
Adding Custom Data to the Oracle®

Solaris 11.4 StatsStore and System Web
Interface

Part No: E61819
August 2018

Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface

Part No: E61819

Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement
between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Référence: E61819

Copyright © 2018, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d'utilisation et
de divulgation. Sauf stipulation expresse de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence, transmettre,
distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute
ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous
invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l'accompagne, est livré sous licence au Gouvernement des Etats-Unis, ou à quiconque qui aurait souscrit la licence de ce logiciel pour le
compte du Gouvernement des Etats-Unis, la notice suivante s'applique :

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être
utilisé dans des applications à risque, notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou ce matériel dans le cadre
d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans
des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce logiciel ou matériel pour des
applications dangereuses.

Oracle et Java sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d'autres propriétaires
qu'Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une
marque déposée de The Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de
tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers, sauf mention contraire stipulée
dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des
dommages causés par l'accès à des contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée dans un contrat entre vous et Oracle.

Accès aux services de support Oracle

Les clients Oracle qui ont souscrit un contrat de support ont accès au support électronique via My Oracle Support. Pour plus d'informations, visitez le site http://www.oracle.com/
pls/topic/lookup?ctx=acc&id=info ou le site http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs si vous êtes malentendant.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Contents

Using This Documentation .. 11

1 Adding Data to the Oracle Solaris StatsStore ...  13
Adding Data: Steps and Best Practices ..  13

▼ How to Add Data ... 13
Type of Data to Provide ...  15

Interfaces for Providing Statistic Values ..  17
Comparing Methods for Providing Statistic Values ......................................  18
Removing Resources and Statistics ...  21

Troubleshooting Providing Statistics ...  21
▼ How to Force a Reread of all Metadata ..  22

2 Defining Custom Statistics ...  25
Adding Resources and Statistics to the Statistics Store Namespace .........................  25

Using Statistics Store Metadata Files ..  26
Defining Resources ..  27
Defining Partitions ... 29

Mapping Topology ..  30
Creating a Collection ...  30
Creating Visualizations ...  32

Sheet and Visualization Design Best Practices ..  32
How to Create a Visualization ...  34

Authorizing Access to Resources and Statistics ...  36
Restricting Access to Sensitive Data ...  38
Restricting Capture of Data that is Expensive to Capture ..............................  39
Authorizing the Ability to Add and Remove Resources and Statistic and Event
Data ..  41
Authorizing the Ability to Configure a Collection .......................................  41

5

Contents

3 Adding Simple Data Values to the Statistics Store .......................................  43
Populate the Statistics Store Namespace ..  43
Create an Application that Writes Statistic Values ...  46

C Version ...  46
Python Version .. 48

Update and View Statistic Values ...  48
Create a Graph to Visualize the Statistic Values ..  50

4 Specifying Resources ...  57
Collect Data for Statically Allocated Resources ..  57

Add Resources to the Class Metadata ...  57
Modify the Application to Save Statistic Values for Each Resource .................  59
View Statistic Values for Statically Allocated Resources ...............................  62
Create a Graph to Visualize Resource Statistics ... 62

Collect Data for Dynamically Allocated Resources ..  65
Modify the Metadata to Omit Resource Names ...  65
Modify the Application to Create Resources Dynamically .............................  67

5 Separating Data Into Partitions ...  69
Add Partition Metadata ..  69

Modify the Statistics Metadata File ..  69
Create a Statistic Mapping File ..  70

View Partitioned Statistic Values ..  72
Create a Graph to Visualize Partitioned Statistic Values ..  73

6 Adding Any Type of Data to the Statistics Store ...  77
Create the Class and Statistic Definition Files ... 77
Create an Application that Updates Statistic Values ...  79
Record Statistic Values ...  80

Index ..  83

6 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

Tables

TABLE 1 sstore_data_attach() and sstore_data_update() Comparison .............  18
TABLE 2 Statistics Store Operation Authorizations ...  37
TABLE 3 Class Metadata Elements ..  65

7

8 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

Examples

EXAMPLE 1 Specifying Which Users Can Read Particular Sensitive Data ....................  38
EXAMPLE 2 Specifying Which Users Can Record Particular Sensitive Data .................  39
EXAMPLE 3 Specifying Which Users Can Record Particular Expensive Data ................ 40
EXAMPLE 4 Specifying Users Who Can Record Data that is Sensitive and

Expensive ...  40

9

10 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

Using This Documentation

■ Overview – Describes how to provide statistics and performance data in Oracle Solaris
■ Audience – Application developers who want Oracle Solaris users to be able to use the

Oracle Solaris System Web Interface and CLI to get information about the activities and
performance of the application

■ Required knowledge – Experience administering Oracle Solaris systems

Product Documentation Library

Documentation and resources for this product and related products are available at http://www.
oracle.com/pls/topic/lookup?ctx=E37838-01.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

Using This Documentation 11

http://www.oracle.com/pls/topic/lookup?ctx=E37838-01
http://www.oracle.com/pls/topic/lookup?ctx=E37838-01
http://www.oracle.com/goto/docfeedback

12 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

 1 ♦ ♦ ♦ C H A P T E R 1

Adding Data to the Oracle Solaris StatsStore

The Oracle Solaris StatsStore statistics store includes events from sources such as SMF
services, FMA, and the auditing system and includes statistics from sources such as kstat,
dtrace, proc, and some applications.

This chapter provides an overview of how you can add data from your application to the
StatsStore.

Administrators and users of your application retrieve data to help maintain the application and
diagnose problems. For information about how your users can retrieve data from the StatsStore,
see Using Oracle Solaris 11.4 StatsStore and System Web Interface.

Adding Data: Steps and Best Practices

Following are the steps for adding data to the StatsStore and making that data easy to use in the
Oracle Solaris System Web Interface.

How to Add Data
1. Decide what data to provide.

Provide only data that users are likely to want in order to use the application as effectively as
possible or to troubleshoot problems. Adding all available data to the statistics store might
cause administrators to spend more time finding the data they really need.

■ What are the most meaningful metrics for this application?
■ What information are users most likely to need to diagnose a performance degradation?
■ Can you provide useful data about how the application is interacting with users, with other

applications, or with the operating system?

2. Decide the best form in which to provide the data.

Chapter 1 • Adding Data to the Oracle Solaris StatsStore 13

http://www.oracle.com/pls/topic/lookup?ctx=E37838-01&id=SSTOR

How to Add Data

In most cases, you should provide counter data. See “Type of Data to Provide” on page 15
for more information.

3. Define the statistics.
Create metadata files that define your statistics as described in “Adding Resources and Statistics
to the Statistics Store Namespace” on page 25.

■ Give each statistic a descriptive SSID (id) and an informative description.
■ Set the value of stability to stable so that all users can browse the data. Similarly,

be very judicious about specifying authorizations required to read data. Anyone who is
authorized to use your application should be able to browse the data about the application.

■ Specify any resources, partitions, and topology mappings that are needed.

See the ssid-metadata(7) man page for best practices for naming resources, statistics, and
partitions.

4. Modify your application to update values for the statistics that you created in
metadata.
Use the interfaces described in “Interfaces for Providing Statistic Values” on page 17.

If you are not using static resources, your application might need to create resources as well.
See “Adding Resources Dynamically” on page 29.

5. Record data values.
Recording data values causes the values to be stored in the statistics store so that users can
retrieve current and historical values. When your application writes data values, each value
overwrites the previous value unless the values are being requested.

■ Users can record values by displaying a sheet that contains those statistics in the System
Web Interface while the application is writing the values.

■ Users can record values by running the sstore capture command while the application is
writing the values.

■ An application can record values by calling sstore_data_read() while the application is
writing the values.

■ To persistently record values whenever the values are written, create and enable a collection
as described in “Creating a Collection” on page 30.

6. Create charts and graphs of the data.
How will your users use this information? Decide how the information should be organized into
groups of charts and graphs for most effective use in the System Web Interface. What type of
visualization is most appropriate for this data?

14 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

How to Add Data

Typically, each statistic is shown on a separate visualization. Related statistics can be shown on
the same visualization if the statistics are in the same units and can be shown in the same time
scale.

Related events can be included on the same visualization with other data for visualizations with
a time axis.

Will your users want to see some system-provided statistics along with your application
statistics? You can include visualizations for those statistics on the same sheet with your
application statistics for easier visual correlation.

Create metadata files that describe your visualizations as described in “Creating
Visualizations” on page 32. Give each visualization and sheet a useful title and description.

Type of Data to Provide

This section discusses the kinds of data that are most useful for analyzing performance issues.

This section also discusses how to organize related data.

■ An application might have multiple components that each need to report the same statistics.
■ A statistic might need multiple components to fully explain the total value.
■ Statistics might benefit from topology mapping to enable administrators to more easily find

the data they need.

Data Type

Counts are the most efficient type of data to provide. For example, you might provide the
number of transactions or number of bytes read. Count data will be monotonically increasing
and not very useful for troubleshooting. You can use the built-in operators to show the count
data as another type of data such as the rate of change or percent utilization. See Chapter 4,
“Performing Operations on Statistic Values” in Using Oracle Solaris 11.4 StatsStore and System
Web Interface for descriptions of the built-in operators.

Components of the Application

Does the application have subcomponents for which users might want separate data? Does
the application provide the same data about different parts of the application? Define these
subcomponents or parts as resources and provide the same statistics for each resource. For

Chapter 1 • Adding Data to the Oracle Solaris StatsStore 15

http://www.oracle.com/pls/topic/lookup?ctx=E37838-01&id=SSTORoperations
http://www.oracle.com/pls/topic/lookup?ctx=E37838-01&id=SSTORoperations
http://www.oracle.com/pls/topic/lookup?ctx=E37838-01&id=SSTORoperations

How to Add Data

example, nscd provides the same set of statistics for resources such as ipnodes, networks, and
services. The nscd StatsStore resources are the resources for which nscd provides caching.

For a class that has resources defined, any class-level statistics (statistics that are defined
directly on the class) should also be defined on each resource.

Class-level statistics are a useful way to combine data across all resources so that users do not
need to apply operations to the SSIDs. For example, for a class that has resources defined, the
class-level statistic could be the sum or average of that same statistic for each resource.

The //:class.cpu//:stat.usage class-level statistic shows the total usage of all CPUs in the
system, and the //:class.cpu//:res.id/0//:stat.usage resource statistic shows the total
usage for one CPU. The value of //:class.cpu//:stat.usage is equal to the value of //:
class.cpu//:res.id/*//:stat.usage//:op.sum. The nscd application does not provide any
class-level statistics because users do not want to combine all positive hits, for example, for
ipnodes, networks, services, and other nscd resources.

Another reason to define resources for your application is to use the resources to provide
topology mapping so that users can access the statistics data in different ways.

Do not define resources that are not interesting to users. For example, CPUs are exposed as
resources, but DIMMs are not.

Components of a Statistic

Can the value of a statistic be subdivided into useful parts such that the sum of the values of
the parts accounts for one hundred percent of the value of the statistic? Define a partition for
such a statistic. If the sum of the values of the parts does not equal the value of the unpartitioned
statistic, do not create a partition for the statistic.

For example, //:class.cpu//:stat.usage shows the total usage of all CPUs in the system,
and //:class.cpu//:stat.usage//:part.mode shows the total idle, inter, kernel, stolen,
and user usage of all CPUs in the system. Similarly, //:class.cpu//:res.id/0//:stat.
usage shows the total usage of CPU 0, and //:class.cpu//:res.id/0//:stat.usage//:
part.mode shows the total idle, inter, kernel, stolen, and user usage of CPU 0. The value
of //:class.cpu//:res.id/0//:stat.usage is equal to the sum of the values of all parts of
the //:class.cpu//:res.id/0//:stat.usage//:part.mode partition.

Partitions of a statistic should have approximately equal capacity. If the capacities vary greatly,
consider providing a normalized statistic. For example, users should be able to easily see that a
1GB network card is 90% utilized and a 10GB network card is 10% utilized.

16 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

Interfaces for Providing Statistic Values

Topology Map

Will topology mapping of some statistics benefit your users? You need resources to provide
topology. Users can list the resources of a class to explore the topology without capturing the
data.

Interfaces for Providing Statistic Values

Use one of the following interfaces to write data values to the statistics store from your
applications:

■ sstore_data_attach

■ sstore_data_update

■ sstore_data_bulk_update

All of these interfaces are available for both C and Python. See the libsstore(3LIB),
sstore_data_attach(3SSTORE), libsstore(python), and sstore(3rad) man pages.

All of these interfaces perform the following tasks:

■ Enable any static resources in any of the specified SSIDs that are not currently enabled.
■ Mark affected resources as actively provided.

Use the sstore_data_attach_histogram() interface to record the number
of times your statistic values occur within predefined ranges or intervals. The
sstore_data_attach_histogram() interface can be used only with one of the three interfaces
listed above.

See the libsstore(3LIB) man page for the complete list of statistics store interfaces. Interfaces
in the libsstore library provide the following capabilities:

■ List statistic and event identifiers
■ Update values for statistics
■ Read statistic and event value data and metadata
■ Add resources and resource-specific metadata to the statistics store
■ Remove resources
■ Add resource topology to the statistics store by using the metadata argument of

sstore_resource_add()

Chapter 1 • Adding Data to the Oracle Solaris StatsStore 17

Interfaces for Providing Statistic Values

To update data statistic values periodically, consider using an SMF periodic service, probably
with the sstore_bulk_update() interface. For more information about periodic services, see
Chapter 3, “Creating a Service to Run Periodically” in Developing System Services in Oracle
Solaris 11.4.

Note that updating statistic values does not add the updated value to the statistics store. The
statistics store accumulates data values only when requested by a client. The requesting client
can be the sstore capture command or sstore_data_read(). The following clients use
sstore_data_read() to request statistic values:

■ A sheet that contains the statistic in the System Web Interface
■ An application that calls sstore_data_read()
■ An enabled collection

Updated statistic values continue to be written to the statistics store for a short time after the last
request or until the application that is updating the values stops providing updates.

Comparing Methods for Providing Statistic Values

Whether you use the sstore_data_attach() or sstore_data_update() API depends on the
data type, the frequency of additions, and the importance of the time stamp of each value.

TABLE 1 sstore_data_attach() and sstore_data_update() Comparison

Feature sstore_data_attach() sstore_data_update()

Architecture Writes statistic values to memory space that
is shared between the application and the
statistics store.

Writes statistic values directly to the statistics
store.

Statistic data type Integer, especially a counter Any type

Initial data value 0 Specified value

Time stamp When the data is requested by the statistics
store client

When the data is collected by the application

Use sstore_data_attach() if the statistic values are integer and if the time the value was
collected is not needed. Statistic value time stamps in this case are the time that the statistics
store retrieves the values from the shared memory area. The sstore_data_attach() method is
also recommended if you need to make large numbers of data updates per time period.

Use sstore_data_update() if the statistic values are not numeric or if the exact time the data
was collected is needed. You must use the sstore_data_update() method if multiple statistic

18 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

http://www.oracle.com/pls/topic/lookup?ctx=E37838-01&id=SVCDVperiodicsvc
http://www.oracle.com/pls/topic/lookup?ctx=E37838-01&id=SVCDVperiodicsvc

Interfaces for Providing Statistic Values

values must be updated simultaneously such that each statistic value must have the same time
stamp.

See the following sections for more information about sstore_data_attach(),
sstore_data_update(), sstore_data_bulk_update(), and
sstore_data_attach_histogram(). See also the sstore_data_attach(3SSTORE) man page
and the sstore_data_read(3SSTORE) man page.

The sstore_data_attach() Interface

The sstore_data_attach() interface creates a shared memory region between sstored and
the client process. Call sstore_data_attach() only one time during the runtime of the client
process.

The sstore_data_attach() interface supports only integer statistic values, particularly
counters. The sstore_data_attach() interface creates a shared memory region with one
counter for each statistic. The values in this shared memory region are initialized to 0. To
update the statistics store, update the shared memory region array element for that statistic. For
sstore_data_attach(), updating statistic values typically means incrementing the counter for
that statistic.

When these statistic values are requested, sstored attempts to read from the shared memory
region once each second, regardless of how quickly the application updates the value.

See Chapter 3, “Adding Simple Data Values to the Statistics Store” for example applications
that use sstore_data_attach().

The sstore_data_update() Interface

The sstore_data_update() interface supports any data type for statistic values, including
string and other large data types. Each time the statistics store client requests a value update,
call sstore_data_update() to update the values of the specified SSIDs with the given values.

See Chapter 6, “Adding Any Type of Data to the Statistics Store” for example applications that
use sstore_data_update().

The sstore_data_bulk_update() Interface

The sstore_data_bulk_update() interface enables an application to provide a value pair (time
stamp, value) for statistics. Statistic values do not need to be provided in real time because the
application provides the time stamp along with the value.

Chapter 1 • Adding Data to the Oracle Solaris StatsStore 19

Interfaces for Providing Statistic Values

An example of a case when sstore_data_bulk_update() is needed is for a third-party
application that cannot be modified to talk to sstored directly. In such a case, statistic values
can be read from a proxy such as a log file.

The sstore_data_bulk_update() interface supports any data type for statistic values,
including string and other large data types.

Statistic updates must be provided in chronological order: Each update must have a time
stamp that is more recent than the time stamp of any update that was previously provided.
Any update that has a time stamp that is not more recent than the time stamp of the previous
update is ignored. The sstore_data_bulk_update() interface writes to the statistics store all
the statistics value pairs that are newer than the most recently provided data for that statistic.

Statistics store clients such as sstore capture, sstore export, or sstore_data_read()
return the time stamps provided by sstore_data_bulk_update() for each statistic value. If a
consumer requests data for a time for which the application has not yet provided data, the value
SSTORE_VALUE_NODATA_YET is returned.

The metadata for any statistic for which data will be provided by sstore_data_bulk_update()
must define min-update-interval, which is the minimum number of seconds between any two
bulk updates. Consumers such as the System Web Interface use this value to set expectations
about the update frequency of a statistic.

The sstore_data_attach_histogram() Interface

Like sstore_data_attach(), the sstore_data_attach_histogram() interface
creates a shared memory region between sstored and the client process. Call
sstore_data_attach_histogram() only one time during the runtime of the client process.

The sstore_data_attach_histogram() interface creates a shared memory region
with an array of counters for each statistic: one counter for each interval defined for the
histogram. To update the statistics store, call sstore_histogram_quantize() to update
the appropriate interval counter in the shared memory region. The statistic value can be
any data type; sstore_data_attach_histogram() stores a count of the values. See the
sstore_histogram_init(3SSTORE) man page for more information about interfaces used to
store data in a histogram and the types of histograms that are supported by the statistics store.

Latency is a good example for a histogram. If you capture or export a statistic such as //:
class.disk//:stat.io-completions//:part.latency or //:class.scheduler//:stat.
cv-signal//:part.latency, you see a long list of intervals. The value of each interval is the
number of times the value of the statistic is in that interval. The following example shows that

20 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

Troubleshooting Providing Statistics

since system boot, the number of I/O operations that completed in approximately one-half to
one second is 191324.

$ sstore export //:class.disk//:stat.io-completions//:part.latency

...

 524288: 112392.0

 1048576: 191324.0

...

Removing Resources and Statistics

The sstore_resource_remove() interface performs the following tasks:

■ Decrements the internal reference count.
■ Removes the resource from the statistics store namespace if both of the following criteria

are met:
■ The reference count is 0.
■ No statistics associated with the resource have an active provider.

Troubleshooting Providing Statistics

If your statistic values do not update as expected, check for the following issues:

■ The class, resource, statistic, or event that you are updating is not defined in a JSON file in
/usr/lib/sstore/metadata/json/.

■ The identifier names used in the application that provides the statistic values do not match
the names defined in the metadata files.

■ The type of the data specified in the application does not match the data type specified in
the metadata files.

■ The statistics store service has not been restarted to read new or changed metadata.
■ The caller of the application does not have the solaris.sstore.write authorization and is

not the authorized user for write operations on that namespace.
■ An identifier that your application attempts to update is already updated by a different

application.
A statistic cannot have multiple providers. If one application initializes a statistic and
then another application initializes the same statistic while the first application is still
actively writing values for those statistics, the second application will receive an error from
sstore_data_attach(), sstore_data_update(), or sstore_data_bulk_update().

Chapter 1 • Adding Data to the Oracle Solaris StatsStore 21

How to Force a Reread of all Metadata

Check the application log file for error messages.

If the application is managed by an SMF service, use the svcs -Lv command to check the log
file for that service.

If you attempt to retrieve data values before the event or statistic is initialized, you receive an
error message that the identifier is not valid.

If you attempt to retrieve data values after the event or statistic is initialized but before any
value has been provided, the identifier is valid but no value is shown.

How to Force a Reread of all Metadata

If you make a metadata change that is not read by restarting the sstore:default service, you
can force a reread of all metadata by destroying the entire statistics repository.

Caution - This action destroys all historical data.

1. Disable the statistics store service.

$ svcadm disable sstore:default

$ svcs sstore

STATE STIME FMRI

disabled 13:03:54 svc:/system/sstore:default

2. Destroy the statistics store repository.

$ zfs destroy rpool/VARSHARE/sstore

If the repository still exists, remove it:

$ rm -fr /var/share/sstore/repo

Note - Removing or modifying individual directories or files within the statistics store
repository is not supported. Removing or modifying metadata directories or files that were
delivered with Oracle Solaris is not supported.

3. Reread the statistics metadata.

$ svcadm enable sstore:default

$ svcs sstore

STATE STIME FMRI

22 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

How to Force a Reread of all Metadata

online 13:04:46 svc:/system/sstore:default

If the service is not online, check the service log file.

$ svcs -Lx sstore

Chapter 1 • Adding Data to the Oracle Solaris StatsStore 23

24 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

 2 ♦ ♦ ♦ C H A P T E R 2

Defining Custom Statistics

All classes, resources, and statistics must be initialized with metadata. Metadata provides
descriptions of statistics store identifiers and also provides information such as type, units, and
authorization. A class specifies resources and statistics that are valid for that class.

This chapter shows how to add metadata to do the following tasks:

■ “Adding Resources and Statistics to the Statistics Store Namespace” on page 25,
including “Defining Resources” on page 27 and “Defining Partitions” on page 29,
describes how to define new class instances, resources, statistics, and partitions. Typically
you will define a new instance of the existing app class.

■ “Mapping Topology” on page 30 describes how to map a statistics store identifier to
another identifier name that might be easier for administrators to use.

■ “Creating a Collection” on page 30 describes how to define a new collection.
■ “Creating Visualizations” on page 32 describes how to define new sheets and

visualizations to display in the System Web Interface.
■ “Authorizing Access to Resources and Statistics” on page 36 describes how to authorize

users to collect and view resources and statistics.

Adding Resources and Statistics to the Statistics Store
Namespace

Many resources, such as disks or other devices, are added to the statistics store automatically
when the devices are added to the system. System statistics such as kstats and information about
services and faults are included in the statistics store by default.

You can use one of the following methods to add your custom resources and statistics to the
statistics store namespace:

■ JSON text files. See “Using Statistics Store Metadata Files” on page 26.

Chapter 2 • Defining Custom Statistics 25

Adding Resources and Statistics to the Statistics Store Namespace

■ The sstore_resource_add() statistics store library interface. See “Adding Resources
Dynamically” on page 29.

Using Statistics Store Metadata Files

By default, permission to create and modify files in the /usr/lib/sstore/metadata/ directory
is restricted to root.

JSON files delivered as part of the Oracle Solaris OS are in /usr/lib/sstore/metadata/json/
solaris. Your custom metadata files can go in either the /usr/lib/sstore/metadata/json/
site directory or the /usr/lib/sstore/metadata/json/vendor directory.

JSON files in /usr/lib/sstore/metadata/json/ describe classes, resources, and statistics.
These statistics are automatically added to the statistics store namespace on system start and any
other time the statistics store service restarts.

To add statistics to the statistics store namespace, take the following steps:

1. Create one or more files in /usr/lib/sstore/metadata/json/. Do not modify files that
you did not create.

2. Run the soljsonfmt tool on the .json file to check for JSON syntactic errors. See the
soljsonfmt(1) man page for more information.

3. Run the soljsonvalidate tool on the .json file to check for JSON semantic errors. The
soljsonvalidate tool reports deviation from defined schemas, such as a missing id. See
the soljsonvalidate(1) man page for more information.

All matching .json files are opened and checked for JSON syntax errors. No validation is
performed if syntax errors are found.

You can describe each class and statistic in a separate file, or you can describe multiple
components in one file by creating a more complex object using JSON array syntax. Resource
definitions are part of the class definition. A single statistic definition can be used by multiple
classes and resources. For example, many devices might count how many times they are
interrupted. The same stat.interrupt statistic could be used with each of the different device
resources.

The first character of a class-name must be an alphanumeric character; other characters in
a class-name must be alphanumeric characters or the hyphen character (-). For alphabetic
characters, best practice is to use lower case characters only. Examples of class-name values
include app, cpu, dev, io, link, pg, pset, svc, system, and zone. The //:class.solaris/ and
//:class.s/ class names are reserved.

26 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

Adding Resources and Statistics to the Statistics Store Namespace

A class and res pair is a canonical resource name. Each name space must be unique on each
system. For example, a system cannot have more than one CPU with ID 0. If a given name can
be used by multiple resources, then that name is not a suitable namespace identifier.

The / and : characters are allowed in resource names. The following fmri resource uses both
/ and : in the name. Resource names can contain any characters except the reserved three-
character sequence //:. As much as possible, resource names are the same as names used in the
related administrative commands.

//:class.svc//:res.fmri/system/identity:node

The metadata for a class defines how resources in that class can be named. Resources can use
different naming schemes within a single class, as shown in the following examples from the
kstat class:

//:class.kstat//:res.disk/sd/sd0/0

//:class.kstat//:res.device_error/sderr/sd0,err/0

//:class.kstat//:res.misc/pci-ide/fm/0

//:class.kstat//:res.zones/cpu/sys_zone_0/0

You can use metadata to provide a description of each component, provide topology mappings,
and provide aliases. See the ssid-metadata(7) man page for more information about statistics
store metadata files.

The statistics store reads all the data without regard to how the data is organized into different
files. For documentation purposes for other developers and administrators, if you describe
multiple components in a single file, all the components described in one file should be related.

Classes can define in metadata other classes in which their resources appear.

The /usr/lib/sstore/metadata/json-schema/ directory contains JSON schema files that
describe the format of the metadata files in /usr/lib/sstore/metadata/json/.

The properties sensitive and expensive restrict the use of statistics as described in
“Restricting Access to Sensitive Data” on page 38 and “Restricting Capture of Data that is
Expensive to Capture” on page 39.

Defining Resources

Some statistics apply to the entire class, and no separate resources need to be defined within
that class. For example, the //:class.app/solaris/sysstat/sysconf system configuration
statistics are for the entire system. No resources are defined for that class.

Some statistics have a value for the entire class and separate values for individual resources
within the class. For example, //:class.cpu//:res.id/0//:stat.usage gives usage statistics

Chapter 2 • Defining Custom Statistics 27

Adding Resources and Statistics to the Statistics Store Namespace

for one CPU in the system, while //:class.cpu//:stat.usage gives usage statistics for all
CPUs in the system combined.

If you know the resources in the class at the time you define the class, define those
resources as static-instances in the class json file as described in “Adding Static
Resources” on page 28.

If some instances of the class are not known when you define the class, you can add those
resources dynamically as described in “Adding Resources Dynamically” on page 29.

A single class can have some resources that are statically defined and others that are added
dynamically.

A resource inherits class metadata, and you can add metadata that only applies to the resources.

Adding Static Resources

Resources are defined in a static-instances element in the class metadata file. The name
and namespace properties are required. The name is the unique name of the particular resource.
The namespace groups similar resources and matches the value of a resource-name in the
namespaces element. You can add metadata for the resources in the instance-metadata
element.

The following partial example of a class metadata file shows the required namespaces and
static-instances elements and the optional instance-metadata element:

"instance-metadata": {

 "description": "Instances of util2",

 "stability": "stable"

},

"namespaces": [

 {

 "name-type": "string",

 "resource-name": "inst"

 }

],

"static-instances": [

 {

 "name": "inst1",

 "namespace": "inst"

 },

 {

 "name": "inst2",

 "namespace": "inst"

 }

28 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

Adding Resources and Statistics to the Statistics Store Namespace

]

See “Collect Data for Statically Allocated Resources” on page 57 for a complete example.

In the following excerpt from class.svc.json, one resource is defined. Other resources
(services) are added dynamically.

 "namespaces": [

 {

 "name-type": "string",

 "resource-name": "fmri"

 }

],

...

 "static-instances": [

 {

 "name": "system/svc/restarter:default",

 "namespace": "fmri"

 }

]

Adding Resources Dynamically

If you need to create new resources from within your application, use the
sstore_resource_add() interface. See the sstore_resource_add(3SSTORE) man page for
details. Typically you should not need to add resources from within your application. Instead,
you should define any needed resources as static-instances in the class json file and use
your application only to add statistic values.

If your application will use the sstore_resource_add() interface to create resources
dynamically, then you do not need to specify static resources in the metadata. You still need to
provide resource namespace rules in the class json metadata file.

An example where resources are added dynamically is the cpu class, where the number of CPUs
on the system is not known until the system is running.

See “Collect Data for Dynamically Allocated Resources” on page 65 for an example of how
to add resources dynamically.

Defining Partitions

To have partitioned statistics, your application must have resources.

Chapter 2 • Defining Custom Statistics 29

Mapping Topology

Partitions are a stat-mapping schema, and the SSID has a stat-mapping component instead of
a stat component. Partitions are named in a partitions element within an aggregations or
instance-metadata element in the metadata file, as shown in the following example:

"$schema": "//:stat-mapping",

"id": "//:class.app/util2//:stat-mapping.errors",

"instance-metadata": {

 "partitions": [

 "inst"

]

},

"transforms": [

 {

 "match": "//:class.app/util2//:res.inst/(inst[1-2])//:stat.errors$",

 "replace": "//:class.app/util2//:stat.errors//:part.inst(\\1)"

 }

]

In the transforms section, each match represents a statistic that is already defined in the class
and stat metadata, and the paired replace maps that statistic to one of the partitions named in
the partitions element. The value of the partitioned statistic is equal to the sum of the values
of the matching statistics for each resource.

See Chapter 5, “Separating Data Into Partitions” for an example. See also the "Statistic
Mapping" section in the ssid-metadata(7) man page.

Mapping Topology

See mapping information in the ssid-metadata(7) man page.

Creating a Collection

A collection is a convenient way to show multiple statistics using one SSID, as described in
“Representing Sets of Statistics and Events” in Using Oracle Solaris 11.4 StatsStore and System
Web Interface and “Using Collections” in Using Oracle Solaris 11.4 StatsStore and System Web
Interface.

Use one of the following methods to create a collection:

30 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

http://www.oracle.com/pls/topic/lookup?ctx=E37838-01&id=SSTORdefcollections
http://www.oracle.com/pls/topic/lookup?ctx=E37838-01&id=SSTORdefcollections
http://www.oracle.com/pls/topic/lookup?ctx=E37838-01&id=SSTORusingcollections
http://www.oracle.com/pls/topic/lookup?ctx=E37838-01&id=SSTORusingcollections

Creating a Collection

■ Create a JSON file in the /usr/lib/sstore/metadata/collections/ directory and restart
the sstore service. The rules for creating a collection JSON file are documented in the
ssid-collection.json(5) man page.

■ Use the API described in the sstore_collection_alloc (3SSTORE) man page.

After the collection is created, you can disable or enable the collection by using the following
commands:

■ sstoreadm disable-collection

■ sstoreadm enable-collection

Note - Statistics in an enabled collection are recorded persistently. Recording too many statistics
persistently can degrade system performance, especially if those statistics are expensive to
record.

The user1.db-rw.json JSON file in the /usr/lib/sstore/metadata/collections/ directory
includes some user-created statistics in a collection:

{

 "$schema": "//:collection",

 "description": "DB rw",

 "enabled": false,

 "id": "db-rw",

 "ssids": [

 "//:class.app/db1//:stat.reads",

 "//:class.app/db1//:stat.writes",

 "//:class.app/db2//:stat.reads",

 "//:class.app/db2//:stat.writes"

],

 "user": "user1"

}

This collection is not enabled by default. Instead of persistently recording these statistics, this
collection provides a convenient way to access these statistics by using one SSID.

Only user1 can change this collection by using the System Web Interface or the sstoreadm
command.

Run the soljsonfmt tool on the .json file to check for JSON syntactic errors. Run the
soljsonvalidate tool on the .json file to check for JSON semantic errors. See “Using
Statistics Store Metadata Files” on page 26 for more information. Make sure you are in a
directory where you have write privilege because the soljsonfmt command creates a temporary
file.

soljsonfmt /usr/lib/sstore/metadata/collections/user1.db-rw.json

#

Chapter 2 • Defining Custom Statistics 31

Creating Visualizations

Restart the sstore service. Now you are able to use the collection.

svcadm restart sstore:default

sstore list //:class.collection//:collection.name/user1/db-rw

IDENTIFIER

//:class.collection//:collection.name/user1/db-rw

You cannot use the sstore list command to list the statistics that belong to the collection. Use
the sstore info command instead.

sstore info //:class.collection//:collection.name/user1/db-rw

Identifier: //:class.collection//:collection.name/user1/db-rw

 ssid: //:class.app/db1//:stat.reads

 ssid: //:class.app/db1//:stat.writes

 ssid: //:class.app/db2//:stat.reads

 ssid: //:class.app/db2//:stat.writes

 state: disabled

 uuid: 1ca6f562-e00d-42ed-b288-8047345507b6

 owner: user1

 cname: db-rw

crtime: 1464997510390334

You can use the collection SSID to easily record all the statistics that are in the collection:

sstore capture //:class.collection//:collection.name/user1/db-rw

TIME VALUE IDENTIFIER

2016-06-03T16:54:20 33352207 //:class.app/db1//:stat.reads

2016-06-03T16:54:20 33316406 //:class.app/db1//:stat.writes

2016-06-03T16:54:20 16438126 //:class.app/db2//:stat.reads

2016-06-03T16:54:20 16370542 //:class.app/db2//:stat.writes

Creating Visualizations

Visualizations enable administrators to view data graphically in the System Web Interface, as
described in Chapter 2, “Using Oracle Solaris System Web Interface” in Using Oracle Solaris
11.4 StatsStore and System Web Interface.

Sheet and Visualization Design Best Practices
Visualizations are organized into groups, which are organized into sections, which are on a
sheet.

■ Define the purpose of the sheet. When will an administrator use this sheet? How will an
administrator use this sheet to learn more about this application or subsystem?

32 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

http://www.oracle.com/pls/topic/lookup?ctx=E37838-01&id=SSTORanalyticsbui
http://www.oracle.com/pls/topic/lookup?ctx=E37838-01&id=SSTORanalyticsbui

Creating Visualizations

A sheet should be self explanatory and guide the administrator through the troubleshooting
process. A sheet should help an administrator discover contributors to a particular problem
and lead the administrator to specific actions.

■ Determine the information needed to achieve the purpose. What information is most key?
What information is related?
Resource utilization and saturation and number and type of errors typically are key
information. Can you show utilization rather than raw usage numbers?
Time-series visualisations provide the most data dense visualisation that include historical
data. Other types of visualizations should only be used if the time-series visualisation does
not suit the underlying data.

Consider using //:op.top to avoid switching to Pareto visualization automatically when
defining a time-series visualization.
Are historical comparisons of data values useful? If so, should historical comparisons be
shown by default?
Is the required information available from existing statistics, do new statistics need to be
created, do existing statistics need to be partitioned or mapped to achieve the purpose of this
sheet?

■ Determine the layout of the sheet into sections and groups. What flow should the
administrator likely to follow to troubleshoot a specific problem or explore potential
problems with this application or subsystem?
■ The most key information should be first, at the top of the sheet. To aid troubleshooting,

provide information about potential problems or errors first, instead of starting with
basic status information.

■ Sections should guide the flow of problem investigation. Based on what the most
key information in the first section shows, what should the administrator look at
next? Group the key indicators for the most common symptoms of problems with this
subsystem into sections.

■ Related information should be in the same group.
■ Find the right balance. Organizing data into multiple groups and sections can make data

easier to understand and use and reduce clutter on the screen, but too many groups and
sections add to the clutter and make problems harder to investigate. Also, each section
and group title takes screen real estate that visualizations could use.

■ Use the purpose of the sheet to create a brief description of the sheet.
■ What data does this sheet provide?
■ What kinds of failures can this sheet help diagnose?
■ If possible, mention diagnosis specifics such as how visualizations are related and used

together. What are typical steps to take to troubleshoot the system represented by this
sheet?

■ Include links to additional information.

Chapter 2 • Defining Custom Statistics 33

Creating Visualizations

■ Create a brief description for each section.
■ What is the purpose of this section? Which symptoms can be diagnosed here?
■ What steps should an administrator take here?
■ Include links to additional information.

■ Create a brief description for each visualization.
■ How can the data in this visualization be used to diagnose a problem?
■ How can an administrator compare the data values in this visualization to expected

values?
■ Mention specifics such as how data is partitioned, what related data can be shown, what

you can learn from this data.
■ Include links to additional information to help troubleshoot the problem, including

references to visualizations on other sheets and how those would be helpful.

If you cannot clearly express the purpose of the visualization, perhaps the visualization is
not needed to investigate problems with this subsystem.

■ Decide what type of visualization will make the data easiest to understand and use.
■ Add operations to the SSIDs to show the most meaningful data. Do you want to show

resource utilization, resource saturation, error counts, rate, top five values? Do you want
to filter the data or convert to a different unit of measurement?

■ How important is historical data? To show historical data, use one of the time series
type of visualizations. Consider whether the data identifiers should be in an enabled
collection and collected persistently.

■ Is a stacked time series or Pareto chart better than a regular time series graph for this
data? Is a gauge, bar chart, or pie chart better for what you want to show? Do you need a
histogram to show which values occur most frequently?

■ Is data that is represented by different SSIDs related closely enough to show in the same
visualization? For example, reads and writes of the same resources might be shown in
a single visualization. To show two different SSIDs in one visualization, both SSIDs
must be partitioned identically (or not partitioned), must be in the same units in a similar
range of possible values, and must be able to be shown at the same time scale.

■ Are certain events useful to include with this data? Events can be shown as points on a
time graph.

How to Create a Visualization

To create a visualization, use one of the following methods:

■ Use the System Web Interface as described in “How to Create a Visualization by Using the
System Web Interface” on page 35.

34 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

How to Create a Visualization by Using the System Web Interface

■ Create a JSON file in the /usr/lib/webui/analytics/sheets/vendor or /usr/lib/
webui/analytics/sheets/site directory and restart the webui/server service.
Use one of the following methods to create the JSON file:
■ Export the file from the System Web Interface. In the System Web Interface, create a

new sheet or copy and modify an existing sheet. To copy a sheet, open the sheet and
select the Duplicate & Edit option from the Sheet Actions menu. Modifications that
you make in the System Web Interface are saved in your user preferences file (/var/
user/user-name/webui/preferences/solaris.json) and only you can view them.
From the Sheet Actions menu, select the Export option to save the JSON description
of the sheet in the /usr/lib/webui/analytics/sheets/vendor or /usr/lib/webui/
analytics/sheets/site directory so that all users can view it.

■ Write the JSON code yourself using the following resources:
■ The analytics(5) man page
■ The /usr/lib/webui/analytics/sheets/analytics-import.schema.json JSON

schema file
■ Sheet definitions in /usr/lib/webui/analytics/sheets/solaris
■ Examples in later chapters in this guide

How to Create a Visualization by Using the System Web
Interface

This procedure describes all steps, starting with creating a new sheet. You can skip some of
these steps by modifying an existing sheet. Open a sheet that is similar to what you want, and
select the Duplicate & Edit option from the Sheet Actions menu. Then open the duplicate sheet
and modify the sections, groups, and visualizations as necessary.

1. Create a sheet.
At the top of the Sheets page, select the Add Sheet button. Give the new sheet a useful name
and description.

2. Add a section to the sheet.
From the Sheet Actions menu, select Add Section. From the Section Actions menu, select the
Rename option to give the section a meaningful name.

3. Add a group to the section.
From the Section Actions menu, select Add Group. From the Group Actions menu, select the
Properties option and give the group a useful name and description.

4. Add a visualization to the group.

Chapter 2 • Defining Custom Statistics 35

Authorizing Access to Resources and Statistics

Use one of the following methods to add a visualization:

■ From the bottom of the Group Properties pop-up, select Add Visualization.

■ From the Group toolbar, select the + icon.
Give the visualization a useful name.
From the Visualization Actions menu, select the Properties option and give the visualization a
useful description.

5. Add a statistic or event to the visualization.
Use one of the following methods to add a statistic or event:

■ From the Visualization Properties pop-up, select Statistics or select Events
and select the + icon.

■ From the Visualization Actions menu, select the Add Statistic or Event
option.

Follow the prompts in the dialog. See the System Web Interface help for more information.
From the Visualization Actions menu, select the Visualization Type option to select the type of
chart or graph that is most appropriate for this statistic.
From the Visualization Actions menu, select the Set Time Range → Custom option to select
the period length that is most appropriate for monitoring this statistic. Be sure to select Ending
Now.

Authorizing Access to Resources and Statistics
By default, any user can read and record any data in the statistics store. Anyone who is
authorized to use your application should be able to browse the data about the application.
Some other operations, such as reading sensitive data, are restricted. Table 2, “Statistics Store
Operation Authorizations,” on page 37 provides information you need to authorize access
to restricted statistics store operations. The listed operations can be performed by any user that
has the associated authorization. See the sstore-security(7) and sstore-authorized-user(7)
man pages for more information. The root user or role has all solaris authorizations. Most
users do not have these authorizations. You might need to assign alternative authorizations to
enable a daemon or application to manipulate certain statistics store data.

You can specify a particular authorization to grant access to any user who has that authorization,
or you can authorize specified users. The authorization applies to the node where the

36 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

Authorizing Access to Resources and Statistics

authorization is specified in the metadata and to any non-topological descendant nodes. For
example, if you specify an authorized user for a class, that user can perform the specified
operation on any statistics in that class. If you specify an authorized user for a statistic but not
for the class, that user can perform the specified operation only on that statistic, not on other
statistics in that class.

You can authorize access for any user who has a specified authorization.

■ Imply a specific required authorization by setting the sensitive or expensive property to
true.

■ Specify a required authorization as the value of an sau_op_name_auth property. See the
table for values of op_name.

You can authorize access to an operation for specified users.

■ Specify a list of user names as the value of an sau_op_name_username property. See the
table for values of op_name. An authorized user can be a human user or a daemon. A user is
also called a client.

TABLE 2 Statistics Store Operation Authorizations

Property op_name Authorization Authorized Operation Interface

read_sensitive solaris.sstore.read.

sensitive

Read a sensitive statistic or
event.

sstore_data_read(),
sstore_batch_data_read(),
sstore_info_read(),
sstore_batch_info_read(),
sstore_namespace_list(),
sstore_batch_namespace_list(),
sstore export, sstore info,
sstore list

capture_sensitive solaris.sstore.

capture.sensitive

Record a sensitive statistic
or event.

sstore_data_read(),
sstore_batch_data_read(),
sstore capture

capture_expensive solaris.sstore.

capture.expensive

Record an expensive
statistic or event.

sstore_data_read(),
sstore_batch_data_read(),
sstore capture

update_res solaris.sstore.update.

res

Add a resource to a class. sstore_resource_add()

update_res solaris.sstore.update.

res

Deactivate a resource that
was created by a previous
sstore_resource_add()

call.

sstore_resource_remove()

write solaris.sstore.write Provide statistic or event
data.

sstore_data_attach(),
sstore_data_update()

delete solaris.sstore.delete Purge statistic or event
data.

sstoreadm purge

Chapter 2 • Defining Custom Statistics 37

Authorizing Access to Resources and Statistics

Property op_name Authorization Authorized Operation Interface

config solaris.sstore.

configure

Update a collection created
by another user.

sstore_collection_write(),
sstore_collection_set_state(),
sstore_collection_update_ssid(),
sstore_collection_delete()

Restricting Access to Sensitive Data

To restrict access to sensitive data, mark the data sensitive by specifying the sensitive
property with the value true. Statistics and events that have the sensitive property set to
true require a user to have the solaris.sstore.read.sensitive authorization to read the
data and have the solaris.sstore.capture.sensitive authorization to capture the data. A
user that has the solaris.sstore.read.sensitive authorization can export data values of
any statistic in the statistics store. A user that has the solaris.sstore.capture.sensitive
authorization can record data values of any statistic in the statistics store except statistics that
are expensive to capture as described in “Restricting Capture of Data that is Expensive to
Capture” on page 39.

To enable access by other users who need to read or record this data, specify an alternative
authorization that is more targeted to this data, or specify particular users that are authorized to
access this data.

To specify an alternative authorization that enables a user to access particular sensitive data,
specify the sau_read_sensitive_auth property or the sau_capture_sensitive_auth property
with the alternative authorization as the value. The value of these properties can be a list of
authorizations.

To enable a specified user to access particular sensitive data even if the user has none of
the required authorizations, specify the sau_read_sensitive_username property or the
sau_capture_sensitive_username property with the user name as the value. The value of
these properties can be a list of user names.

Note - Even if you specify alternative authorizations or authorized users, you must still set the
sensitive property to true.

EXAMPLE 1 Specifying Which Users Can Read Particular Sensitive Data

The following partial metadata for a sensitive statistic enables the following users to export
values of this statistic:

■ Any user that has the solaris.sstore.read.sensitive authorization

38 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

Authorizing Access to Resources and Statistics

■ Any user that has the solaris.system.sysevent.read authorization
■ The authorizeduser1 user
■ The authorizeduser2 user

{

 "sensitive" : "true"

 "sau_read_sensitive_auth" : "solaris.system.sysevent.read"

 "sau_read_sensitive_username" : "authorizeduser1" "authorizeduser2"

}

EXAMPLE 2 Specifying Which Users Can Record Particular Sensitive Data

The following partial metadata for a sensitive statistic enables the following users to record
values of this statistic:

■ Any user that has the solaris.sstore.capture.sensitive authorization
■ Any user that has the solaris.system.sysevent.write authorization
■ The authorizeduser1 user

{

 "sensitive" : "true"

 "sau_capture_sensitive_auth" : "solaris.system.sysevent.write"

 "sau_capture_sensitive_username" : "authorizeduser1"

}

Restricting Capture of Data that is Expensive to
Capture

If capturing certain statistic data has a high cost in system resources, you might want to restrict
who can capture that data. For example, using DTrace scripts to record statistic data often has a
high cost in system resources.

To restrict who can capture data that is costly to capture, mark the data costly by specifying the
expensive property with the value true. Statistics and events that have the expensive property
set to true require a user to have the solaris.sstore.capture.expensive authorization to
capture the data. A user that has the solaris.sstore.capture.expensive authorization can
record data values of any statistic in the statistics store except statistics that are sensitive as
described in “Restricting Access to Sensitive Data” on page 38.

To enable access by other users who need to record this data, specify an alternative
authorization that is more targeted to this data, or specify particular users that are authorized to
record this data.

Chapter 2 • Defining Custom Statistics 39

Authorizing Access to Resources and Statistics

To specify an alternative authorization that enables a user to record particular expensive data,
specify the sau_capture_expensive_auth property with the alternative authorization as the
value. The value of this property can be a list of authorizations.

To enable a specified user to record particular expensive data even if the user has none of the
required authorizations, specify the sau_capture_expensive_username property with the user
name as the value. The value of this property can be a list of user names.

Note - Even if you specify alternative authorizations or authorized users, you must still set the
expensive property to true.

EXAMPLE 3 Specifying Which Users Can Record Particular Expensive Data

The following partial metadata for a statistic that is expensive to record enables the following
users to record values of this statistic:

■ Any user that has the solaris.sstore.capture.expensive authorization
■ Any user that has the solaris.system.sysevent.write authorization
■ The authorizeduser1 user

{

 "expensive" : "true"

 "sau_capture_expensive_auth" : "solaris.system.sysevent.write"

 "sau_capture_expensive_username" : "authorizeduser1"

}

EXAMPLE 4 Specifying Users Who Can Record Data that is Sensitive and Expensive

A statistic could be both sensitive and expensive. The following partial metadata for a statistic
restricts the ability to capture values of this statistic to the following users:

■ Any user that has the solaris.sstore.capture.sensitive authorization
■ Any user that has the solaris.sstore.capture.expensive authorization
■ Any user that has the solaris.system.sysevent.write authorization
■ The authorizeduser1 user

{

 "sensitive" : "true"

 "expensive" : "true"

 "sau_capture_sensitive_auth" : "solaris.system.sysevent.write"

 "sau_capture_sensitive_username" : "authorizeduser1"

 "sau_capture_expensive_auth" : "solaris.system.sysevent.write"

 "sau_capture_expensive_username" : "authorizeduser1"

40 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

Authorizing Access to Resources and Statistics

}

Authorizing the Ability to Add and Remove
Resources and Statistic and Event Data

You can specify who can add resources to a class and deactivate those resources, and who can
add and purge statistic and event data values.

A user who has the solaris.sstore.update.res authorization can add a resource to any
class in the statistics store. To enable other users to add resources in a specific class, set the
sau_update.res_auth property on the class to specify an alternative authorization, or set the
sau_update.res_username property on the class to authorize particular users. These users are
also able to deactivate resources that they created.

A user who has the solaris.sstore.write authorization can add or update any statistic or
event data values. A user who has the solaris.sstore.delete authorization can purge any
statistic or event data values from the statistics store. To enable other users to add, update,
or purge specific statistic or event data, set the sau_write_auth and sau_delete_auth
properties to specify an alternative authorization, or use the sau_write_username and
sau_delete_username properties to authorize particular users.

Authorizing the Ability to Configure a Collection

Configuring a collection includes adding statistics and events to the collection, removing
statistics and events from the collection, enabling or disabling the collection, and deleting the
collection. A user who has the solaris.sstore.configure authorization can configure any
collection. The user who created the collection can configure that collection.

To enable other users to configure a particular collection, set the sau_config_auth property on
the class to specify an alternative authorization, or set the sau_config_username property on
the class to authorize particular users.

Chapter 2 • Defining Custom Statistics 41

42 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

 3 ♦ ♦ ♦ C H A P T E R 3

Adding Simple Data Values to the Statistics
Store

This chapter shows a simple example that demonstrates the most common steps of adding
statistics to the statistics store and viewing the values.

The example described in this section creates a class for an application and associates statistics
directly with that application. These statistics are sometimes called class statistics.

■ “Populate the Statistics Store Namespace” on page 43 shows how to create the class and
statistic metadata.

■ “Create an Application that Writes Statistic Values” on page 46 shows how to use the
sstore_data_attach() interface to add values for the statistics.

■ “Update and View Statistic Values” on page 48 shows how to make the data available to
administrators.

■ “Create a Graph to Visualize the Statistic Values” on page 50 shows how to display the
data on a sheet that administrators can view in the System Web Interface.

Populate the Statistics Store Namespace

In this example, the application that produces the statistics is a custom application named
util1.

In the /usr/lib/sstore/metadata/json/site/ directory, create the file class.app.util1.
json with the following content to define the class for the util1 application. Note that files in
/usr/lib/sstore/metadata/json/site/ are owned by root.

{

 "$schema": "//:class",

 "description": "Example using count data and sstore_data_attach()",

 "id": "app/util1",

Chapter 3 • Adding Simple Data Values to the Statistics Store 43

Populate the Statistics Store Namespace

 "stability": "stable",

 "stat-names": [

 "//:stat.reads",

 "//:stat.writes",

 "//:stat.errors"

]

}

If you might change the semantic meaning of a statistic (for example, the type of the statistic),
set the value of stability to unstable.

To define the statistics for this example, create the file stat.util1.json with the following
content in the /usr/lib/sstore/metadata/json/site/ directory:

[

 {

 "$schema": "//:stat",

 "description": "reads",

 "id": "//:class.app/util1//:stat.reads",

 "stability": "stable",

 "type": "counter",

 "units": "operations"

 },

 {

 "$schema": "//:stat",

 "description": "writes",

 "id": "//:class.app/util1//:stat.writes",

 "stability": "stable",

 "type": "counter",

 "units": "operations"

 },

 {

 "$schema": "//:stat",

 "description": "errors",

 "id": "//:class.app/util1//:stat.errors",

 "stability": "stable",

 "type": "counter",

 "units": "errors"

 }

]

Run the soljsonfmt tool on the .json file to check for JSON syntactic errors:

soljsonfmt class.app.util1.json stat.util1.json

Run the soljsonvalidate tool on the .json file to check for JSON semantic errors:

soljsonvalidate class.app.util1.json stat.util1.json

44 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

Populate the Statistics Store Namespace

Use the -v option to see a list of each element and the schema against which that element was
validated.

You must restart the sstore:default service to see the new class SSID.

$ sstore list //:class.app/util1

Warning (//:class.app/util1) - lookup error: no matches found

Restart the statistics store:

$ svcadm restart sstore:default

Ensure that sstore:default and other services are online:

$ svcs -x

Check whether the metadata files imported correctly:

$ svcs -Lx sstore

The log file should show no errors and should show that the start method exited with status 0.

Try again to list the new class SSID:

$ sstore list //:class.app/util1

IDENTIFIER

//:class.app/util1

Show the metadata for the class:

$ sstore info //:class.app/util1

 Identifier: //:class.app/util1

 stability: stable

 $schema: //:class

description: Example using count data and sstore_data_attach()

 id: app/util1

 stat-names: //:stat.reads

 stat-names: //:stat.writes

 stat-names: //:stat.errors

Except for the stat-names statistic names shown in the class information, you cannot get any
information about statistics until you provide values for the statistics as shown in “Update and
View Statistic Values” on page 48.

$ sstore list //:class.app/util1//:*

Warning (//:class.app/util1//:*) - lookup error: no matches found

$ sstore list //:class.app/util1//:stat.*

Warning (//:class.app/util1//:stat.*) - lookup error: no matches found

$ sstore list //:class.app/util1//:stat.reads

Warning (//:class.app/util1//:stat.reads) - lookup error: no matches found

Chapter 3 • Adding Simple Data Values to the Statistics Store 45

Create an Application that Writes Statistic Values

Create an Application that Writes Statistic Values

The application in this section does nothing other than generate values for the statistics in this
example. This functionality needs to be integrated into your real application.

C Version

Create the file util1.c with the following content to increment the counter statistics in this
example. See the libsstore(3LIB) and sstore_data_attach(3SSTORE) man pages for
information about the libsstore C interfaces and types.

/*

 * Example program to provide statistics values using sstore_data_attach().

 */

#include <libsstore.h>

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/types.h>

#define NUM_STATS 3

/* libsstore handle */

sstore_handle_t hdl;

/* statistic identifiers */

char *ids[NUM_STATS] = {

 "//:class.app/util1//:stat.reads",

 "//:class.app/util1//:stat.writes",

 "//:class.app/util1//:stat.errors"

};

/* structure where values are stored */

struct mystats {

 uint64_t reads;

 uint64_t writes;

 uint64_t errors;

};

46 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

Create an Application that Writes Statistic Values

int main()

{

 int iterations = 500;

 struct mystats *stats;

 /* Allocate a libsstore handle. */

 if ((hdl = sstore_alloc()) == NULL) {

 (void) printf("Failed to allocate handle.");

 return (-1);

 }

 /*

 * These statistics already have metadata in a common location,

 * so sstore knows how to create them. sstore_data_attach() will

 * create a shared-memory region between sstore and this program.

 */

 if (sstore_data_attach(hdl, (const char **)&ids,

 (uint64_t **)&stats, NUM_STATS) != ESSTORE_OK) {

 (void) fprintf(stderr,

 "sstore_data_attach() failed because %s\n",

 sstore_err_description(hdl));

 return (-1);

 }

 /*

 * Update the values in the structure.

 * The new values will be stored when sstore reads them.

 */

 while (iterations-- > 0) {

 stats->reads += rand() % 6;

 stats->writes += rand() % 5;

 stats->errors += rand() % 2;

 sleep(1);

 }

 /*

 * Free the libsstore handle.

 * The statistics are marked as not being actively provided.

 */

 sstore_free(hdl);

 return (0);

}

Compile this sample application:

$ cc -lsstore -o util1 util1.c

Chapter 3 • Adding Simple Data Values to the Statistics Store 47

Update and View Statistic Values

Python Version

Create the file util1.py with the following content to increment the counter statistics in this
example. See the libsstore(python) man page for information about the Python libsstore
library, the SStore class, and the data_attach() method.

#!/usr/bin/python

Example program to provide statistics values using Python data_attach().

import time

import random

from libsstore import SStore

ssids = [

 "//:class.app/util1//:stat.reads",

 "//:class.app/util1//:stat.writes",

 "//:class.app/util1//:stat.errors"

]

Get an instance of the SStore class.

ss = SStore()

Set up the shared memory region.

try:

 stats = ss.data_attach(ssids)

except:

 print("data_attach() failed. Reason {0}".format(

 ss.err_description))

 exit(1)

Update statistics every second.

for i in range (500):

 stats[0] += random.randint(2,6)

 stats[1] += random.randint(1,4)

 stats[2] += random.randint(0,1)

 time.sleep(1)

Update and View Statistic Values

Run the application:

$./util1

48 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

Update and View Statistic Values

List the new statistics. The sstore command lists them in alphabetical order:

$ sstore list //:class.app/util1//:stat.*

IDENTIFIER

//:class.app/util1//:stat.errors

//:class.app/util1//:stat.reads

//:class.app/util1//:stat.writes

Show metadata for the new statistics:

$ sstore info //:class.app/util1//:stat.*

 Identifier: //:class.app/util1//:stat.errors

 $schema: //:stat

description: errors

 id: //:class.app/util1//:stat.errors

 stability: stable

 units: errors

 type: counter

 Identifier: //:class.app/util1//:stat.reads

 $schema: //:stat

description: reads

 id: //:class.app/util1//:stat.reads

 stability: stable

 units: operations

 type: counter

 Identifier: //:class.app/util1//:stat.writes

 $schema: //:stat

description: writes

 id: //:class.app/util1//:stat.writes

 stability: stable

 units: operations

 type: counter

Record values. If the program has finished running, you only see the last value that was
recorded in the shared memory space.

$ sstore capture //:class.app/util1//:stat.*

TIME VALUE IDENTIFIER

2016-06-01T16:04:14 252 //:class.app/util1//:stat.errors

2016-06-01T16:04:14 1191 //:class.app/util1//:stat.reads

2016-06-01T16:04:14 959 //:class.app/util1//:stat.writes

2016-06-01T16:04:14 252 //:class.app/util1//:stat.errors

2016-06-01T16:04:14 1191 //:class.app/util1//:stat.reads

2016-06-01T16:04:14 959 //:class.app/util1//:stat.writes

^C

Re-run the program, and record the values while the program is running:

Chapter 3 • Adding Simple Data Values to the Statistics Store 49

Create a Graph to Visualize the Statistic Values

$./util1 &

$ sstore capture //:class.app/util1//:stat.*

TIME VALUE IDENTIFIER

2016-06-01T14:36:54 2 //:class.app/util1//:stat.errors

2016-06-01T14:36:54 3 //:class.app/util1//:stat.reads

2016-06-01T14:36:54 4 //:class.app/util1//:stat.writes

2016-06-01T14:36:54 2 //:class.app/util1//:stat.errors

2016-06-01T14:36:54 3 //:class.app/util1//:stat.reads

2016-06-01T14:36:54 8 //:class.app/util1//:stat.writes

2016-06-01T14:36:55 3 //:class.app/util1//:stat.errors

2016-06-01T14:36:55 3 //:class.app/util1//:stat.reads

2016-06-01T14:36:55 12 //:class.app/util1//:stat.writes

^C

The export command can show values that were recorded in the past. The export command
prints all the requested values for one statistic and then all the values for the next statistic:

$ sstore export -t 2016-06-01T16:58:20 -p 3 //:class.app/util1//:stat.*

TIME VALUE IDENTIFIER

2016-06-01T16:58:20 244 //:class.app/util1//:stat.errors

2016-06-01T16:58:21 245 //:class.app/util1//:stat.errors

2016-06-01T16:58:22 246 //:class.app/util1//:stat.errors

2016-06-01T16:58:20 1144 //:class.app/util1//:stat.reads

2016-06-01T16:58:21 1148 //:class.app/util1//:stat.reads

2016-06-01T16:58:22 1152 //:class.app/util1//:stat.reads

2016-06-01T16:58:20 712 //:class.app/util1//:stat.writes

2016-06-01T16:58:21 715 //:class.app/util1//:stat.writes

2016-06-01T16:58:22 717 //:class.app/util1//:stat.writes

Create a Graph to Visualize the Statistic Values

Create the following sheet metadata file named util1.json in the directory /usr/lib/webui/
analytics/sheets/site/. Each graph or visualization must be in a group, each group must
be in a section, and each section must be in a sheet. Each visualization, group, section, and
sheet must have a unique name: They cannot all be named “util1 statistics,” for example. The
following file defines two visualizations in one group: one visualization for the read and write
operations counts, and one visualization for the error count.

{

 "$schema": "file:///analytics-import.schema.json",

 "v1": {

 "groups": [

 {

 "description": "Reads, writes, and error counts for the util1 example",

 "uniqueName": "util1 statistics Group",

50 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

Create a Graph to Visualize the Statistic Values

 "visualizations": [

 "util1 operations",

 "util1 errors"

]

 }

],

 "sections": [

 {

 "groups": [

 "util1 statistics Group"

],

 "uniqueName": "util1 statistics Section"

 }

],

 "sheets": [

 {

 "description": "Statistics for the util1 data_attach example.",

 "sections": [

 "util1 statistics Section"

],

 "tags": [

 "data_attach",

 "memory map"

],

 "uniqueName": "util1 statistics"

 }

],

 "visualizations": [

 {

 "description": "Count of errors from util1",

 "ssids": [

 "//:class.app/util1//:stat.errors"

],

 "style": "time-series",

 "uniqueName": "util1 errors"

 },

 {

 "description": "Counts of read and write operations for util1",

 "ssids": [

 "//:class.app/util1//:stat.reads",

 "//:class.app/util1//:stat.writes"

],

 "style": "time-series",

 "uniqueName": "util1 operations"

 }

]

 }

}

Chapter 3 • Adding Simple Data Values to the Statistics Store 51

Create a Graph to Visualize the Statistic Values

Run the soljsonfmt tool on the .json file to check for JSON syntactic errors. Run the
soljsonvalidate tool on the .json file to check for JSON semantic errors:

soljsonfmt util1.json

soljsonvalidate /usr/lib/webui/analytics/sheets/analytics-import.schema.json

 util1.json

Restart the webui/server:default service and ensure the service is online:

$ svcadm restart svc:/system/webui/server:default

$ svcs webui/server

STATE STIME FMRI

online 14:02:22 svc:/system/webui/server:default

Ensure the new sheet file was successfully read:

$ svcs -Lx webui/server

[2016 Jun 22 14:02:20 Executing start method ("/lib/svc/method/svc-webui-server

 start").]

Importing preference files

Found : 14 files

Imported : 1 updated/new files

Successfully imported 1 files, removed 0 files

Import succeeded

Starting Apache webserver

Apache start completed

[2016 Jun 22 14:02:22 Method "start" exited with status 0.]

When administrators open the Sheets view in the System Web Interface, they see a new sheet
named "util1 statistics". If the util1 program is not running, the "util1 operations" and "util1
errors" visualizations show only the last values that were recorded. When the util1 program is
started, the graphs show the values updating as they are recorded.

The following figure shows the values of uniqueName specified in the util1.json sheet
definition file displayed as the names of the sheet, section, group, and visualizations. The
statistic labels in the legend of each visualization were specified in description elements in
the stat.util1.json statistic definition file, and the units of the y-axis were specified in the
units elements. The reads and writes statistics must be the same units to display on the same
visualization.

52 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

Create a Graph to Visualize the Statistic Values

FIGURE 1 Graphs Showing Updating Values

What do your users need to know about these statistics? An ever-increasing total count of
operations over time might not be very useful. Edit the sheet definition file to add //:op.rate
to each statistic as shown:

{

 "$schema": "file:///analytics-import.schema.json",

 "v1": {

 "groups": [

 {

 "description": "Rate of change of the reads, writes, and errors counts

 for the util1 example",

 "uniqueName": "util1 statistics Group",

 "visualizations": [

 "util1 operations",

 "util1 errors"

Chapter 3 • Adding Simple Data Values to the Statistics Store 53

Create a Graph to Visualize the Statistic Values

]

 }

],

 "sections": [

 {

 "groups": [

 "util1 statistics Group"

],

 "uniqueName": "util1 statistics Section"

 }

],

 "sheets": [

 {

 "description": "Statistics for the util1 data_attach example.",

 "sections": [

 "util1 statistics Section"

],

 "tags": [

 "data_attach",

 "memory map"

],

 "uniqueName": "util1 statistics"

 }

],

 "visualizations": [

 {

 "description": "Rate of change of errors count from util1",

 "ssids": [

 "//:class.app/util1//:stat.errors//:op.rate"

],

 "style": "time-series",

 "uniqueName": "util1 errors"

 },

 {

 "description": "Rate of change of read and write operations count for

 util1",

 "ssids": [

 "//:class.app/util1//:stat.reads//:op.rate",

 "//:class.app/util1//:stat.writes//:op.rate"

],

 "style": "time-series",

 "uniqueName": "util1 operations"

 }

]

 }

}

54 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

Create a Graph to Visualize the Statistic Values

Restart the webui/server:default service and ensure the service is online. The System Web
Interface will close and request that you log in again. Restart the util1 program, and now you
see a graph of the rate of change of the statistics.

FIGURE 2 Graph Showing Rate of Change of Statistics

Chapter 3 • Adding Simple Data Values to the Statistics Store 55

56 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

 4 ♦ ♦ ♦ C H A P T E R 4

Specifying Resources

The example in this chapter builds on the example in Chapter 3, “Adding Simple Data Values to
the Statistics Store”. The previous chapter showed only statistics that apply to the entire class.
This chapter shows specifying resources, both statically and dynamically.

■ “Collect Data for Statically Allocated Resources” on page 57
■ Chapter 5, “Separating Data Into Partitions”

Collect Data for Statically Allocated Resources

The examples described in this section are similar to the previous example. The difference is
that resources are defined for the applications in these examples. For an application, a resource
typically is an instance of the application. The examples described in this section define three
resources for the application: Customers, Products, and Orders. The same statistics that were
associated directly with the application in the previous example are also associated with each
resource in these examples.

These examples focus on the differences between these examples and the previous example. For
more complete descriptions of these files and procedures, see Chapter 3, “Adding Simple Data
Values to the Statistics Store”.

Add Resources to the Class Metadata

In the /usr/lib/sstore/metadata/json/site/ directory, create the file class.app.util2.
json with the following content to include the three static resources for the util2 application.
In this version, the description and the name of the application are updated . The stat-names
element is the same as in the previous example. The following elements are new:

■ instance-metadata

Chapter 4 • Specifying Resources 57

Collect Data for Statically Allocated Resources

■ namespaces

■ static-instances

Note that the value of resource-name in the namespaces element matches the value of
namespace in the static-instances element.

{

 "$schema": "//:class",

 "description": "Example util1 plus statically-allocated resources",

 "id": "app/util2",

 "instance-metadata": {

 "description": "Instances of util2",

 "stability": "stable"

 },

 "namespaces": [

 {

 "name-type": "string",

 "resource-name": "inst"

 }

],

 "stability": "stable",

 "stat-names": [

 "//:stat.reads",

 "//:stat.writes",

 "//:stat.errors"

],

 "static-instances": [

 {

 "name": "Customers",

 "namespace": "inst"

 },

 {

 "name": "Products",

 "namespace": "inst"

 },

 {

 "name": "Orders",

 "namespace": "inst"

 }

]

}

Create the file stat.util2.json, which is the same as the stat.util1.json file except that
util1 is changed to util2 in each id value.

[

 {

 "$schema": "//:stat",

58 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

Collect Data for Statically Allocated Resources

 "description": "reads",

 "id": "//:class.app/util2//:stat.reads",

 "stability": "stable",

 "type": "counter",

 "units": "operations"

 },

 {

 "$schema": "//:stat",

 "description": "writes",

 "id": "//:class.app/util2//:stat.writes",

 "stability": "stable",

 "type": "counter",

 "units": "operations"

 },

 {

 "$schema": "//:stat",

 "description": "errors",

 "id": "//:class.app/util2//:stat.errors",

 "stability": "stable",

 "type": "counter",

 "units": "errors"

 }

]

Restart the sstore:default service and view the util2 statistic metadata.

$ svcadm restart sstore:default

$ sstore info //:class.app/util2

 Identifier: //:class.app/util2

 namespaces: {'0': '{'name-type': 'string', 'resource-name': 'inst'}'}

 $schema: //:class

 description: Example util1 plus statically-allocated resources

 id: app/util2

instance-metadata: {'description': 'Instances of util2', 'stability': 'stable'}

 static-instances: {'0': '{'name': 'Customers', 'namespace': 'inst'}', '1': '{'name':

 'Products', 'namespace': 'inst'}', '2': '{'name': 'Orders', 'namespace': 'inst'}'}

 stability: stable

 stat-names: //:stat.reads

 stat-names: //:stat.writes

 stat-names: //:stat.errors

Modify the Application to Save Statistic Values for
Each Resource
The util2.c file is the same as the util1.c file except for the description at the top of the file
and the following changes:

Chapter 4 • Specifying Resources 59

Collect Data for Statically Allocated Resources

■ Change NUM_STATS from 3 to 9.
■ The ids array has two changes:

■ Change util1 to util2 in the class name of each SSID.
■ Add the three resource instances, each with all three statistics.

■ The while() loop updates nine statistics instead of three.

Note that the stats structure is unchanged and the sstore_data_attach() call is unchanged.

/*

 * Sample program to use sstore_data_attach() to provide values for

 * statistics of statically allocated resources.

 */

#include <libsstore.h>

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/types.h>

#define NUM_STATS 9

/* libsstore handle */

sstore_handle_t hdl;

/* statistic identifiers */

char *ids[NUM_STATS] = {

 "//:class.app/util2//:res.inst/Customers//:stat.reads",

 "//:class.app/util2//:res.inst/Customers//:stat.writes",

 "//:class.app/util2//:res.inst/Customers//:stat.errors",

 "//:class.app/util2//:res.inst/Products//:stat.reads",

 "//:class.app/util2//:res.inst/Products//:stat.writes",

 "//:class.app/util2//:res.inst/Products//:stat.errors",

 "//:class.app/util2//:res.inst/Orders//:stat.reads",

 "//:class.app/util2//:res.inst/Orders//:stat.writes",

 "//:class.app/util2//:res.inst/Orders//:stat.errors"

};

/* structure where values are stored */

struct mystats {

 uint64_t reads;

 uint64_t writes;

 uint64_t errors;

};

int main()

60 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

Collect Data for Statically Allocated Resources

{

 int iterations = 500;

 struct mystats *stats;

 /* Allocate a libsstore handle. */

 if ((hdl = sstore_alloc()) == NULL) {

 (void) printf("Failed to allocate handle.");

 return (-1);

 }

 /*

 * These statistics already have metadata in a common location,

 * so sstore knows how to create them. sstore_data_attach() will

 * create a shared-memory region between sstore and this program.

 */

 if (sstore_data_attach(hdl, (const char **)&ids,

 (uint64_t **)&stats, NUM_STATS) != ESSTORE_OK) {

 (void) fprintf(stderr,

 "sstore_data_attach() failed because %s\n",

 sstore_err_description(hdl));

 return (-1);

 }

 /*

 * Update the values in the structure.

 * The new values will be stored when sstore reads them.

 */

 while (iterations-- > 0) {

 stats[0].reads += rand() % 6;

 stats[0].writes += rand() % 4;

 stats[0].errors += rand() % 2;

 stats[1].reads += rand() % 8;

 stats[1].writes += rand() % 4;

 stats[1].errors += rand() % 2;

 stats[2].reads += rand() % 9;

 stats[2].writes += rand() % 5;

 stats[2].errors += rand() % 2;

 sleep(1);

 }

 /*

 * Free the libsstore handle.

 * The statistics are marked as not being actively provided.

 */

 sstore_free(hdl);

 return (0);

Chapter 4 • Specifying Resources 61

Collect Data for Statically Allocated Resources

}

View Statistic Values for Statically Allocated
Resources
Compile and run the util2 application.

cc -lsstore -o util2 util2.c

./util2 &

sstore capture //:class.app/util2//:*//:*

TIME VALUE IDENTIFIER

2016-06-12T04:34:28 2 //:class.app/util2//:res.inst/Customers//:stat.errors

2016-06-12T04:34:28 5 //:class.app/util2//:res.inst/Customers//:stat.reads

2016-06-12T04:34:28 5 //:class.app/util2//:res.inst/Customers//:stat.writes

2016-06-12T04:34:28 2 //:class.app/util2//:res.inst/Orders//:stat.errors

2016-06-12T04:34:28 8 //:class.app/util2//:res.inst/Orders//:stat.reads

2016-06-12T04:34:28 12 //:class.app/util2//:res.inst/Orders//:stat.writes

2016-06-12T04:34:28 3 //:class.app/util2//:res.inst/Products//:stat.errors

2016-06-12T04:34:28 9 //:class.app/util2//:res.inst/Products//:stat.reads

2016-06-12T04:34:28 6 //:class.app/util2//:res.inst/Products//:stat.writes

Create a Graph to Visualize Resource Statistics

Create the following sheet metadata file named util2.json in the directory /usr/lib/webui/
analytics/sheets/site/:

{

 "$schema": "file:///analytics-import.schema.json",

 "v1": {

 "groups": [

 {

 "description": "Rate of change of the reads, writes, and errors counts

 for the util2 example",

 "uniqueName": "util2 statistics Group",

 "visualizations": [

 "util2 writes",

 "util2 Customers"

]

 }

],

 "sections": [

 {

 "groups": [

62 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

Collect Data for Statically Allocated Resources

 "util2 statistics Group"

],

 "uniqueName": "util2 statistics Section"

 }

],

 "sheets": [

 {

 "description": "Resource statistics for the util2 example.",

 "sections": [

 "util2 statistics Section"

],

 "tags": [

 "data_attach",

 "static resources"

],

 "uniqueName": "util2 statistics"

 }

],

 "visualizations": [

 {

 "description": "Rate of change of writes count for all resources",

 "ssids": [

 "//:class.app/util2//:res.*//:stat.writes//:op.rate"

],

 "style": "time-series",

 "uniqueName": "util2 writes"

 },

 {

 "description": "Rate of change of reads, writes, and errors count for

 Customers",

 "ssids": [

 "//:class.app/util2//:res.inst/Customers//:stat.*//:op.rate"

],

 "style": "time-series",

 "uniqueName": "util2 Customers"

 }

]

 }

}

This file defines a sheet with two visualizations. One visualization shows the rate of change of
write operation counts for each resource. The second visualization shows the read, write, and
error count rates of change for one resource.

Restart the webui/server:default service and ensure the service is online and the
visualization definitions were successfully read:

$ svcadm restart svc:/system/webui/server:default

Chapter 4 • Specifying Resources 63

Collect Data for Statically Allocated Resources

$ svcs webui/server

STATE STIME FMRI

online 15:47:13 svc:/system/webui/server:default

$ svcs -Lx webui/server

When administrators open the Sheets view in the System Web Interface, they see a new sheet
named “util2 statistics,” shown in the following figure. The visualization named “util2 writes”
shows the rate of change of the writes count for the Customers resource, the Orders resource,
and the Products resource. The visualization named “util2 Customers” shows the rate of change
of the reads, writes, and errors counts for the Customers resource.

You can create partitions and use mapping to enable administrators to choose how they want
to view the data. Instead of providing multiple visualizations with different views of the data,
you can provide a single visualization that enables administrators to display the data in different
ways. See Chapter 5, “Separating Data Into Partitions” for more information.

FIGURE 3 Graph Showing Statistics for Resources

64 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

Collect Data for Dynamically Allocated Resources

Collect Data for Dynamically Allocated Resources

The example described in this section is similar to the previous example. The difference is that
in this example you do not know ahead of time how many or which application instances will
be configured on the system. The resources in this example are dynamically allocated in the
application using the sstore_resource_add() interface.

The sstore_resource_add() interface protects against multiple applications providing data for
the same resources as described in the following comparison:

■ To allocate resources statically, you must assume the root role; the metadata files and
directories are owned by root. If you add conflicting metadata, you will get errors when
you restart the sstore service.

■ To allocate resources dynamically, you must call sstore_resource_add() to add the
resource metadata to the statistics repository. If you try to add metadata that is already in the
statistics store, you will get an error return.

Note that a single class can have both statically-allocated resources and dynamically-allocated
resources. For example, the svc class has one static resource: the default restarter service
system/svc/restarter:default. Other services are added dynamically as the services are
installed on the system.

Modify the Metadata to Omit Resource Names

The following table provides an overview of elements to define in your class metadata. Some
optional elements, such as events, are not shown. This table is focused on resources. In the "No
Resources" column, all statistics are class statistics.

TABLE 3 Class Metadata Elements

No Resources Statically Defined Resources Dynamically Defined Resources

■ schema

■ description

■ id

■ stability

■ stat-names

■ schema

■ description

■ id

■ instance-metadata

■ namespaces

■ stability

■ stat-names

■ static-instances

■ schema

■ description

■ id

■ namespaces

■ stability

■ stat-names

Chapter 4 • Specifying Resources 65

Collect Data for Dynamically Allocated Resources

In the /usr/lib/sstore/metadata/json/site/ directory, create the file class.app.util3.
json with the following content. If you copy the file class.app.util2.json, the primary
changes you need to make are:

■ Delete the instance-metadata element.
■ Delete the static-instances element.

The instance-metadata and static-instances elements are not used for dynamically
allocated resources.

The stat-names element is the same as in the previous two examples. The namespaces element
is still needed to define the type of the resources.

You might also want to update the description of the application and the name of the application
in the id.

{

 "$schema": "//:class",

 "description": "Example util1 plus dynamically-allocated resources",

 "id": "app/util3",

 "namespaces": [

 {

 "name-type": "string",

 "resource-name": "inst"

 }

],

 "stability": "stable",

 "stat-names": [

 "//:stat.reads",

 "//:stat.writes",

 "//:stat.errors"

]

}

Create the file stat.util3.json, which is the same as the stat.util2.json file except that
util2 is changed to util3 in each id value.

[

 {

 "$schema": "//:stat",

 "description": "reads",

 "id": "//:class.app/util3//:stat.reads",

 "stability": "stable",

 "type": "counter",

 "units": "operations"

 },

 {

66 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

Collect Data for Dynamically Allocated Resources

 "$schema": "//:stat",

 "description": "writes",

 "id": "//:class.app/util3//:stat.writes",

 "stability": "stable",

 "type": "counter",

 "units": "operations"

 },

 {

 "$schema": "//:stat",

 "description": "errors",

 "id": "//:class.app/util3//:stat.errors",

 "stability": "stable",

 "type": "counter",

 "units": "errors"

 }

]

Restart the sstore:default service to add the new metadata to the statistics repository.

$ svcadm restart sstore:default

View the util3 statistic metadata.

$ sstore info //:class.app/util3

 Identifier: //:class.app/util3

 namespaces: {'0': '{'name-type': 'string', 'resource-name': 'inst'}'}

 $schema: //:class

description: Example util1 plus dynamically-allocated resources

 id: app/util3

 stability: stable

 stat-names: //:stat.reads

 stat-names: //:stat.writes

 stat-names: //:stat.errors

Modify the Application to Create Resources
Dynamically

The util3 version of this example application calls sstore_data_attach() in the same way as
in the util2 version and updates the statistic values in the same way. The stats structure is the
same.

The util3 version of the ids array is the same as the util2 version except that the SSIDs are
not statically listed in the application. In the util3 version, the ids array is built dynamically as
resources are added.

Chapter 4 • Specifying Resources 67

How to Add Resources Dynamically

How to Add Resources Dynamically

Use this procedure when your application detects that a new resource has come online.

1. Store an SSID for the resource in an array.
This resource SSID has the following form:

//:class.class//:res.resource

For example, store the following SSID in an array named res_ids.

//:class.app/util3//:res.inst/Customers

This array of resource SSIDs is an argument to sstore_resource_add().

2. Call sstore_resource_add() to add the resource metadata to the statistics
repository.
For example, if you had added Customers, Products, and Orders resources to the res_ids array,
you could make the following call:

sstore_resource_add(hdl, (const char **)res_ids, 3)

An optional fourth argument enables you to include additional metadata for the resource. See
the sstore_resource_add(3SSTORE) man page for details.

3. Build the statistics array.
Use the res_ids resource SSID array and the stats structure to dynamically create the ids
statistics array. As in previous versions of this example, the ids statistics array is the array that
you pass to sstore_data_attach() and use for updating the values of the statistics.

68 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

 5 ♦ ♦ ♦ C H A P T E R 5

Separating Data Into Partitions

The example in this chapter builds on the examples in the previous chapters. This chapter shows
separating the statistic data into partitions. Partitioning statistic data enables you to see either a
total value or a breakdown (parts) of a total value. For example, one administrator might need
to know only that an error occurred, while another administrator needs more information about
where errors occurred.

■ “Add Partition Metadata” on page 69
■ “View Partitioned Statistic Values” on page 72
■ “Create a Graph to Visualize Partitioned Statistic Values” on page 73

Add Partition Metadata

The class metadata file does not need to change. Use the class.app.util2.json file shown in
“Add Resources to the Class Metadata” on page 57.

In this example, the statistics metadata file is modified to add a statistic that will be used in
creating partitions.

Modify the Statistics Metadata File

The statistics metadata file is the same as the stat.util2.json file shown in “Add Resources
to the Class Metadata” on page 57 except that you need to add an element for the activity
statistic that will be used to partition and reads and writes statistics. Modify the stat.util2.
json file to have the following content:

[

 {

 "$schema": "//:stat",

Chapter 5 • Separating Data Into Partitions 69

Add Partition Metadata

 "description": "reads",

 "id": "//:class.app/util2//:stat.reads",

 "stability": "stable",

 "type": "counter",

 "units": "operations"

 },

 {

 "$schema": "//:stat",

 "description": "writes",

 "id": "//:class.app/util2//:stat.writes",

 "stability": "stable",

 "type": "counter",

 "units": "operations"

 },

 {

 "$schema": "//:stat",

 "description": "errors",

 "id": "//:class.app/util2//:stat.errors",

 "stability": "stable",

 "type": "counter",

 "units": "errors"

 },

 {

 "$schema": "//:stat",

 "description": "reads or writes",

 "id": "//:class.app/util2//:stat.activity",

 "stability": "stable",

 "type": "counter",

 "units": "operations"

 }

]

Create a Statistic Mapping File

Create a new stat-mapping metadata file with the following content in stat-mapping.util2.
json in the /usr/lib/sstore/metadata/json/site/ directory:

[

 {

 "$schema": "//:stat-mapping",

 "description": "map util2 instance errors to aggregate class errors",

 "id": "//:class.app/util2//:stat-mapping.errors",

 "instance-metadata": {

 "partitions": [

 "inst"

]

70 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

Add Partition Metadata

 },

 "transforms": [

 {

 "match": "//:class.app/util2//:res.inst/(Customers|Products|Orders)//:

stat.errors$",

 "replace": "//:class.app/util2//:stat.errors//:part.inst(\\1)"

 }

]

 },

 {

 "$schema": "//:stat-mapping",

 "description": "map util2 instance reads and writes to aggregate class

 activity",

 "id": "//:class.app/util2//:stat-mapping.activity",

 "instance-metadata": {

 "partitions": [

 "inst",

 "type"

]

 },

 "transforms": [

 {

 "match": "//:class.app/util2//:res.inst/(Customers|Products|Orders)//:

stat.(reads|writes)$",

 "replace": "//:class.app/util2//:stat.activity//:part.inst(\\1)//:part.

type(\\2)"

 }

]

 }

]

In the first stanza, the errors statistic for each instance (statically allocated Customers,
Products, and Orders) is mapped to a class-level errors statistic. The partitions element
indicates that the statistic is partitioned by resource (inst). The (\\1) expression in the
replace value matches the (Customers|Products|Orders) expression in the match value.
The //:class.app/util2//:res.inst/Customers//:stat.errors, //:class.app/util2//:
res.inst/Products//:stat.errors, and //:class.app/util2//:res.inst/Orders//:stat.
errors values are aggregated in the //:class.app/util2//:stat.errors statistic. The split
between resource instances is shown by the //:class.app/util2//:stat.errors//:part.
inst SSID.

In the second stanza, the reads and writes statistics for each instance are mapped to the new
activity statistic that you added to the stat.util2.json file. The (\\2) expression in the
replace value matches the (reads|writes) expression in the match value. Total reads and
writes from all three instances are aggregated in the //:class.app/util2//:stat.activity
statistic. Splits between instances are shown by the //:class.app/util2//:stat.activity//:

Chapter 5 • Separating Data Into Partitions 71

View Partitioned Statistic Values

part.inst SSID. Splits between statistics are shown by the //:class.app/util2//:stat.
activity//:part.type SSID.

View Partitioned Statistic Values

The following output shows the values of all resource instance statistics and partitioned
statistics:

$./util2 &

$ sstore capture //:class.app/util2//:*//:*

TIME VALUE IDENTIFIER

2016-06-12T05:19:54 2 //:class.app/util2//:res.inst/Customers//:stat.errors

2016-06-12T05:19:54 10 //:class.app/util2//:res.inst/Customers//:stat.reads

2016-06-12T05:19:54 7 //:class.app/util2//:res.inst/Customers//:stat.writes

2016-06-12T05:19:54 3 //:class.app/util2//:res.inst/Orders//:stat.errors

2016-06-12T05:19:54 15 //:class.app/util2//:res.inst/Orders//:stat.reads

2016-06-12T05:19:54 13 //:class.app/util2//:res.inst/Orders//:stat.writes

2016-06-12T05:19:54 3 //:class.app/util2//:res.inst/Products//:stat.errors

2016-06-12T05:19:54 13 //:class.app/util2//:res.inst/Products//:stat.reads

2016-06-12T05:19:54 7 //:class.app/util2//:res.inst/Products//:stat.writes

2016-06-12T05:19:54 //:class.app/util2//:stat.activity//:part.inst

 Customers: 17.0

 Orders: 28.0

 Products: 20.0

2016-06-12T05:19:54 //:class.app/util2//:stat.activity//:part.type

 writes: 27.0

 reads: 38.0

2016-06-12T05:19:54 //:class.app/util2//:stat.errors//:part.inst

 Customers: 2.0

 Orders: 3.0

 Products: 3.0

^C

Partitioned values are shown as real numbers.

The following output shows that the total of all reads and writes (17 + 28 + 20 or 27 +38 shown
in the preceding output) is stored in the //:class.app/util2//:stat.activity statistic, and
the total errors from all instances is stored in the //:class.app/util2//:stat.errors statistic:

$ sstore export -t 2016-06-12T05:19:53 -p 1 //:class.app/util2//:stat.*

TIME VALUE IDENTIFIER

2016-06-12T05:19:54 65.0 //:class.app/util2//:stat.activity

2016-06-12T05:19:54 8.0 //:class.app/util2//:stat.errors

72 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

Create a Graph to Visualize Partitioned Statistic Values

Create a Graph to Visualize Partitioned Statistic Values

Create the following sheet metadata file in /usr/lib/webui/analytics/sheets/site/ and
then restart the webui/server:default service:

{

 "$schema": "file:///analytics-import.schema.json",

 "v1": {

 "groups": [

 {

 "description": "util2 reads, writes, and errors partitioned by resource

 or operation",

 "uniqueName": "util2 partitioned statistics Group",

 "visualizations": [

 "util2 operations summed",

 "util2 operations not summed",

 "util2 errors"

]

 }

],

 "sections": [

 {

 "groups": [

 "util2 partitioned statistics Group"

],

 "uniqueName": "util2 partitioned statistics Section"

 }

],

 "sheets": [

 {

 "description": "Partitioned statistics",

 "sections": [

 "util2 partitioned statistics Section"

],

 "tags": [

 "data_attach",

 "partitions"

],

 "uniqueName": "util2 partitioned statistics"

 }

],

 "visualizations": [

 {

 "description": "Sum of reads and writes for each resource",

 "ssids": [

 "//:class.app/util2//:stat.activity"

Chapter 5 • Separating Data Into Partitions 73

Create a Graph to Visualize Partitioned Statistic Values

],

 "style": "time-series",

 "uniqueName": "util2 operations summed"

 },

 {

 "description": "reads and writes for each resource",

 "ssids": [

 "//:class.app/util2//:stat.activity//:part.type(reads,writes,

sum=false)"

],

 "style": "time-series",

 "uniqueName": "util2 operations not summed"

 },

 {

 "description": "util2 error counts",

 "ssids": [

 "//:class.app/util2//:stat.errors"

],

 "style": "time-series",

 "uniqueName": "util2 errors"

 }

]

 }

}

The sheet defined in this file includes two visualizations to display values of the activity
statistic so that you can compare the results. You probably will define a single visualization for
each statistic that you think will be most useful to most administrators. Administrators can use
the System Web Interface to change the visualization if necessary.

All three visualizations defined in this metadata file have an inst choice on the partitions list.
The visualization for //:class.app/util2//:stat.activity also has a type choice. This
information comes from the mapping file.

In the first activity visualization ("operations summed"), if no partition is selected, the graph
shows a single line labeled "reads or writes" that represents the sum of all reads and writes from
any resource.

In the second activity visualization ("operations not summed"), if no partition is selected,
the graph shows two lines. The line labeled "reads" is the sum of all reads performed by any
resource; the line labeled "writes" is the sum of all writes performed by any resource. The first
activity visualization shows this same display if the user selects type from the partitions list.

The following figure shows both activity visualizations when inst is selected from the
partitions list. In the first visualization, the three lines represent the sum of all reads and writes
from each resource. In the second visualization, the six lines represent the number of reads from
each resource and the number of writes from each resource. Looking back at the sheet metadata

74 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

Create a Graph to Visualize Partitioned Statistic Values

file, the reads and writes are summed by default. Specifying sum=false effectively resulted in
partitioning by both resource and data type at the same time.

FIGURE 4 Graph Showing Statistics Partitioned by Resource

Chapter 5 • Separating Data Into Partitions 75

76 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

 6 ♦ ♦ ♦ C H A P T E R 6

Adding Any Type of Data to the Statistics Store

This chapter shows an sstore_data_update() example for updating statistic data
values. Instead of using a shared memory area as sstore_data_attach() does,
sstore_data_update() adds statistic values directly to the statistics store. The statistic values
can be any data type.

Create the Class and Statistic Definition Files

In the /usr/lib/sstore/metadata/json/site/ directory, create the file class.app.example.
json with the following content to define the class for the example application.

{

 "$schema": "//:class",

 "description": "example of sstore_data_update()",

 "id": "app/example",

 "stability": "stable",

 "stat-names": [

 "//:stat.one",

 "//:stat.two"

]

}

To define the statistics for this example, create the file stat.example.json with the following
content in the /usr/lib/sstore/metadata/json/site/ directory:

[

 {

 "$schema": "//:stat",

 "description": "example stat one",

 "id": "//:class.app/example//:stat.one",

 "stability": "stable",

 "type": "counter",

 "units": "calls"

Chapter 6 • Adding Any Type of Data to the Statistics Store 77

Create the Class and Statistic Definition Files

 },

 {

 "$schema": "//:stat",

 "description": "example stat two",

 "id": "//:class.app/example//:stat.two",

 "stability": "stable",

 "type": "counter",

 "units": "calls"

 }

]

Run the soljsonfmt tool on the .json file to check for JSON syntactic errors. Run the
soljsonvalidate tool on the .json file to check for JSON semantic errors:

soljsonvalidate class.app.example.json stat.example.json

soljsonfmt class.app.example.json stat.example.json

You must restart the sstore:default service to see the new class SSID.

$ svcadm restart sstore:default

Ensure that sstore:default and other services are online:

$ svcs -x

Check whether the metadata files imported correctly:

$ tail `svcs -L sstore`

The log file should show no errors and should show that the start method exited with status 0.

List the new class SSID:

$ sstore list //:class.app/example

IDENTIFIER

//:class.app/example

Show the metadata for the class:

$ sstore info //:class.app/example

 Identifier: //:class.app/example

 $schema: //:class

 id: app/example

description: example of sstore_data_update()

 stat-names: //:stat.one

 stat-names: //:stat.two

 stability: stable

78 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

Create an Application that Updates Statistic Values

Create an Application that Updates Statistic Values

Create the file data_update.c with the following content to update the statistic values
in this example. Differences between this sstore_data_update() program and the
sstore_data_attach() program described in “Create an Application that Writes Statistic
Values” on page 46 include the following:

■ This sstore_data_update() program has no mystats structure. The mystats structure is
used for the memory map in the sstore_data_attach() program.

■ The handle to the statistics store is declared but no memory is allocated.

/*

 * Example program data_update.c:

 */

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <libsstore.h>

#define NUM_STATS 2

const char *ssids[NUM_STATS] = {

 "//:class.app/example//:stat.one",

 "//:class.app/example//:stat.two"

};

int main()

{

 sstore_handle_t hdl;

 sstore_value_t vals[NUM_STATS] = {0};

 int i, j;

 if ((hdl = sstore_alloc()) == NULL) {

 fprintf(stderr, "Failed to alloc libsstore handle\n");

 return (-1);

 }

 /* Alloc the sstore_value_t's */

 for (i = 0; i < NUM_STATS; i++) {

 if ((vals[i] = sstore_value_alloc()) == NULL) {

 fprintf(stderr, "Failed to alloc sstore_value_t\n");

 goto end;

 }

 vals[i]->sv_type = SSTORE_VALUE_NUMBER;

 }

Chapter 6 • Adding Any Type of Data to the Statistics Store 79

Record Statistic Values

 /* Update the stats every second */

 for (i = 0;; i++) {

 char *id, *desc;

 for (j = 0; j < NUM_STATS; j++) {

 vals[j]->sv_value.num += j + 1;

 }

 if (sstore_data_update(hdl, ssids, vals,

 NUM_STATS) != ESSTORE_OK) {

 fprintf(stderr, "Failed to update stats. "

 "Reason: %s\n", sstore_err_description(hdl));

 break;

 }

 /* Check warnings */

 while (sstore_warning_next(hdl, &id,

 &desc) != SS_WARN_OK) {

 fprintf(stderr, "failed to update stat for %s "

 "because %s\n", id, desc);

 }

 sleep(1);

 }

end:

 for (i = 0; i < NUM_STATS; i++) {

 sstore_value_free(vals[i]);

 }

 sstore_free(hdl);

 return (0);

}

Compile the application:

$ cc -lsstore -o data_update data_update.c

Record Statistic Values

List the new statistics:

$ sstore list //:class.app/example//:stat.*

IDENTIFIER

//:class.app/example//:stat.one

80 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

Record Statistic Values

//:class.app/example//:stat.two

Show information about the new statistics:

$ sstore info //:class.app/example//:stat.*

 Identifier: //:class.app/example//:stat.one

 $schema: //:stat

description: example stat one

 id: //:class.app/example//:stat.one

 stability: stable

 type: counter

 units: calls

 Identifier: //:class.app/example//:stat.two

 $schema: //:stat

description: example stat two

 id: //:class.app/example//:stat.two

 stability: stable

 type: counter

 units: calls

Run the data_update application and record the statistic values:

$ sstore capture //:class.app/example//:stat.*

TIME VALUE IDENTIFIER

2016-05-25T23:21:02 2 //:class.app/example//:stat.one

2016-05-25T23:21:02 4 //:class.app/example//:stat.two

2016-05-25T23:21:03 3 //:class.app/example//:stat.one

2016-05-25T23:21:03 6 //:class.app/example//:stat.two

2016-05-25T23:21:04 4 //:class.app/example//:stat.one

2016-05-25T23:21:04 8 //:class.app/example//:stat.two

...

Chapter 6 • Adding Any Type of Data to the Statistics Store 81

82 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

Index

A
authorizations

solaris.sstore.capture.expensive, 39
solaris.sstore.capture.sensitive, 38
solaris.sstore.read.sensitive, 38
solaris.sstore.update.res, 41

C
C API, 17, 46
class statistics, 43
collections

creating, 30

D
data types, 17

E
expensive property, 39

G
graphs

creating, 32, 50
partitioned statistics, 73
resource statistics, 62

H
histograms, 20

J
JSON files

data, 26
schema, 26

L
libsstore library, 17

C API, 46
Python API, 48

M
metadata, 25, 43
mmap, 17, 46

P
partitions, 29, 69
properties

expensive, 39
sau_capture_expensive_auth, 39
sau_capture_expensive_username, 39
sau_capture_sensitive_auth, 38
sau_capture_sensitive_username, 38
sau_read_sensitive_auth, 38
sau_read_sensitive_username, 38
sau_update_res_auth, 41
sau_update_res_username, 41
sensitive, 38

Python API, 17, 48

83

Index

R
resources, 57

defining, 27
dynamically allocated, 29, 65
metadata, 57, 65
removing, 21
statically allocated, 28, 57
topology, 30

S
sau_capture_expensive_auth property, 39
sau_capture_expensive_username property, 38, 39
sau_capture_sensitive_auth property, 38
sau_read_expensive_username property, 38
sau_read_sensitive_auth property, 38
sau_update_res_auth property, 41
sau_update_res_username property, 41
sensitive property, 38
shared memory area, 17, 46
sheets

creating, 32, 50
partitioned statistics, 73
resource statistics, 62

solaris.sstore.capture.expensive

authorization, 39
solaris.sstore.capture.sensitive

authorization, 38
solaris.sstore.read.sensitive authorization, 38
solaris.sstore.update.res authorization, 41
soljsonfmt, 26, 44
soljsonvalidate, 26, 44
sstore command

capture subcommand, 49
export subcommand, 50
info subcommand, 49
list subcommand, 49

SStore data_attach(), 48
sstore_alloc(), 46
sstore_data_attach, 17, 43, 46, 46
sstore_data_attach_histogram, 17, 20
sstore_data_bulk_update, 17

sstore_data_update, 17, 77
sstore_free(), 46
sstore_histogram_quantize(), 20
sstore_resource_add(), 29, 65
sstore_resource_remove(), 21
statistics

adding, 26
adding values, 17
bulk value update, 17
categorizing values into ranges, 20
class, 43
histograms, 20
metadata, 26
partitions, 29, 69
providers, 17
removing, 21
updating values, 17

troubleshooting, 21
value time stamps, 17
value types, 17

T
time stamps, 17
topology, 30

U
/usr/lib/sstore/metadata/ directory, 26
metadata files, 26

See also authorizations
See also JSON files
See also properties

V
visualizations

creating, 32, 50
partitioned statistics, 73
resource statistics, 62

84 Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface • August 2018

	Adding Custom Data to the Oracle® Solaris 11.4 StatsStore and System Web Interface
	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	Chapter 1 • Adding Data to the Oracle Solaris StatsStore
	Adding Data: Steps and Best Practices
	How to Add Data
	Type of Data to Provide
	Data Type
	Components of the Application
	Components of a Statistic
	Topology Map

	Interfaces for Providing Statistic Values
	Comparing Methods for Providing Statistic Values
	The sstore_data_attach() Interface
	The sstore_data_update() Interface
	The sstore_data_bulk_update() Interface
	The sstore_data_attach_histogram() Interface

	Removing Resources and Statistics

	Troubleshooting Providing Statistics
	How to Force a Reread of all Metadata

	Chapter 2 • Defining Custom Statistics
	Adding Resources and Statistics to the Statistics Store Namespace
	Using Statistics Store Metadata Files
	Defining Resources
	Adding Static Resources
	Adding Resources Dynamically

	Defining Partitions

	Mapping Topology
	Creating a Collection
	Creating Visualizations
	Sheet and Visualization Design Best Practices
	How to Create a Visualization
	How to Create a Visualization by Using the System Web Interface

	Authorizing Access to Resources and Statistics
	Restricting Access to Sensitive Data
	Restricting Capture of Data that is Expensive to Capture
	Authorizing the Ability to Add and Remove Resources and Statistic and Event Data
	Authorizing the Ability to Configure a Collection

	Chapter 3 • Adding Simple Data Values to the Statistics Store
	Populate the Statistics Store Namespace
	Create an Application that Writes Statistic Values
	C Version
	Python Version

	Update and View Statistic Values
	Create a Graph to Visualize the Statistic Values

	Chapter 4 • Specifying Resources
	Collect Data for Statically Allocated Resources
	Add Resources to the Class Metadata
	Modify the Application to Save Statistic Values for Each Resource
	View Statistic Values for Statically Allocated Resources
	Create a Graph to Visualize Resource Statistics

	Collect Data for Dynamically Allocated Resources
	Modify the Metadata to Omit Resource Names
	Modify the Application to Create Resources Dynamically
	How to Add Resources Dynamically

	Chapter 5 • Separating Data Into Partitions
	Add Partition Metadata
	Modify the Statistics Metadata File
	Create a Statistic Mapping File

	View Partitioned Statistic Values
	Create a Graph to Visualize Partitioned Statistic Values

	Chapter 6 • Adding Any Type of Data to the Statistics Store
	Create the Class and Statistic Definition Files
	Create an Application that Updates Statistic Values
	Record Statistic Values

	Index

