 For more information, see “Using Rights Profiles to Install and Manage Zones” in Creating and Using Oracle Solaris Zones.

2. Change the zone configuration.

 The sample command adds a disk in live mode and shows the command output.

   ```
   Note - The zonecfg commit command is not required. The zonecfg utility commits the changes when the command exits.
   
   global$ pf $bash zonecfg -z kzone -r "add device;set storage=dev:/dev/dsk/cNdXd;end" zone 'kzone': Checking: Adding device storage=dev:/dev/dsk/cNdXd zone 'kzone': Applying the changes
   ```

3. (Optional) When you no longer need the configuration change, return the zone to the persistent zone configuration.

 The sample command removes the temporary configuration change.

   ```
   global$ zoneadm -z kzone apply zone 'kzone': Checking: Removing device storage=dev:/dev/dsk/cNdXd zone 'kzone': Applying the changes
   ```

 Alternatively, you can reboot the zone to discard the live zone configuration changes and return to the persistent zone configuration.

Troubleshooting

If the commit operation reports an error, see “How to Recover From a Failure While Committing Live Zone Configuration Changes” on page 65.
How to Recover From a Failure While Committing Live Zone Configuration Changes

The configuration of a running zone can change externally while a live zone configuration is being edited. When this conflict occurs, the zonecfg commit command returns an error.

Perform this procedure to correct the error by reloading the zone configuration to show the updated version and then making your edits again.

1. **On the kernel zone host, become an administrator.**
 For more information, see “Using Rights Profiles to Install and Manage Zones” in *Creating and Using Oracle Solaris Zones*.

2. **Issue the reload subcommand, make the correct configuration changes, and commit the change.**
 This step assumes that you are still in the zonecfg session that failed to commit your temporary configuration changes.

```
zonecfg:kzone> reload
zonecfg:kzone> temporary-configuration-changes
zonecfg:kzone> commit
```

Example 30 Recovering From Failed Temporary Zone Configuration Changes

The following example shows temporary configuration changes, an error message that the changes failed, recovery steps, and output confirming that the changes now succeeded.

```
Example configuration change in live mode
globals$ pfbash zonecfg -z kzone1 -r
zonecfg:kzone1> add anet; set lower-link=net1; set maxbw=2G; end
zonecfg:kzone1> commit
zone 'kzone1': error: the live configuration has changed externally.
Trying to commit changes to externally changed live configuration
Please use reload to start again. Your local changes will be lost.

Reload the configuration
zonecfg:kzone1> reload
Are you sure you want to reload (y/[n])? y

Repeat the configuration changes you previously attempted
zonecfg:kzone1> add anet; set lower-link=net1; set maxbw=2G; end
zonecfg:kzone1> commit

Command output shows the configuration changes now succeed
```
zone 'kzonel': Checking: Adding anet id=2
zone 'kzonel': Applying the changes
...
Migrating an Oracle Solaris Kernel Zone

A zone migration transfers an existing zone from one host system into a zone on another system.

This chapter covers the following topics:

- “About Kernel Zone Migration” on page 67
- “Rights Required to Perform Kernel Zone Migrations” on page 68
- “Determining a Migration Method to Use” on page 70
- “Kernel Zone Migration Requirements” on page 71
- “Kernel Zone Migration Preparation” on page 74
- “Using Cold Migration to Migrate a Kernel Zone” on page 81
- “Enabling Services for Warm or Live Migration” on page 83
- “Using Warm Migration to Migrate a Kernel Zone” on page 85
- “Using Live Migration to Migrate a Kernel Zone” on page 89

About Kernel Zone Migration

Use the `zoneadm migrate` command to transfer a zone from one system to another. You can migrate kernel zones that are in different states, depending on your requirements. The zone's state determines the type of migration performed.

Oracle Solaris Kernel Zones supports the following types of migration:

- **Cold migration** – The zone is not running on the source host when migrating the zone. The zone's state must be installed when you begin the migration, and after migration the state will be the same on the new host.

 This method is useful to migrate zones that use large amounts of memory, or that are providing services that require quick response time, and might not be good use cases for live migration.
Rights Required to Perform Kernel Zone Migrations

- **Warm migration** – You suspend the zone on the source host before migrating the zone. You must configure a suspend resource and the zone's state must be installed with an auxiliary state of suspended when you begin the migration. On the new host after the migration, the zone is also in a suspended auxiliary state, so you must resume the zone there.

 This method is useful for zones that are running applications that require a prolonged startup time when the zone is booted and cannot be live migrated. A warm migration requires an outage period for the zone.

- **Live migration** – The zone is actively running on the source host while migrating. The zone's state must be running when you begin the migration. The memory state of the migrating zone is copied to the target host during the migration to enable the zone to pick up processing on the new host where it left off.

 This method is useful for situations where downtime must be minimized and applications must remain in a running state. The migration process can have a performance impact that might negatively affect heavy workloads. In cases where a performance impact is not acceptable, use warm migration or cold migration during a planned outage window.

Migrations must be done by an administrator or a user who has appropriate authorizations. You can enable specific non-root users to perform migrations as described in “Rights Required to Perform Kernel Zone Migrations” on page 68.

Oracle Solaris Kernel Zones also supports migration of all the kernel zones from a host system in a process called evacuation. See Chapter 6, “Evacuating Oracle Solaris Kernel Zones to a Target Host” for more information.

Rights Required to Perform Kernel Zone Migrations

A subset of Zones rights profiles enable a non-root user to perform kernel zone migrations. If you assign one or more of the following profiles to a user in the global zone, the user can migrate all zones on the system:

- **Zone Migration** – Enables a zone administrator to perform migration of an installed or running zone.
- **Zone Cold Migration** – Enables a zone administrator to perform migration of an installed or suspended zone.
- **Zone Configuration** – Enables a zone administrator to configure the target system for a migrating zone.

For information about Zones rights profiles, see “Using Rights Profiles to Install and Manage Zones” in *Creating and Using Oracle Solaris Zones*. To assign rights to migrate zones, see the following examples.
EXAMPLE 31 Authorizing a User to Perform All Migrations of an Individual Zone

global1$ pfbash zonecfg -z kzone1
zonecfg:kzone1> add admin
zonecfg:kzone1:admin> set user=jdoe
zonecfg:kzone1:admin> set auths=migrate
zonecfg:kzone1:admin> end
zonecfg:kzone1> commit

Verify the auths and profiles:

global1$ zonecfg -z kzone1 info admin
admin:
 user: jdoe
 auths: migrate
$ auths jdoe
solaris.admin.wusb.read,solaris.mail.mailq,solaris.network.autoconf.read,solaris.zone.migrate/kzone1
$ profiles jdoe
jdoe:
 Zone Migration
 Basic Solaris User
 All

EXAMPLE 32 Authorizing a User to Migrate All Zones on a Host System

global1$ pfbash usermod -P +"Zone Migration" -A +solaris.zone.migrate jdoe

Verify the auths and profiles:

global1$ auths jdoe
solaris.admin.wusb.read,solaris.mail.mailq,solaris.network.autoconf.read,solaris.zone.migrate
global1$ profiles jdoe
jdoe:
 Zone Migration
 Basic Solaris User
 All

EXAMPLE 33 Authorizing a User to Configure Zones on a Host System

On the target system, this example assigns the user jdoe the required profile and authorization to create the zone configuration. The assigned profile enables the user to create, modify, and delete any zone configuration.

global2$ pfbash usermod -P +"Zone Configuration" -A +solaris.zone.config jdoe
Determining a Migration Method to Use

Verify the auths and profiles:

```
global2$ auths jdoe
solaris.admin.wusb.read,solaris.mail.mailq,solaris.network.autoconf.read,solaris.zone.config
```

```
global2$ profiles jdoe
jdoe:
Zone Configuration
Basic Solaris User
All
```

For more information about how to assign and manage rights profiles, refer to “Using Your Assigned Administrative Rights” in Securing Users and Processes in Oracle Solaris 11.4.

Determining a Migration Method to Use

Cold Migration

If the kernel zone is not already running, use cold migration when you need to move the zone to a different host.

Live Migration

If the kernel zone is running and providing services, live migration is typically a good method when moving the zone to a different host. A scheduled outage should not be required, the network connections remain, and the applications can keep running.

However, live migration is not suitable under any one of the following conditions:

- Slow network connection or poor bandwidth between hosts.
- Very large memory configured in the zone.
- Application needs a very low latency response time of less than a few hundred milliseconds. You should test the application to determine this.
- Device is enabled for multi-host disk control operations and the zone configuration includes the device property setting `allow-mhd=true`.

Warm Migration

If cold or live migration are not feasible, a warm migration might be a better choice under the following conditions:

- Zone has sufficiently sized suspend LUN available over shared storage.
The size of the storage for the suspend image should be at least as large as the amount of memory allocated to the kernel zone in its capped-memory:physical property.

- Migration occurs during a maintenance window.
- An outage time of up to several minutes can occur.
- Reduced recovery time after migration is desired.
- Warm migration does not use significant network bandwidth. The zone's network connections might not stay up but applications do not require a cold restart.

If neither live or warm migration are feasible, shut down the zone completely and use cold migration.

Kernel Zone Migration Requirements

Live, warm, and cold migration have different requirements.

Requirements for All Kernel Zone Migration Methods

The cold, warm, and live migration methods for kernel zones all have the following requirements:

- The source and target host systems must be the same architecture family. Migrating a zone between SPARC and x86 architectures is not supported.
- Both the source and target host systems must meet the general kernel zone requirements described in “Software and Hardware Requirements for Oracle Solaris Kernel Zones” on page 13.
- The zone storage must be accessible by both the source and target hosts through a shared storage resource defined by an NFS, iSCSI or LU storage URI.

 For more information about NFS storage URIs, see “NFS Storage URIs and Kernel Zones” on page 117.

 For more information about shared storage URIs for other types of storage, see the `suri(7)` man page and Chapter 12, “Oracle Solaris Zones on Shared Storage” in Creating and Using Oracle Solaris Zones

- If you plan to use `ssh` to migrate, SSH public key authentication between the source and target hosts must be configured so that SSH does not require a prompt. In addition to a
Kernel Zone Migration Requirements

public key, you must configure `ssh-agent` to remember the public key after you remotely log in at least once to the SSH prompt. See “How to Generate a Public/Private Key Pair for Use With Secure Shell” in `Managing Secure Shell Access in Oracle Solaris 11.4`.

- The zone configuration must be compatible and consistent on both the source and target hosts. See “About Migration and Compatible Configurations” on page 75.
- If you want to perform warm or live migration of running kernel zones, the source and target hosts must meet additional system requirements described in “Additional Requirements for Kernel Zone Warm Migration and Live Migration” on page 72.

Note - If you cannot use shared storage, you cannot use the `zoneadm migrate` command to migrate a zone. However, you can create a unified archive and recreate the zone from the archive on a new host system. See `Using Unified Archives for System Recovery and Cloning in Oracle Solaris 11.4`.

Additional Requirements for Kernel Zone Warm Migration and Live Migration

Note - Also see “Additional Requirements for Kernel Zone Live Migration” on page 73.

In addition to the requirements listed in “Kernel Zone Migration Requirements” on page 71, both source and target systems must meet the following requirements to use warm migration or live migration:

- The operating system on both hosts must be at least Oracle Solaris 11.3.
- If you are migrating a kernel zone between different CPU types in the same platform, you must set the `cpu-arch` property as explained in “Preparation for Migrating Kernel Zones to Systems With Different CPUs or OS Versions” on page 77.
- If you are migrating a kernel zone on a SPARC-based system from Oracle Solaris 11.4 to Oracle Solaris 11.3 and the `host-compatible` property is set, the value must be compatible on the source and target hosts. See “Preparation for Migrating Kernel Zones to Systems With Different CPUs or OS Versions” on page 77.
- If a kernel zone is using SR-IOV (enabled `iov` property), the ability to suspend and resume the kernel zone and migrate using warm or live migration is limited to hosts and zones running a minimum of Oracle Solaris 11.4. See “About Migration of Kernel Zones with SR-IOV-Enabled anet Resources” on page 34 for more information.
- Source and target host systems for warm migration and live migration must have running instances of the following services:
Kernel Zone Migration Requirements

- Remote Administrative Daemon (RAD) services, svc:/system/rad:local and svc:/system/rad:remote
- Network Time Protocol (NTP) client

See “Enabling Services for Warm or Live Migration” on page 83 for more information about these services.

Additional Requirements for Kernel Zone Live Migration

In addition to the requirements listed in “Kernel Zone Migration Requirements” on page 71 and “Additional Requirements for Kernel Zone Warm Migration and Live Migration” on page 72, both source and target systems must meet the following requirements to use live migration:

- For live migration between SPARC based systems, you must have the following firmware versions installed:
 - SPARC T4 system with at least System Firmware 8.8
 - SPARC T5, SPARC M5, or SPARC M6 system with at least System Firmware 9.5
 - SPARC M8 systems. All firmware versions are supported.
 - SPARC T7 or SPARC M7 series server. All firmware versions are supported.
 - Fujitsu M10/SPARC M10 server. Follow firmware requirements in Fujitsu M10 Systems Product Notes that are appropriate for your configuration.
 - Fujitsu SPARC M12 server. All firmware versions are supported.
- Kernel zone live migration service, svc:/network/kz-migr:stream. Port 8102 on the target host must be open.
- At least a 10GB Ethernet link is recommended.

 If minimizing downtime is critical, consider limiting other traffic on that link, including other migrations. For more information, see Best Practices for Oracle Solaris Kernel Zones (https://www.oracle.com/technical-resources/articles/it-infrastructure/solaris-kernel-zones-best-practices.html).
Kernel Zone Migration Preparation

Before you migrate kernel zones, review the `zoneadm migrate` command, learn how to make the source and target zones compatible, consider the effects of any differences in CPUs and OS versions, and plan to use the encryption defaults to ensure security during the migration process.

About the `zoneadm migrate` Command

The `zoneadm` command that is used for each migration method is similar. The migration process is determined by the state of the zone that you are migrating. The format of the command is as follows:

```
zoneadm -z kzone migrate [-nqw] [-c cipher] [-t {auto|live}][ -t {ssh|rads|radg://user@host:port}
```

where:

- `-c cipher`
 Specifies a secure cipher option for migrations. By default, migrations are secured using a cipher that is supported on both systems even if you do not specify a particular cipher. See “Secure Migration” on page 79.

- `-n`
 Performs a non-executing dry run of the migration. For all types of migration, the dry run checks that the shared storage resource is accessible from both systems.
 - For live migration, the dry run checks for full compatibility so if it passes the checks, the zone will successfully resume on the remote system.
 - For warm migration, even though settings such as CPU and memory must be compatible, the dry run does not check them because the zone is not running during the migration. After the migration, you can adjust the settings as needed before resuming.
 - For cold migration and warm migration, the dry run does not check for CPU compatibility or compare the zone configuration on the source system against any existing zone configuration on the target system. For cold migration, there is no need to check for CPU and memory compatibility and so on since the zone is booting from scratch. After the migration, you can adjust the zone configuration settings as needed.

- `-q`
 Quiet mode, which specifies that the status is not reported during migration operations.
Kernel Zone Migration Preparation

-t {live | auto}

Specifies the type of migration. The default value of -t is auto which enables the zoneadm migrate command to automatically determine which type of migration is appropriate based on the zone's state. The -t live option enables you to restrict migration to running zones only. If you specify -t live for a zone that is not running, no migration takes place for that zone.

-w

Uses the zone configuration from the source system. By default, the zone configuration from the source is ignored in favor of the zone configuration on the target. The -w option is mutually exclusive with the -n option.

ssh|rads|radg://user@host:port

Specifies a RAD URI including the scheme, user name, and host name to be used to migrate the zone to the target system. The ssh scheme uses SSH and the rads scheme uses TLS. The radg scheme uses the Generic Security Services API (GSS-API). Specify radg if the RAD client and target host are configured for Kerberos.

If you specify only a host name, the scheme defaults to rads, user defaults to the current user, and port defaults to the standard RAD port 12302.

See “Connecting in Python to a RAD Instance by Using a URI” in Remote Administration Daemon Client User’s Guide for more information.

Refer to the zoneadm(8) man page for more information about the migrate command.

About Migration and Compatible Configurations

A kernel zone's configuration must be completely compatible with the migration target host's environment, as if you were detaching then attaching the zone. A zone that boots on a new host after a warm or live migration is resuming from a saved memory state and is expecting a particular setup. Any incompatibilities cause migration to fail.

If you are migrating a kernel zone to another system that is identical, and all storage references use a storage URI that is accessible by both hosts, the migrated configuration should be compatible without changes.

If the zone storage is local, you cannot use the zoneadm migrate command. You can either remove local storage devices from the zone configuration if they are not needed for booting, or convert the storage to shared as described in “How to Move a Zone To a Shared Storage Configuration” in Creating and Using Oracle Solaris Zones and then use zoneadm migrate.
Alternatively, you can move the zone using a unified archive. See *Using Unified Archives for System Recovery and Cloning in Oracle Solaris 11.4* for more information.

The following resources and properties must be the same in the zone configuration on the source and target hosts:

- Amount of memory specified for the `capped-memory:physical` value
- Value of the `capped-memory:pagesize-policy` property.
- Number of virtual CPUs specified for `virtual-cpu:ncpus`
- Shared storage URI and id for disk devices specified with the `device` resource
- Properties of virtual NICs specified with `net` or `anet` resources

If you configure the zone on the target host before migration, the target host's version of the zone configuration is used to boot the zone. If the configuration is incompatible with the current zone configuration, an error is returned. The encryption keys for the zone must also match. See “Encryption Keys and Host Data” on page 113.

If you do not configure the zone on the target host before migration, the zone configuration is exported from the source host and imported on the target host. The user performing the migration must have the Zone Configuration rights profile and `solaris.zone.configuration` authorization to create zone configurations on the target host. See “Rights Required to Perform Kernel Zone Migrations” on page 68 for more information.

If the target host environment is not identical, observe the following guidelines:

- If the CPU of the system is different, you must set the `cpu-arch` to a migration class if you want to do warm or live migration. See “Preparation for Migrating Kernel Zones to Systems With Different CPUs or OS Versions” on page 77. You do not need to set this property for cold migration.
- If the source and target hosts are running different versions of Oracle Solaris on SPARC-based systems, you might need to set the `host-compatible` property to specify which Oracle Solaris features can be supported on both hosts. See “Preparation for Migrating Kernel Zones to Systems With Different CPUs or OS Versions” on page 77. You do not need to set this property for cold migration.
- If the source host is running Oracle Solaris 11.4 and the target host is running Oracle Solaris 11.3 you must clear the `pagesize-policy` property. See “About Memory Page Size Policy and Physical Memory” on page 27.
Preparation for Migrating Kernel Zones to Systems With Different CPUs or OS Versions

Kernel zones can be migrated to other host systems that have different CPUs but are the same platform. For example, you can migrate a kernel zone from a SPARC T4 server to a SPARC T7 server, or from an Intel Nehalem-based server to a server based on a Haswell processor. This is called cross-CPU migration. You cannot migrate a zone from a SPARC-based environment to an x86-based environment.

If you want to migrate a kernel zone to a target system whose processor is different from the source system, you must prepare the kernel zone and reboot it before you suspend the zone for warm migration or live migrate.

On SPARC-based and Intel-based systems, you can use the `cpu-arch` resource type to specify a migration class that defines a common set of processor features to enable the zone to run well on the source and target system.

The `cpu-arch` resource type is not available for AMD systems.

On SPARC-based systems only, you can additionally set a compatibility level with the `host-compatible` resource type to ensure that Oracle Solaris features that are enabled by specific processors are supported at the same level in the global zones of the source and target host. If `host-compatible` is not set, only Oracle Solaris 11.2 features are visible to the zone. Oracle Solaris 11.2 is the earliest version of Oracle Solaris that can run in a kernel zone, but does not support features such as SSM and DAX.

Note - The `cpu-arch` and `host-compatible` values in the zone configuration must be supported by the Oracle Solaris release that is running on both source and target hosts in order for live migration to succeed. A zone cannot be live migrated between hosts when a feature is enabled in a different way, even when the feature is supported by both releases.

For example, if `host-compatible=adi` is set in the zone configuration on the source host and `host-compatible=level1` is set in the zone configuration on the target host, the live migration fails even if both hosts are running Oracle Solaris 11.4.

See “Kernel Zone Migration Class and Host Compatibility Level (solaris-kz Only)” in Oracle Solaris Zones Configuration Resources for further information about the `cpu-arch` and `host-compatible` resource type properties for migration between different SPARC architectures.

See “Cross-CPU Migration Classes (solaris-kz)” in Oracle Solaris Zones Configuration Resources for more information about setting the `cpu-arch` resource type for migration between different Intel architectures.
If the kernel zone's `cpu-arch` property is not set to a migration class, the kernel zone's CPU architecture is the same as the host system.

Note - The kernel zone host will always refuse to resume a kernel zone that was previously suspended on an incompatible CPU type. A kernel zone will not boot if the `cpu-arch` class is set to an incompatible value.

EXAMPLE 34 Confirming and Setting the Kernel Zone `cpu-arch` and `host-compatible` Resources on a SPARC Based System

The following example demonstrates how to confirm and set the `cpu-arch` and `host-compatible` resource types on the kernel zone `kzone1`.

```
global$ zonecfg -z kzone1
zonecfg:kzone1> info cpu-arch host-compatible
cpu-arch: generic
host-compatible: native
zonecfg:kzone1> set cpu-arch=migration-class1
zonecfg:kzone1> set host-compatible=adi
zonecfg:kzone1> info cpu-arch host-compatible
cpu-arch: migration-class1
host-compatible: adi
zonecfg:kzone1> exit
```

EXAMPLE 35 Live Migration Fails Due to Incompatible SPARC CPU Architecture

This example demonstrates a live migration attempt between a SPARC T4 host `global1` and a SPARC T5 host, `global2`. The `cpu-arch` property is using a default value that indicates the actual CPU architecture. The `cpu-arch` property value is not consistent across the hosts and must be set to a migration class described in “Kernel Zone Migration Class and Host Compatibility Level (solaris-kz Only)” in *Oracle Solaris Zones Configuration Resources*.

```
global1$ zoneadm -z kzone1 migrate -n ssh://global2
zoneadm: zone 'kzone1': Importing zone configuration.
zoneadm: zone 'kzone1': Attaching zone.
zoneadm: zone 'kzone1': Booting zone in 'migrating-in' mode.
zoneadm: zone 'kzone1': Checking migration compatibility.
zoneadm: zone 'kzone1': configuration check failed:
error: Cannot resume guest on target host.
error: Guest's migration class is SPARC-T4, host's is SPARC-T5. Please check cpu-arch setting in zone config or in host LDom config.
2016-08-18 18:27:53 error: request failed: failed to create VM: Operation not supported
```

Creating and Using Oracle Solaris Kernel Zones • August 2021
EXAMPLE 36 Confirming and Setting the Kernel Zone Migration Class on an Intel System

The following example demonstrates how to confirm and set the `cpu-arch` resource type on the kernel zone `kzone1`.

```
global$ zonecfg -z kzone1
zonecfg:kzone1> info cpu-arch  
cpu-arch: generic
zonecfg:kzone1> set cpu-arch=migration-class4
zonecfg:kzone1> info cpu-arch  
cpu-arch: migration-class4
zonecfg:kzone1> exit

global$ zoneadm kzone1 reboot
```

EXAMPLE 37 Live Migration Fails Due to Incompatible Intel CPU Architecture

This example demonstrates a live migration attempt between a Haswell-based host `global1` and a Sandy Bridge-based host `global2`. This would occur if you were migrating for example from an Oracle Server X5-2 to a different type of server whose CPU is a Sandy Bridge processor and you did not set `cpu-arch`. The `cpu-arch` property must be set to a migration class described in “Cross-CPU Migration Classes (solaris-kz)” in Oracle Solaris Zones Configuration Resources.

```
global1$ zoneadm -z kzone1 migrate -n ssh://global2
zoneadm: zone 'kzone1': Importing zone configuration.
zoneadm: zone 'kzone1': Attaching zone.
zoneadm: zone 'kzone1': Booting zone in 'migrating-in' mode.
zoneadm: zone 'kzone1': Checking live migration compatibility.
z
```

Secure Migration

By default, migration memory transfer data is encrypted when transferring between source and target hosts using an encryption cipher that is supported on both hosts. You can use `zoneadm migrate -c cipher` to specify a particular encryption cipher or disable encryption. `cipher` can be one of the following values:

- `encryption-cipher`:
 Specifies one of the ciphers that is supported on the source and target hosts.
list
Lists supported ciphers on the source and target hosts.

none
Disables encryption.

If you do not specify a cipher, a cipher is automatically chosen based upon its support on both the source and target hosts.

EXAMPLE 38 Live Migration Between Two Trusted Hosts

The following example demonstrates a live migration of the kernel zone kzone1 from the source host global1 to the destination host global2.

```
global1$ zoneadm -z kzone1 migrate root@global2
Password: 
zoneadm: zone 'kzone1': Using existing zone configuration on destination.
zoneadm: zone 'kzone1': Attaching zone.
zoneadm: zone 'kzone1': Booting zone in 'migrating-in' mode.
zoneadm: zone 'kzone1': Checking migration compatibility.
zoneadm: zone 'kzone1': Starting migration.
zoneadm: zone 'kzone1': Suspending zone on source host.
zoneadm: zone 'kzone1': Waiting for migration to complete.
zoneadm: zone 'kzone1': Migration successful.
zoneadm: zone 'kzone1': Halting and detaching zone on source host.
```

EXAMPLE 39 Confirming Cipher Compatibility Between Live Migration Source and Destination Hosts

The following example demonstrates an attempt to perform a live migration of the kernel zone kzone1 from the source host global1 to the destination host global2. The specified cipher aes-128-cbc is not supported on the destination host.

```
global1$ zoneadm -z kzone1 migrate -c aes-128-cbc ssh://global2
zoneadm: zone 'kzone1': cipher aes-128-cbc not supported by destination
zoneadm: zone 'kzone1': destination supports: aes-128-ccm aes-128-gcm
```

EXAMPLE 40 Listing Available Supported Ciphers on Live Migration Source and Destination Hosts

The following example lists the available supported ciphers during a live migration of the kernel zone kzone1. The zone is migrated from the source host global1 to the destination host global2.

```
global1$ zoneadm -z kzone1 migrate -c list root@global2
```
Using Cold Migration to Migrate a Kernel Zone

Password:
source ciphers: aes-128-ccm aes-128-gcm none
destination ciphers: aes-128-cbc
echo $?
0

Tip - To prevent loss of the encryption key that is required to boot a migrated kernel zone, use the zonecfg export command on the source system to generate a command file to be used on the target system. For example:

global$ pf bash zonecfg -z kzone1 export -f /net/example/path/kzone1.cfg
global$ zonecfg -z kzone1 -f /net/example/path/kzone1.cfg

For information about the encryption keys that enable the zone to boot, see “Encryption Keys and Host Data” on page 113.

Using Cold Migration to Migrate a Kernel Zone

In a cold migration, a non-running zone is detached, and attached on another host where you can reboot it.

For more information about cold migration, see “About Kernel Zone Migration” on page 67 and “Determining a Migration Method to Use” on page 70.

▼ How to Migrate a Kernel Zone Using Cold Migration

Before You Begin
Ensure that the source and target hosts meet requirements described in “Kernel Zone Migration Requirements” on page 71.

1. Become an administrator who is assigned rights to migrate kernel zones.
For more information, see “Rights Required to Perform Kernel Zone Migrations” on page 68.

2. If the zone to migrate is running, shut it down.

 source-host$ z oneadm -z kzone shutdown

3. (Optional) Verify that the state is installed.
How to Migrate a Kernel Zone Using Cold Migration

Output is similar to the following:

```
source-host$ zoneadm -z kzone list -v
ID  NAME    STATUS      PATH            BRAND      IP
  - kzone      installed - solaris-kz excl
```

4. **(Optional) If you plan to use the ssh:// URI to connect to the target host, test SSH promptless authentication.**

Execute a command such as date through ssh on the target host.

```
source-host$ ssh target-host date
Tue Oct  4 17:07:55 MDT 2016
```

If you are prompted for a password, you have not configured your key pairs to enable login without interactive authentication.

See “How to Generate a Public/Private Key Pair for Use With Secure Shell” in *Managing Secure Shell Access in Oracle Solaris 11.4*.

5. **(Optional) Perform a dry run of the migration to verify that conditions are set appropriately.**

Output is similar to the following:

```
source-host$ zoneadm -z kzone migrate -n ssh://user@target-host
zoneadm: zone 'kzone': Importing zone configuration.
zoneadm: zone 'kzone': Attaching zone.
zoneadm: zone 'kzone': Dry-run migration successful.
zoneadm: zone 'kzone': Cleaning up.
```

6. **Perform the migration.**

Output is similar to the following:

```
source-host$ zoneadm -z kzone migrate ssh://user@target-host
zoneadm: zone 'kzone': Importing zone configuration.
zoneadm: zone 'kzone': Attaching zone.
zoneadm: zone 'kzone': Migration successful.
```

7. **(Optional) Boot the zone on the target host.**

```
target-host$ zoneadm -z kzone boot
```

Example 41 Dry Run Fails for Cold Migration Due to Local Storage

The following example shows verification that a kernel zone is not running, and then a cold migration dry run that fails because of local storage being used in the kernel zone z3kz.
Enabling Services for Warm or Live Migration

As stated in “Kernel Zone Migration Requirements” on page 71, several services must be running on the source and target hosts when you perform warm or live migration. This section describes how to check the required services and enable them if necessary.

For additional information about managing Oracle Solaris services, see Chapter 3, “Administering Services” in Managing System Services in Oracle Solaris 11.4.

How to Check and Enable Services Needed to Migrate Kernel Zones

1. Become a zone administrator.

 For more information, see “Using Rights Profiles to Install and Manage Zones” in Creating and Using Oracle Solaris Zones.
2. If you plan to use the `ssh://` URI to connect to the target host, test SSH promptless authentication.

Execute a command such as `date` through `ssh` on the target host.

```
source-host$ ssh target-host date
Tue Oct  4 17:07:55 MDT 2016
```

If you are prompted for a password, you have not completely configured your SSH login.

See “How to Generate a Public/Private Key Pair for Use With Secure Shell” in Managing Secure Shell Access in Oracle Solaris 11.4.

3. Check that the NTP client service is running.

```
source-host$ svcs ntp
STATE          STIME    FMRI
online         Jun_27   svc:/network/ntp:default
```

```
source-host$ ssh target-host svcs ntp
STATE          STIME    FMRI
online         Aug_09   svc:/network/ntp:default
```

If the NTP service is not running, start the NTP service. See “How to Set Up NTP on a Oracle Solaris System” in Managing Clock Synchronization in Oracle Solaris 11.4 for additional information.

4. Check that RAD services are running on source and target hosts.

- If you plan to use the `ssh://` URI, the `rad:local` service must be running.
- If you plan to use `rads://` or `radg://`, the `rad:remote` service must be running.

a. Display the status of RAD services on the source and target hosts.

The following example output shows the `rad:remote` service disabled on both the source and target hosts:

```
Check RAD services on the source host:
source-host$ svcs rad
STATE          STIME    FMRI
disabled       10:09:15 svc:/system/rad:remote
online         10:09:18 svc:/system/rad:local
online         10:09:18 svc:/system/rad:local-http
```

```
Check RAD services on the target host:
source-host$ ssh target-host svcs rad
STATE          STIME    FMRI
disabled       Jun_23   svc:/system/rad:remote
```
b. If a RAD service is disabled, enable the service.

The following example commands enable the `rad:remote` service on both the source and target hosts:

Enable RAD services on the source host:
```bash
source-host$ svcadm enable rad:remote
```

Enable RAD services on the target host:
```bash
source-host$ ssh target-host svcadm enable rad:remote
```

c. Repeat Step 4a to verify that all RAD services are enabled.

5. (Optional) If you plan to perform live migration, start the kernel zone migration service on the source and target hosts.

```bash
source$ svcadm enable -rs svc:/network/kz-migr:stream
source$ ssh target svcadm enable -rs svc:/network/kz-migr:stream
```

Using Warm Migration to Migrate a Kernel Zone

You can migrate a kernel zone to another host by using the `zoneadm suspend` command followed by the `zoneadm migrate` command. This zone migration method is known as a warm migration or migrating using suspend and resume.

A warm migration does not require a full system reboot and restart of the application while the kernel zone is running.

Warm migrations require the zone configurations to be compatible on both the source and target hosts. If you create a zone configuration on the target host before migration, that configuration is used. Otherwise the configuration of the migrating zone is used.

Warm migrations require that the zone has a suspend resource configured to have shared storage accessible by both the source and target hosts. See the `solaris-kz(7)` man page and Chapter 12, “Oracle Solaris Zones on Shared Storage” in Creating and Using Oracle Solaris Zones.

The migration automatically verifies that the zone's shared storage is accessible from the target system, detaches the kernel zone on the source system, and attaches the zone on the destination system.
How to Migrate a Kernel Zone by Using Warm Migration

Before You Begin
- Ensure that the source and target hosts meet requirements described in “Kernel Zone Migration Requirements” on page 71.
- Ensure that the required services are available as described in “Enabling Services for Warm or Live Migration” on page 83.
- If the source and target hosts are not identical, see “About Migration and Compatible Configurations” on page 75.

1. **Become an administrator who is assigned rights to migrate kernel zones.**
 For more information, see “Rights Required to Perform Kernel Zone Migrations” on page 68.

2. **Ensure that the kernel zone to be migrated has a suspend resource with shared storage configured.**
 Output is similar to the following:
   ```bash
   source-host$ zonecfg -z kzone info suspend
   suspend:
   storage: iscsi://system/luname.naa.501337600144f0dbf8af1900
   ```
 The target host must have access to this location using the same URI. If the suspend resource is not configured, see “Configuring the suspend Resource Type” on page 37.

3. **On the global zone of the source host, suspend the kernel zone to be migrated.**
   ```bash
   source-host$ zonadm -z kzone suspend
   ```

Note - The suspend process can be time-consuming, as it writes the zone state including memory to disk.
4. **(Optional) Perform a dry run of the migration and verify that shared storage is accessible.**

 Output is similar to the following:

   ```
   source-host$ zoneadm -z kzone migrate -n ssh://user@target-host
   zoneadm: zone 'kzone': Importing zone configuration.
   zoneadm: zone 'kzone': Attaching zone.
   zoneadm: zone 'kzone': Dry-run migration successful.
   zoneadm: zone 'kzone': Cleaning up.
   ```

 If the dry run reveals problems with the shared storage accessibility, correct them before proceeding. See Chapter 12, “Oracle Solaris Zones on Shared Storage” in Creating and Using Oracle Solaris Zones.

5. **Migrate the zone to the target host.**

 This step configures a zone on the target host system using the same zone configuration on the source host, and attaches the zone on the target host.

   ```
   source-host$ zoneadm -z kzone migrate rad-uri:user@target-host
   ```

 Use ssh to migrate:

   ```
   source-host$ zoneadm -z kzone migrate ssh://root@target-host
   zoneadm: zone 'kzone': Importing zone configuration.
   zoneadm: zone 'kzone': Attaching zone.
   zoneadm: zone 'kzone': Migration successful.
   ```

 Use rads to migrate:

   ```
   source-host$ zoneadm -z kzone migrate rads://root@target-host:12302
   ```

6. **(Optional) Boot the kernel zone on the new host to resume the migrated zone.**

   ```
   target-host$ zoneadm -z kzone boot
   ```

Example 43 Failed Configuration Check on Warm Migration

This example shows a migration attempt with the suspend resource on a local path.

```
global3$ zoneadm -z z1kz migrate ssh://global5
zoneadm: zone 'z1kz': configuration check failed: suspend path resource must be an NFS path
```
Example 44 Suspending the Kernel Zone and Warm Migrating

This example shows the commands for displaying the suspend resource, suspending the zone, listing the zones to include the kernel zone auxiliary state which is suspended for z2kz, and then the successful migration of the suspended kernel zone. Issuing the `uptime` command on the migrated zone on the target host shows how long it has been running, which includes time since it was booted on the source host.

```
# Displaying suspend resource
zonecfg -z z2kz info suspend
suspend:
  storage: iscsi://system/luname.naa.501337600144f0dbf8af1900

# Suspending the zone
zoneadm -z z2kz suspend

# Listing zones
zoneadm list -cp
0:global:running::solaris:shared::none:
-:z2kz:installed:/system/volatile/zones/z2kz/zonepath:800d94b7-23c7-48c8-922e-ede10c3d1a6:solaris-kz:excl::solaris-kz:suspended

# Migrating the zone
zoneadm -z z2kz migrate ssh://global5
zoneadm: zone 'z2kz': Importing zone configuration.
zoneadm: zone 'z2kz': Attaching zone.
zoneadm: zone 'z2kz': Migration successful.

# Checking uptime on the migrated zone
ssh global5 zlogin z2kz uptime
12:02pm  up 2 day(s),  2:55,  0 users,  load average: 0.04, 0.04, 0.03
```

About Resuming a Kernel Zone After a Warm Migration

The migrated zone might fail to boot if the zone configuration on the source system was modified after the zone was suspended or halted. Also, live zone configuration changes might have been made to the running zone before it was suspended that are not reflected in the permanent zone configuration. For this reason, no compatibility checking is done between source and target zone configurations or systems. Only the storage is checked.

You should be able to resume a migrated kernel zone on a target system if you ensured before migration that the configuration was compatible. If a suspended zone fails to resume on the target system due to compatibility or zone configuration differences between the source and target systems, modify the zone configuration on the target system and then try again to resume.

You can also boot the zone in a non-resume mode by specifying the `-R` option with the boot command, but this results in the saved information in the zone's suspended image not being used, and it is no longer a warm migration.
Using Live Migration to Migrate a Kernel Zone

Live migration enables you to migrate a kernel zone in the running state to a new kernel zone host. Because the memory state of a kernel zone is copied to the migrated zone, a live migration results in a brief outage time that is not noticeable to most applications or to most end users. Network connections are maintained.

You can use live migration for any applications that require a minimum of downtime and where applications must continue providing service without interruption.

▼ How to Migrate a Kernel Zone By Using Live Migration

Before You Begin

- Ensure that both the kernel zone source and target hosts meet hardware, software, and storage requirements for live migration as detailed in “Kernel Zone Migration Requirements” on page 71 and “Additional Requirements for Kernel Zone Warm Migration and Live Migration” on page 72.
- Ensure that the required services are available as described in “Enabling Services for Warm or Live Migration” on page 83.
- If the source and target hosts are not identical, see “About Migration and Compatible Configurations” on page 75.

1. **Become an administrator who is assigned rights to migrate kernel zones.**
 For more information, see “Rights Required to Perform Kernel Zone Migrations” on page 68.

2. **On the source host, confirm that the zone to migrate is in the running state.**

   ```
   source-host$ zoneadm list -cv
   ID   NAME     STATUS    PATH      BRAND      IP
   0   global   running   /        solaris    shared
   1   kzone    running   -        solaris-kz excl
   ```

3. **On the source host, initiate a dry run.**
 This operation tests the kernel zone configuration before performing the live migration. Output is similar to the following:

   ```
   source-host$ zoneadm -z kzone migrate -n rad-uri:user@target-host
   zoneadm: zone ‘kzone’: Importing zone configuration.
   zoneadm: zone ‘kzone’: Attaching zone.
   ```
How to Migrate a Kernel Zone By Using Live Migration

zoneadm: zone 'kzone': Booting zone in 'migrating-in' mode.
zoneadm: zone 'kzone': Checking migration compatibility.
zoneadm: zone 'kzone': Cleaning up.
zoneadm: zone 'kzone': Dry-run migration successful.

4. **Migrate the kernel zone.**

 source-host$ zoneadm -z kzone migrate rad-uri:user@target-host
 zoneadm: zone 'kzone': Importing zone configuration.
 zoneadm: zone 'kzone': Attaching zone.
 zoneadm: zone 'kzone': Booting zone in 'migrating-in' mode.
 ...
 zoneadm: zone 'kzone1': Halting and detaching zone on source host.
 zoneadm: zone 'kzone': Migration successful.

5. **Confirm that the zone has migrated on the target host.**

 target-host$: zoneadm list -cv
<table>
<thead>
<tr>
<th>ID</th>
<th>NAME</th>
<th>STATUS</th>
<th>PATH</th>
<th>BRAND</th>
<th>IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>global</td>
<td>running</td>
<td>/</td>
<td>solaris</td>
<td>shared</td>
</tr>
<tr>
<td>1754</td>
<td>kzone</td>
<td>running</td>
<td>-</td>
<td>solaris-kz</td>
<td>excl</td>
</tr>
</tbody>
</table>
 ...

Example 45 Using Live Migration to Migrate a Kernel Zone to a New Host

The following example demonstrates a live migration of the kernel zone kzone1 from the source host global to the target host global2. The configuration was created in advance on the target host.

 global$ zoneadm -z kzone1 migrate ssh://global2
 zoneadm: zone 'kzone1': Using zone configuration on destination.
 zoneadm: zone 'kzone1': Attaching zone.
 zoneadm: zone 'kzone1': Booting zone in 'migrating-in' mode.
 zoneadm: zone 'kzone1': Checking migration compatibility.
 zoneadm: zone 'kzone1': Starting migration.
 zoneadm: zone 'kzone1': Waiting for migration to complete.
 zoneadm: zone 'kzone1': Migration successful.
 zoneadm: zone 'kzone1': Halting and detaching zone.

Example 46 Live Migration Dry Run Failure

This example demonstrates a failed dry-run migration between the source host global1 and the target host global2. The virtual-cpu resource is inconsistent between both hosts. See Oracle Solaris Zones Configuration Resources for further information about zone configuration.

 global1$ zoneadm -z kzone1 migrate -n ssh://global2
 zoneadm: zone 'kzone1': Using existing zone configuration on destination.
zoneadm: zone 'kzone1': Attaching zone.
zoneadm: zone 'kzone1': Booting zone in 'migrating-in' mode.
zoneadm: zone 'kzone1': boot failed:
zone 'kzone1': error: Suspended zone has 8 active VCPUs, more than the configured
zone 'kzone1': virtual-cpu maximum of 4.
zone 'kzone1': error: Correct errors, or delete the configuration, using zonecfg(8) on
the
zone 'kzone1': destination host.
zoneadm: zone kzone1: call to zoneadmd(8) failed: zoneadmd(8) returned an error 9 (zone
state change failed)

Example 47 Live Migration Between Hosts With Different anet Configurations

The following example demonstrates live migration between hosts with different anet
configurations. See Oracle Solaris Zones Configuration Resources for additional information
regarding anet resources.

The zone configuration is created on the target host and the anet resource is modified before
the migration. A dry run is performed to test.

global1$ zonecfg -z kzone1 -r export | ssh root@global2 zonecfg -z kzone1 -f -
global1$ ssh root@global2 zonecfg -z kzone1 'select anet 0; set lower-link=net1;end'
global1$ zoneadm -z kzone1 migrate -n ssh://global2
Evacuating Oracle Solaris Kernel Zones to a Target Host

Kernel zone evacuation enables you to transfer all kernel zones in either the running or installed state from one system to another system. A primary use for evacuation is zero-downtime system maintenance. This chapter covers kernel zone evacuation requirements and tasks.

About Kernel Zone Evacuation

Kernel zone evacuation is the process of live migrating all the running kernel zones off a system at once, and optionally returning them to the system later. By live migrating all kernel zones from a host system onto other systems temporarily, you can perform maintenance on the host system without having to halt applications that are running in those kernel zones. You can optionally evacuate all zones, including kernel zones that are not running solaris zones in the installed state.

Evacuation uses the Remote Administration Daemon (RAD) to coordinate and execute the migration of zones to their destinations, so RAD services must be running on source hosts and target hosts. For more information about RAD, see the rad(8) man page.

Kernel Zone Evacuation Steps

The overall process for kernel zone evacuation is:

1. Ensure the requirements are met for the source and target hosts.

 Go to “Requirements for Kernel Zone Evacuation” on page 95.

2. Set a destination host for each of the migrating kernel zones by setting an SMF service property.
About Kernel Zone Evacuation

Go to “Setting the Target Host for Kernel Zone Evacuation” on page 96.

3. Place the source host in maintenance mode to prevent non-running zones from attaching, booting, or migrating in.
 Go to “Setting Maintenance Mode to Prepare for Kernel Zone Evacuation” on page 97.

4. Run the evacuate command to migrate the running kernel zones to their preset destination.
 Go to “Evacuating Kernel Zones” on page 98.

5. Perform the system maintenance on the source host and reboot.

6. End the maintenance mode on the source host system.
 Go to “Ending Maintenance Mode After Kernel Zone Evacuation” on page 100.

7. Return the evacuated zones to the source host, if desired. Evacuation can also be used to permanently migrate zones to a new host.
 Go to “Returning Evacuated Kernel Zones to the Original System” on page 100.

sysadm Utility and Oracle Solaris Kernel Zones

The sysadm utility enables you to perform all evacuation tasks.

- Use the sysadm maintain command to prepare for migration by placing the system in a maintenance mode that prevents zones from being attached, booted, or migrating in.
- Use the sysadm evacuate command to perform the actual migration of zones in an evacuation operation.

See the sysadm(8) man page for complete information.

sysadm maintain Command

The sysadm maintain command accepts the following options:

- `e` End maintenance mode.
- `l` List the current status of maintenance mode.
- `m "message-text"` Message you can specify to indicate reason for maintenance, for example.
- `s` Start maintenance mode to prevent new zones from running on the source host.
Maintenance state persists across system reboots and applies to all boot environments, so you must explicitly end the maintenance mode with the `sysadm maintain -e` command.

sysadm evacuate Command

The `sysadm evacuate` command accepts the following options:

- `-a` All zones, both non-running and running, are evacuated.
- `-n` Non-executing dry run of the evacuation to show how the evacuation would be performed.
- `-q` Quiet output, showing only errors.
- `-r` Return the evacuated zones to the source host.
- `-v` Verbose output, showing progress of the evacuation.
- `-w` Overwrite zone configurations of all zones on the destination host with the respective configurations from the source host. This option is mutually exclusive with the `-n` option.

Requirements for Kernel Zone Evacuation

Observe the following requirements to perform kernel zone evacuations:

- **Migration requirements** – The source and target hosts and their configured storage must meet the requirements described in “Kernel Zone Migration Requirements” on page 71.
- **Oracle Solaris version** – For full support of all features, including evacuation and return of running kernel zones and non-running installed kernel zones and non-global zones, both source and target hosts must be running Oracle Solaris 11.4. Zones that are in the installed state are evacuated using cold migration.

Evacuation and return of running kernel zones from systems running Oracle Solaris 11.4 to systems running Oracle Solaris 11.3 is also supported. However, because cold migration is not supported in Oracle Solaris 11.3, you cannot use the `-a` option to evacuate zones that are not running.

- **Live migration requirements** – The evacuation process uses live migration, so the source and target hosts must also meet the requirements for live migration. See the “Additional Requirements for Kernel Zone Warm Migration and Live Migration” on page 72 for more information.
Setting the Target Host for Kernel Zone Evacuation

- **Enabled services** – You must enable services as described in “Enabling Services for Warm or Live Migration” on page 83.

- **User rights and authorizations** – The user performing the evacuation must have rights profiles and authorizations as described in “Rights Required to Perform Kernel Zone Migrations” on page 68. In addition, the user must have the Maintenance and Repair rights profile to run the `sysadm maintain` command.

- **Non-interactive authentication** – You must configure non-interactive authentication through a RAD transport between the source host and each destination in both directions. That is, the user performing the evacuation must be able to connect from source host to target host and from target host to source host using a RAD URI without being prompted for a password or to confirm key fingerprints. You may need to ensure that you can connect non-interactively using both the simple host name and the fully qualified host name, which includes the domain name.

SSH public key authentication between the source and target hosts is one way to perform non-interactive authentication. See “How to Generate a Public/Private Key Pair for Use With Secure Shell” in Managing Secure Shell Access in Oracle Solaris 11.4 for more information.

Setting the Target Host for Kernel Zone Evacuation

After the non-interactive authentication between the hosts is set up, set the evacuation/target SMF property of the zones delegated restarter service to specify the URI to connect to the RAD service on the target host.

You must select a target host that is suitable to receive and run the evacuated zones. If any migrating zone will need any changes in its configuration to run on the target host, you should create the zone configuration on the target host before evacuation. See “About Migration and Compatible Configurations” on page 75.

You can set the evacuation/target property to apply to all zones on the source host, or set the property to different target hosts for individual zones. You can also override the setting on individual zone service instances after you set the property for all zones.

You must refresh the zone delegated restarter service `svc:/system/zones/zone` after setting the evacuation/target property for all zones. If you set a target for a particular zone, you must refresh its zone delegated restarter service `svc:/system/zones/zone:zonename` after setting the evacuation/target property.

To evacuate all zones to the same host `targethost`:

```
global$ pfbash svccfg -s system/zones/zone
```
Setting Maintenance Mode to Prepare for Kernel Zone Evacuation

Use maintenance mode to prepare for evacuation of the zones. Starting maintenance mode logs an audit record, and prevents the subsequent attach, boot, or incoming migration of any zones into the system. You can start maintenance mode before you perform administrative tasks on a zones host to remove it from service before you migrate the zones.

The Maintenance and Repair rights profile is required to change maintenance state.

To place the source host in maintenance mode and specify an optional accompanying message, using the following command:

```
sysadm maintain -s -m "message-text"
```
For example, to place a system in maintenance mode with a message and then list the maintain status:

```bash
global$ pfbash sysadm maintain -s -m "Updating system to new release"
global$ sysadm maintain -l
```

<table>
<thead>
<tr>
<th>TYPE</th>
<th>USER</th>
<th>DATE</th>
<th>MESSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>admin</td>
<td>root</td>
<td>2016-07-22 17:57</td>
<td>Updating system to new release</td>
</tr>
</tbody>
</table>

The status shows the type of maintenance, the user who ran the maintain command, the time run, and the message. The only type of maintenance currently supported is admin.

Evacuating Kernel Zones

After you have set up non-interactive authentication, set the evacuation targets, and initiated maintenance mode, you can proceed with zone evacuation.

The default evacuate command attempts to live migrate each running zone to the evacuation target configured in the zone's SMF service instance's evacuation/target property. If a running zone is a brand other than solaris-kz, it cannot be live migrated, and evacuation is skipped for that zone.

You can specify the -a option to evacuate all zones including non-running zones which will be evacuated using cold migration.

You can specify the -n option to perform a non-executed or dry-run evacuation. Migration is planned, and a dry-run migration to the target host is performed for each zone and the outcome or errors are reported.

Evacuation can be run several times in case some zones fail to evacuate on the first run. The return status is successful only if the evacuation as a whole is complete and no zones are running on the source host after executing the sysadm evacuate command.

How to Evacuate Running Kernel Zones

Before You Begin

Be sure the evacuation targets are set and the system is in maintenance mode as described in the preceding sections.

1. **Become an administrator who is assigned rights to migrate kernel zones.**
 For more information, see “Rights Required to Perform Kernel Zone Migrations” on page 68.

2. **Verify that the zones that you want to evacuate are running.**
How to Evacuate Running Kernel Zones

Output is similar to the following:

```
source-host$ pfbash zoneadm list -cv
ID     NAME       STATUS     PATH                  BRAND       IP
0  global     running     /                        solaris     shared
1      kzone    running     -                        solaris-kz excl
```

3. **(Optional) Perform a dry run of the evacuation to verify that conditions are set appropriately.**

Output is similar to the following:

```
source-host$ sysadm evacuate -n
sysadm: preparing zones for evacuation ... 1/1
sysadm: dry-run succeeded
```

4. **Evacuate the zones.**

Output is similar to the following:

```
source-host$ sysadm evacuate -v
sysadm: preparing 3 zone(s) for evacuation ...
sysadm: initializing migration of kzone to new-host ...
... sysadm: evacuation completed successfully.
```

Example 50 Successful Zone Evacuation

```
root@ldom1-04:-# sysadm evacuate -v
sysadm: preparing 1 zone(s) for evacuation ...
sysadm: initializing migration of kzone1 to ldom1-08 ...
sysadm: evacuating 1 zone(s) ...
sysadm: migrating kzone1 to ldom1-08 ...
sysadm: evacuation completed successfully.
sysadm: kzone1: evacuated to ssh://ldom1-08
```

Example 51 Native Zone Skipped When Evacuating Zones

This example shows two kernel zones successfully live migrated in an evacuation and one solaris brand zone skipped, resulting in a "failed" evacuation as a whole. The kernel zones were successfully evacuated however.

```
root@global :~# sysadm evacuate -v
sysadm : preparing 3 zone(s) for evacuation ...
sysadm : initializing migration of kzone1 to global2 ...
sysadm : initializing migration of kzone2 to global2 ...
sysadm : evacuating 2 zone(s) ...
sysadm : migrating kzone1 to global2 ...
```
sysadm : migrating kzone2 to global2 ...
sysadm : evacuation failed .
sysadm : kzone1: evacuated to ssh://global2
sysadm : kzone2: evacuated to ssh://global2
sysadm : my-ngz : evacuation skipped: cannot evacuate solaris-brand zones

Checking Zone Evacuation Status

Use the `sysadm evacuate -l` command to check the status of an evacuation.

```
root@global :~# sysadm evacuate -l
ZONENAME         STATE     DEST                                     ERROR
kzone1           EVACUATED ssh://global2                            -
kzone2           EVACUATED ssh://global2                            -
my-ngz           SKIPPED
```

Zones that are successfully evacuated have a state of EVACUATED.

A running non-global zone cannot be live migrated, and evacuation is skipped for that zone, so the state for that zone is SKIPPED.

If an individual zone fails to evacuate, the state for that zone is FAILED, and the ERROR value provides more information.

Ending Maintenance Mode After Kernel Zone Evacuation

When the administrative tasks are complete and you have rebooted if necessary, you should clear the maintenance mode. This applies whether or not you intend to return the evacuated zones. You cannot boot zones while maintenance mode is in effect.

To end maintenance mode:
```
root@global :~# sysadm maintain -e
```

Returning Evacuated Kernel Zones to the Original System

To return the evacuated zones to the original system, run the `sysadm evacuate` command on the source host, not the target host. You specify the -r option to return.
Each evacuated zone is migrated from its destination, if it is still running there, back to the source host. If you want to also return zones that are not running, use the `-a` option to specify all zones. Non-running zones are cold migrated.

```
source-host# sysadm evacuate -rv
```

EXAMPLE 52 Returning Evacuated Zones to Original Host System

```
root@global:~# sysadm evacuate -rv
sysadm: preparing 2 zone(s) for return...
sysadm: initializing return of kzone1
sysadm: initializing return of kzone2
sysadm: returning 2 zone(s) ...
sysadm: migrating kzone1
sysadm: migrating kzone2
sysadm: return completed successfully.
sysadm: kzone1: returned
sysadm: kzone2: returned
root@global:~# sysadm evacuate -l
sysadm: no active evacuation
root@global:~# zoneadm list -cv
```

<table>
<thead>
<tr>
<th>ID</th>
<th>NAME</th>
<th>STATUS</th>
<th>PATH</th>
<th>BRAND</th>
<th>IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>global</td>
<td>running</td>
<td>/</td>
<td>solaris</td>
<td>shared</td>
</tr>
<tr>
<td>3</td>
<td>kzone2</td>
<td>running</td>
<td>-</td>
<td>solaris-kz</td>
<td>excl</td>
</tr>
<tr>
<td>4</td>
<td>kzone1</td>
<td>running</td>
<td>-</td>
<td>solaris-kz</td>
<td>excl</td>
</tr>
</tbody>
</table>

Kernel Zone Evacuation Example

This section annotates the evacuation of two kernel zones.

EXAMPLE 53 Complete Process for Evacuating Kernel Zones

```
root@global:~# zoneadm list -v
```

<table>
<thead>
<tr>
<th>ID</th>
<th>NAME</th>
<th>STATUS</th>
<th>PATH</th>
<th>BRAND</th>
<th>IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>global</td>
<td>running</td>
<td>/</td>
<td>solaris</td>
<td>shared</td>
</tr>
<tr>
<td>17</td>
<td>kzone2</td>
<td>running</td>
<td>-</td>
<td>solaris-kz</td>
<td>excl</td>
</tr>
<tr>
<td>18</td>
<td>kzone1</td>
<td>running</td>
<td>-</td>
<td>solaris-kz</td>
<td>excl</td>
</tr>
<tr>
<td>19</td>
<td>my-ngz</td>
<td>running</td>
<td>/system/zones/my-ngz</td>
<td>solaris</td>
<td>excl</td>
</tr>
</tbody>
</table>

```
Set the evacuation/target SMF property for zones restarter service
to specify migrated zones’ destination and refresh the zones restarter service
```

Chapter 6 • Evacuating Oracle Solaris Kernel Zones to a Target Host 101
Kernel Zone Evacuation Example

```bash
root@global:~# svccfg -s system/zones/zone
svc:/system/zones/zone> setprop evacuation/target=ssh://global2
svc:/system/zones/zone> exit
root@global:~# svcprop -p "evacuation/target" svc:/system/zones/zone
ssh://global2
root@global:~# svcadm refresh svc:/system/zones

Put the system in maintenance mode with a message

root@global:~# sysadm maintain -s -m "Updating to new release"
root@global:~# sysadm maintain -l
TYPE USER DATE MESSAGE
admin root 2016-03-16 17:57 Updating to new release

Evacuate the zones with verbose output

root@global:~# sysadm evacuate -v
sysadm : preparing 3 zone(s) for evacuation ...
sysadm : initializing migration of kzone1 to global2 ...
sysadm : initializing migration of kzone2 to global2 ...
sysadm : evacuating 2 zone(s) ...
sysadm : migrating kzone1 to global2 ...
sysadm : migrating kzone2 to global2 ...
sysadm : evacuation failed .
sysadm : kzone1: evacuated to ssh://global2
sysadm : kzone2: evacuated to ssh://global2
sysadm : my-ngz: evacuation skipped: cannot evacuate solaris-brand zones

List evacuated zones

root@global:~# sysadm evacuate -l
ZONENAME STATE DEST ERROR
kzone1 EVACUATED ssh://global2 -
kzone2 EVACUATED ssh://global2 -
my-ngz SKIPPED - cannot evacuate solaris-brand zones

root@global:~# zoneadm -z my-ngz shutdown

Perform maintenance such as updating the system

root@global:~# pkg update ...
root@global:~# reboot ...

End maintenance mode

root@global:~# sysadm maintain -e
```
Kernel Zone Evacuation Example

Return evacuated zones

root@global:~# sysadm evacuate -rv
sysadm: preparing 2 zone(s) for return...
sysadm: initializing return of kzone1
sysadm: initializing return of kzone2
sysadm: returning 2 zone(s) ...
sysadm: migrating kzone2
sysadm: migrating kzone1
sysadm: return completed successfully.
sysadm: kzone1: returned
sysadm: kzone2: returned

Check evacuation status

root@global:~# sysadm evacuate -l
sysadm: no active evacuation

Check zone status

root@global:~# zoneadm list -cv

<table>
<thead>
<tr>
<th>ID</th>
<th>NAME</th>
<th>STATUS</th>
<th>PATH</th>
<th>BRAND</th>
<th>IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>global</td>
<td>running</td>
<td>/</td>
<td>solaris</td>
<td>shared</td>
</tr>
<tr>
<td>3</td>
<td>kzone2</td>
<td>running</td>
<td>-</td>
<td>solaris-kz excl</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>kzone1</td>
<td>running</td>
<td>-</td>
<td>solaris-kz excl</td>
<td></td>
</tr>
</tbody>
</table>
Administering Oracle Solaris Kernel Zones

This chapter covers the following topics:

- “Working in the Kernel Zone Environment” on page 105
- “Working With Immutable Kernel Zones” on page 107
- “Managing Removable Devices on the Kernel Zone” on page 107
- “Kernel Zone Auxiliary States Viewed From the Global Zone” on page 109
- “Managing Non-Global Zones in Kernel Zones” on page 110
- “Kernel Zone Host Data and Host ID” on page 113
- “Invoking the Kernel Zone Boot Loader” on page 114
- “NFS Storage URIs and Kernel Zones” on page 117
- “Core Files in Kernel Zones” on page 118

For information about administrative topics for solaris and solaris10 branded zones, see Chapter 7, “About Non-Global Zone Administration” in Creating and Using Oracle Solaris Zones. Kernel zones do not support solaris10 branded zones.

Working in the Kernel Zone Environment

Working in a kernel zone environment is very similar to working in a global zone. The following sections describe the major differences between the kernel zone administrative environment and working with a global zone.

Displaying Kernel Zone Process Information

Kernel zone processes are not directly visible to the global zone or the kernel zone host system. You must use the zlogin command followed by a process management command to view any process information about a kernel zone, as follows:
Working in the Kernel Zone Environment

```
local$ pfsh zlogin -z kernel-zone process-management-command
```

For example, the following command displays process information about the syslogd daemon on the kernel zone kzone1 from the kernel zone host system local:

```
local$ zlogin kzone1 ps -ef |grep syslogd
root  1520     1  0 20:23:08 ?       0:00 /usr/sbin/syslogd
```

Duplicate Process IDs in a Kernel Zone and Its Global Zone

The global zone and each kernel zone manage their own process ID space. The same numeric process ID might identify different system processes in the global zone and in one or more kernel zones.

For example, on the same system you can have the numeric process 5678 running syslogd on the global zone and running sendmail on a kernel zone. To kill process 5678 with the `ps` command in kzone1, type the `zlogin` command followed by the `kill` command.

```
local$ pfsh zlogin kzone1 kill 5678
```

Kernel Zone Zonepath

A kernel zone's zonepath, by design, cannot be set. It contains no persistent or otherwise serviceable data.

Resource Management in Kernel Zones

Resource controls such as `max-processes` are not available when configuring a kernel zone. Because a kernel zone has an independent kernel from the global zone, a process running inside a kernel zone cannot take up a process table slot in the global zone.
Working With Immutable Kernel Zones

Immutable Zones enforce mandatory write access control (MWAC), which provides read-only, or immutable, file system security. Oracle Solaris 11.4 supports immutable zones on global zones, kernel zones, and non-global zones. For detailed information, see Chapter 10, “Configuring and Administering Immutable Zones” in Creating and Using Oracle Solaris Zones.

Managing Removable Devices on the Kernel Zone

You can configure a removable loopback file lofi device, which works as a virtual CD-ROM device, on the kernel zone. See “How to Add a Virtual CD-ROM Device to a Kernel Zone” on page 107 for an example of the process.

▼ How to Add a Virtual CD-ROM Device to a Kernel Zone

Perform this task to add a virtual CD-ROM device to a kernel zone.

1. Become a zone administrator.
 For more information, see “Using Rights Profiles to Install and Manage Zones” in Creating and Using Oracle Solaris Zones.

2. Create an empty removable read-only lofi device in the global zone.

   ```
global$ pfsh bash lofiadm -r
   ``

   The following example shows sample output.

   ```
global$ lofiadm -r
 /dev/lofi/1
 ``

3. Add the lofi device to the kernel zone.

 Output is similar to the following:

   ```
global$ zonecfg -z kzone
   ```
How to Add a Virtual CD-ROM Device to a Kernel Zone

```bash
zonecfg:kzone> add device
zonecfg:kzone:device> set storage=dev:path-to-device
zonecfg:kzone:device> end
zonecfg:kzone> exit
```

4. **Reboot the kernel zone to apply the configuration changes.**

```bash
global$ zoneadm -z kzone reboot
```

5. **Log in to the kernel zone.**

```bash
global$ zlogin kzone
```

6. **On the kernel zone, update the device file system (devfs) and restart the hardware abstraction layer (hal).**

 This step enables the hal service to see the virtual CD-ROM device.

   ```bash
   kzone$ pfbash devfsadm -i zvblk
   kzone$ svcadm restart hal
   ```

7. **On the kernel zone, list the removable devices.**

 Output is similar to the following:

   ```bash
   kzone$ rmformat -l
   Looking for devices...
   1. Logical Node: /dev/rdsk/c1d0p0
      Physical Node: /zvnex/zvblk@0
      Connected Device: kz       vDisk            0
      Device Type: Removable
      Bus: <Unknown>
      Size: 16.4 GB
      Label: <Unknown>
      Access permissions: <Unknown>
   ...
   ```

8. **In the global zone, specify a path to an ISO image file to associate with the removable loopback device.**

   ```bash
   global$ lofiadm -r image-path device-path
   ```

 The following example demonstrates associating the CD-ROM image `/root/sol-11_3-repo.full.iso` to the lofi device `/dev/lofi/1`:

   ```bash
   global$ lofiadm -r /root/sol-11_3-repo-full.iso /dev/lofi/1
   global$ lofiadm
   Block Device File Options
   /dev/lofi/1 /root/sol-11_3-repo-full.iso Removable,Readonly
   ```
Kernel Zone Auxiliary States Viewed From the Global Zone

Kernel zones use auxiliary states to communicate supplementary state information to the global zone. A kernel zone does not have an auxiliary state set by default. Auxiliary states are set only when you initiate debugging and kernel maintenance operations or migrate zones.

The kernel zone auxiliary states are as follows:

debugging

The kernel zone is in the kernel debugger, kmdb. Although the zone is in the running state, the zone cannot service any network requests. You must connect to the zone console to interact with kmdb. For information about how to connect to the zone console, see Chapter 2, “Setting Up a Non-Global Zone” in Creating and Using Oracle Solaris Zones.

migrating-in

The zone is booted on the system, and is receiving the live migration image. It is not yet fully running until live migration is complete.

migrating-out

The zone is fully running, but is being live migrated to another system.
Managing Non-Global Zones in Kernel Zones

no-config

The zone is known to the system, but its configuration is missing. State of the zone is always incomplete.

panicked

The zone is in the running state but has panicked. The host system is not affected. You must use zone console access to log in to a kernel zone in the panicked auxiliary state.

suspended

The zone has been suspended and will resume on the next boot. The zone must be attached before this state is visible. A kernel zone appears in the suspended auxiliary state before undergoing a warm migration. See Chapter 5, “Migrating an Oracle Solaris Kernel Zone”.

To view the global zone current state and the kernel zone auxiliary states, use the zoneadm list -s command. Output is similar to the following:

global$ zoneadm list -s

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATUS</th>
<th>AUXILIARY STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>global</td>
<td>running</td>
<td></td>
</tr>
<tr>
<td>kzone1</td>
<td>running</td>
<td></td>
</tr>
<tr>
<td>kzone2</td>
<td>running</td>
<td>debugging</td>
</tr>
<tr>
<td>kzone3</td>
<td>running</td>
<td></td>
</tr>
</tbody>
</table>

For additional information about kernel zone auxiliary states, see the solaris-kz(7) man page.

For information about non-global zone states, see Chapter 1, “Oracle Solaris Zones Introduction” in Introduction to Oracle Solaris Zones.

For information about the kernel debugger see the kmdb(1) man page.

Managing Non-Global Zones in Kernel Zones

This section discusses the zone requirements, MAC address configuration, and other zone management issues for non-global zones nested in a kernel zone.

Requirements for Native Zones in Kernel Zones

A kernel zone is the only type of zone that can serve as the global zone to non-global zones, specifically solaris zones. You can create, install, and boot solaris branded non-global zones
inside a kernel zone. You cannot create a kernel zone inside another kernel zone. Zones that run in kernel zones are sometimes called nested zones or hierarchical zones.

A Solaris zone that runs in a kernel zone must meet the following requirements:

Operating System

The kernel zone and its non-global zones must run at least Oracle Solaris 11.2.

Existing Solaris zones running Oracle Solaris 11 or Oracle Solaris 11.1 must be updated to at least Oracle Solaris 11.2 before they can run in a kernel zone. See Chapter 3, “Installing and Updating Software Packages” in *Updating Systems and Adding Software in Oracle Solaris 11.4* for information about updating system software packages.

Network Configuration

A Solaris zone that runs in a kernel zone must use exclusive-IP networking, so you must configure the kernel zone to allow for additional MAC addresses as shown in “How to Add Multiple MAC Addresses to a Kernel Zone” on page 111.

System Resources

Zones running in the kernel zone can only use system resources that are available to the kernel zone. These resources include virtual disks and iSCSI disks.

Cloning

If you clone a kernel zone that contains non-global zones, only the outside kernel zone will be cloned. The zones inside the kernel zone are not cloned during the zone cloning process. See “Cloning a Kernel Zone” on page 54.

How to Add Multiple MAC Addresses to a Kernel Zone

Perform this procedure to add two automatically generated MAC addresses to a kernel zone.

1. **Become a zone administrator.**

 For more information, see “Using Rights Profiles to Install and Manage Zones” in *Creating and Using Oracle Solaris Zones*.

2. **Add the new MAC addresses.**

   ```
   global$ pfsh
   zonecfg zone -z kzone
   zonecfg:kzone> add anet
   ```
How to Add Multiple MAC Addresses to a Kernel Zone

```bash
zonecfg:kzone:anet> add mac
zonecfg:kzone:anet:mac> end
zonecfg:kzone:anet> add mac
zonecfg:kzone:anet:mac> end
zonecfg:kzone:anet> end
```

3. **Apply the changes to the running kernel zone.**

```bash
global$ zoneadm -z kzone apply
zone 'kzone': Checking: Adding anet id=1
zone 'kzone': Applying the changes
```

You can alternatively boot the zone to apply the changes.

4. **(Optional) Log in to the kernel zone and verify the new MAC addresses.**

```bash
global$ zlogin kzone
kzone$ pfbash dladm show-phys -m net1
```

<table>
<thead>
<tr>
<th>LINK</th>
<th>SLOT</th>
<th>ADDRESS</th>
<th>INUSE</th>
<th>CLIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>net1</td>
<td>primary</td>
<td>2:8:20:42:cf:83</td>
<td>yes</td>
<td>net1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2:8:20:f4:e1:b1</td>
<td>no</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2:8:20:38:67:f3</td>
<td>no</td>
<td>--</td>
</tr>
</tbody>
</table>

Configuring New solaris Zones in a Kernel Zone

You can configure, install, and boot a new solaris zone from within a kernel zone by using the zonecfg and zoneadm commands. For example:

```bash
kzone$ pfbash zonecfg -z new-zone
Use 'create' to begin configuring a new zone.
zonecfg:new-zone> create -t SYSsolaris
zonecfg:new-zone> commit
zonecfg:new-zone> exit
kzone$ zoneadm -z new-zone install
kzone$ zoneadm -z new-zone boot
```

See *Creating and Using Oracle Solaris Zones* for additional information about planning, configuring, and installing non-global zones.
Kernel Zone Host Data and Host ID

Each kernel zone bootable device contains state information known as host data. A kernel zone's host data monitors kernel zone state information including:

- Zone usage
- Zone suspends, as described in “Configuring the suspend Resource Type” on page 37
- Time of day offset between the kernel zone clock and the global zone clock
- OpenBoot variables (SPARC only)

Storage Information From Host Data

When a kernel zone is configured or booted, the host data is read to determine whether the kernel zone's boot storage is in use on another system. If the boot storage is in use on another system, the kernel zone enters the unavailable state and an error message indicates which system is using the boot storage. For example:

```
globals pfshash zoneadm -z kzone1 attach
zone 'kzone1': error: ERROR: zone kzone1 is in use by host with hostid 848611d4
zone 'kzone1': error: last known state: installed
zone 'kzone1': error: hostname: global2
zone 'kzone1': error: boot environment name: solaris-1
zone 'kzone1': error: boot environment uuid: 69ed2e6a-e25a-6d36-e022-ed7261ed8899
zone 'kzone1': error: last update time: Sun Apr 13 20:08:13 2014
zone 'kzone1': error: To fix, detach the zone from the other host then attach it to this host
zone 'kzone1': error: If the zone is not active on another host, attach it with
zone 'kzone1': error: zoneadm -z kzone1 attach -x force-takeover
```

If the boot storage is not in use by the other system, you can repair the kernel zone by using the `zoneadm attach -x force-takeover` command.

Caution - Forcing a takeover or reinitialization of the host data makes it impossible to detect if the zone is in use on any other system. Running multiple instances of a zone that reference the same storage leads to unrepairable corruption of the zone's file systems.

Encryption Keys and Host Data

Kernel zone host data is encrypted and authenticated with the advanced encryption standard AES-128-CCM, using the same encryption key used for the kernel zone suspend image. If
a zone's encryption key is not accessible, the host data and any suspend image will not be readable. In such circumstances, any attempt to ready or boot the zone will cause the zone to enter the unavailable state. If recovery of the zone's encryption key is not possible, generate a new encryption key and host data by running the following command:

```
$ pfbash zoneadm -z kernel-zone attach -x initialize-hostdata
```

To boot, a kernel zone must have the correct keysource defined. A migration with `zoneadm migrate` copies the keysource data from the source host along with the zone configuration if a configuration is not already defined on the target host.

If you want to create the zone configuration and keysource on the target host before migration, use the `zonecfg export` command on the source host to export the information to a file that you can use to create the configuration on the target host with the correct keys. For example, to create the configuration for a zone you will migrate from `global1` to `global2` export the configuration on `global1` to a file on a network path and create the configuration on `global2` from that file:

```
global1$ zonecfg -z kzone1 export -f /net/example/path/kzone1.cfg
```

```
global2$ zonecfg -z kzone1 -f /net/example/path/kzone1.cfg
```

If the zone's keys for an existing configuration on a target host are not correct, when you try to attach or boot the zone you see the following message:

```
zone 'kzone1': error: Encryption key is incorrect. See solaris-kz(7) for configuration migration
zone 'kzone1': procedure or update /etc/zones/keys/kzone1.
```

Keys might be incorrect, for example, if the zone was reinstalled or if the zone was attached with `-x initialize-hostdata`, which reinitializes the keys.

You can fix the problem by deleting the zone configuration on the target host and exporting the configuration again, or by migrating the zone to the target host without creating the configuration first.

Invoking the Kernel Zone Boot Loader

The kernel zone boot loader manages booting operations on the kernel zone. To invoke the boot loader, the kernel zone must be in the ready or installed state.

You can use the kernel zone boot loader to perform the following operations:

- List available boot environments
- Boot the zone to an alternate boot environment
Use the `zoneadm boot` command to invoke the kernel zone boot loader. You must also invoke the zone console when you invoke the kernel zone boot loader. The boot loader output will appear in the zone console.

Note - The command sequence to exit from the zone console is the tilde followed by a dot, `~.`.

For information about creating and managing boot environments on the operating system level, see Chapter 1, “Introduction to Managing Boot Environments” in Creating and Administering Oracle Solaris 11.4 Boot Environments. Additional information for managing zones and boot environments is available in Chapter 2, “beadm Zones Support” in Creating and Administering Oracle Solaris 11.4 Boot Environments.

How to Specify Alternate Boot Environments in a Kernel Zone

1. **B**ecome a zone administrator.
 For more information, see “Using Rights Profiles to Install and Manage Zones” in Creating and Using Oracle Solaris Zones.

2. **L**og in to the kernel zone console.
   ```
global$ pfbash zlogin -C kzone
   ```

3. **I**n a separate terminal window, list the available kernel zone boot environments.
 Output is similar to the following:
   ```
global$ pfbash zoneadm -z kzone boot -- -L
[Connected to zone 'kzone' console]
1 kz-130118 (rpool/ROOT/kz-130118)
2 kz-1 (rpool/ROOT/kz-1)
3 solaris-5 (rpool/ROOT/solaris-5)
4 solaris-7 (rpool/ROOT/solaris-7)
Select environment to boot: [ 1 - 4 ]:
   ```

4. **B**oot to a selected boot environment.
   ```
global$ zoneadm -z kzone boot -- -Z boot-environment
   ```

 Example 54 Selecting and Booting Alternate Boot Environments on a SPARC Based System

 The following example shows the zone console output for alternate boot environments for the kernel zone kzone1. The kernel zone host hardware is a SPARC system.
How to Specify Alternate Boot Environments in a Kernel Zone

[Connected to zone 'kzone1' console]
NOTICE: Entering OpenBoot.
NOTICE: Fetching Guest MD from HV.
NOTICE: Starting additional cpus.
NOTICE: Initializing LDC services.
NOTICE: Probing PCI devices.
NOTICE: Finished PCI probing.

SPARC T4-2, No Keyboard
Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
OpenBoot 4.36.0.build_05, 2.0000 GB memory available, Serial #1845652596.
Ethernet address 0:0:0:0:0:0, Host ID: 6e026c74.

Boot device: disk0 File and args: -L
1 Oracle Solaris 11.2 SPARC
2 bootenv123
3 bootenv456
Select environment to boot: [1 - 3]: 2

To boot the selected entry, invoke:
boot [<root-device>] -Z rpool/ROOT/bootenv123

Program terminated
ok boot -Z rpool/ROOT/bootenv123

[NOTICE: Zone rebooting]
NOTICE: Entering OpenBoot.
NOTICE: Fetching Guest MD from HV.
NOTICE: Starting additional cpus.
NOTICE: Initializing LDC services.
NOTICE: Probing PCI devices.
NOTICE: Finished PCI probing.

SPARC T4-2, No Keyboard
Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
OpenBoot 4.36.0.build_05, 2.0000 GB memory available, Serial #1845652596.
Ethernet address 0:0:0:0:0:0, Host ID: 6e026c74.

Hostname: kzone1
kzone1 console login:

Example 55 Selecting and Booting Alternate Boot Environments on an x86 Based System

The following example shows the zone console output for alternate boot environments for the kernel zone kzone1. The kernel zone host hardware is an x86 system.

[Connected to zone 'kzone1' console]
NFS Storage URIs and Kernel Zones

You can configure an NFS Storage URI (Uniform Resource Identifier) for an Oracle Solaris kernel zone. Storage URIs are used to uniquely identify shared storage objects across different nodes. Shared storage enables you to transparently access and manage shared storage resources in zones.

NFS Storage URIs are only supported on kernel zones.

The NFS URI specifies an object-based on lofi device, created on the given NFS file. The NFS file is accessed with credentials derived from user and group. User and group can be given as user names or as user IDs. The host can be given as an IPv4 address, IPv6 address, or as a host name. IPv6 addresses must be enclosed in square brackets.

The nfs-share-path value must be an nfs export directory from the host server that contains a normal backing store file. NFS Storage URIs have the following syntax:

```
nfs://user:group@host[:port]/nfs-share-path/file
```

The following are examples of the URI syntax:

```
nfs://admin:staff@host/export/test/nfs_file
nfs://admin:staff@host:1000/export/test/nfs_file
```

NFS Storage URIs can be managed by the suriadm command. Use the suriadm property mountpoint-prefix=/system/volatile/zones/zonename for troubleshooting and recovery. See the suriadm(8) man page or “Managing Storage URIs and Shared Storage Resources” in Creating and Using Oracle Solaris Zones for more information.
Core Files in Kernel Zones

If a kernel zone process terminates abruptly, the resulting core file is saved on the kernel zone in a location defined by the dumpadm command.

A kernel zone might sometimes crash in conditions that prevent a core dump from generating within the kernel zone. To ensure that in such cases kernel zone core dumps are generated and accessible, use the coreadm command in the global zone to enable and to specify a location for these core dumps.

See the dumpadm(8) and coreadm(8) man pages for additional information.
Index

A
add device command, 28
adding memory, 25
adding network devices, 30
adding storage devices, 28
ADI, 18
See also SSM
anet resource, 30
archiveadm command, 54
authorizations
 migration of kernel zones and, 68
Automated Installation (AI) manifests
 using for kernel zone installations, 46
auxiliary states, 109

B
boot environments, specifying, 115
boot loader, 114
boot order
 specifying, 28
bootpri property, 28
branded zones
 solarsis-kz, 11

C
capped-memory resource type, 25
cloning a kernel zone, 54
cold migration, 81
 defined, 67
compatibility for migration, 75
configuring
 immutable kernel zone, 107
 kernel zone resources, 22
 kernel zones, 21
 read-only kernel zone, 107
core files, 118
cpu-arch resource type, 77
CPUs
 managing, 23
cross-CPU migration
 preparing for, 77

databases
 kernel zone pagesize and, 28
DAX, 18
dedicated-cpu resource type, 23
direct installation, 44
duplicate process IDs
 kernel zones and, 106

E
encryption
 during migration, 79
 keysource for migrated kernel zone, 113
evacuation
 after migration, 93
 checking status, 100
 ending maintenance mode, 100
 example, 101
 methods, 98
 overview, 93
requirements, 95
returning zone to original system, 100
setting maintenance mode, 97
setting target host, 96
sysadm command and, 94
exclusive-IP kernel zones, 30

G
general zones concepts, 12

H
halting a kernel zone, 54
hardware requirements, 14
hierarchical zones, 105
See also zones running in kernel zones
host data, 113
host ID, 113
host requirements, 13
host-compatible property, 18
host-compatible resource type, 77

I
immutable zone, 107
increasing root disk size, 28
InfiniBand, 39
installation image
using for kernel zone installations, 51
installing
AI manifest method, 46
directly, 44
installation image method, 51
installation log files, 44
sysconfig profile method, 49
iov property, 31

K
kernel zone boot loader, 114
kernel zone installations
Automated Installation (AI) manifests, 46
command-line, 44
direct, 44
installation image, 51
installation image and AI manifest, 53
sysconfig profiles, 49
kernel zones
administering, 105
AI manifest installation, 46
auxiliary states shown in global zone, 109
benefits of using, 11
boot loader, 114
boot order, 28
cloning, 54
cloning by using archiveadm, 55
cold migration, 81
compatibility requirements for migration, 75
configuring, 21
core files, 118
databases and, 28
definition, 11
differences from global zone, 105
displaying processes, 105
duplicate process IDs, 106
evacuating, 93
host information, 113
immutable zones and, 107
InfiniBand and anet resource type, 39
installation image install method, 51
installation methods, 43
installing, 43
installing directly, 44
live migration, 89
managing memory, 25
managing resources, 22
memory and SYSsolaris-kz template, 27
migrating, 67
migrating to different OS or CPU, 77
migration methods, 70
migration requirements, 71
network devices, 30
NFS storage URIs and, 117
Oracle VM VirtualBox and, 12
overview, 11
PCIe device sharing, 31
performance troubleshooting, 32
related concepts, 12
removable devices, 107
requirements, 13
reserving memory for, 17
resource management, 106
resuming after migration, 88
rights profiles, 13
root disks, 26
running native zones inside, 110
securing migration, 79
shutting down, 54
Software in Silicon and, 18
storage devices, 28
suspending and resuming, 37
sysadm command, 94
sysconfig profile installation, 49
SYSsolaris-kz template, 21
SYSsolaris-kz-minimal template, 26
unchangeable zonepath, 106
Unified Archives and, 55
uninstalling, 54
using Unified Archive to install, 55
verified boot, 38
verifying requirements, 16
warm migration, 85

keysourse
migrated kernel zone and, 113
kz-migr service, 73

L
live migrating a kernel zone, 89
live migration, 89
by non-root users, 68
defined, 68
requirements, 72, 73
to Oracle Solaris 11.3 target system, 27
Live Zone Reconfiguration
dry run, 60
non-global and kernel zones, 57
overview, 58

procedures, 61
reloading the configuration, 60
temporary changes, 59
test run, 60
lofi devices, 107
log files
zone installation, 44

M
MAC addresses
dynamic, 41
static, 39
Maintenance and Repair rights profile, 95
managing See configuring memory
encrypted during migration, 79
managing, 25
page size, 25
pagesize-policy property, 27
reserving for kernel zones, 17
migrating a kernel zone, 81
migration
by non-root users, 68
choosing a method, 70
cold, 81
compatibility requirements, 75
DAX and, 19
iov property, 31
live, 89
overview, 67
pagesize-policy and, 27
preparing for, 74
RAD requirements, 15
requirements, 71
requirements for warm and live migration, 72
resuming kernel zone after, 88
secure, 79
warm, 85
zones, of, 67
N
native zones, 105
 See also solaris zones
 adding to kernel zone, 112
 requirements inside kernel zones, 110
 running inside kernel zones, 110
nested zones, 105
 See also zones running in kernel zones
net resource, 30
network devices
 adding, 30
 IDs, 30
 removing, 31
NFS storage URIs, 117

O
Oracle Solaris Kernel Zones See kernel zones
Oracle VM VirtualBox
 kernel zones, and, 12

P
pagesize-policy property, 25, 27
PCIe devices
 sharing among virtual machines, 31
persistent Live Zone Reconfiguration
 applying to live configuration, 59
 overview, 58
process IDs
 visibility in kernel zones, 105

R
RAD
 SMF service, 15
read-only kernel zone, 107
reloading live zone configurations, 60
removable device configuration, 107
requirements
 compatibility for migration, 75
 migration, 71
 warm and live migration, 72
resource management
 kernel zones, 106
resuming a kernel zone, 37
resuming kernel zone after migration, 88
rights profiles
 Maintenance and Repair, 95
 migration of kernel zones, for, 68
 overview for zone administrators, 13
security features
 encrypted host data, 113, 113
 encrypted migration, 79
 like other zones, 13
 rights profiles, 13
 verified boot, 38
set_user_reserve.sh script, 17
shadow VNIC, 36
shutting down a kernel zone, 54
Siicon Secured Memory, 11
 See also SSM
SMF services
 kz-migr, 73
 RAD, 15
Software in Silicon features
 enabling in kernel zone, 18
 software requirements, 14
solaris zones
 adding to kernel zone, 112
 requirements inside kernel zones, 110
solaris-kz branded zone, 11
SPARC firmware requirements, 14
SR-IOV, 31
 limitations, 34
SR-IOV enabled kernel zones migration, 34
SSM, 18
storage devices, 28
suspend resource type, 37
suspending a kernel zone, 37
sysadm evacuate command, 95
sysadm maintain command, 94
sysconfig profiles
 kernel zone installations, 49
SYSsolaris-kz template, 21, 27
SYSsolaris-kz-minimal template, 26

T
temporary Live Zone Reconfiguration, 59
 overview, 58
test run
 Live Zone Reconfiguration, 60
troubleshooting
 database and pagesize, 28
 encryption key incorrect, 113
 host-to-virtual switch traffic, 32
 insufficient memory, 26

U
Unified Archives
 cloning and, 54
 installing kernel zone with, 55
 uninstalling a kernel zone, 54
 user_reserve_hint_pct tunable, 17

V
VA Mask, 18
verified boot, 38
verifying
 host support for kernel zones, 16
 MAC prefixes allowed, 42
 VLAN IDs allowed, 42
virtinfo command, 16
virtual LANS
 dynamic MAC addresses and VLAN IDs, 41
virtual LANs, 39
virtual-cpu resource type
 adding, 24
 removing VCPUs in live configuration, 63
VLAN tagging, 39
VLAN-aware kernel zones
 definition, 39
dynamic MAC addresses and VLAN IDs, 41

W
warm migration
 defined, 68
 requirements, 72

X
x86 BIOS requirements, 14

Z
ZFS ARC
 cache requirements, 14
 tuning, 17
Zone Cold Migration rights profile, 68
Zone Configuration rights profile, 68
Zone Migration rights profile, 68
zoneadm boot command, 114
zoneadm clone command, 54
zoneadm halt command, 54
zoneadm install command, 44
zoneadm list -s command, 109
zoneadm migrate command, 67, 74
zoneadm reboot command, 54
zoneadm shutdown command, 54
zoneadm suspend command, 37
zoneadm uninstall command, 54
zconfg bwshare anet property, 36
zconfg command, 57
 default mode, 58
 live mode, 58
zonepath, unchangeable, 106
zones
 branded See solaris-kz branded zone
live reconfiguration, 57
migration of, 67
rights profiles and, 13
running in kernel zones, 110
zonecfg command, 57