

Oracle® Fusion Middleware
Administrator's Guide for Oracle Business Intelligence
Applications

11g Release 1 (11.1.1.7)

E37988-01

April 2013

Provides topics of interest to system administrators,
including customization, multi-language support, localizing
deployments, and using Oracle GoldenGate.

Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications, 11g Release
1 (11.1.1.7)

E37988-01

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Primary Author: Dan Hilldale

Contributors: Oracle Business Intelligence development, product management, and quality assurance teams.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documentation... vii
Conventions ... viii

What's New in This Release ... ix

Notable Features in Oracle BI Applications Documented in This Guide ... ix

1 Customizing the Oracle Business Analytics Warehouse

1.1 Overview of Customization in Oracle Business Intelligence Applications 1-1
1.1.1 What is Customization in Oracle Business Intelligence Applications? 1-1
1.1.2 About the Customization Process .. 1-2
1.1.3 About the Impact of Patch Installation on Customizations .. 1-3
1.2 Category 1 Customizations: Adding Columns to Existing Fact or Dimension Tables 1-3
1.2.1 About Extending Mappings ... 1-4
1.2.2 Typical Steps to Extend Mappings in the Oracle Business Analytics Warehouse 1-4
1.2.3 Other Types of Customizations Requiring Special Handling 1-6
1.2.3.1 How to Modify Category 2 SCD Behavior .. 1-6
1.2.3.2 How to Add A Dimension to an Existing Fact .. 1-7
1.2.3.2.1 Create a Custom Dimension Datastore and Tasks 1-7
1.2.3.2.2 Customize Fact Datastores and Tasks .. 1-9
1.2.3.3 How to Add a DATE_WID column to a Fact .. 1-11
1.3 Category 2 Customizations: Adding Additional Tables ... 1-12
1.3.1 About Creating New Tables ... 1-12
1.3.1.1 About the Main Required Columns .. 1-12
1.3.2 About the DATASOURCE_NUM_ID Column .. 1-12
1.3.3 Additional Information About Customizing ... 1-13
1.3.3.1 About the Update Strategy .. 1-13
1.3.3.2 About Indices and Naming Conventions .. 1-13
1.3.4 Adding a New Fact Table to the Oracle Business Analytics Warehouse 1-13
1.4 Category 3 Customizations: Adding New Data as a

Whole Row into a Standard Dimension Table .. 1-15
1.4.1 How to Add New Data as a Whole Row Into a Standard Dimension Table 1-15
1.4.2 Configuring Extracts .. 1-16

iv

1.4.2.1 Extracting Additional Data ... 1-16
1.4.2.1.1 Extracting New Data Using an Existing Source Table 1-16
1.4.2.1.2 Extracting Data from a New Source Table .. 1-16
1.4.2.2 Setting Up the Delimiter for a Source File ... 1-17
1.4.3 Configuring Loads ... 1-18
1.4.3.1 About Primary Extract and Delete Mappings Process 1-18
1.4.3.2 About Working with Primary Extract and Delete Mappings 1-19
1.4.3.2.1 Deleting the Configuration for Source-Archived Records 1-19
1.5 Customizing Stored Lookups and Adding Indexes ... 1-19
1.5.1 About Stored Lookups ... 1-19
1.5.1.1 About Resolving Dimension Keys ... 1-20
1.5.1.1.1 Resolving the Dimension Key Using Lookup ... 1-20
1.5.2 How to add an index to an existing fact or dimension table 1-20

2 About Multi-Language Support

2.1 Introduction to Multi-Language Support ... 2-1
2.2 About Pseudo-Translations .. 2-2
2.3 About Oracle BI Applications Domains ... 2-2
2.4 About Dimension Translation Tables ... 2-4

3 Localizing Oracle Business Intelligence Deployments

3.1 Process of Maintaining Translation Tables for Oracle BI EE .. 3-1
3.1.1 Upgrading Oracle Business Intelligence Seed Data for Non-English Locales 3-2
3.1.1.1 Verify the Translation Table (W_LOCALIZED_STRING_G

and Corresponding Indexes .. 3-2
3.1.1.2 Importing Locale Seed Data Into The

Translation Table (W_LOCALIZED_STRING_G) ... 3-3
3.1.2 Externalizing Customer Metadata Strings ... 3-4
3.1.3 Adding Custom Translations to the W_LOCALIZED_STRING_G Table 3-4
3.1.3.1 Adding String Translations for Analytics Metadata .. 3-5
3.2 About Translating Presentation Services Strings .. 3-5
3.3 Changing the Default Currency in Analytics Applications .. 3-6

4 Oracle Business Analytics Warehouse Naming Conventions

4.1 Naming Conventions for Oracle Business Analytics Warehouse Tables 4-1
4.2 Table Types for Oracle Business Analytics Warehouse .. 4-2
4.2.1 Aggregate Tables in Oracle Business Analytics Warehouse 4-4
4.2.2 Dimension Class Tables in Oracle Business Analytics Warehouse 4-4
4.2.3 Dimension Tables in Oracle Business Analytics Warehouse 4-4
4.2.4 Dimension Tables With Business Role-Based Flags ... 4-4
4.2.5 Fact Tables in Oracle Business Analytics Warehouse .. 4-5
4.2.6 Helper Tables in Oracle Business Analytics Warehouse .. 4-5
4.2.7 Hierarchy Tables in Oracle Business Analytics Warehouse 4-5
4.2.8 Mini-Dimension Tables in Oracle Business Analytics Warehouse 4-5
4.2.9 Staging Tables in Oracle Business Analytics Warehouse ... 4-6
4.2.10 Translation Tables in Oracle Business Analytics Warehouse 4-6

v

4.3 Internal Tables in Oracle Business Analytics Warehouse ... 4-6
4.4 Standard Column Prefixes in Oracle Business Analytics Warehouse 4-7
4.5 Standard Column Suffixes in Oracle Business Analytics Warehouse 4-7
4.6 System Columns in Oracle Business Analytics Warehouse Tables 4-8
4.7 Multi-Currency Support for System Columns ... 4-9
4.8 Oracle Business Analytics Warehouse Primary Data Values ... 4-10
4.9 About Multi-Language Support in the Oracle Business Analytics Warehouse 4-10
4.10 Oracle Business Analytics Warehouse Currency Preferences ... 4-10

5 Administering Oracle GoldenGate and Source Dependent Schemas

5.1 Introduction .. 5-1
5.2 Source Dependent Schema Architecture .. 5-1
5.3 Setting Up Oracle GoldenGate and Source Dependent Schemas 5-2
5.4 Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema 5-2
5.4.1 Setup Step: Configure Source and Target Database ... 5-3
5.4.2 Setup Step: Install Oracle GoldenGate on Source and Target Systems 5-5
5.4.3 Setup Step: Configure BI Applications Configuration Manager

and Oracle Data Integrator to Support the Source Dependent Schema 5-8
5.4.4 Setup Step: Generate, Deploy, and Populate the

Source Dependent Schema Tables on Target Database .. 5-9
5.4.5 Setup Step: Generate and Deploy Oracle GoldenGate

Parameter Files to Source and Target Machines .. 5-12
5.4.5.1 Generate Oracle GoldenGate Parameter Files ... 5-13
5.4.5.2 Configure the Source System ... 5-15
5.4.5.3 Configure the Target System ... 5-17
5.4.6 Setup Step: Start Oracle GoldenGate on Source and Target Machines 5-18

Index

vi

vii

Preface

Oracle Business Intelligence Applications is comprehensive suite of prebuilt solutions
that deliver pervasive intelligence across an organization, empowering users at all
levels - from front line operational users to senior management - with the key
information they need to maximize effectiveness. Intuitive and role-based, these
solutions transform and integrate data from a range of enterprise sources and
corporate data warehouses into actionable insight that enables more effective actions,
decisions, and processes.

Oracle BI Applications is built on Oracle Business Intelligence Suite Enterprise Edition
(Oracle BI EE), a comprehensive set of enterprise business intelligence tools and
infrastructure, including a scalable and efficient query and analysis server, an ad-hoc
query and analysis tool, interactive dashboards, proactive intelligence and alerts, and
an enterprise reporting engine.

Audience
This document is intended for system administrators and ETL team members who are
responsible for managing Oracle BI Applications. It contains information about ETL
customization, domains and localization, Oracle Business Analytics Warehouse
naming conventions, and system administration tasks, including setting up and using
Oracle GoldenGate and Source-Dependent Schemas to support ETL performance.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documentation
See the Oracle Business Intelligence Applications documentation library for a list of
related Oracle Business Intelligence Applications documents:
http://docs.oracle.com/cd/E38317_01/index.htm

viii

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ix

What's New in This Release

Oracle BI Applications 11.1.1.7 is a new release. This chapter describes features in
Oracle Business Intelligence Applications 11g Release 1 (11.1.1.7) documented in this
guide, Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence
Applications, that may be of note.

This chapter contains the following topics:

■ Notable Features in Oracle BI Applications Documented in This Guide

Notable Features in Oracle BI Applications Documented in This Guide
New features in Oracle BI Applications 11g Release 1 (11.1.1.7) that are documented in
Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence
Applications include the following:

Oracle GoldenGate Support
Oracle BI Applications optionally provides source dependent schemas, supported by
Oracle GoldenGate, which replicate OLTP schemas in the same database as the Oracle
Business Analytics Warehouse schema, relieving contention and enhancing
performance during Extract-Transform-Load processing. Chapter 5, "Administering
Oracle GoldenGate and Source Dependent Schemas," explains how to set up and use
Oracle GoldenGate and source-dependent schemas.

x

1

Customizing the Oracle Business Analytics Warehouse 1-1

1Customizing the Oracle Business Analytics
Warehouse

This chapter describes concepts and techniques for customizing the ETL functionality
in Oracle Business Intelligence Applications.

This chapter contains the following topics:

■ Section 1.1, "Overview of Customization in Oracle Business Intelligence
Applications"

■ Section 1.2, "Category 1 Customizations: Adding Columns to Existing Fact or
Dimension Tables"

■ Section 1.3, "Category 2 Customizations: Adding Additional Tables"

■ Section 1.4, "Category 3 Customizations: Adding New Data as a Whole Row into a
Standard Dimension Table"

■ Section 1.5, "Customizing Stored Lookups and Adding Indexes"

1.1 Overview of Customization in Oracle Business Intelligence
Applications

This section provides an overview of customization in Oracle Business Intelligence
Applications, and contains the following topics:

■ Section 1.1.1, "What is Customization in Oracle Business Intelligence
Applications?"

■ Section 1.1.3, "About the Impact of Patch Installation on Customizations"

1.1.1 What is Customization in Oracle Business Intelligence Applications?
In Oracle Business Intelligence Applications, customization is defined as changing the
preconfigured behavior to enable you to analyze new information in your business
intelligence dashboards. For example, you might want to add a column to a dashboard
by extracting data from the field HZ_CUST_ACCOUNTS.ATTRIBUTE1 and storing it
in the Oracle Business Analytics Warehouse in the X_ACCOUNT_LOG field.

The type of data source that you have determines the type of customization that you
can do. Data sources can be one of the following types:

■ Packaged applications (for example, Oracle EBS), which use prepackaged
adapters.

■ Non-packaged data sources, which use the Universal adapter.

Overview of Customization in Oracle Business Intelligence Applications

1-2 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

Customizations are grouped into the following categories:

■ Category 1. In a Category 1 customization, you add additional columns from
source systems that have pre-packaged adapters and load the data into existing
Oracle Business Analytics Warehouse tables. For more information about
performing Category 1 customizations, see Section 1.2, "Category 1
Customizations: Adding Columns to Existing Fact or Dimension Tables".

■ Category 2. In a Category 2 customization, you use pre-packaged adapters to add
new fact or dimension tables to the Oracle Business Analytics Warehouse.
Category 2 customizations normally require that you build new SDE and SIL
mappings. For more information about performing Category 2 customizations, see
Section 1.3, "Category 2 Customizations: Adding Additional Tables".

■ Category 3. In a Category 3 customization, you use the Universal adapter to load
data from sources that do not have pre-packaged adapters. For more information
about performing Category 3 customizations, see Section 1.4, "Category 3
Customizations: Adding New Data as a Whole Row into a Standard Dimension
Table".

The figure below summarizes the category of customization that you can perform for
each type of data source and type of modification.

Figure 1–1 Supported customizations based on data source

For detailed information about tables and naming conventions, see Oracle Business
Analytics Warehouse Data Model Reference.

When you customize ETL Packages and Interfaces, you usually work in the \Oracle BI
Applications\Mappings folder in the Projects view in ODI Studio's Designer
Navigator.

Note: The customization methodology is to make a copy of the ETL task and version
both the original and copy while a datastore is simply versioned. These versions allow
you to revert functionality if required as well as identify changes that have been
introduced through customization, patches or upgrades.

1.1.2 About the Customization Process
This chapter explains how to customize your ETL functionality, after you have
performed a Business Analysis and Technical Analysis. This chapter does not cover
the other typical tasks that you need to perform, as follows:

■ Business Analysis - before you start customization, you typically analyze your
current BI dashboards to determine the changes you need to support your
business or organization.

Category 1 Customizations: Adding Columns to Existing Fact or Dimension Tables

Customizing the Oracle Business Analytics Warehouse 1-3

■ Technical Analysis - when you have identified your business requirements, you
need to determine the technical changes you need to make, by identifying source
tables, staging tables, target tables, and ODI Packages and Interfaces that you need
to modify.

■ RPD Modification - having made the customizations in the ETL functionality, you
need to modify your RPD to expose the new data in your dashboards. For more
information about RPD modification, refer to the Oracle Business Intelligence
Enterprise Edition documentation library.

1.1.3 About the Impact of Patch Installation on Customizations
This section explains what you must do to re-apply a customization to an object that
has been patched. For example, if you install an Oracle Business Intelligence
Applications patch that modifies the Supply Chain and Order Management
application, you might need to manually re-apply customizations that you have made
to the Supply Chain and Order Management application.

As part of customizing an ETL task (including interfaces and package under a specific
task folder), you copy the task folder to be customized, version the original and
version the copy. Any patches are applied to the current version of the original task.
Leverage ODI's version compare utility to identify the changes introduced by the
patch. The copy is also versioned so that any changes introduced can be isolated.
Compare any changes with those introduced by the patch and verify there is no
conflict, then manually apply the same changes introduced by the patch to the
customized ETL tasks. For information about modifying and versioning ETL
customizations, refer to Section 1.2.2, "Typical Steps to Extend Mappings in the Oracle
Business Analytics Warehouse".

A patch only installs changed repository objects, not the whole Work Repository.
Therefore, you only need to re-apply customizations to mappings that have been
changed by the patch. For example, if a patch only modifies the Supply Chain and
Order Management application, you only need to manually re-apply customizations
that you have made to the Supply Chain and Order Management application.
Customizations in other applications are not affected by the patch.

Note
All customization steps have you create a 'Custom' adaptor folder where customized
ETL tasks are stored. This is not required but is considered a best practice to make
identifying customized content easier.

1.2 Category 1 Customizations: Adding Columns to Existing Fact or
Dimension Tables

Category 1 customizations add additional columns from source systems that have
pre-packaged adapters and load the data into existing Oracle Business Analytics
Warehouse tables.

This section contains the following topics:

■ Section 1.2.1, "About Extending Mappings"

■ Section 1.2.2, "Typical Steps to Extend Mappings in the Oracle Business Analytics
Warehouse"

■ Section 1.2.3, "Other Types of Customizations Requiring Special Handling"

Category 1 Customizations: Adding Columns to Existing Fact or Dimension Tables

1-4 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

1.2.1 About Extending Mappings
Category 1 customizations involve extracting additional columns from source systems
for which pre-packaged adapters are included (for example, Oracle eBusiness Suite)
and loading the data into existing Oracle Business Analytics Warehouse tables. For
Category 1 customizations, data can also come from non-packaged sources, but this
section assumes that the sources have already been mapped with a Universal adapter
and only need to be extended to capture additional columns. (The initial mapping of a
Universal adapter is considered a Category 3 customization. For information, see
Section 1.4, "Category 3 Customizations: Adding New Data as a Whole Row into a
Standard Dimension Table".)

In order to see additional columns in the Oracle Business Analytics Warehouse, the
columns must first be passed through the ETL process. The existing mappings and
tables are extensible. Oracle Business Intelligence Applications provides a
methodology to extend preconfigured mappings to include these additional columns
and load the data into existing tables.

Oracle Business Intelligence Applications recognizes two types of customization:
extension and modification. The supported extension logic allows you to add to
existing objects. For example, you can extract additional columns from a source, pass
them through existing mappings, and populate new columns added to an existing
table. Generally, Oracle Business Intelligence Applications does not allow you to
modify existing logic or columns. You should not change existing calculations to use
different columns, and you should not remap existing columns to be loaded from
different sources.

For example, if you want to calculate revenue differently from the existing logic, you
should create a new column (for example, X_REVENUE) and populate it with a
custom mapping expression. You can then remap the Oracle Business Intelligence
repository to point to the new X_REVENUE column.

Most datastores have a single placeholder column named X_CUSTOM. Each ETL task
has mapping expressions to populate this column. These serve as templates for
customizing ODI datastores and interfaces. When creating new custom columns,
follow the naming convention of including the X_ prefix to help distinguish custom
columns.

In the figure below, the preconfigured logic is shaded in gray. You should not modify
anything contained within these objects. You should add customizations to existing
objects rather than creating new packages and interfaces, which allows them to run
parallel to the existing logic.

Figure 1–2 Preconfigured logic and customizations

1.2.2 Typical Steps to Extend Mappings in the Oracle Business Analytics Warehouse
The most common reason for extending the Oracle Business Analytics Warehouse is to
extract existing columns from a source system and map them to an existing Oracle
Business Analytics Warehouse table (either fact or dimension). This type of change
typically requires you to extend the interfaces within a SIL package. If the data is
coming from a packaged source, then you will also need to extend the interfaces
within an appropriate SDE adapter package. If the data is coming from a

Category 1 Customizations: Adding Columns to Existing Fact or Dimension Tables

Customizing the Oracle Business Analytics Warehouse 1-5

non-packaged source, then you must use a Universal adapter package. If an
appropriate package does not already exist, you will need to create a Universal
adapter package with interfaces.

To extend an ODI package in the Oracle Business Analytics Warehouse:

1. Create new SDE and SIL Adaptor folders (do not copy existing Adaptor folder as
this will copy all subfolders). Rename folders to include 'Custom' or some other
useful identifier in the name, and set Release Tag to match that of the existing
Adaptor folder. Do this for both the SDE and SIL folders.

a. Right-click the Mappings folder and select New Sub-Folder.

b. Set Name as CUSTOM _<Original Folder Name>. For example, CUSTOM_SDE_
ORA11510_Adaptor, CUSTOM_SILOS represent custom SDE and SIL folders.

c. Click the Connect Navigator button in the Designer tab.

d. Select Edit Release Tags.

e. Select the release tag that corresponds to your source. For example, EBS_11_5_
10.

f. Select the custom SDE folder you created and add it to the release tag.

g. Click Next.

h. Click Finish.

i. Repeat the above steps for the CUSTOM_SILOS folder, associating it with the
BIA_11 Release Tag.

2. Enable versioning for the preconfigured Task Folder to be customized. The
version comment should indicate this is the base version of the task. Subsequent
patches applied to this task in the future would require increasing the version in
the comment so that it can be compared to the original task to identify any
changes.

a. Right-click the Task folder and select Version > Create Version.

b. Accept the default version number, 1.0.0.0.

c. Add a description indicating that this is the original version of this task.

3. Duplicate the Task folder to be customized by copying it. Cut and paste the copied
task folder to the Custom adaptor, and rename it to remove the 'Copy of…' prefix.

4. Using the same method as in step 2, enable versioning of copied Task folder. The
version comment should indicate this is the original version. This versioning
enables comparison of the customized task to a copy of the original version to
determine all changes that have been introduced.

5. Create another version of the copied task. The version comment should indicate
this is the customized version. Use the same steps as above.

6. Version the Model that the datastore to be customized exists in, for example,
Oracle BI Applications. Submodels and datastores cannot be versioned. The
version comment should indicate this is the base or original version.

7. Create a new version of the model, with a version comment indicating that this is
where customizations are introduced. The models can now be compared to show
differences. If the model ever needs to be patched, the model should be versioned
again so that the patched version can be compared to the custom and original
version.

Category 1 Customizations: Adding Columns to Existing Fact or Dimension Tables

1-6 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

8. Apply customizations to the datastore and task. Customizations should be
additive as much as possible rather than overwriting existing content. For
example, if you don't like the way a particular column is calculated, add a new
custom column and map it in the way you prefer. In the RPD, have the logical
column point to this new custom column rather than the original column.

9. Prior to generating scenarios, ensure the 'Scenario Naming Convention' User
Parameter has a value of %FOLDER_NAME(2)%_%OBJECT_NAME%

10. Generate scenarios for any new Adaptors, using the option to generate the
scenario as if all underlying objects are materialized. The scenario will be
generated reflecting the custom adaptor name. In the future if you make changes
to any of the interfaces or the package, you can either regenerate the existing
scenario or generate a new scenario. Unless you need separate scenarios, it is
recommended that you regenerate the existing scenario. To do this, right-click the
scenario and select Regenerate.

11. Generate the Load Plan.

12. Update Load Plan steps in the generated Load Plan to reference the custom
scenario.

13. Execute the Load Plan.

1.2.3 Other Types of Customizations Requiring Special Handling
This section contains the following topics:

■ Section 1.2.3.1, "How to Modify Category 2 SCD Behavior"

■ Section 1.2.3.2, "How to Add A Dimension to an Existing Fact"

■ Section 1.2.3.3, "How to Add a DATE_WID column to a Fact"

1.2.3.1 How to Modify Category 2 SCD Behavior
The BI Applications ETL process supports Type I and Type II slowly changing
dimension behavior. Some dimensions are enabled only for Type I behavior while
other dimensions are enabled to also support Type II behavior. Of those dimensions
that support Type II behavior, different dimension attributes have different Slowly
Changing behavior including some attributes being treated as Type I.

To enable or disable Type II behavior associated with a dimension:

Note: Modifying the Type-II tracking logic is the only change that you should make to
shipped logic.

To modify a Category 2 SCD Trigger:

1. In ODI Designer, modify the dimension datastore.

a. In the Models view, expand the 'Oracle BI Applications' folder, Oracle BI
Applications (Model), and Dimension (Submodel).

b. Double-click the Dimension table.

c. In the Definition tab, change the OLAP type value to either Dimension (only
supports Type I changes) or Slowly Changing Dimension (supports Type II
changes).

2. Modify the SIL Dimension Task.

a. Navigate to the SIL task that populates this dimension.

b. Double-click the 'Main' interface.

Category 1 Customizations: Adding Columns to Existing Fact or Dimension Tables

Customizing the Oracle Business Analytics Warehouse 1-7

c. In the Flow subtab, select the 'Target (ORACLE_BI_APPLICATIONS)
window.

d. If the Property Window is not visible, open it by clicking the Menu Options
View – Property Inspector.

e. Change the IKM Selector value to 'IKM BIAPPS Oracle Slowly Changing
Dimension' if enabling Type II behavior or 'IKM BIAPPS Oracle Incremental
Update' if removing Type II behavior.

f. Regenerate the scenario.

The following describes how to modify which columns are treated as Type I or Type II
in a dimension that is configured to support Type II behavior. If a dimension is
configured to support only Type I behavior, the following changes will have no effect
as all columns are treated as Type I.

To enable or disable Type II behavior associated with a dimension:

1. In ODI Designer, modify the dimension datastore. In the Models view, expand the
'Oracle BI Applications' folder, Oracle BI Applications (Model), Dimension
(Submodel), and Columns.

2. Double-click the column whose SCD behavior you want to change.

3. In the Description subtab's 'Slowly Changing Dimensions Behavior' drop-down
list, select the column behavior. To implement Type I behavior, select Overwrite
on Change. To implement Type II behavior, select Add Row on Change.

If enabling Type II behavior for a custom dimension, be sure to set columns as follows:

■ ROW_WID - Surrogate Key

■ INTEGRATION_ID, DATASOURCE_NUM_ID - Natural Key

■ CURRENT_FLG - Current Record Flag

■ EFFECTIVE_FROM_DT - Starting Timestamp

■ EFFECTIVE_TO_DT - Ending Timestamp

1.2.3.2 How to Add A Dimension to an Existing Fact
This section explains how to add a dimension to an existing fact, adding a dimension
and dimension staging datastores as well as associated SDE and SIL processes, which
also requires extending the fact and fact staging tables to reflect the association with
the new dimension. This section includes the following topics:

■ Section 1.2.3.2.1, "Create a Custom Dimension Datastore and Tasks"

■ Section 1.2.3.2.2, "Customize Fact Datastores and Tasks"

1.2.3.2.1 Create a Custom Dimension Datastore and Tasks

Create the custom dimension datastores and tasks. Create a WC_<dimension name>_D
datastore under the 'Oracle BI Applications – Dimension' model. Create a WC_
<dimension name>_DS datastore under the 'Oracle BI Applications – Dimension Stage'
model. Use the WC_SAMPLE_DS and WC_SAMPLE_D datastores as templates. These
datastores include all required system columns. Custom tables should follow the WC_
naming convention to help distinguish from shipped tables.

Category 1 Customizations: Adding Columns to Existing Fact or Dimension Tables

1-8 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

As described below, a dimension can be defined either in ODI, generating DDL to
create the table in the database, or by defining the table in the database and importing
the definition into ODI using the BI Applications RKM. If you use the RKM, the
imported table is automatically placed in the 'Other' submodel and needs to be moved
into the 'Dimension Staging' and 'Dimension' submodels as appropriate. Also, the
OLAP type will need to be set for the dimension to 'Dimension' or 'Slowly Changing
Dimension' as appropriate.

Manually Create the Dimension Tables in ODI
To create the dimension and tasks manually using ODI:

1. In Designer, navigate to Models > Oracle BI Applications (Folder) > Oracle BI
Applications (Model) > Dimension Stage (Submodel).

2. Right-click the WC_SAMPLE_DS datastore and select Duplicate Selection.

3. Double-click the new datastore and rename it. Name and Resource Name should
match the actual table name. Alias can be the same or a more user friendly value.

4. In the Columns subtab, add all columns.

5. Repeat the same steps to create the Dimension Table by copying the WC_
SAMPLE_D datastore under the Dimensions submodel.

6. For the dimension table, set the OLAP type to either Dimension if this is a Type I
dimension or to Slowly Changing Dimension if this is a Type II dimension.

Import Custom Dimension Tables into ODI
To import custom dimension tables into ODI:

1. In Designer, navigate to Models > Oracle BI Applications (Folder) and
double-click the Oracle BI Applications Model.

2. In the Reverse Engineer subtab, indicate the tables to be imported under the LIST_
OF_TABLES option. To import multiple tables, provide a comma-separated list.

3. Click the Reverse Engineer button to start a session that imports the table(s) into
ODI

4. The Reverse Engineer process places all tables in the Other submodel. Drag and
drop W_%_DS tables into the Dimension Stage submodel and the W_%_D table
into the Dimension submodel.

5. Double-click the new dimension datastore and set the OLAP type to either
Dimension if this is a Type I dimension or to Slowly Changing Dimension if this is
a Type II dimension.

Create an ODI Sequence for the Custom Dimension
Create an ODI sequence for the custom dimension. A database sequence is used to
populate the ROW_WID column of the dimension. The Generate DDL procedure is

Note: The specific submodel that a table belongs to drives the table
maintenance behavior. For example, tables in the 'Dimension Stage'
submodel will always be truncated at each ETL run while tables in the
'Dimension' submodel are truncated only during a Full ETL run. Do
not create a 'Custom' submodel to place your datastores as table
maintenance will not be implemented properly for tables in such a
submodel.

Category 1 Customizations: Adding Columns to Existing Fact or Dimension Tables

Customizing the Oracle Business Analytics Warehouse 1-9

used to generate the DDL required to create the database trigger in the database. Use
WC_SAMPLE_D_SEQ as a template.

1. In Designer, navigate to Projects > BI Apps Project > Sequences.

2. Right-click the Sequence folder and select New Sequence.

3. Set name to <Dimension Name>_SEQ.

4. Select the Native sequence radio button.

5. Set the Schema to DW_BIAPPS11G.

6. Generally, the Native sequence name should match the ODI name unless this
causes the name length to exceed 30 characters, in which case, you can shorten the
name to meet this limit. This is the name of the database trigger created to
populate the ROW_WID column.

7. Generate the DDL to create the table in the database. Note: If you manually
created the dimension in ODI, this will generate the DDL to create both the table
and sequence. If you imported the dimension into ODI, this will generate the DDL
to create the sequence only.

Create SDE and SIL Tasks
 Create SDE and SIL tasks in the Custom SDE and SIL adaptor folders. Use the SDE_
<Product Line Code>_SampleDimension and SIL_SampleDimension tasks as a
template. These tasks include the logic required to populate the system columns.
Finally, generate scenarios for these tasks.

Add the Load Plan Step
Add Load Plan step to the '3 SDE Dims X_CUSTOM_DIM <Product Line Version Code>'
Load Plan Component.

1. In Designer, navigate to Load Plans and Scenarios > BIAPPS Load Plan > Load
Plan Dev Components > SDE - <Product Line Version Code> and double-click the '3
SDE Dims X_CUSTOM_DIM <Product Line Version Code>' Load Plan Component.

2. In the Steps subtab, select the 'X_CUSTOM_DIM' step.

3. Click the green '+' symbol near the top right and select Run Scenario Step.

4. Provide the Scenario Name, set the Version as -1, and set the Step Name to match
the Task name . Set the Restart Type to 'Restart from failed step.'

1.2.3.2.2 Customize Fact Datastores and Tasks

The Fact related datastores and tasks must be extended to reflect the new dimension.
Both the W_<Fact Name>_FS and W_<Fact Name>_F datastores must be extended.

To customize fact datastores and tasks:

1. Extend the Fact Staging datastore by adding an ID column that follows the naming
convention X_<name>_ID and datatype VARCHAR2(80).

a. The Oracle BI Applications Model should already be versioned.

b. Navigate to Models > Oracle BI Applications (Folder) > Oracle BI Applications
(Model) > Fact Stage (Submodel) and double-click the Fact Staging Table.

c. In the Columns subtab, select the 'X_CUSTOM' column.

d. Click the green '+' symbol to add a column below the X_CUSTOM column.

Category 1 Customizations: Adding Columns to Existing Fact or Dimension Tables

1-10 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

2. Extend the Fact datastore by adding a WID column that follows the naming
convention X_<name>_WID and datatype NUMBER(10). Follow the same steps as
above to add a column to the fact datastore.

3. Add a foreign key constraint to the fact table that refers to the custom dimension
table created previously. The foreign key constraint ensures the Custom SIL task is
included in the generated load plan. The Custom SDE task is included in the
generated load plan because it populates the staging table that is used as a source
for the custom SIL task.

a. Drill into the Fact datastore.

b. Right-click the Constraints subfolder below the Fact datastore and select New
Reference.

c. The naming convention is FK_<Fact Table>_<Dimension Table>. If there are
multiple WID columns that need to reference the same dimension table,
enumerate each with a numeric suffix, for example, FK_WC_CUSTOM_F_
WC_CUSTOM_D1. Type must be 'User Reference'.

d. Select the Custom Dimension from the Table drop-down list.

e. In the Columns subtab, click the green '+' symbol to add a new column.

f. For the Foreign Table column, select the custom WID column in the fact table.
For the Primary Table column, select the ROW_WID column in the dimension
table.

4. Add a non-unique bitmap index on the X_<name>_WID column.

a. Drill into the Fact datastore.

b. Right-click the Constraints subfolder below the Fact datastore and select New
Key.

c. The naming convention is <Fact Table>_F<n>. Enumerate each of these
indexes with a numeric suffix, for example, WC_CUSTOM_F1.

d. Select the Not Unique Index radio button.

e. In the Columns subtab, add the WID column using the shuttle button.

f. In the Control subtab, check the Defined in the Database and Active check
boxes.

g. In the Flexfields subtab, set the index type value to QUERY and the bitmap
index value to Y.

5. Modify the Fact SDE task. Pass the value from the source table to the custom X_
<name>_ID column in the staging table. In the mapping expression, include any
necessary conversion functions to get the data into the VARCHAR2(80) format.

6. Modify the Fact SIL task. Add logic to retrieve the ROW_WID value from the
custom dimension. This is usually done in one of the following ways. There is no
significant difference between these two methods:

a. Add the dimension as a source in the SQ temp interface. Join on the fact table's
ID column and the dimension table's INTEGRATION_ID column and the fact
and dimension DATASOURCE_NUM_ID columns. If the dimension is a Type
II dimension, include a range join on the fact's canonical date between the
dimension's effective dates. Configure the join as a Left Outer Join. Pass the
ROW_WID column as an output.

b. Add the dimension as a lookup in the main interface. The Lookup join is on
the fact table's ID column and the dimension table's INTEGRATION_ID

Category 1 Customizations: Adding Columns to Existing Fact or Dimension Tables

Customizing the Oracle Business Analytics Warehouse 1-11

column and the fact and dimension DATASOURCE_NUM_ID columns. If the
dimension is a Type II dimension, include a range join on the fact's canonical
date between the dimension's effective dates. Configure the Lookup Type as
'SQL left-outer join in the from clause'.

7. In the mapping expression to populate the custom WID column in the main
interface, embed the ROW_WID column from the dimension table in a function
that defaults NULL values to 0. For example, COALESCE(SQ_W_AP_HOLDS_
FS.PURCHASE_ORG_WID,0)

1.2.3.3 How to Add a DATE_WID column to a Fact
This use case is similar to adding a regular Dimension to a fact but in this case, a Date
dimension is used. There are several Date related dimension, each representing dates
in a different manner (fiscal, enterprise, and so on) and different granularities (day,
week, month, etc.).

Joins between a fact and Date dimension table are performed on a Date specific WID
column. The Date WID column is a 'smart key' value that represents the date in
YYYYMMDD format. There is no need to do a lookup to resolve the ROW_WID of the
Date dimension, rather you pass the Date column through the ETL process and
convert it to this format.

Each fact table has exactly one 'canonical' Date specific WID column. This is the
primary date used to drive various date-related calculations. There is no particular
metadata to identify this column but lookups to effective dated tables will use this
column in the ETL and various date-related expressions in the RPD will also use this
column. All packaged fact tables have a single canonical date already identified. When
creating custom fact tables, one Date WID column should be nominated as the
canonical date and consistently used.

Follow the same steps as adding a dimension to a fact with the following changes.
There is no need to create a custom SDE as we use the existing Date dimension.

Customize Fact Datastores and Tasks
The Fact related datastores and tasks must be extended to reflect the new
dimensionality. Both the W_<Fact Name>_FS and W_<Fact Name>_F datastores must
be extended.

1. Extend the Fact Staging datastore by adding a DT column that follows the naming
convention X_<name>_DT. This column should have the format DATE(7).

2. Extend the Fact datastore by adding both custom DT and DT_WID columns. These
follow the naming convention X_<name>_DT and X_<name>_DT_WID.

3. Add a foreign key constraint to the Date dimension or dimensions. If there are
multiple WID columns that need to reference the same date dimension table,
enumerate each with a numeric suffix.

4. Modify the Fact SDE task. Pass the value from the source table to the custom X_
<name>_DT column in the staging table. Apply any conversions required to get
the data into DATE format.

5. Modify the Fact SIL task. Pass the X_<name>_DT value from the staging table to
the corresponding column in the fact table. In the mapping expression to populate
the custom X_<name>_DT_WID column in the main interface, embed the DT
column in a function that calculates the DT_WID value, defaulting to 0 when the
supplied DT value is NULL. For example, CALCULATE_DT_WID_DFLT(SQ_W_AP_
HOLDS_FS.HOLD_DATE,0)

Category 2 Customizations: Adding Additional Tables

1-12 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

1.3 Category 2 Customizations: Adding Additional Tables
Category 2 customizations use pre-packaged adapters to add new fact or dimension
tables to the Oracle Business Analytics Warehouse.

This section contains the following topics:

■ Section 1.3.1, "About Creating New Tables"

■ Section 1.3.2, "About the DATASOURCE_NUM_ID Column"

■ Section 1.3.3, "Additional Information About Customizing"

■ Section 1.3.4, "Adding a New Fact Table to the Oracle Business Analytics
Warehouse"

1.3.1 About Creating New Tables
This section relates to building entirely new tables that will be loaded with data from a
source table that is not already extracted from. For example, you might want to create
a new Project dimension table. In this case, you create new dimension and staging
tables as well as new extract and load ETL mappings.

When creating a new custom table, use the prefix WC_ to help distinguish custom
tables from tables provided by Oracle as well as to avoid naming conflicts in case
Oracle later releases a table with a similar name. For example, for your Project
dimension you might create a WC_PROJECT_DS and a WC_PROJECT_D table.

When you create a new dimension or fact table, use the required system columns that
are part of each of the Oracle Business Analytics Warehouse tables to maintain
consistency and enable you to reference existing table structures. When you create a
new table, you need to define the table and indices in ODI Designer Models area first.
The destination model for the Oracle Business Analytics Warehouse is 'Oracle BI
Applications'.

1.3.1.1 About the Main Required Columns
For custom staging tables, the following columns are required:

■ INTEGRATION_ID. Stores the primary key or the unique identifier of a record as
in the source table.

■ DATASOURCE_NUM_ID. Stores the data source from which the data is
extracted.

For dimension and fact tables, the required columns are the INTEGRATION_ID and
DATASOURCE_NUM_ID columns as well as the following:

■ ROW_WID. A sequence number generated during the ETL process, which is used
as a unique identifier for the Oracle Business Analytics Warehouse.

■ ETL_PROC_WID. Stores the ID of the ETL process information.

1.3.2 About the DATASOURCE_NUM_ID Column
The tables in the Oracle Business Analytics Warehouse schema have DATASOURCE_
NUM_ID as part of their unique user key. While the transactional application
normally ensures that a primary key is unique, it is possible that a primary key is
duplicated between transactional systems. To avoid problems when loading this data
into the data warehouse, uniqueness is ensured by including the DATASOURCE_
NUM_ID as part of the user key. This means that the rows can be loaded in the same

Category 2 Customizations: Adding Additional Tables

Customizing the Oracle Business Analytics Warehouse 1-13

data warehouse tables from different sources if this column is given a different value
for each data source.

1.3.3 Additional Information About Customizing
This section contains additional miscellaneous information about customization in
Oracle Business Intelligence Applications

1.3.3.1 About the Update Strategy
For loading new fact and dimension tables, design a custom process on the source side
to detect the new and modified records. The SDE process should be designed to load
only the changed data (new and modified). If the data is loaded without the
incremental process, the data that was previously loaded will be erroneously updated
again. For example, the logic in the preconfigured SIL mappings looks up the
destination tables based on the INTEGRATION_ID and DATASOURCE_NUM_ID
and returns the ROW_WID if the combination exists, in which case it updates the
record. If the lookup returns null, it inserts the record instead. In some cases, last
update date(s) stored in target tables are also compared in addition to the columns
specified above to determine insert or update. Look at the similar mappings in the
preconfigured folder for more details.

1.3.3.2 About Indices and Naming Conventions
Staging tables typically do not require any indices. Use care to determine if indices are
required on staging tables. Create indices on all the columns that the ETL will use for
dimensions and facts (for example, ROW_WIDs of Dimensions and Facts,
INTEGRATION_ID and DATASOURCE_NUM_ID and flags). Carefully consider
which columns or combination of columns filter conditions should exist, and define
indices to improve query performance. Inspect the preconfigured objects for guidance.
Name all the newly created tables as WC_. This helps visually isolate the new tables
from the preconfigured tables. Keep good documentation of the customizations done;
this helps when upgrading your data warehouse. Once the indices are decided upon,
they should be registered in the ODI Model (for more information, see Section 1.5.2,
"How to add an index to an existing fact or dimension table").

1.3.4 Adding a New Fact Table to the Oracle Business Analytics Warehouse
Custom tables should follow the WC_ naming convention to help distinguish from
preconfigured tables. Follow this procedure to add a new fact table to the Oracle
Business Analytics Warehouse.

To add a new fact table:

1. Create the custom fact datastores and tasks. Create a WC_<fact name>_F datastore
under the 'Oracle BI Applications – Fact' model. Create a WC_<fact name>_FS
datastore under the 'Oracle BI Applications – Fact Stage' model. Use the WC_
SAMPLE_FS and WC_SAMPLE_F datastores as templates. These datastores
include all required system columns.

Note that the specific submodel that a table belongs to drives the table
maintenance behavior. For example, tables in the 'Fact Stage' submodel will
always be truncated during each ETL run while tables in the 'Fact' submodel are
only truncated during a Full ETL run.

A fact can be defined in ODI either manually, by generating the DDL to create the
table in the database or by defining the table in the database and importing the

Category 2 Customizations: Adding Additional Tables

1-14 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

definition into ODI using the BI Apps RKM. If using the RKM, the imported table
will automatically be placed in the 'Other' submodel and will need to be moved
into the 'Fact Staging' and 'Fact' submodels as appropriate. The OLAP type also
needs to be set for the fact table to 'Fact Table'.

To manually create a Fact Table:

a. In Designer, navigate to Models > Oracle BI Applications (Folder) > Oracle BI
Applications (Model) > Fact Stage (Submodel), right-click the WC_SAMPLE_
FS datastore and select Duplicate Selection.

b. Double-click the new datastore and rename it. Name and Resource Name
should match the actual table name. Alias can be the same or a more user
friendly value.

c. In the Columns subtab, add all columns.

d. Repeat the same steps to create the Fact Table by copying the WC_SAMPLE_F
datastore under the 'Facts' submodel.

e. For the fact table, set the OLAP type to 'Fact Table'

f. Generate the DDL to create the table in the database.

To import Fact Tables into ODI:

a. In Designer, navigate to Models > Oracle BI Applications (Folder) and
double-click the Oracle BI Applications model.

b. In the Reverse Engineer subtab, indicate the tables to be imported under the
'LIST_OF_TABLES' option. To import multiple tables, provide a comma
separated list.

c. Click Reverse Engineer. A session is started that imports the table or tables
into ODI.

d. The Reverse Engineer process places all tables in the 'Other' submodel. Drag
and drop W_%_FS tables into the Fact Stage submodel and the W_%_F table
into the Fact submodel.

e. Double-click the new fact datastore and set the OLAP type to 'Fact Table'.

f. Generate the DDL to create the table in the database.

2. Add a foreign key constraint to all dimension tables associated with this fact. The
foreign key constraint ensures the Dimension SIL task is included in the generated
load plan. The Dimension SDE task will be included in the generated load plan
because it populates the staging table that is used as a source for the Dimension
SIL task.

a. Drill into the Fact datastore.

b. Right-click the 'Constraints' subfolder below the Fact datastore and select New
Reference. The naming convention is FK_<Fact Table>_<Dimension Table>. If
there are multiple WID columns that need to reference the same dimension
table, enumerate each with a numeric suffix. For example, FK_WC_CUSTOM_
F_WC_CUSTOM_D1.

c. Set the Type to 'User Reference', select the dimension from the Table
drop-down list and, in the Columns subtab, click the green '+' button on the
top right to add a new column.

d. For the Foreign Table column, select the custom WID column in the fact table.
For the Primary Table column, select the ROW_WID column in the dimension
table.

Category 3 Customizations: Adding New Data as a Whole Row into a Standard Dimension Table

Customizing the Oracle Business Analytics Warehouse 1-15

3. Create an SDE and SIL task in the Custom SDE and SIL adaptor folders. Use the
SDE_<Product Line Code>_SampleFact and SIL_SampleFact tasks as a template.
These tasks include the logic required to populate the system columns.

4. Add Load Plan step to the '3 SDE Facts X_CUSTOM_FG <Product Line Version
Code>' Load Plan Component.

a. In Designer, navigate to Load Plans and Scenarios > BIAPPS Load Plan > Load
Plan Dev Components.

b. Navigate to SDE - <Product Line Version Code> and double-click the '3 SDE
Facts X_CUSTOM_FG <Product Line Version Code>' Load Plan Component.

c. Select the 'X_CUSTOM_FG' step.

d. Click the green '+' symbol near the top right and select the 'Run Scenario Step'
option.

e. Provide the Scenario Name, Version should be -1, Step Name should match
the Task name. Set the Restart Type to 'Restart from failed step.'

5. Add a Load Plan step to '3 SIL Facts X_CUSTOM_FG' Load Plan Component.

a. In Designer, navigate to Load Plans and Scenarios > BIAPPS Load Plan > Load
Plan Dev Components.

b. Navigate to SIL and double-click the '3 SIL Facts X_CUSTOM_FG' Load Plan
Component.

c. Select the 'X_CUSTOM_FG' step.

d. Click the green '+' symbol near the top right and select the 'Run Scenario Step'
option.

e. Provide the Scenario Name, Version should be -1, Step Name should match
the Task name. Set the Restart Type to 'Restart from failed step.'

1.4 Category 3 Customizations: Adding New Data as a Whole Row into a
Standard Dimension Table

Category 3 customizations use the Universal adapter to load data from sources that do
not have pre-packaged adapters.

This section contains the following topics:

■ Section 1.4.1, "How to Add New Data as a Whole Row Into a Standard Dimension
Table"

■ Section 1.4.2, "Configuring Extracts"

■ Section 1.4.3, "Configuring Loads"

1.4.1 How to Add New Data as a Whole Row Into a Standard Dimension Table
Follow this procedure to add new data as a whole row into a standard dimension table
in the Oracle Business Analytics Warehouse.

To add new data as a whole row into the standard dimension table:

1. Identify and understand the existing structure of staging tables. Refer to Oracle
Business Analytics Warehouse Data Model Reference for the table structures.
Non-system columns can include the null value.

Category 3 Customizations: Adding New Data as a Whole Row into a Standard Dimension Table

1-16 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

2. Create a custom SDE interface to load the data into the staging table in the custom
folder for this purpose. The staging table needs to be populated with incremental
data (rows that have been added or changed since the last Refresh ETL process),
for performance reasons.

3. Populate the INTEGRATION_ID column with the unique identifier for the record.

The combination of INTEGRATION_ID and DATASOURCE_NUM_ID is unique.
Populate the INTEGRATION_ID column with the unique identifier for the record.
The combination of INTEGRATION_ID and DATASOURCE_NUM_ID is unique.

4. After the data is populated in the staging table, use the standard SIL interfaces to
populate the dimension target tables.

1.4.2 Configuring Extracts
Each application has prepackaged logic to extract particular data from a particular
source. This section discusses how to capture all data relevant to your reports and ad
hoc queries by addressing what type of records you want and do not want to load into
the Oracle Business Analytics Warehouse, and contains the following topics:

■ Section 1.4.2.1, "Extracting Additional Data"

■ Section 1.4.2.2, "Setting Up the Delimiter for a Source File"

1.4.2.1 Extracting Additional Data
You can configure extract mappings and Interfaces in the Oracle Business Analytics
Warehouse to accommodate additional source data. For example, if your business
divides customer information into separate tables based on region, then you would
have to set up the extract interface to include data from these tables.

1.4.2.1.1 Extracting New Data Using an Existing Source Table Extract interfaces generally
consist of source tables, expressions used in the target columns, and a staging table. If
you want to extract new data using the existing interface, you have to modify the
extract interface to include the new data by performing the following tasks:

To modify an existing interface to include new data:

1. Modify the existing interface to extract information from the source, and add it to
an appropriate extension column.

2. Modify the Expressions in the target table to perform any necessary
transformations.

3. Save the changes.

4. Regenerate the scenario.

You have to determine which type of extension column to map the data to in the
staging table. After you modified the extract interface, you would also have to modify
the corresponding load interfaces (SDE and SIL) to make sure that the extension
columns that you added are connected all the way from the staging table to the target
data warehouse table.

1.4.2.1.2 Extracting Data from a New Source Table Extract interfaces (which have the SQ_*
naming convention) reside in source-specific folders within the repository. Extract
interfaces are used to extract data from the source system. You can configure these
extract interfaces to perform the following:

■ Extract data from a new source table.

Category 3 Customizations: Adding New Data as a Whole Row into a Standard Dimension Table

Customizing the Oracle Business Analytics Warehouse 1-17

■ Set incremental extraction logic.

1.4.2.2 Setting Up the Delimiter for a Source File
When you load data from a Comma Separated Values (CSV) formatted source file, if
the data contains a comma character (,), you must enclose the source data with a
suitable enclosing character known as a delimiter that does not exist in the source data.

Note: Alternatively, you could configure your data extraction program to enclose the
data with a suitable enclosing character automatically.

For example, you might have a CSV source data file with the following data:

Months, Status
January, February, March, Active
April, May, June, Active

If you loaded this data without modification, ODI would load 'January' as the Months
value, and 'February' as the Status value. The remaining data for the first record (that
is, March, Active) would not be loaded.

To enable ODI to load this data correctly, you might enclose the data in the Months
field within the double-quotation mark enclosing character (" ") as follows:

Months, Status
"January, February, March", Active
"April, May, June", Active

After modification, ODI would load the data correctly. In this example, for the first
record ODI would load 'January, February, March' as the Months value, and 'Active' as
the Status value.

To set up the delimiter for a source file:

1. Open the CSV file containing the source data.

2. Enclose the data fields with the enclosing character that you have chosen (for
example, (").

You must choose an enclosing character that is not present in the source data.
Common enclosing characters include single quotation marks (') and double
quotation marks (").

3. Save and close the CSV file.

4. In ODI Designer, display the Models view, and expand the Oracle BI Applications
folder.

Identify the data stores that are associated with the modified CSV files. The CSV
file that you modified might be associated with one or more data stores.

5. In ODI Designer, change the properties for each of these data stores to use the
enclosing character, as follows:

a. Double-click the data source, to display the DataStore: <Name> dialog.

b. Display the Files tab.

c. Use the Text Delimiter field to specify the enclosing character that you used in
step 2 to enclose the data.

d. Click OK to save the changes.

You can now load data from the modified CSV file.

Category 3 Customizations: Adding New Data as a Whole Row into a Standard Dimension Table

1-18 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

1.4.3 Configuring Loads
This section explains how to customize the way that Oracle Business Intelligence
Applications loads data into the Oracle Business Analytics Warehouse.

1.4.3.1 About Primary Extract and Delete Mappings Process
Before you decide to enable primary extract and delete sessions, it is important to
understand their function within the Oracle Business Analytics Warehouse. Primary
extract and delete mappings allow your analytics system to determine which records
are removed from the source system by comparing primary extract staging tables with
the most current Oracle Business Analytics Warehouse table.

The primary extract mappings perform a full extract of the primary keys from the
source system. Although many rows are generated from this extract, the data only
extracts the Key ID and Source ID information from the source table. The primary
extract mappings load these two columns into staging tables that are marked with a *_
PE suffix.

The figure below provides an example of the beginning of the extract process. It shows
the sequence of events over a two day period during which the information in the
source table has changed. On day one, the data is extracted from a source table and
loaded into the Oracle Business Analytics Warehouse table. On day two, Sales Order
number three is deleted and a new sales order is received, creating a disparity between
the Sales Order information in the two tables.

Figure 1–3 Extract and load mappings

Figure 1–4 shows the primary extract and delete process that occurs when day two's
information is extracted and loaded into the Oracle Business Analytics Warehouse
from the source. The initial extract brings record four into the Oracle Business
Analytics Warehouse. Then, using a primary extract mapping, the system extracts the
Key IDs and the Source IDs from the source table and loads them into a primary
extract staging table.

The extract mapping compares the keys in the primary extract staging table with the
keys in the most current the Oracle Business Analytics Warehouse table. It looks for
records that exist in the Oracle Business Analytics Warehouse but do not exist in the
staging table (in the preceding example, record three), and sets the delete flag to Y in
the Source Adapter, causing the corresponding record to be marked as deleted.

The extract mapping also looks for any new records that have been added to the
source, and which do not already exist in the Oracle Business Analytics Warehouse; in
this case, record four. Based on the information in the staging table, Sales Order
number three is physically deleted from Oracle Business Analytics Warehouse, as
shown in Figure 1–4. When the extract and load mappings run, the new sales order is
added to the warehouse.

Customizing Stored Lookups and Adding Indexes

Customizing the Oracle Business Analytics Warehouse 1-19

Figure 1–4 Primary Extract and Delete Mappings

1.4.3.2 About Working with Primary Extract and Delete Mappings
The primary extract (*_Primary) and delete mappings (*_IdentifyDelete and *_
Softdelete) serve a critical role in identifying which records have been physically
deleted from the source system. However, there are some instances when you can
disable or remove the primary extract and delete mappings, such as when you want to
retain records in the Oracle Business Analytics Warehouse that were removed from the
source systems' database and archived in a separate database.

Because delete mappings use Source IDs and Key IDs to identify purged data, if you
are using multiple source systems, you must modify the SQL Query statement to
verify that the proper Source ID is used in the delete mapping. In addition to the
primary extract and delete mappings, the configuration of the delete flag in the load
mapping also determines how record deletion is handled.

You can manage the extraction and deletion of data in the following ways:

■ Deleting the configuration for source-archived records

■ Deleting records from a particular source

■ Enabling delete and primary-extract sessions

■ Configuring the Record Deletion flag

■ Configuring the Record Reject flag

1.4.3.2.1 Deleting the Configuration for Source-Archived Records Some sources archive
records in separate databases and retain only the current information in the main
database. If you have enabled the delete mappings, you must reconfigure the delete
mappings in the Oracle Business Analytics Warehouse to retain the archived data.

To retain source-archived records in the Oracle Business Analytics Warehouse, make
sure the LAST_ARCHIVE_DATE parameter value is set properly to reflect your
archive date. The delete mappings will not mark the archived records as 'deleted'. For
more information about extract and delete mappings, see Section 1.4.3.2, "About
Working with Primary Extract and Delete Mappings".

1.5 Customizing Stored Lookups and Adding Indexes
This section contains miscellaneous information that applies to all three categories of
customization in Oracle Business Intelligence Applications, and contains the following
topics:

■ Section 1.5.1, "About Stored Lookups"

■ Section 1.5.2, "How to add an index to an existing fact or dimension table"

1.5.1 About Stored Lookups
This section explains codes lookup and dimension keys.

Customizing Stored Lookups and Adding Indexes

1-20 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

1.5.1.1 About Resolving Dimension Keys
By default, dimension key resolution is performed by the Oracle Business Analytics
Warehouse in the load mapping. The load interface uses prepackaged, reusable lookup
transformations to provide pre-packaged dimension key resolution. This section
describes how dimension keys are looked up and resolved.

There are two commonly used methods for resolving dimension keys. The first
method, which is the primary method used, is to perform a lookup for the dimension
key. The second method is to supply the dimension key directly into the fact load
mapping.

1.5.1.1.1 Resolving the Dimension Key Using Lookup If the dimension key is not provided
to the Load Interface through database joins, the load mapping performs the lookup in
the dimension table. The load mapping does this using prepackaged Lookup
Interfaces. To look up a dimension key, the Load Interface uses the INTEGRATION_
ID, the DATASOURCE_NUM_ID, and the Lookup date, which are described in the
table below.

If Type II slowly changing dimensions are enabled, the load mapping uses the unique
effective dates for each update of the dimension records. When a dimension key is
looked up, it uses the fact's primary or 'canonical' date to resolve the appropriate
dimension key. The effective date range gives the effective period for the dimension
record. The same entity can have multiple records in the dimension table with
different effective periods due to Type II slowly changing dimensions. This effective
date range is used to exactly identify a record in its dimension, representing the
information in a historically accurate manner.

There are four columns needed for the load interface lookup: INTEGRATION ID,
DATASOURCE_NUM_ID, and Lookup Date (EFFECTIVE_FROM_DT and
EFFECTIVE_TO_DATE). The lookup outputs the ROW_WID (the dimension's primary
key) to the corresponding fact table's WID column (the fact tables foreign key).

1.5.2 How to add an index to an existing fact or dimension table
Dimension and Fact Tables in the Oracle Business Analytics Warehouse use the
following two types of index:

■ ETL Index

ETL Indexes are used for Unique/Binary Tree index.

■ Query Index

Query Indexes are used for Non-Unique/Bit Map Index.

To add an index to an existing fact or dimension table:

Table 1–1 Columns Used in the load mapping Dimension Key Lookup

Port Description

INTEGRATION ID Uniquely identifies the dimension entity within its source system.
Formed from the transaction in the Source Adapter of the fact
table.

DATASOURCE_NUM_ID Unique identifier of the source system instance.

Lookup Date The primary date of the transaction; for example, receipt date,
sales date, and so on.

Customizing Stored Lookups and Adding Indexes

Customizing the Oracle Business Analytics Warehouse 1-21

1. In ODI Designer, display the Models view, and expand the 'Oracle BI Applications'
folder.

2. Expand the Fact or Dimension node as appropriate.

3. Expand the Table in which you want to create the index.

4. Right-click on the Constraints node, and select Insert Key to display the Key: New
dialog.

5. Display the Description tab.

6. Select the Alternate Key radio button, and update the name of the Index in the
Name field.

7. Display the Column tab.

8. Select the column on which you want to create the index.

9. Display the FlexFields tab.

10. Use the settings to specify the index type, as follows:

■ For 'Query' type indexes (the default), define the index as an 'Alternate Key'
for unique indexes and as 'Not Unique Index' for non-unique indexes.

■ For 'ETL' type indexes, clear the check box for the INDEX_TYPE parameter
and set the value to 'ETL'. In addition, set the value of the IS_BITMAP
parameter to 'N' and define the index as an 'Alternate Key' for unique indexes
and as 'Not Unique Index' for non unique indexes.

11. Save the changes.

Customizing Stored Lookups and Adding Indexes

1-22 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

2

About Multi-Language Support 2-1

2About Multi-Language Support

This chapter provides information about multi-language support in Oracle BI
Applications.

This chapter contains the following topics:

■ Section 2.1, "Introduction to Multi-Language Support"

■ Section 2.2, "About Pseudo-Translations"

■ Section 2.3, "About Oracle BI Applications Domains"

■ Section 2.4, "About Dimension Translation Tables"

2.1 Introduction to Multi-Language Support
Oracle BI Applications provides multi-language support for metadata level objects
exposed in Oracle BI Enterprise Edition dashboards and reports, as well as for data,
which enables users to see records translated in their preferred language.

Configuring Base and Installed Data Warehouse Languages
After installing Oracle BI Applications, you use the Oracle BI Applications
Configuration Manager (Configuration Manager) to configure which languages you
want to support in the Oracle Business Analytics Warehouse. You must configure one
"Base" language, and you can also configure any number of "Installed" languages.
Typically, the Base language specified for the data warehouse should match the Base
language of the source system. The Installed languages that you specify for the data
warehouse do not have to match the languages that are installed in the source system.
The data warehouse can have more, fewer, or completely different Installed languages
compared to the source system. Note that for languages that match between the
transactional system and the data warehouse, the corresponding record is extracted
from the transactional system; languages that do not match will have a
pseudo-translated record generated.

Note: You should only install the languages that you expect to use, because each
installed language can significantly increase the number of records stored in the data
warehouse and can affect overall database performance.

For information about how to configure data warehouse languages, see Oracle Fusion
Middleware Configuration Guide for Oracle Business Intelligence Applications.

Translation Tables
There are two types of translation tables: the Domains translation table and Dimension
translation tables. There is a single Domain translation table which holds a translated
value in each supported language for a domain. Dimension translation tables are

About Pseudo-Translations

2-2 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

extension tables associated with a given dimension. Depending on certain
characteristics of a translatable attribute, it will be found in either the domain or a
dimension translation table.

The user's session language is captured in an Oracle BI Enterprise Edition session
variable named USER_LANGUAGE_CODE. This is set when users log in from
Answers, where they select their preferred language. If users decide to change their
preferred language in the middle of a session by using the Administration option to
change the current language, this session variable will detect this change. Records
returned from a translation table are filtered to those records with a LANGUAGE_
CODE value that matches this session variable.

2.2 About Pseudo-Translations
The ETL process extracts translation records from the source system that correspond
to the languages installed in the data warehouse. If a record cannot be found in the
source system that corresponds to a language that has been installed in the data
warehouse, a pseudo-translated record will be generated. Without a pseudo-translated
record, a user that logs in with the missing language as their preferred language will
not see any records.

A pseudo-translated record is generated by copying the translation record that
corresponds to the data warehouse Base language and flagging it with the missing
record's language by populating the LANGUAGE_CODE column with the language
value. SRC_LANGUAGE_CODE stores the language from which the
pseudo-translated record was generated; this will always match the data warehouse
Base language.

In the future, if a translation record is created in the source system, it will be extracted
and the pseudo-translated record will be overwritten to reflect the actual translated
value. Table 2–1 provides an example in which "US" is the data warehouse Base
language, and "IT" and "SP" are the Installed languages. The source system only had
translated records for "US" and "IT" but did not have a translated record for "SP". The
"US" and "IT" records are extracted and loaded into the data warehouse. Because there
is no translation record in the source system for the "SP" language, a pseudo-translated
record is generated by copying the "US" record and flagging LANGUAGE_CODE as if
it were an "SP" record. The pseudo-translated record can be identified because SRC_
LANGUAGE_CODE is different from LANGUAGE_CODE, matching the Base
Language.

2.3 About Oracle BI Applications Domains
A domain refers to the possible, unique values of a table column in a relational
database. In transactional systems, domains are often referred to as list of values
(LOVs), which present attribute selections in the user's session language. The storage
of the transaction is independent of the user's language; and, therefore, the field is
stored using a language independent identifier. This identifier is typically a character
code but can also be a numeric ID. The LOV or domain is then based on an ID-value

Table 2–1 Example of Pseudo-Translated Record

INTEGRATION_ID NAME LANGUAGE_CODE SRC_LANGUAGE_CODE

ABC Executive US US

ABC Executive IT IT

ABC Executive SP US

About Oracle BI Applications Domains

About Multi-Language Support 2-3

pair, referred to as a member, and the LOV presents the values in the user's session
language. At run time, the IDs are resolved to the value for the user's session
language.

In the Oracle Business Analytics Warehouse, the number of unique values in any
particular domain is relatively small and can have a low cardinality relative to the
dimension it is associated with. For example, the Person dimension may have the
domain 'Gender' associated with. The dimension may have millions of records, but the
domain will generally have two or three members (M, F and possibly U). In the Oracle
Business Analytics Warehouse, the Gender Code is stored in the Person dimension
which acts as a foreign key to the Domains Translation table which stores the
translated values. When a query is run, the user-friendly text associated with the code
value is returned in the user's session language.

Depending on certain properties associated with a domain, domains can be configured
in the Configuration Manager. In addition to serving as a mechanism for supporting
translations, domains can be used to conform disparate source data into a common set
of data.

Data Model
Oracle BI Applications domains are associated with dimensions as fields in the
dimension table that follow the %_CODE naming convention. For example, the Person
dimension W_PARTY_PER_D would store the Gender domain in the GENDER_
CODE column.

Oracle BI Applications domains are stored in the domain translation table W_
DOMAIN_MEMBER_LKP_TL. This table stores the translated values for each domain
member code. Translated values are usually either a Name or a Description value
which are stored in the NAME and DESCR columns of this table. The DOMAIN_
MEMBER_CODE column acts as a key column when joining with the %_CODE
column in the dimension table. As domains come from various systems, a
DATASOURCE_NUM_ID column is used to identify which system the translated
value comes from and is used as part of the join key with the dimension table. A
LANGUAGE_CODE column is used to identify the language the translated values are
associated with. Note that the LANGUAGE_CODE column follows the %_CODE
naming convention. Language is considered a domain with a given set of unique
values.

ETL Process
The W_DOMAIN_MEMBER_LKP_TL table stores both domains that are extracted
from the source system as well as internally defined domains that are seeded in the
Configuration Manager. For each of the %_CODE columns that have translated values
available in the source system, an ETL process extracts the domain members from the
transactional system and loads them into W_DOMAIN_MEMBER_LKP_TL. Internally
defined domains—usually domains specific to the Oracle Business Analytics
Warehouse and known as conformed domains but can also include source
domains—are stored in the Configuration Manager schema and are similarly extracted
and loaded into the W_DOMAIN_MEMBER_LKP_TL table through ETL processes.

Only those translation records that match one of the languages that have been
installed in the data warehouse are extracted from the transactional system. If
translated records are not found in the transactional system matching an installed
language, the ETL will generate a 'pseudo-translated' record for that language.

Some source applications store translations that can be extracted and loaded into the
translation table. Some source applications do not maintain translations for an entity
that corresponds to a dimension table. In these cases, whatever record is available is

About Dimension Translation Tables

2-4 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

extracted and used as the Base language record to generate pseudo-translations for all
other installed languages.

Figure 2–1 shows an overview of the Oracle BI Applications domain ETL process.

Figure 2–1 Overview of BI Applications Domain ETL Process

About Oracle BI Applications Domains and Oracle BI Enterprise Edition
The exact mechanism used to retrieve the translated value in Oracle BI Enterprise
Edition is the LOOKUP() function. When the LOOKUP() function is used, Oracle BI
Enterprise Edition performs all aggregations before joining to the lookup table. The
aggregated result set is then joined to the lookup table. Low-cardinality attributes tend
to be involved in several aggregations, so it is useful to be joined after results are
aggregated rather than before.

In a logical dimension, a Name or Description attribute will use the LOOKUP()
function, passing the value in the %_CODE column associated with that Name or
Description to the Domain Lookup Table. The LOOKUP() function includes the
Domain Name to be used when looking up values. The results from the Domain
Lookup table are filtered to match the user's session language and returned as part of
the query results.

Domains can be either source or conformed (internally defined warehouse domains).
Source domains can come from a variety of transactional systems and so must include
a Datasource_Num_Id value to resolve. Conformed domains are defined as part of the
Oracle BI Applications and do not require a Datasource_Num_ID to resolve. As a
result, there are two lookup tables implemented in the Oracle BI Repository that are
aliases of W_DOMAIN_MEMBER_LKP_TL. When resolving a source domain, the
source domain lookup requires Datasource_Num_Id to be passed as part of the
LOOKUP() function while the conformed domain lookup does not.

2.4 About Dimension Translation Tables
As mentioned in Section 2.3, "About Oracle BI Applications Domains,", domains are
dimensional attributes that have a relatively small number of distinct members, have a

About Dimension Translation Tables

About Multi-Language Support 2-5

low cardinality relative to the number of records in the dimension, and are often used
in aggregations. Dimensions have other attributes that require translation that may not
fit one or more of these criteria. Dimensions may have translatable attributes that have
a high cardinality relative to the dimension or may have a large number of members,
and, thus, are not likely candidates for aggregation. If the domains ETL process was
implemented in such cases, performance would be very poor. As a result, these
particular attributes are implemented using dimension translation tables.

Data Model
If a dimension has such high-cardinality attributes that cannot be treated as domains,
the dimension will have an extension table that follows the _TL naming convention. If
the _TL table has a one-to-one relationship with the dimension table (after filtering for
languages), the _TL table name will match the dimension table name. For example, W_
JOB_D_TL is the translation table associated with the W_JOB_D dimension table. If the
_TL table does not have a one-to-one relationship with any dimension table, its name
will reflect content.

The dimension and dimension translation table are joined on the translation table's
INTEGRATION_ID + DATASOURCE_NUM_ID. If the translation and dimension
tables have a one-to-one relationship (after filtering for language), the join to the
dimension table is on its INTEGRATION_ID + DATASOURCE_NUM_ID. Otherwise,
there will be a %_ID column in the dimension table that is used to join to the
translation table.

ETL Process
Similar to the Oracle BI Applications domain ETL process, when using dimension
translation tables, ETL tasks extract the translated values from the transactional
system. Rather than the domain staging table being loaded, the dimension's
translation staging table is loaded. The ETL process then moves these records into the
dimension translation table.

Only those translation records that match one of the languages that have been
installed in the data warehouse are extracted from the transactional system. If
translated records are not found in the transactional system matching a data
warehouse Installed language, the ETL will generate a 'pseudo-translated' record for
that language by copying the record that corresponds to the data warehouse Base
language.

Some source applications store translations that can be extracted and loaded into the
translation table. Some source applications do not maintain translations for an entity
that corresponds to a dimension table. In these cases, whatever record is available is
extracted and used as the Base language record, which is then used to generate
pseudo-translations for all other Installed languages.

Oracle BI Applications does not support Type 2 SCD tracking of dimension translation
attributes when the dimension and translation tables have a one-to-one relationship
with each other. These tables are joined on INTEGRATION_ID + DATASOURCE_
NUM_ID, and, therefore, can be joined to a single record in the translation table.
Attributes in the dimension table can be Type 2-enabled, but the current and prior
records will always have the same translated value. Figure 2–2 describes the ETL
domain process.

About Dimension Translation Tables

2-6 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

Figure 2–2 Domain ETL Process

Oracle BI Enterprise Edition
In Oracle BI Enterprise Edition, joins are created between the dimension and
translation tables as normal. The translation table is brought in as another supporting
table in the logical table source. If a user selects an attribute from the translation table,
it will be included as a joined table in the SQL that Oracle BI Enterprise Edition
generates. If the user does not select a translation attribute, the translation table will
not be included in the generated SQL.

To ensure this behavior, the physical join between the dimension and translation
tables is configured as one-to-many with the dimension table on the many side.

An important consideration is filtering on a user's language. If the language filter is
included in the logical table source as a content filter, the translation table will always
be joined whether a user selects a translation attribute or not. To avoid this behavior,
opaque views are created in the physical layer that include a WHERE clause on the
user's session language. Filtering on the user's language is still possible, but as the
filter criteria is not implemented as a logical table source content filter, it is ensured
that the translation table is only joined when necessary.

Localizing New Domain Members and Oracle BI Repository Metadata
If you added new domain members that require localization, see the section titled
"How to Localize a New Domain Member," in Oracle Fusion Middleware Configuration
Guide for Oracle Business Intelligence Applications.

Also, to add string localizations in the Oracle BI Repository metadata, see "How to
Add String Localizations for Oracle BI Repository Metadata," in Oracle Fusion
Middleware Configuration Guide for Oracle Business Intelligence Applications.

3

Localizing Oracle Business Intelligence Deployments 3-1

3Localizing Oracle Business Intelligence
Deployments

This chapter describes concepts and techniques for localizing Oracle Business
Intelligence Applications. Oracle Business Intelligence is designed to allow users to
dynamically change their preferred language and locale preferences. This section
explains how to configure Oracle BI Applications for deployment in one or more
language environments other than English.

This chapter contains the following topics:

■ Section 3.1, "Process of Maintaining Translation Tables for Oracle BI EE"

■ Section 3.2, "About Translating Presentation Services Strings"

■ Section 3.3, "Changing the Default Currency in Analytics Applications"

3.1 Process of Maintaining Translation Tables for Oracle BI EE
The Oracle Business Intelligence Presentation layer supports multiple translations for
any column name. When working with Oracle BI Answers or rendering a dashboard,
users see their local language strings in their reports. For example, English-speaking
and French-speaking users would see their local language strings in their reports.
There are two kinds of application strings requiring translation in Oracle Business
Intelligence:

■ Metadata

Metadata strings are analytics-created objects in the Oracle Business Intelligence
repository such as subject areas, metrics, and dimensions.

■ Presentation Services

Presentation Services objects are end-user created objects such as reports,
dashboards, and pages. Translations for Presentation Services strings are stored in
the XML caption files. For more information on accessing these strings and
changing the translations, see Oracle Business Intelligence Presentation Services
Administration Guide.

This process includes the following tasks:

■ Section 3.1.1, "Upgrading Oracle Business Intelligence Seed Data for Non-English
Locales"

■ Section 3.1.2, "Externalizing Customer Metadata Strings"

■ Section 3.1.3, "Adding Custom Translations to the W_LOCALIZED_STRING_G
Table"

Process of Maintaining Translation Tables for Oracle BI EE

3-2 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

3.1.1 Upgrading Oracle Business Intelligence Seed Data for Non-English Locales
If Oracle Business Intelligence data in your deployment is to be viewed in a language
other than English, you must do the following:

1. Verify creation of the Translation Table (W_LOCALIZED_STRING_G) and
corresponding indexes, as described in Section 3.1.1.1, "Verify the Translation Table
(W_LOCALIZED_STRING_G) and Corresponding Indexes".

2. Import Locale seed data into the W_LOCALIZED_STRING_G table, as described
in Section 3.1.1.2, "Importing Locale Seed Data Into The Translation Table (W_
LOCALIZED_STRING_G)".

3. Create an Initialization Block at the Session level to set the LOCALE variable.

For example, you might do the following:

a. In Oracle BI EE Administration Tool, choose Manage, then Variables, to open
the Variable Manager dialog.

b. From the Action menu, choose New, then Session, then Initialization Block.

c. In the Session Variable Initialization Block dialog, type a name for the block.
For example, LOCAL_INIT_BLOCK.

d. Click the Edit data source button.

e. In the Default initialization string box, type the SQL initialization string. For
example:

select 'VALUEOF(NQ_SESSION.WEBLANGUAGE)' from
VALUEOF(OLAPTBO).DUAL

f. Click Browse next to the Connection Pool field to select an appropriate
connection pool. For example, "Oracle EBS OLTP"."Oracle EBS OLTP
InitBlocks Connection Pool".

g. In the Variable Manager dialog, navigate to Session > Variables >
Non-System.

h. Double click the LOCAL variable to open the Session Variable dialog.

i. In the Session Variable dialog, use the Initialization Block list to select the new
initialization block, for example, LOCAL_INIT_BLOCK.

3.1.1.1 Verify the Translation Table (W_LOCALIZED_STRING_G) and
Corresponding Indexes
To verify the Translation Table (W_LOCALIZED_STRING_G) and corresponding
indexes:

1. Verify that Oracle Business Analytics Warehouse contains the W_LOCALIZED_
STRING_G table.

2. Lookup the definitions of the following indexes in DAC and create them manually
in Oracle Business Analytics Warehouse:

– W_LOCAL_STRING_G_U1

– W_LOCAL_STRING_G_P1

– W_LOCAL_STRING_G_M1

– W_LOCAL_STRING_G_M2

Process of Maintaining Translation Tables for Oracle BI EE

Localizing Oracle Business Intelligence Deployments 3-3

Note: It is better to add these indexes to W_LOCALIZED_STRING_G prior to
importing the locale seed data in the next section, in order to safeguard against
inadvertently duplicating the data in the table.

3.1.1.2 Importing Locale Seed Data Into The Translation Table (W_LOCALIZED_
STRING_G)
If the primary language being used is not English, you might have to import
additional locale seed data (depending on the number of languages you use). This
process must be performed once for each language in which users might use in their
Web client.

Notes
■ This task should be performed only by a BI Administrator.

■ To perform task, you need the dataimp utility, which can only be used on 32-bit
operating systems.

■ During the Oracle Business Intelligence Applications installation, a directory
named ORACLE_HOME\biapps\seeddata is created, which contains a sub directory
for each language. Within each language sub directory is a .dat file (the data to be
imported) and an .inp file (the WHERE clause governing the import).

To import Locale seed data into the Translation Table (W_LOCALIZED_STRING_
G)

1. Open a command window and navigate to ORACLE_
HOME\biapps\seeddata\bin directory.

2. Run the import command in step 3 after replacing these connection parameters
with the values appropriate to your database environment:

– UserName

– Password

– ODBCDataSource

– DatabaseOwner

3. Run the import command:

ORACLE_HOME\biapps\seeddata\Bin\dataimp /u $UserName /p $Password /c
"$ODBCDataSource" /d $DatabaseOwner /f ORACLE_HOME\biapps\seeddata\l_
<XX>\analytics_seed_<XXX>.dat /w y /q 100 /h Log /x f /i ORACLE_
HOME\biapps\seeddata\l_<XX>\metadata_upgrade_<XXX>_<DBPlatform>.inp /l
metadata_upgrade_<XXX>.log

4. When you have finished importing the Locale seed data into the Translation Table
(W_LOCALIZED_STRING_G), configure the initialization block in the Oracle BI
Repository using the Oracle BI Administration Tool to connect to the database
where this table resides.

Note: Replace the XX with the Oracle Business Intelligence two-letter
language code (fr, it) and the XXX with the Siebel Systems three-letter
code (FRA, ITA).

Note: Unicode connectivity can be used to access databases that do
not support Unicode.

Process of Maintaining Translation Tables for Oracle BI EE

3-4 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

3.1.2 Externalizing Customer Metadata Strings
Metadata Strings are loaded by the Oracle BI Server from a database table. In the case
of Oracle Business Intelligence applications, this table is W_LOCALIZED_STRING_G
in the data warehouse. The initialization block 'Externalize Metadata Strings' loads the
strings for the Server. It is recommended that you run a test to make sure that this
initialization block runs successfully. An example of the translation table is shown in
Table 3–1.

By default, the Oracle Business Intelligence repository is configured to run in English
only. To deploy in any other language, you must externalize the metadata strings, as
described in the following procedure.

To externalize metadata strings in the Oracle Business Intelligence repository

1. Stop the Oracle BI Server.

2. Using the Oracle BI Administration Tool in offline mode, open
OracleBIAnalyticsApps.rpd.

3. Select the entire Presentation layer and right-click the mouse to display the menu.

– From the pop-up menu, select Externalize Display Names. (A check mark
appears next to this option the next time you right-click on the Presentation
layer.)

– Unselect the Presentation layer.

4. In the Physical layer, select the Externalized Metadata Strings database icon.
Expand the tree.

5. Double-click Internal System Connection Pool.

In the Connection Pool dialog General tab, the field Data source name should
point to the data warehouse.

6. Click OK and exit the Oracle BI Administration Tool.

7. Restart the Oracle BI Server.

3.1.3 Adding Custom Translations to the W_LOCALIZED_STRING_G Table
When you add custom objects to the metadata and choose to externalize these objects
(by right-clicking the object and checking the Externalize Display Name option), the
Oracle BI Server looks for the translations (including those for the native language) in
the W_LOCALIZED_STRING_G table.

Table 3–1 Example of W_LOCALIZED_STRING_G Translation Table

MSG_NUM MSG_TEXT LANG_ID

CN_Customer_Satisfaction Customer Satisfaction ENU

CN_Customer_Satisfaction Kundenzufriedenheit DEU

CN_Customer_Satisfaction Satisfação do cliente PTB

Note: When Externalize Display Names is checked, all metadata
strings are read from the W_LOCALIZED_STRING_G table in the
data warehouse.

About Translating Presentation Services Strings

Localizing Oracle Business Intelligence Deployments 3-5

If you do not externalize the display names, you do not need to perform the following
procedures.

3.1.3.1 Adding String Translations for Analytics Metadata
The following procedure describes how to add string translations for Oracle Business
Intelligence metadata to the W_LOCALIZED_STRING_G table. This task occurs in any
database administration tool, and in the Oracle BI Administration Tool.

To add string translations for Analytics metadata

1. Open a database administration tool and connect to your data warehouse
database.

2. Query for the table named W_LOCALIZED_STRING_G and add a new record to
the table, as defined below in steps 4 to 8.

3. Obtain the Message Key from the Oracle BI Administration Tool as follows:

– In the Oracle BI Administration Tool, right-click on the new Presentation layer
metadata object and select Properties from the menu.

– The Message key is displayed in the dialog under Custom Display Name. The
Message key is the part that starts with CN_.

For example, double-click the Pipeline catalog directory in the Presentation
layer. The Custom Display name is Valueof(NQ_SESSION.CN_Pipeline). CN_
Pipeline is the Message Key.

4. Enter your deployment language in the new record.

5. Enter the Message Type required (for example, Metadata, FINS_Metadata).

6. Select the Message Level AnalyticsNew, then do the following:

– In the Message Text column, add the translation of the object.

– Check the flags (set to Yes) for the Translate and Active columns.

– Set the Error Message # column to 0.

7. Enter the required Message Facility (for example, HMF, FIN).

8. Repeat Step 3 through Step 7 for each new metadata object string.

9. Exit the database administration tool, then restart the Oracle BI Server.

3.2 About Translating Presentation Services Strings
The translations for such Presentation Services objects as report and page names are
stored in the xxxCaptions.xml files available in the ORACLE_
HOME\biapps\catalog\res\web\l_<Language Abbreviation>\Captions directories. In
multiple language deployment mode, if you add any additional Presentation Services
objects, such as reports and new dashboard pages, you also need to add the
appropriate translations. Add these translations using the Catalog Manager tool. For
more information on using this utility, see Oracle Business Intelligence Presentation
Services Administration Guide.

Note: The custom Presentation layer objects show up only in the
native language of the metadata (the language in which you added
these new objects).

Changing the Default Currency in Analytics Applications

3-6 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

3.3 Changing the Default Currency in Analytics Applications
In Oracle Business Intelligence Applications, you might see a dollar sign used as the
default symbol when amounts of money are displayed. In order to change this
behavior, you must edit the currencies.xml file using the following procedure. The
currencies.xml file is located in the following directories:

■ Windows:

ORACLE_HOME\bifoundation\web\display\currencies.xml

■ UNIX:

ORACLE_HOME/bifoundation/web/display/currencies.xml

To change the default currency in Analytics Applications

1. In a text editor, open the currencies.xml file.

2. Look for the currency tag for the warehouse default (tag="int:wrhs"):

<Currency tag="int:wrhs" type="international" symbol="$" format="$#" digits="2"
displayMessage="kmsgCurrencySiebelWarehouse">

<negative tag="minus" format="-$#" />
</Currency>

3. Replace the symbol, format, digits and negative information in the warehouse
default with the information from the currency tag you want to use as the default.

For example, if you want the Japanese Yen to be the default, replace the contents
of the warehouse default currency tag with the values from the Japanese currency
tag (tag="loc:ja-JP"):

<Currency tag="loc:ja-JP" type="local" symbol="¥" locale="ja-JP" format="$#"
digits="0">

<negative tag="minus" format="-$#" />
</Currency>

When you are finished, the default warehouse currency tag for Japanese should
look like the following example:

<Currency tag="int:wrhs" type="international" symbol="¥" format="$#" digits="0"
displayMessage="kmsgCurrencySiebelWarehouse">

<negative tag="minus" format="-$#" />
</Currency>

4. Save and close the currencies.xml file.

4

Oracle Business Analytics Warehouse Naming Conventions 4-1

4Oracle Business Analytics Warehouse
Naming Conventions

This chapter includes information on the types of tables and columns in the Oracle
Business Analytics Warehouse, including the naming conventions used.

This chapter contains the following topics:

■ Section 4.1, "Naming Conventions for Oracle Business Analytics Warehouse
Tables"

■ Section 4.2, "Table Types for Oracle Business Analytics Warehouse"

■ Section 4.3, "Internal Tables in Oracle Business Analytics Warehouse"

■ Section 4.4, "Standard Column Prefixes in Oracle Business Analytics Warehouse"

■ Section 4.5, "Standard Column Suffixes in Oracle Business Analytics Warehouse"

■ Section 4.6, "System Columns in Oracle Business Analytics Warehouse Tables"

■ Section 4.7, "Multi-Currency Support for System Columns"

■ Section 4.8, "Oracle Business Analytics Warehouse Primary Data Values"

■ Section 4.8, "Oracle Business Analytics Warehouse Primary Data Values"

■ Section 4.9, "About Multi-Language Support in the Oracle Business Analytics
Warehouse"

■ Section 4.10, "Oracle Business Analytics Warehouse Currency Preferences"

4.1 Naming Conventions for Oracle Business Analytics Warehouse
Tables

Oracle Business Analytics Warehouse tables use a three-part naming convention:
PREFIX_NAME_SUFFIX, as shown in Table 4–1.

Note: This chapter contains naming conventions used for database
tables and columns in the Oracle Business Analytics Warehouse. This
information does not apply to objects in the Oracle Business
Intelligence repository.

Table Types for Oracle Business Analytics Warehouse

4-2 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

4.2 Table Types for Oracle Business Analytics Warehouse
Table 4–2 lists the types of tables used in the Oracle Business Analytics Warehouse.

Table 4–1 Naming Conventions for Oracle Business Analytics Data Warehouse Tables

Part Meaning Table Type

PREFIX Shows Oracle Business
Analytics-specific data warehouse
application tables.

W_ = Warehouse

NAME Unique table name. All tables.

SUFFIX Indicates the table type. _A = Aggregate
_D = Dimension
_DEL = Delete
_DH = Dimension Hierarchy
_DHL = Dimension Helper
_DHLS = Staging for Dimension Helper
_DHS = Staging for Dimension Hierarchy
_DS = Staging for Dimension
_F = Fact
_FS = Staging for Fact
_G, _GS = Internal
_H = Helper
_HS = Staging for Helper
_MD = Mini Dimension
_PE = Primary Extract
_PS = Persisted Staging
_RH = Row Flattened Hierarchy
_TL = Translation Staging (supports
multi-language support)
_TMP = Pre-staging or post-staging temporary
table
_UD = Unbounded Dimension
_WS = Staging for Usage Accelerator

Table 4–2 Table Types Used in the Oracle Business Analytics Warehouse

Table Type Description

Aggregate tables (_A) Contain summed (aggregated) data.

Dimension tables (_D) Star analysis dimensions.

Delete tables (_DEL) Tables that store IDs of the entities that were
physically deleted from the source system and should
be flagged as deleted from the data warehouse.

Note that there are two types of delete tables: _DEL
and _PE. For more information about the _PE table
type, see the row for Primary extract tables (_PE) in
this table.

Dimension Hierarchy tables (_DH) Tables that store the dimension's hierarchical
structure.

Dimension Helper tables (_DHL) Tables that store many-to-many relationships between
two joining dimension tables.

Staging tables for Dimension Helper
(_DHLS)

Staging tables for storing many-to-many relationships
between two joining dimension tables.

Dimension Hierarchy Staging table
(_DHS)

Staging tables for storing the hierarchy structures of
dimensions that have not been through the final
extract-transform-load (ETL) transformations.

Table Types for Oracle Business Analytics Warehouse

Oracle Business Analytics Warehouse Naming Conventions 4-3

Dimension Staging tables (_DS) Tables used to hold information about dimensions that
have not been through the final ETL transformations.

Fact tables (_F) Contain the metrics being analyzed by dimensions.

Fact Staging tables (_FS) Staging tables used to hold the metrics being analyzed
by dimensions that have not been through the final
ETL transformations.

Internal tables (_G, _GS) General tables used to support ETL processing.

Helper tables (_H) Inserted between the fact and dimension tables to
support a many-to-many relationship between fact
and dimension records.

Helper Staging tables (_HS) Tables used to hold information about helper tables
that have not been through the final ETL
transformations.

Mini dimension tables (_MD) Include combinations of the most queried attributes of
their parent dimensions. The database joins these
small tables to the fact tables.

Primary extract tables (_PE) Tables used to support the soft delete feature. The
table includes all the primary key columns (integration
ID column) from the source system. When a delete
event happens, the full extract from the source
compares the data previously extracted in the primary
extract table to determine if a physical deletion was
done in the Siebel application. The soft delete feature is
disabled by default. Therefore, the primary extract
tables are not populated until you enable the soft
delete feature.

Note that there are two types of delete tables: _DEL
and _PE. For more information about the _DEL table
type, see the row for Delete table (_DEL) in this table.

Persisted Staging table (_PS) Tables that source multiple data extracts from the
same source table.

These tables perform some common transformations
required by multiple target objects. They also simplify
the source object to a form that is consumable by the
warehouse needed for multiple target objects. These
tables are never truncated during the life of the data
warehouse. These are truncated only during full load,
and therefore, persist the data throughout.

Row Flattened Hierarchy Table (_RH) Tables that record a node in the hierarchy by a set of
ancestor-child relationships (parent-child for all parent
levels).

Translation Staging tables (_TL) Tables store names and descriptions in the languages
supported by Oracle BI Applications.

Pre-staging or post-staging
Temporary table (_TMP)

Source-specific tables used as part of the ETL
processes to conform the data to fit the universal
staging tables (table types_DS and _FS). These tables
contain intermediate results that are created as part of
the conforming process.

Unbounded dimension (_UD) Tables containing information that is not bounded in
transactional database data but should be treated as
bounded data in the Oracle Business Analytics
Warehouse.

Table 4–2 (Cont.) Table Types Used in the Oracle Business Analytics Warehouse

Table Type Description

Table Types for Oracle Business Analytics Warehouse

4-4 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

4.2.1 Aggregate Tables in Oracle Business Analytics Warehouse
One of the main uses of a data warehouse is to sum up fact data with respect to a
given dimension, for example, by date or by sales region. Performing this summation
on-demand is resource-intensive, and slows down response time. The Oracle Business
Analytics Warehouse precalculates some of these sums and stores the information in
aggregate tables. In the Oracle Business Analytics Warehouse, the aggregate tables have
been suffixed with _A.

4.2.2 Dimension Class Tables in Oracle Business Analytics Warehouse
A class table is a single physical table that can store multiple logical entities that have
similar business attributes. Various logical dimensions are separated by a separator
column, such as, type or category. W_XACT_TYPE_D is an example of a dimension
class table. Different transaction types, such as, sales order types, sales invoice types,
purchase order types, and so on, can be housed in the same physical table.

You can add additional transaction types to an existing physical table and so reduce
the effort of designing and maintaining new physical tables. However, while doing so,
you should consider that attributes specific to a particular logical dimension cannot be
defined in this physical table. Also, if a particular logical dimension has a large
number of records, it might be a good design practice to define a separate physical
table for that particular logical entity.

4.2.3 Dimension Tables in Oracle Business Analytics Warehouse
The unique numeric key (ROW_WID) for each dimension table is generated during
the load process. This key is used to join each dimension table with its corresponding
fact table or tables. It is also used to join the dimension with any associated hierarchy
table or extension table. The ROW_WID columns in the Oracle Business Analytics
Warehouse tables are numeric. In every dimension table, the ROW_WID value of zero
is reserved for Unspecified. If one or more dimensions for a given record in a fact table
is unspecified, the corresponding key fields in that record are set to zero.

4.2.4 Dimension Tables With Business Role-Based Flags
This design approach is used when the entity is logically the same but participates as
different roles in the business process. As an example, an employee could participate
in a Human Resources business process as an employee, in the sales process as a sales
representative, in the receivables process as a collector, and in the purchase process as
a buyer. However, the employee is still the same. For such logical entities, flags have
been provided in the corresponding physical table (for example, W_EMPLOYEE_D) to
describe the record's participation in business as different roles.

While configuring the presentation layer, the same physical table can be used as a
specific logical entity by flag-based filters. For example, if a particular star schema
requires Buyer as a dimension, the Employee table can be used with a filter where the
Buyer flag is set to Y.

Staging tables for Usage Accelerator
(_WS)

Tables containing the necessary columns for the ETL
transformations.

Table 4–2 (Cont.) Table Types Used in the Oracle Business Analytics Warehouse

Table Type Description

Table Types for Oracle Business Analytics Warehouse

Oracle Business Analytics Warehouse Naming Conventions 4-5

4.2.5 Fact Tables in Oracle Business Analytics Warehouse
Each fact table contains one or more numeric foreign key columns to link it to various
dimension tables.

4.2.6 Helper Tables in Oracle Business Analytics Warehouse
Helper tables are used by the Oracle Business Analytics Warehouse to solve complex
problems that cannot be resolved by simple dimensional schemas.

In a typical dimensional schema, fact records join to dimension records with a
many-to-one relationship. To support a many-to-many relationship between fact and
dimension records, a helper table is inserted between the fact and dimension tables.

The helper table can have multiple records for each fact and dimension key
combination. This allows queries to retrieve facts for any given dimension value. It
should be noted that any aggregation of fact records over a set of dimension values
might contain overlaps (due to a many-to-many relationship) and can result in double
counting.

At times there is a requirement to query facts related to the children of a given parent
in the dimension by only specifying the parent value (example: manager's sales fact
that includes sales facts of the manager's subordinates). In this situation, one helper
table containing multiple records for each parent-child dimension key combination is
inserted between the fact and the dimension. This allows queries to be run for all
subordinates by specifying only the parent in the dimension.

4.2.7 Hierarchy Tables in Oracle Business Analytics Warehouse
Some dimension tables have hierarchies into which each record rolls. This hierarchy
information is stored in a separate table, with one record for each record in the
corresponding dimension table. This information allows users to drill up and down
through the hierarchy in reports.

There are two types of hierarchies in the Oracle Business Analytics Warehouse: a
structured hierarchy in which there are fixed levels, and a hierarchy with parent-child
relationships. Structured hierarchies are simple to model, since each child has a fixed
number of parents and a child cannot be a parent. The second hierarchy, with
unstructured parent-child relationships is difficult to model because each child record
can potentially be a parent and the number of levels of parent-child relationships is
not fixed. Hierarchy tables have a suffix of _DH.

4.2.8 Mini-Dimension Tables in Oracle Business Analytics Warehouse
Mini-dimension tables include combinations of the most queried attributes of their
parent dimensions. They improve query performance because the database does not
need to join the fact tables to the big parent dimensions but can join these small tables
to the fact tables instead.

Table 4–3 lists the mini-dimension tables in the Oracle Business Analytics Warehouse.

Table 4–3 Mini-Dimension Tables in Oracle Business Analytics Warehouse

Table Name Parent Dimension

W_RESPONSE_MD Parent W_RESPONSE_D

W_AGREE_MD Parent W_AGREE_D

W_ASSET_MD Parent W_ASSET_D

Internal Tables in Oracle Business Analytics Warehouse

4-6 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

4.2.9 Staging Tables in Oracle Business Analytics Warehouse
Staging tables are used primarily to stage incremental data from the transactional
database. When the ETL process runs, staging tables are truncated before they are
populated with change capture data. During the initial full ETL load, these staging
tables hold the entire source data set for a defined period of history, but they hold only
a much smaller volume during subsequent refresh ETL runs.

This staging data (list of values translations, computations, currency conversions) is
transformed and loaded to the dimension and fact staging tables. These tables are
typically tagged as <TableName>_DS or <TableName>_FS. The staging tables for the
Usage Accelerator are tagged as WS_<TableName>.

The staging table structure is independent of source data structures and resembles the
structure of data warehouse tables. This resemblance allows staging tables to also be
used as interface tables between the transactional database sources and data
warehouse target tables.

4.2.10 Translation Tables in Oracle Business Analytics Warehouse
Translation tables provide multi-language support by storing names and descriptions
in each language that Oracle Business Analytics Warehouse supports. There are two
types of translation tables:

■ Domain tables that provide multi-language support associated with the values
stored in the %_CODE columns.

■ Tables that provide multi-language support for dimensions.

Domains and their associated translated values are stored in a single table named W_
DOMAIN_MEMBER_LKP_TL. Each dimension requiring multi-language support that
cannot be achieved with domains has an associated _TL table. These tables have a
one-to-many relationship with the dimension table. For each record in the dimension
table, you will see multiple records in the associated translation table (one record for
each supported language).

4.3 Internal Tables in Oracle Business Analytics Warehouse
Internal tables are used primarily by ETL mappings for data transformation and for
controlling ETL runs. These tables are not queried by end users. These tables are
described in Table 4–4.

W_OPTY_MD Parent W_OPTY_D

W_ORDER_MD Parent W_ORDER_D

W_QUOTE_MD Parent W_QUOTE_D

W_SRVREQ_MD Parent W_SRVREQ_D

Table 4–4 Oracle Business Analytics Warehouse Internal Tables

Name Purpose Location

W_DUAL_G Used to generate records for the Day dimension. Data warehouse

W_COSTLST_G Stores cost lists. Data warehouse

Table 4–3 (Cont.) Mini-Dimension Tables in Oracle Business Analytics Warehouse

Table Name Parent Dimension

Standard Column Suffixes in Oracle Business Analytics Warehouse

Oracle Business Analytics Warehouse Naming Conventions 4-7

4.4 Standard Column Prefixes in Oracle Business Analytics Warehouse
The Oracle Business Analytics Warehouse uses a standard prefix to indicate fields that
must contain specific values, as shown in Table 4–5.

4.5 Standard Column Suffixes in Oracle Business Analytics Warehouse
The Oracle Business Analytics Warehouse uses suffixes to indicate fields that must
contain specific values, as shown in Table 4–6.

W_DOMAIN_
MEMBER_G

Staging table for populating incremental changes
into W_DOMAIN_MEMBER_G and W_DOMAIN_
MEMBER_G_TL.

Data warehouse

W_DOMAIN_
MEMBER_G_TL

Stores translated values for each installed language
corresponding to the domain member codes in W_
DOMAIN_MEMBER_G_TL.

Data warehouse

W_DOMAIN_
MEMBER_GS

Stores all the domain members and value for each
installed language.

Data warehouse

W_DOMAIN_
MEMBER_MAP_G

Used at ETL run time to resolve at target domain
code base on the value of a source domain code.

Data warehouse

W_DOMAIN_
MEMBER_MAP_
NUM_G

Used at ETL run time to resolve a target domain
code based on the comparison of a numeric value
within the source numeric range.

Data warehouse

W_EXCH_RATE_G Stores exchange rates. Data warehouse

W_LANGUAGES_G Stores the language translations supported in the
data warehouse and is used during ETL to help
generate missing translation records from the base
language called pseudo-translation

Data warehouse

W_LOCALIZED_
STRING_G

Data warehouse

W_LOV_EXCPT_G Stores the list of values for the list of values types in
which the ETL process finds exceptions.

Data warehouse

W_UOM_
CONVERSION_G

Stores a list of From and To UOM codes and their
conversion rates.

Data warehouse

Table 4–5 Standard Column Prefix

Prefix Description In Table Types

W_ Used to store Oracle BI Applications standard or
standardized values. For example, W_%_CODE
(Warehouse Conformed Domain) and W_TYPE,
W_INSERT_DT (Date records inserted into
Warehouse).

_A

_D

_F

Table 4–6 Standard Column Suffixes

Suffix Description In Table Types

_CODE Code field. (Especially used for domain codes.) _D, _DS, _FS, _G, _GS

_DT Date field. _D, _DS, _FS, _G, _DHL,
 _DHLS

Table 4–4 (Cont.) Oracle Business Analytics Warehouse Internal Tables

Name Purpose Location

System Columns in Oracle Business Analytics Warehouse Tables

4-8 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

4.6 System Columns in Oracle Business Analytics Warehouse Tables
Oracle Business Analytics Warehouse tables contain system fields. These system fields
are populated automatically and should not be modified by the user. Table 4–7 lists the
system columns used in data warehouse dimension tables.

_ID Correspond to the _WID columns of the
corresponding _F table.

_FS, _DS

_FLG Indicator or Flag. _D, _DHL, _DS, _FS, _F, _G,
_DHLS

_WID Identifier generated by Oracle Business Intelligence
linking dimension and fact tables, except for ROW_
WID.

_F, _A, _DHL

_NAME A multi-language support column that holds the
name associated with an attribute in all languages
supported by the data warehouse.

_TL

_DESCR A multi-language support column that holds the
description associated with an attribute in all
languages supported by the data warehouse

_TL

Table 4–7 System Columns Used in Data Warehouse Tables

System Column Description

ROW_WID Surrogate key to identify a record uniquely.

CREATED_BY_WID Foreign key to the W_USER_D dimension that specifies the
user who created the record in the source system.

CHANGED_BY_WID Foreign key to the W_USER_D dimension that specifies the
user who last modified the record in the source system.

CREATED_ON_DT The date and time when the record was initially created in
the source system.

CHANGED_ON_DT The date and time when the record was last modified in the
source system.

AUX1_CHANGED_ON_DT System field. This column identifies the last modified date
and time of the auxiliary table's record that acts as a source
for the current table.

AUX2_CHANGED_ON_DT System field. This column identifies the last modified date
and time of the auxiliary table's record that acts as a source
for the current table.

AUX3_CHANGED_ON_DT System field. This column identifies the last modified date
and time of the auxiliary table's record that acts as a source
for the current table.

AUX4_CHANGED_ON_DT System field. This column identifies the last modified date
and time of the auxiliary table's record that acts as a source
for the current table.

DELETE_FLG This flag indicates the deletion status of the record in the
source system. A value of Y indicates the record is deleted
from the source system and logically deleted from the data
warehouse. A value of N indicates that the record is active.

W_INSERT_DT Stores the date on which the record was inserted in the data
warehouse table.

Table 4–6 (Cont.) Standard Column Suffixes

Suffix Description In Table Types

Multi-Currency Support for System Columns

Oracle Business Analytics Warehouse Naming Conventions 4-9

4.7 Multi-Currency Support for System Columns
Table 4–8 lists the currency codes and rates for related system columns.

W_UPDATE_DT Stores the date on which the record was last updated in the
data warehouse table.

DATASOURCE_NUM_ID Unique identifier of the source system from which data was
extracted. In order to be able to trace the data back to its
source, it is recommended that you define separate unique
source IDs for each of your different source instances.

ETL_PROC_WID System field. This column is the unique identifier for the
specific ETL process used to create or update this data.

INTEGRATION_ID Unique identifier of a dimension or fact entity in its source
system. In case of composite keys, the value in this column
can consist of concatenated parts.

TENANT_ID Unique identifier for a tenant in a multi-tenant
environment. This column is typically be used in an
Application Service Provider (ASP)/Software as a Service
(SaaS) model.

X_CUSTOM Column used as a generic field for customer extensions.

CURRENT_FLG This is a flag for marking dimension records as "Y" in order
to represent the current state of a dimension entity. This flag
is typically critical for Type II slowly changing dimensions,
as records in a Type II situation tend to be numerous.

EFFECTIVE_FROM_DT This column stores the date from which the dimension
record is effective. A value is either assigned by Oracle BI
Applications or extracted from the source.

EFFECTIVE_TO_DT This column stores the date up to which the dimension
record is effective. A value is either assigned by Oracle BI
Applications or extracted from the source.

SRC_EFF_FROM_DT This column stores the date from which the source record
(in the Source system) is effective. The value is extracted
from the source (whenever available).

STC_EFF_TO_DT This column stores the date up to which the source record
(in the Source system) is effective. The value is extracted
from the source (whenever available).

Table 4–8 Currency Codes and Rates for Related System Columns

System Column Description

DOC_CURR_CODE Code for the currency in which the document was created in the
source system.

LOC_CURR_CODE Usually the reporting currency code for the financial company in
which the document was created.

GRP_CURR_CODE The primary group reporting currency code for the group of
companies or organizations in which the document was created.

LOC_EXCHANGE_RATE Currency conversion rate from the document currency code to the
local currency code.

GLOBAL1_EXCHANGE_
RATE

Currency conversion rate from the document currency code to the
Global1 currency code.

Table 4–7 (Cont.) System Columns Used in Data Warehouse Tables

System Column Description

Oracle Business Analytics Warehouse Primary Data Values

4-10 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

4.8 Oracle Business Analytics Warehouse Primary Data Values
It is possible for various dimensions to have one-to-many and many-to-many
relationships with each other. These kinds of relationships can introduce problems in
analyses. For example, an Opportunity can be associated with many Sales
Representatives and a Sales Representative can be associated with many
Opportunities. If your analysis includes both Opportunities and Sales Representatives,
a count of Opportunities would not be accurate because the same Opportunity would
be counted for each Sales Representative with which it is associated.

To avoid these kinds of problems, the Oracle Business Analytics Warehouse reflects
the primary member in the "many" part of the relationship. In the example where an
Opportunity can be associated with many Sales Representatives, only the Primary
Sales Representative is associated with that Opportunity. In an analysis that includes
both Opportunity and Sales Representative, only a single Opportunity will display
and a count of Opportunities returns the correct result.

There are a few important exceptions to this rule. The Person star schema supports a
many-to-many relationship between Contacts and Accounts. Therefore, when
querying the Person star schema on both Accounts and Contacts, every combination of
Account and Contact is returned. The Opportunity-Competitor star schema supports a
many-to-many relationship between Opportunities and Competitor Accounts, and the
Campaign-Opportunity star schema supports a many-to-many relationship between
Campaigns and Opportunities. In other star schemas, however, querying returns only
the primary account for a given contact.

4.9 About Multi-Language Support in the Oracle Business Analytics
Warehouse

Oracle BI Applications provides multi-language support for metadata level objects
exposed in Oracle BI Enterprise Edition dashboards and reports, as well as data, which
enables users to see records translated in their preferred language. For more
information about multi-language support, see Chapter 2, "About Multi-Language
Support."

4.10 Oracle Business Analytics Warehouse Currency Preferences
For information about setting up currencies, refer to the following task in Functional
Setup Manager: Common Areas and Dimensions Configurations\ Configure Global
Currencies.

The Oracle Business Analytics Warehouse supports the following currency
preferences.

■ Contract currency. The currency used to define the contract amount. This currency
is used only in Project Analytics.

GLOBAL2_EXCHANGE_
RATE

Currency conversion rate from the document currency code to the
GLOBAL2 currency code.

GLOBAL3_EXCHANGE_
RATE

Currency conversion rate from document currency code to the
GLOBAL3 currency code.

PROJ_CURR_CODE Code used in Project Analytics that corresponds to the project
currency in the OLTP system.

Table 4–8 (Cont.) Currency Codes and Rates for Related System Columns

System Column Description

Oracle Business Analytics Warehouse Currency Preferences

Oracle Business Analytics Warehouse Naming Conventions 4-11

■ CRM currency. The CRM corporate currency as defined in the Fusion CRM
application. This currency is used only in CRM Analytics applications.

■ Document currency. The currency in which the transaction was done and the
related document created.

■ Global currency. The Oracle Business Analytics Warehouse stores up to three
group currencies. These need to be pre-configured so as to allow global reporting
by the different currencies. The exchange rates are stored in the table W_EXCH_
RATE_G.

■ Local currency. The accounting currency of the legal entity in which the
transaction occurred.

■ Project currency. The currency in which the project is managed. This may be
different from the functional currency. This applies only to Project Analytics.

Oracle Business Analytics Warehouse Currency Preferences

4-12 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

5

Administering Oracle GoldenGate and Source Dependent Schemas 5-1

5Administering Oracle GoldenGate and
Source Dependent Schemas

This chapter explains how to set up and use Oracle GoldenGate (OGG) and source
dependent schemas (SDS).

This chapter contains the following sections:

■ Section 5.1, "Introduction"

■ Section 5.2, "Source Dependent Schema Architecture"

■ Section 5.3, "Setting Up Oracle GoldenGate and Source Dependent Schemas"

■ Section 5.4, "Tasks for Setting Up Oracle GoldenGate and the Source Dependent
Schema"

5.1 Introduction
In a conventional ETL scenario, data is loaded from source online transaction
processing (OLTP) schemas, which in many cases support full-time transactional
systems with constant ongoing updates. Contention can arise during complex extracts
from these sources, particularly in cases where significant OLTP data changes have
occurred which must be processed and loaded by ETL processes.

To relieve this contention, you can set up source dependent schemas which replicate
OLTP schemas in the same database as the Oracle Business Analytics Warehouse
schema. In addition to segregating extract processing on the analytical system and
eliminating contention on transactional systems, physical architecture and ETL
performance benefits accrue from maintaining source data in the same physical
location as the warehouse tables, consolidating multiple sources, regions and
timezones, and eliminating network bottlenecks and incremental change capture
during extraction and load.

5.2 Source Dependent Schema Architecture
The SDS is a separate schema usually stored on the same database as the Oracle
Business Analytics Warehouse, which contains data extracted from an OLTP schema
on a separate machine. The OLTP schema is treated as the source and the SDS schema
as the target of the Oracle GoldenGate processes which maintain the replicated SDS.

The SDS Architecture is an optional addition to the existing BI Applications
Architecture that solves many problems associated with data transport from the
source OLTP system to the data warehouse and change data capture required for
incremental ETL. The architecture consists of these main components:

Setting Up Oracle GoldenGate and Source Dependent Schemas

5-2 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

■ Source Dependent Data Store (SDS): A separate schema on the OBAW database
that is a replication of the source OLTP systems tables. Also stores deletes and
additional optimizations for incremental ETL.

■ Oracle GoldenGate: This replication system is deployed on both source and
OBAW database systems. On the source database system, Oracle GoldenGate
supports continuous asynchronous change data capture at a low level in the
database, then compresses and ships the changed data across the network to the
target SDS schema on the analytical warehouse database instance. On the target
OBAW database instance, it receives the changed data from one or more source
systems and loads them into the target database, specifically into the SDS schemas,
one per ETL OLTP source.

■ ODI: ODI metadata stores definitions used to generate the SDS schemas and to
support the Oracle GoldenGate replication processes.

■ BI Application SDS Components: Components used to support generation of the
SDS schema and Oracle GoldenGate replication processes.

5.3 Setting Up Oracle GoldenGate and Source Dependent Schemas
This section provides instructions for setting up and using Oracle GoldenGate and
SDS.

List of Steps for Setting Up Oracle GoldenGate and Source Dependent Schemas
To install and set up Oracle GoldenGate and SDS, you must complete the following
tasks, in order. Each high-level task breaks down into a list of detailed steps provided
in the next section.

1. Configure the source and target databases, as described in Section 5.4.1, "Setup
Step: Configure Source and Target Database."

2. Install Golden Gate software, as described in Section 5.4.2, "Setup Step: Install
Oracle GoldenGate on Source and Target Systems."

3. Configure BI Applications Configuration Manager and ODI, as described in
Section 5.4.3, "Setup Step: Configure BI Applications Configuration Manager and
Oracle Data Integrator to Support the Source Dependent Schema."

4. Generate and run the Data Definition Language to create the SDS tables on the
SDS schema in the target database, as described in Section 5.4.4, "Setup Step:
Generate, Deploy, and Populate the Source Dependent Schema Tables on Target
Database."

5. Generate and deploy OGG Parameter files, as described in Section 5.4.5, "Setup
Step: Generate and Deploy Oracle GoldenGate Parameter Files to Source and
Target Machines."

6. Start OGG, as described in Section 5.4.6, "Setup Step: Start Oracle GoldenGate on
Source and Target Machines."

5.4 Tasks for Setting Up Oracle GoldenGate and the Source Dependent
Schema

This section provides detailed tasks for setting up Oracle GoldenGate and SDS.

Note: You must perform the tasks in this section in the sequence described in
Section 5.3, "Setting Up Oracle GoldenGate and Source Dependent Schemas".

Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

Administering Oracle GoldenGate and Source Dependent Schemas 5-3

5.4.1 Setup Step: Configure Source and Target Database
In this step, you create Oracle GoldenGate database users on source and target
databases. Unlike other database schemas used by BI Applications, the SDS and OGG
schemas are not automatically created during installation. Only the installation
process can automatically create database users; because datasources are defined in
Configuration Manager after installation is complete, the required Source Dependent
Schemas associated with these datasources must be manually created. For this reason,
an SDS schema must be manually defined on the target database. Additionally, the BI
Apps installer is not able to create the OGG database user on the source OLTP system.
This section describes how to create the OGG database user on the source database
system and the OGG and SDS database users on the target database system.

Create OLTP Oracle GoldenGate Database User
Each OGG process requires a dedicated database user. On the source system, the OGG
user needs to be able to query various metadata. Secure database practice is to avoid
granting privileges to tables not in use, so SELECT ANY TABLE is not granted to the
OGG database user. Instead, as part of the SDS DDL, SELECT privileges are granted
only to those tables in the OLTP schema being replicated.

The user creation scripts use the following parameters:

Run the following script on the source database to create the source database OGG
user.

-- Create OGG User
CREATE USER &BIAPPS_OGG
IDENTIFIED BY &BIAPPS_OGG_PW
DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;

GRANT CREATE SESSION TO &BIAPPS_OGG;
GRANT ALTER SESSION TO &BIAPPS_OGG;
GRANT SELECT ANY DICTIONARY TO &BIAPPS_OGG;
GRANT FLASHBACK ANY TABLE TO &BIAPPS_OGG;

-- OGG user requires ALTER ANY table to set up supplemental logging for individual
tables. Once accomplished, this privilege can be revoked:
GRANT ALTER ANY TABLE TO &BIAPPS_OGG;

Prepare OLTP Database and Redo Logs
Oracle GoldenGate requires that the database be configured for supplemental logging.
Execute the following statement in the source database with a user with sufficient
privileges.

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

Create Target Oracle GoldenGate Database User
Each OGG process requires a dedicated database user. On the target system, the OGG
user needs to be able to execute various DML operations on the SDS tables as well as

Parameter Description

&BIAPPS_OGG Oracle GoldenGate
Database User Name

&BIAPPS_OGG_PW Oracle GoldenGate
Database User
Password

Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

5-4 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

optionally create a checkpoint table. Secure database practice is to avoid granting
privileges to tables not in use, so SELECT ANY TABLE, INSERT ANY TABLE and so on are
not granted to the OGG database user. Instead, as part of the SDS DDL, required
privileges are granted only to those tables in the SDS schema for the OGG database
user.

The user creation scripts use the following parameters:

Run the following script on the target table to create the target database OGG user.

-- Create OGG User
CREATE USER &BIAPPS_OGG
IDENTIFIED BY &BIAPPS_OGG_PW
DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;

GRANT CREATE SESSION TO &BIAPPS_OGG;
GRANT ALTER SESSION TO &BIAPPS_OGG;
GRANT SELECT ANY DICTIONARY TO &BIAPPS_OGG;

-- Create Table privilege only required to create checkpoint table. Can be revoked
once table is created. Not required if not creating this table
GRANT CREATE TABLE TO &BIAPPS_OGG;

Create SDS Database User
A separate SDS database user must be configured in the target database for each OLTP
system that will leverage the SDS. Each supported source instance requires a separate
SDS schema. The recommended naming convention for the schema owner is
<BIAPPS>SDS<Model Code>_<DSN Number> where <BIAPPS> is a user defined code
representing BI Applications content, <Model Code> is the unique code assigned to
each datasource type and <DSN Number> is the unique datasource ID assigned to a
specific datasource instance. For example, if you have the following two datasources
defined as supported source systems in the BI Applications Configuration Manager
you would have the corresponding SDS schemas defined in the data warehouse
database :

Use the following DDL as a template for creating each SDS database user. The
following only represents a bare minimum of required DDL statements; adjust for
your environment as necessary. Rerun for each supported source instance.

Parameter Description

&BIAPPS_OGG Oracle GoldenGate
Database User Name

&BIAPPS_OGG_PW Oracle GoldenGate
Database User
Password

Source Instance Name Model Code Data Source Number SDS

Oracle EBS 11.5.10 EBS_11_5_10 310 BIAPPS_SDS_ EBS_11_5_
10_310

Siebel CRM 8.1.1 SEBL_8_1_1 625 BIAPPS_SDS_ SEBL_8_1_
1_625

Parameter Description

&BIAPPS_SDS_DATA_
TS

Table space name

Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

Administering Oracle GoldenGate and Source Dependent Schemas 5-5

-- Create tablespace. Following is only an example and may not reflect PSR
guidance:
CREATE TABLESPACE &BIAPPS_SDS_DATA_TS
DATAFILE '&ORADATA/&BIAPPS_SDS_DATA_TS..dbf' SIZE 100M AUTOEXTEND ON NEXT 10M
LOGGING
DEFAULT COMPRESS FOR OLTP;

-- Create SDS User
CREATE USER &BIAPPS_SDS
IDENTIFIED BY &BIAPPS_SDS_PW
DEFAULT TABLESPACE &BIAPPS_SDS_DATA_TS QUOTA UNLIMITED ON &BIAPPS_SDS_DATA_TS;

-- Required Grants
GRANT CREATE SESSION TO &BIAPPS_SDS;
GRANT CREATE TABLE TO &BIAPPS_SDS;

-- OGG user must be granted Quota to insert and update data
ALTER USER &BIAPPS_OGG QUOTA UNLIMITED ON &BIAPPS_SDS_DATA_TS;

5.4.2 Setup Step: Install Oracle GoldenGate on Source and Target Systems
Download and install Oracle GoldenGate software first on the source and then on the
target machines. The software is available from Oracle Technology Network. For
information about installation of Oracle Golden Gate, refer to the Oracle GoldenGate
Installation and Setup Guide for your platform and database.

Installation Recommendations
When installing and configuring the OGG software, consider the following
recommendations:

■ For each OLTP instance supported, install a separate Replicate process on the
target machine. As each OLTP instance has its own separate SDS schema on the
target database, the Replicate process is populating different targets so a separate
Replicate process is required for each.

■ Install a Data Pump process on the source machine.

■ The name of the Extract, Data Pump and Replicat processes are limited to eight
characters. The suggested naming convention is as follows:

&ORADATA Path where tablespace
should be located

&BIAPPS_SDS SDS User name

&BIAPPS_SDS_PW SDS User password

&BIAPPS_OGG Oracle GoldenGate
Database User Name

Process Naming Convention Example

Extract EXT_<Datasource
Num Id>

EXT_310

Data Pump DP_<Datasource Num
Id>

DP_310

Replicate REP_<Datasource
Num Id>

REP_310

Parameter Description

Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

5-6 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

■ Follow the steps in the Oracle GoldenGate documentation to configure an instance
of OGG on the source and target systems up to the point of starting the OGG
processes.

■ Note that as part of the installation and configuration, a procedure is run to
generate BI Applications-specific parameter files, as discussed in the following
section. For more information, see Section 5.4.5, "Setup Step: Generate and Deploy
Oracle GoldenGate Parameter Files to Source and Target Machines." The install
and configuration of the OGG processes are completed at this point.

Example Steps to configure the Oracle GoldenGate processes
The following is a set of example steps to configure the OGG processes, modify as
appropriate for your environment. For the source system, configure Extract and Data
Pump processes. The initial steps in the example below effectively remove an existing
instance of both processes. If none already exist, start with the START MGR command.

--Stop Manager on primary database
dblogin USERID <GG User's DB ID, requirement depends on database>,
PASSWORD <GG User's DB password, requirement depends on database >

STOP MGR

--Stop GG processes
STOP <name of Extract process>
DELETE EXTTRAIL <relative or fully qualified path where Extract Trail files are
created on source system>/*
DELETE <name of Extract process>

STOP <name of Data Pump process>
DELETE RMTTRAIL <relative or fully qualified path where Replicat Trail files are
created on target system>/*
DELETE <name of Data Pump process>

--Delete Previous Trail Files
SHELL rm <relative or fully qualified path where Extract Trail files are created
on source system>/*

--Start Manager on primary database
START MGR

--Primary database capture configuration
ADD EXTRACT <name of Extract process>, TRANLOG, BEGIN NOW
ADD EXTTRAIL <relative or fully qualified path where Extract Trail files are to be
created on source system>, EXTRACT <name of Extract process>, MEGABYTES 50

--Primary database pump configuration:
ADD EXTRACT<name of Data Pump process>, EXTTRAILSOURCE <relative or fully
qualified path where Extract Trail files are to be created on source system>,
ADD RMTTRAIL <relative or fully qualified path where Replicat Trail files are to
be created on target system>, EXTRACT<name of Data Pump process>, MEGABYTES 50

Example:

--Stop Manager on primary database
dblogin userid gg, password gg
STOP MGR

--Stop GG processes
STOP EXT_310
DELETE EXTTRAIL ./dirdat/*

Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

Administering Oracle GoldenGate and Source Dependent Schemas 5-7

DELETE EXT_310

STOP DP_310
DELETE RMTTRAIL ./dirdat/*
DELETE DP_310

--Delete Previous Trail Files
SHELL rm ./dirdat/*

--Start Manager on primary database
START MGR

--Primary database capture configuration
ADD EXTRACT EXT_310, TRANLOG, BEGIN NOW
ADD EXTTRAIL ./dirdat/tr, EXTRACT EXT_310, MEGABYTES 50

--Primary database pump configuration:
ADD EXTRACT DP_310, EXTTRAILSOURCE ./dirdat/tr
ADD RMTTRAIL ./dirdat/tr, EXTRACT DP_310, MEGABYTES 50

Implement similar steps for the Replicate process in the target system. The initial steps
effectively remove an existing instance of the Replicate process. If none already exist,
start with the START MGR command.

--Stop Manager on target database
dblogin USERID <GG User's DB ID, requirement depends on database>,
PASSWORD <GG User's DB password, requirement depends on database >
STOP MGR

--Stop GG processes
STOP <name of Replicat process>
DELETE <name of Replicat process>

--Delete CHECKPOINTTABLE
DELETE CHECKPOINTTABLE <GG User's DB ID>.GGSCHKPT

--Delete Previous Trail Files
SHELL rm <relative or fully qualified path where Replicat Trail files are created
on target system>/*

--Start Manager on target database
START MGR

--Create CHECKPOINTTABLE in target database
dblogin USERID <GG User's DB ID>,
PASSWORD <GG User's DB password>
ADD CHECKPOINTTABLE <GG User's DB ID>.GGSCHKPT

--Target database delivery configuration
ADD REPLICAT <name of Replicat process>, exttrail <relative or fully qualified
path where Replicat Trail files are to be created on target system>

Example:

--Stop Manager on target database
dblogin userid gg, password gg
STOP MGR

--Stop GG processes
STOP REP_310
DELETE REP_310

Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

5-8 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

--Delete CHECKPOINTTABLE
DELETE CHECKPOINTTABLE

--Delete Previous Trail Files
SHELL rm ./dirdat/*

--Start Manager on target database
START MGR

--Create CHECKPOINTTABLE in target database
dblogin userid gg, password gg
ADD CHECKPOINTTABLE

--Target database delivery configuration
ADD REPLICAT REP_310, exttrail ./dirdat/tr

5.4.3 Setup Step: Configure BI Applications Configuration Manager and Oracle Data
Integrator to Support the Source Dependent Schema

Enable SDS in Configuration Manager
Enable the SDS option for each datasource defined in Configuration Manager. You can
enable the SDS option for the entire datasource or for individual Fact Groups. The SDS
option is enabled by setting the value for the IS_SDS_DEPLOYED parameter to 'Yes'.

1. In Configuration Manager, select the Source Instance.

2. Click Manage Data Load Parameters.

3. Locate the IS_SDS_DEPLOYED parameter in the list.

4. In the Global Parameter Value, replace <Edit Value> with 'Yes'.

5. A warning is displayed indicating that the parameter is being updated globally for
all Fact and Dimension Groups. Click Yes to confirm or, if you prefer, set the
global paramter to 'No', and then edit the parameter value at the Fact Group or
Dimension Group level.

Add SDS Physical Schemas in ODI
For each source instance, you must manually add a corresponding physical schema
under the 'BIAPPS_DW' physical server in ODI.

1. In ODI Studio's Topology Navigator, expand the Oracle technology in the Physical
Architecture.

2. Right-click on Oracle_BI_Apps_DW and select New Physical Schema.

3. In the Definition, set Schema (Schema) and Schema (Work Schema) both to the
SDS schema owner.

4. Select Flexfields.

5. For the DATASOURCE_NUM_ID flex field, uncheck the Default checkbox and
assign the DSN value associated with that source as defined in Configuration
Manager.

6. Save the physical schema definition. Ignore the message about the physical server
not being assigned a context.

Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

Administering Oracle GoldenGate and Source Dependent Schemas 5-9

5.4.4 Setup Step: Generate, Deploy, and Populate the Source Dependent Schema
Tables on Target Database

In this step, you generate and run the Data Definition Language to create the SDS
tables on the SDS schema in the target database.

Generate the SDS DDL
Procedures are provided to generate the required objects to enable the SDS. To
generate the required DDL, in ODI Designer execute the 'Generate DDL - SDS'
scenario found under 'BI Apps Project > Components > SDS > Oracle > Generate SDS
DDL. Provide an appropriate context when prompted.

As the procedure can only accept a single source type, this process needs to be
repeated for each different type of Source system to be enabled.

To execute the scenario, right-click it and select Execute. When the scenario is
executed, a prompt appears to provide values for the DDL execution options. Refer to
the following table describing the options to provide appropriate values.

Option Description

GG_USER_DW Golden Gate database user on the BI Applications database

GG_USER_SOURCE Golden Gate database user on the OLTP database.

SDS_MODEL The OLTP model to be used to generate the SDS schema. Each
model is associated with a logical schema. The logical schema is
associated with a physical schema. The logical and physical
schema DSN flexfields must match an SDS physical schema's
DSN flexfield defined under the BI Apps DW physical server in
order for this utility to determine the appropriate schema name to
be used for the SDS. The SDS physical schema with the matching
DSN flexfield value is used to identify changes and execute the
DDL against if the RUN_DDL option is set to Y.

CREATE_SCRIPT_FILE Y or N. Set to Y if you want to review the DDL or manually
execute the script.

REFRESH_MODE FULL or INCREMENTAL. Full drops and creates all tables.
Incremental compares the repository with the SDS schema and
applies changes using ALTER statements without dropping tables.
Incremental process can take much longer than Full mode and
should be used with filters to limit the number of tables
compared.

CHAR_CLAUSE Y or N. For Unicode support, will include the CHAR clause when
defining string columns. For example FULL_NAME VARCHAR2(10)
would be created as FULL_NAME VARCHAR2(10 CHAR). This ensures
that the right length is chosen when the underlying database is a
unicode database.

Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

5-10 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

If you set CREATE_SCRIPT_FILE to Y, four files are generated by the Generate SDS
DDL procedure in the location specified by SCRIPT_LOCATION. One is a .SQL script
to creates the tables. Another is a .SQL script to create the indexes and analyze the
tables. This allows you to create the tables, perform an initial load of the tables without
any indexes that could hurt performance, and then create the indexes and analyze the
tables after they are loaded. Another .SQL script is generated which grants SELECT
privileges to the OGG database user only for those tables that need to be selected from.
The final file is a log file.

Grant privileges to OLTP Tables
The OGG user must be able to select from the tables in the OLTP database. Rather than
grant the SELECT ANY TABLE privilege to the OGG user, SELECT privileges are granted
only to those tables that actually need to be replicated to the target system.

The SDS DDL generator procedure creates a script to grant SELECT privileges to the
OGG user. Refer to the script 'BIA_SDS_Schema_Source_Grants_DDL_<unique
ID>.sql' and execute the contents in the OLTP database with a user with sufficient
privileges to grant SELECT privileges on the OLTP tables.

Create the SDS Tables
The SDS DDL generator procedure creates a .SQL script that follows the naming
convention BIA_SDS_Schema_DDL_<unique ID>.sql which contains the CREATE or
ALTER DDL statements to create or alter the tables in the SDS schema. Execute the SQL
in this file against the SDS schema.

The ETL process must be able to select from the SDS tables. Typically, the ETL process
uses the BI Applications data warehouse schema owner. This must be granted SELECT
privileges on the SDS tables. In addition, the Oracle GoldenGate user needs read and
write access to these same tables. The SDS Generate DDL procedure grants SELECT

RUN_DDL Y or N. Determines whether to execute the DDL commands. The
script will be executed against the physical SDS schema
associated with the SDS_MODEL. Note that this script will be
executed via the user defined in the BIAPPS_DW physical server
which is usually the owner of the BIAPPS_DW schema and which
may not have appropriate privileges to create or alter tables in
another schema. To have the utility execute the DDL script, you
may need to grant CREATE ANY TABLE, CREATE ANY INDEX, ALTER
ANY TABLE and ALTER ANY INDEX to the BIAPPS_DW database
user.

It is recommended to set this option to N. If set to Y, both the
tables and indexes will be created. Having the indexes on the
tables will impact the performance of initially loading the tables.
Rather, it is recommended that you set this option to N, manually
execute the Table DDL, perform the initial load of the tables, then
manually execute the Index DDL.

Also, if an index or primary key constraint is not defined correctly
in ODI, uniqueness or not null errors could be generated and a
table could fail to be loaded. Indexes and primary keys are useful
for Oracle GoldenGate but are not required. It is better to build
the indexes and primary keys after the data is loaded and make
any necessary corrections to the constraint's definition in ODI and
attempt to build the index or primary key again.

SCRIPT_LOCATION The location where the script should be created if the CREATE_
SCRIPT_FILE option is true.

TABLE_MASK To generate the DDL for all tables, use a wildcard (the default).
To generate for only a subset of tables with names matching a
particular pattern, use that pattern with a wildcard, such as PER_
%.

Option Description

Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

Administering Oracle GoldenGate and Source Dependent Schemas 5-11

privileges to the BI Applications data warehouse schema owner and SELECT, INSERT,
UPDATE and DELETE privileges to the OGG user.

Performing Initial Load of the SDS Tables: Create Database Link to OLTP
Database
A variety of methods can be used to initially load the data from the source database to
the target database. A procedure is provided to generate a script to perform an initial
load as described in the steps below. Note however, that you may opt for other
methods. The procedure generates a script that executes DML statements that extract
data over a database link.

First, create a database link to the OLTP database on the target database. The
procedure to generate the DML script requires that a database link already exist
named "DW_TO_OLTP" prior to being executed. The procedure executes using the
BIAPPS_DW physical server so the database link has to either be defined in the same
schema as used in the BIAPPS_DW physical server or else defined as a public database
link. This database link must be manually created, it is not automatically created.

The procedure only populates a single SDS schema at a time. If creating multiple SDS
schemas to accommodate multiple sources, this database link will need to be updated
prior to each run to point to a different OLTP instance.

Performing Initial Load of the SDS Tables: Execute Procedure to generate DML
script
This DML script generation procedure requires that the ODI topology is set up
correctly, ensuring the OLTP model logical schema DSN matches with the desired
target warehouse SDS physical schema DSN. The DSNs are set in the logical or
physical schema flexfields.

In ODI Designer, execute the COPY_OLTP_TO_SDS scenario found under BI Apps
Project > Components > SDS > Oracle > Copy OLTP to SDS.

Note: LOB and LONG datatype columns are created in the SDS, but
the provided utilities to initially copy data from the source to target
system cannot support these datatypes, so columns with these
datatypes are specifically excluded by these utilities. If data in these
columns are required, an alternate method for performing an initial
load of the SDS will need to be implemented.

Note: In Siebel implementations, a small number of tables in the
Siebel database are created when installing the BI Applications. These
tables must be manually created and always have S_ETL as a prefix.
Be sure these tables have already been created prior to executing these
steps. If these tables do not already exist, a "table or view does not
exist" error can occur when executing the following commands.

Note: The JDE application spreads data across four databases and is
tracked under four different submodels under a single JDE specific
model. The DML option will need to be executed for each separate
submodel and the "DW_TO_OLTP" database link will need to be
updated prior to executing the DML script.

Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

5-12 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

To execute the scenario, right-click it and select Execute. Provide an appropriate
context when prompted. When the scenario is executed, a prompt appears to provide
values for the DML execution options. Refer to the following table describing the
options to provide appropriate values.

Performing Initial Load of the SDS Tables: Execute DML Script on SDS Database
The resulting DML script can be executed using the SDS schema owner or the BIAPPS
DW schema owner. If executed by the BIAPPS DW schema owner, this user must be
granted the SELECT ANY TABLE and INSERT ANY TABLE privileges in order to populate
data in another schema. If executed using the SDS schema owner, a private database
link named "DW_TO_OLTP" must be created in the SDS schema (the SDS user must be
granted the CREATE DATABASE LINK privilege to create this database link) or already
created as a public database link.

The DML script that is generated includes all tables used by all ETL tasks. If you are
not executing all ETL tasks, you may want to consider identifying the tasks you are
not executing and removing the corresponding tables from this script so that they are
not replicated, thus keeping the overall size of the SDS down. Refer to the parameter
files to determine the tasks that use each table and edit this script to remove the tables
you do not need to replicate.

Create SDS Indexes and Analyze the SDS schema
When the tables are populated, execute the 'BIA_SDS_Schema_Index_DDL_<unique
ID>.sql' script to create indexes and analyze the SDS tables.

5.4.5 Setup Step: Generate and Deploy Oracle GoldenGate Parameter Files to Source
and Target Machines

Parameter files are used to control how Oracle GoldenGate operates. These files are
deployed to the source system, where the Extract and Data Pump processes are
executed, and the target system, where the Replicat process is executed. An ODI
procedure generates these parameter files based on the metadata defined in ODI. A

Option Description

TABLE_LIST A comma-separated list of tables. A wildcard match % may be
used to match multiple tables. Do not include any line breaks.

For example:

PER_ALL_ASSIGNMENTS_
F,PER%ORG%INFO%,HR%UNIT,FND_LOOKUP_TYPES

CREATE_SCRIPT_FILE Y or N. Set to Y if you want to review the DDL or manually
execute the script.

RUN_DDL Y or N. Whether to execute the DML commands. The script will
be executed against the physical SDS schema associated with the
SDS_MODEL. Note that this script will be executed via the user
defined in the BIAPPS_DW physical server which is usually the
owner of the BIAPPS_DW schema and which may not have
appropriate privileges to insert data into tables in another
schema. To have the utility execute the DDL script, you may need
to grant SELECT ANY TABLE and INSERT ANY TABLE to the
BIAPPS_DW database user.

Alternatively, rather than have the procedure execute the script,
create the script file and connect to the database as the SDS
schema owner and execute the contents of the script file directly.

SDS_MODEL The OLTP model to be used to generate the SDS schema.

SCRIPT_LOCATION The location where the script should be created if the CREATE_
SCRIPT_FILE option is true.

Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

Administering Oracle GoldenGate and Source Dependent Schemas 5-13

scenario that executes this procedure is provided to generate the Oracle GoldenGate
parameter files to populate the SDS.

5.4.5.1 Generate Oracle GoldenGate Parameter Files
To generate the required parameter files, execute the 'GENERATE_SDS_OGG_
PARAM_FILES' scenario found under BI Apps Project > Components > SDS >
Generate SDS OGG Param Files. When the scenario is executed, a prompt appears to
provide values for the parameter file options. Refer to the following table describing
the options to provide appropriate values to match your environment. As the
procedure can only accept a single Source type, this process needs to be repeated for
each different type of Source system to be enabled.

Parameter Description

PARAM_FILE_
LOCATION

Location on machine where ODI client is running where
parameter files will be created. Example: C:\temp\

DATASOURCE_NUM_
ID

Datasource Num Id value associated with the particular source
for which parameter files are to be generated. Example: 310

DATAPUMP_NAME Name of the Datapump Process specified when installing OGG
on the source machine. Limit is eight characters. Suggested
naming convention is DP_<Datasource Num Id>, for example DP_
310.

EXTRACT_NAME Name of the Primary Extract Process specified when installing
OGG on the source machine. Limit is eight characters. Suggested
naming convention is EX_<Datasource Num Id>, for example EXT_
310.

EXTRACT_TRAIL Path and name of trail file on source system. Can be a relative or
fully qualified path, though actual file name must be two
characters. In the example below, 'tr' is the name of the trail file.

Example: ./dirdat/tr

DEFSFILE The relative or fully qualified path on the source system where
the DEFGEN definition file should be created and file name. This
value is included in the DEFGEN.prm parameter file that is
generated by this procedure. The DEFGEN utility is executed on
the source database, so the path provided must be a path
available on the system the source database runs on. Suggested
naming convention is DEF_<Datasource Num Id>.def. Example:
./dirdef/DEF_310.def

SOURCE_GG_USER_ID Database user dedicated to the Oracle GoldenGate processes on
the source database. Example: GG_USER

SOURCE_GG_
PASSWORD

Password for the database user dedicated to the Oracle
GoldenGate processes on the source database.

By default, the password is stored as clear text in the generated
parameter file. If an encrypted value is desired, use the ENCRYPT
PASSWORD utility and edit the generated parameter files
accordingly. Example: GG_PASSWORD

SOURCE_PORT Port used by the OGG Manager Process on the source system. The
default value when OGG is installed is 7809.

REPLICAT_NAME Name of the Replicat Process specified when installing OGG on
the target machine. Limit is eight characters. Suggested naming
convention is REP_<Datasource Num Id>, for example REP_310

Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

5-14 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

The procedure automatically creates subfolders under a folder you specify. The
naming convention is DSN_<DATASOURCE_NUM_ID> where <DATASOURCE_
NUM_ID> is the value you specify when executing this procedure. For example, if you
specify 310 as the value for DATASOURCE_NUM_ID, there will be a folder named
DSN_310. Under this folder are two more subfolders, 'source' and 'target'. The 'source'
folder contains all of the files that need to be copied to the source system, while 'target'
contains all of the files that need to be copied to the target system.

About JD Edwards Support
The JDE application spreads data across up to four databases. Each database instance
must be assigned its own extract/datapump processes and a separate corresponding
replicat process. If the JDE components are on a single database, generate a single set
of parameter files. If the JDE components are spread across two, three or four
databases, generate a corresponding number of parameter files.

For more details on this configuration, refer to the "Configuring Oracle GoldenGate for
real-time data warehousing" chapter in the Oracle GoldenGate Windows and UNIX
Administrator's Guide, which discusses multiple source databases replicating data to a
single target database.

Keep the following in mind when generating the parameter files.Execute the
procedure for each database instance. The name of each process and trail file should be

SOURCE_DEF This is the Source Definitions file created by executing the
DEFGEN utility on the source database and copied over to the
target machine. This can be either a relative or fully qualified path
to this definition file on the target system. Include the /dirdef
subfolder as part of the path. Suggested naming convention is
DEF_<Datasource Num Id>.def, for example ./dirdef/DEF_310.def

Note that the file name is usually the same as the one defined for
DEFSFILE but the paths are usually different as DEFSFILE
includes the path where OGG is stored on the source system,
while SOURCE_DEFS includes the path where OGG is installed
on the target system.

REMOTE_HOST IP address or Host Name of the target machine where the Replicat
process runs.

REMOTE_TRAIL Path and name of the trail file on target system. Can be a relative
or fully qualified path though the actual file name must be two
characters. In the example below, 'tr' is the name of the trail file.

Example: ./dirdat/tr

BIA_GG_USER_ID Database user dedicated to the Oracle GoldenGate processes on
the target database, for example GG_USER

BIA_GG_PASSWORD Password for the database user dedicated to the Oracle
GoldenGate processes on the target database.

By default, the password is stored as clear text in the generated
parameter file. If an encrypted value is desired, use the ENCRYPT
PASSWORD utility and edit the generated parameter files
accordingly. Example: GG_PASSWORD

BIA_GG_PORT Port used by the OGG Manager Process on the target system. The
default value when OGG is installed is 7809.

Tip: The parameter files that are generated include all tables used by
all ETL tasks. The task that uses the table is identified in the parameter
file. If you are not executing all ETL tasks, you may want to consider
identifying the tasks you are not executing and removing the
corresponding tables from the parameter files so that they are not
replicated. This keeps the overall size of the SDS down.

Parameter Description

Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

Administering Oracle GoldenGate and Source Dependent Schemas 5-15

unique. The following example assumes all four components are on different
databases:

About PeopleSoft Learning Management Support
PeopleSoft has a Learning Management pillar which is tightly integrated with the
Human Capital Management pillar. HCM can be deployed without LM but LM cannot
be deployed without HCM. When both are deployed, BI Applications treats the HCM
with LM pillars in a similar fashion as it treats JDE: the data is spread across two
databases but is treated as a single application. As with the JDE application, in this
configuration each database instance must be assigned its own extract/datapump
processes and a separate corresponding replicat process.

For more details on this configuration, refer to the "Configuring Oracle GoldenGate for
real-time data warehousing" chapter in the Oracle GoldenGate Windows and UNIX
Administrator's Guide, which discusses multiple source databases replicating data to a
single target database.

Keep the following in mind when generating the parameter files.Execute the
procedure for each database instance. The name of each process and trail file should be
unique.

5.4.5.2 Configure the Source System
Copy all of the files from the 'source' directory on the ODI client to the corresponding
directories in the source system:

Copy the following file to the <ORACLE OGG HOME> directory:

■ ADD_TRANDATA.txt

Copy the following files to the <ORACLE OGG HOME>/dirprm directory:

■ DEFGEN.prm

■ <EXTRACT_NAME>.prm where <EXTRACT_NAME> is the value specified when
generating the parameter files.

■ <DATAPUMP_NAME>.prm where <DATAPUMP_NAME> is the value specified
when generating the parameter files.

Component
Extract
Name

Data Pump
Name

Extract
Trail Defs File

Replicat
Name

Replicat
Trail Source Defs

Control EX_
410A

DP_410A ./dirdat/ta ./dirdef/DEF_
310A.def

REP_410A ./dirdat/ta ./dirdef/DEF_
310A.def

Data EX_410B DP_410B ./dirdat/tb ./dirdef/DEF_
310B.def

REP_410B ./dirdat/tb ./dirdef/DEF_
310B.def

 Data
Dictionary

EX_410C DP_410C ./dirdat/tc ./dirdef/DEF_
310C.def

REP_410C ./dirdat/tc ./dirdef/DEF_
310C.def

System EX_
410D

DP_410D ./dirdat/td ./dirdef/DEF_
310D.def

REP_410D ./dirdat/td ./dirdef/DEF_
310D.def

Component
Extract
Name

Data Pump
Name

Extract
Trail Defs File

Replicat
Name

Replicat
Trail Source Defs

HCM Pillar EX_
518A

DP_518A ./dirdat/ta ./dirdef/DEF_
518A.def

REP_518A ./dirdat/ta ./dirdef/DEF_
518A.def

LM Pillar EX_518B DP_518B ./dirdat/tb ./dirdef/DEF_
518B.def

REP_518B ./dirdat/tb ./dirdef/DEF_
518B.def

Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

5-16 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

Edit the Extract parameter file
By default, the procedure creates a basic set of parameter files that do not include
support for a variety of features. For example, the parameter files do not include
support for Transparent Data Encryption (TDE) or unused columns. The procedure
also does not include the options to encrypt data.

If your source tables have unused columns, edit the Extract parameter file to include
DBOPTIONS ALLOWUNUSEDCOLUMN. If encrypting the data is desired, edit the
parameter files to add the ENCRYPTTRAIL and DECRYPTTRAIL options.

To support such features, edit the generated parameter files using the GGSCI EDIT
PARAMS <parameter file> command. Also edit the generated param files to
implement various tuning options that are specific to the environment. Refer to the
Oracle GoldenGate Reference guide for details on implementing these options.

Start the GGSCI command utility from the <ORACLE OGG HOME> directory.
Execute the following command to edit the Extract parameter file - this should open
the Extract parameter file you copied to <ORACLE OGG HOME>/dirprm:

GGSCI>EDIT PARAMS <EXTRACT_NAME>

Save and close the file.

Enable Table Level Logging
Oracle GoldenGate requires table-level supplemental logging. This level of logging is
only enabled for those tables actually being replicated to the target system. The SDS
Parameter file generator creates 'ADD_TRANDATA.txt' file to enable the table-level
logging. This script is executed using the GGSCI command with the Oracle
GoldenGate database user. This user must be granted the ALTER ANY TABLE privilege
prior to executing this script. Once the script completes, this privilege can be removed.
Alternatively, edit the script file to use a database user with this privilege. When the
OGG database user is originally created, the ALTER ANY TABLE privilege is granted at
that time. Once the script to enable table level supplemental logging completes, this
privilege can be revoked from the OGG user.

Start the GGSCI command utility from the <ORACLE OGG HOME> directory and
execute the following command:

GGSCI> obey ADD_TRANDATA.txt

Exit GGSCI, then connect to the database and revoke the ALTER ANY TABLE privilege.

Note: If a table does not have a primary key or any unique indexes
defined, you may see a warning message like the following. This is a
warning that a 'pseudo' unique key is being constructed and used by
Oracle Golden Gate to identify a record. Performance is better if a
primary key or unique index is available to identify a record but as we
generally cannot add such constraints to an OLTP table when they do
not already exists, Oracle Golden Gate creates this pseudo unique key.

WARNING OGG-00869 No unique key is defined for table 'FA_
ASSET_HISTORY'. All viable columns will be used to represent the
key, but may not guarantee uniqueness. KEYCOLS may be used to
define the key.

Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

Administering Oracle GoldenGate and Source Dependent Schemas 5-17

Generate Data Definition File on the Source System
As the source and target tables do not match exactly, configure the Replicat process to
use a data definition file which contains definitions of the tables on the source system
required to map and convert data. The procedure generates a basic DEFGEN.prm file
used to create a data definition file. If required, edit this file to reflect your
environment. Refer to the Oracle GoldenGate documentation for more details. For
example, the DEFGEN.prm file does not leverage the encryption option, so if this or
other options are desired, edit the parameter file to enable them.

To edit the DEFGEN.prm file, start the GGSCI command utility from the Oracle
GoldenGate home directory. Execute the following command to open and edit the
DEFGEN.prm file you copied to <ORACLE OGG HOME>/dirprm:

GGSCI>EDIT PARAMS DEFGEN

Save and close the file and exit GGSCI, then run the DEFGEN utility. Refer to Oracle
GoldenGate documentation for more information about this utility and its execution.
The following is an example of executing this command on UNIX:

defgen paramfile dirprm/defgen.prm

A data definition file is created in the <ORACLE OGG HOME>/ folder with the path
and name specified using the DEFSFILE parameter. FTP the data definition file to the
<ORACLE OGG HOME>/dirdef folder on the remote system using ASCII mode. Use
BINARY mode to FTP the data definitions file to the remote system if the local and
remote operating systems are different and the definitions file is created for the remote
operating system character set.

5.4.5.3 Configure the Target System
Copy all of the files from the 'target' directory on the ODI client to the corresponding
directories in the target system.

Copy the following file to the <ORACLE OGG HOME>/dirprm directory in the target
system:

■ <REPLICAT_NAME>.prm where <REPLICAT_NAME> is the value specified
when generating the parameter files.

Edit the Replicat Parameter File
By default, the procedure creates a basic set of parameter files that do not include
support for a variety of features. For example, the parameter files do not include
support for Transparent Data Encryption (TDE) or unused columns. The procedure
also does not include the options to encrypt data.If encrypting the data is desired, edit
the generated parameter files to add the ENCRYPTTRAIL and DECRYPTTRAIL
options. To support such features, edit the generated parameter files using the GGSCI
EDIT PARAMS <parameter file> command. Also edit the generated param files to
implement various tuning options that are specific to the environment. Refer to the
Oracle GoldenGate Reference guide for details on implementing these options.

Start the GGSCI command utility from the <ORACLE OGG HOME> directory.
Execute the following command to edit the Extract parameter file. This should open
the Replicat parameter file - this should open the Replicat parameter file you copied to
<ORACLE OGG HOME>/dirprm:

GGSCI>EDIT PARAMS <REPLICAT_NAME>

Save and close the file, and exit GGSCI.

Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

5-18 Oracle Fusion Middleware Administrator's Guide for Oracle Business Intelligence Applications

Create a Checkpoint Table (Optional)
The procedure does not account for a checkpoint table in the target system. A
checkpoint table is not required but is recommended. If a checkpoint table is desired,
follow the steps detailed in Oracle GoldenGate documentation to create a checkpoint
table and edit the GLOBALS param file to reference this table.

Start the GGSCI command utility

GGSCI> EDIT PARAMS ./GLOBALS
CHECKPOINTTABLE <OGG User>.<Table Name>

Save and close the file, then run the following commands:

GGSCI> DBLOGIN USERID <OGG User> PASSWORD <OGG Password>
GGSCI> ADD CHECKPOINTTABLE <OGG User>.<Table Name>

5.4.6 Setup Step: Start Oracle GoldenGate on Source and Target Machines

Start Oracle GoldenGate on the Source Machine
Use the following command to start the Extract and Data Pump processes on the
source system.

START MGR
--Start capture on primary database
START <name of Extract process>

--Start pump on primary database
START <name of Data Pump process>

Example:

START MGR
--Start capture on primary database
START EXT_310

--Start pump on primary database
START DP_310

Start Oracle GoldenGate on the Target Machine
Use the following command to start the Replicat process in the target system.

START MGR
--Start delivery on target database
START <name of Replicat process>

Example:

START MGR

--Start capture on primary database
START REP_310

Index-1

Index

A
aggregate tables

data warehouse tables, 4-4

C
charts

local seed data, importing, 3-3
translation tables, process of maintaining, 3-1
W_LOCALIZED_STRING_G table, adding custom

translations, 3-4
Web catalog strings, about translating, 3-5

cross-module configuration, performing
dimension keys, resolving, 1-20
loads, configuring, 1-18

CSV file
delimiter, 1-17

currency conversion, 4-10
customization, 1-3

adding an index, 1-20
and patch installation, 1-3
category 1, 1-3
category 2, 1-12
category 3, 1-15
overview, 1-1
Stored Lookups, 1-19

D
data warehouse languages

configuring base and installed languages, 2-1
data warehouse tables

aggregate tables, 4-4
dimension class tables, 4-4
dimension tables, 4-4
fact tables, 4-5
helper tables, 4-5
hierarchy tables, 4-5
internal tables, 4-6
mini-dimension tables, 4-5
naming conventions, 4-1
primary data values, 4-10
staging tables, 4-6
standard column prefixes, 4-7
supported list of values, 4-10

system columns, 4-8
table types, 4-2
translation tables, 4-6

delimiter
for CSV file, 1-17

dimension class tables
data warehouse tables, 4-4

dimension tables
business role-based flags, 4-4
data warehouse tables, 4-4

dimensions
key resolution, using a lookup, 1-20
keys, resolving, 1-20

E
extracts, configuring

extracting additional data, about, 1-16
extracting data from new source table, 1-16
extracting new data from existing source

table, 1-16

F
fact tables

data warehouse tables, 4-5

H
helper tables

data warehouse tables, 4-5
hierarchy tables

data warehouse tables, 4-5

I
internal tables, 4-6

L
loads, configuring

about, 1-18

M
metadata

externalizing strings, 3-4

Index-2

mini-dimension tables
data warehouse tables, 4-5

multi-language support
about BI Applications domains, 2-2
about dimension translation tables, 2-4
about pseudo-translations, 2-2
introduction, 2-1
translation tables, 2-1

N
naming conventions

data warehouse tables, 4-1

O
Oracle BI Charts

metadata strings, externalizing, 3-4
Oracle BI seed data, updating for non-English

locales, 3-2
Oracle BI Presentation layer

process of maintaining translation tables, 3-1
Oracle BI repository

externalizing metadata strings, 3-4
Oracle BI seed data

updating for non-English locales, 3-2

P
patch installation

impact on customizations, 1-3
primary extract and delete mapping

source-archived records, deletion
configuration, 1-19

working with, 1-19
primary extract and delete mappings

understanding, 1-18
working with, 1-19

R
records

filtering and deleting, 1-18, 1-19
source-archived records, deletion

configuration, 1-19
roadmap

customization, 1-1

S
seed data

importing, 3-3
source-archived records

deletion configuration, 1-19
staging tables

data warehouse tables, 4-6
standard column prefixes, 4-7
standard column suffixes, 4-7
string translations

adding for metadata, 3-5
system columns, 4-8

multi-currency codes for, 4-9

T
table types

data warehouse tables, 4-2
Transactional database

importing locale seed data, 3-3
translation tables

data warehouse tables, 4-6
process of maintaining, 3-1

U
Unicode

local seed data, importing, 3-3
metadata strings, externalizing, 3-4
Oracle BI seed data, updating for non-English

locales, 3-2
string translations, adding for metadata, 3-5
translation tables, process of maintaining, 3-1
W_LOCALIZED_STRING_G table, adding custom

translations, 3-4
Web catalog strings, about translating, 3-5

W
W_LOCALIZED_STRING_G table, adding custom

translations, 3-4
Web Catalog strings

about translating, 3-5
Work Repository

customization and patch application, 1-3

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Conventions
	What's New in This Release
	Notable Features in Oracle BI Applications Documented in This Guide
	1 Customizing the Oracle Business Analytics Warehouse
	1.1 Overview of Customization in Oracle Business Intelligence Applications
	1.1.1 What is Customization in Oracle Business Intelligence Applications?
	1.1.2 About the Customization Process
	1.1.3 About the Impact of Patch Installation on Customizations

	1.2 Category 1 Customizations: Adding Columns to Existing Fact or Dimension Tables
	1.2.1 About Extending Mappings
	1.2.2 Typical Steps to Extend Mappings in the Oracle Business Analytics Warehouse
	1.2.3 Other Types of Customizations Requiring Special Handling
	1.2.3.1 How to Modify Category 2 SCD Behavior
	1.2.3.2 How to Add A Dimension to an Existing Fact
	1.2.3.2.1 Create a Custom Dimension Datastore and Tasks
	1.2.3.2.2 Customize Fact Datastores and Tasks

	1.2.3.3 How to Add a DATE_WID column to a Fact

	1.3 Category 2 Customizations: Adding Additional Tables
	1.3.1 About Creating New Tables
	1.3.1.1 About the Main Required Columns

	1.3.2 About the DATASOURCE_NUM_ID Column
	1.3.3 Additional Information About Customizing
	1.3.3.1 About the Update Strategy
	1.3.3.2 About Indices and Naming Conventions

	1.3.4 Adding a New Fact Table to the Oracle Business Analytics Warehouse

	1.4 Category 3 Customizations: Adding New Data as a Whole Row into a Standard Dimension Table
	1.4.1 How to Add New Data as a Whole Row Into a Standard Dimension Table
	1.4.2 Configuring Extracts
	1.4.2.1 Extracting Additional Data
	1.4.2.1.1 Extracting New Data Using an Existing Source Table
	1.4.2.1.2 Extracting Data from a New Source Table

	1.4.2.2 Setting Up the Delimiter for a Source File

	1.4.3 Configuring Loads
	1.4.3.1 About Primary Extract and Delete Mappings Process
	1.4.3.2 About Working with Primary Extract and Delete Mappings
	1.4.3.2.1 Deleting the Configuration for Source-Archived Records

	1.5 Customizing Stored Lookups and Adding Indexes
	1.5.1 About Stored Lookups
	1.5.1.1 About Resolving Dimension Keys
	1.5.1.1.1 Resolving the Dimension Key Using Lookup

	1.5.2 How to add an index to an existing fact or dimension table

	2 About Multi-Language Support
	2.1 Introduction to Multi-Language Support
	2.2 About Pseudo-Translations
	2.3 About Oracle BI Applications Domains
	2.4 About Dimension Translation Tables

	3 Localizing Oracle Business Intelligence Deployments
	3.1 Process of Maintaining Translation Tables for Oracle BI EE
	3.1.1 Upgrading Oracle Business Intelligence Seed Data for Non-English Locales
	3.1.1.1 Verify the Translation Table (W_LOCALIZED_STRING_G) and Corresponding Indexes
	3.1.1.2 Importing Locale Seed Data Into The Translation Table (W_LOCALIZED_ STRING_G)

	3.1.2 Externalizing Customer Metadata Strings
	3.1.3 Adding Custom Translations to the W_LOCALIZED_STRING_G Table
	3.1.3.1 Adding String Translations for Analytics Metadata

	3.2 About Translating Presentation Services Strings
	3.3 Changing the Default Currency in Analytics Applications

	4 Oracle Business Analytics Warehouse Naming Conventions
	4.1 Naming Conventions for Oracle Business Analytics Warehouse Tables
	4.2 Table Types for Oracle Business Analytics Warehouse
	4.2.1 Aggregate Tables in Oracle Business Analytics Warehouse
	4.2.2 Dimension Class Tables in Oracle Business Analytics Warehouse
	4.2.3 Dimension Tables in Oracle Business Analytics Warehouse
	4.2.4 Dimension Tables With Business Role-Based Flags
	4.2.5 Fact Tables in Oracle Business Analytics Warehouse
	4.2.6 Helper Tables in Oracle Business Analytics Warehouse
	4.2.7 Hierarchy Tables in Oracle Business Analytics Warehouse
	4.2.8 Mini-Dimension Tables in Oracle Business Analytics Warehouse
	4.2.9 Staging Tables in Oracle Business Analytics Warehouse
	4.2.10 Translation Tables in Oracle Business Analytics Warehouse

	4.3 Internal Tables in Oracle Business Analytics Warehouse
	4.4 Standard Column Prefixes in Oracle Business Analytics Warehouse
	4.5 Standard Column Suffixes in Oracle Business Analytics Warehouse
	4.6 System Columns in Oracle Business Analytics Warehouse Tables
	4.7 Multi-Currency Support for System Columns
	4.8 Oracle Business Analytics Warehouse Primary Data Values
	4.9 About Multi-Language Support in the Oracle Business Analytics Warehouse
	4.10 Oracle Business Analytics Warehouse Currency Preferences

	5 Administering Oracle GoldenGate and Source Dependent Schemas
	5.1 Introduction
	5.2 Source Dependent Schema Architecture
	5.3 Setting Up Oracle GoldenGate and Source Dependent Schemas
	5.4 Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema
	5.4.1 Setup Step: Configure Source and Target Database
	5.4.2 Setup Step: Install Oracle GoldenGate on Source and Target Systems
	5.4.3 Setup Step: Configure BI Applications Configuration Manager and Oracle Data Integrator to Support the Source Dependent Schema
	5.4.4 Setup Step: Generate, Deploy, and Populate the Source Dependent Schema Tables on Target Database
	5.4.5 Setup Step: Generate and Deploy Oracle GoldenGate Parameter Files to Source and Target Machines
	5.4.5.1 Generate Oracle GoldenGate Parameter Files
	5.4.5.2 Configure the Source System
	5.4.5.3 Configure the Target System

	5.4.6 Setup Step: Start Oracle GoldenGate on Source and Target Machines

	Index
	A
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

