Oracle® OpenBoot 4.x Administration
Guide

Part No: E63649-01
January 2017

ORACLE

Oracle OpenBoot 4.x Administration Guide
Part No: E63649-01
Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement
between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Référence: E63649-01
Copyright © 2017, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui I'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis a des restrictions d'utilisation et

de divulgation. Sauf stipulation expresse de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence, transmettre,
distribuer, exposer, exécuter, publier ou afficher le logiciel, méme partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder a toute
ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté a des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous
invite, le cas échéant, a lui en faire part par écrit.

Si ce logiciel, ou la documentation qui I'accompagne, est livré sous licence au Gouvernement des Etats-Unis, ou a quiconque qui aurait souscrit la licence de ce logiciel pour le
compte du Gouvernement des Etats-Unis, la notice suivante s'applique :

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations. Ce logiciel ou matériel n'est pas congu ni n'est destiné a étre
utilisé dans des applications a risque, notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou ce matériel dans le cadre
d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires a son utilisation dans
des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce logiciel ou matériel pour des
applications dangereuses.

Oracle et Java sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre a des marques appartenant a d'autres propriétaires
qu'Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une
marque déposée de The Open Group.

Ce logiciel ou matériel et la documentation qui I'accompagne peuvent fournir des informations ou des liens donnant accés a des contenus, des produits et des services émanant de
tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers, sauf mention contraire stipulée
dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses affiliés ne sauraient étre tenus pour responsables des pertes subies, des cofits occasionnés ou des
dommages causés par l'accés a des contenus, produits ou services tiers, ou a leur utilisation, sauf mention contraire stipulée dans un contrat entre vous et Oracle.

Acceés aux services de support Oracle

Les clients Oracle qui ont souscrit un contrat de support ont acceés au support électronique via My Oracle Support. Pour plus d'informations, visitez le site http://www.oracle.com/
pls/topic/lookup?ctx=acc&id=info ou le site http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs si vous étes malentendant.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Contents

Using This DOCUMENtAtIONccoiiuiiiiiiiiiiie e e e e e eaenes 9
Product Documentation Libraryc.ceeiviiiiiiiiiiiiiiii e 9
FEedDACK ...ooniineii i e 9

Understanding OPENBOOLc.oiiiiiiiiiiiiiie e e e e eaeeaaenes 11
OpenBoot FIrmware OVEIVIEWc.c.eeuiuiiiuiiiiiieieiete ettt ereeeaeeeneenenees 11
Built-In and Plug-In Device DITVerSociuviiiiiiiiiiiiieineie et eaas 12
S 0T [112§) < <) PN 13
DEVICE TTEE ...ttt e et e e e eaaes 14
Device Path Names, Addresses, and ATGUMENLSveeureenrerneiineiineeieenrennrennnenn 16
DEVICE ALTASES ..eeuueeiieiiee ettt ettt ettt ettt e e eens 18
Additional RESOUITESieuuniiiieiii ettt et ettt e e e et e e e eee 19

Accessing the OpenBoot CLI and Getting Helpccoooiiiiiiiiiiin 21
Vv Identify a Method to Get to the OpenBoot CLIccuoviviiiiiiiniiiniiieeineeneennnens 21
Vv Access the OpenBoot CLI (OpenBoot RUNNING)ccvuvveniinniinieineeineenneeenennnens 22
Vv Access the OpenBoot CLI (Solaris RUnning)ccceeevviiiiiiniiniiiniinieiniennnen. 23
V¥ Access the OpenBoot CLI (Powered Off)cccvviviiiiiiiiiiniiiniie e 24
V¥ Access the OpenBoot CLI (HUNg SYSteM)evvuiieneineinneineereeeineeieeeneennanenns 25
Vv Use the help Commandoouiiiiiiiiniiiiii e 26

Using the OpPenBOOt CLIc.oiiiiiiiiiii e e e e eaes 29
OpenBoot CLI OVEIVIEW ...cuiuiiiiiiiiiiiiie et ettt e e e et eeaeenenes 29
Console I/0 CONLTOLcuuieiiiiii ettt e e e 30
Command Completion KeyStroKesovvuriiiiiiiiieiineineiieei e e eeeennnas 31
Virtual machine Information Commandscccceevueeineiineiieeireieeeeereereenneeens 32
V¥ Obtain Virtual machine Information with OpenBoot Commands 33

Contents

Booting and Resetting a Virtual Machineccoooiiiiiiniiin e, 37
SEart-UP SEQUETIICEounineniiiee ettt ettt e et e e e e et e e e e e enenenenenens 37

BOOt SEQUEIICEenieinii ittt et et e e e e e 40

Boot Pools and Fallback Boot IMagesccuuveuniiiiiiiniiiieieiieii e eaneenn 43

boot Command OVEIVIEWcc.uiiuuniiiiiieiiiieiiie ettt eei et e et e eai e eeneeenaeeens 46

V¥ Perform a Default BOOtcouuiiiiiiiiiiiii e e 48

¥ Boot a Virtual machine From a Specific Devicecc.oveeiviiiniiiiieiiieeiinnnees 49
Booting Over the NetWorKcoiuiiiiiiiriiie e e e e 50
Network BoOting ProCESScc.veuiiiniiiiiiiiiiiiiieiie e e eeaes 50

V¥ Boot Over the Networkc.oooviiiiiiiiiiii e 52

Arguments Supported by Network BOOtcc.oveuvviniiiiiiiiiieiineiieeieeieennnes 52

V¥ Reset a Virtual machinecooeuiiiiiiiiiiiiii e 54
Setting Configuration Variablescooiiiiiiiiii 55
Configuration Variables OVEIVIEWc.viiuiiiniiiniiineieeieeieeieeineeeeeeeeneennaennns 55
Standard Configuration Variablesccccciiiiiiiiiiiiiii e 56
Configuration Variable COmMMANASccevuiiiiieiiiriiieeiieeeiie e e e eeieeeinaes 58

Vv Display the Current Variable Settingsccccoveiviiniiineiniiireiieeie e eneeneennns 59

V¥ Change a Variable Settingccuuiiiiiiiiiiiiiii e 60

V¥ Create @ Device ALIASoiuniiiiiiiiiiiii e 61

Vv Set the Input and OULPUL DEVICEuvvunriniinriineeieieeieeieeieeie e e e eeneeeneeanns 63

V¥ Change the Power-On Bannercccceuviiiiiiiiiniiiieiiieeiieee e 63

V¥ Reset a Variable to Its Default Valueccocoviviiiiiiiiiiiiiiiniiee e 66

Vv Reset All Variables to Default Values (Using OpenBoot CLI)c.cccevvnveennenn. 67

¥ Reset All Variables to Default Values (Using Oracle ILOM CLI)cccuueennneee. 68
Setting Security Variables ... 71
V¥ Set Up the Security PassWordceeuvviueeinreinreieiieeieeieeieenneeaneenneennannnns 71

V¥ Set the security-mode Variableooviiiiiiiiiii 72

v Disable the security-mode Variableccooiiiiiiiii 74

V¥ Check for Failed LOg-INScouuiiiiiiieiiiiiiiieie e e e e e e ea e eaneens 74

Vv Configure OpenBoot Keys on an Installation Clientc..coeevvevineeineeinennnnn. 75
Interrogating the System With OpenBoot Commandsccccceeeeviinnnnnn. 77
V¥ Probe All SCSI DEVICESueeuuniiiiiiiiieiie ettt ettt eai e eei e 77

¥ Monitor Network INterfacesccouvieuiiiiiiiiiiniiiie e 78

6 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Contents

V¥ List All NVIME DEVICES ...cvuiiniiieiieiieiieii et et e e et e eie et e e e e e e eaneeans 80
Browsing the DEeVICE TTEEeeueiiuiiineiieiieeii et eet e et e e e e eeneeeneernereereneeneeenaenns 80
Commands for Browsing the Device Treecc.oveeuuiiiiiieiinieiiieeeiieeeinneens 81

V¥ Display the Device TTeeeeuuviuuiiiiiiiiiieiieeie et e e eeeens 82
Customizing Start-Up with NVRAMRCcoooiiiiiiiiii e 87
NVRAMRC OVEIVIEW ..euiiniiiiiniiiiitie ittt et ettt ettt et et e e e e e e e e e e eaneans 87
NVRAMRC Editor COmMMANASc.eeuneiueinrerneeneeieeietietieeeneeineeieenneeneeanenns 89
NVRAMRC Script Editor Keystroke Commandscceevveuneinneeneeineeieeinnnnns 91

Vv Activate the NVRAMROC SCIIPE vuuvuiiniiniiiiiiieiieiie et eee e eeeeneeieeneeneens 92
Example NVRAMROC SCIIPE ..uvuuiiniiieiieiie et ettt ettt e e e e e e e eans 92

(€] [0 oLT 1Y At 95
INAEX ... et e ettt e e e e e e e ettt e e e eeeeees 99

Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Using This Documentation

= Overview — Describes how to use and administer the OpenBoot firmware from Oracle.
= Audience — Technicians, system administrators, and authorized service providers.
m Required knowledge — Firmware configuration experience on Oracle hardware.

Product Documentation Library

Documentation and resources for this product and related products are available at http: //www.
oracle.com/goto/openboot/docs.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

Using This Documentation

http://www.oracle.com/goto/openboot/docs
http://www.oracle.com/goto/openboot/docs
http://www.oracle.com/goto/docfeedback

10 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Understanding OpenBoot

Use these topics to understand OpenBoot as defined by the IEEE Standard 1275-1994 for Boot

(Initialization Configuration) Firmware: Core Requirements and Practices.

= “OpenBoot Firmware Overview” on page 11

= “Built-In and Plug-In Device Drivers” on page 12

= “FCode Interpreter” on page 13

m “Device Tree” on page 14

m “Device Path Names, Addresses, and Arguments” on page 16
= “Device Aliases” on page 18

= “Additional Resources” on page 19

OpenBoot Firmware Overview

The OpenBoot architecture provides a significant increase in functionality and portability when

compared to proprietary systems of the past. Although this architecture was first implemented
by Sun MicroSystems as OpenBoot on SPARC systems, its design is processor-independent.
OpenBoot is based on the IEEE Std 1275-1994 Standard for Boot (the standard is available

from IEEE, which might require membership or a fee for access).

For recent SPARC systems, OpenBoot firmware is executed after Virtual Machine (VM) is
started.

The primary tasks of OpenBoot firmware are to:

m Determine the hardware configuration and initialize I/O devices by running the FCode
driver for each I/O device.

m Boot the OS from either a storage device or from a network.

The primary tasks are described in “Booting and Resetting a Virtual Machine” on page 37.

Understanding OpenBoot

11

Built-In and Plug-In Device Drivers

The OpenBoot CLI is based on an interactive command interpreter that gives you access to
an extensive set of functions for hardware and software development, fault isolation, and
debugging. For details, see “Accessing the OpenBoot CLI and Getting Help” on page 21
and “Using the OpenBoot CLI” on page 29.

A number of OpenBoot operating characteristics are controlled by configuration variables
that are stored in nonvolatile memory. If needed, you can change the configuration variables
default values to tailor operating characteristics to your environment. For details, see “Setting
Configuration Variables” on page 55 and “Setting Security Variables” on page 71.

OpenBoot provides commands that you can use to gather information about the system
hardware. Some commands also perform a low level sanity tests of the hardware
without a running OS. For details, see “Interrogating the System With OpenBoot
Commands” on page 77.

You can use the OpenBoot nvramrc configuration variable to store user-defined
FORTH commands that are executed during start-up. For details, see “NVRAMRC
Overview” on page 87.

Related Documentation

m [EEE Std 1275-1994. Standard for Boot (Initialization Configuration) Firmware:
Core Requirements and Practices available from: https://www.openfirmware.info/
IEEE 1275-1994

m “Built-In and Plug-In Device Drivers” on page 12

= “FCode Interpreter” on page 13

= “Device Tree” on page 14

m “Device Path Names, Addresses, and Arguments” on page 16
= “Device Aliases” on page 18

Built-In and Plug-In Device Drivers

The devices that are used by OpenBoot can be either built-in devices or plug-in devices. The
firmware device drivers for built-in devices are usually included as permanent parts of the
system’s OpenBoot implementation. The drivers for plug-in devices, such as PCI cards, are
typically stored on the device itself, and are automatically installed when the device is installed.
For PCI cards, FCode goes into the Expansion ROM.

Device drivers can be used to boot the OS from a device or to display text on the device
before the OS has activated its own drivers. This feature enables the input and output devices
supported by a particular system to evolve without changing the system.

12 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

https://www.openfirmware.info/IEEE_1275-1994
https://www.openfirmware.info/IEEE_1275-1994

FCode Interpreter

Probing is the process of determining the presence and characteristics of physical and virtual
devices. For a device that uses the OpenBoot identification methods, the bulk of the probing
process consists of the execution of an FCode program associated with the device. Probing
involves selecting a bus device and using it to test for the presence of devices attached to that
bus.

It is possible for a plug-in device itself to be a bus device. For example, a PCle plug-in device
might be an adapter for fibre channel. Before the children of a bus device can be probed, the
device itself must already exist in the device tree. For the preceding example, the PCle would
have to be probed to locate the fibre channel adapter and install its device node before the fibre
channel could be probed for its children.

The device tree is thus constructed incrementally, beginning from the permanent part
representing built-in devices and proceeding outward toward the leaves of the tree. The default
probing sequence is automatically executed during the start-up sequence, unless overridden.
Each bus device that is capable of accepting plug-in devices defines a device method for
probing its subordinate devices. In addition, bus devices can define device-dependent user
interface commands for probing.

Related Information

= “OpenBoot Firmware Overview” on page 11

= “FCode Interpreter” on page 13

m “Device Tree” on page 14

= “Device Path Names, Addresses, and Arguments” on page 16
= “Device Aliases” on page 18

FCode Interpreter

Plug-in drivers are written in a byte-coded, machine-independent, interpreted language called
FCode. FCode is based on FORTH semantics. Because FCode is machine-independent, the
same device and driver can be used on machines with different CPU instruction sets. Each
OpenBoot image contains an FCode interpreter.

Related Information

= “OpenBoot Firmware Overview” on page 11
= “Built-In and Plug-In Device Drivers” on page 12

Understanding OpenBoot 13

Device Tree

m “Device Tree” on page 14
m “Device Path Names, Addresses, and Arguments” on page 16
m “Device Aliases” on page 18

Device Tree

14

The set of devices attached to a virtual machine, including permanently installed devices and
plug-in devices, is described by an OpenBoot data structure known as the device tree.

The OS can inspect the device tree to determine the hardware configuration of the virtual
machine. Each device in the device tree is described by a property list. The set of properties
describing a device is arbitrarily extensible so that any type of device and any kind of
information that needs to be reported about the device can be accommodated.

The device tree is a hierarchical data structure representing the physical configuration of
the virtual machine. Most OpenBoot elements (for example, devices, buses, and libraries of
software procedures) are named and located by the device tree.

The device tree also describes user configuration choices, contains firmware device drivers
for hardware devices, and contains support routines for use by those drivers. The device tree's
structure mimics the organization of the hardware, viewed as a hierarchy of interconnected
buses and their attached devices.

The device tree consists of a set of device nodes that are interconnected to form a tree.
An individual device node represents either a hardware bus, a hardware device, or a set
of interrelated software procedures. The root of the device tree is a node representing the
machine’s main physical address bus.

Each device node can have these items:

m Properties — Data structures describing the node and its associated device.
m Methods — Software procedures used to access the device.
= Data — Initial values of the private data used by the methods.

= Children — Other device nodes attached to a given node and that lie directly below it in the
device tree.

= Parent — Node that lies directly above a given node in the device tree.

Device nodes with children are called hierarchical nodes. A node's parent is the node to which
it is attached in the device tree. The root node has no parent. Device nodes without children are
called leaf nodes.

Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Device Tree

A node with children usually represents a bus and its associated hardware. Each bus is assumed
to define a physical address space; each device connected to that bus has a distinct physical
address within that space, uniquely distinguishing the particular device from other devices

on that bus. The form of a physical address is bus-specific. The children of a bus node are
distinguished from one another with software representations of the same physical addresses
that the bus device uses to distinguish attached devices. OpenBoot uses several different
representations of addresses with similar meanings but different forms:

= Text representation — The human-readable form of a physical address. The format is bus-
dependent. For example, some buses use a comma-separated list of numbers represented as
ASCII text in hexadecimal notation.

= Stack representation — Used to pass arguments to and results from FORTH words. This
form usually consists of one or more binary numbers on the data stack.

= Property-encoded representation — Used to communicate with client programs through
property values. This form usually consists of a sequence of binary numbers stored within
an array of bytes.

The forms of these representations differ, but their meanings are the same. They represent
physical addresses within a bus's physical address space. The details of these different
representations differ from bus to bus, depending on the addressing characteristics of the
individual bus. Specifications of OpenBoot address representations for several standard buses
are specified in supplements to this document (refer to the IEEE P1275.x documents in 2.1).

Device tree nodes are added by the probing process. Some nodes in the device tree do not
represent physical devices. These nodes are used instead for various general purposes in
OpenBoot. These nodes do not have physical addresses. Their node names have a device name
field but not a unit address field.

The physical address generally represents a physical characteristic unique to the device (such as
the bus address or the slot number where the device is installed). The use of physical addresses
to identify devices prevents device addresses from changing when other devices are installed or
removed.

Each node in the device tree is identified by a node name using the following notation:
device-name@unit-address: device-arguments
Where:

m device-name — Is a sequence of between one and 31 letters, digits, and punctuation
characters from the set “, . + -”. Uppercase and lowercase characters are distinct. By
convention, this name includes the name of the device's manufacturer and the device's
model name separated by a , (comma). Refer to the definition of name in annex A.
Inclusion of the manufacturer name within the device name is especially important for
devices intended to plug into standard buses, because this minimizes the risk of accidental
name collisions

Understanding OpenBoot 15

Device Path Names, Addresses, and Arguments

If the manufacturer name component is omitted (there is no , within the device name),
the convention is to assume that the manufacturer name is the same as that of the nearest
ancestor node (parent node or grandparent node) that has an explicit manufacturer name
component.

m unit-address — Is the text representation of the physical address of the device within the
address space defined by its parent node. The form of the text representation is bus-
dependent.

® device-arguments — is a sequence of printable characters other than “/”, “:”, and “@”.
Uppercase and lowercase characters are distinct. The length is arbitrary. The device
arguments field is interpreted by the driver and typically represents additional device
information, such as partition name or protocol. The device arguments field and its
preceding “:” can be omitted when specifying a node name, as it does not serve to identify
the device node. Instead, it is passed to that node's open method if that driver is opened. By
convention, a , (comma) is used to separate subfields within the device arguments field.

Related Information

= “OpenBoot Firmware Overview” on page 11

= “Built-In and Plug-In Device Drivers” on page 12

= “FCode Interpreter” on page 13

m “Device Path Names, Addresses, and Arguments” on page 16
m “Device Aliases” on page 18

Device Path Names, Addresses, and Arguments

16

OpenBoot deals directly with hardware devices in the virtual machine. Each device has a
unique name representing the type of device and where that device is located in the addressing
structure. The textual representation of a such a path is called a device path. Device paths are
composed as follows:

/node-name@/node-namel/ ... /node-nameN
This example shows a full device path name:
/pci@301/pci@2/scsi@@/disk@w5000ccal23456789,0:a

A full device path name is a series of node names separated by slashes (/). The root of the tree
is the machine node, which is not named explicitly but is indicated by a leading slash (/). Each
node name has the form:

Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Device Path Names, Addresses, and Arguments

device-name@unit-address : device-arguments
When OpenBoot is searching for a particular node, and either the device name or @unit-address
portion of the node name is not given, OpenBoot arbitrarily chooses a node matching the

portion that is present.

The OpenBoot CLI uses pathnames to identify particular device nodes.

Name Description
device-name A human-readable string consisting of one to 31 letters, digits and punctuation
characters from the set ", . _ + -" that, ideally, has some mnemonic value.

Uppercase and lowercase characters are distinct. In some cases, this name includes
the name of the device's manufacturer and the device's model name, separated by
a comma. Typically, the manufacturer's upper-case, publicly-listed stock symbol is
used as the manufacturer's name (for example, SUNW, sd). For built-in devices, the
manufacturer's name is usually omitted.

@ Must precede the address parameter.

unit-address A text string representing the physical address of the device in its parent's address
space. The format of the text is bus dependent.

Must precede the arguments parameter.

device-arguments A text string whose format depends on the particular device. It can be used to pass
additional information to the device's software.

The full device path name mimics the hardware addressing used by the virtual machine to
distinguish between different devices. Thus, you can specify a particular device without
ambiguity.

In general, the unit-address part of a node name represents an address in the physical address
space of its parent. The exact meaning of a particular address depends on the bus to which the
device is attached. Consider this example:

/pci@301/pci@2/scsi@d/disk@w5000ccal23456789,0:a
Where:

m / —TIs the root of the tree.

® pci@301 — Is the PCle bus with a unit address of 301.

® pci@2 — Is the PCle controller with a PCI device ID of 2.
® scsi@@ — Is the SCSI controller with a PCI device ID of 0.

B disk@w5000ccal23456789,0:a — Is the SCSI drive LUN with a unit address of
5000cca0566d3b21 (WWN of the drive in this example) , and a device argument of a (disk
slice in this example).

Understanding OpenBoot 17

Device Aliases

When specifying a path name, either the @unit-address or device-name part of a node name is
optional, in which case the firmware tries to pick the device that best matches the given name.
If there are several matching nodes, the firmware chooses one (but it may not be the one you
want).

Related Information

“OpenBoot Firmware Overview” on page 11

= “Built-In and Plug-In Device Drivers” on page 12
= “FCode Interpreter” on page 13

= “Device Tree” on page 14

m “Device Aliases” on page 18

Device Aliases

A device alias, is a shorthand representation of a device path. An alias is a text name identifying
a device node by showing its position in the device tree. An alias represents an entire device
path, but that path need not refer to a leaf node. Each implementation can have a number of
predefined aliases for devices commonly installed on that machine.

For example, the alias disk might represent the complete device path name:
/pci@301/pci@2/scsi@d/disk@w5000ccal23456789,0:a

Virtual machines have predefined device aliases for the most commonly used devices, however,
you can create, modify, and examine aliases with the devalias command. User-defined

aliases are lost after a reset or power cycle, but you can create a persistent alias by storing

the devalias command in an NVRAMRC script. For more details, see “Create a Device

Alias” on page 61.

Related Information

= “OpenBoot Firmware Overview” on page 11

= “Built-In and Plug-In Device Drivers” on page 12

= “FCode Interpreter” on page 13

m “Device Tree” on page 14

m “Device Path Names, Addresses, and Arguments” on page 16

18 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Additional Resources

Additional Resources

This table lists additional resources that provide information about OpenBoot and the products

that use OpenBoot.

Resource

Description

OpenBoot Documentation Library

http://www.oracle.com/goto/openboot/docs

This library contains OpenBoot documentation, including
this document.

IEEE 1275-1994 Documentation for Open Firmware web site

https://www.openfirmware.info/ IEEE_1275-1994

This web site provides information on how to obtain the
IEEE Std 1275-1994. Standard for Boot (Initialization
Configuration) Firmware: Core Requirements and Practices
specification.

Oracle ILOM documentation libraries

http://www.oracle.com/technetwork/documentation/sys-mgmt-
networking-190072.html#ilom

Entry page that enables you to access Oracle ILOM libraries
for all versions.

Oracle Solaris OS documentation libraries

http://docs.oracle.com/en/operating-systems/

Entry page that enables you to access Oracle Solaris OS
libraries for all versions.

Oracle SPARC server documentation

http://docs.oracle.com/en/servers

Entry page that enables you to access all the Oracle server
libraries.

Oracle Solaris 11.3 documentation library

http://www.oracle.com/goto/solarisll/docs

Provides access to all of the Oracle Solaris 11.3
documentation.

Securing System and Attached Devices in Oracle Solaris 11.3, Verified
Boot section

https://docs.oracle.com/cd/E53394 01/html/E54828/sysauth-vb.

html

Provides details on how to set up Verified Boot and other
related settings.

Installing Oracle Solaris 11.3 Systems

https://docs.oracle.com/cd/E53394 01/html/E54756

Provides details on how to prepare an Oracle Solaris 11.3
installation server, including information about configuring
OpenBoot keys on an installation client.

Oracle Solaris 10 1/13 Installation Guide: Network-Based Installations

http://docs.oracle.com/cd/E26505_01/html/E28037/index.html

Provides details on how to prepare an Oracle Solaris 10
installation server, including information about configuring
OpenBoot keys on an installation client. Refer to the
Installing Over a Wide Area Network section.

Understanding OpenBoot

19

http://www.oracle.com/goto/openboot/docs
https://www.openfirmware.info/ IEEE_1275-1994
http://www.oracle.com/technetwork/documentation/sys-mgmt-networking-190072.html#ilom
http://www.oracle.com/technetwork/documentation/sys-mgmt-networking-190072.html#ilom
http://docs.oracle.com/en/operating-systems/
http://docs.oracle.com/en/servers
http://www.oracle.com/goto/solaris11/docs
https://docs.oracle.com/cd/E53394_01/html/E54828/sysauth-vb.html
https://docs.oracle.com/cd/E53394_01/html/E54828/sysauth-vb.html
https://docs.oracle.com/cd/E53394_01/html/E54756
http://docs.oracle.com/cd/E26505_01/html/E28037/index.html

20 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Accessing the OpenBoot CLI and Getting Help

When the system or virtual machine is powered on but the OS is not booted, you communicate
with the OpenBoot firmware. OpenBoot firmware displays ok as its prompt.

These topics describe how to reach the OpenBoot ok prompt, and how to display OpenBoot

help.

Task Description

Determine which method to use to access the “Identify a Method to Get to the OpenBoot CLI” on page 21

OpenBoot CLI.

Access the OpenBoot CLI using one of these “Access the OpenBoot CLI (OpenBoot Running)” on page 22

procedures.
“Access the OpenBoot CLI (Solaris Running)” on page 23
“Access the OpenBoot CLI (Powered Off)” on page 24
“Access the OpenBoot CLI (Hung System)” on page 25

View help options and use the help command. “Use the help Command” on page 26

¥ Identify a Method to Get to the OpenBoot CLI

There are many ways to access the OpenBoot CLI, and the method you use is based on the state
of the virtual machine. This procedure guides you through the process of determining the state,
and directs you to the most appropriate method to reach the OpenBoot ok prompt.

Note - The Oracle ILOM CLI examples in this section are for a single PDomain system. For
multiple domain systems, replace /HOST with /HOSTx, where x is the PDomain number.

1. Open an SSH session and connect to Oracle ILOM.

Note - For more information about Oracle ILOM, refer to the documentation library that
corresponds with your version of Oracle ILOM: http://www.oracle.com/technetwork/
documentation/sys-mgmt-networking-190072.html#ilom

Accessing the OpenBoot CLI and Getting Help 21

http://www.oracle.com/technetwork/documentation/sys-mgmt-networking-190072.html#ilom
http://www.oracle.com/technetwork/documentation/sys-mgmt-networking-190072.html#ilom

Access the OpenBoot CLI (OpenBoot Running)

For example:

% ssh root@SP_IP_Address_or_Hostname
Password: password (nothing displayed as you type)

Oracle(R) Integrated Lights Out Manager
Version 3.3.X.X
Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.

2. Get the status of the host.
The status of the host determines the method used to get to OpenBoot.

For example:

-> show /HOST status

3. Based on the host status, perform one of these tasks:

= OpenBoot Running, go to “Access the OpenBoot CLI (OpenBoot
Running)” on page 22

m Solaris Running, go to “Access the OpenBoot CLI (Solaris Running)” on page 23
= Powered Off, go to “Access the OpenBoot CLI (Powered Off)” on page 24

= If the host status is reported as being in any running state, but the host is
not responding, it might be hung, go to “Access the OpenBoot CLI (Hung
System)” on page 25

¥ Access the OpenBoot CLI (OpenBoot Running)

Use this procedure when the host status is OpenBoot Running.

This procedure assumes that you performed “Identify a Method to Get to the OpenBoot
CLI” on page 21, and you are still logged into Oracle ILOM.

Note - The Oracle ILOM CLI examples in this section are for a single PDomain system. For
multiple domain systems, replace /HOST with /HOSTx, where x is the PDomain number.

1. Switch communication to the host console.

-> start /HOST/console
Are you sure you want to start /HOST/console (y/n)? y

22 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Access the OpenBoot CLI (Solaris Running)

Serial console started. To stop, type #.

2. Press Return and perform one of these actions:
= If the OpenBoot security mode is enabled, choose login and enter the OpenBoot password.
The ok prompt is displayed indicating that you are accessing the OpenBoot CLI.

= [f the OpenBoot security mode is not enabled, the ok prompt is displayed indicating that you
are accessing the OpenBoot CLI.

= If you do not see the OpenBoot prompt, perform the following commands to access the
OpenBoot CLI:

a. Enter #. to return to the Oracle ILOM CLI.
b. Log into Oracle ILOM.

c. Send a break:

#.
Login
-> set /HOST send_break_action=break

Related Information

= “Identify a Method to Get to the OpenBoot CLI” on page 21
= “Use the help Command” on page 26
m “Using the OpenBoot CLI” on page 29

¥ Access the OpenBoot CLI (Solaris Running)

Use this procedure when the host status is Solaris Running.

This procedure assumes that you performed “Identify a Method to Get to the OpenBoot
CLI” on page 21, and you are still logged into Oracle ILOM.

This procedure can be used on systems with a single instance of the Oracle Solaris OS, and on
an individual virtual instance of the OS that is running on a physical domain, logical domain,
global zone, or kernel zone. For additional details, refer to the Oracle Solaris documentation
library for the version of Oracle Solaris running on your system at http://docs.oracle.com/
en/operating-systems/.

Note - The Oracle ILOM CLI examples in this section are for a single PDomain system. For
multiple domain systems, replace /HOST with /HOSTx, where x is the PDomain number.

Accessing the OpenBoot CLI and Getting Help 23

http://docs.oracle.com/en/operating-systems/
http://docs.oracle.com/en/operating-systems/

Access the OpenBoot CLI (Powered Off)

Switch communication to the host console and press Return.
-> start /HOST/console

Are you sure you want to start /HOST/console (y/n)? y
Serial console started. To stop, type #.

Login to Oracle Solaris as a user with the superuser role, and shutdown the OS:
init 0

Once the OS completes the shutdown, the ok prompt is displayed indicating that you are
accessing the OpenBoot CLI.

Related Information

= “Identify a Method to Get to the OpenBoot CLI” on page 21
m “Use the help Command” on page 26
m “Using the OpenBoot CLI” on page 29

¥ Access the OpenBoot CLI (Powered Off)

24

Use this procedure when the host status is Powered Off.

This procedure assumes that you performed “Identify a Method to Get to the OpenBoot
CLI” on page 21, and you are still logged into Oracle ILOM.

Note - The Oracle ILOM CLI examples in this section are for a single PDomain system. For
multiple domain systems, replace /HOST with /HOSTx, where x is the PDomain number.

Temporarily change the auto-boot? parameter to false.

For example:
-> set /HOST/bootmode script="setenv auto-boot? false”

This command temporarily prevents the OS from booting before you reach the OpenBoot
prompt. This change applies only to a single start, and expires in 10 minutes if the power is not
started.

Start the virtual machine.
= Example of starting a VM with a single PDomain:

-> start /System

Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Access the OpenBoot CLI (Hung System)

= Example of starting a VM with multiple PDomains:
-> start /HOSTx

Where x is the PDomain number.

3. If you are prompted to login, select login and enter the OpenBoot password.
The ok prompt is displayed indicating that you are accessing the OpenBoot CLI.
Related Information

m “Identify a Method to Get to the OpenBoot CLI” on page 21
m “Use the help Command” on page 26
m “Using the OpenBoot CLI” on page 29

¥ Access the OpenBoot CLI (Hung System)

Use this procedure when the system or virtual machine is in a hung state.

This procedure assumes that you performed “Identify a Method to Get to the OpenBoot
CLI” on page 21, and you are still logged into Oracle ILOM.

Note - The Oracle ILOM CLI examples in this section are for a single PDomain system. For
multiple domain systems, replace /HOST with /HOSTx, where x is the PDomain number.

1. Temporarily change the auto-boot? parameter to false.
For example:

-> set /HOST/bootmode script="setenv auto-boot? false”

This command temporarily prevents the OS from booting before you reach the OpenBoot
prompt. This change applies only to a single reset and expires in 10 minutes if the power is not
reset.

2. Reset the system or virtual machine.
For example:

-> reset /HOST/domain/control/

3. If the prior step did not work, perform this command to power off the
virtual machine, then proceed to “Access the OpenBoot CLI (Powered
Off)” on page 24.

Accessing the OpenBoot CLI and Getting Help 25

Use the help Command

= Example of stopping a VM in a single PDomain system:

-> stop -f /System
= Example of stopping a VM in a multiple PDomain system:

-> stop -f /HOSTx

Where x is the PDomain number.

Related Information

= “Identify a Method to Get to the OpenBoot CLI” on page 21
= “Use the help Command” on page 26
m “Using the OpenBoot CLI” on page 29

¥ Use the help Command

26

Whenever you see the ok prompt on the display, you can access OpenBoot help by typing one
of the help commands.

Name Description

help Provides information for a category or a specific command.

If name is a specific command, lists help for that command, if available.
Otherwise, displays an implementation-dependent message.

Used as: ok help command-name

If name is a category, lists all help messages for commands in that category or a list
of subcategories.

Used as: ok help category-name
If name is omitted, provides general help and a list of available categories.

Commands should be grouped into categories so that the help messages for a
category occupy no more than twenty-three output lines. Categories can be divided
into subcategories. The number and names of categories are implementation
dependent.

help category Shows help for all commands in the category. Use only the first word of the
category description.

help command Shows help for individual commands (when available).

1. Access the OpenBoot CLI.

Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Use the help Command

See “Access the OpenBoot CLI (Solaris Running)” on page 23 or “Access the OpenBoot
CLI (OpenBoot Running)” on page 22

Use one of these commands:

m Display the help messages for all the commands in a selected category, or,
possibly, a list of subcategories.

{0} ok help category

m Display help for a specific command.
{0} ok help command
Examples:

{0} ok help diag
test <device-specifier> Run selftest method for specified device
Examples:
test net - test net
test scsi - test scsi
test-all Execute test for all devices with selftest method
watch-net Monitor network broadcast packets
watch-net-all Monitor broadcast packets on all net interfaces
probe-scsi Show attached SCSI devices
probe-scsi-all Show attached SCSI devices for all host adapters

{0} ok help memory

dump (addr length --) Display memory at addr for length bytes

fill (addr length byte --) Fill memory starting at addr with byte
move (src dest length --) Copy length bytes from src to dest address
map? (vaddr --) Show memory map information for the virtual address

x? (addr --) Display the 64-bit number from location addr

1? (addr --) Display the 32-bit number from location addr

w? (addr --) Display the 16-bit number from location addr

c? (addr --) Display the 8-bit number from location addr

X@ (addr -- n) Place on the stack the 64-bit data at location addr
1@ (addr -- n) Place on the stack the 32-bit data at location addr
w@ (addr -- n) Place on the stack the 16-bit data at location addr
c@ (addr -- n) Place on the stack the 8-bit data at location addr
x! (n addr --) Store the 64-bit value n at location addr

1! (n addr --) Store the 32-bit value n at location addr

w! (n addr --) Store the 16-bit value n at location addr

c! (n addr --) Store the 8-bit value n at location addr

Accessing the OpenBoot CLI and Getting Help 27

Use the help Command

Note - In some newer systems, descriptions of additional system-specific commands are
available with the help command. Help as described might not be available on all systems.

Related Information

m “Using the OpenBoot CLI” on page 29

28 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Using the OpenBoot CLI

Use these topics to understand the OpenBoot command line interface (CLI).

= “OpenBoot CLI Overview” on page 29

= “Console I/O Control” on page 30

= “Command Completion Keystrokes” on page 31

= “Virtual machine Information Commands” on page 32

m “Obtain Virtual machine Information with OpenBoot Commands” on page 33

OpenBoot CLI Overview

The OpenBoot CLI is based on the industry-standard interactive programming language
called FORTH. Combining sequences of commands to form complete programs provides the
capability for debugging hardware and software.

The OpenBoot CLI is based on an interactive command interpreter that gives you access to
an extensive set of functions for hardware and software development, fault isolation, and
debugging. Any level of user can use these functions.

The default prompt on SPARC systems is displayed as follows:
{0} ok

The number inside the braces represents the CPU identification (CPUID) of the thread of
execution on which OpenBoot is running.

You can enter the OpenBoot environment by:

= Halting the OS
m Sending a break from the SP
= Power cycling the system

If your virtual machine is not configured to boot automatically, the virtual machine stops at
the OpenBoot CLI.

Using the OpenBoot CLI 29

Console I/O Control

If automatic booting is configured, you can make the virtual machine stop at the OpenBoot
CLI by sending a break from Oracle ILOM after the display console banner is displayed, but
before the virtual machine starts booting the OS.

m When the hardware detects an error from which it cannot recover.

The console is used as the primary means of communication between OpenBoot and the user.
The console consists of an input device, used for receiving information supplied by the user,
and an output device, used for sending information to the user. Typically, the console is either
the combination of a text and graphics display device and a keyboard or an ASCII terminal
connected to a serial port.

For more information about accessing the OpenBoot CLI, see “Accessing the OpenBoot CLI
and Getting Help” on page 21. Also refer to the administration guide for your platform. Oracle
SPARC server documentation is available at http://docs.oracle.com/en/servers/. In the
administration guide, look for sections titled Obtain the OpenBoot Prompt or Getting to the

ok Prompt. For example, this URL takes you to the relevant section in the Oracle SPARC T7
Series Servers Administration Guide: http://docs.oracle.com/cd/E54990 01/html/E55000/
z40002fe1298584 . html.

You can use these variables to assign the power-on defaults. These values do not take effect
until after the next power cycle or reset.

Related Information

“Console I/0O Control” on page 30
= “Command Completion Keystrokes” on page 31

= “Virtual machine Information Commands” on page 32

“Obtain Virtual machine Information with OpenBoot Commands” on page 33

Console I/O Control

The console is the pair of input and output devices that the OpenBoot firmware uses to
communicate with the user (for example, a keyboard and a bit-mapped display). The console
devices are selected after probing, allowing the use of plug-in devices for the console. After
probing, the drivers for devices named by input-device and output-device are opened,
and console input and output is directed to those devices. The ihandles of the open input
and output drivers are saved as the values of the stdin and stdout properties in the /chosen
node, so that client programs can interact with the user through the console. If either of the
specified devices cannot be opened, system-dependent default devices can be used instead of
the specified devices.

30 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

http://docs.oracle.com/en/servers/
http://docs.oracle.com/cd/E54990_01/html/E55000/z40002fe1298584.html
http://docs.oracle.com/cd/E54990_01/html/E55000/z40002fe1298584.html

Command Completion Keystrokes

The console activation process is performed by the install-console command. Normally,
install-console is automatically executed during the OpenBoot firmware start-up sequence
just after probing, but it can be executed explicitly from an NVRAMRC script if desired.

If you want to change the input and output console configuration, see “Set the Input and Output
Device” on page 63.

Related Information

“OpenBoot CLI Overview” on page 29
= “Command Completion Keystrokes” on page 31
= “Virtual machine Information Commands” on page 32

“Obtain Virtual machine Information with OpenBoot Commands” on page 33

Command Completion Keystrokes

The command completion extension enables OpenBoot to complete long FORTH word names
by searching the dictionary for one or more matches based on the already-typed portion of a
word. When you type a portion of a word followed by the command completion keystroke,
Control-Space, OpenBoot behaves as follows:

= If OpenBoot finds exactly one matching word, the remainder of the word is automatically
displayed.

m If OpenBoot finds several possible matches, it displays all of the characters that are
common to all of the possibilities.

m If OpenBoot cannot find a match for the already-typed characters, it deletes characters from
the right until there is at least one match for the remaining characters.

m The system beeps if it can not determine an unambiguous match.

In addition to the keystrokes listed in this table, you can also use NVRAMRC script
editor keystrokes on the command line. See “NVRAMRC Script Editor Keystroke
Commands” on page 91.

Keystroke Description

Control-Space Completes the name of the current word.
Control-? Displays all possible matches for the current word.
Control-/ Displays all possible matches for the current word.

Using the OpenBoot CLI 31

Virtual machine Information Commands

Related Information

“NVRAMRC Script Editor Keystroke Commands” on page 91
“Virtual machine Information Commands” on page 32
“Obtain Virtual machine Information with OpenBoot Commands” on page 33

Virtual machine Information Commands

The OpenBoot CLI provides commands to display virtual machine information. banner is
provided by all OpenBoot implementations; the remaining commands represent extensions
provided by some implementations.

Note - Additional commands and procedures are described in “Interrogating the System With
OpenBoot Commands” on page 77.

Command Description
banner Displays the power-on banner.
.enet-addr Displays current Ethernet address.

fcode-revision

.idprom

.traps

show-devs

Returns the revision level of FCode interface.

The human-readable representation of the revision level is a string of the form major.minor, where major
and minor are decimal numbers. The fcode- revision returns a single number representation whose
value is given by the formula (major + minor). For example, if the release number were 2.12, the return
value would be 0x0002 . 000C.

The revision level of the device interface described by this standard is 3.0. Therefore, fcode-revision
returns 0x0003.0000.

This FCode returns the revision level of the FCode device interface (that is, which FCodes are
supported). Virtual machines which support OpenBoot return a value of (hex) 0003.0000 (that is, 3.0),
or possibly greater, as might be required by future editions of this specification.

OpenBoot version 2.x systems return a similar encoding, (hex) 0002 .00xx. OpenBoot version 1.x
systems return a value of (hex) 0000.xxxx.

Displays the property name to specify the IDPROM contents.
prop-encoded-array: Byte array, encoded with encode-bytes.

The 32-byte value of this property is the verbatim contents of the IDPROM structure, which contains the
machine’s serial number, Ethernet address, and other information.

Displays a list of SPARC trap types.

Shows all devices beneath the indicated node.

32 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Obtain Virtual machine Information with OpenBoot Commands

Command

Description

.version

Skips leading space delimiters. Parses device-specifier delimited by a space. Discards the remainder
of the command line. Shows the full device path for each device in the subtree of the device tree
underneath the specified node. The search process by which the specified node is located is as defined
in 4.3, using the rules given for find-device. If device-specifier is the empty string (that is, there is
nothing on the command line following show-devs), shows all devices.

Syntax:show-devs device-specifier

For further details and examples, see “Display the Device Tree” on page 82.

Displays the version of the OpenBoot firmware. For example:
{0} ok .version

Release 4.40.4.build 03 created 2016/08/17 14:05

Related Information

“Obtain Virtual machine Information with OpenBoot Commands” on page 33
“OpenBoot CLI Overview” on page 29

¥ Obtain Virtual machine Information with OpenBoot
Commands

This procedure provides examples of OpenBoot commands that provide information about the
virtual machine.

1. Access the OpenBoot CLI.
See “Accessing the OpenBoot CLI and Getting Help” on page 21.

2. Run adisplay command.

For a list of commands, see “Virtual machine Information Commands” on page 32.

Examples:

Display the banner.

{0} ok banner

SPARC T7-1, No Keyboard

Copyright (c) 1998, 2016, Oracle and/or its affiliates. All rights reserved.
OpenBoot 4.41.0, 31.0000 GB memory installed, Serial #104812436.

[bp-4.41]

Using the OpenBoot CLI 33

Obtain Virtual machine Information with OpenBoot Commands

Ethernet address 0:10:e0:3f:4f:94, Host ID: 863f4f94.
m Display the Ethernet address.

{0} ok .enet-addr
0:10:e0:xX:XX:XX

= Display the IDPROM contents.

{0} ok .idprom
Format/Type: 1 86 Ethernet: 0 10 e0@ 3f 4f 94 Date: 0 0 0 0
Serial: 3f 4f 94 Checksum: 77

m Display the revision of the OpenBoot image.

{0} ok .version
Release 4.41 created 2016/11/15 18:59

= Display a list of devices.

Also see “Display the Device Tree” on page 82.

{0} ok show-devs

/pci@345

/pci@344

/pci@343

/pci@342

/pci@341

/cpu@d40o

/cpu@d3f

/cpu@d3e

/cpu@d3d

/cpu@d3c

/pci@345/pciEl

/pci@344/pciEl

/pci@343/pci@2
/pci@343/pci@2/usb@d
/pci@343/pci@2/usb@d/storage@l
/pci@343/pci@2/usb@d/storage@l/disk
/pci@342/pciEl

= Display disks.

{0} ok show-disks

a) /reboot-memory@@

b) /pci@311/pci@l/usb@d/storage@l/disk
c) /pci@312/pci@l/usb@d/storage@l/disk
d) /pci@300/pci@2/scsi@d/disk

e) /pci@302/pci@l/scsi@0/disk

34 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Obtain Virtual machine Information with OpenBoot Commands

f) /iscsi-hba/disk
q) NO SELECTION
Enter Selection, gq to quit
‘q
{0} ok
m Display networks.

In this example, the output displays the first ten networks, and is terminated by enter q for
quit. To see the full list, enter m to see more networks.

{0} ok show-nets

a) /pci@310/pci@l/network@o,l
b) /pci@310/pci@l/network@d
c) /pci@30e/pci@l/network@d, 1
d) /pci@30e/pci@l/network@d
e) /pci@300/pci@l/network@d,l
f) /pci@300/pci@l/network@d
g) /pci@30b/pci@l/network@d,l
h) /pci@30b/pci@l/network@d
i) /pci@301/pci@l/network@, 1l
j) /pci@301/pci@l/network@@
m) MORE SELECTIONS

q) NO SELECTION

Enter Selection, q to quit
©q

{0} ok

Related Information

= “Virtual machine Information Commands” on page 32
m “Setting Configuration Variables” on page 55

= “OpenBoot CLI Overview” on page 29

= “Command Completion Keystrokes” on page 31

Using the OpenBoot CLI 35

36 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Booting and Resetting a Virtual Machine

These topics explain how to boot and reset virtual machines using OpenBoot.

Description Links

Learn about start-up and booting concepts. “Start-up Sequence” on page 37
“Boot Sequence” on page 40
“Boot Pools and Fallback Boot Images” on page 43

“boot Command Overview” on page 46

Boot a system or VM. “Perform a Default Boot” on page 48

“Boot a Virtual machine From a Specific Device” on page 49

Learn about and boot a virtual machine over the “Booting Over the Network” on page 50
network.
Reset a virtual machine. “Reset a Virtual machine” on page 54

Start-up Sequence

This flowchart provides a summary of a typical OpenBoot start-up sequence after a power-on or
reset.

Booting and Resetting a Virtual Machine 37

Start-up Sequence

Run NVRAMRC script HQ OpenBoot initializes devices .

o diag-switch?
true false [default)

e Banner displays on cutput-device

Display additional (default is virtual console)
initialization messages H SPRRC T7-1, Ho Kaybosd
WEMI’&MMI-H“'MM“

Etuasrrsad e O A Cradoococo, Host 10 863 oo0c

security-mode?
false (default) true

Execute boot mode script
from Oracle ILOM (if present)

security-mode?
o false (default) true

@ Execute boot-command (default is boot)
ok prompt displayed on Boot from boot-device (defaultis disk net)
@ output-device using boot-file (defaultis empty)

When the system or VM is started, OpenBoot is initialized.

2. [Initialization — OpenBoot initializes its own data structures and those devices necessary for
its own execution. The precise details of this initialization depend on the implementation
and the computer system, but the these steps are often included (in no particular order):

38 Oracle OpenBoot 4.x Administration Guide * January 2017

Start-up Sequence

m Determine the memory configuration.

m Select and prepare the memory to be used for FORTH and OpenBoot data structures
like stacks, memory allocation pools, and device tree internal structures.

m Initialize various devices (for example, MMUs, interrupt controllers, and timers) that
are required for the basic functioning of FORTH and OpenBoot.

m Reset the configuration variables contained therein to their default values.
The use-nvramrc? parameter is evaluated.

® [f true, a custom start-up script is executed (see “Customizing Start-Up with
NVRAMRC” on page 87).

m If false, OpenBoot does not seek to execute a custom start-up script.
Open boot runs probe-all to identify and initialize built-in and plug-in devices.
The diag-switch? parameter is evaluated.

® [f true, OpenBoot provides visibility into the PCIE probe sequence by displaying nodes
as they are found. It also displays additional information about file system identification
and the files that are loaded.

m If false, OpenBoot does not display additional initialization messages.

The banner is displayed on the device specified for the output-device parameter. By
default, the banner provides this information:

= System type

= OpenBoot version

= Amount of installed memory
m System serial number

m FEthernet address

= Host ID number

The banner can be manually displayed with the banner command. See “Obtain Virtual
machine Information with OpenBoot Commands” on page 33.The banner can be
customized. See “Change the Power-On Banner” on page 63

The security-mode? parameter is evaluated.

® If false, OpenBoot checks to see if a boot mode script is specified in Oracle ILOM. If a
boot mode script is found, OpenBoot executes the script.

= If true, OpenBoot does not check for a boot mode script.
The auto-boot? parameter is evaluated.

® [f true, OpenBoot attempts to boot according to OpenBoot parameters.

Booting and Resetting a Virtual Machine 39

Boot Sequence

Note - To enable automatic booting, the OpenBoot auto-boot? variable must be set to
true and the Oracle ILOM auto-boot property must be enabled.

® [f false, OpenBoot does not attempt to boot.
9. The security-mode? parameter is evaluated.
® [f false, OpenBoot does not prompt the user to login and provide a password.

® If true, OpenBoot prompts the user to login and provide the password. See “Setting
Security Variables” on page 71.

10. OpenBoot displays the ok prompt on the device specified for the output-device parameter.

11. OpenBoot attempts to boot according to the values specified for boot - command, boot -
device, and boot-file. See “Setting Configuration Variables” on page 55.

Related Information

= “Boot Sequence” on page 40

= “Boot Pools and Fallback Boot Images” on page 43

= “poot Command Overview” on page 46

m “Setting Configuration Variables” on page 55

m “Customizing Start-Up with NVRAMRC?” on page 87

Boot Sequence

The most important function of OpenBoot firmware is to boot the virtual machine. Booting is
the process of loading and executing a stand-alone program such as an OS.

Booting can either be initiated automatically after the start-up sequence, or by typing

a boot command at the OpenBoot CLI. The boot process is controlled by a number of
configuration variables. For information on how to set the variables, see “Setting Configuration
Variables” on page 55.

These are the boot related configuration variables:

B auto-boot? — As described in “Start-up Sequence” on page 37, if true, attempt to boot
according to OpenBoot parameters. If false, stop and invoke the OpenBoot CLI.

40 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Boot Sequence

Note - To enable automatic booting, the OpenBoot auto-boot? variable must be set to true
and the Oracle ILOM auto-boot property must be enabled.

® poot-command — The command specified for this variable is executed if auto-boot? is true.
The default is boot with no arguments.

B diag-switch? — false by default, when set to true, it sets OpenBoot to diagnostic mode
which provides additional displayed messages.

® poot-device —Specifies the device from which to boot. The value can be a device alias
or a device path. The default is usually disk net, which attempts to boot from the device
specified for the disk alias. If that fails, OpenBoot then attempts to boot from the device
specified for the net alias.

B poot-file — Specifies the default arguments for boot, if diagnostic-mode? is false.

The behavior of that program can be controlled by an argument string that is made available

to the program. Often, this program is a secondary boot-loader, whose purpose is to load yet
another program. The secondary boot-loader might be capable of using additional protocols
other than the protocol that OpenBoot used to load the first program. For example, OpenBoot
can use the Trivial File Transfer Protocol (TFTP) to load the secondary boot-loader, which then
uses the Network File System (NFS) protocol to load the OS from another file.

For disk booting, OpenBoot might load the secondary boot loader by reading the first few
sectors from the disk, and that secondary boot loader might understand the OS's native file
system structure, loading the OS from such a file.

Typical secondary boot loaders accept arguments in this form:
filename -flags ...

Where filename is the name of a file containing the OS, and -flags is a list of options
controlling the details of the start-up phase of either the secondary boot loader, the OS, or
both. However, from OpenBoot's point of view, the boot arguments are an opaque string that is
passed uninterpreted to the boot program.

The device path of the boot device is also available to client programs, so they can determine
the device from which they were booted.

The boot command parses the command line as follows:

m [f the word following boot begins with a “/”, the word is a device path and, thus, a device
specifier.
m Otherwise, if there is a device alias matching that word, the word is a device specifier.

m [If that word is neither a device path nor a known alias, the default boot device is used, and
the word is included in arguments.

Booting and Resetting a Virtual Machine 41

Boot Sequence

Assuming that disk® is predefined as a device alias for a valid device path, these are examples
of valid boot commands:

ok boot (performs a default boot using values specified in configuration variables)

ok boot disk@ (boots from diskO and uses boot program default arguments)

ok boot disk® vmunix -asw (boots from diskO and passes boot program vmunix -asw)
ok boot vmunix -asw (boots from default device and passes boot program vmunix -asw)

The boot command might restart the virtual machine in certain conditions and continue with the
boot process when the virtual machine is restarted.

Booting usually happens automatically based on the values contained in the configuration
variables described above. However, you can also initiate booting from the OpenBoot CLI. For
specific booting instructions, refer to these procedures:

= “Perform a Default Boot” on page 48
= “Boot a Virtual machine From a Specific Device” on page 49
= “Boot Over the Network” on page 52

OpenBoot performs the following steps during the boot process:

m The firmware might reset the virtual machine if a client program has been executed since
the last reset. (The execution of a reset is implementation dependent.)

® A device is selected by parsing the boot command line to determine the boot device and the
boot arguments to use. Depending on the form of the boot command, the boot device and
argument values might be taken from configuration variables.

®= The bootpath and bootargs properties in the /chosen node of the device tree are set with
the selected values.

m The selected program is loaded into memory using a protocol that depends on the type of
the selected device. For example, a disk boot might read a fixed number of blocks from the
beginning of the disk, while a tape boot might read a particular tape file.

m If Verified Boot is enabled, then signatures on the selected program are verified before the
program is executed. If signature verification fails, the virtual machine continues to boot
with warning messages displayed if verified boot policy is set to warning, or the virtual
machine halts with FATAL messages if the policy is set to enforce. Details on how to set up
Verified Boot and other related settings are available at: https://docs.oracle.com/cd/
E53394 01/html/E54828/sysauth-vb.html.

m The loaded program is executed. The behavior of the program might be further controlled
by any argument string that was either contained in the selected configuration variable or
was passed to the boot command on the command line.

The program loaded and executed by the boot process can be a secondary boot loader,
whose purpose is to load yet another program. This secondary boot loader might use a
protocol different from that used by OpenBoot. For example, OpenBoot might use the TFTP

42 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

https://docs.oracle.com/cd/E53394_01/html/E54828/sysauth-vb.html
https://docs.oracle.com/cd/E53394_01/html/E54828/sysauth-vb.html

Boot Pools and Fallback Boot Images

to load the secondary boot loader while the secondary boot loader might then use the NFS
protocol to load the OS.

Typical secondary boot loaders accept arguments of the form:
filename -flags

Where filename is the name of the file containing the OS and where -flags is a list of options
controlling the details of the start-up phase of either the secondary boot loader, the OS or
both. As shown in the boot command template, OpenBoot treats all such text as a single,
opaque arguments string that has no special meaning to OpenBoot itself. The arguments
string is passed unaltered to the specified program.

Related Information

m “Start-up Sequence” on page 37
= “Boot Pools and Fallback Boot Images” on page 43
= “poot Command Overview” on page 46

m “Setting Configuration Variables” on page 55

Boot Pools and Fallback Boot Images

The boot process has been enhanced to enable booting from devices that are not directly
accessible to OpenBoot. This feature requires OS support (Oracle Solaris 11.3 includes
this support) and support in OpenBoot (available in OpenBoot version 4.37.3 and later. To
identify the OpenBoot version,see “Obtain Virtual machine Information with OpenBoot
Commands” on page 33).

The systems that support this feature boot from an OpenBoot accessible boot pool that is
located in the system, for example, from an eUSB device in each physical domain. Then the
boot process uses certain OpenBoot configuration variables and properties (shown in this
illustration) to enable the virtual machine to locate an OS that is not directly accessible to
OpenBoot.

Booting and Resetting a Virtual Machine 43

Boot Pools and Fallback Boot Images

Local to the Server

OpenBoot OpenBoot accessible storage
(such as eUSB devices)
Configuration variables:
boot-device oot poo

os-root-device

BE1
Boot archives

/chosen .properties
boot-pool-list
tboot-1list

Recovery data .

Boot loader data

OpenBoot inaccessible storage

\ {such as iSCSI LUNs)

Root pndl

BE1

Special OpenBoot
Full OS image s X

accessible storage

Fallback image
Miniroot

The OpenBoot parameters perform these functions:

Note - Except for the boot-device variable, the variables and properties listed here are usually
automatically maintained and do not require intervention.

® poot-device — Is an OpenBoot configuration variable that specifies boot devices. In
this diagram, the boot-device variable is set to the path of a local device, such as an
eUSB device, where a boot pool is available. The setting is viewable using the OpenBoot
printenv command or by using the Oracle Solaris eeprom command.

44 Oracle OpenBoot 4.x Administration Guide * January 2017

Boot Pools and Fallback Boot Images

os-root-device — Is an OpenBoot configuration variable that specifies properties that
describe to the OS how to access the root file system. This setting is viewable using the
OpenBoot printenv command or by using the Oracle Solaris eeprom command.

boot-pool-list — Is an OpenBoot property for the /chosen node. This property specifies
platform-defined devices that can be used to comprise a boot pool. Note - the list does not
indicate if a device provides a boot pool or not. You can view this read-only property with
the .properties command under the /chosen node at the OpenBoot prompt.

tboot-1list —Is an OpenBoot property for the /chosen node. This property contains a
list of device paths that might allow access to fallback boot images (only if the platform
has installed or flashed the image in non-volatile storage or if bootable media is inserted
in the devices referenced by the property). You can view this read-only property with the
.properties command under the /chosen node at the OpenBoot prompt.

The other items shown in the illustrations serve these purposes:

Boot pool — A collection of boot archives that are stored on firmware-assessable devices.
Each dataset in the boot pool is linked to a specific boot environment on a specific root
pool.

Boot archive — Is a file that contains the OS kernel and modules necessary to locate and
mount the root file system to complete the second stage of booting the OS.

Recovery data and Boot loader data— Provide a means to reconstitute the os-root-
device property in the event that the property is reset, corrupted, or erased.

Root pool — Is a ZFS pool that contains a set of boot environments (datasets of the form
pool_name/R00T/BE_name), each of which constitutes a root file system for an instance of
the Oracle Solaris OS. A root pool can reside on a device such as an iSCSI device accessed
through IP over Infiniband (IPoIB). This storage might not be directly accessible from
OpenBoot. In such cases, when a root pool is created, a new boot pool is also automatically
created on OpenBoot-accessible devices.

Fallback boot image — (Also known as the fallback miniroot) is a boot image that can

be booted if no devices in the boot pool are accessible from OpenBoot. This image is
managed differently depending on the platform. For example, on some systems the boot
image is directly accessible to root domains to which the USB controller for the RKVMS

is associated. In other systems, no tboot-1list may exist and so the fallback image must be
manually managed and added to the boot-device list, This is because the Oracle Solaris
installer does not know which device references a fallback miniroot image. For further
details, refer to your platform documentation.

For detailed instructions on how you can manage and configure boot pools, refer to the Oracle
Solaris 11.3 documentation at http://www.oracle.com/goto/solaris11l/docs. Refer to the
document titled Booting and Shutting Down Oracle Solaris 11.3 Systems.

Also refer to the documentation for your server platform to determine if these features are
supported. Server documentation is available at: http://docs.oracle.com/en/servers/

Booting and Resetting a Virtual Machine 45

http://www.oracle.com/goto/solaris11/docs
http://docs.oracle.com/en/servers/

boot Command Overview

Related Information

“Start-up Sequence” on page 37

“Boot Sequence” on page 40
® “poot Command Overview” on page 46
m “Setting Configuration Variables” on page 55

boot Command Overview

46

Note - When booting a virtual machine that is configured to boot by default, you can usually
type boot and you do not need to specify the boot device nor any arguments that are described
in this section. For such situations, instead see “Perform a Default Boot” on page 48.

This is the boot command syntax:

{0} ok boot [device-specifier] [arguments]

Note - Most commands (such as boot and test) that require a device name accept either a full
device path name or a device alias. In this document, the term device-specifier indicates that
either an appropriate device path name or a device alias is acceptable for such commands.

Name Description

device-specifier The name (full path name or alias) of the boot device. Typical values include:

B cdrom (CD-ROM drive)
B disk (hard disk)
B net (Ethernet)

If device-specifier is not specified and if diagnostic-mode? returns false, boot
uses the device specified by the boot-device configuration variable.

The term device-specifier denotes a string that is either a device path, or an alias
that refers to a non-leaf node followed by additional node-name components.

arguments The name of the program to be booted (for example, stand/diag) and any program
arguments.

If arguments is not specified, boot uses the file specified by the boot-file
configuration variable.

filename The name of the program to be booted (for example, stand/diag). filename is
relative to the root of the selected device and partition (if specified). If filename
is not specified, the boot program uses the value specified in the boot-file
parameter.

Oracle OpenBoot 4.x Administration Guide ¢ January 2017

boot Command Overview

Name Description

options These options are specific to the OS, and might differ from virtual machine to
virtual machine.

Because a device alias cannot be syntactically distinguished from the arguments, OpenBoot
resolves this ambiguity as follows:

® [f the space-delimited word following boot on the command line begins with /, the word
is a device-path and, thus, a device-specifier. Any text to the right of this device-specifier is
included in arguments.

m [f the space-delimited word matches an existing device alias, the word is a device-specifier.
Any text to the right of this device-specifier is included in arguments.

® Otherwise, the appropriate default boot device is used, and any text to the right of boot is
included in arguments.

Consequently, boot command lines have the following possible forms.
{0} ok boot

With this form, boot loads and executes the program specified by the default boot arguments
from the default boot device.

{0} ok boot device-specifier

If boot has a single argument that either begins with the character / or is the name of a defined
devalias, boot uses the argument as a device specifier. boot loads and executes the program
specified by the default boot arguments from the specified device.

If boot has a single argument that neither begins with the character / nor is the name of a
defined devalias, boot uses all of the remaining text as its arguments.

{0} ok boot arguments
boot loads and executes the program specified by the arguments from the default boot device.
{0} ok boot device-specifier arguments

If there are at least two space-delimited arguments, and if the first such argument begins with
the character / or if it is the name of a defined devalias, boot uses the first argument as a
device specifier and uses all of the remaining text as its arguments. boot loads and executes the
program specified by the arguments from the specified device.

For all of the above cases, boot records the device that it uses in the bootpath property of the
/chosen node. boot also records the arguments that it uses in the bootargs property of the
/chosen node.

Booting and Resetting a Virtual Machine a7

Perform a Default Boot

v

48

Device alias definitions vary from virtual machine to virtual machine. Use the devalias
command (described in “Create a Device Alias” on page 61) to obtain the definitions of
your virtual machine's aliases.

For a description of the boot sequence changes and instructions on how you can manage the
boot pool by using the bootadm boot-pool, refer to the Oracle Solaris 11.3 documentation at
http://www.oracle.com/goto/solarisll/docs.

Caution - The Verified Boot policy setting of enforce does not allow the boot process to
proceed if the OpenBoot use-nvramrc? variable is set to true. You can directly set the use-
nvramrc? variable with the setenv command, or the variable is automatically set to true when
you use the nvalias command. If you set the use-nvramrc? variable to false, you will not be
able to create device aliases with the nvalias command. For further details, refer to https://
docs.oracle.com/cd/E37444 01/html/E37446/z40001291613819.html.

Related Information

m “Start-up Sequence” on page 37

= “Boot Sequence” on page 40

= “Boot Pools and Fallback Boot Images” on page 43
m “Perform a Default Boot” on page 48

m “Setting Configuration Variables” on page 55

Perform a Default Boot

This procedure assumes that the virtual machine's boot configuration variables (see “Boot
Sequence” on page 40) are set to boot from an established boot device.

Based on the values of the configuration variables, the boot process can proceed in a number of
different ways. For example:

® [f auto-boot? is true (the default), the virtual machine will automatically boot from the
specified boot device. Note — The Oracle ILOM auto-boot property must also be set to
enabled.

® [fauto-boot? is false, automatic booting does not occur, the ok prompt is displayed, and
you can run OpenBoot commands such as boot.

Access the OpenBoot CLI.

Oracle OpenBoot 4.x Administration Guide ¢ January 2017

http://www.oracle.com/goto/solaris11/docs
https://docs.oracle.com/cd/E37444_01/html/E37446/z40001291613819.html
https://docs.oracle.com/cd/E37444_01/html/E37446/z40001291613819.html

Boot a Virtual machine From a Specific Device

See “Accessing the OpenBoot CLI and Getting Help” on page 21.

2. Type:

{0} ok boot

Related Information

= “Boot Sequence” on page 40
= “poot Command Overview” on page 46
m “Setting Configuration Variables” on page 55

¥ Boot a Virtual machine From a Specific Device

1. Access the OpenBoot CLI.
See “Accessing the OpenBoot CLI and Getting Help” on page 21.

2. (Optional) Display device aliases.

If you need to identify a device alias for a boot device, type:

Note - A device alias does not indicate whether a device is bootable, but most virtual machines
have a device alias configured for the boot device.

{0} ok devalias

screen /pci@300/pci@4/display@d

fallback-miniroot /pci@300/pci@2/usb@d/hub@3/storage@l/disk@@

rcdrom /pci@300/pci@2/usb@d/hub@3/storage@l/disk@@

primary-vds@ /virtual-devices@l00/channel-devices@200/virtual-disk-server@d
primary-vsw@ /virtual-devices@l00/channel-devices@200/virtual-network-switch@@
primary-vcc@ /virtual-devices@l00/channel-devices@200/virtual-console-concentrator@@
net3 /pci@300/pci@3/network@o, 1

net2 /pci@300/pci@3/network@d

cdrom /pci@300/pci@2/usb@d/hub@8/device@l/storage@d/disk@d

netl /pci@300/pci@l/network@o, 1

net /pci@300/pci@l/network@d

neto /pci@300/pci@l/network@d

scsi /pci@301/pci@2/scsi@d

scsi0 /pci@301/pci@2/scsi@d

disk7 /pci@301/pci@2/scsi@d/disk@p7

disk6 /pci@301/pci@2/scsi@d/disk@p6

disk5 /pci@301/pci@2/scsi@d/disk@p5

disk4 /pci@301/pci@2/scsi@d/disk@p4

disk3 /pci@301/pci@2/scsi@d/disk@p3

Booting and Resetting a Virtual Machine 49

Booting Over the Network

disk2
diskl

/pci@301/pci@2/scsi@d/disk@p2
/pci@301/pci@2/scsi@d/disk@pl

Also see “Create a Device Alias” on page 61.

Boot the virtual machine by specifying boot parameters.

Type the boot command with an explicit boot device. The virtual machine boots from the
specified boot device using the default boot arguments.

= To explicitly boot from the device that is defined by the disk device alias, type:

{0} ok boot disk

® To explicitly boot from the network that is defined for the net device alias, type:

{0} ok boot net
= To boot from a specific device, type:

{0} ok boot /pci@301/pci@2/scsi@d/disk@w5000ccal23456789,0:a

Related Information

= “Boot Sequence” on page 40
® “poot Command Overview” on page 46
m “Setting Configuration Variables” on page 55

Booting Over the Network

50

Use these topics to understand how to boot over the network using OpenBoot.

m “Network Booting Process” on page 50
= “Boot Over the Network” on page 52
= “Arguments Supported by Network Boot” on page 52

Network Booting Process

Network devices are packet-oriented devices capable of sending and receiving packets (frames)
that are addressed according to Local Area Network (LAN) specifications for Media Access
Control (MAC) addresses administered by the IEEE Registration Authority. OpenBoot supports
booting network devices.

Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Booting Over the Network

The network boot process involves:

1. Obtaining the IP address of the booting client.

The client knows its Ethernet address and system type, but needs its IP address to transfer
the files it needs.

2. Downloading the standalone boot program and executing it.

The client uses specified network protocol to download the standalone boot program and
executes it.

A client booting over a network can use RARP to obtain its IP address. When booting Oracle
Solaris software, the loaded standalone program is inetboot, which uses the RPC protocol
bootparams to obtain boot parameters, and loads the kernel and executes it. To boot with RARP
and bootparams, use this command:

{0} ok boot network-device-specifier

Clients that are DHCP aware can use DHCP to obtain the IP address, boot parameters, and
network configuration information with more efficiency and flexibility than the combination of
the RARP and bootparams services. In addition, using DHCP removes the requirement for a
boot server on every subnet. To boot with DHCP, use this command:

{0} ok boot device-specifier:dhcp

DHCP aware PROM clients support interoperability with BOOTP servers. The client
prefers DHCP configurations over BOOTP, but accepts BOOTP configurations if no DHCP
configuration is offered.

The default protocol used (that is, RARP or DHCP) when the command boot net is executed
depends on how the net device alias is specified. If the net devalias specifies only the path to
the network device, RARP is used as the default address discovery protocol. If the device alias
includes dhcp as an argument, DHCP is used.

To boot using RARP (the default):

Note - The device-specifier string might be different on your system.

{0} ok boot /pci@300/pci@l/network@0
To boot using DHCP:
{0} ok boot /pci@300/pci@l/network@0:dhcp

You can set the desired device alias by using the nvalias command. See “NVRAMRC Editor
Commands” on page 89.

Booting and Resetting a Virtual Machine 51

Boot Over the Network

Related Information

= “Boot Over the Network” on page 52
= “Arguments Supported by Network Boot” on page 52

V¥V Boot Over the Network

1. On the virtual machine you plan to boot, Access the OpenBoot CLI.
See “Accessing the OpenBoot CLI and Getting Help” on page 21.

2. Boot the virtual machine over the network.

For a detailed description of the boot syntax and valid boot arguments, see “Arguments
Supported by Network Boot” on page 52.

Network booting examples:

®m Using RARP (the default) and booting from the device that is specified for the net
parameter.

{0} ok boot net
m Using RARP (the default) and specifying a specific device-specifier:

{0} ok boot /pci@300/pci@l/network@0

® Using DHCP:and booting from the device specified for the net parameter.:

{0} ok boot net:dhcp
m Using DHCP:and specifying a specific device-specifier:

{0} ok boot /pci@300/pci@l/network@0:dhcp

Related Information

m “Network Booting Process” on page 50

= “Arguments Supported by Network Boot” on page 52

Arguments Supported by Network Boot

This is the syntax for booting over the network:

52 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Boot Over the Network

boot <network-device>:[dhcp|bootp], [server-IP],
[boot-filename], [client-IP], [router-IP], [boot-retries],
[tftp-retries], [subnet-mask] [boot-arguments]

All arguments are optional. Commas are required for missing positional parameters unless they
are at the end of the list.

server-IP, client-IP, router-IP, and subnet-mask are specified in Internet standard dotted-
decimal notation. If any of server-IP, boot-filename, client-ip, router-IP, and subnet-mask
are specified, the ROM client uses these values instead of any values which are (or might be)
obtained by the normal configuration process.

The network boot arguments can also be specified by setting the network-boot-arguments
configuration variable (see “Setting Configuration Variables” on page 55).

For example:

{0} ok setenv network-boot-arguments host-ip=client-IP,router-ip=router-ip,subnet-
mask=mask-value, hostname=client-name, http-proxy=proxy-ip:port, file=wanbootCGI-URL

This table lists the valid arguments for the network boot command.

Argument

Description

boot-filename

Is the name of the standalone program to be loaded by TFTP from the server. The default file name is
constructed from the IP address if the boot protocol is RARP, or from the client class identifier if using
DHCP or BOOTP.

boot-retries

Is the maximum number of retries attempted before the boot process is determined to have failed.

client-IP Is the IP address of the client (that is, the virtual machine being booted).

dhcp Specifies the use of DHCP as the address discovery protocol to be used. bootp is treated as a
synonym of DHCP (that is, the client still uses DHCP format messages). The client accepts a BOOTP
configuration only if no DHCP configurations are offered.

host-ip Is the IP address of the network interface on the virtual machine being booted.

router-IP Is the IP address of router to be used.

server-IP Is the IP address of the TFTP server from which the standalone boot program is to be downloaded.

subnet-mask

Is the subnet mask on the local network.

tftp-retries

Is the maximum number of retries attempted before the TFTP process is determined to have failed.

Related Information

= “Network Booting Process” on page 50
= “Boot Over the Network” on page 52

Booting and Resetting a Virtual Machine 53

Reset a Virtual machine

¥ Reset a Virtual machine

Occasionally, you might need to reset your virtual machine. The reset-all command resets the
virtual machine.

1. Access the OpenBoot CLI.
See “Accessing the OpenBoot CLI and Getting Help” on page 21.

2. At the OpenBoot prompt, type:

{0} ok reset-all

Related Information

m “Accessing the OpenBoot CLI and Getting Help” on page 21
= “Using the OpenBoot CLI” on page 29

54 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Setting Configuration Variables

Use these topics to understand what configuration variables are available, and how to use
OpenBoot to set the configuration variables.

m “Configuration Variables Overview” on page 55

m “Standard Configuration Variables” on page 56

= “Configuration Variable Commands” on page 58

= “Display the Current Variable Settings” on page 59

m “Change a Variable Setting” on page 60

m “Create a Device Alias” on page 61

m “Set the Input and Output Device” on page 63

m “Change the Power-On Banner” on page 63

m “Reset a Variable to Its Default Value” on page 66

m “Reset All Variables to Default Values (Using OpenBoot CLI)” on page 67
m “Reset All Variables to Default Values (Using Oracle ILOM CLI)” on page 68

Configuration Variables Overview

A number of OpenBoot operating characteristics are controlled by configuration variables that
are stored in nonvolatile memory. The list of configuration variables varies from system to
system.

These variables determine the start-up configuration and related communication characteristics.
You can modify the values of the configuration variables, and any changes you make remain in
effect even after a power cycle.

Most configuration variables have both a current value and a default value, with the default
value stored in ROM. OpenBoot implementations can maintain a checksum of the nonvolatile
memory used for configuration variable storage. If that memory becomes corrupted, the
OpenBoot implementation can restore some of the configuration variables to their default
values, leaving untouched those configuration variables without default values.

Setting Configuration Variables 55

Standard Configuration Variables

The nonvolatile memory locations where particular parameter values are stored can change
from machine to machine and from revision to revision. Thus, they cannot be accessed at fixed
locations, but instead must be accessed by name. You can access them by name using printenv
and setenv. Client programs can access them by name through client interface operations on
the /options device node.

The properties of the /options node are the virtual machine's configuration variables. The
property names are the names of those configuration variables, and the property values are the
output text representations of those configuration variables. Client programs can examine and
change the values of these properties with getprop and setprop, thus examining and changing
the values of the corresponding configuration variables. Similarly, you can examine and change
them with printenv, setenv, and $setenv commands.

Use these topics to understand the standard configuration variables and the commands that you
can use to modify the configuration variables.

m “Standard Configuration Variables” on page 56
m “Configuration Variable Commands” on page 58

Standard Configuration Variables

This section provides a list of the configuration variables that are typically included in SPARC
systems.

Note - Different OpenBoot implementations might use different defaults or provide different
configuration variables. Use the OpenBoot printenv command to display the variables on your
virtual machine. See “Display the Current Variable Settings” on page 59.

The value of a configuration variable can be a number, a string, a true or false flag, a selection
from a set of choices, or one of several other data types, depending on the particular variable.
The stack comment shows the way that information is presented on the FORTH stack.

Name

Default Value Stack Comment Description

auto-boot?

boot-command
boot-device

boot-file

true (-- auto?) If true, boots automatically after power on or reset. The
Oracle ILOM auto-boot property must also be enabled to
allow automatic booting to occur.

boot (-- addr len) Command that is executed if auto-boot? is true.
disk net (-- dev-str dev-len) Device from which to boot.
empty string (-- arg-str arg-len) Default arguments for boot.

56 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Standard Configuration Variables

Name

Default Value

Stack Comment

Description

diag-switch?

fcode-debug?
input-device

network-boot-
arguments

nvramrc
oem-banner
oem-banner?

oem-logo

oem-logo?

output-device

os-root-device

screen-#columns
screen-#rows
security-#badlogins
security-mode

security-password

use-nvramrc?
local-mac-address?

error-reset-recovery

false

false
virtual-console

empty string

empty
empty string
false

No default.

false

virtual-console

empty string

80

34

No default.
none

No default.

false
true

boot

(-- diag?)

(-- names?)

dev-str dev-len)

arg-str arg-len)

text-str text-len)

custom?)

custom?)

dev-str dev-len)

(-- dev-str dev-len)

(--n)
(--n)
(--n)

(-- password-str
password-len)

(-- enabled?)
(-- enabled?)
(--n)

data-addr data-len)

logo-addr logo-len)

Configuration variable type: string[32].

Suggested default value: an empty string.

If true, run in diagnostic mode. Diagnostic mode provides
visibility into the PCIE probe sequence by printing nodes
as they are found. It also provides some visibility into the
boot sequence by displaying file system identification and
files loaded.

If true, includes name fields for plug-in device FCodes.
Console input device.

Arguments to the obp-tftp package, if no arguments are
specified to the obp-tftp 'open' method.

Contents of nvramrc.

Custom OEM banner (enabled by oem-banner? true).
If true, use custom OEM banner.

Byte array custom OEM logo (enabled by oem-1logo?
true).

Displayed in hexadecimal.

If true, uses custom OEM logo (else, uses the Oracle
logo).

Console output device.

A semicolon-separated, technology-specific list of key
value pairs. Defines devices and root file systems for root
pools.

See “Boot Pools and Fallback Boot Images” on page 43.
Number of on-screen columns (characters/line).

Number of on-screen rows (lines).

Number of incorrect security password attempts.
Firmware security level (options: none, command, or full).

Firmware security password (never displayed).

If true, execute commands in nvramrc during start-up.
If true, network devices use their own MAC addresses.

Recovery action after an error reset CPU trap (options:
none, sync, or boot).

Related Information

“Configuration Variables Overview” on page 55
“Configuration Variable Commands” on page 58

Setting Configuration Variables 57

Configuration Variable Commands

= “Display the Current Variable Settings” on page 59
m “Change a Variable Setting” on page 60

Configuration Variable Commands

You can modify the values of the system configuration variables that are stored in persistent
storage using the OpenBoot commands listed in this section.

Alternatively, you can use the Oracle Solaris eeprom command for modifying OpenBoot
configuration variables when the virtual machine is running the OS.

All configuration variable modifications persist across a power cycle as long as the
configuration of the virtual machine does not change.

Caution - Use extreme care when changing a configuration variable. An incorrect setting or
typo can prevent the virtual machine from booting.

A\

Name

Description

Procedure

printenv

setenv parameter value

set-default parameter

set-defaults

Displays all current parameters and current default values.
Numbers are usually shown as decimal values.

printenv parameter shows the current value of the named
parameter.

Sets parameter to the specified decimal or text value.
(Changes are permanent, but usually only take effect after a
reset.)

Resets the value of the named parameter to the factory
default.

Resets all variables to default values.

“Display the Current Variable
Settings” on page 59

“Change a Variable
Setting” on page 60

“Reset a Variable to Its Default
Value” on page 66

Note - To reset all the variables,
see “Set Up the Security
Password” on page 71.

“Reset All Variables to Default Values
(Using OpenBoot CLI)” on page 67

Related Information

m “Configuration Variables Overview” on page 55
m “Standard Configuration Variables” on page 56

58 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Display the Current Variable Settings

= “Display the Current Variable Settings” on page 59
m “Change a Variable Setting” on page 60

¥ Display the Current Variable Settings

Use this procedure to display all the OpenBoot configuration variables, their settings, and
default values.

1. Access the OpenBoot CLI.
See “Accessing the OpenBoot CLI and Getting Help” on page 21.

2. Use the printenv command to display all the variables.

In the formatted list of the current settings, numeric variables are often shown in the decimal
format.

{0} ok printenv
Variable Name Value Default Value

reboot-command

security-mode none No default
security-password No default
security-#badlogins 0 No default
verbosity min min
diag-switch? true false
local-mac-address? true true
fcode-debug? true false
scsi-initiator-id 7 7

oem-logo No default
oem-logo? false false
oem-banner No default
oem-banner? false false
ansi-terminal? true true
screen-#columns 80 80
screen-#rows 34 34
ttya-mode 9600,8,n,1, - 9600,8,n,1, -
output-device virtual-console virtual-console
input-device virtual-console virtual-console
auto-boot-on-error? false false
load-base 16384 16384
auto-boot? false true

os-root-device
network-boot-arguments
boot-command boot boot

Setting Configuration Variables 59

Change a Variable Setting

boot-file

boot-device vdisk disk net
multipath-boot? false false
boot-device-index 0 0
use-nvramrc? false false
nvramrc

error-reset-recovery boot boot

Related Information

m “Configuration Variables Overview” on page 55

m “Standard Configuration Variables” on page 56

m “Configuration Variable Commands” on page 58

m “Change a Variable Setting” on page 60

= “Reset a Variable to Its Default Value” on page 66

= “Reset All Variables to Default Values (Using Oracle ILOM CLI)” on page 68

¥ Change a Variable Setting

Use this procedure to change an OpenBoot configuration variable setting.

A Caution - Use extreme care when changing a configuration variable. An incorrect setting or
typo can prevent the virtual machine from booting.

Note - Many variable changes do not affect the operation of the firmware until the next power
cycle or reset, at which time the firmware uses the new value of the variable.

1. Access the OpenBoot CLI.
See “Accessing the OpenBoot CLI and Getting Help” on page 21.

2. At the OpenBoot prompt, use this syntax:
{0} ok setenv variable-name value

Where variable-name is the name of the variable and value is a numeric value or text string
appropriate for the named variable. A numeric value is interpreted as a decimal number, unless
preceded by 0x, which is the qualifier for a hexadecimal number.

For example, to set the auto-boot? variable to false, type:

{0} ok setenv auto-boot? false

60 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Create a Device Alias

Related Information

= “Configuration Variables Overview” on page 55

m “Standard Configuration Variables” on page 56

= “Configuration Variable Commands” on page 58

= “Display the Current Variable Settings” on page 59

m “Reset a Variable to Its Default Value” on page 66
m “Reset All Variables to Default Values (Using Oracle ILOM CLI)” on page 68

V¥V Create a Device Alias

Virtual machines have predefined device aliases for the most commonly used devices, however,
you can create, modify, and examine aliases with the devalias command. User-defined aliases
are lost after a reset or power cycle, but you can create a persistent alias by storing the devalias
command in the NVRAMRC script. You can enter the devalias command in the script either
manually, or by using the nvalias command. For more details, see “Customizing Start-Up with

NVRAMRC” on page 87.

This procedure uses the nvalias command.

Name

Description

devalias
devalias alias

devalias alias device-path

nvalias alias device-path

Displays current aliases.
Displays the device path name that corresponds to the alias.

Defines an alias representing device-path. If an alias with the same
name already exists, the new value supersedes the old.

Note - The alias is lost upon the next reset or power cycle. Use the
nvalias command to create a persistent device alias.

Creates a nonvolatile device alias by adding the devalias
command line into the NVRAMRC script. For details, see
“NVRAMRC Editor Commands” on page 89.

Note - The use-nvramrc? variable is automatically set to true
when the nvalias command is used.

1. Access the OpenBoot CLI.

See “Accessing the OpenBoot CLI and Getting Help” on page 21.

2. View the current device aliases.

{0} ok devalias

screen /pci@300/pci@4/display@d

fallback-miniroot /pci@300/pci@2/usb@d/hub@3/storage@l/disk@@

Setting Configuration Variables 61

Create a Device Alias

rcdrom /pci@300/pci@2/usb@d/hub@3/storage@l/disk@@

primary-vds@ /virtual-devices@l00/channel-devices@200/virtual-disk-server@o
primary-vsw@ /virtual-devices@l@0/channel-devices@200/virtual-network-switch@@
primary-vcc@ /virtual-devices@l00/channel-devices@200/virtual-console-concentrator@®
net3 /pci@300/pci@3/network@o, 1

net2 /pci@300/pci@3/network@d

cdrom /pci@300/pci@2/usb@d/hub@8/device@l/storage@d/disk@d

netl /pci@300/pci@l/network@o, 1

net /pci@300/pci@l/network@d

net0 /pci@300/pci@l/network@d

scsi /pci@301/pci@2/scsi@d

scsi0 /pci@301/pci@2/scsi@d

disk7 /pci@301/pci@2/scsi@d/disk@p7

disk6 /pci@301/pci@2/scsi@d/disk@p6

disk5 /pci@301/pci@2/scsi@d/disk@p5

disk4 /pci@301/pci@2/scsi@d/disk@p4

disk3 /pci@301/pci@2/scsi@d/disk@p3

disk2 /pci@301/pci@2/scsi@d/disk@p2

diskl /pci@301/pci@2/scsi@d/disk@pl

3. Create the device alias.
This example uses the nvalias command to create a persistent device alias.

{0} ok nvalias my_device /pci@301/pci@2/scsi@0/disk@w5000ccal23456789,0:a

If the NVRAMRC script was successfully modified, but use-nvramrc? is false, the command
sets use-nvramrc? to true.

4. Verify the device alias.
For example:

{0} ok devalias my_device
my device /pci@301/pci@2/scsi@@/disk@w5000ccal23456789,0:a

5. Verify that the use-nvramrc? variable is set to true.
For example:

{0} ok printenv use-nvramrc?
use-nvramrc? = true

Related Information

m “Configuration Variables Overview” on page 55

m “Standard Configuration Variables” on page 56

= “Configuration Variable Commands” on page 58

= “Display the Current Variable Settings” on page 59

62 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Set the Input and Output Device

¥ Set the Input and Output Device

The input-device and output-device variables control the firmware's selection of input and
output devices after a power-on reset. These are the default values:

® ipput-device — virtual-console

® output-device — virtual-console
The values of must be device specifiers.

When the virtual machine is reset, the named device becomes the initial firmware console input
or output device. (If you want to temporarily change the input or output device, use the input or
output commands.

1. Specify the console input device.
{0} ok setenv input-device device-specifier
2. Specify the console output device.

{0} ok setenv output-device device-specifier

Related Information

= “Configuration Variables Overview” on page 55

“Standard Configuration Variables” on page 56

“Configuration Variable Commands” on page 58

“Display the Current Variable Settings” on page 59

¥ Change the Power-On Banner

The banner is displayed at a system-dependent screen location (usually either at the top of
the screen or at the current cursor position). If the current output device has a device_type
property whose value is display, displays a logo by executing the current output device’s
draw-logo method with the following arguments:

® The line# argument, at the system’s discretion, is either @ or the line number corresponding
to the current cursor position.

® [f oem-logo? is true, the addr argument is the address returned by oem-logo. Otherwise,
it is the address of the system-dependent default logo. The width and height arguments are
both 64. Note — oem-logo? is only effective for graphics-based console output devices.

Setting Configuration Variables 63

Change the Power-On Banner

64

In any case, display additional information as follows:

® [f oem-banner? is true, display the text given by the value of oem-banner.

m Otherwise, display implementation-dependent information about the system (for example,
the machine type, serial number, firmware revision, network address, and hardware
configuration).

If executed within an NVRAMRC script, it suppresses automatic execution of the following
OpenBoot start-up sequence:

B probe-all, install-console, banner
See also: suppress-banner.

B oem-banner (-- text-str text-len).

® oem-banner? (-- custom?).

If true, banner displays custom message in oem-banner. If false, banner displays the
normal system-dependent messages.

Although it is not a direct preventative or detective control, a banner can be used for these
reasons:

= Convey ownership.
m Warn users of the acceptable use.

m Indicate that access or modifications to OpenBoot variables is restricted to authorized
personnel.

The banner configuration variables are:

B oem-banner
B oem-banner?
® oem-logo

= oem-logo?

The banner consists of two parts: the text field and the logo (over serial ports, only the text field
is displayed). You can replace the existing text field with a custom text message using the oem-
banner and oem-banner? configuration variables. The banner can be up to 68 characters. All
printable characters are accepted.

The graphic logo is handled differently. The oem-logo variable is a 512-byte array, containing a
total of 4096 bits arranged in a 64 x 64 array. Each bit controls one pixel. The most significant
bit (MSB) of the first byte controls the upper-left corner pixel. The next bit controls the pixel to
the right of it, and so on.

Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Change the Power-On Banner

To restore the original power-on banner, set the oem-logo? and oem-banner? variables to
false, as in these examples:

{0} ok setenv oem-logo? false
{0} ok setenv oem-banner? false

Because the oem-logo array is so large, printenv displays approximately the first 8 bytes (in
hexadecimal). To display the entire array, type oem-logo dump. The oem-logo array is not erased
by set-defaults, since it might be difficult to restore the data. However, oem-1logo? is set to
false when set-defaults executes, so the custom logo is no longer displayed.

Note - Some systems do not support the oem-logo feature.

View the current power-on banner.

{0} ok banner

SPARC T5-8, No Keyboard

Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
OpenBoot 4.37.4.build xx, 315.5000 GB memory available, Serial #136621172.
Ethernet address Xx:xx:xx:xx:xx:xx, Host ID: 1234acl2.

{0} ok

The banner for your system will be different.
If desired, insert a custom text field.
{0} ok setenv oem-banner Hello World
oem-banner = Hello World

{0} ok setenv oem-banner? true

oem-banner? = true
{0} ok banner

Hello World

{0} ok

If desired, change the logo.

This example fills the top half of the oem-logo variable with an ascending pattern.

a. Create a FORTH array containing the correct data.

{0} ok create logoarray d# 512 allot

Setting Configuration Variables 65

Reset a Variable to Its Default Value

b. Copy the array into the oem-1logo variable.

{0} ok logoarray d# 256 0 do i over i + c! loop drop

c. Install the array in the oem-1ogo? variable with the $setenv command.

{0} ok logoarray d# 256 " oem-logo" $setenv

d. Change the oen-1logo variable setting.

{0} ok setenv oem-logo? true

e. Verify the output.

{0} ok banner

Related Information

m “Configuration Variables Overview” on page 55

m “Standard Configuration Variables” on page 56

m “Configuration Variable Commands” on page 58

= “Display the Current Variable Settings” on page 59

V¥V Reset a Variable to Its Default Value

Use this procedure to reset an individual an OpenBoot configuration variable to its default
value.

A Caution - Use extreme care when changing a configuration variable. An incorrect setting or
typo can prevent the virtual machine from booting.

Note - Many variable changes do not affect the operation of the firmware until the next power
cycle or reset, at which time the firmware uses the new value of the variable.

1. Access the OpenBoot CLI.
See “Accessing the OpenBoot CLI and Getting Help” on page 21.

2. At the OpenBoot prompt, use this syntax:

{0} ok set-default variable-name

66 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Reset All Variables to Default Values (Using OpenBoot CLI)

Where variable-name is the name of the variable.

For example, to set the auto-boot? variable to its default value (true), type:

{0} ok set-default auto-boot?

Related Information

m “Standard Configuration Variables” on page 56

= “Display the Current Variable Settings” on page 59

m “Reset All Variables to Default Values (Using OpenBoot CLI)” on page 67

= “Reset All Variables to Default Values (Using Oracle ILOM CLI)” on page 68

¥ Reset All Variables to Default Values (Using OpenBoot

CLI)

A

Use this procedure to reset All OpenBoot configuration variables to default values.

Caution - Use extreme care when changing a configuration variable. An incorrect setting or
typo can prevent the virtual machine from booting.

Note - Many variable changes do not affect the operation of the firmware until the next power
cycle or reset, at which time the firmware uses the new value of the variable.

Access the OpenBoot CLI.
See “Accessing the OpenBoot CLI and Getting Help” on page 21.

At the OpenBoot prompt, type:
{0} ok set-defaults
Related Information

m “Standard Configuration Variables” on page 56

m “Display the Current Variable Settings” on page 59

m “Reset a Variable to Its Default Value” on page 66

m “Reset All Variables to Default Values (Using Oracle ILOM CLI)” on page 68

Setting Configuration Variables 67

Reset All Variables to Default Values (Using Oracle ILOM CLI)

¥ Reset All Variables to Default Values (Using Oracle ILOM

68

Oracle ILOM provides a set of host boot mode properties that enables you to override the
default method for booting the virtual machine OS on a SPARC server.

The host boot mode properties in Oracle ILOM are intended to help resolve corrupt boot mode

settings with OpenBoot or LDoms. The boot mode properties, when set in Oracle ILOM, apply
only to a single boot and expire within 10 minutes if the power on the host SPARC server is not
reset.

For additional details about this Oracle ILOM feature, refer to the section called Overriding
SPARC Host Boot Mode in the Oracle ILOM Administration Guide for Configuration and
Maintenance document for the version of Oracle ILOM running on your system. This URL
goes to that section for version 3.2.x http://docs.oracle.com/cd/E37444_01/html/E37446/
z40000061582150. html.

Note - The Oracle ILOM CLI examples in this section are for a single PDomain system. For
multiple domain systems, replace /HOST with /HOSTx, where x is the PDomain number.

Access Oracle ILOM.

You can use the Oracle ILOM web interface or CLI to set the host boot mode properties. This
procedure uses the Oracle ILOM CLI.

At the Oracle ILOM CLI prompt, enter one of these command lines:

For a single-domain server, type:

-> set /HOST/bootmode state=reset_nvram
Reset the virtual machine.

m For a single-domain server, type:

-> reset /System

m For a multi-domain server, type:
-> reset /HOSTx

Where x is the PDomain number.

Oracle OpenBoot 4.x Administration Guide ¢ January 2017

http://docs.oracle.com/cd/E37444_01/html/E37446/z40000061582150.html
http://docs.oracle.com/cd/E37444_01/html/E37446/z40000061582150.html

Reset All Variables to Default Values (Using Oracle ILOM CLI)

Related Information

m “Standard Configuration Variables” on page 56

m “Display the Current Variable Settings” on page 59

m “Reset a Variable to Its Default Value” on page 66

m “Reset All Variables to Default Values (Using OpenBoot CLI)” on page 67

Setting Configuration Variables 69

70 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Setting Security Variables

The security variables enable the virtual machine to be configured so that a password is
required to access most commands from the OpenBoot ok prompt. Several levels of security
(including none) can be configured.

These topics describe how to configure OpenBoot security variables:

m “Set Up the Security Password” on page 71

m “Set the security-mode Variable” on page 72

® “Disable the security-mode Variable” on page 74
m “Check for Failed Log-Ins” on page 74

= “Configure OpenBoot Keys on an Installation Client” on page 75

V¥ Set Up the Security Password

A

Use this procedure to create or change and existing OpenBoot password.

Caution - It is important to remember your security password and to configure the security
password before setting the security mode. If you forget this password, you cannot use your
virtual machine; you must call your vendor's customer support service to make your virtual
machine bootable again.

The security password you assign must be between zero and eight characters. Any characters
after the eighth are ignored. You do not have to reset the virtual machine; the security feature
takes effect immediately. All printable characters are accepted. Control characters are not
accepted.

Note - Setting the password to zero characters turns off security and treats the security-mode
parameter as if it were set to none. However, it does not change the setting.

Setting Security Variables 71

Set the security-mode Variable

Once security mode is enabled, if you enter an incorrect security password, there will be a delay
of about 10 seconds before the next boot prompt appears. The number of times that an incorrect
security password is typed is stored in the security-#badlogins variable.

Access the OpenBoot CLI.
See “Accessing the OpenBoot CLI and Getting Help” on page 21.

At the OpenBoot prompt, type:

{0} ok password

New password (8 characters max): password
Retype new password: password

{0} ok

Related Information

m “Set the security-mode Variable” on page 72

® “Disable the security-mode Variable” on page 74

m “Check for Failed Log-Ins” on page 74

= “Configure OpenBoot Keys on an Installation Client” on page 75

¥ Set the security-mode Variable

72

The security-mode variable can restrict the set of operations that users are allowed to perform
from the OpenBoot CLI.

Caution - It is important to remember your security password and to configure the security

password before setting the security mode. If you forget this password, you cannot use your
virtual machine; you must call your vendor's customer support service to make your virtual
machine bootable again.

Access the OpenBoot CLI.
See “Accessing the OpenBoot CLI and Getting Help” on page 21.

Set the OpenBoot password before setting the security-mode variable.
See “Set Up the Security Password” on page 71.

At the OpenBoot prompt, type:

{0} ok setenv security-mode name

Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Set the security-mode Variable

Where name is one of the three security mode values that are listed in this table (from most to
least secure).

For business continuity reasons, consider setting the security-mode parameter to command.

Name Description
full A password is required to perform any action, including the boot and go commands.
command Applies these policies:

®m A password is not required if you type the boot command by itself or the go command.
However, if you use the boot command with an argument, a password is required.

® A password is required to execute any other command.

none No password is required (default).

4. Obtain the security mode prompt.

After setting the security mode, there are two ways to obtain the security mode prompt.

Use the logout and login words.

{0} ok logout

Type boot , go (continue), or login (command mode)
>

> login

Firmware Password: password

Type help for more information

{0} ok

To exit the security mode, use the logout and login names, as shown in the example.

Use the reset-all command.
{0} ok reset-all

This command resets the virtual machine. When the virtual machine comes back up,
OpenBoot goes to the security mode prompt. To log back in to the command prompt
(or log out of the security mode), use the logout and login names, and then enter the
password, as described above.

Related Information

“Set Up the Security Password” on page 71
“Disable the security-mode Variable” on page 74
“Check for Failed Log-Ins” on page 74

Setting Security Variables 73

Disable the security-mode Variable

= “Configure OpenBoot Keys on an Installation Client” on page 75

V¥V Disable the security-mode Variable

A

Caution - When security-mode is set to none, the OpenBoot password is not automatically
cleared. If security-mode is later enabled, the existing password takes effect. If the original
password is forgotten, you cannot use your virtual machine and you must call your vendor's
customer support service to make your virtual machine bootable again. To avoid this scenario,
always clear the password when you disable the security-mode, as described in this procedure.

Access the OpenBoot CLI.
See “Accessing the OpenBoot CLI and Getting Help” on page 21.

Set the security-mode variable to none.

{0} ok setenv security-mode none

Set the password to zero length by typing Return after both password prompts.

{0} ok password

New password (8 characters max):
Retype new password:

{0} ok

Related Information

m “Set Up the Security Password” on page 71

m “Set the security-mode Variable” on page 72

m “Check for Failed Log-Ins” on page 74

= “Configure OpenBoot Keys on an Installation Client” on page 75

¥ Check for Failed Log-Ins

1.

Access the OpenBoot CLI.
See “Accessing the OpenBoot CLI and Getting Help” on page 21.

Display the value for security-#badlogins.

You can determine if someone has attempted and failed to access the OpenBoot environment by
displaying the security-#badlogins variable. For example:

74 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Configure OpenBoot Keys on an Installation Client

{0} ok printenv security-#badlogins

If this command returns any value greater than 0, a failed attempt to access the OpenBoot
environment was recorded.

3. Reset the variable.

{0} ok setenv security-#badlogins 0

Related Information

m “Set Up the Security Password” on page 71

m “Set the security-mode Variable” on page 72

® “Disable the security-mode Variable” on page 74

= “Configure OpenBoot Keys on an Installation Client” on page 75

¥ Configure OpenBoot Keys on an Installation Client

To enable security for SPARC clients, you must generate an OpenBoot HMAC key and
encryption key for each client . These keys also secure the download of the initial network boot
files.

Note - Check the product documentation for availability of HMAC keys for a secured
installation.

This procedure is based on an installation server that is running the Oracle Solaris 11 OS, and
a SPARC-based installation client. For details on how to prepare the installation server, refer
to the section called Installing Using an Install Server in the Installing Oracle Solaris 11.3
Systems document at: https://docs.oracle.com/cd/E53394 01/html/E54756.

For Oracle Solaris 10 OS instructions, refer to the Solaris 10 1/13 Installation Guide: Network-
Based Installations guide at: http://docs.oracle.com/cd/E26505 01/html/E28037/index.
html The instructions are in Installing Over a Wide Area Network chapter, and in the Installing
Keys on the Client section.

1. Access the OpenBoot CLI.
See “Accessing the OpenBoot CLI and Getting Help” on page 21.

2. On the installation client, set the OpenBoot keys.
This example sets the OpenBoot AES encryption key on a SPARC installation client.

Setting Security Variables 75

https://docs.oracle.com/cd/E53394_01/html/E54756
http://docs.oracle.com/cd/E26505_01/html/E28037/index.html
http://docs.oracle.com/cd/E26505_01/html/E28037/index.html

Configure OpenBoot Keys on an Installation Client

{0} ok set-security-key wanboot-aes 030fdllc98afb3e434576e886a094clc
This example sets the OpenBoot hashing (HMAC) key on a SPARC installation client.

{0} ok set-security-key wanboot-hmac-shal e729a742ae4ba977254a2cf89c2060491e7d86eb

Note - To unset a key on the client, use the same command that you used to set the key, but do
not provide any key value. For example: set-security-key wanboot-hmac-shal.

Once the installation server and client are set up, boot the client from the network. See “Boot
Over the Network” on page 52.

Related Information

m “Set Up the Security Password” on page 71

m “Set the security-mode Variable” on page 72

®m “Disable the security-mode Variable” on page 74
m “Check for Failed Log-Ins” on page 74

76 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Interrogating the System With OpenBoot
Commands

OpenBoot provides commands that you can use to gather information about the system
hardware. Some commands also perform a low level sanity tests of the hardware without a
running OS.

These topics are provided in this section:

= “Probe All SCSI Devices” on page 77

= “Monitor Network Interfaces” on page 78
m “List All NVMe Devices” on page 80

= “Browsing the Device Tree” on page 80

V¥ Probe All SCSI Devices

You can use the OpenBoot probe-scsi-all command to probe the SCSI buses and to display
information about the attached devices. The command displays the device path, device type,
target, unit numbers, and the unique WWN.

1. Access the OpenBoot CLI.
See “Accessing the OpenBoot CLI and Getting Help” on page 21.

2. Run the probe-scsi-all command.

Example:
{0} ok probe-scsi-all
/pci@300/pci@2/usb@d/hub@4/storage@2

Unit 0 Disk smiMICRON eUSB DISK 1111

/pci@300/pci@2/usb@d/hub@3/storage@l
Unit @ Removable Read Only device SUNRemote ISO CDROM1.01

Interrogating the System With OpenBoot Commands 77

Monitor Network Interfaces

/pci@300/pci@2/usb@d/hub@8/device@l/storage@d
Unit @ Removable Read Only device TEAC DV-W28S-A 9.2A

/pci@301/pci@2/scsi@d
FCode Version 1.00.64, MPT Version 2.05, Firmware Version 5.00.00.00

Target 9

Unit @ Disk HITACHI H109060SESUN60OG A606 1172123568 Blocks,
600 GB

SASDeviceName 5000cca@43d8bdf@ SASAddress 5000cca043d8bdfl PhyNum @
Target a

Unit @ Disk HITACHI H109060SESUN60OG A606 1172123568 Blocks,
600 GB

SASDeviceName 5000cca@43daf4d8 SASAddress 5000cca043daf4d9 PhyNum 4

Related Information

= “Monitor Network Interfaces” on page 78
m “List All NVMe Devices” on page 80
= “Browsing the Device Tree” on page 80

V¥ Monitor Network Interfaces

You can use the watch-net and watch-net-all OpenBoot commands to check the status of
network interfaces. The commands send packets addressed to itself, and watches the packets
return.

1. Access the OpenBoot CLI.
See “Accessing the OpenBoot CLI and Getting Help” on page 21.

2. |dentify the network specified for the net device alias.
When you run the watch-net command, the network specified by the net device alias is the

network that is tested. The devalias command displays that network.

{0} ok devalias net
net /pci@300/pci@l/network@o

3. Run the watch-net command to test the network interface that is specified by the
net device alias.

The command receives Ethernet multicast packets , and reports the status with a . (period) for
each error-free packet received. or with an X for each packet received with a error.

78 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Monitor Network Interfaces

Example:

{0} ok watch-net

1000 Mbps full duplex Link up

Looking for Ethernet Packets.

'.' is a Good Packet. 'X' is a Bad Packet.
Type any key to stop.

Press any key to stop the activity.

Run the watch-net-all command to list all network interfaces and send and
receive test packets.

The command reports the status with a . (period) for each error-free packet received. or with an
X for each packet received with a error.

Example:

{0} ok watch-net-all
Link down

Waiting for link
Link Down

/pci@300/pci@3/network@d
Link down

Waiting for link

Link Down

/pci@300/pci@l/network@o, 1
Link down

Waiting for link

Link Down

/pci@300/pci@l/network@d

1000 Mbps full duplex Link up

Looking for Ethernet Packets.

'.' is a Good Packet. 'X' is a Bad Packet.
Type any key to stop.

Press any key to stop the activity.

Related Information

= “Probe All SCSI Devices” on page 77
= “List All NVMe Devices” on page 80

Interrogating the System With OpenBoot Commands 79

v

80

List All NVMe Devices

= “Browsing the Device Tree” on page 80

List All NVMe Devices

You can use the OpenBoot probe-nvme-all command to list all the flash accelerator devices
(sometimes referred to as NVMe) in a system. The information displayed can provide the
information you need to set one of the devices as the boot device.

Note - Not all systems have flash accelerators.

Access the OpenBoot CLI.
See “Accessing the OpenBoot CLI and Getting Help” on page 21.

Run the OpenBoot probe-nvme-all command.

In this example, a server with one physical domain has two factory installed flash accelerator
cards. The lowest numbered card contains the preinstalled Oracle Solaris OS software. The
lowest-numbered card has the /pci@301/pci@l/nvme@® device path.

{0} ok probe-nvme-all
/pci@315/pci@l/nvme@d
NVME Controller VID: 8086 SSVID: 108e SN:CVMD51210Q0AA1P6N MN: INTEL SSDPEDME0Q16T4S
FR: 8DVIRA13 NN: 1
Namespace ID:1 Size: 1.600 TB
/pci@301/pci@1l/nvme@d
NVME Controller VID: 8086 SSVID: 108e SN:CVMD512100F81P6N MN: INTEL SSDPEDMEQ16T4S
FR: 8DVIRA13 NN: 1
Namespace ID:1 Size: 1.600 TB

Related Information

= “Probe All SCSI Devices” on page 77
= “Monitor Network Interfaces” on page 78
= “Browsing the Device Tree” on page 80

Browsing the Device Tree

The set of devices attached to the system, including permanently installed devices and plug-in
devices, is described by an OpenBoot data structure known as the device tree.

Oracle OpenBoot 4.x Administration Guide ¢ January 2017

List All NVMe Devices

You can inspect the device tree to determine the hardware configuration of the system. Each
device in the device tree is described by a property list that you can view from the OpenBoot
CLL

A conceptual description of the device tree is covered in “Device Tree” on page 14.

Use these topics to browse the device tree:

= “Commands for Browsing the Device Tree” on page 81
= “Display the Device Tree” on page 82

Commands for Browsing the Device Tree

You can browse the device tree to examine individual device tree nodes. The device tree
browsing commands are similar to the Oracle Solaris commands for changing, displaying, and
listing the current directory in the Oracle Solaris directory tree. Selecting a device node makes it
the current node.

For example:

Name Description

.properties Displays the names and values of properties of the active package.

Makes the specified device node the active package. Parses device-specifier
delimited by end-of - Line. Performs the equivalent of find-device with device-
specifier as its argument.

dev device-path

Searches for a node with the given name in the subtree below the current node, and
choose the first such node found.

dev node-name

dev .. Chooses the device node that is the parent of the current node.
dev / Chooses the root machine node.
device-end Unselects the active package, leaving none selected.

find-device

Makes the device node dev-string the active package.

s Displays the names of the active package’s children.

open-dev Opens device (and parents) named by given device specifier.
Leaves instance handle (ihandle) on stack if device is opened.

close-dev Closes device and all of its parents.

pwd Displays the device path that names the active package.

see Decompiles the FORTH command old-name.

show-devs device-path

Shows all devices beneath the indicated node.

Interrogating the System With OpenBoot Commands

81

Display the Device Tree

Name

Description

show-props device-path

select-dev

unselect-dev

words

Skips leading space delimiters. Parses device-specifier delimited by a space.
Discards the remainder of the command line. Shows the full device path for each
device in the subtree of the device tree underneath the specified node.

The search process by which the specified node is located is as defined in 4.3,
using the rules given for find-device. If device-specifier is the empty string (that
is, there is nothing on the command line following show-devs), shows all system
devices.

Displays the names and values of properties of the device-specifier.

Opens the device (and parents) named by given device specifier.
Sets my -self to instance handle (ihandle) of the device.

Returns nothing on stack.

Closes device and all of its parents, and undoes select-dev.

Displays the names of methods or commands.

If there is an active package, displays the names of its methods. Otherwise,
displays an implementation-dependent subset (preferably the entire set) of the

globally visible FORTH commands. In either case, the order of display is to
display more recently defined names before less recently defined names.

Related Information

= “Device Tree” on page 14

= “Display the Device Tree” on page 82

V¥V Display the Device Tree

Device tree browsing enables you to examine and modify individual device tree nodes. The
active package is the device node that you can examine and modify with subsequent node
examination commands. Selecting a device node makes it the active package. When a node is
the active package, user-created FORTH commands are added to the list of methods for that
device. You can add new properties to the list of properties for that device. Dictionary search
commands will operate on the node's list of methods (followed by system FORTH words), and
that node's methods can be executed as FORTH words by typing their names.

For a list of commands, see “Commands for Browsing the Device Tree” on page 81.

1. Access the OpenBoot CLI.
See “Accessing the OpenBoot CLI and Getting Help” on page 21.

82 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Display the Device Tree

Use the show-devs command to see the all of the full device path names in the

device tree.

For example:

{0} ok show-devs

/pci@345

/pci@344

/pci@343

/pci@342

/pci@341l

/cpu@d40

/cpu@d3f

/cpu@d3e

/cpu@d3d

/cpu@d3c

/pci@345/pciEl

/pci@344/pciEl

/pci@343/pci@E2
/pci@343/pci@2/usb@d
/pci@343/pci@2/usb@d/storage@l
/pci@343/pci@2/usb@d/storage@l/disk
/pci@342/pciEl

Display the properties of a node.

For example:

{0} ok show-props /memory

reg 00000000 50000000 0000001f 60000000
00004000 00000000 0000001f d00OV00O
00008000 00000000 0000003f dO0OV00O
0000c000 00000000 0000003f dO0OV00O
00010000 00000000 0000003f d00OV00O
00014000 00000000 0000003f d00OV00O
00018000 00000000 0000003f d00OV00O
0001c000 00000000 0000001f dO0OV00O
available 0001c01f ce790000 00000000 00002000
0001c000 00000000 0000001 ce780000
00018000 00000000 0000003f d00OV00O
00014000 00000000 0000003f dO0OV00O
00010000 00000000 0000003f d00OV00O
0000c000 00000000 0000003f dO0OV00O
00008000 00000000 0000003f dO0OV00O
00004000 00000000 0000001f dO0OV00O
00000000 90000000 0000001f 20000000
00000000 8fe00000 00000000 00022000
00000000 50400000 00000000 3e9c0000

name memory

Interrogating the System With OpenBoot Commands

83

Display the Device Tree

84

{0} ok

Select a hode and display its properties.

The dev device-path command makes the node the active package.

For example:

{0} ok dev /pci@301/pci@2/scsi@0

{0} ok .properties

firmware-version
mpt-version
local-wwid

vf-assigned-addresses
assigned-addresses

vf-reg
compatible

model
reg

version

wide

device type
name
#address-cells
vf-stride
first-vf-offset
total-vfs
initial-vfs
#vfs

port-type
interrupts
cache-line-size
class-code
subsystem-id

subsystem-vendor-id

revision-id
device-id
vendor-id
{0} ok

5.00.00.00

2.05

50 80 02 00 01 aa
83020000 00000001
81020010 00000000
83020014 00000001
82020030 00000000
03020000 00000000
pciex1000,97
pcilo0o,97

LSI, 3008

00020000 00000000
01020010 00000000
03020014 00000000
02020030 00000000
1.00.64

00000010

scsi-sas

scsi

00000004

00000001

00000001

00000010

00000010

00000010
PCIE-Endpoint
00000001

00000010

00010700

00000090

00001000

00000002

00000097

00001000

37 58

00010000
00000000
00000000
00100000
00000000

00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000

Display the names of the methods of the current node.

{0} ok dev /pci@300/pci@2/disk@w5000ccal23456789,0:a

Oracle OpenBoot 4.x Administration Guide ¢ January 2017

00010000
00000100
00010000
00100000
00010000

00000000
00000100
00010000
00100000

Display the Device Tree

{0} ok words

size load

close open
read-blocks64 write-blocks
r/w-blocks64 r/w-blocks
block-size #blocks64
read-block-extent
read-capacity-cmd

timed-spin sstart-cmd
report-failure
offset-low set-timeout
deblocker eject
eject-cmd cb!

3c@ -c@

short-data-command

retry-command parent-set-address

dma-free dma-alloc

{0} ok

Find a device.

write read seek
write-blocks64
read-blocks
4c! 2c!

#blocks read-block-size
read-capacity-16-cmd
mode-sense-bd /block
init-label-package
label-package offset-high
init-deblocker
device-present?

cmdbuf /cmdbuf

3c! +c!
no-data-command
parent-max-transfer

max-transfer

4c@

find-device is similar to dev, differing only in the way the input path name is passed.

{0} ok "/usb@0/ACME,widget" find-device

Note - After choosing a device node with dev or find-device, you can not execute that node’s
methods because dev does not establish the current instance. For a detailed explanation of this
issue, refer to Writing FCode 3.x Programs.

Related Information

m “Device Tree” on page 14
= “Commands for Browsing the Device Tree” on page 81

Interrogating the System With OpenBoot Commands 85

86 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Customizing Start-Up with NVRAMRC

These topics describe how to use the OpenBoot NVRAMRC feature.

= “NVRAMRC Overview” on page 87

= “NVRAMRC Editor Commands” on page 89

m “NVRAMRC Script Editor Keystroke Commands” on page 91
m “Activate the NVRAMRC Script” on page 92

= “Example NVRAMRC Script” on page 92

NVRAMRC Overview

You can use the nvramrc configuration variable to store user-defined FORTH commands that
are executed during start-up. Commands are stored in ASCII, just as you would type them at the
console.

The contents of the variable are called the NVRAMRC script.

The NVRAMRC script can be used to save start-up configuration variables, to patch device
driver code, or to define installation-specific device configurations. It can also be used for bug
patches or for user-installed extensions.

You can use the NVRAMRC script to create an alias for a device (see “Create a Device
Alias” on page 61).

The custom start-up script occupies the portion of configuration memory that is not dedicated to
other purposes such as configuration variables. The size of custom start-up script is determined
by an implementation and is usually up to 1024 characters long.

While it is possible to alter the contents of the NVRAMRC script with setenv or the $setenv
command, use of the NVRAMRC script editor (nvedit) is preferred.

The contents of the NVRAMRC script are cleared by set-defaults. Under some
circumstances cleared contents can be recovered with nvrecover.

Customizing Start-Up with NVRAMRC 87

NVRAMRC Overview

88

If the use-nvramrc? configuration variable is true, the NVRAMRC script is evaluated during
the OpenBoot start-up sequence as shown:

Perform virtual machine initialization.
Evaluate the script (if use-nvramrc? is true).
Execute probe-all (evaluate FCode).
Execute install-console.

Execute banner.

Execute secondary diagnostics.

No Uk wNE

Perform default boot (if auto-boot? is true and auto-boot is enabled).

It is sometimes desirable to modify the sequence of probe-all, install-console, and banner.
For example, commands that modify the characteristics of plug-in display devices might need
to be executed after the plug-in devices have been probed, but before the console device has
been selected. Such commands would need to be executed between probe-all and install-
console. Commands that display output on the console would need to be placed after install-
console or banner.

This is accomplished by creating a custom script which contains either banner or suppress-
banner because the sequence probe-all install-console banner is not executed if either
banner or suppress-banner is executed from the NVRAMRC script. This allows the use of
probe-all, install-console, and banner inside the NVRAMRC script, possibly interspersed
with other commands, without having those commands re-executed after the NVRAMRC script
finishes.

Most OpenBoot commands can be used in the NVRAMRC script except for these commands:

B hoot
| | go
B npvedit

® password
® reset-all

B setenv security-mode

Caution - The Verified Boot policy setting of enforce does not allow the boot process to
proceed if the OpenBoot use-nvramrc? variable is set to true. You can directly set the use-
nvramrc? variable with the setenv command, or the variable is automatically set to true when
you use the nvalias command. If you set the use-nvramrc? variable to false, you will not be
able to create device aliases with the nvalias command. For further details, refer to https://
docs.oracle.com/cd/E37444 01/html/E37446/240001291613819.htm1l.

Oracle OpenBoot 4.x Administration Guide ¢ January 2017

https://docs.oracle.com/cd/E37444_01/html/E37446/z40001291613819.html
https://docs.oracle.com/cd/E37444_01/html/E37446/z40001291613819.html

NVRAMRC Editor Commands

Related Information

“NVRAMRC Editor Commands” on page 89

“NVRAMRC Script Editor Keystroke Commands” on page 91
“Activate the NVRAMRC Script” on page 92

“Example NVRAMRC Script” on page 92

NVRAMRC Editor Commands

Name

Description

nvalias alias device-path

$nvalias

nvedit

Edits the NVRAMRC script to create a persistent device alias, as follows:
Creates this command line in the NVRAMRC script:
devalias alias-name device-specifier

If the NVRAMRC script already contains a devalias line with the same alias name, deletes that entry
and replaces it with the new entry at the same location in the NVRAMRC script. Otherwise, places the
new entry at the beginning of the script.

If there is insufficient space in the NVRAMRC script for the new devalias command, displays a
message to that effect and aborts without modifying the script.

If the NVRAMRC script was successfully modified, executes the new devalias command immediately,
creating a new memory-resident alias.

If the NVRAMRC script is currently being edited (that is, if nvedit has been executed, but has not been
completed with either nvstore or nvquit), aborts with an error message before taking any other action.

If the NVRAMRC script was successfully modified, but use-nvramrc? is false, sets use-nvramrc? to
true.

Syntax:

ok nvalias alias-name /full/pathname <eol>

Creates nonvolatile device alias, and edits the NVRAMRC script.

Performs the same function as nvalias, except that the parameters are stack strings. The alias name is
specified by name string. The device specifier is specified by dev-string.

Used as: ok " new-alias" " device-specifier" $nvalias

Enters the NVRAMRC script editor (exits with ~c).

nvedit operates on a temporary buffer. If data remains in the temporary buffer from a previous nvedit

command, editing resumes with those previous contents. If not, nvedit reads the contents of the
NVRAMRC script into the temporary buffer and begins editing the temporary buffer.

Customizing Start-Up with NVRAMRC 89

NVRAMRC Editor Commands

Name Description
Editing continues until ~c is typed, at which point editing ceases and normal operation of the command
interpreter is resumed. The contents of the temporary buffer are not automatically saved to the
NVRAMRC script. The nvstore command must be executed afterwards to save the buffer into the
NVRAMRC script.
The intra-line editing keystrokes are used within the NVRAMRC script editor with some additions.

nvquit Discards the contents of nvedit temporary buffer.
Prompts for confirmation of the user’s intent to carry out this function. If confirmation is obtained,
discards the nvedit temporary buffer. Otherwise, takes no further action.

nvrecover Attempts to recover lost script contents.
Attempts to recover the contents of the NVRAMRC script if it has been lost as a result of the execution
of set-default or set-defaults. Enters the script editor as with the nvedit command. In order for
nvrecover to succeed, nvedit must not have been executed between the time that the script contents
were lost and the time that nvrecover is executed.

nvrun Executes the contents of the temporary buffer.

nvstore Copies the contents of nvedit temporary buffer into the NVRAMRC script.

nvunalias alias

$nvunalias

The nvedit temporary buffer is then cleared. Used after nvedit to save the results of an editing session
into the NVRAMRC script.

Deletes nonvolatile device alias from the NVRAMRC script.

If the NVRAMRC script contains a devalias command line with the same name as alias-name, deletes
that command line from the script. Otherwise, leaves the script unchanged. If the script is currently
being edited (that is, nvedit has been executed, but has not been completed with either nvstore or
nvquit), aborts with an error message before taking any other action.

Used as: ok nvunalias alias-name

Deletes nonvolatile device alias from the NVRAMRC script.
Performs the same function as nvunalias, except that the alias name is specified by name-string.

Used as: ok " alias-name" $nvunalias

Related Information

= “NVRAMRC Overview” on page 87

m “NVRAMRC Script Editor Keystroke Commands” on page 91
m “Activate the NVRAMRC Script” on page 92

= “Example NVRAMRC Script” on page 92

90 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

NVRAMRC Script Editor Keystroke Commands

NVRAMRC Script Editor Keystroke Commands

You use the keystrokes in this table on the command line, or with the NVRAMRC script editor.
Use the keystrokes to re-execute previous commands without retyping them, to edit the current
command line, to fix typing errors, or to recall and change previous commands.

Keystroke

Description

Control-B
Escape B
Control-F
Escape F
Control-A
Control-E
Control-N
Control-P
Return (Enter)
Control-O
Control-K

Delete
Backspace
Control-H
Escape H

Control-W

Control-D
Escape D

Control-U
Control-Y
Control-Q
Control-R
Control-L
Control-C

Moves backward one character.

Moves backward one word.

Moves forward one character.

Moves forward one word.

Moves backward to beginning of the line.

Moves forward to end of the line.

Moves to the next line of the NVRAMRC script editing buffer.
Moves to the previous line of the NVRAMRC script editing buffer.
Inserts a new line at the cursor position and advances to the next line.
Inserts a new line at the cursor position and stays on the current line.

Erases from the cursor position to the end of the line, storing the erased characters
in a save buffer. If at the end of a line, joins the next line to the current line (that is,
deletes the new line).

Erases the previous character.
Erases the previous character.
Erases the previous character.

Erases from beginning of word to just before the cursor, storing erased characters
in a save buffer.

Erases from beginning of word to just before the cursor, storing erased characters
in a save buffer.

Erases the next character.

Erases from the cursor to the end of the word, storing the erased characters in a
save buffer.

Erases the entire line, storing the erased characters in a save buffer.
Inserts the contents of the save buffer before the cursor.

Quotes the next character (i.e. allows you to insert control characters).
Retypes the line.

Displays the entire contents of the editing buffer.

Exits the NVRAMRC script editor, returning to the OpenBoot command
interpreter. The temporary buffer is preserved, but is not written back to the script.
(Use nvstore afterwards to write it back.)

Customizing Start-Up with NVRAMRC 91

Activate the NVRAMRC Script

Related Information

= “NVRAMRC Overview” on page 87

= “NVRAMRC Editor Commands” on page 89
m “Activate the NVRAMRC Script” on page 92
= “Example NVRAMRC Script” on page 92

¥ Activate the NVRAMRC Script

1. Atthe OpenBoot prompt, type nvedit.
Edit the NVRAMRC script using the editor commands described in “NVRAMRC Editor
Commands” on page 89.

2. Press Control-C to get out of the editor and back to the OpenBoot prompt.
If you have not yet typed nvstore to save your changes, you can type nvrun to execute the
contents of the temporary edit buffer.

3. Type nvstore to save your changes.

4. Enable the interpretation of the NVRAMRC script by typing:

{0} ok setenv use-nvramrc? true

5. Type reset-all to reset the virtual machine and execute the NVRAMRC script, or
execute the contents directly by typing:

{0} ok nvramrc evaluate

Related Information

= “NVRAMRC Overview” on page 87

= “NVRAMRC Editor Commands” on page 89

m “NVRAMRC Script Editor Keystroke Commands” on page 91
= “Example NVRAMRC Script” on page 92

Example NVRAMRC Script

The following example shows you how to create a simple colon definition in the NVRAMRC
script.

92 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Activate the NVRAMRC Script

{0} ok nvedit

0: : hello (--)

1: ." Hello, world. " cr

2. ;

3: ~C

{0} ok nvstore

{0} ok setenv use-nvramrc? true
{0} ok reset-all

{0} ok hello
Hello, world.
{0} ok

Notice the nvedit line number prompts (0:, 1:, 2:, and 3:) in this example. These prompts are

system-dependent.

Related Information

= “NVRAMRC Overview” on page 87
= “NVRAMRC Editor Commands” on page 89

m “NVRAMRC Script Editor Keystroke Commands” on page 91

m “Activate the NVRAMRC Script” on page 92

Customizing Start-Up with NVRAMRC

93

94 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

BE

boot pool

BOOTP

D

device-
specifier

DHCP

E
EEPROM

eUSB

FCODE

Glossary

Boot environment. A bootable instance of the Oracle Solaris image. A BE can contain
additional installed software packages.

A special pool on firmware-accessible devices that contains the set of files required to boot the
Oracle Solaris kernel for a BE. Each dataset in the boot pool is linked to a BE. See also BE and
pool.

Bootstrap Protocol.

Most commands (such as boot) that require a device name accept either a full device path name
or a device alias. In this book, the term device-specifier indicates that either a device path name
or a device alias is acceptable for such commands.

Dynamic Host Configuration Protocol. Software that automatically assigns IP addresses to
clients on a TCP/IP network.

Electrically erasable programmable read-only memory.

Embedded USB. A flash-based drive designed specifically to be used as a boot device. An
eUSB does not provide storage for applications or customer data.

FORTH code. FORTH is a programming language used in OpenBoot.

Glossary 95

GB

GB

GbE

HMAC

|
ILOM

InfiniBand

IPolB

iSCSI

iSCSI using
IPoIB

M
MAC address
MMU

MSB

Gigabyte. 1 gigabyte = 1024 megabytes.

Gigabit Ethernet.

Hash message authentication code. Used in cryptography.

See Oracle ILOM.

A networking communications standard that features very high throughput and very low
latency.

Internet protocol over InfiniBand.

Internet small computer system interface. An IP-based storage networking standard that
enables a system to access storage across a network. In an iSCSI network, the remote storage is
called the iSCSI target.

A boot process that enables a server or virtual machine to boot an iSCSI target accessible using
IP over an InfiniBand network. See also IPoIB.

Media access control address. A unique address associated with a network interface.
Memory management unit.

Most significant bit. The oem-logo variable is a 512-byte array, containing a total of 4096 bits
arranged in a 64 x 64 array. Each bit controls one pixel. The MSB of the first byte controls the
upper-left corner pixel. The next bit controls the pixel to the right of it, and so on.

Non-Volatile memory express. A host controller specification.

96 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

SCSI

NVRAM

NVRAMRC
script

o

OpenBoot

Oracle ILOM

pool

POST

PROM

R
RARP
root pool

root port

RPC

SCSI

Non-volatile random access memory.

You can use the nvramrc configuration variable to store user-defined FORTH commands that
are executed during start-up. The contents of the variable are called the NVRAMRC script.

Oracle firmware that enables a PDomain to boot the Oracle Solaris OS. Provides an interface
for testing hardware and software interactively.

Oracle Integrated Lights Out Manager. The system management firmware that is preinstalled
on the SPs.

A logical group of devices describing the layout and physical characteristics of the available
storage. Storage space for datasets is allocated from a pool. ZFS uses a model where storage
devices are aggregated into a storage pool. See also boot pool and root pool.

Power-on self-test. Diagnostic software that runs when the system is initialized from a reset or
power-on.

Programmable read-only memory.

Reverse Address Resolution Protocol.
A dataset containing a complete Oracle Solaris image or a BE. See also pool.

In a PCle device path, the root port is always the second element (for example, /pci@300/
pci@o).

Remote Procedure Call.

Small computer system interface. A standard for attaching peripherals to computers.

Glossary 97

TFTP

T
TFTP Trivial File Transfer Protocol.

\'

virtual The terms domain, guest, and virtual machine are often used interchangeably. A domain is

machine (VM) a configurable set of resources, including memory, virtual CPUs, network devices, and disk
devices, in which virtual machines run. A domain is granted virtual resources and can be
started, stopped and restarted independently of other domains and of the host server itself. A
guest is a virtualized operating system running within a domain. In this document, domain,
guest and virtual machine are all referred to as virtual machines in which OpenBoot Firmware
runs.

ZFS Zettabyte file system. A file system that uses storage pools to manage physical storage. See
also BE, pool, boot pool, and root pool.

98 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Index

Numbers and Symbols

: parameter, 16
@ parameter, 16

A

activating, NVRAMRC script, 92

addresses
devices, 16
1P, 50

aliases
devices, 18

arguments
devices, 16

for booting, 37

ASCII terminal, 29
auto-boot?, 56, 60

B
Backspace, 91

banner, 32,63, 87
boot, 37,72, 87
boot-arguments, 52
boot-command, 56

boot-device,
boot-file, 56

boot-filename, 52

56

boot-pool-list,
boot-retries, 52

bootargs, 37
booting
arguments,

37

43

arguments supported by network boot, 52

boot pool, 43
configuration variables, 37
flags, 37
network process, 50
root pool, 43
BOOTP, 50, 52
bootparams, 50
bootpath, 37
browsing device tree, 81
built-in device drivers, 12

C
/chosen, 43
/chosen node, 37
children, device tree, 14
CLI, 29,31
client-IP, 52
clients, PROM, 52
command line
editor, 31
command security setting, 72
commands
NVRAMRC editor, 89
NVRAMRC editor keystrokes, 91
setting security mode, 72
system information, 32
configuring
system variables, 55
virtual machine variables, 56
Control-/, 31
Control-?, 31

99

Index

Control-A, 91 output, 29

Control-B, 91 path names, 16
Control-C, 91 plug-in drivers, 12
Control-D, 91 root pool, 43

Control-E, 91 tree, 14

Control-F, 91 displaying and traversing, 81
Control-H, 91 DHCP, 50, 52

Control-K, 91 dhcp argument, 50
Control-L, 91 diag-switch?, 56
Control-N, 91 displaying

Control-O, 91 device tree, 81, 82
Control-P, 91 system information, 32, 32
Control-Q, 91 dotted-decimal notation, 52
Control-R, 91 dump, 63

Control-Space keystroke, 31
Control-U, 91
Control-W, 91

Control-Y, 91 E
creating .epet-addr, 32
editor

custom banner, 63

new logo, 63 NVRAMRC commands, 89

NVRAMRC keystroke commands, 91
eeprom, 56, 58
error-reset-recovery, 56

D Escape B, 91

data Escape D, 91
device tree, 14 Escape F, 91

debugging, CLI, 29 Escape H, 91

Delete, 91

dev, 81

devalias, 37 E

device-arguments, 16
device-end, 81
device-name, 16
devices
addresses, 16
arguments, 16

FCode interpreter, 13
fcode-debug?, 56
find-device, 81

flags, for booting, 37
flash accelerator devices, probing, 80
boot pool, 43 FORTH Monitor, 29
built-in drivers, 12 frame buff?r, 63.
described, 18 full security setting, 72
device-specifier, 37

displaying tree, 82

input, 29 G

node characteristics, 14 getting help, 26

100 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

Index

go, 72,87

H
help, 26

|

.idprom, 32

ID PROM, 32
inetboot program, 50
input, 63

input devices, 29, 63
input-device, 29, 56, 63
install-console, 87
interface, user, 29
interpreter, FCode, 13
IP address, 50

K
keyboard, 63

L

local-mac-address?, 56
logo, changing, 63

1s, 81

M

methods, device tree, 14

modifying, virtual machine configuration
variables, 56

Monitor, FORTH, 29

N

net device alias, 50

network boot
command syntax, 52
IP address, 52
process, 50
supported arguments, 52
network interfaces, monitoring, 78
NFS protocol, 37
nodes
device tree, 14
none security setting, 72
notation, dotted-decimal, 52
nvalias, 50, 89
nvedit, 87,89, 92,92
nvquit, 89
NVRAMRC
activating script, 92
editor commands, 89
script editor keystroke commands, 91
script overview, 87
nvramrc, 56, 87
nvrecover, 89
nvrun, 89
nvstore, 89, 92
nvunalias, 89

(0]
obp-tftp package, 52
oem-banner, 56, 63
oem-banner?, 56, 63
oem-logo, 56,63
oem-logo?, 63
OpenBoot
firmware overview, 11
properties, 43
understanding, 11
variables, 43
os-root-device, 43
output, 63
devices, 29
setting device, 63
output-device, 29,56, 63

101

Index

P
.properties, 43
packages, obp-tftp, 52
parameters

positional, 52
parent, device tree, 14
password, 58,71, 87
path names, 16
plug-in device drivers, 12

ports

serial, 29
positional parameters, 52
POST

after reset, 54
power cycling console variables, 29
printenv, 58,59, 63
probe-all, 87
probe-nvme-all command, 80
probe-scsi-all command, 77
PROM

client, 52

clients, 50

ID, 32
properties

device tree, 14

OpenBoot, 43
.properties, 81

protocols

NFS booting, 37
pwd, 81
R
RARP, 50, 52
reset-all, 54, 72,87
resetting

all configuration variables, 68
console variables, 29
virtual machine, 54

Return (Enter), 91

root pool, 43

router-IP, 52

RPC protocol, 50

102 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

S

screen, 63
screen-#columns, 29,56
screen-#rows, 29, 56
scripts
NVRAMRC, 87
NVRAMRC editor keystroke commands, 91
NVRAMRC example, 92
SCSI devices, probing, 77
secondary boot loader, 37
security
changing modes, 71
for commands, 72
set password, 71
setting variables, 71
security-#badlogins, 56,71
security-mode, 56, 87
security-mode variable, 72
security-password, 56
see, 81
serial port
for CLI, 29
server-IP, 52
set-default, 58
set-defaults, 58, 63
setenv, 58, 60, 87
setting
firmware security, 71
input device, 63
output device, 63
settings
for configuration variables, 59
show-devs, 32,81
subnet-mask, 52
suppress-banner, 87
system
display commands, 32
displaying information, 32
understanding configuration variables, 55

Index

T
.traps, 32
tboot-list, 43
terminal, ASCII, 29
test, 37

U

unit-address, 16
use-nvramrc?, 87
use-nvramrc? variable, 56

Vv

.version, 32
variables
display current settings, 59
for booting, 37
security settings, 71
understand the system configuration, 55
virtual machine configuration, 56
variables, OpenBoot, 43
virtual machine
configuration variables, 56
resetting, 54

w
watch-net and watch-net-all commands, 78
words, 81

103

104 Oracle OpenBoot 4.x Administration Guide ¢ January 2017

	Oracle® OpenBoot 4.x Administration Guide
	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	Understanding OpenBoot
	OpenBoot Firmware Overview
	Built-In and Plug-In Device Drivers
	Related Information

	FCode Interpreter
	Related Information

	Device Tree
	Related Information

	Device Path Names, Addresses, and Arguments
	Related Information

	Device Aliases
	Related Information

	Additional Resources

	Accessing the OpenBoot CLI and Getting Help
	Identify a Method to Get to the OpenBoot CLI
	Access the OpenBoot CLI (OpenBoot Running)
	Access the OpenBoot CLI (Solaris Running)
	Access the OpenBoot CLI (Powered Off)
	Access the OpenBoot CLI (Hung System)
	Use the help Command

	Using the OpenBoot CLI
	OpenBoot CLI Overview
	Related Information

	Console I/O Control
	Related Information

	Command Completion Keystrokes
	Related Information

	Virtual machine Information Commands
	Related Information

	Obtain Virtual machine Information with OpenBoot Commands

	Booting and Resetting a Virtual Machine
	Start-up Sequence
	Related Information

	Boot Sequence
	Related Information

	Boot Pools and Fallback Boot Images
	Related Information

	boot Command Overview
	Related Information

	Perform a Default Boot
	Boot a Virtual machine From a Specific Device
	Booting Over the Network
	Network Booting Process
	Related Information

	Boot Over the Network
	Arguments Supported by Network Boot
	Related Information

	Reset a Virtual machine

	Setting Configuration Variables
	Configuration Variables Overview
	Standard Configuration Variables
	Related Information

	Configuration Variable Commands
	Related Information

	Display the Current Variable Settings
	Change a Variable Setting
	Create a Device Alias
	Set the Input and Output Device
	Change the Power-On Banner
	Reset a Variable to Its Default Value
	Reset All Variables to Default Values (Using OpenBoot CLI)
	Reset All Variables to Default Values (Using Oracle ILOM CLI)

	Setting Security Variables
	Set Up the Security Password
	Set the security-mode Variable
	Disable the security-mode Variable
	Check for Failed Log-Ins
	Configure OpenBoot Keys on an Installation Client

	Interrogating the System With OpenBoot Commands
	Probe All SCSI Devices
	Monitor Network Interfaces
	List All NVMe Devices
	Browsing the Device Tree
	Commands for Browsing the Device Tree
	Related Information

	Display the Device Tree

	Customizing Start-Up with NVRAMRC
	NVRAMRC Overview
	Related Information

	NVRAMRC Editor Commands
	Related Information

	NVRAMRC Script Editor Keystroke Commands
	Related Information

	Activate the NVRAMRC Script
	Example NVRAMRC Script
	Related Information

	Glossary
	Index

