

Oracle® Transportation Management

Data Management Guide

Release 6.3

Part No. E38426-03

August 2013

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. iii

Oracle Transportation Management Data Management Guide, Version 6.3

Part No. E38426-03

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing

restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone
licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S.
Government end users are "commercial computer software" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,

disclosure, modification, and adaptation of the programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, shall be subject to license
terms and license restrictions applicable to the programs. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in

dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim
any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC

International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for
and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages

incurred due to your access to or use of third-party content, products, or services.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. iv

Contents

CONTENTS ... IV

SEND US YOUR COMMENTS ... IX

PREFACE ... X

CHANGE HISTORY .. X

1. INTRODUCTION ... 1-1

DB.XML .. 1-1

WHY DO I WANT TO USE DB.XML? ... 1-1
HOW CAN I USE DB.XML? .. 1-1

CSV ... 1-2

A SAMPLE CSV FILE .. 1-2
MULTI-TABLE CSV FILES ... 1-2

INTERNATIONAL CHARACTERS .. 1-3

IMPORT ... 1-3
EXPORT ... 1-4

BEST PRACTICES ... 1-4
MIGRATION PROJECT .. 1-4

2. DB.XML .. 2-1

DB XML EXPORT ... 2-1

USING AN OBJECT NAME ... 2-1
USING AN OBJECT SET NAME .. 2-2
SPECIFYING A SQL QUERY ... 2-3

DB XML IMPORT ... 2-3

TRANSACTION CODE .. 2-3
REPLACE CHILDREN ... 2-3

DB.XML USER INTERFACE .. 2-5

EXPORTING DB.XML ... 2-5
IMPORTING DB.XML ... 2-6

DB.XML COMMAND LINE EXECUTION .. 2-6

EXPORTING DB.XML ... 2-7
IMPORTING DB.XML ... 2-8

DB XML SERVLET .. 2-8

EXPORT MESSAGE FORMAT ... 2-9
IMPORT MESSAGE FORMAT ... 2-10

DB XML WEB SERVICE ... 2-10
EDITING DB.XML FILES ... 2-11

A SAMPLE DB.XML FILE ... 2-11

3. LOADING CSV DATA VIA THE COMMAND LINE 3-1

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. v

IMPORTING AND EXPORTING ON THE SERVER SIDE .. 3-1

CLOBS IN CSV FILES ... 3-5
EXPORTING WITH PARENT DATA .. 3-6
EXPORTING WITH CHILD DATA .. 3-6
EXPORTING WITH BOTH PARENT AND CHILD DATA ... 3-6
GL_USER TABLE .. 3-6

4. LOADING CSV DATA VIA WEB PAGES .. 4-1

IMPORTING .. 4-1

5. LOADING RATE DATA VIA CSV... 5-1

IMPORTING LOCATION INFORMATION .. 5-1
IMPORTING SERVICE TIMES ... 5-3
IMPORTING X_LANE DATA FOR RATES .. 5-3
IMPORTING LTL RATES ... 5-4

SIMPLIFIED ERD FOR LTL RATES ... 5-5
SCENARIO–BASED ON SIMPLE UNIT BREAKS .. 5-6
SCENARIO–BASED ON COST PER POUND, SURCHARGE, AND DISCOUNT ... 5-7
SCENARIO–BASED ON COST PER POUND, CONDITIONAL SURCHARGE, GLOBAL SURCHARGE, AND DISCOUNT 5-8

IMPORTING TL RATES... 5-9

SIMPLIFIED ERD FOR TL RATES .. 5-11
SCENARIO–BASED ON DISTANCE BANDS WITH FIXED CHARGES, AND STOP OFFS 5-12
SCENARIO–BASED ON COST PER MILE, STOP OFFS, AND SURCHARGES ... 5-13
SCENARIO–BASED ON COST PER HUNDREDWEIGHT, UNIT BREAKS, AND SURCHARGES 5-15
SCENARIO–BASED ON COST PER HUNDREDWEIGHT, UNIT BREAKS, AND SURCHARGES 5-17

6. LOADING CSV DATA VIA THE APPLICATION SERVER 6-1

WEB INTERFACE FOR IMPORTING AND EXPORTING APPSERVER CSV FILES 6-2

IMPORTING ... 6-2
EXPORTING ... 6-2

LOAD CSV FILES IN THE REPORT OWNER DIRECTORY .. 6-2

7. LOADING CSV DATA VIA INTEGRATION .. 7-1

GLOGXML DOCUMENT HIERARCHY .. 7-1

8. LOADING CSV FILES AS ZIP FILES .. 8-1

UPLOADING A ZIP FILE ... 8-1
CSV FILES THAT FAILED TO LOAD ... 8-1
BACKGROUND ZIP FILE PROCESSING .. 8-1

9. EXPORTING CSV FILES VIA THE INTERFACE...................................... 9-1

CSV EXPORT SCREENS .. 9-1
EXPORTING DATA AS A ZIP FILE ... 9-1
EXPORTING LARGE ZIP FILES IN THE BACKGROUND ... 9-1
RUNNING CSVUTIL IN THE BACKGROUND ... 9-2

10. EXPORTING REFERENCED PUBLIC DATA DURING MULTI-TABLE
EXPORTS ... 10-1

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. vi

11. PIPING CSV OUTPUT TO A REMOTE ORACLE TRANSPORTATION
MANAGEMENT INSTANCE .. 11-1

SYNCHRONIZING DATA BETWEEN DIFFERENT ORACLE TRANSPORTATION MANAGEMENT VERSIONS

.. 11-2

12. EXPORTING TABLE SETS AND PIPING TO A REMOTE INSTANCE 12-1

13. COPYING RATES BETWEEN DATABASES USING ZIP FILES 13-1

STEP 1 – CREATE A CSVUTIL.CTL FILE (CSVUTIL CONTROL FILE) FOR EXPORTING 13-1
STEP 2 – USE THE INTEGRATION UPLOAD SCREEN TO UPLOAD THE ZIP FILE CREATED IN STEP 1

.. 13-1
STEP 3 – DOWNLOAD THE ZIP FILE CONTAINING THE RATE OFFERING 13-1
STEP 4 – CREATE A CSVUTIL.CTL FILE FOR IMPORTING ... 13-1
STEP 5 – CREATE ANOTHER BACKGROUND ZIP FILE .. 13-1
STEP 6 – UPLOAD THE ZIP FILE FROM STEP 5 TO THE TARGET INSTANCE 13-2

14. PROCESSING RATE FACTORS ... 14-3

PROCESS RATE FACTORS FROM A CLIENT ... 14-3

15. IMPORTING VOYAGE SCHEDULE DATA .. 15-1

DELETING SCHEDULES .. 15-2

16. JAVA INTEGRATION API .. 16-1

EXAMPLE1.JAVA – INSERT ... 16-2
EXAMPLE2.JAVA – UPDATE .. 16-2
EXAMPLE3.JAVA – GETENTITYNAMES .. 16-3
EXAMPLE4.JAVA – DESCRIBEENTITY .. 16-3
EXAMPLE5.JAVA – DELETE ... 16-3
EXAMPLE6.JAVA – FINDBYPRIMARYKEY ... 16-4
EXAMPLE7.JAVA – EXECMANY .. 16-4
EXAMPLE9.JAVA – INSERTUPDATE .. 16-5
EXAMPLE10.JAVA – FINDALL ... 16-5
EXAMPLE11.JAVA – EXCEPTION HANDLING ... 16-6
THE CLIENTAPICONNECTION CLASS .. 16-6
THE VALUESOBJECT CLASS .. 16-6
HANDLING UNITS OF MEASURE ... 16-7
ENVIRONMENT ISSUES .. 16-7

17. ORACLE ADVANCED QUEUING ... 17-1

STEP 1 –CREATE QUEUE TABLE(S) .. 17-1
STEP 2 – SETUP REQUIRED INBOUND QUEUES ... 17-2
STEP 3 – SETUP DATABASE LISTENERS ... 17-4
STEP 4 – SETUP APPLICATION SERVER LISTENERS .. 17-4

AUTO STARTUP OF DATABASE LISTENER VIA APPLICATION SERVER ... 17-5
BACKWARD COMPATIBLE APPLICATION SERVER PROPERTIES ... 17-5

STEP 5 – CREATE OUTBOUND QUEUES .. 17-5
STEP 6 – OTHER QUEUE MANAGEMENT UTILITIES ... 17-5
OPTIONAL ORACLE SETTINGS ... 17-6

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. vii

18. COPYING DOMAINS ... 18-1

EXPORT AND IMPORT .. 18-2

WHAT THE OBJECTS DO .. 18-2
SETUP .. 18-3
STEPS TO COPY A DOMAIN ... 18-3
RESULT ... 18-3
ERROR MESSAGES .. 18-3

IN SCHEMA COPY ... 18-4

WHAT THE OBJECTS DO .. 18-4
SET-UP ... 18-4
COPY DOMAINS .. 18-4
RESULT OF IN SCHEMA COPY .. 18-5

DATABASE LINK COPY .. 18-5

CREATE LINK FROM TARGET TO SOURCE DATABASE ... 18-5
GENERATE SCRIPT .. 18-6
COPY DOMAINS .. 18-6
DIFFERENCE BETWEEN DOMAINS .. 18-7
RERUN DATABASE LINK COPY ... 18-7

19. DELETING DOMAINS ... 19-1

20. MIGRATION PROJECTS .. 20-1

CREATING A MIGRATION PROJECT FOR EXPORT .. 20-1

MIGRATION PROJECT OVERVIEW .. 20-1
MANUAL SEQUENCING .. 20-3
CREATING THE MIGRATION PROJECT PACKAGE .. 20-3

MIGRATION PROJECT PACKAGE FILE CONTENTS ... 20-3

CONTENT MODIFICATION ... 20-4

IMPORTING A MIGRATION PROJECT PACKAGE .. 20-4

IMPORT STATUS ... 20-5

COMMAND LINE TOOLS ... 20-5

EXPORT – MPEXPORT.SH (UNIX) / MPEXPORT.CMD (MS WINDOWS) .. 20-5
IMPORT – MPIMPORT.SH (UNIX) / MPIMPORT.CMD (MS WINDOWS) ... 20-6

21. REFERENCE A: DB.XML TRANSACTION CODES 21-1

22. REFERENCE B: SPECIFYING COMPLEX QUERIES 22-1

EXAMPLE OF A COMPLEX QUERY .. 22-1

23. REFERENCE C: CSVUTIL RESPONSE MESSAGES 23-1

RESPONSE MESSAGES WITH NO ERRORS ... 23-1
ERROR MESSAGES .. 23-1

IMPORT ... 23-2
EXPORT ... 23-5

24. APPENDIX A: USING PYTHON .. 24-1

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. viii

CSV UTILITIES ... 24-1

IMPORTING ON THE CLIENT SIDE .. 24-1
EXPORTING ON THE CLIENT SIDE .. 24-1

DBXML UTILITIES .. 24-2
CLIENTUTIL SUPPORT FOR DB.XML .. 24-2
EXPORTING DB.XML .. 24-2

USING PRE-DEFINED DATA OBJECTS ... 24-2
WHAT PRE-DEFINED DATA OBJECTS EXIST? ... 24-3
USING A SQLQUERY .. 24-3

IMPORTING DB.XML.. 24-4
PROCESSING RATE FACTORS .. 24-4

PROCESS RATE FACTORS FROM A CLIENT ... 24-4

MODIFYING RATES USING THE RATEMGMT.PY SCRIPT ... 24-1

CHANGERATEGEOXID ... 24-1
CHANGEALLRATEGEOXID .. 24-2
CHANGERATEOFFERINGXID .. 24-2
CHANGEALLRATEOFFERINGXID .. 24-3
REMOVEEXPIREMARKID ... 24-3
INCRATECOSTBYFACTOR ... 24-3
INCRATECOSTBYAMOUNT .. 24-4
ADDNEWCOSTRECORD ... 24-5
REMOVEUSERDATEFIELDS .. 24-5
REMOVEFIELD .. 24-5
CHANGEEFFDATE .. 24-6
CHANGEFIELDVALUE .. 24-6

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. ix

Send Us Your Comments

Oracle Transportation Management Data Management Guide, Release 6.3

Part No. E38426-03

Oracle welcomes your comments and suggestions on the quality and usefulness of this publication.
Your input is an important part of the information used for revision.

 Did you find any errors?

 Is the information clearly presented?

 Do you need more information? If so, where?

 Are the examples correct? Do you need more examples?

 What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and
part number of the documentation and the chapter, section, and page number (if available). You can
send comments to us in the following ways:

 Electronic mail: otm-doc_us@oracle.com

If you would like a reply, please give your name, address, telephone number, and electronic mail

address (optional).

If you have problems with the software, contact Support at https://support.oracle.com or find the
Support phone number for your region at http://www.oracle.com/support/contact.html.

mailto:otm-doc_us@oracle.com

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. x

Preface

This manual is for members of the Oracle Transportation Management implementation team, who are
responsible for maintaining and updating data in Oracle Transportation Management at your site. This

manual provides step-by-step instructions for importing and exporting data in CSV and db.xml format.

This manual does not cover the installation of any components required to import or export. See the
Administration Guide for for installation and configuration instructions. The latest version of the guide
can be found on the OTN website.

Note: This manual provides examples of CSV, XML and schema diagrams. For actual

database tables and schema, refer to the latest database schema and the GlogXML

schema.

Change History

Date Document Revision Summary of Changes

11/2012 -01 Initial release.

3/2013 -02 Rewrote chapter 3. Explained Command Line utilities.
Consolidated chapter 3 and 4. Replaced chapter 26.

Removed reference to glog.integration.clientapi.CSVHelper.

Updated descriptions of DB XML import and export.

Moved all references regarding Python to new appendix called
“Using Python”.

8/2013 -03 Reinstate “Process Rate Factor” section based on new Java
Command Line Processor.

New Migration Project feature.

http://www.oracle.com/technology/documentation/index.html

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 1-1

1. Introduction

DB.XML

DB.XML (Database-centric XML) is an XML file format for importing and exporting Oracle

Transportation Management data.

The DB XML tool facilitates the direct query/update of data directly from/to the OTM database tables.
As such, the tool should only be used by those already familiar with the responsibilities and
capabilities that come with using such tools and who may already be familiar with database tools like
SQLDeveloper, TOAD etc.

NOTE: Updates made directly to the OTM database by DB XML Import can only ensure

data consistency with respect to the standard database constraints, e.g. Primary Key,

Foreign Key, and Check constraints. Imports do not flow through the main application logic

for updates, and so cannot check that the business context of a particular change makes

sense. For example, the status of a particular object (e.g. LOCATION STATUS) can be

updated. Import can only check that the status GID is valid but not that the status,
possibly in association with other status values, constitutes an appropriate state for the

object to be in.

In the DB XML file, there can be more than one element contained within what is called a
Transaction Set. The TRANSACTION_SET element is used to contain these parent elements. The

parent element itself may contain one or more child element. DB XML Import and Export can work
with complete parent-child table relationships all in one file by using corresponding parent-child
elements. The attribute values on each element correspond to column values.

Note: The convention used here is that a table is called the “child” table if it contains a foreign
key to another table. The table referenced by the foreign key is called the “parent”.

These parent elements typically correspond to the primary OTM data objects – AGENT, LOCATION,
etc., and child elements typically correspond to associated child tables, For example, for the
LOCATION parent table, the child table could be LOCATION_CORPORATION, LOCATION_REFNUM, etc..

In the case where the transaction set is used for data import, each parent element will be treated as a
distinct transaction, i.e. the parent element and all its child elements are saved to the database as one
atomic transaction. If one child element fails, the parent element transaction fails. The failure of one
parent element does not directly affect the transactions for other parent elements.

Oracle Transportation Management ignores element and attribute names that do not correspond to
valid database table or column names. This allows you to comment your DB.XML file without affecting
what is imported.

Why do I want to use DB.XML?

Compared to CSV (Comma Separated Values), DB.XML supports manipulation of parent-child records
as a unit. This gives DB.XML an advantage compared to CSV when updating, for example, rate
information.

How can I use DB.XML?

There are a few ways to perform a DB.XML export or import:

 OTM User Interface

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 1-2

 Command Line: can be run directly connected to the database (when local SQL*Net

connection is available) or by using the OTM web or application server remotely.

 HTTP POST to servlet on OTM Web server (requires authentication)

 SOAP web service

See section 2 for details.

CSV

CSVUtil is a utility for importing and exporting data in CSV format in and out of the Oracle
Transportation Management database. CSVUtil also exports data as a script of insert statements. This
document describes how to use CSVUtil and shows some sample CSV files.

CSV files are compact and enable you to import large amounts of data into Oracle Transportation

Management. You typically want to use CSVUtil when importing rates into a fresh installation of Oracle

Transportation Management.

There are three ways to use CSVUtil:

 On the DOS/UNIX command line

 Via the Oracle Transportation Management web interface

 Via integration transmissions

A Sample CSV File

Below is a sample CSV file:

ICON
ICON_GID,ICON_XID,DESCRIPTION,PATH,DOMAIN_NAME,INSERT_USER,INSERT_DATE,UPDATE_USE
R,UPDATE_DATE

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'
"BATCH_GRID","BATCH_GRID","Reports Batch
Grid","/images/icons/reports/batch_grid.jpg","PUBLIC","DBA.ADMIN","20040310091645","DBA.ADMIN
","20040630100834"

Line 1 must be the name of the table.

Line 2 must be a comma-separated list of column names. Only the columns being loaded must be

specified.

After line 3 may be one or more optional EXEC SQL lines, such as the one shown above, to set the
date format.

Subsequent lines include the data. The number of columns of data must correspond to the number of
columns specified on line 2. The ordering of the data columns must also correspond to line 2.

Character data may be surrounded with double-quotes, as shown above. If you need to include a
double-quote character, use “"” instead. The tools described here to export CSV files

automatically convert double-quote characters into “"”.

Numeric data should not be surrounded with double-quotes.

Multi-table CSV Files

The output produced by the xcsvw* commands is in multi-table CSV format. The various CSV import
commands recognize this format also

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 1-3

The first record in a multi-format file must be "$HEADER".

The header section contains table names and the names of the columns used in that table.

After the header section comes the body, identified by the $BODY keyword.

Each data record in the $BODY must be preceded by its table name on the prior line.

Here is an example:

$HEADER

LOCATION_ROLE_PROFILE

LOCATION_GID,LOCATION_ROLE_GID,CALENDAR_GID,FIXED_STOP_TIME, etc...

LOCATION_STATUS

LOCATION_GID,STATUS_TYPE_GID,STATUS_VALUE_GID,DOMAIN_NAME,INSERT_USER,INSERT_DA

TE,UPDATE_USER,UPDATE_DATE

LOCATION_CORPORATION

LOCATION_GID,CORPORATION_GID,DOMAIN_NAME,INSERT_DATE,UPDATE_DATE,INSERT_USER,UP

DATE_USER

LOCATION_ADDRESS

LOCATION_GID,LINE_SEQUENCE,ADDRESS_LINE,DOMAIN_NAME,INSERT_USER,INSERT_DATE,UPD

ATE_USER,UPDATE_DATE

LOCATION_REFNUM

LOCATION_GID,LOCATION_REFNUM_QUAL_GID,LOCATION_REFNUM_VALUE,DOMAIN_NAME,INSERT_

DATE, etc...

LOCATION

LOCATION_GID,LOCATION_XID,LOCATION_NAME,ADDRESS_LINE1,ADDRESS_LINE2,CITY,etc.

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYY-MM-DD HH24:MI:SS..'

$BODY

LOCATION

"GUEST.00621918","00621918","00621918",,,,,"TN",,"USA",,,,,"America/New_York",,

,,,,,,"N","N","COMMERCIAL",,,"GUEST","S",0,...etc

LOCATION_ADDRESS

"GUEST.00621918",1,,"GUEST","DBA.ADMIN",2001-10-07 17:53:53.0,,

LOCATION_ADDRESS

"GUEST.00621918",2,,"GUEST","DBA.ADMIN",2001-10-07 17:53:53.0,,

LOCATION_CORPORATION

"GUEST.00621918","GUEST.CUST NO","GUEST",2001-10-15 10:50:49.0,,"DBA.ADMIN",

LOCATION_REFNUM

"GUEST.00621918","GLOG","GUEST.00621918","GUEST",2001-10-25 17:13:48.0,2001-10-

19 18:23:17.0,"DBA.ADMIN","DBA.GLOGOWNER"

LOCATION_ROLE_PROFILE

"GUEST.00621918","SHIPFROM/SHIPTO",,0,0,"GUEST","S",0,"S",0,"N",,,,,,,,,,2001-

10-25 14:12:38.0,2002-08-28 19:13:05.0,"DBA.ADMIN", etc.

LOCATION_STATUS

"GUEST.00621918","GUEST.CREDIT LEVEL","GUEST.CREDIT

LEVEL_UNKNOWN","GUEST","DBA.GLOGOWNER",2001-10-17 09:38:05.0,,

International Characters

Import

To be able to send data to Oracle Transportation Management containing characters outside the 7-bit
ASCII character set, you must:

 Make sure your database uses an encoding that can handle all the characters you need.

 Always save your files using UTF-8 format.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 1-4

XML Spy, Textpad and Notepad (Microsoft Windows 2000 or better) can all save in UTF-8 format.

Before you edit your files, you need to ensure that you configure your text editor to use the
appropriate font and script (sometimes called subset). A script is a collection of characters such as
Western European, Greek or Turkish. For example, if you need to update files containing Czech

characters, then you need to select a font that supports an Eastern European script such as Arial or
Arial Unicode Ms.

Export

When exporting files, Oracle Transportation Management writes files in UTF-8. Note that when you
view data in your browser and then use the view source option to save your data, just save your file
without specifying an encoding. Later, when editing your file, use an editor that support UTF-8.

Best Practices

Whether you are using DB XML or CSV export, you should follow some basic rules to help maintain

proper version control and avoid data inconsistencies.

In order to maintain proper version control and track all changes that are being made to agents, we
recommend that you do not update existing active agents. Instead, we recommend the current
agent be disabled and that a new agent is created with the changes that need to be made. This will
allow you to easily revert back to the previous version should you run into anything unexpected when
the new agent is being used.

This can be achieved simply by adding a date, "02252013" or a version identifier ‘V#’, i.e. "V1”, “V2”,
“V3" etc. to the end of the AGENT_XID when the agent is being created. If an existing agent is
exported, modify the AGENT_GID and AGENT_XID before it is imported into another instance.

For instance if you want to create a new agent you may call it "SHIPMENT-CREATED V1".

If you decide you want to make changes to this agent you would create a new agent called
"SHIPMENT-CREATED V2", turn off "SHIPMENT-CREATED V1", and turn on the new agent.

Now if you decide the new agent is not working as expected the new agent can simply be turned off

and the original agent can be turned back on to restore the original workflow.

Migration Project

The Migration Project feature, added in Oracle Transportation Management v6.3.2, introduces a
standard way to define and manage one or more datasets for the purpose of migrating data from one
Oracle Transportation Management instance to another.

Although the Oracle Transportation Management application is fully functional “out of the box”, an

operational system will typically require some custom configuration. Best practice would be for such a

configuration to be developed and tested in a pre-production environment, accepted by product and
business/operational experts and then promoted to the production environment.

The Migration Project is designed to facilitate this “promote to production” process which includes the
initial release as well as subsequent incremental releases.

At a high level, a source system will be used to create a Migration Project Package by exporting a
Migration Project defined on that system. The package, essentially a ZIP file containing all the

exported data, will then be transferred to the target system and used by an import process run on one
of the target application servers. The import process will load the data contained in the package into

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 1-5

the target system database. A corresponding Migration Project will also be created on the target

system to list the imported data and the success or failure of the import process.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 2-1

2. DB.XML

DB XML Export

The DB XML Export process produces a transaction set which can be viewed in the UI or saved as an

external XML file.

There are a number of ways to specify the data to be exported:

 Using an Object Name

 Using an Object Set Name

 Specifying a SQL Query

For all methods described below there is an option to specify whether the so-called “foot print”

columns are included in the export. The foot print columns are the INSERT_DATE, INSERT_USER,
UPDATE_DATE, and UPDATE_USER. The values for these columns would be updated for any
subsequently imported data by way of INSERT/UPDATE triggers and so their presence in exported

data is largely informational.

Using an Object Name

The Object Name is intended to refer to one of the OTM primary objects e.g. LOCATION, AGENT,
RATE_GEO etc., though this is not enforced. The name actually corresponds to a pre-configured
property which contains the name of file containing the SQL query to execute to retrieve the required
data.

For example, the following property specifies the file to be used to retrieve data for the LOCATION
Object Name:

glog.integration.dbxml.query.LOCATION=sql/Location.sql

Note: the file location above is relative to the <OTM_HOME>/glog/glog_resources directory

but it could be any file that is available on the CLASSPATH.

The following is an excerpt from the contents of the file provided with the standard installation:-

select location.*,

 cursor (select location_accessorial.* from location_accessorial where

location_accessorial.location_gid = location.location_gid) as

location_accessorial,

…etc…

from location

The use of a “cursor is to produce the child element, in this case for the LOCATION_ACCESSORIAL

records for this location, and there is a cursor for every required child table (and in “grandchild” tables
and so on).

The base install will provide the following pre-configured queries:

Object Name SQL File

LOCATION sql/Location.sql

RATE_GEO sql/RateGeo.sql

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 2-2

Object Name SQL File

RATE_OFFERING sql/RateOffering.sql

AGENT_ACTION sql/AgentAction.sql

AGENT_EVENT sql/AgentEvent.sql

AGENT sql/Agent.sql

CORPORATION sql/Corporation.sql

SAVED_QUERY sql/SavedQuery.sql

SAVED_CONDITION sql/SavedCondition.sql

USER_MENU_LAYOUT sql/UserMenuLayout.sql

MONITOR_PROFILE sql/MonitorProfile.sql

SHIPMENT sql/Shipment.sql

STATUS_TYPE sql/StatusType.sql

WORKFLOW_TOPIC_INFO sql/WorkflowTopicInfo.sql

NOTIFY_SUBJECT_CONTACT sql/NotifySubjectContact.sql

PLANNING_PARAMETER sql/PlanningParameter.sql

BN_RULE sql/BNRule.sql

NOTIFY_SUBJECT_STYLESHEET sql/NotifySubjectStylesheet.sql

OB_ORDER_BASE sql/ObOrderBase.sql

New custom object names and SQL files can be added by setting the associated properties.

The use of a ‘where clause’ is optional for the export by Object Name as it is feasible that the SQL file
can contain the complete statement.

Note: In order to be somewhat generic, the provided files all require a ‘where clause’ to

retrieve a specific record. Without it, ALL records for the object name will be retrieved.

Using an Object Set Name

The Object Set Name is a list of Object Names (described above). This allows a logical grouping of

data to be exported in one file. The base install will provide the following pre-configured queries:

Object Set Name Associated Object Names

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 2-3

Object Set Name Associated Object Names

DomainReferenceData STATUS_TYPE, WORKFLOW_TOPIC_INFO,
NOTIFY_SUBJECT_CONTACT, PLANNING_PARAMETER, BN_RULE,
NOTIFY_SUBJECT_STYLESHEET

New custom object set names and object lists can be added by setting the associated properties.

Specifying a SQL Query

The complete SQL query (similar to the contents of the provided Object Name files) can also be
specified directly. When this approach is used there must be an additional “Root Name” parameter
given. This is used as the name of the top level parent element name for each record retrieved by the

query.

DB XML Import

The DB XML import process takes a transaction set, contained in an input XML file or message, and
inserts, updates, or deletes rows in OTM tables. It can also completely replace a current set of child
records with a new set.

Transaction Code

The Transaction Code specifies how the transaction set is to be processed and will be one of:-

 I: Insert new records

 IU: Insert new records or update if already existing

 RC: Replace Children. Delete existing children and replace with new.

Replace Children

When using the RC transaction code the child tables that should be involved can be specified as

Managed Tables. There are also some standard managed tables defined for some data objects which
are combined with any managed tables entered as input.

Object Name Child Tables

LOCATION LOCATION_ACCESSORIAL,
LOCATION_ADDRESS,
LOCATION_CORPORATION, LOCATION_REFNUM,
LOCATION_REMARK, LOCATION_ROLE_PROFILE,

LOCATION_SPECIAL_SERVICE,
LOCATION_STATUS,

LOCATION_ACTIVITY_TIME_DEF

RATE_GEO RATE_GEO_STOPS, RATE_GEO_ACCESSORIAL,
RG_SPECIAL_SERVICE,
RG_SPECIAL_SERVICE_ACCESSORIAL,
RATE_GEO_COST_GROUP, RATE_GEO_COST,

RATE_GEO_COST_WEIGHT_BREAK

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 2-4

Object Name Child Tables

RATE_OFFERING RATE_OFFERING_STOPS,
RATE_OFFERING_ACCESSORIAL,
RATE_OFFERING_COMMENT

AGENT_EVENT AGENT_EVENTS_INVALID_ACTION

AGENT AGENT_EVENT_DETAILS,
AGENT_ACTION_DETAILS

CORPORATION CORPORATION_INVOLVED_PARTY

SAVED_QUERY SAVED_QUERY_VALUES,
SAVED_QUERY_SORT_ORDER

SAVED_CONDITION SAVED_CONDITION_QUERY

USER_MENU_LAYOUT USER_MENU_LAYOUT

MONITOR_PROFILE MONITOR_AGENT, MONITOR_AGENT_LINK

SHIPMENT SHIPMENT_STOP, SHIPMENT_STOP_D,
SHIPMENT_STOP_REMARK,
SHIPMENT_ACCESSORIAL, SHIPMENT_BILL,
SHIPMENT_COST, SHIPMENT_COST_REF,

SHIPMENT_INVOLVED_PARTY,
SHIPMENT_REFNUM, SHIPMENT_REMARK,
SHIPMENT_SPECIAL_SERVICE,
SHIPMENT_STATUS

STATUS_TYPE STATUS_VALUE

WORKFLOW_TOPIC_INFO WORKFLOW_TOPIC_PARAM, WORKFLOW_INFO,
WORKFLOW_PARAM

OB_ORDER_BASE OB_ACCESSORIAL, OB_INVOLVED_PARTY,
OB_LINE, OB_LINE_ACCESSORIAL,
OB_LINE_ATTRIBUTE, OB_LINE_REFNUM,

OB_LINE_REMARK, OB_LINE_SPECIAL_SERVICE,
OB_LINE_STATUS, OB_ORDER_BASE,
OB_ORDER_BASE_STATUS, OB_REFNUM,
OB_REMARK, OB_SHIP_UNIT,
OB_SHIP_UNIT_CONTENT,
OB_SHIP_UNIT_REFNUM,

OB_SHIP_UNIT_REMARK, OB_SHIP_UNIT_SEAL,

OB_SHIP_UNIT_STATUS,
OB_SPECIAL_SERVICE, OB_SU_ACCESSORIAL,
OB_SU_CONTENT_ATTRIBUTE,
OB_SU_CONTENT_REFNUM,
OB_SU_CONTENT_REMARK,
OB_SU_SPECIAL_SERVICE

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 2-5

The Import can be executed in one of two modes: SQL or PLSQL. SQL mode means that the insert or

update SQL statement will be executed as individual calls to the database. In PLSQL mode, the
statements are batched together and executed as a PL/SQL anonymous block.

DB.XML User Interface

Exporting DB.XML

This section describes how to export DB.XML using the web-based user interface.

1. Log into Oracle Transportation Management.

2. Locate the DB XML Export user interface. By default this will be Business Process Automation

> Data Import/Export > DB.XML Export.

3. Choose a DB Object to export the corresponding database table.

OR

Choose a DB Object Set to export a set.

4. Enter a Where Clause. For example you can enter DOMAIN_NAME=’GUEST’ or rownum<3.
You can also combine the two like this DOMAIN_NAME=’GUEST’ and rownum<3.

Alternatively, it is also possible to enter a sql query (for example, select * from activity) and a

rootName (for example, ACTIVITY).

5. Click Run. Oracle Transportation Management displays the results page.

For example, the following shows an export with DB Object as LOCATION and the ‘where clause’ as

LOCATION_GID = ‘NYC’

Note: Refer to the Oracle Transportation Management Data Dictionary for more

information about what the objects can contain.

Note: Oracle Transportation Management does not display elements that are empty in the
database.

Saving DB.XML Output to a File on Your PC

View the source for the frame containing the displayed XML using your browser and save as a file with
the “.db.xml” file extension. The steps to view the source vary from browser to browser.

Note: If your output is too large for Notepad, you need to the command line to execute the

command.

Note: Especially if your data contains non-ASCII characters, just save your file as-is and

use an editor that supports UTF-8 when editing the file later on.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 2-6

Importing DB.XML

This section describes how to import a DB.XML file using the web-based user interface.

1. Log into Oracle Transportation Management.

2. Locate the DB XML Import user interface. By default this will be Business Process Automation

> Data Import/Export > DB.XML Import.

3. Select the appropriate Schema and Execution mode. These default to GLOGOWNER and

SQL, respectively.

4. Click Browse to upload the required Input XML File containing the transaction set.

5. The default Transaction Code is I (insert). You can change the transactionCode from I to

either IU or RC.

6. If the Transaction Code is RC, you may need to specify Managed Tables. This will be

required when no pre-configured child table properties are setup for the parent table in the

input XML file. If no managed tables are found, the RC transaction code is treated like an IU

i.e. no child records will be removed.

7. Click Run.

Oracle Transportation Management displays summary statistics with a successCount and an
errorCount. The count is the number of transactions that were successful or in error.

DB.XML Command Line Execution

A command line script exists to provide the same capability that is available via the OTM User
Interface1. The script is called dbxml.sh or dbxml.bat (depending on platform) and is present in the

<otm_home>/utils/integration/scripts directory.

The DB XML command line can operate in two distinct “modes”:

 As a remote web client

 As a database client

The choice of mode is determined by the presence of certain parameters. If the “-server” parameter is
specified the command will be processed as a remote web client. If “-dbConn” or “-dbURL” are
specified the command will be process as a database client.

Some required parameters depend on the mode selected. The following are the required parameters
for each mode:

Mode = “remote web client”

Parameter Usage

server The hostname of the web server where the request will be sent via “http”. If

non-standard ports are used, the format given should be hostname:port.

username OTM application user name to be used for execution of database commands.
This is required for the correct VPD security.

1 See OTM Administration Guide for complete instructions on configuring a Java command

environment.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 2-7

Parameter Usage

password Valid password for “username”.

Mode = “Database Client”

Parameter Usage

dbConn

or

dbURL

A connection name configured in the OTM properties e.g. “dbathin”. This is
the most convenient method as the full JDBC connection URL is constructed
by the command processor.

The JDBC connection URL for the database in the form
jdbc:oracle:thin:@<db server host>:<db listener port>:<svcname>

where,

db server host – hostname of the server where Oracle database is running

db listener port – port for TNS Listener

svcname – service name used by OTM DB instance.

dbUser Valid database user name to connect to the database. This parameter is
optional if the dbConn parameter is used as the default user for that

connection can be determined from properties files.

dbPassword Valid password for “dbUser”.

username OTM application user name to be used for execution of database commands.

This is required for the correct VPD security.

password Valid password for OTM user specified in ‘username’ parameter.

Either the “dbConn” or “dbURL” parameter must be specified.

Exporting DB.XML

Using Pre-defined Primary Data Objects

The following is an example of exporting (using remote web server access by default) the first

RATE_GEO database object found in the database:

dbxml.sh xmlExport -server localhost -username GUEST.ADMIN -password CHANGEME -

dbObjectName RATE_GEO

-whereClause "rownum < 2" -localDir ./ -localFileName rate_geo1.db.xml

This example creates the file “rate_geo1.db.xml” in the current working directory.

You need to modify the following arguments specific to your situation:

 Server: hostname of remote web server.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 2-8

 Username: User name used to login to the remote Oracle Transportation Management

instance.

 Password: password corresponding to the username.

 whereClause: SQL ‘where’ clause used to limit size of export.

 localDir: directory on your PC where output file is written.

 localFileName:(name of local output file. If not specified, defaults to “command.out”.

Using a SqlQuery

The following is an example of exporting (using DB client access) all the activity records in the
database:

dbxml.sh xmlExport -dbConn dbathin –dbUser glogdba –dbPassword password

-username GUEST.ADMIN -password password -sqlQuery "select * from activity"

-rootName ACTIVITY -localDir ./ -localFileName activity.db.xml

The above command creates the activity.db.xml file in the current working directory.

Importing DB.XML

You can use dbxml.sh or dbxml.bat (depending on platform) to import a client-side db.xml file into

a remote Oracle Transportation Management database instance.

Here is a sample command line:

dbxml.sh xmlImport -hostname localhost -username DBA.ADMIN -password CHANGEME -

transactionCode IU -localDir ./ -localFileName rate.db.xml

See the Reference A: DB.XML Transaction Codes section for possible transaction codes.

Oracle Transportation Management ignores element names that do not correspond to a database
table. This allows you to comment your DB.XML file without affecting what is imported.

DB XML Servlet

It may be convenient to export and import DB XML data remotely from the OTM application. This can
be achieved in a number of ways; by sending XML messages via HTTP POST to a servlet on the OTM
Web Server (discussed in this section) or as a SOAP message to a Web Service on the OTM Application
Server (discussed in the next section).

The HTTP POST body should use the format defined below and be sent via HTTP POST to the
glog.integration.servlet.DBXMLServlet.

The servlet requires authentication using HTTP Basic Authentication. If the network used for
communication cannot be assumed to be secure, the HTTPS protocol should be used.

Additionally, the URL command parameter should specify which DBXML command should be executed
i.e. xmlImport for Import and xmlExport for Export. A complete example URL would therefore be:

http://localhost/GC3/glog.integration.servlet.DBXMLServlet?command=xmlExport

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 2-9

Export Message Format

Object Name

The following is the format for the XML message to export XML based on a DB object name:

<sql2xml>

 <DBObject>

 <Name>{db object name}</Name>

 <Predicate>{where clause}</Predicate>

 </DBObject>

</sql2xml>

For example,

<sql2xml>

 <DBObject>

 <Name>LOCATION</Name>

 <Predicate>location_gid = ‘GUEST.MY_LOC’</Predicate>

 </DBObject>

</sql2xml>

Object Set

The following is the format for the XML message to export XML based on a DB object set name:

<sql2xml>

 <ObjectSet>

 <Name>{db object set name}</Name>

 <Predicate>{where clause}</Predicate>

 </ObjectSet>

</sql2xml>

For example,

<sql2xml>

 <ObjectSet>

 <Name>DomainReferenceData</Name>

 <Predicate>domain_name = ‘GUEST’</Predicate>

 </ObjectSet>

</sql2xml>

Query

The following is the format for the XML message to export XML based on a SQL query:

<sql2xml>

 <Query>

 <RootName>{db object name}</RootName>

 <Statement>{where clause}</Statement>

 </Query>

</sql2xml>

For example,

<sql2xml>

 <Query>

 <RootName>Location</RootName>

 <Statement>SELECT * FROM LOCATION WHERE LOCATION_GID =

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 2-10

‘GUEST.MY_LOC’</Statement>

 </Query>

</sql2xml>

The response XML will be the TRANSACTION_SET XML identical to that seen in the UI.

Import Message Format

The root element for the DB XML Import message is xml2sql and will contain the following:

<xml2sql>

 <TransactionCode>{I|IU|RC}</TransactionCode>

 <SchemaOwner>{schema name}</SchemaOwner>

 <Exec>{SQL|PLSQL}</Exec>

 <ManagedTables>

 <Table>{table name 1}</Table>

 <Table>{table name 2}</Table>

 </ManagedTables>

 <TRANSACTION_SET>

 <…table specific elements…>

 …

 </TRANSACTION_SET>

</xml2sql>

For example,

<xml2sql>

 <TransactionCode>I</TransactionCode>

 <SchemaOwner>GLOGOWNER</SchemaOwner>

 <Exec>SQL</Exec>

 <TRANSACTION_SET>

 <LOCATION LOCATION_GID=’GUEST.MY_LOC’..etc>

 <LOCATION_CORPORATION …etc…/>

 <…etc… other child elements…/>

 </LOCATION>

 </TRANSACTION_SET>

</xml2sql>

The response XML will contain the counts for successful or error transactions.

<xml2sql>

 <SuccessCount>n</SuccessCount>

 <ErrorCount>m</ErrorCount>

 <ElapsedTime>p</ElapsedTime>

 <TimePerTransaction>q</TimePerTransaction>

</xml2sql>

Where n, m, p & q are integers and p & q are the number of milliseconds.

DB XML Web Service

DB XML Export and Import can also be performed by calling a SOAP Web Service running on the
Application server. The WSDL for the service will be located under:

http://<server:port>/GC3Services/glog.integration.webservice.command.CommandSer

vice?WSDL

Where server and port are specific to the host and port configured for the WebLogic server running
OTM.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 2-11

The service is secured via Web Service Security in common with all other OTM Web Services and so by

default requires the WSS Username Token Profile over HTTPS for authentication.

The SOAP messages (defined in the WSDL) are essentially identical to the messages used for the DB
XML Servlet but will be ‘wrapped’ in the corresponding command/operation name, i.e.:

<xmlExport>

 <sql2xml>

 <…elements as described previously>

 </sql2xml>

</xmlExport>

and

<xmlImport>

 <xml2sql>

 <…elements as described previously>

 </xml2sql>

</xmlImport>

Editing DB.XML Files

This section describes how you edit an exported DB.XML file before importing it again.

A Sample DB.XML File

An exported DB.XML file might look like this. Note that the content is wrapped in a pair of
<TRANSACTION_SET> tags.

<?xml version="1.0" encoding="iso-8859-1" ?>

<xml2sql>

<TRANSACTION_SET>

<CORPORATION CORPORATION_GID="ACL" CORPORATION_XID="ACL"

DOMAIN_NAME="PUBLIC" INSERT_DATE="2001-10-05 19:03:37"

INSERT_USER="DBA.ADMIN" IS_DOMAIN_MASTER="N" UPDATE_DATE="2001-10-06

12:43:46" UPDATE_USER="DBA.GLOGLOAD" dbObjectName="CORPORATION" />

</TRANSACTION_SET>

</xml2sql>

You can edit the values and add new objects.

When editing date and time values, be sure to keep the following format: YYYY-MM-DD HH:MM:SS.

If you miss an element in the exported file this is probably because Oracle Transportation
Management does not export elements that are empty in the database. This means that you will have

to add the tag to the DB.XML file yourself. Refer to the Oracle Transportation Management Data

Dictionary for more information about what objects and tables exist.

Oracle Transportation Management ignores element names that do not correspond to the database
table. This allows you to comment your DB.XML file without affecting what is imported.

As you edit the file, keep all element and attribute names in uppercase.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 3-1

3. Loading CSV Data via the Command Line

This chapter describes how to import and export CSV from the command line.

Importing and Exporting on the Server Side

This section describes how to use CSVUtil to export and import data from a local Oracle Transportation
Management database.

CSVUtil has the following syntax and arguments.

java glog.database.admin.CSVUtil –command

<i|ii|iu|u|uu|d|dd|xcsv|xcsvcd|xcsvpcd|xcsvpd|xsql> -connectionId

<connectionId> -tableName <tableName> -dataDir <dataDirectory> -dataFileName

<dataFileName> -appendFile –runsqlloader -domain_name <domainName> -useT2 <Y|N>

-debug -XMLCSVOutput -sqlQuery <queryString> -whereClause <whereClause> -

clobDir <clobDirectory> –xvalidate <Y|N> -encoding <encoding>

CSVUtil supports the following commands and arguments:

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 3-2

Commands Arguments

command i - insert CSV data into the database

ii - insert data, while suppressing unique key constraint violations

iu - attempts to insert data. If a primary key violation occurs, it updates
the data. No delete statements are generated.

u - update data in the database

uu - update data, while suppressing “no data found” constraint violations

d- delete data from the database

dd- delete data, while suppressing “no data found” constraint violations

xcsv - export a CSV file

xcsvcd - export a multi-table CSV file with all subordinate child tables
(e.g. shipment_stop, shipment_stop_d etc. for the shipment table). A
table set called C.<table_name> controls which tables are considered to

be children of a given table. For example, the C.SHIPMENT table set
contains the following tables: shipment_stop, shipment_refnum,
shipment_remark, etc. Similarly, the C.SHIPMENT_STOP table_set
contains the shipment_stop_d table. If you log in as DBA.ADMIN in Oracle
Transportation Management, you can use the Table Set Manager to
modify the contents of the various C.* table sets.

xcsvpcd - export a multi-table CSV file with both parent and child data.

xcsvpd - export a multi-table CSV file with all referenced non-public
foreign key records (parent data) required to load the record(s) in a
foreign database.

xsql - export data as a script of insert statements rather than a CSV file

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 3-3

Commands Arguments

connectionId The connectionId is a shorthand method for providing an Oracle
username, password, and server.

For example, if you specify your connectionId as codegen, you need to
add the following properties to your glog.properties file:

glog.database.codegen.schema=glogowner

glog.database.codegen.t2client.driverClassName=oracle.jdbc.driver.Oracle
Driver

glog.database.codegen.t2client.databaseURL=jdbc:oracle:thin:@localhost:
1521

glog.database.codegen.user=glogload

glog.database.codegen.password=glogload

glog.database.codegen.server=dbserver

glog.database.codegen.t2client.pool=

tableName The tableName argument is only specified for the xcsv and xsql
commands. This specifies the name of the database table to export. Can
be null if sqlQuery is specified. Must be upper case.

dataDir The dataDir argument specifies the location to either read or write the file
specified in the –dataFileName argument. The following glog.property file

setting controls the default value of the dataDir argument:

glog.database.load.dir=d:\\upload

In this case, the default directory has been set to d:\upload. Note that two
backslashes are required in glog.properties.

dataFileName The dataFileName argument specifies the name of the file in the dataDir
directory to either read or write. This field is required when importing a
file, but is optional when exporting a file. If unspecified for an export, the
output is written to System.out.

appendFile The appendFile argument only applies to the export commands (xcsv and

xsql). If specified, CSVUtil will append to the file specified by the
dataFileName argument instead of overwriting it.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 3-4

Commands Arguments

removeUndefinedCo
lumns

CSVUtil supports, by default, the ability to ignore columns that are not
defined in the target table. This is especially useful when exporting from a
migrated database with deprecated columns, into a newly created
database that does not have the deprecated columns. There is some
performance impact for this feature. To deactivate the feature, use the

following command line option:

-removeUndefinedColumns N

This option is only available when running CSVUtil directly on the
command line. It is not available using either the web or ClientUtil.

runsqlloader The runsqlloader argument only applies to import commands. If specified,
the oracle sqlloader program will be used to load the CSV file instead of a

java procedure. If you have sqlloader installed on your system the
sqlloader is faster than the java procedure.

-maxError By default in CSVUtil, after 50 errors occur, processing stops. You can
change this default value to make it higher or lower using the –maxError
command line argument.

For example:

-maxError 20

This parameter is currently only available when running CSVUtil as a java
application on the command line.

domain_name The domain_name argument only applies to the export commands (xcsv
and xsql). It specifies that only the data in that domain is to be exported.

useT2 Used to avoid using the T2Connection class, which depends on VPD being
already setup correctly. When loading certain Oracle Transportation
Management "system" tables, it is necessary to avoid the use of the T2
connection class (it’s a chicken or the egg type situation). For normal data
loading, using the T2Connection class is correct and desirable.

debug Used for debugging.

XMLCSVOutput If true, then output looks like this:

<TableName></TableName> or <SqlQuery>...</SqlQuery>

<ColumnList></ColumnList>

<ExecSQL></ExecSQL>

<Row>...</Row>

<Row>...</Row>

sqlQuery If specified, then xcsv command is required and tableName is ignored.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 3-5

Commands Arguments

whereClause Only used when tableName is specified and domainName is omitted.

clobDir Directory where external CLob files are read. Only used when importing
external CLob files and not using sqlloader.

xvalidate Can be either Y (default) or N. When set to Y, CSVUtil gives you more
user-friendly diagnostics messages and hinders missing values in your
CSV file to delete an existing value in the database.

If you want CSVUtil to allow data to be nulled out, you should specify
xvalidate as N when running CSVUtil.

encoding The encoding of the file you import. Common settings are ISO-8859-1

(default) and UTF-8. You especially need to consider this when you import
data containing characters outside the 7-bit ASCII set. Also, consider the
encoding of your database.

CLobs in CSV Files

CSVUtil supports inserting, updating, and deleting CLobs. You can:

 Include the CLob in the CSV file (each CLob<1Mb, no newline characters)

 In the CSV file, refer to an external file holding the CLob. (no size restrictions on the CLobs,

newline characters allowed)

Note: CSVUtil can only handle one CLob per record.

Here is a sample CSV file that inserts a CLob using the in-line method:

CLOB_TEST

SEQ,DESCR,XML

9,"THIS IS SO COOL",<asdf>blahblah</asdf>

10,"LINE2",<qwerty>yaya</qwerty>

In this case, the "XML" column is of type CLob. When using the in-line method, each CLob:

 Must be specified on a single line (no newline characters).

 Must be smaller than 1 megabyte.

Here is a sample CSV file that inserts two CLobs using the external file method:

CLOB_TEST

SEQ,DESCR,EXT_FNAME,XML

11,"THIS IS SO COOL",myxmlfile.xml

12,"LINE2",myxmlfile2.xml

When using the external file method, you must specify a special "pseudo column" called "EXT_FNAME
". The EXT_FNAME pseudo column must be specified to the left of the CLob column. In this case, you
will have an extra column on line 2. So in this case, line 2 has 4 columns, but there are only 3
columns in the data lines.

The external file method must be used when inserting CLobs containing newline characters, or when
inserting CLobs greater than 1 megabyte.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 3-6

Exporting With Parent Data

To export a data record with its parent data, you can do the following:

java glog.database.admin.CSVUtil -command xcsvwpd -tableName SHIPMENT -

whereClause "shipment_gid = 'MDIETL.184'" -connectionId angel37

The above command exports the record for shipment MDIETL.184, along with all the referenced non-

public foreign key records required to successfully load the SHIPMENT record in a foreign database.
The generated CSV file is in multi-table format.

Note: All the xcsvw* commands are far more expensive in terms of CPU usage than the

plain xcsv command. Using them to export a large data set will take a long time, since
many foreign keys must be found. Use the commands with a restrictive where-clause, as

shown in the examples, to limit the running time.

Exporting With Child Data

To export a data record with its child data, you can do the following:

java glog.database.admin.CSVUtil -command xcsvwcd -tableName SHIPMENT -

whereClause "shipment_gid = 'MDIETL.184'" -connectionId angel37

The above command exports the record for shipment MDIETL.184, along with all the subordinate child
tables such as shipment_stop, shipment_stop_d etc.

Exporting With Both Parent and Child Data

To export a data record with both its parent and child data, you can do the following:

java glog.database.admin.CSVUtil -command xcsvwpcd -tableName SHIPMENT -

whereClause "shipment_gid = 'MDIETL.184'" -connectionId angel37

This command should be used with care since it can take while to run.

GL_User Table

CSVUtil supports adding and deleting records in the GL_USER table. This table stores the Oracle
Transportation Management users and their passwords.

When the GL_USER table is specified in the header of a CSV file, special processing is done.

If you are an authorized GL_USER, you may add and delete records in the GL_USER table. As an

exception for this table, you can only use the commands: i, ii, d, or dd.

Note: The u, uu, and iu commands are not supported when loading the GL_USER table.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 4-1

4. Loading CSV Data via Web Pages

Running CSVUtil via the command line is only possible if your client environment is configured
correctly. If your client environment is not configured, you can still run CSVUtil via the web.

Importing

This section describes how to import a CSV file using Oracle Transportation Management.

1. Log in to Oracle Transportation Management.

2. Choose Business Process Automation > Integration > Integration Manager.

3. Click Upload an XML / CSV Transmission.

4. Select the file to upload. The upload will transfer files from your local machine to the server.

Note: You must select a .CSV file.

5. Click Upload and Oracle Transportation Management displays the page for importing the file.

If you select a file other than a .CSV file, a different page will open.

6. If it is not already selected, select i from the command list.

7. Leave the dataDir as is.

8. Leave the dataFileName as is.

9. If you are loading a large file, you may specify the runsqlloader option. This will only work if

sqlloader is installed on the Oracle Transportation Management web server. The following line

must be added to the jserv.properties file to make sqlloader run from the web:

wrapper.path = d:/product/oracle/ora81/bin

This entry would be different depending on the location of the Oracle bin directory.

10. The xvalidate drop-down list allows you to turn off verbose diagnostic messaging. To leave

messaging on, the value in the drop down list should be Y, which is the default.

11. In the encoding drop down list, select the appropriate encoding type for your CSV file. If your
file contains standard ASCII characters, then it can be encoded as ISO-8859-1. If it contains

non-standard, international characters, then it should be encoded as UTF-8.

12. Click Run and Oracle Transportation Management displays a results page.

To read more about interpreting error messages, see the Reference C: CSVUtil Response
Messages section.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 5-1

5. Loading Rate Data via CSV

This chapter gives you examples of:

 The tables you need to import to set up rates in Oracle Transportation Management.

 How to format the CSV files.

 The order in which you must import tables.

Refer to the Oracle Transportation Management Data Dictionary to learn what data you need and in
what order you need to import it.

Note: Any blank columns are not included in the CSV files. See the Data Dictionary for a

complete list of columns.

Importing Location Information

This section describes how to import location information in CSV format. A set of sample CSV files is
presented. Tables must be loaded in the order presented in this section. Otherwise, foreign key
violations occur.

1. Import the LOCATION Table.

The following example illustrates how you specify LOCATION data in CSV format.

LOCATION

LOCATION_GID,LOCATION_XID,LOCATION_NAME,CITY,PROVINCE,PROVINCE_CODE,POSTAL_C

ODE,COUNTRY_CODE3_GID,TIME_ZONE_GID,LAT,LON,IS_TEMPORARY,IS_MAKE_APPT_BEFORE

_PLAN,RATE_CLASSIFICATION_GID,DOMAIN_NAME,IS_SHIPPER_KNOWN,IS_ADDRESS_VALID,

IS_MIXED_FREIGHT_THU_ALLOWED,SLOT_TIME_INTERVAL,SLOT_TIME_INTERVAL_UOM_CODE,

SLOT_TIME_INTERVAL_BASE,IS_LTL_SPLITABLE

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

MYDOMAIN.YELLOW,YELLOW,YELLOW

LOCATION,PITTSBURGH,,PA,99999,USA,America/New_York,,,N,N,,MYDOMAIN,N,U,N,,,,

Y

MYDOMAIN.MYLOCATION,MYLOCATION,MYLOCATION,PHILADELPHIA,,PA,19001,USA,America

/New_York,40.12726,-75.12881,N,N,COMMERCIAL,MYDOMAIN,N,U,N,0,S,0,Y

MYDOMAIN.MYCORPORATION,MYCORPORATION,MYCORPORATION,PHILADELPHIA,,PA,19001,US

A,America/New_York,40.12726,-75.12881,N,N,COMMERCIAL,MYDOMAIN,N,U,N,0,S,0,Y

2. Import the LOCATION_ADDRESS table

The following example illustrates how you specify LOCATION_ADDRESS data in CSV format.

LOCATION_ADDRESS

LOCATION_GID,LINE_SEQUENCE,ADDRESS_LINE,DOMAIN_NAME

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

MYDOMAIN.YELLOW,1,432 YELLOW AVE,MYDOMAIN

MYDOMAIN.MYCORPORATION,1,11 EMPEROR AVE,MYDOMAIN

MYDOMAIN.MYLOCATION,1,123 MAPLE STREET,MYDOMAIN

MYDOMAIN.MYLOCATION,2,BUILDING H,MYDOMAIN

MYDOMAIN.MYLOCATION,3,ROOM 100,MYDOMAIN

3. Import the CORPORATION Table.

The following example illustrates how you specify CORPORATION data in CSV format.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 5-2

Note: Each CORPORATION_GID must correspond to a LOCATION_GID specified in the

location table (See example).

CORPORATION

CORPORATION_GID,CORPORATION_XID,CORPORATION_NAME,DOMAIN_NAME,IS_DOMAIN_MASTE

R,IS_SHIPPING_AGENTS_ACTIVE,IS_ALLOW_HOUSE_COLLECT

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

MYDOMAIN.MYCORPORATION,MYCORPORATION,MYCORP,MYDOMAIN,N,N,N

MYDOMAIN.YELLOW INC,YELLOW INC,YELLOW INCORPORATED,MYDOMAIN,N,N,N

4. Import the LOCATION_CORPORATION Table.

The following example illustrates how you specify LOCATION_CORPORATION data in CSV

format. This links a location to a corporation.

LOCATION_CORPORATION

LOCATION_GID,CORPORATION_GID,DOMAIN_NAME

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

MYDOMAIN.MYLOCATION,MYDOMAIN.MYCORPORATION,MYDOMAIN

MYDOMAIN.MYCORPORATION,MYDOMAIN.MYCORPORATION,MYDOMAIN

MYDOMAIN.YELLOW,MYDOMAIN.YELLOW INC,MYDOMAIN

5. Import the SERVPROV Table.

The following example illustrates how you specify SERVPROV data in CSV format. Each

SERVPROV_GID must correspond to a LOCATION_GID specified in the location table (See

example).

SERVPROV

SERVPROV_GID,SERVPROV_XID,AUTO_PAYMENT_FLAG,DOMAIN_NAME,IS_DISPATCH_BY_REGIO

N,ALLOW_TENDER,IS_ACCEPT_SPOT_BIDS,IS_ACCEPT_BROADCAST_TENDERS,IS_LOCALIZE_B

ROADCAST_CONTACT,DO_CONDITIONAL_ACCEPTS,IS_INTERNAL_NVOCC,IS_ACCEPT_BY_SSU_A

LLOWED,IS_COPY_INV_DELTA_BACK_TO_SHIP,INVOICING_PROCESS

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

MYDOMAIN.YELLOW,YELLOW,N,MYDOMAIN,N,Y,N,N,N,N,N,N,N,S

6. Import the LOCATION_ROLE_PROFILE Table.

The following example illustrates how you specify LOCATION_ROLE_PROFILE data in CSV

format. Each location should have at least one row in this table.

LOCATION_ROLE_PROFILE

LOCATION_GID,LOCATION_ROLE_GID,CALENDAR_GID,FIXED_HANDLING_TIME,FIXED_HANDLI

NG_TIME_UOM_CODE,FIXED_HANDLING_TIME_BASE,CREATE_XDOCK_HANDLING_SHIPMENT,CRE

ATE_POOL_HANDLING_SHIPMENT,DOMAIN_NAME

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

MYDOMAIN.YELLOW,CARRIER,,0,S,0,N,N,MYDOMAIN

MYDOMAIN.MYLOCATION,SHIPFROM/SHIPTO,,0,S,0,N,N,MYDOMAIN

MYDOMAIN.MYCORPORATION,BILL TO,,0,S,0,N,N,MYDOMAIN

MYDOMAIN.MYCORPORATION,REMIT TO,,0,S,0,N,N,MYDOMAIN

7. Import the LOCATION_REMARK Table.

The following example illustrates how you specify LOCATION_REMARK data in CSV format.

LOCATION_REMARK

LOCATION_GID,REMARK_SEQUENCE,REMARK_QUAL_GID,REMARK_TEXT,DOMAIN_NAME

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 5-3

MYDOMAIN.MYLOCATION,1,REM,DRIVER CANNOT HAVE A BEARD,MYDOMAIN

MYDOMAIN.MYLOCATION,2,REM,DRIVER MUST HAVE SAFETY GLASSES,MYDOMAIN

Importing Service Times

The following example illustrates how you specify SERVICE_TIME data in CSV format.

SERVICE_TIME

X_LANE_GID,RATE_SERVICE_GID,SERVICE_TIME_VALUE,SERVICE_DAYS,DOMAIN_NAME,SERVICE

_TIME_VALUE_UOM_CODE,SERVICE_TIME_VALUE_BASE

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

MYDOMAIN.194-064,MYDOMAIN.VOYAGE-DEFAULT,172800,,MYDOMAIN,S,172800

MYDOMAIN.194-065,MYDOMAIN.VOYAGE-DEFAULT,86400,,MYDOMAIN,S,86400

In the above example, note that you must specify SERVICE_DAYS, and leave the
SERVICE_TIME_VALUE unspecified. As an alternative, you must specify SERVICE_TIME_VALUE in

seconds, and leave the SERVICE_DAYS unspecified. You must never specify both a
SERVICE_TIME_VALUE and a SERVICE_DAYS value on the same record.

Importing X_LANE Data for Rates

This section provides an example for loading X_LANE data in CSV format. Typically, the X_LANE tables
are loaded prior to the loading of the RATE_GEO and RATE_GEO_COST tables.

X_LANE

PK X_LANE_GID

X_LANE_XID

FK7 SOURCE_LOCATION_GID

SOURCE_CITY

SOURCE_PROVINCE_CODE

SOURCE_POSTAL_CODE

FK5 SOURCE_COUNTRY_CODE3_GID

SOURCE_ZONE4

SOURCE_ZONE1

SOURCE_ZONE2

SOURCE_ZONE3

FK6 SOURCE_GEO_HIERARCHY_GID

FK3 DEST_LOCATION_GID

DEST_CITY

DEST_PROVINCE_CODE

DEST_POSTAL_CODE

FK1 DEST_COUNTRY_CODE3_GID

DEST_ZONE4

DEST_ZONE1

DEST_ZONE2

DEST_ZONE3

FK2 DEST_GEO_HIERARCHY_GID

FK8 SOURCE_REGION_GID

FK4 DEST_REGION_GID

LOADED

DOMAIN_NAME

INSERT_USER

INSERT_DATE

UPDATE_USER

UPDATE_DATE

The following example illustrates how you specify GEO_HIERARCHY and X_LANE data in CSV format.

GEO_HIERARCHY

GEO_HIERARCHY_GID,GEO_HIERARCHY_XID,RANK,DOMAIN_NAME

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

MYDOMAIN.USZIP4,USZIP4,4,MYDOMAIN

X_LANE

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 5-4

X_LANE_GID,X_LANE_XID,SOURCE_POSTAL_CODE,SOURCE_COUNTRY_CODE3_GID,SOURCE_GEO_HI

ERARCHY_GID,DEST_POSTAL_CODE,DEST_COUNTRY_CODE3_GID,DEST_GEO_HIERARCHY_GID,DOMA

IN_NAME

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

MYDOMAIN.194-064,194-

064,194,USA,MYDOMAIN.USZIP4,64,USA,MYDOMAIN.USZIP4,MYDOMAIN

MYDOMAIN.194-065,194-

065,194,USA,MYDOMAIN.USZIP4,65,USA,MYDOMAIN.USZIP4,MYDOMAIN

MYDOMAIN.MY LANE,MY LANE,194,,POSTAL_CODE,64,,POSTAL_CODE,MYDOMAIN

Importing LTL Rates

This section describes how to specify LTL rates and gives sample CSV files for several scenarios.

The following tables must be loaded (in order):

 RATE_OFFERING (setup manually on Oracle Transportation Management web pages)

 X_LANE (see the Importing X_LANE Data for Rates section.)

 RATE_GEO

 ACCESSORIAL_CODE

 ACCESSORIAL_COST

 RATE_GEO_ACCESSORIAL (*)

 RATE_GEO_COST_GROUP

 RATE_GEO_COST

 RATE_UNIT_BREAK_PROFILE

 RATE_UNIT_BREAK

 RATE_GEO_COST_UNIT_BREAK

Note: (*) RATE_GEO_ ACCESSORIAL must come after RATE_GEO, but is not required
before the remaining tables.

Assumptions:

 You have loaded the rate offering table using Oracle Transportation Management web pages

 You have loaded the X_Lane table (see the Importing X_LANE Data for Rates section.)

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 5-5

Simplified ERD for LTL Rates

RATE_GEO

PK,U1 RATE_GEO_GID

RATE_GEO_XID

FK1,U1 RATE_OFFERING_GID

FK5,I2 X_LANE_GID

FK3 RATE_SERVICE_GID

MIN_COST

MIN_COST_GID

MIN_COST_BASE

FK4,I1 RATE_ZONE_PROFILE_GID

EFFECTIVE_DATE

EXPIRATION_DATE

ALLOW_UNCOSTED_LINE_ITEMS

DOMAIN_NAME

INSERT_USER

INSERT_DATE

UPDATE_USER

UPDATE_DATE

RATE_GEO_COST_GROUP

PK RATE_GEO_COST_GROUP_GID

RATE_GEO_COST_GROUP_XID

FK1 RATE_GEO_GID

RATE_GEO_COST_GROUP_SEQ

GROUP_NAME

USE_DEFICIT_CALCULATIONS

DOMAIN_NAME

INSERT_USER

INSERT_DATE

UPDATE_USER

UPDATE_DATE

RATE_GEO_COST

PK RATE_GEO_COST_SEQ

PK,FK7 RATE_GEO_COST_GROUP_GID

CHARGE_AMOUNT

CHARGE_CURRENCY_GID

CHARGE_AMOUNT_BASE

CHARGE_UNIT_UOM_CODE

CHARGE_UNIT_COUNT

FK2 CHARGE_MULTIPLIER

CHARGE_MULTIPLIER_SCALAR

CHARGE_ACTION

FK1 CHARGE_BREAK_COMPARATOR

DOMAIN_NAME

INSERT_USER

INSERT_DATE

UPDATE_USER

UPDATE_DATE

RATE_GEO_COST_WEIGHT_BREAK

PK,FK1 RATE_GEO_COST_SEQ

PK,FK2 WEIGHT_BREAK_GID

PK,FK1 RATE_GEO_COST_GROUP_GID

RATE_DISCOUNT_VALUE

RATE_DISCOUNT_VALUE_GID

RATE_DISCOUNT_VALUE_BASE

DOMAIN_NAME

INSERT_USER

INSERT_DATE

UPDATE_USER

UPDATE_DATE

RATE_GEO_ACCESSORIAL

PK,FK1 RATE_GEO_GID

PK RATE_GEO_ACCESSORIAL_SEQ

FK4 ACCESSORIAL_CODE_GID

EFFECTIVE_DATE

EXPIRATION_DATE

FK2 REGION_GID

FK3 X_LANE_GID

EQUIPMENT_GROUP_PROFILE_GID

PERCENTAGE

PERCENT_OF

FIXED

FIXED_GID

FIXED_BASE

MINIMUM

MINIMUM_GID

MINIMUM_BASE

PER_UNIT_SHIP_UNIT_SPEC_GID

CALENDAR_GID

NOTES

ACTIVITY

COST_QUAL

VARIABLE_COST

VARIABLE_COST_GID

VARIABLE_COST_BASE

DOMAIN_NAME

INSERT_USER

INSERT_DATE

UPDATE_USER

UPDATE_DATE

Table Notes:

 RATE_GEO Table

Allow_uncosted_line_items in Y/N (defaults to “N”)

 RATE_GEO_ACCESSORIAL

Left_Operand1 – Basis options define what variable you want to base your conditional charge on.

Oper1_gid – The operand you compare with.

Low_value1 – Depending on the operand you use, you might need only the low_value1 or additionally
the high_value1.

 RATE_GEO_COST_GROUP Table

Use_deficit_calculations in Y/N (defaults to “N”)

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 5-6

 RATE_GEO_COST Table

charge_unit_uom_code - unit of measure (e.g. “LB” for pounds, or “MI” for miles)

charge_unit_count - hundredweight, etc.

charge_action – add (A), setmin (M), setmax (X), multiply/discount (D)

charge_break_comparator -identifies data element used to access the break

Scenario–Based on Simple Unit Breaks

This scenario assumes that rates are defined as simple unit breaks.

1. Import RATE_GEO table.

RATE_GEO

RATE_GEO_GID,RATE_GEO_XID,RATE_OFFERING_GID,MIN_COST,MIN_COST_GID,MIN_COST_B

ASE,X_LANE_GID,DOMAIN_NAME

"MYDOMAIN.194-064","194-064","MYDOMAIN.YELLOW",1.0,"USD",1.0,"MYDOMAIN.194-

064","MYDOMAIN"

"MYDOMAIN.194-065","194-065","MYDOMAIN.YELLOW",1.0,"USD",1.0,"MYDOMAIN.194-

065","MYDOMAIN"

2. Import RATE_GEO_COST_GROUP table.

RATE_GEO_COST_GROUP

RATE_GEO_COST_GROUP_GID,RATE_GEO_COST_GROUP_XID,RATE_GEO_GID,RATE_GEO_COST_G

ROUP_SEQ,GROUP_NAME,DOMAIN_NAME

"MYDOMAIN.194-064","194-064","MYDOMAIN.194-064",1,"MY_GROUP_NAME","MYDOMAIN"

"MYDOMAIN.194-065","194-065","MYDOMAIN.194-065",1,"MY_GROUP_NAME","MYDOMAIN"

3. Import RATE_GEO_COST table.

RATE_GEO_COST

RATE_GEO_COST_SEQ,RATE_GEO_COST_GROUP_GID,CHARGE_UNIT_UOM_CODE,CHARGE_UNIT_C

OUNT,CHARGE_BREAK_COMPARATOR,DOMAIN_NAME

1,"MYDOMAIN.194-064","LB",100,"SHIPMENT.WEIGHT","MYDOMAIN"

1,"MYDOMAIN.194-065","LB",100,"SHIPMENT.WEIGHT","MYDOMAIN"

4. Import RATE_UNIT_BREAK_PROFILE table.

RATE_UNIT_BREAK_PROFILE

RATE_UNIT_BREAK_PROFILE_GID,RATE_UNIT_BREAK_PROFILE_XID,DATA_TYPE,LOOKUP_TYP

E,UOM_TYPE,DOMAIN_NAME

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

MYDOMAIN.LT 1000,LT 1000,U,M,WEIGHT,MYDOMAIN

5. Import RATE_UNIT_BREAK table.

RATE_UNIT_BREAK

RATE_UNIT_BREAK_GID,RATE_UNIT_BREAK_XID,RATE_UNIT_BREAK_PROFILE_GID,RATE_UNI

T_BREAK_MAX,DOMAIN_NAME

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

MYDOMAIN.1000,0-1000,MYDOMAIN.LT 1000,1000 LB,MYDOMAIN

MYDOMAIN.1000-3000,1000-3000,MYDOMAIN.LT 1000,3000 LB,MYDOMAIN

6. Import RATE_GEO_COST_UNIT_BREAK table.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 5-7

RATE_GEO_COST_UNIT_BREAK

RATE_GEO_COST_GROUP_GID,RATE_GEO_COST_SEQ,RATE_UNIT_BREAK_GID,CHARGE_AMOUNT,

CHARGE_AMOUNT_GID,CHARGE_AMOUNT_BASE,DOMAIN_NAME

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

MYDOMAIN.194-064,1,MYDOMAIN.1000,48.53,USD,48.53,MYDOMAIN

MYDOMAIN.194-064,1,MYDOMAIN.1000-3000,37.56,USD,37.56,MYDOMAIN

Scenario–Based on Cost Per Pound, Surcharge, and Discount

This scenario assumes that:

 Freight cost is $0.07 per lb

 Fuel Surcharge is 3% of Total Cost (Accessorial)

 Discount is 65% of Total Cost

 There is a $50 allowance for loading

 The minimum charge is based on 10,000 lb

 Total Cost = (weight * 0.07 – 50.00) * (65% Discount) * (Accessorial Surcharge of 3%)

 Min Cost = (10,000 * 0.07 – 50.00) * (1 - 0.65) * (1.03) = 234.325



Summary

1. Import RATE_GEO table.

RATE_GEO

RATE_GEO_GID,RATE_GEO_XID,RATE_OFFERING_GID,MIN_COST,MIN_COST_GID,MIN_COST_B

ASE,X_LANE_GID,DOMAIN_NAME

"MYDOMAIN.194-064-2","194-064-

2","MYDOMAIN.YELLOW",234.325,"USD",234.325,"MYDOMAIN.194-064","MYDOMAIN"

2. Import ACCESSORIAL_COST table.

ACCESSORIAL_COST

ACCESSORIAL_COST_GID,ACCESSORIAL_COST_XID,CHARGE_MULTIPLIER,CHARGE_MULTIPLIE

R_SCALAR,CHARGE_ACTION,CHARGE_TYPE,USE_DEFAULTS,CHARGE_MULTIPLIER_OPTION,USE

S_UNIT_BREAKS,DOMAIN_NAME,IS_FILED_AS_TARIFF

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

MYDOMAIN.FS,FS,SHIPMENT.COSTS.AMOUNT,1.03,A,B,N,A,N,MYDOMAIN,N

3. Import ACCESSORIAL_CODE table.

ACCESSORIAL_CODE

ACCESSORIAL_CODE_GID,ACCESSORIAL_CODE_XID,ACCESSORIAL_DESC,APPLY_GLOBALLY,DO

MAIN_NAME,IS_FLOW_THRU,IS_VAT_EXEMPT

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

MYDOMAIN.FUEL_SURCHARGE,FUEL_SURCHARGE,FUEL SURCHARGE,Y,MYDOMAIN,N,N

4. Import RATE_GEO_ACCESSORIAL table.

RATE_GEO_ACCESSORIAL

ACCESSORIAL_COST_GID,RATE_GEO_GID,ACCESSORIAL_CODE_GID,DOMAIN_NAME

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

MYDOMAIN.FS,MYDOMAIN.194-064-2,MYDOMAIN.FUEL_SURCHARGE,MYDOMAIN

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 5-8

5. Import RATE_GEO_COST_GROUP table.

RATE_GEO_COST_GROUP

RATE_GEO_COST_GROUP_GID,RATE_GEO_COST_GROUP_XID,RATE_GEO_GID,RATE_GEO_COST_G

ROUP_SEQ,GROUP_NAME,DOMAIN_NAME

MYDOMAIN.194-064-2,194-064-2,MYDOMAIN.194-064-2,1,MY_GROUP_NAME_2,MYDOMAIN

6. Import RATE_GEO_COST table.

RATE_GEO_COST

RATE_GEO_COST_SEQ,RATE_GEO_COST_GROUP_GID,CHARGE_AMOUNT,CHARGE_CURRENCY_GID,

CHARGE_AMOUNT_BASE,CHARGE_UNIT_UOM_CODE,CHARGE_UNIT_COUNT,CHARGE_MULTIPLIER,

CHARGE_MULTIPLIER_SCALAR,CHARGE_ACTION,DOMAIN_NAME

1,"MYDOMAIN.194-064-

2",0.07,"USD",0.07,"LB",1,"SHIPMENT.WEIGHT",,"A","MYDOMAIN"

2,"MYDOMAIN.194-064-2",-50.0,"USD",-50.0,,1,,,"A","MYDOMAIN"

3,"MYDOMAIN.194-064-2",,,,,1,,0.35,"D","MYDOMAIN"

Note: An alternative to using the data specified for the RATE_GEO_ACCESSORIAL table

above would be to add another Sequence to this table with the following (representing a

3% surcharge of the total value):

4,”MYDOMAIN.194-064-2”,,,,,1,,1.03,”D”,”MYDOMAIN”

Scenario–Based on Cost Per Pound, Conditional Surcharge, Global Surcharge,
and Discount

This scenario assumes that:

 Freight cost is $0.07 per lb

 Unload fee is $10 if the weight > 20000lb (Accessorial)

 Fuel Surcharge is 3% of Total Cost (Accessorial)

 Discount is 65% of Total Cost

 There is a $50 allowance for loading

 The minimum charge is based on 10,000 lb

Summary

 Total Cost = ((weight * 0.07 – 50.00) * (65% Discount) + (if weight>20000lb then

Accessorial Surcharge of 10)) * (1.03)

 Min Cost = (10,000 * 0.07 – 50.00) * (1 - 0.65) * (1.03) = 234.325

1. Import RATE_GEO table.

RATE_GEO

RATE_GEO_GID,RATE_GEO_XID,RATE_OFFERING_GID,MIN_COST,MIN_COST_GID,MIN_COST_B

ASE,X_LANE_GID,DOMAIN_NAME

MYDOMAIN.194-064-3,194-064-

3,MYDOMAIN.YELLOW,234.325,USD,234.325,MYDOMAIN.194-064,MYDOMAIN

2. Import ACCESSORIAL_COST table.

ACCESSORIAL_COST

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 5-9

ACCESSORIAL_COST_GID,ACCESSORIAL_COST_XID,LEFT_OPERAND1,OPER1_GID,LOW_VALUE1

,AND_OR1,LEFT_OPERAND2,OPER2_GID,LOW_VALUE2,CHARGE_MULTIPLIER,CHARGE_AMOUNT,

CHARGE_AMOUNT_GID,CHARGE_AMOUNT_BASE,CHARGE_UNIT_COUNT,CHARGE_MULTIPLIER_SCA

LAR,CHARGE_ACTION,CHARGE_TYPE,USE_DEFAULTS,CHARGE_MULTIPLIER_OPTION,USES_UNI

T_BREAKS,DOMAIN_NAME,ROUNDING_TYPE,ROUNDING_FIELDS_LEVEL,ROUNDING_APPLICATIO

N,IS_FILED_AS_TARIFF

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

MYDOMAIN.FS,FS,,,,,,,,SHIPMENT.COSTS.AMOUNT,,,,,1.03,A,B,N,A,N,MYDOMAIN,N,0,

A,N

MYDOMAIN.FS-2,FS-

2,SHIPMENT.STOPS.SHIPUNITS.ACTIVITY,EQ,D,S,SHIPMENT.STOPS.WEIGHT,GT,20000

LB,SHIPMENT,10,USD,10,1,,A,B,N,A,N,MYDOMAIN,,,,N

3. Import ACCESSORIAL_CODE table.

ACCESSORIAL_CODE

ACCESSORIAL_CODE_GID,ACCESSORIAL_CODE_XID,ACCESSORIAL_DESC,APPLY_GLOBALLY,DO

MAIN_NAME,IS_FLOW_THRU,IS_VAT_EXEMPT

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

MYDOMAIN.FUEL_SURCHARGE,FUEL_SURCHARGE,FUEL SURCHARGE,Y,MYDOMAIN,N,N

4. Import RATE_GEO_ACCESSORIAL table.

RATE_GEO_ACCESSORIAL

ACCESSORIAL_COST_GID,RATE_GEO_GID,ACCESSORIAL_CODE_GID,DOMAIN_NAME

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

MYDOMAIN.FS-2,MYDOMAIN.194-064-3,MYDOMAIN.FUEL_SURCHARGE,MYDOMAIN

MYDOMAIN.FS,MYDOMAIN.194-064-3,MYDOMAIN.FUEL_SURCHARGE,MYDOMAIN

5. Import RATE_GEO_COST_GROUP table.

RATE_GEO_COST_GROUP

RATE_GEO_COST_GROUP_GID,RATE_GEO_COST_GROUP_XID,RATE_GEO_GID,RATE_GEO_COST_G

ROUP_SEQ,GROUP_NAME,DOMAIN_NAME

MYDOMAIN.194-064-3,194-064-3,MYDOMAIN.194-064-3,1,MY_GROUP_NAME_3,MYDOMAIN

6. Import RATE_GEO_COST table.

RATE_GEO_COST

RATE_GEO_COST_SEQ,RATE_GEO_COST_GROUP_GID,CHARGE_AMOUNT,CHARGE_CURRENCY_GID,

CHARGE_AMOUNT_BASE,CHARGE_UNIT_UOM_CODE,CHARGE_UNIT_COUNT,CHARGE_MULTIPLIER,

CHARGE_MULTIPLIER_SCALAR,CHARGE_ACTION,DOMAIN_NAME

1,MYDOMAIN.194-064-3,0.07,USD,0.07,LB,1,SHIPMENT.WEIGHT,,A,MYDOMAIN

2,MYDOMAIN.194-064-3,-50,USD,-50,,1,,,A,MYDOMAIN

3,MYDOMAIN.194-064-3,,,,,1,,65,D,MYDOMAIN

Importing TL Rates

This section describes how to specify TL rates and gives sample CSV files for several scenarios.

The following tables must be loaded (in order):

 RATE_OFFERING (setup manually on Oracle Transportation Management web pages)

 X_LANE (see the Importing X_LANE Data for Rates section.)

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 5-10

 RATE_GEO

 ACCESSORIAL_CODE

 ACCESSORIAL_COST

 RATE_GEO_ACCESSORIAL (*)

 RATE_GEO_STOPS (*)

 RATE_GEO_COST_GROUP

 RATE_GEO_COST

Note: (*) RATE_GEO_ ACCESSORIAL and RATE_GEO_STOPS must come after
RATE_GEO, but are not required before the remaining tables.

Assumptions:

 You have loaded the rate offering table using Oracle Transportation Management web pages

 You have loaded the X_Lane table (see the Importing X_LANE Data for Rates section).

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 5-11

Simplified ERD for TL Rates

RATE_GEO

PK,U1 RATE_GEO_GID

RATE_GEO_XID

FK1,U1 RATE_OFFERING_GID

FK5,I2 X_LANE_GID

EQUIPMENT_GROUP_PROFILE_GID

FK3 RATE_SERVICE_GID

MIN_COST

MIN_COST_GID

MIN_COST_BASE

TOTAL_STOPS_CONSTRAINT

PICKUP_STOPS_CONSTRAINT

DELIVERY_STOPS_CONSTRAINT

CIRCUITY_ALLOWANCE_PERCENT

CIRCUITY_DISTANCE_COST

CIRCUITY_DISTANCE_COST_GID

CIRCUITY_DISTANCE_COST_BASE

MAX_CIRCUITY_PERCENT

MAX_CIRCUITY_DISTANCE

MAX_CIRCUITY_DISTANCE_UOM_CODE

MAX_CIRCUITY_DISTANCE_BASE

STOPS_INCLUDED_RATE

MIN_STOPS

FK4,I1 RATE_ZONE_PROFILE_GID

EFFECTIVE_DATE

EXPIRATION_DATE

ALLOW_UNCOSTED_LINE_ITEMS

DOMAIN_NAME

INSERT_USER

INSERT_DATE

UPDATE_USER

UPDATE_DATE

RATE_GEO_COST_GROUP

PK RATE_GEO_COST_GROUP_GID

RATE_GEO_COST_GROUP_XID

FK1 RATE_GEO_GID

RATE_GEO_COST_GROUP_SEQ

GROUP_NAME

USE_DEFICIT_CALCULATIONS

DOMAIN_NAME

INSERT_USER

INSERT_DATE

UPDATE_USER

UPDATE_DATE

RATE_GEO_COST

PK RATE_GEO_COST_SEQ

PK,FK7 RATE_GEO_COST_GROUP_GID

EQUIPMENT_GROUP_PROFILE_GID

OPER1_GID

FK3 LEFT_OPERAND1

LOW_VALUE1

HIGH_VALUE1

CHARGE_AMOUNT

CHARGE_CURRENCY_GID

CHARGE_AMOUNT_BASE

CHARGE_UNIT_UOM_CODE

CHARGE_UNIT_COUNT

FK2 CHARGE_MULTIPLIER

CHARGE_MULTIPLIER_SCALAR

CHARGE_ACTION

FK1 CHARGE_BREAK_COMPARATOR

DOMAIN_NAME

INSERT_USER

INSERT_DATE

UPDATE_USER

UPDATE_DATE

RATE_GEO_STOPS

PK,FK1 RATE_GEO_GID

PK LOW_STOP

PK HIGH_STOP

PER_STOP_COST

PER_STOP_COST_GID

PER_STOP_COST_BASE

DOMAIN_NAME

INSERT_USER

INSERT_DATE

UPDATE_USER

UPDATE_DATE
RATE_GEO_COST_WEIGHT_BREAK

PK,FK1 RATE_GEO_COST_SEQ

PK,FK2 WEIGHT_BREAK_GID

PK,FK1 RATE_GEO_COST_GROUP_GID

RATE_DISCOUNT_VALUE

RATE_DISCOUNT_VALUE_GID

RATE_DISCOUNT_VALUE_BASE

DOMAIN_NAME

INSERT_USER

INSERT_DATE

UPDATE_USER

UPDATE_DATE

RATE_GEO_ACCESSORIAL

PK,FK1 RATE_GEO_GID

PK RATE_GEO_ACCESSORIAL_SEQ

FK4 ACCESSORIAL_CODE_GID

EFFECTIVE_DATE

EXPIRATION_DATE

FK2 REGION_GID

FK3 X_LANE_GID

EQUIPMENT_GROUP_PROFILE_GID

PERCENTAGE

PERCENT_OF

FIXED

FIXED_GID

FIXED_BASE

MINIMUM

MINIMUM_GID

MINIMUM_BASE

PER_UNIT_SHIP_UNIT_SPEC_GID

CALENDAR_GID

NOTES

ACTIVITY

COST_QUAL

VARIABLE_COST

VARIABLE_COST_GID

VARIABLE_COST_BASE

DOMAIN_NAME

INSERT_USER

INSERT_DATE

UPDATE_USER

UPDATE_DATE

Table Notes

RATE_GEO Table

 Allow_uncosted_line_items in Y/N (defaults to “N”)

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 5-12

RATE_GEO_ACCESSORIAL

 Left_Operand1 – Basis options define what variable you want to base your conditional charge

on.

 Oper1_gid – The operand you compare with.

 Low_value1 – Depending on the operand you use, you might need only the low_value1 or

additionally the high_value1.

RATE_GEO_COST_GROUP Table

 Use_deficit_calculations in Y/N (defaults to “N”)

RATE_GEO_COST Table

 Oper1_gid – field value “BETWEEN” is a shortcut for X > low and X <= high. Other possible

values include “<”, “<=”, “>”, “>=”, “=”, and “<>”.

 charge_unit_uom_code - unit of measure (e.g. “LB” for pounds, or “MI” for miles)

 charge_unit_count - hundredweight, etc.

 charge_action – add (A), setmin (M), setmax (X), multiply (D)

 charge_break_comparator -identifies data element used to access the break

Scenario–Based on Distance Bands with Fixed Charges, and Stop Offs

This scenario assumes that:

 TL rates are defined using distance bands, with a flat charge within each band

 For Rate Geo A

If distance between 10 and 100 miles, charge $50

If distance is between 100 and 200 miles, charge $75

 For Rate Geo B

If distance between 10 and 100 miles, charge $80

1. Import RATE_GEO table.

RATE_GEO

RATE_GEO_GID,RATE_GEO_XID,RATE_OFFERING_GID,MIN_COST,MIN_COST_GID,MIN_COST_B

ASE,X_LANE_GID,TOTAL_STOPS_CONSTRAINT,STOPS_INCLUDED_RATE,DOMAIN_NAME

MYDOMAIN.194-064-TL1,194-064-TL1,MYDOMAIN.YELLOW,1,USD,1,MYDOMAIN.194-

064,6,2,MYDOMAIN

MYDOMAIN.194-065-TL1,194-065-TL1,MYDOMAIN.YELLOW,1,USD,1,MYDOMAIN.194-

065,6,2,MYDOMAIN

2. Import RATE_GEO_STOPS table.

RATE_GEO_STOPS

RATE_GEO_GID,LOW_STOP,HIGH_STOP,PER_STOP_COST,PER_STOP_COST_GID,PER_STOP_COS

T_BASE,DOMAIN_NAME

"MYDOMAIN.194-064-TL1",1,2,50.00,"USD",50.00,"MYDOMAIN"

"MYDOMAIN.194-064-TL1",3,4,100.00,"USD",100.00,"MYDOMAIN"

"MYDOMAIN.194-065-TL1",1,2,25.50,"USD",25.50,"MYDOMAIN"

"MYDOMAIN.194-065-TL1",3,4,85.00,"USD",85.00,"MYDOMAIN"

3. Import RATE_GEO_COST_GROUP table.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 5-13

RATE_GEO_COST_GROUP

RATE_GEO_COST_GROUP_GID,RATE_GEO_COST_GROUP_XID,RATE_GEO_GID,RATE_GEO_COST_G

ROUP_SEQ,GROUP_NAME,DOMAIN_NAME

"MYDOMAIN.194-064-TL1","194-064-TL1","MYDOMAIN.194-064-

TL1",1,"MY_GROUP_NAME_TL","MYDOMAIN"

"MYDOMAIN.194-065-TL1","194-065-TL1","MYDOMAIN.194-065-

TL1",1,"MY_GROUP_NAME_TL","MYDOMAIN"

4. Import RATE_GEO_COST table.

RATE_GEO_COST

RATE_GEO_COST_SEQ,RATE_GEO_COST_GROUP_GID,OPER1_GID,LEFT_OPERAND1,LOW_VALUE1

,HIGH_VALUE1,CHARGE_AMOUNT,CHARGE_CURRENCY_GID,CHARGE_AMOUNT_BASE,DOMAIN_NAM

E

1,"MYDOMAIN.194-064-TL1","BETWEEN","SHIPMENT.DISTANCE","10 MI","100

MI",50.00,"USD", 50.00,"MYDOMAIN"

2,"MYDOMAIN.194-064-TL1","BETWEEN","SHIPMENT.DISTANCE","100 MI","200

MI",75.00,"USD", 75.00,"MYDOMAIN"

1,"MYDOMAIN.194-065-TL1","BETWEEN","SHIPMENT.DISTANCE","10 MI","100

MI",80.00,"USD", 80.00,"MYDOMAIN"

Scenario–Based on Cost Per Mile, Stop Offs, and Surcharges

This scenario assumes that:

 The freight cost is $1.75 per mile

 Stop Off Charges

Allowed 6 stops total, with 2 stops included in rate

Charge of $50 for 3rd stop, and $65 for subsequent stops

 Fuel Surcharge is $0.02 per mile (Accessorial)

 Minimum charge on transport is $450

Summary

 Total Cost = (distance * 1.75) + stop off charges + (Accessorial of $0.02 per mile)

 Min Transport = (450.00) + stop off charges + (Accessorial of $0.02 per mile)

1. Import RATE_GEO table.

RATE_GEO

RATE_GEO_GID,RATE_GEO_XID,RATE_OFFERING_GID,MIN_COST,MIN_COST_GID,MIN_COST_B

ASE,X_LANE_GID,TOTAL_STOPS_CONSTRAINT,STOPS_INCLUDED_RATE,DOMAIN_NAME

"MYDOMAIN.194-064-TL2","194-064-

TL2","MYDOMAIN.YELLOW",1.0,"USD",1.0,"MYDOMAIN.194-064",6, 2,"MYDOMAIN"

2. Import ACCESSORIAL_COST table.

ACCESSORIAL_COST

ACCESSORIAL_COST_GID,ACCESSORIAL_COST_XID,CHARGE_MULTIPLIER,CHARGE_AMOUNT,CH

ARGE_AMOUNT_GID,CHARGE_AMOUNT_BASE,CHARGE_UNIT_UOM_CODE,CHARGE_UNIT_COUNT,CH

ARGE_ACTION,CHARGE_TYPE,USE_DEFAULTS,CHARGE_MULTIPLIER_OPTION,USES_UNIT_BREA

KS,DOMAIN_NAME,IS_FILED_AS_TARIFF

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 5-14

MYDOMAIN.FS-TL2,FS-

TL2,SHIPMENT.DISTANCE,0.02,USD,0.02,MI,1,A,B,N,A,N,MYDOMAIN,N

3. Import ACCESSORIAL_CODE table.

ACCESSORIAL_CODE

ACCESSORIAL_CODE_GID,ACCESSORIAL_CODE_XID,ACCESSORIAL_DESC,APPLY_GLOBALLY,DO

MAIN_NAME,IS_FLOW_THRU,IS_VAT_EXEMPT

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

MYDOMAIN.FUEL_SURCHARGE,FUEL_SURCHARGE,FUEL SURCHARGE,Y,MYDOMAIN,N,N

4. Import RATE_GEO_ACCESSORIAL table.

RATE_GEO_ACCESSORIAL

ACCESSORIAL_COST_GID,RATE_GEO_GID,ACCESSORIAL_CODE_GID,DOMAIN_NAME

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

MYDOMAIN.FS-TL2,MYDOMAIN.194-064-TL2,MYDOMAIN.FUEL_SURCHARGE,MYDOMAIN

5. Import RATE_GEO_STOPS table.

RATE_GEO_STOPS

RATE_GEO_GID,LOW_STOP,HIGH_STOP,PER_STOP_COST,PER_STOP_COST_GID,PER_STOP_COS

T_BASE,DOMAIN_NAME

MYDOMAIN.194-064-TL2,1,1,50,USD,50,MYDOMAIN

MYDOMAIN.194-064-TL2,2,2,65,USD,65,MYDOMAIN

Note: Leaving the HIGH_STOP value empty indicates that the last charge will be applied to

all the stops greater than the LOW_STOP value. (i.e. for stops >= 2, charge $65 per stop).

6. Import RATE_GEO_COST_GROUP table.

RATE_GEO_COST_GROUP

RATE_GEO_COST_GROUP_GID,RATE_GEO_COST_GROUP_XID,RATE_GEO_GID,RATE_GEO_COST_G

ROUP_SEQ,GROUP_NAME,DOMAIN_NAME

MYDOMAIN.194-064-TL2,194-064-TL2,MYDOMAIN.194-064-

TL2,1,MY_GROUP_NAME_TL2,MYDOMAIN

7. Import RATE_GEO_COST table.

RATE_GEO_COST

RATE_GEO_COST_SEQ,RATE_GEO_COST_GROUP_GID,CHARGE_AMOUNT,CHARGE_CURRENCY_GID,

CHARGE_AMOUNT_BASE,CHARGE_UNIT_UOM_CODE,CHARGE_UNIT_COUNT,CHARGE_MULTIPLIER,

CHARGE_MULTIPLIER_SCALAR,CHARGE_ACTION,DOMAIN_NAME

1,MYDOMAIN.194-064-TL2,1.75,USD,1.75,MI,1,SHIPMENT.DISTANCE,,A,MYDOMAIN

2,MYDOMAIN.194-064-TL2,450,USD,450,,1,,,M,MYDOMAIN

Note: Seq#2, with a charge action of “M”, indicates that the minimum of the running

calculated cost has to be $450 (i.e. if the calculation from Seq#1 is less than $450, then

the new value to be used going forward is $450).

An alternative method of specifying this rate would be to recognize that a minimum of $450 equates
to distance of 257.143 miles. A comparison for this distance could be used. This would be the

corresponding result.

RATE_GEO_COST

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 5-15

RATE_GEO_COST_SEQ,RATE_GEO_COST_GROUP_GID,OPER1_GID,LEFT_OPERAND1,LOW_VALUE1

,CHARGE_AMOUNT,CHARGE_CURRENCY_GID,CHARGE_AMOUNT_BASE,CHARGE_UNIT_UOM_CODE,C

HARGE_UNIT_COUNT,CHARGE_MULTIPLIER,CHARGE_MULTIPLIER_SCALAR,CHARGE_ACTION,DO

MAIN_NAME

1,"MYDOMAIN.194-064-TL2",">","SHIPMENT.DISTANCE","237.143

MI",1.750,"USD",1.750,"MI",1, "SHIPMENT.DISTANCE",,"A","MYDOMAIN"

2,"MYDOMAIN.194-064-TL2","<=","SHIPMENT.DISTANCE","257.143

MI",450.0,"USD",450.0,,1, ,,"A","MYDOMAIN"

Note: An alternative to using the data specified for the RATE_GEO_ACCESSORIAL table

above would be to add another Sequence to the RATE_GEO_COST table with the following

(representing a surcharge of $0.02 per mile):

3,"MYDOMAIN.194-064-

TL2",0.020,"USD",0.020,"MI",1,"SHIPMENT.DISTANCE",,"A","MYDOMAIN"

Scenario–Based on Cost per Hundredweight, Unit Breaks, and Surcharges

This scenario assumes that:

 The freight cost is per hundredweight based on unit breaks

 Fuel Surcharge is $0.02 per mile (Accessorial)

Summary

 Total Cost = ((weight/100) * (weight break charge)) + (Accessorial of $0.02 per mile)

1. Import RATE_GEO table.

RATE_GEO

RATE_GEO_GID,RATE_GEO_XID,RATE_OFFERING_GID,MIN_COST,MIN_COST_GID,MIN_COST_B

ASE,X_LANE_GID,TOTAL_STOPS_CONSTRAINT,STOPS_INCLUDED_RATE,DOMAIN_NAME

MYDOMAIN.194-064-TL3,194-064-TL3,MYDOMAIN.YELLOW,1,USD,1,MYDOMAIN.194-

064,6,2,MYDOMAIN

2. Import ACCESSORIAL_COST table.

ACCESSORIAL_COST

ACCESSORIAL_COST_GID,ACCESSORIAL_COST_XID,CHARGE_MULTIPLIER,CHARGE_AMOUNT,CH

ARGE_AMOUNT_GID,CHARGE_AMOUNT_BASE,CHARGE_UNIT_UOM_CODE,CHARGE_UNIT_COUNT,CH

ARGE_ACTION,CHARGE_TYPE,USE_DEFAULTS,CHARGE_MULTIPLIER_OPTION,USES_UNIT_BREA

KS,DOMAIN_NAME,IS_FILED_AS_TARIFF

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

MYDOMAIN.FS-TL3,FS-

TL3,SHIPMENT.DISTANCE,0.02,USD,0.02,MI,1,A,B,N,A,N,MYDOMAIN,N

3. Import ACCESSORIAL_CODE table.

ACCESSORIAL_CODE

ACCESSORIAL_CODE_GID,ACCESSORIAL_CODE_XID,ACCESSORIAL_DESC,APPLY_GLOBALLY,DO

MAIN_NAME,IS_FLOW_THRU,IS_VAT_EXEMPT

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

MYDOMAIN.FUEL_SURCHARGE,FUEL_SURCHARGE,FUEL SURCHARGE,Y,MYDOMAIN,N,N

4. Import RATE_GEO_ACCESSORIAL table.

RATE_GEO_ACCESSORIAL

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 5-16

ACCESSORIAL_COST_GID,RATE_GEO_GID,ACCESSORIAL_CODE_GID,DOMAIN_NAME

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

MYDOMAIN.FS-TL3,MYDOMAIN.194-064-TL3,MYDOMAIN.FUEL_SURCHARGE,MYDOMAIN

5. Import RATE_GEO_COST_GROUP table.

RATE_GEO_COST_GROUP

RATE_GEO_COST_GROUP_GID,RATE_GEO_COST_GROUP_XID,RATE_GEO_GID,RATE_GEO_COST_G

ROUP_SEQ,GROUP_NAME,DOMAIN_NAME

MYDOMAIN.194-064-TL3,194-064-TL3,MYDOMAIN.194-064-

TL3,1,MY_GROUP_NAME_TL3,MYDOMAIN

6. Import RATE_GEO_COST table.

RATE_GEO_COST

RATE_GEO_COST_SEQ,RATE_GEO_COST_GROUP_GID,CHARGE_AMOUNT,CHARGE_CURRENCY_GID,

CHARGE_AMOUNT_BASE,CHARGE_UNIT_UOM_CODE,CHARGE_UNIT_COUNT,CHARGE_MULTIPLIER,

CHARGE_MULTIPLIER_SCALAR,CHARGE_ACTION,CHARGE_BREAK_COMPARATOR,DOMAIN_NAME

1,MYDOMAIN.194-064-TL3,,,,LB,100,SHIPMENT.WEIGHT,,A,SHIPMENT.WEIGHT,MYDOMAIN

Note: An alternative to using the data specified for the RATE_GEO_ACCESSORIAL table
above would be to add another Sequence to this table with the following (representing a

surcharge of $0.02 per mile):

2,"MYDOMAIN.194-064-

TL3",0.020,"USD",0.020,"MI",1,"SHIPMENT.DISTANCE",,"A","MYDOMAIN"

7. Import RATE_UNIT_BREAK_PROFILE table.

RATE_UNIT_BREAK_PROFILE

RATE_UNIT_BREAK_PROFILE_GID,RATE_UNIT_BREAK_PROFILE_XID,RATE_UNIT_BREAK_PROF

ILE_NAME,DATA_TYPE,LOOKUP_TYPE,UOM_TYPE,DOMAIN_NAME,INSERT_USER,INSERT_DATE,

UPDATE_USER,UPDATE_DATE

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

"MYDOMAIN.TL 40 TO 45 THOU","TL 40 TO 45 THOU","TL 40 TO 45

THOU","U","M","WEIGHT","MYDOMAIN","MYDOMAIN.ADMIN","20060821190229",,

8. Import RATE_UNIT_BREAK table.

RATE_UNIT_BREAK

RATE_UNIT_BREAK_GID,RATE_UNIT_BREAK_XID,RATE_UNIT_BREAK_PROFILE_GID,RATE_UNI

T_BREAK_MAX,DOMAIN_NAME,INSERT_USER,INSERT_DATE,UPDATE_USER,UPDATE_DATE

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

"MYDOMAIN.40000","40000","MYDOMAIN.TL 40 TO 45 THOU","40000

LB","MYDOMAIN","MYDOMAIN.ADMIN","20060821190229",,

"MYDOMAIN.45000","45000","MYDOMAIN.TL 40 TO 45 THOU","45000

LB","MYDOMAIN","MYDOMAIN.ADMIN","20060821190229",,

9. Import RATE_GEO_COST_UNIT_BREAK table.

RATE_GEO_COST_UNIT_BREAK

RATE_GEO_COST_GROUP_GID,RATE_GEO_COST_SEQ,RATE_UNIT_BREAK_GID,CHARGE_AMOUNT,

CHARGE_AMOUNT_GID,CHARGE_AMOUNT_BASE,DOMAIN_NAME

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

MYDOMAIN.194-064-TL3,1,MYDOMAIN.40000,1.14,USD,1.14,MYDOMAIN

MYDOMAIN.194-064-TL3,1,MYDOMAIN.45000,1.07,USD,1.07,MYDOMAIN

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 5-17

Scenario–Based on Cost per Hundredweight, Unit Breaks, and Surcharges

This scenario assumes that:

 The freight cost is per hundredweight based on unit breaks which are based on mileage bands.

 Cost per Weight

Mileage Band 40000
lbs

45000
lbs

0 – 50 0.85 0.50

51 – 55 0.87 0.82

56 - 60 0.88 0.83

 Weighing charge is $20

 Vacuuming fee is $0.25 per CWT with a $115 minimum

Summary

 Total Cost = ((weight/100) * (unit break charge)) + $20 + (Vacuuming Fee of 0.25 per CWT)

 Note: Min $115 for vacuuming is reached when the weight is at 46,000 lbs

1. Import RATE_GEO table.

RATE_GEO

RATE_GEO_GID,RATE_GEO_XID,RATE_OFFERING_GID,MIN_COST,MIN_COST_GID,MIN_COST_B

ASE,X_LANE_GID,TOTAL_STOPS_CONSTRAINT,STOPS_INCLUDED_RATE,DOMAIN_NAME

MYDOMAIN.194-064-TL4,194-064-TL4,MYDOMAIN.YELLOW,1,USD,1,MYDOMAIN.194-

064,6,2,MYDOMAIN

2. Import RATE_GEO_COST_GROUP table.

RATE_GEO_COST_GROUP

RATE_GEO_COST_GROUP_GID,RATE_GEO_COST_GROUP_XID,RATE_GEO_GID,RATE_GEO_COST_G

ROUP_SEQ,GROUP_NAME,DOMAIN_NAME

MYDOMAIN.194-064-TL4,194-064-TL4,MYDOMAIN.194-064-

TL4,1,MY_GROUP_NAME_TL4,MYDOMAIN

3. Import RATE_GEO_COST table.

RATE_GEO_COST

RATE_GEO_COST_SEQ,DOMAIN_NAME,RATE_GEO_COST_GROUP_GID,OPER1_GID,LEFT_OPERAND

1,LOW_VALUE1,CHARGE_AMOUNT,CHARGE_CURRENCY_GID,CHARGE_UNIT_UOM_CODE,CHARGE_U

NIT_COUNT,CHARGE_MULTIPLIER,CHARGE_MULTIPLIER_SCALAR,CHARGE_ACTION,CHARGE_BR

EAK_COMPARATOR,CHARGE_TYPE,CHARGE_MULTIPLIER_OPTION,USES_UNIT_BREAKS,ROUNDIN

G_TYPE,ROUNDING_FIELDS_LEVEL,ROUNDING_APPLICATION,IS_FILED_AS_TARIFF

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

1,MYDOMAIN,MYDOMAIN.194-064-TL4,LT,SHIPMENT.WEIGHT,45000

LB,,,LB,1,SHIPMENT.WEIGHT,,A,SHIPMENT.WEIGHT,B,A,Y,,,,N

2,MYDOMAIN,MYDOMAIN.194-064-TL4,GE,SHIPMENT.WEIGHT,45000

LB,,,LB,1,SHIPMENT.WEIGHT,,A,SHIPMENT.WEIGHT,B,A,Y,,,,N

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 5-18

3,MYDOMAIN,MYDOMAIN.194-064-TL4,,,,20,USD,,1,SHIPMENT,,A,,B,A,N,N,0,A,Y

4. Import RATE_UNIT_BREAK_PROFILE table.

RATE_UNIT_BREAK_PROFILE

RATE_UNIT_BREAK_PROFILE_GID,RATE_UNIT_BREAK_PROFILE_XID,DATA_TYPE,LOOKUP_TYP

E,UOM_TYPE,DOMAIN_NAME

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

MYDOMAIN.LESS THAN 40 PDS,LESS THAN 40 PDS,U,M,WEIGHT,MYDOMAIN

MYDOMAIN.GREATER THAN 45000 PDS,GREATER THAN 45000 PDS,U,M,WEIGHT,MYDOMAIN

5. Import RATE_UNIT_BREAK table.

RATE_UNIT_BREAK

RATE_UNIT_BREAK_GID,RATE_UNIT_BREAK_XID,RATE_UNIT_BREAK_PROFILE_GID,RATE_UNI

T_BREAK_MAX,DOMAIN_NAME

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

MYDOMAIN.0-50 MILES,0-50 MILES,MYDOMAIN.GREATER THAN 45000 PDS,45000

LB,MYDOMAIN

MYDOMAIN.51-55 MILES,51-55 MILES,MYDOMAIN.GREATER THAN 45000 PDS,45000

LB,MYDOMAIN

MYDOMAIN.56-60 MILES,56-60 MILES,MYDOMAIN.GREATER THAN 45000 PDS,45000

LB,MYDOMAIN

MYDOMAIN.0-50,0-50,MYDOMAIN.LESS THAN 40 PDS,44999 LB,MYDOMAIN

MYDOMAIN.51-55,51-55,MYDOMAIN.LESS THAN 40 PDS,44999 LB,MYDOMAIN

MYDOMAIN.56-60,56-60,MYDOMAIN.LESS THAN 40 PDS,44999 LB,MYDOMAIN

6. Import RATE_GEO_COST_UNIT_BREAK table.

RATE_GEO_COST_UNIT_BREAK

RATE_GEO_COST_GROUP_GID,RATE_GEO_COST_SEQ,RATE_UNIT_BREAK_GID,CHARGE_AMOUNT,

CHARGE_AMOUNT_GID,CHARGE_AMOUNT_BASE,CHARGE_DISCOUNT,DOMAIN_NAME

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

MYDOMAIN.194-064-TL4,1,MYDOMAIN.0-50,0.85,USD,0.85,,MYDOMAIN

MYDOMAIN.194-064-TL4,2,MYDOMAIN.51-55,0.87,USD,0.87,,MYDOMAIN

MYDOMAIN.194-064-TL4,3,MYDOMAIN.56-60,0.88,USD,0.88,,MYDOMAIN

MYDOMAIN.194-064-TL4,1,MYDOMAIN.0-50 MILES,0.5,USD,0.5,,MYDOMAIN

MYDOMAIN.194-064-TL4,2,MYDOMAIN.51-55 MILES,0.82,USD,0.82,,MYDOMAIN

MYDOMAIN.194-064-TL4,3,MYDOMAIN.56-60 MILES,0.83,USD,0.83,,MYDOMAIN

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 6-1

6. Loading CSV Data via the Application Server

Oracle Transportation Management allows importing of CSV files via the application server. This
feature is called “AppServer CSV” or AS.CSV.

If you upload a file whose name ends in “as.csv” instead of just “.CSV”, it will be interpreted as an
application server CSV file, as opposed to a database-centric CSV file. AppServer CSV files have the
following features:

 The first line must be the name of an Entity such as Location, ObOrderBase, OrderRelease,

etc. Refer to Example3.java in the chapter titled “Java Integration API” to see how to get a
complete list of supported entity names. Entity names are derived from database table names,

except they omit the underscores and use mixed case. For example, the entity name for the

ob_order_base table is ObOrderBase.

 The second line must be a comma-separated list of attribute names. Attribute names are like

database column names, except they omit the underscores and use mixed case. For example,

a column called location_gid corresponds to the attribute locationGid. Note that the first

character is in lower-case for attribute names, but upper case for entity names.

 The third line may be an optional UOM line, which provides UOM values for any UOM
attributes. This line may be provided instead of providing UOM qualifiers every time a UOM

value occurs.

 The remaining lines are data lines. Each value in a data line must correspond to an attribute

name from line2.

Note: Values for boolean fields should be specified as “true” or “false” rather than “Y” or
“N” as with normal csv data data files.

Here is small sample file. This example omits the optional UOM line.

Location

locationGid,locationXid,countryCode3Gid,domainName,locationName

"GUEST.MYLOC8","MYLOC8","USA","GUEST","myloc8"

Here is another small sample file showing how to specify a UOM line.

SShipUnit

domainName,unitWidth,sShipUnitGid,isSplitable,unitNetVolume,unitNetWeight,shipU

nitCount,unitWeight,unitVolume,unitHeight,receivedNetVolume,receivedNetWeight,u

nitLength,sShipUnitXid

UOM:,,,,CUFT,LB,,LB,,,CUFT,LB,,

GUEST,,GUEST.001,false,0,10,1,10,,,0,0,,001

Here is the same sample, but with the UOM line omitted and the units of measure specified with each

data attribute instead. (Note the use of “false” for the boolean isSplitable field).

SShipUnit

domainName,unitWidth,sShipUnitGid,isSplitable,unitNetVolume,unitNetWeight,shipU

nitCount,unitWeight,unitVolume,unitHeight,receivedNetVolume,receivedNetWeight,u

nitLength,sShipUnitXid

GUEST,,GUEST.001,false,0 CUFT,10 LB,1,10 LB,,,0 CUFT,0 LB,,001

Here is an example that will result in errors. You cannot specify a UOM line of you also specify UOMs
within the data attributes.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 6-2

Note: The example below represents what not to do. Do NOT copy the example below. The

following example would produce an error because a UOM line was specified, but UOMs
were also specified in the data attributes. Doing this would cause the system to think that

each UOM field has two UOM qualifiers.

SShipUnit

domainName,unitWidth,sShipUnitGid,isSplitable,unitNetVolume,unitNetWeight,shipU

nitCount,unitWeight,unitVolume,unitHeight,receivedNetVolume,receivedNetWeight,u

nitLength,sShipUnitXid

UOM:,,,,CUFT,LB,,LB,,,CUFT,LB,,

GUEST,,GUEST.001,false,0 CUFT,10 LB,1,10 LB,,,0 CUFT,0 LB,,001

Web Interface for Importing and Exporting AppServer CSV Files

Importing

If you use the Integration Manager to upload a CSV file whose name ends in “.as.csv”, Oracle
Transportation Management will assume that the content of the file adheres to the rules of AppServer
CSV files, and will process it as such. An example of a file name would be “location.as.csv”, as
opposed to “location.csv”.

Each row in the file is processed via the application server instead of directly against the database.

This has the benefit of keeping the application server data-cache synchronized with the database.

This page is accessed via Business Process Automation > Integration > Integration Manager.
See the Loading CSV Data via Web Pages chapter for details about this page.

Errors encountered when importing are reported back to the screen.

Exporting

Care must be taken when exporting an AppServer CSV file due to the lack of support for where-
clauses. You should be logged in as a user whose vpd_profile limits the number of rows selected from
the entity you plan on exporting. Where-clauses will be supported in future releases. In the example

below, the user is logged in as “GUEST.FEWROWS”. This user has a vpd_profile which limits the
number of rows in the s_ship_unit table.

You can use the following URL to export (if it is not on your user menu):

http://hostname/servlets/glog.integration.servlet.IntegrationMenuServlet?integr

ation_stylesheet=integration/csvexport.xsl

1. In the command field, select the “as.xcsv” command.

2. In the “tableName” field, specify an “EntityName” instead of a table name. In this case, the

entity name is “SShipUnit” which differs from the database table name, which would be

“S_SHIP_UNIT”.

3. Click the Run button. Your output will then appear as follows:

You can then do a “View->Full Screen” in your browser, and select “View Source” (by right-clicking on
your mouse). This will place the output in notepad so you can save it to a local file.

Load CSV Files in the Report Owner Directory

Below is the command for loading CSV files in the reportowner directory.

From the application server script8 directory, run the following command.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 6-3

 ./update_onecsv_rpt.sh REPORT_CONTROL /opt/otm-55-wl/glog/config/dbareportowner

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 7-1

7. Loading CSV Data via Integration

The GlogXML schema lets you embed the contents of multiple CSV files into a Transmission XML
document. The contents of the CSV file are contained in the CSVFileContent XML element within the

GLogXMLElement. Only one CSV file can be in a single CSVFileContent XML element. Currently, the
interface only supports inserts into the database (corresponds to the ‘i’ command). The
implementation of updates and deletes will be provided in a future release. This interface should only
be used for setup activities, and is not intended for operational activity.

GlogXML Document Hierarchy

Below you can see the XML document hierarchy. The elements have been indented to show the

hierarchy and relationship.

<Transmission>

<TransmissionHeader> . . .

</TransmissionHeader>

<TransmissionBody>

<GLogXMLElement>

<CSVFileContent>

---CSV File Contents---

</CSVFileContent>

</GLogXMLElement>

<GLogXMLElement>

<CSVFileContent>

---CSV File Contents---

</CSVFileContent>

</GLogXMLElement>

</TransmissionBody>

</Transmission>

Below is a sample document that would be used to insert some data into the rate tables:

<Transmission>

<TransmissionHeader>

<UserName>DBA.ADMIN</UserName>

</TransmissionHeader>

<TransmissionBody>

<GLogXMLElement>

<CSVFileContent>

X_LANE

X_LANE_GID,X_LANE_XID,SOURCE_POSTAL_CODE,SOURCE_COUNTRY_CODE3_GID,SOURCE_GEO_HI

ERARCHY_GID,DEST_POSTAL_CODE,DEST_COUNTRY_CODE3_GID,DEST_GEO_HIERARCHY_GID,DOMA

IN_NAME

"MYDOMAIN.194-064","194-

064","194","USA","USZIP3","064","USA","USZIP3","MYDOMAIN"

"MYDOMAIN.194-065","194-

065","194","USA","USZIP3","065","USA","USZIP3","MYDOMAIN"

</CSVFileContent>

</GLogXMLElement>

</TransmissionBody>

</Transmission>



Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 8-1

8. Loading CSV Files as Zip Files

Uploading a Zip File

In addition to the CSV files, your zip file must include a control file called csvutil.ctl to tell Oracle

Transportation Management how to process the files. The control file specifies the sequence in which
the CSV files should be processed, and specifies the parameters to use when processing each file.

For example, this zip file contains the csvutil.ctl (control) file, and two CSV files, activity.csv and
activity2.csv. The csvutil.ctl file contains the following command lines:

-dataFileName activity.csv –command 1

-dataFileName activity2.csv –command 1

The above control file says to process the file activity.csv using the insert command, then process the
file activity2.csv, also using the insert command.

Uploading a zip file is the same as uploading any other file. Use the “Upload an XML/CSV Transmission
button accessed via Business Process Automation > Integration > Integration Manager.

After uploading your zip file, you are prompted to download a “results” zip file.

Click the Save button to save the “results” zip file to your local workstation.

The csvutil.log file in the “result” zip file contains the log from processing all the CSV files in the zip file

that you uploaded.

CSV Files that Failed to Load

If any of the records in any of your CSV files fail to load, then your “results” zip file will contain a
corresponding “.bad” file containing those records that failed to load. For example, activity.csv.bad
and activity2.csv.bad. In this case, both of the CSV files contained one of more records that failed to
load, so there is a corresponding .bad file for each CSV file.

Background Zip File Processing

If you are uploading a large zip file, you may want to process your zip file in the background and be
notified via email when processing completes. You can then pull your “results” zip file using the
“ZipFileDownloadServlet”.

For example, this is a “request” zip file whose name specifies that background processing is desired:
test1.bg.zip. Notice that the filename ends with “bg.zip” rather than just “.zip”. This naming
convention indicates that background processing is desired. Here is a sample csvutil.ctl file that

illustrates how to have an email sent out when processing completes:

-dataFileName activity.csv –command 1

-dataFileName activity2.csv –command 1

-mailTo youremail@yourcompany.com –mailFrom youremail@yourcompany.com –subject

zipFileProcessDone –message Hello –smtpHost mail-server.com

Clicking on the link in the email takes you to a listing of the zip files on the web server.

You may click on the desired zip file to download it to your local workstation. The zip files ending in
“result.zip” are the “results” or “output” zip files.

mailto:youremail@yourcompany.com
mailto:youremail@yourcompany.com

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 8-2

If things go wrong during background processing, your results zip file will contain a stack trace, which

you can read with a text editor rather than WinZip.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 9-1

9. Exporting CSV Files via the Interface

CSV Export Screens

An initial screen prompts for certain information so the system can determine what additional

information is required on subsequent screens.

Here is an example.

1. Select Business Process Automation->Data Export->CSV Export. The following screen

displays:

2. In the Export Object Type field, you have a choice of selecting one of Export Table, Export

Table Set, or Export Query Results.

3. In the Output Destination field, you have a choice of selecting one of Browser, Remote

Instance (remote Oracle Transportation Management instance), or File On WebServer

4. In the Run Job In Background field, you have a choice of selecting either Y or N.

5. In the Use Select List field, you can export specific data that you already selected. An export

list can be created from any Finder page by selecting records and clicking add to export list.

6. Click the Run button. The selections you make on this screen determine the fields that appear

on the next screen.

Exporting Data as a Zip File

This section illustrates how to export a zip file containing one or more CSV files.

1. First, create a csvutil.ctl file containing the commands for exporting your files.

A csvutil.ctl file may contain the following commands:

 -dataFileName activity_out.csv -command xcsv -tableName ACTIVITY

 -dataFileName location_out.csv -command xcsv -tableName LOCATION -whereClause

"rownum < 10"

2. Next, create a zip file containing the csvutil.ct file.

3. Once your zip file is created, you can upload the zip file as you would upload any other file to

Oracle Transportation Management:

4. Press the Save button to save the “results” zip file to your local workstation.

5. Open the zip file to see that the zip file contains two CSV files in this case, one corresponding

to each command in the csvutil.ct file.

6. The zip file also contains a log file containing information regarding the execution(s) of

CSVUtil.

Exporting Large Zip Files in the Background

When exporting a large zip file, you may prefer to export it in the background to avoid the browser
timing out. Here is a sample request zip file:

Here are the contents of the csvutil.ctl file within test2.bg.zip:

-dataFileName activity_out.csv -command xcsv -tableName ACTIVITY

-dataFileName location_out.csv -command xcsv -tableName LOCATION -whereClause

"rownum < 10"

-mailTo erosenbloom@glog.com -mailFrom erosenbloom@glog.com -subject

zipFileProcessDone -message hello -smtpHost mail-pa.glog.com

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 9-2

Here is another example csvutil.ctl file that exports all the rate_geo records in a given domain, along

with all parent and child data, but not public data:

-dataFileName rate_geo_out.csv -command xcsvwpcd -tableName RATE_GEO -

whereClause "domain_name = 'MDIETL'"

-mailTo erosenbloom@glog.com -mailFrom erosenbloom@glog.com -subject

zipFileProcessDone -message hello -smtpHost mail-pa.glog.com

Here is the same example, but this time with referenced public data:

-dataFileName rate_geo_out.csv –excludePublic N -command xcsvwpcd -tableName

RATE_GEO -whereClause "domain_name = 'MDIETL'"

-mailTo erosenbloom@glog.com -mailFrom erosenbloom@glog.com -subject

zipFileProcessDone -message hello -smtpHost mail-pa.glog.com

Note: Exporting with parent and child data is a very time consuming process since the

system has to repeatedly chase after foreign key references. Expect the export to run

overnight for as long as 8 hours.

Running CSVUtil in the Background

CSVUtil supports running in the background. The following screen shot shows you how:

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 9-3

As shown above, specify your email address and a SMTP Host to run in the background. The results
will be emailed to you when the background job completes (instead of returning the results to the
screen).

In this example, the following content was emailed:

<CSVUtil>

<Command>xcsv</Command>

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 9-4

<DataDir>/</DataDir>

<DataFileName>null</DataFileName>

<ExcludePublic>true</ExcludePublic>

<Write>

<DatabaseGlobalName>QGC317.HARMONY.GLOGTECH.COM</DatabaseGlobalName>

<Table>ACTIVITY</Table>

<WhereClause>null</WhereClause>

<DomainName>null</DomainName>

<Sql>null</Sql>

<!--

ACTIVITY

ACTIVITY_GID,ACTIVITY_XID,ACTIVITY_NAME,DOMAIN_NAME,INSERT_DATE,UPDATE_DATE,INS

ERT_USER,UPDATE_USER

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYYMMDDHH24MISS'

"RECEIVE","RECEIVE","RECEIVING

FREIGHT","PUBLIC","20011005190259","20021008201735","DBA.ADMIN","DBA.GLOGLOAD"

"LOAD","LOAD","LOADING

FREIGHT","PUBLIC","20011005190259","20021008201735","DBA.ADMIN","DBA.GLOGLOAD"

"LIVELOAD","LIVELOAD","LIVE TRAILER

LOADING","PUBLIC","20011005190259","20021008201735","DBA.ADMIN","DBA.GLOGLOAD"

"DISPATCH","DISPATCH","DRIVER

DISPATCHING","PUBLIC","20011005190259","20021008201735","DBA.ADMIN","DBA.GLOGLO

AD"

"ACTIVATE","ACTIVATE","ITINERARY

ACTIVATED","PUBLIC","20011005190259","20021008201735","DBA.ADMIN","DBA.GLOGLOAD

"

"PICKUP","PICKUP","WAREHOUSE

PICKING","PUBLIC","20011005190259","20021008201735","DBA.ADMIN","DBA.GLOGLOAD"

"CLOSED","CLOSED","WAREHOUSE CLOSED

DOOR","PUBLIC","20011005190259","20021008201735","DBA.ADMIN","DBA.GLOGLOAD"

"OFFICEHOURS","OFFICEHOURS","OFFICE

HOURS","PUBLIC","20011005190259","20021008201735","DBA.ADMIN","DBA.GLOGLOAD"

"BATCH SORT","BATCH SORT","SORTATION AT

DC","PUBLIC","20020125162107","20021008201735","DBA.GLOGLOAD","DBA.GLOGLOAD"

"BATCH DOCK LOAD","BATCH DOCK LOAD","DOCK LOAD AT

DC","PUBLIC","20020125162107","20040308170536","DBA.GLOGLOAD","DBA.ADMIN"

"GUEST.BLAH","BLAH",,"GUEST","20030425012307","20031104125706","DBA.GLOGOWNER",

"DBA.ADMIN"

"RUSHHOURS","RUSHHOURS","RUSH

HOURS","PUBLIC","20030717003037","20040308170536","DBA.ADMIN","DBA.ADMIN"

"GUEST.DLI1","DLI1","DLI1","GUEST","20030717144513",,"GUEST.DLI",

"GUEST.DLI2","DLI2","DLI2","GUEST","20030717144528",,"GUEST.DLI",

"GUEST.TEST","TEST","1","GUEST","20030728200219",,"GUEST.ADMIN",

"GUEST.ABCD","ABCD","VDSFDS","GUEST","20040605190045",,"GUEST.ADMIN",

"GUEST.DTB_SECOND_ACTIVITY","DTB_SECOND_ACTIVITY","DAWN'S SECOND

ACTIVITY","GUEST","20040611120516",,"GUEST.ADMIN",

"GUEST.DTB_FIRST_ACTIVITY","DTB_FIRST_ACTIVITY","DAWN'S FIRST

ACTIVITY","GUEST","20040611120313",,"GUEST.ADMIN",

"GUEST.DTB_NUMBER_3","DTB_NUMBER_3","NUMBER

3","GUEST","20040611121927",,"GUEST.ADMIN",

"ALL","ALL","ALL

ACTIVITIES","PUBLIC","20040910173537","20041213180312","DBA.ADMIN","DBA.ADMIN"

"DEPOT","DEPOT","DEPOT","PUBLIC","20040910173537","20041213180312","DBA.ADMIN",

"DBA.ADMIN"

"OTHER","OTHER","OTHER

ACTIVITIES","PUBLIC","20040921094353","20041213180312","DBA.ADMIN","DBA.ADMIN"

-->

</Write>

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 9-5

</CSVUtil>

Normally, you use background processing when initiating lengthy jobs, such as piping a large table set
to a RemoteHost.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 10-1

10. Exporting Referenced PUBLIC Data during Multi-Table
Exports

CSVUtil provides the ability to export referenced PUBLIC data during the multi-table export operations
(xcsvwcd, xcsvwpd, xcsvwpcd). This feature is especially important when exporting data from a
source database where the PUBLIC data has been modified.

Here is a sample CSVUtil command line for exporting referenced public data:

java glog.database.admin.CSVUtil -excludePublic N -command xcsvwpcd -

connectionId localdb4 -dataDir . -dataFileName whatever.csv -tableName RATE_GEO

-whereClause "domain_name = 'DGANO'"

Notice the –excludePublic option is set to N, meaning that public data should not be excluded (it

should be exported, in other words).

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 11-1

11. Piping CSV Output to a Remote Oracle Transportation
Management Instance

CSVUtil supports piping CSV Output to a remote Oracle Transportation Management instance. Refer to
the screenshots below:

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 11-2

In the above example, the ACTIVITY table is first exported. The results are then immediately sent to

the given Remote Host (in this case back to localhost). You must also specify the Remote User,
Remote Password and Remote Command (CSVUtil command) to use on the Remote host.

When you click the Run button you will get XML output showing all the processing that occurred – i.e.

export the activity table, send the file over to the remote host, then run CSVUtil on the remote host,
and get feedback from the remote host.

Synchronizing Data between Different Oracle Transportation
Management Versions

CSVUtil supports the ability to extract and push data to a remote Oracle Transportation Management
instance whose version is earlier (or later).

When pushing data to the remote instance, CSVUtil queries the data dictionary to determine which

columns in the given table exist on the remote system. Columns which do not exist on the remote
system are omitted from the CSV file.

When pushing data to a remote system, you must indicate the version of the remote system. This is
required because the format of the URL is different between version 4.x and version 5.x of Oracle
Transportation Management.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 12-1

12. Exporting Table Sets and Piping to a Remote Instance

CSVUtil supports exporting ordered table sets. An example of an ordered table set is the EXPORT table
set, which lists several hundred tables sorted in foreign key sequence (top-down). Tables in the

table_set_detail table may be prefixed by NNNNNNN for the purpose of sequencing the tables. For
example:

SQL> select table_name from table_set_detail where table_set = 'EXPORT' order

by table_name;

TABLE_NAME

--

0000000.RATE_OPERAND

0001000.ACCESSORIAL_BASIS_PRECEDENCE

0002000.ACCESSORIAL_CODE

0003000.RATABLE_OPERATOR

0004000.RATE_GEO_COST_OPERAND

0005000.COUNTRY_ZONE

0006000.COUNTRY_CODE

0007000.CURRENCY

0008000.DIM_RATE_FACTOR

0009000.ACCESSORIAL_COST

0010000.RATE_UNIT_BREAK_PROFILE

As you can see, the tables are prefixed by NNNNNNN in order to ensure they are sequenced within the
table set. When you export a table set, you normally pipe it to a remote system. If you do not pipe it
to a remote system, it will generate a bunch of temporary files on the source system and leave them
there.

Here is a sample screen shot showing how you would normally export the EXPORT table set and pipe it

to a remote system.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 12-2

Notice that the above screen requests background processing by specifying an email address and
SMTP Host.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 13-1

13. Copying Rates between Databases Using Zip Files

CSVUtil can be used to copy a rate_offering, along with all of its prerequisite parent and child data
from one database to another.

Step 1 – Create a csvutil.ctl file (CSVUtil Control File) for Exporting

You create a CSVUtil control file containing commands, and then place it in a zip file whose name ends
with .bg.zip; for example: exp_rate_offering.bg.zip. When the zip file name ends with “bg.zip”, it
knows to run the export job in the background. Here are the contents of the csvutil.ctl file to export an
entire rate offering:

-dataFileName rate_geo_out.csv -command xcsvwpcd -tableName RATE_GEO -

whereClause "rate_offering_gid = 'MDIETL.ASDF'" –excludePublic N

-mailTo erosenbloom@glog.com -mailFrom erosenbloom@glog.com -subject

zipFileProcessDone -message hello -smtpHost mail-pa.glog.com

Note: There may only be two lines of text in the above example.

 Place the csvutil.ctl file in a zip file called name.bg.zip, where name can be anything.

 The xcsvwpcd (export CSV with parent and child data) command will export the rate_geo

records, and will recursively export all parent and child records. This can take a while (up to 8

hours).

 The –excludePublic N option means that referenced PUBLIC data will also be exported. If you
are sure that your target database has all the required public data, then you can change this

to Y, which will save some time on the export.

Step 2 – Use the Integration Upload Screen to Upload the Zip File
created in step 1

Use the Integration Upload Screen to upload the exp_rate_offering.bg.zip file. In response to your
upload, you immediately receive a message indicating that your export job has been submitted to run
in the background. You receive an email when the job completes. The email includes an HTML link to

allow you to download the resultant zip file containing your multi-table export.

Step 3 – Download the Zip File Containing the Rate Offering

When you receive the email, download the zip file containing the rate offering, and extract the
rate_geo_out.csv file.

Step 4 – Create a csvutil.ctl file for Importing

Similar to step 1, you create another csvutil.ctl file for importing in the background. For example:

-dataFileName rate_geo_out.csv -command ii

-mailTo erosenbloom@glog.com -mailFrom erosenbloom@glog.com -subject

zipFileProcessDone -message hello -smtpHost mail-pa.glog.com

Step 5 – Create another background zip file

Now create another zip file which will contain the csvutil.ctl file from the previous step, as well as the
rate_geo_out.csv file which was exported during step 2. The zip file should again end with “bg.zip”.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 13-2

Step 6 – Upload the zip file from Step 5 to the target instance

To import to the target instance, again use the integration upload screen to upload the background zip
file to target instance. You again receive a response indicating that you will get an email when the job
completes. The email will again contain a link to allow you to download a results zip file which contains

a log file. You will need to examine the log file to see how the import did.

Hint: If you are exporting from a migrated database to a fresh database, use the –
removeUndefinedColumns option.

This will tell CSVUtil to ignore deprecated columns.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 14-3

14. Processing Rate Factors

If you have created rate factors and rate factor rules in Oracle Transportation Management, you can
generate accessorial costs in a batch mode fashion. The calculated cost value is placed in the

CHARGE_MULTIPLIER_SCALAR column of the Accessorial_Cost table (Charge Discount % field on the
Accessorial Cost page).

Process Rate Factors from a Client

You can use a command line utility to process rate factors from a client DOS or UNIX prompt. The
command line is managed by a Java class – called the Command Line Processor – available on the
OTM servers and so must be run in a shell (DOS or Unix) on one of the web or app servers2.

The general Command Line Processor format is:

java glog.util.command.CommandLineProcessor –command <command name> <…processor

options> <…command specific options>

, where the processor options supported by the Rate Factor commands are:

Parameter Usage

server The hostname of the web server where the request will be sent via “http”. If

non-standard ports are used, the format given should be hostname:port.

username OTM application user name to be used for execution of database commands.
This is required for the correct VPD security.

password Valid password for “username”.

The following table shows the commands available for processing rate factors and the command
specific options for each command:

Command Name Option(s) Description

procRateFactor -rateFactorGid – The Rate Factor

GID.

This will process the specified rate
factor using associated rate factor
rules. The command selects all rules
that refer to that Factor Source GID

procRateFactorForRule -rateFactorGid – The Rate Factor

GID.

-ruleGid – The Rate Factor Rule

GID.

This will process the specified rate
factor using the specified rate factor

rule. The command will select the
latest rule detail to apply.

2 See Oracle Transportation Management Administration Guide for complete instructions on

configuring a Java command environment.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 14-4

Command Name Option(s) Description

procAllRateFactors None. This will process all unprocessed
rate factors using their associated
rate factor rules.

Duplicates

The command cannot create duplicates. A duplicate is an accessorial cost with the same Accessorial

Code GID and overlapping effective/expiration dates. Take care when setting up the effective and
expiration date source logic in the rate factor rule.

Written to Domain

The command generates the accessorial costs in the domain where the rate factor rule exists.

Number of Accessorial Costs

The command generates an accessorial cost for each reference to accessorial default, rate offering,
and rate record.

Error Messages

Warning and error messages are logged in the ERROR_LOG table. The following generates errors:

 Inability to calculate the accessorial cost effective/expiration date

 Detected duplicate record

 Unable to calculate accessorial cost value

Undo Changes

There is no specific functionality to undo generated accessorial costs. These tips might help you:

 The way you name your rate factor IDs can help you locate accessorial costs.

 Notes on accessorial costs can help you locate them again. The accessorial cost gets its name

according to this template RF_{current date/time}_{first 15 chars of factor source

XID}_{effective date of factor value}_{seq num}.

To delete accessorial costs, you need to first delete them from the Accessorial_Default,
Rate_Offering_Accessorial, and Rate_Geo_Accessorial record.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 15-1

15. Importing Voyage Schedule Data

You can import ocean schedules from a variety of portals, like ESG, CargoSmart, INTTRA, and
GTNexus.

Assuming you want to load data from multiple providers into separate partitions, load the data from
the first provider in the staging tables. Once complete, the data should be moved to the database in
the first partition. After the first data set is complete, the data from the second provider should be
loaded in the staging tables. After that, the data should be moved to the database in the second
partition. This would continue until all the data is loaded.

1. Acquire voyage schedule data. While the data from some providers is available in the correct

Oracle Transportation Management format, you need to ensure that the format is correct prior

to loading it in the staging tables.

2. Setup Mapping of Data Sources and Partition Keys

This step is optional, but it makes it easier for you to see what partition key goes with what
data provider.

pkg_voyage.setup_data_source ('PROVIDER1',1)

 PROVIDER1 is the name of the data provider

 1 is the partition number.

Repeat this step to assign data from a second data provider to partition 2 and so on.

There is a maximum of seven partitions available. It is the VOYAGE and VOYLOC tables

that are partitioned, not the staging tables. It is possible to combine multiple data source

providers in a single partition. This requires you to load data from all data providers in that
partition prior to initiating the loading process.

3. Load the Mapping Tables using normal CSV functionality

Table Description

X_VOY_LOC_MAP mapping of data source location IDs to Oracle Transportation
Management locations GIDs

X_VOY_CAR_MAP mapping of data source service provider IDs to Oracle
Transportation Management Service Provider GIDs

4. Load the Staging Tables using normal CSV functionality

Load data into the X_VOYAGE and X_VOYLOC tables. The DATA_SOURCE column of the

tables should be set to the appropriate data source ID. The data must contain the complete

set of voyage data.

5. Delete the current voyage schedules and load the new data set from the staging tables.

pkg_voyage.load_schedule (null,200,'Y')

 The first parameter is null because the procedure will look up the partition key using the

mapping previously setup. If you did not map data sources to partition keys, you need to

make sure to load each data provider’s data set in a separate partition.

 200 defines the batch size in terms of the number of records the database should hold in

its buffer before it writes them to the database

 ‘Y’ states that errors will be logged to the log file

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 15-2

The Load Schedule procedure takes the new data from the X_VOYAGE and X_VOYLOC

tables by cross-referencing service provider IDs with the X_VOY_CAR_MAP table and the
location IDs with the X_VOY_LOC_MAP table. Note that if a mapping is missing, the

procedure creates a new location using the location ID as the GID, and adds a mapping

record to the X_VOY_CAR_MAP or X_VOY_LOC_MAP as needed.

6. View Error Log

select * from voyage_err_view

If logging was enabled, and there were any problems during the above steps, a message will
be posted to the error log.

7. View Data Mappings

select * from data_source_partition_view

If logging was enabled, the current mapping of data source and partition keys can be viewed
by executing the following command using a SQL editor:

Deleting Schedules

pkg_voyage also contains the following:

Purpose Procedure Parameters

Delete all the data in a specified

partition.

delete_schedule p_partkey (PLS_INTEGER)

Delete all the data from a specified data
provider.

Note that the name of this procedure is
the same as the preceding one. The
parameter, however, is different.

delete_schedule p_dataSource (VARCHAR2)

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 16-1

16. Java Integration API

Oracle Transportation Management provides a callable Java API to allow external developers to write
Java programs that maintain data via the application server. This document describes this API.

This chapter introduces the Java Integration API, taking the perspective of an external developer.

The Java Integration API includes the following methods.

package glog.integration.clientapi;

import java.util.Iterator;

public interface ClientAPI

{

public Iterator getEntityNames () throws ClientAPIException;

public Iterator describeEntity (String entityName) throws

ClientAPIException;

public void insert (ValuesObject rowData) throws ClientAPIException;

public void insertUpdate (ValuesObject rowData) throws ClientAPIException;

public void update (ValuesObject rowData) throws ClientAPIException;

public void delete (ValuesObject rowData) throws ClientAPIException;

public ValuesObject[] execMany (ValuesObject[] commandList) throws

ClientAPIException;

public ValuesObject findByPrimaryKey (ValuesObject primaryKey) throws

ClientAPIException;

public ValuesObject[] findAll (String entityName) throws ClientAPIException;

public void close() throws ClientAPIException;

}

The following table briefly describes the purpose of each method. Code examples are then provided to
illustrate the use of each method.

Method Description

GetEntityNames Returns an iteration of all supported entity names, such as
Location, ObOrderBase, Shipment, etc. Each entity corresponds
to an Oracle Transportation Management table, but the name of
the entity uses mixed case instead of underscores. See

Example3.java

DescribeEntity Given an entity name, returns an interaction of ValuesObject
each of which describes an attribute of the entity. See
Example4.java

Insert Inserts a new row via the application server. See
Example1.java

InsertUpdate Update a row if it exists, otherwise insert a new row. See
Example9.java

Update Updates a row via the application server. See Example2.java

Delete Deletes a row via the application server. See Example5.java

ExecMany Process a sequence of operations in a single transaction. See
Example7.java

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 16-2

Method Description

FindByPrimaryKey Return a ValuesObject corresponding to a given primary key.
See Example6.java

FindAll Return an array of ValuesObjects corresponding to all rows for
the given entity. See Example10.java

Close Close a connection

Example1.java – Insert

package glog_deploy.integration.clientapi;

import glog.integration.clientapi.ValuesObject;

import glog.integration.clientapi.ClientAPIConnection;

import glog.integration.clientapi.ClientAPI;

public class Example1

{

static public void main(String[] args) throws Exception

{

ClientAPI clientAPI =

ClientAPIConnection.connect("GUEST.ADMIN","CHANGEME");

ValuesObject rowData = new ValuesObject("Location");

rowData.put("locationGid","GUEST.MYNEWLOC4");

rowData.put("locationXid","MYNEWLOC4");

rowData.put("countryCode3Gid","USA");

rowData.put("domainName","GUEST");

rowData.put("isTemporary","true");

clientAPI.insert(rowData);

}

}

Example2.java – Update

package glog_deploy.integration.clientapi;

import glog.integration.clientapi.ValuesObject;

import glog.integration.clientapi.ClientAPIConnection;

import glog.integration.clientapi.ClientAPI;

public class Example2

{

static public void main(String[] args) throws Exception

{

ClientAPI clientAPI =

ClientAPIConnection.connect("GUEST.ADMIN","CHANGEME");

ValuesObject rowData = new ValuesObject("Location");

rowData.put("locationGid","GUEST.MYNEWLOC");

rowData.put("locationName","Eric Rosenbloom");

clientAPI.update(rowData);

}

}

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 16-3

Example3.java – GetEntityNames

package glog_deploy.integration.clientapi;

import glog.integration.clientapi.ValuesObject;

import glog.integration.clientapi.ClientAPIConnection;

import glog.integration.clientapi.ClientAPI;

import java.util.Iterator;

public class Example3

{

static public void main(String[] args) throws Exception

{

ClientAPI clientAPI =

ClientAPIConnection.connect("GUEST.ADMIN","CHANGEME");

Iterator i = clientAPI.getEntityNames();

while (i.hasNext()) {

System.out.println("EntityName = " + (String) i.next());

}

}

}

Example4.java – DescribeEntity

package glog_deploy.integration.clientapi;

import glog.integration.clientapi.ValuesObject;

import glog.integration.clientapi.ClientAPIConnection;

import glog.integration.clientapi.ClientAPI;

import java.util.Iterator;

public class Example4

{

static public void main(String[] args) throws Exception

{

ClientAPI clientAPI =

ClientAPIConnection.connect("GUEST.ADMIN","CHANGEME");

Iterator i = clientAPI.getEntityNames();

while (i.hasNext()) {

String entityName = (String) i.next();

System.out.println(entityName);

Iterator attributeList = clientAPI.describeEntity(entityName);

while (attributeList.hasNext()) {

ValuesObject metaData = (ValuesObject)

attributeList.next();

System.out.println(" " + (String)

metaData.get("AttributeName") + " " + (String)

metaData.get("DataType"));

}

}

}

}

Example5.java – Delete

package glog_deploy.integration.clientapi;

import glog.integration.clientapi.ValuesObject;

import glog.integration.clientapi.ClientAPIConnection;

import glog.integration.clientapi.ClientAPI;

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 16-4

public class Example5

{

static public void main(String[] args) throws Exception

{

ClientAPI clientAPI =

ClientAPIConnection.connect("GUEST.ADMIN","CHANGEME");

ValuesObject primaryKey = new ValuesObject("Location");

primaryKey.put("locationGid", "GUEST.MYNEWLOC");

clientAPI.delete(primaryKey);

}

}

Example6.java – FindByPrimaryKey

package glog_deploy.integration.clientapi;

import glog.integration.clientapi.ValuesObject;

import glog.integration.clientapi.ClientAPIConnection;

import glog.integration.clientapi.ClientAPI;

public class Example6

{

static public void main(String[] args) throws Exception

{

ClientAPI clientAPI =

ClientAPIConnection.connect("MDIETL.ADMIN","CHANGEME");

ValuesObject primaryKey = new ValuesObject("Shipment");

primaryKey.put("shipmentGid", "MDIETL.184");

ValuesObject rowData = clientAPI.findByPrimaryKey(primaryKey);

System.out.println("rowData = " + rowData);

}

}

Example7.java – ExecMany

package glog_deploy.integration.clientapi;

import glog.integration.clientapi.ValuesObject;

import glog.integration.clientapi.ClientAPIConnection;

import glog.integration.clientapi.ClientAPI;

public class Example7

{

static public void main(String[] args) throws Exception

{

ClientAPI clientAPI =

ClientAPIConnection.connect("GUEST.ADMIN","CHANGEME");

// Construct ValuesObject for first update command

ValuesObject rowData1 = new ValuesObject("Location");

rowData1.put("locationGid", "GUEST.MYNEWLOC");

rowData1.put("locationName","My location name");

ValuesObject update1 = new ValuesObject("update");

update1.put("rowData", rowData1);

// Construct ValuesObject for second update command

ValuesObject rowData2 = new ValuesObject("Location");

rowData2.put("locationGid", "GUEST.MYNEWLOC2");

rowData2.put("locationName","My location name2");

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 16-5

ValuesObject update2 = new ValuesObject("update");

update2.put("rowData", rowData2);

// Now execute both update commands as a single transaction.

// The method returns the commandList that you passed in, with an

"status" field

// added to each element to describe the success or failure of each

command.

ValuesObject results[] = clientAPI.execMany(new

ValuesObject[]{update1, update2});

// print the status of each command

for (int i = 0; i < results.length; i++) {

ValuesObject command = results[i];

String status = (String) command.get("status");

if (status != null) {

System.out.println("status of command " + i + " = " +

status);

if (status.equals("error")) {

String stackTrace = (String)

command.get("stackTrace");

System.out.println("stackTrace of failed command

= " + stackTrace);

}

}

}

}

}

Example9.java – InsertUpdate

package glog_deploy.integration.clientapi;

import glog.integration.clientapi.ValuesObject;

import glog.integration.clientapi.ClientAPIConnection;

import glog.integration.clientapi.ClientAPI;

public class Example9

{

static public void main(String[] args) throws Exception

{

ClientAPI clientAPI =

ClientAPIConnection.connect("GUEST.ADMIN","CHANGEME");

ValuesObject rowData = new ValuesObject("Location");

rowData.put("locationGid","GUEST.MYNEWLOC4e");

rowData.put("locationXid","MYNEWLOC4e");

rowData.put("countryCode3Gid","USA");

rowData.put("domainName","GUEST");

rowData.put("isTemporary","true");

clientAPI.insertUpdate(rowData);

}

}

Example10.java – FindAll

package glog_deploy.integration.clientapi;

import glog.integration.clientapi.ValuesObject;

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 16-6

import glog.integration.clientapi.ClientAPIConnection;

import glog.integration.clientapi.ClientAPI;

public class Example10

{

static public void main(String[] args) throws Exception

{

ClientAPI clientAPI =

ClientAPIConnection.connect("MDIETL.ADMIN","CHANGEME");

ValuesObject[] set = clientAPI.findAll("Shipment");

for (int i = 0; i < set.length; i++) {

System.out.println(set[i]);

}

}

}

Example11.java – Exception Handling

All the ClientAPI methods throw ClientAPIException. This example shows how you may catch a
ClientAPIException.

package glog_deploy.integration.clientapi;

import glog.integration.clientapi.ValuesObject;

import glog.integration.clientapi.ClientAPIConnection;

import glog.integration.clientapi.ClientAPI;

import glog.integration.clientapi.ClientAPIException;

public class Example11

{

static public void main(String[] args) throws Exception

{

// Catch a bad password

try {

ClientAPI clientAPI =

ClientAPIConnection.connect("GUEST.ADMIN","WRONGPASSWORD");

}

catch (ClientAPIException cae) {

cae.printStackTrace(System.out);

}

}

}

The ClientAPIConnection Class

The ClientAPIConnection class provides a connect() method which authenticates the client application

and returns an instance of a class which implements the ClientAPI.

The ValuesObject Class

The ValuesObject class is a thin wrapper around java.util.HashMap, providing support for a set of
attribute/value pairs.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 16-7

Handling Units of Measure

The output from Example6.java can be used to understand how units of measure are represented
within the ValuesObject.

java glog_deploy.integration.clientapi.Example6

rowData = {isTemperatureControl=false, domainName=MDIETL,

checkCapacityConstraint=true, itineraryGid=MDIETL.180, totalActualCost=2880.44

USD, startTime=2002-09-17 17:47:28 UTC, totalVolume=1000 CUFT,

isCostFixed=false, plannedCost=2880.44 USD, totalWeight=40000 LB,

totalWeightedCost=2880.44 USD, totalNetVolume=1000 CUFT,

isServiceTimeFixed=false, rateGeoGid=MDIETL.CA-GA.MSCARRIERS,

feasibilityCode=FEASIBLE, rateOfferingGid=MDIETL.MSCARRIERS2000, endTime=2002-

09-22 17:47:28 UTC, totalNetWeight=40000 LB, isFixedTenderContact=false,

isTemplate=false, shipmentAsWork=false, numStops=2, checkCostConstraint=true,

weighCode=A, isRateOfferingFixed=false, shipmentReleased=true,

sourceLocationGid=MDIETL.CONTAINER MFG - PLANT 1 - LOS ANGELES,

isAutoMergeConsolidate=false, shipmentTypeGid=TRANSPORT, isToBeHeld=false,

parentLegGid=MDIETL.1, isPreferredCarrier=false, servprovGid=MDIETL.MSCARRIERS,

transportModeGid=TL, destLocationGid=MDIETL.100 INDUSTRIAL ROAD, perspective=B,

shipmentGid=MDIETL.184, totalShipUnitCount=1, shipmentXid=184, rule7=false,

isServprovFixed=false, shipmentName=erosenbloom, numOrderReleases=1,

checkTimeConstraint=true, isPreload=false, isHazardous=false,

isRateGeoFixed=false}

The above output illustrates several UOM attributes. For example, the UOM of “totalActualCost” is
“USD”, and the UOM of “startTime” is “GMT”. When writing code such as Example1.java, you must
specify a unit of measure for any attribute where a unit of measure makes sense. (A Remark would be
an example of an attribute where a unit of measure would not make sense).

The valid UOM codes can be determined by querying the UOM table.

Environment Issues

The ClientAPIConnection class depends on there being a glog.properties file in the user.home
directory. This property file is required to determine which application server to connect to. (Notice
that only the username and password is specified when you make the connect call from your java
program).

Here are the minimal entries required in the glog.properties file:

application server URL and port

appserver=localhost

appserver.port=7001

On an NT machine, the above glog.properties file resides in the default user.home directory:

c:/WINNT/Profiles/username/glog.properties

You can specify user.home on the java command line, and then ClientAPIConnection will find the
glog.properties file in the directory you specify. For example:

java -Duser.home=l:/gc3/glog_deploy/app/config

glog_deploy.integration.clientapi.Example1

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 16-8

In the above example, you tell the JVM that the user.home directory is l:/gc3/glog_deploy/app/config

instead of the default c:/WINNT/Profiles/username.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 17-1

17. Oracle Advanced Queuing

Oracle Advanced Queuing (OAQ) provides an alternate way of sending and receiving XML
transmissions to/from Oracle Transportation Management. The main benefit to using OAQ is the added

level of guaranteed message delivery provided by a persistent message queue.

To use the OAQ functionality in Oracle Transportation Management, the following setup steps must be
performed.

Step 1 –Create Queue Table(s)

The default implementation for OAQ in Oracle Transportation Management relies on a database table
called INTG_QUEUE. The table is a point-to-point (single consumer) queue table. The table should be

available with the installation of the Oracle Transportation Management database.

The OAQ functionality is not restricted to a single queue table. Additional queue tables can be created
as needed, although a single queue table can also support multiple queues (see Step 2 below). The
following procedure is available to create additional queue tables.

procedure create_int_queue_table(p_table_name varchar2,

p_comment varchar2,

p_table_space varchar2 default 'data',

p_multiple_consumers boolean Default false);

The procedure supports creating multi-consumer queue tables using the p_multiple_consumers
argument. The only requirement for creating a queue table is inbound queues that Oracle
Transportation Management will read from must be created as a point-to-point (single consumer)
table.

Example:

Sqlplus> execute

pkg_queue_management.create_int_queue_table(‘queue_test_table’, ‘This is for

test only’);

Alternatively, for the multi-consumer:

Sqlplus> execute

pkg_queue_management.create_int_queue_table(‘queue_test_table’, ‘This is for

test only’, ‘data’, true);

The queue tables created use a custom data type called INTG_QUEUE_MESSAGE. The custom data
type supports additional fields used for communication. The definition of the INTG_QUEUE_MESSAGE
is:

ID Type Description

refnum varchar2(101) Can be assigned by client system
for message referencing.

subject varchar2(500) Arbitrary text field definable by the

client.

transmission_no number Oracle Transportation Management
assigned transmission number.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 17-2

ID Type Description

external_system_id varchar2(101) Overrides the external system GID
in the TransmissionHeader.

user_name varchar2(128) Used for user authentication instead
of specifying in the

TransmissionHeader in the XML.

password varchar2(128) Used for user authentication instead
of specifying in the
TransmissionHeader in the XML.

Xml clob Contains the XML transmission.

Step 2 – Setup Required Inbound Queues

For inbound processing of the XML, a set of four queues are required. The queues are:

 Inbound Queue (originally defined as inbound_aq in release 4.0)

 XML Topic Queue (originally defined as xml_stage_aq in release 4.0)

 Ack Queue (originally defined as ack_aq in release 4.0)

 Exception Queue (originally defined as exception_aq in release 4.0)

A query_replay_aq is also needed for responding to Remote Query transactions such as Rate Inquiry
(RIQ).

The following diagram shows the communication from the client to the database, as well as a high
level depiction of the processing in the database.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 17-3

In the diagram above, the client first sends the XML to the Inbound Queue. The database listener
reads from the “Inbound Queue” and stages the data to the i_transmission/i_transaction tables. If
staging is successful, the database listener puts the TransmissionAck message in the “Ack Queue” and
stages a message to the application server in the “XML Topic Queue” so that the app server can
proceed with processing the message. If the Transmission XML is for a RemoteQuery, the query
response is placed in the query_reply_aq queue. If an error occurred in the staging, the database
listener puts an exception message in the “Exception Queue”. The configuration of the application

server listener is discussed later. All the queues may or may not be on the same queue table.
However, the “Inbound Queue” and “XML Topic Queue” must not be multi-consumer queues.
Furthermore, the user is allowed to add multiple sets of inbound and outbound queues in the same
queue table.

To create all four queues required for inbound processing on the same queue table, use the following
procedure:

procedure setup_inbound_queue_system(p_queue_table_name varchar2,

p_inbound_queue_name varchar2,

p_xmltopic_queue_name varchar2,

p_ack_queue varchar2,

p_exception_queue varchar2)

Example:

Sqlplus> execute pkg_queue_management.setup_inbound_queue_system

(‘queue_test_table’,

 ‘another_inbound_aq’,

 ‘raise_xml_topic’,

DB Listener Process

OTM

App Server
OTM

Web Server

CLIENT

OTM Database

Use Web Service
Client API to Send

Validate &

Save to

Tables

Send

Response

Publish

To App

inbound_aq

xml_stage_aq

ack_aq

exception_aq

query_reply_aq

Retrieve from
Inbound Queue

Retrieve

Errors

Retrieve

Ack

Retrieve

Query Reply

DB Listener Process

OTM

App Server
OTM

Web Server

CLIENT

OTM Database

Use Web Service
Client API to Send

Validate &

Save to

Tables

Send

Response

Publish

To App

inbound_aq

xml_stage_aq

ack_aq

exception_aq

query_reply_aq

Retrieve from
Inbound Queue

Retrieve

Errors

Retrieve

Ack

Retrieve

Query Reply

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 17-4

 ‘acknowledgement’,

 ‘notify_exception’);

To create the queues on different queue table(s), use the following procedure:

procedure start_queue(p_queue_name varchar2, p_queue_table_name varchar2)

Example - to create all the queues in example A above individually, use the following commands:

Sqlplus> execute pkg_queue_management.start_queue (‘another_inbound_aq’,

‘queue_test_table’);

Sqlplus> execute pkg_queue_management.start_queue(‘raise_xml_topic’,

‘queue_test_table’);

Sqlplus> execute pkg_queue_management.start_queue (‘acknowledgement’,

‘queue_test_table’);

Sqlplus> execute pkg_queue_management.start_queue (‘notify_exception’,

‘queue_test_table’);

Step 3 – Setup Database Listeners

For each inbound set of queues created above, a database listener should be created in order for the
XML to be processed. The following procedure is used to setup the listener:

procedure install_queue_listener(p_inbound_queue_name varchar2 ,

p_xmltopic_queue_name varchar2 ,

p_ack_queue varchar2 ,

p_exception_queue varchar2)

Example:

Sqlplus> execute pkg_queue_management.install_queue_listener (

‘another_inbound_aq’, ‘raise_xml_topic’, ‘acknowledgement’,

‘notify_exception’);

In this case, the client first sends the XML to the ‘another_inbound_aq’ queue defined in the first
parameter. The database listener reads from this queue and stages the data. If staging is successful,
the database listener puts the TransmissionAck message in the ‘acknowledgement’ queue defined in
the third parameter, and stages a message to the application server in the ‘raise_xml_topic’ queue

defined in the second parameter. If an error occurred in the staging, the database listener puts an
exception message in the‘notify_exception’ queue defined in the fourth parameter.

To stop the database listener, execute the following procedure on the “Inbound Queue”:

Sqlplus> execute

pkg_queue_management.stop_queue_listener(‘another_inbound_aq’);

Step 4 – Setup Application Server Listeners

After the database listener successfully stages the XML, it submits a message to the “XML Topic

Queue” for the app server to process. The app server requires a listener/thread to be enabled to
process the messages in the “XML Topic Queue”. The app server listener is set up through properties.
The format of property entry is (note the difference in glog.integration.oaq vs. glog.oaq.integration):

glog.oaq.integration.{the_topic_queue_name}=1

For example, the property entry corresponding to the database listener created in (3) should be:

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 17-5

glog.oaq.integration.raise_xml_topic=1

The value for the property must be a non-zero integer. The integer value determines the total number
of threads for the listener. Since the app server listener is very lightweight, one thread should be
enough to process the messages. If user desires to set up the value greater than one, a performance
test should be done to determine the effects. To turn off the listener, set the value to “0” or remove
the property entry. The property only takes effect during the startup.

Auto Startup of Database Listener via Application Server

The app server has the ability to start and stop the database listener when it is being started or shut

down. This is enabled through the use of the following property:

glog.integration.oaq.controlDbListener=true

When the property is true, the app server will also start the database listener when the app is starting,

and will also shut down the database listener when the app server is shutting down.

Backward Compatible Application Server Properties

Prior to Oracle Transportation Management Release 5.0, the application server listener was started by
setting the property glog.integration.oaq=true. Please note that this property is deprecated. The
suggested property is “glog.oaq.integration.xml_stage_aq=1”. For backward compatibility, the
property “glog.integration.oaq=true” is still supported and correlates to enabling the suggested
property “glog.oaq.integration.xml_stage_aq=1”.

Step 5 – Create Outbound Queues

Clients specify the queue to use for sending outbound XML from Oracle Transportation Management in
the External System Manager in the UI. There are two approaches for creating the outbound queue,

which is then used in the External System Manager. The first approach is to create the queue using
the stored procedure – this enables the client to specify the queue table to be used for the queue.
After the queue is created, the external system can then reference the queue. The second approach is
to specify the queue in the external system manager without first creating the queue. If the queue
does not exist, the Oracle Transportation Management application would create the queue with the

queue table defined in the property entry glog.integration.oaq.outbound.queuetable. By default, the
queue table is intg_queue.

Example to create queue from procedure:

Sqlplus> execute pkg_queue_management.start_queue (‘outbound_example_queue’,

‘outbound_queue_table’);

If the queue table is a multi-consumer queue table, the corresponding queue on the table is multi-

consumer. At least one subscriber must be created for the queue, otherwise, Oracle Transportation

Management will throw an exception during the enqueue process.

The following procedure will add a subscriber to the multi-consumer queue:

Sqlplus> Pkg_queue_util.add_subscriber(‘mutlti_consumer_queue’,

subscriber_name);

Step 6 – Other Queue Management Utilities

To drop a queue:

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 17-6

execute pkg_queue_management.drop_queue ('your queue_name');

To delete all queue entries for a given queue:

execute pkg_queue_management.delete_queue_entries('your queue_name');

To remove every entry for all the queues in a given non multi-consumer queue table:

execute pkg_queue_management.empty_queue_table(‘queue table name’);

To drop all queues in a given table:

execute pkg_queue_management.drop_all_queues(‘queue table name’);

To drop a queue table as well as the corresponding queues:

execute pkg_queue_management.drop_queue_table(‘queue table name’);

To stop all database listeners:

execute pkg_queue_management.stop_all_queue_listeners;

To stop a specific database listener:

execute pkg_queue_management.stop_queue_listener(‘inbound queue’);

** The “inbound queue” is the first parameter in install_queue_listener

To remove database listeners:

execute pkg_queue_management.remove_all_queue_listeners;

To remove a specific database listeners:

execute pkg_queue_management.remove_queue_listener(‘inbound queue’);

Optional Oracle Settings

The following Oracle parameters can be specified in init.ora or spfile. Refer to Oracle database
documentation for additional details on these parameters.

 aq_tm_process = 1 (to perform time monitoring on queue messages)

 job_queue_processes = 6 (to set the number of job queue processes started in an instance)

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 18-1

18. Copying Domains

Note: While copying domains, make sure no user accesses the database. You can do this

by shutting down the application server.

Note: If you want to copy domain1 that needs data from domain2 and you want domain1
to have access to all data in domain2 in the new target database too, you need to make

sure you copy domain2 before domain1.

This chapter describes a set of tools to copy domains. Each of them has its limitations and
advantages.

Tool Advantages Limitations Usage

Export/

Import

No physical restrictions on the

target and source database servers.
For example, they do not need a
network link between them.

Tables in your target and source

domain must have the same
table structure.*

Security related tables are not
copied.

Does not allow you to rename the
copied domain name.

Only

between
databases.

In Schema
Copy

Data in CLob and long columns can
be copied.

You must rename the copied
domain.

For tables that have a
domain_name column and a

numeric primary key, the primary

key will increment utilizing
sequence numbers. However, its
copied child fk column data still
points to the old
from_domain_name parent.

Only within
one
database.

Database
Link Copy

Preferred tool to build a clean
database out of an existing
database.

Tables in your target and source
domain can contain different
columns.*

You can rename or keep the copied

domain name.

You can run this script multiple
times to insert rows that have been
added in the source database since
the last database link copy.

Requires that a public database
link can be created from the
target database to the source
database.

Allows you to copy CLob and long
columns. However, the data

types in the local and remote
domains must be the same.

Within or
between
databases.

* Tables might contain different columns if you migrated your source database from an earlier
database version and you create your target database with the create_all script. In this case, your
migrated database contains obsolete columns since the migration scripts do not generally drop
obsolete columns.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 18-2

Export and Import

This tool exports and imports domain data, child domain data, and referenced domain data. The tool
computes the referenced domains from the domain_grant_made table. Furthermore, it copies any
table with a domain_name column. You run the domain import/export with two shell scripts.

Note: This tool only works with databases for Oracle Transportation Management version
3.1.1 and later.

Note: Only tables that have a domain_name column can be copied.

Note: It is crucial to create the target domain before copying data into it.

Note: Do not use this tool to copy domains to a production database you plan to go live

on. The other tools are better.

What the Objects do

This section describes what each object does.

domain_export.sh

 Calls pkg_domain_export

Searches all the grantor domains that grant read or write access of their domain data to the current
domain. However, it does not perform the physical check to see if the current domain does actually
reference the grantor domain data. The grantor domain does not include the PUBLIC and SERVPROV
domains.

Searches for tables with a domain_name column.

Generates parameter files for export and import

 Calls the Oracle export tool to export the domain data to a dump file.

domain_import.sh

 Calls pkg_domain_export.

Disables some triggers during import.

Disables self-referenced foreign keys during import.

 Calls the Oracle import tool to import the domain data

 Calls pkg_domain_export.

Enables the disabled triggers once the import is completed.

Enables the self-referenced foreign keys once the import is completed.

 Calls pkg_purge and fk_trouble_shooter.

pkg_shipment_purge and fk_trouble_shooter form a backup plan. As mentioned above, PUBLIC and
SERVPROV data is not exported. Still, the exported domain might reference PUBLIC or SERVPROV data
in the source database leading to foreign key violations. These two packages search for those
references and remove them from the target database.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 18-3

Setup

Compile the packages.

1. Sqlplus> @pkg_shipment_purge.sql

2. Sqlplus> @create_pkg_domain_export.sql

3. Sqlplus> @create_fk_trouble_shooter.sql

Steps to Copy a Domain

Export from source database.

1. Os prompt> bash domain_export.sh <oracle_sid> <userid> <password>

<domainname> <include_reference_domain>

Example: bash domain_export.sh localdb glogowner glogowner guest yes

The last command line argument, include_reference_domain, is either “yes” or “no”. When
you enter “yes”, the script exports the grantor domain data along with the specified domain

data. This is the preferred scenario. However, you can encounter other situations where you

export multiple domains and you have already imported the grantor domain data into the
target database. If this is the case, enter “no” as the last argument to skip the grantor

domains.

2. Review domainexp.log for error messages. You can safely ignore Oracle errors and messages

marked EXP-00081.

Import into target database.

3. Create target domain in Oracle Transportation Management.

If you do not, you will have problems creating the domain in Oracle Transportation

Management afterwards. Even if you do create your target domain in Oracle Transportation
Management, you will see a lot of error code –1, which means primary key violation. This is

okay. The error messages occur because Oracle Transportation Management creates some

table data automatically and the copy then tries to insert the same data.

4. Transfer the files domainexp.dmp and domainimp.par to the target database.

5. Os prompt> bash domain_import.sh <oracle_sid> <userid> <password>

Result

When domain_import.sh is done, it displays the message “ALL FOREIGN KEYS WERE ENABLED

SUCCESSFULLY!” on the console. If it does not, examine the error logs in domainimp.log and
violated_con.log.

 domainimp.log captures all errors during the import.

 violated_con.log gives you more detailed information about constraints. It summarizes all

tables with invalid constraints, as well as parent keys, missing in the target database.

Error Messages

The most common problem encountered while importing is foreign key violations, where a large
number of rows are rejected. This can be frustrating since it takes a lot of time to display the error
messages on the console. Foreign key violations might occur if you migrated your source database
from an earlier database version and you created your target database with the create_all script. In
this case, your migrated database contains obsolete columns since the migration scripts do not

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 18-4

generally drop obsolete columns. To confirm this, search for ORA-00904 error messages in your

domainimp.log file.

In Schema Copy

This tool allows you to copy domains within one database. You can copy domains with or without their

child domains. Child domains keep their original child domain names; only the parent domain name
part is replaced.

What the Objects do

This tool uses these stored procedures in pkg_novpd_domain_copy:

Procedure Does This

set_copy_parameters Stores what “from_domain” to copy into what “to_domain”. You can
enter multiple pairs of domains before executing the actual copying.

print_copy_parameters Displays the list of “from_domain”s and “to_domain”s you have
created with set_copy_parameters.

reset_parameters Clears the list of domains to copy. You might want to do this if you
notice a spelling error.

Set-up

Compile the packages.

1. Log in as glogowner.

2. sqlplus>@create_pkg_novpd_inschema_copy.sql to compile the package.

3. sqlplus>@novpd_domain_copy_script_builder.sql to generate the domain copy script,

novpd_load.sql. In novpd_load.sql, there is a procedure for every table. Each procedure is
enclosed by "declare" and a "/". You can remove a procedure from the script if you do not

want to copy a certain table.

Copy Domains

1. sqlplus>execute pkg_novpd_domain_copy.set_copy_parameters('from_domain', 'to_domain',

copy_child_domains, domain_info) to set your copy parameters.

Note: You need to execute this command for every domain to be copied.

Note: You can copy multiple domains with or without renaming them in a single run.

Note: If domains depend on each other for data and you want to rename at least one of

these domains, you must copy all these domains in a single run. This will allow
novpd_load.sql to keep all dependencies correct. If you do not, some of the data will be

rejected due to foreign key violations.

Parameter Description

from_domain Name of the domain to copy.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 18-5

Parameter Description

to_domain The new name of the domain.

copy_child_domains true - child domains will be copied

false - child domains will not be copied.

domain_info You must enter "false". This retrieves domain information from
the local source database instead of a remote target database.

2. sqlplus>set serverout on size 1000000.

3. sqlplus>execute pkg_novpd_domain_copy.print_copy_parameters to display the parameter

values entered.

4. If you notice that any of your parameters are wrong, you can reset all parameters with

execute pkg_novpd_domain_copy.reset_parameters. If you do execute this statement, you

must re-enter all your parameters.

5. sqlplus>@novpd_load.sql to copy all domains you have entered parameters for. There is a log

file: inschema_domain_copy.log.

6. sqlplus>execute domainman.reset_sequence to reset the Oracle sequence numbers.

7. You need to restart Oracle Transportation Management running against the target database to

be able to log in to your newly copied domain. The restart allows Oracle Transportation

Management to refresh its caches.

Result of In Schema Copy

After novpd_load.sql has finished it displays the number of data rows that were copied and rejected.

Database Link Copy

This is the preferred tool to build a clean database out of an existing database.

Database Link Copy requires the packages pkg_novpd_domain_copy that depends on
pkg_domain_export. It copies tables with the domain_name column as well as the security tables.

The total number of rows copied or rejected is written in the database_link_domain_copy.log file. If an

exception happens, the exception code as well as the primary key is also written to the log file.
Furthermore, if the exception is a foreign key violation, the log will include the foreign key.

Create Link from Target to Source Database

1. Log in to the target database with a DBA level account. You must then navigate to the

/glog/oracle/script8/ directory.

2. sqlplus>alter system set global_names=false

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 18-6

3. sqlplus>create public database link "loader.oracle.com" connect to

"username_in_source_database" identified by " password_in_source_database" using
'source_database'

Example: create public database link "loader.oracle.com" connect to "glogowner" identified by
"glogowner" using 'hera35'

Use exact double or single quotes as shown above.

Later, if you need to change the database link to point to a different database, you must first

drop the database link (drop public database link loader.oracle.com) and then recreate it.

4. Sqlplus>select count(1) from shipment@loader.oracle.com to confirm that the database link

is active.

Generate Script

1. Sqlplus>connect glogowner/password@targetdb

2. Sqlplus>@create_pkg_novpd_inschema_copy.sql

3. Sqlplus>@database_link_domain_copy_script_builder.sql to generate the link_load.sql

script. link_load.sql contains a stored procedure for every table it will copy. Each procedure is

enclosed by "declare" and a "/".

Note: You can remove a procedure from the link_load.sql script if you do not want to copy
a certain table. Note that once you remove a procedure for a table, its child tables are

rejected.

Note: Like novpd_load.sql, link_load.sql only contains a stored procedure for tables that
the two databases have in common. Furthermore, only data in columns that appear in both

the target and source database will be copied. This allows you to copy domains between

databases of different releases.

Note: You may encounter some problems

1. When uncopied columns are required and have no default values or triggers.

2. When the same column in both target and source database has different data types such
as CLOB and LONG.

3. When data records in your domain point to records in a domain that do not exist in the

target domain. You will see error 2291 in your log file (foreign key violation).
4. When the sequence number of your source database is higher than your target

database. If any of the records in your copied domain refers to a table with only a

sequence number as primary key, the referring record will be rejected.

Copy Domains

Note: During the domain copy, only one commit per table and domain is executed. If you

want to copy a large amount of data, be sure to allocate enough rollback tablespace and

segments.

1. sqlplus>execute pkg_novpd_domain_copy.set_copy_parameters('from_domain', 'to_domain',

copy_child_domains, domain_info) to set your copy parameters.

Note: You need to execute this command for every domain to be copied.

Note: You can copy multiple domains with or without renaming them in a single run.

Note: If domains depend on each other for data and you want to rename at least one of

these domains, you must copy all these domains in a single run. This will allow

link_load.sql to keep all dependencies correct. If you do not, some of the data will be
rejected due to foreign key violations.

mailto:shipment@loader.oracle.com

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 18-7

Parameter Description

from_domain Domain name in source database.

to_domain Domain name in target database. If it is the same as
from_domain, then no renaming is performed. Otherwise,
from_domain would be renamed to to_domain during the copying.

copy_child_domains true - then child domains will be copied

false - child domains will not be copied.

domain_info You must enter "true". This retrieves domain information from the
remote source database instead of the local target database.

2. sqlplus>set serverout on size 1000000.

3. sqlplus>execute pkg_novpd_domain_copy.print_copy_parameters to display the parameter

values entered.

4. If you notice that any of your parameters are wrong, you can reset all parameters with

execute pkg_novpd_domain_copy.reset_parameters. If you do execute this statement, you

must re-enter all your parameters.

5. sqlplus>@link_load.sql to copy all domains you have entered parameters for. There is a log

file: database_link_domain_copy.log

6. sqlplus>execute domainman.reset_sequence to reset the Oracle sequence numbers.

7. You need to restart Oracle Transportation Management running against the target database to

be able to log in to your newly copied domain. The restart allows Oracle Transportation

Management to refresh its caches.

Difference Between Domains

You can find the difference between two domains and list the primary keys.

1. Sqlplus>set serverout on size 1000000

2. sqlplus>execute pkg_domain_export.diff_remote(remote_domain, local_domain)

Note: Differences here, most likely depends on static data missing, in your target

database, in a domain like PUBLIC. Also, you might have missed to copy dependant

domains in one session.

3. sqlplus>execute pkg_domain_export.diff_table_remote(remote_domain, local_domain)

Rerun database link copy

As long as the target database schema has not changed, you can run the link_load.sql script again

and again to insert rows that have been added to the source database since the last database link
copy. This is also useful to keep PUBLIC domains in two databases synchronized. Note that this does
not update existing rows in the target database

Note: If the target database schema has changed, you need to run the
database_link_domain_copy_script_builder.sql script again to create an updated link_load.sql

script.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 19-1

19. Deleting Domains

This chapter describes the steps to delete domains in Oracle Transportation Management.

1. Shut down the Oracle Transportation Management application. This includes WebLogic,

Tomcat, Apache, etc.

2. Log in directly to the database using a database management utility such as SQLPLUS. Log

into the database as glogowner.

3. Delete a single domain. Enter the following command at the SQLPLUS prompt:

Exec domainman.delete_domain(‘DOMAIN’);

Note: Substitute the domain name that you want to delete for DOMAIN. Since this does a

cascade delete, this may take a significant amount of time. If there is any data cross-

referenced between domains, the data referenced will not be deleted. For example, if

Shipments in DomainA reference rates in DomainB, and you delete DomainB, rates in

DomainB referenced by shipments in DomainA can not be deleted.

4. Delete mutiple domains. Enter the following commands at the SQLPLUS prompt:

Exec domainman.mark_domain_for_delete (‘DOMAIN’, including_sub_domains);

Note: Substitute the domain name that you want to delete for DOMAIN.

Including_sub_domains equals “true” or “false”. If it is “true”, then the child domains are

also marked for deleted. Otherwise, the child domains are not included for deletion. This
procedure should be called for each domain to be deleted. Every time the procedure is

called, the domain and its child domains are cached in memory. If you make a mistake,

you have to log out the session and re-log in.

Exec domainman.delete_marked_domains;

Note: This procedure iterates through all the domains and child domains marked in the

previous step. It deletes one table at a time for the domains and their children. It yields
better performance. Futhermore, it can delete cross-referenced data within domains in this

transaction.

5. Delete non-existent domain data. Enter the following commands at the SQLPLUS prompt:

Set serverout on size 1000000

Exec domainman.report_unreferenced_domains;

Note: This procedure reports all the non-existent domains table by table. The non-existent

domains are the ones which are not in domain table. They could be from a bug from
previous delete domain procedure or the result from loading a CSV. After reviewing the

report generated from the previous step, you can call the next procedure to delete the data

in all the tables for the non-existent domains.

Exec domainman.delete_unreferenced_domains;

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 20-1

20. Migration Projects

The high level steps involved in a typical use of the Migration Project feature are as follows.

1. Create an Export Migration Project on the Source system.

2. Define one or more Migration Objects Groups in the project.

3. Add one or more Object IDs to each Migration Object Group.

4. Export Migration Project. This will create a Migration Package File.

5. Request the System Administrator to copy the package file from the Source system to the

Target system.

6. Run the Import process on the Target system to load the data contained in the Migration

Package File.

Obviously, for many use cases the above steps are not sufficient; e.g. if the source domain differs

from the target domain there must be a step which modifies the content of the package file before
import. It is also possible that a configuration is required to be managed by a Version Source Control
System and so in theory the package file could be manually generated and always the direct result of
an Export process.

The following sections describe in detail the steps listed above but also describe sample scenarios
which may require additional steps. Any constraints within the current implementation will be
described where relevant.

 Creating a Migration Project for Export
 Migration Project Package File Contents
 Importing a Migration Project Package

Creating a Migration Project for Export

Migration Project Overview

Note: This section should be read in conjunction with the online help as this will describe
the relevant fields available in each UI screens.

By default, new migration projects created via the UI under Business Process Automation >Migration
Project Management > Migration Projects, will have a Project Type of Export. The project type is
purely informational in this version of the feature; i.e. there is no restriction on exporting projects
which have a project type of Import. The main use is to identify the primary purpose of the migration

project.

The Manual Sequencing flag indicates whether or not to allow the application to decide the order in
which data is loaded. If this is checked, you must order the data in the required sequence. See the
Manual Sequencing section below for a full description.

The next step is to define the groups of objects of specific types, e.g. Agent, by using the New
Migration Object button.

The type of object in the migration object group is determined by the Screen Set ID (also known as a

Finder Set). A screen set specifies the Finder used to search for objects of a given type. Once the
Screen Set ID is selected e.g. AGENT, the grid for saving an Object ID will be associated to objects
of that type, i.e. by using the Find or List icons on the Object ID field, it will present the Finder Query
page for the type, i.e. in this example will present an Agent Finder.

One or more IDs can then be added to the groups and saved. The group can also be edited later to
remove previously saved Object IDs or to add new Object IDs.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 20-2

Any number of additional groups can be added including multiple groups of the same type. By default

the list of Migration Object Groups will display in the order they were added. It is only when the
Migration Project is Finished and saved to the database that the true sequence of how the object
groups should be processed is calculated.

The Transaction Code specifies how the object data should be processed by the Target system and
can currently be one of:-

 Insert: Create new object and report an error if an object with the same ID already exists

 Insert Ignore: Create new object only if object does not already exist. Do not error if it does.

 Delete: Remove object. Report an error if it does not exist.

Migration Project Status

During the lifecycle of a migration project, the status of the project can change to reflect its current
state.

When an Export project is first created it will be in ACTIVE status and when it is successfully exported
it will be in EXPORTED status. Because an Import project is typically created when a Project Package
is imported, the initial status will normally be IMPORTED for a successfully imported package. The
PARTIAL status indicates that some objects were imported successfully whereas some others will

have failed.

There is also an ERROR status that is intended to show that errors occurred during either the import
or export process depending on the Project Type and system where the process occurred.

The RUNNING status indicates that an Import or Export process is currently in progress and should
therefore ultimately change to one of IMPORTED, PARTIAL, EXPORTED or ERROR when complete
based on results.

Migration Object Status

As well as status at the Project level, each migration object group and individual Object ID also has a
status. If any one of a group’s objects has an ERROR status then the overall group status is also

ERROR. The Object ID which is in error will also have a Failure Reason ID to explain why the error
occurred. See below for a list of possible IDs and an explanation of the reason for failure and options
for resolution.

Failure Reason ID Reason Solution

MIGR_PROJ_PK_NOT_EXIST An Object ID in an Export project
does not exist

Recreate Object or remove
Object ID from Migration
Object Group.

DBXML_IMPORT_INTERNAL_ERROR DBXML has reported an error

trying to load an object group.

Review logs (may need to

turn on DBXML log ID) and
take appropriate corrective
action.

Migration Project Version

The Version field is designed for informational purposes to reflect which version of an exported
project was used for an import. The Export project will start at version “1” and increment each time an
update is made to the project. When an exported package is imported into a target system, the
version of the project at the time of export will show in the imported project.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 20-3

Manual Sequencing

Some object IDs, for example LOCATION, can appear as a foreign key on many tables in the OTM data
model. Consequently it can appear, based purely on the data dictionary, that there is a circular
relationship between certain tables. Clearly this is not the case as the application context prevents
such a situation (many foreign keys are optional fields and only used in certain specific cases).

However, what this means is that for certain object types e.g. Service Provider, depending on the level
of configuration complexity on a particular instance, that the automatically determined sequence is not
sufficient. Note that although this is a theoretical possibility, in most implementations this
complication is unlikely to occur. Nevertheless, should such a case be experienced then the Manual
Sequencing override flag can be used. Use of this flag enables the Link Sequence field allowing
values to be specified for each Migration Object Group in the project. This will cause the entered
values to be used when processing the data and these will not be overridden by the application when

the project is saved.

The Link Sequence is an integer field and reordering of groups may require updating multiple groups.
For example, if groups exist with sequences 1, 2, 3 & 4 and the requirement is to move the current
item 2 to follow the current item 3, this would be achieved as follows:

 Renumber group 4 to be group 5

 Renumber group 2 to be group 4

 Save project.

Creating the Migration Project Package

The migration project defines the specific objects that are considered part of the project but it does
not contain any of the content associated with each object. It is essentially just a list of unique keys.

Running the Export process (Business Process Automation > Process Management > Migration Project

Export) extracts the content for all (valid) project objects and packages it along with a Project
Control File (project.xml) into a Migration Project Package zip file.

The package file name (i.e. preceding the file extension of “.zip”) will default to the Migration Project
XID but can be overridden by using the Migration Project Package field.

In an OTM environment with multiple application servers it becomes necessary to specify which server
should execute the Export and Import processes. This is to fix the location for the package files to be

one server. If this was not done, then if the package is not copied to ALL servers, it is possible that a
scheduled Import process could fail.

Therefore, in a Scalability configuration the following steps should be taken:

 Use Cluster Management to define new cluster for Migration Project Processes

 Assign one machine to this cluster.

 Associate the MIGRATION Application Function to the new cluster.

 Restart Application servers.

Note: The physical location on the server where the package file is stored is controlled by the
glog.migrationProject.dir property and defaults to <OTM_HOME>/glog/integration/projects.

Migration Project Package File Contents

In the current release, the object content is stored in DB.XML format files where there will be one
DB.XML for each migration object group.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 20-4

The DBXML Export by “DB Object” capability is used to extract the content for the project package.

The DB Object name used is the table name associated to the Screen Set ID for each object group.
This requires that a DBXML SQL file exist for each supported table. This SQL controls the columns and
child tables exported for each parent. If there is any need to customize this query then refer to section

DB XML Export for details on how this should be achieved.

The content of a sample project package with one LOCATION object group is listed below:

$ jar tvf $OTM_HOME/glog/integration/projects/TEST-001.zip

 3380 Tue Jul 30 10:39:54 PDT 2013 LOCATION_1.db.xml

 785 Tue Jul 30 10:39:54 PDT 2013 project.xml

The project.xml file is the Project Control File and contains information on the contents of the package
(described in MigrationProject.xsd):-

 ID of source project

 Status of source project on export

 Version of source project on export

 Number of object groups in source project

 Number of object groups successfully exported to this package

 Start/End process times for export.

 For each group:-

o Transaction code

o Process sequence

o Number of objects in the source group

o Number of objects successfully exported to package

o Object IDs in group.

Content Modification

There may be occasions where some of the data elements in the source system differ from the
required corresponding elements in the target system e.g. domain name, email address, external
system URL etc.

If this is the case, the relevant DBXML source file must be unpacked from the package, edited and
then repackaged using the same file name as in the original package file.

Importing a Migration Project Package

The import process takes a migration project package and uploads the content contained within it.

By default it will create a new migration project in the importing (target) system to record the groups
and object IDs of the imported data and the success or failure of each import.

The package file must be located in the directory specified by the glog.migrationProject.dir

property which defaults to <OTM_HOME>/glog/integration/projects.

If no migration project ID is specified, the import process will generate a new ID which is a

combination of the current date and a unique sequence i.e. YYYYMMDD-nnnn.

If an existing project ID is specified, the current import will replace all groups and objects in that
project with the content from the current project package.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 20-5

There is an option to control how to react if/when an error occurs in processing the content – Action

On Error – and can be one of:-

 CONTINUE: mark group/object as ERROR status and attempt next group.

 FAIL: stop processing immediately and mark project as ERROR.

Import Status

If the import process fails for an object ID in a group it will be placed in ERROR status. If one or more
object ID in a group is given an ERROR status, then the group itself is also given an ERROR status.

Similarly, if one or more group in the project is in ERROR status then the project status will be one of
PARTIAL or ERROR depending on the number of groups in ERROR status. If not all groups are in
ERROR status then the project status will be PARTIAL. If all groups are in ERROR status then the
project status will be ERROR.

Command Line Tools

The use of migration project package files will require some level of system administrator access to
the application servers. Consequently it may be appropriate to delegate the execution of the export

and import to an administrator via formal “change requests”, etc.

The command line tools described below provide access to all the same features available via the UI
and so are suitable for this purpose.

Export – mpExport.sh (Unix) / mpExport.cmd (MS Windows)

The format of the mpExport command is as follows:-

mpExport[.sh|.cmd] –app [app server host:port] –username [OTM user]

[…parameters (below)]

Parameter Description

-projectGID {GID} [Mandatory] The {GID} value corresponds to the

unique Id of the project to be exported

-packageFileName {name} [Optional] The {name} value is specified when a
specific file name is to be used to hold the exported
package. If no packageFileName parameter is
specified the filename will be constructed using the
XID of the exported project GID, replacing any

spaces with underscore (‘_’). The file extension will
be ‘.zip’.

For example,

mpExport.sh –app localhost:7001 –username GUEST.ADMIN –projectGID

GUEST.RELEASE_1 –packageFileName /tmp/release1.zip

[will be prompted for specified user’s password (in this example for GUEST.ADMIN)]

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 20-6

Import – mpImport.sh (Unix) / mpImport.cmd (MS Windows)

The format of the mpExport command is as follows:-

mpImport[.sh|.cmd] –app [app server host:port] –username [OTM user]

[…parameters (below)]

Parameter Description

-packageFileName {name} [Mandatory] The {name} value specifies the file
name containing the Migration Project Package. is

to be used to hold the exported package. If no
packageFileName parameter is specified the
filename will be constructed using the XID of the
exported project GID, replacing any spaces with

underscore (‘_’). The file extension will be ‘.zip’.

-projectGID {GID} [Optional] The {GID} value corresponds to the
unique ID of the project record that will be created
(or updated if it already exists) by importing the
specified package file.

-actionOnError {CONTINUE|FAIL} [Optional] Specifies action to take when an error
occurs processing the package content. Defaults to

CONTINUE.

For example,

mpImport.sh –app localhost:7001 –username GUEST.ADMIN –packageFileName

/tmp/release1.zip

[will be prompted for specified user’s password (in this example for GUEST.ADMIN)]

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 21-1

21. Reference A: DB.XML Transaction Codes

When importing db.xml with any of the methods described in this document, there are three
transaction codes currently available:

 I - Insert Mode: Only inserts are performed. If the data already exists in the database, you will

get primary key errors.

 IU - Insert/Update Mode: Attempts to insert data. If a primary key violation occurs, it updates

the data. No delete statements are generated.

 RC - Replace Children Mode: Deletes all child data corresponding to the top level parent,

updates the top level parent, and reinserts the child data. This mode allows for a complete

replacement of a data object.

CSVUtil 5.5 supports a “replace children” (rc) command when processing multi-table CSV files. The rc
command will recursively delete all child records and re-insert them from the CSV file. This is useful

when you want to completely replace the rows that comprise a complex multi-table business object.

The “C.” table sets are used to determine the hierarchical parent/child relationships.

For example:

TABLE_SET_DETAIL

TABLE_SET,TABLE_NAME

C.GEO_HIERARCHY,GEO_HIERARCHY_DETAIL

C.GEO_HIERARCHY_DETAIL,HNAME_COMPONENT

The C.GEO_HIERARCHY table set indicates that the GEO_HIERARCHY_DETAIL table is a child of
geo_hierarchy.

The C.GEO_HIERARCHY_DETAIL table set indicates that the HNAME_COMPONENT table is a child of

geo_hierarchy_detail.

Examples:

If you submit the following multi-table CSV file with the “rc” command, all rows in the

GEO_HIERARCHY_DETAIL table relating to the GUEST.COUNTRY hierarchy would be deleted (since
there are none to replace those records in the CSV file).

$HEADER

GEO_HIERARCHY_DETAIL

GEO_HIERARCHY_GID,HNAME_COMPONENT_GID,HLEVEL,DOMAIN_NAME,INSERT_USER,INSERT_DAT

E,UPDATE_USER,UPDATE_DATE

GEO_HIERARCHY

GEO_HIERARCHY_GID,GEO_HIERARCHY_XID,RANK,COUNTRY_CODE3_GID,DOMAIN_NAME,INSERT_U

SER,INSERT_DATE,UPDATE_USER,UPDATE_DATE

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYY-MM-DD HH24:MI:SS..'

$BODY

GEO_HIERARCHY

"GUEST.COUNTRY","COUNTRY",10,,"GUEST","DBA.ADMIN",2001-08-30

11:01:56.0,"DBA.ADMIN",2005-10-26 14:44:50.0

If you submit the following multi-table CSV file with the “rc” command, there will be two records in the
geo_hierarchy_detail table relating to the GUEST.COUNTRY hierarchy, regardless of how many rows
were there previously.

$HEADER

GEO_HIERARCHY_DETAIL

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 21-2

GEO_HIERARCHY_GID,HNAME_COMPONENT_GID,HLEVEL,DOMAIN_NAME,INSERT_USER,INSERT_DAT

E,UPDATE_USER,UPDATE_DATE

GEO_HIERARCHY

GEO_HIERARCHY_GID,GEO_HIERARCHY_XID,RANK,COUNTRY_CODE3_GID,DOMAIN_NAME,INSERT_U

SER,INSERT_DATE,UPDATE_USER,UPDATE_DATE

EXEC SQL ALTER SESSION SET NLS_DATE_FORMAT = 'YYYY-MM-DD HH24:MI:SS..'

$BODY

GEO_HIERARCHY

"COUNTRY","COUNTRY",10,,"PUBLIC","DBA.ADMIN",2001-08-30

11:01:56.0,"DBA.ADMIN",2005-10-26 14:38:33.0

GEO_HIERARCHY_DETAIL

"COUNTRY","COUNTRY_CODE3",1,"PUBLIC","DBA.ADMIN",2001-08-30 11:01:56.0,,

GEO_HIERARCHY_DETAIL

"COUNTRY","CITY",2,"PUBLIC","DBA.ADMIN",2001-08-30 11:01:56.0,,

Sample command line:

 java glog.database.admin.CSVUtil -command rc -connectionId localdb -dataDir .

-dataFileName geo_hierarchy.csv

In version 5.5 and later, the “rc” command is available after you upload a CSV file via the integration
manager.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 22-1

22. Reference B: Specifying Complex Queries

This section shows the SQL query corresponding to the predefined rate_geo database object.

Example of a Complex Query

Use this example to build your own complex queries when no predefined database object exists for the
data you want to export.

select rate_geo.*, \

cursor (select rate_geo_stops.* from rate_geo_stops where

rate_geo_stops.rate_geo_gid = rate_geo.rate_geo_gid) as rate_geo_stops, \

cursor (select rate_geo_accessorial.* from rate_geo_accessorial where

rate_geo_accessorial.rate_geo_gid = rate_geo.rate_geo_gid) as

rate_geo_accessorial, \

cursor (select rg_special_service.* from rg_special_service where

rg_special_service.rate_geo_gid = rate_geo.rate_geo_gid) as

rg_special_service, \

cursor (select rg_special_service_accessorial.* from

rg_special_service_accessorial where

rg_special_service_accessorial.rate_geo_gid = rate_geo.rate_geo_gid) as

rg_special_service_accessorial, \

cursor (select rate_geo_cost_group.*, \

cursor (select rate_geo_cost.* , \

cursor (select rate_geo_cost_weight_break.* \

from rate_geo_cost_weight_break \

where rate_geo_cost_weight_break.rate_geo_cost_seq =

rate_geo_cost.rate_geo_cost_seq and

rate_geo_cost_weight_break.rate_geo_cost_group_gid =

rate_geo_cost.rate_geo_cost_group_gid) as rate_geo_cost_weight_break

\

from rate_geo_cost \

where rate_geo_cost.rate_geo_cost_group_gid =

rate_geo_cost_group.rate_geo_cost_group_gid) as rate_geo_cost \

from rate_geo_cost_group \

where rate_geo.rate_geo_gid = rate_geo_cost_group.rate_geo_gid) as

rate_geo_cost_group \

from rate_geo "

The main thing to notice is the use of nested cursors to specify a hierarchical query.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 23-1

23. Reference C: CSVUtil Response Messages

At the completion of processing the command, CSVUtil responds in the form of an XML message. The
XML message may contain the following elements:

 Information passed in as input parameters such as the Command, DataDir, and DataFileName

 Information about the contents of the input file such as the TableName and ColumnList

 An Error element identifying the error that was detected.

 Statistics on the success of the message as follows:

ProcessCount – The number of rows that were successfully processed

ErrorCount – The number of rows where an error was detected

Skipcount – The number of rows that were skipped because of duplicate or missing keys. This is only

valid when using the ii command which suppresses unique key constraint violations when inserting
data, or the uu and dd commands which suppress "no data found" constraint violations when
updating/deleting data.

Response Messages with No Errors

Here is an example of a response indicating no errors. In this case, three data rows (based on the
ProcessCount element) of the weight_break.csv file were successfully inserted.

<CSVUtil>

<Command>i</Command>

<DataDir>.\</DataDir>

<DataFileName>weight_break.csv</DataFileName>

<ProcessCSV>

<TableName>WEIGHT_BREAK</TableName>

<ColumnList>WEIGHT_BREAK_GID,WEIGHT_BREAK_XID,WEIGHT_BREAK_PROFILE_GID,WEIGHT_B

REAK_MAX,WEIGHT_BREAK_MAX_UOM_CODE,WEIGHT_BREAK_MAX_BASE,DOMAIN_NAME</ColumnLis

t>

<ProcessCount>3</ProcessCount>

<ErrorCount>0</ErrorCount>

<SkipCount>0</SkipCount>

</ProcessCSV>

</CSVUtil>

The following is an example of the response message typically received when exporting data using the
xcsv command.

<CSVUtil>

<Command>xcsv</Command>

<DataDir>.\</DataDir>

<DataFileName>weight_break.csv</DataFileName>

<Write>

<TableName>WEIGHT_BREAK</TableName>

</Write>

</CSVUtil>

Error Messages

After processing a command, CSVUtil displays a response in the form of an XML message (see the
Loading CSV Data via the Application Server section). When an error is detected in the

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 23-2

processing, the XML message will contain an Error element with the details. The Error XML element

indicates the table name, indicates the type of error detected, and lists the data (or row in file) that
was being processed when the error occurred.

Below is the error message that Oracle Transportation Management displayed in the procedure (see

the Loading CSV Data via Integration section). The TableName element indicates the table being
processed, the Exception element provides the error message, and the Data element indicates the row
being processed. In this case, it indicates that the JUNK table does not exist in the database.

<Error>

<TableName>JUNK</TableName>

<Exception>ORA-00942: table or view does not exist

</Exception>

<Data>"Data1","Data2","Data3"</Data>

</Error>

Import

This topic describes some common error messages while importing. For each error, there is an
explanation of when the message occurs and the action needed to correct the error.

Heading Data

Message: <Exception> ORA-00942: table or view does not exist

Occurs

When:

Table name improperly specified (misspelled or invalid table) on the first line of

the CSV file.

Corrective
Action:

Verify that the table exists and that the CSV file contains the correct table name.

Heading Data

Message: <Exception> ORA-00001: unique constraint (GLOGOWNER.PK_WEIGHT_BREAK)
violated

Occurs
When:

Inserting data with primary keys that are already in the database.

Corrective
Action:

Depending on the action desired, one of the following can be used:

 If the data should be skipped or ignored, use the ii command to suppress

the message.

 If the data is intended to be new, change the keys.

 If the data is intended to be an update, use the u or uu command.

Heading Data

Message: <Exception>ORA-02292: integrity constraint
(GLOGOWNER.FK_RGCWB_WEIGHT_BREAK_GID) violated - child record found

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 23-3

Heading Data

Occurs
When:

During a delete when child records in other tables depend on the key being
removed.

Corrective
Action:

Delete child records in associated tables before deleting from this table.

Heading Data

Message: <Error>There are supposed to be 7 columns of data, but I found 6 columns in this
line: ["MYDOMAIN.LT 4500","LT
4500","MYDOMAIN.DEFAULT",4500,"LB","MYDOMAIN"]</Error>

<Error>

<TableName>WEIGHT_BREAK</TableName>

<Exception>ORA-01722: invalid number</Exception>

<Data>"MYDOMAIN.LT 4500","LT
4500","MYDOMAIN.DEFAULT",4500,"LB","MYDOMAIN"</Data>

</Error>

Occurs
When:

Missing a column of data in one of the rows.

Corrective
Action:

Verify that the data contains the number of fields as indicated in the ColumnList,
and that the field formats (string, numeric, date, etc.) are valid.

Heading Data

Message: <Error>

<TableName>WEIGHT_BREAK</TableName>

<Exception>ORA-01722: invalid number</Exception>

<Data>"MYDOMAIN.LT 4500","LT 4500","MYDOMAIN.DEFAULT",4500,"LB","gung

ho","MYDOMAIN"</Data>

</Error>

Occurs
When:

Trying to insert a string in a numeric field.

Corrective
Action:

Verify that the data contains the number of fields as indicated in the ColumnList,
and that the field formats (string, numeric, date, etc.) are valid.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 23-4

Heading Data

Message: <Error>There are supposed to be 7 columns of data, but I found 1 columns in this
line: []</Error>

<Error>

<TableName>WEIGHT_BREAK</TableName>

<Exception>ORA-01400: cannot insert NULL into

("GLOGOWNER"."WEIGHT_BREAK"."WEIGHT_BREAK_GID")

</Exception>

<Data></Data>

</Error>

Occurs
When:

The CSV file contains extra blank lines at the end. Oracle Transportation
Management considers each blank line to represent a row of data.

Corrective
Action:

Remove any extra blank lines at the end of the file.

Heading Data

Message: <Error>

<TableName>WEIGHT_BREAK</TableName>

<Exception>ORA-01401: inserted value too large for column</Exception>

<Data>"MYDOMAIN.LT 4500","LT
4500","MYDOMAIN.DEFAULT",4500,"LB",4500,"MYDOMAIN123456789012345678
90123456789012345678901234567890123456789012345678901234567890"</
Data>

</Error>

Occurs
When:

Field length for one of the columns has been exceeded.

Corrective

Action:

Limit the length of the input data field value to the appropriate size.

Heading Data

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 23-5

Heading Data

Message: <Error>

<TableName>WEIGHT_BREAK</TableName>

<RowsProcssed>0</RowsProcssed>

<Data>"MYDOMAIN.LT 4500","LT
4500","MYDOMAIN.DEFAULT",4500,"LB",4500,"MYDOMAIN"</Data>

</Error>

Occurs
When:

Attempted to delete data where the data does not exist in the table.

Corrective
Action:

Validate that the keys being used to delete the data are correct. Could use the dd
command to suppress the error message.

Export

This topic describes some common error messages while exporting. For each error there is an
explanation of when the message occurs and the action needed to correct the error.

Heading Data

Message: <CSVUtil>

<Command>xcsv</Command>

<DataDir>.\</DataDir>

<DataFileName>weight_break.csv</DataFileName>

<Write>

<TableName>WEIGHT_BREAK2</TableName>

</Write>

</CSVUtil>

Caught exception: CSVUtil.SQLException: /CSVUtil.SQLException:

(null)/java.sql.SQLException: ORA-00936: missing expression

…

Occurs
When:

Attempting to export data from a table that does not exist.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 23-6

Heading Data

Corrective
Action:

Verify table exists and that the CSV file contains the correct table name.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 24-1

24. Appendix A: Using Python

Starting in version 6.3 of OTM/GTM, the built in support for Python scripts has been discontinued.
However, all previous scripts are still available for download and can be freely used and modified for

client use. These scripts are not supported under the OTM Support agreement.

CSV Utilities

Importing on the Client Side

This section describes how to use ClientUtil.py to import data into a remote Oracle Transportation
Management database.

Note: ClientUtil does not support the multi-table CSV format.

The following example imports data from d:/temp/rate_geo.csv on your PC into a remote Oracle
Transportation Management database. Because xvalidate is set to Y, Oracle Transportation
Management does not null missing values in the CSV file and Oracle Transportation Management also
validates the content of the CSV file. If you need to null certain fields, set xvalidate to N.

python ClientUtil.py

-command csvImport

-hostname localhost

-username GUEST.ADMIN

-password CHANGEME

-localDir d:/temp

-localFileName rate_geo.csv

-xvalidate Y

Note: You can skip password and rely on IP authentication instead.

Exporting on the Client Side

This section describes how to use ClientUtil.py to export data from a remote Oracle Transportation

Management database.

Note: ClientUtil does not export child and parent data for the specified records(s).

Exporting a Table

The following example exports all the RATE_GEO records in the GUEST domain from the database that
is connected to the Oracle Transportation Management instance running on a host called localhost.

ClientUtil writes the CSV file to myfile.csv in the d:/temp directory.

python ClientUtil.py
-command csvExport

-hostname localhost

-username GUEST.ADMIN
-password CHANGEME

-tableName RATE_GEO

-whereClause "DOMAIN_NAME=’GUEST’"
-localDir d:/temp

-localFileName myfile.csv

Note: You can skip password and rely on IP authentication instead.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 24-2

Exporting Data Based on Any Query

The following example exports a CSV file containing just the shipment_gid column from the shipment
table for all records in the GUEST domain. ClientUtil writes the CSV file to d:/temp/myfile.csv on your
PC.

python ClientUtil.py

-command csvQuery

-hostname localhost

-username GUEST.ADMIN

-password CHANGEME

-sqlQuery "select shipment_gid from shipment where domain_name = ‘GUEST’"

-localDir d:/temp

-localFileName myfile.csv

DBXML Utilities

There are two main python scripts that support db.xml files:

 Sql2xml.py: generates db.xml output from a select statement

 Xml2sql.py: imports a db.xml file into the database

There are a number of ways to use these scripts:

 via ClientUtil.py supports client-side batch jobs that export and import db.xml from a remote

Oracle Transportation Management instance.

 Directly on the DOS/UNIX command line when a local SQL*net connection to the

database is available.

ClientUtil support for DB.XML

This chapter describes how to use the client-side python script ClientUtil.py to export and import
db.xml files from a remote Oracle Transportation Management database. This section assumes you
have python installed on your PC. If not, see the Administration Guide on your Oracle Transportation
Management CD for installation and configuration instructions.

The main advantage of ClientUtil.py compared to the web-based interface is that it allows you to write
client side batch jobs, which pull db.xml data from a remote Oracle Transportation Management
instance. This data can be modified as desired, and then imported back to the remote Oracle

Transportation Management instance (also using ClientUtil.py).

Note: ClientUtil.py can also export and import CSV files.

Note: If the Python environment is not enabled the response “Service Unavailable - You

need to install Python in order to use this functionality” will be returned.

Exporting DB.XML

Similar to how it works via the web screen, there are two methods for exporting:

 By specifying a dbObjectName and whereClause, or

 By specifying a sqlQuery and a rootName

Using Pre-defined Data Objects

Here is the command line for exporting the first RATE_GEO db-object found in the database:

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 24-3

python ClientUtil.py -command xmlExport -hostname localhost -username

GUEST.ADMIN -password CHANGEME -dbObjectName RATE_GEO -whereClause "rownum < 2"

-localDir ./ -localFileName rate_geo1.db.xml

This example creates the file “rate_geo1.db.xml” in the current working directory.

You need to modify the following arguments specific to your situation:

 Hostname: hostname of remote web server.

 Username: User name used to login to the remote Oracle Transportation Management

instance.

 Password: password corresponding to the username.

 WhereClause: SQL whereClause used to limit size of export.

 LocalDir: directory on your PC where output file is written.

 LocalFileName: name of local output file.

What Pre-defined Data Objects Exist?

Refer to the drop-down list on the xmlexport.xsl page to find out what pre-defined data objects
currently exist. At this time, the list contains:

 CORPORATION

 LOCATION

 RATE_GEO

 RATE_OFFERING

 AGENT

 AGENT_ACTION

 AGENT_EVENT

 SAVED_QUERY

 SAVED_CONDITION

 USER_MENU_LAYOUT

 MONITOR_PROFILE

 SHIPMENT

 OB_ORDER_BASE

Using a SqlQuery

Here is a sample command line for exporting all the activity records in the database:

python ClientUtil.py -command xmlQuery -hostname localhost -username

GUEST.ADMIN -password CHANGEME -sqlQuery "select * from activity"

 -rootName ACTIVITY -localDir ./ -localFileName activity.db.xml

The above command creates the activity.db.xml file in the current working directory.

You need to modify the following arguments, specific to your situation:

 Hostname

 Username

 Password

 SqlQuery

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 24-4

 RootName

 LocalDir

 LocalFileName

Importing DB.XML

You can use ClientUtil.py to import a client-side db.xml file into a remote Oracle Transportation
Management database instance.

Here is a sample command line:

python ClientUtil.py -command xmlImport -hostname localhost -username DBA.ADMIN

-password CHANGEME -transactionCode IU -localDir ./ -localFileName rate.db.xml

See the Reference A: DB.XML Transaction Codes section for possible transactionCodes.

Oracle Transportation Management ignores element names that do not correspond to a database
table. This allows you to comment your DB.XML file without affecting what is imported.

Processing Rate Factors

Note: The functions available in this Python script have been as supported Java commands. See
section 14 for details.

Process Rate Factors from a Client

You can use the ClientUtil Python script to process rate factors from a client DOS or UNIX prompt. The
following example generates accessorial costs for the specified rate factor source GID.

Command options are:

 python ClientUtil.py -command procRateFactor -hostname <hostname> -username

<un> -password <pw> -rateFactorGid <rfg> to process the specified rate factor using

associated rate factor rules. The command selects all rules that refer to that Factor Source

GID

 python ClientUtil.py -command procRateFactorForRule -hostname <hostname> -username

<un> -password <pw> -rateFactorGid <rfg> -ruleGid <rG> to process the specified rate

factor using the specified rate factor rule. The command will select the latest rule detail to

apply.

 python ClientUtil.py -command procAllRateFactors -hostname <hostname> -username <un> -

password <pw> to process all unprocessed rate factors using their associated rate factor

rules.

 python ClientUtil.py -command procRateFactorRunGroup -hostname <hostname> -username
<un> -password <pw> -runGroup <id> to process all rate factors in the specified run group

with their associated rate factor rules.

 python ClientUtil.py -command viewRateFactorResults -hostname <hostname> -username

<un> -password <pw> to view the results of processing the rate factors.

The same processing logic applies to the commands executed via Python is in the equivalent Java
commands covered in section 14.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 24-1

Modifying Rates Using the RateMgmt.py Script

The RateMgmt.py Python script provides functionality to modify rates. More specifically, it makes it
extremely easy to modify a large number of rate records simultaneously.

The script requires installation of the following Python modules:

 Python 2.1 or higher

 PyXML 0.6.6

 4Suite 0.12

The RateMgmt.py script assumes that you have exported the rate records from the database using the
currently available DB XML tool. See section 2 for details on how to do this.

Below is an example of a command line for exporting the rate records that have been marked for

expiration:

ClientUtil.py -command xmlExport -hostname SERVERONE -username USER.ADMIN -

password CHANGEME -dbObjectName RATE_GEO -whereClause "expire_mark_id =

'TEST_MARK_1'" -localDir X:\FOLDER -localFileName MARKRATES.xml

In this example, you are exporting all the rate records from the RATE_GEO table that have an
ExpireMarkId equal to TEST_MARK_1. This assumes you have previously set the Expire Mark ID for

the appropriate records to TEST_MARK_1 in the user interface. For more details on doing that, please
reference the online help for expiring rate offerings and rate records.

Typical things the RateMgmt.py script will be used for include:

 Copy Rate Offerings from AAA to BBB, with a new version for a new, upcoming time period

 Update records as follows:

Add XX% (i.e., add 10%) to a set of Rate Records

Add $XX (i.e., add $50) to a set of Rate Records

Typically you will be adding either a fixed amount or a relative amount, and be able to specify the
where clause.

Currently, the RateMgmt.py script supports twelve different commands. You can use the script itself to
see the format of each command and to see a brief description of each. To do this use the following
command:

python RateMgmt.py -command <command>

For example, to see the format and get information on the changeRateGeoXid command, you would

use:

Python RateMgmt.py –command changeRateGeoXid

The following sections describe each of the supported RateMgmt.py commands in detail.

changeRateGeoXid

This is used to change a RateGeoXid. It also automatically updates the RateGeoCostGroupGid for the
child records.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 24-2

The format for the command line is:

python RateMgmt.py -command changeRateGeoXid -oldGid <oldGid> -newXid <xid> -

inFile <infile> -outFile <outfile>

Here is a sample command line for changing the RateGeoXid:

python RateMgmt.py -command changeRateGeoXid -oldGid GUEST.1234A -newXid 1234B

-inFile in.xml -outFile out.xml

In this example, you are changing the RateGeoXid GUEST.1234A in the input XML file in.xml, to
GUEST.1234B in the output XML file out.xml.

In practice, this will often be run before rate records are modified. Since you will most likely need to
modify the rates before the old ones actually expire, this will create a rate record with a new ID. That

way the rate modifications can be done to the new rate record IDs and the data can be imported back

into the database without overriding the current rate records.

changeAllRateGeoXid

This is used to change the suffix of all RateGeoXid(s). It also automatically updates the
RateGeoCostGroupGid(s) for the child records.

The format for the command line is:

python RateMgmt.py -command changeAllRateGeoXid -numChars <num> -newSuffix

<xidSuffix> -inFile <infile> -outFile <outfile>

Here is a sample command line for changing all of the RateGeoXids:

python RateMgmt.py -command changeAllRateGeoXid -numChars 5 -newSuffix _2002 -

inFile in.xml -outFile out.xml

In this example, you are changing all the rate record IDs in the input XML file in.xml, to include _2002
after what they currently are, and posting the results to the output XML file out.xml. The –numChars
argument defines the number of characters in new suffix.

In practice, this will be useful for the same reason as explained under changeRateGeoXid.

changeRateOfferingXid

This is used to change the RateOfferingXid for a rate offering.

The format of the command line is:

python RateMgmt.py -command changeRateOfferingXid -oldGid <oldGid> -newXid

<xid> -inFile <infile> -outFile <outfile>

Here is a sample command line for changing the RateOfferingXid:

python RateMgmt.py -command changeRateOfferingXid -oldGid GUEST.1234A -newXid

1234B -inFile in.xml -outFile out.xml

In this example, you are changing the RateOfferingXid GUEST.1234A in the input XML file in.xml to
GUEST.1234B in the output XML file out.xml.

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 24-3

In practice, this can be run before rate offerings or records are modified. Since you will most likely

need to modify rate offering or records before old ones actually expire, this will create a rate offering
with a new ID. That way any modifications can be done to the new rate offering IDs and the data can
be imported back into the database without overriding the current data.

changeAllRateOfferingXid

This is used to change the suffix of all RateOfferingXid(s).

The format for the command line is:

python RateMgmt.py -command changeAllRateOfferingXid -numChars <num> -newSuffix

<xidSuffix> -inFile <infile> -outFile <outfile>

Here is a sample command line for changing all the RateOfferingXids:

python RateMgmt.py -command changeAllRateOfferingXid -numChars 5 -newSuffix

_2002 -inFile in.xml -outFile out.xml

In this example, you are changing all the rate offering IDs in the input XML file in.xml, to include
_2002 after what they currently are, in the output XML file out.xml. The –numChars argument defines
the number of characters in the new suffix.

In practice, this will be useful for the same reason as explained under changeRateOfferingXid.

removeExpireMarkId

This is used to remove all the data in the EXPIRE_MARK_ID field of the defined records.

The format for the command line is:

python RateMgmt.py -command removeExpireMarkId -inFile <infile> -outFile

<outfile>

Here is a sample command line for removing the Expire Mark IDs:

python RateMgmt.py -command removeExpireMarkId -inFile in.xml -outFile out.xml

In this example, you are removing all the data in the EXPIRE_MARK_ID field for the records in the
input XML file in.xml and posting the results in the output XML file out.xml.

In practice, this is helpful for when you modify rate records. A common approach would be to update
your rate records, then modify your rates. Since most of the new records have copied information
from the original rate records, the new rate records may have expiration mark IDs assigned to them.
Since you will not want to have your new, modified rate records marked for expiration, you will use

this command to remove their mark IDs.

incRateCostByFactor

This is used to increase your rates by the factor specified. For example, if you need to increase your
rates by 10%, you would use this command.

The format for the command line is:

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 24-4

python RateMgmt.py -command incRateCostByFactor -factor <increase> [-round

<digits>] [-excBreak Y] [-basis <basis>] -inFile <infile> -outFile <outfile> [-

@table_name.column_name columnValue]

Here is a sample command line to increase you rates by 10%:

python RateMgmt.py -command incRateCostByFactor -factor 1.10 -inFile in.xml -

outFile out.xml

In this example, you are increasing the rates in the input XML file in.xml by 10% and posting the

results in the XML output file out.xml. Notice that the -factor argument must be typed as 1.10 for a
10% increase.

This command provides additional arguments to:

 Round the number of digits to a specific value. The value must be an integer greater than or

equal to zero. The format of this argument is, -round 2 (which round the rate to the nearest

cents in USD).

 Exclude the break (weight or unit) records from being changed. The format of the argument

is, -excBreak <xxxxx>

 Specify a filter on the cost basis (e.g. SHIPTMENT, EQUIPMENT, SHIPMENT.DISTANCE (from

CHARGE_MULTIPLIER column of RATE_GEO_COST table)). The format of the argument is, -

basis <xxxxx>

 Filter for more specific fields. The format of the argument is, -@table_name.column_name

columnValue

Here is a sample command line using the -basis argument, as well as a specific field filter:

python RateMgmt.py -command incRateCostByFactor -factor 1.10 -basis SHIPMENT -

inFile in.xml -outFile out.xml -@RATE_GEO.X_LANE_GID GUEST.PHL_NYC

This would only increase the rates for those rate records where the RateGeo Domain Name is equal to
GUEST, and the X_LANE is equal to GUEST.PHL.NYC.

incRateCostByAmount

This is used to increase your rates by the amount specified. For example, if you needed to increase
your rates by $50, then you would use this command.

The format for the command line is:

python RateMgmt.py -command incRateCostByAmount -amount <amount> -inFile

<infile> -outFile <outfile>

Here is a sample command line to increase all your rates by $50:

python RateMgmt.py -command incRateCostByAmount -amount 50.00 -inFile in.xml -

outFile out.xml

In this example, you are increasing all the rates in the input XML file in.xml by $50 and posting the
results to the output XML file out.xml. The currency of the cost is not considered in the command.

This command provides additional arguments to:

 Exclude the break (weight or unit) records from being changed. The format of the argument

is, -excBreak <xxxxx>

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 24-5

 Specify a filter on the cost basis (e.g. SHIPTMENT, EQUIPMENT, SHIPMENT.DISTANCE (from

CHARGE_MULTIPLIER column of RATE_GEO_COST table)). The format of the argument is, -

basis <xxxxx>

The format for each of these is the same as described in incRateCostByFactor.

addNewCostRecord

This is used to add a fixed amount as a new RateGeoCost record. You would use this to create a new

rate record with the defined rate cost.

The format for the command line is:

python RateMgmt.py -command addNewCostRecord -amount <amount> [-currency

<currencyCode>] -inFile <infile> -outFile <outfile>

Here is a sample command line for changing the rate cost:

python RateMgmt.py -command addNewCostRecord -amount 5.00 -currency USD -inFile

in.xml -outFile out.xml

In this example, you are adding a new cost record based on everything in the input XML file in.xml,
giving it a rate cost of $5.00, and posting the results to the output XML file out.xml.

removeUserDateFields

This is used to remove all the INSERT_USER, INSERT_DATE, UPDATE_USER, and UPDATE_DATE
fields.

The format for the command line is:

python RateMgmt.py -command removeUserDateFields -inFile <infile> -outFile

<outfile>

Here is a sample command line:

python RateMgmt.py -command removeUserDateFields -inFile in.xml -outFile

out.xml

In this example, you are taking the input XML file in.xml, removing all the data in the fields listed
above, and posting the results to the output XML file out.xml.

removeField

This is used to remove a specific field.

The format for the command line is:

python RateMgmt.py -command removeField -inFile <infile> -outFile <outfile> -

fieldName <fieldName>

Here is a sample command line for removing a specific field:

python RateMgmt.py -command removeField -inFile in.xml -outFile out.xml -

fieldName EXPIRATION_DATE

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved. 24-6

In this example, you are taking the input XML file in.xml, removing the field EXPIRATION_DATE and

all is contents, and posting the results to the output XML file out.xml.

changeEffDate

This is used to change the value in the effective date field. The newDate must be in the format "YYYY-
MM-DD HH24:MI:SS" including quotes.

The format for the command line is:

python RateMgmt.py -command changeEffDate -inFile <infile> -outFile <outfile> -

newDate <newDate>

Here is a sample command line for changing the effective date field:

python RateMgmt.py -command changeEffDate -inFile in.xml -outFile out.xml -

newDate "2003-09-01 08:00:00"

In this example, the effective date field in the input XML file in.xml will be changed to 2003-09-01
08:00:00. The results will be posted to the output XML file out.xml.

changeFieldValue

This is used to change the value of a specified field. If the new value has spaces, then it must be in
quotes.

The format for the command line is:

python RateMgmt.py -command changeFieldValue -inFile <infile> -outFile

<outfile> -fieldName <fieldName> -newValue <newValue>

Here is a sample command line for changing the value of a specific field:

python RateMgmt.py -command changeFieldValue -inFile in.xml -outFile out.xml -

fieldName EXPIRATION_DATE -newValue "2003-09-01 08:00:00"

In this example, the expiration date in the XML input file in.xml will be changed to 2003-09-01
08:00:00. The results will be posted to the output XML file out.xml.

